
Dissertation

Contributions To Ontology-Driven
Requirements Engineering

bearbeitet von

Dipl.-Medieninf. Katja Siegemund

geboren am 26.05.1981 in Leipzig

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik
Lehrstuhl Softwaretechnologie

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

Betreuender Hochschullehrer: Prof. Dr. Uwe Aÿmann
(Technische Universität Dresden)

Zweiter Gutachter: Prof. Dr. Gerd Wagner
(Technische Universität Cottbus)

Verteidigt am: 29.04.2014

1

ii

Abstract
Today, it is well known that missing, incomplete or inconsistent requirements lead to
faulty software designs, implementations and tests resulting in software of improper quality
or safety risks. Thus, an improved Requirements Engineering contributes to safer and
better-quality software, reduces the risk of overrun time and budgets and, most of all,
decreases or even eliminates the risk for project failures.
One significant problem requirements engineers have to cope with, are inconsistencies in
the Software Requirements Specification. Such inconsistencies result from the acquisition,
specification, and evolution of goals and requirements from multiple stakeholders and
sources. In order to regain consistency, requirements information are removed from the
specification which often leads to incompleteness. Due to this causal relationship between
consistency, completeness and correctness, we can formally improve the correctness of
requirements knowledge by increasing its completeness and consistency. Furthermore,
the poor quality of individual requirements is a primary reason why so many projects
continue to fail and needs to be considered in order to improve the Software Requirements
Specification.
These flaws in the Software Requirements Specification are hard to identify by current
methods and thus, usually remain unrecognised. While the validation of requirements
ensures that they are correct, complete, consistent and meet the customer and user intents,
the requirements engineer is hardly supported by automated validation methods.

In this thesis, a novel approach to automated validation and measurement of require-
ments knowledge is presented, which automatically identifies incomplete or inconsistent
requirements and quality flaws. Furthermore, the requirements engineer is guided by
providing knowledge specific suggestions on how to resolve them. For this purpose, a
requirements metamodel, the Requirements Ontology, has been developed that provides
the basis for the validation and measurement support. This requirements ontology is
suited for Goal-oriented Requirements Engineering and allows for the conceptualisation of
requirements knowledge, facilitated by ontologies. It provides a huge set of predefined re-
quirements metadata, requirements artefacts and various relations among them. Thus, the
Requirements Ontology enables the documentation of structured, reusable, unambiguous,
traceable, complete and consistent requirements as demanded by the IEEE specification
for Software Requirement Specifications. We demonstrate our approach with a prototypic
implementation called OntoReq. OntoReq allows for the specification of requirements
knowledge while keeping the ontology invisible to the requirements engineer and enables
the validation of the knowledge captured within.
The validation approach presented in this thesis is capable of being applied to any domain
ontology. Therefore, we formulate various guidelines and use a continuous example to
demonstrate the transfer to the domain of medical drugs. The Requirements Ontology as
well as OntoReq have been evaluated by different methods. The Requirements Ontology
has been shown to be capable for capturing requirements knowledge of a real Software
Requirements Specification and OntoReq feasible to be used by a requirements engineer-
ing tool to highlight inconsistencies, incompleteness and quality flaws during real time
requirements modelling.

iii

Acknowledgement

Apart from the efforts of myself, the success of any project depends largely on the
encouragement and guidelines of many others. I take this opportunity to express my
gratitude to the people who have been instrumental in the successful completion of
this project. I would like to show my greatest appreciation to Prof. Uwe Aßmann who
introduced me to Ontologies many years ago and offered me the chance for this research. I
felt motivated and encouraged every time we have talked. Furthermore, I wish to thank my
colleagues and also project partners of the MOST project for their guidance and support
and their contribution to this project. In addition, I especially would like to thank my
colleague Jan Polowinski for his useful remarks and comments and for proofreading my
thesis.
I also want to thank my husband for his love, kindness and support he has shown during
the past year it has taken me to finalize this thesis. Furthermore, I would also like to
thank my parents for their endless love, support and their never ending trust in me. I
would like to thank my friends, who have supported me throughout the entire process
by taking care of my children, keeping me harmonious and also sometimes distracting
me from work when it was essential. Last but not least, I also want to thank the ESF
(Europäische Sozialfonds) for their financial support granted for the past two years and
thus, enabling me to finalize my thesis.

This work has partially been funded by the ESF.

v

vi

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Description . 2

1.2.1 Completeness of Requirements Knowledge 3
1.2.2 Consistency of Requirements Knowledge 4
1.2.3 Quality of Requirements Knowledge 5
1.2.4 Validation of Requirements Knowledge 6
1.2.5 Guidance . 6

1.3 Thesis Aims and Objectives . 6
1.4 Research Background . 7
1.5 Thesis Contributions and Limitations . 8
1.6 Organisation of the Thesis . 9

I Problem Analysis 11

2 Goal-Oriented Requirements Engineering 13
2.1 Introduction . 13
2.2 Requirements Engineering . 13
2.3 Goal-Oriented Requirements Engineering 16

2.3.1 Modelling Goals . 18
2.3.2 Specifying Goals . 18
2.3.3 Reasoning about Goals . 19

2.4 Summary . 19

3 Ontology-Driven Requirements Engineering 21
3.1 Definitions . 21
3.2 Ontology Engineering . 22

3.2.1 Ontology Components . 22
3.2.2 Modelling Ontologies . 23
3.2.3 Ontology Reasoning . 24

3.3 Ontology-Driven Requirements Engineering 25
3.4 Summary . 26

4 Feature Oriented Domain Analysis 27
4.1 Introduction . 27
4.2 Synergy between Feature Models and Ontologies 28
4.3 Summary . 28

5 Process Guidance 29
5.1 Introduction . 29

Contents

5.2 Terms and Definitions . 29
5.2.1 Step Guidance . 30
5.2.2 Flow Guidance . 31

5.3 Summary . 31

6 State-of-The-Art and Related Work 33
6.1 Goal-oriented Requirements Engineering . 33

6.1.1 The NFR Framework . 33
6.1.2 i*/Tropos . 34
6.1.3 KAOS . 36
6.1.4 GBRAM . 36

6.2 Ontology-Driven Requirements Engineering 37
6.2.1 Mining Requirements Ontologies from Text 37
6.2.2 Ontologies in Requirements Engineering 38
6.2.3 Ontologies for Reasoning in RE . 38
6.2.4 Ontology-driven RE . 39

6.3 Guidance in Requirements Engineering . 40
6.4 Implications for the Thesis . 41

II The Conceptual Solution 43

7 Challenges and Requirements for improved RE 45
7.1 Challenges for Requirements Engineering 46
7.2 Deduction of Requirements for a Systematic Support for RE 48
7.3 Summary . 52

8 The OntoReq Approach 53
8.1 Requirements . 53
8.2 Limitations . 53
8.3 From Textual Requirements To Formalisation 54
8.4 Requirements Metamodel . 54
8.5 Requirements Validation Services . 64

8.5.1 Completeness Validation . 66
8.5.2 Consistency Validation . 68
8.5.3 Quality Improvement of SRS . 71
8.5.4 Goal Satisfaction . 77
8.5.5 Automated Generation of Requirements Configuration 78
8.5.6 SPARQL Queries . 79

8.6 Guidance Support . 79
8.6.1 Definition of a GORE process . 79
8.6.2 Requirements Guidance Ontology . 83
8.6.3 Guidance Engine . 87

8.7 Summary . 87

viii

Contents

III The Technical Solution 89

9 Requirements Ontology 91
9.1 Ontology Classes (Tbox) . 91
9.2 Equivalent Classes . 96
9.3 Properties . 97

9.3.1 Object Properties . 97
9.3.2 Data Properties . 97
9.3.3 Property Chains for automatic completion of requirements knowledge 98

9.4 Summary . 99

10 Implementation Patterns for Requirements Validation Services 101
10.1 Reasoning . 101
10.2 Completeness Validation . 102

10.2.1 Bypassing CWA Pattern by Finding Empty Property Sets 103
10.2.2 NBox Reasoning Pattern . 104

10.3 Consistency Validation . 105
10.4 Quality Improvement . 109

10.4.1 Quality Validation . 109
10.4.2 Implementation Patterns for Quality Measurements 110

10.5 Summary . 111

11 Architecture 113
11.1 OntoReq Components . 113
11.2 OntoReq Data Flow . 114
11.3 Graphical User Interface . 114

11.3.1 Adding Requirements Knowledge . 115
11.3.2 Validation . 115

11.4 Summary . 116

12 General Guidelines for Improving Completeness, Consistency and Quality of
Knowledge in Domain Ontologies 119
12.1 Building the Ontology Knowledge Repository 119

12.1.1 Modelling the Ontology . 122
12.1.2 Intermediate Evaluation of Ontology Model 126

12.2 Implementing the Application . 127
12.3 Final Evaluation . 129
12.4 Summary . 130

IV Application and Evaluation 131

13 Using OntoReq for Requirements Engineering - An Exemplar 133
13.1 Exemplar Description . 133
13.2 Specifying Requirements . 134
13.3 Completeness Validation . 137
13.4 Consistency Validation of Requirements Configuration 139

13.4.1 Manual Configuration of Requirements 140
13.4.2 Automated Requirements Configuration 144

ix

Contents

13.5 Stakeholder Review of Requirements Knowledge 145
13.6 Quality Validation of Requirements Configuration 145
13.7 Quality Measurements of Requirements Knowledge 146
13.8 Further Steps . 149

14 Evaluation 151
14.1 Requirements Ontology and Requirements Validation Services 152

14.1.1 Description of the Case Study . 152
14.1.2 Motivation . 153
14.1.3 Evaluation Object . 153
14.1.4 Evaluation Procedure . 153
14.1.5 Results . 154

14.2 Comparison of Universal RE Tasks without and with support by OntoReq . 154
14.2.1 Motivation . 154
14.2.2 Description of Evaluation . 155
14.2.3 Evaluation Object . 155
14.2.4 Target Group . 155
14.2.5 Expectation . 155
14.2.6 Results . 156
14.2.7 Conclusion . 157

14.3 Summary . 157

15 Comparison of OntoReq with other RE Tools 159
15.1 Classification Scheme . 159
15.2 Description of Software Tools and Evaluation Results 161

15.2.1 IBM® Rational® RequisitePro® . 161
15.2.2 Conclusion . 162
15.2.3 IBM® Rational® DOORS® . 162
15.2.4 Conclusion . 163
15.2.5 Polarion® Requirements 2.0™ . 164
15.2.6 Conclusion . 165

15.3 Comparison of Features of RE Tools and OntoReq 167
15.4 Summary . 172

16 Conclusions and Future Work 173
16.1 Confirmation of Theses . 173
16.2 Thesis Contributions . 174
16.3 Limitations . 177
16.4 Future Work . 177

Appendix 181
A.1 Requirements Ontology RDF Data Model 181
A.2 Completeness Rules . 200
A.3 Consistency Rules . 204
A.4 Quality Rules . 205
A.5 OntoReq Exemplar Complete Requirements Knowledge 207
A.6 Results of Consistency Validation (1) . 214

Abrevations 217

x

Contents

Bibliography 219

xi

xii

1 Introduction

Requirements Engineering (RE) 1 refers to the process of eliciting, evaluating, specifying,
consolidating, and changing the objectives, functionalities, qualities, and constraints to be
achieved by a software-intensive system [131]. This process is the first part of the software
engineering lifecycle and is divided into four subprocesses (see Figure 1.1): (1) Elicitation,
(2) Analysis, (3) Specification and (4) Validation. Developing software for industries and
organizations is becoming a more and more complex task due to increasing demands of
customers and new technologies. Concurrently, software developers are expected to build
more complex software in less time in order to be competitive. Developing complex software
systems raises a large number of needs, wishes, and requirements that are - due to different
viewpoints and stakeholders - often conflicting with each other.

Elicitation Analysis Specification Validation

Requirement Management

Changes, Traceability, Version Control

Figure 1.1: Requirements Engineering Process

This chapter is structured as follows: in Section 1.1 we describe the context of this thesis
and our motivation for the research questions in this work. We introduce the problem areas
we aim to tackle in Section 1.2 and clarify the aims of this work in Section 1.3. In Section
1.4 we explain the research background of this thesis and summarize the contributions and
limitations of our approach in Section 1.5.

1.1 Context and Motivation
Today, it is well known that missing, incomplete or inconsistent requirements lead to
faulty software designs, implementations and tests resulting in software of improper
quality or safety risks. Project cost and time overruns due to missing requirements and
underestimated budgets may even cause a project to be aborted. Customers may reject
such a system and end-users will be dissatisfied with it [42]. A review of several studies
regarding reasons for project failure [5] concluded that “five of the eight major reasons for
failure are requirements-based”. The importance of Requirements Engineering is already
supported in several studies (e.g., [58]). Thus, an improved Requirements Engineering
contributes to safer and better-quality software, reduces the risk of overrun time and

1The term ’Requirements Engineering’ appears in different technical domains. However, in this thesis we
will refer to the domain of Software Engineering.

1

1 Introduction

budgets and, most of all, decreases or even eliminates the risk for project failures.

One significant problem requirements engineers have to cope with, are inconsistencies
in the Software Requirements Specification (SRS). Such inconsistencies result from the
acquisition, specification, and evolution of goals and requirements from multiple stake-
holders and sources [132]. It is frequently the case that changes of requirements have
a particularly significant impact on the consistency of specifications. In order to regain
consistency, requirements information are removed from the specification which often leads
to incompleteness. Zowghi in [151] describes this vicious circle as a causal relationship
between consistency, completeness and correctness. Due to this causal relationship, we can
formally improve the correctness of requirements knowledge by increasing its completeness
and consistency. Although it would be desirable to have a formal proof of correctness of a
SRS, it may not be practical or may be too costly [151]. Whether applying such formal
correctness proofs or not depends on the degree of risk the stakeholders are prepared to take
[151]. According to Zowghi et.al., such proofs can be carried out in many cases by informal
inspections of the requirements and domain, involving customer and stakeholder. Thus, we
adapt the formal point of view for correctness and define correctness as the combination
of completeness and consistency. Hence, the correctness of requirements knowledge is
improved by improving its completeness and consistency.
In addition to completeness, consistency and correctness, another aspect of the SRS
becomes important. Firesmith in [43] states that “poor quality of individual requirements
and the requirements specifications that document them is a primary reason why so
many projects continue to fail [Standish 1994]”. Furthermore, Firesmith states that
“the poor quality of the requirements is typically not recognized during Requirements
Engineering and the evaluation of requirements specifications”. Thus, the quality of
individual requirements is another aspect we need to consider.

In the meantime methods for RE are not only increasing in number, but also in complexity.
It is fairly hard for an average requirements engineer to cope with all these methods
and approaches. Apart from that, RE itself is a complex task that needs the ability to
abstract, refine and relate various information. It is far more knowledge intensive than
other activities [120]. Although RE tools may provide a valuable User Interface (UI) and
technology background, they lack in guidance for the the requirements engineer that is
not only based on general guidelines. Thus, guidance must play a crucial role in the RE
process.

1.2 Problem Description
Customers and users are usually not familiar with requirements. In most cases, they have
a vague image of how the software should look like and what they aim to do with it.
These intentions are also important for Requirements Engineering, yet they are not enough.
Requirements engineers need to understand these intentions (customer goals) and identify
underlying requirements that serve these goals. This very first elicitation and analysis of
requirements is called “Early Requirements Engineering” and is a crucial task for upcoming
steps in the Requirements Engineering process. Obviously, this is the time where a huge
amount of errors is produced. Improving this communication with stakeholder is one of the
major challenges in Requirements Engineering and research proposes promising methods
and technologies for this part of the process. However, “Late Requirements Engineering”,

2

1.2 Problem Description

that is the specification and validation of requirements, is hardly addressed and suffers
from mistakes in Early Requirements Engineering.
According to Bahili and Henderson in [124], we define the validation2 of requirements as
follows:

Definition 1 (Requirements Validation:): “Ensuring that (1) the set of requirements
is correct, complete, and consistent, (2) a model can be created that satisfies the require-
ments, and (3) a real-world solution can be built and tested to prove that it satisfies the
requirements.”

It is often the case that requirements engineers do not identify a sufficient set of requirements
to deliver a software that meets all user intentions. Furthermore, they provide incomplete
requirements information such as missing priorities, risks, costs or test-cases. And most of
all, requirements are hardly interrelated with each other. This lack of information leads to
inconsistencies such as contradictions or redundancies.
The following main categories of problems in Requirements Engineering, described in [80]
are addressed in a number of articles from industry and research in the last decade (e.g.,
[5, 48, 104, 71]):

1. a requirement is used for the wrong purpose

2. a requirement or important information about a requirement is missing

3. a requirement is stated in an ambiguous manner

4. requirements or their rationales are inconsistent

The growing complexity of software and their increasing use in safety-critical environments
(e.g., car, aircraft, medical systems) multiplies the importance of sophisticated Requirements
Engineering and also leads to new challenges in Requirements Engineering. The following
sections briefly introduce the main problem areas addressed in this thesis. Figure 1.2
illustrates these problems and their consequences.

1.2.1 Completeness of Requirements Knowledge
According to [151] when using the term “completeness” we need to distinguish between
internal and external completeness. Internal completeness refers to individual requirements
rather than the whole Requirements Specification and implies that no information is left
unstated or “to be determined” and information does not contain any undefined objects or
entities. [42] refers to these data as metadata. External completeness refers to the informa-
tion in the whole Requirements Specification (requirements analysis models, individual
requirements, requirements analysis documents, repositories, individual requirement speci-
fication documents and the requirements baseline [42]). Thus, an individual requirement is
complete if it contains all necessary information to avoid ambiguity and needs no amplifica-
tion to enable proper implementation and verification. To avoid ambiguity, a requirement
must express the entire need and state all conditions and constraints under which it
applies [142]. This can be ensured by complete metadata for requirements that serve as a
metamodel so that internal completeness regarding this metamodel can be measured and
increased.

2In contrast to validation, the verification of requirements is defined as “Building the system
right: ensuring that the system complies with the system requirements and conforms to its
design.” [124]

3

1 Introduction

Software Requirements Specification

Missing requirements
 and metadata

Wrong requirements
 and metadata

Wrong and missing
interrelations

Product not desired or
rejected by user

Product with missing features
and functionality

Project Failure

- Over budget
- Time overrun
- Project abort

Figure 1.2: Overview of problems and consequences in Requirements Engineering

Davis in [32] names completeness to be the most difficult of these (above mentioned)
specification attributes to define and incompleteness the most difficult violation to detect.
In contrast, it is reasonably well known, that requirements will never be totally complete,
finished or finalized as long as the system is in service and must evolve [42]. However, it is
possible to improve the internal completeness of requirements, namely the completeness
of the metadata of individual requirements, their interrelations and relations to other
requirements artefacts such as use-cases or metrics.
Although some approaches exist that aim to ensure complete
requirements (e.g., [20]), up to now there is no absolute way to determine the in-
ternal or external completeness of requirements in advance. Though current Requirements
Engineering tools provide means for capturing requirements (and some of them even
diagrams and other kinds of descriptions), they fail in providing sufficient metadata about
requirements and leave it to the requirements engineer to define them. Such missing
metadata, interrelations and requirements artefacts may become expensive and time
consuming in the Software Engineering process.

1.2.2 Consistency of Requirements Knowledge
Another problem to tackle are inconsistencies among requirements and their metadata.
According to completeness, we also need to distinguish between internal and external
consistency. We understand internal consistency as the absence of overlapping, redundant
and contradictory requirements and any conflicts between their metadata. A typical
example for internal inconsistent requirements are the following two statements: “The
device must reduce energy consumption at night.” and “The device must execute maintaining
tasks at night.” Each single requirement is valid, but without any additional information,

4

1.2 Problem Description

they are contradictory and mutual exclusive. Such inconsistencies are often introduced when
adding new requirements, changing or deleting existing ones [151]. External consistency
refers to the whole Requirements Specification, for example inconsistent links to documents
or domain knowledge.
Various approaches have been proposed to handle inconsistencies of requirements with
respect to a domain description (e.g., [69, 141]). These approaches aim to ensure that
requirements comply with the concepts of a given domain. However, the detection of
conflicts between requirements and their metadata is often only addressed regarding
refinement relationships or conceptual overlapping. Moreover, most techniques consider
only binary requirements conflicts, that are, conflicts among two requirements. But
requirements are often crosscutting, scattered through the whole system. The may appear
in use-cases or test-cases and are a part of metrics. These various interrelations are not
sufficiently considered to improve the consistency of requirements and their metadata.

1.2.3 Quality of Requirements Knowledge
As stated above in Section 1.1, the poor quality of individual requirements and the SRS
may lead to unsatisfied customers or even failing projects [43]. In [32], Davis proposes 24
criteria and formulas for measuring the quality of a SRS, namely:

• 1. Unambiguous
• 2. Complete
• 3. Correct
• 4. Understandable
• 5. Verifiable
• 6. Internally Consistent
• 7. Externally Consistent
• 8. Achievable
• 9. Concise
• 10. Design Independent
• 11. Traceable
• 12. Modifiable

• 13. Electronically Stored
• 14. Executable/Interpretable
• 15. Annotated by Relative Importance
• 16. Annotated by Relative Stability
• 17. Annotated by Version
• 18. Not Redundant
• 19. At Right Level of Detail
• 20. Precise
• 21. Reusable
• 22. Traced
• 23. Organized
• 24. Cross-Referenced

As can be seen from the list above, the quality of requirements requires explicitly complete-
ness (2.), consistency (6.) and (7.) and correctness (3.) among other characteristics. Thus,
by improving these properties of the SRS, we may already improve its quality. However, we
need to consider more aspects of the SRS to enhance its quality. Therefore, we distinguish
between improving the quality of the description of individual requirements and the quality
of the SRS itself. While the former comprises approaches to improve the linguistic descrip-
tion of a requirement (e.g., precision, ambiguity), the latter comprises ambitions regarding
the entire requirements knowledge (e.g., structure, traceability, reusability, completeness).
The quality of the linguistic description of individual requirements can already be measured
as proposed in various approaches (e.g., [38], [17] and [83]). However, improving and
measuring the quality of the SRS is little addressed in literature.
In order to discuss quality aspects of the SRS, we use the term “quality flaw” and refer
with it to any (missing or existent) information that hinders or decreases any of the above
quality attributes defined by Davis or the quality rules we define in Chapter 8.5.

5

1 Introduction

1.2.4 Validation of Requirements Knowledge
The validation of requirements ensures that they are correct, complete, consistent and meet
the customer and user intents. Unfortunately, current Requirements Engineering tools lack
the possibility of validating the internal completeness and consistency of requirements. If
validation is provided at all, it is external and aims for example for identifying corrupt
links to documents and models. Thus, the requirements engineer will never notice that
important requirements information is missing or inconsistent. There is hardly systematic
support for detecting and resolving such faults. One notable exception is [132]. Typical
validation methods for Requirements Engineering are mainly human-centred. This means
that techniques like inspection, tests, interviews or demonstrations are organized and
accomplished by the requirements engineer himself. This kind of validation may identify a
small number of incompleteness and inconsistency faults, yet it is not sufficient. Especially
complex and huge sets of requirements are hard to validate with such techniques alone.
Inspecting a requirements document and identifying inconsistencies in it only by re-reading
is a time-consuming and error-prone task. Therefore, it is important to support the
requirements engineer in the validation of requirements.

1.2.5 Guidance
All of these above mentioned problems may lead to the question: How can an average
requirements engineer perform all these tasks in a correct way? One major problem in
Requirements Engineering is the plurality of methods and guidelines to be considered and
chosen from. At the same time, requirements engineers often lack sufficient methodology
knowledge. Moreover, such methodologies and guidelines are often not specific enough and
usually do not consider the current requirements and their structure. Yu in [144] states
that “users need help in coming up with initial requirements in the first place”. While
approaches exist that guide the requirements engineer in the process of Requirements
Engineering by displaying upcoming tasks and providing decision support for choosing
an appropriate methodology, there is a lack of guidance for the validation of specified
requirements. This includes suggestions on how to proceed in certain situations in contrast
to simply showing possible errors and leaving the requirements engineer alone with their
elimination. Additionally, guidance is needed for reporting errors and possible solutions.
Thus, as stated in [120], guidance needs to be far more knowledge intensive than in other
activities. It is clearly beyond the simple automated control of sequences of activities
that ignore the present requirements knowledge and only provide general suggestions.
Without knowledge specific guidance, Requirements Engineering may certainly stay a
highly error-prone and sometimes puzzling task.

1.3 Thesis Aims and Objectives
The work presented in this thesis is motivated by two main movements: goal-driven
approaches in Requirements Engineering and ontologies in general. We base our research
on the following three hypotheses:

1. The specification of goals and their relation to requirements artefacts support efforts
in improving the completeness, consistency and quality of requirements knowledge.

6

1.4 Research Background

2. The formalisation of requirements knowledge allows for an automated validation of
requirements knowledge.

3. Ontologies provide means to structure and reason about requirements knowledge, fa-
cilitate traceability3 and enable the automated validation of completeness, consistency
and quality criteria captured within.

Our approach aims to support the Goal Oriented Requirements Engineering (GORE)
paradigm and attaches to the specification and validation phases of the RE process (see
Figure 1.1). The objectives of this thesis are to improve the internal completeness and
consistency of requirements and, thus, increase the quality and correctness of the entire
SRS. Additionally, we aim to develop a method to automatically validate and measure
the completeness, consistency and quality of requirements knowledge. Furthermore, we
intend to provide guidance support for the validation and elimination of the identified
completeness, consistency and quality faults.
We base our concept on an analysis of existing problems and challenges in Requirements En-
gineering, State-of-the-Art and Requirements Engineering tools. A software demonstration
exemplifies our approach. To this end, the objectives of the thesis are:

1. Analysis of existing problems and challenges of Requirements Engineering reported
from industry and research

2. Deduction of coherent and general requirements for Requirements Engineering

3. Provide means to capture, structure and analyze requirements and their metadata

4. Automated validation for internal completeness, consistency and quality

5. Automated measuring of quality of requirements knowledge

6. Facilitate traceability of requirements and related requirements artefacts (e.g., goals,
test-cases, sources)

7. General guidelines on how to apply this approach for any other domain

8. Software demonstration of the approach

1.4 Research Background
The work presented in this thesis is the confluence of three technologies: Ontology
Modelling, Feature Modelling and Process Support. The term “Ontology Modelling” refers
to techniques describing knowledge of any kind by means of ontologies. An ontology is
defined to be a ”formal, explicit specification of a shared conceptualisation” [54]. An
ontology formally represents knowledge by a set of concepts within a domain and the
relationships between these concepts. This formal specification allows reasoning, that is,
deriving facts not explicitly expressed in the ontology.

3“Requirements traceability refers to the ability to describe and follow the life of a requirement, in both
forwards and backwards direction (i.e. from its origins, through its development and specification, to its
subsequent deployment and use, and through all periods of on-going refinement and iteration in any of
these phases.)” [49].

7

1 Introduction

“Feature Modelling” originates from Software Product Line4 Modelling where a Feature
Model represents all software products of the Software Product Line. The variability of
features captured in a Feature Model facilitates the configuration of different software
products. Feature models were first introduced in the Feature-Oriented Domain Analysis
(FODA) method by [70]. Since then, Feature Modelling has been widely adopted not only
by the software product line community but also by a number of approaches in Software
Development and Requirements Engineering (e.g., [149]).

The term “Process Support” within this thesis refers to the process performed by require-
ments engineers in order to capture, analyze, specify, consolidate, and change the goals,
requirements, and constraints to be achieved by a software system. Approaches in this area
are based on the process modelling paradigm in the Software Engineering field [25, 91].
Process support mainly focuses on prescriptive models which enforce rules and behavioural
patterns. Following these rules leads to the desired process performance [73]. Another
option to support the user in a certain process is process enforcement by trying to ensure a
specific sequence of tasks.

1.5 Thesis Contributions and Limitations
The thesis offers two main contributions:

1. Conceptualisation of requirements knowledge, facilitated by ontologies.

2. Automated validation and measurement of requirements knowledge regarding the
internal completeness, consistency and quality.

In this work, we developed a Requirements Ontology suited for GORE that provides a
huge set of predefined requirements metadata, requirements artefacts and various relations
among them. This metamodel as ontology TBox5 serves as a template for specifying
concrete requirements and associated information (e.g., goals, use-cases, priority) in the
ontology ABox6. The Requirements Ontology allows for the documentation of structured,
reusable, unambiguous, traceable, complete and consistent requirements as demanded by
the IEEE specification for Software Requirement Specifications [63].
Furthermore, we provide an automated validation of internal completeness and consistency
as well as an automated measuring of different quality criteria. This validation is based
on the Requirements Ontology and allows for identifying missing metadata, requirements
artefacts and interrelations. The validation of the internal consistency detects conflicts such
as missing mandatory or coexistent requirements, conflicting or excluding requirements.
The requirements engineer is guided by validation results that explicitly point to sources of
faulty information and computed solution suggestions to resolve them. The validation and
solutions suggestions are always based on the present state of the requirements knowledge.
Additionally, the quality of the requirements knowledge can automatically be measured by
metrics provided.
We demonstrate the concepts and methods described above with a software demonstrator
called “OntoReq”. OntoReq also allows for the modification of requirements knowledge by

4A Software Product Line is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way [65].

5“TBox statements describe a conceptualization, a set of concepts and properties for these concepts.” [138]
6“ABox are TBox-compliant statements about that vocabulary [138]. Thus, individuals of the ABox are
instances of the TBox.”

8

1.6 Organisation of the Thesis

Elicitation Analysis Specification Validation

Requirements
Ontology

TBox

ABox

Requirement
Specification

RE
Meta –

Knowledge

Completeness,
Consistency , Quality

Domain-specific
RE knowledge

Figure 1.3: Overview of Thesis Approach

a prototypic user interface instead of manipulating the ontology directly in an ontology
tool (e.g., Protegé). Thus, the Requirements Ontology is kept in the background and
invisible to the user. An exemplar is used to illustrate all steps from the specification of
requirements, their metadata and interrelations, their formalisation and validation of this
requirements knowledge and its revision. Furthermore, we propose general guidelines that
allow for applying the requirements validation services for any domain ontology. Finally,
we compare our approach with features of existing RE tools that are currently used in
industrial projects and evaluate our work.

We limit our approach to internal completeness of individual requirements rather than the
external completeness of the whole Software Requirements Specification. Thus, we do not
identify missing requirements, but missing information about individual requirements and
interrelations among the requirements knowledge. Furthermore, we validate the internal
consistency of a requirements configuration and do not consider to validate the logical
consistency of individual requirements descriptions (e.g., conflicting data types or redundant
information). Although our approach facilitates the traceability of requirements during
the Requirements Engineering process, we do not provide an implementation of seamless
traceability for design or implementation artefacts. However, the Requirements Ontology
can be mapped to appropriate design or implementation models to realise this traceability.

1.6 Organisation of the Thesis
This thesis is organized in four parts as depicted in Figure 1.4. The first part covers the
foundations of the presented approach developed in this thesis in Chapters 2, 3, 4 and 5.
The part is closed by an overview of related work and state-of-the-art in Chapter 6.
Part II describes the conceptual solution for an ontology-driven automated validation of
requirements knowledge. An identification of current challenges in RE and deduction of
requirements for a systematic support of RE is provided in Chapter 7. The Requirements
Ontology and the automated validation are comprised to the OntoReq approach covered
in Chapter 8.
Part III describes the technical solution for OntoReq. First, the Requirements Ontology is

9

1 Introduction

presented in Chapter 9, followed by the requirements validation services in Chapter 10. We
proceed with a description of the architecture in Chapter 11 and finally formulate guidelines
for transferring our validation approach for arbitrary domain ontologies in Chapter 12.
In Part IV, an exemplar is provided in Chapter 13 that demonstrates the use of OntoReq
by a continuous example. This is followed by several evaluations in Chapter 14 and a
comparison of OntoReq with other RE tools in Chapter 15. The thesis is closed by a
description of future work and a conclusion in Chapter 16.

Part I
Problem Analysis

Goal-oriented RE

Ontology-oriented RE

FODA

Process Guidance

State-of-the-Art and
Related Work

Part II
Conceptual Solution

Challenges

OntoReq

Part III
Technical Solution

Requirements Ontology

Validation Services

Architecture

General Guidelines

Part IV
Application/ Evaluation

Using OntoReq

Evaluation

Comparison

Conclusion

Figure 1.4: Organisation of Thesis

10

Part I

Problem Analysis

11

2 Goal-Oriented Requirements Engineering
This chapter investigates the role of goal modelling in Requirements Engineering and
reports about current issues and problems covered in literature. Since there is no
standardized terminology, this chapter also provides definitions that will be used within
this thesis.

This chapter is structured as follows: Section 2.2 introduces a definition for Requirements
Engineering and describes its main tasks. A brief explanation of the main terms and
activities of Goal Oriented Requirements Engineering Goal Oriented Requirements En-
gineering (GORE) is given in Section 2.3. Additionally, a definition for Goal-Oriented
Requirements Engineering is developed that will be used within this thesis. Important
insights of this chapter are summarized in Section 2.4.

2.1 Introduction
Since the 1970’s, people have recognized the importance of correct and complete require-
ments for successful software development [35]. Requirements Engineering increases the
understanding of the proposed system. Faults in Requirements Engineering influence all
phases of software development. Missing or incorrect requirements are often detected
too late. Thus, more time and money is needed to cope with them. In the worst case,
the final software does not comply to the customer’s wishes or is not accepted by users.
These problems have been realized by industry in the last years and RE has emerged in
order to improve the development of software in a more systematic way. However, despite
of tremendous research in RE, the gathered knowledge and methodologies have hardly
been transferred to industry organizations. One main reason is the lack of intelligent tool
support for RE [148] in the last decades. The development of such software support has
become more and more important in the last few years.

2.2 Requirements Engineering
Requirements Engineering (RE) is concerned with the elicitation, evaluation, specification,
consolidation, and change of objectives, requirements, functionalities, qualities, and
constraints to be achieved by a software-intensive system [131]. RE has the objective to es-
tablish a complete, consistent and unambiguous description of requirements (Requirements
Specification) for a given application domain on an abstract conceptual level. This incre-
mental process involves stakeholders from different backgrounds and requirements engineers.

The most cited definition for the term ’requirement’ is given by IEEE in [66]:

”(1) A condition or capability needed by a user to solve a problem or achieve
an objective. (2) A condition or capability that must be met or possessed by
a system or system component to satisfy a contract, standard, specification,

13

2 Goal-Oriented Requirements Engineering

or other formally imposed documents. (3) A documented representation of a
condition or capability as in (1) or (2).”

As already mentioned above, literature does not provide an unique definition of Require-
ments Engineering nor a dissociation from Requirements Management. Often RE is also
referred to as Requirements Analysis, -elicitation, -management, or -specification. [146]
provides an intuitive description of RE:

”Requirements Engineering is the branch of software engineering concerned
with the real-world goals for, functions of, and constraints on software systems.
It is also concerned with the relationship of these factors to precise specifications
of software behaviour, and to their evolution over time and across software
families.”

This definition highlights the importance of ”goals” as a motivation for the development
of software systems. These goals represent the ’why’ and ’what’ of a system [106].
Additionally, it includes ”precise specifications” which are the basis for requirement
analysis, validation and verification. Finally, the definition also addresses the ”evolution”
of requirements ”over time and across software families”, reflecting the changes of customer
wishes and technologies and the need to deal with them.

Another definition given in [92] mainly focuses on the process of RE:

Requirements Engineering is the ”systematic process of developing require-
ments through an iterative co-operative process of analysing the problem, docu-
menting the resulting observations in a variety of representation formats, and
checking the accuracy of the understanding gained.”

This definition addresses the activities to be performed in order to accomplish RE. Fur-
thermore, it points out that this process is ’co-operative’, thus, incorporating various
interdisciplinary stakeholders (customers, users, requirements engineers, software devel-
oper, etc.). Additionally, this definition emphasizes the documentation and validation of
requirements.
It is the author’s intention to focus both on the process of RE and the different RE artefacts
and their relationships within this process. Since goals play an important role we will give
a definition for GORE in Section 2.3. We propose the following definition used throughout
this thesis, comprising parts of the definitions of [146], [92] and [109]:

Definition 2 (Requirements Engineering): Requirements Engineering is the branch
of Systems Engineering concerned with the development of requirements through a system-
atic, iterative and co-operative process. This process includes the elicitation, negotiation,
specification and validation of requirements. It is also concerned with the relationship of
these RE artefacts to precise specifications of software behaviour, their evolution over time
and across software families. Requirements and all related artefacts are documented in a
Requirements Specification that needs to be validated regarding customer wishes, correct
understanding and accuracy.

