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Kurzfassung

Im ersten Teil der Arbeit wird ein Kodierungstheorem und ein dazugehöriges Umkehrtheo-
rem von Kadota und Wyner (1972) für abstrakte Kanäle mit Zeitstruktur verallgemeinert. Als
wesentlichster Beitrag wird das Kodierungstheorem für eine signifikant schwächere Bedingung
an das Kanalausgangsgedächtnis bewiesen, die sogenannte totale Ergodizität für block-i.i.d. Ein-
gaben. Dieses Ergebnis wird hauptsächlich durch eine alternative Charakterisierung der Infor-
mationsratenkapazität erreicht. Es wird gezeigt, dass die von Kadota und Wyner verwendete ψ-
Mischungsbedingung (asymptotische Gedächtnislosigkeit am Kanalausgang) recht einschränk-
end ist, insbesondere für die wichtige Klasse der Gaußkanäle. In der Tat, für Gaußkanäle wird
bewiesen, dass die ψ-Mischungsbedingung äquivalent zu endlichem Gedächtnis am Kanalaus-
gang ist. Darüber hinaus wird eine schwache Umkehrung für alle stationären Kanäle mit Zeit-
struktur bewiesen. Sowohl Intersymbolinterferenz als auch Eingabebeschränkungen werden in
allgemeiner und flexibler Form berücksichtigt. Aufgrund der direkten Verwendung von äußeren
Maßen und der Herleitung einer angepassten Version von Feinsteins Lemma ist es möglich, auf
die Standarderweiterung der σ-Algebra am Kanaleingang zu verzichten, wodurch die Darstel-
lungen transparenter und einfacher werden. Angestrebt wird eine operationelle Perspektive.
Die Verwendung eines abstrakten Modells erlaubt dabei die einheitliche Betrachtung von zeit-
diskreten und zeitstetigen Kanälen.
Für abstrakte Kanäle mit Zeitstruktur werden im zweiten Teil der Arbeit Bedingungen für

ein unendliches Gedächtnis am Kanalausgang systematisch analysiert. Unter Ausnutzung der
Zusammenhänge zu dem umfassenden Gebiet der stark mischenden zufälligen Prozesse wird
eine Hierarchie in Form einer Folge von Implikationen zwischen den verschiedenen Gedächtnis-
varianten hergeleitet. Die im Beweis des Kodierungstheorems verwendete ergodentheoretische
Gedächtniseigenschaft und dieψ-Mischungsbedingung vonKadota undWyner (1972) sind dabei
Bestandteil der hergeleiteten Systematik. Weiterhin werden Bedingungen für den Kanal spezi-
fiziert, unter denen Eigenschaften von zufälligen Prozessen am Kanaleingang bei einer Trans-
formation durch den Kanal erhalten bleiben.
Im letzten Teil der Arbeit werden sowohl Integrationskanäle als auch Hintereinanderschal-

tungen von Kanälen in Bezug auf Mischungsbedingungen sowie weitere für das Kodierungs-
theorem relevante Kanaleigenschaften analysiert. Die erzielten Ergebnisse sind nützlich bei
der Untersuchung vieler physikalisch relevanter Kanalmodelle und erlauben eine komponen-
tenbasierte Betrachtung zusammengesetzter Kanäle. Es wird eine Reihe von Beispielen unter-
sucht, einschließlich deterministischer Kanäle, zufälliger Filter und daraus zusammengesetzter
Modelle. Abschließend werden Anwendungen aus weiteren Gebieten, beispielsweise der statis-
tischen Signalverarbeitung, diskutiert. Insbesondere die Fourier-Transformation stationärer zu-
fälliger Prozesse wird im Zusammenhang mit starken Mischungsbedingungen betrachtet.
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Abstract

In the first part of this thesis, we generalize a coding theorem and a converse of Kadota and
Wyner (1972) to abstract channels with time structure. As a main contribution we prove the
coding theorem for a significantly weaker condition on the channel output memory, called total
ergodicity for block-i.i.d. inputs. We achieve this result mainly by introducing an alternative
characterization of information rate capacity. We show that theψ-mixing condition (asymptotic
output-memorylessness), used by Kadota and Wyner, is quite restrictive, in particular for the
important class of Gaussian channels. In fact, we prove that for Gaussian channels the ψ-mixing
condition is equivalent to finite output memory. Moreover, we derive a weak converse for all
stationary channels with time structure. Intersymbol interference as well as input constraints
are taken into account in a flexible way. Due to the direct use of outer measures and a derivation
of an adequate version of Feinstein’s lemma we are able to avoid the standard extension of the
channel input σ-algebra and obtain a more transparent derivation. We aim at a presentation
from an operational perspective and consider an abstract framework, which enables us to treat
discrete- and continuous-time channels in a unified way.
In the second part, we systematically analyze infinite output memory conditions for abstract

channels with time structure. We exploit the connections to the rich field of strongly mixing
random processes to derive a hierarchy for the nonequivalent infinite channel output memory
conditions in terms of a sequence of implications. The ergodic-theoretic memory condition used
in the proof of the coding theorem and the ψ-mixing condition employed by Kadota andWyner
(1972) are shown to be part of this taxonomy. In addition, we specify conditions for the channel
under which memory properties of a random process are invariant when the process is passed
through the channel.
In the last part, we investigate cascade and integration channels with regard to mixing condi-

tions as well as properties required in the context of the coding theorem. The results are useful
to study many physically relevant channel models and allow a component-based analysis of the
overall channel. We consider a number of examples including composed models and determin-
istic as well as random filter channels. Finally, an application of strong mixing conditions from
statistical signal processing involving the Fourier transform of stationary random sequences is
discussed and a list of further applications is given.
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Notation

Frequently Used Symbols

N positive integers
N0 nonnegative integers
Z integers
R real numbers

R̄ = R ∪ {−∞, ∞}
C complex numbers

T time indices, either R or Z

T = T ∪ {−∞, ∞}
T+ , T0 positive and nonnegative time indices

∅ empty set
2A power set of set A
|A| cardinality of set A
Ac complement of set A
1A indicator function of set A
A � B symmetric difference of sets A and B
A × B Cartesian product of sets A and B
Ax x-section of set A ∈ X × Y
Xv

u , X
+
u , X

v
− sub-product space when X is a product space generated by

the family {Xt, t ∈ T }, = X∞
u , = Xv−∞

[A] inverse image of set A w. r. t. projection on sub-product space

θw w-shift of signals with infinite duration
〈·〉w w-shift of objects with finite duration

j imaginary unit
Re(z) real part of z ∈ C

Im(z) imaginary part of z ∈ C

z complex conjugate of z ∈ C

det(A) determinant of matrix A
tr(A) trace of matrix A
a′ transpose of vector a
diag(a1, . . . , an) diagonal matrix with entries ai on the main diagonal

log logarithm w. r. t. base e

(Ω, F) measurable space

xv



xvi Notation

σ(G)† σ-algebra generated by family of sets G
A ∨ B = σ(A ∪ B)
B(X) Borel-σ-algebra on topological space X
X ⊗ Y product of σ-algebras X and Y
X v

u , X +
u , X v

− sub-product σ-algebra when X is a product σ-algebra generated by
the family {Xt, t ∈ T }, = X ∞

u , = X v−∞
[A] inverse image of σ-algebra A w. r. t. projection on sub-product space

(Ω, F , μ) (probability) measure space
μ ⊗ ν product of measures μ and ν
μ 
 ν absolute continuity of measure μ w. r. t. to measure ν
μξ distribution of random variable ξ defined on (Ω, F , μ)
δx Dirac measure concentrated at x
E(ξ) expectation of random variable ξ
var(ξ) variance of random variable ξ
cov(ξ, η), cor(ξ, η) covariance, correlation of random variables ξ and η
P(F |A) conditional probability of set F given σ-algebra A
(A − B − C)† Markov chain in this order of σ-algebras A, B, and C
ξv

u, ξ
+
u , ξ

v
− segment of random process ξ = {ξt, t ∈ T }, = ξ∞

u , = ξv
−∞

κ, κ(x, B) channel, probability that received signal lies in B given x was transmitted
C(b, Eb) block code with block length b satisfying input constraint Eb

�(ui, V ) decoding error probability of codeword ui w. r. t. input signal set V
�max(V ) (maximal) decoding error probability w. r. t. input signal set V
(b, Eb, V, M, ε)-code block code C(b, Eb) with |C(b, Eb)| ≥ M and �max(V ) ≤ ε

H(A)† entropy of σ-algebra A
H(A|B)† conditional entropy of σ-algebra A given σ-algebra B
I(A; B)† mutual information between σ-algebras A and B
I(A; B|C)† conditional mutual information between σ-algebras A and B

given σ-algebra C
Ī(A;B)‡ mutual information rate between families of σ-algebras A and B

Df (P‖Q)† f -divergence of measures P and Q
D(P‖Q)† relative entropy of measures P and Q
‖P − Q‖tv total variation distance of measures P and Q
ψ(P‖Q)† ψ-variation of measures P and Q

α(A; B)† α-dependence coefficient of σ-algebras A and B
β(A; B)† β-dependence coefficient of σ-algebras A and B
ψ(A; B)† ψ-dependence coefficient of σ-algebras A and B

†The arguments can be random variables as well.
‡The arguments can be random processes as well.
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Abbreviations

AR autoregressive
MA moving average
ARMA autoregressive moving average
IIR infinite impulse response

a. s. almost sure(ly)
i. i. d. independent and identically distributed
w. r. t. with respect to





Introduction

Motivation and background. Claude Elwood Shannon established with his seminal paper
A mathematical theory of communication (Shannon, 1948) a unifying theory of data compres-
sion and data transmission. The importance of his work was immediately recognized by engi-
neers and mathematicians, which is apparently the reason why the republication of the original
paper as monograph (Shannon and Weaver, 1949) has the modified title The mathematical the-
ory of communication. With a single contribution Shannon actually created the field of modern
information theory. An important idea of his approach was to describe the communication be-
tween a sender and a receiver using a stochastic model. He introduced the concepts of entropy,
mutual information, source, channel, coding, and capacity to derive fundamental limits of re-
liable information storage and transmission. The main results of the theory are formulated in
terms of source and channel coding theorems, which relate theoretical bounds of operation to
optimization problems involving quantitative measures of information.

Shannon’s classical problem of channel coding describes a block-based coding-decoding pro-
cedure to reliably transmit messages from a sender to a receiver in the presence of random
transmission errors. The noisy part of the communication process is modeled by an informa-
tion channel connecting sender and receiver in a probabilistic manner. A major information-
theoretic concern of coded information transmission is the analysis of the relation between the
rate of transmission and the probability of a decoding error. With a channel coding theorem this
relation is characterized in terms of a quantity, called channel capacity, in the following sense:
For any transmission rate below channel capacity there exists a coding-decoding procedure such
that the transmitted messages, even though randomly corrupted by noise, can be inferred from
the received messages with arbitrarily low error probability. The second half of such a theorem,
commonly referred to as converse, states that for any transmission rate above channel capacity
this is not possible.

Since Shannon started information theory a large number of publications has been devoted
to the mathematically rigorous derivation of channel coding theorems. The goal was to develop
the theory for models of increasing complexity and generality capturing more and more prac-
tically relevant situations and aspects. On the one hand, the complexity is determined by the
space of symbols allowed for communication and the time structure of the model, i. e., finite vs.
infinite alphabets and discrete vs. continuous time. One the other hand, complexity is increased
by incorporating technical constraints or effects, such as intersymbol interference or memory
properties of the noise process.

A main motivation for this thesis was to establish an abstract framework, that allows us to
formulate a general coding theorem for a point-to-point communication link in a mathemat-
ically rigorous way under practically useful assumptions. A central objective was to include
continuous-time continuous-valued transmission models because in the literature much less at-
tention is payed to this case compared to discrete models. Moreover, the goal was a reduction
to the essential channel properties required to prove the coding statements with a main focus
on infinite memory conditions.
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2 Introduction

In contrast to characterizing finite memory there is a great variety of nonequivalent alterna-
tives to model infinite memory. Infinite memory at the channel output is, roughly speaking, a
form of asymptotic independence. It can be characterized either in an ergodic-theoretic sense or
by strong mixing conditions, which are based on dependence measures. Because conditions of
this type have various applications in different fields of engineering and mathematics, such as
statistical signal processing, measure concentration, or central limit theorems, they are of inter-
est in their own right. Therefore, we aimed at analyzing these conditions for abstract channels
with time structure beyond the scope of coding theorems.
Contribution and outline. The main contribution of the first part of the thesis is a general-
ization of a coding theorem and a converse of Kadota and Wyner (1972) with regard to channel
model, input constraints, required channel properties, and definition of information rate ca-
pacity. Kadota and Wyner considered a continuous-time channel with real-valued input and
output signals, whereas we consider channels with time structure in general, i. e., discrete- as
well as continuous-time channels with completely arbitrary alphabets. Regarding stationarity,
causality, and channel input memory the assumed conditions are identical. However, with re-
spect to output memory we achieve a significant generalization, which is the main contribution
concerning the coding theorem. Kadota and Wyner used a property they called asymptotic
output-memorylessness, which is introduced later as ψ-mixing condition. We show that this
condition is quite restrictive, in particular for the important class of Gaussian channels. Actu-
ally, we prove that for Gaussian channels the ψ-mixing condition is equivalent to finite output
memory. As a result, Kadota and Wyner’s formulation of the coding theorem is for example not
applicable to the simple stationary additive Gaussian noise channel with proper rational noise
spectral density. By introducing an alternative characterization of information rate capacity we
are able to prove the coding theorem under the significantly weaker condition of total ergodicity
for block-i.i.d. inputs. It is a classical result that a property of this type is sufficient in the special
case of a discrete-time finite-alphabet channel. The modified definition even allows us to handle
the proof in the case of finite and infinite information rate capacity in exactly the same way. The
relations between the different versions of information rate capacity are studied in detail.
We prove a weak converse for all stationary channels with time structure. No further restric-

tions on the channel properties or alphabets are required. Due to a generic characterization we
have a convenient flexibility in taking intersymbol interference into account. Furthermore, input
constraints are incorporated in an abstract form. In contrast to (Kadota andWyner, 1972) we are
able to accomplish this without using a standard extension of the channel input σ-algebra. This
is possible as we utilize outer measures directly and derive an adequate version of Feinstein’s
lemma, which we believe is more transparent. A commonmethod proposed by Holsinger (1964)
and Gallager (1968, Ch. 8) is to represent a continuous-time channel by an infinite series of par-
allel discrete-time channels. Using a consequent measure-theoretic description and following
the approach of Kadota and Wyner (1972) we are able to avoid this transformation completely.
Therefore, we can treat discrete- and continuous-time channels with abstract alphabets in a uni-
fied way, which we believe is an important argument in favor of the path taken in this thesis. We
achieved results in a general framework by a suitable and consistent combination of several ex-
isting approaches. With regard to the generality of the information-theoretic models and tools
our formulation is mainly influenced by the work of the Russian school of information theory,
in particular by Kolmogorov (1956a), Dobrushin (1963), and Pinsker (1964). The statement of
the coding theorem, however, follows the style of Ahlswede (2006) and Wolfowitz (1978), since
this emphasizes the operational meaning more clearly when coding theorems for transmission
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are considered. For historical notes on related results and a detailed discussion see Section §11,
where also the relation to (Mittelbach, 2012) is discussed.

In the second part of the thesis we systematically analyze infinite output memory conditions
for abstract channels with time structure, which are extensions of memory conditions for ran-
dom processes, known as strong mixing conditions (Bradley, 2007). These mixing conditions
lie between the finite output memory condition and the ergodic-theoretic mixing conditions of
Adler (1961). We formulate the memory conditions for channels in the same way as for random
processes. This allows us to exploit the connections to the rich field of strong mixing conditions
efficiently. There are two main contributions. On the one hand, we derive a hierarchy for the
nonequivalent infinite channel output memory conditions in terms of a sequence of implica-
tions, which corresponds to that known for random processes. The ergodic-theoretic memory
condition used in the proof of the coding theorem and the strong mixing condition employed by
Kadota and Wyner (1972) are shown to be part of this taxonomy. On the other hand, we study
the interplay between memory conditions of channels and random processes. We derive suffi-
cient conditions under which a channel transforms an input probability measure with a certain
memory property into an input-output probability measure sharing the same property.
In the last part of this thesis we consider aspects that are useful to analyze concrete channel

models. First, we derive results for cascade channels that allow to conclude properties of a com-
plex channel from properties of basic building blocks. Then we study integration channels, for
which the channel model can be decomposed into a deterministic function and a random noise
source. This is possible for many physically relevant models. We prove results that allow to
verify properties of the overall integration channel by verifying properties of the channel func-
tion and the noise source separately. The analysis of cascade and integration channels includes
mixing conditions as well as properties required in the context of the coding theorem from the
first part of the thesis. Finally, we specify a number of examples and discuss applications of
mixing conditions. Starting with basic channel models, such as abstract deterministic channels,
additive noise channels, or state-dependent channels we continue with deterministic as well
as random filter channels and composed models. In several illustrative examples we use previ-
ously analyzed random processes with special mixing properties as building blocks. We apply
the tools obtained throughout the thesis to analyze relevant channel properties. With respect
to memory conditions we also discuss specific aspects of deterministic and composed channels.
In Chapter I we introduce a general stochastic transmission and communicationmodel as well

as information-theoretic measures and tools, which allow to formulate and prove in Chapter II
a coding theorem and a weak converse for abstract channels with time structure. Chapter I pro-
vides further fundamental material on divergence and dependences measures, based on which
we define and investigate in Chapter III memory conditions for random processes and channels
with time structure. Cascade and integration channels are studied in Chapter IV and a variety
of examples and applications is analyzed in Chapter V. The Appendix contains mathematical
background material and a number of outsourced proofs.





Chapter I

Fundamentals

In this chapter we provide the material required to formulate and prove a coding theorem and
a weak converse for abstract channels with time structure. We introduce a general stochastic
transmission and communication model as well as information-theoretic measures and tools
which allow the analysis of theoretical limits of coded information transmission. Additionally,
we collect material on divergence and dependence measures based on which we define and in-
vestigate memory conditions for random processes and channels with time structure. We begin
the chapter by establishing some general notation used throughout the thesis. Basic notions of
probability and measure theory are used freely. As a compact reference in this regard please
refer to (Kallenberg, 2002, Chs. 1–4, 6), where the notation is close to that introduced below.
Further recommendable references are (Bauer, 1995, 2001; Billingsley, 1995). More advanced
and frequently used background material from probability and measure theory is collected in
Appendices A to C in a form suitable for the purposes of the thesis.

§1 General Notation

(1.1) Sets, σ-algebras, measurable spaces and functions. As usual Z,N,N0, R, and C de-
note the set of integers, positive integers, nonnegative integers, real numbers, and complex
numbers, respectively. By R̄ we denote the extended real line defined as R̄ = R ∪ {−∞, ∞}.
Throughout the thesis we denote by T the set of time indices. Whenever the index set T is

used it can be replaced either by Z to model discrete-time or by R to model continuous-time.
Occasionally, it is convenient to extend T and consider T = T ∪ {−∞, ∞}. The sets of positive
and nonnegative time indices are denoted by T+ and T0, respectively. In case of T = Z we use
the interval notation to denote the set of consecutive integers contained in the interval, e. g., if
v ∈ T+ , then (0, v] is the short hand version of {1, 2, . . . , v}.
We write ∅ for the empty set. For a set A we denote by Ac its complement and by 2A its

power set, i. e., the set of all subsets of A. The number of elements in A is denoted by |A|. The
symmetric difference of the sets A and B is defined by A�B = (A∩Bc)∪ (B ∩Ac). We write
1A for the indicator function of the set A, which is one for all elements of A and zero otherwise.

A pair (Ω, F) consisting of a spaceΩ and aσ-algebraF is calledmeasurable space. A partition
of (Ω, F) is any countable family {A1, A2, . . .} of disjoint sets Ai ∈ F whose union is equal
to Ω. If G is a family of subsets of Ω, then σ(G) denotes the smallest σ-algebra containing G.
If A and B are two σ-algebras of subsets of Ω, then we also write A ∨ B instead of σ(A ∪ B).
Countable spaces are usually equipped with the corresponding power set as σ-algebra. If X is
a topological space, then B(X) denotes the Borel-σ-algebra on X . As standard σ-algebra onR,
R̄, and C we consider the corresponding Borel-σ-algebra.

Suppose (Ω, F) and (X, X ) are measurable spaces and f is a function on Ω with values in
X . If f is measurable w. r. t. the σ-algebras F and X , then we say f is F/X -measurable. If f

5



6 I Fundamentals

is a real-valued or numerical function, i. e., has values in R or R̄ and is F/B(R)-measurable or
F/B(R̄)-measurable, then we simply say f is F-measurable.

(1.2) Product measurable spaces. Assume that (X, X ) and (Y, Y) are measurable spaces.
Then (X × Y, X ⊗ Y) denotes the corresponding product measurable space consisting of the
product space X × Y and the product σ-algebra X ⊗ Y . The set Ax = {y ∈ Y : (x, y) ∈ A} is
called the x-section of the set A ⊂ X × Y for all x ∈ X .
Suppose {(Xt, Xt), t ∈ T } is a family of arbitrary measurable spaces and for u ≤ v ∈ T the

set J is given by

J =

⎧⎪⎪⎨
⎪⎪⎩

(u, v] if u < v < ∞
(u, ∞) if u < v = ∞
{v} if u = v �= ±∞
∅ otherwise

.

Then we denote the product space and the product σ-algebra of the subfamily related to J by

Xv
u = ×

t∈J
Xt, X v

u =
⊗
t∈J

Xt.

As short hand notation we use X , Xv
−, and X+

u for X∞
−∞, Xv

−∞, and X∞
u , respectively. A

corresponding convention applies to product σ-algebras.
Let πt denote the coordinate projection from X to Xt and πv

u the projection from X to Xv
u ,

πt(x) = xt and πv
u(x) = {πt(x), t ∈ J},

where x = {xs, s ∈ T } with xs ∈ Xs denotes an element of X . For the inverse image of a set
A ⊂ Xv

u w. r. t. the projection πv
u we write

[A] = (πv
u)−1(A).

If A contains only one element xv
u ∈ Xv

u , then we write [xv
u] instead of [{xv

u}]. We extend this
notation in a natural way to a family A of subsets of Xv

u on an element-by-element basis, i. e.,

[A] = {[A] : A ∈ A}.

Assume that w ∈ T and (Xt, Xt) = (X0, X0) for all t ∈ T . Then the shift operator θw on X
is defined for any x = {xs, s ∈ T } ∈ X by

θw(x) = {x̃t, t ∈ T }, x̃t = xt−w .

A set A ⊂ X is called w-invariant if

A = θw(A) = {θw(x) : x ∈ X}
holds. It is called (shift-) invariant, if it is w-invariant for all w ∈ T . The w-shifted version of an
element xv

u ∈ Xv
u , denoted by 〈xv

u〉w , is an element of Xv+w
u+w given by

〈xv
u〉w = πv+w

u+w

(
θw(x)

)
,
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where x is any element of [xv
u]. We naturally extend this notation on an element-by-element

basis to a set A ⊂ Xv
u and a family A of subsets of Xv

u to obtain the w-shifted versions 〈A〉w

and 〈A〉w . With the operator 〈·〉w we are able to emphasize the position on the time axis.
Example. As an illustrative example of the introduced notation suppose (Xt, Xt) = (R,B(R))

for all t ∈ T . The elements xt of Xt = Xt
t are thus real scalars. Assume that v ∈ T+ . If T = R,

then Xv
0 is the set of all real functions xv

0 on the interval (0, v]. For x ∈ X , i. e., a real function
on the real line, πv

0 (x) is the part of x on the interval (0, v]. In contrast, for a real function xv
0 on

(0, v], the set [xv
0 ] consists of all real functions on the real line coinciding on (0, v] with xv

0 . The
function 〈xv

0〉w is a copy of xv
0 shifted to the interval (w, v + w]. If T = Z, then Xv

0 is the set of
all v-dimensional real vectors xv

0 = (x1, x2, . . . , xv). Furthermore, X+
0 denotes the set of real

one-sided sequences x+
0 = (x1, x2, . . .). For x ∈ X , i. e., a two-sided real sequence, πv

0 (x) is the
part of x with indices {1, 2, . . . , v}. For a real vector xv

0 , in turn, [xv
0 ] is the set of all two-sided

real sequences coinciding with xv
0 for the indices {1, 2, . . . , v}. The vector 〈xv

0〉w is a copy of
xv

0 with shifted indices {w + 1, w + 2, . . . , w + v}.
Note that the space Xt can also be a finite or countable set or it can itself consist of vectors,

matrices, functions etc.

(1.3) Probability and measure spaces, random variables. The triple (Ω, F , μ) consisting
of the space Ω, the σ-algebra F , and the measure μ is called measure space. If μ is a proba-
bility measure, then (Ω, F , μ) is called probability space. Suppose ν is another measure on F .
Then we write μ 
 ν if μ is absolutely continuous w. r. t. ν (see Paragraph A.7). By δω we
denote the Dirac measure (see Paragraph A.4) on F concentrated at some ω ∈ Ω. If (Ω1, F1, μ1)
and (Ω2, F2, μ2) are two measure spaces, then μ1 ⊗ μ2 denotes the product measure obtained
from μ1 and μ2, which is defined on the product σ-algebra F1 ⊗ F2.
Let (Ω, F , P) be a probability space. For a random variable ξ on (Ω, F , P) we denote by σ(ξ)

the smallest σ-algebra w. r. t. which ξ is measurable. The distribution of ξ is denoted by Pξ . If ξ
is a real, numerical, or complex random variable, then E(ξ) denotes the expectation of ξ, given
it exists. The variance of ξ is var(ξ). If η is another real, numerical, or complex random variable
on (Ω, F , P), then cov(ξ, η) and cor(ξ, η) are the covariance and correlation of ξ and η. For any
set F ∈ F and σ-algebra A ⊂ F we denote by P(F |A) the conditional probability of F given
A. If the σ-algebras A, B, C ⊂ F form a Markov chain in this order (see Paragraph A.2), then
we write (A − B − C). If the random variables ξ, η, and ζ on (Ω, F , P) form a Markov chain in
this order, then we write (ξ − η − ζ).
Let us adopt the notation of Paragraph 1.2. The w-shifted copy 〈μ〉w of a measure μ on X v

u is
a measure on X v+w

u+w defined by

〈μ〉w(A) = μ
(〈A〉−w

)
for any A ∈ X v+w

u+w . For any t ∈ T let ξt be a random variable on (Ω, F , P) with values in
(Xt, Xt). Then ξv

u denotes the random variable on (Ω, F , P) with values in (Xv
u, X v

u ), which is
defined for any ω ∈ Ω by

ξv
u(ω) = {ξt(ω), t ∈ J}.

We identify ξv
u with the family {ξt, t ∈ J} of random variables, which is (a segment of) a random

process either with discrete time (random sequence) or continuous time. As short hand notation
we also use ξ, ξv

−, and ξ+
u instead of ξ∞−∞, ξv−∞, and ξ∞

u .
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Example. If we assume the situation of the example at the end of Paragraph 1.2, then ξv
0 is a

real continuous-time random process on the interval (0, v] for T = R. In contrast, if T = Z,
then ξv

0 = (ξ1, ξ2, . . . , ξv) is a v-dimensional real random vector, ξ∞
0 = (ξ1, ξ2, . . .) is one-sided

and ξ = (. . . , ξ−1, ξ0, ξ1, . . .) is a two-sided sequences of real random variables.

(1.4) Matrices, logarithms, complex numbers. The determinant and trace of amatrixA are
denoted by det(A) and tr(A). The transpose of a vector a is denoted by a′. By diag(a1, . . . , an)
we represent the diagonal matrix with entries ai on the main diagonal.

If we write log, then we always assume logarithms w. r. t. base e. In addition, we always
suppose 0 log 0

x = 0 for x ≥ 0 and x log x
0 = +∞ for x > 0.

The real part, the imaginary part, and the complex conjugate of a number z ∈ C are denoted
by Re(z), Im(z), and z, respectively. The imaginary unit is j.

§2 Abstract Channel Model

An (information) channel is an abstract stochastic model that characterizes the random corrup-
tion of data or signals transmitted from a sender to a receiver. The most general mathematical
description of a channel was proposed by Kolmogorov (1956b)1. The basic definition given be-
low is formulated without reference to a transmission over time and is based on (Dobrushin,
1959, Sec. 1.5)2. Time-structure, a term adopted from Ahlswede (2006, Sec. 1), is later added
by considering product spaces as channel input and output such that input and output signals
have (two-sided) infinite duration. Models of this type are advantageous in terms of defining
concepts such as stationarity, ergodicity, information rate capacity etc. and are considered, e. g.,
by Khinchin (1956, Ch. III)3, Feinstein (1958, Sec. 6.2), Kadota and Wyner (1972), Ihara (1993,
Sec. 4.1), Kakihara (1999, Sec. 3.1), or Gray (2011, Sec. 2.2). A different approach, taken by Do-
brushin (1963), Wolfowitz (1978, Sec. 5.1), Ahlswede (2006, Sec. 1), Verdú and Han (1994), or
Csiszár and Körner (2011, Ch. 6) to represent transmission over time is to consider not a single
but a whole collection of channels, each modeling the transmission of fixed finite duration. See
(Dobrushin, 1963, Sec. 1.8) for a discussion on the two types of models.

After introducing channels with time structure we define properties such as stationarity, er-
godicity, causality, and asymptotic input-memorylessness. This section contains the basic ma-
terial on channels, which is directly relevant in connection with formulating an abstract coding
theorem (and converse). More on channels is detailed in the later Sections §13, §14 and §15.

(2.1) Definition (Channel, input/output space/measure). Let (X, X ) and (Y, Y) be arbitrary
measurable spaces. A Markov-kernel κ from (X, X ) to (Y, Y) is called a channel with input
space (X, X ), output space (Y, Y), and input-output space (X × Y, X ⊗ Y). The channel κ and
a probability measure μ on X , called input probability measure, induce a probability measure
μκ on (X × Y, X ⊗ Y), given by

μκ(C) =
∫

X

κ(x, Cx) dμ(x), C ∈ X ⊗ Y, (1)

1Russian original, see (Kolmogorov, 1963) for English and (Chintschin et al., 1967, Part IV) for German translation. See
also (Kolmogorov, 1956a) for a shortened English version.

2Russian original, see (Dobrushin, 1963, Sec. 1.5) for English and (Dobruschin, 1963, Sec. 1.5) for German translation.
3Russian original, see (Khinchin, 1957, Part II, Ch. III) for English and (Chintschin et al., 1967, Part II, Ch. III) for
German translation.
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where Cx denotes the x-section of the set C . The joint measure μκ is called input-output prob-
ability measure and the marginal measure ν on Y given by

ν(B) = μκ(X × B) =
∫

X

κ(x, B) dμ(x), B ∈ Y,

is called output probability measure.

(2.2) Remark. At first, due to Paragraph A.3, the definition of a channel means κ(x, ·) is a
probability measure on Y for any x ∈ X , i. e., for any channel input we have a probability
distribution on the channel output space. In particular, κ(x, B) specifies the probability that
the received symbol lies in the set B ∈ Y given the transmitted symbol was x ∈ X . Secondly,
the definition includes that κ(·, B) is an X /B([0, 1])-measurable function on X for any B ∈ Y .
Whether or not this technical condition is needed depends on the problem to be analyzed. As
demonstrated by Augustin (1966) the measurability condition can possibly be omitted, even for
abstract channels, if only coding problems are studied, which allow the restriction to finitely sup-
ported channel input measures. However, for several questions studied in this thesis we need
to consider channel input-output probability measures induced by general input measures. Fur-
thermore, in derivations in connection with channels we often have to apply measure-theoretic
tools, which require the introduced measurability of the channel. To achieve a unified presen-
tation throughout the thesis we will therefore assume this additional measurability condition.
Note, that it can be a difficult problem to verify the measurability in concrete examples. How-
ever, models of physical channels are often from the class considered in Section §15, for which
the verification of the measurability is much easier.

(2.3) Definition (Channel with time structure). Let {(Xt, Xt), t ∈ T } and {(Yt, Yt), t ∈ T }
be two families of measurable spaces with (Xt, Xt) = (X0, X0) and (Yt, Yt) = (Y0, Y0) for all
t ∈ T . We adopt all the notation for product measurable spaces related to this families from
Paragraph 1.2 and call a channel κ with input product space (X, X ) and output product space
(Y, Y) a channel with time structure. If we have T = Z for the time index set4 introduced at
the beginning of Section §1, then κ is called discrete-time channel and if T = R, then κ is
called continuous-time channel. Elements of X and Y or of corresponding sub-product spaces
are called input and output (time) signals, respectively. The measurable spaces (X0, X0) and
(Y0, Y0) are called input and output alphabet.

(2.4) Example (Alphabets). The alphabets of the channel with time structure are arbitrary in
the general definition. In a typical example the channel input and output signals are real- or
complex- (vector-) valued, i. e., X0, Y0 ∈ {R,Rn,C,Cn} with X0 and Y0 taken as the corre-
sponding Borel-σ-algebras. As a representative illustration of a channel with time structure
Figure 1 shows a continuous-time channel with real-valued input and output signals, i. e. inputs
and outputs are real functions on the real line. The depicted example of an output set consists
of all signals having at two instances of time values in a certain interval.
In the discrete-time case the binary and discrete-valued channel are further prominent exam-
ples, where the alphabets are given by X0, Y0 ∈ {{0, 1}, {0, 1, . . . , m}} together with the corre-
sponding power sets asσ-algebras. Of course, the input and output alphabet can also be different,

4It can also be meaningful to speak of a channel with time structure if T is replaced by some other totally ordered set.
However, this will not be considered here.
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κ(x, B)

channel

(X, X )

input space output space

(Y, Y)

Bx

T T

Figure 1: Channel with time structure.

which is the case, e. g., if we consider the quantization of real-valued input signals, a threshold-
ing operation, or some modulation scheme in combination with a soft-decision-decoder.

In more advanced examples the alphabets themselves can be product or function spaces. This
allows us, e. g., the following representation of a channel, which is useful in connection with
coded information transmission. Assume that we partition the time index set T into segments
of size s ∈ T+ , then we can consider the original channel also as a discrete-time channel with
input alphabet (Xs

0 , X s
0 ) and output alphabet (Y s

0 , Ys
0 ).

(2.5) Example (Gaussian channel). For later reference let us consider the following channel
with time structure. Suppose we have real (vector-) valued output signals, i. e., (Y0, Y0) =
(Rn,B(Rn)) for some positive integer n. Let η = {ηt, t ∈ T } denote the family of coordi-
nate projections on the channel output space, where ηt denotes the projection from Y to Yt. For
any x ∈ X the projection ηt is a random variable on the probability space (Y, Y, κ(x, ·)) and
η is the corresponding random process. If η is a Gaussian (vector) process (see Paragraph A.6)
for all x ∈ X , then κ is called Gaussian channel. We make the assumption that all second
moments of the involved random processes are finite, which is convenient for analysis and
does not pose restrictions to models of practical situations. We restrict ourselves to the real
case, however, the extension to the complex case is canonical. Note that we have not specified
the input alphabet. The additive noise channel, where the noise is Gaussian is the most sim-
ple and prominent example of a Gaussian channel (see Paragraph 16.3). In that case we have
(X0, X0) = (Y0, Y0) = (R,B(R)).

(2.6) Remark (Transmission of finite duration). For the general channel with time structure
the channel input signal needs to be specified for the whole set of time indices to determine the
(conditional) probability of an event at the channel output. The canonical way for this channel
model to represent the transmission of a signal with finite duration is to assume that the null-
signal of infinite duration is sent before and after the actual transmission. This is only possible
under the condition that there is a null-element in the input alphabet. The cases of practical
relevance we have in mind satisfy this constraint, in particular those in Example 2.4.

Similarly, the channel with time structure characterizes the (conditional) probability of output
events of infinite duration. The probability of an eventB ∈ Ys

0 for finite observation time s ∈ T+
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is then given by the corresponding probability of the inverse image5 (cylinder set) [B], which
means it does not matter what happened outside the observation interval (0, s].

Next, we define some properties of channels with time structure, which are directly relevant
in connection with proving a coding theorem (and converse) for such channels. In the rest of
this section κ is a channel with time structure as introduced in Definition 2.3.

(2.7) Definition (Stationarity, ergodicity, causality, asymptotic input-memorylessness).
(i) Stationarity. Given s ∈ T , the channel κ is called s-stationary, if for any x ∈ X and B ∈ Y

we have

κ(x, B) = κ(θs(x), θs(B)),

where θs denotes the shift operator6 defined in Paragraph 1.2. It is called stationary, if it is
s-stationary for all s ∈ T .
(ii) Ergodicity. For s ∈ T+ , an s-stationary channel κ is called s-ergodic (s-ergodic for s-i.i.d.

inputs), if for any s-stationary s-ergodic (s-i.i.d., see Definition B.1) channel input probability
measure μ the induced input-output probability measure μκ is s-stationary and s-ergodic. A
stationary channel κ is called totally ergodic (totally ergodic for block-i.i.d. inputs), if for all
s ∈ T+ it is s-ergodic (s-ergodic for s-i.i.d. inputs). It is called ergodic, if for any stationary
ergodic channel input probability measure μ the induced input-output probability measure μκ
is stationary and ergodic.
(iii) Causality. The channel κ is called causal if for any t ∈ T , B ∈ Yt

−, and x, x̃ ∈ X
coinciding on (−∞, t] we have

κ(x, [B]) = κ(x̃, [B]).

(iv) Asymptotic input-memorylessness. The channel κ is called asymptotically input-memory-
less for the input signal set X ′ ⊂ X if for any ε > 0 and s ∈ T there exists a tI(ε, s) ∈ T0 such
that for any B ∈ Y+

s and x, x̃ ∈ X ′ coinciding on (s − tI(ε, s), ∞) we have∣∣κ(x, [B]) − κ(x̃, [B])
∣∣ < ε.

(2.8) Remark. The introduced concept of stationarity is basically considered by all authors
using the same type of channel with time structure. See for example (Gray, 2011, Sec. 2.3) from
the list of papers given at the beginning of this section. Stationarity of a channel actually means
shift invariance, that is, the conditional probabilities specified by the channel do not change if
the input signal and the output event are jointly shifted. The version given here is suitable for
the discrete- and the continuous-time case. However, in the former case the definition simplifies
due to the following observation: An s-stationary channel is also u-stationary for all u = ks
with k ∈ Z. Therefore, stationarity and 1-stationarity are equivalent if T = Z. Note that for a
stationary channel κ the probability measure κ(x, ·) on Y for fixed input x ∈ X is usually not
stationary. However, stationary input measures are transformed into stationary input-output

5When it is clear from the context we will not explicitly mention the space on which projections are defined to build
inverse images. For example, here we have a channel κ, whose second argument is a set form Y . Thus, the projection
w. r. t. which the inverse image [B] of the set B is taken, must be defined on the space Y . In connection, e. g., with
mutual information the projections are usually defined on the product space X × Y , as in Remarks 4.2 and 4.4.

6To keep notation simple θs denotes the shift operator on X as well as on Y .
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and output measures, as stated in the lemma below. This property can also be used to define a
more relaxed version of stationarity of channels as given in (Gray, 2011, p. 26).
In the literature, ergodic channels (see (Kakihara, 1999, p. 137) or (Gray, 2011, p. 28)) and to-

tally ergodic channels (see Vajda (1967, Def. 1) or Gray (2011, p. 360)) are considered. In addition,
we introduce a less restrictive version of totally ergodic channels because this is exactly the form
we need to derive a block-coding theorem. For this variant we require the s-ergodicity of the
input-output probability measure only for s-i.i.d. input probability measures and not, as com-
mon, for all s-ergodic input probability measures. We indicate this modification by adding “for
(s-/block-) i.i.d. inputs“ to the usual name. According to the comment at the beginning of Re-
mark B.2 a natural alternative of this supplementary expression is “for (s-/block-)memoryless
inputs“. A nontrivial example showing that this condition is strictly weaker than total ergodi-
city is given in Paragraph 16.4. Further note, that ergodicity is defined only in connection with
stationarity, since we will only use this restricted form. Ergodicity of a channel is an indirect
condition on the so-called output memory (see Section §13 for details, especially Theorem 13.9
and (15.4.iv) for explicit conditions) and can be interpreted as a weak form of asymptotic inde-
pendence of remote output events.
The definition of causality is canonical and the given formulation is taken from (Kadota, 1972).

For a causal channel the probability of an output event up to time t is determined by the input
signal up to time t, i. e., no future inputs must be known to determine the probability of an
output event involving current and past time indices. Since we want to interpret the index set
T as time axis, it is always physically meaningful to assume the channel to be causal. In this
case we do not need to specify future inputs in the situation of Remark 2.6.
Causality has the following alternative characterization: The channel κ is causal if for any

t ∈ T andB ∈ Yt
− the function κ(·, [B]) is [X t

−]-measurable. To obtain this equivalent definition
of causality suppose κ is causal and let t ∈ T and B ∈ Yt

−. According to (2.7.iii) there exists an
X t

−-measurable function gt,B on Xt
− such that κ(·, [B]) = gt,B

(
πt

−(·)), where πt
− denotes the

projection from X to Xt
−. Due to the factorization lemma (see Lemma A.10) this is equivalent

to the [X t
−]-measurability of κ(·, [B]). Causality is defined for stationary and non-stationary

channels. If κ is stationary and the defining relation of causality is true for t = 0, then it is
automatically true for all t ∈ T , which allows to simplify the definition in this case.
The condition of asymptotic input-memorylessness is adopted from (Kadota andWyner, 1972)

and means, that the probability of an output event after time s is determined within a tolerance
of ε by the input signal after time s and tI(ε, s) time indices in the past (at most). Defining
asymptotic input-memorylessness for all input signals is often too restrictive. Therefore, we
consider the subspace X ′ in the definition, which is sufficient if X ′ is chosen properly. As
causality, the asymptotic input-memorylessness is defined for stationary and non-stationary
channels. If κ is stationary, X ′ is a shift-invariant set, and the defining relation of asymptotic
input-memorylessness is true for s = 0, then it is true for all s ∈ T . In this case tI(ε, s) does
not depend on s.

The proof of the next lemma is given, e. g., in (Gray, 2011, p. 25) or (Kakihara, 1999, p. 124) for
the case T = Z. There is actually no difference in the derivations for T = R.

(2.9) Lemma (Stationarity of induced input-output probability measure). If κ is an s-stationary
(stationary) channel and μ is an s-stationary (stationary) channel input probability measure, then
the induced input-output probability measure μκ and the corresponding output probabilitymeasure
ν are s-stationary (stationary).
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§3 Block Codes and Information Transmission

In this thesis, we consider Shannon’s classical problem of channel coding in a general context.
Channel coding means a block-based coding-decoding procedure is employed to reliably trans-
mit messages from a sender to a receiver in the presence of random transmission errors. The
noisy part of the communication process is modeled by an information channel connecting
sender and receiver. A main information-theoretic concern of coded information transmission
is the analysis of the relation between the speed of transmission and the probability of a decod-
ing error. More precisely, we are interested in conditions under which transmitted messages —
even though they are disturbed — can be inferred from the received messages with arbitrarily
low error probability, while maintaining a certain transmission rate. So called coding theorems
(and converses, see Section §9) are central results stating theoretical limits in this regard. This
section introduces basic notions required to precisely formulate those results.
The subsequent definitions are formulated such that they are suitable for any channel with

time-structure, including discrete- and continuous-time models with arbitrary alphabets. The
effect of channel memory (also infinite) representing the potential impact of previously trans-
mitted signals (codewords) on the current transmission is taken into account as well as possible
restrictions on allowed channel inputs. Later, we want to formulate the main coding results in a
way that emphasizes their operational meaning. Therefore, the definitions below are based on
the style of Wolfowitz (1978) and Ahlswede (2006, Sec. 2).
The setting in this section is a channel with time structure as introduced in Definition 2.3. We

adopt the notation from there and Paragraph 1.2. First, we specify constraints on the channel
input signals in an abstract manner. As in (Thomasian, 1961, Sec. 4) or (Ash, 1965, Sec. 8.1) this
is done based on sets. We introduce relevant quantities in connection with channel coding, such
as block code, code rate, decoding error etc. The definitions are extensions of those in (Jelinek,
1968, Sec. 6.2), (Wolfowitz, 1978, Sec. 5.1), or (Ahlswede, 2006, Sec. 2). Then we explain how a
code is used in a communication system to transmit information, in particular to point out, that
we consider codes that allow the repeated transmission of messages with the same reliability.

(3.1) Input constraints. Usually signals used for information transmission have to meet cer-
tain constraints that result for example from technical specifications. For a transmission of du-
ration s ∈ T+ starting at time 0, we model such constraints in an abstract way by a set Es ⊂ Xs

0 ,
i. e., a subset of all possible input signals in the time period (0, s]. Please note that we do not
require Es ∈ X s

0 , which is particularly important for continuous-time channels. From Es we
build the set

E∗
s = ×

k∈Z

〈Es〉ks ⊂ X (1)

of all signals in X that satisfy the input constraint in any time period (ks, (k + 1)s], k ∈ Z.
A signal from E∗

s represents a sequence of transmissions, each of duration s and satisfying the
input constraint. In cases of practical importance the set Es contains the null-signal such that
we can represent a transmission of finite duration also by a signal from E∗

s as explained in
Remark 2.6. As an example consider the amplitude or power constraint in Example 3.2. The
union of all time-shifted versions of E∗

s is the shift-invariant set

E′
s =

⋃
t∈(0,s]

θt(E∗
s ). (2)
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Assume now that we have a constraint set for any time duration, i. e., suppose we have the
family E = {Es ⊂ Xs

0 , s ∈ T+} of sets. Then

E′′ =
⋃

s∈T+

E′
s (3)

with E′
s as in (2), is a suitable candidate for the set of input signals w. r. t. which asymptotic input-

memorylessness is defined, in particular for stationary channels (see (2.7.iv) and Remark 2.8).
We are especially interested in families E of constraint sets, that satisfy the following regularity
condition

n−1×
k=0

〈
Es

〉
ks

⊂ Ens (4)

for any s ∈ T+ and n ∈ N. This condition is important, for example, to obtain suitable represen-
tations of the information rate capacity and also directly in the coding theorem (and converse)
for channels with time structure. A useful sufficient condition for (4) is that

Eu × 〈Ev

〉
u

⊂ Eu+v (5)

holds for all u, v ∈ T+ .

(3.2) Example (Input constraints). Assume that s ∈ T+ . Often a constraint set Es ⊂ Xs
0 has

the form7

Es =
{

Φs ≤ 1
}

=
{

x ∈ Xs
0 : Φs(x) ≤ 1

}
, (1)

where Φs is a nonnegative functional on Xs
0 , also called cost function. Clearly, using an indi-

cator function we can indirectly characterize any set Es ⊂ Xs
0 by such a functional. However,

reasonable examples are of the following type. Let φ be a nonnegative function on X0 and
assume that φ also denotes the identically defined function on Xt for all t ∈ T . In our first
example the functional Φs is given by

Φs(x) = sup
t∈(0,s]

φ(xt), (2)

for all x =
{

xt, t ∈ (0, s]
} ∈ Xs

0 and in the second example Φs has the form

Φs(x) = 1
s

∫
(0,s]

φ(xt) dλ(t). (3)

Here we denote by λ the counting measure on the integers if T = Z and the one-dimensional
Lebesgue measure if T = R (see Paragraph A.4). This allows us a common notation for the
discrete- and continuous-time case. In the continuous-time case the integral is defined only for
signals x ∈ Xs

0 for which the nonnegative function {φ(xt), t ∈ (0, s]} is Lebesgue-measurable.
For the remaining signals in Xs

0 we set Φs(x) equal to an arbitrary constant larger than 1. A
constraint specified by (3) is considered, e. g., in (Csiszár and Körner, 2011, p. 91) for the discrete-
time case. If we have real-valued input signals as in Example 2.4 and φ(xt) = |xt|, then (2)

7Without loss of generality we can choose 1 as upper bound in (1) because we can normalize the inequality.
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represents the so-called amplitude constraint. For real-valued input signals and φ(xt) = x2
t ,

the functional in (3) represents the important average energy or power constraint. Note that in
the continuous-time case, we indeed have Es /∈ X s

0 for the amplitude and the average energy
constraint. See (Bharucha, 1969, Sec. 5.1) and the references at the end of Paragraph A.12 for
details on this fact.

Consider now the family E = {Es ⊂ Xs
0 , s ∈ T+} of constraint sets, where Es is given in (1).

In the first example with Φs as in (2), we have for any s ∈ T+

Es = ×
t∈(0,s]

Jt,

which implies for the sets introduced in Paragraph 3.1

E∗
s = E′

s = E′′

= ×
t∈T

Jt,

where Jt is for all t ∈ T the inverse image of the real interval [0, 1] w. r. t. φ. We further obtain
for any u, v ∈ T+

Eu × 〈Ev

〉
u

= Eu+v,

such that the regularity condition (3.1.4) holds even with equality. The second example with Φs

as in (3) also satisfies the regularity condition. Given the signals x̂ = {x̂t, t ∈ (0, u]} ∈ Eu and
x̌ = {x̌t, t ∈ (0, v]} ∈ Ev , we have for the composed signal x = (x̂, 〈x̌〉u) = {xt, t ∈ (0, u+v]}∫

(0,u+v]

φ(xt) dλ(t) =
∫

(0,u]

φ(xt) dλ(t) +
∫

(u,u+v]

φ(xt) dλ(t)

=
∫

(0,u]

φ(x̂t) dλ(t) +
∫

(0,v]

φ(x̌t) dλ(t)

≤ u + v,

which implies (3.1.5) and therefore (3.1.4). Furthermore, we can show that the set

F =
{

x = {xt, t ∈ T } ∈ X : lim sup
s→∞

1
2s

∫
(−s,s]

φ(xt) dλ(t) ≤ 1
}

is shift-invariant and that

E′′ ⊂ F

holds, with E′′ as given in (3.1.3). For example, if the input signals are real-valued and φ(xt) =
x2

t , then F represents the set of all asymptotically power limited signals with infinite duration.
The comment directly below (3.1.3) does also apply to the set F in connection with the con-
straints defined by (3), which is the reason why we are interested in this set.
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(3.3) Definition (Block code with input constraint, code parameters). Suppose the quantities
b ∈ T+ , Eb ⊂ Xb

0 , and W = {1, 2, . . . , m} for some m ∈ N are given. Let ui ∈ Eb, i ∈ W , be
pairwise distinct and let Bi ∈ Yb

0 , i ∈ W , form a partition8 of Y b
0 . Then

C(b, Eb) =
{

(ui, Bi), i ∈ W
}

is called a (channel) block code for the message set W satisfying the input constraint Eb, where
ui is called codeword and Bi decoding set for message i ∈ W . The code rate of C(b, Eb) is
defined by

RC = 1
b

log m,

where m = |C(b, Eb)| denotes the code size and b the block length of C(b, Eb).

(3.4) Definition (Decoding error probability, (b, Eb, V, M, ε)-code). Let C(b, Eb) be a block
code as in Definition 3.3 and let

U∗
b = ×

k∈Z

〈{ui, i ∈ W}〉
kb

(1)

be the set of all two-sided sequences of codewords. Suppose V is a b-invariant set satisfying
U∗

b ⊂ V ⊂ X and assume that the channel κ is b-stationary. The decoding error probability
�(ui, V ) for codeword ui w. r. t. the set V is defined by

�(ui, V ) = sup
x∈[ui]∩V

κ(x, [Bc
i ]),

where Bi is the decoding set corresponding to ui. The (maximal) decoding error probability
�max(V ) of C(b, Eb) is defined by

�max(V ) = max
i∈W

�(ui, V ), (2)

where W denotes the finite message set. The code C(b, Eb) is called a (b, Eb, V, M, ε)-code if

|C(b, Eb)| ≥ M and �max(V ) ≤ ε.

(3.5) Coding and decoding. A block code C(b, Eb) is used in the following way to communi-
cate messages from a set W over a channel κ with time structure. Let the operation start at time
0. To transmit message i ∈ W , codeword ui is sent within the time period (0, b]. If the received
signal v within the same time period lies in the decoding set Bj , then v is decoded as message
j. To transmit a sequence (i1, i2, . . . , in) ∈ W n of n messages, the described coding-decoding
rule is applied n times in succession. To transmit the kth message in the sequence, the time-
shifted version 〈uik

〉(k−1)b of the codeword uik
is sent within the time period ((k − 1)b, kb].

If the received signal v within ((k − 1)b, kb] lies in the time-shifted version 〈Bj〉(k−1)b of the
decoding set Bj , then v is decoded as message j. This message is then an estimate of ik . The

8Assuming disjointness is essential here but the decoding sets do not have to fill up the whole space Y b
0 . However,

the assumption is convenient and for our purposes it can always be established by merging the remaining part of Y b
0

with one of the sets Bi.
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process of transmitting n messages ends at time nb. Please refer to Remark 2.6 for a discussion
on input signals of finite duration in connection with the considered channel model.

Figure 2 illustrates the coding-decoding process for a continuous-time channel with real input
and output signals. The messages 2, 1, m, . . . are encoded into the real functions u2, u1, um, . . .
of duration b taken from the set of codewords. The decoder identifies in each time interval of
length b the decoding set containing the received noisy signal, which is represented as dot in
the output space. In the example, the second message in the sequence is incorrectly decoded.

encoder
2 , 1 , m , . . .

messages

0 b 2b 3b

u2 〈u1〉b 〈um〉2b

κ(x, B)

ch
an
n
el

0 b 2b 3b
decoder

2 , m , m , . . .

decoded
messages

error B1

B2
B3

B4

Bm
B1

B2
B3

B4

Bm
B1

B2
B3

B4

Bm

0 b 2b 3b

Figure 2: Illustration of coded information transmission.

The code size |C(b, Eb)| is the number of different messages that can be communicated at
most with the code. The block length b specifies the time duration of transmitting a single
message. The set Eb represents certain constraints imposed on the codewords as described in
Paragraph 3.1. Examples of constraints are given in Example 3.2. The code rate RC characterizes
the speed of transmission in [nat/channel use] if T = Z or in [nat/second] if T = R.

For any t ∈ T let V t
− and V +

t denote the images of the set V w. r. t. the projections from X
to Xt

− and to X+
t , respectively. Then �(ui, V ) is the probability that codeword ui — a signal in

the time period (0, b] — is not decoded as message i, no matter what signal from the set V 0
− has

been sent before and from the set V +
b has been sent afterwards. The assumption of a b-stationary

channel κ and a b-invariant set V implies that �(ui, V ) is also equal to the probability that the
shifted codeword 〈ui〉kb , k ∈ N, is incorrectly decoded, regardless of past signals from the set
V kb

− or future signals from the set V +
(k+1)b . That means �(ui, V ) is the decoding error probability

w. r. t. V for codeword ui and for any version of ui shifted by a multiple of the block length b.
The maximum of this decoding error probability over all codewords of C(b, Eb) is represented
by �max(V ). Subsequently, we restrict ourselves to situations, where we have the described
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shift-invariance of the decoding error. The introduced decoding error probability is based on
(Kadota and Wyner, 1972, eq. (3)) and (Gray and Ornstein, 1979, eq. (2)). It is defined in a worst
case sense over the possible past and future input history.
We require the set V to contain the setU∗

b of all sequences of codewords tomake the decoding
error at least robust w. r. t. past and future transmissions of codewords. Since it might be of
interest to have robustness not only w. r. t. codewords, the definition allows to consider also
larger sets of signals. As a typical example consider the set E∗

b = ×k∈Z

〈
Eb

〉
kb

⊃ U∗
b already

introduced in (3.1.1). For a transmission over time it is physically meaningful to assume the
channel to be causal. Then the decoding error does only depend on past but not future inputs.

