TECHNISCHE
@ UNIVERSITAT
DRESDEN

“Friedrich List” Faculty of Transport and Traffic Sciences Institute of Railway Systems and Public Transport

Chair of Transportation Systems Engineering

Diploma Thesis

ON THE DOMAIN-SPECIFIC
FORMALIZATION OF REQUIREMENT
SPECIFICATIONS - A CASE STUDY OF
ETCS*

Moritz Dorka
born on March 18th, 1988 in Kirchen (Sieg)
matr. no. 3472533, moritz.dorka@mailbox.tu-dresden.de

Examined by:

Prof. Dr.rer. nat. Jorg Schutte and Dr.-Ing. Sven Scholz
Supervised by:

Dr.-Ing. Sven Scholz

Submitted on June 19th, 2015

mailto:moritz.dorka@mailbox.tu-dresden.de

CHANGES TO THIS DOCUMENT

The electronic version of this paper has seen minor editing after official submission and prior to
its online publication. These changes are listed below.

e Added the poster (see facing page) which accompanied the defence of this thesis.

e Removed epigraphs preceding each section due to copyright concerns. Specifically those

were:

Section 1 A quote on the peculiar approach to software development at NASA.

Section 2 A statement regarding the common confusion over the meaning of shall
and will.

Section 3 An anecdote about allegedly unreadable code.

Section 4 A criticism concerning the lack of standardization in the ETCS domain.

Section 5 An alternative long form of the common Latin abbreviation “qg.e.d.”.

Appendices Various humorous key words to indicate legal obligations in specification
texts.

The sources of those texts are given at the positions where the respective epigraphs were
originally placed.

¢ The software “Reqtify” used to be defined as requirement traceability tool. This has been
changed to the more generic term requirements management tool.

e The display of different tick marks such as ~ and ' in the various Listings of the Appen-
dices (esp. A.2) has been improved.

e The mention of “approx. 14%" has been changed into “approx. 7% " when talking about
the @DomainSpecific annotation in Section 3.6. Both numbers are, in fact, nothing more
than a wild guess. However, 7% makes more sense in the context.

e Minor fixes to spelling in [GKNV93], [IEE98], IMMKO1] and [RAC11].

¢ Fixed a wrong in-text reference to a Listing in Section 2.3.1.

Note that both this page and the following page have been added to the document specifically
for the electronic edition of this thesis and are therefore exempted from page numbering.

Moritz Dorka, October 8th, 2015

TECHNISCHE
UNIVERSITAT

DRESDEN

“Friedrich List” Faculty of Transport and Traffic Sciences

Chair of Transportation Systems Engineering

ON THE DOMAIN-SPECIFIC FORMALIZATION OF
REQUIREMENT SPECIFICATIONS - A CASE STUDY OF ETCS

N|

-

Raw requirements

ETCS subset-026, Baseline 3.3.0,
538 pages of Microsoft Word documents

1 MOTIVATION

Modern systems are becoming increasingly complex. This has proven to be challenging es-
pecially for safety-critical applications where such systems need to remain maintainable for
their entire, often decades-long, operating lifetimes.

Since maintainability must be guaranteed irrespective of the original supplier and their indi-
vidual business decisions (bankruptcy, arbitrary “end of life"”), the idea of a so-called “open
proofs” approach was born. For today’s ever more common software-driven applications
this mandates to make both the resulting software program and all auxiliary tools
used for its creation available as open-source. Thus, anyone with the respective
skills can examine the functioning of the system and take over its maintenance
at any point in time.
This thesis shows an implementation of that approach with a
tool to enable proper requirements management for the
European Train Control System (ETCS).

Tree of requirements

This visualization shows chapter 3

of subset-026 with approx. 3.500
requirement artifacts connected by
4.200 edges which bear hierarchical or
other custom relations

3 IMPLE-
MENTATION

Although there exist nu-
merous commercial soft-
ware products for the pur-
pose of requirement import
from Word, they perform poorly for the

core ETCS specification “subset-026"

which constituted the focus of the thesis.
This is mostly due to the lack of proper struc-
ture and the peculiar formatting of those files.

Processed requirements

Eclipse’s ProR (above) and /BM DOORS (below) displaying
an excerpt of the specification

<lots of XML>

-
$
§
&
N
2
$
S
£
o
<
5
S
£
S
5

IS
&
o
g
I
&
~
Q

Hence, a novel tool comprising some 16k SLOC

of Java was developed to automatically convert

those documents into the Requirement Interchange
Format (ReqlF). This is a relatively new, but standard-
ized XML-based file format specifically designed for the
storage and exchange of requirements.

To do so, the tool first reads the files using a customized,
open-source library to access the internal Word file structure.

It then elicits individual requirements (usually single paragraphs
or cells in tables) and assigns them unique, context-sensitive
identifiers. Through the employment of regular expressions and
Natural Language Processing the textual contents of those require-
ments are subsequently enhanced for implementation purposes
with various metadata. In the next step relations between different
requirements are detected and other artifacts (pictures, equations)
are handled. The result of these efforts is stored in a tree which
eventually gets written to ReqlF. This output can then be consumed
by common RM-tools such as DOORS or modelled using SCADE.

<
$
o)
&
&
=
&
=
§
8
S
£
§
$
£
X

DIPLOMA THESIS

Author: Moritz Dorka

Examined by: Prof. Dr. rer. nat. Jorg Schiitte and Dr.-Ing. Sven Scholz
01/2015 - 06/2015

Duration:

Airbus A300 197011972 -2050 1
Crocodile (French train protection) 1872]1933 - soon
ETCS 1998[2001 - 2

Single processed requirement
domain-specific metadata of a single requirement as shown in ProR

2 OBJECTIVE

ETCS requirements are provided as Microsoft
Word files which are neither easily implementa-
ble (no metadata, no information on changes bet-
ween versions) nor sufficiently traceable (as man-
dated by EN 50128:2011, clause D.58 for SIL 3/4).
Therefore, this thesis provides a tool which can
read these Word documents and transform them
into an appropriate, openly standardized format
which does not suffer from these problems.

software

running on
a computer
for decades

4 CON-
CLUSION

The developed tool is
capable of handling all
eight chapters of subset-
026 and processes them
into roughly 22.000 individ-
ual requirements.

Its output is used produc-
tively within the R&D-project
"openETCS" aimed at creating
a manufacturer-independent ref-
erence implementation covering
the software part of ETCS' core on-
board component, the European Vi-
tal Computer (EVC).

Currently, the tool is tailored to this
specific use-case. However, a reconfigu-
ration for other specification documents
is also feasible. Thereby it could become
an accelerator for the wider adoption of
ReglF, and thus formalized requirements
management, in systems engineering.

Tuming the requirements into a system

Esterel's SCADE Suite displaying a model of a part of the ETCS EVC. The
requirements are shown in the upper and lower right panels

O

DRESDEN
concept

*German title in conformance with the “Richtlinie fir die Anfertigung der Diplom-Arbeit":

Teil-automatisierte Formalisierung von
Lastenheftanforderungen am Beispiel ETCS

Dresden, June 19th, 2015 signature of the student

Bibliografischer Nachweis

DORKA, Moritz:
On the domain-specific formalization of requirement specifications — A case study of ETCS

Diplom-Arbeit, Dresden 2015

Technische Universitat Dresden, Fakultat Verkehrswissenschaften , Friedrich List”, Institut fur
Bahnsysteme und Offentlichen Verkehr, Professur Verkehrssystemtechnik

Studiengang Verkehrsingenieurwesen

99 Seiten, 23 Abbildungen, 5 Tabellen, 6 Programmtexte, 99 Quellenangaben

ABSTRACT

This paper presents a piece of software to automatically extract requirements captured in Mi-
crosoft Word files while using domain knowledge. In a subsequent step, these requirements
are enhanced for implementation purposes and ultimately saved to ReglF, an XML-based file
format for the exchange of specification documents. ReqlF can be processed by a wide range
of industry-standard requirements management tools. By way of this enhancement a formaliza-
tion of both the document structure and selected elements of its natural language contents is
achieved.

In its current version, the software was specifically developed for processing the Subset-026,

a conceptually demanding specification document covering the core functionality of the pan-
European train protection system ETCS.

Despite this initial focus, the two-part design of this thesis facilitates a generic applicability of its
findings: Section 2 presents the fundamental challenges of weakly structured specification doc-
uments and devotes a large part to the computation of unique, but human-readable requirement
identifiers. Section 3, however, delves into more domain-specific features, the text processing
capabilities, and the actual implementation of this novel software.

Due to the open-source nature of the application, an adaption to other use-cases can be achieved
with comparably little effort.

Diese Arbeit befasst sich mit einer Software zur automatisierten Extraktion von Anforderun-
gen aus Dokumenten im Microsoft Word Format unter Nutzung von Domanenwissen. In einem
nachgelagerten Schritt werden diese Anforderungen fur Implementierungszwecke aufgewertet
und schlief3lich als ReglF, einem XML-basierten Dateiformat zum Austausch von Spezifikations-
dokumenten, gespeichert. ReqglF wird von zahlreichen branchentblichen Anforderungsmana-
gementwerkzeugen unterstutzt. Durch die Aufwertung wird eine Formalisierung der Struktur
sowie ausgewahlter Teile der naturlichsprachlichen Inhalte des Dokuments erreicht.

Die jetzige Version der Software wurde speziell fur die Verarbeitung des Subset-026 entwickelt,
eines konzeptionell anspruchsvollen Anforderungsdokuments zur Beschreibung der Kernfunktio-
nalitat des europaweiten Zugsicherungssystems ETCS.

Trotz dieser urspringlichen Intention erlaubt die zweigeteilte Gestaltung der Arbeit eine allge-
meine Anwendung der Ergebnisse: Abschnitt 2 zeigt die grundsatzlichen Herausforderungen in
Bezug auf schwach strukturierte Anforderungsdokumente auf und widmet sich dabei ausfihrlich
der Ermittlung von eindeutigen, aber dennoch menschenlesbaren Anforderungsidentifikatoren.
Abschnitt 3 befasst sich hingegen eingehender mit den domanenspezifischen Eigenschaften,
den Textaufbereitungsmaoglichkeiten und der konkreten Implementierung der neuen Software.
Da die Software unter open-source Prinzipien entwickelt wurde, ist eine Anpassung an andere
Anwendungsfalle mit relativ geringem Aufwand maoglich.

TECHNISCHE
UNIVERSITAT
DRESDEN

Fakultiat Verkehrswissenschaften , Friedrich List”

Themenblatt
zur Diplomarbeit*)

von Erad/Herrn cand. Ing. Moritz Dorka

Thema (Aufgabenstellung siehe Anlage):

Teil-automatisierte Formalisierung von

Lastenheftanforderungen am Beispiel ETCS

Institut fir Bahnsysteme und Offentlichen Verkehr
Professur fir Verkehrssystemtechnik

1. Prifer: Prof. Dr. rer. nat. Jorg Schitte
2. Prifer/Beisitzer: Dr.-Ing. Sven Scholz

Zur Anfertigung der Diplomarbeit wurde eine dreiseitige Vereinbarung {TUD, Student,
Dritter) abgeschlossen: dJa/ Nein {Zutreffendes unterstreichen, Nichtzutreffendes streichen)

[
(]

#
¢ B [y 4 !

P SRt LA AN) Sciditic Dresden, den 05.06.2014
Unterschfift des Priifdiey der Professur

@ s

w
5 4 l.l)

Ausgabetag: Aﬁm{oﬂ- .: L. I
6 06, Jo A Bestatigung durch die Fakultdt: SR

Abgabetermin: Ha b Loll

Abgabetag: ... Bestatigung durch die Fakultdt: ...

Bestatigung durch die Fakultat fur eine genehmigte Verlangerung
der Bearbeitungszeit:
Hiermit bestatige ich den Empfang der Aufgabenstellung fir meine Diplomarbeit und
erkenne die Festlegungen der Richtlinie fur die Anfertigung der Diplomarbeit —
insbesondere den Punkt 11 - an:

Sl R SO Dresden, den A%. A 2o4g

Unterschrift des Diplomanden-

*} siehe Diplompriifungsordnung §§ 20 bis 23 und § 25 sowie Studiendokumente 4., Punkt 3 der Regelung fir die
Ausgabe und Registratur der Studienarbeiten und Diplomarbeiten

TECHNISCHE
UNIVERSITAT
DRESDEN

Fakultat Verkehrswissenschaften ,Friedrich List”
Institut fiir Bahnsysteme und Offentlicher Verkehr, Professur Verkehrssystemtechnik

Aufgabenstellung zur Diplomarbeit
fir Herrn cand. Ing. Moritz Dorka zum Thema

Teil-automatisierte Formalisierung von
Lastenheftanforderungen am Beispiel ETCS

ETCS ist ein neues europdisches Zugsicherungssystem fir das aktuell noch keine fahrzeugseitigen
Komponenten verfiigbar sind, die universell auf allen ausgerlsteten Strecken eingesetzt werden
konnen. Um diesem Manko zu begegnen soll in dem EU-finanzierten openETCS Projekt die Software
fur einen entsprechenden Fahrzeugrechner herstellerunabhéngig nach OpenSource-Prinzipien
entworfen werden.

Im Rahmen der Arbeit ist ein auf dem Eclipse Modeling Framework aufsetzender Importer fir die in
Microsoft Word 8.0+ vorliegenden Anforderungsdokumente, zunédchst am Beispiel des zentralen
Dokuments ,Subset-026", zu erstellen, der die einzelnen Anforderungen nachverfolgbar im
Requirements Interchange Format (ReglF) ausgibt. Aulderdem sollen vorbereitende Schritte zur
Formalisierung der gréftenteils natlrlichsprachlichen Anforderungstexie unternommen werden.
Dabei sind zumindest folgende Teilaufgaben automatisiert zu 16sen:

1. Kategorisierung der Anforderungen (z.B. Definition, Beispiel, Anmerkung, optional /
verpflichtend, geldscht, fahrzeugseitig / streckenseitig relevant)

2. Erkennung und maschinenlesbare Ausgabe von in den Texten erwahnten Entitédten, deren
Attributen sowie (gegebenenfalls) booleschen Abhangigkeiten

3. lIdentifizierung von speziellen Schllisselwértern / -phrasen, die in anderen Anforderungen
referenziert werden (z.B. , Linking information is used” in Anforderung 3.4.4.2.1.1)

4. Markierung von problematischen Passagen aufgrund unspezifischer Ausdrucksweise (“this
list is not exhaustive” in Anforderung 4.4.12.1.4), Unterspezifikation (“[...] in case of a loss of
the safe radio connection, [...] the involved entities shall consider the communication
session still established for a defined time.” in Anforderung 3.5.4.1) oder Widersprichen ("A
level 2/3 MA and track description information shall be received from the RBC before the
level transition border. /f not, [...]" in Anforderung 5.10.3.2.3)

5. semantisch korrekte Abbildung von in Tabellen- und Listenform verfassten Anforderungen,
eventuell Ideen zur Behandlung von nichttextuellen Anforderungen (Bilder, Grafiken).

Die Arbeit ist in englischer Sprache zu verfassen. Eine leichte Anpassbarkeit der resultierenden
Software an mdogliche kinftige Anwendungsszenarien ist winschenswert. Bei der Entwicklung
sollen die MaRstabe der EN50128:2011, Abschnitt 6.7 flir Werkzeuge der Klasse T1 bericksichtigt

werden. e &0y
4 *p ¢
[y 4 | 1 Ly o®

4
¥ [N

Prof. Drlxér. nat. Jorg scnutte Dresden, 5. Juni 2014

THESES

1. The Microsoft Word file format is not especially beneficial to the storage of specification
documents due to its low degree of structure and high functional excess.

2. Requirements captured within Microsoft Word files can be automatically extracted and
formalized by using domain knowledge.

3. Traceability is an important property of requirements, and Microsoft Word files cannot
serve as a decent trace source without dedicated postprocessing.

4. The current representation of Subset-026 does not particularly lend itself as an input to a
highly regulated development process in accordance with EN 50128.

5. ReqlF is a file format tailored to the task of requirements management that can represent
the contents of specification documents in a manner substantially more formal than Mi-
crosoft Word.

6. To derive maximum profit from the efforts on formalization, its representation must be
easily consumable by humans as well as by automated means.

7. In a domain-specific context, a regex-based approach to natural language contents is still
preferable to NLP / Machine Learning because of its speed and predictability.

8. When processing the raw specification documents of systems of sufficient complexity,
using a fully automated tool is indispensable in order to rule out human error.

9. A tool without proper tailoring to the domain will inevitably underperform and may even
omit important elements of the specification, with the possible result of fatal outcomes.

CONTENTS

1

10

Introduction
11 Motivation
1.2 Previous formalization attempts

Processing specification documents

2.1 Structural considerations
2.1.1 Theinput format: DOC
2.1.2 Different parts of a specification document
2.1.3 Theoutput format: ReglF

2.2 Enhancingrequirementcontent. Lo
2.2.1 \Visualizing dependencies oo
2.2.2 Queryingfordata.

2.3 Computing requirement identifiers L.
2.3.1 Unwinding complex structures: Tables
2.3.2 Unwinding complex structures: Other structures
2.3.3 Summary

The tool

3.1 Basicusage
3.1.1 Dealing withembedded media

3.2 ReglFoutput
3.2.1 Data associated with a requirement artifact
3.2.2 Links between requirementartifacts L.
3.2.3 Issues with IBMDOORS

3.3 Content formalization
3.3.1 Detection of recurringelements L.
3.3.2 Sublistdependencies
3.3.3 Intra-cell requirements

13

14

15

17

17

18

20

20

23

25

25

28

3.3.4 Unformalizable elements
3.4 Innerworkings
3.4.1 List hierarchy algorithm
3.4.2 Techniques for natural language content
3.6 Comparisontoothertools
3.6 Applying this tool to other documents

3.7 ENDB0128 tool qualification

4 Outlook

5 Conclusion

A Appendices

A.1 Postprocessing statisticsdata
A.1.1 Clean up spurious external links
A.1.2 Merge data of severaltoolruns

A.2 Subset-026 keywords
A.2.1 Legalobligation.

A.2.2 Weakwords

A.2.3 Other keywords for the implementerEnhanced-field

Lists of Figures, Tables and Listings

Glossary

Terms specifictothisthesis

Bibliography

Contents 11

1 INTRODUCTION

deleted epigraph — Peter Norvig, [Sei09, p. 311]

Europe's railway network construction peaked during the Industrial Revolution in the mid 19"
and early 20™ centuries when the continent was still very much partitioned into small individual
countries, all proudly state-owning their respective individual railway operators. Each of those
companies quickly started to maintain their very own operational rules and guidances blanket-
ing their knowledge of how they thought a train should safely move from A to B. Since running
trains in the early days was in fact merely an A-to-B business and it took quite some time for
the underlying networks of each operator to begin converging, nobody felt any urgent need to
change this approach. Even more so, incompatibility, the obvious outcome of this distinctive
sectionalism, was seen as a protective factor against possible invasions by neighbouring coun-
tries — Europe's different track gauges still bear visible witness of that tradition [Kle02, p. 17 &
pp. 62 1.

Despite all these intentional hindrances, history has left the continent with the densest railway
network on the planet. And today, in a more and more globalized world with bureaucrats from
Brussels pressuring, the interests of those individual network operators are steadily shifting to-
wards what is commonly referred to as interoperability. Previous efforts in this direction, how-
ever, almost exclusively involved such decisive features as standardizing the size, shape and ma-
terial of toilet seats in passenger carriages [UIC90, Sec. 4.1.4 ff.] (i.e. “non-vital parts”) while
the aforementioned rules and guidances, the blood-tainted holy grail of train operation, have re-
mained largely untouched.

One maijor part of those national rules regards train protection systems, technical devices which
in essence allow or restrict movements of trains on the basis of trackside inputs. Europe is
blessed with a plethora of different such systems, making it difficult for a locomotive, where
the system'’s trainborne part is usually installed, to operate in several countries.

To overcome this drawback the idea of a common protection system was born in the late 1980ies
[UNI13] and later became known as European Train Control System (ETCS). By exposing stan-
dardized trackside interfaces to the locomotive in every country of operation, it theoretically
allows free movement of all equipped rolling stock on all equipped lines. However, in practise
there are two main reasons why that is still far from reality. The technical reason refers to addi-
tional train parameters unrelated to ETCS which also must be taken into account when speaking
about true interoperability, like different loading gauges or traction systems. But more impor
tantly, there is a second not-so-technical reason which essentially boils down to the current im-
plementation of ETCS itself.

As the core ETCS specification, the so-called Subset-026, was written in a joint effort by the
Union Industry of Signalling (UNISIG), a consortium of Europe’s major railway suppliers, and the
ERTMS Users Group (EUG), which represents the European network infrastructure owners, it

1 Introduction 13

comes at no big surprise that they were not always able to agree on a common implementa-
tion for a specific functionality. Moreover, some contributors may have even been tempted to
add parts of their respective old fashioned, but field-proven national rules’ and techniques? as a
supplement to the system, thereby enhancing its complexity. In addition, ETCS allows to imple-
ment only a restricted set of its operational modes on a certain track in order to avoid technolog-
ical overkills on rarely used branch lines and thus helps keeping costs down.

Hence, for the average time- and money-constrained implementer of the trainborne part of ETCS,
all of the aspects above lead to the fair conclusion to take into account only parts of the original
specification, namely those which are relevant to the specific country and the track a newly built
or retrofitted locomotive is supposed to run on. Although this completely contradicts the original
aim of interoperability, it is exactly what the market faces today: A variety of on-board comput-
ers, so-called European Vital Computers (EVCs), built by different manufacturers for different
locomotives, none of which are really interchangeable.

In an attempt to solve this dilemma, DB Netz, the German railway infrastructure operator and
driving force behind this thesis, teamed up with several partners from different European coun-
tries in the scope of an EU-funded research & development project entitled “openETCS” to try
and build the software part of the first complete EVC based on open-source methodologies. Not
only should this software finally allow for the long awaited interoperability, but the open-source
approach also solves the lifecycle issue, which refers to the inherent problem of all long-living
devices: At some point support and maintenance may be brought to an end by the original sup-
plier and nobody else will be able to take over. Furthermore, openETCS gives EVC hardware
manufacturers the chance to fit their products with a standardized core they can easily extend
according to individual needs and thereby significantly decrease time-to-market and develop-
ment costs.

1.1 Motivation

Creating software from a given set of specifications by using nothing but open-source auxiliary
tools, while maintaining compliance with the ambitious Safety Integrity Level (SIL) 4 require-
ments of the relevant software safety standard EN 50128 [CEN11] at the same time, is not ex-
actly an easy task. One problem that comes up right in the beginning concerns the ETCS speci-
fication documents itself. Fortunately, those are publicly available through the European Railway
Agency (ERA) which has recently taken over their maintenance from UNISIG. However, their
high degree of natural language contents in plain (Brussels-)English together with little attention
to any kind of formalization (inconsistent layout, unclear boolean relations, ill-defined formulas,
...) make them hard to digest as an input to any actual implementation work. Since the cur
rent version (3.3.0)° of the core specification document, the so-called Subset-026 mentioned
earlier, already comprises 538 pages spread across eight individual chapters (and this excludes
any supplementary material concerning system tests, special interfaces and the like), it should
go without saying that any tool which can help to grasp this enormous amount of content is

1 Radio-Infill, for example, would certainly not be a part of ETCS without the Italians [Sch12, p. 15, CR 742].

2The Euroloop as a very “German invention’ strongly influenced by LZB-technology, should provide a good example
here.

3During the writing of this thesis an update (3.4.0) was published. However, this will not be considered here.

14

highly appreciated®. In addition, the monolithic nature of the documents with lots of continu-
ous text and lengthy tables does not recommend itself for credible traceability and is not easy
to read or work with, either [M614, p. 75]. Hence, the requirements captured in those docu-
ments need to be extracted and stored in a different format tailored for the task of requirements
management, which, from a lifecycle point of view, should be openly documented and standard-
ized. Taking into account the extensive amount of English text in those specifications, it is also
desirable to subsequently try and (pre-)process the requirements by automated means as dili-
gently as possible to ease comprehension. This effort towards formalization not only aids the
actual implementer but can also be of great help for other steps in the V-Model like the Verifica-
tion & Validation (V & V) activities [CSNt15, Sec. 6.2.31].

Currently, openETCS uses the Safety-Critical Application Development Environment (SCADE)
implementation of Reqtify [Est15], a Requirements Management (RM) tool rooted in the avia-
tion industry, in order to import the specification documents and afterwards only manual means
of formalization via the usual modelling tools of SCADE Suite / System (see [JPD14] for a more
thorough explanation of this primary toolchain). Two closed-source tools based on proprietary
file formats, both SCADE and Reqtify contradict the project goal, while the latter even lacks cer-
tain features relevant to the ETCS domain, such as proper hierarchy extraction and seamless
handling of requirements that are not applicable in the current context. For all these reasons it
makes sense to strive for an open-source replacement, as it can be better customized for this
particular application.

Therefore, the idea is to craft a novel piece of software which can directly import the original
specification documents, transform the content into a meaningful hierarchical tree of require-
ments using domain knowledge, enhance those requirements by attributing computed meta-
data and eventually write the result into a new file that is easily traceable (both back to the origi-
nal source as well as to any downstream activities) by automated means [And15]. It also allows
for multitenant use and is likely to remain readable for decades to come. This file may then be
imported back into Reqtify or other RM-tools and constitute the basis for any actual work further
downstream in the V-Model.

Although this thesis is very much motivated by the concrete challenges of the Subset-026, its
core ideas regard the automated formalization of weakly structured specification documents
and the possibilities of making such input traceable in a userfriendly way. This is why it should
be applicable to technical papers in other domains as well.

1.2 Previous formalization attempts

The term “formalization” is used in a rather broad sense in this thesis and essentially describes
the process of mining data from unstructured text in order to make it “a little more formal” To
be fair, the tool to be introduced in Section 3 will not create any kind of formal language, which
could be directly transformed into executable code, but at best a semi-formal representation of
the input which renders it partly processable by automated means. Hence, the tool should be

4To be fair, the phrase enormous amount must be considered in context of the railway domain. Taking a glimpse
at other industries reveals that a specification for the software part of a space shuttle running 40 000 pages is nothing
exceptional [Fis96].

1 Introduction 15

target environment
(ETCS EVC)

executable code
(Ada, C, ...)

formal model
(B, Lustre, ...)

semi-formal notation
(ReqlF)

y
proprietary link

RM software
_____ (DOORS, reqtify, ...)

formal workbench
(SCADE Suite, Eclipse Rodin, ...)

ajqeoydde jou

text processor
(Microsoft Word)

A

F—————

human brain

(

Note: This is not a Venn diagram in a strict sense. Although the information stored in each wider concentric circle is a (more abstract)
superset of its predecessor, the layers all represent this information differently.
A dedicated layer for semi-formal UML Modelling (SCADE System, Eclipse Papyrus, ...) is not shown here.

—/

<4—» = directed data flow

— - =data flow involves significant manual labour and/or is of inferior quality

Figure 1: Placement of the novel tool in the existing tooling landscape

understood as a domain-specific replacement of the generic specification importers offered by
common RM applications such as Regtify, DOORS, Requisite Pro and friends with a subsequent
treatment of the resulting data to allow for the use-cases outlined in Section 2.2. Figure 1 visu-
alizes this context and locates the novel tool.

The ETCS specifications have seen various attempts to actually create fully formal versions from
selected parts of their contents. One well known example is that of the EuRailCheck tool devel-
oped by an ltalian research institute on the basis of Requisite Pro [CCM™09], [CRST10], [CCM™10].
Others which involve more manual labour include [ERT15], [Feu12] and [HMBMn11].

The tool described in this thesis differs from those previous works in that it aims for full cov-
erage of the input documents in exchange for a lower degree of formalization while remaining
completely automated. Or to put it more bluntly: This tool targets the real world where the
plentiful redundancies and contradictions that naturally come with unconstrained input must
inevitably be resolved by humans using extrinsic knowledge in a clearly separated, subsequent
step.

For a more thorough comparison of the tool with some of its unequal competitors see Sec-
tion 3.5.

16

2 PROCESSING SPECIFICATION DOCUMENTS

deleted epigraph — Michael Jackson, [Jac95, pp. 125f.]

The following Sections will dig into the analysis of specification documents starting on a rela-
tively abstract, macroscopic level, to encourage general applicability of their contents. Especially
the input parsing techniques (Section 2.1.1) and the discussion of feasible means of requirement
formalizations (Section 2.2) are written in such a way as to minimize their domain-specificity.
Only the last Section 2.3 will exhibit a gradual shift towards more concrete examples from the
Subset-026. This is mainly to ease comprehension as the fundamental concepts of traceability
presented therein are not limited to this specific use-case.

Finally, Section 3 will extend on these abstract foundations and present their concrete imple-
mentation for the ETCS domain. Due to its lack of generality, the actual content processing of
the Subset-026 will also be postponed to that Section.

2.1 Structural considerations

ETCS specifications are available on the ERA-website in both
Portable Document Format (PDF) and Microsoft Word (DOC)
formats. Their general structure is depicted in Figure 2. For

Specification document

Preamble lengthy specifications which are split across several chapters,
such as the Subset-026 (see Section 1.1), each chapter is pub-
Change History lished separately.

Irrespective of fundamental weaknesses of the specifications

Table of Contents discussed in Section 1.1, neither of those two file formats

makes a particularly good candidate for automated processing.
Content Although the PDF-format is standardized, fully specified, with

_ special trimmed-down versions for long-term storage existing,
Main part . S
it has a strong focus on maintaining the /ayout of a document.
Appendix This means it is strictly page-oriented, comes with fonts em-
(optional) bedded, and all information which is not relevant for viewing or
printing is usually stripped from such a file. DOC, in contrast,
because it is a format designed for editing rather than viewing,
Figure 2: Sequential struc- puts much more emphasis on the structure of a document. So
ture of an ETCS specification rather than being page-oriented, it features support for complex
document tables, hierarchies of lists, logical groupings of characters to as-

sign common properties, designated constructs for recurring el-
ements such as headers and footers and the like. Only upon opening such a file will its contents
be rendered onto individual pages using locally available fonts — a process very much different
from PDF, where essentially everything is prerendered (so e.g. a table may be represented as a

2 Processing specification documents 17

bunch of vertical and horizontal lines, positioned absolutely, with characters in between instead
of a logical construct of rows and columns [HBO7]) by the application which originally produced
the file.