Requirements elicitation is the practice of understanding the system under consideration
and obtaining its requirements, user needs, constraints and problems from users, customers

14

2.2 Requirements Engineering

and stakeholders. By requirements negotiation, the various stakeholders involved in the
process agree on these requirements. Furthermore, the elicited requirements knowledge may
be specified by using various concepts such as (functional and non-functional) requirements,
use-cases, priorities, etc. We will refer to all these concepts as requirements artefacts and
propose the following definition to be used within this thesis:

Definition 3: Requirements artefacts are parts of the requirements knowledge that hold
specific types of information, e.g., requirements, test-cases, metrics, prioritiess.

One product of the RE process is the documentation of the requirements, the Requirements
Specification. It exists a variety of definitions for this term, focussing on different aspects.
Although IEEE released 1984 a standard that describes how a SRS should be structured
and what it should contain, many approaches provide modified or new definitions due to
new appearing methods. However, we will use the following definition for Requirements
Specification since it describes the most general and durable facts:

Definition 4 (Requirements Specification): A Software Requirements Specification
(SRS) is a comprehensive description of the intended purpose and environment for software
under development. The SRS fully describes what the software will do and how it will be
expected to perform.

Obviously, this definition makes no statements about how to structure and specify re-
quirements, e.g., which methods or model of representation to use. It is a fact that the
Requirements Specifications differ from RE approach to another. Some methods make use
of text documents, some of databases and others of UML diagrams. Whatever technique is
used, according to [63] it must be:

15

2 Goal-Oriented Requirements Engineering

• Correct

• Unambiguous

• Complete

• Consistent

• Ranked for importance and/or stability

• Verifiable

• Modifiable

• Traceable

as stated by the IEEE in [63].

Finally, the validation task ensures that the derived specification corresponds to the
stakeholders needs and to the internal and/or external constraints set by the enterprise
[73].
Another important attribute of a good SRS is to describe requirements to the system rather
than providing solutions. Often these two things are admixed, for example: ”The software
user interface shall have a drop down list of three items to choose a language.” instead
of ”The software shall provide means to select different languages.” The first requirement
description already gives a solution on how to provide the selection of languages, it already
focuses on design and, thus, gives a design solution. But requirements are about purposes
and the purpose for the system is found outside the system itself. Once we already specified
a requirement containing a solution, it is not possible to reuse this requirement for any
other product. Therefore, it is important to clearly separate requirements and goals from
any solution during RE.

Lin et al. [67] summarizes a need for a representation of requirements that complies to the
following main points:

• Provides an unambiguous and precise terminology.

• Allows traceability of requirements including all dependencies and relationships
among them.

• Supports the identification of redundant or conflicting requirements.

• Is generic, reusable, and easy to extend.

2.3 Goal-Oriented Requirements Engineering
Conventional RE in its early times concentrated on what the system should do and how
it should do it. This lead to fairly low-level requirements on data, operations, etc. [86].
Goals have become more and more popular for the early phases of RE (e.g., [7], [103], [90]).
Yue showed in [145] that goals in requirements models provide a criterion for requirements
completeness.

16

2.3 Goal-Oriented Requirements Engineering

Goal Oriented Requirements Engineering (GORE) must not be understood as a different
or new form of RE. It is rather an already widespread supplement of the RE process
and starts earlier than conventional RE1. As already manifested in its name, GORE
puts much emphasize on goals which will be used to identify, describe and correlate
requirements. Literature provides many definitions for such goals, we will use the definition
from Lamsweerde [129]:

Definition 5 (Goals): Goals are declarative statements of intent to be achieved by the
system under consideration.

Goals are formulated in terms of prescriptive assertions (as opposed to descriptive ones)
[147]; they may refer to functional or non-functional properties and range from high-level
concerns to lower-level ones [130]. In most goal-oriented approaches, the concept of goals
expresses the same type of information as requirements. The difference is the level of
abstraction. Goals explore why certain requirements are necessary for the system to be.
Thus, they capture stable information and provide means to separate stable from volatile
information which enables a better reuse.
There are several reasons to extend RE with the identification and formulation of goals.
Lamsweerde describes in [130] the importance of goals for RE. The main benefits of
goal-orientation can be summarized as follows:

• Achieving requirements completeness (e.g., [145], [8], [86])

• Specification of pertinent requirements, that are requirements that serve at least one
of the identified goals [145].

• The refinement of goals provides means for well structured requirements specifications
(e.g., [8], [86]).

• Goals may be satisfied by different alternative requirements. Thus, rela-
tionships between goals and requirements can help to choose the best one
(e.g., [89], [86], [131]).

• Various stakeholders may have different conflicting requirements to the
software. Goals can be used to identify and resolve these conflicts
(e.g., [8], [131]).

• Separation of stable information from volatile [86].

• Goals drive the identification of requirements (e.g., [8]).

Goal identification is accomplished prior to requirements identification, requirements
may be elaborated at the same time and more goals may be identified when discussing
requirements. Sometimes goals are explicitly stated by stakeholders or are documented
in already existing material. But in most cases they are implicit and goal elicitation has
to be accomplished. More goals can be identified by refinement and abstraction, that is
asking how and why questions about a preliminary set of goals and requirements. Thus,
goal-oriented approaches are not inherently top-down. The relation between goals and
requirements is much the same as between programs and design specifications: requirements

1In this thesis the basic form of RE will be denoted as ’conventional RE’ in contrast to GORE and any
other extended form of RE

17

2 Goal-Oriented Requirements Engineering

”implement” goals [130].

In the following, we extend the definition for RE from Def. 2 and provide the following
definition for GORE:

Definition 6 (GORE): Goal-oriented Requirements Engineering is the branch of systems
engineering concerned with the development of requirements through a systematic, iterative
and co-operative process. This process involves the elicitation, negotiation, specification
and validation of real-world goals and requirements for, functions of, and constraints on
software systems. It is also concerned with the relationship of these RE artefacts to precise
specifications of software behaviour, their evolution over time and across software families.
Requirements and all related artefacts are documented in a Requirements Specification that
needs to be validated regarding customer wishes, correct understanding and accuracy.

2.3.1 Modelling Goals
Goals can be of different types. Generally, they can be classified into functional goals (de-
scribing the kind of service the system shall perform) and non-functional goals (referring to
system qualities such as security, safety, performance, usability, flexibility, customizability,
interoperability, and so forth [74], [130]. However, these taxonomies follow the style of
requirement topologies and differ only on the level of abstraction on information. This
basic typology has been specialized in different approaches in various ways.
Goals are linked together in a goal model. In order to relate goals with each other and
other requirements artefacts, Lamsweerde et. al in [130] proposed goal links. Links between
goals capture situations where goals positively or negatively contribute to other goals.
They are called support links [130]. Refinement links may be used to relate a goal to a set
of subgoals that must be satisfied for satisfying the parent goal (AND-refinement) or to
relate a goal to an alternative set of goals where it is sufficient to satisfy one of these in
order to satisfy the parent goal (OR-refinement) [130]. This is much similar to Feature
Trees described by Czarnecki in (e.g., [27]). There is a good amount of work on linking
goals with requirements artefacts, e.g., [101, 86, 85, 29].

Goal models have been proposed to be used for various tasks of RE. Apart from using goal
models in requirements elicitation (e.g., [130], [143]), they have also been used to relate
business goals to functional and non-functional system specifications in order to describe
organisational change (Kaos [29], GBRAM [7], NFR framework [101], [122]). Finally,
requirements validation can profit from goal modelling. Therefore, goal analysis techniques
can be used to define stakeholders’ criteria the system shall be assessed against [73] (GQM
[11], [140]). Beside links between goals, goal models may be linked to other RE models.
Goal formulations may be linked to specific objectives (e.g., entities, relationships, agents)
in object models [29], GBRAM [8]. Furthermore, design models, business models or process
models may be related to goal models as well.

2.3.2 Specifying Goals
Goals must be specified precisely to support RE tasks such as requirement elaboration or
conflict management [130]. Literature proposes several kinds of specifications: informal
(but precise), semi-formal and formal specifications. Informal specifications are used to
describe what the goal name designates [147].
Semi-formal specifications may use a textual or graphical syntax to declare goals in terms
of their type attribute, and links [130, 30].

18

2.4 Summary

Formal specifications assert the goal formulation in a fully formal system amenable to
analysis [130]. Such assertions may for example be written in temporal logic.

2.3.3 Reasoning about Goals
Once goals have been modelled and specified it is possible to support goal-based reasoning
for RE tasks. Yue describes in [145] a technique to verify that the requirements satisfy
the identified goals and check whether this set of requirements is sufficiently complete for
a certain goal set. This verification can be accomplished formally if goal specifications
and domain properties are formalized (e.g., [96] or informally by using formal refinement
patterns as proposed by Darimont in [31]. Another scenario for reasoning about goals
are goal satisfaction methods, which are associated with reasoning about alternative
requirements. Evaluating alternatives with respect to goal satisfaction has been addressed
by qualitative and quantitative reasoning techniques [89]. The idea of qualitative reasoning
techniques is to expose positive or negative influences of different alternatives on goals.
Once specified, this information can be used to compare refinement alternatives, that is
choosing the set of requirements that (qualitatively) best satisfies a certain goal set (e.g.,
NFR framework [101], Win Win model [64]). Quantitative techniques use numerical weights
instead of qualitative contribution values such as ’++’ or ”–” [89]. These numerical weights
can be based on subjective (e.g., [134], [4], [46]) or objective criteria. While subjective
criteria are often fairly applicable and verifiable, objective data with some domain-specific
physical interpretation (e.g., the percentage of customers attended in 30 minutes) is better
suited (e.g., [89]). Even probabilistic models have been proposed to quantitatively assess
system security [94].

2.4 Summary
This chapter introduced a definition for RE and GORE. It can be highlighted that especially
relationships between requirements artefacts play a crucial role for ensuring consistent
requirements. Additionally, the validation of requirements is highly important in order
to facilitate the further development of correct software. GORE has been noticed as a
method for facilitating requirements completeness, resolving conflicts and separating stable
information from volatile.

19

20

3 Ontology-Driven Requirements
Engineering

Ontologies have long been used in the knowledge engineering community to perform
conceptual domain modelling. In this domain, ontologies are interpreted as ”an explicit
specification of a shared conceptualisation” [54]. Thus, an ontology is a formal description
of objects and their properties, relationships, constraints and rules that govern those
relationships. Ontologies contain explicitly defined and generally understood concepts and
constraints that are machine understandable.

Requirements Engineering calls for an explicit domain knowledge. This domain knowledge
generally resides in different areas, such as experiences, functionality, non-functional
requirements, stakeholders and so on. Thus, it is necessary to concentrate this knowledge
for the most appropriate application. Knowledge-driven techniques seem promising for
this purpose. Kossmann et. al. in [79] define Knowledge-driven Requirements Engineering
when Requirements Engineering is guided not only by a process but as well by knowledge
about the process and the problem domain. In order to use knowledge-driven techniques,
it is necessary to apply knowledge repositories that can be easily updated and utilised.
Furthermore, inferencing and decision support must be applicable on such a repository.
Ontologies are one possible way for representing, organising and reasoning about the
complex knowledge that requirements documents embody and have been proposed to be
used in different ways for RE.

This chapter investigates the role of ontologies for RE and summarizes their use as proposed
in literature. It is structured as follows: definition for the term ontology, as well as an
explanation of upper and domain ontology are given in Section 3.1. Section 3.2 provides
background information about ontology components, modelling ontologies, ABox, TBox
and reasoning ontologies. In advance, Section 3.3 introduces Ontology-Driven Requirements
Engineering, including terms and definitions. Finally, a summary is given in Section 3.4.

3.1 Definitions
Although the term “ontology” has already been ill-defined in numerous papers and books,
we need a definition of ontology that is used within this thesis. Therefore, we follow the
revised ontology definition of Gruber [55] from 2009, neglecting all the facts about the
historical background:

Definition 7 (Ontology): In the context of computer and information sciences, an ontol-
ogy defines a set of representational primitives with which to model a domain of knowledge
or discourse. The representational primitives are typically classes (or sets), attributes
(or properties), and relationships (or relations among class members). [...] Ontologies
are typically specified in languages that allow abstraction away from data structures and

21

3 Ontology-Driven Requirements Engineering

implementation strategies; in practice, the languages of ontologies are closer in expressive
power to first-order logic than languages used to model databases. For this reason, ontolo-
gies are said to be at the "semantic" level, whereas database schema are models of data at
the "logical" or "physical" level. Due to their independence from lower level data models,
ontologies are used for integrating heterogeneous databases, enabling interoperability among
disparate systems, and specifying interfaces to independent, knowledge-based services.

Furthermore, one has to distinguish between upper ontologies (a.k.a. top-level or foundation
ontology) and domain ontologies.
Upper ontologies capture common objects that are generally applicable across a wide range
of knowledge domains. It usually employs a core glossary that contains the terms and
associated object descriptions as they are used in various relevant domain sets. There are
several standardized upper ontologies available for use. Some well-known are Dublin Core1

and the Gene Ontology2.
Domain ontologies model a specific domain, which represents part of the world. Particular
meanings of terms applied to that domain are provided by a domain ontology. For example
the word "‘mouse"’ has different meanings. An ontology about biology would model the
"‘animal mouse"’ meaning of the word, while an ontology about computers would model it
as "‘computer-mouse"’ meaning.

3.2 Ontology Engineering
Ontology Engineering (or Ontology Modelling) is a subfield of Knowledge Engineering and
concerned with methods and methodologies for building ontologies. Ontology Engineering
aims to capture the explicit knowledge (e.g. of a software system or business procedure)
for a particular domain. Explicit means that the concepts and relations are explicitly
defined. This definition is realised by a formal language that is machine understandable
and interpretable. Thus, an ontology is a catalogue of the types of things that are assumed
to exist in a domain of interest from the perspective of a person who uses a language for
the purpose of talking about this domain [123]. By interpreting the knowledge captured in
the ontology, new, implicit knowledge can be reasoned.
Sowa in [123] distinguishes ontologies into informal and formal ones. Whereas informal
ontologies may be specified by a catalogue of types that are either undefined or defined
only by statements in a natural language, a formal ontology is specified by a collection of
names for concept and relation types organized in a partial ordering by the type-subtype
relation.
The following Sections describe the main aspects of Ontology Engineering and include
components of ontologies, ontology languages and how ontologies are modelled and reasoned.

3.2.1 Ontology Components
Regardless of the language in which ontologies are expressed and the domain they describe,
they share structural similarities, which are explained in the following :

• Classes describe concepts in the domain, types of objects, or kinds of things. A
class defines a group of individuals that belong together because they share some

1http://dublincore.org/
2http://www.geneontology.org/

22

3.2 Ontology Engineering

properties e.g. the class Person represents all Persons. Classes may have subclasses
that represent concepts that are more specific than the superclass, e.g. MalePerson
for the superclass Person.

• Individuals are specific instances of a class, e.g. Paul for the class MalePerson.

• Attributes/ Properties describe the instances of a class regarding the characteristics
or parameters they can have. Properties can be used to state relationships between
individuals or from individuals to data values, e.g. eyeColour or address for Paul.

• Relations are thy way in which classes and individuals are related to one another,
e.g. Person hasAddress address.

• Rules are if–then statements describing the logical interference that can be drawn
from an assertion in a particular form, e.g. If Paul hasAdress German then Paul
= German.

• Axioms are assertions (including rules) in a logical form. They comprise the knowledge
described in the ontology for a particular domain

3.2.2 Modelling Ontologies
Ontology Languages

Describing formal knowledge in an ontology requires a formal description language. Within
the last decades, many ontology languages have been proposed. While all of them are
based on predicate or description logic, they differ in expression potential, decidability and
complexity. OWL (Web Ontology Language) [33] is the most famous description language
for ontologies and has come to dominate the ontology layer of the semantic web. OWL is a
W3C specification based on RDF (Resource Description Framework) which itself builds
upon XML (eXtensible Markup Language). RDF is a formal language for representing
metadata in the World Wide Web so that this information is suitable to be processed by
applications. All resources are identified by URI (Uniform Resource Identifier), and the
basic structure of RDF consists of statements of the form subject – predicate – object.
Statements are resources themselves so that they can link to other resources (Reification).
While these statements can be represented as a graph, readable to humans (RDF Model),
an XML syntax (serialised for evaluation by machines; this complies to RDF Syntax) is
defined for the interchange of RDF. The RDF Framework also consists of RDF Schema, a
formalism that allows the definition of classes of resource, properties, relationships etc.
Thus, RDF includes three components: RDF-Model, RDF Syntax and RDF-Schema.
RDFS can be viewed as an simple ontology language. However, the semantic web stack
contains a further layer on top of RDF - the ontology layer [34].

OWL is a RDF language (and therefore XML language, but behind this syntax it is a
Description Logic (DL)3 [10]. OWL has three increasingly-expressive sublanguages:

• OWL Lite is used for describing simple taxonomies (classifications hierarchy) with
simple constraints or ontologies with lower expressiveness and complexity, but full
decidability.

3”A logic that focuses on concept descriptions as a means of knowledge representation and has semantics
which can be translated to first-order predicate logic.” [34]

23

3 Ontology-Driven Requirements Engineering

• OWL DL is based on a restricted DL. It provides the maximum expressiveness
while retaining computational completeness (all conclusions are guaranteed to be
computable) and decidability (all computations will finish in finite time) [98].

• OWL Full contains the same language constructs as DL, thus ontologies in OWL
Full can use predicate logic expressions but are not computable anymore.

Furthermore, in accordance with DL, the ontological knowledge base is distinguished
into ABox (data) and TBox (schema). The TBox describes a conceptualization, a set
of concepts and properties for these concepts (e.g. Person hasAddress Address) the
ABox holds the facts, which are various data and relationships (Individuals) compliant
to the TBox statements (e.g. All Teachers are Persons). Together ABox and TBox
statements make up the knowledge base.
However, various things cannot be expressed using OWL. Therefore, rule languages such
as SWRL (the Semantic Web Rules Language) have been proposed. SWRL also allows
arithmetic expressions to be used.

Ontologies can be modelled as domain ontologies and upper ontologies. Since domain
ontologies are very specific, they are often incompatible. Thus, domain ontologies often
have to be merged into a more general representation. This process is called ontology
merging. While ontologies with the same upper ontologies can be merged automatically,
ontologies without need to be merged mainly manually.

3.2.3 Ontology Reasoning
Reasoning is perhaps the main motivation to use ontologies instead of relational databases
that only “store” data but do not allow for computing new implicit facts from the specified
explicit data. (Logical) reasoning can be defined as “the process of drawing conclusions
from premises using inference rules” [111]. The conclusion drawn by reasoning is called
inference. It is distinguished between class and instance inferences. Class inferences infer
classes or subclasses, e.g.

• A car driver is a person that drives a car.

• A car is a vehicle.

• A car driver drives a vehicle, so must be a driver. (according to [12])

Instance inferences infer instances to the according class(es).

• A bird is an animal that can fly.

• A blackbird can fly, so it must be a bird.

When modelling an ontology, the engineer must be aware of the distinction open world
and closed world. Closed world assumes that all information that cannot be found by the
reasoner does not exist, thus it will be computed as false. Negation as failure is related
to the closed world assumption (CWA), as it amounts to believing false every predicate
that cannot be proved to be true. In open world, we cannot assume that if we do not
know something then it is false, it is just unknown. CWA is typically used in at least two
situations: 1. when the knowledge base is known to be complete (e.g., a corporate database

24

3.3 Ontology-Driven Requirements Engineering

containing records for every employee), and 2. when the knowledge base is known to be
incomplete but a ”best” definite answer must be derived from incomplete information [135].
Ontology reasoning is accomplished with a reasoner, a software (also called inference engine)
able to infer logical consequences from a set of asserted facts or axioms. Reasoner perform
the following main tasks:

• Consistency checking finds contradictory facts in the ontology. An ontology is
consistent if no contradictions exist. OWL already provides the formal definition of
ontology consistency.

• Concept satisfiability determined whether the concepts (classes) can have any instances
(individuals). If a class is unsatisfiable, an instance of that class causes the ontology
to be inconsistent.

• Classification computes the subclass relations between every named class to create
the complete class hierarchy. It infers individuals to a specific class due to their
definition (as explained in the example of instance inference). The class hierarchy
can be used to answer queries such as getting all or only the direct subclasses of a
class.

• Realisation computes the most specific class an individual belongs to, e.g. the class
Bird for the individual blackbird.

There is a huge amount of reasoners available, differing in speed, features (e.g. OWA/CWA,
explanation of errors, usability) programming language, user interface and so on. While
OWA is supported by almost all reasoners, CWA is not. Some well-known and widely used
reasoners for ontologies are FaCT++ [127], Racer [24], TrOwl [3] and Pellet [1].

3.3 Ontology-Driven Requirements Engineering
Ontologies are useful for representing and interrelating various knowledge. Since RE
involves knowledge capturing and analysis, there is a clear synergy between the ontological
modelling of a domain and the modelling that a requirements engineer will perform during
the requirements process [34]. Due to this overlap, numerous works dating back have
addressed the use of ontologies in RE, e.g. [50], [102], [29]. All formalisms for RE need a
particular conceptualisation, and almost all of them are reducible to first order logic [34].
Thus, they have much in common with ontologies that are constructed by using a formal
language.
Since the semantic web4 emerged, there has been a renewed interest in ontologies. An
increasing amount of research is devoted to utilising semantic web technologies in RE (e.g.
[97], [69], [79]) and software engineering in general.

However, according to Dobson et. al [34], there is a great potential for using ontologies in
RE, including the representation of:

• The requirements model itself, imposing and enabling a particular paradigmatic way
of structuring requirements

4”An extension of the current web in which information is given well-defined meaning, better enabling
computers and people to work in cooperation.” [14]

25

3 Ontology-Driven Requirements Engineering

• Acquisition structures for domain knowledge

• The application domain

• The environment [34]

Obviously a great deal of approaches propose ontologies to be used for any task of RE,
for example for representing other reusable models that are relevant to RE. In contrast
to Ontology-Driven Requirements Engineering they do not aim to address a large part of
the RE process or do not embed in it. Usually, they are more or less detached from the
process, concentrating on a specific problem of RE to be solved by ontological techniques
(e.g. domain or upper ontologies for RE, goal satisfaction). Although these approaches
make use of ontologies especially for RE there is no definition of ontology-Driven RE. In
order to distinguish these approaches, we define ontology-driven Requirements Engineering
in accordance to the definition 2 in Section 2.2:

Definition 8 (Ontology-Driven Requirements Engineering (ODRE)): Ontology-
driven (or ontology-based) RE describes a RE process or at least a RE method compre-
hensively aided by ontologies. Therefore, ontologies are involved for some or all tasks of
the RE process. ODRE clearly states the method how to integrate a proposed ontological
technique into a continuous RE process.

3.4 Summary
Ontologies model a domain of knowledge. Several formal descriptions languages can be
used for describing formal knowledge in an ontology, the most well-known is OWL [98].
Furthermore, the ontological knowledge base is distinguished into ABox (data) and TBox
(schema). Together ABox and TBox statements make up the knowledge base. One has
also to distinguish between upper ontologies and domain ontologies. Upper ontologies
model general knowledge, applicable to various domains, while domain ontologies capture
specific knowledge about one domain.

Since RE calls for an explicit domain knowledge, ontologies have great potential to be used
in this area. Reasoning is perhaps the main motivation to use ontologies. Especially in
RE it provides means for consistency checking and concept satisfiability of requirements
and in RE domains. Ontological techniques have already been widely used in RE for
different purposes. However, we distinguish Ontology-driven Requirements Engineering
from single ontological methods in the manner of process or process parts to be supported
by ontologies. ODRE is characterized by comprehensively involving ontologies for a RE
process, a part of it or at least some RE tasks or method. Additionally, ODRE states how
to integrate a proposed technique into a continuous RE process.

26

4 Feature Oriented Domain Analysis
Feature Oriented Domain Analysis (FODA) Feature-oriented domain analysis was first
developed by the Software Engineering Institute in 1990. It “introduced the concept of
Feature Models to Domain Engineering in an effort to represent the standard features
within the family of systems (Software Product Line (SPL)) in the domain as well as the
relationships between those features.
This chapter introduces Feature Oriented Domain Analysis, explains terms and provides
definitions for the main aspects.

4.1 Introduction
Feature Oriented Domain Analysis aims to support the functional and architectural reuse.
Therefore, a domain model is developed which represents a SPL which can then be refined
into the particular desired system within the domain [136]. Therefore, the scope of the
domain must be analysed (known as FODA context analysis) to identify not only the
systems in the domain but also the external systems which interact with the domain. The
Institute of Electrical and Electronics Engineers defines the term feature in [62] as:

Definition 9 ((Software) Feature): “A distinguishing characteristic of a software item
(e.g., performance, portability, or functionality)” [62]

FODA comprises three analysis processes: (1) context analysis, (2) domain modelling and
(3) architecture modelling. We use the following three definitions according to [70]:

Definition 10 (Application Domain): “A set of current and future applications which
share a set of common capabilities and data.” [70]

Definition 11 (Domain Analysis): “The process of identifying, collecting, organizing,
and representing the relevant information in a domain based on the study of existing systems
and their development histories, knowledge captured from domain experts, underlying theory,
and emerging technology within the domain.” [70]

The context analysis focuses on defining the bounds of a domain for analysis. During
domain modelling, problems within the domain are described that shall be addressed by
software and are documented as domain model. The products of this phase provide features
of software in the domain, standard vocabulary and generic software requirements [70].

Definition 12 (Domain Model): “A definition of the functions, objects, data, and re-
lationships in a domain.” [70]

The identified software features are documented in a feature model for Software Product
Lines1 Software Product Line (SPL). Feature models capture the variability of software

1“A set of software-intensive systems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed from a common set of core
assets in a prescribed way.” [2]

27

4 Feature Oriented Domain Analysis

features and their dependencies. A feature configuration is “a set of features which describes
a member of an SPL: the member contains a feature if and only if the feature is in its
configuration. A feature configuration is permitted by a feature model if and only if it
does not violate constraints imposed by the model” [125]. The most basic variability
mechanism is the notion of optional, mandatory, alternative (xor) and or (at least one
of the sub-features must be selected) features. Feature models are a part of the domain
model that allow for customers to select from configurable requirements to specify a final
system [70]. Thus, FODA ensures that a business can meet customers’ demands efficiently
through reuse of technology [136].
Finally, architecture modelling “establishes the structure of implementations of software
in the domain. The representations generated provide developers with a set of architec-
tural models for constructing applications and mappings from the domain model to the
architectures” [70].

4.2 Synergy between Feature Models and Ontologies
Kim in [76] explores the relationship between ontologies and feature models in three
dimensions: notation, modelling philosophy, and role in MDSPL. According to [76], feature
models form a notational subset of ontologies and describe concepts more specialized than
those described by ontologies. Furthermore, both feature models and ontologies are domain
models. Therefore, Kim et. al. suggest that feature models are “views on ontologies,
namely, projections of the ontologies from different viewpoints” [76]. It is possible to
realise a syntactic correspondence between a feature model and an ontology by establishing
traceability links between feature model and ontology elements as proposed in [76]. Kim
furthermore states that “semantically, the configurations of a feature model represent the
set of viewpoint restrictions that can be applied to an ontology. The restricted ontology
must represent at least one valid set of ontology individuals” [76].

4.3 Summary
This chapter briefly introduces the feature-oriented domain analysis. It can be stated that
feature models form a notational subset of ontologies. Both models are domain models.
Thus, feature models may be seen as views on ontologies.

28

5 Process Guidance
This chapter gives a brief overview of process guidance in general. It illustrates some
shortcomings of guidance methods and provides definitions and explanations for the most
relevant concepts of computer-based guidance.
The chapter is structured as follows: Section 5.2 provides information on process guidance
and lists some of the reported shortcomings and problems. Furthermore, it describes the
main parts of computer-based guidance. Section 5.3 gives a summary of this chapter.

5.1 Introduction
In the meantime, methods for RE are not only increasing in number, but also in complexity
and understandability. It is fairly hard for an average requirements engineer to cope with
all these methods and approaches. Apart from that, RE itself is a complex task that needs
the ability to abstract, refine and relate various information. As stated in [120], guidance
for RE needs to be far more knowledge intensive than in other activities. It is clearly
beyond the simple automated control of sequences of activities detached from the current
state of requirements knowledge which is provided by most methods in practice and by
process Software Engineering environments. Although RE tools may provide a valuable UI
and technology background, they lack for guidance support for the user. Thus, guidance
plays a crucial role in the RE process

5.2 Terms and Definitions
Since Requirements Engineering is a process, guidance in this area aims to support
this process. Process guidance is based on the process support paradigm of Software
Engineering [25, 91]. In [108] Pohl defines process guidance as a set of activities in order to
provide the process performers with assistance regarding allowed steps at any point during
process enactment. Guidance may be provided synchronously or asynchronously with
the actual process performance [72]. In contrast to process automation, process guidance
aims to support the process performer in choosing which task to complete next instead
of automatically accomplishing a certain task without user interaction. Thus, process
guidance falls in the category of prescriptive support [72]. Rather than dictating which
task to perform next, process guidance provides a set of applicable tasks that can be
dynamically selected depending on the current state and context of the process [52, 108, 116].

A process guide is a reference document for an intended process. It provides assistance for
process performers in carrying out that process [75]. According to Kellner [75], benefits of
process guides are:

• Facilitation of communication between process performers

• Support for tracking work by capturing process event information

29

5 Process Guidance

Task Artefact

Step Guidance

Flow Guidance

Figure 5.1: Step and flow guidance

• Increase efficiency of process performers

• Allows process performers to return to a partially-complete process

Process guides must not necessarily be computer based. Often printed guidebooks, stan-
dards, process and procedure manuals are used in industry [75]. According to [75], some of
the most important drawbacks of such documents are:

• Traditional guidebooks, even those made available on intranets, often lack key
information.

• Readers of guidebooks can’t easily navigate through the pages when their strategy of
understanding does not match the document’s flow.

• Guidebooks either contain a mixture of information for different audiences, or multiple
documents tailored to specific needs require a common process description.

• Guidebooks are not designed to store information about the status of a project.

• Version control, especially of example development documents, is not well supported.

• Distribution of a new version of a process to process participants is unreliable.

Since such documents are frequently not felt to be useful, computer based guidance is
becoming more and more attractive. However, the most important and central function of
process guides is to facilitate process understanding. Information technology can most
effectively provide this function in contrast to paper documents, etc.

Si-Said et. al. [120] describe the process of RE as decision-oriented. Thus, guidance
assumes that there is an intention to achieve. In order to fulfil this, support is needed.
Si-Said distinguishes between step guidance and flow guidance as illustrated in Figure 5.1
and explained in the following paragraphs.

5.2.1 Step Guidance
Guidance can always be offered when the current intention of the user has been recognised.
Thus, step guidance is always related to a step point consisting of a situation and an

30

5.3 Summary

intention. The situation describes the actual artefact (e.g. a goal or requirement), the
intention describes which activity shall be executed regarding this artefact, e.g. goal
refinement. The achievement of an intention causes a change of that artefact. For this
reason, step points are constructed from all reasonable combinations of two sets: the set of
all domain artefacts and the set of all intentions. Thus, step guidance provides guidance
in means of guidelines. They include instructions for every step point how to execute a
certain intention. After executing a certain activity the user is guided in the decision which
task to accomplish next. This is realised by the flow guidance, explained in the following
section.

5.2.2 Flow Guidance
Flow guidance supports the process performer to progress from one guidance point to
another, using a certain strategy. This strategy is a way to progress in a process and is
domain specific. Flow guidance is based on different guidelines and strategies. These
guidelines help to select a decision on how to progress further in the process [120].

5.3 Summary
Process guidance provides assistance for process performers in carrying out a process. Since
documents such as guidebooks, websites or procedure manuals are not felt to be useful,
computer based guidance is becoming more important. Especially the highly creative and
complex task of RE can benefit from support for requirements engineers.
Since RE is decision-oriented, any guidance support must acknowledge this. Thus, guidance
assumes that their is an intention to achieve in which the process performers is to be
assisted in. Step points (or guidance points) consist of a situation and intention. Step
guidance provides guidance in the form of guidelines at certain step points. Flow guidance
supports the process performer to progress from one guidance point to another.

31

32

6 State-of-The-Art and Related Work
This chapter investigates different approaches related to the context of our thesis and
provides an overview about ontological techniques that are used for RE tasks.
The chapter is structured as follows: we first give an overview about GORE in Section 6.1.
In Section 6.2, we discuss state-of-the-art in ontology-driven RE. Furthermore, we present
approaches related to guidance in RE in Section 6.3 and conclude with implications for
this thesis in Section 6.4.

6.1 Goal-oriented Requirements Engineering
The following sections discuss current GORE approaches. It starts with well-known
approaches and concludes with an introduction of further interesting GORE methods and
ideas.

6.1.1 The NFR Framework
The NFR Framework is one of the best known Software Engineering approaches regarding
GORE. It was proposed in [101] and further developed in [29], [84] and [23]. The
NFR Framework concentrates on representing and modelling organisational goals and
their relations to operational system components. Non-functional requirements (NFRs)
are put foremost in the developer’s mind [86]. Therefore, the framework provides a
process-oriented approach for dealing with NFRs. Furthermore, the approach deals with
ambiguities, trade-offs, priorities, selecting operationalizations, supporting decisions with
design rationale, and the evaluation of the impact of decisions.

The NFR methodology aims to support the process of requirement elicitation and decompo-
sition of non-functional requirements and the identification of possible operationalizations.
High-level goals are progressively refined to NFRs until constraints, objects and opera-
tions that are assignable to individual agents are obtained [73]. NFRs are systematically
modelled and refined to expose positive and negative influences on different requirement
alternatives. The main modelling elements in the NFR Framework are softgoals. The
framework supports three types of them:

• NFR softgoals represent non-functional requirements [86]

• Operationalization softgoals describe lower-level techniques to satisfy NFR softgoals
[86]

• Claim softgoals allows the analyst to record design rationale for softgoal refinements,
priorities, contributions, etc. [86]

In order to choose the requirement that best satisfies a given goal or set of goals, softgoals
may be refined using AND and OR refinements. Positive or negative contributions can be

33

6 State-of-The-Art and Related Work

Figure 6.1: Example of a Softgoal Interdependency Graph [117]

captured for softgoal interdependencies.

The NFR framework provides a main graphical modelling tool, the softgoal interdepen-
dency graph (SIG). SIGs represent softgoals, their interdependencies, softgoal refinements
(AND/OR), softgoal contributions (positive/negative), operationalizations and claims. The
framework comes with a label propagation algorithm to choose the best alternative for
satisfying the high-level non-functional requirements. This algorithm works down-top, re-
ceiving contributions from a number of softgoals refinement links. Finally, these alternative
operationalization can be analysed by the developer [86].

6.1.2 i*/Tropos
The agent-oriented modelling framework i* [144] was developed for modelling and reasoning
about organisational environments and their information systems. The framework can be
used for several purposes, e.g. Requirements Engineering and Software Process Modelling.
Since we are only interested in RE, we only refer to RE-relevant aspects in our description
of i*.

i* can be used for both early and late phases of RE. Therefore, it supports modelling
activities that take place before the system requirements are formulated. During the early
phase, the framework is used to model the environment of the system. The resulting i*
models help understanding why a new system is needed [86]. During the late phase of RE,
the i* models are used to check the system configurations regarding their satisfaction of
functional and non-functional requirements.
The main concept in i* is that of an intentional actor. These actors have intentional
attributes such as goals, beliefs, abilities, and commitments. Dependencies between these
actors allow one actor to achieve goals, perform tasks, and furnish resources he could not
achieve on its own [144]. Therefore, each actor can use various opportunities to achieve
more by depending on other actors. Actors are seen as strategic in the sense that they are

34

6.1 Goal-oriented Requirements Engineering

concerned about opportunities and vulnerabilities and in finding a balance in (re)arranging
their environments. The actors are used to represent the system’s stakeholders1 as well as
the agents of the new system [86].
Actors can be agents, roles, and positions. Whereas agents are concrete actors, systems
or humans with specific abilities, a role is only an abstract actor with expectations and
responsibilities. By separating these actors from each other, the social context of software
can be analysed more efficiently. The dependencies between actors are classified into four
types based on the subject of dependency: goal, softgoal, task, and resource.

The i* framework consists of two main modelling components. The Strategic Dependency
(SD) model and the Strategic Rationale (SR) model. The SD model captures all the
dependencies among actors in an organizational context and allows for their analysis. SR
models are used to describe stakeholders interests and concerns, and how they might be
addressed by various system configurations and environments [144]. This can be explicitly
described in terms of process elements, such as goals, softgoals, tasks, and resources, and
relationships among them. While the SD model only focuses on the external relationships
among actors, the SR model provides the capability to analyse the internal process within
each actor in great detail [86].