§4 Information Measures

We introduce mutual information and entropy in conditional and unconditional form. These
basic information measures go back to the work of Shannon (1948) and were generalized by the
Russian school of information theory starting with the work of Gelfand et al. (1956)9 and con-
tinued mainly by Dobrushin (1959)10 and Pinsker (1960)11. A standard reference for information
measures in general form is (Pinsker, 1964), where the definitions are given for random variables
with abstract alphabets. Even though this reference is the basis for this section, the difference in
the presentation below is that the material is given for σ-algebras. Random variables are treated
as special case. Having both versions gives us a nice flexibility in formulating results and proofs.
When we work directly with measures the σ-algebra based version is usually more natural and
convenient. However, some results are expressed more clearly in terms of random variables.
We adopt the σ-algebra based version for mutual information and entropy from (Bradley, 2007,
Ch. 5). For a general form of conditional entropy see also (Billingsley, 1965, Secs. 6 and 12). The
definition of conditional mutual information is a modified version of the random variable based
formulation of Wyner (1978). The advantage of Wyner’s direct definition is that it generalizes
Dobrushin’s indirect definition considered in (Pinsker, 1964) to cases, for which certain regular
conditional probabilities do not exist (Pinsker, 1964, see translator’s remarks to Ch. 3). As a ref-
erence of information measures for abstract alphabets see also (Gray, 2011, Sec. 7.4). The general
definitions introduced below are required in particular to handle continuous-time models.
In this section we further give an integral representation of mutual information and a list of

relevant properties of the information measures. Finally, we introduce the (mutual) informa-
tion rate and consider important special cases, for which the information rate exists. We omit
physical or engineering interpretations of the defined quantities since we are only interested
in their application as mathematical tools to prove coding results. Throughout this section, the
setting will be a given abstract probability space (Ω, F , P). Unless stated otherwise all random
variables are defined on this space.

(4.1) Definition (Mutual information, entropy). Suppose A and B are sub-σ-algebras of F .
Then the mutual information I(A; B) between A and B is defined by

I(A; B) = sup
m∑

i=1

n∑
j=1

P(Ai ∩ Bj) log P(Ai ∩ Bj)
P(Ai)P(Bj) ,

9Russian original, see (Shiryaev, 1992, No. 2) for English and (Gelfand et al., 1958, Ch. II) for German translation.
10see footnote 2 on page 8
11Russian original, see (Pinsker, 1964) for English and (Pinsker, 1963) for German translation.
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where the supremum is taken w. r. t. all partitions {A1, A2, . . . , Am} and {B1, B2, . . . , Bn} of
Ω with Ai ∈ A and Bj ∈ B. The entropy H(A) of A is defined by

H(A) = I(A; A).

Suppose ξ and η are random variables with values in arbitrary measurable spaces. Then the
mutual information I(ξ; η) between ξ and η is defined by

I(ξ; η) = I(σ(ξ); σ(η))

and the entropy H(ξ) of ξ by

H(ξ) = H(σ(ξ)).

(4.2) Remark. Assume that the random variables ξ and η have values in themeasurable spaces
(X, X ) and (Y, Y). Then we have the identity

I(σ(ξ); σ(η)) = I
(
[X ]; [Y]

)
, (1)

where the left-hand side refers to the probability space (Ω, F , P) on which the random variables
ξ and η are defined as in Definition 4.1. The right-hand side refers to the probability space
(X × Y, X ⊗ Y, Pξ,η) and has the form

I
(
[X ]; [Y]

)
= sup

m∑
i=1

n∑
j=1

Pξ,η(Ai × Bj) log Pξ,η(Ai × Bj)
Pξ(Ai)Pη(Bj) , (2)

where Pξ , Pη , and Pξ,η denote the distribution of ξ, η, and (ξ, η), respectively. The supremum is
taken w. r. t. all partitions {A1, A2, . . . , Am} of X and {B1, B2, . . . , Bn} of Y with Ai ∈ X and
Bj ∈ Y . The equality in (1) follows from the correspondence between the involved partitions
of Ω and X × Y as shown, e. g., in (Mittelbach, 2012, Par. 2.2). The representation in (2) is used
in (Dobrushin, 1963) or (Pinsker, 1964) as definition of the mutual information between ξ and η.

There exists a useful integral representation of the mutual information, which was indepen-
dently obtained by Gelfand and Yaglom (1957)12 and Pérez (1957). The version given below is
based on (Bradley, 2007, Th. 5.6).

(4.3) Theorem (Integral form of mutual information). Let (Ω1 ×Ω2, F1 ⊗F2) be the product of
the measurable spaces (Ω1, F1) and (Ω2, F2), assume that A is a sub-σ-algebra of F1 and B is a
sub-σ-algebra of F2. Let P be a probability measure on F1 ⊗ F2 and let P1 and P2 denote the
marginal measures of P on F1 and F2, respectively. Further, let P′ denote the restriction of P to
A ⊗ B and Q the restriction of the product measure P1 ⊗ P2 to A ⊗ B. Then we have

I
(
[A]; [B]

)
=

⎧⎪⎨
⎪⎩
∫

Ω1×Ω2

log f dP′ if P′ 
 Q

∞ otherwise

, (1)

where f denotes the Q-density of P′, if P′ is absolutely continuous w. r. t. Q (see Paragraph A.7).

12Russian original, see (Gelfand and Yaglom, 1959) for English and (Gelfand et al., 1958, Ch. I) for German translation.
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(4.4) Remark. The integral in (4.3.1) can be rewritten as∫
Ω1×Ω2

log f dP′ =
∫

Ω1×Ω2

f log f dQ

since f is the Q-density of P′.
Consider now the setting in Remark 4.2. Applying the result from Theorem 4.3 in the proba-

bility space (X × Y, X ⊗ Y, Pξ,η) yields

I(ξ; η) = I
(
[X ]; [Y]

)
=
∫

X×Y

log fξ,η dPξ,η (1)

if Pξ,η is absolutely continuous w. r. t. Pξ ⊗ Pη , where fξ,η denotes the Pξ ⊗ Pη-density of Pξ,η.
Commonly, log fξ,η is called information density of ξ and η. Using the integral transformation
formula we have for (1)∫

X×Y

log fξ,η(x, y) dPξ,η(x, y) =
∫

Ω
log fξ,η

(
ξ(ω), η(ω)

)
dP′(ω), (2)

where P′ denotes the restriction of P to the σ-algebra σ(ξ) ∨ σ(η).
Assume now that the underlying probability space (Ω, F , P) on which ξ and η are defined

has product structure, i. e., Ω = Ω1 × Ω2 and F = F1 ⊗ F2. Let Q denote the restriction of
P1 ⊗ P2 to σ(ξ) ∨ σ(η), where P1 and P2 denote the marginal measures of P on F1 and F2.
Suppose

Pξ ⊗ Pη = (P1 ⊗ P2)ξ,η (3)

holds, where (P1 ⊗ P2)ξ,η denotes the distribution of (ξ, η) if the probability measure P on the
underlying probability space is replaced by P1 ⊗ P2. Then the integral transformation formula
yields that fξ,η(ξ, η) is the Q-density of P′. The condition in (3) is satisfied, e. g., if the random
variables ξ and η can be represented as the compositions

ξ = ξ′ ◦ π1 and η = η′ ◦ π2.

Here ξ′ is a randomvariable on (Ω1, F1, P1)with values in (X, X ) and η′ is a random variable on
(Ω2, F2, P2) with values in (Y, Y). Further, π1 and π2 denote the projections fromΩ1 ×Ω2 to Ω1
and to Ω2, respectively. In this situation we have σ(ξ) ⊂ [F1], σ(η) ⊂ [F2], and σ(ξ) ∨ σ(η) =
σ(ξ′) ⊗ σ(η′). Therefore, an integral representation of the mutual information I(ξ; η) on the
underlying probability space, as in (2), can be obtained directly by applying Theorem 4.3 in the
probability space (Ω1×Ω2, F1⊗F2, P). See (Mittelbach, 2012, Par. 1.7, 2.12) for details and (Gray,
2011, Lem. 7.5) for a related result. If it is advantageous to consider the mutual information in
the underlying probability space or in the space of values depends on the specific application.

(4.5) Definition (Conditional mutual information, conditional entropy). Let A, B, and C be
sub-σ-algebras of F . Then the conditional mutual information I(A; B|C) between A and B
given C is defined by

I(A; B|C) = sup
m∑

i=1

n∑
j=1

E
[
P(Ai ∩ Bj |C) log P(Ai ∩ Bj |C)

P(Ai |C)P(Bj |C)

]
,
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where the supremum is taken w. r. t. all partitions {A1, A2, . . . , Am} and {B1, B2, . . . , Bn} of
Ω with Ai ∈ A and Bj ∈ B. The conditional entropy H(A|C) of A given C is defined by

H(A|C) = I(A; A|C).

Suppose ξ, η, and ζ are random variables with values in arbitrary measurable spaces. Then the
conditional mutual information I(ξ; η |ζ) between ξ and η given ζ is defined by

I(ξ; η |ζ) = I(σ(ξ); σ(η) |σ(ζ))

and the conditional entropy H(ξ |ζ) of ξ given ζ by

H(ξ |ζ) = H(σ(ξ) |σ(ζ)).

(4.6) Remark. The conditional probability for the trivial σ-algebra {Ω,∅} satisfies P(A) =
P(A |{Ω,∅}) for all A ∈ F . Therefore, we have

I(A; B) = I(A; B|{Ω,∅}),

i. e., Definition 4.1 is a special case of Definition 4.5.

(4.7) Fundamental properties of information measures. Let A1, A2, A, B, and C be sub-
σ-algebras of F . Then the following properties hold.
(i) Nonnegativity:

0 ≤ I(A; B), I(A; B) = 0 ⇐⇒ A, B independent

0 ≤ I(A; B|C), I(A; B|C) = 0 ⇐⇒ (A − C − B)

(ii) Monotonicity: If A1 ⊂ A2, then

I(A1; B) ≤ I(A2; B),
I(A1; B|C) ≤ I(A2; B|C).

(iii) Symmetry:

I(A; B) = I(B; A),
I(A; B|C) = I(B; A|C).

(iv) Chain rule:

I(A1 ∨ A2; B) = I(A1; B) + I(A2; B|A1)
I(A1 ∨ A2; B|C) = I(A1; B|C) + I(A2; B|A1 ∨ C)

(v) (Conditional) entropy and (conditional) mutual information:

H(A) = I(A; B) + H(A|B)
H(A|C) = I(A; B|C) + H(A|B ∨ C)

In particular,

H(A|B) ≤ H(A), I(A; B) ≤ H(A),
H(A|B ∨ C) ≤ H(A|C), I(A; B|C) ≤ H(A|C).
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(vi) Independence: If A1 and A2 are independent, then the inequality

I(A1 ∨ A2; B1 ∨ B2) ≥ I(A1; B1) + I(A2; B2).

holds. Equality holds if A1 ∨ B1 and A2 ∨ B2 are independent.
(vii) Atomic σ-algebras: Suppose A and B are completely atomic σ-algebras (see Paragraph A.5)

with finitely many or countably many atoms. Then

I(A; B) =
∑
i,j

P(Ai ∩ Bj) log P(Ai ∩ Bj)
P(Ai)P(Bj) ,

I(A; B|C) =
∑
i,j

E
[
P(Ai ∩ Bj |C) log P(Ai ∩ Bj |C)

P(Ai |C)P(Bj |C)

]
,

where A1, A2, . . . and B1, B2, . . . are the atoms of A and B, respectively. In particular,

H(A) = −
∑

i

P(Ai) log P(Ai),

H(A|C) = −
∑

i

E
[
P(Ai |C) log P(Ai |C)

]
.

If A has finitely many, say m, atoms, then

H(A) ≤ log m

with equality if and only if all atoms have the same probability 1/m.
(viii) If A fails to be completely atomic, then

H(A) = ∞.

(4.8) Remark. The list in Paragraph 4.7 is a selection of well-known properties required later.
From the given σ-algebra based formulations the versions for random variables are immediately
obtained, e. g., if ξ1, ξ2, η are random variables, then the first equation in (4.7.iv) has the form

I(ξ1, ξ2; η) = I(ξ1; η) + I(ξ2; η |ξ1).

Clearly, nonnegativity and monotonicity also hold for entropy and conditional entropy as a
special case. The monotonicity and the symmetry directly follow from the definitions. For a
proof of the relations in the first line of (4.7.i) see (Bradley, 2007, Th. 5.3). The relations in the
second line and the chain rules in (4.7.iv) follow from the proofs in Wyner (1978) basically by
replacing there the σ-algebras generated by random variables with general σ-algebras. For a
definition of a Markov chain see Paragraph A.2. Applying the chain rules to I(A; A ∨ B) and
I(A; A∨B|C) and using the fact that A, A, B and A, A∨C, B both form a Markov chain yields
the equalities in (4.7.v). These equalities and the nonnegativity of the information measures
imply the inequalities in (4.7.v). The results in (4.7.vi) are also based on the chain rule and on
(4.7.i) as shown, e. g., in (Ihara, 1993, Lem. 4.2.2).

The representation of mutual information for completely atomic σ-algebras in (4.7.vii) is de-
rived in (Bradley, 2007, Rmk. 5.5.f). The corresponding result for the conditional mutual informa-
tion is obtain similarly. See (Billingsley, 1965, Sec. 12) for the special case of conditional entropy.
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The principle argument is, that the sums in the definitions of the information measures increase
for refinements of partitions. A σ-algebra is completely atomic, e. g., if the probability measure
defined on it is the (countable) convex combination of Dirac measures (see Paragraph A.4). Fur-
ther special cases of completely atomic σ-algebras are finite σ-algebras and those generated by
discrete random variables or finite partitions (see Paragraph A.5). For example assume that ξ
and η are random variables with values in (X, X ) and (Y, Y), where X = {a1, a2, . . .} and
Y = {b1, b2, . . .} are finite or countable sets and X and Y are the corresponding power sets.
Then σ(ξ) and σ(η) are completely atomic σ-algebras and, e. g., the first identity in (4.7.vii) has
the form

I(ξ; η) =
∑
i,j

P(ξ = ai, η = bj) log P(ξ = ai, η = bj)
P(ξ = ai)P(η = bj) .

The entropy of a completely atomic σ-algebra with m atoms is upper bounded by log m due to
the concavity of the logarithm as derived, e. g., in (Gallager, 1968, Th. 2.3.1), where the case of
equality is also derived. That non-completely atomic σ-algebras have infinite entropy as claimed
in (4.7.viii) is shown in (Bradley, 2007, p. 170).

(4.9) Example (Conditional mutual information and Markov kernel). Let (X, X ), (Y1, Y1),
and (Y2, Y2) be measurable spaces. Suppose μ is a probability measure on X , κ is a Markov ker-
nel from (X, X ) to (Y1 ×Y2, Y1 ⊗Y2), and μκ denotes the probability measure on X ⊗Y1 ⊗Y2
induced by μ and κ as in Definition 2.1. Further assume that ξ, η1, and η2 denote the projections
from X × Y1 × Y2 to X , Y1, and Y2, respectively.
For fixed x ∈ X let I(η1(x); η2(x) |x) denote the mutual information between η1(x) and

η2(x), where η1(x) = η1(x, ·, ·) and η2(x) = η2(x, ·, ·) are considered as random variables on
the probability space (Y1 × Y2, Y1 ⊗ Y2, κ(x, ·)). If ξ, η1, and η2 are considered as random
variables on the probability space (X × Y1 × Y2, X ⊗ Y1 ⊗ Y2, μκ), then we have

I(η1; η2 |ξ) =
∫

X

I(η1(x); η2(x) |x) dμ(x)

for the mutual information between η1 and η2 given ξ. This result is derived similar to the
example in (Pinsker, 1964, pp. 32-34).

Now, we introduce the commonly used and maybe most natural version of (mutual) infor-
mation rate. Pinsker (1964, Sec. 5.4) gives a number of alternative definitions and derives in the
case of stationarity conditions under which the various forms are equal (Pinsker, 1964, Secs. 7, 8).
Some of these definitions have mathematical advantages, e. g., they allow to infer properties of
information rates for general processes from those known for finite-alphabet processes. See
also (Gray and Kieffer, 1980) and (Gray, 2011, Sec. 8.1, 8.2, 8.4) in this regard. However, the basic
definition below is sufficient in the context of this thesis.

(4.10) Definition (Information rate). Let A = {At, t ∈ T+} and B = {Bt, t ∈ T+} be two
families of sub-σ-algebras of F . Then the (mutual) information rate Ī(A;B) of A and B is
defined by

Ī(A;B) = lim
s→∞

1
s

I

( ∨
t∈(0,s]

At;
∨

t∈(0,s]
Bt

)
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if the limit exists. If ξ = {ξt, t ∈ T } and η = {ηt, t ∈ T } are two random processes, then the
(mutual) information rate Ī(ξ; η) of ξ and η is defined by

Ī(ξ; η) = Ī
(

{σ(ξt), t ∈ T+}; {σ(ηt), t ∈ T+}
)

.

(4.11) Remark. Clearly, we can also write

Ī(ξ; η) = lim
s→∞

1
s

I(ξs
0 ; ηs

0).

From (Pinsker, 1964, Th. 7.4.2) and the comments given there we obtain the following suffi-
cient conditions for the existence of the information rate.

(4.12) Lemma. Let ξ = {ξt, t ∈ T } and η = {ηt, t ∈ T } be random processes such that the
pair process {(ξt, ηt), t ∈ T } is stationary. In the continuous-time case assume that ξ and η are
continuous in the sense of Pinsker (see Definition B.5). If

I(ξ0
−; ξ+

t ) < ∞ or I(ξ0
−; ξt

0) < ∞ (1)

holds for some t ∈ T+ , then the information rate Ī(ξ; η) exists.

The next lemma is an important basic result, which is used in the form of Corollary 4.14 to
prove the central coding theorem (and converse) for abstract channels with time structure. The
special case in Corollary 4.14 is proved in (Mittelbach, 2012, Lem. 2.25, 2.26). The generalized
form in Lemma 4.13, that is based on σ-algebras and conditions for (conditional) mutual in-
formations rather than distributions, is shown similarly. The proof is given in Paragraph E.1 of
Appendix E for the sake of consistency and completeness of the presentation. Note that the exis-
tence of the information rate considered in Corollary 4.14 is already guaranteed by Lemma 4.12
because the second condition in (4.12.1) is satisfied. However, later we will make use of the
monotonicity result given in the corollary. This monotonicity is used also by Kadota andWyner
(1972) to prove a coding theorem for continuous-time channels. However, their proof in (Kadota
and Wyner, 1972, Appendix II) regarding the monotonicity is not correct as shown in (Mittel-
bach, 2012, Rmk. 2.27, Exp. 2.28). See also Paragraph 16.6 illustrating this issue.

(4.13) Lemma. Let A = {Ak, k ∈ N} be an independent family and B = {Bk, k ∈ N} be an
arbitrary family of sub-σ-algebras of F .
(i) If for all n ∈ N and k = 2, 3, . . . , n + 1

I

(
Ak−1;

n∨
l=1

Bl

∣∣∣∣ k−2∨
l=1

Al

)
= I

(
Ak;

n+1∨
l=2

Bl

∣∣∣∣ k−1∨
l=2

Al

)
(1)

holds, then the sequence
{

n−1I
(∨n

l=1 Al;
∨n

l=1 Bl

)
, n ∈ N

}
is monotonically increasing.

(ii) If for all m, n ∈ N

I

(
n∨

l=1
Al;

n∨
l=1

Bl

)
= I

(
m+n∨

l=m+1
Al;

m+n∨
l=m+1

Bl

)
(2)

holds, then the sequence
{

I
(∨n

l=1 Al;
∨n

l=1 Bl

)
, n ∈ N

}
is superadditive (see ParagraphD.1).
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In (i) as well as in (ii) the information rate Ī(A;B) exists and is given by

Ī(A;B) = sup
n≥1

1
n

I

(
n∨

l=1
Al;

n∨
l=1

Bl

)
.

(4.14) Corollary (Information rate for independent and stationary random sequences). Let ξ =
{ξk, k ∈ Z} be a sequence of independent and η = {ηk, k ∈ Z} be a sequence of arbitrary ran-
dom variables such that the pair sequence {(ξk, ηk), k ∈ Z} is stationary. Then the sequence
{I(ξn

0 ; ηn
0 ), n ∈ N} is superadditive, the sequence {n−1I(ξn

0 ; ηn
0 ), n ∈ N} is monotonically in-

creasing, the information rate Ī(ξ; η) exists, and it is given by

Ī(ξ; η) = sup
n≥1

1
n

I(ξn
0 ; ηn

0 ).

Proof. In Lemma 4.13 we put Ak = σ(ξk) and Bk = σ(ηk) for all k ∈ N. Since {ξk, k ∈ N}
is a sequence of independent random variables {Ak, k ∈ N} is an independent family of sub-
σ-algebras of F . Condition (4.13.1) as well as (4.13.2) are satisfied due to the stationarity of the
pair sequence {(ξk, ηk), k ∈ Z}. �

§5 Information Rate Capacity

The information rate capacity is an important performance parameter of a channel with time
structure, which represents, roughly speaking, the (asymptotic) solution of an extremum prob-
lem involving the mutual information (rate) between the channel input and output. Under suit-
able conditions it has an operational meaning as fundamental limit of reliable information trans-
mission as shown with a coding theorem (and converse) in Section §9. In this section, κ is a
channel with time structure as introduced in Definition 2.3 and E = {Es ⊂ Xs

0 , s ∈ T+} is a
family of input constraints, specified, e. g., by cost functions as in Example 3.2. First, we define
the information rate capacity of κ for the constraints E and make some remarks on the benefits
of the introduced version compared to what is proposed in the literature. Then we derive useful
equivalent representations of the information rate capacity of stationary channels. More com-
ments and results in this regard are given in Section §10 and in the discussion in Section §11.

(5.1) Definition (Information rate capacity). The information rate capacity of the channel κ
for the constraints E is defined by

C = lim sup
s→∞

1
s

Cs with Cs = sup
μ∈Ps

I
(
[X s

0 ]; [Ys
0 ]
)
. (1)

For any s ∈ T+ we denote by Ps the set of all s-i.i.d. probability measures (see Definition B.1)

μ =
⊗

k∈Z

〈μ0〉ks,

on the channel input σ-algebra X , where the probability measure μ0 on X s
0 has the form

μ0 =
m∑

i=1
piδai . (2)

The numberm of summands in (2) is finite and δai denotes theDiracmeasure (see ParagraphA.4)
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on X s
0 for the signal ai ∈ Es. The probabilities pi are positive

13 and satisfy
∑m

i=1 pi = 1. The
signals a1, a2, . . . , am are assumed to be pairwise distinct13.

(5.2) Remark. We have implicitly used the identities

X = ×
t∈T

Xt = ×
k∈Z

X
(k+1)s
ks and X =

⊗
t∈T

Xt =
⊗

k∈Z

X (k+1)s
ks .

Let ξt denote the projection from X × Y to Xt and ηt the projection from X × Y to Yt for all
t ∈ T . Then ξt and ηt are actually random variables on the channel input-output probability
space (X × Y, X ⊗ Y, μκ) and Cs can also be written as

Cs = sup
μ∈Ps

I
(
ξs

0; ηs
0
)
.

To define the information rate capacity of a channel with time structure the time index set T
is at first partitioned into segments of size s ∈ T+ . In the time period (0, s] we have the input
probability measure μ0, for which the probability mass is concentrated on a finite number of
input signals a1, a2, . . . , am satisfying the constraint Es. The probability measure 〈μ0〉ks is a
shifted copy of μ0 to the time period (ks, (k+1)s] and the probability measureμ is the countable
infinite product of all shifted versions of μ0, i. e., an s-i.i.d. probability measure. The set Ps is
composed of all s-i.i.d. probability measures μ generated by μ0 of the previously specified form.
The quantity Cs is the supremum of the mutual information between the channel input and
output within the time period (0, s], where the supremum is taken w. r. t. all input probability
measures μ fromPs. Finally, normalizing Cs by the time duration s and taking the limit superior
w. r. t. s defines the information rate capacityC in [nat/channel use] if T = Z or in [nat/second] if
T = R. Note that optimizing w. r. t. s-i.i.d., i. e., s-stationary and s-memoryless input probability
measures, is associated with the potential application as performance parameter for information
transmission using block codes.
The definition of information rate capacity is based on the one of Kadota and Wyner (1972),

however, with a significant difference regarding the structure of the probability measure μ0.
In Definition 5.1 only probability measures μ0 with finite support on the constraint set Es are
considered. In the generalization of Kadota and Wyner’s definition – they consider the spe-
cial case of a continuous-time channel with real-valued input and output signals – to abstract
channels with time structure (5.1.2) is replaced by a probability measure μ0 for which the outer
μ0-measure of the constraint set Es is equal to 1 (see Definition 10.1). The essential advan-
tage of considering only finitely supported probability measures is that the proof of the central
coding theorem in Section §9 is identical for the cases of finite and infinite information rate
capacity. This allows a simplified proof and, more importantly, a weakening of the conditions
on the channel properties. The limitations of Kadota and Wyner’s version in this respect are
discussed in Remark 10.4. The relations between the different versions of information rate cap-
acity are analyzed in detail in Section §10 showing together with the theorems in Section §9
that Definition 5.1 provides the adequate form.
An additional benefit of the introduced definition is that it is more closely related to the

(possible) operational meaning in connection with coded information transmission. Using this
specific form is inspired by the work of Kemperman (1974). For the special case of a discrete-
time memoryless channel (see Example 13.8) also Gallager (1968, p. 318/324), Wagner (1968) or

13This assumption is not necessarily required but convenient and means no loss of generality.
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Schwarte (1996) considered a capacity definition based on finitely supported input measures.
Further note that neither Es ∈ X s

0 nor {ak} ∈ X s
0 is required for the definition of μ0 in

(5.1.2). This is a convenient technical detail making the use of so-called standard extensions
(see Paragraph A.12) needless, which is required following Kadota and Wyner’s approach. A
continuous-time channel with real-valued input signals and an amplitude or average power
constraint (see Examples 2.4 and 3.2), is an example, where this is relevant because Es /∈ X s

0
and {ak} /∈ X s

0 .

In the next lemma, representations of the information rate capacity are given, which are
useful, e. g., to prove a coding theorem (or converse) for stationary channels or to show under
suitable conditions the equality of the previously discussed versions of information rate cap-
acity. The identity (5.3.1) below was shown in (Mittelbach, 2012, Lem. 5.9) for a continuous-time
channel with real-valued input signals and an amplitude or average power constraint. A proof of
the subsequent generalized form including the derivation of the second identity (5.3.2) is given
in Paragraph E.2 of Appendix E.

(5.3) Lemma (Information rate capacity of stationary channels). Consider the information rate
capacity C = lim sups→∞ Cs/s introduced in Definition 5.1 and assume that the channel κ is
stationary and the family E of input constraints satisfies the regularity condition (3.1.4). Then we
have the identities

C = sup
s∈T+

1
s

Cs, (1)

C = sup
μ∈P

Ī(μ), Ī(μ) = lim
s→∞

1
s

I
(
[X s

0 ]; [Ys
0 ]
)
, (2)

where P =
⋃

s∈T+
Ps with Ps as defined in Definition 5.1.

(5.4) Remark. If ξ = {ξt, t ∈ T } and η = {ηt, t ∈ T } are the families of projections ξt and ηt

introduced at the beginning of Remark 5.2, then with Remark 4.11 we can write

Ī(μ) = lim
s→∞

1
s

I(ξs
0 ; ηs

0) = Ī(ξ; η),

i. e., according to (5.3.2) the information rate capacity can be represented as supremum of infor-
mation rates. This is actually the real justification, at least under the conditions of Lemma 5.3,
of using the term information rate capacity adopted from (Gray, 2011, Sec. 14.4). Since we only
consider situations, where this conditions are satisfied we use the name in general. Note that
the information rate Ī(ξ; η), i. e., the limit, indeed exists for all μ ∈ P as shown in the proof
of Lemma 5.3 in Paragraph E.2. A result in the direction of (5.3.2) is given, e. g., in (Gray, 2011,
Lem. 14.5). However, only for the very special case of a causal stationary discrete-time channel
with no input memory and finite alphabets.

Identity (5.3.2) relates two basic approaches to define information capacities for channels
with time structure. The quantity in Definition 5.1 is the limit (superior) of suprema of mutual
informations for finite duration. In contrast, (5.3.2) characterizes the capacity as supremum of
information rates, i. e., of limits. The former type is also considered by Gallager (1968, p. 370) or
Wolfowitz (1978, p. 56). It is the more natural generalization of Shannon’s original definition of
information capacity, is more amenable to numerical calculations, and indicates more clearly the
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relationship to its operational meaning for block-coded information transmission, which is what
we are interested in. The latter form can be advantageous for mathematical reasons and is called
process definition byGray (2011, p. 369). For the information-theoretic analysis of channels with
memory it has a long history from (Khinchin, 1957, p. 91) or (Feinstein, 1958, p. 87) to (Kakihara,
1999, p. 167) or (Gray, 2011, p. 367). See also (Gray and Ornstein, 1979, p. 302) for further classical
references and (Wolfowitz, 1978, p. 60/61) for remarks on the different approaches.

§6 f -Divergence

As overviewed in (Gibbs and Su, 2002) there are many ways to quantify the difference be-
tween two (probability) measures. We are interested in the so-called f -divergence introduced
by Csiszár (1963), which specifies a whole class of such quantities. After defining f -divergence
we collect some material including alternative representations and useful properties. We are
particularly interested in relative entropy and total variation distance and properties of these
special f -divergences. Based on divergence measures we define in Section §7 (and already de-
fined in Section §4 with the mutual information) dependence measures, which, in turn, are used
later to define different types of memory for random processes and channels with time structure.
Furthermore, we can express the property of asymptotic input-memorylessness introduced in
(2.7.iv) using the total variation distance, which is helpful in later derivations.

The material on the f -divergence is taken from (Csiszár, 1963, 1967). Further references are
given below, if results are taken from somewhere else. Throughout this section, (X, X ) will be
a measurable space and P and Q are probability measures on X . Furthermore, f is a real-valued
convex function14 on (0, ∞).

(6.1) Definition (f -divergence). The f -divergence of P and Q is defined as

Df(P‖Q) = sup
n∑

i=1
Q(Ai)f

(
P(Ai)
Q(Ai)

)
, (1)

where the supremum is taken w. r. t. all partitions {A1, A2, . . . , An} of X with Ai ∈ X .
Suppose ξ and η are random variables with values in (X, X ) such that P and Q are the

distributions of ξ and η, respectively. Then the f -divergence of ξ and η is defined by

Df(ξ‖η) = Df (P‖Q).

In the next theorem an integral form of the f -divergence is given, which is useful in calcula-
tions. Often this representation is taken as definition, e. g., in (Csiszár, 1963, § 1).

(6.2) Theorem (Integral form of f -divergence). Assume thatλ is a σ-finite15 measure w. r. t. which
P and Q are absolutely continuous (see Paragraph A.7). If p and q denote the corresponding λ-
densities, then the f -divergence of P and Q is given by

Df (P‖Q) =
∫

X

q(x)f
(

p(x)
q(x)

)
dλ(x). (1)

14The following conventions are used to avoid meaningless expressions: f(0) = limu→+0 f(u), 0·f( 0
0
)

= 0,
and 0·f(a

0
)

= limε→+0 εf
(

a
ε

)
= a limu→∞ f(u)

u
for 0 < a < ∞.

15If the space X is the countable union of X -measurable sets with finite λ-measure, then λ is called σ-finite.
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(6.3) Remark. A measure λ with the required properties always exists, e. g., λ = P + Q is a
possible choice. The λ-densities can be chosen nonnegative and finite everywhere. Due to the
convexity of f , the integral is always meaningful. Its value does not depend on the particular
choice of λ.
If P is absolutely continuous w. r. t. Q, then (6.2.1) simplifies because we can choose λ = Q

so that q(x) = 1 for all x ∈ X . If limu→∞ f(u)/u = ∞, then we have

Df(P‖Q) =

⎧⎪⎨
⎪⎩
∫

X

f
(
p(x)

)
dQ(x) if P 
 Q

∞ otherwise

, (1)

where p denotes the Q-density of P, given P is absolutely continuous w. r. t. Q, which is denoted
by P 
 Q.

(6.4) Properties of f-divergence.
(i) Lower bound:

Df (P‖Q) ≥ f(1)

If f is strictly convex, then equality holds if and only if P = Q.
(ii) Data processing inequality: Let (Y, Y) be ameasurable space and assume thatK is aMarkov

kernel from (X, X ) to (Y, Y). Let P̄ and Q̄ denote the probability measures on Y given by

P̄(B) =
∫

X

K(x, B) dP(x), Q̄(B) =
∫

X

K(x, B) dQ(x)

for all B ∈ Y . Then we have the inequality

Df (P‖Q) ≥ Df(P̄‖Q̄).

In particular, if g is an X /Y-measurable function on X with values in Y , then

Df(P‖Q) ≥ Df (Pg‖Qg)

holds, where Pg and Qg denote the image measures of P and Q w. r. t. g. If f is strictly
convex, then equality holds if and only if g is a sufficient statistic.

(6.5) Remark. Note that in general the f -divergence is not ametric because it is not symmetric.
However, if f̂ is the real convex function given by

f̂(u) = uf

(
1
u

)

for all u ∈ (0, ∞), then we have

Df̂(Q‖P) = Df(P‖Q).

Also, in general the f -divergence does not satisfy the triangle inequality.
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In statistics, a number of special f -divergences are widely used. In (Csiszár, 1967, § 1), (Csiszár
and Shields, 2004, p. 447), or (Gilardoni, 2010, Sec. I.C) several popular examples are given. Sub-
sequently, we consider the total variation distance and the relative entropy.

(6.6) Definition (Total variation distance). If the function f is given by

f(u) = |u − 1|
for all u ∈ (0, ∞), then the f -divergence is called total variation distance and we write

Df(P‖Q) = ‖P − Q‖tv.

(6.7) Remark. Let {A1, A2, . . . , An} be a partition of X with Ai ∈ X . Without loss of gener-
ality we assume that for some m ∈ {0, 1, . . . , n} the inequality P(Ai) − Q(Ai) ≥ 0 holds for
all 1 ≤ i ≤ m and the inequality P(Ai) − Q(Ai) ≤ 0 holds for all m < i ≤ n. Since the Ai’s
form a partition, we have

n∑
i=1

|P(Ai) − Q(Ai)| =
(
P(G) − Q(G)

)
+
(
Q(Gc) − P(Gc)

)
= 2 |P(G) − Q(G)|,

where G =
⋃m

i=1 Ai. Thus, Definition 6.1 simplifies in the case of the total variation distance to

‖P − Q‖tv = 2 sup
A∈X

|P(A) − Q(A)|, (1)

which is the form commonly used as definition. Note that in the literature the notation is not con-
sistent. The quantity is also called variation (Pinsker, 1964, p. 6), variation(al) distance (Csiszár,
1967, p. 301), or total variation (Kemperman, 1969, p. 2174). Furthermore, the factor 2 appearing
on the right-hand side of (1) is often omitted.
It is easily verified that the total variation distance is a metric, which is bounded by

0 ≤ ‖P − Q‖tv ≤ 2. (2)

From (1) we see that ‖P − Q‖tv = 0 holds if and only if P = Q.

(6.8) Definition (Relative entropy). If the function f is given by

f(u) = u log u

for all u ∈ (0, ∞), then the f -divergence is called relative entropy and we write

Df(P‖Q) = D(P‖Q).

(6.9) Remark. Since the relative entropy was introduced by Kullback and Leibler (1951) it is
also called Kullback-Leibler divergence. There are many other names used in the literature,
including generalized entropy (Pinsker, 1964, p. 19) and I-divergence (Csiszár, 1967, p. 301).
Due to (6.4.i) the relative entropy is nonnegative and because f is strictly convex it is 0 if and

only if the two probability measures are identical.



§6 f -Divergence 31

The properties in Paragraph 6.4 are valid for any f -divergence. In addition, we want to list
some specific properties of the relative entropy and the total variation distance useful later on.

(6.10) Properties of relative entropy and total variation distance.

(i) Pinsker’s inequality:

‖P − Q‖tv ≤
√

2D(P‖Q)

(ii) Relative entropy for product measures: Suppose (X1, X1) is a measurable space and P1 and
Q1 are probability measures on X1. Further, suppose (X2, X2) is a measurable space and
P2 and Q2 are probability measures on X2. Then we have

D(P1 ⊗ P2‖Q1 ⊗ Q2) = D(P1‖Q1) + D(P2‖Q2).

(iii) Relative entropy between random sequences: Let ξ = {ξk, k ∈ N} and η = {ηk, k ∈ N} be
two sequences of random variables, where ξk and ηk have values in the same measurable
space (Xk, Xk). Then we have

D(ξ‖η) = lim
n→∞ D(ξn

0 ‖ηn
0 ).

(iv) Singularity of Gaussian processes: If ξ = {ξt, t ∈ T } and η = {ηt, t ∈ T } are two Gaussian
processes (either discrete- or continuous-time) and

D(ξ‖η) + D(η‖ξ) = ∞,

then

‖P − Q‖tv = 2,

where P and Q denote the distribution of ξ and η.
(v) Total variation distance and integration: For any real-valued X -measurable function g on

X satisfying |g| ≤ c for some positive constant c we have∣∣∣∣
∫

X

g dP −
∫

X

g dQ
∣∣∣∣ ≤ c‖P − Q‖tv.

(6.11) Remark. The inequality in (6.10.i) goes back to Pinsker (1964, Sec. 2.3). A proof of the
given form can be found in (Csiszár, 1967, Th. 4.1) or (Kemperman, 1969, Sec. 6.2). The inequality
provides a useful upper bound of the total variation distance, in particular, because often it is
difficult to calculate the total variation distance exactly.
To prove the factorization result in (6.10.ii) we observe that the product measure P1 ⊗ P2

is absolutely continuous w. r. t. the product measure Q1 ⊗ Q2 if and only if P1 is absolutely
continuous w. r. t. Q1 and P2 is absolutely continuous w. r. t. Q2. Then P1 ⊗ P2 has Q1 ⊗ Q2-
density p1p2, where p1 is the Q1-density of P1 and p2 is the Q2-density of P2. With (6.3.1) and
the properties of the logarithm we obtain the assertion.
Regarding (6.10.iii) the defining relation in (6.1.1) or the data processing inequality in (6.4.ii)

(see (Csiszár, 1963, Folg. 4)) yield the monotonicity

D(ξn
0 ‖ηn

0 ) ≤ D(ξn+1
0 ‖ηn+1

0 ).
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Therefore, the limit (possibly infinite) exists and we have

lim
n→∞ D(ξn

0 ‖ηn
0 ) ≤ D(ξ‖η).

The reversed inequality can be shown with Dobrushin’s theorem (Pinsker, 1964, Th. 2.4.1) simi-
lar to the proof given in (Pinsker, 1964, p. 12).
The result in (6.10.iv) is quite interesting because Pinsker’s inequality usually forces the di-

rection of an implication involving relative entropy and total variation distance. It is a direct
consequence of a theorem of Hájek (1958)16 and Feldman (1958)17 and the characterization of
total variation distance given in (6.7.1). A proof is also given in (Ibragimov and Rozanov, 1978,
Ch. III, Th. 1) or (Hida and Hitsuda, 2007, Th. 6.1).
The inequality in (6.10.v) follows from the characterization of the total variation distance

given in (Gibbs and Su, 2002, p. 7).

(6.12) Example (Relative entropy of Gaussian random vectors and sequences). Suppose ξn
0 =

(ξ1, ξ2, . . . , ξn) is a real, n-dimensional Gaussian random vector with invertible covariance ma-
trix Σξ and expectation vector mξ . Further, let ηn

0 = (η1, η2, . . . , ηn) be a another real, n-
dimensional Gaussian random vector with invertible covariance matrix Ση and expectation vec-
tor mη . Then the relative entropy of ξn

0 and ηn
0 is given by

D(ξn
0 ‖ηn

0 ) = 1
2

(
log det

(
ΣηΣ−1

ξ

)
+ tr

(
ΣξΣ−1

η

)
− n
)

+ 1
2tr
(

Σ−1
η dd′

)
,

where d′ denotes the transpose of the vector d = mξ − mη . In particular, we have

D(ξk‖ηk) = 1
2

(
log
(

var(ηk)
var(ξk)

)
+ var(ξk)

var(ηk) − 1
)

+ 1
2 var(ηk)

(
E(ξk) − E(ηk)

)2
. (1)

This result is taken from (Kullback, 1968, p. 189).
To discuss some specific examples let us define the matrices

A = diag(a1, a2, . . . , an), B = diag(b1, b2, . . . , bn), S(ρ) = σ2
(

ρ|i−j|
)n

i,j=1
,

where ak , bk , and σ are positive constants and ρ is a real constant satisfying |ρ| < 1. The ma-
trix S(ρ) is a scaled Kac-Murdock-Szegö matrix (see Paragraph D.2) and therefore a symmetric
Toeplitz matrix.

(i) Equal covariance. If Σξ = Ση , then we have

D(ξn
0 ‖ηn

0 ) = 1
2tr
(

Σ−1
η dd′

)
= 1

2d′Σ−1
η d. (2)

For the special case Σξ = Ση = A the components of the Gaussian vectors ξn
0 and ηn

0 are
independent and we obtain from (6.10.ii) and (1)

D(ξn
0 ‖ηn

0 ) =
n∑

k=1
D(ξk‖ηk) = 1

2

n∑
k=1

d2
k

ak
, (3)

16Russian original, see (Hájek, 1961) for English translation.
17See (Feldman, 1959) for corrections.
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where dk is the kth component of the vector d. Of course, D(ξn
0 ‖ηn

0 ) can also be calculated
directly from (2).
For the special case Σξ = Ση = S(ρ) we obtain

D(ξn
0 ‖ηn

0 ) = 1
2(1 − ρ2)σ2

(
n∑

k=1
d2

k + ρ2
n−1∑
k=2

d2
k − 2ρ

n−1∑
k=1

dkdk+1

)
(4)

by using (2) and (D.2.1). We can upper bound (4) by

D(ξn
0 ‖ηn

0 ) ≤ 2
(1 − ρ2)σ2

n∑
k=1

d2
k (5)

using |ρ| < 1 and the Cauchy-Schwarz inequality for real vectors. For ρ = 0 the covariance
matrices are equal to the identity matrix and in (4) only the first sum remains.
(ii) Equal expectation. If mξ = mη , then we have

D(ξn
0 ‖ηn

0 ) = 1
2

(
log det

(
ΣηΣ−1

ξ

)
+ tr

(
ΣξΣ−1

η

)
− n
)

. (6)

Suppose the covariance matrices are given by Σξ = A and Ση = B. Then either from (6) or
from (6.10.ii) together with (1) we obtain

D(ξn
0 ‖ηn

0 ) =
n∑

k=1
D(ξk‖ηk) = 1

2

n∑
k=1

(
log
(

bk

ak

)
+ ak

bk
− 1
)

. (7)

Alternatively, assume that Σξ = S(ρξ) and Ση = S(ρη), where |ρξ| < 1 and |ρη| < 1.
Applying (D.2.1) and (6) yields

D(ξn
0 ‖ηn

0 ) = (n − 1)
(

1
2 log

(1 − ρ2
η

1 − ρ2
ξ

)
+

ρ2
η − ρξρη

1 − ρ2
η

)
, (8)

where we have also used (D.2.2).
(iii) Random sequences. Assume that ξ = {ξk, k ∈ N} and η = {ηk, k ∈ N} are second order

Gaussian random sequences and as before let us put dk = E(ξk) − E(ηk). According to (6.10.iii)
the relative entropy of ξ and η is given by the limit

D(ξ‖η) = lim
n→∞ D(ξn

0 ‖ηn
0 ). (9)

We consider some examples related to those of part (i) and (ii). First, suppose ξ and η are se-
quences of independent Gaussian random variables. If

var(ξk) = var(ηk) = ak > 0,

then D(ξn
0 ‖ηn

0 ) in (9) is given by (3). If dk = 0 and

var(ξk) = ak > 0 and var(ηk) = bk > 0,
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then D(ξn
0 ‖ηn

0 ) in (9) is given by (7). Now suppose the covariances are given by

cov(ξi, ξj) = cov(ηi, ηj) = σ2ρ|i−j|, (10)

where σ2 > 0 and |ρ| < 1. Then D(ξn
0 ‖ηn

0 ) in (9) is equal to (4). If dk = 0 and

cov(ξi, ξj) = σ2ρ
|i−j|
ξ and cov(ηi, ηj) = σ2ρ|i−j|

η ,

where σ2 > 0, |ρξ| < 1 and |ρη| < 1, then D(ξn
0 ‖ηn

0 ) in (9) is equal to (8).

Depending on the moments the limit in (9) is either some finite value or is infinite for the first
three examples. However, in the last example we take the limit of (8) as n → ∞, i. e., there are
only two possibilities:

D(ξ‖η) =
{

0 if ρξ = ρη

∞ if ρξ �= ρη

.

Togetherwith (6.10.iv) we further conclude that for ρξ �= ρη the total variation distance between
the distribution P of ξ and the distribution Q of η takes the maximum possible value, i. e.,

‖P − Q‖tv = 2.

Consider the random sequences ξ̂ = {ξ̂k, k ∈ N} and η̂ = {η̂k, k ∈ N} with ξ̂k = ckξk and
η̂k = ckηk , where the ck’s are nonzero constants. From (6.4.ii) we have

D(ξ̂‖η̂) = D(ξ‖η),

because the random sequences ξ̂ and η̂ are obtained from the random sequences ξ and η by the
same bijective transformation. For the previously discussed example it follows that the total
variation distance has still the maximum value, even if the processes are multiplied by rapidly
decaying (but nonzero) constants. This illustrates the sensitivity of the total variation distance
as a metric for distributions of random processes.

§7 Dependence Measures

To quantify “how dependent“ two random variables are, it is natural to measure somehow the
difference between the joint distribution and the product of the marginal distributions. As a
measure of difference we can use, for example, the f -divergence introduced in the previous
section. A specific measure of this type is the mutual information considered in detail in Sec-
tion §4. There are many more dependence coefficients used in the literature that are not based
on the f -divergence, e. g., the α- or ψ-dependence coefficient. The book of Bradley (2007) is a
comprehensive reference in this regard.

In this section we define the α-, β- and ψ-dependence coefficient and collect some relevant
properties. We further introduce the ψ-variation as a generalization of the ψ-coefficient. Based
on the material of this section we define and analyze memory conditions for random processes
and channels with time structure in Sections §12 and §13.
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(7.1) f-divergence as a measure of dependence. Suppose ξ and η are random variables on
the same probability space (Ω, F , μ) with values in the measurable spaces (X, X ) and (Y, Y),
respectively. Then, the mutual information between ξ and η is given by

I(ξ; η) = D
(
μξ,η‖μξ ⊗ μη

)
, (1)

which can be seen from the representation (4.4.1) and the integral form of relative entropy given
in (6.3.1). Thus, mutual information measures the difference between the joint distribution μξ,η

and the product μξ ⊗μη of the marginal distributions in terms of relative entropy. It is therefore
a measure18 of dependence, which is zero if and only if the random variables are independent.
Note that there is another representation of mutual information in terms of relative entropy,

which is, for example, useful to solve optimization problems related to the computation of the
information capacity of a channel. Based on the identity (see (Csiszár, 1978, Sec. 4))

D
(
μξ,η‖μξ ⊗ ν

)
= I(ξ; η) + D(μη‖ν)

and Remark 6.9 we have

I(ξ; η) = min
ν

D
(
μξ,η‖μξ ⊗ ν

)
,

where the minimum is takenw. r. t. all probability measures ν onY . See (Huang andMeyn, 2005)
for an application in the context of calculating information capacities.
Any other f -divergence, which is zero if and only if the probability measures are equal, is suit-

able to define a dependence coefficient. For example, the well-known β-dependence coefficient
is based on the total variation distance. It is given by

β(ξ; η) = 1
2
∥∥μξ,η − μξ ⊗ μη

∥∥
tv. (2)

See (Bradley, 2007, Def. 3.3, Cor. 3.30) for the form given here.

Before we define further non-f -divergence-based dependence measures we introduce the ψ-
variation. It is a more general quantity than the ψ-dependence coefficient, just as relative en-
tropy is a generalization of mutual information. The term ψ-variation is coined by the author.
The author is not aware of any reference, where the generalized ψ-variation is considered.

(7.2) Definition (ψ-variation). Let (X, X ) be a measurable space and suppose P and Q are
probability measures on X . The ψ-variation of P and Q is defined by

ψ(P‖Q) = sup
∣∣∣∣P(A)
Q(A) − 1

∣∣∣∣,
where the supremum is taken w. r. t. all A ∈ X with Q(A) > 0.

Suppose ξ and η are random variables with values in (X, X ) such that P and Q are the
distributions of ξ and η, respectively. Then we call

ψ(ξ‖η) = ψ(P‖Q)

the ψ-variation of ξ and η.

18Here, measure is not meant in a measure-theoretic sense.
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(7.3) Properties of ψ-variation. Let (X, X ) be a measurable space and suppose P and Q are
probability measures on X .
(i) Nonnegativity:

ψ(P‖Q) ≥ 0

Equality holds if and only if P = Q.
(ii) Data processing inequality: Let (Y, Y), K , P̄, Q̄, g, Pg , and Qg be given as in (6.4.ii) and as-

sume that theMarkov kernelK has the form of an integration channel (see Definition 15.1).
Then the inequality

ψ(P‖Q) ≥ ψ(P̄‖Q̄)

holds. In particular, we have

ψ(P‖Q) ≥ ψ(Pg‖Qg).

(iii) Probability measures on product spaces: Assume that (X, X ) is a product space given by
(X, X ) = (X1 × X2, X1 ⊗ X2). Then we have

ψ(P‖Q) = sup
∣∣∣∣P(A1 × A2)
Q(A1 × A2) − 1

∣∣∣∣,
where the supremum is taken w. r. t. all A1 ∈ X1 and A2 ∈ X2 with Q(A1 × A2) > 0.

(7.4) Remark. Assertion (7.3.i) is evident. A proof of (7.3.ii) is given in Paragraph E.3 in Ap-
pendix E. We conjecture that the assertion is true for all Markov kernels, not only for those
considered here.
Assertion (7.3.iii) means that the ψ-variation for measures on product spaces is already de-

termined by all rectangles. We do not need to consider all sets from the product-σ-algebra to
calculate the supremum. A proof is given in Paragraph E.4 in Appendix E. This result is the
bridge to the well-known ψ-dependence coefficient.

(7.5) Definition (α-, β-, and ψ-dependence coefficient). Let (Ω, F , μ) be a probability space
and A and B be sub-σ-algebras of F . Then we define

α(A; B) = sup
∣∣μ(A ∩ B) − μ(A)μ(B)

∣∣,
where the supremum is taken w. r. t. all A ∈ A and B ∈ B, and

ψ(A; B) = sup
∣∣∣∣ μ(A ∩ B)
μ(A)μ(B) − 1

∣∣∣∣,
where the supremum is takenw. r. t. allA ∈ A andB ∈ B satisfying the condition μ(A)μ(B) > 0.
Further, we define

β(A; B) = sup 1
2

m∑
i=1

n∑
j=1

∣∣μ(Ai ∩ Bj) − μ(Ai)μ(Bj)
∣∣,
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where the supremum is taken w. r. t. all partitions {A1, A2, . . . , Am} and {B1, B2, . . . , Bn} of
Ω with Ai ∈ A and Bj ∈ B.
Suppose ξ and η are random variables defined on (Ω, F , μ). Then we call

α(ξ; η) = α(σ(ξ); σ(η))
β(ξ; η) = β(σ(ξ); σ(η))
ψ(ξ; η) = ψ(σ(ξ); σ(η))

the α-dependence coefficient, β-dependence coefficient, and ψ-dependence coefficient of ξ and
η, respectively.

(7.6) Remark. The definitions are taken from (Bradley, 2007, Def. 3.3). Please note the different
nature of the coefficients. Theα-dependence measure is a supremum of differences, whereas the
ψ-dependencemeasure is a supremum of ratios. For both coefficients pairs of sets are considered,
whereas the β-dependence coefficient is defined w. r. t. pairs of partions.

Assume that the random variables ξ and η in Definition 7.5 have values in the spaces (X, X )
and (Y, Y), respectively. Then we have

α(ξ; η) = sup
∣∣μξ,η(F × G) − μξ ⊗ μη(F × G)

∣∣ (1)

= sup
∣∣μξ,η(A ∩ B) − μξ,η(A)μξ,η(B)

∣∣
= α

(
[X ]; [Y]

)
where μξ , μη , and μξ,η denote the distribution of ξ, η, and (ξ, η). According to Definition 7.5
the quantity α(ξ; η) refers to the ground probability space (Ω, F , μ). The quantity α([X ]; [Y]),
however, refers to the probability space (X×Y, X ⊗Y, μξ,η). The supremum in (1) is takenw. r. t.
all F ∈ X and G ∈ Y . This representation is obtained simply by moving from the ground space
to the product space of values and by using the definition of a product measure. The second
supremum is taken w. r. t. all A ∈ [X ] and B ∈ [Y]. The identity is a simple reformulation based
on the definition of marginal measures.
Correspondingly, we have

β(ξ; η) = 1
2
∥∥μξ,η − μξ ⊗ μη

∥∥
tv (2)

= sup
∣∣μξ,η(F ) − μξ ⊗ μη(F )

∣∣ (3)

= β
(
[X ]; [Y]

)
. (4)

The first identity is already given in (7.1.2) and follows from (Bradley, 2007, Cor. 3.30). The
supremum in (3) is taken w. r. t. all F ∈ X ⊗ Y . This representation of the total variation
distance is given in (6.7.1). The last equality is due to (Bradley, 2007, Th. 3.29).
Similarly, we have

ψ(ξ; η) = ψ
(
[X ]; [Y]

)
(5)

= sup
∣∣∣∣ μξ,η(F × G)
μξ ⊗ μη(F × G) − 1

∣∣∣∣ (6)

= ψ(μξ,η‖μξ ⊗ μη), (7)
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where the supremum (6) is taken w. r. t. all F ∈ X and G ∈ Y with μξ ⊗ μη(F × G) > 0.
The last identity is due to (7.3.iii) and demonstrates the connection between the ψ-variation and
the ψ-dependence coefficient. Please note the difference between ψ(ξ‖η) and ψ(ξ; η). In the
previous situation ψ(ξ‖η) does only make sense if (X, X ) = (Y, Y).
Note that in (6) it does not matter if the supremum is taken w. r. t. all sets of X ⊗ Y or only

w. r. t. rectangles. However, the suprema in (1) and (3) are not equal in general.

The properties of the dependence coefficients given next are formulated for random variables.
Of course, for (7.7.i)–(7.7.vi) corresponding results also hold for the σ-algebra based versions.

(7.7) Properties of α-, β-, and ψ-dependence coefficient. Let ξ, η, and ζ be random vari-
ables on the probability space (Ω, F , μ).
(i) Nonnegativity:

0 ≤ α(ξ; η), 0 ≤ β(ξ; η), 0 ≤ ψ(ξ; η).

Equality holds if and only if ξ and η are independent.
(ii) Monotonicity: If ξ = (ξ1, ξ2) is a random vector, then we have

α(ξ1; η) ≤ α(ξ; η), β(ξ1; η) ≤ β(ξ; η), ψ(ξ1; η) ≤ ψ(ξ; η).