To sum this up, despite being far from ideal the DOC format is preferable for the task of con-
tent extraction as it features a lot more accompanying data which can help to understand the
meaning of the extracted elements. Directly using DOC as the input also prevents any errors
possibly introduced by the producer of the PDF files (which in fact only constitute a “secondary
source” since they were all converted from the original DOC files at some point). However, the
downside of this approach is having to deal with quite a complex, historically grown, proprietary
file format of which only parts are openly documented ([Mic08al, [Mic14b]) and the only truly
complete implementation is by Microsoft itself (i.e. the software “Microsoft Word"). Moreover,
this binary format must be considered deprecated by today’s standards as Microsoft introduced
a new Extensible Markup language (XML)-based variant starting with Word 2007. On the one
hand this somewhat limits the use of the described tool for future applications. But on the other
hand it once more emphasizes how a proprietary format which comes with a high degree of
vendor lock-in makes a poor choice for any specification covering a system of considerable life-
time [Sch14].

2.1.1 The input format: DOC

Figure 3 on the facing page shows a Unified Modeling Language (UML) class diagram of the
basic structure of a DOC file. The textual contents of such a file are basically made up of a hi-
erarchy of so-called Ranges. The root is a (possibly) very long Range covering the entire docu-
ment with arbitrary (dynamically constructable) children for individual parts of the document all
the way down to a single character (confer with the term granularity of Section 2.3). By nesting
different kinds of those Ranges into one another, arbitrarily complex structures can be repre-
sented. The various circular dependencies between Character Run, Field, Footnote, Endnote,
Table and Subpart (including its self-reference) give an impression of how this is implemented®.
Requirements (as well as all other textual elements) are trapped within those Ranges. So a suit-
able extraction algorithm needs to be able to map a Range (and thus implicitly all its children as
well) onto a requirement and then read out the contents of that Range including all relevant as-
sociated data such as formatting properties, visibility or change tracking information.

As stated in Section 2.1, DOC files are not rendered onto pages until they are opened. Hence,
there is no entity named Page anywhere in Figure 3. In fact, all the page data are stored con-
secutively, and for the sole purpose of content extraction there is usually no need to reconstruct
their original (paginated) layout®. The only true kind of textual segmentation present in a DOC
are the completely separate Ranges for contents which do not belong to the main part of a doc-
ument (i.e. headers, footers, textboxes, foot- and endnotes; see Section 2.3.2) and the so-called
Section. The latter is essentially an artificial structure to associate different page layouts (which
may include specific headers and footers) with parts of a document. Specification documents,
as they are considered here, may only contain a single Section.

5Not every constellation which Figure 3 suggests is actually supported by DOC and sometimes there are limits to the
number of nesting levels allowed.
6For a notable exception see Section 3.3.3

18

Range

text : String

formatting : complex type
children : Array of Range
/startOffset : Integer
/endOffset : Integer

For each element of

children:
element.startOffset >=
this.startOffset &&
element.endOffset <=
this.endOffset

e.g. a paragraph or a

table cell

Document
1 . *
Main stream E:;.Zi?:d Other storages
1
1.n
Section
RRE
1 0.1 0..1
Main Content Header Footer
] ? 1 ', ? 1

a sequence of
characters with the

Subpart

same properties

. !1

1,1—

e.g. a reference to an Character Run Table
image or an in-text link
% 1| 0.2
. ;
1 ‘\\‘\\~\
Special T
character C Field
. 1 1

specially encoded
characters like the 1
infinity sign 1

Symbol H>> Footnote L e —

Figure 3: Internal structure of a DOC-file (simplified)

2 Processing specification documents

19

Although the presented structure is very flexible regarding the contents which it can represent,
it does impose a few restrictions. Among the most notable is the fact that Ranges always have
some sort of absolute beginning and end (i.e. start0ffset and endOffset). Therefore, they
cannot easily represent a floating entity such as a table or figure, which is dynamically placed
at an appropriate position within the document by some layout algorithm. This restriction influ-
ences the tracestring computation, see Section 2.3.3.

2.1.2 Different parts of a specification document

As Figure 2 on page 17 suggests, the various specification documents always follow the same
basic structure. Actual requirements (respectively the Ranges containing them) can only be
found in the blocks “Main part” and "Appendix” Hence, the rest of the (visual) part of those
documents is of little interest to the extraction process. See Figure 7 on page 29 for an exam-
ple of what a text-heavy page within the “Main part” typically looks like.

However, since list numbering is ubiquitous within those documents and extends across all
blocks, the contents before the “"Main part” cannot simply be exempted from the extraction
process. The iterative computation of the current list number, as it is implemented in the DOC-
format (see Section 3.4.1 for a technical explanation), would otherwise fail and thereby falsify
the tracestring computation which is based on it (see Section 2.3). Therefore, the goal must be
to detect the different blocks, extract as much information as needed from each one of them
and eventually store the result in memory for further steps. This includes the preservation of
any hierarchy implied by the different levels of the list numbering.

Except for the “Preamble’ essentially just a fancy name for the front page and certain structures
within the "Main part’ to be further discussed in Section 2.3.2, this process turns out to be
implementable in a relatively generic way. In other words: The tool needs additional (domain-)
knowledge about the layout of the front page and, ideally, about a few more structures, which
it cannot obtain from the document itself. As the front page usually contains the chapter num-
ber of the specification document and its title, both of which are nice assets to the final output,
although neither constitutes a “requirement” in the strictest sense, the tool will refuse to pro-
cess a file if those contents cannot be found. Hence, the knowledge to correctly parse the front
page must be considered mandatory, whereas the presence of detection heuristics for all the
other subsequent structures is optional and will only be used to enhance the output quality.
DOC does not contain metadata regarding the history of specific Ranges unless the document
was continuously edited in “track changes”-mode. So, at first glance it may seem appealing

to read out the block “Change history” as well (which technically is just a special kind of a ta-
ble, see Section 2.3.2) and merge its information into the referenced requirements. Due to

the overly broad change descriptions given therein, which usually leave even a human in uncer
tainty, this does not seem feasible for automated means, though.

2.1.3 The output format: ReqlF

While the choice of the input formats was restricted to those available (i.e. PDF and DOC), the
question of an output format initially was a lot more open. A suitable format should provide

20

Document
’ This represents a requirement.
1 Properties may be e.g. the textual
contents or some kind of metadata.

1 * 1
Header Tool Extensions Main Content R.OOt hierarchy wil be
E— - / displayed to the user.
? ! ’/ ,"’
0.1 1 p 1.n /
Specification: SpecificationType

¢ 1
SpecObjects)

SpecRelations

Types
’ 1 1
SpecHierarchy -
SpecRelation: SpecRelationType [<=---- SpecObject: SpecObjectType ---- = |dentifer: GUID
lastChange: date
Element: SpecObjectType
Children: Array of SpecHierarchy 1
Identifiable Identifiable
Identifiable T T
SpecRelationType SpecObjectType
—= SpecificationType
source: SpecObjectType Property1 : FundamentalType
target: SpecObjectType PropertyN : FundamentalType
— FundamentalType
4 | ? Identifiable
name: String
String Integer date GUID Identifier: GUID
lastChange: date

Figure 4: Internal structure of a ReglF-file (simplified), based on [Obj13, Fig. 10.3]

2 Processing specification documents 21

sufficient means to represent the various different content types of a specification document
(namely: text, graphics and equations), keep each requirement separate from its neighbors and
ideally be supported as an import source by a wide range of tools possibly used within subse-
quent steps of the V-Model.

Since practically-minded engineers always lean towards simple solutions, especially when it
comes to complex computer-aided work they do not fully understand, comma-separated val-
ues (CSV) was the first suggestion to pop up. Files of this format are nothing more but plain
text with each line constituting an individual entry (requirement). Lines may be separated into
different fields by using a special separation character (which originally was a comma [,], hence
the name — but other characters work as well). So a CSV file is essentially a (not necessarily
rectangular) matrix which can store only text. Thus, it fails for graphics and equations and does
not offer any specific functionality targeted at requirements management, such as explicit links
between requirements, type attribution to its contents or an edit history, either. Above all, CSV
implementations are known to have incompatibilities across vendors due to the many subtleties
(i.e. how to escape a separation character if it occurs within a field) that may be handled differ
ently [Bur14]. This disqualifies it for any serious use, especially with large specifications in a het-
erogeneous environment. Nevertheless, thanks to its simplicity the tool will make use of CSV
for various accompanying data (see Sections 2.2.1 and 3.1.1).

The next possible candidate is Microsoft Excel and its spreadsheet format. It does support em-
bedded media (graphics + equations) and despite its added complexity, incompatible implemen-
tations are less likely due to the Excel software as a reference platform. However, for the pur
pose of requirements management Excel is nothing more than a pimped version of CSV, with
the same weaknesses and the additional caveat of being a proprietary, complex file format just
like DOC.

A database, as used by many RM-tools to internally store their assets, is usually not a file that
can be freely passed around. So it does not really qualify for comparison. However, there are
two notable exceptions: First, writing the contents of a database into a file. This approach usu-
ally leaves the user again with CSV or the Excel file format and is therefore no real advantage.
And second, using a dedicated file-based database like SQLite [The15b]. This would actually be
a viable solution. However, the binary, query-optimized nature of such files requires a dedicated
software library for proper access and thereby adds additional complexity without any substan-
tial win in functionality.

The file format which was eventually chosen is known as Requirements Interchange Format
(ReqlF), a relatively new but standardized XML dialect [Obj13]. It was developed mainly by the
automobile industry for the purpose of requirements exchange between different suppliers
[EJ12]. Its basic structure is depicted in the UML object diagram of Figure 4 on the previous
page. The overall design is a lot simpler than DOC by focusing only on features relevant to the
domain of requirements management. Requirements are represented as individual entities
(called a SpecObject) which always come with a unique identifier and may be attributed an ar-
bitrary number of metadata. Like most other entities, both the metadata and the SpecObject
are typed. Therefore, a specification may contain different kinds of requirements, each with an
individual set of different metadata. Due to the way specifications (object: Specification) are im-
plemented, they may even contain these requirements several times or not at all. ReglF files
may also comprise more than one specification, which together with so-called SpecRelation-

22

Groups (not shown in Figure 4 on page 21) can be used to model dependencies between e.g.
functional and non-functional requirements’.

A specification in ReqlF is a hierarchical tree, specifically an arborescence, which is a rooted
tree with exactly one directed path from the root u to any other vertex v [GM89, Def. 1.1]. In
the XML file this is represented by an arbitrarily nested sequence of SpecHierarchy-elements.
ReqlF is therefore the only format discussed so far that can properly preserve the hierarchical
structure of the input documents (see Section 2.1.2). SpecObjects are stored separately and
only referenced from within this hierarchy. The same applies if two of these SpecObjects shall
be linked together by means of a SpecRelation (which again is typed and in its simplest case
represents a cross-reference, see Section 3.2.2).

Because XML is a text-based format, it does not allow for efficient storage of binary contents
(BLOBSs). Graphics and equations may therefore be referenced from within a SpecObject but
must® be stored externally. However, the resulting ReglF can be shipped as a ZIP-file bundled
with all external objects to both reduce the file size (which is considerably larger than that of an
efficient binary format like DOC) and allow for the comfort of a single file [PMS14, Sec. 2.1].
Like DOC, ReqlF files contain a fair amount of logical structure and its contents may therefore
be easily edited. The ReqlF standard proposes a special editable flag which may be unset for
write-protected parts of the file [Obj13, Sec. 10.7]. A second, less pleasant, similarity is the in-
ability to perform cross-file references: Neither can the contents of a DOC file A be referenced
from a DOC file B, nor can an entity in a ReqlF file C be referenced from a ReqlF file D. The im-
plications of this limitation will be discussed in more detail in Section 3.2.2.

2.2 Enhancing requirement content

An implementation of Section 2.1.2 results in some sort of in-memory tree where each vertex,
which shall be called an artifact from now on, represents a requirement or otherwise interesting
content. As stated in Section 2.1.3, all artifacts must be uniquely identifiable and for obvious
reasons they should usually contain some payload (i.e text, graphics, equations or a combination
thereof)®. Such a tree may therefore be viewed as an associative array which maps identifiers
(key) onto chunks of the original input document (value). Although this may sound like a very
basic achievement at first, it should not be underestimated. Traceability, which is what this data
structure essentially provides, plays a crucial role in any kind of actual implementation of the
specified system (ETCS in this example) in a safety-critical context. Only its thorough application
to all stages of the V-Model can ensure that an implementation actually matches with the given
specification (which is a prerequisite for any verification activities).

If the newly generated ReqlF is regarded the “source” of the system’s requirements, this trace-
ability solution — despite its simplicity — already completely fulfils the relevant parts of [CEN11,
clause D.58] for this step of the V-Model. Of course, the actual source is not the ReglF but the
DOC files'®. In order to ensure backward traceability [IEE98, Sec. 4.3.8] to them, some value is
necessary that can be used to compute the original position where the contents of the current

7Subset-026 is (said to be) a purely functional specification, hence these SpecRelationGroups are not directly used in
the case-study. However, they are discussed in a different context in Section 3.2.2.

8Although a base64-encoded file given via an inlined data-URI is also feasible, this comes with a significant overhead
in size and will therefore not be considered.

9See Section 2.3.3 for an explanation of artificial artifacts which make an exception to this rule.

OWhich makes another argument against PDF as the input file, see Section 2.1.

2 Processing specification documents 23

artifact originate from. Technically the start0ffset of the Range (see Section 2.1.1) from which
the contents had been extracted will be used for this purpose. This yields a number which can
be fed back into Microsoft Word to highlight the respective position in the input document. List-
ing 1 shows how this could be achieved in Visual Basic for Applications (VBA)"". A tighter inte-
gration directly into a program which consumes the ReqlF files using Office Automation [Mic08b]
is also feasible.

1 Option Explicit

2 Sub findArtifact()

3 On Error GoTo ErrHandler

4 Dim wordTraceld As

5 wordTraceld = InputBox("Enter the wordTraceId", "Backward tracing", "")

6 Dim absoluteTargetOffset As

7 absoluteTargetOffset = CLng(wordTraceld)

8 Dim currentStory As Range ' current part of the document which is being examined

o Dim absoluteStoryOffset As ' startOffset of the currentStory

10 Dim relativeTargetOffset As ' targetOffset relative to the startOffset of the
— current Story

11 absoluteStoryOffset = 0

12 For Each currentStory In ActiveDocument.StoryRanges ' loop over all parts of the
— document

13 relativeTargetOffset = absoluteTargetOffset - absoluteStoryOffset
14 If (relativeTargetOffset >= currentStory.Start And relativeTargetOffset <=
— currentStory.End) Then
15 ' currentStory contains the desired artifact
16 ' move the cursor to the beginning of the artifact, scroll to that position and exit
17 Dim targetRange As Range
18 Set targetRange = currentStory
19 targetRange.SetRange Start:=relativeTargetOffset, End:=relativeTargetOffset
20 targetRange.Select
21 ActiveWindow.ScrollIntoView ActiveWindow.Selection.Range, True
22 Exit Sub
23 End If
24 absoluteStoryOffset = absoluteStoryOffset + currentStory.End
25 Next currentStory
26 ' None of the available stories contained the artifact. So the given wordTraceld must be
— illegal.
27 Err.Raise 513, "Bounds check", "Value out of bounds"

2s ErrHandler:

20 MsgBox "The given wordTraceld is illegal." & vbNewLine & "Reason: " & Err.Description,
— vbCritical + vbOKOnly, "Error"
30 End Sub

Listing 1: Simple VBA procedure to perform backward tracing

Eventually, this offset value makes the first member of a set of metadata which can be assigned
to each artifact. A second member will be a human-readable version of the identifier, which is
not only unique but fulfils a few additional contracts as well. See Section 2.3 for a discussion of
its computation. Other possible metadata could include qualifiers regarding the legal obligation
of an artifact, certain status flags (has already been implemented, needs clarification, ...) ora

n line 19 of Listing 1 the actual end0ffset of the respective Range could have been passed as well. However, this
value is not yet processed by the tool.

24

categorization of the contents (is a Figure / an example / an implementation advice / ...)"2. The
only constraint on this data is that it must be typed using the Fundamental Types of Figure 4 on
page 21. For a list of possible types see [Obj13, Sec. 10.6].

Especially for large (legacy) input documents it makes sense to derive as much metadata as
possible from the actual contents of the artifact and limit manual assignment to a minimum. |If
the majority of those contents consists of unconstrained natural language, like with Subset-026,
any possible algorithm performing the data extraction will inevitably become domain-specific to
some extent. Hence, the discussion of the metadata which can actually be processed by the
tool will be postponed until Section 3.2.1.

Not only do individually addressable artifacts allow to store data regarding their hierarchical de-
pendencies, they could also convey information on other relations such as “A contradicts B’ " A
extends B’ “Ais mutually exclusive to B” or simply “A mentions B" See Section 3.3.2 for an

application of this concept.

2.2.1 Visualizing dependencies

By combining the artifact’s hierarchy with other available relational information, a specification
document can also be represented as a graphical tree'®. However, since the latter group is less
constrained, this new tree will no longer be an arborescence but only a generic directed graph
(digraph). Figure 5 on the following page shows an example (albeit significantly scaled down)
rendered by graphviz's dot algorithm [GKNV93] for chapter 3 of Subset-026 in left-to-right-mode
(thus: the former root is situated in the very left, centered). This chapter consists of about 3500
artifacts, which are shown as nodes of the tree. Their dependencies are represented by close to
4200 edges in-between.

Different colors and node sizes were subsequently computed by Gephi [BHJ09] on the basis

of a clustering algorithm, respectively their betweenness centrality, a measure for how many
shortest paths between two nodes pass through the current node. Thus, such a graphical ren-
dering can be of use in the early phases of an implementation project to assign different parts of
the specification to different implementers as well as to visualize progress at later stages.

The data used to compute this tree is made available by the tool as CSV-files. Hence, it can also
be used to perform other kinds of statistics such as a “graphical delta” between different ver
sions of a file (given the node identifiers remain unchanged, confer with Section 2.3.3) or to
form the basis of a taxonomy of related requirements. See Appendix A.1 for an explanation on
how to process these files.

2.2.2 Querying for data

Text-heavy specification documents are especially likely to include recurring words, phrases or
specific symbols in different artifacts. The tool allows to elicit such entities algorithmically (see

12See [Fir05, p. 40] for a long list of further suggestions.
3This is somewhat similar to DOORS" “Graphical View" [IBM15] but substantially more powerful.

2 Processing specification documents 25

26

Figure b: Visual representation of Subset-026, chapter 3

Section 3.2.1) and processes them into a text with lots of colorful “boxes” (see Figure 12 on
page 48 for an example) within the resulting ReqlF file. Under the hood this annotated version
of the original contents is an embedded Extensible Hypertext Markup Language (XHTML) snip-
pet, a technology commonly used to layout webpages. Each “box” comes with a class-attribute
matching with the kind of entity which is being annotated. Combining the hierarchical position
of the artifact with those attributes makes it possible to formulate queries such as

“count the number of all entities of kind A below artifact B”

or

“return the artifact with the most mentioned entities of kind C which is not part of
the hierarchy below artifact D"

Likewise, specification documents may contain recurring structures such as tables or lists which
always capture data of a similar kind at the same position. Combining their context-aware traces-
tring (see Section 2.3), which conveys this position, with the actual contents of the respective
artifact, enables queries such as

“sum up all numerical values in column E for all tables of kind F below artifact G”

This effect carries a high practical potential for chapter 7 of Subset-026 which consists mostly of
numerical data structures given as tables.

The technology behind these searches is known as XML Path Language (XPath). Unfortunately,
there is currently no RM-tool to support creating queries based on this language through a graph-
ical user interface, and their manual construction is quite cumbersome. See Listing 2 for a trivial
query to illustrate.

One maijor hindrance towards its market adoption is the ReqlF specification [Obj13, 10.8.20], as
its current version explicitly forbids the use of class-attributes. However, that decision was pre-
sumably motivated by ReqlF's absence of support for the Cascading Style Sheets (CSS) tech-
nology they were originally created for. Moreover, this restriction is not enforced by the formal
description of the ReqlF file format given as an XML Schema Definition (XSD)'*, which simply
references the generic xhtml.BlkStruct.class (line 891) for any XHTML content.

xmlstarlet sel -N REQIF="http://www.omg.org/spec/ReqlF/20110401/reqif.xsd" -t -v
< 'count (//REQIF:SPEC-HIERARCHY [@IDENTIFIER="ID_OF_H"]//REQIF:SPEC-HIERARCHY)'
— file.reqif

Listing 2: XPath query to sum up all artifacts below artifact H in file.reqif using xmistarlet
[XML14]

A second problem arises when certain annotation patterns cannot be conveyed through XHTML.
This technology is based on writing some marker, a so called tag, at the beginning and end of

4The file assigned to REQIF in Listing 2.

2 Processing specification documents 27

Some interesting text. Some interesting text.

B B
C Aq Az

Figure 6: Example of nested annotation patterns (left) which need to be flattened (right) for
proper XHTML output

each annotation. By definition the applicability of those tags must not overlap, otherwise the re-
sulting snippet is not well-formed and therefore illegal. To illustrate this, consider the left part of
Figure 6. If the tags of the three annotations (A through C) shown here were written from left
to right, the snippet would inevitably become illegal. The tool solves this dilemma by splitting up
nested annotations as shown in the right part of the Figure. However, this turns A into two an-
notations (thus: two class-attributes) and will therefore alter the result of any queries performing
counts.

2.3 Computing requirement identifiers

One fundamental requirement towards a specification document of any system of sufficient
complexity is the ability to break down its contents into smaller artifacts of a certain (definable)
granularity. Generally speaking, artifacts are the building blocks of a specification and may rep-
resent anything from a single character of text up to the entire specification itself. Each artifact
must be uniquely addressable and may optionally come with a plethora of metadata (see Sec-
tion 2.2).

While wide-ranging metadata are usually a nice-to-have feature of any multitenant RM-tool (and
often the primary reason for its existence), the presence of an identifier is a lot more vital as it
builds the foundation for any sort of traceability and thus for a certifiable implementation of the
system.

In practise, there are different approaches for generating such an identifier. It may be completely
arbitrary (e.g. a hash over the contents of the artifact or its creation time)'®, based on visual
properties of the printed specification (e.g. the line- and/or the page number; confer with the
layout of [CEN11]), or some sort of running number being defined in the specification itself [GF94,
Sec. 3.1]. Each of these approaches comes with its individual downsides, but since the Subset-
026 already comprises many artifacts with a running number attached, and numerous stake-
holders intuitively have been using them for reference purposes since the beginning of time, it
seems only natural to base any human-readable, unique identifier on this running number.
Coming back to the term granularity coined in the beginning of this Section, those existing num-
bers, however, are neither sufficient to break down the specification into (mostly) atomic, single
purpose, artifacts, nor are they guaranteed to be unique. To illustrate this consider the examples
in Figures 7 to 8 on pages 29-30. The running numbers turn out to be items, so-called number
Texts, of hierarchical lists. Some are qualified (they include all more significant list levels and

can therefore be considered unique), some are not (e.g. bullet points, which are obviously not

15]n fact, this would be the outcome if only Section 2.2 was to be implemented.

28

ERA * UNISIG * EEIG ERTMS USERS GROUP
b) Data that remains valid for a certain distance, referred to as Profile data (e.g. SSP,
gradient).

3.6.1.2 Note: Determination of the Train Position is always longitudinal along the route, even
though the route might be set through a complex track layout.

 >
| 2 / 8

> > >
4 5 6
C=
7
Figure 6: Actual route of the train
C= c= >

-
(&)}
~

Figure 7: Route known by the train

3.6.1.3 The Train Position information defines the position of the train front in relation to a
balise group, which is called LRBG (the Last Relevant Balise Group). It includes:

e The estimated train front end position, defined by the estimated distance between
the LRBG and the front end of the train

e The train position confidence interval (see 3.6.4)

e Directional train position information in reference to the balise group orientation
(see 3.4.2, also Figure 14) of the LRBG, regarding:

— the position of the train front end (nominal or reverse side of the LRBG)
— the train orientation
— the train running direction

In case of an LRBG being a single balise group with no co-ordinate system
assigned, directional information is defined in reference to the pair of LRBG and
“previous LRBG”, see 3.4.2.3.3

e A list of LRBGs, which may alternatively be used by trackside for referencing
location dependent information (see 3.6.2.2.2 c)).

3.6.1.4 Balise groups, which are marked as unlinked, shall never be used as LRBG.

SUBSET-026-3 System Requirements Specification Page 27/194
3.3.0 Chapter 3
07/03/12 Principles

Figure 7: Example from chapter 3: Paragraphs with and without running numbers

2 Processing specification documents 29

ERA * UNISIG * EEIG ERTMS USERS GROUP

on an external interface, to the effective encountering of the Train Data change by the
ERTMS/ETCS on-board equipment.

5.17.1.3 This procedure is not applicable for trains running in RV mode: on leaving RV mode,
the Train Data will always be invalidated or deleted.

5.17.2 Table of requirements for “Changing Train Data from sources different
from the driver” procedure

5.17.2.1 The ID numbers in the table are used for the representation of the procedure in form of
a flow chart in section 5.17.3.

5.17.2.2 Procedure

ID # Requirements

S0 The ERTMS/ETCS on-board equipment is in one of the following modes: FS, LS, OS,
SR, SB, SN, UN, TR, PT and valid Train Data is stored on-board.
If a change of input information, which affects Train Data, is detected on an
ERTMS/ETCS on-board external interface (EO0), the process shall go to DO

DO According to the specific train implementation, Train Data which is/are affected by the
change of input information from the ERTMS/ETCS on-board equipment external
interface may require validation:

o If the affected data requires driver validation, the process shall go to D2

o If the affected data does not require driver validation, the process shall go to D1

D1 Depending on the type of Train Data which is/are affected by the change of input
information from the ERTMS/ETCS on-board external interface, the following shall
apply:

e If the impacted Train Data regards either train category, or axle load category,
or traction system(s) accepted by the engine, or loading gauge, the process
shall go to D3

e If the impacted Train Data regards any other type of Train Data, the process
shall go to A1

D3 Depending on the mode of the ERTMS/ETCS on-board equipment, the following shall
apply:

e Ifmodeis FS, LS, or OS, the process shall go to D7

e If mode is SB or PT, the process shall go to A1

e If mode is UN, SN, SR, or TR the process shall go to D5

SUBSET-026-5
3.3.0
07/03/12

30

System Requirements Specification Page 67/86
Chapter 5
Procedures

Figure 8: Example from chapter 5: Bullet points within a table

unique on their own)'®, and a few others belong to neither of those categories as they contain
numerical references to some but not all of their ancestors (see the end of this Section).

If granularity is defined in such a way that it shall be possible to individually address each para-
graph (€ artifact) of text in the specification document (that is: each consecutive, non-empty
array of printable characters, of which at least one must be different from a whitespace, termi-
nated by a newline + carriage-return, no matter where it occurs), it becomes obvious that this
is not possible with just the existing running numbers. So the goal is to develop an addressing
scheme which maps as many artifacts to existing numbers as possible (thus ensuring “back-
wards compatibility” with any previously produced works) and allows for finer granularity while
maintaining uniqueness of the generated addresses.

Such an address shall subsequently be named tracestring and is defined as follows:

Tracestring
A document-wide unique, human-readable identifier which is attributed to any trace-
able artifact and based on the running number of the last preceding (including itself)
numbered paragraph.

For a concrete example suppose the paragraph underneath 3.6.1.3 in Figure 7 on page 29 start-
ing with “In case of an LRBG. .. " shall have a tracestring attributed. A basic version of the algo-
rithm to determine this string may look like this:

1. Let traceString be an empty string.
2. Let paragraph be the current paragraph.

3. As long as paragraph is not a member of the baselist do the following:
(for our example the closest member of the basel.ist is the paragraph prefixed by
“3.6.1.3")
(a) Let paragraphCounter be 1.
(b) As long as paragraph is not a member of a list do the following:

i. Increment paragraphCounter by 1.

ii. Set paragraph to the closest preceding paragraph of equal significance or break
if there is no such paragraph.

(c) If paragraphCounter is greater than 1:
wrap it in square brackets and prefix the traceString with it (yields “[2]")

(d) Let bulletCounter be 0.
(e) Aslong as paragraph is a member of a bulleted list do the following:

i. Increment bulletCounter by 1.

ii. Set paragraph to the next preceding paragraph belonging to the same list.

18Technically a bullet point and a numbered list item are the same thing, apart from applying different formatting.
Hence, they shall be regarded as such, despite the common usage where a bullet point is not exactly a running number.

2 Processing specification documents 31

(f) If bulletCounter is greater than O:
prefix traceString with bulletCounter in brackets preceded by “*"
(vields “*[3][2]")

(g) If paragraph is a member of any non-bulleted list:
remove any unnecessary characters from the current list value (e.g. trailing braces)
and prefix traceString with this value

(h) Prefix traceString with a dot. (yields “.*[3][2]")

(i) Set paragraph to the closest preceding paragraph of higher significance
4. prefix traceString with the current value of the baselist (yields “3.6.1.3.*[3][2]")

5. traceString is now the fully qualified identifier.

Although this algorithm is greatly simplified (a more technical discussion of the actual imple-
mentation is given in Section 3.4.1), it shows the basic concept of how the individual parts of
a tracestring are constructed: There is a base, which covers all the way from the chapter num-
ber to the last level of the last preceding numbered paragraph, some annex to describe non-
qualified sublists, and eventually a counter to unambiguously reference a certain unnumbered
paragraph underneath the last list item.

The term significance plays an important role in this process as the running numbers are of hier
archical nature. To maintain this hierarchy not only throughout the baselList (where it is obvious
due to the dots separating different list levels) but also for any non-qualified paragraphs, their
individual relationships have to be computed. This is mostly done on the basis of their relative
left indentation (with a few exceptions for non-indented and equally indented paragraphs; confer
with Listing 6 on page 68).

In the example above there are three such hierarchical levels: The most significant one to which
the paragraph “3.6.1.3"” belongs, a second intermediate one formed by the list with the ordinary
(round) bullets plus the example paragraph, and a third one to which the dashed list belongs.
Since the dashed list is less significant than our example paragraph, it remains invisible to the
above algorithm.

Dots (.) are universally used as separators for hierarchical levels regardless of their presence in
the original input document. This is different from how the original specification authors refer
ence these paragraphs, see Section 3.2.2.