The SR process elements are related by decomposition links (AND/OR) and means-ends
links. Whereas decomposition links connect a goal/task with its components (softgoals,
subtasks, etc.), means-ends links are often used with goals to specify alternative ways
to achieve them [86]. Additionally, contribution links, similar to the ones in the NFR
framework, are used to specify levels of contribution to the softgoals. Softgoals are used as
a selection criteria to choose the system configuration that best satisfies the non-functional
requirements.

The i* meta-framework is described in the language Telos [22]. Thus, i* models can be
analysed in various ways (e.g. consistency checking between models). i* is the basis for the
requirements-driven agent-oriented development methodology Tropos [22]. Tropos guides
the user through four phases of RE:

• ”Early requirements, concerned with the understanding of a problem by studying
an organizational setting; the output of this phase is an organizational model which
includes relevant actors, their respective goals and their inter-dependencies.

• Late requirements, where the system-to-be is described within its operational envi-
ronment, along with relevant functions and qualities.

• Architectural Design, where the system’s global architecture is defined in terms of
subsystems, interconnected through data, control and other dependencies.

• Detailed Design, where behaviour of each architectural component is defined in
further detail.” [22]

1A person or organization that has a (direct or indirect) influence on a system’s requirements. Indirect
influence also includes situations where a person or organization is impacted by the system [47].

35

6 State-of-The-Art and Related Work

6.1.3 KAOS
The KAOS (Knowledge Acquisition in automated Specification [29] or Keep All
Objects Satisfied [133] methodology is a GORE approach. KAOS is described
in [133] as a multi-paradigm framework that allows to combine three levels of ex-
pression and reasoning: semi-formal for modelling and structuring goals, qualita-
tive for selections among alternatives and formal for more accurate reasoning when
needed [86]. A generic ontology forms a metamodel for requirements.

KAOS includes the concepts of objects, operations, agents and goals. Objects can be entities,
relationships or events in the composite system. Operations are input-output relations over
objects with pre-, post- and trigger-conditions. An agent is a kind of object that executes
operations. Agents are active components such as humans, devices, software, etc. Goals in
KAOS can be functional (referring to services) or non-functional (quality of services). They
are organised in the usual AND/OR refinement-abstraction hierarchies. A goal refinement
is completed when every subgoal can be realised by some individual agent assigned to it.
The requirement in KAOS is defined as a ”goal under the responsibility of an agent in the
system-to-be” [86] whereas expectations are defined as ”a goal under the responsibility of an
agent in the environment” [86]. KAOS supports different types of goals [29], for example
satisfaction goals that are functional goals concerned with satisfying agents requests.

A KAOS specification is a collection of goal model, object model and operation model. In
the goal model, goals are represented and assigned to agents. The object model is a UML
model that can be derived from formal specifications of goals. The operation model defines
various services the software agents provide [86].

6.1.4 GBRAM
The GBRAM method [7], [8] focuses on the initial identification and abstraction of goals
from various information sources. It supports the elaboration of goals (goal analysis) and
goal refinement until they are translated into operational requirements for the system
specification. GBRAM has been influenced by KAOS. It also uses the concept of agents
which are ”entities or processes that seek to achieve goals within an organisation or system
based on the implicit responsibility that they must assume for the achievement of certain
goals” [73]. The method provides goal-identification heuristics and a set of recurring
questions to guide the process and support the practitioner in it.

GBRAM distinguishes between achievement and maintenance goals. Goals are decomposed
into subgoals and finally refined to requirements with an operational definition. This
process is called operationalization. Goal obstacles are identified and defined in order to
specify which behaviour or other goals may prevent or block the satisfaction of a certain
goal. Another activity required by GBRAM during goal refinement is the identification of
goal precedence in order to denote that certain goals must be completed before others. The
method suggest asking questions like ”What goal(s) must follow this goal?” or searching
for agent dependencies [86].
GBRM also integrates scenarios as behavioural descriptions of a system and its environ-
ment.
These concepts are consolidated into a set of goal schemas [73]. These schemas provide
only a textual representation of the system requirements and their interrelation with the

36

6.2 Ontology-Driven Requirements Engineering

system goals. A graphical notation is not provided.

GBRAM is partly supported by GBRAT [6], a web-based requirements analysis tool and
serves as a medium for collaborative working. However, the tool only provides means to
specify, view and order goals gathered beforehand. In order to create a goal in GBRAT,
the user has to complete a form with all necessary information. It also supports the
specification of precedence relations.

6.2 Ontology-Driven Requirements Engineering
The following sections discuss current approaches for RE aided by ontologies. We first
discuss approaches that allow for building a requirements ontology from text documents
such as requirements specifications or other business documents. Afterwards, we discuss the
application of ontologies that aim to enable reasoning in RE. Finally, we give an overview
about approaches that support ontology-driven RE according to the definition in Section 8.

6.2.1 Mining Requirements Ontologies from Text
According to a market research study published by Luisa et al. in [93], the overwhelming
majority of requirements are written in natural language (NL). This is reasoned by the
fact that requirements are usually formulated by customers in natural language, even if it
is only for the initial conception until they are somehow dealt with by software developers.
Natural Language has the advantage to be understood by all stakeholders, albeit differently
by each due to the inherently ambiguous nature of natural language. However, it is of
main importance for the software developer to identify the concepts and relations used by
the writer who is an expert of that domain. These concepts and relations are meaningful
in order to understand the information exactly as purposed by the writer. This is where
text mining techniques can be applied. On the basis of extracted concepts and relations
from from NL documents, a domain ontology may be constructed, which is according to
[18] itself a valuable RE product. This process is called ontology learning.

Kof [78] proposes a method to build a domain ontology from requirement documents
provided in natural language. Therefore, terms are extracted from text and clustered,
a taxonomy is built. Associations between the extracted terms are identified and make
up together with the associated terms the domain model. While the formatting, tagging,
parsing and concept cluster building are automatic, the identification of cluster intersection
and taxonomy building as well as deciding which associations are sensible remains interactive
and, thus, need human interaction.
There is a good amount on literature addressing NL approaches for ontology learning (e.g.
[95], [28], [45], [19]). Although they do not explicitly concentrate on ontologies for RE, it
makes no difference for which application area or domain the ontology in the approach
is built. The content of the ontology always relies on the initial text document and its
content. Thus, these approaches can be used for building ontologies in the RE domain as
well.

37

6 State-of-The-Art and Related Work

6.2.2 Ontologies in Requirements Engineering
Ontologies in RE can be applied in various ways. They may either serve as domain
ontologies, capturing concepts and relations of the software domain and thus become a
valuable source for RE. Or they may be used to enable reasoning for different purposes,
e.g., goal satisfaction analysis. Furthermore, ontologies may support the RE process in
general, coming with additional software support such as process guidance or validation.
Castañeda in [21] identifies three different kinds of ontologies in RE:

• (Application) Domain Ontology represents the knowledge of the application domain
as well as business information required for software building. It also includes the
semantic relationships between the concepts. Domain ontologies help to identify
dynamic and changing requirements by understanding the domain.

• Requirements Ontology captures the core requirements and their dependencies and
relationships. This ontology can be used during requirements elicitation in order to
reduce ambiguous requirements and avoid incomplete requirements definitions. A
requirements ontology can later be used for validation and verification purposes.

• Requirements Specification Document Ontology describes the structure of requirements
specification documents in order to reduce insufficient requirements specifications.

Jureta propose in [68] a core ontology for requirements (named CORE) for capturing
basic stakeholder concerns during RE, namely beliefs, desires, intentions, and evaluations.
The ontology grounds on the foundation ontology DOLCE (Linguistic and Cognitive
Engineering). Jureta et al. proposes four relationships to relate instances of concepts
(speech acts) in CORE: refine, approximate, compare and evaluate. These relationships do
not relate requirements and are stored outside the ontology.

6.2.3 Ontologies for Reasoning in RE
Ying et al. [141] present an algorithm for detecting and resolving inconsistencies of domain
ontologies for RE. The domain ontology is considered to be a thesaurus containing all
the information about domain concepts and their role. Thus, inconsistency of domain
knowledge can be found by ontology consistency checking. The algorithm is based on
the Tableaux algorithm, consistency rules are formally defined and semantic checking
is proposed to resolve detected inconsistencies. However, consistency checking is only
performed regarding the logical consistency of the ontology. That is checking whether
the ontology is satisfiable, which means that there is no contradicting information in the
ontology.
Zhu et al. in [150] propose an ontology-based approach for inconsistency measurement of
requirements specifications based on a requirements refinement tree. Therefore, require-
ments are stepwise decomposed until a requirement can be realized. During this process
of requirements refinement, external requirements from the customers are extracted first.
In case this requirement is too complex to fit a problem pattern, it is decomposed and
smaller systems will cooperate later to realize that requirement. Then, each of this smaller
systems has external requirements which are captured and decomposed again, until no
further decomposition is possible. This refinement process is represented as AND/OR
tree. A domain ontology is used as a infrastructure for the refinement of requirements. If

38

6.2 Ontology-Driven Requirements Engineering

the subsystem requirements can be described by instances of the domain ontology, then
further decomposition is not necessary. The author’s goal are requirements specifications
that are then comparable due to iterative refinement.

Kassab and Daneva in [71] developed an NFR ontology in order to consider non-functional
requirements early in software development. The NFR ontology defines the meaning of
a set of concepts for the NFR domain. The ontology allows for capturing relationships
of NFRs with functional requirements in the form of association points. NFRs can be
further decomposed (AND/OR decomposition) and have operationalizations, that is a
refinement of a NFR into a solution in the target system (operations, functions, data
representations and architecture design decisions) that will satisfy the NFR. An individual
NFR may interact with another NFR and can hinder (negative interaction) or help in
(positive interaction) the achievement of other NFRs. This can be used to search for
operationalizations that have positive/negative effects on NFRs. The operationalizations
that are identified to have a negative effect on other NFRs sharing the same association
point with their parent NFRs, are used to identify potential conflicts.

Letier and Lamsweerde in [89] present a method for reasoning about partial goal satisfaction
for RE. The aim of the authors is to support decision-making during RE. Therefore,
they quantify the impact of alternative system designs on the degree of partial goal
satisfaction and non-functional goals. In contrast to quantitative reasoning techniques (low,
medium, high satisfaction) that are usually based on subjective criteria, their approach
focuses on objective criteria with some domain-specific physical interpretation. Therefore,
objective functions and quality variables are used to specify partial goal satisfaction in
a semi-formal but precise, application-specific way. Rules are provided to identify the
impacts of alternatives requirements options on degrees of goal satisfaction.

6.2.4 Ontology-driven RE
Kossmann et al. developed the OntoREM Metamodel, a comprehensive specification of the
ODRE methodology, including the underlying concepts in the RE domain and relationships
between them [79]. OntoREM consists of the OntoREM Metamodel ontology and a number
of domain ontologies. The concepts OntoREMGoalHierarchy and OntoREMRequirement
with their described relationships define “templates” of goals, soft goals and requirements
that are used when creating an instance of a goal, soft goal or requirement and are linked
to the relevant areas of available domain ontologies. These requirement instances represent
the main outcomes of OntoREM, i.e. the requirements specification for a given domain in
a given context [79]. OntoRem comes with a workflow for the RE process. With the newly
developed tool OntoRAT, requirements can be analysed regarding status, goal, softgoal,
requirements and traceability as part of the OntoREM process. All requirements are
managed with DOORS2 from IBM which has been integrated due to a more intuitive and
user-friendly interface.

Lee et al. [87] present an approach to elicit and analyze domain requirements based
on an ontology. The metamodel proposed is adopted from [100] and improved. The
central model element is a domain requirement which is separated into functional and

2http://www-01.ibm.com/software/awdtools/doors/

39

6 State-of-The-Art and Related Work

non-functional requirements. Functional requirements can be further refined to primitive
requirements which can also be stated as optional. Optional properties are realized as
variability in software product lines. Functional requirements can be interrelated and
non-functional requirements may influence the functional ones. However, relations are
kept quite simple. Common and variant points are also included in the metamodel. The
approach furthermore enables to analyze the completeness of requirements. Completeness
is reached when concepts and relations of the domain are a subset of the stakeholder’s
needs. This is detected by inherent relation.

In [69], Kaiya et al. propose a method that allows for requirements analysis of a functional
requirements specification (FRS). The method is based on a domain ontology and a
mapping to the requirement specification. The mapping between the FRS and the ontology
is assumed to be achieved by the requirements analyst. The ontology consists of a thesaurus
and inference rules. Three kinds of semantic processing are supported: (1) detecting
incompleteness and inconsistency, (2) measuring the quality of a specification w.r.t. its
meaning and (3) predicting requirements changes based on semantic analysis on a change
history. The completeness of a FRS is based on a previously modelled domain ontology.
Thus, everything from the domain must be part of the ontology. Since the domain ontology
is assumed to be complete, a complete FRS must be inconsistent, if the ontology contains
contradict relations.

Riechert et al. developed the ontology SWORE [115] to support the RE process semantically.
SWORE provides a semantic structure for capturing requirements information and linking
this information to domain- and application-specific vocabulary. The core of the ontology
was adopted from [130]. SWORE contains concepts for goal, scenario and requirement.
All of them are defined by stakeholders whose interaction are of main interest. In order to
allow the various stakeholder a collaborative elicitation of requirements, SWORE has been
integrated into the semantic collaboration platform SoftWiki [57].

6.3 Guidance in Requirements Engineering
Si-Said and Rolland developed MENTOR, a process guidance engine suitable for any
process governed by a ”way-of-working” [120]. MENTOR uses point guidance in a certain
situation where the engineer needs to make a decision on which task to accomplish.
Therefore, guidance points, consisting of a (meaningful) situation and decision, have been
defined. The guidance is governed with guidelines associated to each guidance point.
Flow guidance supports the engineer in advancing the RE process. It is also realised by
guidelines based on a number of different strategies. These guidelines help in selecting the
next guidance point. Although MENTOR was directed towards Requirements Engineering,
it is generic and can guide the enactment of any process modelled in terms of the process
meta-model proposed by [120].

Kavakli developed the GDC (Goal-driven Change) approach. GDC provides a systematic
way of reasoning about the RE process in terms of goal modelling and supports the user
by a process guidance framework. G-Map is a web-based software tool that supports the
assembling and execution of goal-driven methods. A methodology roadmap is used as
a metaphor to visualize alternative goal-driven ways of working. Web-based technology
enables the navigation within this roadmap. Guidance is provided through information

40

6.4 Implications for the Thesis

which shall support project participants in deciding which action to perform next. G-Map
leaves the control of process execution to the user and does not impose any constraints on
the process [73]. However, G-Map guides the user through different goal-driven methods
and thus, supports the application of goal-driven methods.

An interesting approach is described in [39]. Farefelder et al. developed a prototype of a
semantic guidance system that assists the requirements engineer in capturing requirements
by using semi-formal representation. Their approach aims to prevent specifying and finally
resolving incorrect requirements. Instead, the prototype automatically proposes at least
parts of the requirements by using information originating from a domain ontology. On
these suggestions the requirements engineer can build on to define requirements.

6.4 Implications for the Thesis
In the previous sections, we have highlighted a number of promising approaches from
research. The prevalent conclusion from these approaches is that goals can be used to
capture stable information and provide means to better structure, refine and manage
requirement. Ontologies have been shown to be applicable in many ways throughout RE.
Especially reasoning seems to be a powerful technique to address the completeness and
consistency of requirements specifications. The main aspects are summarized below:

• Goals pertain stable (in contrast to requirements) and can be reused.

• Relationships between goals and requirements can help to choose the best requirement
(goal satisfaction).

• Goals can be used to identify and resolve conflicts resulting from different conflicting
requirements brought in by stakeholders.

• Goals may be used to verify that the requirements satisfy the identified goals.

• Goals provide a meaningful criterion for sufficient completeness of a requirement
specification.

• Ontologies are useful for representing and interrelating requirements knowledge.

• The requirements model can be represented by an ontology.

• Ontology reasoning can be used to detect incompleteness and inconsistency of re-
quirements specifications.

• Ontological techniques allow for goal satisfaction analysis and further requirements
analysis.

Analysing the previous state-of-the-art also exposed some problems and shortcomings that
can be summarized as follows:

• The detection of conflicts between requirements is often only addressed regarding
refinement relationships or conceptual overlapping.

• Most techniques consider only binary conflicts (conflicts between two requirements).

41

6 State-of-The-Art and Related Work

• Relationships among requirements artefacts are not sufficiently captured and analysed.

• There is a lack of systematic support for detecting and resolving requirements
inconsistencies.

• Inconsistencies are not explained to the requirements engineer, options for resolving
them are not suggested.

• Current RE tools do hardly cover requirements traceability.

• There is no applicable guidance for requirements engineers during RE.

42

Part II

The Conceptual Solution

43

7 Challenges and Requirements for improved
RE

In this chapter, we define the problems and challenges we aim to tackle and also state the
requirements for our approach. We envision the proposed approach and describe the ideas
behind it. All of the concepts for OntoReq may also be used for different design tasks.
Therefore, we put much emphasize on design and implementation independence. Thus,
different design alternatives and technical solutions are possible. However, the technical
solution for OntoReq is explained in detail in Section III.

This chapter is structured as follows: Section 7 gives a summary of challenges for GORE
based on our problem analysis in Part I. We deduce requirements from these challenges and
give some short examples for their application. The conceptual solution for the OntoReq
approach is presented in Section 8. We also describe the scientific rationale and key solution
ideas based on the challenges and requirements given in Section 7. Here, we also clarify the
scope of our research, the requirements to be realised and the limitations of our approach
(Section 8). In Section 8.4, we define the requirement artefacts of OntoReq. Furthermore,
the various relationships between requirements and their application is exemplified by
short examples. Section 8.4 presents concepts for the knowledge repository. The various
requirements validation services provided by OntoReq are explained in depth in Section 8.5.
Here, we illustrate the verification of completeness and consistency and propose measures
for the quality of a software requirement specification. In addition, we briefly describe the
underlying goal satisfaction method and the semi-automatic selection of requirements that
best suit a specified purpose (e.g. goals, uncriticality). Section 8.6 provides a concept for
providing guidance for GORE within OntoReq. Finally, we give a summary in Section 7.3.
As already discussed in Part I of the thesis, experiences from industry, research and analysis
in the last two decades brought up a bunch of shortcomings and problems in Requirements
Engineering. At this point, we give a brief overview about the most significant challenges
in order to derive requirements for an enhanced Requirements Engineering process.

45

7 Challenges and Requirements for improved RE

7.1 Challenges for Requirements Engineering
We divide the challenges for RE into the following six categories:

1. Technological: problems based on changes or challenges in general technology
and/or RE, e.g. tools, IT technology, etc.

2. Organisation/Management/Communication: shortcomings due to business
(process) organisation, management of resources (e.g. time, money, human resources),
communication between stakeholders, customers and requirements engineers

3. Requirements: problems originating from the nature of requirements themselves

4. Requirements Engineering Process: challenges regarding the process of require-
ments elicitation, analysis, etc., structure of the process, methods, traceability and
guidance

5. Requirements Documentation: problems with the type of documentation, docu-
mentation structure, traceability, models, reuse, comprehensibility, etc.

6. Validation/Verification: challenges regarding checking specified requirements
during the RE process

We tried to consider representative challenges that have been reported in various papers
(referenced at the appropriate headwords) while also concentrating on the most meaningful.
However, this categorization and mapping of challenges does not claim to be complete.
Sometimes one and the same challenge occurs in different categories on purpose. This is
justified by the fact that a challenge affects multiple categories. For example, the complexity
of requirements must be treated in management, documentation and verification. Thus,
this challenge will later be translated to different requirements.
This categorization has the purpose to exemplify problem areas and increase understand-
ability of the challenges reported. References after the statements give a selection of the
most significant sources for the problem described.

Technological

• New types of requirements due to changing technology

Organisation/Management/Communication

• Comprehension of stakeholder’s needs [48]

• Requirement engineers may have difficulties in understanding the application domain
and business process [56]

• Conflicting or redundant requirements due to different stakeholders [9]

• Conflicting user/client views and requirements

• Inadequate knowledge of stakeholders [56]

• Insufficient information provided by stakeholders/ customers [56, 151]

46

7.1 Challenges for Requirements Engineering

• Imprecise and vague process descriptions in manual-based documentation of require-
ments [151]

• Inadequate or not applicable requirements management and configuration in manual
documentations

• Confirmation of requirements specifications

• Constantly changing requirements

• Management of complex requirements [15]

• Reusability of requirement information

Requirements

• Poorly specified NFRs (by stakeholders) [40, 151]

• Ambiguous NFRs

RE Process

• Poorly specified NFRs [40, 151]

• Error prone, incomplete, inconsistent and ambiguous requirements specifications [41]

• Constantly changing requirements

• Complexity of validation and changes of requirements [124, 119]

• Difficult verification of requirements

• Need to consider many factors in order to choose the best approach

• No adequate guidance

Requirements Documentation

• The single requirements specification document (manually produced paper documents)
is time consuming, expensive to produce and rarely maintained [41]

• Insufficient information provided by stakeholders/ customers [56, 151]

• Conflicting or redundant requirements due to different stakeholders [9]

• Conflicting user/client views and requirements

• Error prone, incomplete, inconsistent and ambiguous requirements specifications[41]

• Requirements Specifications (manually produced paper documents) are hard to read
and often not up-to-date [41]

• Classification of extensive data [56]

• No documentation of reasons and decisions behind solutions or changes

47

7 Challenges and Requirements for improved RE

• Functional requirements are engaged with difficult explanations and complicated
structure models which are difficult to reveal [60, 9]

• Correctness of SRS

• The level of detail required in a requirements specification differs greatly depending
on the type of product that is being developed [121]

• Reusability of requirement information

• Little guidance on how to achieve traceability of requirement information [113]

Validation/Verification

• Verification of NFRs is difficult [40]

• Verification of requirements is difficult

• Validation and changes of requirements are complex [124, 119]

These above mentioned challenges and shortcomings can be transferred to a number of
requirements for a systematic support in Requirements Engineering, independent of a
specific tool, technique or method. In the following we explain these requirements and
their deduction.

7.2 Deduction of Requirements for a Systematic Support for RE
We use the categories of RE challenges from the previous section to deduce the following
requirements. In order to use these requirements for different purposes (e.g., RE software
development, RE methods and techniques, etc.) we keep them as general as possible. Thus,
they must be further interpreted and refined for a specific purpose.

Requirements due to Technological Changes
Because of continuously arising new software technology spaces1, hardware and other
technical solutions, software development will always be faced with new or changing
requirements and new kinds (or types) of requirements that cannot be found in any
classification so far. The most important challenge is to become aware of such new types
of requirements. The next step would be to identify the concretely requirements and define
them, far better, to include them in existing requirement classifications. Thus, we define
the following requirement:

TechReq 1: New types of requirements must be identified and defined. They should be
integrated into existing requirement classifications.

Requirements Regarding Communication, Organisation and Management in
RE
Some major problems when eliciting requirements are communication specific. The main
cause lies in the comprehension between stakeholders (users, customers, etc.) and require-
ments engineers. Requirements from stakeholders are usually not communicated in the way

1A technology space is a working context with a set of associated concepts, body of knowledge, tools,
required skills, and possibilities. It is often associated to a given user community with shared know-how,
educational support, common literature and even conference meetings. [82]

48

7.2 Deduction of Requirements for a Systematic Support for RE

a requirements engineer can use them. Thus, he must interpret, interpolate and correct the
stakeholder requests. Here, misunderstanding often arises, inparticular if the requirements
engineer is not familiar with the application domain. These facts needs to be acknowledged
and supported with any possible method and lead to the following requirements:

OMCReq 1: The communication between stakeholders and requirements engineers must
be supported. For this, appropriate techniques, methods and other resources (e.g. time)
must be accessible. The gathered requirements must finally be validated and confirmed by
the stakeholders before software development proceeds.

OMCReq 2: Requirements engineers must be familiar with the application domain of the
software to be developed.

Further, it cannot be expected that stakeholders provide a complete list of requirements or
sufficient information at all. Obviously it is the responsibility of the requirements engineer
to identify and gather missing information. However, since this is not an easy task, this
activity should be supported by a software solution. Furthermore, the completeness and
correctness of requirement information can be improved if requirements information can
be reused. Therefore, we deduce the following requirements:

OMCReq 3: The identification of insufficient and incomplete requirements must be sup-
ported.

OMCReq 4: Requirements information shall be reused if possible.

Often several stakeholders are involved during RE. This naturally causes conflicting and
redundant requirements that must be treated.

OMCReq 5: Inconsistency in requirements and information about requirements must
be identified and resolved. This must be followed by (perhaps repeated) validation of
requirements.

The following requirements are based on challenges in requirements management. Re-
quirements are complex and often requirement specifications may contain hundreds of
requirements. Thus, it is of main importance to handle this complexity in an appropriate
way. Therefore, we define:

OMCReq 6: The management of complex requirements (e.g. data, information, relation-
ships, etc.) must be supported in an appropriate way. Stakeholder decisions and changes
must be captured. All available requirement information must be accessible at any time.

OMCReq 7: The management of a huge number of requirements must be supported.
This includes appropriate support for readability, understandability and documentation of
requirements, preparation of requirement specifications, validation and verification. The
documentation must be held complete and consistent. The requirement specification must
be up-to-date at any time.

Requirements are naturally changing during software development. New requirements may
be identified and must be integrated into the existing requirement specification. This needs
to be considered for requirement management:

49

7 Challenges and Requirements for improved RE

OMCReq 8: Change management must be supported. This includes capturing of changes
and their justification (reasons, decisions, etc.) and traceability of changes. The requirement
specification must be kept consistent after changes.

Requirements Regarding the Nature of Requirements
In the following, we list requirements resulting from the nature of requirements.
Requirements are usually classified into functional and non-functional (also quality-)
requirements. Since functional requirements can be specified more concrete and can be
assigned to metrics and test-cases, non-functional requirements (NFRs) are often forgotten
or specified insufficiently. Thus, we deduce the following requirements:

StrucReq 1: The identification of NFRs must be supported.

StrucReq 2: NFRs must be specified precisely and connected to soft-metrics and test-cases
for verification.

StrucReq 3: NFRs must be validated by stakeholders and verified if possible.

Requirements Regarding the Requirements Engineering Process
As already described in the previous chapter, RE is a highly complex task. Thus, improve-
ment of and support during the process itself will lead to better requirements specifications.
Here, we will give a list of requirements regarding the Requirements Engineering process.

Another reason for poorly specified NFRs may also be found in the Requirements Engi-
neering process. Process descriptions and tools often neglect NFRs due to their perceived
“vague” nature. Nevertheless, they are important, not without cause they are also called
quality requirements. Thus, they must be acknowledged and their identification and
specification must become a part of the Requirements Engineering process. Therefore, we
define the following requirement:

ProcReq 1: The Requirements Engineering process must include the identification and
specification of NFRs. The requirements engineer shall be supported in doing so.

Requirements Specifications are said to be error prone, incomplete, inconsistent and
ambiguous. Reasons therefore are manifold. Some of them can be treated by improving
the Requirements Engineering process. We deduce the following requirements:

ProcReq 2: The Requirements Engineering process must include activities for validation
of requirements. The requirements engineer shall be supported herein.

ProcReq 3: The Requirements Engineering process must be flexible enough to handle
changing or new requirements. This includes validation and verification activities at
different times within the Software Engineering lifecycle.

The need to consider several factors in order to choose the best configuration of requirements
must be treated during the Requirements Engineering process as well. Therefore, it
is necessary to capture sufficient information in order to be able to compare different
configurations and find alternative solutions. Thus, we deduce this challenge to the
following requirement regarding the Requirements Engineering process:

50

7.2 Deduction of Requirements for a Systematic Support for RE

ProcReq 4: Activities regarding identification of insufficient information, incomplete
requirements, etc. must be included during the Requirements Engineering process. The
Requirements Engineering process should provide opportunities to find the best suitable
configuration of requirements.

The Requirements Engineering process is a highly complex task. A huge variety of methods
and techniques exist but it is still up to the requirements engineer to choose and follow a
selected methodology. Therefore, we deduce the following requirement:

ProcReq 5: The requirements engineer must be guided in accomplishing the Requirements
Engineering process. This guidance must be understandable, complete, correct, meaningful
and connected to present requirements data.

Requirements for the Requirements Documentation
Manually produced paper documents as SRS have been proven to be time consuming,
expensive and rarely maintained. They can barely be kept up-to-date. Thus, we deduce
the first requirement:

DocReq 1: The creation of the SRS document should be at least semi-automatically and
easy to maintain. Requirements and all associated information must be (additionally)
electronically specified apart from the final document that is intended for a contract with
the customer.

One major problem of SRS reported in literature is their consistency and completeness.
Software Requirement Specifications are said to be error-prone and ambiguous. Functional
requirements are often engaged with difficult explanations and complicated structure
models which are difficult to reveal. Thus, the SRS will be incorrect. Therefore, we define
the following requirements.

DocReq 2: Requirements and all associated data must be easy to understand for all people
involved in the development of the software.

DocReq 3: The completeness of requirements must be supported. This involves the
identification of incomplete and insufficient information (e.g. requirements, requirement
descriptions, relationships, decisions, etc.).

DocReq 4: The SRS must be consistent. Inconsistencies must be detected and resolved.

DocReq 5: Reasons and decisions for changes, solutions, etc. must be captured in an
appropriate, accessible manner.

One minor challenge is the level of detail in a requirement specification that differs depending
on the product to be developed. Therefore, we infer the following requirement:

DocReq 6: The level of detail in a requirement specification must be adjustable.

Last, reuse of requirement information is hardly practised in Requirements Engineering.
One reason are requirements documentations that are not reusable or just not worth to
be reused due to insufficient information, understandability, and so on. The above listed
requirements for a requirement documentation already acknowledge this challenge and
provide means for a reusable requirement documentation. For reasons of completeness we
require:

51

7 Challenges and Requirements for improved RE

DocReq 7: The specified requirements and their associated information must be reusable
for any other task in the Software Engineering process, especially for another Requirements
Engineering activity.

A variety of methods and tools propose different traceability mechanisms, focusing on
different aspects of traceability, e.g. source, stakeholder or objects [113]. It is often the case
that requirements engineers treat traceability concerns in such a focused way, neglecting
important aspects. Ramesh in [113] constitutes that “traceability in many organizations is
haphazard, standards provide little guidance, and the models and mechanisms vary to a
large degree and are often poorly understood”. Thus, we define the following requirements:

DocReq 8: The life of requirements must be forward and backward traceable. This includes
their origin, specification, design, development and their subsequent deployment and use,
and “through periods of ongoing refinement and iteration in any of these phases” [49].

DocReq 9: The requirements engineer must be equipped with comprehensible traceability
guidelines.

DocReq 10: Requirements must be associated with relevant data to enable traceability.
This includes information for all aspects described in requirement DocReq 8.

Requirements regarding Validation and Verification
As already explained in Chapters 1 and 2, the validation of requirements is crucial for
providing correct requirements. Due to changing and newly arising requirements during
software development, validation must accompany the development process. At the end of
the Software Engineering process, requirements need to be verified. In contrast to validation,
verification is accomplished to check whether the previously defined requirements have
been satisfied. Requirements, especially non-functional requirements, are often found hard
to validate and verify. Therefore, we define:

VVReq 1: Requirements need to be validated before software development proceeds.

VVReq 2: The validation of requirements must be supported by software solutions.

VVReq 3: Requirements (including NFRs) must be assigned to test-castes for later ver-
ification. These test-cases must be correct, understandable and complete (regarding all
information required for testing, e.g. metrics).

7.3 Summary
In this chapter, we analyse problems and challenges in RE and classify them into six
categories: (1.) Technological, (2.) Organisation/Management/Communication, (3.)
Requirements, (4.) Requirements Engineering Process, (5.) Requirements Documentation
and (6.) Validation/Verification. These challenges are transferred to general requirements
for RE that may be interpreted for various aims (e.g., RE tool development, RE process
enhancement). We furthermore present a selection of these requirements we aim to tackle
within this thesis. We envision the proposed approach and describe the ideas behind it.
All of the concepts for OntoReq may also be used for different design tasks. Therefore, we
put much emphasize on design and implementation independence. Thus, different design
alternatives and technical solutions are possible.

52

8 The OntoReq Approach
With OntoReq we aim to address some of the shortcomings reported in the Sections 1
and 2. We demonstrate the application of ontology techniques to eliminate a bunch of
meaningful problems. The overall aims of our approach are to ensure the identification
of missing, incomplete and inconsistent data in the requirements specification and their
elimination as well as an improved quality of the SRS. We base our approach on the GORE
process and explicitly allow for the specification of goals and related relationships.

The chapter is structured as follows: we start with a list of requirements and limitations of
our approach in Section 8.1 which is followed by a description of how OntoReq supports
the RE process in Section 8.3. The metamodel of OntoReq is introduced in detail in
Section 8.4 and uses examples to illustrate the main concepts of it. This section is followed
by an explanation of the completeness, consistency and quality validations in Section
8.5. Furthermore, in Section 8.6 we conceptually describe an approach for guidance with
OntoReq. Finally, we give a summary of this chapter in Section 8.7.

8.1 Requirements
Most of the challenges we want to address with OntoReq are summarized in the categories
Requirements Documentation and Validation/Verification. However, we also picked require-
ments from the other categories. All of these requirements correspond to the requirements
defined in section 7.2.

• OMCReq 3, 5, 6

• StrucReq 1, 2

• ProcReq 1, 2, 4

• DocReq 3, 4, 5, 7

• VVReq 2, 3

8.2 Limitations
OntoReq aims to improve the internal completeness, consistency and quality of the
requirements knowledge captured by applying ontology techniques. Thus, the appropriate
analyses and validations are performed with respect to the ABox of the Requirements
Ontology and its metadata described in this chapter. The completeness validation checks
the completeness of requirements metadata, instead of making assumptions about whether
requirements are missing in the SRS. Additionally, we validate the consistency of the
requirements knowledge in a requirements configuration, but not the semantical consistency
and, thus, correctness of individual requirements descriptions. Furthermore, it is not our
aim to make any assumptions about the external completeness, consistency or quality of a
SRS (e.g. whether a use-case has been described properly, readability of requirements).

53

8 The OntoReq Approach

OntoReq supports a part of the RE process where problems and shortcomings have been
stated popular and of significant negative effect. However, the Requirements Engineering
process needs further inspection and probably support to address other known problems
and to include various models, such as use-case or test-case models. Furthermore,
we do not aim to provide seamless traceability of requirements for the whole Software
Development process, but the Requirements Engineering process. However, we provide suffi-
cient data structures and information to support any effort in realising seamless traceability.

8.3 From Textual Requirements To Formalisation
As already described in Section 1, the Requirements Engineering process can be divided
into early and late Requirements Engineering. Figure 8.1 illustrates our modification of
the RE diagram presented in Chapter 1. We extend the original RE diagram by attaching
three models to the appropriate phases and show how OntoReq supports these phases and
utilises these models. The textual, conceptional and formalized model are not explicitly
discussed in literature. However, from our investigation of the RE process and related
articles, we extracted this informal information and defined the appropriate models to
facilitate the understandability of our approach.
In the early phase (elicitation & analysis phases), the requirements are elicited by stake-
holder interviews, document inspection and so on. The identified requirements knowledge
is documented in natural language in documents before it is analysed and validated by
stakeholder and customer for a first time. Subsequently, this knowledge will be conceptual-
ized in some way, which differs from method to method. It is perhaps connected to domain
knowledge and inspected further to complete this knowledge. Use-cases and metrics might
be as well identified and described as test-cases, priorities and so on. We will refer to
this process phase as the conceptualization of the requirements knowledge. Usually, the
conceptual model is not developed any further. However, with OntoReq we seamlessly
connect to this conceptualization phase, the already gathered requirements knowledge
is further structured and interrelated and attached to the requirements metamodel, the
Requirements Ontology. The resulting formalized model allows for the validation of internal
completeness, consistency and quality as depicted in the figure below.
As can be seen in Figure 8.1, there is no hard border between the early textual description,
the conceptual model and the formalized model. OntoReq connects to the conceptual
modelling phase in the way that the Requirements Engineer may insert the already
conceptualized requirements knowledge into OntoReq. It is the basis for the formalisation
process of that knowledge. Alternatively, OntoReq may also be used right on from the
beginning to record early requirements artefacts. The Requirements Engineer may be
supported in all these tasks by a guidance system (see Section 8.6). Finally, the formalized
requirements knowledge will be validated by OntoReq.