(iii) Independence: If ξ = (ξ1, ξ2) and η = (η1, η2) are random vectors and (ξ1, η1) and (ξ2, η2)
are independent, then we have

α(ξ; η) ≤ α(ξ1; η1) + α(ξ2; η2)
β(ξ; η) ≤ 1 − (1 − β(ξ1; η1)

)(
1 − β(ξ2; η2)

)
≤ β(ξ1; η1) + β(ξ2; η2)

ψ(ξ; η) ≤ (1 + ψ(ξ1; η1)
)(

1 + ψ(ξ2; η2)
)− 1.

(iv) Markov chain: If we have the Markov chain (ξ − η − ζ), then the following equalities hold.

α(ξ; η, ζ) = α(ξ; η), β(ξ; η, ζ) = β(ξ; η), ψ(ξ; η, ζ) = ψ(ξ; η)

(v) Inequalities for α-, β-dependence coefficient and mutual information:

α(ξ; η) ≤ β(ξ; η) ≤
√

1
2

√
I(ξ; η)

(vi) Relation between ψ-dependence coefficient and mutual information:

I(ξ; η) ≤ (1 + ψ(ξ; η)
)

log
(
1 + ψ(ξ; η)

)
(vii) ψ-dependence coefficient and Gaussian distribution: If (ξ, η) is a 2-dimensional Gaussian

random vector, then we have

ψ(ξ; η) < 2 =⇒ cor(ξ, η) = 0.
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(viii) Covariance inequalities: Let c be a nonnegative constant and A and B be sub-σ-algebras of
F . Assume that ξ is real-valued and A-measurable satisfying |ξ| ≤ c. Further, assume that
η is real-valued and B-measurable satisfying |η| ≤ c. Then we have

∣∣E(ξη) − E(ξ)E(η)
∣∣ ≤ 4c2α(A; B),∣∣E(ξη) − E(ξ)E(η)
∣∣ ≤ E|ξ| E|η| ψ(A; B) ≤ c2ψ(A; B).

(ix) Special facts for independent random sequences: Assume that ξ = {ξk, k ∈ N} and η =
{ηk, k ∈ N} are random sequences such that the sequence {(ξk, ηk), k ∈ N} of 2-dimen-
sional vectors is independent.
If the pairs (ξk, ηk) are identically distributed with real-valued components and ξ1 and η1
are not independent, then we have

β(ξ; η) = 1.

If the random variables ξk and ηk are binary, i. e., they can take only two possible values,
then we have

α(ξ; η) ≤ 1
4 sup

k∈N

|cor(ξk, ηk)|.

Proof. Part (i). The assertion follows from (7.6.1), (7.6.3), and (7.6.6). In case of the ψ-dependence
coefficient the assertion alternatively follows from (7.3.i) and (7.6.7).

Part (ii). The monotonicity follows immediately from the supremum representations of the
dependence coefficients given in Definition 7.5.

Part (iii). For a derivation of this inequalities see (Bradley, 2007, Lem. 6.4, Th. 6.2).

Part (iv). For a proof see (Bradley, 2007, Th. 7.2).

Part (v). Comparing (7.6.1) and (7.6.3) yields the first inequality. To obtain the second inequal-
ity we combine (6.10.i), (7.1.1), and (7.6.2). Note, that the inequalities are given in (Bradley, 2007,
Prop. 3.11 (a), Th. 5.3 (III)) with different constants.

Part (vi). The inequality is easily derived based on Remark 4.2 and (7.6.6). See also (Bradley,
2007, Prop. 5.2 (I.c), Th. 5.3 (II)) in this regard.

Part (vii). The implication is obtained by combining Prop. 3.4 (d), Prop. 3.11 (a), and Th. 9.7 (I)
of (Bradley, 2007). The underlying result is due to Ibragimov and Linnik (1971, Th. 17.3.2).

Part (viii). The inequalities follow from (Bradley, 2007, Th. 4.4 (a1), (d1)).

Part (ix). The first assertion is taken from (Bradley, 2007, Th. 3.34). The second assertion is a
combination of Prop. 3.11 (b), Prop. 3.20, and Th. 6.1 of (Bradley, 2007). �

§8 Tools to Prove Achievability and Converse

We collect some classic information-theoretic results in a form suitable to serve as building
blocks to prove a coding theorem (and converse) for abstract channels with time structure.
Namely, we state a version of Feinstein’s fundamental lemma, Pinsker’s version of the ergodic
theorem of information theory, and Fano’s inequality. The original forms are published in
(Feinstein, 1954), (Pinsker, 1964), and (Fano, 1952).
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(8.1) Lemma (Feinstein’s lemma with input constraint). Let (Ω1 × Ω2, F1 ⊗ F2) be the product
of the measurable spaces (Ω1, F1) and (Ω2, F2), assume that P1 is a probability measure on F1,
and K is a Markov kernel from (Ω1, F1) to (Ω2, F2). Let P with

P(F ) =
∫

Ω1

K(ω1, Fω1) dP1(ω1), F ∈ F1 ⊗ F2,

denote the probability measure on F1 ⊗ F2 induced by P1 and K and let P2 denote the marginal
measure of P on F2. Assume that P has the Lebesgue decomposition (see (A.7.iii))

P(F ) =
∫

F

f dP1 ⊗ P2 + P(F ∩ N), F ∈ F1 ⊗ F2, (1)

where N is a suitable P1 ⊗ P2-nullset and f is the P1 ⊗ P2-density of Pa given by

Pa(F ) = P(F ∩ N c), F ∈ F1 ⊗ F2.

Let γ ∈ R, m ∈ N, and A ∈ F1 be arbitrary and consider the sets

G = (Gγ ∩ (A × Ω2)) ∪ N,

Gγ = {f > eγ} = {(ω1, ω2) ∈ Ω1 × Ω2 : f(ω1, ω2) > eγ}.

Then there exist elements a1, a2, . . . , am ∈ A and a partition {B1, B2, . . . , Bm} of Ω2 with
Bi ∈ F2 such that

K(ai, Bc
i ) < ε (2)

holds for all i = 1, 2, . . . , m, where ε is given by

ε = me−γ + P(Gc).

In particular, the assertion holds for

ε = me−γ + P(Gc
γ) + P1(Ac). (3)

(8.2) Remark. Feinstein’s lemma is a tool to prove coding theorems for channels with memory
in a transparent way. Sometimes this is called the method of maximal codes, which is different
from Shannon’s original random coding approach. There is a variety of versions of the lemma.
The original form of Feinstein (1954) is formulated for discrete spaces with a finite number of
elements. Feinstein also considered the application to discrete-time stationary channels and the
extension to arbitrary measurable output spaces. A formulation of the lemma for discrete-time
causal stationary channels with finite memory is also given by Khinchin (1957, Part II, Ch. IV).
This work is generalized to abstract spaces and information-stable channels by Dobrushin (1963,
Sec. 3). We state the lemma in purely stochastic terms without (direct) reference to a channel
setting. It is essentially the version of Kadota (1970), however, extended in a way to incorporate
input constraints represented by the set A. It is stated for abstract measurable spaces without
any further constraints. Input constraints are also included in the formulations of Thomasian
(1961, Th. 2) or Ash (1965, Lemma 8.2.1). A version for abstract spaces without considering input
constraints is also given in (Gray, 2011, Sec. 14.2) but the existence of densities is assumed there,
which corresponds to the case when the set N in Lemma 8.1 is equal to the empty set. For a
detailed proof of Lemma 8.1 please refer to (Mittelbach, 2012, Lem. 3.1, 3.3).
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In Lemma 8.1 we have the condition A ∈ F1 for the set A representing an input constraint.
This does not hold in general in the situation, where we want to apply the lemma. The corollary
below has the right form for which the constraint set A does not have to lie in the σ-algebra F1.
A comment on the possibility of using outer measures (see Paragraph A.11) in this case is also
made by Kemperman (1969, Rmk. 3.1). Corollary 8.3 is proved in Paragraph E.5 of Appendix E.

(8.3) Corollary. Consider the situation of Lemma 8.1 but assume that A ⊂ Ω1 is an arbitrary
set for which the outer P1-measure is equal to 1. Then the assertion of Lemma 8.1 holds for

ε = me−γ + P(Gc
γ). (1)

To prove a coding theorem using Feinstein’s lemma it is necessary to control the upper bound
ε of the (conditional) probability in (8.1.2), where the probability will correspond to the decoding
error. This is possible with the help of the ergodic theorem of information theory. We state the
theorem in a form given by Pinsker (1964, Th. 8.2.1). For a proof please refer to this reference.
We adopt the random variable based formulation because it is most clearly given this way.

(8.4) Theorem (Ergodic theorem of information theory). Assume that ξ = {ξt, t ∈ T } and η =
{ηt, t ∈ T } are random processes on the probability space (Ω, F , P). Suppose the pair process
{(ξt, ηt), t ∈ T } is stationary and ergodic and in the continuous-time case suppose ξ and η are
continuous in the sense of Pinsker (see Definition B.5). If one of the conditions in (4.12.1) is satisfied
and the information rate Ī(ξ; η) is finite, then we have for any ε > 0

lim
s→∞ P

(∣∣∣∣1s log f (s)(ξs
0, ηs

0
)− Ī(ξ; η)

∣∣∣∣ ≥ ε

)
= 0, (1)

where f (s) denotes the Pξs
0

⊗ Pηs
0
-density of Pξs

0,ηs
0
. By Pξs

0,ηs
0
, Pξs

0
, and Pηs

0
we denote the

distribution of (ξs
0 , ηs

0), ξs
0 , and ηs

0 , respectively.

(8.5) Remark. An equivalent way of expressing (8.4.1) is

1
s

log f (s)(ξs
0 , ηs

0) −−−−→
s→∞ Ī(ξ; η) (in probability).

Due to the first inequality in (4.7.ii) a finite information rate Ī(ξ; η) implies a finite mutual
information I(ξs

0 ; ηs
0) for all s ∈ T+ . Theorem 4.3 then implies that the density f (s) exists and

therefore (8.4.1) is well-defined.
On the one hand the conditions in (4.12.1) guarantee the existence of the information rate

Ī(ξ; η). On the other hand they imply the equality of the information rate with another type
of information rate defined in (Pinsker, 1964, (5.4.4)), which is required in the ergodic theorem.
Note that a more general condition than (4.12.1) is used in the original formulation of the the-
orem in (Pinsker, 1964, Th. 8.2.1). However, the employed conditions are easier to verify and
general enough in the context we want to apply the theorem. From (Pinsker, 1964, Th. 7.4.2)
and the comment thereafter it follows that (4.12.1) implies Pinsker’s more general form.
Consider the special case when {ξt, t ∈ T } and {ηt, t ∈ T } are random sequences, i. e. T = Z,

and the ξt’s are discrete random variables taking values in a finite set. Then it is easily verified
with the second inequality in (4.7.v) and the last in (4.7.vii), that all conditions of the ergodic
theorem are satisfied. If the ηt’s are also discrete random variables taking values in a finite
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set, then we have the special case formulated in (Pinsker, 1964, Th. 6.4.1), which is actually
McMillan’s version of the theorem.
Let us restate some comments and historical remarks from (Mittelbach, 2012, p. 69). The er-

godic theorem of information theory, often called asymptotic equipartition property, is formu-
lated in various degrees of generality. The stated form has the key advantage of being applicable
to random processes with values in arbitrary space, which is exactly what we need to prove a
coding theorem in the general context we are interested in. But note that the condition of finite
information rate is required. In the version of Kadota (1974) this condition is replaced by one
on the asymptotic behavior of a certain conditional mutual information and the theorem is for-
mulated for real-valued processes. In the form of Barron (1985, Th. 4) there is also no condition
on the finiteness of the information rate, but it only holds for random processes with values in
a standard Borel space.
Shannon (1948) stated the first theorem in this direction. It was strictly proved by McMil-

lan (1953) under more general conditions and was further generalized by Breiman (1957, 1960).
These classical results all consider the discrete-time case and finite alphabets and are usually
referred to as Shannon-McMillan-Breiman theorem. The Russian school of information the-
ory derived related results based on the concept of information stability, which applies to very
general situations. Girardin (2005) gives an overview over relevant work in this area with a
comparison on the modes of convergence and the allowed value spaces.

Fano’s inequality is a standard tool to prove a weak converse of a coding theorem. The version
below is given in terms of σ-algebras and partitions since it is used later in this form. See
(Billingsley, 1965, p. 81) or (Gallager, 1968, p. 78–79) for a proof of this result.

(8.6) Lemma (Fano’s inequality). Let (Ω, F , P) be a probability space, assume that A is the σ-
algebra generated by the partition {A1, A2, . . . , Am} of Ω with Ai ∈ F , and B is the σ-algebra
generated by the partition {B1, B2, . . . , Bm} of Ω with Bi ∈ F . Then the conditional entropy
H(A|B) of A given B satisfies the inequality

hm(pe) ≥ H(A|B),

where pe is given by

pe =
m∑

i=1
P(Ai ∩ Bc

i )

and the function hm is defined for integers m > 1 by

hm(x) = x log(m − 1) − x log x − (1 − x) log(1 − x), x ∈ [0, 1]. (1)



Chapter II

Coding Theorem and Converse for Abstract Channels with

Time Structure

Under quite general conditions we prove a block coding theorem and a converse for abstract
channels with time structure. Thereby, we establish the operational significance of the informa-
tion rate capacity C of Definition 5.1 for coded information transmission in the following sense.
For any code rate below C there exists a coding-decoding procedure such that the transmitted
messages, even though they are randomly corrupted by noise, can be inferred from the received
messages with arbitrarily low error probability. For any code rate above C , this is not possible.
In Section §9 we formulate and prove the theorems. In Section §10 we study the information
rate capacity introduced by Kadota and Wyner (1972) and show that it is equal to C if it has an
operational meaning in the sense of the coding theorem. The discussion of the results including
the discussion of contributions and related work is postponed to Section §11.

§9 Coding Theorem and Weak Converse

In this section, κ is a channel with time structure as introduced in Definition 2.3 and C is the
information rate capacity of κ for the family E = {Es ⊂ Xs

0 , s ∈ T+} of input constraints as
defined in Definition 5.1. We first state and prove the achievability result.

(9.1) Theorem (Coding theorem). Suppose the channel κ is stationary, causal, asymptotically
input-memoryless for the set E′′, and totally ergodic for block-i.i.d. inputs. The set E′′ is defined
in (3.1.3) based on the family E of input constraints, which is assumed to satisfy the regularity
condition (3.1.4).

(i) If the information rate capacity C for the constraints E is finite, then for any ρ ∈ (0, C),
ε ∈ (0, 1), and b0 ∈ T+ there exists a (b, Eb, E′′, e(C−ρ)b, ε)-code for some block length b ≥ b0.

(ii) If C is infinite, then for any R > 0, ε ∈ (0, 1), and b0 ∈ T+ there exists a (b, Eb, E′′, eRb, ε)-
code for some block length b ≥ b0.

(9.2) Remark. To require the asymptotic input-memorylessness on the set E′′ of input signals
is not the only possibility. However, it is convenient for the proof to consider a shift-invariant
set in connection with the assumption of a stationary channel.

For the set E∗
b defined in (3.1.1) we have E∗

b ⊂ E′′ so that the assertion of the coding theorem
is still valid if E′′ in (9.1.i) and (9.1.ii) is replaced by E∗

b . The robustness of the code w. r. t. this
set is typically sufficient (see comments in Paragraph 3.5).

Proof. (i) Setup. For the channel κ we adopt the notation of Definition 2.3. Let us fix some
ε ∈ (0, 1). If C < ∞ we fix some ρ ∈ (0, C) and put R = C − ρ. If C = ∞ then let R > 0
be arbitrary. Due to the definition of the information rate capacity given in Definition 5.1 there

43
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exists in both cases an s0 ∈ T+ and a μ ∈ Ps0 such that

R <
1
s0

I
(
ξs0

0 ; ηs0
0
)
. (1)

The notation is based on the projections ξt and ηt introduced in Remark 5.2. These are random
variables on the input-output probability space (X×Y, X ⊗Y, μκ)with themeasure μκ induced
by the input measure μ and the channel κ. We define the random sequences α = {αk, k ∈ Z}
and β = {βk, k ∈ Z} with

αk+1 = ξ
(k+1)s0
ks0

and βk+1 = η
(k+1)s0
ks0

.

By μ0 we denote the probability measure on X s0
0 from which the product measure μ is con-

structed as specified in Definition 5.1. Suppose μ0 is given by

μ0 =
M∑

i=1
piδai , (2)

where M is a natural number, pi is a positive probability, and δai denotes the Dirac measure for
the element ai ∈ Es0 , where ai �= aj if i �= j. We further define the sets

A0 =
{

ai : i ∈ {1, 2, . . . , M}}, An =
n−1×
k=0

〈A0〉ks0 , A = ×
k∈Z

〈A0〉ks0 . (3)

The channel κ is assumed to be asymptotically input-memoryless for the set E′′. Due to
(2.7.iv) this implies there exists a minimal l0 ∈ N, such that for any B ∈ Y+

0 and x, x̃ ∈ E′′

coinciding on (−l0s0, ∞) we have
∣∣κ(x, [B]) − κ(x̃, [B])

∣∣ <
ε

2 . (4)

It follows together with the stationarity of κ, the equality Y+
l0s0

= 〈Y+
0 〉l0s0 , and the shift-inva-

riance of the set E′′ that (4) holds for any B ∈ Y+
l0s0

and x, x̃ ∈ E′′ coinciding on (0, ∞).
(ii) Ergodic theorem. Since μ is an s0-i.i.d. probability measure and κ is a stationary channel

the properties of the random sequences α and β are such that we can apply Corollary 4.14 as
derived in part (E.2.i) of the proof of Lemma 5.3. Thus, the information rate Ī(α; β) exists and
we have the following inequalities

1
s0

I(α1; β1) ≤ 1
ns0

I(αn
0 ; βn

0 ) ≤ 1
s0

Ī(α; β) ≤ 1
s0

log M (5)

for any n ∈ N. For the inequality on the right-hand side we have also used

I(αn
0 ; βn

0 ) ≤ log Mn. (6)

Since μ0 is given by (2) and the distribution of αn
0 is

⊗n−1
k=0 〈μ0〉ks0 the σ-algebra X ns0

0 is com-
pletely atomic with Mn atoms (see (E.2.3) and Paragraph A.5). Taking Remark 4.2 into account,
using the second inequality in (4.7.v), and the last in (4.7.vii) yields the upper bound of I(αn

0 ; βn
0 ).
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The channel κ is assumed to be totally ergodic for block-i.i.d. inputs, thus it is s0-ergodic for
s0-i.i.d. inputs. Because μ is an s0-i.i.d. probability measure we obtain the s0-stationarity and
s0-ergodicity of the input-output probability measure μκ according to (2.7.ii). Therefore, the
pair sequence {(αk, βk), k ∈ Z} is stationary and ergodic. Furthermore, the information rate
Ī(α; β) is finite due to (5) and I(α0

−; α1) = 0 holds because {αk, k ∈ Z} is an i.i.d.-sequence.
As a consequence we can apply Theorem 8.4 and obtain for any ε∗ > 0

lim
n→∞ μκ

(
f (n)(αn

0 , βn
0 ) ≤ en(Ī(α;β)−ε∗)

)
= 0, (7)

where f (n) denotes the density of the distribution of (αn
0 , βn

0 ) w. r. t. the product of the distribu-
tions of αn

0 and βn
0 . This density exists for all n ∈ N since Ī(α; β) is finite.

(iii) Code size. Let us fix

ε∗ = 1
3
(
Ī(α; β) − Rs0

)
, (8)

which is positive because of (1) and (5). Further, due to (7) we can choose a sufficiently large
n0 ∈ N, such that

e−n0ε∗
<

ε

4 (9)

Rl0s0 + 1 < n0ε∗ (10)

μκ
(
(αn0

0 , βn0
0 ) ∈ Gc

γ

)
<

ε

4 (11)

hold simultaneously, where

Gγ =
{

f (n0) > eγ
}

and γ = n0(Ī(α; β) − ε∗). (12)

We continue by choosing an m ∈ N that satisfies

eR(n0+l0)s0 < m < eRn0s0+n0ε∗
, (13)

which is possible due to (10). From (8), (9), and the right-hand side of (13) we obtain

me−γ = e−2n0ε∗+(log m−Rn0s0) < e−n0ε∗
<

ε

4 . (14)

(iv) Feinstein’s lemma. Let us put t0 = n0s0. Based on the probability measure μ0 given in
(2) we define the product measures

μ− =
∞⊗

k=1
〈μ0〉−ks0 , μ′

0 =
n0−1⊗
k=0

〈μ0〉ks0 , μ+ =
∞⊗

k=n0

〈μ0〉ks0

on X 0
−, X t0

0 , and X +
t0 , respectively. Further, we define for any x0 ∈ Xt0

0 and B ∈ Yt0
0

κ̄(x0, B) =
∫

X0
−×X+

t0

κ
(
(x−, x0, x+), [B]

)
dμ− ⊗ μ+(x−, x+)
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using for x ∈ X the representation as 3-tupel x = (x−, x0, x+) ∈ X0
− × Xt0

0 × X+
t0 . According

to (A.3.iii) κ̄ is a Markov kernel from (Xt0
0 , X t0

0 ) to (Y t0
0 , Yt0

0 ) and it induces together with μ′
0

a probability measure on X t0
0 ⊗ Yt0

0 , say μκ′
0, given for any F ∈ X t0

0 ⊗ Yt0
0 by

μκ′
0(F ) =

∫
X

t0
0

κ̄(x0, Fx0 ) dμ′
0(x0).

From the definition of μκ, αn0
0 , βn0

0 , and κ̄ as well as from the product structure of μ and part
(A.8.i) of Fubini’s theorem we obtain that μκ′

0 is the distribution of (αn0
0 , βn0

0 ). Furthermore,
μ′

0 is the distribution of αn0
0 and ν′

0 is the distribution of βn0
0 , where ν′

0 denotes the marginal
measure of μκ′

0 on Yt0
0 . It follows that the function f (n0) used to define the set Gγ in (12) is the

μ′
0 ⊗ ν′

0-density of μκ′
0 and

μκ′
0
(
Gc

γ

)
= μκ

(
(αn0

0 , βn0
0 ) ∈ Gc

γ

)
. (15)

Consider the sets A0 and An0 defined in (3). Since the outer μ0-measure of A0 is equal to
1 the outer μ′

0-measure of An0 is also equal to 1 (see (A.11.iii)). Consequently, according to
Corollary 8.3 there exist

u′
1, u′

2, . . . , u′
m ∈ An0 and B̂1, B̂2, . . . , B̂m ∈ Yt0

0

such that

κ̄(u′
i, B̂c

i ) < me−γ + μκ′
0
(
Gc

γ

)
<

ε

2 , (16)

hold for all i ∈ {1, 2, . . . , m}, where γ and m are chosen as in (12) and (13). The upper bound
of ε/2 is obtained from (11), (14), and (15).
(v) Code construction. If the expectation of a random variable is less than some constant, then

the probability that the random variable has values less than this constant is positive. Since
κ̄(u′

i, B̂c
i ) is the expectation of κ

(
(·, u′

i, ·), [B̂c
i ]
)
we obtain from (16)

μ− ⊗ μ+

(
κ
(
(·, u′

i, ·), [B̂c
i ]
)

< ε/2
)

> 0.

This implies together with the specific structure of μ−, μ+, and μ0 that for all i ∈ {1, 2, . . . , m}
there exists a ûi ∈ A coinciding on (0, n0s0] with u′

i such that

κ(ûi, [B̂c
i ]) <

ε

2 ,

where A is given in (3). The stationarity of the channel κ then implies

κ(ûi, [B̂c
i ]) = κ

(
θl0s0(ûi), θl0s0 ([B̂i])

)
<

ε

2 , (17)

where θl0s0 denotes the shift operator defined in Paragraph 1.2.
Let ui denote the projection of θl0s0 (ûi) to Xb

0 and Bi the projection of θl0s0 ([B̂i]) to Y b
0 ,

where b is given by

b = (n0 + l0)s0.
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The code

C =
{

(ui, Bi), i ∈ {1, 2, . . . , m}}
has a block length b and a code size m > eRb due to (13). Each decoding set satisfies Bi ∈ Yb

0
and [Bi] = θl0s0 ([B̂i]) ∈ [Yb

l0s0
]. Because ui ∈ An0+l0 and A0 ⊂ Es0 we have for each

codeword ui ∈ Eb, since we assume that the family E of input constraints satisfies the regularity
condition (3.1.4). Furthermore, we assume that the channel κ is causal and asymptotically input-
memoryless for the setE′′ so that (17) and the comment below (4) imply for all i ∈ {1, 2, . . . , m}

κ
(
xi, [Bc

i ]
)

< ε,

for all xi ∈ E′′ coinciding on (0, b] with ui. The maximal decoding error �max(E′′) is therefore
bounded by ε. Thus, C is a (b, Eb, E′′, eRb, ε)-code, which completes the proof. �

(9.3) Theorem (Weak converse). Assume that the channel κ is stationary and the family E of
input constraints satisfies the regularity condition (3.1.4).
If the information rate capacity C of κ for the constraints E is finite, then for any ρ > 0 there

exists a constant ε∗ = ε∗(ρ, C) ∈ (0, 1), such that for any ε < ε∗ and block length b ∈ T+ there
does not exist a (b, Eb, U∗

b , e(C+ρ)b, ε)-code, where U∗
b is defined in (3.4.1).

(9.4) Remark. Since we have U∗
b ⊂ E∗

b ⊂ E′′ for the sets specified in (3.1.1) and (3.1.3) the
weak converse holds if U∗

b is replaced by E∗
b or E′′.

Clearly, the weak converse does only make sense for finite information rate capacity. It holds
in particular under the conditions of Theorem 9.1. The combination of the coding theorem
and converse establishes the operational significance of the information rate capacity. Note
that the coding theorem is a statement in the sense of an optimistic coding capacity (Ahlswede,
2014, p. 176), which means for code rates below C the existence of “good“ codes is guaranteed
for infinitely many block lengths, however, not necessarily for all block lengths above a certain
minimumvalue. In contrast, themore commonly considered pessimistic capacity conceptmeans
that once we have found a good code, then it is guaranteed that for all larger block lengths good
codes exist (Ahlswede, 2014, p. 176). For a corresponding version of Theorem 9.1 the second
part of (9.1.i) would read as follows: “ ... , then for any ρ ∈ (0, C) and ε ∈ (0, 1) there exists a
b0 ∈ T+ such that for all block lengths b ≥ b0 there exists a (b, Eb, E′′, e(C−ρ)b, ε)-code.“ The
reformulation of (9.1.ii) would be similar. Now, if the limit superior in the definition of C in
(5.1.1) is actually a limit, then the previous statement is indeed valid and C is also equal to
the pessimistic coding capacity. This follows from the fact that the quantity s0 chosen in the
beginning of the proof of Theorem 9.1 can be replaced by any s̃0 ≥ s0.

Proof. (i) Setup. Let us fix some ρ > 0, a block length b ∈ T+ , and an integer m ≥ e(C+ρ)b.
Further, let

C(b, Eb) =
{

(ui, Bi), i ∈ {1, 2, . . . , m}}
be some block code satisfying the input constraint Eb. For the channel κ consider the notation
of Definition 2.3 and assume that μ0 denotes the probability measure on X b

0 defined by

μ0 =
m∑

i=1
piδui , (1)



48 II Coding Theorem and Converse for Abstract Channels

where δui denotes the Dirac measure on X b
0 for the codeword ui. Without loss of generality we

choose pi = 1/m. Based on μ0 we construct the product measures

μ− =
⊗

k∈N

〈μ0〉−kb, μ+ =
⊗

k∈N

〈μ0〉kb, μ = μ−⊗ μ0 ⊗ μ+ (2)

on X 0
−, X +

b , and X , respectively. Subsequently, we consider the input-output probability space
(X × Y, X ⊗ Y, μκ) with the measure μκ induced by the b-i.i.d. input probability measure μ
and the channel κ.
Let {A1, A2, . . . , Am} be a partition of Xb

0 with Ai ∈ X b
0 such that ui ∈ Ai holds.

19 Then,
{[A1], [A2], . . . , [Am]} is a partition ofX ×Y with [Ai] ∈ [X b

0 ], where the projections for the in-
verse images are defined here on X ×Y . Correspondingly, we obtain from the decoding sets the
partition {[B1], [B2], . . . , [Bm]} ofX ×Y with [Bi] ∈ [Yb

0 ]. These partitions onX ×Y generate
finite and therefore completely atomic σ-algebras (see Paragraph A.5), denoted subsequently by
A and B.

(ii) Applying Fano’s inequality. At first, we have

I(A; B) ≤ I
(
[X b

0 ]; [Yb
0 ]
)

≤ Cb

≤ bC, (3)

where the first inequality follows from A ⊂ [X b
0 ] and B ⊂ [Yb

0 ] together with (4.7.ii). Since
μ belongs to the class of probability measures w. r. t. which Cb is defined in Definition 5.1, we
obtain the second inequality. We assume a stationary channelκ and a family of input constraints
E satisfying the regularity condition (3.1.4). Therefore, we can apply Lemma 5.3 and obtain the
last inequality from (5.3.1).
If pe is given by

pe =
m∑

i=1
μκ
(
[Ai] ∩ [Bc

i ]
)
, (4)

then we obtain

hm(pe) ≥ H(A|B)
= log m − I(A; B)
≥ log m − bC

=
(

1 − C

log(m)/b

)
log m

≥
(

1 − C

C + ρ

)
log m. (5)

Fano’s inequality given in Lemma 8.6 yields the first inequality, where hm is defined in (8.6.1).
The subsequent equality holds due to the first equality in (4.7.v) and the last relation in (4.7.vii),

19We assume that the σ-algebra X b
0 is large enough so that it is possible to find such a partition. Using a partition

instead of directly considering the codewords ui is required because in general we do not have {ui} ∈ X b
0 .
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because μκ([Ai]) = μ0(Ai) = 1/m. The next inequality follows from (3) and the last from the
assumption m ≥ e(C+ρ)b.

Assume that we restrict the function hm to the interval [0, (m − 1)/m] and denote the cor-
responding inverse by h−1

m . Then h−1
m is a well-defined, monotonically increasing function on

[0, log m] with values in [0, (m − 1)/m]. The following chain of inequalities holds

0 < h−1
m−1

(
a log(m − 2)

)
< h−1

m

(
a log(m − 1)

)
< h−1

m

(
a log m

)
(6)

for all 0 < a ≤ 1 and m ≥ 4. If m = 2, then the two terms in the middle have to be omitted and
if m = 3, then only the left of these terms has to be omitted. See, e. g., (Mittelbach, 2012, p. 67)
for details. Applying h−1

m to (5) and using (6) yields

pe ≥ h−1
m0

([
1 − C

C + ρ

]
log 2

)
> 0, (7)

where m0 = 2 if m = 2 and m0 = 3 if m > 2. We have also used (1 − C/(C + ρ)) ∈ (0, 1).
(iii) Evaluation of error probabilities. We define for any x0 ∈ Xb

0 and B ∈ Y

κ̄(x0, B) =
∫

X0
−×X+

b

κ
(
(x−, x0, x+), B

)
dμ− ⊗ μ+(x−, x+) (8)

using the measures defined in (2) and the representation of an element x ∈ X as 3-tupel
x = (x−, x0, x+) ∈ X0

− × Xb
0 × X+

b . To have a distinction to previously considered inverse
images w. r. t. projections we denote by [Ai]′ and [Bc

i ]′ the inverse images of Ai and Bc
i w. r. t.

the projections defined on X and Y , respectively. Then we have

μκ
(
[Ai] ∩ [Bc

i ]
)

= μκ
(
[Ai]′ × [Bc

i ]′
)

=
∫

[Ai]′
κ(x, [Bc

i ]′) dμ(x)

=
∫

Ai

κ̄(x0, [Bc
i ]′) dμ0(x0)

=
∫

Ai

1
m

κ̄(x0, [Bc
i ]′) dδui (x0)

= 1
m

κ̄(ui, [Bc
i ]′), (9)

where the second equality is simply the definition of the channel input-output probability mea-
sure as given in Definition 2.1. From the specific product structure of μ defined in (2) we obtain
the third equality using part (A.8.i) of Fubini’s theorem. The definition of the set Ai and of the
measure μ0 in (1) yields the fourth equality. The last equality is the result of integrating w. r. t.
a Dirac measure.
Inserting (9) into (4) and using (7) yields, that at least for one i0 ∈ {1, 2, . . . , m} we have

κ̄(ui0 , [Bc
i0 ]′) ≥ ε∗ > 0, (10)

where ε∗ is defined as the middle expression of (7). Since κ(·, [Bc
i0

]′) is an X -measurable func-

tion on X and because X = X0
− × Xb

0 × X+
b and X = X 0

− ⊗ X b
0 ⊗ X +

b we can consider
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κ
(
(·, ui0 ·), [Bc

i0 ]′
)
as random variable on the probability space (X0

− × X+
b , X 0

− ⊗ X +
b , μ−⊗ μ+).

If the expectation of a nonnegative random variable is greater or equal to some constant, then
the probability that the random variable has values greater or equal to this constant is positive.
Since κ̄(ui0 , [Bc

i0 ]′) is the expectation of κ
(
(·, ui0 , ·), [Bc

i0 ]′
)
we obtain from (10)

μ− ⊗ μ+

(
κ
(
(·, ui0 , ·), [Bc

i0 ]′
) ≥ ε∗

)
> 0.

This implies togetherwith the specific structure ofμ− andμ+, that at least for onex ∈ U∗
b ∩[ui0 ]′,

with U∗
b as defined in (3.4.1), we have

κ(x, [Bc
i0 ]′) ≥ ε∗ > 0.

Thus we have �max(U∗
b ) ≥ ε∗ for the maximal decoding error, which completes the proof. �

(9.5) Remark. The coding theorem and converse are stated for the maximal decoding error
probability �max(·) as defined in (3.4.2). Alternatively, we can consider the average decoding
error probability. Based on the notation of Definition 3.4 it is given by

�̄(·) = 1
|C|

|C|∑
i=1

�(ui, ·).

It follows immediately that Theorem 9.1 also holds for the average decoding error probability.
To verify Theorem 9.3 for �̄(U∗

b ) we have to have a closer look. Let us follow the proof of the
weak converse up to inequality (10). Then we observe that even

1
m

m∑
i=1

κ̄(ui, [Bc
i ]′) ≥ ε∗ > 0

holds. Similar to the last part of the preceding proof we can therefore conclude

�̄(U∗
b ) = 1

m

m∑
i=1

sup
(x−,x+)∈Ũ

κ
(
(x−, ui, x+), [Bc

i ]′
)

≥ sup
(x−,x+)∈Ũ

1
m

m∑
i=1

κ
(
(x−, ui, x+), [Bc

i ]′
)

≥ ε∗ > 0,

where Ũ = ξ0
−(U∗

b ) × ξ+
b (U∗

b ) with ξt denoting the projection introduced in Remark 5.2. This
shows that Theorem 9.3 also holds for the average decoding error.

Making use of the derivations in this section we obtain the following lemma, which is useful,
e. g., to prove the equality of the information rate capacity in Definitions 5.1 and 10.1.

(9.6) Lemma (Lower bound for information rate capacity). Suppose the channel κ is stationary
and the input constraints E satisfy the regularity condition (3.1.4). Assume that ε ∈ (0, 1/3) and
R > 0 are constants and there exists a (b̂, Eb̂, U∗

b̂
, eRb̂, ε)-code

Ĉ =
{

(ûi, B̂i), i ∈ {1, 2, . . . , m̂}}
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for some b̂ ∈ T+ , with U∗
b̂
as defined in (3.4.1). Then the information rate capacity C of κ for the

constraints E specified in Definition 5.1 satisfies the inequality(
1 − h3(2ε)

log 2

)
R ≤ C,

where the function h3 is defined in (8.6.1).

Proof. First, we use the code Ĉ to construct a (b, Eb, U∗
b , eRb, 2ε)-code

C =
{

(ui, Bi), i ∈ {1, 2, . . . , m}}
with b = 2b̂ and U∗

b as defined in (3.4.1), which satisfies in addition to the implicit inequality
m ≥ eRb the inequalities

4 ≤ m ≤ eRb + 1. (1)

This is achieved by considering the Cartesian product Ĉ×〈Ĉ〉b̂ as a new code, which guarantees
the left inequality. The maximal decoding error is bounded by 2ε and the code properties con-
cerning the input constraints follow from the regularity condition (3.1.4). If necessary we throw
away codewords to satisfy the right inequality. The decoding sets of the canceled codewords
can be united, e. g., with the decoding set of the first codeword, which does not increase the
decoding error.
Consider the proof of Theorem 9.3 and let the probability measures μ0, μ−, μ+, and μ as well

as the the σ-algebras A and B be defined as in part (i). From the arguments below (3) and (5) in
part (ii) and the definition of pe in (4) we obtain

1
b

I
(
[X b

0 ]; [Yb
0 ]
) ≥ 1

b
I(A; B) = 1

b

(
log m − H(A|B)

)
≥ 1

b

(
log m − hm(pe)

)
≥
(

1 − h3(pe)
log 2

)
R (2)

with hm as defined in (8.6.1). For the last inequality we have used m ≥ eRb and

hm(pe)
b

≤ hm(pe)
log(m − 1)R ≤ h3(pe)

log 2 R,

which holds due to (1) and the monotonicity of the middle term w. r. t. m.
The properties of the code C imply κ(x, [Bc

i ]′) ≤ 2ε for all x ∈ U∗
b coinciding on (0, b] with

ui, where [Bc
i ]′ is the inverse image of Bc

i w. r. t. the projection defined on Y . It follows together
with the structure of μ− and μ+ that κ

(
(·, ui, ·), [Bc

i ]′
) ≤ 2ε holds μ−⊗ μ+-almost surely. Then,

from the definition of pe and from (8) and (9) in part (iii) of the proof of Theorem 9.3 we obtain

pe = 1
m

m∑
i=1

κ̄(ui, [Bc
i ]′) ≤ 1

m

m∑
i=1

2ε = 2ε.
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Since ε ∈ (0, 1/3) and h3 is monotonically increasing on the interval [0, 2/3] we obtain from (2)(
1 − h3(2ε)

log 2

)
R ≤ 1

b
I
(
[X b

0 ]; [Yb
0 ]
)
. (3)

Now consider the information rate

Ī(μ) = lim
s→∞

1
s

I
(
[X s

0 ]; [Ys
0 ]
)

for which we have

1
b

I
(
[X b

0 ]; [Yb
0 ]
) ≤ Ī(μ) ≤ C. (4)

The first inequality follows with (E.2.5) and (5) in part (ii) of the proof of Theorem 9.1. The
assumptions on κ and E allow to apply Lemma 5.3. Since we have μ ∈ Pb with Pb defined in
Definition 5.1 the identity (5.3.2) yields the second inequality. Combining (3) and (4) completes
the proof. �

§10 Alternative Definition of Information Rate Capacity

The information rate capacity of Definition 5.1 is a characteristic of a channel with time struc-
ture, calculated for a family of input constraints. Due to the coding theorem and the weak
converse given in Theorems 9.1 and 9.3 this parameter has an operational meaning under cer-
tain conditions on the channel and the input constraints. Kadota and Wyner (1972) introduced
a different version of information rate capacity. We show that it must be equal to the informa-
tion rate capacity specified in Definition 5.1 if it has an operational meaning in the sense of
Theorem 9.1. Further, we derive Theorems 9.1 and 9.3 for Kadota and Wyner’s information rate
capacity if it is finite and discuss the limitations if it is infinite, thus demonstrating the advantage
of Definition 5.1.
Subsequently, κ is a channel with time structure as introduced in Definition 2.3 and C is the

information rate capacity of κ for the family E = {Es ⊂ Xs
0 , s ∈ T+} of input constraints as

defined in Definition 5.1.

(10.1) Definition (Information rate capacity, Kadota and Wyner (1972)). Consider the follow-
ing modification of Definition 5.1. We substitute the set Ps of input probability measures by the
set P′

s, which is defined as Ps but the probability measure specified in (5.1.2) is replaced by some
probability measure μ0 for which the outer μ0-measure of the constraint set Es is equal to 1.
We call

C′ = lim sup
s→∞

1
s

C′
s with C′

s = sup
μ∈P′

s

I
(
[X s

0 ]; [Ys
0 ]
)

the information rate capacity of the channel κ for the constraints E .

(10.2) Remark. In (Kadota and Wyner, 1972) the special case of a continuous-time channel
with real-valued input and output signals is considered together with input constraints specified
by functionals as in Example 3.2. Furthermore, the information rate capacity is defined based
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on standard extensions (see Paragraph A.12) rather than directly on outer measures. However,
this is equivalent for the following reasons. Consider some s ∈ T+ and μ ∈ P′

s and let μ0 be the
probability measure on X s

0 from which the product measure μ on X is constructed. To calculate
the mutual information I

(
[X s

0 ]; [Ys
0 ]
)
in Definition 10.1 the underlying probability space is the

joint channel input-output space (X × Y, X ⊗ Y, μκ). Based on the (completed)20 standard
extension (Xs

0 , X̃ s
0 , μ̃s

0) of the probability space (Xs
0 , X s

0 , μs
0) let us define

X̃ =
⊗

k∈Z

〈X̃ s
0 〉ks and μ̃ =

⊗
k∈Z

〈μ̃s
0〉ks.

In Kadota and Wyner’s capacity definition, instead of I
(
[X s

0 ]; [Ys
0 ]
)
the mutual information

I
(
[X̃ s

0 ]; [Ys
0 ]
)
is used, where the underlying probability space is the extended input-output space

(X ×Y, X̃ ⊗Y, μ̃κ). Here, μ̃κ denotes the probability measure on X̃ ⊗Y induced by the channel
κ and the probability measure μ̃ on X̃ . It can be shown, that these mutual informations are
equal, roughly speaking, because the σ-algebras X̃ s

0 and X s
0 differ only by μ̃s

0-nullsets. Standard
extensions are considered for measurability reasons. However, in the situations relevant for
the coding theorem it is advantageous to use the more direct definition with outer measures,
because the derivations are more transparent.

(10.3) Theorem (Results applicable to C and C′). The information rate capacities C and C′ of
κ for the constraints E , as defined in Definitions 5.1 and 10.1, satisfy the inequality

C ≤ C′. (1)

Lemma 5.3 holds literally if Cs, C , and P are replaced by C′
s, C

′, and P′ =
⋃

s∈T+
P′

s with P′
s as

defined in Definition 10.1. If C′<∞, then Theorems 9.1 and 9.3 hold literally if C is replaced by C′.

Proof. Let s ∈ T+ and assume that μ0 is a probability measure on X s
0 as defined in (5.1.2). Every

set A ∈ X s
0 containing the constraint set Es has μ0-measure 1 so that the outer μ0-measure of

Es is equal to 1. Thus the sets Ps and P′
s of input probability measures in Definition 5.1 and

10.1 satisfy Ps ⊂ P′
s. Therefore, we have Cs ≤ C′

s and C ≤ C′.
To show that Lemma 5.3 holds with Cs, C , Ps, and P replaced by C′

s, C
′, P′

s, and P
′ we follow

with these substitutions exactly the original proof given in Paragraph E.2. We only change the
part concerning the probability measure μ0 between (E.2.2) and (E.2.4). Now μ0 is such that
the outer μ0-measure of the constraint set Es0 is equal to 1. Therefore the outer μ′

0-measure of

the set ×n−1
k=0 〈Es0 〉ks0 is equal to 1 for μ′

0 =
⊗n−1

k=0 〈μ0〉ks0 (see (A.11.iii)). The monotonicity of
outer measures (see (A.11.i)) and the regularity condition (3.1.4) imply that the outer μ′

0-measure
of the constraint set Ens0 is also equal to 1. For the product measure μ in the original proof we
then have μ ∈ Pns0 and we can continue with the modified form of (E.2.4).

Due to the inequality C ≤ C′ Theorem 9.3 obviously holds for C′. To derive Theorem 9.1
with C replaced by C′ given C′ is finite we can adopt the original proof with the following
modifications. We assume that C′ < ∞ and substitute C by C′. The probability measure μ0 on
X s0

0 considered in the original proof is now a suitable probability measure for which the outer
μ0-measure of the constraint set Es0 is equal to 1. Since this μ0 belongs to a larger class of
probability measures the inequality (6) and the last inequality in (5) on page 44 are not longer

20To complete a probability space (Ω, F , P) the σ-algebra F is extended by all subsets of P-nullsets.
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valid. However, (E.2.7) holds with Cns0 and C replaced by C′
ns0 and C′ due to the comments in

the previous paragraph so that we have

1
ns0

I(αn
0 ; βn

0 ) ≤ 1
ns0

C′
ns0 ≤ C′.

This implies

1
s0

Ī(α; β) ≤ C′ (1)

and due to the assumption C′ < ∞ the information rate Ī(α; β) is finite and we can apply the
ergodic theorem of information theory as in the original proof of Theorem 9.1. The rest of the
proof is identical. We just have to replace in part (iv) and (v) the sets A0, An, and A defined in
(3) on page 44 by the sets Es0 ,

n−1×
k=0

〈Es0 〉ks0 , and E∗
s0 = ×

k∈Z

〈Es0 〉ks0 . �

(10.4) Remark. If the information rate capacity C′ is infinite, then we cannot use it in the last
part of the previous proof to conclude that the information rate Ī(α; β) is finite. Let us give
some comments on the proof of Kadota and Wyner (1972) in case of infinite C′. Assume that
ξ = {ξt, t ∈ T } and η = {ηt, t ∈ T } are defined as in the proof of Theorem 9.1 and assume
that the time axis is partitioned into segments of size s0. We define the random sequences
α̃ = {α̃k, k ∈ Z} and β̃ = {β̃k, k ∈ Z}, where α̃k and β̃k are given by

α̃k+1 = ξ
(2k+1)s0
2ks0

and β̃k+1 = η
(2k+1)s0
2ks0

.

Instead of using the sequences α = {αk, k ∈ Z} and β = {βk, k ∈ Z} as defined in the proof
of Theorem 9.1 the proof of Kadota and Wyner for infinite C′ is based on the sequences α̃ and
β̃, i. e., only every second time slot is considered for the code construction.
Suppose ξ is an s0-i.i.d. sequence and the pair sequence (ξ, η) is s0-stationary. Then α̃ is an

i.i.d.-sequence and the pair sequence (α̃, β̃) is stationary. Due to Corollary 4.14 the information
rate Ī(α̃; β̃) exists and if

I(ξs0
0 ; ηs0

0 ) < ∞ and I(ξ0
−η0

−; ξ+
s0 η+

s0 ) < ∞, (1)

then it is finite. Indeed, for all n ∈ N we have

I(α̃n
0 ; β̃n

0 ) = I(α̃1; β̃1) + I(α̃n
1 ; β̃n

1 ) + I(α̃n
1 ; α̃1β̃1 | β̃n

1 ) − I(α̃1; α̃n
1 ) + I(α̃1; β̃n

1 |β1)
= I(α̃1; β̃1) + I(α̃n−1

0 ; β̃n−1
0 ) + I(α̃1β̃1; α̃n

1 β̃n
1 ) − I(β̃1; β̃n

1 )

= nI(α̃1; β̃1) +
n−1∑
k=1

I(α̃1β̃1; α̃k+1
1 β̃k+1

1 ) −
n−1∑
k=1

I(β̃1; β̃k+1
1 )

≤ nI(α̃1; β̃1) + (n − 1)I(α̃1β̃1; α̃n
1 β̃n

1 ).

The first equality follows from applying the chain rule of mutual information given in (4.7.iv)
several times. For the second equality we use the stationarity of (α̃, β̃), the independence of α̃1
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and α̃n
1 together with (4.7.i), and again the chain rule of mutual information. Repeating these

steps for I(α̃n−1
0 ; β̃n−1

0 ), I(α̃n−2
0 ; β̃n−2

0 ) and so forth yields the third equality. The inequality
then follows from the nonnegativity and monotonicity of the mutual information. Using the
derived inequality yields for all n ∈ N

1
n

I(α̃n
0 ; β̃n

0 ) ≤ I(α̃1; β̃1) + I(α̃1β̃1; α̃n
1 β̃n

1 )

≤ I(ξs0
0 ; ηs0

0 ) + I(ξ0
−η0

−; ξ+
s0 η+

s0 ),

where the second inequality follows from the definition of the random variables α̃k and β̃k ,
the monotonicity of the mutual information, and the s0-stationarity of the process (ξ, η). The
assumption in (1) then implies that the information rate Ī(α̃; β̃) is finite. Thatmeans, if condition
(1) is satisfied, then the proof for infinite C′ resembles that for finite C′, when the sequences α
and β are replaced by α̃ and β̃.
To ensure (1) Kadota and Wyner assumed the channel to be ψ-mixing as defined in Defini-

tion 13.6 (in addition to the assumption of stationarity, causality, and asymptotic input-memory-
lessness). The ψ-mixing condition, however, is much more restrictive than the ergodicity re-
quired in the proof of Theorem 9.1 (see Theorems 13.9 and 13.10). Note, that the author could
verify the corresponding derivations in (Kadota andWyner, 1972) only for a more restrictive ver-
sion of asymptotic input-memorylessness defined in (Mittelbach and Jorswieck, 2013, Def. IV.1).
Under these conditions it is demonstrated in (Mittelbach and Jorswieck, 2013) that the ψ-mixing
condition can be weakened to information regularity (see Definition 13.6), i. e., even for the ap-
proach of Kadota and Wyner the ψ-mixing condition is not required.

For discrete-time finite-alphabet channels Kadota and Wyner’s information rate capacity C′

of Definition 10.1 and the information rate capacity C of Definition 5.1 are obviously equal. The
next theorem shows that the equality must hold in general if C′ has an operational meaning
in the sense of Theorem 9.1. Kemperman (1969, Sec. 4.3) gave comments on the memoryless
channel (see Example 13.8) in a similar regard.

(10.5) Theorem (Equality of C and C′). Suppose the channel κ is stationary and the input con-
straints E satisfy the regularity condition (3.1.4).
(i) If C′ is finite and for any ρ ∈ (0, C′) and ε ∈ (0, 1) there exists a (b, Eb, U∗

b , e(C′−ρ)b, ε)-
code for some block length b ∈ T+ , with U∗

b as defined in (3.4.1), then we have

C = C′.

(ii) If for any R > 0 and ε ∈ (0, 1) there exists a (b, Eb, U∗
b , eRb, ε)-code for some b ∈ T+ , then

C = C′ = ∞.

(10.6) Remark. The set U∗
b in the formulation of Theorem 10.5 is the minimal requirement.

Of course, it can be replaced by the set E′′ of input signals defined in (3.1.3).

Proof. Under the assumptions in part (i) we obtain for any ρ ∈ (0, C ′) and ε ∈ (0, 1/3) from
(10.3.1) and Lemma 9.6 (

1 − h3(2ε)
log 2

)
(C′ − ρ) ≤ C ≤ C′. (1)
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Since h3(2ε) is arbitrarily small for vanishing ε the assertion of part (i) is shown.
Likewise, under the assumptions of part (ii) the inequalities in (1) hold with (C ′ −ρ) replaced

by R for arbitrary R > 0 and ε ∈ (0, 1/3), which proves the assertion of part (ii). Note that this
can also be obtained with Theorem 9.3. �

Combining (10.5.i), the last assertion of Theorem 10.3, and the conditions of Theorem 9.1 we
immediately obtain the following corollary.

(10.7) Corollary. Suppose the channel κ is stationary, causal, asymptotically input-memoryless
for the set E′′, and totally ergodic for block-i.i.d. inputs, where E′′ is defined in (3.1.3) based on
the family E of input constraints. Further assume that E satisfies the regularity condition (3.1.4). If
C ′ < ∞, then we have

C = C′.

§11 Discussion of Results and Historical Notes

The main motivation for the first part of the thesis was to establish an abstract framework that
allows us to formulate a general coding theorem for a point-to-point communication link. On
the one hand, a central objective was to include continuous-time continuous-valued transmis-
sion models because in the literature it is payed much less attention to this case compared to
discrete models. On the other hand, we aimed at a reduction to the essential channel proper-
ties required to prove the coding statements. The presentation of the results shows that once
a suitable formulation is chosen the discrete- and the continuous-time case can be treated in
exactly the same way. Essentially, the main contribution of this part of the thesis is a gener-
alization of the work of Kadota and Wyner (1972), formulated in precise mathematical terms.
The exposition includes the relevant material from probability and information theory in tai-
lored form to allow a unified and transparent presentation. With regard to the generality of the
information-theoretic models and tools the formulation is mainly influenced by the work of the
Russian school of information theory, in particular by Kolmogorov (1956a), Dobrushin (1963),
and Pinsker (1964). The statement of the channel coding theorem, however, follows the style
of Ahlswede (2006) and Wolfowitz (1978) because it emphasizes the operational meaning of the
results more clearly.
Relation to (Kadota and Wyner, 1972). The theorems in Section §9 generalize the work of

Kadota and Wyner (1972) in a number of respects, namely in terms of channel model, input
constraints, required channel properties, and definition of information rate capacity. Let us
discuss the relevant extensions and modifications in relation to this work. Kadota and Wyner
considered a continuous-time channel with real-valued input and output signals and formulated
a coding theorem and converse for those channels. In contrast, the theorems in Section §9 apply
to channels with time structure in general, i. e., to discrete- as well as continuous-time channels
with completely arbitrary alphabets. A consequent measure-theoretic description, in particular
the use of general product spaces allows this generalized and unified formulation. Please note
that this could be achieved without using involved measure-theoretic concepts.
For Theorem 9.1 as well as the coding theorem of Kadota and Wyner the considered chan-

nel is required to be stationary, causal, and asymptotically input-memoryless. In addition, both
theorems include a condition concerning the channel output memory, however, of fairly differ-
ent quality. Kadota and Wyner used a property they called asymptotic output-memorylessness,
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which is called ψ-mixing condition in Definition 13.6. This output memory condition is quite re-
strictive, in particular for the important class of Gaussian channels. In Theorem 13.10 we show
that for Gaussian channels it is indeed equivalent to finite output memory. As a result, Kadota
and Wyner’s version of the theorem is for example not applicable to the simple stationary addi-
tive Gaussian noise channel with rational noise spectral density (see the discussion at the end
of Paragraph 16.3).

The condition of total ergodicity for block-i.i.d. inputs used in Theorem 9.1 is much weaker
than the ψ-mixing condition as demonstrated by Theorem 13.9. It is actually the weakest possi-
ble property that allows the application of Pinsker’s ergodic theorem in the proof of the coding
theorem, where at the relevant point a partition of the time axis into segments of size s0 is con-
sidered together with an s0-i.i.d. input probability measure. In Theorem 10.3 we show that the
ergodicity condition is sufficient even when we employ Kadota and Wyner’s information rate
capacity of Definition 10.1, however, only if we additionally assume its finiteness. A derivation
based on Definition 10.1 for infinite information rate capacity requires a stronger output mem-
ory condition. Kadota and Wyner used therefore the ψ-mixing condition but not only in this
but unnecessarily in the finite capacity case. Actually, they do not differentiate between finite
and infinite capacity in the formulation of the theorem. According to Remark 10.4 even with
their approach ψ-mixing can be weakened to information regularity. However, using the char-
acterization of information rate capacity given in Definition 5.1 allows us to prove Theorem 9.1
under the condition of total ergodicity for block-i.i.d. inputs with an identical approach for fi-
nite and infinite information rate capacity. This demonstrates the significance and advantage
of introducing a modified version of information rate capacity. Section §13 considers various
sufficient conditions implying total ergodicity for block-i.i.d. inputs.