Single alphabetic characters in square brackets following a dot generally represent some sort

of typing information which applies to the current level (e.g. . [t]21 states that this level repre-
sents “table number 21" and not a “list level 21")". Alphanumeric strings in square brackets
at arbitrary positions (this includes the previous case) indicate this information was added (and
thus was not visually present in the input file; i.e .3[2] to describe the second unnumbered
paragraph underneath some artifact called . 3).

All hierarchical levels of a tracestring must exist (i.e. the string may be cropped just before any
dot and will always point to an existing artifact). Hence, it is sometimes necessary to introduce
placeholders at non-existing levels. So any hierarchical structure like the one printed below on

7 A full list of the currently implemented types can be found in helper.Constants.Traceability of the tool's
source. The most important ones are mentioned in the two following Sections 2.3.1 and 2.3.2.

32

the left will be turned into the one printed on the right. If this contract does not hold, unique-
ness of the generated tracestrings cannot be guaranteed under all circumstances.

1. Some text
1. Some text
= 1.1 Placeholder
1.1.1 Some more text
1.1.1 Some more text

2.3.1 Unwinding complex structures: Tables

Using the algorithm above, a table, like the one shown in Figure 8 on page 30, can only be pro-
cessed as a monolithic artifact by considering it as one (potentially very big) paragraph. If indi-
vidual cells are to be identifiable as well, a tracing methodology will have to be invented that can
properly disassemble a table and generate table-wide unique identifiers on this basis. As a re-
sult, these identifiers may become document-wide unique by prefixing them with the identifier
of the closest previous paragraph, as stated earlier.

Commercial RM-tools usually either have no specific support for table handling (leaving the user
with a monolithic paragraph), or use a generic disassembly approach (e.g. “DOORS Tables”
[PMS14, Sec. 2.4]), irrespective of the structure of the concrete table.

Since the Subset-026 contains quite a few tables for all sorts of purposes ranging from simple
layout grids to complex matrix-like structures, it was decided to craft a novel algorithm that can
adapt to these manifold inputs. Its goals were:

1. to handle arbitrarily shaped merged cells
2. to allow for intra-cell requirements (see Section 3.3.3)

3. to process as few cells as possible to minimize the number of artifacts not representing
any actual requirement

4. to create meaningful tracestrings based on the current row, column and/or cell contents
where possible

All of the aforementioned points were motivated by the specific structure of the specification
documents. The first two items are simply stringent conditions necessary to process the tables
without informational loss. The latter two focus on enhancing the user experience as fewer arti-
facts mean less work (no need to justify why some empty cell has not been implemented in any
downstream activities), and meaningful tracestrings can greatly improve the overall usability of
the resulting artifacts especially within lengthy tables.

The vast majority of tables within the Subset-026 follow a “row-first, column-second”-approach
(that is: each row represents some kind of coherent information). Hence, it was decided to gen-
erate tracestrings on this basis. Each table always consists of exactly one table-artifact, possibly
a caption and a number of row- and cell-artifacts. Their simple hierarchy is depicted in Figure 9
on the next page. Depending on the structure of the concrete table, the number of cell-artifacts
may vary across rows (merged cells and/or user configuration). Row-artifacts that do not contain
any cells are omitted.

A slightly abridged version of the algorithm to create the tracestrings for the respective artifacts
(= entities of Figure 9 on the following page) looks like this:

2 Processing specification documents 33

<<Entity>>

paragraph

1
<<Relationship>>

‘ 0..1
\
<<Entity>> <<Relati JE‘F <<Entity>> <<Relati JEF <<Entity>> <<Relati hOE‘F <<Entity>>
table 1ealons Ip: row 1ealons P Ce” 1ealons Ip: paragraph
1
<<Relationship>>
0..
<<Entity>>
caption

Figure 9: Relations of the different artifacts of a table hierarchy

. Let traceString be the tracestring of the current paragraph

. Upon the detection of a table find the next subsequent non-table paragraph and check if it
matches the heuristic of a caption (see Section 3.3.1).

. If so:

(a) Let extractedNumber be the extracted number of the table from the caption.
(b) Suffix traceString with “.[tlextractedNumber”

(c) Set the tracestring of the caption-artifact to traceString suffixed by “.C”
. If not: Suffix traceString with “.[t]*"
. Let rowCounter be 0
. For each row:

(a) increment rowCounter
(b) If this row is not of importance, continue with the next iteration of this loop
(c) Copy traceString to traceStringRow
(d) Suffix traceStringRow with “.[rl[rowCounter]” or a userdefined value and let this be
the tracestring of the row-artifact
(e) Let columnCounter be 0
(f) For each column within this row:
i. increment columnCounter
ii. If this column is not of importance, continue with the next iteration of this loop
iii. Copy traceStringRow t0 traceStringColumn

iv. Suffix traceStringColumn with “.[c][columnCounter]|” or a userdefined value
and let this be the tracestring of the cell-artifact

7. skip any caption (since it has already been processed above)

By applying this algorithm to Figure 8 on page 30, its table may now possess a generic hierar

chy like that of Table 1 on the facing page.

5.17.2.2 Procedure
5.17.2.2[2]
5.17.2.2[2] .t [*] Entire table, formatted
5.17.2.2[2]. [t]*. [r] [1]
5.17.2.2[2]. [t1*. [r]1[1].[c] [1] ID#
5.17.2.2[2]. [t]*. [r]1[1]. [c] [2] Requirements
5.17.2.2[2]. [t]*. [r] [2]
5.17.2.2[2]. [t]*. [r]1[2]. [c][1] SO
5.17.2.2[2]. [t]1*.[xr]1[2]. [c] [2] The ERTMS/ETCS ...
If a change ...
5.17.2.2[2]. [t]*. [r] [3]
5.17.2.2[2]. [t]*. [x] [3]. [c] [1] DO
5.17.2.2[2]. [t]*. [r][3]. [c][2] According to ...

If the affected data requires . ..
If the affected data does . ..

Table 1: Generic tracestring attribution for the table in Figure 8 on page 30

The downsides of this simple approach, which the tool in fact only uses as a fallback-solution,
are fairly obvious: Too much detail in the beginning (no one really cares about a specific traces-
tring for the header of a table) and too little detail for the actual payload (all paragraphs of a cell
are merged and assigned a single tracestring).

A much improved version, which is actually used in the ReqglF output, can be seen in Table 2. In
here headers are omitted (by using a special flag in the Word file), irrelevant cells are removed
(in this example: all cells belonging to the first column), the contents of individual cells are split
up and the individual artifacts have meaningful (i.e. userdefined) tracestrings attributed.

This context-aware tracestring generation is implemented through an abstract table definition
consisting of invariants (contents and formatting of specific cells) against which this concrete
table is matched. Currently, the tool knows of 29 such definitions which cover all major recurring
table-structures in the Subset-026, leaving only a very few (usually very short) tables exposed to
the fallback version explained earlier.

For the example table of Figure 8 on page 30 the respective matcher definition is given in lines
2-6 of Listing 3 on page 37. Each of these lines states an expectation which must be met in
order to qualify the concrete table as a “match’’ Expectations are cell specific (the first two pa-
rameters of addData () method are row- respectively column-numbers'®) and define visual prop-
erties of the contents of the entire cell. Namely those are (given in the order of appearance in
the static constructor MatchingData.newMatchingData()):

1. The formatting of all textual contents of this cell
allowed values: NORMAL, BOLD, INCONSISTENT'®

2. The horizontal alignment of the content within this cell
allowed values: LEFT, CENTER, RIGHT, LEFTORJUSTIFY, INCONSISTENT

3. Aregular expression describing the content of this cell?°

'8Contrary to the tracestrings in Table 1 these numbers are 0-based.

9ltalic formatting is not commonly used for tables in the Subset-026.

20Note the Java-specific escapes. E.g. line 5 actually reads “\S.+" and therefore matches any non-space character
followed by at least one (arbitrary) character.

2 Processing specification documents 35

5.17.2.2 Procedure
5.17.2.2[2]
5.17.2.2[2] .t [*] Entire table, formatted
5.17.2.2[2]. [t]*. [I]S0
5.17.2.2[2].[t]*.[I]S0.Content Split up indicator
5.17.2.2[2].[t]*.[I]S0.Content. [1] The ERTMS/ETCS ...
5.17.2.2[2]. [t]*.[I]SO.Content. [2] If a change ...
5.17.2.2[2]. [t]*. [I1DO
5.17.2.2[2] . [t]*.[I]DO.Content Split up indicator
5.17.2.2[2].[t]*.[I]DO.Content. [1] According to . ..

5.17.2.2[2].[t]*.[I]D0O.Content. [1].*[1] If the affected data requires ...
5.17.2.2[2].[t]*.[I1D0O.Content. [1].*[2] If the affected data does ...

Table 2: Improved context-aware tracestring attribution for the table in Figure 8 on page 30

Eventually, line 6 will cause all matching data applicable to row 1 (thus: lines 4 and 5) to apply to
all remaining rows of the concrete table as well.

If the concrete table turns out to be a “match’ lines 7 and 8 come into play. In here the actual
tracing methodology is defined (line 7) and then copied onto all remaining rows, just as before
(line 8). Unlike MatchingData, TracingData defines a whole range of different (static) construc-
tors for various use-cases. TracingData.newTracingDataRowIdFromCell (), which is used here,
generates a tracestring well suited for simple lists of conditions like those of the example table.
For the actual assembly of the tracestring (line 7) a relative source cell one column left of the
current cell (first parameter) is defined from which some content (regex group in parameter 2)

is extracted, then prefixed by a given RowLevelPrefix (parameter 3) and ultimately suffixed by
some static string (parameter 4). \What makes this constructor special is that everything except
parameter 4 will be inferred by the parental row-artifact (which would otherwise remain inacces-
sible). The result of this rather cryptic statement can be seen in all artifacts of Table 2 which are
children of the table-artifact (lines 4 ff.).

The matcher code of Listing 3 on the facing page (targeting a so-called Procedures2ColumnTable)
as well as extensive Javadoc documentation for all the other tracestring generation techniques
implemented by TracingData can be found in the package helper.subset26.tables of the
tool’s source.

For performance reasons the entire matching process runs in parallel for all available abstract
table definitions. Hence, the user must make sure to avoid setting up several definitions that
can potentially match the same concrete table. Otherwise, a race-condition is provoked which
ultimately leads to non-deterministic behaviour.

What can also be specified on a percell basis for a matching table (but has been left with the
global default in Listing 3) is the handling of complex structures within table cells. The DOC
file format not only allows nested tables but just about any conceivable structure within a table
cell (see Figure 3 on page 19). Thus, the algorithm needs to be recursive if the user decides to
break up such a structure in the same way as if it was encountered outside a table. The result
of this process can be seen with any children of the various Content cell-artifacts in Table 2.

36

final String idRegex = "[A-Z][0-9]+";

addData(0, O, MatchingData.newMatchingData(ContentFormatting.BOLD,

— ContentAlignment.CENTER, "ID #"));

addData(0, 1, MatchingData.newMatchingData(ContentFormatting.BOLD,

— ContentAlignment.CENTER, "Requirements"));

addData(l, O, MatchingData.newlMatchingData(ContentFormatting.BOLD,

— ContentAlignment.LEFTORJUSTIFY, idRegex));

s addData(l, 1, MatchingData.newMatchingData(ContentFormatting.INCONSISTENT,
< ContentAlignment.LEFTORJUSTIFY, "\\S.+"));
setRepeatingRowMatchingData(1) ;

addData(l, 1, TracingData.newTracingDataRowIdFromCell(-1, '(' + idRegex + ')',
< RowLevelPrefix.ID, "Content", false));
setRepeatingRowTracingData(1l) ;

Listing 3: Java source to set up the tracestrings shown in Table 2 on the facing page

2.3.2 Unwinding complex structures: Other structures

Besides tables the Subset-026 comprises a number of other, less complex structures which
also require special handling. Namely:

Images and Equations Those are by definition inline elements, meaning they can only occur
within a line of a paragraph. Currently, those artifacts are attributed a tracestring which
equals that of its parent (the containing paragraph) suffixed by either . I (Images) or .E
(Equations) and an optional running number in square brackets if there is more than one
such artifact within a paragraph?'. However, this tracestring is not displayed to the user
but only used as the basis of the filename under which the respective artifact will be saved
to disk.

Both Equations and Images are always flattened to a bitmap image in PNG-format irre-
spective of their original representation within the input document and can therefore only
be processed as a whole (which implies that .I and .E always constitute an endpoint of

a tracestring, confer with Listing 4 on page 39). However, in most of all cases Microsoft
Word also saves the original data of the source application that was used to create the re-
spective artifact along with / instead of a bitmap representation in the DOC-file. Hence,
for equations embedded as OLE-data, MTEF-BLOBSs are available [Des99]. As for Images,
which can be anything from Office’s own internal Shape-format [Mic14b] to embedded
Visio- or even Word-files (think: recursion), their respective original source-file can be ex-
tracted from the internal FAT-filesystem of the DOC-file. Given infinite resources to im-
plement each single file format present in the DOC, it would thus be possible to break up
those structures as well and trace into them. See also Section 3.1.1.

Foot- and Endnotes Those artifacts are attributed a tracestring which equals that of its parent
(the containing paragraph) suffixed by either . [N] (Footnotes) or . [n] (Endnotes) and a
document-wide, type-specific running number (1-based) in square brackets.

21See artifacts 3.13.9.3.5.5[3] and 3.13.9.3.5.6[3] in Figure 23 on page 75 for an example of this.

2 Processing specification documents 37

Both note types can contain arbitrarily complex structures (confer with Figure 3 on page 19).
Hence, they are internally processed very much like table cells (see above). In terms of hi-
erarchy, the note will become a child of the containing paragraph.

Figures Technically a figure is an image on a separate line of text followed by a caption (which,
unlike that of a table, is mandatory). So the processing is essentially a combination of that
of a table (heuristic caption detection) and that of the image extraction outlined above.

A figure is attributed a tracestring which equals that of its parent (the containing para-
graph) suffixed by . [£] followed by its running number (extracted from the caption). The
caption itself inherits this string suffixed by .C, just like for a table.

Table of Contents Each chapter of the Subset-026 begins with a Table of Contents. The tool
contains a special (non domain-specific) detector for such lists and deliberately skips them,
since the information therein is redundant and the given page numbers are not of inter
est??.

The version history that precedes the table of contents is skipped likewise. However, it
comes embedded in a table and thus needs no special handling other than a dedicated
table-matcher that does not attribute any tracestrings. See Section 2.1.2.

Headers, Footers and Textboxes Although the Subset-026 contains such elements they are
currently not processed due to the challenges involved in anchoring them in the traces-
tring hierarchy in a meaningful way, and the lack of proper extraction methods in Apache
POI (see Section 3.4). However, upon detection of any of these elements a warning is dis-
played to the user.

2.3.3 Summary

Unfortunately, the computation of a tracestring is not a trivial task, especially given the con-
straint to stay backwards compatible to previous, less sophisticated attempts to reference ar
tifacts within the specification documents.

Although the presented methodology introduces a few redundancies (namely for tables, figures
and foot-/endnotes which are already unique by their respective running number, but are never-
theless prefixed by the tracestring of the last processed paragraph in order to properly anchor
them in the tracestring hierarchy) and sometimes requires artificial elements to be introduced
(placeholders for skipped levels, split-up indicators), it is certainly a workable solution to ensure
traceability not only for the Subset-026 but for a wide range of other hierarchically structured re-
quirements documents as well. They can all benefit from improved granularity over that offered
by any previously existing identifiers.

Listing 4 on the next page shows a regular expression to capture a tracestring with all its bells
and whistles. Except for the globalprefix (line 2), simply a static text each tracestring may be
prefixed with, the meaning of each named capturing group has been discussed in the Sections
above. It can be easily spotted that the possible recursion inside table cells and foot-/endnotes

22Neither for the tracestrings nor in any other part of the processing does the page number ever play a role, which
is why the tool does not compute these numbers in the first place (see Section 2.1.1). Due to missing fonts, different
output resolutions, page sizes etc. page numbers in DOC files in fact make a poor choice for reference purposes (confer
with Section 2.1).

38

1 (?7x)"

2 (7<globalprefix>[a-z] ["\.]*\.)?
3 (?<chapternumber>[AR1-8])

4 (7<nestinglevel>

s (7<levelnumber>

6 (7:

7 \.

8 (?:

9 \d+ # ordinary number

10 | [a-z] # lettered sublist

11 IN*\[[1-9]1\d*\] # bullet point

12

13 (?:

14 AL

15 (7:[2-9]1 [1-9]\d+)*

16 \]

17)? # paragraph counter

18) *

19)

20 (?<floatingobject>

21 \.

22 (?:

23 \[£\] [1-9]\d*[a-z]7? # figure

24 [\N[e\I(?:[1-9]1\d*[a-z]?|*) # table
25)

26 (7<row>

27 \.

28 (7N Ie\INL[1-93\d*\] IN[[A-ZI\I\w+)

29)?

30 (?7<column>

31 \.

32 (7:CIN[c\I\[[1-91\d*\] |\w+) # caption or column
33 (?<nestinglevelColumn>

3a (?:\.\[[1-9]\d*\]1)? # non-prefixed paragraph count
35 (7&nestinglevel)

36)7

37)7

38)7

39 (7<paragraphelement>

40 \.

41 (?:

a2 [IE] # inline image or equation

a3 (7:\[[1-91\d*\1) 7|

a4 \[[nN]J\] [1-9]\d* # footnote or endnote
15 (7<nestinglevelNote>

46 (7:\.\[[1-9]\d*\]1)? # non-prefixed paragraph count
a7 (7&nestinglevel)

48)7

19)

50)?

51)

52 $

Listing 4: PCRE-compliant regex to match a tracestring

2 Processing specification documents 39

(lines 35 & 47) which, together with the userdefinable row- and column-identifiers (see Sec-
tion 2.3.1), renders the underlying grammar of the tracestring not context-free (formally speak-
ing: it does not ensure terminals to be always disjoint from variables, see [Sip06, p. 104, Def.
2.2]). Also, this expression clearly defines all legal sequences of tracestring elements. For ex-
ample, a column-identifier only makes sense inside a table. Hence, lines 30-37 can only trigger
if lines 22-29 are active as well.

Because the running numbers of paragraphs (lines 8-12) are mostly implemented as number
Texts of list items and are therefore automatically numbered by Microsoft Word, the tracestring
of this paragraph (as well as that of its children and possible successors) can only be regarded
as document-wide unique for a given revision (read: Baseline in ETCS’ parlance) of this docu-
ment. Adding and removing list items (as well as certain kinds of formatting) anywhere ahead of
the current paragraph results in a shift of the numberText of the list item surrounding that para-
graph. So a hierarchy like the one printed below on the left may turn into the one on the right by
simply adding a new element after the first item.

1. 15t item 1. 18t item

2. new 2" item
2. 2" item = 3. old 2" item
2.1 3 item 3.1 old 3 item
2.1.1 4% item 3.1.1 old 4% item

This behaviour makes tracestrings unsuitable for any cross-document comparisons and forbids
any attempts to calculate a delta between two revisions by simply comparing each artifact with
the same tracestring attributed. This is a fundamental flaw (fixing it would imply a totally dif-
ferent tracestring methodology and thus break backwards compatibility) and the requirement
authors are suffering from it as well [Sma12].

However, what will remain unchanged across different document revisions is the granularity
used by the tracestring attribution algorithms to elicit artifacts within the document. Matching
the actual contents of the individual traceable artifacts of two revisions is therefore a legitimate,
albeit computationally expensive, way of computing a delta that is still far superior to any DOC-
or PDF-based comparison algorithms, as the latter do not know anything about the document’s
structure.

As a final note, it should be clear that the tracestring itself is actually nothing more than a nice-
looking, unique ID for a human user and will never be employed for internal referencing by any
algorithm. Instead, the tracestring only forms the basis to calculate a Globally Unique Identi-
fier (GUID). This is exactly what ReqlF (and XML-based formats in general) effectively uses to
uniquely identify an element. GUIDs must be xsd: ID-compliant [W3C04, clause 3.3.8], which
would greatly reduce the readability of the tracestring.

40

3 THETOOL

deleted epigraph — Alfred V. Aho on AWK, [War09, p. 103]

The following Sections will offer a more detailed description of the “tool” which was created for
this thesis and, unfortunately, still comes without a proper name. In a nutshell, this tool is a self-
contained piece of software which processes a DOC file into ReqlF and meanwhile enhances its
contents. Written in the Java programming language, the tool currently consists of about 16 000
source lines of code (SLOC), 3000 of which are unit and integration tests.

The novel idea that drove its development is the positioning at the interface between the author
and the implementer of a system (confer with Figure 1 on page 16). So this software neither
constitutes a conventional quality checker for use during the writing of requirements specifi-
cations, nor a full-fledged RM solution (Section 3.5). Instead, it enables a seamless transition
from a weakly structured input file to a data format of a substantially higher formalization degree
(Section 1.1). This is necessary not only to facilitate the later administration of the individual
requirements with an RM application and to allow for proper traceability. But also to increase
the comprehensibility, and thus quality, of those contents both for a human as well as for auto-
mated means (Section 3.2).

The tool is completely open-sourced, including the algorithms to read DOC files (Section 3.4).
Its sourcecode can be obtained from [Dor15]. All it requires is a recent Java runtime: At least
Java SE 7 without Natural Language Processing (NLP), respectively Java SE 8 with NLP (see
Section 3.4.2). There are no external dependencies other than to a library for low-level DOC pro-
cessing and (optionally) to a second one for NLP.

3.1 Basic usage

Currently, the tool features only a simplistic command-line interface. Hence, it is a very straight-
forward action to process a given specification document but there is no way to tweak any set-
tings of the conversion (see Section 3.6). A typical call on a command line (OS-agnostic) looks
like this:

java -jar tool.jar Subset026 input.doc output.reqif

The first parameter (in the example: Subset026) is a text used as a prefix for the filenames of
resulting media artifacts (images, equations, ...). The other two parameters should be self-
explanatory. After stout-heartedly pressing <ENTER>, the tool will start operating and fill both
Standard Out and Standard Error with some meaningful messages.

Listing 5 on the next page shows an excerpt of the combined output for a run with chapter 3 of
Subset-026, which can be decomposed into the following different phases:

3 The tool 41

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Subset26 reader Version 0.6

INPUT

Input filename
Document title
Document subject
Lines omitted
Creation tool
Operating System
Lines omitted

OUTPUT
Output filename
Media output dir
Prefix

: /tmp/chap3.doc
: Title to be introduced in the properties
: issue to be introduced in the properties

: Microsoft Office Word
: Windows 7 or Windows Server 2008 R2

: /tmp/out.reqif
: media
: Subset026-

Mai 08, 2015 1:13:36 PM docreader.ReaderData checkDocumentAssumptions
INFORMATION: This document contains textboxes. Will skip them.

21/4220 3.1: Modification History
22/4220 3.1[2]:
197/4220 3.2: Table of Contents
317/4220 3.3: Introduction
318/4220 3.3.1: Scope and purpose
319/4220 3.3.1.1: The chapter 3, Principles, specifies th
Lines omitted
354/4220 3.4.2.3.3.4: If a new single balise group (BG2), dif

Mai 08, 2015 1:13:45 PM

— docreader.range.paragraph.characterRun.FieldReader$FieldHandler$7 process
INFORMATION: Got a shape with an OfficeDrawing here. Will try obtain an image
— Trepresentation.

355/4220 3.4.2.3.3.4[2]:
Lines omitted
3313/4220 3.20.1.9: Intentionally deleted.
3314/4220 A.3: Appendix to Chapter 3
3315/4220 A.3.1: List of Fixed Value Data
Lines omitted
4219/4220 A.3.10.6: Note: If feedback has started but T_bsl

Performing second pass of generated document hierarchy.
NLP is active. Processing may take a while...

2162 NLP-jobs remaining.

Lines omitted

1 NLP-jobs remaining.

Starting XML serialization
DONE
Processed 3757 traceable artifacts.

Media summary:
291 images. Please process /tmp/media/images.csv

3 shapes. Please process /tmp/media/shapes.csv

Running time: 6 min, 52 sec

Listing b: Tool output for a run with chapter 3 of Subset-026

42

Phase 1, Lines 1-15 In the beginning some statistical information is given about the input file
and the options specified by the user.

Phase 2, Lines 16-34 After that a sequential processing of the input file takes place whose
progress is visualized by a status line of each processed top-level paragraph with its at-
tributed tracestring (Section 2.3) and the first characters of its contents. This output is oc-
casionally interrupted by some information (Lines 16/17 and 26/27) or perhaps a warning, if
suspicious elements like hidden text or broken links were found (not shown here). The se-
qguence strictly follows the one outlined in Figure 2 on page 17. Line 18 corresponds with
the Change History, Line 20 with the Table of Contents, Lines 21-30 represent the Main
part, and Lines 31-34 the Appendix. Only the title page is not shown in the output.

This process yields the in-memory tree of all document artifacts already mentioned in Sec-
tion 2.2.

Phase 3, Lines 35-39 In the next step this tree is visited?® again and metadata refinements
are performed which require knowledge of the hierarchical position of the visited artifact.
A heading detection algorithm, for instance, greatly benefits from knowing whether the
current artifact does or does not have children (the latter being an exclusion criterion for
headings, see Section 3.3.1). NLP is also performed within this step (Section 3.4.2).

Phase 4, Line 40 This line represents another visit of the tree, this time with the intention to
serialize?* its contents into the output file.

Phase 5, Lines 41-46 All remaining lines again give statistical information about what has been
done. Lines 44-45 reference external CSV files which must be fed to helper tools (see
Section 3.1.1) in order to properly extract and convert embedded media objects.

The most influential parts of the running time (Line 46) are the NLP-related algorithms of
Phase 3. If those are disabled, the time is cut down to only eight seconds for this chapter
on the same machine.

After the tool finishes with a return value of 0 (i.e. no error), the user is left with a ReqlF file,
amedia and a statistics subfolder. The latter serves as the input to statistics processing as
discussed in Section 2.2.1. If the media folder is non-empty, the contained files need to undergo
an additional treatment outlined in the next Section. Otherwise, this step can be skipped and
the ReqlF file may be directly imported by an RM-tool of choice.

3.1.1 Dealing with embedded media

The ReqlF file format allows to embed external media into rich text content (see Section 2.1.3).
In order to maximize compatibility across different RM-tools, ReqlF contains different layers

of content for each media-artifact. On the lowest level each such artifact is represented by an
XHTML-formatted String which is expected to be digestible by all conceivable RM-tools (the
embedded pictures in Figure 10 on page 47 are displayed this way). The next level is always a
PNG-image and the last, optional level is a file of arbitrary format. While rendering, RM-tools are

23|n the computerscience denotation of the term. |.e. some action is being performed on each node of the tree.
24rgad: “write in correct order”

3 The tool 43

required to start with the highest available layer, but may fall back onto the preceding one if they
fail to handle it. The entire process is described in more detail in [Obj13, clause 10.8.20, point 2].

Currently, the tool only writes the first two layers. This implies that all embedded media which
is not already in PNG format needs to receive special treatment. For this purpose the media
subfolder contains two CSV-files:

images.csv deals with all graphical objects which can be extracted as a separate file from the
DOC input. Those raw (unconverted) files are saved alongside the CSV and are usually of
Windows Metafile (WMF) or Windows Enhanced Metafile (EMF) format.
Each line in images . csv represents a reference to an individual object and stores the tar
get dimensions (width and height) along with it. By feeding this file to a dedicated macro
designed for Microsoft Visio, all those objects can be batch-converted into PNG.
The tool can also be reconfigured to use different conversion approaches which do not
rely on proprietary software from the Microsoft Office family. However, those alternatives
(namely: ImageMagick's convert on Windows with GDI-support and 1ibwmf on Unix, both
of which are open-source) do not provide comparable quality.

shapes.csv deals with shapes in the so-called “Office Drawing Binary Format” as specified in
[Mic14b]. These are commonly created through the drawing tools natively provided by
Microsoft Word. Such shapes cannot exist in isolation (i.e. they cannot be extracted and
legally saved into a separate file) [Mic11]. Thus, shapes.csv only states offsets (similar to
the start0ffset used for backward tracing in Section 2.2) of those objects in the original
input DOC together with the filename where the resulting PNG is expected to go. The ac-
tual extraction is performed by another macro, which requires both the original DOC-file
and shapes.csv as its input. Although this macro runs inside Microsoft Word, it needs Mi-
crosoft Visio to be present as well.
There is no viable alternative?® for the handling of such content, except for one special
kind of drawings (see Section 3.3.3). Formalized directly by the tool, they use a very lim-
ited subset of the drawing format discussed above and are therefore exempted from the
file shapes.csv. Hence, this is the only time when the tool must rely on external propri-
etary software.

In the example of Listing 5 both CSV-files are explicitly referenced (Lines 44-45). If the input
file happens to contain only one kind of media or no media at all, the non-applicable lines are
omitted and the CSV will not be present, either.

As stated in Section 2.3.2, the input documents contain a fair amount of OLE-data. Using the
approach outlined above, these data will always be flattened to WMF or EMF?6. By utilizing
ReqlF's third content layer which can hold arbitrary data, one could also link these original OLE-
BLOBs to the ReqlF output file. However, only a few RM-tools can actually take advantage of
this option. Besides, the focus of the tool was primarily on providing a decent input to imple-
menters of a system, rather than to authors of a specification willing to alter the embedded

25Although LibreOffce/OpenOffice, respectively their headless variant unoconv, claim to support such drawings, they,
in fact, fail miserably with those embedded in the Subset-026.

26|n fact, this is performed by Microsoft Word automatically in order to display something meaningful in case the
application which originally created the respective files is not available on the user’'s computer.

44

graphics (which is why one would embed the original OLE-data in the first place). Lastly, this
approach will not work for the non-independent data referenced by shapes.csv unless it is em-
bedded into an artificial wrapper document?’, which is quite an onerous task.

Extracting the original MTEF-representation of equations is also unlikely to be worthwhile since
edits can only be performed using Microsoft's own Equation editor for as long as those objects
are embedded in an Office document. Alternatively, Design Science’s MathType software, which
the Microsoft editor derives from, may still be used even after they have been extracted. How-
ever, that is a rather exotic piece of proprietary software without any significant market pene-
tration. Alas, a truly useful formalization of such equations as TgX- or MathML-markup is hard to
obtain because only a limited open-source implementation of the MTEF file format is available
[SP12] and ReqlF lacks support for any of the aforementioned markups. Fortunately, this situ-
ation has somewhat improved with the XML-based successor of the DOC file format (*.docx)
where equations are stored in the openly documented Office MathML (OMML) format, a com-
petitor to MathML [Mur06].