8.4 Requirements Metamodel
All of the requirements artefacts (concepts, relations, attributes, ...) must be captured
in an appropriate way. According to the requirements for OntoReq, this requirements
repository must:

54

8.4 Requirements Metamodel

Elicitation Analysis Specification Validation

Textual
Description

Conceptual
Model

Formalized
Model

OntoReq

Figure 8.1: OntoReq support in Requirements Engineering process

• enable the management of complex requirements (data, requirements, relations,
attributes, decisions, metrics, a.s.o.)

• allow for accessing and manipulating all the information captured within

• allow a consistent specification of relevant information

• enable reusablity of any information captured and

• facilitate the verification of incompleteness and inconsistency

As already discussed in Chapter 3, ontologies can be applied as knowledge repositories
and facilitate the realisation of the above requirements. The ontology elements (e.g.,
classes, properties, instances of classes, relations between instances) can be used to specify
requirements artefacts and their relations and are important for the application of ontology
reasoning. We use an Ontology as metamodel for the specification of requirements, referred
to as Requirements Ontology. This Requirements Ontology provides a a terminology in
form of a TBox for all requirements artefacts and associated metadata described in Section
8.4. We define requirements artefact and metadata as follows:

Definition 13 (Requirements Artefact): Requirements artefacts comprise all concepts
related to requirements knowledge (e.g., goal, obstacle, stakeholder, use-case, test-case).

Definition 14 (Metadata): Metadata comprise all attributes for requirements artefacts
(e.g., priority, state, cost) and the relations between requirements artefacts (e.g., goal
contribution, refinements).

The metamodel is instantiated with concrete requirements knowledge, building the ABox.
The Requirements Ontology especially enables to follow GORE. In the following sections,
we briefly describe the requirements artefacts, their relations and metadata to be captured
in this metamodel.

55

8 The OntoReq Approach

Extended GORE Model for ONTOREQ
Goal-Oriented Requirements Engineering includes the identification (elicitation), negotia-
tion and specification of requirements and associated meaningful information through a
systematic iterative and co-operative process. Besides requirements, goals are of particular
interest and importance. Goals capture stable information and provide means to separate
stable from unstable information, which enables a better reuse. Furthermore, goals are an
excellent way to identify requirements and to finally decide for a requirements configuration
that satisfies these goals. Since GORE is the main background of our approach, we will
briefly describe and define the main concepts we intend to use in OntoReq.

Requirements Artefacts

Most GORE approaches differ in the concepts and terminology. To be consistent with
well-known and suitable GORE concepts, we adopted those that are widely used. However,
we also intentionally decided to omit certain concepts or definitions and we will briefly
explain the reasons here. We refer to all these concepts as “requirements artefacts” due
to the fact that all of these concepts are somehow related to requirements and to prevent
confusing it with the terminology “concept”. Additionally, we describe and define relations
between these requirements artefacts.

Definition 15 (Goal): Goals are declarative statements of intent to be achieved by the
system under consideration [129].

Goals will be used to identify, describe and correlate requirements. As already described in
Section 2, goals are formulated in terms of prescriptive assertions (as opposed to descriptive
ones) [147]; they may refer to functional or non-functional properties and range from
high-level concerns to lower-level ones [130]. In most goal-oriented approaches, the concept
of goal expresses the same type of information as requirements. The difference is the level
of abstraction. Goals explore why certain requirements are necessary for the system to be.

Transport customers from one
floor to another.

Improve customer satisfaction.

Transport customers quickly from
one floor to any other.

Increase range of products.

An elevator transports customers
from one floor to any other.

Customers shall not wait longer
than 10s for the elevator.

The elevator must provide audio
messages for the product category

at each level.

Goals

Requirements

Figure 8.2: Example of Goals and Requirements

In contrast to [130] we will use the term “goal” in a slightly different way. We adapt
the separation of stable and unstable information and allow refinements of goals from an

56

8.4 Requirements Metamodel

abstract level to a more concrete one. However, a goal does not describe the same type of
information as requirements. Where requirements are platform and application specific,
goals are independent of these and capture the most abstract intentions, e.g., “Improve
customer orientation.” without specifying whether this shall be a sign posts, information
signs or software guidance. These intentions also include business goals, e.g, “Improve
customer satisfaction.” Obviously a goal that has been refined over several steps provide
sufficient means to operationalize (transform) goals down to requirements to meet this goal
as illustrated in Figure 8.2. These requirements will be connected to the goals they are
intended to satisfy. Thus, we still keep the separation of stable information from unstable
and enable the tracing of goals and requirements. However, the main reason for this
decision is to add the concept “requirement” since this term is familiar to all Requirements
Engineers and additionally introduce “goal”. We also believe that a separation of goals
and requirements, even though minimal, facilitates validation, verification and traceability
of requirements.

Customers often do not only communicate their goals and intentions for a software, but
also their apprehension or possible predictable problems in regard of possible software
features or design solutions. We refer to this as “obstacles”.

Definition 16 (Obstacle): Obstacles are declarative statements of identified behaviour
that have a negative effect on the satisfaction of goals or requirements.

Lamsweerde defines obstacles as “declarative statements of behaviour not intended to be
achieved by the system under consideration.” [129]. In contrast, we define obstacles as
behaviour, actions or intentions that hinder the achievement of a goal or the realisation of a
requirement. Thus, they describe some kind of barrier for the development of the software
product. Usually, obstacles are not acknowledged during Requirements Engineering.
Nevertheless, they are important since one can derive requirements also from obstacles.
Like goals, obstacles can be refined in several steps. If a system might be hindered by any
functionality, it is necessary to transform this “negative goal” to requirements that ensure
that this behaviour will not occur as illustrated in Figure 8.3. Apart from that, obstacles
are of great help to define test-cases later on. Finally, the validation of the requirements
should show that the predefined obstacles will not influence the system. Obstacles will be
assigned to requirements.

Definition 17 (Risk): A risk is an event that threatens the success of an endeavour, e.g.,
of developing or operating a system. A risk is typically assessed in terms of its probability
and potential damage [47].

Risks can be used in RE for several purposes. They allow for deriving obstacles and
verification scenarios. Additionally, they can be a source to develop goals and requirements.
Risks may be associated with requirements if appropriate.

Definition 18 (Functional Requirement): A requirement concerning a result of be-
haviour that shall be provided by a function of a system, a component or service [47].

Functional requirements may be specified in different abstraction levels. They can be
refined from an abstract requirement to a more precise one.

Definition 19 (Non-functional Requirement): A non-functional requirement (also
quality requirement) is a requirement that pertains to a quality concern that is related to a
functional requirement [47].

57

8 The OntoReq Approach

Transport customers from one
floor to another.

Improve customer satisfaction.

Transport customers quickly from
one floor to any other.

Increase range of products.

An elevator transports customers
from one floor to any other.

Customers shall not wait longer
than 10s for the elevator.

The elevator must provide audio
messages for the product category

at each level.

Goals

Requirements

refines to refines to

contributes to contributes to contributes to

Limited space
on sales area.

Customers will leave
if transport requires

more than 60s waiting.
Obstacles

avoids

affects
affects

Figure 8.3: Example of obstacles

Non-functional requirements describe how the software shall operate or how a function is
executed [23]. According to the ISO Standard for RE [63], non-functional requirements
include efficiency, functionality, maintainability, portability, reliability and usability.

Definition 20 (Platform Requirement): Platform Requirements (also System Require-
ments) refer to requirements regarding the platform of the software, e.g., RAM size, Oper-
ating System, Hardware Architecture, etc.

Platform (or system) requirements may be treated as functional or non-functional re-
quirements. When specifying the speed of memory access, we could also specify this as a
functional or non-functional requirement. In order to facilitate the comprehensibility, we
decided to use platform requirements as another category of requirements.

Definition 21 (Process Requirement): Process requirements are constraints placed
upon the development process of the system [66].

Process requirements typically include requirements on development standards, guidelines
and methods which must be followed. Additionally, they may specify CASE1 tools that
must be used.

Definition 22 (Use-Case): A description of the interactions possible between actors and
a system that, when executed, provide added value. Use-cases specify a system from a user’s
(or other external actor’s) perspective: every use case describes some functionality that the
system must provide for the actors involved in the use case [47].

Use-cases will be assigned to the appropriate requirements whose functionality is described.

Definition 23 (Scenario): A textual description of a small part of a Use-Case that leads
to a desired (or undesired) result. A scenario describes a sequence of user actions in general
terms.

1Computer-aided software engineering

58

8.4 Requirements Metamodel

Figure 8.4: Requirements artefacts of the requirements metamodel

Scenarios are parts of use-cases and thus, will be associated to use-cases. They can also be
assigned to the relevant requirements.

Definition 24 (Metric): A functional description of values that can be measured, e.g.,
response time.

Definition 25 (Soft-Metric): A non-functional description of quality values that cannot
be easily measured, but still provide important information for the verification of non-
functional requirements, e.g., learnability, understandability.

Definition 26 (Test-Case): A description of possible interactions between actors and
the system to be tested for. Every test-case describes some functionality that the system
must (or must not) provide for the actors involved in the test case.

Definition 27 (Stakeholder): A person or organization that has a (direct or indirect)
influence on a system’s requirements. Indirect influence also includes situations where a
person or organization is impacted by the system [47].

Stakeholders can be associated to different requirements artefacts: requirements, goals,
use-cases, scenarios, test-cases, risks, obstacles, etc. Thus, they act “responsible author”.

Definition 28 (Source): The origin of a requirements artefact (e.g., document, guide-
lines, law).

A source specifies the origin of any information and allows traceability of information and
decisions. It can be assigned to several requirements artefacts, e.g., requirements, goals
and use-cases.

59

8 The OntoReq Approach

Requirements Relations

Interrelations) among requirements are often not considered or not adequately covered.
The most well-known relations between (two) requirements are refinement and conflict.
Although these relations are important, they are still not sufficient to document requirements
precisely. As introduced in Chapter 4, Feature Models capture the variability of software
features and their dependencies for Product Line Engineering. The most basic variability
mechanism is the notion of optional, mandatory, alternative (XOR) and OR (at least one
of the sub-features must be selected) features. Based on the benefits and shortcomings of
Feature Models for Requirements Engineering and the synergy with ontologies discussed
in Chapter 4, we adapt these variability mechanisms for the requirements relations and
map them to ontological elements. Additionally, we extend these relations to express
further dependencies between requirements and to allow scattered dependencies in spite of
hierarchical connections in Feature Models. This way, we maintain consistency with Feature
Models and enable future transformations of requirements configurations into Feature
Models and vice versa. Furthermore, we adopt the definition of a “(feature) configuration”
for requirements and define:
Definition 29 (Requirements Configuration, RC): A requirements configuration is
a set of requirements to be implemented. A requirements configuration is valid if and only
if it does not violate constraints imposed by the Requirements metamodel.

We propose seven relations between an arbitrary number of requirements, referred to
as “requirements relations” as well as two properties feasible for a single requirement,
referred to as “requirements attributes”. OntoReq provides more attributes which also
relate to other requirements artefacts (e.g., to use-case or goal). These are described at
the beginning of this section. Based on these relations and attributes, later decisions,
changes, manipulations, etc. can be inferred from this knowledge. It also facilitates the
semi-automatic suggestion of requirements that best contribute to a certain goal or to
provide specific suggestions for eliminating identified inconsistencies. In the following,
we will define these requirements relations and attributes and use simple examples for
their explaination. We use the notation ri to denote requirements and big letters to
define relations among requirements, e.g., S(r1, r2). The examples and their semantics are
summarized in Table 8.4.
Definition 30 (Mandatory Attribute): A requirement is mandatory if it is definitely
required by the system and must be realised.

Most of the requirements in a requirement specification will be mandatory, this means
they will definitely be chosen for implementation. This attribute is also important for
the validation of requirements regarding their consistency. For example, all mandatory
requirements must be included in the requirements configuration.
Definition 31 (Optional Attribute): A requirement is optional if it is in scope but not
necessarily required by the system. It is not mandatory.

Optional requirements are requirements that have finally been considered as not manda-
tory after stakeholder or customer discussions. Requirements that are optional should
nevertheless be included in the SRS. They might be considered necessary later and the
optional attribute might be changed to “mandatory”. Optional requirements may also be
suitable as alternative requirements where appropriate. Finally, they can still be chosen to
be implemented. We distinguish three forms of alternative requirements:

60

8.4 Requirements Metamodel

Definition 32 (Optional-Alternative Relationship, S): One requirement may be re-
placed by another; S(r1, r2), r1 6= r2.

Providing such optional-alternative requirements increases the expressiveness of solution
suggestions and the computation of goal satisfactions.

Definition 33 (Or-Alternative Relationship, A): A choice limited to at least one
requirement of a set of requirements; A(r1, r2), r1 6= r2.

Or-alternative requirements are adapted from Feature Models. Sometimes it is necessary to
provide a set of alternative requirements where at least one must be realised and the others
are optional, e.g., different options to allow for moving people from one floor to another
(elevator, staircase, escalator). It will often be the case that one requirement refines to
multiple alternative requirements. The example illustrates the latter case.

Definition 34 (X-Alternative Relationship (XOR), X): A choice limited to exactly
one requirement of a set of requirements; X(r1, r2), r1 6= r2.

X-alternative requirements are also adapted from Feature Models2. Often there is only
exactly one requirement from a set of alternatives that can be realised, e.g., the place
where the customer guidance system shall be placed (front, middle, back). Similar to
or-alternative, x-alternatives must not but may relate to a super-requirement and span a
hierarchy.

Definition 35 (Coexistence (Implication) Relationship, I): A requirement implies
(requires) one or more other requirements; I(r1, r2), r1 6= r2.

This binary implication relationship is adapted from Feature Models as well and eases the
effort to ensure consistency among requirements. It is often the case that some requirements
require others, e.g., an elevator requires space in the area where it shall be located. Thus,
elevator requires space.

Definition 36 (Conflict Relationship, N): A requirement r1 conflicts with another
requirement r2 if the fulfilment of r1 excludes the fulfilment of R2 and vice versa. A con-
flicting relationship must also specify a conflict reason (p). This relationship is symmetric;
N(r1, r2, p).

This triple relationship is an extension to the variability provided in Feature Models.
Although it is identical to the the exclusion relationship in Feature Models, the semantics
differs in OntoReq. The Requirements Engineer can specify any reason for a conflict, e.g.,
conflicting stakeholder intentions, violation of company rules, etc. by using the attribute
conflict reason. In contrast to Feature Models, OntoReq is able to capture much more of
this background knowledge which facilitates the traceability of requirements, decisions and
problems.

Definition 37 (Exclusion Relationship, E): The exclusion of a requirement by an-
other requirement. In contrast to the conflict relationship, this exclusion is non-symmetric
and may define an exclusion reason (p); E(r1, r2, p).

2In Feature Models they are simply called “alternative”. To enhance distinction we use the prefix “x-”
which refers to “xor”.

61

8 The OntoReq Approach

This relationship can be understood as a specialisation of the conflict relationship with the
difference that it is already known that this conflict cannot and shall not be solved. In
contrast to Feature Models, it is non-symmetric.

Definition 38 (Refinement Relationship): A requirement r1 refines a requirement r2
if r1 is derived from r2 by adding more details to it. r1 can be seen as an abstraction of
the detailed requirement R2. The triple relationship consists of the refinement source, the
refinement target and the refinement reason (p); R(r, r1, p).

The refinement of requirements is one of the main tasks in Requirements Engineering and
thus, needs additional support. Usually, the reason for the refinement is not documented
and thus, difficult to regain during the realisation phase. Often, the requirement is revised
by simply adding a new requirement and perhaps deleting the previous one which was the
source of the refinement. This way, important knowledge about the history of requirements
gets lost and traceability decreases significantly. But with refinement relations, traceability
is enabled.

Example of Requirements Relations and their Semantics

Below we extend the previous examplar by additional requirements and dependencies.

r0: The user shall be guided in product selection.
r1: The user shall be guided by voice.
r2: The user shall be guided by text.
r3: The user shall be guided by pictures.
r4: Each product must be listed with its location in the physical store.
r5: Customers can choose between product categories.
r6: Software maintenance tasks must be executed at night.
r7: Software must reduce energy consumption at night.

The table below provides single examples for each of the above described requirements
relations. However, it is not our aim to give a complete or consistent set of dependencies
between these requirements.

Requirements Metadata

In [42], Firesmith et. al propose a list of requirements metadata to ensure the completeness
of individual requirements. Metadata is data about that requirement rather than data
listed in the requirements specification. Firesmith identified the following metadata as the
most important and most likely to be mandatory:

• Project-Unique Identifier (PUID)
• Prioritization
• Rationale
• Source
• Status (may include more than one kind of status)
• Verification Method

Additionally, according to Firesmith et. al. the following metadata are usually missing:

62

8.4 Requirements Metamodel

Requirements Relationship or Attribute Corresponding Formula Fragment
r is mandatory. ∧r

r1 is optional. ∨r1

r1, r2, r3 x-alternative requirements of r (r1 ∨ r2 ∨ r3 ⇐⇒ r) ∧
∧

i<j ¬(ri ∧ rj)
r1, r2, r3 or-alternative requirements of r (r1 ∨ r2 ∨ r3 ⇐⇒ r)
r2 is optional-alternative of r1 ∨r1 ∨ r2

r6 is in conflict with r7 ¬(r6 ∧ r7)
r1 excludes r2 ¬(r1 ∧ r2)
r5 is coexistent with (requires) r4 r5 ⇒ r4

r1 refines r r1 ∧ ¬r

Table 8.1: Requirements relation and corresponding formula fragments

• Categorization

• Criticality to Customer

• Criticality to Users

• Estimated Cost Range

• Frequency of Execution

• Implementation Status

• Owners (e.g., owning producer for imple-
mentation)

• Prioritization

• Probability of Defects (in the implementa-
tion)

• Project-unique identifier for requirements
identification and traceability

• Rationale

• Risk (associated with implementation)

• Source (e.g., requirements trace to docu-
ment, goal, stakeholder)

• Status

• Stakeholders

• Verification Method

• Verification Status

• Validation Status

• Volatility (e.g., high, medium, low)

For OntoReq, we adapt most of the proposed metadata published in [42] and added three
additional metadata (obstacle, goal contribution, soft-metric) as shown below:

• Categorization (e.g., functional requirement, quality requirement, constraint)

• Mandate (specifies whether a requirement is optional or mandatory)

• Source (e.g., requirements trace to document, goal, stakeholder)

• Status (e.g., validated, rejected)

• Priority Range (e.g., low, medium, high)

• Obstacle (defines identified obstacles for a requirement)

• Estimated Risk Range (e.g., low, medium, high)

• Estimated Cost Range (e.g., low, medium, high)

• Refinement (specifies the reason for a requirement refinement)

63

8 The OntoReq Approach

• Contribution (specifies whether a requirement has a positive or negative contribution to
another requirenment)

• (Soft-)Metric (specifies a metric that can be used for verification, soft-metrics are used for
non-functional requirements)

• Verification Method (e.g analysis, demonstration, inspection)

Since the SRS consists of several different requirements artefacts, we can use an appropriate
subset of these metadata not only for functional or non-functional requirements, but also
for other requirements artefacts. For example, a goal should also specify its stakeholder
and a priority.

8.5 Requirements Validation Services
From a formal point of view, correctness is usually meant to be the combination of consis-
tency and completeness. However, from a practical point of view, correctness is often more
pragmatically defined as satisfaction of certain business or customer goals [151]. Zowghi in
[151] defines completeness “with respect to an external body of knowledge” and consistency
as an “internal property of a certain body of knowledge”. This external body of knowledge
can be understood as a metamodel, in our case the Requirements Ontology. Thus, we can
validate completeness regarding this metamodel (external body) and measure consistency
regarding the instantiation of the Requirements Ontology with concrete requirements
knowledge (internal property). Due to this causal relationship between completeness,
consistency and correctness, we can formally improve the correctness of requirements
knowledge by increasing its completeness and consistency. Although it would be desirable
to have a formal proof of correctness of a SRS, it may not be practical or may be too costly
[151]. Whether applying such formal correctness proofs or not depends on the degree of risk
the stakeholders are prepared to take [151]. According to Zowghi et. al., such proofs can be
carried out in many cases by informal inspections of the requirements and domain, involving
customer and stakeholders (stakeholder validation). Thus, we adapt the formal point of view
for correctness and define correctness as the combination of completeness and consistency.
This way, the main advantage of our approach lies in the capability of early identifying
those changes in the requirements knowledge that might introduce errors in the speci-
fication, thus achieving more precise validation and verification of the requirements later on.

In addition to completeness, consistency and correctness, another aspect of the SRS becomes
important. Firesmith in [43] states that “poor quality of individual requirements and the
requirements specifications that document them is a primary reason why so many projects
continue to fail [Standish 1994]”. Furthermore, Firesmith states that “the poor quality
of the requirements is typically not recognized during Requirements Engineering and the
evaluation of requirements specifications”. Thus, the quality of individual requirements is
another aspect we need to consider.
In [32], Davis proposes 24 criteria and formulas for measuring the quality of a SRS, namely:

• 1. Unambiguous
• 2. Complete
• 3. Correct
• 4. Understandable
• 5. Verifiable

• 6. Internally Consistent
• 7. Externally Consistent
• 8. Achievable
• 9. Concise
• 10. Design Independent

64

8.5 Requirements Validation Services

• 11. Traceable
• 12. Modifiable
• 13. Electronically Stored
• 14. Executable/Interpretable
• 15. Annotated by Relative Importance
• 16. Annotated by Relative Stability
• 17. Annotated by Version

• 18. Not Redundant
• 19. At Right Level of Detail
• 20. Precise
• 21. Reusable
• 22. Traced
• 23. Organized
• 24. Cross-Referenced

As can be seen from the list above, the quality of requirements requires explicitly com-
pleteness (2.), consistency (6.) and (7.) and correctness (3.) among others. However, some
other criteria refer to completeness and consistency as well. Therefore„ we will divide
Davis’ criteria into the following four categories and refer to them as Davis’ criteria:

Completeness
• 2. Complete
• 15. Annotated by Relative Importance
• 16. Annotated by Relative Stability
• 17. Annotated by Version
• 24. Cross-Referenced

Consistency

• 6. Internally Consistent

• 7. Externally Consistent

• 18. Not Redundant

• 19. At Right Level of Detail

Quality
• 1. Unambiguous
• 4. Understandable
• 5. Verifiable
• 8. Achievable
• 9. Concise
• 10. Design Independent
• 11. Traceable
• 12. Modifiable
• 14. Executable/Interpretable
• 20. Precise
• 21. Reusable
• 22. Traced
• 23. Organized

Other

• 3. Correct
• 13. Electronically Stored

Since correctness (3.) is already acknowledged by the categories completeness and con-
sistency, we do not need to take any more action therefore. Due to the fact that we
store the requirements as instantiation of the Requirements Ontology, we also satisfy the
criteria of electronically storing requirements (13.). We discuss the remaining criteria
and their realisation in the following appropriate sections and describe our approach for
validating the completeness, consistency and quality of requirements knowledge. Therefore,
we introduce completeness, consistency and quality rules (Sections 8.5.1 to 8.5.3) and
subsequently explain their application in OntoReq. Furthermore, we conceptually show
how these requirements validation services satisfy the requirements OMCReq3, OMCReq5,
StrucReq2, DocReq2, DocReq3, VVReq2 and VVReq3 documented in Section 8.1.

65

8 The OntoReq Approach

8.5.1 Completeness Validation
Zowghi et. al. distinguish between internal and external completeness [151]. Internal
completeness implies that no information is left unstated or “to be determined” and
information does not contain any undefined objects or entities [64]. In [42], Firesmith refers
to these data as metadata. External completeness is characterized by exhaustive information
in the SRS [151]. Thus, completeness is a relative measure and may be determined only
in relation to an external reference [151] that is provided by the Requirements Ontology.
According to [42], we use the following definition for the internal completeness of an
individual requirement:

Definition 39 (Internal Completeness (of Individual Requirements)): An indi-
vidual requirement is complete if it contains all necessary information to avoid ambiguity
and needs no amplification to enable proper implementation [42].

Definition 40 (External Completeness (of Requirements Specification)):
External Completeness is stated with regard to the whole SRS, which may include
various documents and models [42].

In this thesis, we concentrate on internal completeness and provide means to identify
and correct incomplete metadata of individual requirements and requirements artefacts.
Davis’ criteria demand that requirements must be annotated by relative importance (15.),
stability (16.) and version (17.). Furthermore, we already acknowledge (24.) and facilitate
the cross-referencing of requirements by appropriate requirements relationship in the
metamodel, explained in Section 8.4. The remaining criteria are realised by providing the
corresponding requirements metadata (e.g. priority) to be completed during instantiation
of the metamodel. In addition to Davis’ criteria, Firesmith defined a huge number of
metadata that is important for the completeness of requirements (see Section 8.4).
We transform these metadata to a set of 50 completeness rules3. Since we aim to check
our SRS against these rules, we also provide warning and error message and, most no-
tably, specific suggestions for the elimination of these completeness problems. We define
completeness rules as follows:

Definition 41 (Completeness Rules): Completeness rules comprise three parts: rule
definition, fault message and solution suggestion. The definition states all the requirement
artefacts that need to be specified in the SRS and their associated metadata that must (or
should) be specified. The fault message provides additional information of the concrete
problem for each rule that fails and the solution suggestion proposes knowledge-specific
opportunities for each incompleteness problem to be eliminated.

For readability reasons we list only two completeness rules as examples. The complete list
can be found in the appendix in Chapter A.2.

• AT LEAST ONE Goal must be specified. (rule description)
Error: “You did not specify any Goal. (fault message)
Please specify at least one Goal.” (solution suggestion)

3The term “rule” is not used in any technological context, but rather intends to describe requirements
for requirements completeness. Since this would be hard to read we use the term “completeness rules”
instead.

66

8.5 Requirements Validation Services

• ALL Functional Requirements (FR) should have a priority.
Warning: “You did not define a priority for the Functional Requirements [...].
Please choose a priority for the following Functional Requirements: [...].”

While the first rule ensures that all requirements artefacts are specified, the second rule
refers to the completeness of the metadata. As can be seen, we distinguish between
warnings and errors which is also indicated by the use of the terms “should” and “must”.
This categorization into rules resulting in warnings and those resulting in errors can be
used for different purposes, e.g., to realise different levels of completeness validation (e.g.,
weak and strong completeness) as part of a certain quality level to be achieved for the SRS.

We use the following extract of requirements knowledge illustrated in Figure 8.5. We use
FR as abbreviation for functional requirement.

FR1

FR2 Author1

Goal1
hasGoal

true
isMandatory

isAuthoredBy

Figure 8.5: Example Requirements Information for Completeness Rules.

Completeness Rules to be checked:
1. AT LEAST ONE Goal must be specified.

2. ALL FR should have a priority.

3. ALL FR must have an author.

4. ALL FR must state their mandate.

Expected Result:
• Requirements with missing priority: FR1, FR2

• Requirements with missing author: FR1

• Requirements with missing mandate: FR2

The above examples illustrates the specification of the metadata (goal, author and mandate).
While rectangles denote requirements artefacts that are interrelated with binary relations
(here hasGoal, isAuthoredBy), stars hold a boolean value for an unary relation (here “true”
for the property isMandatory). As we can see, the functional Requirement FR2 is not
related to a goal and does not specify its mandate. FR1 is not related to an author. This
information is missing, thus the above completeness rules are violated.

67

8 The OntoReq Approach

8.5.2 Consistency Validation
Inconsistencies in SRS are one of the most important problems Requirements Engineers
are facing (see Section 1.2). Reasons for inconsistencies are manifold: incomplete or faulty
requirements acquisition and specification, the evolution of goals, requirements, use-cases,
etc. from multiple stakeholders or sources, the refinement of requirements, and so on [132].
According to [64], [32] and [151], consistency is considered as the absence of conflicts in the
SRS. Furthermore, Davis’ criteria require the absence of redundancy (18.) and the right
level of detail (19.). While this definition may be adequate for an entire SRS, it is too weak
for a requirements configuration as defined in Section 8.4. When excluding requirements
from such a configuration, new inconsistencies may occur due to neglected relationships
between requirement artefacts, e.g., mandatory requirements that are not included in the
requirements configuration or requirements that imply others. Thus, we need to define
consistency in much stronger terms.
The consistency of a requirements configuration requires complete metadata for all re-
quirements artefacts in the SRS. Only if this can be assured, consistency checking can
be realised. Therefore, we need to check all requirements relationships and identify those
which are corrupted. For OntoReq and its proposed requirements artefacts, relationships,
metadata, etc. (see Section 8.4) these are in detail:

• Mandatory requirements in the SRS which are not included in the requirements
configuration

• Disregarded coexistent requirements (missing requirements that are required by
others in the requirements configuration)

• Excluding requirements in the requirements configuration (requirements that exclude
each other)

• Conflicting requirements in the requirements configuration (requirements that have
already been identified as conflicting)

• Compliance with or- and x-alternative relationships (minimum number of require-
ments included as specified by relationship)

• Requirements with negative contributions to others that may not be included

• Incomplete refined requirements in the requirements configuration (requirements that
have been refined, but instead of the refinement, the more abstract requirement was
included)

Hence, we define internal consistency as follows:

Definition 42 (Internal Consistency of a Requirements Configuration): A re-
quirements configuration is internally consistent if it is free of conflicting and excluding
requirements. All mandatory requirements and coexistent requirements must be included.
The requirements configuration must contain the most refined requirement of each particular
requirement refinement and comply to the alternative relationships (or- and ex-alternative).

Our approach is limited to the detection of conflicts regarding the use of the proposed
requirements relationship “conflict relationship”. Such conflicts are usually detected during
an early stakeholder validation and can then be incorporated in the SRS. It is not possible to
automatically detect semantic conflicts between requirements by automatically investigating

68

8.5 Requirements Validation Services

the requirements description. However, there might be some text-classification approaches
that can become meaningful in time.
From the above list, the reason for requiring completeness becomes obvious. If requirements
relationships are incomplete or faultily specified, the consistency checking might indeed
prove consistency, but under a wrong premise. Thus, it is also necessary to validate
consistency after any manipulation in the requirements configuration (e.g., adding or
deleting the requirements, changing metadata, etc.) since these changes are the most
significant reasons for introducing (new) inconsistencies [151].
Similar to the completeness rules we define rules for consistency.

Definition 43 (Consistency Rule): Consistency rules comprise three parts: rule def-
inition, fault message and solution suggestion. The definition states a condition of the
requirements configuration to ensure consistency. The fault message provides additional
information of the concrete problem for each rule that fails and the solution suggestion
proposes options for each inconsistency problem to be eliminated, based on the specified
requirements knowledge. A requirements configuration is consistent if all consistency rules
are satisfied.

We propose seven consistency rules (A.3), listing the following two as example:

1. ALL mandatory requirements must be included in the requirements con-
figuration.
Error: “The following requirements are mandatory and should be included as well:
[...].
Please include these requirements in your requirements configuration or revise their
mandate.”

69

8 The OntoReq Approach

2. Conflicting requirements must not be included in the requirements con-
figuration.
Error: “The following requirements have conflicts [...].”
“Please choose one of the following options:

Solve the conflict between the following requirements [r1 and r2, ...],
Revise the requirements relationship of [[r1 and r2],...],
Choose one of the alternative requirements instead of [r1]: [ry],
Choose one of the alternative requirements instead of [r2]: [ry],
Exclude the following requirements from the requirements configuration: [...].”

In contrast to the completeness rules, the solution suggestions of consistency rules need
various considerations to allow for recommending precise options for resolving detected
errors as illustrated in the example below.

We use the following extract of requirements knowledge illustrated in Figure 8.6. We use
FR as abbreviation for functional requirement.

FR1

FR2true

isMandatory isAlternativeTo

FR3
isInConflictWith

isMandatory

Figure 8.6: Example Requirements Information for Consistency Rules.

Chosen Requirements Configuration: FR1, FR3
Consistency Rules to be checked:

1. All mandatory requirements must be included in the requirements configuration.

2. Conflicting requirements must not be included in the requirements configuration.

Expected Result:
• FR2 is mandatory and must be included in the requirements configuration.

• FR1 is in conflict with FR3. Please choose from the following options:
- Solve the conflict between the following requirements: FR1, FR3.
- Revise the requirements relationship of FR1 and FR1.
- Choose one of the alternative requirements instead of FR3: FR2
- Exclude the following requirements from the requirements configuration: FR3

As can be seen in the example above, we can recommend several options to solve inconsis-
tencies. Due to the specified alternative relationships we can advise to exchange FR3 with
FR2 and thus, solve the conflict. Furthermore, we can suggest to exclude FR3 since it is
not mandatory. These decisions must be considered by background checks, that is, testing

70

8.5 Requirements Validation Services

Ri

Ri ?

Ri

Use Ri

Revision of requirements or relationship

FR1 isInConflictWith
FR3

FR3 isMandatory ?

isInConflictWith
FR3 ?

FR3 isCoexistentWith

isExclusionOf FR3 ?

Exclude FR3

as alternative

Figure 8.7: Decision tree for solution suggestion in the consistency example.

whether an option indeed eliminates a problem and does not introduce new inconsistency.
The decisions are depicted in Figure 8.7.
The simplified decision tree in Figure 8.7 shows the background tests for alternative
requirements. Alternatives are not restricted to be within the requirements configuration.
If a requirements outside the requirements configuration is suitable, it may be added
to the requirements configuration. The background tests allow for guaranteeing that
an alternative requirement is not in any conflicting state or is excluded by the original
requirement. Furthermore, a requirement may only be replaced with an alternative if it is
not mandatory or coexistent with any other requirement in the requirements configuration.
If a requirement is mandatory but may be replaced with an alternative (as one of the
solution options), the Requirements Engineer will be informed and further guided (e.g.
reminded to change the mandate of the original requirement to “optional”)

8.5.3 Quality Improvement of SRS
Due to the extensive requirements knowledge that can be captured in the Requirements
Ontology, it is possible to improve the quality of the final SRS. Although we cannot
guarantee the quality of external documents, we provide meaningful mechanisms to check
the internal quality and to support the Requirements Engineer in improving quality.
Therefore, we firstly propose quality validation criteria for requirements artefacts and
secondly, quality rules, similar to the completeness and consistency rules described above.

Quality Validation

Davis’ criteria about quality include a number of characteristics for the description (se-
mantics) of requirements (unambiguous (1.), understandable (4.), concise (9.), design
independent (10.) and precise (20.)). Since these criteria refer to the semantics of re-
quirements, we can hardly provide mechanisms for improvement. There may be methods
to enhance the description of requirements (e.g. structured language), but since such
techniques add up a lot of time for learning and require an extensive modification of
accomplishing Requirements Engineering, we decided not to use such techniques. However,
we discuss possible extensions of our approach that also include mechanisms to improve
these quality criteria.
As agreed on in most literature concerning the quality of SRS (e.g., [32]), requirements
must be validated after specification in order to ensure for example their satisfiability of

71

8 The OntoReq Approach

customer wishes, understandability and realisability. Thus, we introduce the attribute
“valid” in the Requirements Ontology for the above criteria that we cannot automatically
measure. This attribute may be assigned to challenges, goals, requirements, use-cases,
scenarios and test-cases. It is the task of the Requirements Engineer and stakeholders
to validate these artefacts manually and finally assign “true” or “false” for the attribute
“valid”. To enhance an overview about already validated requirements and those that still
require a validation, we additionally provide an attribute “validated” whose value is “false”
as long as it is not selected to be valid or invalid.
Additionally, some of these quality criteria are covered by the facts that ontologies are
reusable (21.), modifiable (12.) and provide means to organize and structure information
(23.).
Based on the available knowledge specified in the Requirements metamodel we extend
Davis’ criteria by the following:

Definition 44 (Goal Satisfaction): The satisfaction of goals comprises the avoidance
of negative goal contributions and the consideration of positive goal contributions.

Definition 45 (Low-risk): The realisation of low-risk requirements comprises efforts to
avoid requirements with high risk, high cost or obstacles.

Similar to the completeness and consistency rules, we define nine quality rules. These rules
are partly based on the remaining quality criteria described by Davis in [32]. Furthermore,
we define:

Definition 46 (Quality Flaw): A quality flaw is an undesired characteristic in the re-
quirements knowledge that decreases its quality.

Definition 47 (Quality Rules): Quality rules comprise three parts: rule definition, fault
message and solution suggestion. The definition states a condition of the requirements
configuration to improve quality. The fault message provides additional information of the
concrete problem for each rule that fails and the solution suggestion proposes options for
each quality flaw detected, based on the specified requirements knowledge.