Gray and Ornstein (1979, p. 296) gave the comment that Kadota and Wyner’s coding theo-
rem should apply to ergodic channels. First we note that simple ergodicity is not restrictive
enough. As shown we need the introduced form of total ergodicity because we need to parti-
tion the time axis into blocks. Gray and Ornstein considered a discrete-time channel with finite
alphabets. In this special case the information rate capacity of Kadota and Wyner is automat-
ically finite, which allows indeed a conclusion about the sufficiency of total ergodicity based
on the approach of Kadota and Wyner, as rigorously shown in Theorem 10.3. However, for
the setting of Kadota and Wyner and especially for abstract channels with time structure this
conclusion is not straightforward and requires detailed analysis. In particular, we have to use
the modified version of information rate capacity as introduced in Definition 5.1. Although in a
somewhat different setting Pinsker (2007, p. 383)21 also remarked that ergodicity of the channel
in a certain sense allows to prove a coding theorem and he discussed an example with totally
ergodic additive noise. However, additionally he has to assume a finite information rate capac-
ity, which is not required for the approach we have taken. Note, the information rate capacity
of discrete-time finite-alphabet channels is always finite. But if we consider continuous-time
infinite-alphabet channels, the capacity can be infinite, even in reasonable situations, depend-
ing very much on the input constraint. See for example (Baker, 1978, p. 87) or (Baker and Ihara,
1991, p. 1314), where Gaussian channels are considered.

The weak converse in Theorem 9.3 applies to all stationary channels with time structure. No
further channel properties are required. Kadota and Wyner (1972) do not give a differentiated
formulation of the coding theorem and converse regarding channel properties. Again Gray and

21English translation, see (Pinsker, 1966) for Russian original
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Ornstein (1979, p. 303) note that Kadota and Wyner’s converse should hold for all stationary
channels, which indeed can be shown using only the tools employed in the original publication.
Due to Definition 3.4 we have a convenient flexibility in taking the robustness of a block

code w. r. t. past input signals into account (see Paragraph 3.5, Remarks 9.2 and 9.4). Input con-
straints are incorporated in Theorem 9.1 and Theorem 9.3 in an abstract form. In contrast to
(Kadota andWyner, 1972) we are able to accomplish this without using a standard extension (see
Paragraph A.12) of the channel input σ-algebra. This is possible because we make use of outer
measures directly and derive an adequate version of Feinstein’s lemma in Corollary 8.3, which
we believe is more transparent. In order to prove the theorems the constraints have to satisfy
the regularity condition specified in (3.1.4). Kadota and Wyner characterized input constraints
based on functionals as in Example 3.2. They do not mention any regularity condition although
the example constraints they give satisfy the required condition. Further note that they also
employ the monotonicity result of Corollary 4.14 but the proof in (Kadota and Wyner, 1972, Ap-
pendix II) is incorrect as demonstrated with the example in Paragraph 16.6. See Paragraph E.1
for a rigorous proof of a generalized statement. The mentioned monotonicity is also used in the
derivations in (Kadota, 1973, 1978).
Finally, we remark that Kadota and Wyner (1972) also considered so-called incremental ver-

sions of the channel properties by using a σ-algebra of increments at the channel output. The
motivation behind this extension is a mathematically rigorous treatment of continuous-time ad-
ditive white noise. For the special case of real-valued output signals we can immediately apply
this modification to the model used in this thesis, without any change in the proof of the coding
theorem and converse.
Further historical notes. So far we have discussed the relation to the work of Kadota and

Wyner (1972). We continue with more related work. First, we roughly trace the development
of coding theorems and converses for channels with memory. For details on memory condi-
tions see Section §13. Khinchin (1957, Part II) was the first who rigorously established a coding
theorem for channels with memory. He considered a discrete-time finite-alphabet stationary
causal channel with finite input memory. Takano (1957) closed a gap in the proof of Khinchin
by adding the condition of finite output memory. For the same model with identical assump-
tions Feinstein (1959) derived a coding theorem together with a weak converse and Wolfowitz
(1960) added a strong converse. Feinstein extended his results also to channels with arbitrary
output alphabets, so-called semi-continuous channels. See also the excellent books of Feinstein
(1958) andWolfowitz (1978) for corresponding results. Adler (1961) defined an ergodic-theoretic
mixing condition for discrete-time channels and proved that it is sufficient for the ergodicity
of the channel. Thereby, he showed that the coding theorems of Khinchin (1957, Part II) and
Feinstein (1959) also hold, when the finite channel output memory condition is relaxed to the
introduced mixing condition, which applies also to channels with infinite output memory. A
further generalization of the coding theorem w. r. t. input memory and causality was achieved
by Pfaffelhuber (1971), who considered channels with asymptotically decreasing input memory
and anticipation. Gray and Ornstein (1979) proved a coding theorem under an even more re-
laxed condition on input memory and anticipation. This condition is called d̄-continuity and
is less restrictive than the asymptotic input-memorylessness required in the coding theorem
derived in Section §9. However, it is only applicable to discrete-time finite-alphabet channels
and the coding theorem of Gray and Ornstein is proved for this special case. Another version of
the theorem is derived in (Gray, 2011, Th. 14.1), where stationarity is weakened to asymptotic
mean stationarity. But note, the result is a “one-shot“ theorem, which assumes that the channel
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is used only once, whereas we consider the repeated transmission of codewords. Kieffer (1981)
introduced the class of stationary weakly continuous channels. He showed that it includes all
stationary d̄-continuous channels and still allows to prove a coding theorem. However, only in
the sense of a joint source/channel coding theorem, whereas we focus on a pure channel coding
theorem in this thesis.
An extension of Khinchin’s results to discrete-time channels with continuous alphabets and

finite capacity was obtained by Rosenblatt-Roth (1964, 1967). Jacobs (1962b) further developed
the results of Rosenblatt-Roth (1964) and added a weak converse. A coding theorem and a weak
converse for discrete-time channels with abstract alphabets were also derived byWagner (1968),
who considered the stationary memoryless case (see Example 13.8). In contrast to all previously
mentioned references Wagner took input constraints into account and used Gallager’s error ex-
ponent in his proof of the coding theorem, whereas the other authors used the maximal coding
method, i. e., Feinstein’s lemma. Very general results for discrete-time memoryless channels
with abstract alphabets, including a strong converse, were derived by Augustin (1966) and Kem-
perman (1969). Dobrushin (1961, 1963) developed a generalized coding theorem for discrete-time
channels from the point of view proposed by Kolmogorov (1956a). He showed that information
stability of the channel is sufficient for the validity of the coding theorem. Ding (1962, 1964)
proved that this theoretical condition is also necessary when the capacity expression of Do-
brushin is employed. Since information stability is often difficult to check for concrete channels,
the work on channels satisfying various memory properties has grown considerable. In (Gray
and Ornstein, 1979) further historical remarks on channels with memory are given. See also
(Kotz, 1966) as a recommendable survey paper for related references with a mathematical orien-
tation. A general formula for the coding capacity of a discrete-time channel, including nonsta-
tionary and information unstable channels with abstract alphabets, is given by Verdú and Han
(1994). The result is based on the so-called information spectrum method. The book of Han
(2003) is a well-known reference following this approach.

Let us continue with historical remarks on coding theorems and converses for continuous-
time channels. The classical information-theoretic work on continuous-time transmission mod-
els is devoted to the additive Gaussian noise channel. The main objective was to give rig-
orous derivations of and operational significance to Shannon’s celebrated capacity formula
“W log(1 + P/NW )“, heuristically derived in (Shannon, 1948, Part IV). Ash (1963, 1964) proved
a coding theorem and a weak converse for the stationary continuous-time Gaussian channel
under an average energy constraint and Yoshihara (1964) obtained a strong converse. Wyner
(1966) introduced different mathematical models for the case of strictly band-limited signals in
white Gaussian noise and derived a coding theorem and a weak converse for each model. Gal-
lager (1968, Ch. 8) introduced a widely accepted model of a continuous-time filtered channel
with additive Gaussian noise incorporating certain input constraints in power and frequency.
Following the approach of Holsinger (1964) he derived a capacity formula and a “one-shot“ cod-
ing theorem, omitting the effect of interference between successive codewords. Cordaro and
Wagner (1970) showed that the theorem still holds when the interference from previous code-
words is taken into account. Wyner (1971) found weaker conditions and a more elementary
proof for the result of Cordaro and Wagner. Baker (1978) and McKeague (1981) determined
the information capacity of the stationary Gaussian channel subject to a generalized energy
constrained. Baker (1987) and Baker and Ihara (1991) further developed these results such that
they apply to practically relevant classes of input signals not fitting the model of Gallager (1968,
Ch. 8). Baker (1991a,b) demonstrated the operational significance of the derived quantities by
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showing that the information capacity is equal to the coding capacity under peak power con-
straints on the codewords. Furthermore, Baker (1991a,b) derived upper bounds on the coding
capacity of continuous-time channels with additive non-Gaussian noise. A well-known book
on information theory for continuous-time transmission models is (Ihara, 1993). The main aim
of the book is to present all the material required to derive a coding theorem of the author for
continuous-time Gaussian channels with feedback. The coding theorem is further developed in
(Ihara, 1994, 1999).

Thework of Kadota andWyner (1972) is a generalization of (Pfaffelhuber, 1971) to continuous-
time channels with real-valued alphabets. As described above in detail the coding theorem
and converse derived in this thesis further generalize (Kadota and Wyner, 1972). In contrast to
the previously listed references the theorems in Section §9 apply to general continuous-time
channel models, not only to those with additive noise or additive Gaussian noise. An essen-
tial step in the publications following the path of Gallager (1968, Ch. 8) is the representation of
the continuous-time channel by an infinite series of parallel discrete-time channels. Following
the approach of Kadota and Wyner (1972) we are able to avoid this transformation completely.
Therefore, we can treat continuous-time channels with the same methods which are applica-
ble to discrete-time channels. It is an inherent part of our model to take interference between
successive codewords into account, which is an additional advantage compared to Gallager’s
approach. Furthermore, we incorporate input constraints in a general and flexible form. These
are important arguments in favor of the path taken in this thesis. The channel properties we
require to prove the coding theorem characterize a large class of practically relevant communica-
tion models. Indeed, causality is always physically justified in the context of transmission over
time. If a channel code is to be used repeatedly, stationarity is a natural assumption and total
ergodicity for block-i.i.d. inputs is a weak condition on the channel output memory. However,
it can be difficult to verify the asymptotic input-memorylessness for specific channels or the
condition is too strong in some applications because it is based on the total variation distance.
Therefore, it is worth to investigate more relaxed conditions for the channel input memory in
the context of abstract channels with time structure.
Relation to (Mittelbach, 2012). The starting point of this thesis was the diploma thesis (Mittel-

bach, 2012) of the author in mathematical stochastics. It contains intermediate results and was
prepared to be suitable as basis for further extensions and generalizations. In the diploma thesis
the author analyzed the results of Kadota and Wyner (1972) and worked out relevant details
from probability and information theory with an emphasis on the stochastic background. As
main individual contribution the proof of the monotonicity result in (Kadota and Wyner, 1972,
Appendix II) was corrected. With regard to coded information transmission only the case of
finite information rate capacity was studied, for which it was shown that total ergodicity is suf-
ficient as channel output memory condition to prove the coding theorem of Kadota and Wyner.
The converse was shown to hold for stationary channels. These results were formulated and
derived in the special setting of the original publication, i. e., for continuous-time channels with
real-valued input and output signals and an amplitude or average energy constraint. In addition,
the approach of Kadota and Wyner was followed in terms of defining information rate capacity
as well as using standard extensions to incorporate input constraints. Actually, some effort was
undertaken to handle standard extensions rigorously, which are obsolete now in connection
with the approach of this thesis. To possibly prove the coding theorem under the same relaxed
output memory condition without the assumption of a finite information rate capacity was for-
mulated as an important open problem. As shown and described above the problem was solved



§11 Discussion of Results and Historical Notes 61

in the present thesis for the general channel with time structure with arbitrary alphabets and
abstract input constraints under an even more relaxed output memory condition. The proof is
based on introducing an alternative version of the information rate capacity that allows simpler
derivations of more general results. Deriving a mathematically convenient representation of
the information rate capacity as in (5.3.2) was also one of the formulated open problems. With
the identity in (5.3.2) we are able to prove Lemma 9.6, which, in turn, is used to prove Theo-
rem 10.5, where the different versions of information rate capacity are related. The required
fundamentals from probability and information theory necessarily parallel those used in the
diploma thesis. However, the material on information-theoretic measures, tools, and models
was completely reworked. It is presented in concise form and was extended such that it allows
a unified, transparent, and tailored derivation of the coding results in the generalized context.
Backgroundmaterial from probability and ergodic theory is summarized in Appendices A and B
with extensions related to the derivations in this thesis.

We continue with the detailed analysis of memory conditions of channels. Modified versions
of these conditions have already been introduced in (Mittelbach, 2012) but only to discuss a few
basic relations.





Chapter III

Memory and Mixing Conditions

In contrast to characterizing finite memory there is a great variety of alternatives to model
infinite memory. In this chapter, we analyze a selection of infinite memory conditions. We first
introducewell-knownmemory conditions for probability measures and randomprocesses called
(strong) mixing conditions. Then we extend these memory conditions to channels with time
structure. We formulate the memory conditions for channels in the same way as for processes,
which allows us to exploit the connections to the rich field of strongmixing conditions efficiently.
We show that the various memory conditions are not equivalent in general and that they form
a hierarchy in terms of a sequence of implications. For the special case of a Gaussian channel
we derive an important additional implication in the opposite direction. Furthermore, we study
channels that transform an input probability measure with a certain memory property into an
input-output probability measure with the corresponding memory property, i. e., we study the
interplay between memory conditions of measures and channels.

§12 Mixing Conditions for Random Processes

Based on the dependence measures introduced in Section §7 we define memory conditions for
random processes and probability measures with time structure calledmixing conditions. These
conditions characterize in a sense to be specified the asymptotic independence of sufficiently
time-separated events (random variables). The concepts are related to the ergodic-theoretic
mixing conditions (see Appendix B) but, as seen later, they are of different quality. The main
source for this section is the book of Bradley (2007), which contains many results from the
large field of mixing conditions. In the literature on probability theory, mixing conditions play
an important role in generalizing the central limit theorem to dependent random variables. In
Paragraph 17.7, we consider an example in this direction from statistical signal processing as an
application in connection with channels.
After defining relevant mixing conditions, we rank the conditions and show with detailed ex-

amples that they are not equivalent. For the important special case of a second order stationary
Gaussian process, we characterize mixing conditions in terms of properties of the covariance
function and the spectral measure or density. Finally, we give some simple but useful results for
pair processes including a condition guaranteeing the existence of the information rate, which
is relevant in the context of the ergodic theorem of information theory.
This section is the basis to extend the memory concepts to channels with time structure in

Section §13. In addition, the collected material is directly applicable to integration channels
studied in Section §15, which are composed of a channel function and a noise measure.
In the rest of this section we use the notation introduced in Paragraph 1.2 to denote by (X, X )

and (Y, Y) the product measurable spaces generated by the families {(Xt, Xt), t ∈ T } and
{(Yt, Yt), t ∈ T } of measurable spaces for which (Xt, Xt) = (X0, X0) and (Yt, Yt) = (Y0, Y0)
for all t ∈ T . Further, μ denotes a probability measure on X and ξ = {ξt, t ∈ T } denotes a
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random process on the probability space (Ω, F , P), where the random variable ξt has values in
the measurable space (Xt, Xt).

(12.1) Definition (α-, β-, ψ-mixing, information regularity, finite memory). The probability
measure μ is called α-mixing if for all s ∈ T

lim
t→∞ α

(
[X s

−]; [X +
s+t]

)
= 0.

If the β-dependence coefficient (ψ-dependence coefficient) is employ instead, then μ is called
β-mixing (ψ-mixing). It is called information regular if for all s ∈ T

lim
t→∞ I

(
[X s

−]; [X +
s+t]

)
= 0.

We say that μ has finite memory if for all s ∈ T there exists a τ(s) ∈ T0 such that

ψ
(
[X s

−]; [X +
s+τ(s)]

)
= 0.

We say the process ξ is α-mixing (β-, ψ-mixing, information regular, has finite memory), if the
distribution Pξ is α-mixing (β-, ψ-mixing, information regular, has finite memory).

(12.2) Remark. In view of Remark 7.6 we have the following equivalent form of the α-mixing
condition for the random process ξ: The random process ξ is called α-mixing if for all s ∈ T

lim
t→∞ α

(
ξs

−; ξ+
s+t

)
= 0.

There are corresponding versions for β-mixing, ψ-mixing, information regularity, and finite
memory. Due to (7.7.i), we further have: The random process ξ has finite memory if and only if
for all s ∈ T there exists a τ(s) ∈ T0 such that the random variables ξs

− and ξ+
s+τ(s) are inde-

pendent. Clearly, according to (7.7.i) and (4.7.i) any of the introduced dependence coefficients
can be employed to define finite memory.
If the probability measure μ or the random process ξ are stationary and any of the defining

relations holds for s = 0, then it holds for all s ∈ T . In this most relevant case the given
definitions are identical to those in (Bradley, 2007, Def. 3.1, Def. 5.1). For the non-stationary case
the definitions here are somewhat less restrictive. They are chosen to be consistent with the
corresponding conditions for channels introduced in Definitions 13.3 and 13.6.
If ξ is a discrete time random process that forms a Markov chain (see (A.2.iii)), then we can

apply (7.7.iv) to obtain for all k ∈ Z and n ∈ N

α
(
ξk

−; ξ+
k+n

)
= α(ξk; ξk+n+1). (1)

The same holds for the β- and ψ-dependence coefficient as well as for the mutual information.
For the latter we use (4.7.iv) and (4.7.i) to obtain this result. The identity (1) simplifies the analysis
of mixing properties of Markov chains considerably because calculations can be reduced from
infinite-dimensional to two-dimensional distributions.
The α-mixing condition was introduced by Rosenblatt (1956) and is also called strong mixing

condition. To avoid confusion, we do not use this name because all of the given mixing con-
ditions are also summarized under this term. In addition, the name strongly mixing is used in
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ergodic theory for a related but different concept (see Definition B.3). Actually, the difference to
this concept is that the convergence for the α-mixing condition is uniform in a certain sense.
Theβ-mixing conditionwas introduced byVolkonskii and Rozanov (1959)who attributed it to

Kolmogorov and coined the name absolute regularity. The ψ-mixing condition is due to Philipp
(1969). The information regularity condition was first studied by Volkonskii and Rozanov (1959,
1961) and is attributed there to M. S. Pinsker. The finite memory condition is often considered
with time-independent memory length. Then this property is called m-dependence. It was
introduced by Hoeffding and Robbins (1948) for sequences of random variables. The term finite
memory is chosen by the author in accordance to the corresponding property for channels.
We consider theψ-mixing condition because the corresponding form for channels is implicitly

used by Kadota and Wyner (1972) to prove a coding theorem. We analyze the restrictiveness
of this condition in Section §13, particularly in connection with the special case of Gaussian
channels. The classical and weakest α-mixing condition has important applications in the field
of statistical signal processing (see Paragraph 17.7). Furthermore, we use it as a bridge between
mixing properties based on dependencemeasures andmixing properties in the ergodic-theoretic
sense. We are interested in the β-mixing condition because it is closely related to information
regularity (especially in the Gaussian case), which, in turn, is interesting due to Remark 10.4
and Corollary 12.9.

The next theorem gives a hierarchy of the various mixing conditions. With Theorem B.7 in
Appendix B we can further extend this sequence of implications up to ergodicity.

(12.3) Theorem (Relations between mixing conditions). Themixing conditions satisfy the follow-
ing sequence of implications:

finite memory =⇒ ψ-mixing =⇒ information regular =⇒ β-mixing =⇒ α-mixing
(∗)=⇒ mixing

The implication marked by (∗) holds for stationary probability measures (random processes).

Proof. Except for the last, the implications follow from (7.7.v), (7.7.vi), and Definition 12.1. That
in the stationary case α-mixing implies mixing in the ergodic theoretic sense (see Definition B.3)
is shown in (Bradley, 2007, 2.17 (a)-(d)). See also (Bradley, 2007, 5.22) for an extended hierarchy.�

For certain classes of random processes additional implications in the opposite direction hold.
A stationary Markov chain, for example, which is irreducible, aperiodic, and mixing (in the
ergodic-theoretic sense) is ψ-mixing if it has a finite alphabet and β-mixing if it has a countable
alphabet (Bradley, 2007, Th. 7.7, Th. 7.14). As stated in Theorem 12.5 below, for stationary Gaus-
sian random processes some of the mixing conditions are also equivalent. However, the next
examples show, that in general the reversed implications in Theorem 12.3 are not valid.

(12.4) Example (Mixing conditions are not equivalent). We give simple examples to show the
non-equivalence of the mixing conditions in Theorem 12.3. Subsequently, ξ = {ξk, k ∈ Z}
denotes an i.i.d.-sequence of random variables. We consider Markov chains (see Paragraph A.2)
obtained from a transformation of the sequence ξ, which is made explicit by introducing a func-
tion g. The examples are presented in a unified way to emphasize that the same building blocks
and construction principles result in different mixing properties.
(i) Finite memory vs. ψ-mixing. Suppose the random variables ξk have values in the set {0, 1},

i. e., they are binary (as usual we take the power set as associated σ-algebra) such that ξ is a
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Bernoulli sequence. The distribution is specified by

P(ξ0 = 0) = 1
2(1 + ε) and P(ξ0 = 1) = 1

2(1 − ε) (1)

for some fixed ε ∈ (0, 1). Let g be a function on {0, 1} × {0, 1} with values in {0, 1} given by

g(y, x) = (1 − x)y + x(1 − y) = y ⊕ x

for all x, y ∈ {0, 1}, where ⊕ denotes addition modulo 2. Let η = {ηk, k ∈ Z} be a sequence of
binary random variables defined by the recurrence relation

ηk = g(ηk−1, ξk) = ηk−1 ⊕ ξk (2)

= (1 − ξk)ηk−1 + ξk(1 − ηk−1) (3)

for all k ∈ Z. That means, we randomly generate (independently from past and future) a 0 or
1 according to the probabilities in (1). If a 0 is generated, then ηk takes the same value as ηk−1.
Otherwise, we flip the value of ηk−1 and assign it to ηk .
We have the Markov chain (ηk−2

− − ηk−1 − ηk) for any k ∈ Z due to the i.i.d.-property
of the sequence ξ and the defining relation (2). Therefore, η is a Markov chain (see (A.2.iii)).
The representation in (3) shows that the distribution of ηk is the convex combination of the
distributions of ηk−1 and (1 − ηk−1), because the binary ξk serves as switch between these
two random variables. If ηk−1 is uniformly distributed on {0, 1}, then (1 − ηk−1) is uniformly
distributed, which implies ηk is uniformly distributed. Therefore, the uniform distribution is the
stationary marginal distribution of the Markov chain.
We denote by K the Markov kernel from (Y0, Y0) to (Y1, Y1), characterizing the invariant

transition probabilities of the Markov chain η, where Y0 = Y1 = {0, 1} and Y0 and Y1 are the
corresponding power sets. From the distribution of ξk and from (3) we obtain

K(y0, ·) = 1
2(1 + ε)δy0(·) + 1

2(1 − ε)δ(1−y0)(·)

for all y0 ∈ Y0. Given n ∈ N the Markov kernel Kn from (Y0, Y0) to (Yn, Yn) = (Y1, Y1) with

Kn(y0, ·) = 1
2(1 + εn)δy0 (·) + 1

2(1 − εn)δ(1−y0)(·) (4)

for all y0 ∈ Y0 characterizes the n-step transition probabilities. This is obtained from

ηn = η0 ⊕ (ξ1 ⊕ ξ2 ⊕ . . . ⊕ ξn

)
(5)

and the i.i.d.-property of ξ, where (5) is the result of the repeated use of (2).
The Markov kernel in (4) and the uniform distribution of η0 yield the joint distribution of

(η0, ηn). Using (7.6.6) we can directly calculate from this joint distribution the ψ-dependence
coefficient

ψ(η0; ηn) = εn,

which converges to 0 as n → ∞ because ε ∈ (0, 1). In view of the comments in Remark 12.2
on simplifications of mixing conditions for Markov chains and stationarity processes it follows
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that the stationary Markov chain η is ψ-mixing. However, ψ(η0; ηn) is positive for all n ∈ N

so that η does not satisfy the finite memory condition. The Markov chain η is the same as that
considered in (Bradley, 2007, Exm. 7.9) to illustrate various mixing properties.
(ii) ψ-mixing vs. information regularity. Assume now that the random variables ξk of the

i.i.d.-sequence ξ = {ξk, k ∈ Z} are real-valued (as usual the σ-algebra associated to R is the
corresponding Borel-σ-algebra) with expectation and variance

E(ξ0) = 0 and var(ξ0) = σ2, (6)

respectively, for some σ2 > 0. Let ρ be a real constant satisfying |ρ| < 1 and ρ �= 0. Further, let
g denote the real-valued function on R × R given by

g(y, x) = ρy + x

for all x, y ∈ R. We define the sequence η = {ηk, k ∈ Z} of real-valued random variables by
the recurrence relation

ηk = g(ηk−1, ξk) = ρηk−1 + ξk (7)

for all k ∈ Z. The sequence η is called an autoregressive (AR) process of order 1. It is actually
the result of filtering the i.i.d.-sequence ξ (“white noise“) by themost simple IIR-filter, i. e., a filter
with one feedback link. See Paragraph C.3 in Appendix C for more details on AR processes (of
order 1) and Example C.4 for a continuous-time version of this example.
The same arguments as in the previous example (i) show that η is a Markov chain. From (7)

we obtain the explicit representation

ηk =
∞∑

i=0
ρiξk−i, (8)

which is well defined because the series converges in mean square and almost surely (Brockwell
and Davis, 2006, Prop. 3.1.1) due to the properties of the sequence ξ and because |ρ| < 1.
Using (8) we obtain for all k, n ∈ Z the expectation and covariance

E(ηk) = 0 and cov(ηk, ηk+n) = σ2

1 − ρ2 ρ|n|. (9)

This result is based on exchanging expectation and summation (dominated convergence), the
i.i.d.-property of ξ together with (6), and the convergence of the involved geometric series for
|ρ| < 1. As a consequence of (9) the sequence η is wide-sense stationary.
Let us additionally assume that ξ is a Gaussian random sequence. Then η is also a Gaussian

random sequence because it is obtained by a linear transformation of ξ. Gaussian wide-sense
stationary sequences are stationary so that η is a stationary Gaussian Markov chain. Please note,
it even holds, that a stationary Gaussian random sequence forms a Markov chain if and only if
it has a covariance function of the exponential form as given in (9) (see (Hida and Hitsuda, 2007,
p. 30) and (Ihara, 1993, Th. 2.3.3)). According to (9) the correlation coefficient

cor(η0, ηn) = ρn
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is nonzero for all n ∈ N because ρ is assumed to be nonzero. This implies, together with (7.7.vii),

ψ(η0; ηn) ≥ 2

for all n ∈ N. Therefore, the sequence η is not ψ-mixing. However, the mutual information
I(η0; ηn) is given by

I(η0; ηn) = −1
2 log(1 − ρ2n),

which is obtained, e. g., from (7.1.1) and Example 6.12. Just take (η0, ηn) in Example 6.12 as the
first random vector. The second random vector has the same marginals but independent compo-
nents. Since I(η0; ηn) converges to 0 as n → ∞ the stationary Markov chain η is information
regular. The sequence η is an explicit example of a stationary Gaussian sequence with rational
spectral density for which information regularity holds according to (12.5.i) and (12.5.iii).
(iii) Information regularity vs. β-mixing. Assume that ξ = {ξk, k ∈ Z} is the i.i.d.-sequence of

binary random variables specified in example (i) with the parameter ε now taken from [0, 1). Let
ζ = {ζk, k ∈ Z} be another i.i.d.-sequence on (Ω, F , P), which is independent of ξ. Suppose the
random variables ζk have values in the interval [0, 1] (equipped with the usual Borel-σ-algebra)
and their distribution is given by the uniform distribution on [0, 1] denoted by the measure λ.
Let us define the function g on [0, 1] × {0, 1} × [0, 1] with values in the interval [0, 1] by

g(y, x, z) = (1 − x)y + xz

for all x ∈ {0, 1} and y, z ∈ [0, 1]. With the recurrence relation

ηk = g(ηk−1, ξk, ζk) = (1 − ξk)ηk−1 + ξkζk (10)

we define the sequence η = {ηk, k ∈ Z} of random variables. That means, we randomly
generate (independent from past and future) a 0 or 1 according to the probabilities in (1). If a 0
is generated, then ηk takes the same value as ηk−1. Otherwise, we assign to ηk a value from the
interval [0, 1], randomly generated (independent from past and future and from the first random
experiment) according to a uniform distribution.
The recurrence relation in (10) is similar to that in (3), only (1−ηk−1) is replaced by ζk . We can

therefore apply the same arguments as used in example (i) to show that η is a Markov chain with
stationary marginal distribution given by the uniform distribution on the interval [0, 1]. Here,
we take the uniform distribution of the random variables ζk and the independence of ξ and ζ
into account. If Y0 = Y1 = [0, 1] and Y0 and Y1 denote the corresponding Borel-σ-algebras,
then the Markov kernel K from (Y0, Y0) to (Y1, Y1) with

K(y0, ·) = 1
2(1 + ε)δy0(·) + 1

2(1 − ε)λ(·)

for all y0 ∈ [0, 1] characterizes the invariant transition probabilities of the Markov chain η.
This follows from (10) and the distributions of ξk and ζk . The n-step transition probabilities are
described for all n ∈ N by the Markov kernel Kn from (Y0, Y0) to (Yn, Yn) = (Y1, Y1), where

Kn(y0, ·) =
(

1
2 (1 + ε)

)n

δy0(·) +
(

1 −
(

1
2 (1 + ε)

)n)
λ(·) (11)
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for all y0 ∈ Y0. Indeed, repeated use of (10) yields

ηn =
(

n−1∏
j=0

(1 − ξn−j)
)

η0 +
n∑

i=1

(
n−1−i∏

j=0
(1 − ξn−j)

)
ξiζi.

Therefore, we have ηn = η0 if all ξ1, ξ2, . . . , ξn are 0 and otherwise we have ηn = ζi for
some i ∈ {1, 2, . . . , n}. Then the i.i.d.-property and the distribution of the sequence ξ and the
distribution of ζi yield (11).
The uniform distribution of η0 on [0, 1] denoted by λ and the Markov kernel in (11) yield the

joint distribution of (η0, ηn) given by (apply (2.1.1))

Pη0,ηn =
(

1
2 (1 + ε)

)n

λĝ +
(

1 −
(

1
2 (1 + ε)

)n)
λ ⊗ λ, (12)

where λĝ is the image measure of λ w. r. t. the function ĝ given by ĝ(y) = (y, y) for all y ∈ [0, 1].
Due to (7.6.2), the β-dependence coefficient is equal to half the total variation distance between
the joint distribution and the product of the marginal distributions, which yields

β(η0; ηn) = 1
2
∥∥Pη0,ηn − Pη0 ⊗ Pηn

∥∥
tv

=
( 1

2 (1 + ε)
)n 1

2
∥∥λĝ − λ ⊗ λ

∥∥
tv

=
( 1

2 (1 + ε)
)n

.

For the last equality we used (7.6.3) and the fact that the upper bound in (6.7.2) is attained for
the set V = {(y, y) : y ∈ [0, 1]}. Since β(η0; ηn) converges to zero for any ε ∈ [0, 1) as n → ∞,
the stationary Markov chain η is β-mixing. However, we have Pη0,ηn(V ) =

( 1
2 (1 + ε)

)n
> 0

but Pη0 ⊗ Pηn(V ) = 0 for all n ∈ N. Therefore, Pη0,ηn is not absolutely continuous w. r. t.
Pη0 ⊗ Pηn and according to Theorem 4.3 we have

I(η0; ηn) = ∞

for all n ∈ N. It follows that the Markov chain η is not information regular. This example is a
slight generalization of (Bradley, 2007, Exm. 7.12), where the special case ε = 0 was considered.

(iv) β-mixing vs. α-mixing. Let {η(i), i ∈ N} be an independent family of random sequences.

Each sequence η(i) = {η
(i)
k , k ∈ Z} consists of binary random variables on (Ω, F , P), where the

distribution of η(i) is equal to the distribution of the Markov chain constructed in example (i).

For any k ∈ Z, denote by η
(·)
k the i.i.d.-sequence η

(·)
k = {η

(i)
k , i ∈ N} of uniformly distributed

binary random variables.
We define the sequence η = {ηk, k ∈ Z} of random variables by

ηk =
∞∑

i=1

1
2i

η
(i)
k , (13)

which is well defined because the series converges in mean square and almost surely (Brock-
well and Davis, 2006, Prop. 3.1.1). The sequence η is stationary because the sequences η(i) are

stationary and the transformation of η
(·)
k into ηk is identical for all k ∈ Z. According to (13)

the random variables η
(1)
k , η

(2)
k , η

(3)
k , . . . are the digits of the binary expansion of the random
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variable ηk , which has values in the interval [0, 1] (equipped with the usual Borel-σ-algebra).
We observe that the binary expansion is unique except for countable many numbers. From the
distribution of η(i) we obtain that ηk is uniformly distributed on the interval [0, 1]. Except for
P-nullsets we therefore have

σ(ηk) = σ
(
η

(·)
k

)
. (14)

Together with the fact that the sequences η(i) are Markov chains we obtain from (A.2.i) and
(A.2.ii) that η is a Markov chain.

From (14) and the first assertion in (7.7.ix) we obtain for all n ∈ N

β(η0; ηn) = β
(
η

(·)
0 ; η(·)

n

)
= 1,

since cor
(
η

(1)
0 , η

(1)
n

)
= εn > 0 for any ε ∈ (0, 1) so that η

(1)
0 and η

(1)
n are not independent.

Therefore, the sequence η is not β-mixing. From (14) and the second assertion in (7.7.ix) we
obtain for all n ∈ N

α(η0; ηn) = α
(
η

(·)
0 ; η(·)

n

) ≤ 1
4 sup

i∈N

|cor(η(i)
0 , η(i)

n )|

= 1
4cor

(
η

(1)
0 , η(1)

n

)
= 1

4 εn.

Consequently, α(η0; ηn) converges to 0 as n → ∞, i. e., the stationary Markov chain η is α-
mixing. This example is taken from (Bradley, 2007, Exm. 7.16).
(v) α-mixing vs. mixing (in the ergodic-theoretic sense). Assume that ξ = {ξk, k ∈ Z} is the

i.i.d.-sequence of binary random variables specified in example (i) with parameter ε = 0. Let g
denote the function on [0, 1] × {0, 1} with values in the interval [0, 1] given by

g(y, x) = 1
2(y + x)

for all x ∈ {0, 1} and y ∈ [0, 1]. We define the sequence η = {ηk, k ∈ Z} of random variables
by the recurrence relation

ηk = g(ηk−1, ξk) = 1
2
(
ηk−1 + ξk

)
(15)

for all k ∈ Z, which results in the explicit representation

ηk =
∞∑

i=0

1
2i+1 ξk−i. (16)

From the recurrence relation (15) we obtain in the same way as in example (i) that η is a Markov
chain. The repeated use of (15) yields (16). The series is well defined for the same reasons as the
one in (13). Likewise, as in example (iv) we have that ηk has values in the interval [0, 1] (equipped
with the usual Borel-σ-algebra) and it is uniformly distributed on that interval. Further, we have

σ(ηk) = σ
(
ξk

−
)

(17)
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with the exception of P-nullsets, due to the same arguments used to derive (14).

LetX denote the (product) space of values of ξ, i. e., the set of two-sided binary sequences, and
let Y denote the (product) space of values of η, i. e., the set of two-sided real-valued sequences
with components in the interval [0, 1]. We define the function f̂ on X with values in Y by22

f̂(x) = y = {yk, k ∈ Z}, yk =
∞∑

i=0

1
2i+1 xk−i (18)

for all x = {xk, k ∈ Z} ∈ X . In view of (16) we obviously have η = f̂(ξ) and therefore

Pη = (Pξ)f̂ ,

i. e., the distribution Pη of η is the image measure of the distribution Pξ of ξ w. r. t. the function

f̂ . Due to (B.13.i), the invariance of f̂ and Pξ implies the stationarity of Pη and therefore of η.
According to Lemma B.11, Pξ is mixing (in the ergodic-theoretic sense). Using assertion c) in
(B.13.iii) yields that Pη and therefore η are mixing (in the ergodic-theoretic sense).

With the exception of P-nullsets we have σ(η0) ⊂ σ(ηn) for all n ∈ N using (17). The
σ-algebra-based version of (7.7.ii) then implies

α(η0; η0) ≤ α(η0; ηn).

Since η0 is uniformly distributed on the interval [0, 1], we have
∣∣∣P({η0 ≤ 1

2
} ∩ {η0 ≤ 1

2
})− P

(
η0 ≤ 1

2
)
P
(
η0 ≤ 1

2
)∣∣∣ = 1

4 .

Consequently, the definition of the α-dependence coefficent yields

1
4 ≤ α(η0; ηn).

Therefore, the stationary Markov chain η is not α-mixing. This example is taken from (Bradley,
2007, Exm. 2.15).

A summary of the preceding examples is given with the subsequent table. Recall, the inde-
pendent i.i.d.-sequences ξ = {ξk, k ∈ Z} and ζ = {ζk, k ∈ Z} are transformed into the Markov
chain η = {ηk, k ∈ Z} using the recurrence relation g. The last column lists the most restrictive
mixing condition satisfied by η.

22The function f̂ can be represented by component functions f̂k , defined on Xk
− by the right-hand side of (18). The

function fk is X k
−/Yk-measurable due to the results in Paragraph A.13, because the series in the definition converges

for all xk
− = {xk−i, i ∈ N0} ∈ Xk

− . Then it follows from the derivations in Paragraph E.6 that the function f̂ is
X /Y-measurable.
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ξ, ζ g(y, x, z) ηk mixing property η

(i)
ξ Bernoulli, P(ξ0 = 0) (1 − x)y + x(1 − y) g(ηk−1, ξk) ψ-mixing= (1 + ε)/2, ε ∈ (0, 1)

(ii) ξ Gaussian, E(ξ0) = 0 αy + x,
g(ηk−1, ξk) information

|α| < 1, α �= 0 regular

(iii)
ξ as in (i), ζ with ζ0 (1 − x)y + xz g(ηk−1, ξk, ζk) β-mixing
uniform on [0, 1]

(iv)
{ξ(j), j ∈ N} indepen- (1 − x)y + x(1 − y)

∑∞
j=1 η

(j)
k /2j ,

α-mixing
dent family, ξ(j) as in (i) η

(j)
k = g(η(j)

k−1, ξk)

(v) ξ as in (i) with ε = 0 (y + x)/2 g(ηk−1, ξk) mixing
(ergodic-theoretic)

Please note, in the examples (i), (ii), and (v) the Markov chain η is based on very similar
recurrence relations. However, the resulting mixing properties are quite different. Also note,
even though the sequence η is a stationary Markov chain with marginal distribution equal to
the uniform distribution on the interval [0, 1] throughout the examples (iii), (iv), and (v) the
mixing properties are of different quality.

The next theorem states that some of the mixing conditions are equivalent for the important
special case of second order stationary Gaussian processes. For such processes we formulate
properties of the covariance function and the spectralmeasure or density that imply or character-
ize certain mixing properties of the process. For details on second order random processes, spec-
tral representation, and rational spectral densities including the terminology see Appendix C.
Relevant material on mixing conditions in the ergodic-theoretic sense is given in Appendix B.

(12.5) Theorem (Mixing conditions for stationary Gaussian processes). Let ξ = {ξt, t ∈ T } be
a real-valued second order stationary Gaussian process. In the continuous-time case suppose ξ is
mean-square continuous.

(i) The following mixing conditions are equivalent:

finite memory ⇐⇒ ψ-mixing

information regular ⇐⇒ β-mixing

weakly mixing ⇐⇒ totally ergodic ⇐⇒ ergodic

(ii) The process ξ has finite memory if and only if there exists a t0 ∈ T+ such that for all t ≥ t0
the covariance function γ satisfies γ(t) = 0.
(iii) The process ξ is β-mixing if it has a rational spectral density.

(iv) For the process ξ to be α-mixing the existence of a spectral density is necessary. The discrete-
time process ξ is α-mixing if it has a spectral density, which is continuous and positive on the whole
interval (−π, π]. The continuous-time process ξ is α-mixing if it has a spectral density ϕ, which is
uniformly continuous, positive on the whole real line, and satisfies the inequality

c1/um ≤ ϕ(u) ≤ c2/um−1
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for all sufficiently large u ∈ R and some positive constants c1, c2 ∈ R and m ∈ N.
(v) The process ξ is mixing (in the ergodic-theoretic sense) if and only if the covariance function

γ satisfies

lim
t→∞ γ(t) = 0.

In particular, ξ is mixing (in the ergodic-theoretic sense) if it has a spectral density.
(vi) The process ξ is weakly mixing if and only if the spectral measure σ is continuous, i. e., if

σ({u}) = 0 for all u ∈ (−π, π] in the discrete- and for all u ∈ R in the continuous-time case.

Proof. Part (i). The first equivalence follows from (7.7.ii), (7.7.vii), and (A.6.i). See also (Bradley,
2007, Th. 9.7 (II)). The second equivalence was derived by Ibragimov and Rozanov (1970). See
also (Ibragimov and Rozanov, 1978, p. 128) and (Bradley, 1983, Th.A).
In (Cornfeld et al., 1982, Sec. 8.2) it is shown that a continuous spectral measure is necessary

for ergodicity. Together with the assertion in part (vi) we obtain, that ξ is ergodic if and only
if it is weakly mixing. If ξ is weakly mixing, then it is totally ergodic due to Theorem B.7. For
the continuous-time case this implication requires ξ to be continuous in the sense of Pinsker
(see Definition B.5), which follows from the assumed mean-square continuity (see Remark B.6).
According to Theorem B.7 total ergodicity implies ergodicity so that we can conclude total er-
godicity and ergodicity are also equivalent.
Part (ii). This equivalence follows by the same arguments as the first equivalence in part (i).
Part (iii). In the discrete-time case the result follows from (Ibragimov and Rozanov, 1978,

Ch. IV, Th. 8 and Lem. 6). In the continuous-time case the result is shown in (Pinsker, 1964,
Th. 10.1.1). It also follows from (Ibragimov and Rozanov, 1978, Ch. IV, Th. 9).

Part (iv). The conditions for α-mixing are derived in (Kolmogorov and Rozanov, 1960).
Part (v). For the discrete-time case the characterization is shown in Cornfeld et al. (1982,

Sec. 14.2, Th. 2) with a comment on pages 192 and 356 that the result carries over to the contin-
uous-time case. An explicit proof of the characterization for the continuous-time case is given
in Maruyama (1949, Th. 9 (ii)). That the existence of a spectral density is sufficient is shown in
Cornfeld et al. (1982, p. 371) for the discrete-time case and in Itô (1944) and Maruyama (1949,
Th. 8) for the continuous-time case.

Part (vi). The characterization is shown inCornfeld et al. (1982, Sec. 14.2, Th. 1) for the discrete-
time case and in Maruyama (1949, Th. 9 (i)) for the continuous-time case. �

(12.6) Remark. Please note that the required mean-square continuity in the continuous-time
case is only a weak restriction, which already holds if the covariance function is continuous at
t = 0 (see Paragraph C.1).
Not all the results collected in Theorem 12.5 are given in the most general form possible. One

easily obtains, for example, that the first equivalence of (12.5.i) extends to vector-valued and
complex-valued Gaussian processes. The results taken from (Maruyama, 1949), (Cornfeld et al.,
1982), or (Ibragimov and Rozanov, 1978) directly apply to complex-valued processes. Ibragimov
and Rozanov (1978, Ch. IV, Th. 8 and Th. 9) even give a characterization of information regularity
in spectral terms and not just sufficient conditions. Also the sufficient conditions for α-mixing
given by Kolmogorov and Rozanov (1960, Th. 4) are more general then those in Theorem 12.5.
Furthermore, the result taken form (Pinsker, 1964, Th. 10.1.1) on rational spectral densities is
formulated there for vector-valued processes. As shown in (Rosinski and Zak, 1997) the equiva-
lence between weak mixing and ergodicity holds for all infinitely divisible processes.



74 III Memory and Mixing Conditions

If a probability measure on the product spaceX ⊗Y possesses a specific mixing property, then
the marginal measures onX andY possess the same property. Based on this simple observation
we obtain together with (4.7.vi) and the σ-algebra-based version of (7.7.iii) the following result.

(12.7) Lemma (Mixing conditions for product measures). Let μ and ν be probability measures on
the product-σ-algebras X and Y , respectively. The product measure μ ⊗ ν is α-mixing (β-mixing,
information regular, ψ-mixing, has finite memory) if and only if μ and ν are both α-mixing (β-
mixing, information regular, ψ-mixing, have finite memory).

(12.8) Remark. The corresponding formulation for random processes reads as follows. Let
ξ = {ξt, t ∈ T } and η = {ηt, t ∈ T } be random processes on (Ω, F , P). If ξ and η are
independent, then the pair process (ξ, η) is α-mixing (β-mixing, information regular, ψ-mixing,
has finite memory) if and only if ξ and η are both α-mixing (β-mixing, information regular,
ψ-mixing, have finite memory).

In view of Lemma 4.12 and Theorem 8.4 we make the following observation for information
regular processes.

(12.9) Corollary. Let ξ = {ξt, t ∈ T } and η = {ηt, t ∈ T } be random processes on the prob-
ability space (Ω, F , P) such that the pair process (ξ, η) = {(ξt, ηt), t ∈ T } is stationary. In the
continuous-time case assume that ξ and η are continuous in the sense of Pinsker (see Definition B.5).
If ξ is information regular, then the information rate Ī(ξ; η) exists. If in addition the pair process
(ξ, η) is ergodic and the information rate Ī(ξ; η) is finite, then (8.4.1) in the ergodic theorem of
information theory holds.

§13 Memory and Mixing Conditions for Channels

Output memory conditions imply the ergodicity of a channel with time structure as required
in Theorem 9.1. Finite output memory is a classical condition of this type, first considered by
Takano (1957), Feinstein (1958, Ch. 6), Wolfowitz (1960), and implicitly by Khinchin (1957, Part II,
Ch. III). As a generalization Adler (1961) introduced infinite memory conditions based onmixing
properties in the ergodic-theoretic sense. In this section we extend the dependence coefficient-
based infinite memory conditions introduced for random processes in Section §12 to channels
with time structure. These mixing conditions lie between the finite memory condition and the
mixing conditions of Adler (1961). On the one hand, it can be useful to have various sufficient
conditions to verify the ergodicity of a channel. On the other hand, there are applications (see
the comments preceding Paragraph 17.7 and the example therein) for which finite memory is
not required but the memory condition of Adler (1961) is not restrictive enough.

Before we introduce the different channel output memory conditions, we define a finite input
memory condition, which is partly required to ensure mixing properties of the induced chan-
nel input-output probability measure analyzed at the end of this section. Then we clarify how
the various mixing conditions are related. We show for the important class of Gaussian chan-
nels that the ψ-mixing condition, which in general describes infinite output memory, is in fact
equivalent to finite output memory. Further, we demonstrate how the most widely used model
of a memoryless channel fits into the framework of this thesis. Throughout this section κ is a
channel with time structure as introduced in Definition 2.3.
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(13.1) Definition (Finite input memory). The channelκ has finite inputmemory if for all s ∈ T
there exists a tI(s) ∈ T0 such that for all B ∈ Y+

s and x, x̃ ∈ X coinciding on (s − tI(s), ∞)
we have

κ(x, [B]) = κ(x̃, [B]).

For given s ∈ T we call the smallest possible tI(s) the input memory length at time s. If
tI(s) = 0 for all s ∈ T , then we say the channel is input-memoryless.

(13.2) Remark. If the channel κ is stationary and the defining relation of finite input memory
holds for s = 0, then it holds for all s ∈ T and the input memory length does not depend on s.

Obviously, a channel with finite input memory is asymptotically input-memoryless for the
entire input signal set X . Similar to the definition of asymptotic input-memorylessness, we can
define the finite input memory condition on a subspace X ′ ⊂ X of input signals. However, we
will not make use of this version.

There is a useful equivalent characterization of a channel with finite input memory given in
(Kadota, 1972): The channel κ has finite input memory if for any s ∈ T there exists a tI(s) ∈ T0
such that for all B ∈ Y+

s the function κ(·, [B]) is [X +
s−tI (s)]-measurable. This equivalent defini-

tion is obtained in the same way as the alternative characterization of causality (see Remark 2.8).

(13.3) Definition (Finite output memory). The channel κ has finite output memory if for all
s ∈ T there exists a to(s) ∈ T0 such that for any B ∈ Ys

−, B̂ ∈ Y+
s+to(s), and x ∈ X we have

κ(x, [B] ∩ [B̂]) = κ(x, [B])κ(x, [B̂]).

For given s ∈ T we call the smallest possible to(s) the output memory length at time s. If
to(s) = 0 for all s ∈ T , then we say the channel is output-memoryless.

(13.4) Definition (Mixing in the ergodic-theoretic sense). The channel κ is called mixing (in
the ergodic-theoretic sense), if for all x ∈ X and any two cylinder sets B, B̂ ∈ Y

lim
t→∞

∣∣κ(x, B ∩ θt(B̂)
)− κ

(
x, B

)
κ
(
x, θt(B̂)

)∣∣ = 0. (1)

Given s ∈ T+ the channel κ is called s-weakly mixing (in the ergodic-theoretic sense) if for all
x ∈ X and any two cylinder sets B, B̂ ∈ Y

lim
n→∞

1
n

n−1∑
k=0

∣∣κ(x, B ∩ θks(B̂)
)− κ

(
x, B

)
κ
(
x, θks(B̂)

)∣∣ = 0 (2)

holds. If κ is s-weakly mixing for all s ∈ T+ , then it is called totally weakly mixing (in the
ergodic-theoretic sense).

(13.5) Remark. In the classical work of Khinchin (1957, Part II, Ch. III), Takano (1957), Fein-
stein (1958, Ch. 6), Feinstein (1959), or Wolfowitz (1960) channels with finite input and output
memory are considered for discrete-time finite alphabet models to generalize Shannon’s original
coding theorems. See also (Gray, 2011, Sec. 2.10) and (Kakihara, 1999, Sec. 3.1).
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Adler (1961) introduced the mixing conditions in the ergodic-theoretic sense for discrete-time
channels, which are similar to corresponding conditions for probability measures (see Defini-
tion B.3). See also (Gray, 2011, Sec. 2.11) or (Kakihara, 1999, Sec. 3.3). The introduced weak
mixing conditions are modified versions such that they are suitable in the context of this thesis.
We defined s-weakly mixing and totally weakly mixing channels, however, we have not defined
a weakly mixing channel. In the discrete-time case it is natural to call a 1-weakly mixing chan-
nel weakly mixing. Because a convergent sequence and all of its subsequences have the same
limit, a discrete-time channel is 1-weakly mixing if and only if it is totally weakly mixing so
that a simpler definition is possible. In the continuous-time case it would be natural to define
a weakly mixing channel based on an integral as in (B.3.3). However, the concept of a totally
weakly mixing channel based on sums is more appropriate in connection with block coding the-
orems for continuous-time channels, where the time axis is partitioned into intervals of equal
size (see the comments at the end of Remark B.4).

For a general channel with time structure the mixing conditions constitute the least restric-
tive explicit infinite output memory conditions implying the ergodicity of the channel (see The-
orem 13.9) required in the coding theorem in Section §9. Recall that the ergodicity of channels
is defined indirectly in (2.7.ii).

Usually, the phrase “for all x ∈ X“ can be replaced by “for almost all x ∈ X“ where “almost“
refers to probability measures from a class of relevant channel input probability measures. The
definitions in (Adler, 1961) and (Kakihara, 1999, Sec. 3.3) have this form.

(13.6) Definition (α-mixing, β-mixing, ψ-mixing, information regular channels). The chan-
nel κ is called α-mixing if for all s ∈ T

lim
t→∞ sup

x∈X
α
(
[Ys

−]; [Y+
s+t]

∣∣x) = 0,

where α
(
[Ys

−]; [Y+
s+t]

∣∣x) denotes the α-dependence coefficient of [Ys
−] and [Y+

s+t] given the
underlying probability space is (Y, Y, κ(x, ·)). If the β-dependence coefficient (ψ-dependence
coefficient) is employ instead, then the channel is called β-mixing (ψ-mixing).

The channel κ is called information regular if for all s ∈ T

lim
t→∞ sup

x∈X
I
(
[Ys

−]; [Y+
s+t]

∣∣x) = 0,

where I
(
[Ys

−]; [Y+
s+t]

∣∣x) denotes the mutual information between [Ys
−] and [Y+

s+t] given the
underlying probability space is (Y, Y, κ(x, ·)).

(13.7) Remark. Finite channel output memory means, sufficiently time-separated output
events are independent given a fixed input. The mixing conditions of Definition 13.6, in turn,
mean that for given input, future and present outputs are asymptotically independent from
outputs remote in the past. As the conditions formulated in Definition 13.4, they characterize
channels with infinite output memory, but of a different type. The properties in Definition 13.4
are inspired from ergodic theory, whereas the conditions in Definition 13.6 are based on the
dependence measures introduced in Section §7. They are similar to the mixing concepts for
probability measures and random processes defined in Definition 12.1. Note that the mixing
properties for channels considered in (Mittelbach, 2012, (4.27.iv)) are defined in a different way.



§13 Memory and Mixing Conditions for Channels 77

Takano (1974) defined the α-mixing condition for discrete-time channels and used the term
strong mixing. Kadota andWyner (1972) introduced ψ-mixing channels under the name asymp-
totically output-memoryless channels. We reformulated this property using the ψ-dependence
coefficient. An essential advantage of using this representation is that one can exploit more
easily the connections to the rich field of strong mixing conditions. By changing the measure of
dependence we obtain further classes of channels with infinite output memory. From the long
list of dependence coefficients considered in Bradley (2007), we selected those that are of inter-
est in connection with the thesis (see comments at the end of Remark 12.2). The names of the
defined channel output memory properties are chosen according to the corresponding mixing
properties for random processes.

Note that we have the following equivalent definition of finite output memory: The channel
κ has finite output memory if for all s ∈ T there exists a to(s) ∈ T0 such that for all t ≥ to(s)
we have

sup
x∈X

ψ
(
[Ys

−]; [Y+
s+t]

∣∣x) = 0.

The equivalence follows from the σ-algebra based versions of (7.7.ii) and (7.7.i). Recall that
the ψ-dependence coefficient is 0 if and only if the considered σ-algebras (random variables)
are independent. Because the same holds for the α- and β-dependence coefficient and for the
mutual information, these dependencemeasures can be used as well to characterize finite output
memory. The asymptotic versions in Definition 13.6 are natural generalizations. As will be seen,
these infinite output memory conditions are no longer equivalent.
For stationary channels we have the following simplification: If the defining relation of finite

output memory (α-mixing, β-mixing, ψ-mixing, information regularity) holds for s = 0, then
it holds for all s ∈ T . Therefore, the memory length for a stationary finite output memory
channel does not depend on s. As discussed in Remark 13.5 the modification of the definitions
“for almost all x ∈ X“ is also possible.

(13.8) Example (Memoryless channel). Assume that κ is a discrete-time channel, i. e., we
have T = Z. Let k ∈ T be a time index and a− ∈ Xk−1

− and a+ ∈ X+
k be arbitrary but fixed

one-sided input sequences. We define for all xk ∈ Xk and Bk ∈ Yk

κk(xk, Bk) = κ
(
(a−, xk, a+), [Bk]

)
.