3.2 ReqlF output

As stated in Section 2.1.3 earlier, ReglF files may come in two flavours: Plain, uncompressed
*.reqif, which requires any referenced media to be shipped separately. And *.reqifz, which
is simply a ZIP-archive?® of all those files. Currently, the tool only writes the uncompressed vari-
ant, because the handling of media objects requires manual intervention as outlined in the pre-
ceding Section. However, x.reqifz may be easily generated from the postprocessed output
using any third-party ZIP archiving tool. Doing so is indeed advisable, for two reasons: Some of
the chapters of Subset-026 require more than 30 Megabytes of space in their uncompressed
form, and the high degree of redundancy coming with XML lends itself to a good compression
ratio thanks to the Huffman coding used inside the ZIP algorithm.

Regardless of its format, the file may be opened by one of the numerous RM-tools supporting
the ReqlF standard. Two example renderings of the identical, generated ReqlF-file by formal-
mind Studio, a somewhat extended version of ProR commonly regarded as the ReqlF reference
renderer, and DOORS are shown in Figures 10, respectively 11 on page 47. Both screenshots
display the same specification excerpt as the one given in Figure 7 on page 29.

Although ReglF allows several specifications within one file, this functionality has not been used
for the Subset-026, whose individually available chapters (see Section 2.1) could have been rep-
resented in this way. This is mostly due to the nature of the tool which processes each DOC file
separately. But this also comes with the advantage of manageable file sizes (see above) and the
theoretically feasible option to use file-based locks to prevent rivalling edits to those files, when
more granular artifact-based locking (as multitenant RM-tools usually provide it) is not available.
The downside of this approach is the necessity to use proxy elements for external references,
see Section 3.2.2.

27ReqlF's implementation guide suggests to use Rich Text Format (RTF) for this purpose [PMS14, Sec. 2.5.3, sub-
clause 8]
28Note: zip, not compress as the simple z suffix may confusingly suggest to anyone familiar with Unix.

3 The tool 45

However, this multi-specification functionality may still be employed by a user of the ReqlF-file
in the sense of a view onto certain artifacts. In this concept the standard view provided by the
tool happens to closely resemble the one Microsoft Word would show upon opening the source
DOC (same artifacts, same sequence, similar hierarchy). A different view may instead focus
only on a certain set of artifacts, perhaps those which are only relevant to the trackside part of
ETCS. Artifacts referenced from within this new view can have a different hierarchy and/or a dif-
ferent sequence. Thanks to the unique tracestrings and the derived internal identifiers, which
are both based on the standard view (see Section 2.3), this new view is equally valid for trace-
ability- and other RM-purposes.

3.2.1 Data associated with a requirement artifact

One maijor goal of the tool is to split continuous text into smaller chunks (artifacts) which convey
a coherent piece of information. This is not only done to allow for traceability as explained in
Section 2.3, but also to be able to attribute individual metadata to these artifacts.

For use with ReqlF such artifacts are mapped onto SpecObjects (Section 2.1.3). In Figures 10
and 11 each of these SpecObjects is represented by a single line within the central grid. In or
der to avoid cluttering this grid with too many columns holding all this metadata, ProR features
a separate Properties-window for this purpose. A screenshot of this window showing the con-
tents of 3.6.1.3.*[3][2], an artifact already discussed in Section 2.3, is depicted in Figure 12 on
page 48. The properties are grouped into three segments, each with an individual set of fields
to capture a piece of data. The meaning of those segments is as follows:

Requirement Type This holds the actual payload: tool-computed metadata, specific to the con-
crete ETCS use-case. Standard fields according to the ReglF naming conventions (see
Section 3.2.3) would also appear here.

As the name suggests, all the fields in this segment are specific to the type of the current
artifact (see Figure 4 on page 21). However, since the tool always writes the same type for
all kinds of artifacts except proxies (see Section 3.2.2), this set of fields is always identical.

Spec Object A set of internal fields. Among others this shows the xsd:id-compliant internal
identifier of this artifact which is derived from the tracestring (Section 2.3.3).
As with the fields of Requirement Type, this set is also associated with the current type
of the artifact.

Spec Hierarchy As discussed in Section 2.1.3, SpecObjects can be referenced from multi-
ple specifications. This group displays the data associated with the instantiation of the
SpecObject within the current specification. So all these fields originate from the Speci-
fication part of the ReglF file rather than the SpecObject itself (Figure 4 on page 21).
Because the tool only writes a single specification, the identifier in here is equal to that
inside the Spec Object-group above, suffixed by _singleton?®.

The Spec Object- and Spec Hierarchy-segments are mostly of internal use for ReqlF rendering
tools. Therefore, they are often omitted from user interfaces or only displayed in a dedicated

29See the explanation of singleton in the glossary.

46

ProR - platform:/resource /subset026/0.6/chapter3/1505081421_chapter3.reqif - formalmind Studio

O-EB @ QU>~F % oo Q all & = T I B |®RPror|
Lo T *Subset026 2 = & Foutlin % searc = A
P requirement|D RichText [Link “ ¥ O specHierarchy
o 1.1 ®3.6.1.1b Data that remains valid for a certain distance, referred to as Profile data (e.g. SSP, gradient) LERE]
. 3612 Note: Determination of the Train Postion is always longtusingl along the route, even though the route might be @31
By 11 set through a complex track layout 0310
1.1. @3.6.1.2[2] . 3-2
3.6.1.2[2][F]6 .
i s >33
P @34
1.1. [R] 4 5 P @35
@36
- v @ 3.6.1
— Q3611
1.1. @ 3.6.1.2[2].[F]6.C Figure {Figure 6}: Actual route of the train © 3612
1.1. 3.6.1.2[3 .6.1.
= e 3.6.1 2[]3] [F17 Lo > © 361202
1.1. [R ! . N r @ 36.1.2[3]
1.1. ©3.6.1.2[3].[F]7.C Figure {Figure 7}: Route known by the train T03613
", ° 3.6.1.3 The Train Position information defines the position of the train front in relation to a balise group, which is 1-0H0 @ 3.6.1.3.4[1]
- called LRBG (the Last Relevart Balise Group). I includes: © 1.6.1.3.5[2]
11 @ 3.6.1.3.#[1] The estimated train front end posttion, defined by the estimated distance between the LREG and the front end b @ 3.6.1.3.%[3]
o af the train
1.1. ©3.6.1.3.4[2] The train pesttion confidence interval (see 3.6.4) 0@ =1 © 3.6.1.3.44]
=4 3.6.4
: " . P ® 3614
11 ® 3.6.1.3.%[3] Directianaltran posiian infarmation In reference to the kalise crous orfentation (see 342, alsoFlgure 14)0f o oy
o the LRBG, regarding © 3615
- B 3.4.2 »@3.61.6
= 3.6.5.1.2[2].[F]14.C P @ 3.6.2
ik ©3.6.1.343]401] the position of the train front end (nominal or reverse sice of the LREG) > @ 3.6.3
1.1 ©3.6.1.3.43].*[2] the train arientation > ®3.64
1.1. @ 3.6.1.3.43].[3] the train running direction > ®3.65
*| E . .0..
o 3.6.1.3.%[3][2] En case uf.an LRBG being a single balise group with noco ordinate system assignsd, drsctionalinformation o1 o1 » @366
s defined in reference to the pair of LRBG and ‘previous LRBG”, see 34233
1 >
[34233 @37
& 3.4.2.3.3.1 . ro@38
T > @39 ~

Figure 10: Example rendering of chapter 3 by ProR

Datei Bearbeiten Sicht Erstellen Link Analyse Tabelle Tools Diskussionen Benutzer Anderungsmanagement Hilfe
HaBa |53 || @FFdFem |[[esfeiyg
Sicht [RealFView =) [MeBbenen -] || & A 4 7 < 7 P A4l
= &a:ter?. o | RichText ime
3. 1.b Data that remains valid for a certain distance, referred to as Profile data (e.g. SSP, gradient).
3.6.1.2 Note: Determination of the Train Position is always longitudinal along the route, even though the route might be set through a complex track layout.
3.6.1.2[2] m

3.6.1.2[2].[f]6 Picture missing. No alternative text available.
3.6.1.2[2].[f]6.C Figure {Figure 6}: Actual route of the train
3.6.1.2[3]

3.6.1.2[31.[f]7 Picture missing. Mo alternative text available.
3.6.1.2[3].[f]7.C Figure {Figure 7}: Route known by the train

3.6.1.3 The Train Position information defines the position of the train front in relation to a balise group, which is called LRBG (the Last Relevant Balise Group). It
includes:

3.6.1.3.%[1] The estimated train front end position, defined by the estimated distance between the LRBG and the front end of the train

3.6.1.3.%[2] The train position confidence interval (see 3.6.4)

3.6.1.3.%[3] Directional train position information in reference to the balise group orientation (see 3.4.2, also Figure 14) of the LRBG, regarding:
3.6.1.3.%[3].[1] the position of the train front end (nominal or reverse side of the LRBG)

1718 L
1717 3 3.6.1.3.%[3].[2] the train orientation
1718 3.6 *[3].%[3] the train running direction
172 3.6.1.3.%[3]2] In case of an LRBG being a single balise group with no co-ordinate system assigned, directional information is defined in reference to the pair of LRBG and
173 “previous LRBG", see 3.4.2.3.3
17 3.6.1.3.[4] A list of LRBGs, which may alternatively be used by trackside for referencing location dependant information (se 3.6.2.2.2).
176 3.6.1.4 Balise groups, which are marked as unlinked, shall never be used as LRBG.
18 3.6.1.4.1 Justification: The location of an unlinked balise group, or the balise group itself, may not be known to the RBC.
19 3.6.1.5 [f there is an active cab, this one defines the orientation of the train, i.e. the side of the active cab shall be considered as the front of the train. If no cab is
110 active, the train orientation shall be as when a cab was last active.
1 :; 3.6.1.6 The “train orientation relative to LRBG" is defined as the train orientation related to the orientation of the LRBG, see Figure 14. It can be either "nominal” or
113 “reverse”.
114 MNote: The train orientation cannot be affected by the direction cantroller position.
115 Location of Data Transmitted to the On-Board Equipment
118 Data Transmitted by Balises
1 :; All location and profile data transmitted by a balise shall refer to the location reference and orientation of the balise group to which the balise belongs.
119 Exception: Regarding infill information see section 3.6.2.3.1.
-120 |- Data Transmitted by Radio from RBC
: 121 li—-.i P s PR P - . FI—— . =B
doors Exklusiver Bearbeitungsmodus

Figure 11: Example rendering of chapter 3 by DOORS

3 The tool 47

[Properties 2 Mk v =0

Property [Value

Requirement Tvpe

Legal Obligation unknown

ListNumberText

PlainText !In case ofan LRE&G being a single balise group with no co-ordinate system assigned, directionalinformation is defined in reference to the pair of LRBG and
previous LRBG", see 3.4.2.3.3

RichText In case of an LRBG being a single balise group with no co-orcinate system assigned, directional information is defined in reference to the pair of LREG and “previous LREG", see 34233

WordTraceld 43032

atomic

implement]
In case of an being a single with ne co-ordinate system assigned, directional information is

implementzrEnhance defined in reference to the pair of and “|previous " see 34233

kind Definition

requirementiD 3.6.1.3.%3][2]

Spec Object

Desc =

Identifier f=_3.6.1.3._Star__BrLeft_3_BrRight__BrLeft_2_BrRight_

Last Chanae = 08.05.2015 13:20:25

Lona Name =

Tvpe 9 Requirement Type (Spec Object)

Spec Hierarchy

Desc =

Editable % false

Editable Atts

Identifier f=_3.6.1.3._Star__BrLeft_3_BrRight__BrLeft_2_BrRight__singleton

Last Chanae = 08.05.2015 13:20:25

Lona Name =

Obiect @ 3.6.1.3.4[3][2]

Table Internal i false

Standard Attributes | |All Attributes

Figure 12: Properties view of ProR showing artifact 3.6.1.3.*[3][2]

enhanced view. The latter is the case with ProR, where these data are only shown when “All
Attributes” (right tab in the bottom of Figure 12) is explicitly selected. In contrast, “Standard
Attributes” (left tab) focuses on the data of the first segment Requirement Type, which is what
the user is most interested in.

All the fields of this segment bear custom, domain-specific names and their associated data
represents the output of various different algorithms of the tool predominantly targeted at en-
hancing the user experience for implementers of ETCS. However, these data may also be used
as an input to further automated processing means, such as those outlined in Sections 2.2.1
and 2.2.2. The meaning of the fields is as follows:

Legal Obligation A list of all possible values defining the degree of obligation inherent in the
current artifact:

mandatory (>= 1) At least one of the artifacts of this sublist must be implemented.
(only applicable to sublist items which are related to each other)

mandatory (== 1) Exactly one of the artifacts of this sublist must be implemented.
(only applicable to sublist items which are related to each other)

mandatory This artifact must be implemented.

optional (== 1) At most one of the artifacts of this sublist may be implemented.
(only applicable to sublist items which are related to each other)

optional This artifact may be implemented.

mixed Parts of this artifact must be implemented, other parts may be
implemented. This implies atomic (see below) is false.

unknown The obligation of this artifact could not be determined.

not applicable This artifact does not have a legal obligation (e.g. it is marked as
deleted).

48

Annotation (Example) class-attribute Explanation

ARROW TO: [r][4].EOLMValid arrow Formalized arrow inside of a table.
See Section 3.3.3.
[r][4].EOLMValid hrMetadata Visual helper to quickly find the cor

rect cell-artifact associated with a
particular cell in a table layout. Its
content equals the tracestring of
the respective artifact starting from
the row-level (which constitutes a
table-wide unique identifier). See
Section 2.3.1 for an explanation
of the underlying concept and Fig-
ure 16 for an exemplary application.
Table 2 field Cross-reference pointing to a dif-
ferent part of the same document.
See Section 3.2.2.

Table 2 field Cross-reference as above whose
target could not be found. In such
cases a warning (Listing 5) will
be printed on the screen during
conversion as well.

{Figure 6} field So-called SEQUENCE field [ECMOB6,
clause 2.16.5.63]. Such a field
contains a type (in the example it
is bound to Figures) and a type-
specific sequential number gener-
ated by Microsoft Word.

note Footnote. Its actual contents are
given in a child of this artifact.
A lowercase [n] designates an
endnote, instead. The number is
tool-computed. Emits a warning
(Listing b) if the author of the DOC
requested a non-arabic number
ing scheme, since this does not
play well with the tracestring. See
Section 2.3.2.

Seetton-3-6-24-shaltnot-apply- So-called Vanished Text [ISO12,
clause 17.3.2.41], which, depending

on user configuration, may or may
not display on screen / be printed.
Emits a warning (Listing 5) as well.

PLACEHOLDER REQUIREMENT - DO NOT TRACE Marks an artifact whose only pur

pose is to maintain a proper hier
archy. No other content is allowed
in such cases. This also implies
the artifact’'s kind-field equals
Placeholder.

CONTENTS HAVE BEEN SPLIT UP - SEE CHILDREN Marks an artifact with complex con-
tent (e.g. a table cell with a list as in
Figure 8). See Section 2.3.1.

some text R

Table 3: Different annotations of the RichText-field

3 The tool 49

Annotation (Example)

class-attribute

Explanation

shall

can

indicates

The LRBG

immediately

for each

re-evaluate JiEr|

as long as

signalman

‘on-board unit [FEX0]

previous LRBG

““previous LRBG’’

even if

LegalObligation

LegalObligationUnknown

Predicate

Predicate

Headphrase

weak

Condition

Loop

Again

Time

External

Self

Linked_Phrase

NamedEntity

Embraced
NoteIdentifier
DeletedIdentifier
JustificationIdentifier
ExceptionIdentifier

Legal obligation of the current
artifact according to the list in
Section A.2.1

Words which may indicate a
legal obligation but are nowhere
defined as such. According to
the list in Section A.2.1
Predicate of a sentence (based
on NLP)

Phrases which should take the
role of a predicate but were not
detected as verbs (based on
NLP)

Subject of a sentence and its
modifiers (based on NLP)

Weak words according to the
lists given in Section A.2.2

A condition according to the list
given in Section A.2.3

A repetition according to the list
given in Section A.2.3

A repeated action according to
the list given in Section A.2.3

A time-reference according to
the list given in Section A.2.3

A known external entity ac-
cording to the list given in Sec-
tion A.2.3

The specified system according
to the list given in Section A.2.3

Phrases which have been seen
previously in other artifacts. A
link to the artifact where this
phrase was first seen will be
added in such cases as well.

Named entities. These are ei-
ther all-caps or come enclosed
in quotation marks.

Embraced text

A Type prefix for a Note

A qualifier for a deleted artifact
A type prefix for a Justification
A type prefix for an Exception

Annotations may also be nested, confer with Section 2.2.2

Table 4: Different annotations of the implementerEnhanced-field

50

The ReqlF datatype (see Figure 4 on page 21) of this list is a single-valued enumeration.
Section 3.3.2 further discusses the items classified as belonging to a “related sublist”

ListNumberText Original numberText which Microsoft Word applied to this artifact or an empty
String if this artifact is not part of a list.

PlainText Textual contents of this artifact without any formatting. Or an empty String if such a
representation does not make sense (e.g. the artifact holds an image).

RichText Contents (text, image, equation, ...) of this artifact with formatting applied. Some
special annotations may appear here as well, their meaning is explained in Table 3%°.
The value of this field is also displayed in the second column of ProR’s grid (see Figure 10).

WordTraceld Running number used for backward tracing to Microsoft Word (see Section 2.2).

atomic Boolean qualifier which is true if and only if this artifact describes a single thing. The
value is computed based on the presence of conjunctions (“and’ “or”) combined with a
sentence count.

implement Boolean qualifier which is true if and only if this artifact needs to be implemented
(i.e. this artifact is a real requirement). Currently, the tool defaults this value to true un-
less there are clear hints indicating the opposite (e.g. those mentioned in the kind-field
below).

implementerEnhanced Representation of the textual contents of this artifact based on PlainText
(see above) and enhanced for implementation purposes. See Table 4 for a description of
all the colorful annotations. The class-attribute of those annotations can be used for XPath-
queries as outlined in Section 2.2.2.

kind A list of different kinds of content which can be represented by this artifact:

ordinary Ordinary text without any specifics.

Table Table, the row of a table or its caption.

Figure Figure or its caption.

Note Note which does not need implementation.
Example Example which does not need implementation.

Justification Justification for another artifact. Does not need implementation.
Heading Heading to other artifacts. Does not need implementation.
Placeholder Artifact only exists to ensure a proper hierarchy or is marked as
deleted. Does not need implementation. See Section 2.3.
Definition Artifact defines something. Does not need implementation.
The defined term, so-called definiendum [WP0B6, Sec. 3], is not yet
explicitly marked.
The ReqlF datatype of this list is a single-valued enumeration (i.e. one artifact is always of
exactly one kind). However, the user may change it into a multi-valued one if that proves
more useful (think: lots of artifacts with a Legal Obligation of mixed and/or an unset
atomic field).

30This Table cites standards relevant to the XML-based successor of DOC. This is due to the lack of equally compre-
hensive documentation for DOC.

3 The tool 51

requirementlD The tracestring of this artifact as defined in Section 2.3. The value of this field is
also displayed in the first column of ProR’s grid (see Figure 10).

Admittedly, the selection of all these fields is arbitrary. However, they represent a best-effort
attempt to extract as much meaningful data as possible from the natural language contents

of the ETCS specification documents. Except for the annotations inside the Rich Text- and
implementerEnhanced-fields (Tables 3 and 4), the contents of all those fields may also be easily
amended by a human if the algorithms computing their initial values did not deliver satisfactory
results.

In other words: All these fields are meant to assist anyone involved with the ETCS specification.
But there is no obligation to actually use this data for any particular purpose.

The actual implementation of the algorithms used to compute the initial values of the fields
has only been briefly discussed here. Section 3.4.2 will extend on the technology behind the
implementerEnhanced-field. For the remainder see the Javadoc-documentation of the code in
helper.subset26.MetadataDeterminer, helper.subset26.MetadataDeterminerSecondPass
and their respective subclasses in the tool’s source.

3.2.2 Links between requirement artifacts

Technical papers on complex systems — and the Subset-026 makes a particularly striking ex-
ample here — tend to show a high degree of cohesion, while their degree of contiguity is much
lower. So concepts are often intertwined (cohesion) but their individual parts are spread across
a wide range of pages (little contiguity). Although this is certainly not a favorable text property,
it can hardly be avoided in all cases, especially if the respective document stays on an abstract
level, where intentionally only few interfaces, packages or other means of functional grouping
are present. They would indeed predetermine a certain way of implementation which is not de-
sired in these early stages of the systems development life cycle (SDLC).

For the Subset-026 this situation led to a specification sprinkled with all sorts of references to
tie its otherwise unrelated blocks of information together. Structurally speaking, those refer
ences can be grouped as follows:

1. Cross-references: Any kind of in-text mention of another named part of the document.

(a) Explicitly set through Microsoft Word: This is a cross-reference explicitly created by
the author of the input DOC3'. Microsoft Word stores both source and target in a
standardized way so they can be automatically extracted by the tool. ProR renders
this kind of reference as shown in Table 3 on page 49.

EXAMPLES: refer to chapter 4.7 “"DMI depending on modes”). Source: 4.4.9.1.6
described in Table 1 Source: 3.5.75
8 Source: 74.2.0[2].[t]*.[r][4].Length

8TE.g. in Microsoft Word 2003 this is performed by clicking on Insert — References — Cross-reference.

52

(b) Fully-qualified implicit reference: A simple in-text mention of a some other entity. The
tool employs heuristic approaches to identify and normalize such mentions.

EXAMPLES: according to 3.6.2.2.2¢ Source: 3.4.2.3.3.8.1
according to 3.5.3.4 1), Source: 3.56.4.3.1
see items b), ¢), d), e) in 3.5.3.4 Source: 3.5.73.a
(see 3.18.3.2 items b) ¢) and d)) Source: 3.13.2.2.1.2
Concerning a) and b) of clause 3.16.2.5.1 Source: 3.16.2.5.1.1

(c) Unambiguous implicit reference: This is conceptually similar to the case above, ex-
cept the mention does not use the numberText of a list but some other unambigu-
ously resolvable numbering scheme.

EXAMPLES: (see Figure 25a) Source: 3.9.3.12.2
referring to figure 22¢ Source: 3.8.3.4.1

(d) relative reference: A possibly ambiguous reference to some preceding or following
entity. Currently, the tool only features rudimentary support for the handling of the
former case.

EXAMPLES: Exception to a): Source: 3.6.2.2.2.1
Regarding ¢): Source: 3.6.2.2.2.3

2. Recurring phrases: Any kind of in-text mention of a phrase which has been previously
used elsewhere.
At the moment, the tool does not feature any generic algorithm to detect such phrases,
but focuses only on those whose first mention is enclosed in quotation marks — or typo-
graphically questionable variations thereof (see Section 4 for a more generic approach). If
such a phrase, which must consist of at least two words to reduce false-positives, is found
again somewhere later in the document, a reference to the first mention will be gener
ated. Thus, for better illustration the following examples feature possible targets (i.e. first
mentions) of references instead of their sources as in all the cases above.

EXAMPLES: 'Linking information is used" shall be interpreted Source: 3.4.4.2.1.1
requirements for “Start of Mission” procedure Source: 5.4.3
the information "default balise/loop/RIU information". Source: 3.16.2.4.8

For the very last case the tool saves all possible interpretations as potential reference tar

gets. That is:
® default balise/loop/RIU ® default balise information
information
® default loop information ® default RIU information

In ReglF all these references are turned into so-called SpecRelations (Section 2.1.3) with all
cases below item 1 of the above list having the type CrossRefLink attributed and cases belong-
ing to item 2 being typed as KnownTermLink.

Such a SpecRelation always has exactly one source and one target, both of which must be ex-
isting artifacts within the current file. For the examples above this means the respective arti-
facts need to be resolved or created. Resolving depends heavily on the granularity used while

3 The tool 53

creating the artifacts. If, for instance, a certain cell within a table has been configured as super
fluous by a table matcher (Section 2.3.1), but is nonetheless targeted by a reference, a fallback
to the parent (in this case: row-) artifact must take place. Artifact creation is necessary if an en-
tity outside the scope of the current document is referenced, as it is sometimes the case for
item 1b. This is achieved by writing an artificial proxy SpecObject of a special type called Proxy
Type, with only an identifier but no further content, into the ReqlF and then referencing this in
the same way as any other ordinary SpecObject. Since the detection algorithm behind item 1b
still has flaws, it does sometimes create false-positive references (see the jUnit test cases in
docreader.range.paragraph.characterRun.FakeFieldHandlerTest for examples). These are
particularly disturbing for statistical postprocessing as outlined in Section 2.2.1. Appendix A.1.1
shows how to manually correct such mistakes.

Entirely ruling out these false-positives is quite challenging because there is no way to verify if
a target represented by a proxy actually does exist somewhere in an external file. Matters are
further complicated by inaccurate mentions of external, unnumbered tables, consisting only of
a reference to the immediately preceding numberText, whose associated paragraph may poten-
tially encompass more than one table. The latter frequently happens in the headings of chapter
6 of Subset-026.

Some references such as those involving images or OLE-objects currently cannot be processed
at all (see for instance the references in 5.11.2.2[2].[t]* targeting the image in 5.11.3.1[2].[f]8).

By design, a SpecRelation always applies to an entire SpecObject (read: artifact). Combined
with the philosophy of the tool to only turn each paragraph into such an artifact (Section 2.3),
those relations therefore often become less granular than they were in the input DOC. In other
words: A few characters of an artifact A which constitute the source of a relation to an artifact
B cannot be directly linked to B. Instead, only artifact A in its entirety can take the role of the
source.

This weakness could be mitigated by either creating a single artifact for all those “few charac-
ters” which make up a link, thereby effectively equalling out the granularities of an in-text men-
tion and a SpecObject. Or by creating a proprietary ReglF-extension that attributes metadata
to each SpecRelation. However, this data can at most convey the position of the “few charac-
ters"” within the respective artifact and would thus need a compatible renderer to make use of
it. In practise, neither of those two approaches was followed as the current situation seldom
leads to ambiguities, especially because the phrases of item 2 are also annotated within the
implementerEnhanced-field (green [Linked_Phrase]-box of Table 4 on page 50). For a truly for
malized specification this may be too weak, though.

If the same artifact B is referenced multiple times from within A, as it is the case for the first
example in item 1a, only one SpecRelation will be created.

A second property of SpecRelations which can be viewed both as a bug and a feature is the
fact that they are not necessarily “clickable” See the right column entitled Link in Figure 11 on
page 47 for how ProR renders such relations in its grid. One might expect that a click on any

of the artifacts (targets) mentioned in this column will cause the grid to scroll to the respective
position of that artifact. However, since SpecObjects which act as those targets may be instan-
tiated multiple times even within the same specification (Section 3.2.1), it is not always clear
where to scroll to. This becomes particularly apparent if views as suggested in Section 3.2 are
employed.

54

The multiple specifications that come with views, however, offer one more treat of the ReqglF
file format: SpecRelationGroups can be used to clump SpecRelations by the different specifi-
cations they connect [Obj13, Fig. 10.7]. For instance, after creating one view for all trackside
requirements and another one for all those which belong to the train, such a group could be
utilised to tag relations that define interfaces between the two.

Figure 5 on page 26, which has been previously discussed in Section 2.2.1, shows a graphical
representation of the roughly 400 relations of type CrossRefLink (as well as the ordinary hier
archical connections) within chapter 3 of Subset-026. The 90 KnownTermLink-relations of this
chapter have been omitted.

3.2.3 Issues with IBM DOORS

Obviously, the rendering by DOORS in Figure 11 on page 47 is a little less pleasing compared
to that of ProR in Figure 10. The reasons for this nicely indicate the challenges any standardized
interchange format commonly faces:

1. DOORS has generally poor XHTML-processing capabilities. For instance, it fails to handle
any kind of table rendering such as those produced for reasons of visual aid by the traces-
tring-algorithm outlined in Section 2.3.1. Since IBM'’s proprietary concept of “DOORS Ta-
bles” which can be triggered by a special “Table Internal” flag inside the ReqlF file (shown
in Figure 12 on page 48 in the very bottom), cannot really cope with the complexity of the
tables of Subset-026°?, this is quite an unpleasant situation.

2. ReglF does not provide a generic way of specifying its visual appearance. Therefore, the
generated files include tool extensions (confer with Figure 4 on page 21) to convey this in-
formation which can only be parsed by ProR. Such extensions are currently not generated
for DOORS.

3. The files intentionally do not comply with the recommendatory ReqlF naming conventions
[PMS14, Sec. 2.2] intended to map common properties of a requirement to the respective
fields of different RM-tools.

To justify why this naming contract has been broken, consider Figure 12 again. The textual con-
tent of the artifact shown there is always trapped within a field entitled RichText. A second field
called kind holds a list of all possible kinds of such an artifact (see Section 3.2.1 for a more thor
ough explanation). The value of kind for this artifact is precomputed by the tool based on heuris-
tics. If those heuristics fail for any reason, this value may be later amended by the user. So this
approach combines a high degree of automatization with maximum flexibility.

On the other hand, ReqlF’s naming conventions mandate the textual contents of an artifact to
go into three different fields depending on what kind of information they convey. A heading to
many artifacts must go into ReqIF.ChapterName, unless it has the character of a title to a single
artifact (the subtle differentiation between these two cases is left as an exercise for the reader)
in which case ReqIF.Name is the field of choice. For all other content ReqIF.Text must be used.

32gpecifically it neither supports merged nor omitted cells very well.

3 The tool 55

Owing to the different philosophies of the tool vendors who designed the ReqglF standard, such
arbitrary distinctions make it substantially harder for a user to correct any wrong assignments
by the heuristic algorithms. Hence, it was decided not to follow these conventions. This comes
at the cost of DOORS not recognizing any fields in those files out of the box along with using
arbitrary numbering for the tree®® shown in the left part of Figure 11. However, since the field
names can be easily changed, this can be fixed by renaming requirementID into the slightly
confusing term ReqIF.ChapterNumber prior to importing the file into DOORS.

The fact that pictures are neglected by DOORS (Figure 11 only shows the least-significant, text-
only content layer for the Figures in 3.6.1.2[2].[f]6 and 3.6.1.2[3].[f]7) is a bug in DOORS which is
currently being investigated by IBM34.