In the following, we list the quality rules.

1. AT LEAST EACH most refined requirement must be described by a use-
case.
Error: The following requirements have no use-case assigned: [...]
Please choose one of the following options:
- Assign or extend an existing use-case for these requirements,
- Specify a use-case for the requirements and assign them to the appropriate require-
ments.

2. EVERY most refined requirement must have a test-case or metric as-
signed.
Error: The following requirements are not assigned to any test-case or metric: [...]
Please choose one of the following options:
- Assign or extend an existing test-case for these requirements,
- Assign an existing metric to the requirements,
- Specify a test-case and assign it to the appropriate requirement,
- Specify a metric and assign it to the appropriate requirement.

72

8.5 Requirements Validation Services

3. There should be no requirement that is a negative contribution to a goal
to be achieved.
WARNING: The following requirements are a negative contribution to a goal: [r1 on
the goal g1, ...]
Please choose one of the following options:
- Exclude the optional requirements [...] from the requirements configuration,
- Choose one of the alternative requirements instead of [r1]: [rx],
- Choose one of the alternative requirements instead of [r2]: [ry],
- Revise the goal satisfaction relationship.

4. There should be no optional requirement with a high risk or high cost.
WARNING: The following optional requirements have a high risk and/or high cost [
...]
Please choose one of the following options:
- Exclude the following optional requirements from the requirements configuration
[...]
- Choose one of the alternative requirements instead of [r1]: [rx], ...
- Revise the cost and/or risk of these requirements,
- Specify the requirements as mandatory (if reasonable).

5. ALL requirements must state their priority.
Error: The following requirements do not state their level of priority [...]
Please add the level of priority to these requirements.

6. ALL requirements must state their mandate (optional or mandatory).
Error: The following requirements do not specify their mandate [...]
Please add a mandate to these requirements.

7. Requirements with a positive contribution to a goal should be included
in the requirements configuration.
Warning: The following requirements are a positive contribution to a challenge or
goal: [r1 to g1, ...]
Please consider to include them in the requirements configuration.

8. Requirements must be complete.
Error: The following requirements miss relevant information [...]
Please execute the completeness validation and add missing information.

9. The requirements configuration must be consistent.
Error: The requirements configuration is inconsistent.
Please execute the consistency validation and resolve inconsistency.

We use the following extract of requirements knowledge illustrated in Figure 8.8. We use
FR as abbreviation for functional requirement.

Chosen Requirements Configuration: FR3
Quality Rule to be checked:

73

8 The OntoReq Approach

FR1

Goal1high

hasPriority

isAlternativeTo
FR3

isNegativeContributionTo

isPositiveContributionTo

Figure 8.8: Example Requirements Information for Quality Rules

1. There must be no requirement that is a negative contribution on a goal to be achieved.

Expected Result:
• FR3 is a negative contribution to: Goal1. Please consider any of the following options:

- Exclude the optional requirement FR3 from the requirements configuration,
- Replace FR3 with one of the alternative requirements: [FR2]
- Revise the goal contribution relationship.

Quality Measurement

The above quality rules involve the Requirements Engineer in improving the quality of the
SRS. Although these rules help to exactly identify where improvements are necessary, the
Requirements Engineer will not exactly know how important the modifications were for
the overall quality of the SRS. Therefore, we provide a measurement for the quality of the
SRS, based on Davis’ criteria and the additional criteria “uncritical” defined in Section
8.5.3
We decided to measure4 the criteria “internally complete”, “correct”, “verifiable”, “inter-
nally consistent” and “traceability”. Additionally, we measure the newly defined criteria,
“uncritical”.
In the following, we give a list of these quality criteria, their definitions and describe how
to measure and weight them in OntoReq. We define a quality metric Qi for each quality
attribute and a weight Wi that is used to weight each single quality attribute according to
its importance for the overall quality Q, explained at the end of this section. The weights
for the quality functions have been adapted from [32] where applicable. Davis justifies the
different weights due to the fact that some quality attributes are essential for the SRS and
others are generally less important. These weights might be modified for each project to
meet project-specific quality criteria.

Definition 48 (Internal Completeness of Requirements Knowledge): The re-
quirements knowledge in the Requirements Ontology is internally complete, if all necessary
requirements artefacts, metadata for requirements and requirements relationships have been
specified. Internal completeness is reached if the requirements configuration complies to all
completeness rules (see Section 8.5.1).

This definition follows up the Definition 25 of internal completeness for requirements in
Section 8.5.1. Quality requires the completeness of requirements knowledge. As already

4Some of the definitions and most of the computations given in [32] have been modified by us to keep
them up-to-date with today’s Requirements Engineering knowledge and to make them applicable for
practical use and ontology techniques.

74

8.5 Requirements Validation Services

mentioned, completeness is a relative measure and may be determined only in relation to
an external reference [151]. This external reference is the Requirements Ontology. Thus, we
define a target state (completeness of all metadata and requirements relationships) of the
ABox in relation to the TBox and also determine the actual state of completeness in the
ABox. We use this information to measure the internal completeness of the requirements
knowledge in the requirements configuration as follows:

Q1 = mc

mn

This formula measures the percentage of complete metadata for all requirements in the
Requirements Ontology. Therefore, we compute all incomplete requirements (requirements
with missing metadata) as explained in more detail in Section 10 and divide it by the overall
number of specified requirements. We use (mn) for the metadata that must be complete
(target state) and (mc) for the metadata that is indeed complete (actual state). Values
range from 0 (100% incomplete) to 1 (100% complete). Since internal completeness is of
main importance for reaching a high quality, we use a weight of 1 for internal completeness,
W1 = 1.

Definition 49 (Validity of Requirements Knowledge): The requirements configura-
tion is valid, if all individual requirements are valid (regarding their context and domain).

In Section 1 we defined correctness formally as the combination of completeness and
consistency which is also measured by the quality rules. However, we also discussed
that it is hard to validate the correctness of requirements semantics. This can only be
accomplished by stakeholder validations. Therefore, we acknowledge this aspect by the
above definition and measure the requirements that have been validated and set “valid” by
the Requirements Engineer. We use the following quality metric:

Q2 = rc

rn

where rc is the number of valid requirements and rn the number of all requirements in the
Requirement Ontology. Values range from 0 (100% incorrect) to 1 (100% correct). Because
requirements validity is so critical to project success, we use a weight of 1, W2 = 1 [32].

Definition 50 (Verifiable Requirements Knowledge): Requirements knowledge can
be verified if a test-case or a metric is specified for each requirement.

Requirements Knowledge can only be verified if it provides means to verify the individual
requirements specified within. Thus, it is necessary to provide options for each requirement
to be verified. For OntoReq, these are test-cases and metrics. We use the following function
to compute the percentage of verifiable requirements:

Q3 = rv

rn

where rv is the number of requirements with a test-case and/or metric and rn the number of
all requirements in the Requirements Ontology. Values range from 0 (100% unverifiable) to
1 (100% verifiable). Since we agree that the verifiability of requirements is not as important
as completeness and consistency and is usually not a source of errors in the SRS, we adopt
the weight of 0.7 as recommended by Davis in [32], W3 = 0.7 .

75

8 The OntoReq Approach

Definition 51 (Internal Consistency of Requirements Knowledge): The require-
ments configuration is consistent if it is free of conflicts [32, 63].

The consistency of the requirements knowledge is the percentage of conflict-free requirements.
The above definition is not as strong as the definition for consistency of the requirements
configuration given in Section 8.5.2. This is due to the fact that a requirements configuration
is a selection of requirements from the requirements specification and thus, can be checked
against more consistency rules (e.g., whether mandatory requirements have been included)
than the overall requirements knowledge. It must be noted that conflicting requirements
in the Requirements Ontology are actually no problem as long as they are not included
in the final requirements configuration (or eliminated beforehand). So we propose the
following function for measuring the internal consistency of the requirements knowledge in
the Requirements Ontology:

Q4 = rc

rn

where rc is the number of requirements without a conflict and rn the number of all
requirements in the Requirements Ontology. Values range from 0 (100% inconsistent) to 1
(100% consistent). In accordance to Davis, we weight this function with W4 = 1 due to its
importance for the overall quality of the SRS.

Definition 52 (Traceability of Requirements Knowledge): Requirements knowl-
edge is traceable if it facilitates the traceability of requirements artefacts, especially of
each requirement. A requirement(s) (artefact) is traceable if its life from analysis to
implementation can be followed. This requires at least the specification of its source, an
author responsible for the documentation, the goal it must satisfy, a use-case where it is
described and a test-case or metric for verification.

In order to measure the traceability of requirements knowledge in the Requirements
Ontology, we need to be able to trace each single requirement. If we want to follow the life
of a requirement, we need to start from its very beginning of life, its origin. Thus, we need
to document the source of a requirement (e.g., a customer wish, a document, law, etc.).
For possible callbacks we need to know who was responsible for the documentation of the
requirement, so we need to specify the author. Since every requirement should satisfy a
goal, this must also be traceable. A use-case is important to describe the requirement in a
specific situation or environment. This is crucial for comprehensibility and, later on, for
design. Finally, by using test-cases and metrics it is possible to verify the requirement after
its implementation. Via this chain it is possible to trace the requirement, for example from
a verification result up to the goal it was meant to contribute to. However, this chain is
only a minimum of knowledge that must be available for traceability. Of course it can be
extended, e.g., by adding the responsible person for design, realisation, test, etc. The more
information about a requirement’s “life” is provided and accessible, the better it can be
traced. For measuring traceability of the requirements knowledge, we check the presence
of these relations to requirements artefacts for each requirement. We use the following
function:

Q5 = rt

rn

where rt denotes the requirements that are traceable and rn is the number of all requirements
in the Requirements Ontology. Values range from 0 (100% untraceable) to 1 (100%

76

8.5 Requirements Validation Services

traceable). We use the weight W5 = 0.6 since traceability is not of main importance for
the quality of the SRS.

Definition 53 (Uncriticality of Requirements Knowledge): Uncritical require-
ments are requirements with low or medium risk or cost and without any obstacles.

If a SRS includes many requirements with a high risk, high costs or obstacles assigned
to them, it might be more critical than a SRS with low costs and few risks. Of course,
this measure alone is not sufficient to make assumptions of the final criticality of a
requirements configuration since the specified risks, costs and obstacles are only assumptions.
Nevertheless, we are certain that this value enhances actions to reduce or eliminate risks
and obstacles, allows for reviewing the costs of requirements and to reconsider and discuss
their benefit compared to their criticality. Thus, we measure the percentage of critical
requirements. It must be noted that risky and cost-intesive requirements only may become
a problem if they are included in the requirements configuration, which is checked by the
quality rules. Nevertheless, we will use the following function to give the Requirements
Engineer a feeling for the whole requirements specification:

Q6 = rr

rn

where rr is the number uncritical requirements and rn the number of all requirements in
the SRS. Values range from 0 (100% critical) to 1 (100% uncritical). We recommend to
weight this function with W6 = 0.5 since critical requirements do not affect the consistency
of the requirements knowledge.

These six quality functions can be used as single metrics for the above quality criteria
as well as for computing the overall quality of the SRS. For the latter, we propose the
following function:

Q =
∑6

i=1 WiQi∑6
i=1 Wi

Although we propose these quality measurements for OntoReq, they may be easily adapted
for any other knowledge that is based on any computable knowledge repository (e.g., a
database). Moreover, these quality measurements may be modified and applied in different
contexts and domains where quality plays a major role (e.g., safety-critical environments).

8.5.4 Goal Satisfaction
Lamsweerde in [131] discusses the problem of choosing alternative options for requirements
by executing qualitative reasoning about them. Requirements Engineers have to explore
the desired effects on the software on its surrounding environment and need to make
assumptions about this environment [131]. When operationalizing a system goal by
combining requirements, constraints, etc., different combinations might be envisioned and
we need to select the “best” one [131]. Hence, these tasks involve trade-offs among a variety
of (alternative and optional) requirements to find a requirements configuration that best
satisfies the specified goals. We use reasoning techniques to support this decision process.
Several approaches concentrate on (partial) goal satisfaction for RE. However, they differ
a lot from each other. Some of them propose goal satisfaction on a very basic level, using
two or three subjective levels of goal contribution (positive/negative, low/medium/high)

77

8 The OntoReq Approach

to specify the relation between requirements and goals (e.g., [46, 4]). Others come up with
complex mathematical formulas and objective criteria for specifying this relationship (e.g.,
[89]).
Although the use of contribution levels is strongly subjective, we decided to use this
method for OntoReq since it bears several advantages: (1) it is easy to understand by
the Requirements Engineer, (2) it requires little effort to specify contribution levels and
(3) it can be easily reasoned about. Thus, we intentionally decided against complex
goal satisfaction algorithms that require difficult additional data to be specified by the
Requirements Engineer. Certainly, using objective criteria for goal satisfaction and complex
formulas as in [89] would allow goal satisfaction on a quite high level, but this would take
much time for the Requirements Engineer to become acquainted with this technique and
to finally use it.
Given these facts, we propose two requirements relationships: positive and negative goal
contribution. A requirement can either be a positive or a negative contribution to a goal
(or none, if not specified). This allows for selecting the best alternative among requirements
regarding their goal satisfaction. If a requirement is, for example, optional and is also a
negative contribution to a certain goal, it should be reconsidered whether it must indeed
be included in a requirements configuration. Another case is a requirement which could be
substituted by an alternative requirement with a positive goal contribution. Given a set
of goals and a sufficient specification of goal contribution, OntoReq allows to generate a
requirements configuration that best suits this set of goals.

8.5.5 Automated Generation of Requirements Configuration
The idea of the goal satisfaction method described in Section 8.5.4 may be applied to any
other requirements artefact and relationship, even to a set of requirements artefacts. So
it is also possible to compute a requirements configuration that satisfies a predefined set
of attributes, e.g., lowest cost, lowest risk, highest priority, etc. By applying all of the
previously described consistency and quality rules, such a requirements configuration can
be guaranteed to reach the currently highest level of consistency and quality (regarding
the specified requirements knowledge). Due to the variety of requirements knowledge
captured in the Requirements Ontology, the Requirements Engineer can choose from a set
of the most important attributes and will be acquainted with an automated suggestion of
a requirements configuration that fits his needs. This configuration may be used as a basis
and further modified (adding or excluding requirements) by the Requirements Engineer.
We allow for a selection of an arbitrary set of the following constraints for the automated
generation of a requirements configuration :

• Level of Priority (High, Medium, Low)

• Level of Cost (High, Medium, Low)

• Level of Risk (High, Medium, Low)

• Best Achievable Goal Satisfaction

• Best Verifiability (Test-Cases, (Soft-)Metrics)

• Best Requirements Description (Use-Case, Scenario)

78

8.6 Guidance Support

8.5.6 SPARQL Queries
Finally, in order to allow generic queries about the instantiated knowledge in the Require-
ments Ontology (ABox), we provide a set of useful queries to the Requirements Engineer.
We propose the following queries whose result will be displayed:

• All functional requirements
• All non-functional requirements
• All platform requirements
• Requirements with a specific missing metadata (e.g., goal, use-case, etc.)
• Incomplete requirements
• Optional requirements
• Important requirements (high priority or mandatory)
• Risky requirements (requirements with a risk defined or high-cost or a conflict)
• Cost-intensive requirements (high cost)
• Validated requirements
• Not (yet) validated requirements
• Verifiable requirements (requirements with test-case or (soft-)metric)
• Requirements with missing verification method or metric
• Conflicting requirements
• Requirements with negative goal contribution

Most of the knowledge is explicitly captured in the ontology (e.g., validated requirements).
However, we provide some convenient queries that use reasoning, e.g., for risky or important
requirements. This list of queries is not meant to be complete. It can easily be extended
or modified if necessary.

8.6 Guidance Support
We distinguish two concepts of guidance support for the Requirements Engineer in OntoReq:
(1) support for the specification of requirements knowledge and (2) validation and error
elimination support. For reasons of completeness, the latter one has already been described
in Section 8.5. In this section, we conceptually describe how to provide Requirements
Specification Guidance (RSG) and describe the modelling of a Guidance Ontology.

8.6.1 Definition of a GORE process
In order to guide the Requirements Engineer with OntoReq, we first need to define the
tasks to be accomplished and the order of their execution. These tasks and their order
are depicted in Table 8.9. To allow reasoning about the current state of the requirements
knowledge and to identify completed and incompleted process steps, we define pre- and
post-conditions for each task. Thus, a task is completed if all the post-conditions are
satisfied. Since Requirements Engineering is an ongoing process, the use of these post-
conditions allows for setting an already completed task back to the status “incomplete” if
one or more of the conditions are not satisfied any more.
As can be seen in Table 8.9, we use six different types of tasks: (1) IdentificationTasks,
(2) AssignTasks, (3) RelationTasks, (4) ValidationTasks, (5) MeasurementTasks and (6)
RefineArtefactTasks. IdentificationTasks are needed to specify requirements and require-
ments artefacts (e.g., goal). Without any requirement or requirements artefact, the RE

79

8 The OntoReq Approach

process cannot be further executed. AssignTasks are used to complete the metadata about
requirements and requirements artefacts (e.g., adding a priority), whereas relation tasks
ask to interrelate the already existing requirements knowledge. ValidationTasks allow for
the validation of completeness, consistency and quality and the MeasurementTask for the
quality measurement of the requirements knowledge. Finally, RefineArtefactTasks enable
the refinement of any requirements artefact.

Structured chronological vs. Flexible Guidance

One major problem arising during Requirements Engineering is the order of tasks to
achieve. A variety of methods propose different guidelines and suggestions for this problem.
Suggestions are as manifold as methods and their aims are. So it is one of our aims
to guide the Requirements Engineer through the requirements specification process by
displaying a chronological order of tasks to be completed. The (correct) execution of all
these tasks guarantees internal completeness. Therefore, the completeness of the actual
requirements knowledge must be validated at several times in the background to generate
the tasks accordingly. However, we do not want to neglect the fact that a good number
of Requirements Engineers may have already found a Requirements Engineering process
capable for their project, company or situation. Therefore, we propose the guidance also
in such a way that it is possible to leave the recommended chronological path suggested
by the RSG and to accomplish instead all the displayed open tasks in the order of choice.
Nevertheless, the Requirements Engineer will still be supplied with all recommended tasks
and point guidance that is continuously refreshed and, thus, can return to chronological
guidance at any time. This may be realised by a complete list of open tasks hold by
the Guidance Ontology in the background. This list can be filtered and results in the
recommended tasks that follow the structured guidance. Thus, the Requirements Engineer
may always switch between accomplishing any of the possible open tasks in the order of
his choice or the recommended ones in chronological order.

80

8.6 Guidance Support

Step Name Precond. Recommended Tasks Postcond.

1 Stakeholder
Identification

- - IdentifyStakeholder (m)
- RefineArtefactTask (o)

- At least one Stakeholder

2 Goal
Identification

- - IdentifyGoalTask (m)
- AssignAuthorTask (m)
- RefineArtefactTask (o)

- At least one Goal
- Every Goal has author

3 Use Case
Identification

- - IdentifyUseCaseTask (m)
- AssignAuthorTask (m)
- RelateToGoalTask (o)
- RefineArtefactTask (o)

- At least one Use Case
- Every Use Case has author

4 Scenario
Identification

Use Case - IdentifyScenarioTask (m)
- AssignAuthorTask (m)
- RelateToGoalTask (o)
- RefineArtefactTask (o)

- At least one Scenario
- Every Scenario has author

5 Requirements
Identification

Stakeholder - IdentifyFRTask (m)
- IdentifyNFRTask (m)
- IdentifyPlatformReqTask (m)
- IdentifyProcessReqTask (o)
- AssignMandateTask (m)
- AssignAuthorTask (m)
- RefineArtefactTask (o)

- At least one FR
- At least one NFR
- At least one PR
- Every Requirements has mandate
- Every Requirement has author

6 Requirements
Completion

FR, NFR, PR,
Goal, Use

Case,
Scenario,

Stakeholder

- RelateToGoalTask (m)
- RelateToUseCase Task (m)
- RelateToScenario Task (o)
- RelateToRequirement Task(m)
- AssignPriorityTask (m)
- AssignRiskTask (o)
- AssignAuthorOptionalTask (o)
- RefineArtefactTask (o)

- Every Requirement has Goal
- Every Requirement is described

by Use Case
- Every Requirement is related to at

least one Requirement
- Every Requirement has Priority

7 Verifiability Req. - IdentifyTestCaseTask (o)
- IdentifyMetricTask (o)
- Identify SoftMetricTask (o)
- AssignTestCaseTask (o)
- AssignMetricTask (o)
- AssignSoftMetricTask (o)
- AssignAuthorOptionalTask (o)
- RefineArtefactTask (o)

- At least one Test Case
- At least one Metric
- At least one Soft-Metric

8 Completeness
Validation

 - CompletenessValidationTask (m)
- RefineArtefactTask (o)

- Requirements Metadata is
complete

9 Consistency
Validation

 - IdentifyReqConfigurationTask (m)
- ConsistencyValidationTask (m)
- RefineArtefactTask (o)

- Requirements Configuration
- Requirements Configuration is

consistent

10 Quality Validation - QualityValidationTask (m)
- QualityMeasurementTask (o)
- RefineArtefactTask (o)

- No Requirements quality flaws

Figure 8.9: GORE process steps (in collaboration with Tittel [126])

Step Guidance

Guidance can always be offered when the current intention of the user has been recognised.
Thus, step guidance is always related to a guidance point consisting of a situation and an
intention that form together a context [120]. Therefore, we define guidance points as a tuple
of a requirements artefacts (abbreviated as artefact) and a task: GP = <artefact;task>.
Thus, the situation describes the actual artefact, in our case for example a goal or
requirement. The intention describes which activity shall be executed regarding this
artefact, e.g., goal refinement. The achievement of an intention causes a change of that
artefact. For this reason, guidance points are constructed from all reasonable combinations
of two sets: the set of all requirements artefacts and the set of all intentions. Point guidance

81

8 The OntoReq Approach

provides guidelines. They include instructions for every guidance point on how to execute
a certain action5 [120].
The steps for these step guidance are listed in Table 8.9. For these steps, the requirements
engineer will be equipped with guidelines for each task to be accomplished.

Flow Guidance

The proposed flow guidance for OntoReq aims to support the requirements engineer in
choosing the most applicable task from a set of possible tasks. Additionally, we do not
want to provide support only for one specific GORE method, but enable the requirements
engineer to maintain his approach for GORE he is familiar with. At the same time, we
aim to support those requirements engineers that wish a chronological process for the
specification and validation of requirements knowledge which can be followed easily. Thus,
we decided to extract main GORE tasks that are common to all GORE methods. These
tasks can be ordered chronological and summarized to ten process steps, illustrated in
Table 8.9. These tasks are modelled according to the point guidance. The execution of
a task is either optional or mandatory. Each guidance point is connected with textual
guidelines, describing how to complete this task. The execution of a task leads to a new
guidance point in the guidance process. While the point guidance is visible to the user by
a represented list of artefacts and actions, the flow guidance remains invisible and is only
recognizable by a refreshed list of tasks. An example for flow guidance is given in Figure
8.10.

Improve customer orientation

Step 5: Requirements Identification

Step 1: Goal Identification

...

Step 6: Requirements Completion

Task 1: Identify Goal

Task 2: Assign Author to Goal Sam

Task 3: Refine Goal
Support Product Identification

and Localization

refinesTo

Customer Information must be
avialable as audio output

isPositiveContributionTo

...

isMandatoryTask 6: AssignMandateTask

...

isAuthoredBy

Figure 8.10: Example for Flow Guidance

Generally, we distinguish between optional and mandatory tasks. This distinction follows
the completeness and consistency rules described in Sections 8.5.1 and 8.5.2. Since these
rules distinguish optional from mandatory information to be captured, we address this by
suggesting optional and mandatory tasks. Figure 8.10 shows an example for flow guidance
where the process steps and related tasks are listed on the left side and the modification of
the requirements knowledge on the right side.

5Originally, Si-Said1997 in [120] uses the term “intention” instead of action. However, we consider “action”
as more appropriate due to the fact that intentions cannot be executed.

82

8.6 Guidance Support

8.6.2 Requirements Guidance Ontology
Many guidance approaches propose general guidelines but do not consider the actual
state of knowledge. Thus, they are rather informal instead of precisely defining a process.
Thus, in order to support the requirements engineer, we continuously need to update the
information about the actual requirements knowledge. Only with this information, it is
possible to generate specific guidelines for each guidance task to be achieved.
Therefore, we propose a Requirements Guidance Ontology (abbreviated as Guidance
Ontology) that links to the Requirements Ontology to allow for ontology-driven step-
and flow guidance for the Requirements Specification Process. This Guidance Ontology
must contain a copy of the requirements knowledge from the Requirements Ontology to
provide guidance based on the concrete state of the knowledge. Furthermore, it comprises
concepts that are necessary for guidance in general, e.g., defining pre- and postconditions
of guidance tasks. These concepts are explained in the following.

Ontology Structure

To enable point guidance for OntoReq, we need, additionally to the requirements knowledge,
the following information in the Guidance Ontology:

• Task Type: the type of action to be executed

• Artefact: the requirements artefact that the task should be performed upon

• ArtefactInState: holds instances of requirements artefacts (goals, requirements, use-
cases) that are in a certain state (complete, incomplete, valid, invalid)

• Identifier: individuals of this class are placeholders for tasks that are not connected
to any requirements artefact (this is the case for all identification tasks)

• Instruction: detailed instruction for the particular task and artefact

• Guideline: additional information on how to execute a particular type of task

• Task priority: importance of a particular task, predefined in the Guidance Ontology

These concepts are modelled as classes in the Guidance Ontology that can be instantiated
by individuals, e.g., a specific guideline or type of task. The following example illustrates a
possible instantiation for the TaskType RefineGoalTask.

• TaskType: RelateToGoalTask

• Artefact: Goal1

• Instruction: Relate goal Goal1 to any requirement.

• Guideline: Relate this goal to one or several requirements that contribute to the
satisfaction of this goal or hinder the satisfaction of this goal.

• Priority: 1

83

8 The OntoReq Approach

A complete list of the ontology classes is given in Figure 8.11. Furthermore, we propose the
following object properties additional to the object properties copied from the Requirements
Ontology:

• isPreConditionOf: links requirements artefacts to possible tasks executed on a specific
requirements artefact

• hasMandatoryTask/ hasOptionalTask: subproperties of isPreConditionOf ; relate
requirements artefacts to mandatory or optional tasks

• hasPostCondition: links requirements artefacts to the succeeding artefact

• hasIdentified: chain property (identifyArtefact ◦ hasPostcondition → hasIdentified)
that states that a requirements artefact has been identified

Table 8.9 summarizes all process steps, the associated tasks, pre- and postconditions.
All postconditions of one particular step must be fulfilled before the next step of the
chronological guidance will be displayed. Additionally, all open tasks shall be permanently
displayed. Optional tasks have an optional postcondition, which is neglected in the table
for comprehensibility.

Connecting the Requirements Ontology with the Guidance Ontology

When modifying the requirements knowledge (e.g., adding a new requirement), only the
information in the Requirements Ontology is changed. In order to generate meaningful
guidance steps and tasks, we need to connect the concepts of the Requirements Ontology
with concepts of the Guidance Ontology. There are two options: Mapping (also known as
Alignment or Matching) and Merging.
Ontology mapping is the process of determining correspondences (semantic equivalence)
between concepts. When mapping two ontologies, each of them remains independent.
Mapping functions define which classes of one ontology shall be mapped to another
ontology.
Ontology merging is similar to database merging (schema matching) and brings together
two conceptually divergent ontologies or the instance data associated to two ontologies [137].
Both, mapping and merging, is possible for connecting the Requirements Ontology with the
Guidance Ontology. However, both techniques have their advantages and disadvantages,
summarized in Table 8.2:

84

8.6 Guidance Support

Mapping Merging

+

Ontologies can differ in their structure

Requirements Ontology and Guidance
Ontology remain independent from each
other and can be further used

No mapping functions neccesarry

Information additional to the guidance
process can be specified

−

Implementation depends on Mapping
functions and thus, depends on the
Requirements and Guidance Ontology

No additional knowledge about guid-
ance process is neccesary

Equivalent concepts in both ontolo-
gies must be identical in their structure

The result of merging is a complex
ontology

Table 8.2: Advantages and disadvantages of mapping and merging, according
to [126]

85

Figure 8.11: Concepts of Guidance Ontology (Task names abbreviated)

8.7 Summary

8.6.3 Guidance Engine
Since we need additional software to manage and utilize the Requirements Ontology and
the Guidance Ontology and the knowledge captured within, we suggest a Java application
as Guidance Engine. This Guidance Engine either realises the merging or mapping of both
ontologies and provides all the functionality (step and flow guidance) described above. In
summary, this Guidance Engine must realise the following requirements:

• Suitable tasks must be displayed for each state of the Guidance Ontology to allow
for following a structured GORE process

• Information on how to successfully accomplish a task must be provided for each task

• The guidance process must define states of the Guidance Ontology where a set of
tasks is applicable

• The guidance tasks must be distinguished into optional and mandatory tasks

• Tasks must be prioritised

• Requirements and Guidance Ontology and the instantiated knowledge within must
be connected in a way that allows for reasoning process steps and specific tasks for
different states of the requirements knowledge.

8.7 Summary
This chapter provides a list of identified shortcomings and problems requirement engineers
and companies are facing. These challenges are captured in a taxonomy established on
basis of problem categories identified by us in various publications from industry and
research in the last two decades. We deduce these challenges into general requirements for
an improved RE process, that is a RE process without the identified flaws. Furthermore, we
use examples to exemplify their application for different purposes (RE process improvement,
development of guidance software, development of a RE tool). We also use a selection of
these requirements to specify the aim of our approach.
The main part of this chapter describes our concept for the application of ontology techniques
to improve and verify the internal completeness, consistency and quality of requirements
knowledge, referred to as OntoReq. Therefore we state the relevant requirements and
limitations. OntoReq is based on an ontology knowledge repository. This knowledge
repository serves as meta model (Requirements Ontology), providing a sufficient structure
to capture all relevant requirements artefacts and predefines a set of meaningful metadata to
formalize requirements knowledge and finally allow the validation of internal completeness,
consistency and quality. Additionally, we describe several requirements services based on
this Requirements Ontology. These services include the validation of internal completeness,
consistency and quality of requirements knowledge as well as the quality measurement of
the requirements knowledge based on established metrics. Furthermore, we conceptually
describe a method to automatically generate a requirements configuration regarding a set
of predefined attributes the Requirements Engineer can select from. We also describe the
application of ontology techniques to enable point and flow guidance for GORE.

87

88

Part III

The Technical Solution

89

9 Requirements Ontology

In this chapter, we describe the realisation of the Requirements Ontology TBox conforming
to the conceptual model and requirements stated in Part II. We introduce the various
ontology classes and properties and illustrate them in tables with metamodel fragments.
Ontology classes are represented in typewriter font with a capitalized letter at the
beginning (e.g., Requirement) and properties in italic font (e.g., isRelatedTo). For compre-
hensibility we neglect namespaces such as “rdf:” or “owl:” before ontology components.

The chapter is structured as follows: we first introduce the different ontology classes and
their relations in Section 9.1. Subsequently, we describe the concept of equivalentClasses
and their use in the Requirements Ontology in Section 9.2. This is follwed by the object
and data properties listed in Section 9.3. A summary is provided in Section 9.4.

9.1 Ontology Classes (Tbox)
The most important classes of the Requirements Ontology are: Requirement,
RequirementsArtefact and Attribute. Table 9.1 depicts these main classes and
their interrelations. Requirements are interrelated with each other and with other require-
ments artefacts by various objectProperty relations described in Section 9.7. Additionally,
they may have several attributes, e.g., an author or priority. These attributes are a part
of the important metadata and are necessary to improve the internal completeness of
requirements knowledge.

Requirement

Func onalRequirement NonFunc onalRequirement Pla ormRequirement ProcessRequirement

A ribute

LevelOfPriority LevelOfRisk LevelOfCost State Trigger Verifica onMethod

is a is a is a is a

is a is a is a is ais a is a

[1..*]

[0..*]

Figure 9.1: Requirements Ontology (Requirement and Attribute) and their Subclasses

The class Requirement splits into several types of requirements (see Figure 9.1). According
to the IEEE standard [63], we split the class NonFunctionalRequirement additionally
into AccessibilityRequirement, EfficiencyRequirement, PerformanceRequirement,
SecurityRequirement and UsabilityRequirement. Further ontology classes in the
Requirements Ontology are summarized in the following tables. Since owl:Thing is the
superClass of every ontology class, we neglect this fact in the tables and only concentrate

91

9 Requirements Ontology

on real superclasses.

Requirement A Requirement captures individual requirements and their description.
Superclasses –
Subclasses FunctionalRequirement, NonFunctionalRequirement, ProcessRequirement

and PlatformRequirement

Meta Model
fragment

Requirement

A ribute

has

[0..*]

[1..*]

[0..*]

[1..*]

isRelatedTo isRelatedTo

isRelatedTo

Stakeholder

isAuthoredBy

isAuthoredBy

RequirementsArtefact

Restrictions isAuthoredBy some Stakeholder
hasSource some Source
hasObstacle some Obstacle
hasScenario some Scenario
hasUseCase some UseCase
hasTestCase some TestCase
hasSoftMetric some SoftMetric
isNegativeContributionToGoal some Goal
isPositiveContributionTo some Goal
refinesTo some Requirement
isMandatory some boolean
isValid some boolean

Table 9.1: Requirements Ontology (Requirement)

As can be seen in Table 9.1, Requirements are related to many other ontology concepts. For
reasons of space, we summarize all relations to requirements and requirements artefacts with
the objectProperty “isRelatedTo”. A detailed description of the summarized relationships
(object and data properties) is given in Section 9.3.
The class RequirementsArtefact is further divided (see Table 9.2). These requirements
artefacts are related to requirements and capture additional knowledge that facilitates the
validation and traceability of requirements and decisions.
The class Attribute comprises further metadata, such as priorities, risks, state, triggers
and verification methods. These attributes are important for the completeness and quality
validations (see Table 9.3).
Goals and Obstacles can be refined to a goal (or obstacle respectively) or operationalised
to any requirements artefact, e.g., a requirement or use-case. This operationalisation can

92

9.1 Ontology Classes (Tbox)

Requirements-
Artefact

A RequirementsArtefact captures additional requirements knowledge that
can be related to a Requirement.

Superclasses –
Subclasses Goal, Obstacle, Story, SoftMetric and TestCase

Meta Model
fragment

RequirementsArtefact

isRelatedTo

Goal Obstacle So Metric StoryTestCase

is a is a is ais a is a

UseCase Scenario

is ais a

Source

is a

Restrictions isAuthoredBy some Stakeholder
refinesTo some RequirementsArtefact

Table 9.2: Requirements Ontology (Requirements Artefact)

be understood as a further development of a goal’s or obstacle’s statement. In contrast to
a refinement, it thereby changes the type of the requirements artefact. It is, for example,
often the case that requirements are operationalised from goals. This operationalisation
allows for tracing the development of requirements and requirements knowledge.

93

9 Requirements Ontology

Attribute An Attribute captures additional metadata about individual Requirements
and RequirementsArtefacts.

Superclasses –
Subclasses LevelOfPriority, LevelOfRisk, LevelOfCost, State, Trigger, and

VerificationMethod

Meta Model
fragment

A ribute

LevelOfPriority LevelOfRisk LevelOfCost State Trigger Verifica onMethod

is a is a is a is ais a is a

Low Medium High

is ais ais a is valid

boolean Test Model Checking

is ais a

Restrictions isAuthoredBy some Stakeholder

Table 9.3: Requirements Ontology (Attribute)

Goal A Goal captures a declarative statement of intent to be achieved.
Superclasses RequirementsArtefact

Subclasses BusinessGoal, ProcessGoal, SystemGoal

Meta Model
fragment

Goal

Requirement RequirementsArtefact

isRelatedTo isRelatedTo

isRelatedTo

is a

is(Posi ve/Nega ve)Contribu onTo

refinesTo
opera onalizesTo

opera onalizesTo

Restrictions isAuthoredBy some Stakeholder
refinesTo some Goal
operationalisesTo some RequirementsArtefact
operationalisesTo some Requirement

Table 9.4: Requirements Ontology (Goal)

The main types of requirement descriptions are use-cases and scenarios (see Table 9.6,
which define special interactions between actors and the system. Usually, they are modelled
as use-case diagrams, sequence diagrams and so on. The Unified Modeling Language (UML)
provides different types of diagrams for these purposes. However, we cannot store such

94

9.1 Ontology Classes (Tbox)

Obstacle An Obstacle captures a declarative statement of identified behaviour that
hinders the satisfaction of Goals or Requirements.