Then κk is a Markov kernel from (Xk, Xk) to (Yk, Yk) due to (A.3.iii). Assume that the chan-
nel κ is causal, then κk does not depend on the choice of a+. Further assume that κ is input-
memoryless, i. e., it has finite input memory with input memory length of 0 for all time in-
dices. Then κk does not depend on the choice of a−. In addition, we assume that κ is output-
memoryless, i. e., it has finite outputmemorywith outputmemory length of 0 for all time indices.
Then for all x ∈ X , l ∈ T+ , and Bk ∈ Yk for k ∈ {−l, −(l − 1), . . . , l} we have

κ
(
x, [B−l × B−(l−1) × . . . × Bl]

)
=

l∏
k=−l

κ(x, [Bk])

=
l∏

k=−l

κk(xk, Bk),
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where the first equality is due to the output-memorylessness and the second equality due to the
input-memorylessness and the causality. If κ is also stationary, then we have

κ
(
x, [B−l × B−(l−1) × . . . × Bl]

)
=

l∏
k=−l

κ0(xk, Bk). (1)

A channel satisfying (1) for all x, l, andBk is called a stationarymemoryless channel. Usually, (1)
is used as defining relation. We emphasize, that using just the single term “memoryless“ means
the combination of input-memoryless, output-memoryless, and causal. Due to its simplicity,
this special case, often with finite alphabets, is the most widely used model in the information-
theoretic literature.

The following hierarchy relates the various channel output memory conditions. See Theo-
rem 12.3 for corresponding relations between mixing conditions for random processes. Except
for (g), the examples in Paragraphs 16.2 to 16.4 show that the converse implications are not true
in general. A channel that is totally ergodic but not totally weakly mixing remains to be found.

(13.9) Theorem (Relations between mixing conditions). The following implications betweenmix-
ing channels hold.

finite output memory=⇒ (a)

ψ-mixing=⇒ (b)

information regular=⇒ (c)

β-mixing=⇒ (d)

α-mixing=⇒ (e)

mixing=⇒ (f)

totally weakly mixing=⇒ (g)(∗)
totally ergodic=⇒ (h)(∗)

totally ergodic for block-i.i.d. inputs

stron
g
m
ixin

g
ba
sed

ergod
ic-th

eoretic

The implications marked by (∗) hold for stationary channels.

Proof. The implications are shown one by one. (a) follows from the representation of the finite
output memory condition given in Remark 13.7.

(b), (c), (d) follow from the inequalities in (7.7.v) and (7.7.vi).
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To show (e), we proceed similarly to (Mittelbach, 2012, Lem. 4.18). Assume that the channel
κ is α-mixing. Then for all s ∈ T and x ∈ X we have

lim
t→∞ α

(
[Ys

−]; [Y+
s+t]

∣∣x) = 0. (1)

Let ε > 0 and assume that F, G ∈ Y are cylinder sets. Then there exists an s ∈ T , such that
F ∈ [Ys

−]. In addition, there exists a t0 ∈ T+ such that for all t ∈ T+ we have θt0+t(G) ∈ [Y+
s+t].

According to (1) there exists a t1 ∈ T+ such that for all t ≥ t1∣∣κ(x, F ∩ θt0+t(G)
)− κ

(
x, F

)
κ
(
x, θt0+t(G)

)∣∣ ≤ ε.

Since ε > 0 was chosen arbitrary and F, G ∈ Y are arbitrary cylinder sets we obtain (e).
Now assume that κ is mixing in the ergodic-theoretic sense. Let s ∈ T+ be arbitrary and

assume that B, B̂ ∈ Y are arbitrary cylinder sets. Then the limit in (13.4.1) is 0, in particular if
only shifts by multiples of s are considered. Since the limit of a convergent sequence is identical
to the limit of its Cesàro means, (13.4.2) follows. This shows implication (f).
If κ is totally weakly mixing, then it is s-weakly mixing for all s ∈ T+ . That s-weakly mixing

implies s-ergodicity for an s-stationary channel is shown in the same way as Adler (1961) has
shown that weakly mixing implies ergodicity in the stationary discrete-time case. Therefore
implication (g) holds.
Finally, implication (h) follows from the definitions in (2.7.ii) and the fact that an s-i.i.d. prob-

ability measure is s-stationary and s-ergodic. �

The least restrictive condition in Theorem 13.9 is what we actually need to proof the coding
theorem in Section §9. In contrast, Kadota andWyner (1972) formulated and proved their coding
theorem for ψ-mixing channels. The next theorem was given by the author in (Mittelbach and
Jorswieck, 2013). It shows that for the important class of Gaussian channels (see Example 2.5) the
ψ-mixing condition does actually not generalize the finite output memory condition. The first
equivalence in (12.5.i) is the corresponding result for random processes. A practically relevant
example of a Gaussian channel with infinite output memory is given in Paragraph 16.3. This
demonstrates that the ψ-mixing condition is quite restrictive and that the coding theorem of
Kadota and Wyner excludes important channel models.

(13.10) Theorem (ψ-mixing Gaussian channels). If κ is a ψ-mixing Gaussian channel, then it
has finite output memory.

Proof. Let {ηt, t ∈ T } denote the family of coordinate projections on the channel output space,
where ηt is the projection from Y to Yt. If κ is ψ-mixing, then according to Definition 13.6 there
exists for any s ∈ T a to(s) ∈ T0, such that for all t ≥ to(s) we have

sup
x∈X

ψ
(
ηs

−; η+
s+t

∣∣x) < 2.

This implies together with (7.7.ii), (7.7.vii), and (A.6.i) that ηs
− and η+

s+t are independent as ran-
dom variables on the probability space (Y, Y, κ(x, ·)) for all x ∈ X . Thus, we obtain with (7.7.i)

sup
x∈X

ψ
(
ηs

−; η+
s+t

∣∣x) = 0.

The assertion then follows from the representation of the finite output memory condition given
in Remark 13.7. �
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For the mixing properties in the ergodic-theoretic sense it is known from Adler (1961), that
a mixing channel transforms a mixing input probability measure into a mixing input-output
probability measure. The next theorem formulates related results for themixing properties given
in Definition 12.1. Roughly speaking, the mixing property of the input probability measure is
preserved if the channel possesses (at least) the corresponding mixing property, is causal, and
satisfies an input memory condition.

Recall that a stationary probability measure satisfying one of the mixing conditions is ergodic
due to Theorem 12.3 and Theorem B.7. In view of Corollary 12.9 we therefore obtain that Theo-
rem 13.11 has applications in the context of Theorem 8.4, i. e., in applying the ergodic theorem
of information theory. The results are also useful to analyze mixing properties of a cascade of
channels considered in Section §14.

In addition, for applications in the field of statistics or statistical signal processing it is impor-
tant to know whether a probability measure (random process) satisfies a mixing condition that
is more restrictive thanmixing in the ergodic-theoretic sense. With Theorem 13.11 it is now pos-
sible to apply results from these fields to problems related to the processing of channel output
signals. In Paragraph 17.7 we discuss an important example regarding the Fourier transform of
the channel output signal. Further applications are commented before Paragraph 17.7.

(13.11) Theorem (Mixing properties of channel input-output probability measure). Let μ be a
probability measure on the input space of the channel κ and suppose μκ denotes the corresponding
channel input-output probability measure. Then we have the following implications: If μ has the
property in the first column and κ the properties in the second column, then μκ has the mixing
property in the third column.

μ κ μκ

(i) finite memory finite output memory, finite memory

causal, finite input memory†

(ii) ψ-mixing ψ-mixing, ψ-mixing
causal, finite input memory†

(iii) information regular information regular, information regular
causal, finite input memory†

(iv) β-mixing β-mixing, causal, β-mixing

asymptotically input-memoryless†

(v) α-mixing α-mixing, causal, α-mixing
asymptotically input-memoryless†

(vi) stationary stationary stationary
and mixing and mixing and mixing

(vii) stationary and stationary and stationary and
totally weakly mixing totally weakly mixing totally weakly mixing

The superscript † denotes we additionally assume that the possibly time-varying channel input
memory lengths (for fixed tolerance ε) are bounded. If asymptotic input-memorylessness is assumed,
then for the whole input signal set X .
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(13.12) Remark. From the hierarchies given in Theorem 12.3 and Theorem 13.9 it follows that
if we replace either the mixing property of the input probability measure μ or of the channel κ
by a less restrictive mixing property in one of the statements, then the input-output probabil-
ity measure μκ satisfies the less restrictive mixing condition. Further note, that if μκ satisfies
a mixing condition, then this mixing condition is in particular satisfied by the corresponding
channel output probability measure.
In (13.11.ii) and (13.11.iii) the finite input memory condition can be replaced by the input

memory condition given in (Mittelbach and Jorswieck, 2013, Def. IV.1), which includes the finite
memory case but is more restrictive than asymptotic input-memorylessness as defined in (2.7.iv).
However, to keep the proof length reasonable we restricted ourselves to the finite memory con-
dition for these statements. For the same reason we assumed in (13.11.iv) and (13.11.v) that the
channel κ is asymptotically input-memoryless for the whole input signal set X . It is sufficient
to have this property for a set of input signals, which has (outer) μ-measure equal to 1.
The conditions in Theorem 13.11 on the input measure μ and the channel κ are sufficient but

do not have to be necessary. An example illustrating this fact is discussed in Paragraph 17.1
below (17.1.4). The result in (13.11.v) is a generalization of (Takano, 1974, Th. 3), where discrete-
time channels with finite input memory are considered. Similar to the derivations in the proof
below we can generalize (Takano, 1974, Th. 2) to asymptotically input-memoryless channels.

Proof. Throughout the proof let s ∈ T and ε > 0 be arbitrary but fixed. The notation of
Definitions 12.1 and 13.6 is used freely.
Part (i). From μ having finite memory it follows that there exists a t1 ∈ T+ such that for all

A1 ∈ [X s
−] and A2 ∈ [X +

s+t1 ]

μ(A1 ∩ A2) = μ(A1)μ(A2). (1)

Based on the assumption that κ has finite input memory with bounded memory lengths, we
define t2 = supτ∈T tI(τ) < ∞, where tI(τ) denotes the input memory length at time τ . Due
to the output-memorylessness of κ there exists a t ≥ t1 + t2 such that for all x ∈ X , B1 ∈ [Ys

−],
and B2 ∈ [Y+

s+t]

κ(x, B1 ∩ B2) = κ(x, B1)κ(x, B2). (2)

For any F ∈ [X s
− ⊗ Ys

−] and G ∈ [X +
s+t ⊗ Y+

s+t] we have

μκ(F ∩ G) =
∫

X

κ(x, Fx ∩ Gx) dμ(x)

=
∫

X

κ(x, Fx)κ(x, Gx) dμ(x)

=
∫

X

κ(x, Fx) dμ(x)
∫

X

κ(x, Gx) dμ(x)

= μκ(F )μκ(G).

The definition of the channel input-output probability measure in Definition 2.1 gives the first
and last equality. The second equality is due to (2). The first factor under the integral is [X s

−]-
measurable since κ is causal (see Remark 2.8). The second factor is [X +

s+t1 ]-measurable due to
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the finite memory assumption (see Remark 13.2). Together with (1) and part (A.8.i) of Fubini’s
theorem we obtain the third equality. Therefore, we have

α
(
[X s

− ⊗ Ys
−]; [X +

s+t ⊗ Y+
s+t]

)
= 0 = ψ

(
[X s

− ⊗ Ys
−]; [X +

s+t ⊗ Y+
s+t]

)
,

where the second equality follows from the σ-algebra based version of (7.7.i). Since s ∈ T was
chosen arbitrarily the assertion is proved.

Part (ii). Since μ is ψ-mixing, there exists a t1 ∈ T+ such that

ψ
(
[X s

−]; [X +
s+t1 ]

) ≤ ε. (3)

Let t2 be chosen as in the proof of part (i) above. Since κ is assumed to be ψ-mixing, there exists
a t ≥ t1 + t2 such that for all x ∈ X , B1 ∈ [Ys

−], and B2 ∈ [Y+
s+t]∣∣κ(x, B1 ∩ B2) − κ(x, B1)κ(x, B2)

∣∣ ≤ ε κ(x, B1)κ(x, B2). (4)

For any F ∈ [X s
− ⊗ Ys

−] and G ∈ [X +
s+t ⊗ Y+

s+t] we have∣∣μκ(F ∩ G) − μκ(F )μκ(G)
∣∣

=
∣∣∣∣
∫

X

κ(x, Fx ∩ Gx) dμ(x) −
∫

X

κ(x, Fx) dμ(x)
∫

X

κ(x, Gx) dμ(x)
∣∣∣∣

≤
∣∣∣∣
∫

X

κ(x, Fx ∩ Gx) dμ(x) −
∫

X

κ(x, Fx)κ(x, Gx) dμ(x)
∣∣∣∣ (5)

+
∣∣∣∣
∫

X

κ(x, Fx)κ(x, Gx) dμ(x) −
∫

X

κ(x, Fx) dμ(x)
∫

X

κ(x, Gx) dμ(x)
∣∣∣∣, (6)

where we have used the definition of the channel input-output probability measure and the
triangle inequality. The difference in (5) is bounded by∫

X

∣∣κ(x, Fx ∩ Gx) − κ(x, Fx)κ(x, Gx)
∣∣ dμ(x)

≤ ε

∫
X

κ(x, Fx)κ(x, Gx) dμ(x) (7)

≤ ε

∣∣∣∣
∫

X

κ(x, Fx)κ(x, Gx) dμ(x) −
∫

X

κ(x, Fx) dμ(x)
∫

X

κ(x, Gx) dμ(x)
∣∣∣∣ (8)

+ ε

∫
X

κ(x, Fx) dμ(x)
∫

X

κ(x, Gx) dμ(x)

≤ ε
(
ψ
(
[X s

−]; [X +
s+t1 ]

)
+ 1
)
μκ(F )μκ(G) (9)

≤ ε
(
ε + 1

)
μκ(F )μκ(G),

where (7) follows from (4). Thenwe apply again the triangle inequality and the second inequality
of (7.7.viii) to obtain (9). This is possible due to the causality of κ and the finite input memory
assumption, which imply the [X s

−]-measurability of κ(·, F·) and the [X +
s+t1 ]-measurability of

κ(·, G·). The last inequality is a consequence of (3).
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The difference in (6) is bounded just as the difference in (8) by applying the second inequality
of (7.7.viii). Collecting terms yields∣∣μκ(F ∩ G) − μκ(F )μκ(G)

∣∣ ≤ ε
(
ε + 2

)
μκ(F )μκ(G),

which implies

ψ
(
[X s

− ⊗ Ys
−]; [X +

s+t ⊗ Y+
s+t]

) ≤ ε
(
ε + 2

)
.

Since s ∈ T and ε > 0 were chosen arbitrarily the assertion is proved.

Part (iii). Since μ is information regular, there exists a t1 ∈ T+ such that

I
(
[X s

−]; [X +
s+t1 ]

) ≤ ε. (10)

Let t2 be chosen as in the proof of part (i) above. Since κ is assumed to be information regular,
there exists a t ≥ t1 + t2 such that

sup
x∈X

I
(
[Ys

−]; [Y+
s+t]

∣∣x) ≤ ε. (11)

It is convenient to continue with the families {ξt, t ∈ T } and {ηt, t ∈ T } of coordinate projec-
tions on the channel input-output space, where ξt is the projection from X × Y to Xt and ηt is
the projection from X × Y to Yt. Applying the random variable-based version of (4.7.ii) and of
the chain rule given in (4.7.iv) we obtain

I(ξs
−ηs

−; ξ+
s+tη

+
s+t) ≤ I(ξs

−ηs
−; ξ+

s+t1 η+
s+t)

= I(ξs
−; ξ+

s+t1 ) (12)

+ I(ηs
−; ξ+

s+t1 |ξs
−) (13)

+ I(ξs
−; η+

s+t |ξ+
s+t1 ) (14)

+ I(ηs
−; η+

s+t |ξs
−ξ+

s+t1 ). (15)

The right-hand side of (12) is equal to the left-hand side of (10) and therefore bounded by ε.
Due to the causality of κ we have the Markov chain (ηs

− − ξs
− − ξ+

s ). Since κ has finite input
memory we have the Markov chain (ξs+t1

− − ξ+
s+t1 − η+

s+t1+t2 ). Together with the random
variable-based versions of (4.7.i) and (4.7.ii) we therefore obtain that (13) and (14) are equal to 0.
For the conditional mutual information in (15) we have

I(ηs
−; η+

s+t |ξs
−ξ+

s+t1 ) = I(ηs
−; η+

s+t |ξ)

=
∫

X

I
(
[Ys

−]; [Y+
s+t]

∣∣x) dμ(x) ≤ ε,

where the second equality follows from the result in Example 4.9 and the inequality is due to
(11). To obtain the first equality we apply the chain rule given in (4.7.iv), which yields

I(ηs
−; η+

s+t |ξ) = I(ηs
−; η+

s+t |ξs
−ξ+

s+t1 )
+ I(ξs+t1

s ; ηs
−η+

s+t |ξs
−ξ+

s+t1 )−I(ξs+t1
s ; ηs

− |ξs
−ξ+

s+t1 )−I(ξs+t1
s ; η+

s+t |ξs
−ξ+

s+t1 ).
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As a result of the combination of the causality and the finite input memory property of κ we
have the Markov chain

(
ξs+t1

s − (ξs
−, ξ+

s+t1 ) − (ηs
−, η+

s+t1+t2 )
)
. Applying (4.7.i) and (4.7.ii) then

shows that all conditional mutual informations in the second row are 0. Collecting terms yields

I(ξs
−ηs

−; ξ+
s+tη

+
s+t) ≤ 2ε.

Since s ∈ T and ε > 0 were chosen arbitrarily the assertion is proved.
Part (iv). Since μ is β-mixing, there exists a t1 ∈ T+ such that

β
(
[X s

−]; [X +
s+t1 ]

) ≤ ε. (16)

Let μ̇ denote the (product) probability measure on [X s
− ⊗ X +

s+t1 ] given for all A1 ∈ [X s
−] and

A2 ∈ [X +
s+t1 ] by

μ̇(A1 ∩ A2) = μ(A1)μ(A2). (17)

Using (7.6.2) and (7.6.4) we can rewrite (16) as

‖μ − μ̇‖tv ≤ 2ε, (18)

where in (18) the restriction of μ on [X s
− ⊗ X +

s+t1 ] is considered.
Based on the assumption that κ is asymptotically input-memoryless with bounded memory

lengths for fixed ε, we define t2 = supτ∈T tI(τ, ε) < ∞, where tI(τ, ε) denotes the input mem-
ory length at time τ for the tolerance ε. Then for all B ∈ [Y+

s+t1+t2 ] and x, x̃ ∈ X coinciding
on (s + t1, ∞) we have ∣∣κ(x, B) − κ(x̃, B)

∣∣ ≤ ε. (19)

Since κ is assumed to be β-mixing, there exists a t ≥ t1 + t2 such that

sup
x∈X

β
(
[Ys

−]; [Y+
s+t1 ]

∣∣x) ≤ ε. (20)

Let κ̇ denote the (product) Markov kernel (see (A.3.iv)) from (X, X ) to (Y, [Ys
− ⊗ Y+

s+t]) given
for all x ∈ X , B1 ∈ [Ys

−], and B2 ∈ [Y+
s+t] by

κ̇(x, B1 ∩ B2) = κ(x, B1)κ(x, B2). (21)

Based on (7.6.3) and (7.6.4) we can rewrite (20) as

sup
∣∣κ(x, B) − κ̇(x, B)

∣∣ ≤ ε, (22)

where the supremum is taken w. r. t. all x ∈ X and B ∈ [Ys
− ⊗ Y+

s+t].
Let μ̇κ denote the (product) probability measure on [(X s

− ⊗ Ys
−) ⊗ (X +

s+t ⊗ Y+
s+t)] defined for

all G1 ∈ [X s
− ⊗ Ys

−] and G2 ∈ [X +
s+t ⊗ Y+

s+t] by

μ̇κ(G1 ∩ G2) = μκ(G1)μκ(G2). (23)

To bring the asymptotic input-memorylessness into play let us fix an arbitrary a ∈ Xs+t1
s . For

all x ∈ X we define x̃(x) = (πs
−(x), a, π+

s+t1 (x)), where πs
− and π+

s+t1 denote the projections
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from X to Xs
− and X+

s+t1 , respectively. Then for any F ∈ [(X s
− ⊗ Ys

−) ⊗ (X +
s+t ⊗ Y+

s+t)], we
obtain by the triangle inequality

|μκ(F ) − μ̇κ(F )
∣∣ =

∣∣∣∣
∫

X

κ(x, Fx) dμ(x) − μ̇κ(F )
∣∣∣∣

≤
∣∣∣∣
∫

X

κ(x, Fx) dμ(x) −
∫

X

κ̇(x, Fx) dμ(x)
∣∣∣∣ (24)

+
∣∣∣∣
∫

X

κ̇(x, Fx) dμ(x) −
∫

X

κ̇(x̃(x), Fx) dμ(x)
∣∣∣∣ (25)

+
∣∣∣∣
∫

X

κ̇(x̃(x), Fx) dμ(x) −
∫

X

κ̇(x̃(x), Fx) dμ̇(x)
∣∣∣∣ (26)

+
∣∣∣∣
∫

X

κ̇(x̃(x), Fx) dμ̇(x) − μ̇κ(F )
∣∣∣∣. (27)

The difference in (24) is bounded by∫
X

∣∣κ(x, Fx) dμ(x) − κ̇(x, Fx)
∣∣ dμ(x) ≤ ε

due to (22) and the difference in (25) is bounded by∫
X

∣∣κ̇(x, Fx) dμ(x) − κ̇(x̃(x), Fx)
∣∣ dμ(x) ≤ ε

due to (19), the definition of κ̇ in (21), and the causality of κ. Using (6.10.v) and (18) we can
upper bound (26) by

‖μ − μ̇‖tv ≤ 2ε.

We can apply (6.10.v) in this form because κ̇(x̃(·), F·) is [X s
− ⊗ X +

s+t1 ]-measurable and bounded
by 1. The measurability follows from the definition of x̃(·), the choice of the set F and from
(A.3.iii). Finally, (27) is bounded by ε. Indeed, for any G ∈ [X s

− ⊗ Ys
−] and G′ ∈ [X +

s+t ⊗ Y+
s+t]

we have ∣∣∣∣μ̇κ(G ∩ G′) −
∫

X

κ̇(x̃(x), (G ∩ G′)x) dμ̇(x)
∣∣∣∣

=
∣∣∣∣μκ(G)μκ(G′) −

∫
X

κ(x̃(x), Gx)κ(x̃(x), G′
x) dμ̇(x)

∣∣∣∣ (28)

=
∣∣∣∣μκ(G)

∫
X

κ(x, G′
x) dμ(x) −

∫
X

κ(x̃(x), Gx) dμ(x)
∫

X

κ(x̃(x), G′
x) dμ(x)

∣∣∣∣ (29)

=
∣∣∣∣
∫

X

κ(x, G′
x) dμ(x) −

∫
X

κ(x̃(x), G′
x) dμ(x)

∣∣∣∣μκ(G) (30)

≤ μκ(G)
∫

X

∣∣κ(x, G′
x) dμ(x) − κ(x̃(x), G′

x)
∣∣ dμ(x) (31)

≤ μκ(G)ε. (32)
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From the definitions of κ̇ and μ̇κ in (21) and (23) we obtain (28). The second summand in
(29) follows from the definition of μ̇ in (17), the [X s

−]-measurability of κ(x̃(·), G· ), the [X +
s+t1 ]-

measurability of κ(x̃(·), G′· ), and part (A.8.i) of Fubini’s theorem. The measurability, in turn,

follows from the definition of x̃(·) and the choice of G and G′. The first factor of the second
summand in (29) is equal to μκ(G) due to the causality of κ, which yields (30). Then (32) is
obtained from (31) using (19), i. e., the asymptotic input-memorylessness of κ. Based on these
derivation we obtain for (27) the upper bound ε for all sets F ∈ [(X s

− ⊗ Ys
−) ⊗ (X +

s+t ⊗ Y+
s+t)].

Collecting terms yields

|μκ(F ) − μ̇κ(F )
∣∣ ≤ 5ε,

which implies together with (7.6.3) and (7.6.4)

β
(
[X s

− ⊗ Ys
−]; [X +

s+t ⊗ Y+
s+t]

) ≤ 5ε.

Since s ∈ T and ε > 0 were chosen arbitrarily the assertion is proved.
Part (v). Since μ is α-mixing, there exists a t1 ∈ T+ such that

α
(
[X s

−]; [X +
s+t1 ]

) ≤ ε. (33)

Let t2 be chosen as in the proof of part (iv). Then (19) holds due to the asymptotic input-
memorylessness of κ. Since κ is assumed to be α-mixing, there exists a t ≥ t1 + t2 such that for
all x ∈ X , B1 ∈ [Ys

−], and B2 ∈ [Y+
s+t]∣∣κ(x, B1 ∩ B2) − κ(x, B1)κ(x, B2)

∣∣ ≤ ε. (34)

Let a ∈ Xs+t1
− be arbitrary but fixed. For all x ∈ X we define x̃(x) = (a, π+

s+t1 (x)), where π+
s+t1

denotes the projection from X to X+
s+t1 . Then for any F ∈ [X s

− ⊗ Ys
−] and G ∈ [X +

s+t ⊗ Y+
s+t]

we obtain by the triangle inequality∣∣μκ(F ∩ G) − μκ(F )μκ(G)
∣∣

=
∣∣∣∣
∫

X

κ(x, Fx ∩ Gx) dμ(x) −
∫

X

κ(x, Fx) dμ(x)
∫

X

κ(x, Gx) dμ(x)
∣∣∣∣

≤
∣∣∣∣
∫

X

κ(x, Fx ∩ Gx) dμ(x) −
∫

X

κ(x, Fx)κ(x, Gx) dμ(x)
∣∣∣∣ (35)

+
∣∣∣∣
∫

X

κ(x, Fx)κ(x, Gx) dμ(x) −
∫

X

κ(x, Fx)κ(x̃(x), Gx) dμ(x)
∣∣∣∣ (36)

+
∣∣∣∣
∫

X

κ(x, Fx)κ(x̃(x), Gx) dμ(x) −
∫

X

κ(x, Fx) dμ(x)
∫

X

κ(x̃(x), Gx) dμ(x)
∣∣∣∣ (37)

+
∣∣∣∣
∫

X

κ(x̃(x), Gx) dμ(x) −
∫

X

κ(x, Gx) dμ(x)
∣∣∣∣
∫

X

κ(x, Fx) dμ(x) (38)

The difference in (35) is bounded by∫
X

∣∣κ(x, Fx ∩ Gx) − κ(x, Fx)κ(x, Gx)
∣∣ dμ(x) ≤ ε
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due to (34). The difference in (36) is bounded by∫
X

κ(x, Fx)
∣∣κ(x, Gx) − κ(x̃(x), Gx)

∣∣ dμ(x) ≤ ε

∫
X

κ(x, Fx) dμ(x) ≤ ε

due to the asymptotic input-memorylessness of κ and (19). An upper bound for (37) is given by

4α
(
[X s

−]; [X +
s+t1 ]

) ≤ 4ε

using (7.7.viii) and (33). It is possible to apply (7.7.viii) in this form because κ(·, F·) is [X s
−]-

measurable, κ(x̃(·), G· ) is [X +
s+t1 ]-measurable, and both random variables are bounded by 1.

The measurability is a consequence of the causality of κ, the definition of x̃(·), and the choice
of the sets F and G. Finally, we can bound (38) similar to (36) by ε. Collecting terms yields

|μκ(F ∩ G) − μκ(F )μκ(G)
∣∣ ≤ 7ε,

which implies

α
(
[X s

− ⊗ Ys
−]; [X +

s+t ⊗ Y+
s+t]

) ≤ 7ε.

Since s ∈ T and ε > 0 were chosen arbitrarily the assertion is proved.
Part (vi). This result is due to Adler (1961) for the discrete-time case. There are no significant

changes in the proof for the continuous-time case.
Part (vii). For all s ∈ T+ the proof that an s-weaklymixing input probability measure together

with an s-weaklymixing channel induces an s-weakly mixing input-output probability measure
is identical to that given in (Adler, 1961) or (Kakihara, 1999, p. 140) for the discrete-time case.�





Chapter IV

Channel Model Revisited

In this chapter, we consider aspects that are useful to analyze concrete channel models. We
derive results for cascade channels that allow to conclude properties of a complex model from
properties of basic building blocks. Furthermore, we study integration channels, for which the
channel model can be decomposed into a deterministic and a random part, which is possible for
many physically relevant channel models.

§14 Cascade Channels

In practical scenarios the physical channel often consists of multiple components connected in
cascade. For example, the transmitted signal is altered by multipath fading (channel 1), then it is
disturbed by additive noise at the receiver (channel 2), which quantizes the noisy signal values
(channel 3). In this section, we derive properties of a cascade of channels based on the proper-
ties of component channels. These results allow to obtain properties of the overall channel by
studying the properties of simpler individual blocks, which is quite useful in applications.

(14.1) Definition (Cascade channels). Let (X, X ), (U, U), and (Y, Y) be arbitrary measurable
spaces. Assume that κ̇ is a channel with input space (X, X ) and output space (U, U) and κ̈ is a
channel with input space (U, U) and output space (Y, Y). The cascade of κ̇ and κ̈ is defined as
the channel κ with input space (X, X ) and output space (Y, Y) given by

κ(x, B) =
∫

U

κ̈(·, B) dκ̇(x, ·) (1)

for all x ∈ X and B ∈ Y .

The channel κ in Definition 14.1 is obtained by connecting the channels κ̇ and κ̈ in cascade
as illustrated in Figure 3. Due to (A.3.ii) κ is indeed a channel (Markov kernel). The definition
is canonical. It is also given in Gray (2011).

κ̇(x, V ) κ̈(u, B)
(X, X ) (U, U) (Y, Y)

κ(x, B)

Figure 3: Cascade channel.

The next theorem considers properties relevant for Theorem 9.1.

89
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(14.2) Theorem (Properties of cascade channels with time structure). Consider the situation of
Definition 14.1. Assume that κ̇ and κ̈ (and therefore the cascade channel κ) are channels with time
structure, where (X, X ) and (Y, Y) are defined as in Definition 2.3. The product measurable space
(U, U) is defined correspondingly based on the family {(Ut, Ut), t ∈ T } of measurable spaces with
(Ut, Ut) = (U0, U0). Then we have the following implications: If κ̇ has the property in the first
column and κ̈ the property in the second column, then the cascade channel κ has the property in
the third column.

κ̇ κ̈ κ

(i)† (s-) stationary (s-) stationary (s-) stationary

(ii) a)† s-stationary s-stationary s-stationary
and s-ergodic and s-ergodic and s-ergodic
(for s-i.i.d. inputs) (for s-i.i.d. inputs)

b) stationary and stationary and stationary and
totally ergodic totally ergodic totally ergodic
(for block-i.i.d. inputs) (for block-i.i.d. inputs)

(iii) causal causal causal

(iv) asymptotically input- asymptotically input- asymptotically input-
memoryless for X ′ ⊂ X memoryless‡ for U ′ ⊂ U memoryless for X ′ ⊂ X

The superscript † denotes we assume that s ∈ T in (i) and s ∈ T+ in (ii). The superscript ‡ denotes
we additionally assume that U ′ is a product set, i. e., U ′ = ×t∈T U ′

t with U ′
t ⊂ Ut, and the outer

κ̇(x, ·)-measure of U ′ is equal to 1 for all x ∈ X ′.

(14.3) Remark. Note, the condition on κ̈ in (14.2.ii) is more restrictive than on κ̇. The addi-
tional conditions onU ′ in (14.2.iv) ensure the signal set w. r. t. which the second channel is asymp-
totically input-memoryless is “large enough“ w. r. t. the first channel κ̇. The rectangular struc-
ture of U ′ is sufficient but not necessary. A simple example satisfying all conditions is U ′ = U .

Proof. Part (i). Assume that s ∈ T and κ̇ and κ̈ are s-stationary. Then for all x ∈ X and B ∈ Y
we have

κ
(
θs(x), θs(B)

)
=
∫

U

κ̈
(·, θs(B)

)
dκ̇
(
θs(x), ·)

=
∫

θ−s(U)
κ̈
(
θ−s(·), B

)
dκ̇
(
θs(x), ·)

=
∫

U

κ̈
(·, B

)
d
(

κ̇
(
θs(x), ·))

θ−s

=
∫

U

κ̈
(·, B

)
dκ̇(x, ·)

= κ(x, B),
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i. e., the channel κ is s-stationary according to (2.7.i). The first and last equality are due to
the defining relation for cascade channels in (14.1.1). The second equality follows from the s-
stationarity of κ̈ and the shift invariance of U . Applying the substitution rule for integrals, we
obtain the third equality, where (κ̇(θs(x), ·))θ−s denotes the distribution of θ−s, considered as
random variable on the probability space (U, U , κ̇(θs(x), ·)). For the fourth equality, we have
used the s-stationarity of κ̇. From what is shown the assertion, where s-stationarity is replaced
by stationarity follows immediately. A similar proof is given in (Gray, 2011, Lem. 2.10).
Part (ii). Let s ∈ T+ and assume that κ̇ as well as κ̈ are s-stationary and s-ergodic. Further, let

μ be an s-stationary s-ergodic probability measure on X . We consider the product measurable
space (X × U × Y, X ⊗ U ⊗ Y) and the joint measure ν on X ⊗ U ⊗ Y , which is induced by μ
and the cascade of the channels κ̇ and κ̈, i. e., ν is defined for any C ∈ X ⊗ U ⊗ Y by

ν(C) =
∫

X

[ ∫
U

κ̈
(
u, (Cx)u

)
dκ̇(x, u)

]
dμ(x),

where (Cx)u is the u-section of Cx and Cx is the x-section of C . The marginal measure of ν on
X ⊗U is equal to the input-output probability measure μκ̇ of the channel κ̇ and by construction
we have the Markov chain ([X ] − [U ] − [Y]). Thus, the measure ν is also given for any C ∈
X ⊗ U ⊗ Y by

ν(C) =
∫

X×U

κ̈
(
u, (Cx)u

)
dμκ̇(x, u), (1)

where κ̈ is considered here as Markov-kernel from (X × U, X ⊗ U) to (Y, Y). The probabil-
ity measure μκ̇ is s-stationary and s-ergodic because the measure μ and the channel κ̇ are
s-stationary and s-ergodic. Together with the s-stationarity and s-ergodicity of the channel
κ̈ and the representation in (1) we obtain that ν is s-stationary and s-ergodic. Since the input-
output probability measure μκ of the cascade channel κ is equal to the marginal measure of ν on
X ⊗ Y , it is also s-stationary and s-ergodic. Therefore, according to (2.7.ii) we have shown that
the cascade channel κ is s-stationary and s-ergodic if the channels κ̇ and κ̈ are both s-stationary
and s-ergodic. The assertion, where the s-ergodicity of κ̇ and κ are weakened to s-ergodicity for
s-i.i.d. inputs is shown in the same way. Above, we just have to consider an s-i.i.d. input proba-
bility measure μ. From what is shown, the assertions regarding total ergodicity (total ergodicity
for block-i.i.d. inputs) follow immediately.
Part (iii). Assume that κ̇ and κ̈ are causal. Then for all t ∈ T , B ∈ Yt

−, and x, x̃ ∈ X
coinciding on (−∞, t] we have

κ(x, [B]) =
∫

U

κ̈
(·, [B]

)
dκ̇(x, ·)

=
∫

U

κ̈
(·, [B]

)
dκ̇(x̃, ·)

= κ
(
x̃, [B]

)
,

i. e., the channelκ is causal according to (2.7.iii). The first and last equality are due to the defining
relation for cascade channels in (14.1.1). From the causality of κ̈ it follows that κ̈(u, [B]) does
only depend on the coordinates of u in the time period (−∞, t]. Therefore, only the marginal
measure of κ̇(x, ·) on U t

− is relevant for integrating the function κ̈(·, [B]). Since the causality of
κ̇ implies the equality of the measures κ̇(x, ·) and κ̇(x̃, ·) on [U t

−], we obtain the second equality.
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Part (iv). Let ε > 0 and s ∈ T . We assume that κ̈ is asymptotically input-memoryless for the
signal set U ′. Then there exists a t2 = t2(ε, s) ∈ T0, such that for all B ∈ Y+

s and u, ũ ∈ U ′

coinciding on (s − t2, ∞) we have
∣∣κ̈(u, [B]) − κ̈(ũ, [B])

∣∣ <
ε

3 . (2)

Further, we assume that κ̇ is asymptotically input-memoryless for the signal set X ′ so that there
exists a t1 = t1(ε, s − t2) ∈ T0, such that for all x, x̃ ∈ X ′ coinciding on (s − t2 − t1, ∞)

‖ν̇x − ν̇x̃‖tv <
ε

3 , (3)

holds, where ν̇x and ν̇x̃ denote the marginal measures of κ̇(x, ·) and κ̇(x̃, ·) on U+
s−t2 . This

formulation is obtained using the characterization of the total variation distance given in (6.7.1).
Let us fix someB ∈ Y−

s and x, x̃ ∈ X ′ coinciding on (s−t2 −t1, ∞). To bring the asymptotic
input-memorylessness into play we fix an arbitrary element a ∈ Us−t2

− from the projection of
U ′ to Us−t2

− . Further, let a ∈ Us−t2
− be some element from the projection of U ′ to Us−t2

− . For an
element u ∈ U we make use of the representation u = (u−, u+) ∈ Us−t2

− × U +
s−t2 and obtain

from the triangle inequality

∣∣κ(x, [B]
) − κ

(
x̃, [B]

)∣∣ =
∣∣∣∣
∫

U

κ̈
(
u, [B]

)
dκ̇(x, u) −

∫
U

κ̈
(
u, [B]

)
dκ̇(x̃, u)

∣∣∣∣
≤

∣∣∣∣
∫

U

κ̈
(
u, [B]

)
dκ̇(x, u) −

∫
U

κ̈
(
(a, u+), [B]

)
dκ̇(x, u)

∣∣∣∣ (4)

+
∣∣∣∣
∫

U

κ̈
(
(a, u+), [B]

)
dκ̇(x, u) −

∫
U

κ̈
(
(a, u+), [B]

)
dκ̇(x̃, u)

∣∣∣∣ (5)

+
∣∣∣∣
∫

U

κ̈
(
(a, u+), [B]

)
dκ̇(x̃, u) −

∫
U

κ̈
(
u, [B]

)
dκ̇(x̃, u)

∣∣∣∣. (6)

Assume that we have U ′ = ×t∈T U ′
t with U ′

t ⊂ Ut and the outer κ̇(x, ·)-measure of U ′ is equal
to 1. Then (4) is bounded above by∫

U

∣∣∣κ̈((u−, u+), [B]
)− κ̈

(
(a, u+), [B]

)∣∣∣dκ̇
(
x, (u−, u+)

) ≤ ε

3

due to (2) and (A.11.ii). If further the outer κ̇(x̃, ·)-measure of U ′ is equal to 1, then by the same
arguments we obtain that (6) is bounded above by ε

3 . In (5) we can replace κ̇(x, ·) and κ̇(x̃, ·) by
the marginal measures ν̇x and ν̇x̃ since the integrands only depend on u+. Therefore, we can
rewrite and upper-bound (5) by∣∣∣∣

∫
U+

s−t2

κ̈
(
(a, u+), [B]

)
dν̇x(u+) −

∫
U+

s−t2

κ̈
(
(a, u+), [B]

)
dν̇x̃(u+)

∣∣∣∣ ≤ ‖ν̇x − ν̇x̃‖tv ≤ ε

3 .

The first inequality follows either from (6.10.v) or from the data processing inequality (6.4.ii),
which holds in particular for the total variation distance. We have implicitly used that κ̈((a, ·), ·)
is a Markov-kernel from (U +

s−t2 , U+
s−t2 ) to (Y, Y), which holds due to (A.3.iii). From (3) we



§14 Cascade Channels 93

obtain the second inequality. Combining all inequalities we have for fixed ε > 0, s ∈ T , arbitrary
B ∈ Y−

s , and x, x̃ ∈ X ′ coinciding on (s − t2 − t1, ∞)
∣∣κ(x, [B]

)− κ
(
x̃, [B]

)∣∣ ≤ ε

3 + ε

3 + ε

3 = ε.

Thus, according to (2.7.iv) the cascade channel κ is asymptotically input-memoryless for the
signal set X ′ under the assumptions of (14.2.iv). �

The next theorem provides sufficient conditions that allow to verify memory properties of
the overall channel by analyzing memory properties of individual components.

(14.4) Theorem (Memory and mixing properties of cascade channels with time structure). Con-
sider a cascade channel with time structure as in Theorem 14.2. Then we have the following impli-
cations: If κ̇ has the property in the first column and κ̈ the properties in the second column, then
the cascade channel κ has the mixing property in the third column.

κ̇ κ̈ κ

(i) finite input memory finite input memory finite input memory

(ii) finite output memory finite output memory, finite output memory

causal, finite input memory†

(iii) ψ-mixing ψ-mixing, ψ-mixing
causal, finite input memory†

(iv) information regular information regular, information regular
causal, finite input memory†

(v) β-mixing β-mixing, causal, β-mixing

asymptotically input-memoryless†

(vi) α-mixing α-mixing, causal, α-mixing
asymptotically input-memoryless†

The superscript † denotes we additionally assume that the possibly time-varying channel input
memory lengths (for fixed tolerance ε) are bounded. If asymptotic input-memorylessness is assumed,
then for the whole input signal set X .

(14.5) Remark. Theorem 14.4 is closely related to Theorem 13.11, actually the statements
(14.4.ii)–(14.4.vi) correspond to the statements (13.11.i)–(13.11.v) with κ̇ in the role of μ, κ̈ in
the role of κ, and the cascade channel in the role of the marginal measure of μκ on the channel
output space. The comments given in Remark 13.12 hold in an analogous manner.
The proof of (14.4.i) works in the same way as the proof of (14.2.iii) and is therefore omitted.

The proofs of (14.4.ii)–(14.4.vi) are also omitted because they can be easily obtained from the
proofs of (13.11.i)–(13.11.v). This is possible because for any x ∈ X the probability measure
κ(x, ·) related to the cascade channel κ is equal to the channel output measure of κ̈, when
κ̇(x, ·) is the input measure.
Obtaining similar results for the ergodic-theoretic mixing properties on the basis of the proof

of Theorem 13.11 is not possible because there the stationarity of the input probability measure
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is assumed but the probability measure κ̇(x, ·) is usually not stationary. However, the following
holds. If κ̇ and κ̈ are both stationary and mixing (in the ergodic-theoretic sense) and μ is a
stationary and mixing probability measure (in the ergodic-theoretic sense) on the input space
of κ̇, then the input-output probability measure μκ of the cascade channel κ is stationary and
mixing (in the ergodic-theoretic sense). Indeed, the input-output probability measure μκ̇ of the
channel κ̇ is stationary and mixing due to (13.11.vi). Then using the Markov chain argument as
in the proof of (14.2.ii) and again (13.11.vi) shows the assertion. A corresponding result holds
for the totally weakly mixing property.

§15 Integration Channels

In this section, we consider so-called integration channels, for which the output is the result
of a deterministic mapping applied to the channel input and a random source of noise. Noise
means any kind of unwanted or unavoidable disturbance of the input, e. g. additive noise, fading,
interference, etc. If a functional relation is known, characterizing the input-output behavior of
a transmission system and the random impairment of the transmission, then the integration
channel is the communication model of choice. This is the case in a large number of practically
relevant situations as demonstrated in Sections §16 and §17 by various examples.
After introducing integration channels, we specify conditions for the channel function and

the noise source that imply properties of the integration channel relevant in connection with
coding theorems or signal processing applications. These results demonstrate the advantage
of separating the channel model into a deterministic and a random part to analyze channel
properties. We further consider a cascade of integration channels and a useful representation
based on component functions, which is helpful in connection with verifying measurability
properties of the channel.

(15.1) Definition (Integration channel). Let (X, X ), (Y, Y), and (Z, Z) be measurable spaces,
suppose λ is a probability measure on Z , and f is an X ⊗ Z/Y-measurable function on X × Z
with values in Y . The channel κ with input space (X, X ) and output space (Y, Y), defined by

κ(x, B) = λf(x,·)(B) (1)

for any x ∈ X and B ∈ Y , is called an integration channel with channel function f and noise
measure λ. By λf(x,·) we denote the distribution of the random variable f(x, ·).

The integration channel is illustrated in Figure 4.

f

(Z, Z, λ)

κ(x, B)

(X, X ) (Y, Y)

Figure 4: Integration channel.
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(15.2) Remark. From the identity

1B

(
f(x, z)

)
= 1{f(x,·)∈B}(z)

for all (x, z) ∈ X × Z we easily obtain

κ(x, B) = λf(x,·)(B) = λ
(
f(x, ·) ∈ B

)
(1)

=
∫

Z

1B

(
f(x, z)

)
dλ(z). (2)

This integral form motivates the name integration channel, which is adopted from Nakamura
(1975). Alternatively, the channel is called channel with a noise source.

That κ is indeed a Markov kernel is verified as follows. For any input x ∈ X the function
f(x, ·) is Z/Y-measurable, i. e., it is a random variable on the probability space (Z, Z, λ). Its
distribution is κ(x, ·) so that κ(x, ·) is a probability measure for all x ∈ X . Further, for all sets
B ∈ Y the composition 1B(f) is X ⊗ Z-measurable since f is X ⊗ Z/Y-measurable and 1B

as function on Y is Y-measurable. Part (A.8.i) of Fubini’s theorem then yields for all B ∈ Y the
X -measurability of

κ(·, B) =
∫

Z

1B

(
f(·, z)

)
dλ(z).

Let us define the function g on X × Z with values in X × Y by

g(x, z) = (x, f(x, z))

for all (x, z) ∈ X × Z . Then g is X ⊗ Z/X ⊗ Y-measurable because f is X ⊗ Z/Y-measurable,
X ⊗Y = σ(X ×Y), and g−1(A×B) = (A×Z)∩f−1(B) for all A ∈ X and B ∈ Y . Suppose μ
is a probability measure on X . Then g can be considered as random variable on the probability
space (X ×Z, X ⊗Z, μ⊗λ), where its distribution (μ⊗λ)g is a probability measure on X ⊗Y .
If μκ denotes the input-output probability measure on X ⊗ Y induced by μ and the channel κ,
then we have the equality

μκ = (μ ⊗ λ)g. (3)

Indeed, for any C ∈ X ⊗ Y we have

μκ(C) =
∫

X

κ(x, Cx) dμ(x)

=
∫

X

[∫
Z

1{f(x,·)∈Cx}(z) dλ(z)
]

dμ(x)

=
∫

X×Z

1{f(x,·)∈Cx}(z) dμ ⊗ λ(x, z)

= μ ⊗ λ
({

(x, z) ∈ X × Z : (x, f(x, z)) ∈ C
})

= μ ⊗ λ
(
g ∈ C

)
,
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where the third equality follows from part (A.8.i) of Fubini’s theorem. This identity is used by
Baker (1976, 1978, 1979, 1983) to define integration channels. Similar to the previous derivations,
we obtain

ν = (μ ⊗ λ)f , (4)

where ν denotes the marginal measure of μκ on Y .
Nakamura (1975) studied the ergodicity of discrete-time integration channels and their infor-

mation capacity for finite alphabets. These results are reproduced in (Kakihara, 1999, Sec. 4.1).
Baker (1976, 1978, 1979, 1983) analyzed the mutual information and the information capacity
of integration channels for more general spaces with a focus on Hilbert spaces and Gaussian
channels. The primitive channels of Neuhoff and Shields (1979, 1982a,b,c) are special stationary
discrete-time discrete alphabet integration channels with finite input and output memory and
an i.i.d. noise source. Primitive channels are used to approximate channels with a certain type
of infinite input and output memory.

For later reference let us fix the notation for integration channels with time structure.

(15.3) Example (Integration channel with time structure). Let κ be an integration channel
with channel function f and noisemeasure λ. Adopting the notation of Paragraph 1.2we assume
that (X, X ), (Y, Y), and (Z, Z) in Definition 15.1 are product measurable spaces generated by
the families {(Xt, Xt), t ∈ T }, {(Yt, Yt), t ∈ T }, and {(Zt, Zt), t ∈ T } of measurable spaces
for which we have (Xt, Xt) = (X0, X0), (Yt, Yt) = (Y0, Y0), (Zt, Zt) = (Z0, Z0) for all t ∈ T .
Then the integration channel κ is a channel with time structure as introduced in Definition 2.3.
For this channel the noise measure λ is also called noise source.

The next theorem expresses properties of an integration channel with time structure in terms
of properties of the channel function and the noise source. We consider properties relevant
in connection with coding (Theorem 9.1 and 9.3) and signal processing applications (e. g. Para-
graph 17.7). The theorem is useful, in particular in concrete practical examples, because it allows
to verify channel properties by verifying properties of the channel function and the noise source
separately. Regarding ergodicity as required in Theorem 9.1, the theorem demonstrates another
advantage of the integration channel formulation: The indirectly formulated ergodicity prop-
erty of the channel given in (2.7.ii) can be expressed by a direct ergodicity condition on the
noise source.

(15.4) Theorem (Properties of integration channels with time structure). Let κ be an integration
channel with time structure as in Example 15.3 with channel function f and noise source λ. Then
we have the following implications: If f has the property in the first column and λ the property in
the second column, then the integration channel κ has the property in the third column.

f λ κ

(i)† (s-) invariant (s-) stationary (s-) stationary

(ii) [X t
−] ⊗ Z/[Yt

−]- causal
measurable all t ∈ T

(iii)‡ [X +
s−t(s)] ⊗ Z/[Y+

s ]- finite input memory

measurable all s ∈ T
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f λ κ

(iv) a)† s-invariant s-stationary s-stationary
and s-ergodic and s-ergodic

for s-i.i.d. inputs

b) invariant stationary and stationary and
totally ergodic totally ergodic

for block-i.i.d. inputs

c)† s-invariant s-stationary and s-stationary
s-weakly mixing and s-ergodic

d) invariant stationary and stationary and
totally weakly mixing totally ergodic

(v)‡ a) X ⊗ [Zs+t1(s)
− ]/[Ys

−]- finite memory finite output memory
measurable and
X ⊗ [Z+

s ]/[Y+
s+t2(s)]-

measurable all s ∈ T

b) as in a) ψ-mixing ψ-mixing

c) as in a) information regular information regular

d) as in a) β-mixing β-mixing

e) as in a) α-mixing α-mixing

The superscript † denotes we assume that s ∈ T in (i) and s ∈ T+ in (iv). The superscript ‡ denotes
we assume that for all s ∈ T there exist t(s) ∈ T0 or t1(s), t2(s) ∈ T0, respectively, such that
measurability of the requested form is given.

Proof. Part (i). Let s ∈ T and assume that the channel function f is s-invariant and the noise
source λ is s-stationary. Then for all x ∈ X and B ∈ Y we have

κ
(
θs(x), θs(B)

)
= λ

(
f
(
θs(x), θs(·)) ∈ θs(B)

)
= λ

(
θs

(
f(x, ·)) ∈ θs(B)

)
= λ

(
f(x, ·) ∈ B

)
= κ(x, B).

The first and last equality are due to the defining relation for integration channels in (15.2.1).
The second equality follows from the s-invariance of the channel function f and the third from
the s-stationarity of the noise source λ. Thus the channel κ is s-stationary according to (2.7.i).
The assertion, where s-stationarity and s-invariance is replaced by stationarity and invariance
is now evident.

Part (ii). Let t ∈ T , B ∈ Yt
− and assume that f is [X t

−] ⊗ Z/[Yt
−]-measurable. Then 1[B](f ) is

[X t
−]⊗Z-measurable and the integral representation (15.2.2) togetherwith part (A.8.i) of Fubini’s

theorem imply the [X t
−]-measurability of κ(·, [B]). Using the alternative characterization of

causality given in Remark 2.8 yields the assertion.
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Part (iii). Using the characterization of finite input memory given in Remark 13.2 the proof is
similar to that of part (ii) and is therefore omitted.
Part (iv). Let s ∈ T+ and assume that f is s-invariant. Consider the function g introduced

in Remark 15.2. The s-invariance of f immediately implies the s-invariance of g. Suppose μ
is a probability measure on the channel input space. If μ is an s-i.i.d. probability measure and
λ is s-stationary and s-ergodic, then the product measure μ ⊗ λ is s-stationary and s-ergodic
due to (B.15.i) and Lemma B.11. Correspondingly, if μ is s-stationary and s-ergodic and λ is
s-stationary and s-weakly mixing, then μ ⊗ λ is s-stationary and s-ergodic, again according to
(B.15.i). Applying (B.13.i) shows that the image measure (μ ⊗ λ)g is s-stationary and s-ergodic.
From the identity (15.2.3) follows that the channel input-output probability measure μκ is s-
stationary and s-ergodic. According to the definition in (2.7.ii), this implies assertions a) and c).
From what is shown, the remaining assertions b) and d) are evident.
Part (v). We prove assertion b) and a). The remaining assertions are shown in the same way.

Only the dependence measures have to be replaced. These proofs are therefore omitted.
Assume that ε > 0 and s ∈ T . By assumption there exists a t1 = t1(s) ∈ T0 such that

f is X ⊗ [Zs+t1
− ]/[Ys

−]-measurable. From λ being ψ-mixing we obtain that there exists a τ =
τ(s + t1) ∈ T0 such that

ψ
(
[Zs+t1

− ]; [Z+
s+t1+τ ]

) ≤ ε. (1)

Again by assumption there exists a t2 = t2(s+t1+τ) ∈ T0 such that f isX ⊗[Z+
s+t1+τ ]/[Y+

s+to
]-

measurable with to = t1 + τ + t2.
Let x ∈ X be arbitrary but fixed. Further, let {ηt, t ∈ T } denote the family of coordinate

projections on the channel output space, where ηt is the projection from Y to Yt, considered as
random variable on the probability space (Y, Y, κ(x, ·)). Then we have for all t ≥ to

ψ
(
[Ys

−]; [Y+
s+t]

∣∣x) = ψ
(
ηs

−; η+
s+t

)
= ψ

(
ηs

−
(
f(x, ·)); η+

s+t

(
f(x, ·)))

≤ ψ
(
[Zs+t1

− ]; [Z+
s+t1+τ ]

)
(2)

≤ ε.