3.3 Content formalization

A fair amount of technical documentation is based on repetition. This does not necessarily mean
such papers are full of redundancies, but rather that a reader will often come across conceptu-
ally similar passages which are always presented in the same way. In contrast to poetry where
the author may be tempted to describe similar events with different sets of words from a rich
and metaphorical vocabulary, technical writers strive for the exact opposite: well-tended bore-
dom.

So, “formalization” in this context means to detect such similar passages and output them in

a uniform way. What makes this challenging is that computers are rather averse to “similarity”
and instead much prefer “equality” Hence, the involved algorithms must allow for a certain de-
gree of fuzziness in their input to be able to correctly classify mostly similar still as similar. How
this can be achieved for the case of tables has already been shown in Section 2.3.1. The fol-
lowing Sections will therefore put more emphasis on the remaining formalizable elements of
Subset-026.

3.3.1 Detection of recurring elements

Tables (Section 2.3.1) make up the largest part of recurring elements in the Subset-026 and they
can often be correctly detected simply by means of their visual structure (e.g. n columns and m
rows, of which the first x are part of the table header, makes a table of type y). Their actual con-
tents are only a secondary measure for categorization if the structure alone is not stark enough.
For other elements structural information is not available to such an extent, so the detection
must focus a lot more on their contents. Two kinds of these elements shall be discussed in
more detail:

figure- and table-captions Throughout the Subset-026 captions are always made up of ordi-
nary text following the element they describe. So DOC's dedicated features for typeset-
ting them are not used. The detection heuristic must therefore be able to elicit such cap-

33 Module Explorer in DOORS' terminology.
34 According to an email from IBM United Kingdom received on May 21, 2015

56

tions from other textual contents, make sure those texts are not mistakenly read in again
as some other kind of artifact at a later point, and then handle them in a special way. This
is done slightly differently for the captions of figures and tables, since they are an essen-
tial qualifier to differentiate between an ordinary image and a figure in the former case, but
only an optional part in the latter case (Section 2.3.2).

The algorithm responsible for this process has grown quite complex over time due to the
number of different caption layouts present in the input files. The only invariant (common
property) it can count on is the caption’s two-part design: There is always some identi-

fier with a running number (i.e. “Table 3") followed by some descriptive text. Both parts
are separated by a colon (:). Usually such a caption lives in a separate paragraph immedi-
ately following that of the described element. But for certain edge cases there are empty
paragraphs in-between or the caption is only separated by a line break. The alignment (left
aligned, centered) varies as well. In addition to that, the actual content of a caption may ei-
ther contain a SEQUENCE-field for autonumbering its running number (confer with Table 3
on page 49). This field may or may not be suffixed by a single, manually entered alphabetic
character (i.e. something like “Figure 20 b"; with the grey part being a field). Or the num-
ber in its entirety was manually entered, in which case special care must be taken to work
out if this number is actually unique (confer with item 1¢ of Section 3.2.2). A conceptual
relationship between the caption identifier and the described element cannot be safely as-
sumed, as chapter 4 of Subset-026 does contain tables whose captions confusingly call it
a "Figure” (e.g. artifact 4.5.2.1[2].[t]1).

The class docreader.range.paragraph.CaptionReader of the tool's source contains the
implementations of the heuristics discussed above.

Once the caption has been identified, it always becomes the first child of the element it
describes and inherits its tracestring suffixed by .C (Listing 4 on page 39, line 32). Embed-
ding the caption right into the RichText data of the artifact representing the described el-
ement is not possible because ReqlF's XHTML subset allows to use the relevant tag only
for a caption to tables (i.e. <caption>) but not to figures (<figcaption>).

Eventually, the running number of the caption is extracted and used for the tracestring
computation (see Section 2.3.1).

headings The detection of headings is a two-step process: During phase 2 of a tool run (see
Section 3.1) possible candidates are selected on the basis of their visual appearance. They
must constitute a single paragraph without any line breaks, certain characters like a dot
(.) are banned, and all remaining ones must have bold or SMALL CAPS formatting applied.
Moreover, there is an upper limit to the number of allowed characters and the name of
the style attached to them must contain “Heading’ “Uberschrift” or “Titre" (the latter two
being the German, respectively French equivalent of “Heading"). All of this happens in the
method determineRequirementKind () of helper.subset26.MetadataDeterminer.
Unfortunately, the outline level, which is a hierarchical number attached to each paragraph
of a DOC file to mark a heading, is completely messed up in Subset-026 and therefore not
respected®.

In a second step, which takes place during phase 3 of the tool run, these candidates are
checked again taking into account their hierarchical position. Would-be headings without

35The import facilities of other tools like DOORS heavily rely on the correctness of this number. This makes one con-
tributing factor why they fail so miserably for the Subset-026. See Section 3.5.

3 The tool 57

any children are reset and ordinary artifacts preceding a sublist (see Section 3.3.2) are
added. Eventually, all resulting headings receive their kind-field set to the value Heading
(Section 3.2.1).

The method processRequirement () in helper.subset26.MetadataDeterminerSecondPass
contains the implementation of this second step.

There are a few more recurring structures in the Subset-026 which are given special treatment

by the tool. However, their algorithms are comparably simple and therefore skipped for reasons

of brevity. The interested reader may refer to the Javadoc in helper.subset26.MetadataDeterminer
(especially methods such as isDefinition()) and helper.subset26.LegalObligationDeterminer.

3.3.2 Sublist dependencies

The Subset-026 contains a number

of sublists whose items share a cer- 5.4.1.1 The driver may have to start a mission:
tain boolean relation. A sublist, in a) Once the train is awake, OR

this context, is a list where all items b) Once shunting movements are finished, OR
have numberTexts attributed which ¢) Once a mission is ended, OR
are not unique on their own (confer
with the beginning of Section 2.3). Fur
thermore, the paragraph preceding Figure 13: Artifact 5.4.1.1 as shown by Microsoft Word
the list must contain a condition and

d) Once a slave engine becomes a leading engine.

a keyword indicating a forward reference®® such as “following” (e.g. “If the following...") or
end with a colon (:)37. For formalization purposes, this boolean relation is to be extracted and
attributed to the individual sublist items through their Legal Obligation field (see the respec-
tively tagged values of this field in Section 3.2.1).

There are essentially two corner cases for such sublists and a variety of blends in-between:

1. In the first case the preceding paragraph completely defines the relation of the sublist
items. A typical example would be artifact 3.13.2.2.4.1 “The brake position shall be set
to one of the following three values:”, with those “values” listed in the children of the arti-
fact.
Here, the algorithm extracts the legal obligation (in this case mandatory (==1)) from the
given parental artifact, bequeaths it to the children and attributes the parent either a Heading
or ordinary kind, depending on its exact wording (in this case ordinary). Its legal obliga-
tion is reset to the value that would have been attributed without the presence of a sublist
(in this case mandatory).

2. The second case defines the boolean relation only on the basis of the sublist items. Unfor
tunately, the Subset-026 does not contain a really good example of this case in its purest
form, so consider the following artificial structure, instead:

36Literature sometimes refers to this as a “continuance” [WRH97, p. 169].
S7There are a few exceptions to this generic rule which will not be discussed here. See the tool’s source for details.

58

[RIReqIF Search RIReqIF Search (Raw) | E7File Search

@® Mmatchall Match any Add new | | Clear
X | Legal Obligation (Requ = = unknown
* | requirementID (Requir % | | regexp < | O] Aa | AL 0[EINAD).+).*
X | implement (Requirems > | |= < | | TRUE &
@ | customize... cancel | search |

Figure 14: Search for ill-categorized sublists using ProR

1.2.3 To perform a system reset:

e The driver shall press the system'’s reset button, OR

e The driver shall pull the emergency brake, OR

e The driver shall power cycle the entire on-board unit.
Each child of “1.2.3" (except the very last) ends with “OR"” Combining this information
with the keyword “shall” (see Appendix A.2.1) contained in each item's text yields a legal
obligation of mandatory (>= 1) for all of them.
Similar hierarchies within the Subset-026 would come without the redundant “The driver
shall” prefix in the sublist items. Instead, this phrase would appear only once at the end of
the parental artifact (see e.g. artifact 3.9.3.12).

Figure 13 on the facing page shows an example of the many blends between the two afore-
mentioned cases. In here all the sublist items are attributed the legal obligation optional (==1)
(i.e. they are mutually exclusive)®® based both on the preceding paragraph and on their “OR"-
suffix.

The class helper.subset26.MetadataDeterminerSecondPass contains the implementation of
the different sublist-related algorithms. Due to the highly heterogeneous wording used for the
paragraphs preceding the sublists, it is infeasible for the code to automatically detect all their
possible manifestations. This is a result of the regex foundations of the employed heuristics
which do not perform well in such cases (Section 3.4.2). However, by using the search facilities
of an RM-tool the artifacts in need for manual post-treatment can be easily identified. A possible
query for chapter 3 of Subset-026 using ProR is depicted in Figure 14.

3.3.3 Intra-cell requirements

Figure 15 on the following page depicts a short example of a so-called “transition table” As its
name implies, such a table is intended to visualize permissible transitions from one system

38Formally speaking, the “OR" at the end of each sublist item must actually be interpreted as an “XOR" It remains
unclear whether this is what the requirement author actually intended.

3 The tool 59

Status of On-board stored information

EOLM Train Position ERTMS/ETCS | Table of trackside RBC ID/Phone
information Level supported levels Number

Transition conditions | Un- |Invalid| Vali| Un- (Invalid| Valid | Un- |Invalid| Valid| Un- [Invalid| Valid | Un- [Invalid| Valid
known d [known know known known
n

No Cold movement — > o——> o——> — > o—>
occurred

Cold movement detected or <o <+——e

Cold movement information

not available

Figure 15: Table with domain-specific formatting in 4.11.1.1[2].[t]*

Status of On-board stored information

EOLM Train Position ERTMS/ETCS Level
information

Transition Un-known Invalid Valid Un- Invalid Valid Un- Invali Valid
conditions Jknown| lknown|

[r](4].EOLMInvalid| [r] [r](4].TPosInvalid| [r] [r] (4] .LevelInvalid| [r]
ARROW TO: [r][4].EOLMValid |[4].EOLMVali ARROW TO: [r][4].TPosValid| [4].TPosVali: ARROW TO: [r][4].LevelValid|[4].Levelvalid|

[x] [x] [5] .EOLMInvali
[5] .EOLMUnknown| ARROW TO: [r][5].EOLMUnknown|

Figure 16: Left half of the table of Figure 15 after processing by the tool

state to another by means of an arrow connecting two table cells. Technically the table consists
of a bit of text in the left and upper parts, which serves as the heading of the respective row or
column. However, except for a few bullets representing arrow tails, the actual content area is
mostly empty. The arrows themselves are floating objects anchored somewhere in the table,
but not necessarily at the position where they are finally displayed by Microsoft Word.

As outlined in Section 2.3.1, the default granularity level for the formalization of table contents

is the cell. Hence, those arrows must be converted into a representation that conveys the same
piece of information as before but fits into a single such cell. Since the positions of those ar
rows are only known relative to their anchor, the first step to achieve this is inevitably to lay out
the entire table mimicking the behavior of Microsoft Word as closely as possible. This is a rather
complex and computationally expensive task because row heights are mostly not given explic-
itly but must be inferred from the cell containing the longest text. Rendering out this text in a
headless mode®® while taking into account a plethora of subtleties like kerning, line pitch and
hyphenation can be at most a best-effort attempt (e.g. correct emulation of the hyphenation be-
havior is virtually impossible without reimplementing Microsoft Word's typesetting engine from
the ground up). Once this is done, a special TableContentOverrideManager (the class may be
found in docreader.range.table) comes into play. It scans all cells of the table for the afore-
mentioned anchors and assigns them to the cell where their starting point will effectively be dis-
played. All other content items are stripped, namely the bullets which do not really convey any
information. In a subsequent step an 0fficeDrawingReader takes over (its code may be found
in docreader.range.paragraph.characterRun). The methods of this class identify the arrow,
check if it is rotated or flipped and then (re-)assign the final cell where the visible arrow tail is sit-
uated. Finally, a standardized "ARROW TO: <TARGET>" text will be appended to the contents of
this cell (see Table 3 on page 49 for details) and both the former target- and this source-cell will
get a tracestring attributed. Figure 16 shows the result of this tremendous effort for the case of

39That is: without displaying it to the user

60

the example table of Figure 15.

Since the implementations of all the involved algorithms are nowhere near perfect, a subse-
guent manual check of the results is greatly advisable. However, they seem to perform quite
well for the current version of the Subset-026. Ultimately, the numerous tables which contain
such arrows (e.g. artifact 5.4.3.3[2].[t]* covering a multitude of transitions between different
variable states) ought to justify why so much work has been put into this project.

3.3.4 Unformalizable elements

There are certain elements within a specification which simply

B L N cannot be reasonably tackled by a computer. And often enough
) |P0>p=2p0-30 pt they raise questions for a human reader as well. Consider Fig-
ure 17 for a tiny, but drastic example of such an element. At
Figure 17: Artifact the risk of stating the obvious, the problem with this Figure lies
A.3.10.4[491.1t*.[r][5].[c](2] in the interpretation of the symbol | > . In the DOC file this is

as shown by Microsoft Word gncoded as a greater-than sign (/>) with underlining applied.
Such a construct is highly ambiguous because, without any
context, a human reader (and a computer will not perform any better at this) can only speculate
if this underline was intended as a way of putting emphasis on the greaterthan sign or if the au-
thor was simply unable to locate the greaterthan-equals sign (>) on his/her keyboard (i.e. the
entity constitutes a special kind of digraph). As nit-picky as this may seem, a similar, seemingly
innocent issue with messed up equations, which intentionally were not checked for overflows,
effectively constituted the root cause for the loss of the Ariane 501 rocket in 1996 [Li096, p. 5.
This is widely regarded as the most costly single accident caused by a software failure in human
history.
The tool handles the above case by showing the equation (which technically is not an OLE-object
as described in Section 2.3.2 but only an ordinary sequence of characters) with a similar ren-
dering like that of Microsoft Word in its richText-field (Section 3.2.1). However, the plainText
only contains > at the position of this dubious symbol.

A second example of barely formalizable data are text-heavy images (within the Subset-026 this
often means: statecharts). Those which are also available as OLE-data may be treated in the
same way as similarly wrapped equations (i.e. implement their original file format and unwind
the contents; see the end of Section 3.1.1). Those which can only be obtained in a rasterized
format effectively mark a dead end unless Optical Character Recognition (OCR) was to be em-
ployed. Both approaches are extremely difficult to implement while the immediate benefit may
be comparably low. However, they constitute the only viable way to automatically resolve refer
ences to named parts of their contents as outlined in Section 3.2.2.

Eventually, there are also various less severe cases of formalization-reluctant elements which
must be taken care of manually due to some sort of underspecification: A sublist as discussed
in Section 3.3.2 earlier is depicted Figure 18 on the next page. Items a) and b) inherit their le-
gal obligation from the parental element which contains the keyword “shall” indicating a value
of mandatory for this field (Section 3.2.1). However, item b) also contains the adverb “option-
ally” suggesting a more lenient legal obligation of optional. Since “optionally” is not defined

3 The tool 61

3.8.3.2 For each section composing the MA the following information shall be given;
a) Length of the section

b) Optionally, Section time-out value and distance from beginning of section to Section
timer stop location

Figure 18: Artifact 3.8.3.2 together with its sublist as shown by Microsoft Word

as a keyword for the Subset-026, the tool will only highlight this word as unknown within the
implementerEnhanced field (see Table 4 on page 50) but refrain from altering the legal obliga-
tion.

3.4 Inner workings

Most of this thesis is written in a bird’s-eye manner oriented primarily towards the final output

and the new opportunities that come with it. The following Sections will deviate slightly from

this path to try and give an impression of the Java code driving the tool behind the scenes. Two
examples are chosen for this purpose: The hierarchy extraction algorithm that assigns parent/child-
relations to individual artifacts, and the techniques used for the much higher level text analysis.
Before going into the details, however, a short summary of the tool's overall structure will be
given.

Figure 19 on the next page shows a graphical representation of the tool without any unit tests,
integration tests and dependencies on external libraries. subset026reader serves as the appli-
cation’s entry point. Its main()-method handles the input parameters (see the beginning of Sec-
tion 3.1) and passes them on to a DocumentReader which lives inside docreader. In this class
the different phases discussed in Section 3.1 are effectively carried out. Its child packages be-
low range resemble the relevant parts of DOC's range philosophy (see Figure 3 on page 19).
As outlined in Section 2.2, the data gathered by DocumentReader will be stored in a tree of ar
tifacts. These artifacts are modelled by the package requirement which houses a hierarchy of
classes representing different artifact grades. In this hierarchy a proxy artifact, for instance, is
represented by a class of higher genericity than a full-fledged textual requirement with plentiful
metadata. Objects of theses classes store references to their individual children, thereby con-
stituting the aforementioned tree. The data and metadata subpackages of requirement are re-
sponsible for artifact-related information such as links (Section 3.2.2), respectively various kinds
of metadata (Section 3.2.1).

The output serialization to the ReqlF file format is handled by reqifwriter. The purposes of
ReqifDataType and ReqifField are to manage the FundamentalTypes of the output document
(Figure 4 on page 21), respectively the individual fields associated with an artifact (Section 3.2.1).
SpecObjectMapper is a supplementary enum-class to take care of the particularities regarding
proxies (Section 3.2.2). Eventually, DocumentWriter contains the entry point and the glue code
to link all the involved classes.

There is also an elaborate collection of packages below helper. These were originally intended
to encapsulate various kinds of static information, such as the different annotation patterns

for the RichText- and implementerEnhanced-fields (Tables 3 to 4 on pages 49-50) found in

62

[oo1 8y] €

€9

tool

D
‘ subset026Reader 0
helper reqifwriter requirement docreader ; main(finalargs : String)
® ©) ©) @
list range
Gﬁ
ListReader
table paragraph
data TableDimensionsManager characterRun
metadata OfficeDrawingReader
ArrowData
DocumentWriter RegifDataType SpecObjectMapper RegifField
formatting Constants word subset26 nlp annotations TraceabilityManagerHumanReadable poi
G‘—) I 7)
textannotation FieldStore tables LegalObligationDeterminer
Internal Specification

Figure 19: Overview of the tool’s package structure

textannotation (not to be confused with the annotation package whose explanation will be
postponed to Section 3.6). Although such encapsulation is often regarded an anti-pattern (so-
called “package by layer” rather than “package by feature” [Hir15]), it was crafted with adapt-
ability in mind. Thus, by having access to the source code, the user is not only enabled to easily
amend the way annotations are displayed but also to tweak a large amount of other settings,
most of which are pooled inside Constants and its subpackages. All of this is possible without
any deeper knowledge of the actual algorithms responsible for the treatment of the specifica-
tion files.

Besides these static data there are also various kinds of wrappers to adapt external functional-
ity to the tool's needs: The package word contains methods to access common internal struc-
tures of the DOC files and to convert data formats specific to DOC into their generic equivalents
(e.g. to handle so-called twips, a measure for lengths, and to correctly map special character
entities). A similar aim is followed by the two packages poi and nlp. However, instead of ab-
stracting the functionality of a file format, they focus on external libraries. The former inherits
its name from Apache POl providing the low level reading facilities for DOC files, and employs a
fair bit of reflection to circumvent some bugs in that external code®®. The latter links to an NLP
library (Section 3.4.2) and mostly provides enhancements for carrying out the respective work
on the multiple processing units of modern computers simultaneously. The correct construction
(Listing 4 on page 39) of tracestrings is taken care of by TraceabilityManagerHumanReadable.
Ultimately, subset26 encapsulates a good portion of functionality specific to the Subset-026,
such as the abstract table definitions (Section 2.3.1).

As a final note it should be clear that Figure 19 does not depict a UML package diagram in its
purest form. This is mostly because of how Java handles classes and how those are mapped
onto a meaningful visual representation®'. For this Figure regular packages (starting with a lower
case letter), as well as the parent class of a set of nested classes and enum-classes* (the latter
two both start with upper case letters) have all been drawn as “packages”

3.4.1 List hierarchy algorithm

Section 2.3 outlined a very straightforward implementation of an algorithm to compute the
tracestring for an artifact within the Subset-026. In spite of illustrating the core idea behind the
tracestring-computation very well, this algorithm turns out to be much too simple for real world
use.

Consider Figures 20 and 21 on on pages 65-66 to get an idea of the problem scope from a
more technical point of view. Each colored vertical bar in those Figures marks an independent
list. Hence, in Figure 20 the specification authors used six different lists instead of sticking with
only the outermost green one and utilizing additional levels to cover for the various sublists. Un-
der these circumstances some computation has to take place which correctly determines the
hierarchical relationships of the individual lists in order to process their items into the traces-
trings shown in the gray region on the right of the Figure. On top of that, this algorithm must be

40|n addition, this library has also seen extensive patching. However, this will not be discussed here.

41 As with Figure 22 on page 67, the entire diagram construction was automatically performed by Yatta Solutions’ UML
Lab.

42Technically their enum-values (read: enumeration values) constitute a set of singleton-classes, i.e. a predetermined
number of objects.

64

http://www.uml-lab.com/
http://www.uml-lab.com/

capable of both merging technically independent but visually continuous lists (the two bulleted
lists below 3.5.3.7.a) and doing the opposite if items of a hierarchically more significant list inter

rupt a continuous list (blue list of Figure 21).

As simple and intuitive as this may

sound, such behavior is hard to grasp B 1 ocr (o contact & F 3.5.3.6
for a computer. This difficulty is mostly a) The identity of the R 3.5.3.6.a
owed to the iterative nature of the list b) The telephone numb 3.56.3.6.b
processing implementation in the DOC €) The action to be per 3.5.3.6.
file format. While scanning such a file SRRl ' the establishment of SRRl
))) performed according to
from beginning to end, an algorithm 3) The on-board shall 3.5.3.7a
has no idea what item will come next. If this request is par
L . until successful or a
Therefore, any decisions regarding the I this request is nc 3.5.3.7a[2]
hierarchical position of this item can repeated until at lea
only be based on historical information ¢ Safe radio conne 3.5.3.7al2].7[1]
(i.e. everything that was seen before). g £ of Mission is 3.5.3.7a[2].*[2]
. . . e Order to termi 3.5.3.7a[2].*[3
Such behavior is genuinely different e ° Nk al2].*[3]
o e The train passes 3.5.3.7al2].*[4]
from the holistic approach towards a its front end.
list commonly taken by a human. « Order to establis 3.56.3.7.a[2].*[5]
trackside and the
. , o The trai 3.5.3.7a(2].*[6
For an overview of the tool's classes Eh al2].*16l
involved with list processing consider Qg 7o o front e S45.5,6ll2), 7]
_ P 9 o Regards RIUs or 3.5.3.7a[2].*[8]
Figure 22 on page 67. The lowest level A request shall be 3.5.3.74(3]
is populated by ListReaderPlain. This setting up the safe r
class encapsulates the logic neces- il /s soon as the s: 3.5.3.7b
message Initiation o
sary to correctly calculate the displayed ¢) As soon as the trac 3.5.3.7¢C
numberText of any list paragraph. It 3538 When the on-board re 3638
was developed from scratch, using the session established anc
respective DOC file format documen- J 7 ono °f s suppone Sl
tation provided by Microsoft (specifi- trackside.
cally [Mic14a, clauses 2.4.6.3f]; other B) If none of its supg BB
trackside, it shall se
sources are stated directly in the code) version supported”.
. session.
because no comprehensive open-
3.5.3.9 When the trackside rec 3.6.3.9

source implementation of the DOC list
processing was otherwise available (Li-
breOffice/Openoffice, for instance, fail

compatible system ve
communication session

Figure 20: List numbering example from chapter 3 of
Subset-026

to correctly compute all numberTexts
present in the Subset-026). Mean-
while, the respective code has been
extended by an external person to cover for the *.docx file format as well and is due to be inte-
grated into Apache TIKA, a project on top of Apache POl [ADB*15].

The ParagraphListAware-object expected as a parameter to the function getFormattedNumber ()
of ListReaderPlain is an example of a wrapper provided by the package helper.poi (see Fig-
ure 19) which takes care of emending certain internal properties of list items. Together with

its sibling getLevelTuple (), this method is called by ListReader which eventually processes
this information into a proper hierarchy. To account for multiple nesting levels, specifically lists

3 The tool 65

inside table cells (confer with Figure 3 on page 19), this class is accompanied by a dedicated
stack (SublistStack) providing independent list data stores for each nesting level. There is also
a FakeLsidManager computing valid Lsids (unique identifiers attributed by DOC to each individ-
ual list) for paragraphs that visually resemble a list item but are technically not part of any list.
These are prevalent in the appendix to chapter 3 of Subset-026.

The two main methods exposed by

2.6.42 Summary of character 2.6.4.2 ListReader are getAsPrinted()
26421 Trackside equipment: 2.6.4.2.1 which returns the plain numberText
o Level NTC uses th 2.6.4.2.1.%[1] destined for the ListNumberText-

system, which is no

field of the ReqlF file (Section 3.2.1),

e For level transition f 2.6.4.2.1.%[2] L. .
and getFullyQualified() which re-
2.6.4.22 Main ERTMS/ETCS tra 2.6.4.2.2 h . in th
N one. 2.6.4.2.2.*1] turns the tracestr.lng to appear In the
2.6.4.2.3 On-board equipment: 2.6.4.2.3 requlrementID—fleld.
« Onboard equipmen 2.6.4.2.3.*1] This ListReader is wrapped again
e Onboard part of the 2.6.4.2.3.%[2] by a ListToRequirementProcessor
2.6.42.4 Main ERTMS/ETCS on 2.6.4.2.4 whose processParagraph() method is
e No train supervision 2.6.4.2.4.%[1] what will actually be called repeatedly
e Reading of Euroba 2.6.4.2.4.%[2] :
P for all paragraphs during phase 2 of
« Management of the 2.6.4.2.4.%[3] Section 3.1. The purpose of this last-
board equipment is mentioned class is to properly handle

skipped levels for the in-memory tree
Figure 21: List numbering example from chapter 2 of store (Section 2.2) and to generate the
Subset-026 resulting artifacts accordingly.

The diagram in Figure 22 also con-
tains a few collapsed classes which are not of any deeper interest here. As a side note,
TableContentOverrideManager makes the bridge to the arrow handling presented in Sec-

tion 3.3.3.

The iterative insertion of a new list item into the tracestring hierarchy is the actual magic within
this entire process. The responsible code is deeply buried inside SublistManager. Listing 6 on
page 68 depicts its core method stripped of any comments to squeeze it onto a single page.
The method is part of the LevelTuple class which represents a single level in a list*3. Such
LevelTuples are tied together by a LevelStore representing an entire list. Since nesting of
lists is arbitrary, each LevelTuple can itself link to multiple LevelStores to account for sublists
(i.e. in such a case this LevelTuple would constitute the parental element as discussed in Sec-
tion 3.3.2).

Upon insertion of a new list item belonging to a previously unknown list, the logic starts by call-
ing the method shown in Listing 6 of the most significant LevelTuple contained in the most
significant LevelStore. This is usually the number of the currently processed chapter of the
Subset-026. It then loops over all levels of the current list and compares (line 7) their various
properties (mainly left indentation and outline level) against the item which is to be inserted. If
a stored level is found to be less significant (i.e. the condition in line 8 triggers), the loop exits.
In a second step (lines 18ff.) sublists are accounted for. Line 20 checks if the LevelTuple which

43For the sake of the following explanation LevelTupleA mentioned in lines 1 and 3 of Listing 6 as well as
LevelTupleWForce of line 27 may be regarded as a simple LevelTuple.