Superclasses RequirementsArtefact

Subclasses –
Meta Model
fragment

Obstacle

Requirement RequirementsArtefact

isRelatedTo isRelatedTo

isRelatedTo

is a

hasObstacle

refinesTo

opera onalizesTo

opera onalizesTo

Restrictions isAuthoredBy some Stakeholder
refinesTo some Obstacle
operationalisesTo some RequirementsArtefact
operationalisesTo some Requirement

Table 9.5: Requirements Ontology (Obstacle)

models in an ontology. Nevertheless they are important for Requirements Engineering.
Hence, we store the textual description of use-cases and scenarios in the Requirements
Ontology as annotation property of use-case instances and scenario instances respectively.
The concrete models remain outside in the external part of the Requirements Specification
and we link instances of Requirement and RequirementsArtefact to these models via
the hasSource object property. This way, we still provide sufficient means for a complete
specification of requirements and the validation purposes.

95

9 Requirements Ontology

Story A Story captures descriptions (UseCases and Scenarios) of the interactions
possible between actors and a system. A Story describes some functionality
that the system must provide for the actors involved in the UseCases and
Scenarios.

Superclasses RequirementsArtefact

Subclasses UseCase, Scenario

Meta Model
fragment

Story Requirement

isRelatedTo

describesRequirement

refinesTo

UseCase Scenario

is a

refinesTo

Restrictions isAuthoredBy some Stakeholder
refinesTo some Story
describesRequirement some Requirement
hasSource some Source

Table 9.6: Requirements Ontology (Story)

9.2 Equivalent Classes
OWL allows for specifying equivalent classes in ontologies, that are classes with specific
restrictions on properties or other classes. Although, it is possible to get the same
query results without equivalent classes, it is more convenient to define equivalent classes.
Especially if an equivalent class contains several restrictions, it is faster to query for
individuals of that class instead of querying for individuals of several classes with certain
properties. Furthermore, the ontology becomes far more intuitive and understandable for
humans. Listing 9.1 below illustrates two of these equivalent classes in the Requirements
Ontology.

Listing 9.1: Equivalent Classes

1 Class: InconsistentRequirement
2

3 EquivalentTo :
4 (isMandatory value ‘‘true ’’^^ xsd: boolean)
5 and (isOptional value ‘‘true ’’^^ xsd: boolean)
6

7 SubClassOf :
8 Requirement
9

10 Class: TraceableRequirement
11

12 EquivalentTo :
13 (hasSource some Source)
14 and (isAuthoredBy some Stakeholder)
15 and (isConnectedWithTestCase some TestCase)

96

9.3 Properties

16 and (isConnectedWithUseCase some UseCase)
17

18 SubClassOf :
19 Requirement

Instead of querying for individuals of the class InconsistentRequirement, it is also
possible to query for individuals of the class Requirement that have the data prop-
erties isMandatory and isOptional with the value “true”. In this case, individuals of
the class InconsistentRequirement are wrongly specified since no requirement can be
mandatory and optional at the same time. Similar to that, individuals of the class
TraceableRequirement can be queried easier than querying for requirements with the
above object property restrictions.

9.3 Properties
OWL distinguishes between two main categories of properties: object properties that link
individuals to individuals and datatype properties that link individuals to data values [53].
“An object property is defined as an instance of the built-in OWL class owl:ObjectProperty.
A datatype property is defined as an instance of the built-in OWL class” [53]. For a
property, one can define a domain and a range. A domain axiom “asserts that the subjects
of such property statements must belong to the class extension of the indicated class
description” [53]. The range axiom “asserts that the values of this property must belong
to the class extension of the class description or to data values in the specified data range”
[53]. Furthermore, properties have a direction, from domain to range. However, sometimes
it is useful to define relations in both directions, e.g., “persons own cars”, “cars are owned
by persons” (inverse property) [53].
In the following, we briefly introduce the object and data properties of the Requirements
Ontology, summarized in Table 9.7.

9.3.1 Object Properties
“An object property is a binary predicate used to state facts of the form subject predicate
object, where both subject and object are entities (i.e. individuals)” [59]. We use the object
properties in Table 9.7 to interrelate the various classes in the Requirements Ontology.
These object properties allow for interrelating the requirements knowledge and thus,
facilitate the derivation of solution suggestions, e.g., alternative requirements. This is
explained in more detail in Chapter 10. The following table lists the object properties of
the Requirements Ontology and their domains and ranges.

9.3.2 Data Properties
The requirements Ontology currently provides two data properties to specify the mandate
and validation status of requirements as shown in table 9.8.

97

9 Requirements Ontology

Domain Object Property/ Inverse Property Range
Requirement hasObstacle Obstacle
Refinement hasRefinementReason RefinementReason
Refinement hasRefinementSource Requirement
Refinement hasRefinementTarget Requirement
Requirement excludesReq/ isExcludedByReq Requirement
Requirement isAlternativeTo/ isAlternativeOf (symm.) Requirement
Requirement impliesReq/ isImpliedByReq Requirement
Requirement isInConflictWith (symm.) Requirement

refinesTo/ isRefinementOf
Requirements-
Artefact

operationalisesTo RequirementsArtefact

Requirement hasScenario Scenario
Requirement hasUseCase UseCase
Story describesRequirement Requirement
Requirement hasSoftMetric SoftMetric
Requirement hasSource Source

isAuthoredBy Stakeholder
Requirement hasTestCase TestCase
Requirement isNegativeContributionToGoal Goal
Requirement isPositiveContributionToGoal Goal

throwsErrorException ErrorException

Table 9.7: Object Properties in the Requirements Ontology

Domain Data Property Range
Requirement isValid boolean
Requirement isMandatory boolean
Requirement isOptional boolean

Table 9.8: Data Properties in the Requirements Ontology

9.3.3 Property Chains for automatic completion of requirements knowledge
OWL 2 allows for deriving a new object property fact by defining a property as composition
of two or more object properties in a chain that connect resources [16], [59]. Thus, the
entity in the object position of one fact (other than the last fact) is also the subject of the
following fact [59]. We use these object property chains in the Requirements Ontology to
support the requirements engineer in automatically completing the requirements knowledge
where it is semantically feasible. This is the case for requirements that are related to a
Use-Case or Test-Case and are refined to a more concrete requirement. Actually, this
refined requirement must be related to the same Use-Case or Test-Case. However, this
is often forgotten for refinements. Thus, we automatically add Use-Cases and Test-Cases
to refined requirements if there was such a relation for the more abstract requirement.

98

9.4 Summary

Therefore, we use object property chains and inverse properties, as illustrated below in
Listing 9.2.

Listing 9.2: Property Chains for automatic completion of requirements knowledge

1 ObjectProperty : isConnectedWithUseCase
2

3 Domain :
4 Requirement
5

6 Range :
7 UseCase
8

9 SubPropertyChain :
10 isRefinementOf o isConnectedWithUseCase

Listing 9.2 demonstrates the application of the inverse object property isRefinementOf of
the property refinesTo that is composed with the object property isConnectedWithUseCase.
This way, each requirement that is a refinement of a more abstract requirement which is
connected with a Use-Case will automatically be connected with the same Use-Case as
well.

9.4 Summary
This chapter describes the realisation of the Requirements Ontology metamodel as ontology
TBox conforming to the conceptual model and requirements described in Section 8.4.
We introduce the different ontology classes and their relations. The most important
classes of the Requirements Ontology are: Requirement, RequirementsArtefact and
Attribute. The class RequirementsArtefact comprises amongst others the subclasses
Goal, Obstacle, Requirement, Use-Case and Test-Case. Subsequently, the object and
data properties are listed that are needed to interrelate requirements artefacts. Metamodel
fragments illustrate the different ontology components and their usage.

99

100

10 Implementation Patterns for
Requirements Validation Services

While the TBox of the Requirements Ontology forms the Meta Model for the requirements
knowledge, the ABox holds the concrete requirements knowledge in form of individuals
(instances) of this Meta Model. In order to provide requirements validation services,
we need a knowledge base. This knowledge base is generated by reasoning about the
Requirements Ontology and builds the basis of the validation services. The OWL API1
[61] is a Java Framework that allows for manipulating ontologies (loading, changing,
saving, reasoning, etc.). Thus, we need additional software to manage and utilize the
Requirements Ontology and the knowledge captured within. Therefore, we implement the
Java application OntoReq that demonstrates the application of the concepts described
in Part II. OntoReq uses the OWL API and mainly includes methods that enable the
validation of the requirements knowledge. A protypic user interface illustrates that the
Requirements Ontology can be kept in the background, invisible to the user. The input,
manipulation and validation of requirements knowledge can be handled via this user
interface.

The following sections describe the technical solution for the requirements validation
services we suggested in Chapter 8.5. The chapter is structured as follows: first, we briefly
introduce the TrOWL reasoner in Section 10.1 that is used for our approach. Section 10.2
proposes two options to identify incomplete requirements knowledge. We first explain
a method to avoid closed world reasoning by finding empty property sets and secondly
illustrate how to use closed world reasoning with negation as failure. Section 10.3 describes
how to validate for consistency and Section 10.4 explains the validation and measurement
of the quality of requirements knowledge. Finally, Section 10.5 summarizes the chapter.

10.1 Reasoning
The OWL Web Ontology Language describes a language for ontologies, equipped with a
formal semantics. These semantics enable inferences about ontologies and their individuals.
Semantic reasoners are able to infer such logical consequences from a set of asserted facts
or axioms.
“OWL 2 is an extension and revision of the OWL Web Ontology Language developed by
the W3C Web Ontology Working Group and published in 2004. Like OWL 1, OWL 2 is
designed to facilitate ontology development and sharing via the Web, with the ultimate
goal of making Web content more accessible to machines” [53]. The Requirements Ontology
uses OWL 2 to describe the formal semantics of requirements knowledge.
“The OWL language provides three increasingly expressive sublanguages [(OWL Lite, OWL

1“A high level Application Programming Interface (API) for working with OWL ontologies, closely aligned
with the OWL 2 structural specification. The OWL API has widespread usage in a variety of tools and
applications.” [61]

101

10 Implementation Patterns for Requirements Validation Services

DL and OWL Full)] designed for use by specific communities of implementers and users”
[98]. However, the Requirements Ontology is classified to be in OWL DL and thus, provide
computational completeness and ensure decidability (all computations will finish in finite
time) of reasoning systems.

Currently, there are more than 20 reasoners available, differing in the reasoning algorithms,
the expressivity supported, rule support, reasoning speed and much more. However, as
explained in the following sections, the reasoners used for OntoReq must be capable to do
reasoning with OWL DL and OWL 2 and must support the Closed World Assumption and
NBox Reasoning. The TrOWL reasoner from the University of Aberdeen [3] complies to
these conditions and was chosen for OntoReq.

10.2 Completeness Validation
As already described in Sections 8.5 and 9, the Requirements Ontology as Meta Model
(TBox) is the fundament for our approach. It provides the necessary structure to specify
and organize requirements artefacts and to interrelate them.
When checking for the existence of specific information captured in the Requirements
Ontology, we are facing one major problem. Information that is not explicitly existing in
an ontology is only assumed as “unknown” and thus, true, rather than “not existing” and
false. This is due to the open world assumption (OWA) where a deductive reasoner will not
infer that the statement is false [139]. Hence, in order to identify missing information we
have to use the closed world assumption (CWA) which holds that any statement that is not
known to be true is false. But Requirements Engineering is a continuing process. During
the whole software development process it is possible that new requirements are identified
or existing ones have to be modified in any way. Thus, the requirement specification will
always be more or less incomplete and inconsistent, depending on the progress of the
project. So CWA alone neither seems to be a solution.
Summarized, we need OWA for the process of specifying requirements and CWA for
accomplishing completeness, consistency and quality validations of the Requirements
Ontology. Thus, we must switch between OWA and CWA. This way, we can for example
specify a number of requirements (OWA), then check for their completeness (CWA), identify
that we forgot to specify something (CWA), add some data (OWA) and check again for
completeness (CWA). Since we are interested in identifying information that is not existent,
we will use NBox reasoning (also called Local Closed World Reasoning) for this purpose
as introduced in [114]. A NBox (Negation As Failure Box) is a set of classes and object
properties, whose extensions are closed. If an individual is not inferred to be an instance
of a closed class, then it is regarded as an instance of the negation of that closed class
[3]. However, we will describe another way to retrieve missing information without the
necessity to close the ontology or any concepts within. We will refer to this method as
“bypassing CWA”.
In the following, we describe these two implementation patterns to support reasoning for
incomplete information and explain their advantages and disadvantages. Therefore, we
use the following brief example knowledge (ABox) fragment of the Requirements Ontology
(identical to the example in Section 8.5.1 and an extract of four completeness rules. We
use FR as abbreviation for functional requirement.

102

10.2 Completeness Validation

FR1

FR2 Author1

Goal1
hasGoal

true
isMandatory

isAuthoredBy

Figure 10.1: Example Ontology Knowledge (ABox) Fragment for Completeness Rules

Completeness Rules to be checked:
1. AT LEAST ONE Goal must be specified.

2. Every FR should have a priority.

3. Every FR must have an author.

4. Every FR must state its mandate.

We use the following prefix for each of the SPARQL queries listed below:
1 ro:<http:// www. semanticweb .org/ ontologies /2012/4/ ro.owl#>

10.2.1 Bypassing CWA Pattern by Finding Empty Property Sets
We can bypass closed world reasoning by using the OWL API for accessing the ontology
and a reasoner of choice (e.g., Jena, Pellet) to reason about the Requirements Ontology and
to identify missing information. One possible solution for bypassing closed world reasoning
is based on the following strategy exemplarily described by the identification of missing
requirements information. Therefore, we retrieve all requirements and for each requirement
we retrieve the relation of a specific owl:ObjectProperty. The quantity of these relations
for one individual and one kind of OWLObjectProperty can be accessed via the size()
method provided by the OWL API. It returns a set of individuals that are the values of
this property. Thus, an empty set is the evidence for missing information. The following
code snippet illustrates bypassing.

Listing 10.1: Bypassing Closed World Reasoning

1

2 String author = ‘‘author ’’;
3 ...
4 public static String identifyMissingInf (Set < OWLNamedIndividual >

individualSet , OWLObjectProperty property , String rA){
5 Set <String > resultList = new TreeSet <String >();
6 if (individualSet . isEmpty () != true) {
7 for (OWLNamedIndividual i : individualSet)
8 if(reasoner . getObjectPropertyValues (i, property . getNamedProperty ()).

getFlattened ().size () == 0)
9 {

10 resultList .add(i. getIRI (). getFragment ());
11 }

103

10 Implementation Patterns for Requirements Validation Services

12 }
13 String results = resultList . toString ();
14 System .out. println ("Error: The following requirements do not specify any "

+ rA + ":" + results);
15 return results ;
16 }
17 ...
18 identifyMissingInf (requirementInd , hasGoal , goal);
19 identifyMissingInf (requirementInd , hasPriority , priority);
20 identifyMissingInf (requirementInd , isAuthoredBy , author);

The method identifyMissingInf returns the values of an owl:ObjectProperty property
for each requirement in a set of owl:NamedIndividual (individualSet). If the returned
set of individuals is empty, we know that there is no requirement in the ontology with the
tested object property. These requirements are added to the resultList in line 10 which
holds all requirements with the missing property. In our example, we use this method to
test for the existence of goal, priority and author for each requirement. The String rA is
used to individualize the error message in line 14. We get the following result:

1 Error: The following requirements do not specify any goal :[FR2]
2 Error: The following requirements do not specify any priority :[FR1 , FR2]
3 Error: The following requirements do not specify any author :[FR1]

10.2.2 NBox Reasoning Pattern
Far more intuitive and convenient than bypassing closed world reasoning is the use of
SPARQL queries with negation as failure and CWA. This enables to explicitly ask for
information that is not existent in the Requirements Ontology. NBox reasoning allows for
closing single classes and properties in the ontology. Thus, “if an individual is not inferred
to be an instance of a closed class, then it is regarded as an instance of the negation of
that closed class” [3]. NBox reasoning has been proposed by [114]. Therefore, we need
the following prerequisites to identify missing requirements metadata: a reasoner enabling
LCWR (e.g., TrOWL [3]), OWL API and SPARQL 1.1. The strategy for identifying
missing information with CWA and negation is intuitive. We close all concepts in the
ontology we want to reason about and use SPARQL to build queries that extract all
requirements without a specific information.

Listing 10.2: Closing Axioms in the Requirements Ontology

1 File newFile = new File ("C :/.../ new_ro .owl");
2 OWLOntology newOnto = manager . createOntology (IRI. create (newFile));
3 for(OWLLogicalAxiom axiom: localRO . getLogicalAxioms ())
4 manager . addAxiom (newOnto , axiom);
5

6 OWLAnnotationProperty property = factory . getOWLAnnotationProperty (IRI.
create ("http :// TrOWL.eu/REL#NBox"));

7 OWLAnnotation annotation = factory . getOWLAnnotation (property , factory .
getOWLLiteral ("close", "en"));

8 OWLAxiom axiom = factory . getOWLAnnotationAssertionAxiom (requirement . getIRI
() , annotation);

9

10 manager . applyChange (new AddAxiom (localRO , axiom));
11 manager . saveOntology (newOnto , IRI. create (newFile .toURI ()));

Lines 1 to 4 illustrate how to create a new ontology and copy all axioms from the Require-
ments Ontology. To specify which class/property names to be closed in an OWL ontology,

104

10.3 Consistency Validation

TrOWL [114] uses the specified annotation property in line 6 and 7. Since we want to
retrieve all individuals of the class requirement with no author, we have to close this
owl:Class (line 8). We add this new axiom to newOnto (localRO is the owl:OntologyObject
of the original Requirements Ontology) and save the ontology in line 11).
The code snippet below finally illustrates the identification of missing requirements infor-
mation by utilizing Negation as Failure provided by SPARQL1.1.

Listing 10.3: SPARQL Query for Missing Requirements Information

1 SELECT ?r WHERE {?r a ro: Requirement . FILTER NOT EXISTS {?r ro:
isAuthoredBy ?a}};

This SPARQL query returns all requirements without the owl:ObjectProperty isAuthoredBy.

Listing 10.4: Identification of Missing Information

1 public Set <String > performQuery (String query , String var , String artefact){
2 Set <String > resultNames = new TreeSet <String >();
3

4 Query q = QueryFactory . create (query);
5 QueryExecution qe = QueryExecutionFactory . create (q, ontModel) ;
6 ResultSet rs = qe. execSelect ();
7 while (rs. hasNext ()) {
8 QuerySolution solution = rs.next ();
9 String name = solution . getResource (var). getLocalName ();

10 resultList .add(name);
11 }
12 for (String item : resultList){
13 System .out. println (item + "has no" + artefact +".");
14 }
15 return resultList ;
16 System .out. println (The following requirements do not specify any " +

artefact +": " + resultList);
17 }
18 ...
19 performQuery (queryReqHasGoal , "g", "goal");
20 performQuery (queryReqHasPriority , "p", " priority ");
21 performQuery (queryReqHasAuthor , "r", " author ");

This code snippet demonstrates the execution of the SPARQL query and the output of
incomplete requirements. The method performQuery executes a query query and binds all
results for the variable var. The variable artefact is used for the output of the appropriate
requirement or requirements artefact. The final result is identical to the one in listing
10.2.1.

10.3 Consistency Validation
Consistency checking and solution suggestions for inconsistent information is far more
complicated than the identification of missing information. Contrary to the completeness
validation, we need to consider various aspects for a consistency rule, e.g., a conjunction of
conditions that leads to inconsistencies. The same applies for the derivation of solution
suggestions that need to be inspected properly in order to avoid new inconsistencies. Con-
sistency validation is based on the requirements configuration. This is due to the fact that
usually not all specified requirements are finally chosen to be implemented. There might, for
example, be optional requirements or alternative requirements that will not be considered

105

10 Implementation Patterns for Requirements Validation Services

or treated much later in the project if resources are available. Choosing an (arbitrary)
subset of requirements is an error-prone task that often introduces new inconsistency
problems as a consequence of not considered or overseen requirements relationships. Thus,
we need to validate consistency regarding the requirements configuration.
We generate the requirements configuration by adding all the requirements chosen by
the requirements engineer to a set of requirements as shown in listing 10.5. Here, we
demonstrate a simplification of this task. In OntoReq we use appropriate functionality to
ask the requirements engineer to choose the relevant requirements and save them as a Set
of individuals.

Listing 10.5: Generating the Requirements Configuration

1 OWLNamedIndividual fr1 = factory . getOWLNamedIndividual (IRI. create (prefix +"
FR1"));

2 OWLNamedIndividual fr2 = factory . getOWLNamedIndividual (IRI. create (prefix +"
FR2"));

3

4 Set < OWLNamedIndividual > chosenRequirements = new HashSet < OWLNamedIndividual
>();

5 chosenRequirements .add(fr1);
6 chosenRequirements .add(fr2);

We use the following example knowledge (ABox) in the Requirements Ontology:

FR1

FR2true

isMandatory isAlternativeTo

FR3
isInConflictWith

isMandatory

Figure 10.2: Example Ontology Knowledge (ABox) Fragment for Consistency Rules

Consistency Rules to be checked:
1. All mandatory requirements must be included in the requirements configuration.

2. Conflicting requirements should be avoided.

Listing 10.6 demonstrates a check whether all mandatory requirements in requirementSet
have been included in the requirements configuration reqConf (lines 2-6). Those, which
are not included are added to mandatoryResultNames (line 7).

Listing 10.6: Check for Inclusion of All Mandatory Requirements

1 public void isMandatoryInSubset (Set < OWLNamedIndividual > requirementSet , Set
< OWLNamedIndividual > reqConf){

2 if (requirementSet . isEmpty () != true) {
3 for (OWLNamedIndividual i : individualSet1)
4 if(reasoner . getObjectPropertyValues (i, isMandatory . getNamedProperty

()). getFlattened ().size () != 0)
5 {
6 if(reqConf . contains (i)== false){

106

10.3 Consistency Validation

7 mandatoryResultNames .add(i. getIRI (). getFragment ());
8 consistencyCounter ++;
9 }

10 }}
11 if (mandatoryResultNames .size () != 0)
12 System .out. println ("- The following requirements are mandatory and

should be included in the requirements configuration : " +
mandatoryResultNames);

13 }

The following listings illustrate how to identify conflicting requirements in the requirements
configuration and how to calculate solution suggestions to handle possible conflicts.

Listing 10.7: Identification of Conflicting Requirements

1

2 conflRequirementsList = performQuery (queryConflReq , "r", " conflReq ");
3

4 String chooseAltReqSugg = "- Choose one of the following alternative
requirements instead of ";

5

6 public void isInConflictWithInSubset2 (Set < OWLNamedIndividual >
requirementSet , Set < OWLNamedIndividual > reqConf){

7 if (requirementSet . isEmpty () != true) {
8 for(OWLNamedIndividual a : requirementSet){
9 Set < OWLNamedIndividual > referencedIndividuals = new HashSet <

OWLNamedIndividual >();
10 referencedIndividuals = reasoner . getObjectPropertyValues (a,

isInConflictWith . getNamedProperty ()). getFlattened ();
11 for (OWLNamedIndividual b : referencedIndividuals){
12 if(reqConf . contains (b)== true){
13 System .out. println ("- Error : " + a. getIRI (). getFragment ()+" and " + b.

getIRI (). getFragment () + " are specified as conflicting .");
14 System .out. println (" You have the following options : ");
15 System .out. println (" - Revise the requirements " +a. getIRI ().

getFragment ()+ " or " + b. getIRI (). getFragment () + " to solve the
conflict ");

16 System .out. println (" - Revise the requirements relationship (conflict)
between " +a. getIRI (). getFragment ()+ " and " + b. getIRI ().

getFragment ());
17 if (isMandatory (a) == false && isCoexistent (a) == false)
18 System .out. println (" - You may choose to delete the optional

requirement : " + a. getIRI (). getFragment ());
19 consistencyCounter ++;
20 }
21 if (getAlternatives (a, reqConf , individualSet1). isEmpty ()== false &&

impliesReq (a) == false)
22 System .out. println (chooseAltReqSugg + a. getIRI (). getFragment () + ": "

+ getAlternatives (a, reqConf , individualSet1));
23 }}}}

Listing 10.7 demonstrates the identification of requirements with a conflict relationship
in the requirements configuration reqConf. In line 8 - 10 we reason for all conflicting
requirements. In line 11 - 12 we check for each requirement with a conflict specified whether
it is contained in the requirements specification reqConf. If this is the case, an error
message is displayed with concrete information. Afterwards solution suggestions are shown
that are based on the decision tree in Figure 8.7. Besides the always applicable solution
suggestions in lines 13 - 16, we check in line 17 - 19 for each faulty requirement whether

107

10 Implementation Patterns for Requirements Validation Services

it is mandatory or part of an implies relationship. If not, we can suggest to exclude it
from the requirements configuration and the appropriate suggestion message is displayed
(line 16). Additionally, we check in line 21 - 22 for alternative requirements that might
be replaced with the faulty ones. If one or more alternatives are identified, then each of
them must be free from conflicts, shall not exclude the requirement to be replaced with
and is not allowed to be negative contribution to a goal. This is assured by the methode
getAlternative in Listing 10.8 which checks for these conditions.

Listing 10.8: Computation of Alternative Requirements

1

2 public Set <String > getAlternatives (OWLNamedIndividual org , Set <
OWLNamedIndividual > reqConf , Set < OWLNamedIndividual > requirementsSet){

3 Set < OWLNamedIndividual > alternatives = new HashSet < OWLNamedIndividual >();
4 alternatives = reasoner . getObjectPropertyValues (org , isAlternativeTo .

getNamedProperty ()). getFlattened ();
5 Set <String > realAlt = new HashSet <String >();
6

7 for (OWLNamedIndividual alt : alternatives){
8 if (excludesReq (alt) == false && isExcludedInRC (alt , reqConf) == false &&

isNegGoalContr (alt , requirementsSet) == false && isInConflictInRC (
alt , reqConf) == false){

9 realAlt .add(alt. getIRI (). getFragment ());
10 }
11 }
12 return realAlt ;
13 }

Line 4 in Listing 10.8 computes all alternative requirements for a requirement org. These
alternatives are not restricted to those from the requirements configuration, since it might
be better to add another requirement to the requirements configuration instead of tolerating
inconsistencies. As can be seen in line 8, we check whether an alternative requirement
does not exclude any other requirement, is not excluded by any other requirement, is no
negative contribution to a goal and is not in conflict with any other requirement. Only
if these conditions are completely satisfied, a requirement is added to a list of possible
alternative requirements realAlt (line 9).
The method below in Listing 10.9 shows an example on how to check whether an alternative
requirement is excluded by any other requirement in the requirements configuration.

Listing 10.9: Check Excluded Requirements in Requirements Configuration

1 public boolean isExcludedInRC (OWLNamedIndividual alt , Set <
OWLNamedIndividual > reqConf) {

2 boolean isExcluded = false ;
3 Set < OWLNamedIndividual > excluded = new HashSet < OWLNamedIndividual >();
4 Set < OWLNamedIndividual > excludedInRC = new HashSet < OWLNamedIndividual >();
5 for (OWLNamedIndividual r : reqConf){
6 if (reasoner . getObjectPropertyValues (r, isExcludedBy . getNamedProperty ())

. getFlattened ().size () != 0)
7 excludedInRC .add(r);
8 }
9 if (excludedInRC . contains (alt)== false)

10 isExcluded = false ;
11 else isExcluded = true;
12 return isExcluded ;
13 }

108

10.4 Quality Improvement

10.4 Quality Improvement
Quality Improvement approaches fall into two categories: quality validation and quality
measurements as described in Section 8.5. Implementation patterns for quality validation
are a combination of completeness and consistency validation patterns. We either check
for additional information that must be provided for a high quality specification or define
particular quality conditions, such as avoiding negative goal contributions. We will
therefore only give a brief example for the demonstration of quality validation and describe
implementation patterns for quality measurements in more detail.

10.4.1 Quality Validation
Similar to the implementation patterns for consistency, we validate quality regarding a
requirements configuration. The example below demonstrates a query for requirements in
the requirements configuration with a negative goal contribution and the calculation of
concrete solution suggestions based on the decision tree and decision process described in
Section 8.5.

Example We use the following extract of requirements knowledge illustrated in Figure
10.1. We use FR as abbreviation for functional requirement.

FR1

Goal1high

hasPriority

isAlternativeTo
FR3

isNegativeContributionTo

isPositiveContributionTo

Figure 10.3: Example Requirements Ontology (ABox) Fragment for Quality Rules

Chosen Requirements Configuration: FR3
Quality Rule to be checked:

1. There must be no requirement that is a negative contribution on a goal to be achieved.

Expected Result:
• FR3 is a negative contribution to: Goal1. Please consider any of the following options:

- Exclude the optional requirement FR3 from the requirements configuration
- Choose one of the alternative requirements instead of FR3: FR2
- Revise the goal contribution relationship.

The following code snippet shows how we identify requirements with a negative contribution
to a goal and provide solution suggestions. In lines 7 - 12 we check for each requirement with
a negative goal contribution whether it is contained in the requirements configuration. If
this is the case, an error message is displayed with concrete information and the requirement
is added to the list negReqInConf for further use. Afterwards solution suggestions are
shown (lines 12 - 21) that are based on the decision tree in Figure 8.7 in Section 8.5.

109

10 Implementation Patterns for Requirements Validation Services

Additionally, we check in lines 20 - 21 for alternative requirements that might be replaced
with the faulty ones. These alternative requirements are identified with the method
getAlternative described in Listing 10.8.

Listing 10.10: Identification of and Solution Suggestions for Negative Goal Contribution

1 String chooseAltReqSugg = "- Choose one of the following alternative
requirements instead of ";

2 String reviseGoalContrSugg = "- Revise the above goal contribution .";
3 String modifyReqSugg = "- Modify the requirement to ";
4

5 public boolean isNegContr (Set < OWLNamedIndividual > requirementSet , Set <
OWLNamedIndividual > reqConf){

6 if (requirementSet . isEmpty () != true) {
7 for(OWLNamedIndividual a : requirementSet){
8 Set < OWLNamedIndividual > referencedGoals = new HashSet < OWLNamedIndividual

>();
9 referencedGoals = reasoner . getObjectPropertyValues (a,

isNegativeContributionToGoal . getNamedProperty ()). getFlattened ();
10 for (OWLNamedIndividual b : referencedGoals){
11 if(reqConf . contains (b)== true){
12 System .out. println ("- Warning : " + a. getIRI (). getFragment ()+" is a

negative contribution to goal " + b. getIRI (). getFragment () + ".\n
You have the following options :");

13 System .out. println (reviseGoalContrSugg);
14 System .out. println (modifyReqSugg + "meet the goal");
15 hasNegContr = true;
16 referencedNegGoalRequirements .add(a. getIRI (). getFragment ());
17 }
18 if (isMandatory (a) == false && isCoexistent (a) == false)
19 System .out. println (" - Delete this optional requirement from your

configuration ");
20 if (getAlternatives (a, reqConf , individualSet1). isEmpty ()== false){
21 System .out. println (chooseAltReqSugg + a + ": " + getAlternatives (a,

reqConf , requirementSet));
22 }
23 }
24 }
25 }
26 return hasNegContr ;
27 }

10.4.2 Implementation Patterns for Quality Measurements
As we base our quality measures on quality rules and the completeness and consistency of
requirements knowledge, we demonstrate in the following how to apply NBox Reasoning for
quality calculations. Due to space limitations we will only demonstrate these measurements
for one of these metrics, namely internal correctness, as described in detail in Section 8.5.2.
The remaining four metrics are implemented in a similar way.

Internal Correctness Measurement Pattern

In Section 10.4.1, we defined a metric to measure the validation status of individual require-
ments to make assumptions about the internal correctness of a requirements configuration.
Listing 10.11 demonstrates this computation of the formula

Q2 =
rc

rn

.

110

10.5 Summary

Listing 10.11: SPARQL Queries for Measuring Internal Correctness

1 public static int computeCorrectness (){
2

3 Query qV = QueryFactory . create (getQueryAccessor (). getValidComputation ());
4 QueryExecution qeV = QueryExecutionFactory . create (qV , ontModel) ;
5 ResultSet rsV = qeV. execSelect ();
6 ResultSetRewindable rsrwV = ResultSetFactory . copyResults (rsV);
7 double numberOfValid = rsrwV.size ();
8

9 Query qI = QueryFactory . create (getQueryAccessor (). getInvalidComputation ())
;

10 QueryExecution qeI = QueryExecutionFactory . create (qI , ontModel) ;
11 ResultSet rsI = qeI. execSelect ();
12 ResultSetRewindable rsrwI = ResultSetFactory . copyResults (rsI);
13 double numberOfInvalid = rsrwI.size ();
14

15 correctness =((numberOfValid + numberOfInvalid) / getNumberOfRequirements
());

16 int result = new Double (Math.round(correctness *100)). intValue ();
17 return result ;
18 }
19

20 System .out. println (" Correctness : " + QueryHandler . computeCorrectness () + "
\%");

Lines 4 to 5 execute the SPARQL query getValidComputation. The results (all valid
requirements) are returned as a ResultSet. The method getValidComputation() only
returns the SPARQL query as String. Since we only need to know the number, we use
the size() method of ResultSetRewindable to count all returned individuals (lines 6 and
7). The percentage of completeness is measured in lines 15 and 16. We divide the number
of VALID requirements numberOfValid by the number of all requirements in the SRS
(getNumberOfRequirements()) and multiply it with 100.

Cumulative Quality of SRS

Finally, the code below demonstrates our approach for measuring the cumulative quality.
Therefore, we use the single quality metrics and multiply them with the appropriate weight
(line 3).

Listing 10.12: Measuring the Cumulative Quality of the SRS

1 public static double computeQuality (){
2 double quality =
3 (((1.0* correctness) +(0.7* verifiability)+(1* consistency) +(0.6* traceability

) +(0.5* uncriticality)+(1* completeness)) / (1.0+0.7+1+0.6+0.5+1));
4 int result = new Double (Math.round(quality *100)). intValue ();
5 System .out. println ("The quality of the SRS measures : " + result + "\%");
6 return result ; }

It is more convenient to specify the weights as constants, this way, they can be changed
much easier if necessary. For reasons of readability, we put the value of each weight directly
in the function above.

10.5 Summary
This chapter describes various implementation patterns that allow for the validation of
completeness, consistency and quality of the requirements knowledge. This includes code
snippets that demonstrate how to identify missing information in an ontology ABox by

111

10 Implementation Patterns for Requirements Validation Services

applying Local Closed World Reasoning with Negation as failure (NBox Reasoning) as
well as a workaround for closed world reasoning. We furthermore present implementation
patterns that show how to proof the satisfaction of the consistency rules defined in Section
8.5 and for the realisation of the quality measurements.
OntoReq is implemented in Java and uses the OWL API to access the Requirements
Ontology. Reasoning is facilitated by the Jena Reasoner and TrOWL for NBox Reasoning.
We use SPARQL to query for the inferred requirements knowledge.

112

11 Architecture
Our approach consists of two main contributions: the Requirements Ontology and the
Java application OntoReq. The Requirements Ontology forms the knowledge base that is
used by OntoReq to execute the requirements validation services and generate the output.
In the following two sections (Section 11.1 and 11.2), we explain the components of the
demonstrator OntoReq and describe the data flow between them. We conclude with a
summary in Section 11.4.

11.1 OntoReq Components
OntoReq comprises three main components depicted in Figure 11.1: the graphical user inter-
face (GUI), validation component and output components. The GUI allows for editing the
ABox of the Requirements Ontology in order to support the specification of requirements
knowledge, such as adding, deleting or modifying requirements artefacts and their interre-
lations. Therefore, the GUI invokes the Reasoner component that calls the Requirements
Ontology and provides means to realise a manipulation of the ABox. Additionally, the GUI
calls the validation component to execute the validation of completeness, consistency and
quality of the requirements knowledge. For this purpose, the TrOWL reasoner is invoked
to infer the knowledge model from the Requirements Ontology. The validation component
finally invokes the (command line) output to display the validation results and solution
suggestions.

Figure 11.1: Component Diagram

113

11 Architecture

11.2 OntoReq Data Flow
Our approach defines two main tasks that are denoted as process in the UML data flow
diagram in Figure 11.2: specification of requirements knowledge (manual input) and
validation. In order to capture the requirements knowledge, the data input of the user
via the GUI is stored in the ABox of the Requirements Ontology. The validation process
retrieves and computes the data from the Requirements Ontology as knowledge base,
including TBox and ABox. The results of the validation are passed to the command line
output (display).