For the second equality we have used the identity (7.6.5) and the defining relation of integration
channels given in (15.1.1), i. e., κ(x, ·) = λf(x,·). The subsequent inequality follows from the
previously stated measurability properties of f and the monotonicity of the ψ-dependence coef-
ficient (σ-algebra based version of (7.7.ii)). The last inequality is due to (1). Because the derived
inequality holds for all x ∈ X and ε > 0 was chosen arbitrary we have shown that the integra-
tion channel κ is ψ-mixing. Note that alternatively we can use the integral representation given
in (15.2.2) together with (7.7.viii) to obtain this result.
In view of Definition 12.1 and the representation of the finite output memory condition given

in Remark 13.7 we obtain assertion a) by repeating the above derivations with ε = 0. �

(15.5) Remark. Following the proof it seems that without change of the arguments the condi-
tion for the noise source λ in implication c) of (15.4.iv) can be weakened in the following way:
For any s-stationary and s-ergodic channel input probability measure μ the noise source λ is
such that the product measure μ ⊗ λ is s-stationary and s-ergodic. However, for this to hold
the noise source λ has to be s-weakly mixing due to the second part of Remark B.16.
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From the identity μκ = (μ ⊗ λ)g together with (B.13.iii) and (B.15.ii) we easily obtain the fol-
lowing: If the channel function is s-invariant and the noise source is s-stationary and s-weakly
mixing, then the channel input-output probability measure is s-stationary and s-weakly mix-
ing for all s-stationary and s-weakly mixing input probability measures. However, we cannot
conclude that an s-invariant channel function f together with an s-stationary s-weakly mix-
ing noise source λ yields an s-weakly mixing channel as introduced in Definition 13.4. Even
though f is s-invariant, f(x, ·) is usually not, so that for fixed input x the probability measure
κ(x, ·) = λf(x,·) results from a noninvariant transformation of the noise source. Therefore, we
cannot use that material from ergodic theory, which requires stationarity. The same applies to
the mixing condition (in the ergodic-theoretic sense).
In particular, the conditions in (15.4.v) are not necessary in general. There are integration

channels, where the interplay between the noise source and the channel function is such that the
integration channel satisfies a mixing condition from (15.4.v), even though the channel function
does not satisfy the measurability condition formulated there. Using the sequence considered
in (12.4.ii) together with the channel in Paragraph 16.2 yields a simple example of this type.
The mixing properties of the integration channel depend on both, the channel function and

the noise source and regarding the channel function only the z-coordinate is relevant. Aside
from the invariance condition for the channel function, the ergodicity of the integration channel
depends solely on the noise source. Furthermore, whether or not an integration channel is
causal or has finite input memory solely depends on the channel function for which only the
x-coordinate is relevant. For the less restrictive asymptotic input-memorylessness, for which
Theorem15.4 does not provide conditions, the situation is more complicated. Assume that s ∈ T ,
B ∈ [Y+

s ], and x, x̃ ∈ X . Then we have∣∣κ(x, B) − κ(x̃, B)
∣∣

=
∣∣λ(f(x, ·) ∈ B

)− λ
(
f(x̃, ·) ∈ B

)∣∣
=
∣∣λ({f(x, ·) ∈ B} ∩ {f(x̃, ·) ∈ B}c)− λ

({f(x̃, ·) ∈ B} ∩ {f(x, ·) ∈ B}c)∣∣ (1)

≤ λ
({f(x, ·) ∈ B} � {f(x̃, ·) ∈ B}). (2)

If the channel has finite input memory, then the two intersections in (1) and the symmetric dif-
ference in (2) are empty if x and x̃ coincide on (s − t, ∞) for sufficiently large t. Therefore,
the properties of the noise source do not matter in this case. However, if the channel has infi-
nite input memory, then these sets are not empty for x �= x̃. The sets are determined by the
channel function and their probability mass is determined by the noise source. Thus, for asymp-
totically input-memoryless integration channels the noise source and the channel function have
to interact in the right way.
Theorem 13.11 formulates conditions on the channel and the input probability measure such

that the input-output probability measure satisfies a certain mixing condition. Together with
Theorem 15.4 we can translate the conditions on the channel into conditions on the channel
function and the noise source. Alternatively, these conditions can be obtained as follows. If
the channel input probability measure and the noise source are both α-mixing (β-mixing, infor-
mation regular, ψ-mixing, have finite memory), then the product measure μ ⊗ λ is α-mixing
(β-mixing, information regular, ψ-mixing, has finite memory) due to Lemma 12.7. If in addi-
tion the channel function satisfies the measurability conditions specified in (15.4.ii), (15.4.iii),
and (15.4.v), then the input-output probability measure μκ = (μ ⊗ λ)g is α-mixing (β-mixing,
information regular, ψ-mixing, has finite memory).
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(15.6) Components of a channel function with time structure. For practical applications
we want to make use of the convenient representation of a channel function with time struc-
ture by component functions. Consider the integration channel with time structure from Ex-
ample 15.3. Assume that 0 ≤ ux, uz, vx, vz ∈ T are fixed. For any w ∈ T let fw be a func-
tion on Xw+vx

w−ux
× Zw+vz

w−uz
with values in Yw . We define for all s ≤ t ∈ T the function f t

s on

Xt+vx
s−ux

× Zt+vz
s−uz

with values in Y t
s by

f t
s

(
xt+vx

s−ux
, zt+vz

s−uz

)
= yt

s =
{

fw

(
xw+vx

w−ux
, zw+vz

w−uz

)
, w ∈ J

}
for all xt+vx

s−ux
= {xw} ∈ Xt+vx

s−ux
and zt+vz

s−uz
= {zw} ∈ Zt+vz

s−uz
, where the index set J is defined

as in Paragraph 1.2 with u, v replaced by s, t.23 Thus f t
s is specified by the component functions

fw. We assume that fw is X w+vx
w−ux

⊗ Zw+vz
w−uz

/Yw-measurable. Then f t
s is X t+vx

s−ux
⊗ Zt+vz

s−uz
/Yt

s-
measurable as shown in Paragraph E.6 in Appendix E.
We define the channel function f of the integration channel with time structure by f = f∞

−∞.
The output of this channel at time w ∈ T is the result of a deterministic mapping fw applied
to the channel input in the time period Jx and the random noise in the time period Jz . The
index set Jx is defined as the set J in Paragraph 1.2 with u, v replaced by w − ux, w + vx and
correspondingly the set Jz with u, v replaced by w − uz, w + vz . Note that it would be possible
that ux, uz, vx, vz vary with w, however, we will not require this generalization.
Most of the examples of practical relevance considered later are defined as specified above. A

particularly useful fact of this representation is that the X ⊗ Z/Y-measurability of the chan-
nel function is implied by the measurability property of its component functions. Furthermore,
there are simple conditions such that the properties of the channel function required in Theo-
rem 15.4 are satisfied. If we have fw+s(·) = fw(〈·〉−s) for all w ∈ T , then the channel function
is s-invariant and if we have fw(·) = f0(〈·〉−w) for all w ∈ T , then the channel function is
invariant. If vx = 0, then the condition in (15.4.ii) is satisfied, i. e., the channel is causal. If ux is
finite, then the condition in (15.4.iii) is satisfied, i. e., the channel has finite input memory with
memory length ux. The measurability condition in (15.4.v) is satisfied if uz and vz are finite.
Often, in typical examples we even have uz = vz = 0.

(15.7) Cascade of integration channels. The cascade of two integration channels is an in-
tegration channel. Indeed, consider the situation of Definition 14.1, where the channel κ is
obtained by connecting the channels κ̇ and κ̈ in cascade as illustrated in Figure 3. Assume that
κ̇ is an integration channel with channel function ḟ and noise measure space (Ż, Ż, λ̇). Fur-
ther, assume that κ̈ is an integration channel with channel function f̈ and noise measure space
(Z̈, Z̈, λ̈). The cascade channel κ is an integration channel with noise measure space (Z, Z, λ)
given by

(Z, Z, λ) = (Ż × Z̈, Ż ⊗ Z̈, λ̇ ⊗ λ̈) (1)

and channel function f given by

f
(
x, ż, z̈

)
= f̈

(
ḟ
(
x, ż
)
, z̈
)

(2)

23We assume that ux, uz, vx, vz , s, t are taken from the extended time index set T , i. e., they can be infinite. The
notation using the set J allows a correct treatment of infinite interval boundaries. We use the usual conventions
±∞ + c = ±∞ for any real constant c and ±∞ ± ∞ = ±∞.
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for all (x, ż, z̈) ∈ X × Ż × Z̈ . Indeed, we have

κ(x, B) =
∫

U

κ̈
(
u, B

)
dκ̇(x, u)

=
∫

U

[ ∫
Z̈

1B

(
f̈(u, z̈)

)
dλ̈(z̈)

]
dλ̇ḟ(x,·)(u)

=
∫

Ż

[∫
Z̈

1B

(
f̈
(
ḟ(x, ż), z̈

))
dλ̈(z̈)

]
dλ̇(ż)

=
∫

Ż×Z̈

1B

(
f
(
x, ż, z̈

))
dλ̇ ⊗ λ̈(ż, z̈).

The first equality is actually the defining relation of a cascade channel given in (14.1.1). Using
the defining relation in (15.1.1) for the integration channel κ̇ and the integral representation in
(15.2.2) for the integration channel κ̈ yields the second equality. The third equality is due to
the substitution rule for integrals. Finally, the last equality is the result of applying part (A.8.i)
of Fubini’s theorem. Figure 5 shows the cascade of integration channels and the resulting joint
integration channel.

ḟ

(Ż, Ż, λ̇)

κ̇(x, V )

f̈

(Z̈, Z̈, λ̈)

κ̈(u, B)
κ(x, B)

f

(Ż × Z̈, Ż ⊗ Z̈, λ̇ ⊗ λ̈)

(X, X ) (U, U) (Y, Y)

Figure 5: Cascade of integration channels.





Chapter V

Examples and Applications

§16 Basic Examples

In this section, we discuss some basic examples, which either serve as building blocks for more
complex models or illustrate theoretical facts from the previous chapters. First, we consider
some special integration channels, namely the deterministic channel, the purely random chan-
nel, the additive noise channel, and the multiplicative noise channel. In particular, the additive
noise channel is used as nontrivial example to demonstrate that the ergodicity andmixing condi-
tions for channels considered in Section §13 are not equivalent. We then continuewith a channel
that induces a concave sequence of mutual informations. Thereby, we give a counterexample
to a convexity argument used in a proof of Kadota and Wyner (1972, Appendix II). Furthermore,
we discuss the memory properties of a generalization of the Gilbert-Elliott channel, which is
a simple model of a transmission over a time-varying state-dependent channel. Finally, with a
simple method we construct nonergodic channels based on ergodic ones. To those channels the
coding theorem considered in this thesis does not apply.
In the following examples κ is an integration channel as specified in Definition 15.1 with

channel function f and noise measure λ. The next two integration channels are, in a sense, two
extreme cases: the deterministic and the purely random channel.

(16.1) Deterministic channel. Suppose f̂ is an X /Y-measurable function on X with values
in Y and the channel function f is given for all (x, z) ∈ X × Z by

f(x, z) = f̂(x),

i. e., it depends only on the input coordinate. Then the integration channel κ is called determin-
istic channel (see (Gray, 2011, Sec. 2.5)). Due to (15.2.2) we have for any x ∈ X and B ∈ Y

κ(x, B) =
∫

Z

1B

(
f̂(x)

)
dλ(z)

= 1B

(
f̂(x)

) ∫
Z

dλ(z)

= 1B

(
f̂(x)

)
= δf̂(x)(B),

where δy(·) denotes the Dirac measure on Y for the element y ∈ Y . That means the probability

is 1 if the channel output f̂(x) corresponding to the input x lies in the set B and 0 if it is not
the case. The noise measure does not have any impact. (Actually, there is no noise disturbing
the input.) If μ is a channel input probability measure, then using (15.2.3) we obtain for the
input-output probability measure μκ

μκ = μĝ,

103
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where the function ĝ is given for all x ∈ X by

ĝ(x) = (x, f̂(x)).

Properties. Let us reconsider the results of Theorem 15.4 for a deterministic channel κ with
time structure. If f̂ is (s-) invariant, then κ is (s-) stationary. If f̂ is [X t

−]/[Yt
−]-measurable for all

t ∈ T , then κ is causal and if for all s ∈ T there exists a t(s) ∈ T0 such that f̂ is [X +
s−t(s)]/[Y+

s ]-
measurable, then κ has finite input memory. Further, for any x ∈ X and B1, B2 ∈ Y we have

κ(x, B1 ∩ B2) = 1B1∩B2

(
f̂(x)

)
= 1B1

(
f̂(x)

)
1B2

(
f̂(x)

)
= κ(x, B1)κ(x, B2),

which implies that any deterministic channel with time structure is output-memoryless. In view
of Theorem 13.9 the channel therefore satisfies all mixing conditions considered there and if f̂
is (s-) invariant, then also all ergodicity properties considered in Theorem 15.4. Given s ∈ T let
B ∈ [Y+

s ] and assume that x, x̃ ∈ X . Then we have

∣∣κ(x, B) − κ(x̃, B)
∣∣ =

∣∣δf̂(x)(B) − δf̂(x̃)(B)
∣∣

=
{

0 if
(
f̂(x) ∈ B and f̂(x̃) ∈ B

)
or
(
f̂(x) /∈ B and f̂(x̃) /∈ B

)
1 else

which implies that a deterministic channel with time structure is asymptotically input-memory-
less if and only if it has finite input memory.

When we consider practical examples of deterministic channels with time structure, we want
to use a component representation of f̂ similar to that of the channel function f in Paragraph 15.6.
We proceed in an analog manner to define the function f̂ by f̂ = f̂∞−∞ based on f̂ t

s and the com-

ponent functions f̂w with parameters ux and vx. The definitions are as in Paragraph 15.6 with f
replaced by f̂ and all z-coordinates omitted. The comments given there regarding properties of
the component functions implying certain channel properties apply similarly. Themeasurability
result derived in Paragraph E.6 does apply to f̂ as well.

(16.2) Purely random channel. Suppose f̌ is a Z/Y-measurable function on Z with values
in Y and the channel function f is given for all (x, z) ∈ X × Z by

f(x, z) = f̌(z), (1)

i. e., it depends only on the noise coordinate. Then the integration channel κ is called purely
random channel (see (Gray, 2011, Sec. 2.4)). Due to (15.1.1) we have for any x ∈ X and B ∈ Y

κ(x, B) = λf̌ (B) (2)

i. e., the probability of an output event does not depend on the channel input. Therefore, it is
also called constant channel (see (Kakihara, 1999, p. 123)). If μ is a channel input probability
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measure, then the input-output probability measure μκ is given for all C ∈ X ⊗ Y by

μκ(C) =
∫

X

κ(x, Cx) dμ(x)

=
∫

X

λf̌ (Cx) dμ(x)

= μ ⊗ λf̌ (C), (3)

so the joint measure is indeed a product measure.
Note that there are integration channels whose channel function f cannot be represented

as in (1), however, for which the probability measure λf(x,·) is identical for all x ∈ X . Those
channels are in fact purely random because they are equivalent to a purely random channel of
the form specified above. An example is given at the end of Paragraph 16.5.
Properties. A purely random channel with time structure is always causal and input-memory-

less. The remaining properties of the channel considered in Theorem 15.4 hold if the probability
distribution λf̌ has the properties required there for λ. If (Z, Z) = (Y, Y) and f̌ is the iden-
tity map we even have due to (2) that the purely random channel is s-weakly mixing (totally
weakly mixing, mixing in the ergodic-theoretic sense, α-mixing, β-mixing, information regular,
ψ-mixing, has finite output memory) if and only if the noise source λ is s-weakly mixing (totally
weakly mixing, mixing in the ergodic-theoretic sense, α-mixing, β-mixing, information regular,
ψ-mixing, has finite memory). Based on this equivalence we obtain with Example 12.4 that the
reversed implications in (a), (b), (c), (d), and (e) of Theorem 13.9 are not true in general. Using
(12.5.v) and (12.5.vi) we can construct a probability measure which is weakly mixing (due to (b)
in Theorem B.7 this is equivalent to totally weakly mixing in the discrete-time case) but not
mixing in the ergodic-theoretic sense. Maruyama (1949, Th. 11) gives a concrete example of this
type. Thus the reversed implication in (f) of Theorem 13.9 does not hold in general. However,
the considered purely random channel is stationary and totally weakly mixing if and only if it is
stationary and totally ergodic. This follows from Remark B.16 and the relation in (3) by similar
arguments as used in Paragraph 16.4. The purely random channel is therefore not appropriate
to demonstrate that the reversed implication in (g) of Theorem 13.9 does not hold in general.
The given examples are trivial in the sense that a purely random channel is a trivial channel.

Further nontrivial examples showing that the channel mixing conditions are not equivalent are
discussed in Paragraph 16.3.

In the following examples the integration channel κ has time structure as in Example 15.3.
We specify the channel function by component functions as in Paragraph 15.6 and the end of
Paragraph 16.1. We consider only invariant channel functions, which are determined by the
component function f0 (or f̂0 for deterministic channels). Furthermore, we assume that the
channels are causal and have finite input memory so that we have for the parameters ux and
vx of the component function: vx = 0 and ux is finite. Whenever the set of real numbers or
vectors is considered, then we associate with it the corresponding Borel-σ-algebra.

(16.3) Additive noise. We assume real-valued input and output signals as well as real-valued
noise samples, i. e., we have X0 = Y0 = Z0 = R as input, output, and noise alphabets. The
component f0 of the invariant channel function f is defined on X0 × Z0, i. e., we have ux =
vx = uz = vz = 0. Its values in Y0 are given by

y0 = f0(x0, z0) = x0 + z0 (1)
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for all (x0, z0) ∈ X0 ×Z0. It is a basic measure-theoretic fact, that f0 is X0 ⊗Z0/Y0-measurable.
Properties. Because the channel function is invariant, the channel itself is stationary if the

noise source λ is stationary. The channel function also satisfies the other conditions considered
in Theorem 15.4 so that the ergodicity and mixing properties of the additive noise channel de-
pend completely on the noise source. It even holds, that the additive noise channel is α-mixing
(β-mixing, information regular, ψ-mixing, has finite output memory) if and only if the noise
source is α-mixing (β-mixing, information regular, ψ-mixing, has finite memory). To obtain
this result we observe that f−1

0 (x0, Y0) = Z0 holds for all x0 ∈ X0, which implies equality
in (2) in the proof of Theorem 15.4 (the same holds for the other dependence measures). This
equality, in turn, follows from the supplement at the end of Paragraph E.6 in Appendix E.
Based on this equivalence it is now easy to find nontrivial examples showing that in (a), (b),

(c), and (d) of Theorem 13.9 the reversed implication is not true in general. We simply take the
probability measures (distributions of the random processes) considered in Example 12.4 as the
noise source of the additive noise channel.24

Some further comments on an example discussed in (Mittelbach and Jorswieck, 2013) are in
order. If the additive noise is second order stationary Gaussian with a rational spectral den-
sity (see Paragraph C.3), then we have a Gaussian channel in the sense of Example 2.5, which
is information regular due to (12.5.iii) and the previously derived equivalence. If the spectral
density is truly rational, i. e., has an autoregressive part, then the covariance function is not
concentrated in a finite interval so that the corresponding Gaussian channel is not ψ-mixing
due to (12.5.ii) and the first equivalence in (12.5.i). Recall that we have already shown in The-
orem 13.10 that ψ-mixing Gaussian channels have finite output memory. Taking the additive
noise as in (12.4.ii) for the discrete-time case or as in Example C.4 for the continuous-time case
gives specific Gaussian channels, which are information regular but not ψ-mixing. Stationary
Gaussian noise with a rational spectral density results from passing stationary white Gaussian
noise through a (well-behaved) linear filter. It is therefore relevant to model various practical
situations. This example demonstrates that the original formulation of the coding theorem of
Kadota and Wyner (1972) for ψ-mixing channels does not apply to important channel models,
which are covered by Theorem 9.1.

To generalize the additive noise channel to m-dimensional real vector-valued signals, we
simply have to use the alphabets X0 = Y0 = Z0 = Rm and vector addition in (1). Of course,
any set for which an addition is declared, can serve as alphabet.

(16.4) Totally ergodic vs. totally ergodic for block i.i.d. inputs. Suppose we consider the
additive noise channel introduced in Paragraph 16.3 for discrete time and with the following
modifications. We assume binary alphabets, i. e., X0 = Y0 = Z0 = {0, 1}, equipped with the
corresponding power set as σ-algebra and instead of ordinary addition the operation is addition
modulo 2, i. e., for the component function f0 we have

y0 = f0(x0, z0) = x0 + z0 mod 2

for all (x0, z0) ∈ X0 × Z0.

24The constructed random sequences in Example 12.4 have values in smaller spaces with smallerσ-algebras. However, a
“translation“ into real-valued sequences equipped with the usual Borel-σ-algebra is straightforward for the following
reason. If (Ω1, F1, P1) is a probability space and (Ω2, F2) is a measurable space such that Ω1 ∈ F2 and F1 =
F2 ∩ Ω1, then P2 with P2(F2) = P1(F2 ∩ Ω1) for all F2 ∈ F2 is a probability measure on F2 , which is equal to
P1 when restricted to F1 .
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Since the channel function f is invariant it follows from d) in (15.4.iv) and (b) in Theorem B.7
that the integration channel κ is stationary and totally ergodic if the noise source λ is stationary
and weakly mixing. In the present case even the converse is true: The channel κ is stationary
and totally ergodic if and only if the noise source λ is stationary and weakly mixing.

Indeed, the function f0(x0, ·) is bijective for all x0 ∈ X0, which implies the function f(x, ·)
is bijective for all x ∈ X due to the specific structure of f . Therefore, the function g defined
in Remark 15.2 on the basis of the channel function f is also bijective. Because we have finite
alphabets equippedwith the power sets as σ-algebras the product input, output, and noise spaces
(X, X ), (Y, Y), and (Z, Z) are Polish spaces, i. e., separable completely metrizable topological
spaces, were the corresponding Borel-σ-algebras are equal to the product-σ-algebras X , Y , and
Z (see (Cohn, 1980, Prop. 8.1.3 and Prop. 8.1.5)). Together with the bijectivity and X ⊗Z/X ⊗Y-
measurability of g we obtain from the measurability theorem of Kuratowski (see (Cohn, 1980,
Th. 8.3.7)) that the inverse function g−1 is X ⊗Y/X ⊗Z-measurable. Part a) of (B.13.ii) together
with Remark B.14 therefore imply that the channel input-output probability measure μκ =
(μ ⊗ λ)g is s-ergodic if and only if the product μ ⊗ λ of the channel input measure μ and the
noise measure λ is s-ergodic. From a) in (B.15.i), (b) in Theorem B.7, Remark B.16, and the
definition in (2.7.ii) we therefore obtain that the channel κ is stationary and totally ergodic if
and only if the noise measure λ is stationary and weakly mixing. This characterization is a
version of (Nakamura, 1975, p. 217, Cor. 2).

Assume that we take as noise measure of this channel the distribution of the random sequence
constructed in Example B.8, which is stationary and totally ergodic but not weaklymixing. Then
the channel κ is stationary and totally ergodic for block i.i.d. inputs due to b) in (15.4.iv). How-
ever, from the previously derived equivalence it follows that κ is not totally ergodic. Therewith
we have a simple binary but nontrivial example showing that total ergodicity for block i.i.d.
inputs is indeed less restrictive than total ergodicity, i. e., the reversed implication of (h) in The-
orem 13.9 is not true in general.

(16.5) Multiplicative noise. Consider the setting as in Paragraph 16.3 with the difference that
the component function f0 is defined by

y0 = f0(x0, z0) = z0 · x0 (1)

for all (x0, z0) ∈ X0 ×Z0. Then we have a channel with real scalar input and output signals and
multiplicative noise. It is a simple measure-theoretic result, that f0 is X0 ⊗ Z0/Y0-measurable.
Alternatively, we can consider the alphabets X0 = Rm, Y0 = Rn, and Z0 = Rn×m. In this case
the product symbol in (1) represents matrix multiplication of the input vector with the noise
matrix. The channel is known as multiple-input multiple-output channel.

Properties. As for the additive noise channel stationarity, ergodicity and mixing properties
of the channel are implied by the corresponding property of the (multiplicative) noise source
because the channel is causal, input-memoryless, and the channel function is invariant.

A multiplicative noise channel can be a purely random channel of the type mentioned below
(16.2.3). Assume that we have scalar inputs, outputs and noise samples and the input alphabet
is reduced to the set X0 = {−1, 1} equipped with the corresponding power set as σ-algebra.
Further, assume that we have discrete time and the noise measure λ is such that the projections
{ζk, k ∈ Z} from Z to Zk are independent Gaussian random variables with E(ζk) = 0. Then
the resulting channel is a purely random channel.
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The additive and multiplicative noise channel can have either discrete- or continuous-time.
The components of the channel function operate only on the current input and noise sample. In
the next example, the component function depends also on previous inputs.

(16.6) Modulo 2 addition of consecutive binary inputs. Let κ be a stationary determinis-
tic discrete-time channel with binary input and output alphabets, i. e., X0 = Y0 = {0, 1} with

X0 and Y0 being the corresponding power sets. The component f̂0 of the input-output mapping
f̂ is defined on X−1 × X0 and its values in Y0 are given by

y0 = f̂0(x−1, x0) = x−1 + x0 mod 2

for all (x−1, x0) ∈ X−1 × X0. In other words the current channel output results from the

modulo 2 addition of the current and the previous input. That f̂0 is X−1 ⊗ X0/Y0-measurable

is trivial because we consider the power set as σ-algebra on the domain of f̂0.
Properties. This stationary, causal channel has finite input memory and, as any deterministic

channel, is output-memoryless. For a continuous-time version of this channel see (Mittelbach,
2012, Exm. 4.37). We are interested in this channel for the following reason. Let μ0 be a proba-
bility measure on X0 with μ0({1}) = q, i. e., a Bernoulli distribution with parameter q ∈ [0, 1].
We assume that the channel input probability measure μ on X is given by

μ =
⊗

k∈Z

〈μ0〉k.

By {ξk, k ∈ Z} and {ηk, k ∈ Z} we denote the sequences of coordinate projections on the
channel input-output space, where ξk is the projection fromX×Y toXk and ηk is the projection
from X ×Y to Yk . On the one hand the channel satisfies the conditions of the coding theorem of
Kadota and Wyner (1972) and the pair sequence (ξ, η) satisfies the conditions of Corollary 4.14.
On the other hand the sequence {I(ξn

0 ; ηn
0 ), n ∈ N} ofmutual informations is strictly concave in

n for all q ∈ (0, 1/2)∪(1/2, 1), as shown by the author in (Mittelbach, 2012, Rmk. 2.27, Exm. 2.28).
This demonstrates the insufficiency of the convexity argument used in (Kadota andWyner, 1972,
Appendix II) to prove the monotonicity of the sequence {n−1I(ξn

0 ; ηn
0 ), n ∈ N}.

In the remainder of this section κ is a channel with time structure as introduced in Defini-
tion 2.3, not necessarily an integration channel.

(16.7) Channels with state. We consider a discrete-time channel and in addition to the input
product space (X, X ) and the output product space (Y, Y) let (U, U) be a product space gener-
ated by the family {(Uk, Uk), k ∈ Z} of measurable spaces with (Uk, Uk) = (U0, U0). In this
model U0 represents the set of possible channel states.
Assume that κ̂0 is a Markov kernel from (U0 × X0, U0 ⊗ X0) to (Y0, Y0). Let us define

for all u = {uk, k ∈ Z} ∈ U , x = {xk, k ∈ Z} ∈ X , l ∈ N, and Bk ∈ Yk with
k ∈ {−l, −(l − 1), . . . , l}

κ̂
(
u, x, [B−l × B−(l−1) × . . . × Bl]

)
=

l∏
k=−l

κ̂0(uk, xk, Bk).

Then, similar to (A.3.iv), κ̂ can be uniquely extended to a Markov kernel from (U ×X, U ⊗X ) to
(Y, Y) denoted also by κ̂. According to Example 13.8 this Markov kernel represents a stationary
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memoryless channel with input space (U × X, U ⊗ X ) and output space (Y, Y). Given λ̂ is a
probability measure on U we define the discrete-time channel κ with input space (X, X ) and
output space (Y, Y) by

κ(x, B) =
∫

U

κ̂(u, x, B) dλ̂(u) (1)

for all x ∈ X and B ∈ Y .
In state u0 ∈ U0 the transmission of a symbol is characterized by the channel κ̂0(u0, ·, ·). If all

channel states are known for the transmission of a sequence of symbols, then the transmission
is memoryless as represented by κ̂. The state sequence is drawn randomly according to the
probability measure λ̂. The resulting channel κ between input and output is thus given by (1).
Properties. Since κ̂ is memoryless we obtain with (1) that κ is causal and input-memoryless.

Since κ̂ is stationary we obtain also with (1) that κ is stationary if the distribution λ̂ of the state
process is stationary. Whether or not the channel satisfies one of the output memory conditions
depends solely on λ̂. The channel κ is α-mixing (β-mixing, information regular, ψ-mixing, has
finite output memory), if the state distribution λ̂ is α-mixing (β-mixing, information regular,
ψ-mixing, has finite memory). Because κ̂ is memoryless the derivations of these results are
identical to the proofs of (13.11.i) to (13.11.v) with κ̂ in the role of the channel, λ̂ in the role of the
input probability measure, and κ in the role of the input-output probability measure. Regarding
the mixing properties in the ergodic-theoretic sense the comment in the second paragraph of
Remark 15.5 applies.
The input-output probability measure μκ induced by the channel κ and a probability measure

μ on X is given for any C ∈ X ⊗ Y by

μκ(C) =
∫

X

κ(x, Cx) dμ(x)

=
∫

U×X

κ̂(u, x, Cx) dλ̂ ⊗ μ(u, x)

due to (1) and part (A.8.i) of Fubini’s theorem. Since κ̂ is stationary and memoryless it is totally
ergodic due to Theorem 13.9 so that any s-stationary and s-ergodic probability measure μ̂ on
U ⊗ X induces together with κ̂ an s-stationary and s-ergodic probability measure μ̂κ̂ on U ⊗
X ⊗ Y . Therefore we obtain with a) in (B.15.i), Lemma B.11, and (a) and (b) in Theorem B.7: If
the state distribution λ̂ is stationary and totally ergodic, then the channel κ is stationary and
totally ergodic for block i.i.d. inputs. If λ̂ is stationary and weakly mixing, then κ is stationary
and totally ergodic.
A classical special case of the described model is the Gilbert-Elliott channel (Gallager, 1968,

pp. 98, 99). It has binary input and output alphabets, i. e., X0 = Y0 = {0, 1}, and two possible
states, i. e., U0 = {0, 1}. The channel κ̂0(0, ·, ·) in state 0 is a binary symmetric channel with a
low error probability and the channel κ̂0(1, ·, ·) in state 1 is a binary symmetric channel with
high error probability. During transmission the binary state process switches randomly between
these two channels according to the distribution λ̂, that is equal to the distribution of theMarkov
chain constructed in (12.4.i). The channelmodels the transmission of bits over a “good“ or a “bad“
channel, where the random channel selection is governed by a Markov chain. If the parameter
ε, characterizing the transition probabilities of the Markov chain in (12.4.i), satisfies ε ∈ (0, 1),
then the Gilbert-Elliott channel is ψ-mixing.



110 V Examples and Applications

We conclude the section with an example of theoretical interest.

(16.8) Averaged channels. With this example we demonstrate that it is easy to construct
channels for which central results of this thesis, e. g., Theorem 9.1 do not apply. Assume that κ̇
and κ̈ are channels with time structure as in Definition 2.3, both with input signal space (X, X )
and output signal space (Y, Y). For some constant α ∈ (0, 1)we define for all x ∈ X andB ∈ Y

κ̄(x, B) = ακ̇(x, B) + (1 − α)κ̈(x, B).

Then κ̄ is a channel (see (A.3.v)) with input space (X, X ) and output space (Y, Y), called av-
eraged channel. The name is adopted from Ahlswede (1968), who attributed the introduction
of averaged channels to Jacobs (1962a). In (Han, 2003, Sec. 3.3) those channels are called mixed
channels.
We easily verify: If κ̇ and κ̈ are both stationary (causal, asymptotically input-memoryless,

have finite input memory), then κ̄ is stationary (causal, asymptotically input-memoryless, has
finite input memory). However, ergodicity is critical. Ifμ is a probability measure on the channel
input space, then we have

μκ̄ = αμκ̇ + (1 − α)μκ̈, (1)

where μκ̄, μκ̇, and μκ̈ denote the channel input-output probability measures induced by μ to-
gether with κ̄, κ̇, and κ̈, respectively. Suppose for some s ∈ T+ the channels κ̇ and κ̈ are
s-stationary and s-ergodic. Further suppose κ̇ and κ̈ are distinct in the sense that there exists at
least one s-stationary and s-ergodic probability measure μ on X such that μκ̇ �= μκ̈. If μ is such
a probability measure, then μκ̇ and μκ̈ are s-stationary and s-ergodic according to the defini-
tion in (2.7.ii). However, due to Lemma B.9 and (1) the probability measure μκ̄ is not s-ergodic,
which implies that the averaged channel κ̄ is not s-ergodic. This observation directly extends
to averages of channels that are totally ergodic (for block-i.i.d. inputs). Even the averages of
memoryless channels (see Example 13.8) are not ergodic. Averaged channels are well known
for their non-ergodicity.

§17 Signal Processing, Composed Models

Does a certain signal processing operation, applied to the input or output of a channel, have an
impact on relevant properties of the channel, e. g., does it modify the input or output memory?
A useful approach to answer this question is to represent the signal processing operation as a
deterministic channel. Then we can consider the original channel together with the signal pro-
cessing as cascade channel, to which we can apply the results from Section §14. In this section
we formulate typical examples such as linear filtering, quantization, and thresholding in terms
of the channel framework used in this thesis. We identify properties of these deterministic chan-
nels and then consider a random version of a linear filter, which can serve as model of a wireless
communication link. Then we study some aspects of connecting channels in cascade with a par-
ticular focus on channels composed of a linear filter and an additive noise channel. For these
cascade channels we are able to verify the asymptotic input-memorylessness in some special
cases, even though the filter as a single component does not satisfy this property. At the end of
this section we list applications from various fields. In particular, we discuss memory proper-
ties that allow to apply the central limit theorem to the calculation of the Fourier transform of
stationary sequences.
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(17.1) Time-invariant filter. Suppose κ is a discrete-time deterministic channel. We charac-
terize the input-output relation of the deterministic channel with the function f̂ as introduced
in Paragraph 16.1. The time index set T is equal to Z and the input and output spaces (X, X )
and (Y, Y) are product spaces as introduced in Definition 2.3 for channels with time-structure.
We assume real-valued inputs and outputs, i. e., X0 = Y0 = R, where both sets are equipped
with the usual Borel-σ-algebra. Suppose f̂ is defined by component functions f̂k with param-
eters ux and vx as specified at the end of Paragraph 16.1 and in Paragraph 15.6. We assume
that f̂k(·) = f̂0(〈·〉−k) for all k ∈ Z such that f̂ is invariant. The specifications so far imply
stationarity and output-memorylessness of κ. We further assume that vx = 0 so that κ is causal.

The channel represents a causal time-invariant discrete-time filter, where the current output
value is the result of filtering the current and past input values by (shifted versions of) the
function f̂0. The filter can be nonlinear in general, however, let us restrict ourselves to the
linear case. First assume that ux = n is a finite positive integer. Then f̂0 is defined on X0−n with
values in Y0 by

f̂0(x0
−n) =

n−1∑
i=0

aix−i

for all x0−n = (x−n+1, . . . , x−1, x0) ∈ X0−n, where a0, a1, . . . , an−1 ∈ R denote the filter

coefficients. Because f̂0 is continuous, it is a basic measure-theoretic fact that it is X 0−n/B(R)-
measurable. The filter function depends on n−1 past inputs so that the channel has finite input
memory with a memory length of n − 1.
Given ux is infinite, then f̂0 is defined on X0

−. Assume that {ai, i ∈ N0} is a fixed sequence
of filter coefficients ai ∈ R. We define

f̂0(x0
−) = lim

n→∞

n−1∑
i=0

aix−i =:
∞∑

i=0
aix−i (1)

for all x0
− ∈ X ′, where

X ′ :=
{

x0
− = {x−i, i ∈ N0} ∈ X0

− :
∞∑

i=0
aix−i exists and is finite

}
.

We extend this function on X ′ to a X 0
−/B(R)-measurable function on all of X0

−. This is possible
due to the derivations in Paragraph A.13, which also yield X ′ ∈ X 0

−. If infinitely many filter
coefficients are nonzero, then the filter function depends on infinitely many past inputs so that
the channel has infinite input memory. From the discussion in Paragraph 16.1 on the input
memory of deterministic channels we obtain that κ is not asymptotically input-memoryless.

We continue with the (more interesting) case of a linear time-invariant filter channel with
infinite input memory. Assume that μ is a probability measure on the channel input space
(X, X ) and μk

− denotes the marginal measure of μ on X k
− . Let ξ = {ξk, k ∈ Z} denote the

sequence of input coordinate projections, where ξk is the projection from X to Xk. Suppose

sup
k∈Z

E|ξk| = sup
k∈Z

∫
X

|ξk(x)| dμ(x) < ∞ (2)
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holds, which is for example the case when μ is stationary and E|ξ0| < ∞. Further, suppose the
filter coefficients are absolutely summable, i. e.,

∞∑
i=0

|ai| < ∞. (3)

Then we have

∞∑
i=0

E|aiξk−i| ≤
(

sup
i∈N0

E|ξk−i|
)

·
∞∑

i=0
|ai| < ∞,

for all k ∈ Z. Together with the results in Paragraph A.13 this implies μk
−(〈X ′〉k) = 1. Thus,

under the conditions (2) and (3) each component function f̂k(·) = f̂0(〈·〉−k) is μk
−-almost surely

defined by a shifted version of (1) so that it does not matter how f̂k is extended outside 〈X ′〉k .

It follows that the channel function f̂ is μ-almost surely defined. Given η = {ηk, k ∈ Z} is the
sequence of output coordinate projections, where ηk denotes the projection from Y to Yk , then
we have

η = f̂(ξ) and ηk = f̂k(ξk
−) =

∞∑
i=0

aiξk−i, (4)

where the last equality holds μ-almost surely.
Let us consider an example. Suppose a channel input probability measure μ is given such that

ξ = {ξk, k ∈ Z} is an i.i.d.-sequence of Gaussian random variables with expectation E(ξ0) = 0
and finite variance var(ξ0) = σ2. Further assume that the filter coefficients {ai, i ∈ N0} are
given by ai = ρi, where ρ is a fixed constant satisfying |ρ| < 1. Then we obtain

sup
k∈Z

E|ξk| = E|ξ0| =
√

2σ2/π < ∞ and

∞∑
i=0

|ai| = 1
1 − |ρ| < ∞

using (Simon, 2006, eq. (2.4)) and the properties of the geometric series. Consequently, the
right-hand side of (4) converges μ-almost surely to a finite value for all k ∈ Z. The sequence
η = {ηk, k ∈ Z} at the channel output results from linearly filtering the i.i.d. Gaussian input
sequence ξ and we observe this example is identical to that given in (12.4.ii), formulated here in
terms of a deterministic channel. Since ξ is an i.i.d.-sequence it is information regular and due to
the derivations in (12.4.ii) the sequence η is information regular as well. We emphasize that η is
information regular even though the channel κ is not asymptotically input-memoryless for the
input signal set X ′. Thus, the example illustrates that the input memory condition formulated
in (13.11.iii) for κ to obtain an information regular output is not a necessary condition. This
example can be extended to a more general situation: A second order stationary Gaussian pro-
cess with rational spectral density is information regular according to (12.5.iii) and the second
equivalence in (12.5.i). Such processes are ARMA processes and result from passing stationary
white Gaussian noise through a (well-behaved) time-invariant linear filter (see Paragraph C.3).
Thus, passing a stationary Gaussian process with rational spectral density through a linear filter
is the same as passing stationary white Gaussian noise through a cascade of two linear filters,
which is itself a linear filter. The output process is therefore stationary Gaussian with rational
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spectral density. It follows that linearly filtering a stationary Gaussian process with rational
spectral density results in an information regular Gaussian process, whether or not the filter
has finite input memory.
As a second example assume that the channel input probability measure μ is such that ξ

is an i.i.d.-sequence with μ(ξ0 = 0) = μ(ξ0 = 1) = 1/2 and the coefficients of the linear
filter are given by ai = 1

2 (1/2)i for i ∈ N0. The conditions (2) and (3) are satisfied so that
we have μ-almost sure convergence on the right-hand side of (4) and we observe the situation
is identical to that in example (12.4.v). Consequently, the output sequence η is not α-mixing
and therefore, all the output memory conditions that are based on dependence measures are
not satisfied. Comparing this infinite input memory channel with the one from the previous
example shows: Even though both channels are identical (linear filter with coefficients from a
geometric series) and both inputs have the same memory properties (i.i.d. inputs, i. e., there is
no memory at all) the channel outputs have memory properties of rather different quality. This
illustrates effects and difficulties for channels having infinite input memory. In Paragraph 17.5
we consider a linear time-invariant filter that is not asymptotically input-memoryless but in
connection with additive noise the composed channel satisfies this condition.

(17.2) Quantization. We consider now a stationary deterministic channel with time structure.
The input space (X, X ) is the product of an arbitrary input alphabet (X0, X0) and the output
space (Y, Y) is the product of the real alphabet (Y0, Y0) = (R,B(R)). The invariant channel
function f̂ between input and output is defined by component functions f̂t(·) = f̂0(〈·〉−t) for
all t ∈ T . Let {A1, A2, . . . , An} be a partition of X0 with Ai ∈ X0 and let b1, b2, . . . , bn ∈ Y0
be distinct numbers. The component function f̂0 is defined on X0 with values in Y0 by

f̂0 =
n∑

i=1
bi1Ai .

It represents the quantization of the values from the alphabet X0. The X0/Y0-measurability of
f̂0 (and therefore of f̂ ) is assured as long as the sets Ai are taken from the σ-algebra X0. If the
inputs are real scalars, then the Ai’s are usually intervals and the bi’s are the center points of
the intervals. If the inputs are real vectors, then the Ai’s are for example Voronoi cells. In this
case real vectors are considered as output alphabet and the bi’s are chosen as centroid of the
corresponding cell. This stationary channel is causal, output-memoryless (as any deterministic
channel), and input-memoryless such that it is memoryless (see Example 13.8).

(17.3) Thresholding. Assume thatwe have a stationary deterministic channelwith time-struc-
ture as in Paragraph 17.2 with real inputs and outputs, i. e., (X0, X0) = (Y0, Y0) = (R,B(R)).
Let us fix some ε > 0. The component function f̂0 of the invariant mapping f̂ between input
and output is defined on X0 with values in Y0 by

f̂0(x0) = x01Aε(x0)

for all x0 ∈ X0, where the set Aε is given by

Aε = {x0 ∈ X0 : |x0| ≥ ε}.

The operation means all signal values below a certain constant (threshold) are set to 0. The
threshold operation is applied for example in wireless sensor networks (Boche and Mönich,
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2009). In such networks the sensors transmit only if the signal values are above a certain thresh-
old, which saves energy. The function f̂0 is X0/Y0-measurable because Aε ∈ X0, the identity is
measurable, and the pointwise product of measurable functions is measurable. The properties
of this channel are identical to those of the quantization channel in Paragraph 17.2, i. e., it is
stationary and memoryless.

(17.4) Time-variant and random filter. Consider the discrete-time deterministic channel κ
specified at the beginning of Paragraph 17.1 with the difference, that the component functions
f̂k vary with the time index k, i. e., they are not necessarily shifted versions of f̂0. Then this is a
model for a time-variant filter. For example, assume that n ∈ N0 is fixed and for all k ∈ Z the
function f̂k is defined on Xk

k−n with values in Yk by

f̂k(xk
k−n) =

n−1∑
i=0

ak,ixk−i

for all xk
k−n = (xk−n+1, . . . , xk−1, xk) ∈ Xk

k−n, where ak,0, ak,1, . . . , ak,n−1 ∈ R denote the
filter coefficients, that vary (deterministically) with time index k. This linear time-variant filter
channel is causal, output-memoryless, and has finite input memory with memory length n − 1.
However, the channel is not stationary and will therefore not be further considered.
We continue with filters that change randomly over time and restrict ourselves to the linear

case. A wireless communication link, for example, with a randomly changing channel impulse
response can bemodeled by such a filter. Suppose κ is an integration channel with time structure
as introduced in Example 15.3 and the channel function f is specified by component functions as
in Paragraph 15.6. We adopt the real input and output alphabet and the discrete time axis from
above and assume that the component functions satisfy fk(·) = f0(〈·〉−k) for all k ∈ Z, where
the shift 〈·〉−k operates on the product of the input and noise (sub-) space. The corresponding
channel function f is invariant by construction.
We assume that the components (Zk, Zk) of the noise sequence space (Z, Z) are themselves

product spaces given by

Zk = ×
i∈N0

Zk,i, Zk =
⊗

i∈N0

Zk,i, (1)

where Zk,i = R and Zk,i = B(R). We further assume that the component function f0 is
defined on X0

− × Z0 with values in Y0. We define

f0(x0
−, z0) = lim

n→∞

n−1∑
i=0

z0,ix−i =:
∞∑

i=0
z0,ix−i (2)

for all (x0
−, z0) ∈ U ′, where

U ′ :=
{

(x0
−, z0) = {(x−i, z0,i), i ∈ N0} ∈ X0

− × Z0 :
∞∑

i=0
z0,ix−i exists and is finite

}
.

We extend this function on U ′ to an X 0
− ⊗ Z0/B(R)-measurable function on all of X0

− × Z0.
It is shown in Paragraph A.13 that this is always possible and also that U ′ ∈ X 0

− ⊗ Z0 holds.
For all (x0

−, z0) ∈ U ′ the value f(x0
−, z0) is the result of linearly filtering the input values x0

− =
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{xi, i ∈ N0} with the coefficients z0 = {z0,i, i ∈ N0}. Subsequently, we specify conditions on
the noise source and the channel input measure such that U ′ is a set of measure 1. The situation
simplifies, when only finitely many, say n, filter coefficients are considered. Then the product
space and σ-algebra in (1) are composed of n components, the set U ′ is not required, and f0 is
defined for all (x0

−n, z0) ∈ X0
−n × Z0 by the middle sum in (2) without the limit. For n = 1 we

have the multiplicative noise channel introduced in Paragraph 16.5.
Let ξ = {ξk, ∈ Z}, η = {ηk, ∈ Z}, and ζ = {ζk, k ∈ Z} denote the sequences of coordinate

projections on the input, output, and noise space, where ξk is the projection from X to Xk , ηk

is the projection from Y to Yk , and ζk is the projection from Z to Zk . Further, let ζk,i denote the
projection from Z to Zk,i. In expressions containing several projections on different spaces it
is understood that they are defined on the corresponding product space. Assume that the noise
source λ describing the random variation of the filter coefficients is stationary and satisfies

∞∑
i=0

E|ζ0,i| =
∞∑

i=0

∫
Z

|ζ0,i(z)| dλ(z) < ∞. (3)

This condition is the counterpart to (17.1.3) in the deterministic time-invariant case. If Z ′
k de-

notes the set of absolutely summable filter coefficients at time index k ∈ Z, i. e.,

Z ′
k =

{
zk = {zk,i, i ∈ N0} ∈ Zk :

∞∑
i=0

|zk,i| < ∞
}

,

then we have λk(Z ′
k) = 1, where λk denotes the marginal measure of λ on Zk . This follows

from the conditions on the noise source λ and the results in Paragraph A.13.
Let μ be a probability measure on the channel input space (X, X ) and as in Paragraph 17.1

suppose it satisfies

sup
k∈Z

E|ξk| = sup
k∈Z

∫
X

|ξk(x)| dμ(x) < ∞, (4)

which holds, for example, when μ is stationary and E|ξ0| < ∞. From conditions (3) and (4)
together with

E|ζk,iξk−i| =
∫

X×Z

|ζk,i(z)ξk−i(x)| dμ ⊗ λ(x, z)

=
∫

Z

|ζk,i(z)| dλ(z)
∫

X

|ξk−i(x)| dμ(x)

= E|ζk,i| E|ξk−i|

and the stationarity of λ we obtain

∞∑
i=0

E|ζk,iξk−i| =
∞∑

i=0
E|ζk,i| E|ξk−i|

≤
(

sup
i∈N0

E|ξk−i|
)

·
∞∑

i=0
E|ζk,i| < ∞.
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Then the results in ParagraphA.13 imply μk
−⊗λk(〈U ′〉k) = 1, whereμk

− is themarginalmeasure
of μ on X k

− . Thus, under the conditions (3) and (4) each component function fk(·) = f0(〈·〉−k)
is μk

− ⊗ λk-almost surely defined by a shifted version of (2) so that it does not matter how fk

is extended outside 〈U ′〉k . It follows that the channel function f is μ ⊗ λ-almost surely defined.
At the channel output we have

η = f(ξ, ζ) and ηk = fk(ξk
−, ζk) =

∞∑
i=0

ζk,iξk−i,

where the last equality holds μ ⊗ λ-almost surely.

The channel function f is invariant and the noise source λ is stationary. Therefore, the re-
sulting channel κ is stationary. It is also causal and because the channel function f satisfies
the measurability condition in (15.4.v) the mixing property of the noise source λ implies the
corresponding mixing property of the channel κ. With a finite number of filter coefficients the
channel has finite input memory. Verifying the asymptotic input-memorylessness of a random
linear time-variant filter with an infinite number of filter coefficients can be difficult. In Para-
graph 17.6 we derive the asymptotic input-memorylessness of a filter of this type when it is
combined with an additive noise channel.

With the channels defined in this section and Section §16 we can build composed models. For
example, connecting themultiplicative and additive noise channel from Paragraphs 16.3 and 16.5
results in a cascade channel, usually referred to as flat fading channel. From the properties
identified in Paragraphs 16.3 and 16.5 for the single components we easily obtain properties of
the composed channel by applying Theorems 14.2 and 14.4.

We observe that a deterministic memoryless channel has no impact on thememory properties
of a channel, when connected to the input or output. Thus, thresholding at the channel input
or quantization at the channel output preserves the memory properties of the original channel.
The situation is different when the memoryless channel is not deterministic. Subsequently, we
demonstrate the impact of an additive noise channel on the input memory, when connected
with a linear filter. The example also illustrates the limitations of concluding properties of a
composed channel from the properties of its single components. In particular the first part of
the next example is formulated such that it can be easily extended to other composed channels.

(17.5) Linear time-invariant filter and additive noise. Let κ be a discrete-time channel
with the input and output product spaces (X, X ) and (Y, Y), respectively. Assume that the
channel consists of two components connected in cascade as illustrated in Figure 6. Suppose
the first component is a linear time-invariant filter f̂ as specified in Paragraph 17.1 with abso-
lutely summable filter coefficients {ai, i ∈ N0}. Let the second component κ̇ be an additive
noise channel as introduced in Paragraph 16.3 with noise measure space (Z, Z, λ) and channel
function ḟ . As in Paragraphs 16.3 and 17.1 we assume that all alphabets are equal to the real
line so that input, output, and noise signals are real-valued sequences.

According to Paragraph 15.7 the composed channel κ is an integration channel with channel
function f given by

f(x, z) = ḟ
(
f̂(x), z

)
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f̂

additive noise

linear filter

ḟ

(Z, Z, λ)

κ̇(u, B)
κ(x, B)

f

(X, X ) (U, U) (Y, Y)

Figure 6: Cascade of linear time-invariant filter and additive noise channel.

for all x ∈ X and z ∈ Z . The channel function f is characterized by component functions
fk(·) = f0(〈·〉−k), k ∈ Z, where f0 is defined on X0

− × Z0 with values in Y0 as

f0(x0
−, z0) = ḟ0

(
f̂0(x0

−), z0
)

for all x0
− ∈ X0

− and z0 ∈ Z0. Here, f̂0 and ḟ0 are the defining component functions of f̂ and ḟ ,
respectively. Since the linear time-invariant filter is a deterministic channel, the noise source of
the composed integration channel κ is equal to that of the additive noise channel κ̇.
We can apply Theorem 15.4 to obtain properties of the composed integration channel κ. Al-

ternatively, from the properties identified in Paragraphs 16.3 and 17.1 for the linear filter and the
additive noise channelwe can conclude properties of the channelκ using Theorems 14.2 and 14.4.
For example, κ is causal because both components are causal. Since the linear time-invariant
filter is output-memoryless and the additive noise channel is causal and input-memoryless the
output memory of κ is determined by the output memory of the additive noise channel. There-
fore, it completely depends on the noise source. The stationarity of the noise source implies
the stationarity of κ because f̂ and ḟ are invariant. However, drawing conclusions about the
input memory of κ based on (14.2.iv) is not possible in general because the linear filter is not
asymptotically input-memoryless if it has an infinite number of nonzero filter coefficients.
Subsequently, we consider an example for which we can verify the asymptotic input-memory-

lessness of the composed channel κ, even though the linear filter does not satisfy this property.
Actually, the basis for this effect is the data processing inequality given in (6.4.ii) due to which
the total variation distance between two probability measures is at most decreased when the
measures are passed through a channel. Let ζ = {ζk, k ∈ Z} denote the sequence of coordinate
projections on the noise sample space, where ζk denotes the projection from Z to Zk. Assume
that the noise source λ is such that ζ is a second order stationary Gaussian sequence with

E(ζk) = 0, cov(ζj , ζk) = σ2ρ|j−k|, (1)

for all j, k ∈ Z, where ρ and σ2 are real constants satisfying |ρ| < 1 and σ2 > 0. According
to Example C.4 or (12.4.ii) the sequence ζ is an AR(1) process. If ρ = 0, then25 ζ is an i.i.d.-
sequence and κ is output-memoryless. If ρ �= 0, then κ has infinite output memory. It is actually
information regular (but not ψ-mixing) due to the results in Paragraph 16.3.

25In case ρ = 0, we put 00 := 1 in (1).
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Suppose X ′′ denotes the set of all input sequences bounded by the finite constant c > 0, i. e.,

X ′′ =
{

x = {xk, k ∈ Z} ∈ X : supk∈Z |xk| ≤ c
}

. (2)

Since we assume that (17.1.3) holds (absolutely summable filter coefficients) the filter function
f̂ is well-defined on X ′′ because the series in (17.1.1) converges for all x ∈ X ′′. The channel
κ is asymptotically input-memoryless for the signal set X ′′ if for all ε > 0 there exists an
m = m(ε) ∈ N0 such that for all x, x̃ ∈ X ′′ coinciding on (−m, ∞) we have

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤ ε, (3)

where κ0(x, ·) denotes the marginal measure of κ(x, ·) on Y+
0 . It is sufficient to verify this

condition because κ is stationary and X ′′ is shift-invariant.
Let η = {ηk, k ∈ Z} denote the sequence of coordinate projections on the channel output

space, where ηk denotes the projection from Y to Yk . If x ∈ X ′′ is fixed, then η is a sequence
of random variables on the probability space (Y, Y, κ(x, ·)). It is a Gaussian sequence with the
same covariance function as the noise sequence ζ . The expectations are given by

E(ηk) = E(ζk) + f̂k(xk
−) =

∞∑
i=0

aixk−i

for all k ∈ Z. The random sequence η+
0 is equal to that considered in (6.12.iii) with the covariance

function specified in (6.12.10), which allows us to use the results derived there. The distribution
of η+

0 is equal to κ0(x, ·).
Given x, x̃ ∈ X ′′ we define

dk = f̂k(xk
−) − f̂k(x̃k

−).

Let us fix some m ∈ N0. Then for all k ∈ N and x, x̃ ∈ X ′′ coinciding on (−m, ∞) we have

|dk| =
∣∣∣∣∣

∞∑
i=k+m

ai(xk−i − x̃k−i)
∣∣∣∣∣ ≤ 2c

∞∑
i=k+m

|ai|, (4)

where the inequality holds because the sequences of X ′′ are bounded by the constant c. Apply-
ing Pinsker’s inequality (6.10.i) we obtain

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤
√

2D
(
κ0(x, ·)‖κ0(x̃, ·)) (5)

and using (6.12.5) together with the results from (6.12.iii) yields

D
(
κ0(x, ·)‖κ0(x̃, ·)) ≤ 2

σ2(1 − ρ2)

∞∑
k=1

d2
k. (6)

Combining (4), (5), and (6) yields

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤ 4c√
σ2(1 − ρ2)

√√√√ ∞∑
k=1

( ∞∑
i=k+m

|ai|
)2

. (7)
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The right-hand side of (7) is a function of m and when it is possible to make it arbitrarily small
by increasing m, then the channel κ is asymptotically input-memoryless for the signal set X ′′.
We provide three examples of filter coefficients. First assume that we have

ai = qi, (8)

for all i ∈ N0, where q is a real constant satisfying |q| < 1. Evaluating the right-hand side of
(7) based on the properties of the geometric series yields for the coefficients in (8)

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤ 4c|q|
(1 − |q|)√σ2(1 − ρ2)(1 − q2)

|q|m. (9)

As a second example assume that the filter coefficients are given by

ai = iqi, (10)

for all i ∈ N0, where |q| < 1. Then we obtain by similar calculations

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤ 4c|q|
(1 − |q|)√σ2(1 − ρ2)(1 − q2)

√
A + Bm + m2 |q|m, (11)

where

A = 1 + q2(1 − |q|)2 − |q|3(2 − |q|3)
(1 − q2)2(1 − |q|)2 and B = 2(1 − |q|3)

(1 − q2)(1 − |q|) .