66

[oo1 8y] €

L9

ListToRequirementProcessor

1 -} quil = new Requi oot()
listToRequi rocessor Lot i B i = this.| i
> c3cul quil B i Ordinary
‘4
5 -3 processParagraph (final paragraphNum :int) : int
- ‘ 1 1|, getRootRequi (): Requi
- 1 readerData -; getListReader () : ListReader
readerData {3 ListToRequirementProcessor (final readerData : ReaderData) : ListToRequirementProcessor
4 {2 setL qui (final qui B ot)
readerData
1 1 FakeLsidManager
readerData £1LSID_ILLEGAL :long =OxFFFFFFFF
v =LcurrentLsid :long =LSID_ILLEGAL
1 1 =3 computeNewLsid () : long
listReader 7 -
- fakeLsidManager T
! ! ListReader lakeLsi:Mana er
i listReader =1 listNumberAsPrinted : String = null ¢
B - » LlistNumberFullyQualified : String = null
=ilistNumberFullyQualifiedSkippedLevels : String =null [1..*]
1 “sinjectListitem (final Isid : Integer, final ilvl: int, final numberText : String)
TableContentOverrideManager listReader “2getAsPrinted () : String
o 5 agetFullyQualified () : String
- 1 4 -2 getFullyQualifiedSkippedLevels () : String
- “;getLevelDifference () : int
~aget ingLevel (): int
! -;removeNestingLevel () N
-2getRange () : Range
4 ->getHRParent () : RequirementRoot
lain (final istAware : P istAware) : String
<> ListReader (final readerData : ReaderData , final quit B i): Lis
1 1 & graph (final : graph)
lain “2getParent (final input : i oot) : i ot
ListReaderPlain] % ingLevel (final hrParent : RequirementRoot , final range : Range, final nestingType : NestingType)
LlistStore : ListStore = new ListStore()
“WORD_NUM_LEVELS MIN :int=1 1
WORD_NUM_LEVELS MAX :int=9 1 b
NO_NUMBER_INDICATOR :in -1. < | subliststack
2o Logger.getLogger(ListRead...
IviOfLastProcessedParagraph : ListLevel
=2 ved :Boolean =null

-> getLviOfLastProcessedParagraph (): ListLevel
- isIndentationMustBePreserved () : boolean
->checkStartAtRange (final iStartAt :int) : int

== getTruellfo (finalilfo : int) : int

- ListReaderPlain (final readerData : ReaderData) : ListReaderPlain
-:.getF (final P

istAware) : String
-2 getLevelTuple (final iLfoCur :int, final iLviCur : int, final Ifolvl : ListFormatOverrideLevel , final vl : ListLevel, final IvINotOverridden : ListLevel) : LevelTupleReadOnly

SublistStack

2 sublistManagers : ArrayDeque = new ArrayDeque<>(1)

%9

(0):

- removeNestedManager ()
{3 getTableNestingLevel (): int

=23

(final fakeLsic

: FakeLsi , final quil : i , final ge : Range) :

{=; addNestedManager (final hrParent : RequirementRoot , final range : Range, final nestingType : NestingType)

Figure 22: UML class diagram showing the list processing subsystem of the tool

1 private LevelTupleA findCorrectInsertionPoint(final ParagraphPropertiesDeterminer pProperties, final

© 0 N U oA W N

T e e e
N o U A W N~ O

18
19
20
21

22
23

24
25

26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

51
52
53
54
55
56

—

68

String numberText) {
assert pProperties != null && numberText != null;
final LevelTupleA outputTuple;
detection: {
LevelTupleA previousTuple = null;
for (final LevelTupleA currentTuple : this.levels.values()) {
final hierarchyComparison = currentTuple.getLevelTuple().compareTo(pProperties);
if (hierarchyComparison > 0) {
final LevelTupleA candidate = forceOnThisLevel (numberText, currentTuple);
if (candidate.force) {
outputTuple = candidate;
break detection;
}
break;
}
previousTuple = currentTuple;

}

if (previousTuple != null) {
assert previousTuple.getLevelTuple().compareTo(pProperties) <= 0;
if (previousTuple.getLevelTuple().getChild() != null) {
final LevelTupleA childTuple =
— previousTuple.getLevelTuple () .getChild() .findCorrectInsertionPoint (pProperties,
< numberText) ;
if (childTuple != null) {
final hierarchyComparison =
— childTuple.getLevelTuple() .compareTo(pProperties) ;
if (hierarchyComparison == 0) {
final LevelTupleA currentLevelCandidate = isOnSameListLevel (numberText,
— childTuple.getLevelTuple());
if (currentLevelCandidate.getLevelTuple().isPredecessor()) {
if (childTuple.force) outputTuple = new
— LevelTupleWForce(currentLevelCandidate.getLevelTuple());
else outputTuple = currentLevelCandidate;
break detection;
}
else if (!childTuple.force) {
assert !currentLevelCandidate.getLevelTuple().isPredecessor();
previousTuple = currentLevelCandidate;
¥
}
else if (hierarchyComparison < 0) {
childTuple.getLevelTuple() .setPredecessor(false);
previousTuple = childTuple;
}
if (childTuple.force) {
outputTuple = childTuple;
break detection;

}
}
else previousTuple.getLevelTuple() .removeAllChildren();
}
else {
assert previousTuple.getLevelTuple().compareTo(pProperties) <= 0;
final LevelTupleA currentLevelCandidate = isOnSameListLevel (numberText,
— previousTuple.getLevelTuple());
if (currentLevelCandidate.getLevelTuple().isPredecessor()) previousTuple =
< currentLevelCandidate;
}

outputTuple = previousTuple;
}
else outputTuple = null;
}

return outputTuple;

Listing 6: Java algorithm to insert a new list item into the tracestring hierarchy

was last encountered by the loop (i.e. the last one not causing it to terminate) has a sublist** at-
tributed. If so, the entire method shown in this Listing is invoked again starting with the most
significant level of that sublist. A successful recursive call (i.e. the condition in line 22 yields
true) indicates the presence of a sublist level which is more significant than the item to be in-
serted. Thus, this item now constitutes a member of a sublist’s sublist (confer with the bulleted
list below artifact 3.5.3.7.a[2] shown in Figure 20 on page 65). The following lines deal with edge
cases related to items of unknown lists which are on the same hierarchical level as items of pre-
viously encountered lists (with the two bulleted lists of Figure 20 again making a good example
here). The helper function isOnSameListLevel () is not only capable of determining this prop-
erty for the case of adjacent bullets but can also account for consecutive numbering which is a
strong indicator of hierarchically matching lists. Line 45 takes care of the opposite case exempli-
fied by the two intertwined lists of Figure 21 on page 66: It resets all knowledge about sublists
every time a more significant level is encountered.

As a result, the last LevelTuple which is more significant than or equally significant as the new
item is returned. In a subsequent step, the new item will be added to the governing LevelStore
accordingly. As explained earlier, the combination of LevelStores and LevelTuples constitutes
a hierarchy from which the tracestring can be easily computed.

The explanation above is intended to give at least a rough idea of how the list processing works.
However, some parts of Listing 6, such as the checks against the force flag and the case if the
algorithm returns null for a non-recursive call, have been purposely ignored to keep this Sec-
tion comprehensible. The interested reader may find the discussed code including the omitted
explanatory comments in docreader.list.SublistManager.LevelStore.

It should also be noted that the current implementation bears quite some potential for quality
improvements. The method isOnSameListLevel (), for instance, exhibits non-obvious side ef-
fects and there are generally too many violations of the Law of Demeter?®.

3.4.2 Techniques for natural language content

Currently, the tool tackles natural language contents by two means: Regular expressions (regexes)
and Natural Language Processing (NLP). The former can be understood merely as an extensive
search syntax. To utilize it, first a pattern is defined, then compiled into an efficient binary rep-
resentation and subsequently matched against the texts of Subset-026. This process has the
advantage of being very fast, but comes at the cost of limitation by the expressiveness of the
search pattern. So a good pattern should only match exactly those contents it was intended

for, nothing more and nothing less. The more complex those patterns become and the less is
known about the structure of the content they are matched against, the more likely it is for this
contract to break. However, there is hardly any better way, especially when dealing with uniform
information extraction from large piles of input that share some common properties.

To limit the number of mistakes referring to regexes, they are rarely ever used alone in the tool
but rather combined with a secondary measure. The table matcher of Listing 3 on page 37, for

44 Although LevelTuples can have several sublists, only the most recently added one returned by getChild() is of
interest here.

45This is: The code does not stick to communication with only its nearest neighbors. Simply put, all lines containing
more than one dot (.) in Listing 6 constitute such a violation.

3 The tool 69

instance, uses regexes only after all other structural expectations of the table have been ful-

filled. In addition, there are numerous jUnit test-cases for the various classes employing regex
technology. These use data from the actual Subset-026 to further restrict erroneous results.

One major downside of regexes is their limited ability to account for context. Modern PCRE im-
plementations, including the one of the Java language, do feature support for so-called lookarounds,
which somewhat mitigate this problem. However, they still fall short when it comes to any deeper
concepts of contextual relations other than “search term is preceded by phrase x and followed

by phrase y" An example*® of this functionality is given by the following regex which is part of

the unknown legal obligation keywords of Appendix A.2.1:

(?<!'MAY,,) OPTIONALLY

This simply states that the keyword OPTIONALLY must be regarded a match unless it is pre-
ceded by the word MAY followed by a space. The embraced part is therefore called a negative
lookbehind.

Patterns, especially useramendable ones, are often post-processed by the tool into a much
larger combined pattern. For the above example this means all the keywords indicating an un-
known legal obligation will be concatenated in one single pattern. In a subsequent step, this will
be preceded by a qualifier to indicate the entire search shall be performed case-insensitively.

One way of overcoming this drawback and to actually derive meaning from textual contents is
the employment of algorithms from the domain of NLP. Specifically, the tool uses a Probabilistic
Context-Free Grammar (PCFG) parser developed by the Natural Language Processing Group at
Stanford University [Sta15] to identify the predicate and headphrase (that is: the subject com-
bined with a bit of context) of any sentence within an artifact. This information is later visualized
in the implementerEnhanced-field of the ReqlF output (Table 4 on page 50).

A parser usually stands at the very beginning of any NLP pipeline. It takes a piece of text and
splits it into sentences. Each sentence then goes through a so-called part-of-speech tagging at-
tributing each word its respective function in that sentence. This step also yields a dependency
tree which can be queried to find the said predicate and headphrase. For an example of the
entire process try out the interactive parser demo accessible through Stanford’s website (see
above).

The probabilistic approach of this parser suggests that its algorithms perform some kind of guess-
ing. This is true in the sense that they were previously trained by their authors on a certain set
of texts totally unrelated to the Subset-026. During this training a number of so-called produc-
tion rules was extracted describing the construction of natural language sentences. It comes at
no big surprise that applying those generic rules*’” onto the Subset-026 does not always yield
perfect results. For instance, consider the phrase “Handing Over RBC" prevalent in numerous
artifacts of chapter 3. Although the parser does take the capitalization of these three words into
account, it still fails to recognize this unusual phrase as an atomic entity rather than a succes-
sion of verb, preposition and noun. This mistake could be ruled out by either teaching the parser
this phrase as a named entity or by actually training the underlying lexical model of the extraor

46 As the mindful reader may have noticed, this Section will refrain from explaining the foundations of the actual regex
syntax. Numerous thick books on this subject are available.

47 As they are usually ambiguous, the use of statistical methods is needed to choose between them. This is the actual
reason for the term “probabilistic” in the parser’s name.

70

dinary English language used within the Subset-026. The latter is a pretty time-consuming en-
deavour and requires a fair amount of training data written in the same manner as the specifica-
tion texts, which simply was not available. Thus, it was decided to use this technology only as
an enhancement of suggestive quality within the implementerEnhanced field.

NLP generally bears a lot of potential for the RM-domain. However, this can only be properly
unleashed if the number of false positives is cut down to a manageable size. This means ei-
ther the specifications must see some “linguistic smoothing” (as suggested here [Kof05a, Sec.
3.1.2]) or the parser needs dedicated training (see above). A reduction of the number of erro-
neously parsed sentences to zero is unlikely to happen without the use of a clearly defined (i.e.
constrained) input language. Accordingly, NLP's apparent lack of precision is often seen as a
major deal breaker for the employment of such technology in the requirements domain [Rya92,
Sec. 4].

For an example why this situation cannot be easily improved, consider the use of the keyword
“note” as an identifier to artifacts which are only informative (as defined in Subset-026, clause
1.7.1.4). Depending on the context “note” may be a noun (“musical note’ “A note to the reader”)
or a verb (“note this wonderful example”) [Ben13, p. 19]. Unfortunately, within the Subset-026
this term hardly ever comes with context. A typical use (taken from artifact 8.4.1.3.2) therefore
looks like this:

Note: orientations are in any case always referred to the directionality of balise group
(balise transmission), directionality of loop (Euroloop transmission) or directionality of
LRBG (radio transmission).

Since the appearance of “note” in this example essentially constitutes a single word sentence,
it remains unclear if this is an imperative verb or a simple noun (and the lack of an active predi-
cate in the following sentence does not make it any easier). It would take only minimal effort to
avoid such ambiguity, if the word “note” was simply swapped for the term “annotation” which
comes with a distinct noun-making suffix and does not double as a verb in the English language.
Although this example may seem a little contrived, it should nonetheless illustrate the general
difficulty which also emerges in other, far more complex scenarios.

Given that the previously stated obstacles can be overcome, there are five main areas were
NLP could be of valuable use:

Atomicity attribution Specifically, this refers to the improvement of the algorithms respon-
sible for the state of the atomic-flag (Section 3.2.1). By utilizing the more-sophisticated
sentence detection of an NLP toolkit combined with a count of nouns rather than conjunc-
tions of a sentence, such an enhancement could be accomplished with relative ease.

Context-aware annotation of keywords For the case of weak word detection (Appendix A.2.2)
in the automotive domain this has been shown to significantly reduce false-positives [Kri13].
A similar technique could be employed for use within the implementerEnhanced-field (Ta-
ble 4 on page 50).

Detection of ambiguities within the texts of a requirement Consider artifact 3.5.3.9 shown
below for an example:

3 The tool 71

When the trackside receives the session established report or the information
that no compatible system version is supported by the on-board, it shall consider
the communication session established.

Here, it remains unclear if the emphasized part is a relative clause dependant exclusively
on “information’ or if the “session established report” (which again makes an example of
an atomic phrase a parser would have to be taught in advance) also governs this clause
(i.e. there are two entities “report” and “information” both of which are capable of con-
veying what is said in that clause).

Such an ambiguity detection may be implemented by comparing the different internal
trees a probabilistic parser naturally generates. Usually only that of the highest likelihood
is made available for further processing. However, the Stanford parser is open-sourced
which allows this to be easily changed.

As a side note: Resolving the ambiguity could be as easy as placing a comma behind “re-
port”

Resolution of relative references A typical example of this is a sentence structure like the fol-
lowing (taken from artifact 6.6.3.4.5.b):

data is deleted (i.e. it is not sent to the receiver)

The intention here is to link the pronoun “it” with the noun “data” to make clear what “it”
stands for. This process is commonly referred to as coreference or anaphora resolution
and respective algorithms are readily available.

Improvement of the linked phrase detection The main problem with those phrases (which
are discussed in Section 3.2.2) is that they can come in various flections. As this frequently
happens with natural language in general, part of the work of a parser is therefore to find
the lemma of each processed word (so-called stemming). This functionality could be used
to find even more subsequent mentions of a previously stored phrase.

NLP has not yet seen widespread use in the RM-domain. This is not only due to its inherent in-
accuracy but can also be attributed to the poor running time and excessive memory usage of
most algorithms in this field (confer with the respective comment in Section 3.1). Existing tools
for information retrieval from specification documents therefore either focus on the automatic
processing of some constrained grammar [OM96, Sec. 2] or essentially require a human to per
form the work of a parser [Kof05b, Sec. 4], [CCMT10, Sec. 5.3.3], [PYG12, Sec. 3.1]. A notable
exception of a commercial software that claims to employ NLP is the RQA tool described here
[The15al. It belongs to the group of quality analyzers to be introduced in the next Section.

3.5 Comparison to other tools

Until now the raison d’étre of the tool has never been really questioned. This is chiefly because
it fits a niche purpose, which simply does not exist in the perfect world other tools are often de-
signed for.

72

In the mindset of the traditional V-Model the result of each step is assumed to be set in stone.
As a matter of course, specifications in this model are flawless. Although practitioners*® more
and more come to the conclusion that this V-Model does not exactly represent reality even for
the most rigorous development processes, most software safety standards, including EN 50128
for the railway domain [CEN11, Sec. 5.3.2], still endorse its use.

This attitude essentially yields two classes of tools for the general market: Quality analyzers and
specification importers. The former are used during the writing of requirements and assist the
author by marking textual properties such as inadequate wording, obvious inconsistencies or too
long sentences. Examples of this class include [LGFT05, Sec. 4], [Hei10] and [Hoo15]. The latter
usually forms a part of a much bigger RM-application where this component is intended to read
in the completed requirements after authoring (and perhaps quality checking). Both tool classes
therefore represent some kind of a waterfall-like toolchain whose result is ultimately passed on
to the next step of the V-Model where the implementer takes over.

As stated in the introduction (Section 1.1), the tool of this thesis distinctly differs from those
approaches. Specifically, it addresses the implementer rather than the primary author. This is
because the Subset-026, and ETCS specifications in general, are, indeed, more or less set in
stone®?. Given this situation, an implementer therefore does not (or rather: is not eligible to)
care about, say, too long sentences. He/She simply has to live with them. This requires the tool
to limit its quality assessment to aspects which are also useful to an implementer. Section 3.2.1
details what this precisely means for the case of Subset-026. The same attitude applies to the
interpretation of the DOC input file. Other tools usually necessitate to craft those documents
in a specific way in order to facilitate their proper interpretation. DOORS, for instance, relies on
a certain structure and wording of the requirements. Reqtify employs regexes as its primary
strategy for information extraction and therefore is even more in need of consistent wording.
And IBM's RequisitePro, which was used for the EuRailCheck-project introduced in Section 1.2,
requires the user to place special markers in such files®® denoting their individual elements
[IBM13]. Thus, providing documents without any such features is likely to break the respective
import routines (justifying the dashed arrow in Figure 1 on page 16). For the case of DOORS
this can be exemplified with intra-cell arrows (Section 3.3.3) and backgrounds of cells (as seen
in artifact 2.6.8.3[2].[t]1), both of which would simply be omitted. Another non domain-specific
example is depicted in Figure 23 on page 75 where DOORS (top) manages to garble equations.
In comparison, the tool of this thesis whose output is rendered by ProR (middle) performs a lot
better because its VBA-based conversion approach (Section 3.1.1) employs the very same algo-
rithms as Microsoft Word. Besides, the lack of indentation of these formulas poses challenges
for a proper hierarchy extraction®'.

The further enhancements that the tool provides for implementation and subsequent V&V ac-
tivities are unparalleled by commercial off-the-shelf (COTS) software due to their high degree of
domain-specificity. This is particularly true for the linked phrases detection (Section 3.2.2) and
the various supplemental metadata of an artifact (Section 3.2.1). Some by-products such as the

48E g. the openETCS staff at DB Netz who rely on agile methodologies, instead.

4970 be fair, requirements can be altered for a future version. However, the process of integrating changes is very
cumbersome and only allows certain named bodies to actually propose any amendments [Gra09, Sec. 2.6.1], [Eur15].

50Technically: Vanished Text. This feature of DOC has already been discussed in a different context in Table 3 on
page 49.

51This effectively constitutes a case when the algorithm of Listing 6 on page 68 will return null. Confer with Sec-
tion 3.4.1.

3 The tool 73

tagging of elements within artifacts (Section 2.2.2) can even be considered novel altogether.

Alas, academic papers on this, admittedly very practical, problem are scarce. It can only be
speculated whether some of the reasons for this lack can be found in the difficulties involved
with generalizing the respective ideas. Thus, the few papers that do exist desperately try to
abstract from the specific challenges of a certain domain [ASB*08, Sec. 2] or start their analy-
sis from scratch [RAC11]. Low-level discussions of information retrieval techniques applicable
to a specific file format are mostly confined to the various XML-derived formats of the World
Wide Web [IMMKO1] and PDF [FFT+08]. A prototype for an Excel to ReqglF converter targeted at
model-driven development is discussed here [ADT11].

Hands-on descriptions from the industrial reality are even harder to find. [Cur08] makes one no-
table exception, using DOORS’ DXL automation facilities to read in military standards. For the
ETCS specifications some, allegedly errorprone, VBA scripts are available [AHLM14, Sec. 2.1 f].

3.6 Applying this tool to other documents

Although the preceding Sections may have created a different impression, applying the tool to
documents other than Subset-026 is indeed feasible. However, there is not yet any sorcery®?
employed in its algorithms. Specific adaption to the new documents is therefore a necessary
preliminary step.

To easily spot the code sections which are likely to need modifications, the tool makes use of a
dedicated @DomainSpecific annotation (to be found in the package helper.annotations; see
Figure 19 on page 63) which labels methods, constructors and fields exhibiting a high degree of
customization to the Subset-026. For a rough idea how much code is affected by this annota-
tion consider the following statistics: Currently the tool consists of 1065 methods, 212 construc-
tors and 776 fields of which only 148 (approx. 7%) are tagged as @DomainSpecific (Counts by
Eclipse's “Java search” respectively its “References” feature).

Provided that the new document is also available in the DOC format and its main structuring el-
ement is a hierarchical list, there is a good chance adaption can be performed with manageable
effort. The necessary steps can be summarized as follows:

1. Go through the various, comprehensively documented parameters of helper.Constants
and amend them as necessary. This specifically applies to elementary properties such as
the delimiter character of captions and the style names for the proper detection of head-
ings (Section 3.3.1).

Keywords of the implementerEnhanced-field as listed in Appendix A.2 can also be set
here.

2. Check the class docreader.range.TitleReader. It is used in the very beginning of the
tool’s processing (specifically: it constitutes the first operation in phase 2 of Section 3.1)
and can therefore cause it to fail right away. Alas, due to the layout of Subset-026, it con-
sists almost entirely of @omainSpecific code.

52| less twaddling terms: Machine Learning. Confer with Section 4.

74

7Y, (C— V.E‘BD(d Vst " Lpier + Tbsl))

esifront est
EQd

e -0 A

1998 (0-2.13.9.3.5.6 In case the calculation of the GUI curve is enabled, for display
purpose only, the P speed related to SBD shal be
calculated for the estimated train front end as follows:

VP (d sifFont) = min {V.E‘ED (desl ront + Ve:;) (Ta}'hw + il—'b.sl)]’ VGH (desg'}'ﬁm]}

EO4 EQ4

Ve (a;me:;f-’om) o= 0 . Cicrf aﬂzﬁ

1998

2000

2001

93'13'9'3'5'5[2] v, (aﬁ;&ﬁm)=V (arm V. (T, +TEE1)]

3.13.9.3.5.5[3] Vo (ds)=0
fav]

@ if
Aepr + Ve " (Tipe +T51) 2 dpy
3139356 In case the calculation of the GUI curve is enabled, for display purpose only, the P speed related to SBD shall
he calculated for the estimated train front end as follows:
3.13.9.3.5.6[2]
@ Vp (dopoy)= mm Vm(dm Ve Lo "‘Taﬂ)lVa: (dqu)
BM EH
3.13.9.3.5.6(3 —
Bl 7, (d e V=0
M
(R

if

Aepn + Vet " (Tipe +T51) 2 dpy

VP (destfront) :VSBD (destfront +Vest ’ (Tdriver + Tbsl))

EOA

VP (destfront) =0 if destfront +Vest : (Tdriver +Tbsl) 2 dEoA

EOA

3.13.9.3.5.6 In case the calculation of the GUI curve is enabled, for display purpose only, the P
speed related to SBD shall be calculated for the estimated train front end as follows:

VP (destfront) = min{VSBD (destfront +Vest : (Tdriver +Tbsl))!VGUI (destfront)}

EOA EOCA

VP (destfront) =0 if destfront +Vest : (Tdriver +Tbsl) 2 dEoA

EOA

Figure 23: Result of DOORS' DOC importer (top). ProR’s (middle) and Microsoft Word's (bottom)
rendering is shown for comparison.

3 The tool 75

3. Replace the existing table definitions (Section 2.3.1) with substitutes matching the tables
of the new document. This can be achieved by simply creating a new class which extends
from helper.subset26.tables.GenericTable and implements its abstract methods.
This new definition must then be made known through a respective mention in the list
of helper.subset26.tables.TableServiceLocator.

4. (optionally) Extend the available annotations for the implementerEnhanced-field (Table 4 on
page 50). [SGCT09], for instance, contains numerous fitting proposals for the domain of
legal documents.

The respective code lives in helper.formatting.textannotation.AnnotationBuilder.

5. (optionally) Amend the fields shown in the ReglF output as desired. This can be done by
simply changing the calls in step four of the read () method in docreader .DocumentReader.

Ultimately try and run the tool on the new document. If it fails, it will most likely exit with an
explanatory message and a stack trace. Both should help to easily pin down the problem.

3.7 EN50128 tool qualification

The European Standard on railway software EN 50128 primarily targets the development princi-
ples of the actual (most likely safety-relevant) production software. However, the current 2011
version of this Standard was extended by a section on auxiliary tools and the requirements to
qualify for use within an SDLC.

Such tools are divided into three classes: T3 for programs which directly contribute to the final
output (e.g. a compiler), T7 for anything on the periphery (e.g. a text editor) and T2 for every-
thing in-between (e.g. tools dealing with tests of the final software) [CEN11, clauses 3.1.42 ff.].
The tool developed within the scope of this thesis is clearly a T7-tool since it only deals with the
requirements which describe the final software. By the definition of EN 50128, this is a very ab-
stract, not-so-much-safety-relevant area. In fact, “requirement support tools” are even explicitly
stated as an example of T7-tools in [CEN11, clause 3.1.42].

In order to qualify a tool for any tool class, the first step is to provide a tool manual [CEN11,
clause 6.7.2]. In the present case, the preceding Sections of this thesis shall be considered as
such, in combination with the Javadoc documentation which comes with the sources of the
tool. Subsequently, the qualification requirements mentioned in the table below [CEN11, clause
6.7.4.12], need to be accounted for, as they differ for each tool class. T7 mandates the imple-
mentation of only a single such clause, namely [CEN11, clause 6.7.4.1]. This very generic re-
quirement basically requests the selection of a truly suitable tool for a certain job, as opposed
to a piece of software that requires a lot of errorprone manual labour accompanying its use.

In the words of EN 50128, a tool “shall be selected and demonstrated to be compatible with
the needs of the application” [CEN11, line 1154]. Since the tool discussed in this thesis was
specifically crafted for its job and thus by no means is a COTS software, no further explanation
is needed to justify its compatibility. Cooperation of that tool with other tools, as mandated in
[CEN11, lines 1151 ff.], is accounted for by the use of ReglF as a standardized and openly docu-
mented exchange format (see Section 2.1.3). The final requirement towards availability “[. ..]

76

over the whole lifetime of the [resulting] software” [CEN11, line 1155] can only be striven for by
using technologies with little vendor lock-in (e.g. there are numerous implementations of Java
runtimes on the market) and opening the source code, so chances are that somebody can take
over maintenance even if the original author is no longer available (see also Section 2.1).

This Section, despite its brevity, is all EN 50128 requires for a T7 tool qualification and it may
therefore be regarded as a “tool validation report” according to [CEN11, clause 6.7.3].

4 OUTLOOK

deleted epigraph — Thomas Karl, [Kar13, p. 3]

Processing unconstrained specification documents is a task with copious degrees of freedom®3.
Despite the elaborate diligence of the preceding Sections, this thesis can therefore only scratch
the surface of the overall problem.

As it stands, the solution presented is suitable for the given task (see Section 5). However,
there are numerous starting points for improvement. While the further evolution of specific
technologies used within the tool have, for the most part, already been discussed in the respec-
tive Sections, the big picture still deserves scrutiny.

The basic approach of this thesis was clearly motivated by the solution-oriented mentality of

a practical engineer. Therefore, only little effort has been spent on the theoretical foundations
underlying the limits and possibilities of the various utilized techniques. This emphasis on prag-
matism is notably manifested in the fundamental rule-based nature of the tool: Although an in-
tuitive if-then-else sequence may guarantee quick and reproducible results, it is likely to prove
too inflexible in the long run — especially when the number of possible inputs becomes more
diverse.

One possible escape from this dilemma may be found in the broader employment of Machine
learning (ML). While this is already a part of the utilized NLP-library, algorithms from this field
have not yet seen any wider adoption at other places within the tool. This limitation can be mainly
attributed to the lack of suitable training data and the strict orientation towards the Subset-026
which can be tackled with simple rules alone. Nevertheless, [DD95] and [Fre00] show promising
approaches to the domain of layout and structure recognition in documents using ML. Possible
future enhancements to the tool dedicated towards its applicability in a more generic context
are therefore likely to benefit from this technology.

Yet, a first and more simply implemented step in this direction could be made by employing
more generic metrics for the various detection algorithms, rather than by focusing exclusively
on domain-specific facts. Consider the example of the recurring phrases elicitation (item 2 of

53This is, in fact, a respectful quote by a coworker at DB Netz who always found the self-chosen topic of this paper to
be far too unrewarding for a Diploma Thesis.

4 OQutlook 77

Section 3.2.2). Currently, the associated logic expects the first mention of such a phrase to al-
ways come enclosed in quotation marks (‘‘first mentior’?). By utilizing a statistical measure such
as tf-idf (term frequency — inverse document frequency) combined with stemming as outlined
in Section 3.4.2, interesting candidates for recurring phrases can be spotted irrespective of their
individual formatting.

The tf-idf calculation is pretty straightforward and works as follows [MRS08, Sec. 6.2 ff]:

tf: ¢ = number of occurrences of term t in document d (1
df; = number of documents containing the term t (2)

N
idf; = log — 3
1dr¢ 0og af; (3)
tfidf; g = tf;q - idf; (4)

So essentially a term frequency tf;q (Equation 1) and a document frequency df; (Equation 2) are
computed. Then the latter is normalized over the number of documents N, inversed and scaled
logarithmically. The result (Equation 3) is called inverse document frequency idf; and consti-
tutes a measure for the degree of importance of a term t in respect to all documents. This idf;
is eventually multiplied by the term frequency to obtain the final tf-idf measure (Equation 4).

As idf; tends to be high for a rare term and much lower for a frequent one, tfidf; 4 will be a (rela-
tively) big number if this term t occurs often within a small number of documents. By replacing
the term “document” with “artifact’ it becomes clear that this is a decent measure to deter
mine candidates for recurring phrases.

As a side note, the logarithm of Formula 3 has no deeper meaning other than to provide a nice
scaling for the result (its base may therefore be altered at will). The same applies to the inver
sion, whose primary duty is to ensure a positive result (confer logfl = —log %). Furthermore,
Equation 1 gives the so-called raw frequency of a term. Since artifacts are meant to convey
only a single idea (i.e. their atomic flag ought to be set for most of all cases, confer with Sec-
tion 3.2.1), an even simpler binary weighing scheme may be more appropriate here.

A second area which bears great potential for the development of the tool is the domain of au-
tomated ontology / taxonomy generation. This refers to the discipline of mining conceptual rela-
tions from natural language contents (think: has-a, is-a relationships) and storing them in such a
way (usually by means of a tree) that a computer can derive meaning from them. [MS00, Sec.
4] exemplifies this nicely with the varying configurations of hotel rooms in Mecklenburg-West
Pomerania.

However, this technology is mostly aimed at dynamic queries such as “List all necessary pre-
conditions for a Movement Authority” (i.e. “Movement Authority” has-a number of precondi-
tions), whereas ReqlF is designed as a static data store. Thus, these two concepts do not par
ticularly lend themselves for combination.

Besides all these high-level considerations, a number of smaller, more technical improvements
are also conceivable. On the input side, above all, the lack of support for *.docx and the lim-
ited implementation of DOC are concerned. The latter is heavily tailored towards the specific
needs of Subset-026 and therefore does not encompass structures perhaps encountered in dif-

78

ferent specification documents, such as support for textboxes or visual elements other than ar
rows (see Section 3.3.3). In addition, there is currently no extensive support for the handling of
revision marks. Since the ERA provides specifications not only in a "“sanitized” form, but also
with plentiful comments (technically: revision marks), it may be worth extracting them. Sub-
sequently, they may become attached to the respective artifacts and serve as some kind of a
“history of origins”

On the content processing side, room for improvement lies primarily in traceability into images.
Alas, this task poses tremendous difficulties which have already been explained in Section 3.3.4.
Other than that, there are numerous small items worth of consideration, such as the (semi-) au-
tomated generation of standardized visualizations (e.g. Systems Modeling Language (SysML)
requirement diagrams) from statistical output (Section 2.2.1), or more detailed categories for
the implementerEnhanced-field (e.g. the various groups listed in [LGF*05, Table 4]).