Figure 11.2: Data Flow Diagram

11.3 Graphical User Interface
Ontology editors (e.g. Protégé, NeOn, TopBraid Composer) allow for modelling and
manipulating ontologies. However, for Requirements Engineering it is of course not
feasible to force the requirements engineer to use any of these tools to specify requirements
knowledge. The reasons therefore are obvious: ontology editors are not intended to
be used for Requirements Engineering and thus, do not provide appropriate means to
specify requirements knowledge. Additionally, the requirements engineer would need to
learn quite a good amount about ontology modelling before he could start requirements
specification. And finally, editing the Requirements Ontology directly in an ontology
editor would bear too many risks to change the metamodel of the ontology itself or to
introduce various errors related to ontology modelling. Thus, we decided to keep the
Requirements Ontology ABox and TBox in the background, invisible to the user. This way,
the requirements engineer is only aware of the data stored within and the manipulation
of concrete requirements knowledge. The realisation of any data manipulation and the
concrete ontology manipulation remains invisible. However, in order to specify requirements
knowledge, we must provide a Graphical User Interface that enables typical tasks, such as
adding, deleting and modifying requirements, validating the requirements knowledge, etc.
OntoReq provides a simple prototype for such a GUI.

The following sections introduce the GUI prototype for OntoReq. The chapter is structured
according to the main tasks: Section 11.3.1 shows how requirements knowledge may be
added and Section 11.3.2 demonstrates the validation of requirements knowledge. Besides
this brief illustration of the GUI prototype, Chapter 13 demonstrates how to use OntoReq
with an exemplary scenario, also demonstrating the GUI with specific data.

114

11.3 Graphical User Interface

11.3.1 Adding Requirements Knowledge
Figures 11.3 and 11.4 exemplify how requirements knowledge can be specified. Figure 11.3
demonstrates the specification of goals and Figure 11.4 the specification of requirements.
The different tabs allow for switching between the requirements artefacts. Appropriate
fields are presented to specify all related metadata (e.g. priority, author. Goals may get a
priority and can be linked to requirements to specify a positive or negative contribution.
Requirements may specify their level of priority, cost and risk. They can be interrelated
as shown in the lower part of Figure 11.4. Here, the right side shows the requirements
description of the requirement to be related with in grey.
The completeness of the requirements knowledge is increased by displaying these fields and
check boxes directly and thus, preventing the user to forget the specification of relevant
(meta)data.

Figure 11.3: Adding goals and associated metadata

11.3.2 Validation
Figures 11.5, 11.6 and 13.7 illustrate the three kinds of validation. In each case, the upper
part of the window shows statistics such as the number of certain requirements artefacts
and the lower part displays the faults that have been identified by OntoReq. In contrast to
the completeness and quality validation, the window for consistency validation (Figure
11.6 provides checkboxes to select requirements for the requirements configuration.

Figure 11.8 demonstrates the quality measurement of the requirements knowledge. The
lower part of the window displays the different quality criteria and their values.

115

11 Architecture

Figure 11.4: Adding requirements and associated metadata

11.4 Summary
The demonstration of our approach consists of the Requirements Ontology as knowledge
base and OntoReq, a Java Application that works on this knowledge base. OntoReq
consists of three components: GUI, validation component, measurement component and
output. The GUI supports the input and manipulation of requirements knowledge and
invokes all other components to either allow for the specification of requirements knowledge
or the validation and measurement of it. The TrOWL reasoner component is used to
generate an inferred knowledge model from the Requirements Ontology that is validated
by the validation component. Finally, the validation results are passed to the output
component and are displayed together with the solution suggestions.
The GUI is a prototypic demonstration that shows how requirements engineers may specify
and modify requirements knowledge captured in the Requirements Ontology without
technological background of ontologies or ontology modelling tools. Furthermore, the GUI
facilitates completeness, consistency and quality of the requirements knowledge during its
specification by providing appropriate input fields for relevant metadata.

116

11.4 Summary

Figure 11.5: Completeness validation of requirements knowledge

Figure 11.6: Consistency validation of requirements knowledge

117

11 Architecture

Figure 11.7: Quality validation of requirements knowledge

Figure 11.8: Quality measurement of requirements knowledge

118

12 General Guidelines for Improving
Completeness, Consistency and Quality
of Knowledge in Domain Ontologies

In this thesis, we provide an approach to improve and validate the completeness, consistency
and quality of requirements knowledge by applying ontological techniques. However,
increasing the above mentioned factors is not only crucial to Requirements Engineering but
to any kind of knowledge repository. Therefore, we generalize our approach and describe the
main steps to validate these criteria for any knowledge domain (e.g., medicine, architecture)
whose data is captured in an ontology. We use domain-independent guidelines to sketch
fundamental tasks and briefly explain the technology to be applied. The code snippets in
Chapter 10 give a more detailed view on how to realize some of these guidelines.
These guidelines and their associated tasks require at least basic knowledge in ontology
modelling to follow the guidelines and explanations. We illustrate the general approach
with an exemplar in the domain of medical drugs where we want to store information
about drugs, their active pharmaceutical components, treatments and various relationships
among these concepts.

12.1 Building the Ontology Knowledge Repository
Usually, there are several correct (and many incorrect) ways to build an ontology. The
one and important question is, how it shall be used. Modelling an ontology with the only
purpose to serve as some kind of taxonomy or glossary differs a lot from modelling an
ontology that will be used for reasoning later. However, for enabling validation techniques,
we need to invoke a reasoner and, thus, model the ontology in a way that reasoning
leads to meaningful and usable results. Therefore, we have to construct a TBox model
that serves as Metamodel for a considered domain, that provides sufficient pre-defined
knowledge about this domain and that defines the interrelations between the domain con-
cepts. This TBox will be instantiated later, so that the ABox captures concrete information.

Ontology modelling is an iterative process that starts with a rough first abstract model
that is revised and refined until it meets the previously defined domain and scope. The
following guidelines sketch the way to build such a domain-specific knowledge Metamodel
that shall finally enable (at least) reasoning for completeness, consistency and quality of
the knowledge specified within.

Preliminary Considerations
The first step before modelling an ontology is to completely understand the domain that is
to be described, otherwise the derived model will be incorrect right on from the beginning
and thus, lead to undesired reasoning and validation results.

119

12 General Guidelines for Improving Completeness, Consistency and Quality of Knowledge

Guideline 54: Identify and clarify the main concepts of the domain and the knowledge it
describes.

This guideline may be facilitated by existing documents, domain descriptions, glossaries,
etc. It might be useful to list all terms about the domain we would like either to make
statements about or to explain to a user. Additionally, we have to clarify what properties
those terms have and what we would like to say about those terms [105]. For example,
important drug-related terms will include drug, treatment, components, brand, a drugs
name, etc; subtypes of drug such as painkiller and so on. Possible statements about the
domain knowledge in our example are:

• Drugs consist of several active pharmaceutical components and define a number of
diseases where they can be used against.

• Drugs or any of their components may be contraindicated to others.

• There may be several possible drugs that can be used against one and the same
disease.

• Drugs with the same components may be available from different brands and with
different names.

• Active pharmaceutical components may be available in different dosage forms (e.g.,
tablets, syrup).

• Each drug has a specific intake description and dosage.

• A drug specifies who may take it (children, teens, adults, etc.)

Guideline 55: Define a domain and scope for the ontology.

According to [105], answering the following questions helps to define a domain and scope
for an ontology:

120

12.1 Building the Ontology Knowledge Repository

1. What is the domain that the ontology will cover?

2. For what are we going to use the ontology?

3. For what types of questions the information in the ontology should provide answers?

4. Who will use and maintain the ontology?

These question are related to guideline (1). The identified domain and its knowledge must
now be screened regarding the information we want to capture in the ontology. Therefore,
we need to figure out the goal of its usage which we can best identify if we answer question
(3) above as detailed as possible. One way to do this, is to sketch a list of questions that a
knowledge base based on the ontology should be able to answer. Grüninger and Fox [51]
refer to these questions as competency questions. At the end of the ontology modelling
process they can also be used to test whether the ontology contains enough information
to answer these types of questions. Competency questions are just a sketch and do not
need to be exhaustive [105]. In the medical drugs domain, the following are the possible
competency questions:

• Which drug should I take if I want to treat a headache?

• Is Ibuprofen a painkiller or antidepressant?

• Does Ibuprofen go well with Clarithromycin (antibiotic drug)?

• Does Ceterizin treat allergies?

• Which characteristics of a drug affects its appropriateness for a disease?

• Which drugs treat the Alzheimer’s disease?

• Can I use Penicillin if I suffer from allergies?

• Which side effects has Ibuprofen?

These competency questions will also show whether it is reasonable to use an ontology
or whether another design solution (e.g., a simple database) might be more appropriate.
According to [105], the application of an ontology is advisable if we want to:

• make domain assumptions explicit

• separate domain knowledge from operational knowledge

• enable reuse of domain knowledge

• analyse domain knowledge in order to compute implicit knowledge by invoking
reasoning

• develop/ use additional software that uses the ontology as basis for problem-solving
methods, domain-independent applications, software agents, etc.

121

12 General Guidelines for Improving Completeness, Consistency and Quality of Knowledge

The more precisely we answer these questions, the easier it will be to create the ontology
so that it serves our purpose. Deciding what the ontology is going to be used for, and how
detailed or general the ontology is going to be, will guide many of the following modelling
decisions [105]. Due to reasoning technology, we can compute explicit knowledge and derive
implicit knowledge that has not been specified. Thus, we may gain new information or
validate operational knowledge regarding the defined domain assumptions. Obviously, an
ontology itself can hardly be used as standalone program. We need additional software or
applications to make use of the ontology as basis for problem-solving strategies, validations,
computations and so on. This ontology will then be used to build a knowledge model that
can be computed for several aspects by any additional software.

Building the Ontology’s Foundation
The following guidelines facilitate the modelling of the ontology’s foundation. Therefore,
we need to concretise several aspects regarding the validation purposes and the ontology
hierarchy.

Guideline 56: Define completeness, consistency and quality rules and approaches for
solution suggestions.

Since we already know that we want to use the ontology to accomplish completeness,
consistency and quality validations, we need to specify what we understand about these
aspects related to a specific domain knowledge. Thus, we need to define when the knowledge
is complete, how consistent knowledge can be characterized and what we understand about
quality regarding the knowledge within the ontology. In an ontology about medical drugs,
we may for example define a completeness rule that requires to cover all possible
treatments for each drug and all its active components. One consistency rule
may state that a drug is not allowed to be combined with another drug that is
contraindication regarding their active components. Furthermore, we have to de-
fine several options a solution should provide. For the consistency rule in this example we
could state that we want to identify an alternative drug that is applicable for
the same disease but no contraindication.
The measurement of the quality of information provided by an ontology (quality metric) is
also domain-specific and needs to be considered thoroughly.

Guideline 57: Identify and define how to measure the quality (quality metrics) as described
in section 8.5.3. Define weights for the quality metrics.

Just as specifying the quality rules, one has to decide what exactly influences the quality
of information contained in the ontology besides the completeness, consistency and quality
rules. In our example, we might define a quality metric “correctness” similar to the RE
domain, that measures all drugs regarding the execution of a user-validation (e.g., verifying
that components, dosage, etc. are correctly specified).

12.1.1 Modelling the Ontology
The accomplishment of the previous guidelines builds the basis for the following tasks in
setting up the ontology model.

Guideline 58: Model the domain concepts and class hierarchy.

122

12.1 Building the Ontology Knowledge Repository

Concepts in the ontology should be close to objects (physical or logical) and relationships in
the domain of interest. These are most likely to be nouns (objects) or verbs (relationships)
in sentences that describe the domain [105]. The completion of the previous guidelines
enables the identification of necessary concepts not only regarding the domain knowledge
but also for the validation purposes. If we analyse the previously defined domain knowledge
in our example, we can derive the following ontology concepts:

• Drugs consist of several active pharmaceutical components and define a number
of diseases where they can be used against.

• Drugs with the same components may be available from different brands and with
different names.

• Active pharmaceutical components may be available in different dosage forms (e.g.,
tablets, syrup).

• Each drug has a specific intake description and dosage.

• Drugs may have several side effects .

Figure 12.1: Drugs Ontology - Class Hierarchy

Figures 12.1 shows a possible class hierarchy for the concepts above. There are several
possible approaches in developing a class hierarchy. However, for reasons of space we will
not consider these details but refer to Chapter 8.5 that illustrates one possible approach.
Additionally, [128] provides more information on ontology modelling approaches.

123

12 General Guidelines for Improving Completeness, Consistency and Quality of Knowledge

Guideline 59: Model the relationships among the domain knowledge.

The most important part of the ontology are object and data properties since the classes
alone do not provide enough information to answer the competency questions. At this point,
we must describe the internal structure of the domain concepts. To model these properties,
we use the previously identified knowledge relationships and competency questions to
specify relevant object and data properties. These properties become slots attached to
classes. A slot should be attached at the most general class that can have that property
[105] since all subclasses of a class will inherit the slot. When modelling the slots, we have
to define the facets of these slots. They can have different facets describing the value type,
allowed values, the number of the values (cardinality), and other features of the values the
slot can take [105].
For example, the value of a hasName slot (as the name of a drug) is a String. In contrast,
the value of a slot treatsDisease can have multiple values and these values are instances of
the class Disease. A property has a domain (the source of an property) and a range (the
target of a property). We may, for example, consider the object property treatsDisease with
the class Drug as domain and Disease as range or the object property isContradictionTo
with domain Drug and range Drug.
Furthermore, properties may have different characteristics (e.g., transitive, symmetric)
that might need to be used to answer the competency questions correctly or to make
knowledge-acquisition more convenient. In our example, it is sufficient to have the object
property treatsDisease, since it allows to query for drugs with specific treatments. It is
not necessary to define an inverse property treatedBy with the domain Disease and the
range Drug since this information is redundant and an application using the knowledge
base can always infer the value for the inverse relation. However, it is convenient to have
both pieces of information explicitly available. This approach allows users to fill in the
disease in one case and the drug in another.

Figure 12.2: Drugs ontology - class hierarchy (Active Component selected)

124

12.1 Building the Ontology Knowledge Repository

Some of the relationships are illustrated in Figures 12.2 and 12.3. Figure 12.2 shows the
superclass relationship containedInDrug some Drug. This objectProperty has the domain
ActiveComponent and the range Drug. It is inverse to the object property includesAC with
the domain Drug and the range ActiveComponent. These object properties exemplifies how
to attach and interrelate individuals of the classes Drug and ActiveComponent. Since these
properties are inverse, it does not matter whether to specify a drug to contain a certain
active compoment or to say that an active component is contained in a drug. Reasoning
will infer this implicit information.

Figure 12.3: Drugs ontology - class hierarchy (Drug selected)

Guideline 60: The Ontology Metamodel must provide appropriate relations (object and
data properties) to validate the completeness, consistency and quality of the instantiated
domain knowledge.

Since one of our scopes for the ontology is to validate the instances regarding their
completeness, consistency and quality, we have to extend the ontology appropriately. Here
again, we use the competency questions and the validation definitions to identify such
relevant properties and their associated ontology classes. At this point, we may also need
to add or modify additional classes and existing properties.
In order to validate the consistency of an instantiated domain ontology, we need appropriate
relations that allow for specifying relationships between ontology instances. Such relations
may, for example, refer to alternative, optional, mandatory, conflicting, excluding and
coexisting individuals. Depending on the domain we need to define constraints that allows
for deciding when an individual is, for example, in conflict or excludes another.
In our example, the object properties isContraIndicationTo and notAllowedIfSufferingFrom
already allow to specify two kinds of conflicting individuals. If one drug is contraindicated
with another, the drug configuration (a combination of several drugs) will be inconsistent
and lead to an error. The same is true if we are looking for a specific drug while suffering
from a disease that is not allowed to be treated with a specific drug. Figure 12.6 shows an

125

12 General Guidelines for Improving Completeness, Consistency and Quality of Knowledge

Figure 12.4: Drugs ontology - Equivalent class CompleteDrug

example for Penicillin which is known not be used when suffering from Allergy. Thus,
isContraIndicationTo and notAllowedIfSufferingFrom are options to address conflicts in
the example domain. How these properties are named is not important as long as the
underlying semantics comply to the above guideline. Additionally, we may specify an
alternative drug as one that consists of exactly the same active pharmaceutical components.
Figure 12.3 shows some more superclass relationships with object properties, most of all
the isAlternativeTo object property that allows for specifying a drug to be an alternative
to another which is necessary for the solution suggestion during the consistency validation.

Guideline 61: The Ontology Metamodel must provide means to measure the quality of
the knowledge specified within.

Based on Guideline 4, we need to make sure that the ontology provides all the data that
is needed to compute the quality measurements of the domain knowledge. Therefore, we
may need to add further ontology components to facilitate the reasoning about and the
computation of the data.
In our example we add, for example, the data property isValid (boolean) the that can be
used for drugs whose information have been (or have not been) validated by a domain
expert. Furthermore, we may add an equivalent class CompleteDrug (see Figure 12.4) that
specifies when a drug has been specified completely. This way, (closed world) reasoning
will enable us to measure the completeness of drug’s information.

12.1.2 Intermediate Evaluation of Ontology Model
The accomplishment of the previous guidelines should be followed by an evaluation to
ensure the applicability of the ontology model for the scope defined before.

Guideline 62: Evaluate and modify the ontology model.

As already described above, ontology development is an iterative process. By evaluating
the current ontology, we can identify modelling errors and revise it accordingly. Therefore,

126

12.2 Implementing the Application

we use the competency questions and check whether the ontology allows for answering
them as expected. Certainly, the ontology must be revised to some extent. This task
requires evaluation and revision in probably several cycles.

12.2 Implementing the Application
As already described above, developing an ontology is akin to defining a set of data and
their structure for other programs to use [105]. Thus, we need to review the answers from
the preliminary considerations, where we stated what the ontology shall be used for and
how. This functionality must be realised as a software application, software agent, etc. In
this example, we will concentrate on the validation purpose and sketch the main tasks to
finally enable this functionality. Since there is no general approach in how to allow for
answering the competency questions, we will not exemplify this guideline but concentrate
on the validation.

Guideline 63: Implement functionality for the validation and measurement of complete-
ness, consistency and quality.

The validation of completeness, consistency and quality requires to reason about the domain
ontology and the instances within. It is merely a design decision, whether to build a Java
Application, a web application or a software agent. Each design solution requires at least
the following:

• implementation of validation rules

• queries about the knowledge

• invoking a reasoner that builds a knowledge base of the domain ontology

• output of errors and solution suggestions

When choosing a reasoner, we need to make sure, that the reasoner allows for closed world
reasoning since we need closed world assumption to reason about incompleteness (see
Chapter 10 for more details). The previously defined validation rules must now be realised
by the software. This means that we either need to use queries (e.g., SPARQL) to compute
the relevant implicit knowledge or perhaps use the owlapi. However, we have to make sure
that we can check each validation rule and compute solution suggestions. One possible
approach that explains closed world reasoning and SPARQL queries is described with code
snippets in detail in Section 10.2.
Although it is advisable to model as many aspects as possible within the ontology by
using various ontology components (e.g., classes, object and data properties, equivalent
classes, etc.), we may need to realise further restrictions and constraints in the software
applications since not everything can be modelled in an ontology. The previously defined
validation rules and the output of validation results, for example, must obviously be
implemented in the software application. Thus, we need to implement queries that reason
about the ontology data and allow for its further computation for validation purposes.
In our example, we define among others the following consistency rule:

127

12 General Guidelines for Improving Completeness, Consistency and Quality of Knowledge

A drug with allergic side effects is not allowed when suffering from
allergies.

Since this information is specific to the ontology’s ABox, this rule cannot be modelled in the
ontology itself. Thus, we need to implement the functionality in the software application
and define a method that checks the satisfaction of this rule, e.g. by querying for all drugs
without allergy as side effect or, when suggesting alternative drugs, by checking whether
one of the known diseases of a patient is an allergy and if so, neglecting all alternative
drugs with allergy as side effect.
Additionally we need to implement methods that execute the computation of the various
measurements.

Instantiation with Concrete Data
Finally, we can use the domain ontology to instantiate it with concrete knowledge, that
are instances of the various classes. In our drugs ontology we need to, for example, specify
several individuals for the class Disease, e.g., Fever , Pain , Allergy . And we have to
use the various object and data properties to interrelate these instances. We specify for
example that Dolormin treatsDisease Pain and isAlternativeTo Thomapyrin .

Figure 12.5: Instantiation of drugs ontology

Figures 12.5 and 12.6 show an example instantiation of the drugs ontology. As we can see,
the reasoner will automatically infer that Thomapyrin is alternative to Dolormin , since the
object property isAlternativeTo is symmetric (Figure 12.5). Thus, it is sufficient to specify
possible alternative only once for one individual, the remaining drugs will automatically be
inferred as alternative.

128

12.3 Final Evaluation

Figure 12.6: Drugs ontology - Consistency property

12.3 Final Evaluation
Now that we have completed the ontology model and the application, we need to accomplish
another evaluation. This time, we must ensure that all competency questions are correctly
answered and that the validation results and solution suggestions are as expected.

Guideline 64: Define test-cases for evaluation.

According to the validation rules, we need to define several test-cases that include
incomplete and inconsistent information and aspects of low quality. These test-cases are
derived from the competency questions and validation rules. Additionally, we describe
the solutions expected for each unsatisfied rule. For our example this may look like the
following test-cases:

Validation rules:
1. Each drug must specify its active pharmaceutical ingredients.
2. No drug is allowed to be combined with a drug that is a contraindication.
3. No drug is allowed to be used if a disease hinders its usage.

Test-cases:
Instantiate Drug with individuals A,B and C. Make B a contraindication to A and let C
have similar diseases specified as A.
Instantiate Drug with individual A but no active pharmaceutical ingredients.
Instantiate Drug with individual A and Disease with individual D. Specify A not be
used if suffering from disease D.

Expected results:
Inconsistency error: A and B are contraindicated. Choose one of the alternative drugs:
[C].

129

12 General Guidelines for Improving Completeness, Consistency and Quality of Knowledge

Inconsistency error: A must not be used when suffering from D. Choose one of the
alternative drugs: [X, Y].
Incompleteness error: A does not specify its active pharmaceutical ingredients. Add this
information.

12.4 Summary
This chapter provided general guidelines for improving the completeness, consistency and
quality of knowledge in domain ontologies. In order to model an appropriate domain
ontology, it is necessary to define the domain and scope of the ontology as well as defining
competency questions that guide the modelling process and may later be used to define
test-cases for the evaluation of the ontology. Based on these preliminary considerations,
the ontology class hierarchy can bet set up and the relationships between the domain
knowledge can be modelled. This first sketch of the domain ontology must be extended by
appropriate ontology components to enable the reasoning for completeness, consistency
and quality. Additionally, a software application must be developed to allow for accessing
and processing the data stored in the ontology. Finally, the ontology must be evaluated by
pre-defined test-cases.

130

Part IV

Application and Evaluation

131

13 Using OntoReq for Requirements
Engineering - An Exemplar

Cysneiros et.al. state in [26] that a suitable example problem is one way to help clarify
strengths and weaknesses of methodologies. This also applies for software. Thus, we
defined a suitable example problem for OntoReq that can be used as a common example
providing a stable and coherent base for discussion and exchange of ideas and results. This
type of example is commonly referred to as an “exemplar” [26]. The examplar given here
primarily aims to illustrate and explain the single steps for carrying out several RE tasks
with OntoReq. Important steps are visualized by screenshots.

This chapter is structured as follows: in Section 13.1 we describe our examplar. Section
13.2 introduces the specification of requirements, Section 13.3 explains how we validate
completeness. The selection of a requirements configuration is demonstrated in Section
13.4.1. This is followed by a demonstration of a consistency validation in Section 13.4 and
quality check of requirements in Section 13.6. This example is illustrated with screenshots.
Finally, Section 13.8 discusses how to proceed in the software engineering lifecycle with
emphasis on making the most benefit of the results and features of OntoReq.

13.1 Exemplar Description
The exemplary scenario is described by a virtual conversation between customer and
requirements engineer (see below) as it is usual for a software project to get a first
impression about goals and main functionality desired by the customer. This conver-
sation contains most of the requirements artefacts and attributes that will be used
for this exemplar. We additionally added further information where appropriate in
order to demonstrate most of OntoReqs features. The customer conversation be-
low already highlights all contained requirements artefacts in bold and italic font.
In Section 13.2 we summarize them in Table 13.1 and assign the respective type
(e.g. goal, functional requirement, priority).

Customer:
“We want to increase the satisfaction of our customers when shopping in our
electronic store. We recently conducted a survey that showed that many of them
wish a broader offer of our products. At the same time, it seems that they have already
difficulties in identifying which product fits their specific needs and in locating a product.
We’d like to have some customer guidance for our products which supports
them in identifying the concrete product of their need and in localizing this
product, if physically available.”

Requirements Engineer (RE):
“We can provide a software solution for this. Additionally, you could also display further

133

13 Using OntoReq for Requirements Engineering - An Exemplar

information, such as advertisements, announcements and so on.”

Customer:
“That sounds good, but itmust be easy to modify and update. And it should provide
information about the physical availability of that product in our store. I’m
just afraid that customers will need to learn how to use this guidance system
which we can only compensate by more personal for a short time periode. Anyway, it
must be easy to understand and learn. Let’s say an average customer (between
18 and 45 years) should not need longer than 5min. to understand how he
can use the guidance.”

RE:
“OK, could you please try to summarize the usage of this customer product guidance
from your perspective in an example (use-case)?”

Customer:
“If the customer does not already know where he can find a specific product or even
which product indeed fits his needs, he should use the customer product guidance. There
he can choose between the localization of a product and the identification of a
product. When choosing the localization he can either type a term that is searched
for or go through categories and sub-categories to find the product of his
choice. Then he will get information about its place in the store and current
availability.”

“If the customer is not quite sure what he is actually looking for, he can use the product
identification. After a pre-selection of categories such as computer, camera,
TV , he will be asked several questions to filter the associated products until
a set of products is displayed that fits his needs (or he gets a message that
the search could not find such a product). Advertisements, customer information
and other information can always be displayed when the terminal is currently
not used by a customer . Alternatively, such messages could be displayed as
audio. For localization of a product, we might also provide pictures from the place
where the product can be found or even an interactive route through our store.”

13.2 Specifying Requirements
The first step in the RE process is to identify the requirements artefacts and their metadata
from the above customer conversation. At this stage, OntoReq is not applied. To
facilitate the traceability of requirements in this exemplar and to follow up reasons
for these requirements, we provide Table 13.1 below and relate phrases from the text
with the requirements that can be identified in it. We use the following abbreviations:
Functional Requirement (FR), Non-Functional Requirement (NFR) and Stakeholder (SH).
The requirements knowledge illustrated in the table is directly added into the Requirements
Ontology. Thereore, OntoReq provides a GUI prototype that allows for adding and
modifying requirements knowledge without using an ontology modelling tool such as
Protége (see Figure 13.1). We use the IDs from Table 13.1 and add a description for each

134

13.2 Specifying Requirements

requirements artefact corresponding to the phrases in the table to enable tracing of text
phrases to the requirements.

Figure 13.1: Adding requirements artefacts in OntoReq

135

13 Using OntoReq for Requirements Engineering - An Exemplar

ID Req. Arte-
facts in RO

Phrase

Goal1_IncreaseSatisfaction Goal increase the satisfaction of our customers
when shopping in our electronic store

Source1_Survey Source survey
Goal2_CustomerGuidance Goal We’d like to have some customer guid-

ance for our products
Goal3_ImproveOrientation Goal
Goal3.1_SupportProdIdentif Goal supports them in identifying the concrete

product of their need
Goal3.2_SupportProdLocaliz Goal supports them in localizing this product
FR1_CustomerInfo FR display further information, such as ad-

vertisements, announcements; other in-
formation can always be displayed when
the terminal is currently not used by a
customer

NFR1_Modifiability NFR must be easy to modify and update
FR2_PhysicalAvailabOfProducts FR give information about the physical avail-

ability of that product in our store; get
information about product’s place in the
store

O1 Obstacle customers will need to learn how to use
this guidance system

NFR2_Comprehensibility NFR must be easy to understand
NFR3_Learnability NFR must be easy to learn
SM1 Soft-Metric an average customer (between 18 and

45 years) should not need longer than
5min. to understand how he can use the
guidance

UC1_LocalizeProduct Use-Case The user shall be able to choose between
the localization of a product and the iden-
tification of a product. When choosing
[...] about its place in the store and cur-
rent availability.

FR6_SelectionOfDesire FR choose between the localization of a prod-
uct and the identification of a product

FR5_ProductSearch FR provide search for products in the store
FR5.1_SearchByTerm FR type a term that is searched for
FR5.2_SearchByCategory FR go through categories and sub-categories

to find the product of his choice; pre-
selection of categories such as computer,
camera, tv

FR7_CustomerDialogue FR will be asked several questions to filter
the associated products until a set of
products is displayed that fits his needs
(or he gets a message that the search
could not find such a product)

FR1.2_CustomerInfoAsAudio FR messages could be displayed as audio

136

13.3 Completeness Validation

UC2_IdentifyProduct Use-Case After a pre-selection of categories such as
computer, camera, tv, he will be asked
several questions to filter the associated
products until a set of products is dis-
played that fits his needs (or he gets a
message that the search could not find
such a product).

UC3_Advertisement Use-Case Advertisements, customer information
and other information can always be dis-
played when the terminal is currently not
used by a customer. Alternatively, such
messages could be displayed as audio.

FR4_ProductPlaceDescription FR
FR4.1_ProductPicture FR we might also provide pictures from the

place where the product can be found
FR4.2_InteractiveRoute FR interactive route through our store
S1 SH Katja

Table 13.1: Identified requirements from customer conversation

13.3 Completeness Validation
When this step is completed, we execute the completeness validation (Figure 13.2) to get
a first impression what might be missing and to improve the completeness quite early
in the RE process. The complete results of the completeness validation are additionally
represented below in Listing 13.1.

Listing 13.1: Completeness Validation (1)

1 ERROR: Identified 69 incompleteness problems . Please repair the incomplete
data below:

2

3 - You did not specify any platform requirement
4 - You did not specify any scenario
5

6 - The following requirements do not specify any priority :
7

8 [FR1 .2 _CustomerInfoAsAudio , FR1_CustomerInfo ,
9 FR2_PhysicalAvailabilityOfProducts , FR4 .1 _ProductPicture ,

10 FR4 .2 _InteractiveRoute , FR4_ProductPlaceDescription ,
11 FR5 .1 _SearchByTerm , FR5 .2 _SearchByCategory , FR5_ProductSearch ,
12 FR6_SelectionOfDesire , FR7_CustomerDialogue , NFR1_Modifiability ,
13 NFR2_Comprehensibility , NFR3_Learnability]
14

15 - The following requirements do not specify any mandate :
16

17 [FR1 .2 _CustomerInfoAsAudio , FR1_CustomerInfo ,
18 FR2_PhysicalAvailabilityOfProducts , FR4 .1 _ProductPicture ,
19 FR4 .2 _InteractiveRoute , FR4_ProductPlaceDescription ,
20 FR5 .1 _SearchByTerm , FR5 .2 _SearchByCategory , FR5_ProductSearch ,
21 FR6_SelectionOfDesire , FR7_CustomerDialogue , NFR1_Modifiability ,
22 NFR2_Comprehensibility , NFR3_Learnability]
23

24 - The following requirements do not specify any author :
25

26 [FR1 .2 _CustomerInfoAsAudio , FR1_CustomerInfo ,

137

13 Using OntoReq for Requirements Engineering - An Exemplar

27 FR2_PhysicalAvailabilityOfProducts , FR4 .1 _ProductPicture ,
28 FR4 .2 _InteractiveRoute , FR4_ProductPlaceDescription ,
29 FR5 .1 _SearchByTerm , FR5 .2 _SearchByCategory , FR5_ProductSearch ,
30 FR6_SelectionOfDesire , FR7_CustomerDialogue , NFR1_Modifiability ,
31 NFR2_Comprehensibility , NFR3_Learnability]
32

33 - The following requirements do not specify any requirement relationship :
34

35 [FR1 .2 _CustomerInfoAsAudio , FR1_CustomerInfo ,
36 FR2_PhysicalAvailabilityOfProducts , FR4 .1 _ProductPicture ,
37 FR4 .2 _InteractiveRoute , FR4_ProductPlaceDescription ,
38 FR5 .1 _SearchByTerm , FR5 .2 _SearchByCategory , FR5_ProductSearch ,
39 FR6_SelectionOfDesire , FR7_CustomerDialogue , NFR1_Modifiability ,
40 NFR2_Comprehensibility , NFR3_Learnability]
41

42 - The following requirements do not specify any soft - metric :
43

44 [NFR1_Modifiability , NFR2_Comprehensibility , NFR3_Learnability]
45

46 - The following requirements artefacts do not relate to any use -case:
47

48 [Goal1_IncreaseSatisfaction , Goal2_CustomerGuidance ,
49 Goal3 .1 _SupportProdIdentification , Goal3 .2 _SupportProdLocalization ,
50 Goal3_ImproveOrientation]
51

52 - The following requirements artefacts do not specify any scenario :
53

54 [UC1_LocalizeProduct , UC2_IdentifyProduct , UC3_Advertisement]

Obviously, the requirements knowledge lacks a lot of information. The guidance of the
completeness validation suggests to add priorities to the specified requirements and to
define whether a requirement is mandatory or optional (mandate). Authors are also
missing and, most of all, we did not interrelate the requirements with each other and
other requirements artefacts (e.g. relate requirements to a use-case). Thus, we need
to formalize the requirements knowledge by interrelating the requirements. Therefore,
we analyse the previously defined requirements and try to identify conflicts, alternative,
coexisting or excluding requirements, refinements, and so on. Additionally, we relate the
requirements to requirements artefacts, e.g., specifying for the functional requirement
FR1.1_CustomerInfoAsText the use-case UC3_Advertisement. Such relationships are
specified in OntoReq (see Figure 13.3) and are important for the following validations.
Most of the priorities and requirements relationships can be taken from the customer
conversation. However, we will add further information that would have been identified in
another customer conversation or requirements analysis, which we will not simulate here.
The resulting requirements knowledge is depicted in the Appendix.
After this step, we execute another completeness validation. The results are shown below
in Listing 13.2.

Listing 13.2: Completeness Validation (2)

1 ERROR: Identified 8 incompleteness problems . Please repair the incomplete
data below:

2

3 - You did not specify any platform requirement
4 - You did not specify any scenario
5 - The following requirements do not specify any soft - metric :
6 [NFR1_Modifiability , NFR2_Comprehensibility]
7

8 - The following requirements artefactss do not specify any goal:
9 [UC3_Advertisement]

138

13.4 Consistency Validation of Requirements Configuration

Figure 13.2: Completeness Validation in OntoReq

10

11 - The following requirements artefactss do not specify any scenario :
12 [UC1_LocalizeProduct , UC2_IdentifyProduct , UC3_Advertisement]

Listing 13.2 shows that we decreased the amount of incomplete data. The still existing
completeness errors indicate that we should add some further information. However,
this is only a suggestion to improve the completeness. As a matter of course, it is not
always possible to comply with all completeness rules. There may, for example, indeed be
requirements we cannot relate to any goal or for which we cannot estimate a Level of Cost
or describe a scenario. It is the decision of the requirements engineer which information
to add and which suggestions to ignore. Nevertheless, the completeness of the specified
knowledge has improved significantly.

13.4 Consistency Validation of Requirements Configuration
Since we cannot add more information by now, we decide to execute the consistency
validation (see Figure 13.4). Please note, that it is most important to complete the
requirements knowledge as much as possible before executing the consistency validation
in order to get meaningful solution suggestions. To execute the consistency validation,
we need to choose whether we want to implement all specified requirements or only a
selection of them. This is the definition of the requirements configuration. Therefore, we

139

13 Using OntoReq for Requirements Engineering - An Exemplar

Figure 13.3: Formalisation of requirements knowledge

can choose between an automated suggestion of a requirements configuration or a manual
configuration. The automated configuration is guaranteed to be consistent and can be used
as a basis for manually modifying this selection of requirements. Here, we demonstrate
both approaches and start with the manual configuration.

13.4.1 Manual Configuration of Requirements
First, we choose to manually select the following requirements, which form together the
requirements configuration RC1. This selection is exceptionally designed in a way that we
can illustrate all opportunities of the consistency validation. To allow the reader to follow
the consistency errors and solution suggestions, we refer to the Tables in Appendix A.5 in
the appendix, which capture the specified requirements knowledge.