Third, when the filter coefficients are given by

ai = 1
(i + 1)(i + 2) , (12)

for all i ∈ N0 we obtain by evaluating the right-hand side of (7)

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤ 4c√
σ2(1 − ρ2)

√
Ψ′(m + 2), (13)

where Ψ′(·) denotes the trigamma function as defined in (Olver et al., 2010, Sec. 5.15). To derive
(13) we have used (Prudnikov et al., 1986, 4.1.4.5) and (Olver et al., 2010, 5.15.1).

We canmake the right-hand side of (9) or (11) or (13) arbitrarily small by increasing m. There-
fore, the channel κ with additive Gaussian noise as specified in (1) and filter coefficients given
by (8) or (10) or (12) is asymptotically input-memoryless for the input signal set X ′′. The choice
in (8) and (10) is representative for all linear filters with coefficients whose magnitude decays
exponentially for sufficiently large indices. The choice in (12) is representative for linear filters
with coefficients whose magnitude decays quadraticly for sufficiently large indices.

Due to the data processing inequality given in (6.4.ii) the relative entropy is at most decreased
by a (deterministic or random) transformation. Therefore, the above results can be extended to
situations with non-Gaussian noise given the noise can be represented as a transformation of
the considered Gaussian noise. When the Gaussian noise has a covariance function different
from (1), then the upper bound in (6) has to be replaced. In the situation of the present example
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the relative entropy is calculated with the expression in (6.12.2). The fact that (6.12.2) is the
so-called Mahalanobis distance can be used to derive an adequate upper bound.
In this paragraph, we analyzed an example, where the output of a linear time-invariant filter is

connected to the input of an additive noise channel. Assume that we connect these components
in reversed order. Then we have a different channel. However, due to the linearity of the filter
this channel is equivalent to the cascade of the components in the original order, but with an
additive noise process, which is the result of passing the original noise through the linear filter.
Thus, we can analyze the channel as above but have to replace the additive noise by its filtered
version. As an example assume that the additive noise is i.i.d. Gaussian with zero mean and
variance σ̇2. Further suppose the linear filter, connected to the output of the additive noise
channel, has coefficients ai = qi, i ∈ N0, for some constant q with |q| < 1. According to
(12.4.ii) the filtered noise is a stationary Gaussian AR(1) process with zero mean. Therefore,
the composed channel is equivalent to the example analyzed above with stationary Gaussian
noise specified in (1) and filter coefficients specified in (8). In (1) we only have to replace σ2

by σ̇2/(1 − q2) and ρ by q. It follows that this cascade channel is information regular and
asymptotically input-memoryless for the input signal set X ′′. An interesting aspect of this
example is that the single components are output-memoryless but the composed channel has
infinite output memory. However, having the filter as first and the additive noise as second
component results in an output-memoryless channel. This illustrates the impact of the order of
the components on the memory properties of the composed channel.

(17.6) Random linear filter and additive noise. Next we modify the example from Para-
graph 17.5 by substituting the linear time-invariant deterministic filter for a linear time-variant
random filter. Consider the cascade of integration channels illustrated in Figure 5 on page 101
and let us adopt all the notation from Paragraph 15.7. Suppose the first component κ̇ with
channel function ḟ and noise measure space (Ż, Ż, λ̇) is a linear time-variant random filter as
defined in Paragraph 17.4. Further suppose the second component κ̈ with channel function f̈
and noise measure space (Z̈, Z̈, λ̈) is an additive noise channel as introduced in Paragraph 16.3.
As in Paragraphs 16.3 and 17.4 we assume that all spaces are products generated from the set of
real numbers and the time axis is discrete. The composed channel κ is an integration channel
with channel function f given by (15.7.1) and noise measure space (Z, Z, λ) given by (15.7.2).
Based on the component functions ḟ0 and f̈0 of ḟ and f̈ , respectively, we define the function f0
on X0

− × Ż0 × Z̈0 with values in Y0 by

f0(x0
−, ż0, z̈0) = f̈0

(
ḟ0(x0

−, ż0), z̈0
)

for all x0
− ∈ X0

−, ż0 ∈ Ż0, and z̈0 ∈ Z̈0. The channel function f is then characterized by the
component functions fk(·) = f0(〈·〉−k), k ∈ Z.

We can use Theorems 14.2 and 14.4 to obtain properties of the composed channel κ based on
the properties identified in Paragraphs 16.3 and 17.4 for the filter and the additive noise compo-
nent. Alternatively, we can apply Theorem 15.4 to derive properties of the integration channel κ.
Clearly, we have causality of κ. Because the channel function f is invariant the stationarity of
κ follows from the stationarity of the composed noise source λ = λ̇ ⊗ λ̈, which, in turn, follows
from the stationarity of the noise sources λ̇ and λ̈. Since the channel function f satisfies the
measurability condition in (15.4.v) the mixing property of the composed noise source λ = λ̇⊗ λ̈
implies the corresponding mixing property of the channel κ. According to Lemma 12.7 mix-
ing properties of the product source λ̇ ⊗ λ̈ follow from corresponding mixing properties of the
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individual sources λ̇ and λ̈. If the number of filter coefficients is finite, then the channel has
finite input memory because the additive noise channel is memoryless. An infinite number of
filter coefficients results in infinite input memory. Whether or not the channel is asymptotically
input-memoryless depends on the specific situation. A positive example is considered next.
Suppose X ′′ denotes the set of all input sequences bounded by the finite constant c > 0

as defined in (17.5.2). Let ζ̇ = {ζ̇k, k ∈ Z} and ζ̈ = {ζ̈k, k ∈ Z} denote the sequences of
coordinate projections on the noise spaces, where ζ̇k is the projection from Ż to Żk and ζ̈k is
the projection from Z̈ to Z̈k. Further, let ζ̇k,i denote the projection from Ż to Żk,i. Assume that
the noise source λ̇ describing the random variation of the filter coefficients is such that ζ̇ is an
i.i.d.-sequence and {ζ̇0,i, i ∈ N0} is a sequence of independent Gaussian random variables with

∞∑
i=0

E
(
ζ̇2

0,i

)
< ∞, (1)

E(ζ̇0,i) = 0, var(ζ̇0,i) = σ̇2
i , (2)

where σ̇2
i > 0 for all i ∈ N0. Further assume that the noise source λ̈ describing the additive

noise is such that ζ̈ is an i.i.d.-sequence of Gaussian random variables with

E(ζ̈0) = 0, var(ζ̈0) = σ̈2, (3)

where σ̈2 > 0 is a finite constant. Since the noise sources λ̇ and λ̈ are memoryless the composed
noise source λ is memoryless. Therefore, the channel κ is output memoryless.
Let η = {ηk, k ∈ Z} denote the sequence of coordinate projections on the channel output

space, where ηk denotes the projection from Y to Yk . If x ∈ X ′′ is fixed, then η is a sequence
of independent Gaussian random variables on the probability space (Y, Y, κ(x, ·)). The random
variable ηk is then given by

ηk = ḟk

(
xk

−, ζ̇k

)
+ ζ̈k (4)

=
∞∑

i=0
xk−i ζ̇k,i + ζ̈k. (5)

Due to the assumptions on λ̇ and the boundedness of the inputs from the set X ′′ we can use the
results from the last part of Paragraph A.13, which imply that the first summand in (4) is equal
to the first summand in (5) λ̇-almost surely and in mean square. Further we can apply (A.13.10)
to calculate the expectation

E(ηk) =
∞∑

i=0
xk−iE(ζ̇k,i) + E(ζ̈k) = 0 (6)

of ηk and (A.13.11) to calculate the variance

var(ηk) = E(η2
k) = E

(
ḟk(xk

−, ζ̇k)2)+ E(ζ̈2
k) (7)

=
∞∑

i=0
x2

k−iE(ζ̇2
k,i) + E(ζ̈2

k)

=
∞∑

i=0
x2

k−iσ̇
2
i + σ̈2 < ∞. (8)
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The second equality in (7) holds because ḟk(xk
−, ζ̇k) and ζ̈k are independent as random variables

on the composed noise space (Z, Z, λ). In (6) and (8)we have used (2) and (3) and the stationarity
of the noise sources λ̇ and λ̈. The distribution of the sequence η+

0 is equal toκ0(x, ·), themarginal
measure of κ(x, ·) on Y+

0 .

As in Paragraph 17.5 we verify the asymptotic input-memorylessness of the composed chan-
nel κ using Pinsker’s inequality. Given x, x̃ ∈ X ′′ we define

ak =
∞∑

i=0
x2

k−iσ̇
2
i + σ̈2, bk =

∞∑
i=0

x̃2
k−iσ̇

2
i + σ̈2. (9)

Based on (6.12.7) and the results in (6.12.iii) we obtain the relative entropy

D
(
κ0(x, ·)‖κ0(x̃, ·)) = 1

2

∞∑
k=1

(
log
(

bk

ak

)
+ ak

bk
− 1
)

. (10)

Let us fix some m ∈ N0. For all k ∈ N and x, x̃ ∈ X ′′ coinciding on (−m, ∞) we obtain from
(9) by basic calculations

(
1 + 1

σ̈2

∞∑
i=k+m

x̃2
k−iσ̇

2
i

)−1
≤ ak

bk
≤
(

1 + 1
σ̈2

∞∑
i=k+m

x2
k−iσ̇

2
i

)
. (11)

Combining (10) and (11) and applying Pinsker’s inequality as in (17.5.5) yields

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤
√

∞∑
k=1

(
log
(

1 + c2

σ̈2

∞∑
i=k+m

σ̇2
i

)
+ c2

σ̈2

∞∑
i=k+m

σ̇2
i

)

≤
√

2c2

σ̈2

∞∑
k=1

( ∞∑
i=k+m

σ̇2
i

)
, (12)

where we have also used log(x + 1) ≤ x and that the sequences from X ′′ are bounded by the
constant c. According to the version of the definition given next to (17.5.3) the channel κ is
asymptotically input-memoryless for the signal set X ′′ if it is possible to make (12) arbitrarily
small by increasing m.

We consider three examples of filter coefficients. Suppose we have

σ̇2
i = qi (13)

for all i ∈ N0, where 0 < q < 1 is some constant. Then we obtain with (12)

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤
√

2c2q

σ̈2(1 − q)2 q
m
2 , (14)

based on the limit of the geometric series. Next, if we have

σ̇2
i = iqi (15)
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for all i ∈ N0, where 0 < q < 1, then

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤
√

2c2q

σ̈2(1 − q)2

(
1 + q

1 − q
+ m

)
q

m
2 (16)

follows similarly. Finally, evaluating (12) given

σ̇2
i = 1

(i + 1)(i + 2)(i + 3) (17)

for all i ∈ N0 yields

‖κ0(x, ·) − κ0(x̃, ·)‖tv ≤ c√
σ̈2

1√
m + 2

, (18)

where we have used (Prudnikov et al., 1986, 4.1.5.3 and 5.1.6.5).
The specified channel κ represents a random filter combined with additive memoryless zero

mean Gaussian noise. The filter has an infinite number of independent zero mean Gaussian
coefficients, which change independently over time. When the variance of the filter coefficients
is given by (13) or (15) or (17), then we can make the right-hand side of (14) or (16) or (18)
arbitrarily small by increasing m. Thus, with these parameters the channel κ is asymptotically
input-memoryless for the input signal setX ′′. The channel canmodel a wireless communication
link with an infinite channel impulse response. The choice in (13) and (15) is representative for
an exponentially decreasing power delay profile. The choice in (17) is representative for a power
delay profile decreasing with the power of 3.
When we introduce dependence only between the random filter coefficients {ζ̇k,i, i ∈ N0},

then the relative entropy is still given by (10). However, the variances in (9) are different because
the calculation is based on (A.13.9) rather than (A.13.11). As a consequence the inequalities in
(11) have to be adapted accordingly. When the Gaussian filter coefficients change dependently
over time or the additive Gaussian noise has memory, then (10) is not valid anymore and the
calculation of the relative entropy is based on (6.12.6), which can be difficult but worth to analyze.

Let us continue with a list of some more applications. For discrete-time finite-alphabet chan-
nels Takano (1974, Th. 5) derived a central limit theorem for information densities under a mix-
ing condition that lies between ψ-mixing and β-mixing. Using the same conditions Takano
(1977) proved a law of iterated logarithm for information densities and demonstrated how this
result can be applied to analyze convergence rates of decoding error probabilities. Zhang and
Weissman (2005) derived an asymptotically universal denoiser for a discrete-time causal input-
memoryless channel, which has finite alphabets and satisfies the α-mixing condition. We con-
clude this section with a more detailed example from statistical signal processing. Assume that
we want to apply a theorem to the output of a channel with time structure that relies on some
mixing condition but a priori only mixing properties of the channel and the channel input are
known. In this situation, we can apply Theorem 13.11, which formulates conditions for the
channel and the channel input that guarantee a certain mixing property of the channel output.
Next, we give an example in this regard, where mixing in the ergodic-theoretic sense is not
sufficient. There are many more applications, where mixing conditions play an important role.
To name just one more, Samson (2000) proved concentration inequalities for random sequences
satisfying a mixing condition that lies between ψ-mixing and β-mixing. Marton (2003) obtained
further results in this direction.
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(17.7) Fourier transform of stationary sequences. Suppose η = {ηk, k ∈ Z} is a real-
valued stationary second-order random sequence on (Ω, F , P) with E(η0) = 0. We define
the Fourier transform for n components of the sequence η by

ϑn(u) =
n∑

k=1
ηkejku, u ∈ (−π, π].

The Fourier transform and the related quantity |ϑn(u)|2/(2πn), u ∈ R, called periodogram, are
fundamental tools to solve problems of statistical inference for stationary time series (Priestley,
1981a, Ch. 6), (Brockwell and Davis, 2006, Ch. 10). The estimation of the spectral density, for ex-
ample, relies on the distribution of the periodogram, which usually does not have a closed form
so that the analysis is based on the asymptotic distribution as n → ∞. Next, we give a result in
this direction derived recently by Peligrad and Wu (2010). Note that the original formulation is
somewhat more general than the version given below. We assume that the interval (−π, π] is
equipped with the corresponding Borel-σ-algebra and the Lebesgue measure λ.
(i) Central limit theorem for Fourier transforms of stationary processes. Suppose the so-called

past tail σ-algebra Fpast :=
⋂∞

n=1 σ(η−n
− ) of η is trivial, i. e., contains only sets of P-measure 0

or 1. Then the random sequence η has a spectral density, say ϕ, and for almost all u ∈ (−π, π]
we have

lim
n→∞

E|ϑn(u)|2
2πn

= ϕ(u),

and

1√
n

(
Re(ϑn(u)), Im(ϑn(u))

) in distribution−−−−−−−−→
(n→∞)

√
πϕ(u)

(
φ1, φ2

)
(under P),

1
2πn

|ϑn(u)|2 in distribution−−−−−−−−→
(n→∞)

ϕ(u)φ3 (under P),

where φ1 and φ2 are independent and identically distributed Gaussian random variables with
mean 0 and variance 1 and φ3 is an exponentially distributed random variable with mean 1.
Furthermore, for almost all u1, u2 ∈ (−π, π] with u1 �= u2 the random variables

1√
n

ϑn(u1) and
1√
n

ϑn(u2)

are asymptotically independent, i. e., asymptotically the process
{

ϑn(u)/
√

n, u ∈ (−π, π]
}
is

white Gaussian noise as n → ∞.
This central limit theorem justifies for a class of stationary sequences what is commonly pre-

sumed in frequency-domain analysis of stationary time series: the Fourier transform of station-
ary processes are asymptotically independent Gaussian. Results in this direction under different
dependence conditions have a long history. The theorem of Peligrad and Wu (2010) improves
the result in Wu (2005). Rosenblatt (1985, Ch. 5, Th. 3) gives a version based on the α-mixing
condition (see (Peligrad and Wu, 2010) for more references). In fact, a trivial past tail σ-algebra
implies mixing in the ergodic-theoretic sense and is implied by α-mixing (Bradley, 2007, 2.17).
Thus, the given central limit theorem applies in particular to real-valued stationary second-order
random sequences satisfying the α-mixing condition.
(ii) Fourier transform of channel output. Let us now consider a discrete-time channel κ as

introduced in Definition 2.3 with real-valued input and output signals. Assume that the channel
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input probability measure isμ such that the input-output probability space is (X×Y, X ⊗Y, μκ).
By ξ = {ξk, k ∈ Z} and η = {ηk, k ∈ Z} we denote the sequences of coordinate projections on
the input-output space, where ξk is the projection fromX×Y toXk and ηk is the projection from
X × Y to Yk . We are interested now in conditions on the input sequence ξ and the channel κ,
which allow to apply the central limit theorem of part (i) to the channel output sequence η. Due
to Lemma 2.9 and Theorem 13.11 we have: If ξ is stationary and α-mixing and κ is stationary, α-
mixing, causal, and asymptotically input-memoryless, then η is stationary and α-mixing. Thus,
under these conditions we can apply part (i) if η has zero mean and finite second moments. The
additive and multiplicative noise channel defined in Paragraphs 16.3 and 16.5 allow to apply
this results, if the noise sources are α-mixing. The same holds for the channel with state from
Paragraph 16.7, if the state distribution is α-mixing. If bounded input sequences are considered,
then we can apply the result also to the composed channels studied in Paragraphs 17.5 and 17.6.





Summary and Open Problems

Summary. In the first part, of this thesis we generalized a coding theorem and a converse of
Kadota and Wyner (1972) to abstract channels with time structure. As a main contribution we
proved the coding theorem for a significantly weaker condition on the channel output memory,
called total ergodicity for block-i.i.d. inputs. We achieved this result mainly by introducing an
alternative characterization of information rate capacity. We showed that the ψ-mixing con-
dition (asymptotic output-memorylessness), used by Kadota and Wyner, is quite restrictive, in
particular for the important class of Gaussian channels. In fact, we proved that for Gaussian
channels the ψ-mixing condition is equivalent to finite output memory. Moreover, we derived a
weak converse for all stationary channels with time structure. Intersymbol interference as well
as input constraints were taken into account in a flexible way. Due to the direct use of outer
measures and a derivation of an adequate version of Feinstein’s lemma we were able to avoid
the standard extension of the channel input σ-algebra and obtained a more transparent deriva-
tion. We aimed at a presentation from an operational perspective and considered an abstract
framework, which enabled us to treat discrete- and continuous-time channels in a unified way.
In the second part, we systematically analyzed infinite output memory conditions for abstract

channels with time structure. We exploited the connections to the rich field of strongly mixing
random processes to derive a hierarchy for the nonequivalent infinite channel output memory
conditions in terms of a sequence of implications. The ergodic-theoretic memory condition used
in the proof of the coding theorem and the ψ-mixing condition employed by Kadota andWyner
(1972) were shown to be part of this taxonomy. In addition, we specified conditions for the
channel, under which memory properties of a random process are invariant when the process
is passed through the channel.
In the last part, we analyzed cascade and integration channels with regard to mixing condi-

tions as well as properties required in the context of the coding theorem. The results are useful
to study many physically relevant channel models and allow a component-based analysis of the
overall channel. We considered a number of examples including composedmodels and determin-
istic as well as random filter channels. Finally, an application of strong mixing conditions from
statistical signal processing involving the Fourier transform of stationary random sequences
was discussed and a list of further applications was given.

Open problems. Naturally, a variety of open problems remains. We list some of them, which
would be interesting for future work. The material in this thesis is prepared in the hope to serve
as a suitable starting point for further generalizations and extensions of the given results.
Chapter I.

• To prove the monotonicity of the sequence {n−1I(ξn
0 ; ηn

0 ), n ∈ N} in Corollary 4.14 Kadota
and Wyner (1972) argued that it is convex. However, in Paragraph 16.6 we constructed a
strictly concave example. Under what general conditions the sequence is indeed convex?

• The information rate capacity is introduced in Definition 5.1 as limit superior. In Lemma 5.3
we derived two representations as supremum, given the channel is stationary and the input
constraints satisfy the regularity condition in (3.1.4). What channel properties imply that
the limit superior is in fact a limit?
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• The information rate capacity is defined with respect to an almost sure input constraint.
Kadota (1973) showed for his channel model and a certain input constraint that the consid-
ered version of information rate capacity does not change its value, when the almost sure
constraint is replaced by a corresponding average constraint. We conjecture that a simi-
lar result holds for the information rate capacity of Definition 5.1, when the conditions of
Theorem 9.1 are satisfied.

• We introduced in Definition 7.2 the ψ-variation and proved in Paragraph E.3 that it satisfies
the data processing inequality (7.3.ii) if integration channels are considered. We conjecture
that the ψ-variation satisfies this inequality for an arbitrary channel.

Chapter II
• The coding theorem as formulated in Theorem 9.1 was derived for asymptotically input-
memoryless channels, a condition based on the total variation distance. This condition is
sometimes too strong or it is difficult to verify it for specific channels. Therefore, it is worth
investigating more relaxed conditions on the channel input memory. Gray and Ornstein
(1979) introduced a weaker input memory condition, called d̄-continuity, for the special case
of a discrete-time finite-alphabet channel and proved a coding theorem. A generalization
within the abstract framework of this thesis would be interesting for future work.

• We proved with Theorem 9.3 a weak converse for stationary channels with time structure
having arbitrary alphabets. Deriving a corresponding strong converse is a possible further
research direction. Augustin (1966) considered abstract memoryless channels in this regard.
To investigate a generalization within the framwork of this thesis to channels with memory
would be interesting.

• We have shown in Theorem 10.5, that Kadota and Wyner’s information rate capacity given
in Definition 10.1 is equal to the version introduced in Definition 5.1 if it has an operational
meaning in the sense of Theorem 9.1. To find a purely analytic proof without reference to
the coding theorem would be a desirable result.

Chapter III and Chapter IV
• That the reversed implications in (e) and (f) of Theorem 13.9 do not hold in general has
been shown only in Paragraph 16.2 for a purely random channel. It remains to find “true“
channels illustrating this aspect. An example showing that the reversed implication in (g)
of Theorem 13.9 does not hold in general is still missing.

• It might be possible to derive some of the implications in Theorems 13.11, 14.4 and 15.4 under
weaker conditions.

Chapter V
• It is straightforward to rigorously extend the discrete-time examples in Paragraphs 17.1
and 17.4 to continuous-time multipath channels with a countable number of taps. A rig-
orous extension within the framework of integration channels to general continuous-time
linear filters would be desirable. An extension of the examples in Paragraphs 17.5 and 17.6
in this regard would include the analysis of the relative entropy between continuous-time
random processes.



Appendix

A Basics of Probability and Measure Theory

In this section we collect frequently used definitions and results from probability and measure
theory in a form suitable for the purposes of the thesis. Recommendable books on the funda-
mentals of probability and measure theory are (Shiryaev, 1995; Billingsley, 1995; Bauer, 1995,
2001; Ash, 2000; Elstrodt, 2005). A compact reference on the foundations of modern probability
is (Kallenberg, 2002).

(A.1) Independence. Let (Ω, F , P) be a probability space and S be any index set. The family
{As, s ∈ S} of sets As ∈ F is called independent, if for any finite set J ⊂ S we have

P
( ⋂

s∈J

As

)
=
∏

s∈J

P(As).

The family {As, s ∈ S} of set systems As ⊂ F is called independent, if any family {As, s ∈ S}
of sets As ∈ As is independent. The family {ξs, s ∈ S} of random variables on (Ω, F , P) is
called independent, if {σ(ξs), s ∈ S} is an independent family of σ-algebras. As a reference see
(Bauer, 1995, §6, §7).

(A.2) Markov chain and Markov process. Let (Ω, F , P) be a probability space and A, B,
and C be sub-σ-algebras of F . We say A, B, and C form a Markov chain or Markov triplet
in this order (see (Bradley, 2007, Def. 7.1)) if for all C ∈ C

P(C |B ∨ A) = P(C |B) P-a.s.

In this case we also write (A − B − C). We have (A − B − C) if and only if we have (C − B − A).
Furthermore, (A − B − C) holds if and only if for all A ∈ A and C ∈ C

P(A ∩ C |B) = P(A |B)P(C |B) P-a.s.

(see (Loève, 1978, Sec. 28.3)). Then we also say A and C are conditionally independent given B.
(i) Suppose S is some index set and {As, s ∈ S}, {Bs, s ∈ S}, and {Cs, s ∈ S} are families

of sub-σ-algebras of F such that {As ∨ Bs ∨ Cs, s ∈ S} is an independent family of σ-algebras
and (As − Bs − Cs) holds for all s ∈ S. Then we have the Markov chain(∨

s∈S As −∨s∈S Bs −∨s∈S Cs

)
.

This result is taken from (Bradley, 2007, A701 (IV)).
(ii) If (A−B −C) is a Markov chain of sub-σ-algebras of F and A .= A′ , B .= B′, and C .= C′

holds for sub-σ-algebras A′, B′, and C′ of F , then we have (A′ − B′ − C′). Here A .= A′ means
for all A ∈ A there exists a A′ ∈ A′ with P(A � A′) = 0 and vice versa. This result is taken
from (Bradley, 2007, A701 (V)).

129



130 Appendix

(iii) We say the random variables ξ, η, and ζ on (Ω, F , P) form a Markov chain in this order
if we have

(
σ(ξ) − σ(η) − σ(ζ)

)
. In this case we also write

(
ξ − η − ζ

)
and say ξ and ζ

are conditionally independent given η. If ξ = {ξk, k ∈ Z} is a sequence of random variables
on (Ω, F , P), then ξ is called a Markov chain if

(
ξk−2

− − ξk−1 − ξk

)
holds for all k ∈ Z. More

generally, if ξ = {ξt, t ∈ T } is a stochastic process on (Ω, F , P), where ξt has values in (Xt, Xt),
then ξ is called Markov process, if for all s, t ∈ T with s < t and A ∈ Xt

P(ξt ∈ A |σ(ξs
−)) = P(ξt ∈ A |σ(ξs)) P-a.s.

See for example (Ihara, 1993, Def. 2.1.2) or (Revuz and Yor, 1999, Ch. III) and (Gikhman and Sko-
rokhod, 1974, pp. 159–163), but note that in the latter two references more restrictive definitions
based on Markov kernels are considered.

(A.3) Markov kernel. Assume that (Ω1, F1), (Ω2, F2), and (Ω3, F3) are measurable spaces.
The function K : Ω1 × F2 → [0, 1] is called a Markov-kernel from (Ω1, F1) to (Ω2, F2)

• if K(·, F2) is F1-measurable for all F2 ∈ F2 and

• if K(ω1, ·) is a probability measure on F2 for all ω1 ∈ Ω1. Markov kernels are considered
for example in (Bauer, 1995, §36) or (Gikhman and Skorokhod, 1974, Ch. II, §4), where the term
stochastic kernel is used.

(i) If P1 is a probability measure on F1, then the set function P on F1 ⊗ F2 defined by

P(F ) =
∫

Ω1

K(ω1, Fω1 ) dP1(ω1), F ∈ F1 ⊗ F2,

is a probability measure, where Fω1 denotes the ω1-section of the set F . This result is derived
in (Ash, 1972, Sec. 2.6.2).

(ii) If L is another Markov-kernel, now from (Ω2, F2) to (Ω3, F3), then M with

M(ω1, F3) =
∫

Ω2

L(·, F3) dK(ω1, ·), ω1 ∈ Ω1, F3 ∈ F3

is a Markov-kernel from (Ω1, F1) to (Ω3, F3), called cascadeMarkov-kernel. This result follows
from (Gikhman and Skorokhod, 1974, Th. 1, p. 76).

(iii) If (Ω1, F1) is a product space, i. e., (Ω1, F1) = (Ω′
1 ×Ω′′

1 , F ′
1 ⊗F ′′

1 ), then for any ω′
1 ∈ Ω′

1
K((ω′

1, ·), ·) is a Markov-kernel from (Ω′′
1 , F ′′

1 ) to (Ω2, F2). If P′
1 is a probability measure on

F ′
1, then K̃ with

K̃(ω′′
1 , F2) =

∫
Ω′

1

K
(
(ω′

1, ω′′
1 ), F2

)
dP′

1(ω′
1), ω′′

1 ∈ Ω′′
1 , F2 ∈ F2

is a Markov-kernel from (Ω′′
1 , F ′′

1 ) to (Ω2, F2) and is called induced Markov-kernel. These
results are obtained with (Bauer, 2001, Lem. 23.5) and part (A.8.i) of Fubini’s theorem.

(iv) Assume that (Ω2, F2) is a product space of the form (Ω2, F2) = (Ω′
2 × Ω′′

2 , F ′
2 ⊗ F ′′

2 )
and for all ω1 ∈ Ω1, F

′
2 ∈ F ′

2, and F ′′
2 ∈ F ′′

2 we define

K̇(ω1, F ′
2 × F ′′

2 ) = K(ω1, F ′
2 × Ω′′

2)K(ω1, Ω′
2 × F ′′

2 ).
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When we extend K̇(ω1, ·) for any ω1 ∈ Ω1 in the usual way to a probability measure on F2,
then K̇ is a Markov kernel from (Ω1, F1) to (Ω2, F2), and is called product Markov kernel. One
can show that the set system

D =
{

F2 ∈ F2 : K̇(·, F2) is F1-measurable
}

is the smallest Dynkin system containing F ′
2 × F ′′

2 . Since F ′
2 × F ′′

2 is closed w. r. t. finite in-
tersections it follows from the monotone class theorem that D is equal to F2. Thus K̇(·, F2) is
F1-measurable for all F2 ∈ F2 so that K̇ is indeed a Markov kernel.

(v) Let α ∈ (0, 1) be a constant and assume that K1 and K2 are both Markov kernels from
(Ω1, F1) to (Ω2, F2). We define for all ω1 ∈ Ω1 and F2 ∈ F2

K̄(ω1, F2) = αK1(ω1, F2) + (1 − α)K2(ω1, F2).

Then K̄ is a Markov kernel from (Ω1, F1) to (Ω2, F2) called averaged Markov kernel. K̄ is
indeed aMarkov kernel because the convex combination of probability measures is a probability
measure and the convex combination of measurable functions is measurable.

(A.4) Special measures. Assume that (Ω, F) is an arbitrary measurable space. If ω ∈ Ω is
some fixed element, then δω denotes the Dirac measure on F for the element ω. It is defined by

δω(F ) =
{

1 if ω ∈ F

0 if ω /∈ F

for any F ∈ F . The measure λ is called counting measure on F , if it is defined by

λ(F ) = |F |,

for any F ∈ F . If (Ω, F) = (Z, 2Z), then λ can be written as

λ =
∑
k∈Z

δk.

This particular counting measure can be used to write sums as integrals, e. g., if x = {xt, t ∈ Z}
denotes a two-sided real sequence and A = {1, 2, . . . , n}, then we have

∫
Z

xt dλ(t) =
∑
t∈Z

xt and

∫
A

xt dλ(t) =
n∑

t=1
xt.

Consider now the real measurable space (R, B(R)). The measure λ on B(R) is called (one-
dimensional) Lebesgue measure, if it assigns to any interval (a, b] the value

λ((a, b]) = b − a,

where a ≤ b ∈ R. Please refer to Bauer (2001, p. 12, §6) for more details.
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(A.5) Finite and completely atomic σ-algebras. Assume that (Ω, F , P) is a probability
space and A is a sub-σ-algebra of F . A set A ∈ A is called an atom of A if P(A) > 0 and
if for all B ∈ A with B ⊂ A we either have P(B) = 0 or P(A � B) = 0. The σ-algebra A
is called completely atomic if there are finite or countable infinite atoms A1, A2, . . . of A such
that P(Ai ∩ Aj) = 0 for i �= j and P

(⋃∞
i=1 Ai

)
= 1. For such a completely atomic σ-algebra

there exists a partition {B1, B2, . . .} of Ω, where Bi is an atom of A with P(Ai � Bi) = 0.
As an example consider the probability measure P is given by

P =
m∑

i=1
piδai ,

where m is some positive integer, δai is the Dirac measure on F for the element ai ∈ Ω, and pi

is a positive constant such that
∑m

i=1 pi = 1. Then the σ-algebraF (andA) is completely atomic.
For simplicity let us assume thatF is large enough such that there exist sets A1, A2, . . . , Am ∈ F
with ai ∈ Ai and aj /∈ Ai for i �= j. Then Ai is an atom of F .

A set A ∈ A is called a minimal nonempty set of A, if there does not exist a set B ∈ A
such that B ⊂ A other than B = A or B = ∅. Assume that A is a finite σ-algebra, i. e., the
number of sets in A is finite. Then there exists a partition {A1, A2, . . . , Am} of Ω, consisting of
minimal nonempty sets Ai ∈ A. The set Ai is either a nullset or an atom ofA. Thus, every finite
σ-algebra is completely atomic. Since every σ-algebra generated by a finite partition is finite,
it is also completely atomic. If ξ is a discrete random variable on (Ω, F , P), then the σ-algebra
σ(ξ) is completely atomic. For more details see (Bradley, 2007, Secs. 0.7, A040,A042,A051).

(A.6) Gaussian distribution. Let ξ be a real random variable defined on the probability space
(Ω, F , P). We call ξ a Gaussian random variable if its distribution is either the Dirac measure
δa at a point a ∈ R or has density

p(x) = 1
σ

√
2π

exp
(

− (x − a)2

2σ2

)
, x ∈ R,

w. r. t. the Lebesgue measure for some a ∈ R and σ > 0. In the latter case the measure ξ is called
nondegenerate. The real n-dimensional random vector (ξ1, ξ2, . . . , ξn) on (Ω, F , P) is called a
Gaussian random vector if

a1ξ1 + a2ξ2 + . . . + anξn

is a Gaussian random variable for all a1, a2, . . . , an ∈ R. Let ξ = {ξt, t ∈ T } with ξt =
(ξt,1, . . . , ξt,m) be a real m-dimensional vector process on (Ω, F , P). Then ξ is called a Gaussian
process if (ξt1,k1 , ξt2,k2 , . . . , ξtn,kn) is a Gaussian randomvector for alln ∈ N, t1, t2, . . . , tn ∈ T ,
and k1, k2, . . . , kn ∈ {1, 2, . . . , m}. The definitions are based on (Bogachev, 1998, Def. 1.1.1) and
(Sasvári, 2013, 2.1.1, Th. 1.10.4). Further in-depth references on Gaussian random variables and
processes are (Ibragimov and Rozanov, 1978) and (Hida and Hitsuda, 2007).
(i) Let ξ = {ξt, t ∈ T }with ξt = (ξt,1, . . . , ξt,n) be an n-dimensional Gaussian vector process

and assume that T1, T2 ⊂ T are disjoint sets. If cor(ξt1,k1 , ξt2,k2 ) = 0 for all t1 ∈ T1, t2 ∈ T2,
and k1, k2 ∈ {1, 2, . . . , n}, then the random variables ξT1 = {ξt, t ∈ T1} and ξT2 = {ξt, t ∈ T2}
are independent. See (Bradley, 2007, A901) for a generalized version of this result, which is based
on the finite-dimensional result in (Dudley, 2002, Th. 9.5.14).
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(A.7) Density, absolute continuity, singularity, Lebesgue decomposition. Details to the
results in this paragraph are given in (Bauer, 2001, § 17). Let (Ω, F) be a measurable space and
assume that μ and ν are measures on F .

(i) Measures with density. If there is a nonnegative F-measurable function f on Ω such that

ν(F ) =
∫

F

f dμ

holds for all F ∈ F , then f is called μ-density of ν. If g is a real F-measurable function on Ω
and ν has μ-density f , then ∫

F

g dν =
∫

F

gf dμ

holds for all F ∈ F for which one of the integrals exists.

(ii) Absolute continuity and singularity. The measure ν is called absolutely continuous w. r. t.
the measure μ, written as ν 
 μ, if every μ-nullset is a ν-nullset. If ν has a μ-density, then
it is absolutely continuous w. r. t. μ. On the other hand, according to the Radon-Nikodym theo-
rem, if ν is absolutely continuous w. r. t. μ and μ is σ-finite26, then ν has a μ-density, which is
finite μ-almost everywhere if and only if ν is σ-finite. Since the density is μ-almost everywhere
uniquely determined it can be chosen finite everywhere exactly when ν is σ-finite. The density
is also called Radon-Nikodym derivative or Radon-Nikodym density of ν w. r. t. μ and is often
denoted by dν/ dμ.

The measure ν is called singular w. r. t. the measure μ if a μ-nullset N exists, such that N c

is a ν-nullset. The relation is symmetric and the singularity of ν w. r. t. μ means, there exists a
μ-nullset N , such that ν(F ) = ν(F ∩ N) holds for all F ∈ F .

(iii) Lebesgue’s decomposition theorem. If μ and ν are σ-finite, then, due to Lebesgue’s decom-
position theorem, there exists a μ-nullset N , such that ν(·∩N c) 
 μ holds, where the measure
ν(· ∩ N c) and therefore the decomposition

ν = ν(· ∩ N c) + ν(· ∩ N) (1)

are unique. It follows with (ii) that ν(·∩N c) has a μ-density, which is finite everywhere and that
ν(· ∩ N) is singular w. r. t. μ, since ν(N c ∩ N) = ν(∅) = 0. If ν 
 ν holds, then the singular
part in (1) is zero, since we can choose N = ∅ and because the decomposition is unique. If ν
is singular w. r. t. μ, then the absolutely continuous part in (1) is zero, which follows from the
definition of singularity and the uniqueness of the decomposition.

(A.8) Theorem (Fubini’s theorem). Let (Ω1, F1) and (Ω2, F2) be measurable spaces. Suppose μ
is a σ-finite measure26 on F1 and ν is a σ-finite measure on F2. Further suppose f is a real-valued
or numerical F1 ⊗ F2-measurable function on the product space Ω1 × Ω2.

(i) If f is nonnegative, then

ω1 �→
∫

Ω2

f(ω1, ω2) dν(ω2), ω1 ∈ Ω1, (1)

26See footnote 15 on page 28.
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is a nonnegative F1-measurable function on Ω1. Correspondingly,

ω2 �→
∫

Ω1

f(ω1, ω2) dμ(ω1), ω2 ∈ Ω2, (2)

is a nonnegative F2-measurable function on Ω2. We further have∫
Ω1×Ω2

f dμ ⊗ ν =
∫

Ω1

[∫
Ω2

f(ω1, ω2) dν(ω2)
]

dμ(ω1)

=
∫

Ω2

[∫
Ω1

f(ω1, ω2) dμ(ω1)
]

dν(ω2).

(ii) If f is μ ⊗ ν-integrable, then f(ω1, ·) is ν-integrable for μ-almost all ω1 ∈ Ω1 and

A :=
{

ω1 ∈ Ω1 : f(ω1, ·) is not ν-integrable
} ∈ F1.

Correspondingly, f(·, ω2) is μ-integrable for ν-almost all ω2 ∈ Ω2 and

B :=
{

ω2 ∈ Ω2 : f(·, ω2) is not μ-integrable
} ∈ F2.

Then the function defined by (1) is μ-integrable over Ac and the function defined by (2) is ν-
integrable over Bc. We further have27∫

Ω1×Ω2

f dμ ⊗ ν =
∫

Ac

[∫
Ω2

f(ω1, ω2) dν(ω2)
]

dμ(ω1)

=
∫

Bc

[ ∫
Ω1

f(ω1, ω2) dμ(ω1)
]

dν(ω2).

(iii) If for f one of the following integrals is finite∫
Ω1×Ω2

|f | dμ ⊗ ν,

∫
Ω1

[ ∫
Ω2

|f(ω1, ω2)| dν(ω2)
]

dμ(ω1),
∫

Ω2

[ ∫
Ω1

|f(ω1, ω2)| dμ(ω1)
]

dν(ω2),

then all integrals are finite and equal, f is μ ⊗ ν-integrable, and the statements of (ii) are valid.

This form of Fubini’s theorem is taken form (Elstrodt, 2005, Ch.V, Satz 2.1). See (Bauer, 2001,
Th. 23.6, Cor. 23.7) for a similar formulation. Note that the theorem also holds for quasi-integrable
functions. A version for complete product spaces can be found in (Elstrodt, 2005, Ch.V, Satz 2.4)
or (Rudin, 1987, Th. 8.8).

(A.9) Theorem (Approximation theorem). Suppose (Ω, F) is ameasurable space withF = σ(A),
where A is an algebra. Let P and Q be probability measures on F . Then there exists for any ε > 0
and F ∈ F a set A ∈ A such that

P(A � F ) ≤ ε and Q(A � F ) ≤ ε

hold simultaneously.

27Note that this result is usually stated with Ac replaced by Ω1 and Bc replaced by Ω2. A justification is given in
(Elstrodt, 2005, p. 176).
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This generalized form of the approximation theorem is taken from (Dobrushin, 1963, p. 356).
A version with a finite number of probability measures is given in (Bradley, 2007, A056).

(A.10) Lemma (Factorization lemma). Let Ω be a set and (Ω′, F ′) be a measurable space. As-
sume that g is a function on Ω with values in Ω′ and f is a real-valued (numerical) function on
Ω. The function f is σ(g)-measurable if and only if there exists a real-valued (numerical) F ′-
measurable function h on Ω′ such that

f = h(g).

If f is nonnegative and σ(g)-measurable, then there exists such a function h, which is nonnegative.

This lemma is taken from (Bauer, 2001, Lem. 11.7).

(A.11) Outer measure. Suppose (Ω, F) is a measurable space and μ is a finite measure on F ,
i. e., a measure satisfying μ(Ω) < ∞, for example a probability measure. Then we call the set
function μ∗, defined for all G ⊂ Ω by

μ∗(G) = inf
G⊂F ∈F

μ(F ),

the outer measure generated by μ or outer μ-measure. This form is suitable in the context of
the thesis and is adopted from (Doob, 1947, p. 20).
(i) We obviously have for all A ⊂ B ⊂ Ω

μ∗(A) ≤ μ∗(B)

i. e., the outer μ-measure is monotone.
(ii) If f is a nonnegative F-measurable function on the probability space (Ω, F , P) satisfying

f(ω) ≤ c for all ω ∈ A, where c is a nonnegative constant and A ⊂ Ω is a set with outer
P-measure equal to 1. Then we have

E(f) =
∫

Ω
f dP ≤ c.

Proof: Assume that ∫
Ω

f dP > c

holds. Then we have P(f > c) > 0. Since f is F-measurable, {f > c} ∈ F holds and because
f(ω) ≤ c for all ω ∈ A we have {f > c} ⊂ Ac. Furthermore, for all B ∈ F with B ⊂ Ac we
have P(B) = 0 because the outer P-measure of A is equal to 1. This implies P(f > c) = 0,
which is a contradiction to the initial assumption. Therefore, the assertion must be true.

(iii) Assume that (Ω1, F1, P1) and (Ω2, F2, P2) are two probability spaces. If A ⊂ Ω1 has
outerP1-measure equal to 1 andB ⊂ Ω2 has outerP2-measure equal to 1, thenA×B ⊂ Ω1×Ω2
has outer (P1 ⊗ P2)-measure equal to 1.
Proof. Suppose the outer P1 ⊗ P2-measure of A × B is less than 1. Due to the definition of

the outer measure there exists a set G ∈ F1 ⊗ F2 with A × B ⊂ G and P1 ⊗ P2(G) < 1. Let p
denote the F1-measurable function on Ω1 defined by

p(ω1) = P2(Gω1 ), ω1 ∈ Ω1,
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where Gω1 denotes the ω1-section of G. Then we have∫
Ω1

p(ω1) dP1(ω1) = P1 ⊗ P2(G) < 1,

which implies

P1
(
p < 1

)
> 0. (1)

For all ω1 ∈ A we have B ⊂ Gω1 . Therefore and because the outer P2-measure of B is equal to
1 we have p(ω1) = 1 for all ω1 ∈ A. This implies {p < 1} ⊂ Ac and we also have {p < 1} ∈ F1.
Since the outer P1-measure of A is equal to 1, any E ∈ F1 with E ⊂ Ac satisfies P1(E) = 0.
Thus, we must have P1

(
p < 1

)
= 0, which is a contradiction to (1). Therefore, the initial

assumption is false and the proof complete.

(A.12) Standard extension. Let (Ω, F , P) be a probability space and assume that A ⊂ Ω is
an arbitrary set with outer P-measure equal to 1. If F̃ = σ(F ∪ {A}) denotes the smallest
σ-algebra containing F and A, then any set F̃ ∈ F̃ can be written in the form

F̃ = F ∩ A ∪ G ∩ Ac (1)

for some F, G ∈ F . Based on this representation we define the set function P̃ by

P̃(F̃ ) = P(F ), (2)

which is a probability measure on F̃ . The probability space (Ω, F̃ , P̃) is called the standard
extension of (Ω, F , P) w. r. t. the set A. This extension is nontrivial for A /∈ F and it allows to
consider probabilities related to the set A. The condition that the outer P-measure of A is equal
to 1 is necessary and sufficient to ensure that P̃ is well defined, although the decomposition in
(1) may not be unique.

The measures P̃ and P coincide on F and we have P̃(A) = 1. From (1) and (2) we obtain
P̃(F̃ ) = P̃(F ), i. e., to any set F̃ ∈ F̃ corresponds a set F ∈ F differing from F̃ by at most a
set of P̃-measure 0. Thus, the σ-algebra F̃ is only a slight enlargement of F by P̃-nullsets. It
follows that if f̃ is a real F̃-measurable function on Ω, then there exists a real F-measurable
function f on Ω with

f̃ = f P̃-a.s.

If Q is a second probability measure on F for which the set A has outer Q-measure 1, then we
additionally have for the functions f̃ and f

f̃ = f Q̃-a.s.,

where Q̃ is the probability measure of the standard extension of (Ω, F , Q) w. r. t. A.
See (Doob, 1953, Ch. II.2) or (Doob, 1947, 1940, 1937) for more details but note that standard

extensions are considered there in connection with stochastic processes and complete probabil-
ity spaces with a particular focus on so-called separable and measurable standard extensions.
The basic properties of a standard extension, however, hold for an abstract probability space as
considered here. See also (Mittelbach, 2012, Par. 1.23–1.27) for a summary of relevant facts of
the given references.
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(A.13) Measurability and convergence of random series. Assume that (X, X ) is an arbi-
trary measurable space and {ξk, k ∈ N} is a sequence of real-valued X /B(R)-measurable
functions on X . Then for any n ∈ N the real-valued function ηn with

ηn(x) =
n∑

k=1
ξk(x) (1)

for all x ∈ X is X /B(R)-measurable. The numerical functions η̂ and η̌ with

η̂(x) = lim inf
n→∞ ηn(x) and η̌(x) = lim sup

n→∞
ηn(x)

for all x ∈ X are X /B(R̄)-measurable and the set

X ′ =
{

x ∈ X : η̂(x) = η̌(x)
} ∩ {x ∈ X : η̂(x) and η̌(x) are finite

}
satisfies X ′ ∈ X . Thus, the set of all x ∈ X for which limn→∞ ηn(x) =:

∑∞
k=1 ξk(x) exists and

is finite is contained in X . Due to the X /B(R)-measurability of ξk the nonnegative function
|ξk| is X /B(R)-measurable. Therefore, replacing ξk by |ξk| in (1) yields as before that the set

X ′′ =
{

x ∈ X :
∞∑

k=1
|ξk(x)| is finite

}

is contained in X . We further have X ′′ ⊂ X ′ since absolutely convergent sequences are in
particular convergent. See, e. g., (Cohn, 1980, Sec. 2.1) or (Halmos, 1974, § 19, § 20) for details to
these standard measure-theoretic facts.

Let us define the real-valued function η∞ on X ′ and the nonnegative function η̃∞ on X ′′ by

η∞(x) =
∞∑

k=1
ξk(x), x ∈ X ′ and η̃∞(x) =

∞∑
k=1

|ξk(x)|, x ∈ X ′′. (2)

Because the restriction of ηn to X ′ is X ′/B(R)-measurable, where X ′ = {A ∩X ′ : A ∈ X } de-
notes the trace-σ-algebra ofX w. r. t. X ′, the function η∞ is X ′/B(R)-measurable. Due to (Dud-
ley, 2002, Th. 4.2.5) there exists an extension of η∞ to a real-valued function on all of X , which is
X /B(R)-measurable. Correspondingly, η̃∞ can be extended to a nonnegative numerical func-
tion on all of X , which is X /B(R̄)-measurable. A natural possibility is to put η̃∞(x) = ∞ for
all x /∈ X ′′.
Assume that μ is a probability measure on X . Let us define the function Ψ onN × X by

Ψ(k, x) = ξk(x)

for all k ∈ N and x ∈ X . Then Ψ and |Ψ| are 2N⊗ X /B(R)-measurable because

{Ψ ∈ B} =
⋃

k∈N

{k} × {ξk ∈ B}
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holds for all B ∈ B(R). With Ψ and the counting measure λ onN introduced in Paragraph A.4
we obtain from part (A.8.i) of Fubini’s theorem

∞∑
k=1

E|ξk| =
∫
N

[∫
X

|Ψ(k, x)| dμ(x)
]

dλ(k)

=
∫

X

[ ∫
N

|Ψ(k, x)| dλ(k)
]

dμ(x)

=
∫

X

[ ∞∑
k=1

|ξk(x)|
]

dμ(x)

= E
( ∞∑

k=1
|ξk|
)

.

(3)

Under the condition

∞∑
k=1

E|ξk| =
∞∑

k=1

∫
X

|ξk(x)| dμ(x) < ∞ (4)

we obtain from part (A.8.iii) of Fubini’s theorem that |Ψ| is λ ⊗ μ-integrable. Then part (A.8.ii)
of Fubini’s theorem implies |Ψ(·, x)| is λ-integrable for μ-almost all x ∈ X , and therefore we
have μ(X ′′) = 1. Due to X ′′ ⊂ X ′ we also have μ(X ′) = 1. Thus, if (4) holds, then η∞ and
η̃∞ are random variables on (X, X , μ), defined μ-almost surely by (2) so that it does not matter
how they are defined outside X ′ or X ′′, respectively. Due to part (A.8.iii) of Fubini’s theorem
also Ψ is λ⊗μ-integrable under condition (4). Thus part (A.8.ii) of Fubini’s theorem applies and
as in (3) we obtain that summation and expectation can be exchanged, i. e.,

∞∑
k=1

E(ξk) = E
( ∞∑

k=1
ξk

)
< ∞, (5)

where we use the series on the right-hand side as synonym for η∞, which is justified by the
almost sure convergence. The finiteness of the expectation is due to the integrability of Ψ.

In addition to the almost sure convergence we sometimes require the convergence in mean
square. Assume that

∞∑
k=1

√
E(ξ2

k) < ∞ (6)

holds. Due to Jensen’s inequality (6) implies (4) so that ηn =
∑n

k=1 ξk converges μ-almost
surely to

∑∞
k=1 ξk as n → ∞ and (5) holds. Moreover, (6) implies mean square convergence of

ηn to
∑∞

k=1 ξk , i. e.,

lim
n→∞ E

(
ηn −

∞∑
k=1

ξk

)2
= 0. (7)
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Indeed, for all m < n we have

E
(
ηn − ηm

)2 = E
(

n∑
k=m+1

ξk

)2
=

n∑
i,j=m+1

E(ξiξj)

≤
n∑

i,j=m+1

√
E(ξ2

i )E(ξ2
j )

=
(

n∑
i=m+1

√
E(ξ2

i )
)2

, (8)

where we have applied the Cauchy-Schwarz inequality. Condition (6) implies (8) converges to
0 as m, n → ∞. Therefore, ηn converges in mean square by the Cauchy criterion. Given a
sequence of random variables converges almost surely and in mean square, then both limits are
equal almost surely by Fatou’s lemma so that we finally have (7).
Due to the mean square convergence, we have

E
( ∞∑

k=1
ξk

)2
= lim

n→∞ E(η2
n) = lim

n→∞

n∑
i,j=1

E(ξiξj), (9)

where the limit on the right-hand side is finite because we can bound the sum as in (8) and
because condition (6) holds. The equality in (9) is actually the reason why we are interested in
mean square convergence. When the ξk’s are uncorrelated, then

n∑
i,j=m+1

E(ξiξj) =
n∑

i=m+1
E(ξ2

i )

so that the mean square convergence of the ηn’s already follows from
∑∞

k=1 E(ξ2
k) < ∞, a

condition implied by and therefore weaker than (6). In that case we have

E
( ∞∑

k=1
ξk

)
= lim

n→∞

n∑
i=1

E(ξi), (10)

E
( ∞∑

k=1
ξk

)2
= lim

n→∞

n∑
i=1

E(ξ2
i ) < ∞, (11)

where the series on the left-hand side denote the mean square limit. Note that in the present
situation (4) is not required for (10) to hold. If the ξk’s are even independent with E(ξk) = 0,
then we also have μ-almost sure convergence. This result is given, e. g., in (Shiryaev, 1995,
Ch. IV.2, Th. 1). For more details on convergence in mean square see (Jazwinski, 1970, Ch. 3.3).
Usually, we use the previous results in the situation, where (X, X ) is the product measurable

space generated by the sequence {(Xk, Xk), k ∈ N} of measurable spaces with (Xk, Xk) =
(R,B(R)). Then the function ξk is typically given by

ξk(x) = akxk

for all x = {xk, k ∈ N} ∈ X , where ak is some real constant.
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B Ergodicity and Mixing in the Ergodic-Theoretic Sense

This section provides a tailored selection of basic definitions and facts from ergodic theory rel-
evant for the thesis. Some of the results are proved, either because of their special form or to
demonstrate a typical way of reasoning. There is a large literature on ergodic theory. Among
the standard books are (Halmos, 1956; Cornfeld et al., 1982;Walters, 1982; Petersen, 1983). Refer-
ences with an information-theoretic orientation are (Billingsley, 1965), (Kakihara, 1999, Ch. II),
and (Gray, 2009, Secs. 7, 8, 10).
Subsequently, we use the notation introduced in Paragraph 1.2 to denote by (X, X ) and (Y, Y)

the productmeasurable spaces generated by the families {(Xt, Xt), t ∈ T } and {(Yt, Yt), t ∈ T }
of measurable spaces for which (Xt, Xt) = (X0, X0) and (Yt, Yt) = (Y0, Y0) for all t ∈ T .
Further, ξ = {ξt, t ∈ T } is a random process on the probability space (Ω, F , P), where the
random variable ξt has values in the measurable space (Xt, Xt). We consider the discrete- and
the continuous-time case in parallel so that the definitions and results apply to both, T = Z or
T = R, unless stated otherwise.

(B.1) Definition (Stationarity, ergodicity, i.i.d.). Let μ be a probability measure on X and as-
sume that s ∈ T . Then μ is called s-stationary if

μ(A) = μ(θs(A))

holds for all A ∈ X and s-ergodic if

μ(A) = 0 or μ(A) = 1 (1)

holds for all s-invariant sets A ∈ X . The probability measure μ is called (strictly) stationary if
it is s-stationary for all s ∈ T . It is called totally ergodic if it is s-ergodic for all s ∈ T+ . Further,
μ is called ergodic if (1) holds for all invariant sets A ∈ X .