This field may also be used as a foundation for the application of formal methods, such as Event-
B (confer with Figure 1 on page 16). Eclipse features sophisticated tooling support for this method
through its Rodin platform, which can be tightly integrated into ProR (see also [CSN*15, Sec.
6]). Since entities (single words, short phrases) referenced within Event-B commonly consti-
tute only a part of a requirement, they may be easily mapped onto the various annotations of
the implementerEnhanced-field (Table 4 on page 50). See [HJL14, Sec. 5] for details (referenced
entities are there called phenomena).

Another option for making use of the provided ReqglF-files within the Eclipse framework is the
employment of reqcycle [Ecl15]. This is a novel tool still under heavy development which can
provide traceability links to UML- and SysML-models for use in model-driven development.

Of course, all of the above imply that future versions of the Subset-026 will not differ funda-
mentally from the currently published documents. However, despite significant potential for
improvement, this is unlikely to happen anytime soon.

5 CONCLUSION

deleted epigraph — margin note in [GKP93, p. 142]

This thesis proposed a novel software tool for the processing of specification documents pub-
lished in the Microsoft Word file format. In its current version, the tool was specifically crafted
to meet the demands of Subset-026, a core specification in the ETCS domain. Numerous exam-
ples demonstrated its fitness to process all eight independent chapters of this document in a
fully automated manner.

In essence, there were two groups of stakeholders who biased the final outcome of this pa-
per: On the one hand, the practitioners within openETCS who desperately needed a workable
traceability foundation for the implementation of the EVC. And on the other hand, the academic
researchers at TU Dresden who always found traceability rather insipid and favored a deeper
understanding of the specification contents, instead. This thesis aims to satisfy both.

5 Conclusion 79

Problem Tool mitigation

1. There are too many of them. defined structure (Section 3.2.1) and supportive links
(Section 3.2.2)

2. They are unstable. possibility of computing deltas between different require-
ment versions (confer with Section 2.3.3) using XML-
aware diff-tools such as the comparison functionality of
ProR or Altova’'s DiffDog software.

3. They are ambiguous. detection of inappropriate wording (Table 4 on page 50)
and various context-aware warnings (Table 3 on page 49)
4. They are incomplete. decomposition into a tree to simplify the identification of

missing elements (Section 2.2.1)

Table 5: Common problems with requirements according to [Gla98, p. 21]

Despite its rather generic approach, Section 2 primarily targeted the practitioners. Besides ex-
tensively covering the computation of unique, context-sensitive requirement identifiers, so-
called tracestrings that make the foundation to traceability, this part also showed various met-
rics that can be extracted from specifications independent of their domain. In Section 3 the ac-
tual implementation of the tool was presented, placing special emphasis on the specific chal-
lenges imposed by the natural language contents of the processed documents. This approach
generated a much stronger formalization of those contents, which is reflected in the clear struc-
ture of the resulting ReqlF files.

Accordingly, the presented tool completely fulfills the requirements of the problem definition
("Aufgabenstellung” on page 7) except two minor points: There is currently no direct integration
into the Eclipse platform, respectively its modelling framework, due to a lack of such demand
within openETCS. This point is mainly a usability issue and has no influence on the quality of
the output. Secondly, the tool does not yet feature any contradiction detection worth its name.
Section 3.4.2 details the reasons why this was not feasible within the scope of this thesis.

Nonetheless, the generated ReglF-output constitutes a major improvement over the original Mi-
crosoft Word files. Not only can ReqlF be read and interpreted in a standardized way by a mul-
titude of different requirements management applications. But those files also finally allow to
tackle the most common and tedious causes of trouble with specification documents using de-
cent tool support.

Table 5 identifies four main groups of such requirement-related problems and lists the respec-
tive countermeasures offered by the tool. However, due to the postprocessing nature of the
software, these can at best be mitigative actions, as their root cause still remains deeply buried
in the swamp of European bureaucracy.

Indeed, this circumstance can only be tackled in the long run. Above all, it would take the wider
adoption of ReglF instead of Microsoft Word. Thus, not only implementers would benefit from
its superior extent of formalization but also its authors and eventually all the other parties in-
volved.

An application of the tool to other domains is also conceivable and Section 3.6 detailed the nec-
essary preparatory steps. The successful processing of Subset-023 (Baseline 3.0.0) of the ETCS
specification can serve as an encouraging example here. In this context, a future integration

of the tool into a bigger framework dedicated to document interpretation may be a worthwhile
prospect [CMD*04].

80

http://www.altova.com/diffdog.html

DECLARATION OF AUTHORSHIP

| hereby certify that the work presented here is, to the best of my knowledge, original and the
result of my own investigations, except where otherwise indicated.

Hierdurch erklare ich, dass ich die von mir am heutigen Tage eingereichte Diplom-Arbeit selbst-
standig verfasst und andere als die angegebenen Hilfsmittel nicht benutzt habe.

Dresden, June 19th, 2015

A APPENDICES

deleted epigraph — Abstract of 2013's April Fools' Day RFC, [BKR13]

A.1 Postprocessing statistics data

A tool run (Section 3.1) will produce a statistics-subdirectory with two CSV-files:

nodes.csv which contains a line for each processed artifact (SpecObject) and thus represents
the nodes of the tree in Figure 5 on page 26. The meaning of the individual fields is as

follows:
Index Name Type Description
1 ID String aunique ID (equal to Spec Object | Identifier shown in
Figure 12 on page 48)
2 Label String plainText of the artifact (as in ReqlF)
3 Level Integer Hierarchical level of this artifact
4 Implement Boolean Value of the implement-field of this artifact (as in ReglF)

Fields Level and Implement are not strictly required by any subsequent tool but can be
used for filtering purposes.

edges.csv where each line corresponds to an edge that connects two nodes. The meaning of
the individual fields is as follows:

Index Name Type Description
Source String unique ID of the source of this edge
2 Target String unique ID of the target of this edge
3 Weight Float a number which distinguishes different types of

edges. 3.0 denotes a hierarchical relation, 2.0 a cross-
reference and 1.0 a link between recurring phrases (see
Section 3.2.2 for a definition of the latter two).

The IDs of the fields Source and Target match with an ID from nodes.csv. Again, the field
Weight is not strictly required for subsequent processing but can be used for filtering.

A.1.1 Clean up spurious external links

The tool’s algorithms do produce a few false-positive links (read: SpecRelations in ReqlF termi-
nology, Section 3.2.2), which may falsify some means of statistical postprocessing. Specifically,

A Appendices 83

the presence of those links may severely confuse automatic graph layout algorithms as intro-
duced in Section 2.2.1.
Here is how to get rid of them:

1. Open nodes.csv and jump to the end.

2. While scanning backwards through the file, look for spurious nodes. Note down their iden-
tifier (first column) and delete the entire line which contains them.

3. Stop scanning when you see the first node belonging to the current chapter (external nodes
are always written after the internal nodes).

Save and close the file.

Open edges.csv

o o &

Search for the identifiers of the second step in the third column.
7. Delete the entire line if a match is found.

8. Save and close the file.

A.1.2 Merge data of several tool runs

This Section briefly describes how statistics data gained from several runs of the tool (e.g. after
processing different chapters of the Subset-026) can be combined into one output.
Example code is meant to be run in a POSIX-compliant Unix environment using a shell.

1. For each nodes.csv: Remove the first line and concatenate the remainder to a big file
called nodesCombined. csv.

E.g.. sed '1d' nodes.csv >> nodesCombined.csv

2. For each edges.csv: Remove the first line and concatenate the remainder to a big file
called edgesCombined. csv.

E.g.: sed '1d' edges.csv >> edgesCombined.csv

3. Remove duplicate nodes from nodesCombined.csv. These are external links encountered
several times in different chapters. However, we only want to keep the node which repre-
sents the actual target.

E.g: sort --field-separator="," -k 1,1 nodesCombined.csv | tac | sort -u

--field-separator="," -k 1,1 > nodesCombinedCleaned.csv

(this is: sort by the first column, then reverse the result and ultimately sort again, retaining only the first entry —

which thanks to the reversing will always be the longest text and thus the real target — of any duplicates).

4. Prefix nodesCombinedCleaned.csv with the original CSV-header.

E.g.: head -nl nodes.csv | cat - nodesCombinedCleaned.csv > nodesFinal.csv

5. Prefix edgesCombinded. csv with the original CSV-header.

E.g.: head -nl edges.csv | cat - edgesCombined.csv > edgesFinal.csv

6. nodesFinal.csv and edgesFinal.csv can now be used as an input to Gephi, Excel, R, ...

84

A.2 Subset-026 keywords

The keywords must be interpreted as case-insensitive regexes with Java-specific escapes. Match-
ing is performed from left to right (so the first matching keyword will cause all the remaining
ones to be skipped in that particular run). Spaces are given as ..

A.2.1 Legal obligation

The mandatory and optional keywords are taken from clause 1.7.1.1 in Subset-026. The rest is a
manual compilation.

mandatory SHALL
optional MAY
unknown CAN(?:NOT)?, MUST, WILL, MIGHT, (?<!MAY_)OPTIONALLY

A.2.2 Weak words

These are words unwelcome in a requirement text because of their inherent lack of precision.
Other literature may also call these "vague words" or "weasel words".

Weak words from literature These were compiled from [Kni12], [Dup98], [FFGLO1, Table 3],
[WRH97, p. 164], [ISO11, clause 5.2.71:

above , adequate, anything , approximately,b as_soon,as, bad, believe, below,
best , better , but mnot limited ;to, clear, cyclically, easy, eventually,
extremely , feel, generally, good, hope, if ,appropriate, if needed,

if jpossible, immediately , in,round numbers, more or less, overall,
possibly , recent , repeatedly, rough, seem, significant ,6 something,6 strong,

think , useful , very(?!,(?:first|last)) , worst

Weak words from Subset-026 These were compiled by hand:

all mnecessary, at,(?7:minimum|least) , defined time, e\\.g\\. , for example,
etc\\., even,(7:if |when) , if mnecessary, nol[nt] exhaustive(?:1y)7,
some,(7:information|situation(?:s|\\(s\\))?) , temporarily,

once, (7:\\w+\\s)+?is, terminated, other,,(7:\\w+\\s)+?sources,

certain moment (7:s|\\(s\\))?, obviously, hereafter, tends, (?7:to)?, mostly,
suddenly , accidental , (7:(7:an)?other|different) reason(?:s|\\(s\\))?,

continuously , \\.\\.\\.,6 when needed

A Appendices 85

A.2.3 Other keywords for the implementerEnhanced-field

These were all compiled by hand.

Condition

if , when(?: applicable)?, in case(?:,0f)?, whether , where available

Loop

For,,(7:alll|each|every) , again, repeat(?7:ed(?7:1y)7)7,

repetition(?7:s|\\(s\\))?

Time

while, during, until, after, not,(7:\\w+\\s)?yet 6 waiting time, time delay,

timer? , delay, wait(?:ing)?, as long as

Again The authors of the Subset-026 often tend to write re-evaluate instead of reevaluate.
These regexes make use of that:

re-\\w+, revalidat(?:ed?|ion) , reenter(?:ed)?

External Entities These were mostly compiled from ETCS Subset-023, which is a glossary to
other Subsets:

driver(?:[*']s)?(?!,ID) , signalman(?:[’']s)?, external(?:,(7:interface|device))?,

(?-i:TRK) , trackside, (?-i:RBC) (?!,ID) , Radio Block Cent(?:er|re) ,
(?-i:LEU) , Line ?side electronic unit , National,,system,

(?-1:RIVU) , Radio In-?fill Unit, (?-i:LRBG(?:s|\\(s\\))?),

(7:Last Relevant) ?balise group(7:s|\\(s\\)) 7,

(?7:Euro)?(7:balise|loop) (7:s|\\(s\\))?(?!,(?:antennal|telegram)) , (?-i:LTM) ,

Loop Transmission, Module

Self references

ERTMS/ETCS, on-?board(?7: equipment |unit)? , on-7board, (?:equipment|unit)

86

LIST OF FIGURES

10

M

12

13

14

15

16

17

18

19

20

21

22

23

Placement of the novel tool in the existing tooling landscape 16
Sequential structure of an ETCS specification document 17
Internal structure of a DOC-file 19
Internal structure of a ReqlFfileo 21
Visual representation of Subset-026, chapter3 26
Example of nested annotation patterns. L. 28
Example from chapter 3: Paragraphs with and without running numbers 29
Example from chapter 5: Bullet points withinatable 30
Relations of the different artifacts of a table hierarchy 34
Example rendering of chapter3by ProR 47
Example rendering of chapter 3by DOORS 47
Properties view of ProR 48
Artifact 5.4 1T L 58
Search for ill-categorized sublists using ProR 59
Table with domain-specific formatting in 4. 111 1[21L0K1* 60
Left half of the table of Figure 15 after processing by the tool 60
Artifact A.3.10.4[491.1t1*.Ir1[5).[cll2] 61
Artifact 3.8.3.2 62
Overview of the tool’s package structure 63
List numbering example from chapter 3 of Subset-026 65
List numbering example from chapter 2 of Subset-026 66
UML class diagram showing the list processing subsystem of the tool 67
Result of DOORS' DOC importer e, 75

A Appendices 87

LIST OF TABLES

Generic tracestring attribution for the table in Figure8 35

Improved context-aware tracestring attribution for the table in Figure 8 36

Different annotations of the RichText-field 49

Different annotations of the implementerEnhanced-field 50

Common problems with requirements 80
LIST OF LISTINGS

Simple VBA procedure to perform backward tracing 24

88

XPath query to sum up all artifacts below artifact H in file.reqif using xmlstarlet 27

Java source to set up the tracestrings showninTable2 37
PCRE-compliant regex to match a tracestring 39
Tool output for a run with chapter 3 of Subset-026 42
Java algorithm to insert a new list item into the tracestring hierarchy 68

GLOSSARY

Numbers following the description text indicate the pages where the respective term is used.

Apache POl An open-source Java library to process Microsoft Office file formats. 38, 64, 65
BLOB Binary Large Object. 23, 37, 44

COM Component Object Model. A methodology invented by Microsoft to ease software reusabil-
ity. 90

COTS commercial off-the-shelf. 73, 76
CSS Cascading Style Sheets. 27
CSV comma-separated values. 22, 25, 43, 44, 83, 84

digraph When talking about graph theory (Section 2.2.1) this is just short for a generic directed
graph. However, regarding legacy computer systems, the term describes two adjacent
characters which are to be considered as one. For example the Pascal programming lan-
guage supports writing (x and *) instead of { and }. The latter is the intended meaning in
Section 3.3.4. 25, 61

DOC binary Microsoft Word file format used since Word 97. 3, 9, 17-20, 22, 23, 36-38, 40, 41,
44-46, 49, 51, 52, b4, 56, 57, 61, 62, 64-66, 73-75, 78-80

DOORS Dynamic Object Oriented Requirements System. A software by IBM for requirements
management. For this thesis version 9.6.1 was used. 16, 25, 33, 45, 47, 55-57, 73-75, 89

DXL DOORS eXtension Language. A scripting language to automate DOORS. 74

Eclipse Mainly a development environment for Java and other computer programming lan-
guages. Through its versatile plugin-system it may also be used as a platform to integrate
different small tools under a common interface. 79, 80, 90

EMF Windows Enhanced Metafile. A refined version of WMF introduced with Windows NT 3.1.
See [Mic1ba] for details. 44

EN50128 A European Standard on software safety in the railway domain. Official title: Railway
applications - Communication, signalling and processing systems - Software for railway
control and protection systems. [CEN11] contains the respective bibliography entry. 9, 14,
73,76, 77

ERA European Railway Agency. 14, 17, 79

ERTMS European Rail Traffic Management System. Umbrella term for ETCS and GSM-R. 13,
89

ETCS European Train Control System. 3, 13-17, 23, 40, 46, 48, 52, 73, 74, 79, 80, 86, 89, 91
EU European Union. 14

EUG ERTMS Users Group. 13

EVC European Vital Computer. 14, 79, 90

Event-B A formal method for system modelling based on the B method. 79

FAT File Allocation Table. 37

Glossary 89

GDI Graphics Device Interface. A component of the Microsoft Windows operating systems to
perform graphical output. See [Mic15c¢] for details. 44

GSM-R Global System for Mobile Communications - Rail. 89
GUID Globally Unique Identifier. 40
IBM International Business Machines Corporation. 55, 56, 89

Javadoc A documentation generator for Java source code from formatted text snippets. 36,
52, 58, 76

jUnit A unit testing framework for the Java programming language. 41, 54, 70
LZB Linienzugbeeinflussung. 14

MathMML Mathematical Markup Language. An XML-based format for storing equations. There
are two dialects: Content MathML which is more focused on semantics, and Presentation
MathML which is more oriented towards layout. 45

ML Machine learning. Umbrella term for algorithms that can learn from a set of data A and then
make predictions on a new set of data B on this basis. 9, 74, 77

MTEF Math Type Equation Format. Proprietary file format used by Design Science's MathType
software, the foundation of the Equation editor in Microsoft Word [Des14]. 37, 45, 90

NLP Natural Language Processing. 9, 41, 43, 50, 64, 69-72, 77
OCR Optical Character Recognition. 61

OLE Object Linking and Embedding. A proprietary Microsoft technology which allows to embed
documents of different types into each other based on COM. 37, 44, 45, 54, 61

OMML An XML-based successor to MTEF. Specified in [ISO12, clauses 22.1.2.777 ff]. 45

openETCS Research and Development project led by Deutsche Bahn Netz AG and aimed at
creating a manufacturerindependent, open-source EVC software implementation. 14, 15,
73,79, 80

0OS Operating System. 41
PCFG Probabilistic Context-Free Grammar. 70

PCRE Perl Compatible Regular Expressions. A regular expression with the same syntax and
semantics as in Perl 5. 39, 70

PDF Portable Document Format. 17, 18, 20, 23, 40, 74
PNG Portable Network Graphics. 37, 43, 44
POSIX Portable Operating System Interface. 84

ProR An Eclipse plugin which can read and process ReglF files.
For this thesis version 0.13.0.201505160302 with the “formalmind Studio”-extension in
version 1.0.0.201505161006 was used. 45-48, 51, 52, b4, 55, 59, 73, 75, 79, 80

regex Regular Expression. 9, 35, 36, 38, 39, 59, 69, 70, 73, 85, 86

ReqlF Requirements Interchange Format. A standardized, XML-based file format. 3, 9, 21-24,
27, 35, 40, 41, 43-46, 51, 53-57, 62, 66, 70, 74, 76, 78-80, 83, 90

Reqtify A requirements management tool by Dassault Systemes. 15, 16, 73
RFC Request for Comments. 83
RM Requirements Management. 3, 9, 15, 16, 22, 27, 28, 33, 41, 43-46, 55, 59, 71-73, 80, 90

90

http://www.dessci.com/en/products/mathtype/
http://www.dessci.com/en/products/mathtype/
http://www.openetcs.org/
http://www.3ds.com/products-services/catia/capabilities/requirements-engineering/reqtify/

RTF Rich Text Format. 45

SCADE Safety-Critical Application Development Environment. A proprietary suite for the devel-
opment of safety-critical software by Esterel/Ansys. 15

SDLC systems development life cycle. 52, 76
SIL Safety Integrity Level. 14

singleton A standard term in object-oriented programming for a class which can only be instan-
tiated once. 46, 64

SLOC Source lines of code. A metric for the size of a computer program. sloccount available
at [Whe12] was used for its computation. 41

Subset-026 A part of the ETCS specifications which deals with its core functionality. In its own
words: “The purpose of this document is to specify the unified European Train Control
System (ETCS) from a technical point of view" (clause 1.5.1.1). The version discussed in
this thesis can be obtained here [Eur12]. 3, 9, 13-15, 17, 23, 25-28, 33, 35, 37, 38, 41, 42,
44, 45, 52, 54-59, 61, 62, 64-66, 69-71, 73, 74, 77-79, 84-86

SysML Systems Modeling Language. A graphical modelling language on the basis of UML. 79
UML Unified Modeling Language. 18, 22, 64, 67, 79, 91

UNISIG Union Industry of Signalling. 13, 14

URI Uniform Ressource Identifier. 23

V &V Verification & Validation. The process of checking that a piece of software meets its speci-
fications (Verification) and fulfills its intended purpose (Validation). 15, 23, 73

VBA Visual Basic for Applications. 24, 73, 74, 88

V-Model An extension to the waterfall-model (i.e. one step after another) whose individual
steps are usually drawn in the shape of a V. Each step on the right stroke of that V de-
pends on input from a step on the left stroke. Widely used for the different phases of tra-
ditional software development. See [CEN11, Fig. 4] for a graphical representation. 15, 22,
23,73

WMF Windows Metafile. An image format for both vector- and bitmap-components in use
since Windows 3.0. See [Mic15b] for details. 44, 89

XHTML Extensible Hypertext Markup Language. 27, 28, 43, 55, 57

XML Extensible Markup language. A language for hierarchically structuring a text file. 3, 18, 22,
23, 27, 40, 45, 51, 74, 80, 90, 91

XPath XML Path Language. 27, 51
XSD XML Schema Definition. 27

Glossary 91

http://www.esterel-technologies.com/products/scade-suite/

Terms specific to this thesis

(traceable) artifact Every entity of the input file which can be processed individually and thus
has a tracestring attached. The number of these artifacts depends on the granularity. In
their collectivity they form a superset to all the requirements captured in the input file.
See the beginning of Section 2.3 for a more in-depth explanation. 23-25, 27, 28, 31-38,
40, 41, 43, 45, 46, 48-55, 57-59, 61, 62, 64, 66, 69-74, 78, 79, 83, 92

granularity A measure for the size of a single artifact and thus the precision of the overall trace-
ability. See also [EGHBO07, Sec. 2.1]. 18, 28, 31, 38, 40, 53, 54, 60, 92

numberText Microsoft terminology for the displayed number of a list item. |.e for “1.2.3 Some
text” 1.2.3 would be the numberText of this list item. 28, 40, 51, 53, 54, 58, 65, 66

traceability The ability of knowing why an entity exists (backward traceability) and where it is
used (forward traceability). See Section 2.2 and the definitions in [IEE98, Sec. 4.3.8] and
[CEN11, clause D.58]. 9, 15, 17, 23, 28, 38, 41, 46, 51, 79, 80, 92

tracestring A unique identifier attributed to each traceable artifact. See also the more thorough
definition in Section 2.3. 20, 27, 31-40, 43, 46, 49, 52, 55, 57, 60, 64, 66, 68, 69, 80, 92

92

BIBLIOGRAPHY

[ADB*15]

[ADT11]

[AHLM14]

[And15]

[ASB*08]

[Ben13]

[BHJO9]

[BKR13]

[Bur14]

[CCMT09]

[CCMT10]

[CEN11]

ALLISON, Tim; DORKA, Moritz; BEDNARIK, Filip; BURCH, Nick ; MATTMANN, Chris A.:
[TIKA-1315] Basic list support in WordExtractor. https://issues.apache.org/
jira/browse/TIKA-1315. Version: 2015, last checked: 2015-06-05

ADEDJOUMA, Morayo; DuBOIS, Hubert ; TERRIER, Francois: Requirements ex-
change: From specification documents to models. In: Proceedings - 2011 16th
|EEE International Conference on Engineering of Complex Computer Systems,
ICECCS 2011. Las Vegas, NV : IEEE Comput. Soc. Press, 2011. — ISBN 978-0-
7695-4381-9, 350-354

ASBACH, Lennart; HUNGAR, Hardi; LEMMER, Karsten ; MEYER zU HORSTE, Michael:
Formalisation of test procedures for a high level of automation. In: Signal+Draht
106 (2014), No. 9, pp. 63-69. — ISSN 0037-4997

ANDERSPITMAN: Former Boeing Engineer on an Integer Overflow Bug in the 787
Dreamliner and how that relates to Traceability. https://news.ycombinator.com/
item?id=9477941. Version: 2015, last checked: 2015-05-03

ALVES, V.; SCHWANNINGER, C.; BARBOSA, L.; RASHID, a.; SAWYER, P; RAYSON, P;
PoHL, C. ; RUMMLER, a.: An Exploratory Study of Information Retrieval Techniques
in Domain Analysis. In: 2008 12th International Software Product Line Confer-
ence (2008), pp. 67-76. http://dx.doi.org/10.1109/SPLC.2008.18. — DOI
10.1109/SPLC.2008.18. ISBN 978-0-7695-3303-2

BENDER, Emily M.: Linguistic Fundamentals for Natural Language Processing : 100
Essentials from Morphology and Syntax. Morgan & Claypool Publishers, 2013. -
ISBN 978-1-6270-5012-8

BASTIAN, M; HEYMANN, S ; JAcoMY, M: Gephi: An Open Source Software for
Exploring and Manipulating Networks. In: Proceedings of the Third International
ICWSM Conference. San Jose : Association for the Advancement of Artificial Intel-
ligence, 2009, pp. 361-362

BARNES, R.; KENT, S. ; RESCORLA, E.: RFC 6919 - Further Key Words for Use in
RFCs to Indicate Requirement Levels. https://tools.ietf.org/html/rfc6919.
Version: 2013, last checked: 2015-05-22

BURETTE, Thomas: So You Want To Write Your Own CSV

code? http://tburette.github.io/blog/2014/05/25/
so-you-want-to-write-your-own-CSV-code/. Version:2014, last checked:
2015-06-15

CAVADA, Roberto; CIMATTI, Alessandro; MARIOTTI, Alessandro; MATTAREI, Cristian;
MICHELI, Andrea; MOVER, Sergio; PENSALLORTO, Marco; ROVERI, Marco; Susl, An-
gelo ; TONETTA, Stefano: Supporting Requirements Validation: The EuRailCheck
Tool. In: 2009 IEEE/ACM International Conference on Automated Software Engi-
neering (2009), November, 665-667. http://dx.doi.org/10.1109/ASE.2009.49.
— DOI 10.1109/ASE.2009.49. ISBN 978-1-4244-5259-0

CHIAPPINI, A; CIMATTI, A; MACCHI, L; REBOLLO, O; ROVERI, M; Susl, A; TONETTA,
S ; VITTORINI, B: Formalization and validation of a subset of the European Train
Control System. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - ICSE "10 vol. 2. New York, New York, USA : ACM Press,
2010. — ISBN 978-1-6055-8719-6, 109-118

CENELEC: EN 50128 - Railway applications - Communication, signalling and pro-
cessing systems - Software for railway control and protection systems. 2011

Bibliography 93

https://issues.apache.org/jira/browse/TIKA-1315
https://issues.apache.org/jira/browse/TIKA-1315
https://news.ycombinator.com/item?id=9477941
https://news.ycombinator.com/item?id=9477941
http://dx.doi.org/10.1109/SPLC.2008.18
https://tools.ietf.org/html/rfc6919
http://tburette.github.io/blog/2014/05/25/so-you-want-to-write-your-own-CSV-code/
http://tburette.github.io/blog/2014/05/25/so-you-want-to-write-your-own-CSV-code/
http://dx.doi.org/10.1109/ASE.2009.49

[CMD™04]

[CRST10]

[CSN*T15]

[Cur08]

[DD95]

[Des99]

[Des14]

[Dor15]

[Dup98]

[Ecl15]

[ECMO06]

[EGHBO7]

[EJ12]

[ERT15]

94

CLAVIER, Eric; MASINI, Gérald; DELALANDRE, Mathieu; RIGAMONTI, Maurizio;
TOMBRE, Karl ; GARDES, Joél: DocMining: A Cooperative Platform for Heteroge-
neous Document Interpretation According to User-Defined Scenarios. In: LLADOS,
Josep (publ.); KWON, Young-Bin (publ.): GREC 2003, Springer, 2004. — ISBN 978-
3-540-25977-0, pp. 13-24

CIMATTI, Alessandro; ROVERI, Marco; SusI, Angelo ; TONETTA, Stefano: Formal-
ization and Validation of Safety-Critical Requirements. In: BUJORIANU, Manuela
(publ.); FISHER, Michael (publ.): Workshop on Formal Methods for Aerospace
vol. 20. Eindhoven : Electronic Proceedings in Theoretical Computer Science,
March 2010. — ISSN 2075-2180, 68-75

CAVALLI, Ana; SANTOS, Joao; NGUYEN, Huu-Nghia; BEHRENS, Marc ; RIEGER, Ste-
fan: D.4.2.1 1stinterim V & V report on the applicability of the V&V approach

to the formal abstract model. https://github.com/openETCS/validation/
blob/45adc586dea78c5a824af8alaa3bd1b8a668230d/Reports/D4.2/D4.2.
1-VV-Model/D4.2.1.pdf. Version: 2015, last checked: 2015-06-15

CURTIN, Stephen: MICROSOFT WORD EXPORT TO DOORS FOR MILITARY
STANDARD (MIL=STD) SPECIFICATIONS. http://download-na.telelogic.com/
download/ugcagenda/Stephen_Curtin_Microsoft_Word_Export_to_DOORS.pdf.
Version: 2008, last checked: 2015-05-24

DENGEL, Andreas; DUBIEL, Frank: Clustering and classification of document struc-
ture — a machine learning approach. In: Proceedings of 3rd International Confer
ence on Document Analysis and Recognition vol. 2, 1995. — ISBN 0-8186-7128-9,
pp. 587-591

DESIGN SCIENCE: How MTEF is Stored in Files and Objects. http://web.
archive.org/web/20010304111449/http://mathtype . com/support/tech/MTEF_
storage.htm. Version: 1999, last checked: 2015-06-14

DESIGN SCIENCE: MathType's Equation Format (MITEF). https://www.dessci.
com/en/reference/sdk/#MTEF. Version: 2014, last checked: 2015-05-14

DORKA, Moritz: subsetOZ6reader: first public release. Version:2015. http://dx.
doi.org/10.5281/zenodo.18706. — DOI 10.5281/zenodo.18706

DUPRE, Lyn: BUGS in Writing : A Guide to Debugging Your Prose. 9th Edition.
Addison-Wesley Longman, Inc., 1998. — ISBN 0-201-37921-X

EcLIPSE FOUNDATION: ReqCycle | PolarSys - Open Source tools for the develop-
ment of embedded systems. https://wuw.polarsys.org/projects/polarsys.
reqcycle. Version: 2015, last checked: 2015-06-10

ECMA: Standard ECMA-376 - Part 4: Markup Language Reference. http://www.
ecma-international.org/publications/standards/Ecma-376.htm. Version: 1st
Edition, 2006, last checked: 2015-06-15

EGYED, Alexander, GRUNBACHER, Paul; HEINDL, Matthias ; BIFFL, Stefan: Value-
Based Requirements Traceability: Lessons Learned. In: 15th IEEE International
Requirements Engineering Conference (RE 2007) (2007), 115-118. http://dx.
doi.org/10.1109/RE.2007.16. — DOI 10.1109/RE.2007.16. ISBN 0-7695-2935-6