Assume that s ∈ T+ and let μk be a probability measure on X (k+1)s
ks for all k ∈ Z. Then the

product measure

μ =
⊗

k∈Z

μk

on X is also called an s-independent probability measure. If μk = μ0 for all k ∈ Z, then the
s-stationary, s-independent probability measure μ is also called s-i.i.d. (i. e., s-independent and
s-identically distributed) probability measure.
The random process ξ is called s-stationary (stationary, s-ergodic, (totally) ergodic, s-inde-

pendent, s-i.i.d.), if the distribution Pξ of ξ is s-stationary (stationary, s-ergodic, (totally) ergodic,
s-independent, s-i.i.d.). If T = Z and Pξ is a 1-i.i.d. probability measure, then ξ is called i.i.d.-
process or sequence, i. e., sequence of independent and identically distributed random variables.

(B.2) Remark. Stationarity and ergodicity are standard concepts. The definition of s-stationa-
rity and s-ergodicity is adopted fromBerger (1968, p. 256/257). Then s-i.i.d. probability measures
are natural special cases. We use the term total ergodicity as in (Gray, 2009, Sec. 7.8). Synonyms
are complete ergodicity (Pinsker, 2007, p. 384) or block ergodicity (Berger, 1968, p. 257). It is
reasonable to alternatively call s-independent (and in particular s-i.i.d.) probability measures
also s-memoryless.



B Ergodicity and Mixing in the Ergodic-Theoretic Sense 141

Let s ∈ T+ and assume that the probability measure μ on X is s-stationary. Then μ is s-
ergodic if and only if

lim
n→∞

1
n

n−1∑
k=0

μ
(
θks(A) ∩ B

)
= μ(A)μ(B)

holds for all A, B ∈ X .
If we have discrete time, then stationarity and 1-stationarity are equivalent as well as ergo-

dicity and 1-ergodicity. In the continuous-time case a stationary probability measure μ is er-
godic if and only if

lim
t→∞

1
t

∫ t

0
μ
(
θt(A) ∩ B

)
dt = μ(A)μ(B)

holds for all A, B ∈ X . If X = σ(G) for a family G of subsets of X , which is closed w. r. t.
finite intersections, then it is sufficient to consider only sets A, B ∈ G. The same holds for the
given characterization of s-ergodicity. The characterizations of (s-) ergodicity for (s-) stationary
probability measures is standard. See for example (Pinsker, 1964, p. 70).

(B.3) Definition (Mixing in the ergodic-theoretic sense). Let μ be a probability measure on X .
If μ is stationary and

lim
t→∞

∣∣μ(θt(A) ∩ B
)− μ(A)μ(B)

∣∣ = 0 (1)

holds for all A, B ∈ X , then it is called (strongly) mixing (in the ergodic-theoretic sense).
Let s ∈ T+ and assume that the probability measure μ is s-stationary. Then μ is called s-

weakly mixing (in the ergodic-theoretic sense) if

lim
n→∞

1
n

n−1∑
k=0

∣∣μ(θks(A) ∩ B
)− μ(A)μ(B)

∣∣ = 0 (2)

holds for all A, B ∈ X . If μ is stationary and s-weakly mixing for all s ∈ T+ , then it is called
totally weakly mixing.
If T = Z, i. e., in the discrete-time case, a stationary probability measure is called weakly mix-

ing, if it is 1-weakly mixing. If T = R, i. e., in the continuous-time case, a stationary probability
measure μ is called weakly mixing if

lim
t→∞

1
t

∫ t

0

∣∣μ(θs(A) ∩ B
)− μ(A)μ(B)

∣∣ ds = 0 (3)

holds for all A, B ∈ X .
The random process ξ is called mixing in the ergodic-theoretic sense (s-weakly mixing, (to-

tally) weakly mixing), if its distribution Pξ has this property.

(B.4) Remark. These definitions are standard. If X = σ(G) for a family G of subsets of X ,
which is closed w. r. t. finite intersections, then it is sufficient to verify (B.3.1) or (B.3.2) or (B.3.3)
only for sets A, B ∈ G to prove the (weak) mixing property. See for example (Pinsker, 1964,
p. 71) or (Petersen, 1983, p. 58) in this regard.
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Please note, that the s-weakly mixing condition is based on sums but the weakly mixing
condition in the continuous-time case is based on integrals. Also note that the mixing properties
of probability measures and random processes are considered here only in connection with
stationarity. Some non-stationary versions are given, e. g., in (Kakihara, 1999, p. 99).

Total ergodicity is a concept relevant in connection with block coding theorems because in
this context we partition the time axis into segments of equal size. Theorem B.7 below shows
that totally weakly mixing probability measures are always totally ergodic, without additional
assumptions. In contrast, in the continuous-time case weakly mixing probability measures have
to satisfy certain continuity conditions to be totally ergodic. This is the reason why we intro-
duced the easier to handle totally weakly mixing concept.

(B.5) Definition (Continuity). Letμ be a stationary probability measure onX and assume that
T = R. Then μ is called continuous in the sense of Pinsker if for all A ∈ X we have

lim
t→0

μ(θt(A) � A) = 0.

The stationary continuous-time random process ξ = {ξt, t ∈ R} is called continuous in the
sense of Pinsker if its distribution Pξ is continuous in the sense of Pinsker.

(B.6) Remark. This special form of continuity is introduced in (Pinsker, 1964, p. 70), which
motivates the name that is adopted from (Pursley, 1977).

Suppose the space (X0, X0) of values of the random variables ξt is a separable metric space
equipped with the corresponding Borel-σ-algebra. Then Pursley (1977) has shown that the sta-
tionary continuous-time random process ξ = {ξt, t ∈ R} is continuous in the sense of Pinsker
if and only if it is continuous in probability (see (Gikhman and Skorokhod, 1974, p. 168)). In par-
ticular, a real-valued stationary continuous-time random process ξ is continuous in the sense of
Pinsker if and only if for all ε > 0

lim
t→∞ P(|ξ0 − ξt| > ε) = 0. (1)

For example, continuity in mean square (see Paragraph C.1) is sufficient for (1) to hold.

(B.7) Theorem (Relations between ergodicity and mixing). Ergodicity andmixing (in the ergodic-
theoretic sense) are related in the following way.

discrete-time

mixing

totally weakly mixing

weakly mixing

totally ergodic

ergodic

(a)

(b)

(d)

(c)

continuous-time

mixing

totally weakly mixing

weakly mixing

�

�
totally ergodic

ergodic

(e)

(g)

(i)

(k)

(j)

(f)

(h)
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All implications involving a mixing condition require stationarity. The implication marked by �
requires continuity in the sense of Pinsker. The implication marked by � requires a continuity
condition specified in the proof below.

Proof. We verify the implications one by one. (a) and (e) hold because the Cesàro mean of a
convergent sequence has the same limit as the sequence itself.
The downward implication of (b) holds by definition. The upward implication follows from

the fact that a 1-weakly mixing probability measure is k-weakly mixing for all k ∈ N (see
(Mittelbach, 2012, Lem. 4.16)).

The implications (c), (h), and (j) hold because based on the characterizations given in Re-
mark B.2 we obtain that an (s-) stationary (s-)weakly mixing probability measure is (s-) ergodic.
Since an invariant set is s-invariant for all s ∈ T implications (d) and (k) hold per definition.
Implication (f) is based on the following fact: For a nonnegative and bounded function h on

[0, ∞) with lims→∞ h(s) = 0 we have limt→∞ 1
t

∫ t

0 h(s) ds = 0.
To show (g) let μ be a stationary totally weakly mixing probability measure on X , where

T = R. For all A, B ∈ X suppose μ(θt(A) ∩ B) is uniformly continuous as function of
t ∈ [0, ∞). Then for any ε > 0 there exists a δ > 0 such that for all s ∈ [0, ∞) and |t| < δ∣∣μ(θs(A) ∩ B) − μ(θs+t(A) ∩ B)

∣∣ ≤ ε. (1)

Let us fix A, B ∈ X and ε > 0 and assume that δ > 0 is chosen such that (1) holds. We can
represent t > 0 as t = nδ + t0 for some integer n and t0 ∈ [0, δ) and obtain

1
t

∫ t

0

∣∣μ(θs(A) ∩ B) − μ(A)μ(B)
∣∣ ds

≤ 1
nδ

∫ (n+1)δ

0

∣∣μ(θs(A) ∩ B) − μ(A)μ(B)
∣∣ ds

= 1
nδ

n∑
k=0

∫ (k+1)δ

kδ

∣∣μ(θs(A) ∩ B) − μ(A)μ(B)
∣∣ ds

≤ 1
nδ

n∑
k=0

∫ (k+1)δ

kδ

(∣∣μ(θkδ(A) ∩ B) − μ(A)μ(B)
∣∣ + ε

)
ds

= 1
n

n∑
k=0

∣∣μ(θkδ(A) ∩ B) − μ(A)μ(B)
∣∣ + ε,

where the second inequality follows from (1). Therefore, we have

0 ≤ lim
t→∞

1
t

∫ t

0

∣∣μ(θs(A) ∩ B) − μ(A)μ(B)
∣∣ ds

≤ lim
n→∞

(
1 + 1

n

)
1

n + 1

n∑
k=0

∣∣μ(θkδ(A) ∩ B) − μ(A)μ(B)
∣∣ + ε

= ε,

where the equality holds because μ is totally weakly mixing. Since ε was chosen arbitrary μ is
weakly mixing under the introduced continuity assumption.
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Finally, implication (i) is shown in (Berger, 1968, p. 271) for stationary probability measures
that are continuous in the sense of Pinsker. �

(B.8) Example (Total ergodicity vs. weak mixing). We give an example, which shows that to-
tal ergodicity does not imply weak mixing. Assume that the probability space (Ω, F , P) is cho-
sen such that Ω = (0, 1] is the unit interval equipped with the Borel-σ-algebra F = B((0, 1])
and the Lebesgue measure P = λ on (0, 1]. Let φ be a transformation of Ω into Ω given by

φ(ω) = ω + a mod 1

for all ω ∈ Ω, where a ∈ (0, 1] is a fixed irrational number. The transformation φ is F/F-
measurable and invertible. The probability measure P is preserved under φ and the inverse φ−1

is F/F-measurable.
Suppose the set X0 = {0, 1} is equipped with the power set as σ-algebra, denoted by X0. We

define the random variable ξ0 on (Ω, F , P) with values in (X0, X0) by

ξ0(ω) =
{

0 if ω ∈ (0, 1/2]
1 otherwise

for all ω ∈ Ω. Further, we consider the random sequence ξ = {ξk, k ∈ Z}, with ξk given by

ξk(ω) = ξ0
(
φk(ω)

)
for all ω ∈ Ω. Here φk denotes the k-fold application of φ if k is nonnegative and of φ−1 if k
is negative. The sequence ξ of binary random variables is stationary and totally ergodic but not
weakly mixing. This standard example has different equivalent representations and is known as
irrational rotation of the unit circle. See (Walters, 1982, pp. 20, 29, 50), (Billingsley, 1965, Sec. 5)
and (Berger, 1968, Appendix) for details.

A direct consequence of the extremal property of stationary ergodic probability measures is
the following lemma.

(B.9) Lemma (Average of stationary ergodic measures). Let s ∈ T+ and assume that μ1 and μ2
are distinct (s-) stationary and (s-) ergodic probability measures on X . Then for any α ∈ (0, 1) the
probability measure

μ̄ = αμ1 + (1 − α)μ2

is (s-) stationary but not (s-) ergodic.

(B.10) Definition (Invariant function). Suppose f is an X /Y-measurable function on X with
values in Y and assume that s ∈ T . Then f is called s-invariant if for all x ∈ X

f
(
θs(x)

)
= θs

(
f(x)

)
,

where θs denotes the shift operator defined in Paragraph 1.2. The function f is called invariant
if it is s-invariant for all s ∈ T .
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(B.11) Lemma (s-i.i.d. probability measures are mixing). Assume that s ∈ T+ . If μ is an s-i.i.d.
probability measure on X , then for all A, B ∈ X we have

lim
k→∞

μ
(
θks(A) ∩ B

)
= μ(A)μ(B). (1)

In particular, μ is s-stationary and s-weakly mixing.

(B.12) Remark. The proof of Lemma B.11 given below is similar to that of (Bradley, 2007,
Prop. 2.8) and is based on standard techniques used in ergodic theory. Condition (B.11.1) is a
version of (B.3.1), where only shifts that are multiples of s are considered. This is the adequate
form for s-stationary probability measures. It is immediately clear, that an s-stationary proba-
bility measure satisfying (B.11.1) is s-weakly mixing.

Proof. Let ε > 0 and A, B ∈ X be arbitrary. Due to the approximation theorem for probability
measures (see Theorem A.9) there exist sets

F =
m⋃

i=1
Fi, G =

n⋃
j=1

Gj , Fi, Gj ∈
[

l×
k=−l

X (k+1)s
ks

]
(1)

such that

μ
(
A � F

) ≤ ε

4 , μ
(
B � G

) ≤ ε

4 , (2)

where the cylinder sets Fi are disjoint, the cylinder sets Gj are disjoint, and l, m, n are positive
integers. Let k be a positive integer. Applying the triangle inequality we obtain∣∣μ(θks(A) ∩ B

)− μ(A)μ(B)
∣∣ ≤ ∣∣μ(θks(A) ∩ B

)− μ
(
θks(F ) ∩ G

)∣∣ (3)

+
∣∣μ(θks(F ) ∩ G

)− μ(F )μ(G)
∣∣ (4)

+
∣∣μ(F )μ(G) − μ(A)μ(B)

∣∣. (5)

For the term on the right-hand side of (3) we have∣∣μ(θks(A) ∩ B
)− μ

(
θks(F ) ∩ G

)∣∣ ≤ μ
(
θks(A) � θks(F )

)
+ μ
(
B � G

)
≤ μ

(
A � F

)
+ μ
(
B � G

)
≤ ε

2 .

The first inequality results from properties of the symmetric difference (see e. g. (Bradley, 2007,
A053)). Since we assume that μ is an s-i.i.d. probability measure, it is s-stationary, which implies
the second inequality and the last is due to (2). Similarly, we obtain for (5)∣∣μ(F )μ(G) − μ(A)μ(B)

∣∣ ≤ μ
(
A � F

)
+ μ
(
B � G

)
≤ ε

2 .

Since F and G are unions of disjoint sets (4) is equal to∣∣∣∣∣
m∑

i=1

n∑
j=1

[
μ
(
θks(Fi) ∩ Gj

)− μ(Fi)μ(Gj)
]∣∣∣∣∣. (6)
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The sets Fi and Gj are cylinder sets as given in (1) and μ is an s-i.i.d. probability measure.
Therefore

μ
(
θks(Fi) ∩ Gj

)
= μ

(
θks(Fi)

)
μ(Gj) = μ(Fi)μ(Gj)

if k > 2l, i. e., (6) is equal to 0 if k is sufficiently large. Combining the derived inequalities we
obtain for the left-hand side of (3)∣∣μ(θks(A) ∩ B

)− μ(A)μ(B)
∣∣ ≤ ε

for k sufficiently large and because ε > 0 was chosen arbitrary we finally have

lim
k→∞

μ
(
θks(A) ∩ B

)
= μ(A)μ(B). �

(B.13) Lemma (Properties of image measures). Let μ be a probability measure onX . Further sup-
pose f is an X /Y-measurable function on X with values in Y and μf denotes the distribution of
f . Then we have the following implications: If f has the property in the first column and μ the
property in the second column, then the image measure μf has the property in the third column.

f μ μf

(i)† (s-) invariant (s-) stationary (s-) stationary

(ii) a)† (s-) invariant (s-) ergodic (s-) ergodic

b) invariant totally ergodic totally ergodic

(iii) a)† (s-) invariant (s-) stationary and (s-) stationary and
(s-) weakly mixing (s-) weakly mixing

b) invariant stationary and stationary and
totally weakly mixing totally weakly mixing

c) invariant stationary stationary
and mixing and mixing

The superscript † denotes we assume that s ∈ T in (i) and (ii) and s ∈ T+ in (iii).

Proof. Part (i). From the s-invariance of f we obtain f−1(θs(B)) = θs(f−1(B)) for all B ∈ Y .
If μ is s-stationary, then

μf (B) = μ
(
f−1(B)

)
= μ

(
θs(f−1(B))

)
= μ

(
f−1(θs(B))

)
= μf

(
θs(B)

)
for all B ∈ Y , i. e., μf is s-stationary. From what is shown the assertion regarding stationarity
is evident.
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Part (ii). Assume that B ∈ Y is an (s-) invariant set. Then f−1(B) is (s-) invariant. If μ is
(s-) ergodic, then

μf (B) = μ(f−1(B)) = 0 or 1,

i. e., μf is (s-) ergodic. The remaining assertion is now evident.

Part (iii). If f is invariant, then for all A, B ∈ Y and t ∈ T we have

μf (θt(A) ∩ B) = μ
(
f−1(θt(A)) ∩ f−1(B)

)
= μ

(
θt(f−1(A)) ∩ f−1(B)

)
Given f is s-invariant the same holds with t = ks for k ∈ Z, s ∈ T . Together with the
corresponding definitions this implies the assertions. �

(B.14) Remark. Under further conditions on the function f in Lemma B.13 we also obtain im-
plications in the opposite direction. To be precise, assume that f is X /Y-measurable and invari-
ant and in addition assume that f is bijective and the inverse function f−1 is Y/X -measurable.
Then the probability measure μ is stationary and mixing if and only if the image measure μf

is stationary and mixing. This equivalence directly follows from the previous proof and the ad-
ditional assumptions on f . Similar equivalences hold for the remaining ergodicity and mixing
properties considered in Lemma B.13.

(B.15) Lemma (Properties of product measures). Let μ be a probability measures on X and ν be
a probability measure on Y . Then we have the following implications: If μ has the property in the
first column and ν the property in the second column, then the product measure μ ⊗ ν has the
property in the third column.

μ ν μ ⊗ ν

(i) a)† (s-) stationary and (s-) stationary (s-) stationary
(s-) weakly mixing and (s-) ergodic and (s-) ergodic

b) stationary and stationary and stationary and
totally weakly mixing totally ergodic totally ergodic

(ii) a)† (s-) stationary and (s-) stationary and (s-) stationary and
(s-) weakly mixing (s-) weakly mixing (s-) weakly mixing

b) stationary and stationary and stationary and
totally weakly mixing totally weakly mixing totally weakly mixing

c) stationary stationary stationary
and mixing and mixing and mixing

The superscript † denotes we assume that s ∈ T+ in (i) and (ii).

Proof. We prove the first assertion of part (i) with the (s-) option. The remaining assertions
are shown similarly. The given proof follows (Pinsker, 1964, p. 73) and illustrates the typical
argumentation used to obtain such results.



148 Appendix

First observe that μ ⊗ ν is s-stationary if μ and ν are s-stationary. Using Remark B.2 the
assertion follows if for all A1, A2 ∈ X and B1, B2 ∈ Y

lim
n→∞

1
n

n−1∑
k=0

μ ⊗ ν
(
θks(A1 × B1) ∩ (A2 × B2)

)
= μ ⊗ ν

(
A1 × B1

)
μ ⊗ ν

(
A2 × B2

)
(1)

holds. With the identity

μ ⊗ ν
(
θks(A1 × B1) ∩ (A2 × B2)

)
= μ ⊗ ν

(
(θks(A1) ∩ A2) × (θks(B1) ∩ B2)

)
= μ

(
θks(A1) ∩ A2

)
ν
(
θks(B1) ∩ B2

)
we can write

1
n

n−1∑
k=0

μ ⊗ ν
(
θks(A1 × B1) ∩ (A2 × B2)

)
=

1
n

n−1∑
k=0

[
μ
(
θks(A1) ∩ A2

)− μ(A1)μ(A2)
]
ν
(
θks(B1) ∩ B2

)
(2)

+ 1
n

n−1∑
k=0

μ(A1)μ(A2)ν
(
θks(B1) ∩ B2

)
. (3)

The absolute value of (2) is bounded by

1
n

n−1∑
k=0

∣∣μ(θks(A1) ∩ A2
)− μ(A1)μ(A2)

∣∣. (4)

Since we assume that μ is an s-stationary s-weaklymixing probability measure the Cesàromean
in (4) converges to 0 for n → ∞ according to Definition B.3. The s-stationarity and s-ergodicity
of ν imply together with Remark B.2 that (3) converges to

μ(A1)μ(A2)ν(B1)ν(B2) = μ ⊗ ν(A1 × B1)μ ⊗ ν(A2 × B2)

as n → ∞. This yields in combination with the previous derivations that (1) holds, which
completes the proof. �

(B.16) Remark. If λ is a probability measure on the product space X ⊗ Y having a property
specified in Definition B.1 or Definition B.3, then the marginal measures on X and Y have the
same property. Therefore, the implications in (B.15.ii) also hold in the opposite direction.

For the weak mixing condition there exists another characterization based on product mea-
sures: The probability measure μ on X is s-stationary (stationary) and s-weakly mixing (totally
weaklymixing) if and only if the productmeasure μ⊗μ is s-stationary (stationary) and s-ergodic
(totally ergodic). See (Walters, 1982, Th. 1.24) for details. Therefore, if a probability measure is
ergodic but not weakly mixing (see Example B.8), then the product of two copies of this measure
is not ergodic.
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C Second Order Random Processes

In this section, ξ = {ξt, t ∈ T } is either a discrete- or continuous-time random process, i. e.,
T = Z or T = R. The random variables ξt are defined on the probability space (Ω, F , P) and
have values either in the measurable space (Xt, Xt) = (R,B(R)) or in (Xt, Xt) = (C,B(C)),
i. e., we have a real- or complex-valued process. The material is presented for the complex case.
It applies to the real case without change, except for straightforward simplifications.
The subsequent material on the spectral representation of the covariance function of second

order processes is taken from (Sasvári, 2013, Secs. 2.1–2.3, 2.8, 2.9).

(C.1) Second order random process. We call ξ = {ξt, t ∈ T } a second order random pro-
cess, if E(|ξt|2) < ∞ holds for all t ∈ T . A second order random process ξ is called wide-sense
stationary if E(ξt) is constant for all t ∈ T and E(ξtξ̄t+s) is only a function of s but not of t,
where s, t ∈ T . Here z denotes the complex conjugate of z. If ξ is a second order wide-sense
stationary process, then we call

γ(t) = cov(ξ0, ξt) = E
(
(ξ0 − c)(ξt − c)

)
, t ∈ T,

the (auto) covariance function of ξ, where c = E(ξ0). If ξ is real-valued, then the covariance
function is real-valued as well. A second order stationary process is wide-sense stationary. If a
second order Gaussian process is wide-sense stationary, then it is stationary.
A continuous-time second order wide-sense stationary process ξ is called mean-square con-

tinuous (or strongly continuous) if

lim
t→∞ E(|ξt − ξ0|2) = 0.

Mean-square continuity holds if and only if the covariance function is continuous at t = 0.
In view of Remark B.6 mean-square continuity implies continuity in the sense of Pinsker as
introduced in Definition B.5.

(C.2) Spectral representation of the covariance function. A continuous complex-valued
function γ onR is the covariance function of a continuous-timemean-square continuous second
order wide-sense stationary process if and only if it can be represented in the form

γ(t) =
∫
R

ejtu dσ(u), t ∈ R,

with some finite measure σ on (R, B(R)).
A complex-valued function γ on Z is the covariance function of a discrete-time second order

wide-sense stationary process if and only if it can be represented in the form

γ(k) =
∫

(−π,π]
ejku dσ(u), k ∈ Z,

with some finite measure σ on ((−π, π],B((−π, π])).
The measure σ is called the spectral measure of the second order wide-sense stationary pro-

cess. If the process is real-valued, then the spectral measure is symmetric in the sense that
σ(B) = σ(−B) for all B ∈ B(R) or B ∈ B((−π, π]), respectively.
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Given the spectral measure is absolutely continuous w. r. t. the Lebesgue measure λ, then the
corresponding density, say ϕ, is called the spectral density and we have

γ(t) =
∫
R

ϕ(u)ejtu dλ(u), t ∈ R, (1)

in the continuous-time case and

γ(k) =
∫

(−π,π]
ϕ(u)ejku dλ(u), k ∈ Z, (2)

in the discrete time case, respectively.
From (Sasvári, 2013, Ths. 1.3.6, 1.8.7, and 1.9.6) we obtain the following sufficient conditions

for the existence of a spectral density. If the covariance function γ of a continuous-time mean-
square continuous second order wide-sense stationary process satisfies∫

R

|γ(t)| dλ(t) < ∞,

then the spectral measure is absolutely continuous and the spectral density ϕ is given by

ϕ(u) = 1
2π

∫
R

γ(t)e−jtu dλ(t), u ∈ R.

If the covariance γ of a discrete-time second order wide-sense stationary process satisfies

∞∑
k=−∞

|γ(k)| < ∞,

then the spectral measure is absolutely continuous and the spectral density ϕ is given by

ϕ(u) = 1
2π

∞∑
k=−∞

γ(k)e−jku, u ∈ (−π, π].

In (Ibragimov and Linnik, 1971, Sec. 16.7) conditions are given that are necessary and sufficient
for the existence of a spectral density.

The following material on rational spectral densities and ARMA processes is based on (Ihara,
1993, Secs. 2.3, 2.5). For more details see the standard references on time series and ARMA pro-
cesses (Box and Jenkins, 1976, Chs. I–III), (Brockwell and Davis, 2006, Chs. 3, 4), and (Priestley,
1981a, Chs. 3, 4). In the first two references the material is restricted to the discrete-time case,
whereas in the latter reference also the continuous-time case is considered. For a treatment of
multivariate ARMA models see (Priestley, 1981b).

(C.3) Rational spectral densities and ARMA processes. Let us define the polynomials A
and B on C by

A(z) = a0(z − a1)(z − a2) . . . (z − an) (1)

B(z) = b0 (z − b1)(z − b2) . . . (z − bm) (2)
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for all z ∈ C, where a0b0 �= 0 and the roots ai, bl ∈ C are required to satisfy ai �= bl, i. e., the
polynomials have no common roots.
Suppose ξ = {ξt, t ∈ T } is a continuous-time mean-square continuous second order wide-

sense stationary process with spectral density ϕ. If ϕ is given by

ϕ(u) = |B(ju)|2
|A(ju)|2 = |b0|2∏m

l=1 |ju − bl|2
|a0|2∏n

i=1 |ju − ai|2 , u ∈ R,

with the additional assumptions Re(ai) > 0, Re(bl) ≥ 0, and m < n on the real parts of
the roots and the degrees of the polynomials, then we say the continuous-time process ξ has a
rational spectral density. The process ξ is also called autoregressive moving average (ARMA)
process of order (n, m). In particular, if B ≡ 1 so that

ϕ(u) = 1
|A(ju)|2 = 1

|a0|2∏n
i=1 |ju − ai|2 , u ∈ R,

then ξ is called autoregressive (AR) process of order n.
Now suppose ξ is a discrete-time second order wide-sense stationary process with spectral

density ϕ. If ϕ is given by

ϕ(u) = |B(eju)|2
|A(eju)|2 = |b0|2∏m

l=1 |eju − bl|2
|a0|2∏n

i=1 |eju − ai|2 , u ∈ (−π, π], (3)

with the additional assumptions |ai| < 1 and |bl| ≤ 1, then we say the discrete-time process ξ
has a rational spectral density. The process ξ is also called ARMA process of order (n, m). In
particular, if B ≡ 1 so that

ϕ(u) = 1
|A(eju)|2 = 1

|a0|2∏n
i=1 |eju − ai|2 , u ∈ (−π, π], (4)

then ξ is called AR process of order n and if A ≡ 1 so that

ϕ(u) = |B(eju)|2 = |b0|2
m∏

l=1
|eju − bl|2, u ∈ (−π, π], (5)

then ξ is called moving average (MA) process of order m.
When the polynomials A and B have no common roots, then the introduced rational spec-

tral densities cannot be further reduced. The additional assumptions on the roots of A and B
ensure consistency with the stationarity and the second moment condition on the process ξ.
Furthermore, they allow in the discrete-time case a representation given next. Please note, in
the literature different ways are used to specify ARMA models based on complex polynomials.
This may result in exactly opposite stability conditions on the roots of the polynomials, e. g.,
they have to lie outside instead of inside the unit circle etc.
A discrete-time process with a spectral density as in (3), (4), or (5) is obtained in the following

way. Let us rewrite the polynomials A and B by

A(z) = a0(z − a1)(z − a2) . . . (z − an)
= −a0

(− zn + α1zn−1 + α2zn−2 + . . . + αn−1z + αn

)
(6)

B(z) = b0(z − b1)(z − b2) . . . (z − bm)
= b0

(
zm + β1zm−1 + β2zm−2 + . . . + βm−1z + βm

)
(7)
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with suitable coefficients αi and βl. Suppose ζ = {ζk, k ∈ Z} is a second order random se-
quence with E(ζk) = 0 and cov(ζk, ζl) = 0 for all k �= l. If var(ζk) = 2π|b0|2/|a0|2 and the
second order wide-sense stationary sequence ξ = {ξk, k ∈ Z} is given by

ξk = α1ξk−1 + α2ξk−2 + . . . + αnξk−n

+ ζk + β1ζk−1 + β2ζk−2 + . . . + βmζk−m,

with the coefficients αi, βl taken from (6) and (7), then the spectral density of ξ is given by
(3). This relation motivates the name ARMA process and shows that such a process is obtained
by passing white noise (sequence of uncorrelated (or independent) random variables) through a
linear filter. In particular, if we have var(ζk) = 2π/|a0|2 and the random variables ξk are defined
only by the terms in the first row and the first term in the second row, then the spectral density
of ξ is given by (4), i. e., we have an AR process. Correspondingly, if we have var(ζk) = 2π|b0|2
and the random variables ξk are defined by the terms in the second row, then the spectral density
of ξ is given by (5), i. e., we have an MA process.

(C.4) Example (AR process of order 1). As a basic example let us consider a real-valued AR
process of order 1. The defining polynomial A has the form

A(z) = a0(z + a1)

where a0 and a1 are real-valued. In the continuous-time case we have the additional assumption
a1 > 0. The spectral density is then given by

ϕ(u) = 1
a2

0|ju − a1|2 = 1
a2

0(u2 + a2
1) , u ∈ R,

and using (C.2.1) we obtain the corresponding covariance function

γ(t) = π

a2
0a1

e−a1|t|, t ∈ R.

In the discrete-time case we assume that |a1| < 1. The spectral density is then given by

ϕ(u) = 1
a2

0|eju − a1|2 = 1
a2

0(1 − 2a1 cos u + a2
1) , u ∈ (−π, π],

and using (C.2.2) we obtain the corresponding covariance function

γ(k) = 2π

a2
0(1 − a2

1)a
|k|
1 , k ∈ Z.

We see that an AR process of order 1 has an exponentially decaying covariance function. A
Gaussian continuous-time AR process of order 1 is called Ornstein-Uhlenbeck Brownian moti-
tion. This process has the nice property that it is a Markov process. In the discrete time case the
AR process ξ = {ξk, k ∈ Z} of order 1 is obtained by the recurrence relation

ξk = a1ξk−1 + ζk,

where ζ = {ζk, k ∈ Z} is the sequence of uncorrelated random variables introduced in Para-
graph C.3 with var(ζk) = 2π/a2

0. If ζ is not only a sequence of uncorrelated but independent
random variables, then ξ is a Markov chain, irrespective of the resulting distribution of ξ.
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D Further Mathematical Background

(D.1) Sub- and superadditive sequences. If a sequence {ak, k ∈ N} of real numbers satis-
fies the inequality

am+n ≤ am + an

for all m, n ∈ N, then it is called subadditive. The sequence is called superadditive, if

am+n ≥ am + an

holds for all m, n ∈ N. It is useful to extend the usual definition of sub- and superadditivity also
to sequences, whose elements might also be infinite. The corresponding sequences are called
sub- or superadditive, if the above relations hold whenever the right-hand side is not undefined.
For a subadditive sequence {ak, k ∈ N} of real numbers the limit

lim
k→∞

ak

k
(1)

always exists and is given by

lim
k→∞

ak

k
= inf

k∈N

ak

k
.

Correspondingly, if the sequence is superadditive, then the limit in (1) exists and is given by

lim
k→∞

ak

k
= sup

k∈N

ak

k
.

This is Fekete’s lemma proved, e. g., in (Steele, 1997, p. 3).

(D.2) Kac-Murdock-Szegömatrix. The Kac-Murdock-Szegö matrix is defined by

K(ρ) =
(

ρ|i−j|
)n

i,j=1
=

⎛
⎜⎜⎜⎜⎝

1 ρ ρ2 . . . ρn−2 ρn−1

ρ 1 ρ . . . ρn−3 ρn−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρn−2 ρn−3 ρn−4 . . . 1 ρ
ρn−1 ρn−2 ρn−3 . . . ρ 1

⎞
⎟⎟⎟⎟⎠

for all n ∈ N, where ρ is a real constant satisfying |ρ| < 1. The matrix K(ρ) is a symmetric
Toeplitz matrix and according to (Horn and Johnson, 1985, Sec. 7.2, Problems 12, 13) has inverse

K−1(ρ) =

1
(1 − ρ2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ρ 0 0 . . . 0 0 0 0
−ρ 1 + ρ2 −ρ 0 . . . 0 0 0 0

0 −ρ 1 + ρ2 −ρ . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . −ρ 1 + ρ2 −ρ 0
0 0 0 0 . . . 0 −ρ 1 + ρ2 −ρ
0 0 0 0 . . . 0 0 −ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

and determinant

det
(
K(ρ)

)
= (1 − ρ2)n−1. (2)
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E Proofs

(E.1) Proof of Lemma 4.13. In the subsequent proof, we use Am:n as short hand notation
for
∨n

l=m Al. If m > n and Am:n is the conditioning σ-algebra in a conditional mutual in-
formation, then this denotes the corresponding unconditional mutual information, for example
I(B1; B2 |A1:0) = I(B1; B2).
(i) Proof of (4.13.i). First assume that I(A1:n; B1:n) < ∞ for all n ∈ N. To show that the

sequence {n−1I(A1:n; B1:n), n ∈ N} is monotonically increasing, we show that

1
n + 1I(A1:n+1; B1:n+1) − 1

n
I(A1:n; B1:n) ≥ 0 (1)

holds for all n ∈ N. Assume that we have the identity

n I(A1:n+1; B1:n+1) − (n + 1) I(A1:n; B1:n) =
n∑

k=1
(n − k + 1) I(Ak; Bn+1 |B1:n ∨ A1:k−1)

+
n+1∑
k=2

(k − 1) I(Ak; A1 ∨ B1 |B2:n+1 ∨ A2:k−1).

(2)

Then, dividing (2) by n(n+1) and using the nonnegativity of the conditional mutual information
given in (4.7.i) yields (1). To obtain (2) we first apply the chain rules given in (4.7.iv) repeatedly
to obtain

n I(A1:n+1; B1:n+1) − (n + 1) I(A1:n; B1:n)

= n
n+1∑
k=1

I(Ak; B1:n+1 |A1:k−1) − (n + 1)
n∑

k=1
I(Ak; B1:n |A1:k−1). (3)

We can rewrite (3) as

n∑
k=1

(n − k + 1)
[
I(Ak; B1:n+1 |A1:k−1) − I(Ak; B1:n |A1:k−1)

]

+
n+1∑
k=2

(k − 1)
[
I(Ak; B1:n+1 |A1:k−1) − I(Ak−1; B1:n |A1:k−2)

]
,

(4)

which can be seen by expanding the sums in (3) in the following form:
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k

1 n I(A1; B1:n+1) − n I(A1; B1:n) (∗)

2 + I(A2; B1:n+1 |A1) − I(A1; B1:n) (◦)
+ (n − 1) I(A2; B1:n+1 |A1) − (n − 1) I(A2; B1:n |A1) (∗)

3 + 2 I(A3; B1:n+1 |A1:2) − 2 I(A2; B1:n |A1) (◦)
+ (n − 2) I(A3; B1:n+1 |A1:2) − (n − 2) I(A3; B1:n |A1:2) (∗)

. . .
. . . − 3 I(A3; B1:n |A1:2) (◦)
. . . . . .

n − 1 + (n − 2) I(An−1; B1:n+1 |A1:n−2) · · · (◦)
+ 2 I(An−1; B1:n+1 |A1:n−2) − 2 I(An−1; B1:n |A1:n−2) (∗)

n
+ (n − 1) I(An ; B1:n+1 |A1:n−1) − (n − 1) I(An−1; B1:n |A1:n−2) (◦)
+ I(An ; B1:n+1 |A1:n−1) − I(An ; B1:n |A1:n−1) (∗)

n + 1 + n I(An+1; B1:n+1 |A1:n) − n I(An ; B1:n |A1:n−1) (◦)
Applying the chain rules to the rows marked by (∗) yields

(n − k + 1)
[
I(Ak; B1:n+1 |A1:k−1) − I(Ak; B1:n |A1:k−1)

]
= (n − k + 1) I(Ak; Bn+1 |B1:n ∨ A1:k−1) (5)

for k = 1, 2, . . . , n. Applying the chain rules to the rows marked by (◦) yields

(k − 1)
[
I(Ak; B1:n+1 |A1:k−1) − I(Ak−1; B1:n |A1:k−2)

]
= (k − 1)

[
I(Ak; A1 ∨ B1:n+1 |A2:k−1) − I(Ak; A1 |A2:k−1) − I(Ak; B2:n+1 |A2:k−1)

]
= (k − 1)

[
I(Ak; A1 ∨ B1 |B2:n+1 ∨ A2:k−1) − I(Ak; A1 |A2:k−1)

]
= (k − 1) I(Ak; A1 ∨ B1 |B2:n+1 ∨ A2:k−1) (6)

for k = 2, 3, . . . , n + 1. For the first equality we have additionally used the condition (4.13.1).
For (6) we have used

I(Ak; A1 |A2:k−1) = I(A2:k; A1) − I(A2:k−1; A1) = 0,

where the first equality follows again from the chain rule and the second holds due to the first
relation in (4.7.i) in combination with the basic condition in the lemma that A = {Ak, k ∈ N}
is an independent family of σ-algebras. Now combining (3)–(6) yields the identity in (2). The
shown monotonicity clearly implies

Ī(A;B) = lim
n→∞

1
n

I(A1:n; B1:n) = sup
n≥1

1
n

I(A1:n; B1:n). (7)

The above derivations do not contain any indeterminate expression since from the initial
assumption of the proof we have I(A1:n+1; B1:n+1) < ∞, which implies together with (4.7.ii)
and the chain rules the finiteness of all considered information quantities. Now let us consider
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the case when the assumption I(A1:n; B1:n) < ∞ is not true for all n ∈ N. Then, due to (4.7.ii)
there exists an n0 ∈ N such that I(A1:n; B1:n) < ∞ for all n < n0 and I(A1:n; B1:n) = ∞ for
all n ≥ n0. In this situation inequality (1) is valid for all n < n0, because for all n < n0 − 1 we
have the same situation as before and for n = n0 − 1 we have ∞ ≥ 0. If n ≥ n0, then we have
n−1I(A1:n; B1:n) = ∞. (If n0 = 1 or n0 = 2 the previous discussion simplifies accordingly.)
Thus, we have the monotonicity of the sequence {n−1I(A1:n; B1:n), n ∈ N}. Finally, (7) still
holds since both sides are infinite. This completes the proof of the first part of Lemma 4.13.
(ii) Proof of (4.13.ii). For m, n ∈ N we have

I(A1:m+n; B1:m+n) = I(A1:m ∨ Am+1:m+n; B1:m ∨ Bm+1:m+n)
≥ I(A1:m; B1:m) + I(Am+1:m+n; Bm+1:m+n)
= I(A1:m; B1:m) + I(A1:n; B1:n).

The inequality follows from (4.7.vi) in combination with the basic condition in the lemma that
A = {Ak, k ∈ N} is an independent family of σ-algebras. The last equality follows from condi-
tion (4.13.2). Thus, the sequence {I(A1:n; B1:n), n ∈ N} is superadditive. If I(A1:n; B1:n) < ∞
for all n ∈ N, then

Ī(A;B) = lim
n→∞

1
n

I(A1:n; B1:n) = sup
n≥1

1
n

I(A1:n; B1:n) (8)

follows from Fekete’s lemma given in Paragraph D.1. Otherwise, both sides of (8) are infinite.
(See the discussion at the end of (i).) This completes the proof of the second part of Lemma 4.13.

(E.2) Proof of Lemma 5.3.
(i) Proof of (5.3.1). Let us define γ = sups∈T+

Cs/s and let ε > 0. If γ < ∞ we put ρ = γ − ε
and if γ = ∞ let ρ > 0 be arbitrary. Then due to the definition of γ and Cs in Definition 5.1
there exists in both cases an s0 ∈ T+ and a μ ∈ Ps0 such that

ρ ≤ 1
s0

I
(
ξs0

0 ; ηs0
0
)
. (1)

Here we use the notation with the projections ξt and ηt introduced in Remark 5.2, which are
random variables on the channel input-output probability space (X × Y, X ⊗ Y, μκ). Let us
define the random sequences α = {αk, k ∈ Z} and β = {βk, k ∈ Z} with

αk+1 = ξ
(k+1)s0
ks0

and βk+1 = η
(k+1)s0
ks0

.

By μ0 we denote the measure on X s0
0 from which μ is constructed as specified in Definition 5.1.

Since μ is an s0-i.i.d. probability measure, {αk, k ∈ Z} is an i.i.d.-sequence of random vari-
ables. According to (2.7.i) the channel κ is s0-stationary because it is assumed to be stationary.
Together with the s0-stationarity of μ we obtain from Lemma 2.9 the s0-stationarity of the
channel input-output probability measure μκ. Therefore, the pair sequence {(αk, βk), k ∈ Z}
of projections is stationary. Applying Corollary 4.14 yields

1
s0

I(α1; β1) ≤ 1
ns0

I(αn
0 ; βn

0 ) (2)

for all n ∈ N.
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According to (5.1.2) the probability measure μ0 has the form

μ0 =
m∑

i=1
piδai

with ai ∈ Es0 . Therefore, the product measure μ′
0 =

⊗n−1
k=0 〈μ0〉ks0 has the form

μ′
0 =

mn∑
j=1

p′
jδa′

j
, (3)

where p′
j = pi0 · pi1 · . . . · pin−1 and a′

j = (ai0 , ai1 , . . . , ain−1 ). Assume that we partition the
time index set T into segments of size s′

0 = ns0 and use the measure μ′
0 to construct the product

measure μ′ on X as in Definition 5.1. Then we clearly have μ = μ′. From a′
j ∈ ×n−1

k=0 〈Es0 〉ks0

and the assumption that the family E of input constraints satisfies the regularity condition (3.1.4)
we obtain μ ∈ Pns0 . This implies

1
ns0

I(αn
0 ; βn

0 ) ≤ 1
ns0

Cns0 (4)

and in combination with (1) and (2) we obtain

ρ ≤ lim sup
s→∞

1
s

Cs ≤ γ,

where the second inequality is obvious from the definition of the limit superior. This proves
(5.3.1) since ρ was chosen arbitrarily if γ = ∞ and since we defined ρ = γ − ε with ε > 0 being
arbitrary if γ < ∞.
(ii) Existence of the information rate Ī(μ). Let us fix some μ ∈ P. Then μ ∈ Ps0 for some

s0 ∈ T+ . Using the notation of part (i) we have

lim
n→∞

1
ns0

I(ξns0
0 ; ηns0

0 ) = lim
n→∞

1
ns0

I(αn
0 ; βn

0 ) = 1
s0

Ī(α; β),

where the existence of the information rate Ī(α; β) follows from Corollary 4.14, which can be
applied due to the properties of the random sequences α and β derived in part (i). Assume that
s ∈ (ns0, (n + 1)s0], then we obtain with the first relation in (4.7.ii)

I(αn
0 ; βn

0 ) ≤ I(ξs
0 ; ηs

0) ≤ I(αn+1
0 ; βn+1

0 )

and with a simple calculation

n

n + 1 · 1
ns0

I(αn
0 ; βn

0 ) ≤ 1
s

I(ξs
0 ; ηs

0) ≤ n + 1
n

· 1
(n + 1)s0

I(αn+1
0 ; βn+1

0 ).

Since the left- and the right-hand side converge for n → ∞ to Ī(α; β)/s0 we obtain in view of
Remark 5.4

Ī(μ) = Ī(ξ; η) = lim
s→∞

1
s

I(ξs
0 ; ηs

0)

= lim
n→∞

1
ns0

I(αn
0 ; βn

0 ) = 1
s0

Ī(α; β). (5)
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Note that this identity is true regardless of Ī(α; β) being finite or infinite.
(iii) Proof of (5.3.2). Let us define γ∗ = supμ∈P Ī(μ) and let ε > 0. If γ∗ < ∞ we put

ρ∗ = γ∗ − ε and if γ∗ = ∞ let ρ∗ > 0 be arbitrary. Due to the definition of γ∗ there exists in
both cases an s0 ∈ T+ and a μ ∈ Ps0 ⊂ P such that

ρ∗ ≤ Ī(μ) ≤ C. (6)

Using (4) and the representation C = sups∈T+
Cs/s yields

1
ns0

I(αn
0 ; βn

0 ) ≤ 1
ns0

Cns0 ≤ C (7)

and together with (5) the second inequality in (6). In combination with the definition of ρ∗ this
implies the inequality

γ∗ ≤ C. (8)

Now consider the setup at the beginning of part (i). Then we have due to (1), (2), and (5)

ρ ≤ Ī(μ) ≤ γ∗

and from the definition of ρ follows

C ≤ γ∗. (9)

Finally, combining (8) and (9) yields (5.3.2).

(E.3) Proof of (7.3.ii). Assume that the Markov kernel K has the form of an integration chan-
nel as specified in Definition 15.1 with channel function f and noise measure space (Z, Z, λ).
Then we have

ψ
(
P̄
∥∥Q̄) = ψ

(
(P ⊗ λ)f

∥∥(Q ⊗ λ)f

)
= sup

∣∣∣∣P ⊗ λ(f ∈ F )
Q ⊗ λ(f ∈ F ) − 1

∣∣∣∣
= sup

∣∣∣∣P ⊗ λ(G)
Q ⊗ λ(G) − 1

∣∣∣∣
≤ ψ(P ⊗ λ‖Q ⊗ λ)
= ψ(P‖Q).

The first equality follows from the derivations in Remark 15.2, in particular from (15.2.4), and the
second is due to the definition of the ψ-variation in Definition 7.2 and the definition of an image
measure. The supremum is taken w. r. t. all F ∈ Y with Q ⊗ λ(f ∈ F ) > 0. We rewrite this
form in the next row as supremum w. r. t. all G ∈ σ(f) with Q ⊗ λ(G) > 0. The inequality then
follows from the definition of the ψ-variation and the X ⊗ Z/Y-measurability of the channel
function f , which implies σ(f) ⊂ X ⊗ Z . The last equality is due to (7.3.iii) and because

P ⊗ λ(A × B)
Q ⊗ λ(A × B) = P(A)

Q(A)
for all A ∈ X , B ∈ Z with Q ⊗ λ(A × B) > 0.

The second part of (7.3.ii) is a special case of the first because the function g can be considered
as a deterministic channel (see Paragraph 16.1), which is a special integration channel.
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(E.4) Proof of (7.3.iii). Let us define

γ := sup
∣∣∣∣P(A1 × A2)
Q(A1 × A2) − 1

∣∣∣∣,
where the supremum is taken w. r. t. all rectangles A1 × A2 ∈ X1 × X2 with Q(A1 × A2) > 0.
Further, let us define

γ̃ := sup
∣∣∣∣P(A)
Q(A) − 1

∣∣∣∣,
where the supremum is taken w. r. t. all A ∈ A with Q(A) > 0. By A we denote the algebra
generated by all rectangles A1 × A2 ∈ X1 × X2.
Obviously, we have

γ ≤ γ̃. (1)

Thus γ = ∞ implies γ̃ = ∞. Now assume that γ < ∞. Then for all rectangles F ∈ X1 × X2
we have

|P(F ) − Q(F )| ≤ γ Q(F ). (2)

Assume that A ∈ A with Q(A) > 0. Since A is an algebra generated from rectangles, there
exist disjoint rectangles F1, F2, . . . , Fn ∈ X1 × X2 such that

A =
n⋃

i=1
Fi.

Then we have

|P(A) − Q(A)| =
∣∣∣∣

n∑
i=1

P(Fi) −
n∑

i=1
Q(Fi)

∣∣∣∣
≤

n∑
i=1

|P(Fi) − Q(Fi)|

≤
n∑

i=1
γQ(Fi)

= γ Q(A),

where the first inequality follows from the triangle inequality and the second from (2). Thus

γ̃ ≤ γ

and together with (1) we have γ̃ = γ.
We continue with the observation that

γ̃ ≤ ψ(P‖Q) (3)
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since A ⊂ X1 ⊗ X2. Thus, γ̃ = ∞ implies ψ(P‖Q) = ∞. Now assume that γ̃ < ∞. Then for
all A ∈ A we have

|P(A) − Q(A)| ≤ γ̃ Q(A). (4)

Let δ > 0 and G ∈ X1 ⊗ X2 with Q(G) > 0 be arbitrary. Due to the approximation theorem
for probability measures (see Theorem A.9) there exists a set A ∈ A such that

|P(G) − P(A)| ≤ P(G � A) ≤ δ and |Q(G) − Q(A)| ≤ Q(G � A) ≤ δ (5)

hold simultaneously. Then we have

|P(G) − Q(G)| ≤ |P(G) − P(A)| + |P(A) − Q(A)| + |Q(A) − Q(G)|
≤ 2δ + γ̃ Q(A)
≤ 2δ + γ̃

(
Q(G) + δ

)
due to the triangle inequality and due to (4) and (5). This implies∣∣∣∣P(G)

Q(G) − 1
∣∣∣∣ ≤ 2δ

Q(G) + γ̃
Q(G) + δ

Q(G)

= 2 + γ̃

Q(G) δ + γ̃

and because δ > 0 was chosen arbitrary we can conclude

ψ(P‖Q) ≤ γ̃.

Together with (3) and the first part of the proof we finally obtain

γ = γ̃ = ψ(P‖Q).

(E.5) Proof of Corollary 8.3. Since the outer P1-measure of the set A is equal to 1, the prob-
ability space (Ω1, F1, P1) has a unique standard extension (Ω1, F̃1, P̃1) w. r. t. A for which
A ∈ F̃1 and P̃1(A) = 1 holds. Please refer to Paragraph A.12 for facts on standard exten-
sions used in this proof. The subsequent notation is identical to Lemma 8.1 if (Ω1, F1, P1) is
used. If the space (Ω1, F̃1, P̃1) is used instead, we additionally mark all quantities depending
on this space with a tilde.
For the space (Ω1, F̃1, P̃1) the assertion of Feinstein’s lemma holds according to (8.1.3) for

ε = me−γ + P̃(G̃c
γ) + P̃1(Ac)

= me−γ + P̃
(
f̃ ≤ eγ

)
, (1)

where f̃ is the P̃1 ⊗ P2-density of P̃a = P̃(· ∩ Ñ c) and Ñ is the P̃1 ⊗ P2-nullset from the
Lebesgue decomposition of P̃. The fact that the restriction of P̃1 to F1 is equal to P1 implies
P̃2 = P2, which we have already used in the preceding statement. It further implies that the
restrictions of P̃ and P̃1 ⊗ P2 to F1 ⊗ F2 are equal to P and P1 ⊗ P2, respectively, which is
used in the derivations below.
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One can show that the product space (Ω1 × Ω2, F̃1 ⊗ F2, P̃1 ⊗ P2) is equal to the standard
extension of the product space (Ω1 × Ω2, F1 ⊗ F2, P1 ⊗ P2) w. r. t. the set A × Ω2, which has
outer P1 ⊗ P2-measure 1. It follows on the one hand, that the set Ñ can be represented by

Ñ = N̂ ∩ (A × Ω2) ∪ Ň ∩ (Ac × Ω2)

for suitable sets N̂, Ň ∈ F1 ⊗F2, where N̂ is a P1 ⊗P2-nullset. On the other hand, there exists
a nonnegative F1 ⊗ F2-measurable function f̂ on Ω1 × Ω2 such that we have

f̃ = f̂ P̃1 ⊗ P2-a.s. (2)

Since one can further show that (Ω1 × Ω2, F̃1 ⊗ F2, P̃) is equal to the standard extension of the
space (Ω1 × Ω2, F1 ⊗ F2, P) w. r. t. the set A × Ω2, which has outer P-measure 1, we also have

f̃ = f̂ P̃-a.s. (3)

Once we have shown that the function f̂ and the set N̂ correspond to the function f and the
set N in the Lebesgue decomposition of P in (8.1.1), we obtain

P(Gc
γ) = P(f̂ ≤ eγ)

= P̃(f̂ ≤ eγ)
= P̃(f̃ ≤ eγ),

where the second equality holds because the restriction of P̃ toF1 ⊗F2 is equal to P and the last
equality holds due to (3). Then together with (1) we obtain (8.3.1) and the corollary is proved.
Indeed, from (2) and the Lebesgue decomposition of P̃ we obtain for any F ∈ F1 ⊗ F2

P̃(F ∩ Ñ c) =
∫

F

f̃ dP̃1 ⊗ P2

=
∫

F

f̂ dP1 ⊗ P2,

(4)

where we have also used that f̂ is F1 ⊗ F2-measurable and that the restriction of P̃1 ⊗ P2 to
F1 ⊗ F2 is equal to P1 ⊗ P2. Furthermore, we have

Ñ c = N̂ c ∩ (A × Ω2) ∪ Ň c ∩ (Ac × Ω2)
F ∩ Ñ c = F ∩ N̂ c ∩ (A × Ω2) ∪ F ∩ Ň c ∩ (Ac × Ω2)

and therefore

P̃(F ∩ Ñ c) = P(F ∩ N̂ c), (5)

because P̃ is also obtained as the standard extension of P w. r. t. A × Ω2. Combining (4) and (5)
yields for any F ∈ F1 ⊗ F2

P(F ) =
∫

F

f̂ dP1 ⊗ P2 + P(F ∩ N̂),

which is the unique Lebesgue decomposition of P. This completes the proof.
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(E.6) Proof of the measurability of f t
s defined in Paragraph 15.6. We have

(f t
s)−1(Yt

s

)
= (f t

s)−1
(⊗

w∈J Yw

)
= (f t

s)−1
(

σ
(⋃

w∈J η−1
w (Yw)

))
(1)

= σ
(

(f t
s)−1

(⋃
w∈J η−1

w (Yw)
))

(2)

= σ
(⋃

w∈J ξ−1
w

(
f−1

w (Yw)
))

(3)

⊆ σ
(⋃

w∈J ξ−1
w

(
X w+vx

w−ux
⊗ Zw+vz

w−uz
)
))

(4)

= X t+vx
s−ux

⊗ Zt+vz
s−uz

. (5)

By ηw we denote the projection from Y t
s to Yw and by ξw the projection from Xt+vx

s−ux
⊗ Zt+vz

s−uz

to Xw+vx
w−ux

⊗Zw+vz
w−uz

. The equality in (1) results from the definition of a product-σ-algebra. Since
we can exchange σ(·) and (·)−1 we obtain (2). The identity ηw(f t

s) = fw(ξw) yields (3) and the
X w+vx

w−ux
⊗ Zw+vz

w−uz
/Yw-measurability of fw for all w ∈ J yields (4). For the equality in (5) we use

again the definition of a product-σ-algebra.
Note that if we even have f−1

w (Yw) = X w+vx
w−ux

⊗ Zw+vz
w−uz

, then equality holds in (4).
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