EBERT, Christof; JASTRAM, Michael: ReglF: Seamless requirements interchange
format between business partners. In: [EEE Software vol. 29, 2012. — ISSN
07407459, pp. 82-87

ERTMS SoLuTIONS: ERTMSFormalSpecs — Open Source. https://
www.ertmssolutions.com/products/ertmsformalspecs-open-source/.
Version: 2015, last checked: 2015-05-04

https://github.com/openETCS/validation/blob/45adc586dea78c5a824af8a0aa3bd1b8a668230d/Reports/D4.2/D4.2.1-VV-Model/D4.2.1.pdf
https://github.com/openETCS/validation/blob/45adc586dea78c5a824af8a0aa3bd1b8a668230d/Reports/D4.2/D4.2.1-VV-Model/D4.2.1.pdf
https://github.com/openETCS/validation/blob/45adc586dea78c5a824af8a0aa3bd1b8a668230d/Reports/D4.2/D4.2.1-VV-Model/D4.2.1.pdf
http://download-na.telelogic.com/download/ugcagenda/Stephen_Curtin_Microsoft_Word_Export_to_DOORS.pdf
http://download-na.telelogic.com/download/ugcagenda/Stephen_Curtin_Microsoft_Word_Export_to_DOORS.pdf
http://web.archive.org/web/20010304111449/http://mathtype.com/support/tech/MTEF_storage.htm
http://web.archive.org/web/20010304111449/http://mathtype.com/support/tech/MTEF_storage.htm
http://web.archive.org/web/20010304111449/http://mathtype.com/support/tech/MTEF_storage.htm
https://www.dessci.com/en/reference/sdk/#MTEF
https://www.dessci.com/en/reference/sdk/#MTEF
http://dx.doi.org/10.5281/zenodo.18706
http://dx.doi.org/10.5281/zenodo.18706
https://www.polarsys.org/projects/polarsys.reqcycle
https://www.polarsys.org/projects/polarsys.reqcycle
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://dx.doi.org/10.1109/RE.2007.16
http://dx.doi.org/10.1109/RE.2007.16
https://www.ertmssolutions.com/products/ertmsformalspecs-open-source/
https://www.ertmssolutions.com/products/ertmsformalspecs-open-source/

[Est15] ESTEREL TECHNOLOGIES SA: SCADE LifeCycle Requirements Man-
agement Gateway. http://www.esterel-technologies.com/
products/scade-lifecycle/requirements-management-traceability/

scade-lifecycle-requirements-management-gateway/. Version:2015, last
checked: 2015-05-14

[Eur12] EUROPEAN RAILWAY AGENCY: Subset-026, Baseline 3.3.0. http://wuw.
era.europa.eu/Document-Register/Documents/Index004-SUBSET-026.zip.
Version: 2012, last checked: 2015-05-29

[Eur1b5] EUROPEAN RAILWAY AGENCY: Change Control Management. http://wuw.era.
europa.eu/Core-Activities/ERTMS/Pages/Change-Control-Management . aspx.
Version: 2015, last checked: 2015-06-07

[Feu12] FEUSER, Johannes: Open Source Software for Train Control Applications and
its Architectural Implications, Universitat Bremen, PhD-thesis, 2012. http:
//nbn-resolving.de/urn:nbn:de:gbv:46-00103095-16

[FFGLO1] FABBRINI, F; FUSANI, M.; GNESI, S. ; LAMI, G.: The linguistic approach to the nat-
ural language requirements quality: benefit of the use of an automatic tool. In:
Proceedings 26th Annual NASA Goddard Software Engineering Workshop, |EEE
Comput. Soc, 2001. - ISBN 0-7695-1456-1, 97-105

[FFT+08] FAZZINGA, B; FLESCA, S; TAGARELLI, A; GARRUZZO, S ; MASCIARI, E: A wrapper
generation system for PDF documents. In: Proceedings of the ACM Symposium
on Applied Computing, ACM Press, 2008. — ISBN 978-1-5959-3753-7, 442-446

[Fir05] FIRESMITH, Donald: Are Your Requirements Complete? In: Journal of Object
Technology 4 (2005), No. 1, 27-43. http://www.jot.fm/issues/issue_2005_
01/column3/

[Fis96] FISHMAN, Charles: They Write the Right Stuff. http://www.fastcompany.com/

28121/they-write-right-stuff. Version: 1996, last checked: 2015-06-04

[Fre00] FREITAG, D: Machine learning for information extraction in informal domains. In:
Machine learning 39 (2000), No. 2-3, 169-202. http://dx.doi.org/10.1023/A:
1007601113994. — DOI 10.1023/A:1007601113994. — ISSN 1573-0565

[GF94] GOTEL, O.C.Z.; FINKELSTEIN, C.W.: An analysis of the requirements traceability
problem. In: Proceedings of IEEE International Conference on Requirements Engi-
neering, IEEE Comput. Soc. Press, 1994. — ISBN 0-8186-5480-5, 94—101

[GKNV9O3] GANSNER, Emden; KOUTSOFIOS, Eleftherios; NORTH, Stephen ; VO, Kiem P: Tech-
nigue for drawing directed graphs. In: |[EEE Transactions on Software Engineering
19 (1993), No. 3, pp. 214-230. http://dx.doi.org/10.1109/32.221135. — DOI
10.1109/32.221135. — ISSN 0098-5589

[GKP93] GRAHAM, Ronald L.; KNUTH, Donald E. ; PATASHNIK, Oren: Concrete mathematics.
2nd Edition. Reading, MA : Addison-Wesley, 1993. — ISBN 978-0-2011-4236-5

[Gla98] GLASS, Robert L.: Software Runaways. Upper Saddle River : Prentice Hall, 1998. -
ISBN 0-13-673443-X

[GM89] GORDON, Gary; MCMAHON, Elizabeth: A greedoid polynomial which distin-
guishes rooted arborescences. In: Proceedings of the American Mathemat-
ical Society 107 (1989), No. 2, pp. 287-298. http://dx.doi.org/10.1090/
S0002-9939-1989-0967486-0. — DOI 10.1090/S0002-9939-1989-0967486-0. —
ISSN 0002-9939

[Gra09] GRALLA, Christoph: Zur Gestaltung einer ETCS-Migration eines Eisenbahn-
verkehrsunternehmens, Technische Universitat Braunschweig, Dissertation, 2009.
http://www.digibib.tu-bs.de/?docid=00030082

Bibliography 95

http://www.esterel-technologies.com/products/scade-lifecycle/requirements-management-traceability/scade-lifecycle-requirements-management-gateway/
http://www.esterel-technologies.com/products/scade-lifecycle/requirements-management-traceability/scade-lifecycle-requirements-management-gateway/
http://www.esterel-technologies.com/products/scade-lifecycle/requirements-management-traceability/scade-lifecycle-requirements-management-gateway/
http://www.era.europa.eu/Document-Register/Documents/Index004 - SUBSET-026.zip
http://www.era.europa.eu/Document-Register/Documents/Index004 - SUBSET-026.zip
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Change-Control-Management.aspx
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Change-Control-Management.aspx
http://nbn-resolving.de/urn:nbn:de:gbv:46-00103095-16
http://nbn-resolving.de/urn:nbn:de:gbv:46-00103095-16
http://www.jot.fm/issues/issue_2005_01/column3/
http://www.jot.fm/issues/issue_2005_01/column3/
http://www.fastcompany.com/28121/they-write-right-stuff
http://www.fastcompany.com/28121/they-write-right-stuff
http://dx.doi.org/10.1023/A:1007601113994
http://dx.doi.org/10.1023/A:1007601113994
http://dx.doi.org/10.1109/32.221135
http://dx.doi.org/10.1090/S0002-9939-1989-0967486-0
http://dx.doi.org/10.1090/S0002-9939-1989-0967486-0
http://www.digibib.tu-bs.de/?docid=00030082

[HBO7]

[Hei10]

[Hir15]

[HJL14]

[HMBMn11]

[Hoo15]

[IBM13]

[IBM15]

[IEE98]

[1ISO11]

[1SO12]

[Jac9b]

[JPD14]

[Kar13]

96

HASSAN, Tamir; BAUMGARTNER, Robert: Table recognition and understanding from
PDF files. In: Proceedings of the International Conference on Document Analysis
and Recognition, ICDAR vol. 2, 2007 — ISBN 0-769-52822-8, pp. 1143-1147

HEIDENREICH, Martin: Metriken und Werkzeugunterstiitzung zur Uberpriifung
von Anforderungen. In: ObjektSpektrum (2010), No. RE/2010, 1-4. http:
//www.sigs-datacom.de/fachzeitschriften/objektspektrum/archiv/
artikelansicht.html?tx_mwjournals_pil[pointer]=0&tx_mwjournals_
pillmodel=1&tx_mwjournals_pil[showUid]=6651. — ISSN 0945-0491

HIRONDELLE SYSTEMS: Java Practices -> Package by feature, not layer. http:
//wwu.javapractices.com/topic/TopicAction.do?Id=205. Version: 2015, last
checked: 2015-07-04

HALLERSTEDE, Stefan; JASTRAM, Michael ; LADENBERGER, Lukas: A method and
tool for tracing requirements into specifications. In: Science of Computer Program-
ming 82 (2014), 2-21. http://dx.doi.org/10.1016/j.scico.2013.03.008. — DOI
10.1016/j.s¢ic0.2013.03.008. — ISSN 0167-6423

HERRANZ, Angel; MARPONS, Guillem; BENAC, Clara ; MARINO, Julio: Mechanising
the Validation of ERTMS Requirements and New Procedures. https://www.fi.
upm. es/catedra-ibmrational/sites/www.fi.upm.es.catedra-ibmrational/
files/MechanisingtheValidationofERTMS.pdf. Version: 2011, last checked:
2015-06-15

HooD GRoOUP: DES/IRe®. http://www.hood-group.com/en/products/tools/
requirements-engineering/desirer/. Version: 2015, last checked: 2015-06-07

IBM: IBM Knowledge Center - Working with Microsoft Word documents.
http://www-01.ibm.com/support/knowledgecenter/SSSHCT_7.1.0/com.ibm.

regpro.help/w_documents/working_ms_word/t_work_word_docs.html?lang=de.
Version: 2013, last checked: 2015-06-07

IBM: Display modes. http://www-01.ibm.com/support/knowledgecenter/
SSYQBZ_9.6.0/com.ibm.doors.requirements.doc/topics/c_displaymodes.
html?lang=en. Version: 2015, last checked: 2015-05-08

IEEE: J|EEE Recommended Practice for Software Requirements Specifications.
Version: revised Edition, October 1998. http://dx.doi.org/10.1109/IEEESTD.
1998.88286. — DOI 10.1109/IEEESTD.1998.88286. ISBN 0-738-10332-2

ISO/IEC/IEEE: ISO/IEC/IEEE 29148:2011 Systems and software engineer
ing - Life cycle processes - Requirements engineering. Version: 1st Edi-
tion, 2011. http://dx.doi.org/10.1109/IEEESTD.2011.6146379.— DOI
10.1109/IEEESTD.2011.6146379

ISO: [SO/IEC 29500-1 Information technology — Document description and
processing languages — Office Open XML File Formats — Part 1: Fundamen-
tals and Markup Language Reference. 3rd Edition. Geneva, September 2012.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?
csnumber=61750

JACKSON, Michael: Software Requirements & Specifications. Wokingham :
Addison-Wesley, 1995. — ISBN 0-201-87712-0

JASTRAM, Michael; PETIT-DOCHE, Marielle: Report on the Final Choice of the Pri-
mary Toolchain. https://itea3.org/project/workpackage/document/download/
1469/11025-0penETCS-WP-7-D71.pdf. Version: November 2014

KARL, Thomas: Standards through operational requirement specifications. In:
Signal+Draht 105 (2013), No. 7+8. — ISSN 0037-4997

http://www.sigs-datacom.de/fachzeitschriften/objektspektrum/archiv/artikelansicht.html?tx_mwjournals_pi1[pointer]=0&tx_mwjournals_pi1[mode]=1&tx_mwjournals_pi1[showUid]=6651
http://www.sigs-datacom.de/fachzeitschriften/objektspektrum/archiv/artikelansicht.html?tx_mwjournals_pi1[pointer]=0&tx_mwjournals_pi1[mode]=1&tx_mwjournals_pi1[showUid]=6651
http://www.sigs-datacom.de/fachzeitschriften/objektspektrum/archiv/artikelansicht.html?tx_mwjournals_pi1[pointer]=0&tx_mwjournals_pi1[mode]=1&tx_mwjournals_pi1[showUid]=6651
http://www.sigs-datacom.de/fachzeitschriften/objektspektrum/archiv/artikelansicht.html?tx_mwjournals_pi1[pointer]=0&tx_mwjournals_pi1[mode]=1&tx_mwjournals_pi1[showUid]=6651
http://www.javapractices.com/topic/TopicAction.do?Id=205
http://www.javapractices.com/topic/TopicAction.do?Id=205
http://dx.doi.org/10.1016/j.scico.2013.03.008
https://www.fi.upm.es/catedra-ibmrational/sites/www.fi.upm.es.catedra-ibmrational/files/Mechanising the Validation of ERTMS.pdf
https://www.fi.upm.es/catedra-ibmrational/sites/www.fi.upm.es.catedra-ibmrational/files/Mechanising the Validation of ERTMS.pdf
https://www.fi.upm.es/catedra-ibmrational/sites/www.fi.upm.es.catedra-ibmrational/files/Mechanising the Validation of ERTMS.pdf
http://www.hood-group.com/en/products/tools/requirements-engineering/desirer/
http://www.hood-group.com/en/products/tools/requirements-engineering/desirer/
http://www-01.ibm.com/support/knowledgecenter/SSSHCT_7.1.0/com.ibm.reqpro.help/w_documents/working_ms_word/t_work_word_docs.html?lang=de
http://www-01.ibm.com/support/knowledgecenter/SSSHCT_7.1.0/com.ibm.reqpro.help/w_documents/working_ms_word/t_work_word_docs.html?lang=de
http://www-01.ibm.com/support/knowledgecenter/SSYQBZ_9.6.0/com.ibm.doors.requirements.doc/topics/c_displaymodes.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSYQBZ_9.6.0/com.ibm.doors.requirements.doc/topics/c_displaymodes.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSYQBZ_9.6.0/com.ibm.doors.requirements.doc/topics/c_displaymodes.html?lang=en
http://dx.doi.org/10.1109/IEEESTD.1998.88286
http://dx.doi.org/10.1109/IEEESTD.1998.88286
http://dx.doi.org/10.1109/IEEESTD.2011.6146379
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61750
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61750
https://itea3.org/project/workpackage/document/download/1469/11025-openETCS-WP-7-D71.pdf
https://itea3.org/project/workpackage/document/download/1469/11025-openETCS-WP-7-D71.pdf

[Kle02]

[Kni12]

[KofObal

[Kof05b]

[Kri13]

[LGF*05]

[Lio96]

[Mic08al

[Mic08b]

[Mic11]

[Mic14a]

[Mic14b]

[Mic15al

[Mic15b]

KLENNER, Markus: Eisenbahn und Politik : Vom Verhéltnis der europaischen
Staaten zu ihren Eisenbahnen, Universitat Wien, Dissertation, 2002

KNIGHT, Robert M.: Red Flags and No-Nos. In: Writing Public Prose : How to Write
Clearly, Crisply, and Concisely. Portland : Marion Street Press, LLC, 2012. — ISBN
978-1-936-86327-3, Chapter 8, pp. 99-108

KoF, Leonid: An Application of Natural Language Processing to Domain Modelling
—Two Case Studies. In: International Journal of Computer Systems Science &
Engineering 20 (2005), No. 1, pp. 37-52. — ISSN 0267-6192

KoF, Leonid: Natural Language Processing: Mature Enough for Requirements Doc-
uments Analysis? Version: 2005. http://dx.doi.org/10.1007/11428817_9. In:
MONTOYO, Andrés (publ.); MUNOZ, Rafael (publ.) ; METAIS, Elisabeth (publ.): Nat-
ural Language Processing and Information Systems. Springer Berlin Heidelberg,
2005. — DOI 10.1007/11428817_9. — ISBN 978-3-540-26031-8, pp. 91-102

KRISCH, Jennifer: [dentifikation kritischer Weak-Words aufgrund ihres Satzkon-
textes in Anforderungsdokumenten, Universitat Stuttgart, Diplomarbeit, 2013.
http://fg-re.gi.de/fileadmin/gliederungen/fg-re/Treffen_2013/Krisch.
pdf

LAMI, Giuseppe; GNESI, Stefania; FABBRINI, Fabrizio; FUSANI, Mario ; TRENTANNI,
Gianluca: An Automatic Tool for the Analysis of Natural Language Requirements.
In: International Journal of Computer Systems Science & Engineering 20 (2005),
No. 1. http://shining.isti.cnr.it/WEBPAPER/2004-TR-40.pdf. - ISSN 0267-
6192

LIONS, Jacques-Louis: Ariane 5 Flight 501 Failure. Version:July 1996. http://
esamultimedia.esa.int/docs/esa-x-1819eng.pdf, last checked: 2015-06-15

MICROSOFT CORPORATION: MICROSOFT OFFICE WORD 97-2007 BI-

NARY FILE FORMAT SPECIFICATION [*.doc]. http://download.
microsoft.com/download/0/B/E/OBESBDD7-E5ES-422A- ABFD-4342ED7AD886/
Word97-2007BinaryFileFormat (doc)Specification.pdf. Version: 2008, last
checked: 2015-06-15

MICROSOFT CORPORATION: Office Automation Using Visual C++. https:
//support.microsoft.com/en-us/kb/196776/en-us. Version: 2008, last checked:
2015-04-30

MICROSOFT CORPORATION: Understanding Graphics in Office Binary File Formats.
http://msdn.microsoft.com/en-us/library/office/gg985447 (v=office.14)
.aspx. Version: 2011, last checked: 2015-05-14

MICROSOFT CORPORATION: [MS-DOC]: Word (.doc) Binary File

Format. http://download.microsoft.com/download/2/4/8/
24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-DOCY%5D . pdf. Version: 2014,
last checked: 2015-06-15

MICROSOFT CORPORATION: [MS-ODRAWI: Office Drawing Binary

File Format. http://download.microsoft.com/download/2/4/8/
24862317-78F0-4C4B-B355-C7B2C1D997DB/%,5BMS-0DRAWY5D . pdf. Version: 2014,
last checked: 2015-06-15

MICROSOFT CORPORATION: Enhanced-Format Metafiles. https://msdn.
microsoft.com/en-us/library/dd162600%28v=vs.85%29.aspx. Version:2015,
last checked: 2015-05-12

MICROSOFT CORPORATION: Windows-Format Metafiles. https://msdn.
microsoft.com/en-us/library/dd145202%28v=VS.85%29.aspx. Version: 2015,
last checked: 2015-05-12

Bibliography 97

http://dx.doi.org/10.1007/11428817_9
http://fg-re.gi.de/fileadmin/gliederungen/fg-re/Treffen_2013/Krisch.pdf
http://fg-re.gi.de/fileadmin/gliederungen/fg-re/Treffen_2013/Krisch.pdf
http://shining.isti.cnr.it/WEBPAPER/2004-TR-40.pdf
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/Word97-2007BinaryFileFormat(doc)Specification.pdf
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/Word97-2007BinaryFileFormat(doc)Specification.pdf
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/Word97-2007BinaryFileFormat(doc)Specification.pdf
https://support.microsoft.com/en-us/kb/196776/en-us
https://support.microsoft.com/en-us/kb/196776/en-us
http://msdn.microsoft.com/en-us/library/office/gg985447(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/office/gg985447(v=office.14).aspx
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-DOC%5D.pdf
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-DOC%5D.pdf
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-ODRAW%5D.pdf
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-ODRAW%5D.pdf
https://msdn.microsoft.com/en-us/library/dd162600%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/dd162600%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/dd145202%28v=VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/dd145202%28v=VS.85%29.aspx

[Mic15c]

[MMKO1]

[MRS08]

[MSO00]

[Mur06]

[M614]

[Obj13]

[OM96]

[PMS14]

[PYG12]

[RAC11]

[Rya92]

[Sch12]

[Sch14]

[Sei09]

98

MICROSOFT CORPORATION: Windows GDI/. https://msdn.microsoft.com/en-US/
library/dd145203%28v=vs.85%29.aspx. Version: 2015, last checked: 2015-05-12

MUSLEA, lon; MINTON, Steven ; KNOBLOCK, Craig A.: Hierarchical Wrapper Induc-
tion for Semistructured Information Sources. Version: 2001. http://dx.doi.org/
10.1023/A:1010022931168. In: Autonomous Agents and Multi-Agent Systems
vol. 4. Kluwer Academic Publishers, 2001. - DOI 10.1023/A:1010022931168. —
ISSN 1387-2532, pp. 93-114

MANNING, Christopher D.; RAGHAVAN, Prabhakar ; SCHUTZE, Hinrich: Introduc-
tion to Information Retrieval. Cambridge University Press, 2008 http://www-nlp.
stanford.edu/IR-book/. — ISBN 0-521-86571-9

MAEDCHE, Alexander; STAAB, Steffen: Discovering Conceptual Relations from Text.
In: HORN, W (publ.): Proceedings of the 14th European Conference on Artificial
Intelligence. Amsterdam : 10S Press, 2000, 321-325

MURRAYS3: MathML and Ecma Math (OMML). http://blogs.msdn.com/b/
murrays/archive/2006/10/07 /mathml-and-ecma-math-_2800_omml_2900_-.
aspx. Version: 2006, last checked: 2015-05-28

MOLLE, Daniel: Papierkrieg. In: iX - Magazin fir professionelle Informationstechnik
(2014), September, No. 9, pp. 74-78. — ISSN 0935-9680

OBJECT MANAGEMENT GROUP: Requirements Interchange Format (ReqlF). Version
1.1. Needham, MA, October 2013. http://www.omg.org/spec/ReqIF/1.1/PDF

OSBORNE, M.; MACNIsH, C.K.: Processing natural language software requirement
specifications. In: Proceedings of the Second International Conference on Re-
quirements Engineering, IEEE Comput. Soc. Press, 1996. — ISBN 0-8186-7252-8,
229-236

POSCHL, Martin; MUTH, Bertil ; SEIBERTZ, Achim: ReglF Implementation Guide.
Version 1.4.3. Darmstadt, November 2014

PERES, Florent; YANG, Jing ; GHAZEL, Mohamed: A Formal Framework for the For-
malization of Informal Requirements. In: International Journal of Soft Computing
and Software Engineering 2 (2012), August, No. 8, 14-27. http://dx.doi.org/10.
7321/jscse.v2.n8.2. — DOI 10.7321/jscse.v2.n8.2

RAUF, Rehan; ANTKIEWICZ, Michat ; CZARNECKI, Krzysztof: Logical structure
extraction from software requirements documents. In: Proceedings of the
2011 IEEE 19th International Requirements Engineering Conference, RE 2011
(2011), pp. 101-110. http://dx.doi.org/10.1109/RE.2011.6051638. — DOI
10.1109/RE.2011.6051638. — ISBN 978-1-457-70923-4

RYAN, Kevin: The role of natural language in requirements engineering. In: Pro-
ceedings of the IEEE International Symposium on Requirements Engineering, IEEE
Comput. Soc. Press, 1992. — ISBN 0-8186-3120-1, 240-242

SCHROEDER, M.: Cost Benefit Assessment of ETCS Baseline 3. http://wwu.
era.europa.eu/Document-Register/Documents/120320_ERA_EE_005319_B3.doc.
Version: 2012, last checked: 2015-05-17

SCHURMANN, Tim: Dem Vergessen entreiRen. In: Linux Magazin (2014), No. 10,
pp. 62-68. — ISSN 1432-640X

SEIBEL, Peter: Coders at work. New York, NY : Apress, 2009. — ISBN 1-430-
21948-3

https://msdn.microsoft.com/en-US/library/dd145203%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-US/library/dd145203%28v=vs.85%29.aspx
http://dx.doi.org/10.1023/A:1010022931168
http://dx.doi.org/10.1023/A:1010022931168
http://www-nlp.stanford.edu/IR-book/
http://www-nlp.stanford.edu/IR-book/
http://blogs.msdn.com/b/murrays/archive/2006/10/07/mathml-and-ecma-math-_2800_omml_2900_-.aspx
http://blogs.msdn.com/b/murrays/archive/2006/10/07/mathml-and-ecma-math-_2800_omml_2900_-.aspx
http://blogs.msdn.com/b/murrays/archive/2006/10/07/mathml-and-ecma-math-_2800_omml_2900_-.aspx
http://www.omg.org/spec/ReqIF/1.1/PDF
http://dx.doi.org/10.7321/jscse.v2.n8.2
http://dx.doi.org/10.7321/jscse.v2.n8.2
http://dx.doi.org/10.1109/RE.2011.6051638
http://www.era.europa.eu/Document-Register/Documents/120320_ERA_EE_005319_B3.doc
http://www.era.europa.eu/Document-Register/Documents/120320_ERA_EE_005319_B3.doc

[SGC*09]

[Sip06]

[Sma12]

[SP12]

[Sta15]

[The1ba]

[The15b]

[UICO0]

[UNI13]

[W3C04]

[War09]

[Whe12]

[WPO6]

[WRH97]

(XML14]

SPINOSA, PierLuigi; GIARDIELLO, Gerardo; CHERUBINI, Manola; MARCHI, Simone;
VENTURI, Giulia ; MONTEMAGNI, Simonetta: NLP-based metadata extraction for
legal text consolidation. In: Proceedings of the 12th International Conference on
Artificial Intelligence and Law - ICAIL ‘09 (2009). http://dx.doi.org/10.1145/
1568234 .1568240. — DOI 10.1145/1568234.1568240. ISBN 978-1-60-558597-0

SIPSER, Michael: Introduction to the Theory of Computation. 2nd Edition. Boston,
MA : Course Technology, 2006. — ISBN 0-619-21764-2

SMARTMATIX: Numbering Traps. http://www.smartmatix.com/Resources/
RQMTipsTraps/NumberingTraps.aspx. Version:2012, last checked: 2015-01-14

SATHYAM, Ujwal S.; PRAHL, Scott A.: MathType MTEF v.5. http://rtf2latex2e.
sourceforge.net/MTEF5.html. Version: 2012, last checked: 2015-06-15

STANFORD NATURAL LANGUAGE PROCESSING GROUP: The Stanford Parser: A
statistical parser. http://nlp.stanford.edu/software/lex-parser.shtml.
Version: 2015, last checked: 2015-06-06

THE REUSE COMPANY: Improve your software quality with RQS. http://www.

reusecompany.com/requirements-quality-suite. Version: 2015, last checked:
2015-06-07

THE SQLITE TEAM: SQLite Home Page. https://wuw.sqlite.org/. Version: 2015,
last checked: 2015-05-30

UIC: UIC leaflet 563 - Fittings provided in coaches in the interests of hygiene and
cleanliness. Paris, 1990

UNIFE: ERTMS history. http://www.ertms.net/7page_id=49. Version: 2013, last
checked: 2015-04-25

W3C: XML Schema Part 2: Datatypes Second Edition. http://www.w3.org/
TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID. Version: 2004, last
checked: 2015-05-14

WARDEN, Shane: Masterminds of programming. 1st Edition. O’Reilly, 2009. —
ISBN 0-596-51517-1

WHEELER, David A.: SLOCCount. http://www.dwheeler.com/sloccount/.
Version: 2012, last checked: 2015-06-09

WALTER, Stephan; PINKAL, Manfred: Automatic Extraction of Definitions from Ger
man Court Decisions. In: CALIFF, Mary E. (publ.); GREENWOOD, Mark A. (publ.);
STEVENSON, Mark (publ.) ; YANGARBER, Roman (publ.): Proceedings of the Work-
shop on Information Extraction Beyond The Document. Sydney : Association for
Computational Linguistics, 2006. — ISBN 1-932432-74-4, 20-28

WILSON, William M.; ROSENBERG, Linda H. ; HYATT, Lawrence E.: Automated anal-
ysis of requirement specifications. In: Proceedings - International Conference on
Software Engineering, 1997. — ISBN 0-897-91914-9, pp. 161-171

XMLSTARLET DEVELOPERS: XMLStarlet Command Line XML Toolkit. http://
xmlstar.sourceforge.net/. Version: 2014, last checked: 2015-05-02

Bibliography 99

http://dx.doi.org/10.1145/1568234.1568240
http://dx.doi.org/10.1145/1568234.1568240
http://www.smartmatix.com/Resources/RQMTipsTraps/NumberingTraps.aspx
http://www.smartmatix.com/Resources/RQMTipsTraps/NumberingTraps.aspx
http://rtf2latex2e.sourceforge.net/MTEF5.html
http://rtf2latex2e.sourceforge.net/MTEF5.html
http://nlp.stanford.edu/software/lex-parser.shtml
http://www.reusecompany.com/requirements-quality-suite
http://www.reusecompany.com/requirements-quality-suite
https://www.sqlite.org/
http://www.ertms.net/?page_id=49
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#ID
http://www.dwheeler.com/sloccount/
http://xmlstar.sourceforge.net/
http://xmlstar.sourceforge.net/

	Introduction
	Motivation
	Previous formalization attempts

	Processing specification documents
	Structural considerations
	The input format: DOC
	Different parts of a specification document
	The output format: ReqIF

	Enhancing requirement content
	Visualizing dependencies
	Querying for data

	Computing requirement identifiers
	Unwinding complex structures: Tables
	Unwinding complex structures: Other structures
	Summary

	The tool
	Basic usage
	Dealing with embedded media

	ReqIF output
	Data associated with a requirement artifact
	Links between requirement artifacts
	Issues with IBM DOORS

	Content formalization
	Detection of recurring elements
	Sublist dependencies
	Intra-cell requirements
	Unformalizable elements

	Inner workings
	List hierarchy algorithm
	Techniques for natural language content

	Comparison to other tools
	Applying this tool to other documents
	EN50128 tool qualification

	Outlook
	Conclusion
	Appendices
	Postprocessing statistics data
	Clean up spurious external links
	Merge data of several tool runs

	Subset-026 keywords
	Legal obligation
	Weak words
	Other keywords for the implementerEnhanced-field

	Lists of Figures, Tables and Listings
	Glossary
	Terms specific to this thesis

	Bibliography