Requirements Configuration

• FR1_CustomerInfo
• FR1.1_CustomerInfoAsText
• FR2_PhysicalAvailabilityOfProducts
• FR4_ProductPlaceDescription
• FR5_ProductSearch

• FR6_SelectionOfDesire

• FR7_CustomerDialogue

• NFR1_Modifiability

• NFR2_Comprehensibility

140

13.4 Consistency Validation of Requirements Configuration

Figure 13.4: Consistency Validation

141

13 Using OntoReq for Requirements Engineering - An Exemplar

The consistency validation shows the following extract of results (the complete results can
be found in the appendix):

Listing 13.3: Consistency Validation (1)

1 13 inconsistency errors detected .
2

3 - The following requirements are mandatory and should be included in the
requirements configuration :

4 [FR1 .3 _CustomerInfoAsPic , FR4 .1 _ProductPicture , FR5 .1 _SearchByTerm , FR5 .2
_SearchByCategory , FR8_AudioOutput , NFR3_Learnability]

5

6 ---
7 - Error: FR8_AudioOutput and FR7_CustomerDialogue are specified as

conflicting .
8 You have the following options :
9 - Revise the requirements FR8_AudioOutput or FR7_CustomerDialogue to

solve the conflict
10 - Revise the requirements relationship (conflict) between FR8_AudioOutput

and FR7_CustomerDialogue
11 - Choose one of the following alternative requirements instead of FR4 .2

_InteractiveRoute : [FR4 .1 _ProductPicture]
12

13 ---
14 - Error : FR5_ProductSearch was refined to FR5 .2 _SearchByCategory which is

not included in your requirements configuration .
15 You have the following options :
16 - Revise the requirements FR5 .2 _SearchByCategory or FR5_ProductSearch to

solve the refinement problem
17 - Revise the requirement relationship (refinement) between FR5 .2

_SearchByCategory and FR5_ProductSearch
18 - Include the requirement FR5 .2 _SearchByCategory in your requirements

configuration .
19

20 [...]

Now it is the task of the requirements engineer to eliminate these errors. Therefore, he
can choose between several options for each error. We demonstrate a possible approach
with these errors. First, we will add all mandatory requirements to our requirements
configuration. They are either mandatory because they have been specified as mandatory
or they have been inferred by OntoReq as mandatory due to the fact that they specify a high
level of priority (and we defined that all requirements with a high priority automatically
become mandatory). Since we added a number of new requirements to the requirements
configuration, we must execute another consistency check before trying to eliminate the
remaining errors. The results are the following:

Listing 13.4: Consistency Validation (2)

1 3 inconsistency errors detected .
2

3 Error : FR7_CustomerDialogue and FR8_AudioOutput are specified as
conflicting .

4 You have the following options :
5 - Revise the requirements FR7_CustomerDialogue or FR8_AudioOutput to

solve the conflict
6 - Revise the requirements relationship (conflict) between

FR7_CustomerDialogue and FR8_AudioOutput

142

13.4 Consistency Validation of Requirements Configuration

7

8 ---
9 - Error: FR1_CustomerInfo was refined to FR1 .2 _CustomerInfoAsAudio which is

not included in your requirements configuration .
10 You have the following options :
11 - Revise the requirements FR1 .2 _CustomerInfoAsAudio or FR1_CustomerInfo

to solve the refinement problem
12 - Revise the requirement relationship (refinement) between FR1 .2

_CustomerInfoAsAudio and FR1_CustomerInfo
13 - Include the requirement FR1 .2 _CustomerInfoAsAudio in your requirements

configuration .
14

15 - Error: FR4_ProductPlaceDescription was refined to FR4 .2 _InteractiveRoute
which is not included in your requirements configuration .

16 You have the following options :
17 - Revise the requirements FR4 .2 _InteractiveRoute or

FR4_ProductPlaceDescription to solve the refinement problem
18 - Revise the requirement relationship (refinement) between FR4 .2

_InteractiveRoute and FR4_ProductPlaceDescription
19 - Include the requirement FR4 .2 _InteractiveRoute in your requirements

configuration

As we can see in Listing 13.4, we resolved some of the inconsistency errors. The remaining
errors are handled as follows. We revise the requirements description of FR8_AudioOutput
so that it is no longer in conflict with FR7_CustomerDialogue. Additionally, we must
delete the requirements relationship isInConflictWith in Ontoreq. Furthermore, we add
all the refined requirements to the requirements configuration as suggested by OntoReq
and thus, resolved all inconsistency errors. We execute another consistency validation (see
Listing 13.5) after these modifications.

Listing 13.5: Consistency Validation (3)

1

2 - Error : FR1 .2 _CustomerInfoAsAudio excludes FR1 .3 _CustomerInfoAsPic .
3 You have the following options :
4 - Revise the requirements FR1 .2 _CustomerInfoAsAudio or FR1 .3

_CustomerInfoAsPic to solve the exclusion problem
5 - Revise the requirements relationship (exclusion) between FR1 .2

_CustomerInfoAsAudio and FR1 .3 _CustomerInfoAsPic
6 - You may choose to delete the optional requirement : FR1 .2

_CustomerInfoAsAudio
7 - Choose one of the following alternative requirements instead of FR1 .2

_CustomerInfoAsAudio : [FR1 .1 _CustomerInfoAsText]
8

9 ---
10

11 - Error: FR4 .2 _InteractiveRoute and NFR1_Modifiability are specified as
conflicting .

12 You have the following options :
13 - Revise the requirements FR4 .2 _InteractiveRoute or NFR1_Modifiability to

solve the conflict
14 - Revise the requirements relationship (conflict) between FR4 .2

_InteractiveRoute and NFR1_Modifiability
15 - You may choose to delete the optional requirement : FR4 .2

_InteractiveRoute
16 - Choose one of the following alternative requirements instead of FR4 .2

_InteractiveRoute : [FR4 .1 _ProductPicture]

143

13 Using OntoReq for Requirements Engineering - An Exemplar

As we can see in Listing 13.5, we resolved the previous inconsistency errors but introduced
new inconsistencies in the requirements configuration. This demonstrates the problems of
adding requirements to complete the requirements knowledge while introducing inconsis-
tency. According to the solution suggestions we will now delete the optional requirements
FR1.2_CustomerInfoAsAudio and FR4.2_InteractiveRoute from the requirements configu-
ration as suggested by OntoReq. Another consistency validation finally shows no errors,
thus we have a consistent requirements configuration.

13.4.2 Automated Requirements Configuration
As explained in Section 8.5, OntoReq also provides the option to generate a consistent
requirements configuration automatically. This configuration is guaranteed to include
all mandatory and their coexistent requirements. Furthermore, refined requirements are
considered instead of the more abstract requirements and the configuration does not include
any conflicting or excluded requirements. Thus, the requirements configuration complies
to the consistency rules. Besides that, it also acknowledges the quality rules and thus,
includes for example requirements with a positive contribution to a goal even if those are
optional. In contrast, requirements with a negative contribution to a goal are not selected
if they are optional. For our exemplar, OntoReq computes the following requirements
configuration RC2 in Listing 13.6:

144

13.5 Stakeholder Review of Requirements Knowledge

Listing 13.6: Automated Requirements Configuration RC2

1 FR2_PhysicalAvailabilityOfProducts ,
2 FR6_SelectionOfDesire ,
3 FR5 .2 _SearchByCategory ,
4 FR1 .1 _CustomerInfoAsText ,
5 FR7_CustomerDialogue ,
6 FR5 .1 _SearchByTerm ,
7 FR5 .2 _SearchByCategory ,
8 NFR1_Modifiability ,
9 NFR2_Comprehensibility ,

10 FR4_ProductPlaceDescription ,
11 FR1 .3 _CustomerInfoAsPic ,
12 NFR3_Learnability ,
13 FR5_ProductSearch ,
14 FR4 .1 _ProductPicture

This requirements configuration can be used as a basis and be complemented by additional
requirements. However, any modifications of this automated requirements configuration
must be followed by a consistency validation.

13.5 Stakeholder Review of Requirements Knowledge
In addition to the different validations provided by OntoReq, it is necessary to review
the requirements artefacts regarding their description and correctness of relationships.
Obviously, this a task that cannot be automated due to fact that the semantics of require-
ments is not machine comprehensible. Thus, stakeholders from the project need to review
and revise the requirements, their metadata and the specified requirements relationships.
However, OntoReq provides the data property isValid to mark those requirements that have
been reviewed and accepted. This information is important for the quality measurements
described in Section 13.7.
We now assume a review of the requirements knowledge and exemplarily set the following
requirements to be valid:

• FR1_CustomerInfo

• FR1.1_CustomerInfoAsText

• FR1.2_CustomerInfoAsAudio

• FR1.3_CustomerInfoAsPic

13.6 Quality Validation of Requirements Configuration
Now that we completed the requirements knowledge as much as possible and eliminated
inconsistencies, we can execute a quality validation of our requirements knowledge. The
quality validation checks again for incomplete or inconsistent information and suggests
another execution of the appropriate validations if such errors have been recognized.
Furthermore, it aims to improve goal satisfaction, that is, identifying requirements with a
positive goal contribution that have not been included in the requirements configuration and,
at the same time, preventing negative goal contributions by searching for possible alternative
requirements. Additionally, OntoReq tries to decrease the amount of requirements with a

145

13 Using OntoReq for Requirements Engineering - An Exemplar

high risk level, by suggesting possible alternatives. The execution of the quality validation
with the requirements configuration RC1 leads to the following results in Listing 13.7:

Listing 13.7: Quality Validation

1

2 - Error : Identified 8 incompleteness problems that decrease the quality of
your Requirement Configuration .

3 Please execute the completeness check and follow the instructions to
repair incomplete information .

4

5 ---
6 - Warning : FR1 .1 _CustomerInfoAsText is a negative contribution to goal

Goal3_ImproveOrientation .
7 You have the following options :
8 - Revise the above goal contribution ,
9 - Modify the requirement to meet the goal

10 - Choose one of the following alternative requirements instead of FR1 .1
_CustomerInfoAsText : [FR2_PhysicalAvailabilityOfProducts]

11

12 ---
13 - Warning : FR5 .2 _SearchByCategory is a positive contribution to goal Goal3

.1 _SupportProdIdentification but was not considered in your requirement
configuration .

14 You may consider to add this requirement to improve goal satisfaction .
15

16 - Warning : FR8_AudioOutput is a positive contribution to goal
Goal2_CustomerGuidance but was not considered in your requirement
configuration .

17 You may consider to add this requirement to improve goal satisfaction .
18

19 ---
20 - Error: FR4 .2 _InteractiveRoute has a high level of risk.
21 You have the following options :
22 - Delete this optional requirement from your configuration
23 - Choose one of the following alternative requirements instead of FR4 .2

_InteractiveRoute : [FR4 .1 _ProductPicture]

As shown in Listing 13.7, we can improve the quality by adding the requirement
FR5.2_SearchByCategory since it has a positive influcence on a goal and thus, improves
goal satisfaction. The opposite is true for FR1.1_CustomerInfoAsText that would be
a negative contribution to a goal, although it is optional. It might therefore be a good
idea to exclude this requirement from the requirements configuration. Furthermore, in
order to reduce the risk of the specified requirements, we may consider to exchange
FR4.2_InteractiveRoute with FR4.1_ProductPicture. After these changes, we should run
another consistency validation. For reasons of space we omit this at this point and continue
with the quality measurements.

13.7 Quality Measurements of Requirements Knowledge
As explained in Section 10.4, OntoReq provide means to make assumptions about the
quality of the specified requirements knowledge. In contrast to the consistency and quality
validations, these measurements cover not only the requirements configuration but the
complete specified requirements knowledge in OntoReq. If the value of a metric is lower
than 50%, OntoReq provides suggestions on how to improve a specific quality metric. The

146

13.7 Quality Measurements of Requirements Knowledge

execution of the quality measurements (see Figure 13.5) shows the results summarized in
Listing 13.8.

Figure 13.5: Quality Measurement

147

13 Using OntoReq for Requirements Engineering - An Exemplar

The complete results are shown in Listing 13.8.

Listing 13.8: Quality Measurement (1)

1 Total number of specified requirements : 17
2

3 Correctness : 24%
4 Verifiability : 47%
5 Internal Consistency : 12%
6 Traceability : 6%
7 Uncriticality : 88%
8 Completeness : 6%
9 --

10 The total quality of the SRS measures : 14%
11 --
12

13 You can improve the traceability of the requirements knowledge by
specifying a use -case , test -case , author and source for each
requirement .

14

15 You can improve the verifiability of the requirements knowledge by
specifying a test -case or soft - metric for a single requirement .

16

17 You can improve the correctness of the requirements knowledge by reviewing
the requirements and their relations and - if correct - setting the
value ’isValid ’ for each validated requirement .

These quality measurements can now be used to improve single quality criteria, e.g.
correctness. In this exemplar, we follow the suggestion in OntoReq and aim to improve
traceability and correctness. Therefore, we review our requirements once more and add the
isValid relation where appropriate. This will improve the correctness of the requirements
knowledge. Furthermore, we relate as much requirements as possible with a test-case or
soft-metric to achieve a better value for verifiability. In detail, we modify the requirements
knowledge in OntoReq as follows:

• add isValid relation to each requirement

• add a new test-case TC3_CustomerDialogue and relate it to appropriate requirements
(FR1 - FR1.3, FR5 - R5.2, FR6 - FR8)

Another quality measurement leads to the following results in Listing 13.9:

Listing 13.9: Quality Measurement (2)

1 Total number of specified requirements : 17
2

3 Correctness : 100%
4 Verifiability : 82%
5 Internal Consistency : 12%
6 Traceability : 29%
7 Uncriticality : 88%
8 Completeness : 29%
9 --

10 The quality of the SRS measures : 35%
11 --
12

13 You can improve the traceability of the requirements knowledge by
specifying a use -case , test -case , author and source for each
requirement .

148

13.8 Further Steps

As we can see in Listing 13.9, the correctness value reached 100% and the verifiability
improved as well. Since we added a test-case to some requirements, we also improved the
completeness and traceability of the requirements knowledge. Thus, the overall quality of
the requirements configuration increased by more than 50%.

13.8 Further Steps
All of the previously described steps may be accomplished as often as appropriate. Especially
the validation tasks needs to be executed after any modifications to ensure that completeness,
consistency and quality have not been corrupted by the changes or, if so, can be resolved.
Any modifications of the requirements configuration (adding or deleting one or more
requirements from the configuration) must be followed by a another consistency validation,
since this is the time when new inconsistencies are introduced.

149

150

14 Evaluation
Basili et. al. in [11] describes and classifies several methods for software experimentation
(evaluation). Such evaluation involves a thesis and test process. Since there is no general
evaluation method that can be applied for any purpose, software, project, etc., one has
to choose which method best fits to the purpose of and resources for evaluation. As
illustrated in Figure 14.1, Basili distinguishes software-evaluation studies in terms of a
two-dimensional (team size and project size) classification scheme (illustrated in Figure
14.1). This classification scheme has been extended by Kitchenham et. al. in [77] regarding
the formality of experimental design. In the following, we present the classification scheme
from [11] with additional information for extension from [77] (in italic font):

• Blocked subject-project studies = formal experiment or survey
examine one or more objects across a set of teams and a set of projects

• Replicated projects = case study
examine object(s) across a set of teams and a single project

• Multi-project variation = case study or formal experiment
examine object(s) across a single team and a set of projects

• Single-project study = case study
examine object(s) across a single team and a single project.
It is not possible to have a formal experiment without replication.

Here, Basili defines teams as “(possibly single-person) groups that work separately”.
They may be characterized by experience, size, organization, etc. Projects are defined as
“separate programs or problems on which teams work”. They may be characterized by size,
complexity, application, etc. [11]. “A formal experiment requires appropriate levels of
replication, and experimental subjects and objects that are chosen at random within the
constraints of experimental design” [77]. According to [77] any investigation can therefore

Number of teams Number of projects

One

More than one

 One More than one

 Single-project Multi-project variation

 Replicated project Block subject-project

Figure 14.1: Classification of Evaluation scopes (edited according [11])

151

14 Evaluation

be considered as case study, formal experiment or survey.

The Requirements Ontology and the validation of completeness and consistency (Evaluation
1) has primarily been evaluated within the MOST Project1. During development, we
have simulated its usage by instantiating it against a few case studies of the project, i.e.,
semantic modelling of network physical devices ([99]) and validating Component-Based
Implementations of Business Processes [88]. This allowed for a continuous revision of the
Requirements Ontology during the project.
The evaluations of OntoReq followed the formal criteria of a use case as experiment. We
examined three projects (or problems) with one and the same team. According to Basilis
classification scheme it can be classified as multi-project variation. In this chapter, we
present one of these evaluations and its results. Additionally, we decided to evaluate the
underlying concepts of OntoReq with a broader set of people and defined two universal
problems in Requirements Engineering which OntoReq aims to eliminate or at least to
reduce (Evaluation 2). This evaluation is targeted to allow for a comparison of solving RE
problems without any support and with support by OntoReq.

This chapter is structured as follows: we firstly describe the evaluation of the Requirements
Ontology on the basis of a requirements specification of the Names Project [110] in Section
14.1. The second evaluation is described in Section 14.2, where we used two control groups
to make assumptions about the impact of guidance support provided by OntoReq. For
each evaluation, we describe the motivation, evaluation object and procedure. We also give
background information about the case study and the domain and scope of the evaluations.
Finally, Section 14.3 summarizes this chapter.

14.1 Requirements Ontology and Requirements Validation
Services

The following evaluation investigated the Requirements Ontology TBox for its completeness
and consistency and analysed whether the ontology provides sufficient metadata to capture
common requirements knowledge.

14.1.1 Description of the Case Study
The case study of the Names project [110] aims to develop a software that solves the
problem of uniquely identifying authors. “Without having a means of uniquely and
unambiguously identifying those involved in the creation of materials in repositories, it
becomes difficult to be sure whether all the materials related to a particular person will be
correctly associated with that individual” [110]. Names of authors may be entered in more
than one way (e.g., only last name, first name and last name, as initials, etc.), or more
than one author may have exactly the same name. The Names project started in July
2007 and ended in February 2009.

The Names project investigated the requirements of the UK’s repository community for a
name authority service and developed a demonstrator. The team determined the types of
metadata which were required for the service.

1Marrying Ontologies with Software Technology, http://www.most-project.eu/

152

14.1 Requirements Ontology and Requirements Validation Services

The second phase of the project established the software requirements for the prototype.
This involved reviewing the stakeholder requirements and data analysis documents and
drawing up a specification based on these.
This resulting requirements specification is used in this thesis for the evaluation of our
Requirements Ontology.

14.1.2 Motivation
With this first evaluation we aimed to check the TBox of the Requirements Ontology, the
provided metadata and applicability to instantiate requirements knowledge appropriately.
Our goal was to answer the following questions:

• Is the structure of the Requirements Ontology reasonable?

• Are the ontology concepts of the TBox correct and complete?

• Are the requirements metadata of the TBox sufficient and applicable?

• Can all data from the Case Study be captured within the Requirements Ontology?

• Are there any difficulties in using the Requirements Ontology?

• Can completeness and consistency faults be detected in the ABox?

• Is the performance of completeness and consistency validations sufficient to support
real time modelling actions?

14.1.3 Evaluation Object
The Requirements Specification of the Names Project consists of 37 functional requirements,
5 non-functional requirements, and 95 relationships between these requirements. We regard
this as a medium size representation of a Requirements Specification

14.1.4 Evaluation Procedure
In order to evaluate the Requirements Ontology, we first collected all available information
about the Case Study that could be of importance (e.g., Project description). Further on,
we identified relevant data (e.g., stakeholder, requirements, goals) and instantiated the
Requirements Ontology with the set of requirements artefacts extracted from the Names
Project. We identified and instantiated 37 functional requirements and five non-functional
requirements. Each of these requirements could be assigned a priority level, a source
(kind of documentation), an ID and a responsible stakeholder. The identified requirements
relationships were refinement and coexistence relations. Furthermore, eight Use-Cases were
instantiated and given an ID.
All problems or questions that appeared during this procedure were documented. Finally,
we checked the consistency of the Requirements Ontology and validated the completeness
and consistency.

153

14 Evaluation

14.1.5 Results
We identified two faulty ontology concepts and one missing requirement metadata in the
Requirements Ontology. Apart from that, all of the available information in the Case Study
could be instantiated in the Requirements Ontology. Thus, the evaluation proved the
ontology structure to be reasonable and appropriate to capture requirements knowledge.
However, one problem emerged during evaluation: the data provided in the requirements
specification of the Names project was not sufficient to allow an instantiation of each
requirements artefact or requirements relationship in our Requirements Ontology. Due
to the predefined requirements metadata in the Requirements Ontology, it is possible to
capture much more requirements knowledge than usual requirements specification provide.
But this is a vicious cycle since the Requirements Ontology allows for specifying more
requirements knowledge than is currently captured, but at the same time, this assumption
can hardly be proven due to the lack of data in available requirements specification.

The evaluation was performed on a 2GHz dual core MacBook Pro. The evaluation was
an excellent test of the ability of our approach to deal with incomplete and inconsistent
specifications. The Case Study ontology failed 14 of the 37 tests and a total of 132
different individual problems were identified. Thus, the evaluation proved the detection of
incomplete and inconsistent requirements artefacts, which was one of our main goals. The
total time required to test the completeness constraints was 808ms. The performance of
the system is therefore good enough to be used as part of an ongoing cycle of testing and
revision of the Requirements Ontology ABox.

The evaluation results can be summarized as positive regarding the ontology structure,
completeness and correctness of concepts and requirement metadata. The tests for require-
ments completeness and consistency proved to be working and showed the expected results.
The performance of these tests is such that they can be executed regularly, and used by a
requirements engineering tool to highlight inconsistencies or incompleteness during real
time requirement modelling.

14.2 Comparison of Universal RE Tasks without and with
support by OntoReq

The second evaluation investigates the applicability of the guidance support provided by
OntoReq and aims to compare the accomplishement of general RE tasks with and without
support by OntoReq.

14.2.1 Motivation
General tasks during Requirements Engineering are the extraction of requirements from
text or from customer conversations and the specification of these requirements. Further-
more, it is necessary to finally check them for their completeness and consistency. Since
OntoReq aims to support requirements engineers in these tasks, we want to compare the
accomplishment of these tasks, supported with OntoReq and without any support.

154

14.2 Comparison of Universal RE Tasks without and with support by OntoReq

14.2.2 Description of Evaluation
The evaluation consists of two single evaluation forms (A and B) with two tasks per
forms. Forms A asks the evaluation subject2 in the first task to gather all requirements
and requirements relationships of an invented recorded customer conversation by copying
and pasting appropriate keywords from the text in prepared empty tables and fields. We
will refer to this task as A1. The second task depicts a requirements configuration and
additional requirements knowledge (e.g., relationships, priorities) and a set of consistency
and completeness rules the subject is asked to validate the requirements configuration
against. By considering these rules, he needs to modify the previously defined requirements
configuration and note the resulting modified requirements configuration that should now
be complete and consistent. We refer to it as task A2. The subject is not supported in any
of these tasks (A1 and A2).
Form B of the evaluation asks the subject to accomplish exactly the same tasks as in
A1 and A2 with the only difference that he is supported by OntoReq. We refer to these
tasks as task B1 and task B2. Instead of asking the subject to install OntoReq and get
familiar with it, we decided instead to use only the real outputs and guidance messages
of OntoReq without involving the application itself in the evaluation process. This has
the advantage to compare the results of these tasks independently from technical barriers,
software competency and increases the acceptance of the evaluation due its simplicity of
accomplishement.
Both evaluation forms are designed as pdf documents. The accomplishment of each task is
restricted to 20 minutes. A subject is intended to either complete part A or part B. In
order to randomly assign both parts, we give form A to subjectťs with the month of birth
in the first half of the year and form B to the others.

14.2.3 Evaluation Object
The above mentioned customer conversation is identical with the one already provided in
Chapter 13.

14.2.4 Target Group
The evaluation is targeted at persons of any age with at least little knowledge in Require-
ments Engineering. The evaluation subjects are familiar with software requirements and
their extraction from text. Additionally, they must be able to understand German and
English. Further background knowledge is not necessary.

14.2.5 Expectation
The evaluation aims to come to a statement whether usual RE tasks such as requirements
elicitation and the complete and consistent specification of requirements knowledge can
be improved by OntoReq. This statement is based on several metrics measured in the
evaluation:

1. the number of correctly identified requirements artefacts (functional, non-functional
requirement, goal, priority)

2An evaluation subject is the person accomplishing the evaluation tasks. We will refer to it as “subject”.

155

14 Evaluation

2. the number of correct identified requirements relationships

3. the correct consideration of completeness and consistency rules

The results of these metrics can be compared between A1 and B1 and A2 and B2.
We expect that the results from tasks A1 and A2 will be less complete and correct (regarding
the validation against the defined rules to be acknowledged). It might be the case, that
tasks A1 and A2 will not have been completed in time. A1 and B1 should differ in the
completeness of requirements artefacts, e.g., goals or non-functional requirements might
not be identified in A1. The final requirements configuration in A2 might not be correct
while it should in B2.

14.2.6 Results
Unfortunately the number of returned (and complete) evaluation forms was too low (three
returns) to allow for meaningful and scientifically interpretable results. However, in the
following we will list and analyse the existing results.

Below we list the results of the study persons for each type of requirements artefact and
the identified requirements relationships (task 1). The first value denotes the number of
identified instances of a particular requirements artefact and the second value states the
correct value for this particular requirements artefact. If appropriate, more information on
each single result is given after the value of identified requirements artefacts.

Person1, Evaluation Form A, Task 1
• Goals: 3 (4)
• Functional Requirements: 13 (11), 6 correct, 1 comprised 2 FRs, 3 are UseCases, 1 is metric, 2 are

NFRs
• Non-Functional Requirements: 0 (2)
• Sources: 0 (2)
• Obstacle: 2 (1), 1 not related to text
• Use-Cases: 0 (3)
• Metrics: 0 (1)
• Stakeholders: 0 (2)

Person1 specified 37% (10 of 27) requirements artefacts correctly. The most obvious
mistake was the wrong selection of requirements artefacts (functional requirements instead
of use-case, metric and non-functional requirements). Person1 identified 50% (4 of 8) of
the different types of requirements artefacts. Stakeholders, non-functional requirements,
use-cases, metric and the source were not been identified.
13.8% (5 of 36) of the requirements relationships were identified correctly. Priorities,
refinements, coexisting requirements, goal contributions and relations to obstacle and
source were not been identified. Requirements were not been specified as mandatory or
optional.

Person2, Evaluation Form B, Task 1
• Goals: 5 (4), 4 correct, 1 is FR
• Functional Requirements: 6 (11), 5 correct, 1 comprised 3 FRs

156

14.3 Summary

• Non-Functional Requirements: 5 (2), 2 correct, 2 are FRs, 1 is metric
• Sources: 2 (2), 0 correct
• Obstacle: 1 (1), 1 correct
• Use-Cases: 2 (3), 2 correct
• Metrics: 1 (1), 1 correct
• Stakeholders: 1 (2), 1 correct

Person2 specified 59% (16 of 27) requirements artefacts correctly. 100% (8 of 8) different
types of requirements artefacts were identified.
The requirements relationships were correctly identified at 75% (27 of 36).

Person3, Evaluation Form B, Task 1
• Goals: 3 (4), 3 correct
• Functional Requirements: 11 (11), 11 correct
• Non-Functional Requirements: 2 (2), 1 correct, 1 is FR
• Sources: 2 (2), 2 correct
• Obstacle: 0 (1)
• Use-Cases: 0 (3)
• Metric: 0 (1)
• Stakeholders: 0 (2)

Person3 specified 62.3% (17 of 27) requirements artefacts correctly and 50% (4 of 8) of the
different types of requirements artefacts.
The requirements relationships were correctly identified at 13.8% (5 of 36).

Evaluation Form A and B, Task 2

There are two correct solutions for a consistent requirements configuration. The results of
person1 and person2 were correct. Person3 neglected one requirement in the requirements
configuration.

14.2.7 Conclusion
Due to the insufficient number of returned evaluation forms, no scientific conclusions can
be drawn and no generalization of the results is possible. The comparison of the results
only shows that Person1 who was not supported by OntoReq achieved worse results in
task 1 than the remaining two persons who were guided by OntoReq.

14.3 Summary
In this chapter we describe our evaluation approaches. The Requirements Ontology and
the validation of completeness and consistency has primarily been evaluated within the
MOST Project3. Therefore, we have simulated its usage by instantiating it against a few
case studies of the project. The evaluation results can be summarized as positive regarding
the ontology structure, completeness and correctness of concepts and requirement metadata.

Furthermore, we examined three projects (or problems) with one and the same team.
According to Basilis classification scheme it can be classified as multi-project variation.

3Marrying Ontologies with Software Technology, http://www.most-project.eu/

157

14 Evaluation

The tests for requirements completeness and consistency of the metamodel proved to be
working and showed the expected results. The performance of these tests is such that
they can be executed regularly, and used by a Requirements Engineering tool to highlight
inconsistencies or incompleteness during real time requirement modelling.
Additionally, we describe our evaluation approach for the underlying concepts of OntoReq
and defined two universal problems in Requirements Engineering which OntoReq aims to
eliminate or at least to reduce. This evaluation is targeted to allow for a comparison of
solving RE problems without any support and with support by OntoReq. However, due
to the insufficient number of returned evaluation forms, no scientific conclusions could be
drawn and no generalization of the results is possible.

158

15 Comparison of OntoReq with other RE
Tools

An increasing number of software support for Requirements Engineering has been poured
out on the market. The aims, strengthens and weaknesses of these tools differ enormously.
While some tools aim to support the documentation of requirements, others improve
the specification of requirements or support the RE process with a certain methodology.
However, there are some major tools that are mainly used within industry (in the years
2006-2008) and are well-known. Our goal is to give a review of a set of these tools,
describe their benefits, main features and weaknesses. Therefore, Beger in [13] developed
a classification scheme, based on a number of tool requirements that RE software may
realize. We use this classification scheme to compare OntoReq with RE tools previously
evaluated by Beger. Although OntoReq has the scope of a scientific demonstration
prototype instead of being a tool ready for industry, we use this schema to compare
several characteristics of RE tools with OntoReq. The selection of tools presented
here is not meant to be complete. However, the classification scheme can easily be used
for any other tool and thus, provide means for comparing RE tools regarding a set of criteria.

This chapter is structured as follows: we first introduce the classification scheme
in Section 15.1 and proceed with a description of the evaluated RE tools in Sec-
tion 15.2. Afterwards in Section 15.3, we use the classification scheme to compare
the features offered by this tools with OntoReq. Finally, a summary is given in
Section 15.4.

15.1 Classification Scheme
The structure of the classification scheme is based on an evaluation framework for RE
tools developed by Prof. Dr. Klaus Pohl and presented in [118]. This classification scheme
lists seven views (criteria groups) that allows for the classification and evaluation of RE
tools from different point of views. In the following, we briefly introduce these several
criteria according to [118].

Product View
The product view comprises all aspects of the specification, organisation and management
of information, thus, the complete functionality of the RE software. This view includes
document types (predefined types, structuring, views, constraints), traceability (decisions,
sources of change, relation types), reports (screen-, paper, or internet-based), code genera-
tion (programming languages, sources) and configuration management (revisions, version
control).

159

15 Comparison of OntoReq with other RE Tools

User view
The user view considers facets of tools from the user perspective: user management (single-
or multi-position system, role-based or project-based administration, user authorization,
user profiles), support for groups (parallel working, notifications, reviews) and the user
interface (adaptability, clarity, user guidance).

Project View
The project view states how the a tool may support the project management. This includes
the preparation (definition of project specific documents and information types), planning
(milestones, work- and resource planning), and controlling (automatisms, project control,
quality assurance) of projects.

Process View
The process view addresses the method support of the software, e.g., the definition of
project-specific procedures or traceability (granularity, creation, usage).

Technical View
The technical view comprises the technical constraints of the software context the hard-
and software (memory, network, local installation, operating system, additionally required
software), the integration potential (APIs, process-, data-, control-integration), the data
management in a repository (safety concept, data import and export, query interface,
supported standards) and the scalability of the software (maximum number of users,
objects, active projects).

Supplier View
The supplier view describes the market position and service of the tool developer. This
includes among other criteria the consulting (hotline, software documentation), training,
company data (market relevance, stability of the the company) as well as release and
licensing policy.

Economical View
The economical view comprises potential costs to buy the product. This includes initial
costs, costs for infrastructure (additional hard- or software) as well as costs for training,
operational- and maintainability costs.
The evaluation of RE tools depends on several also subjective criteria (e.g., the budget,
experience, scope of use, optional or mandatory criteria). Thus, the classification scheme
includes only basic criteria that allow for a general evaluation of RE tools based on criteria
that can be evaluated.

160

15.2 Description of Software Tools and Evaluation Results

Figure 15.1: User Interface of RequisitePro (2007)

15.2 Description of Software Tools and Evaluation Results
15.2.1 IBM® Rational® RequisitePro®
In 2003, IBM adopted the company Rational Software, and thus the development of IBM
Rational RequisitePro. It counts alongside DOORS to the best known and most widely
used development tools in Requirements Engineering/Management.
RequisitePro is based on a document-centric approach and links to the compulsory Mi-
crosoft Office Word. It supports the creation of Word documents based on different
document types (Word templates), e.g., Business Rules, Requirements Management Plan,
Stakeholder Request or Vision and Features. Requirements are also typed (“Feature”,
“Risk”, “Stakeholder Request”, “Test-Case”, “Use-Case”, etc.) and can be created as text
sections by a special toolbar within Microsoft Office Word. Requirements that have been
generated that way, are automatically included in the database of RequisitePro where
they can be accessed within. They are hierarchically structured and contain a number of
predefined attributes. The linking of requirements as well as the specification of attributes
and the requirements analysis are managed via user dialogues or views. Attributes for
requirements may be customized and used for filtering.
The organization of requirements knowledge is realised by projects folder (“packages”).
The design of RequistePro is similar to the Windows Explorer from Microsoft®(see Figure
15.1). In this work we evaluate version 7.1 in conjunction with Microsoft Office Word 2007.
Detailed information about RequisitePro can be found in [36, 118].

161

15 Comparison of OntoReq with other RE Tools

15.2.2 Conclusion
RequisitePro with its clear, but visually outdated user interface looks pretty unimpressive,
but supports typical RE tasks.
The functionality and thus the learning curve is somewhat lower than in DOORS and
Polarion Requirements. A large number of different attributes, requirements and document
types is predefined. The predefined templates are similar to metamodels and can easily be
created or modified. Requirements types can be defined by the user. However, validation
and measurements regarding completeness, consistency and quality is not provided.
Especially characteristic (but also restrictive) for RequisitePro is its close connection with
Microsoft Office Word and the document-centric approach. Cross-project Requirements
Engineering becomes difficult due to the fact that projects are managed independently
from each other. Additional functions, such as UML modelling are not supported. We
summarize the following positive and negative aspects of RequisitePro:

Positive

• Relatively low learning curve

• Many predefined attributes/ request types/ document types

• Users can choose auto-numbering of requirements

• Assignment of permissions when selecting attributes for individual attribute values

• User-definable requirement types

• Customizable and filterable requirements attributes

Negative

• No validation support for completeness, consistency or quality of captured require-
ments

• Cumbersome installation

• Optical outdated user interface

• Requirements that are created in the database cannot be incorporated in a Word
document

• Poor integration of external documents

• No simultaneous access to multiple projects

• Dependency to Microsoft Office Word

15.2.3 IBM® Rational® DOORS®
IBM Rational DOORS (Dynamic Object Oriented Requirements System) was developed by
Telelogic AB until 2008. In the same year, IBM took over the company and their products
and integrated them into the IBM Rational Software portfolio. DOORS counted as the
technology and market leader in Requirements Engineering/Management for the last few
years. It provides a rich feature set and is used by companies of all sizes worldwide.

162

15.2 Description of Software Tools and Evaluation Results

Figure 15.2: IBM Rational DOORS (2007)

The user interface of DOORS is similar to RequisitePro and the Windows Explorer from
Microsoft (see Figure 15.2. The organization of projects is realised by folder modules
(collection of objects), whereas requirements are mainly specified as hierarchically structured,
textual descriptions (properties). Requirement descriptions are basically comprised of a
title (“Object Heading”), a text (“Object Text”) and a short text (“Object Short Text”).
Attributes are here displayed in a dialogue box or in table form. Particularly in terms
of attributes, the dependency relationships or the views, DOORS offers great flexibility.
Rational DOORS is integrated with Rational solutions for change management to provide
support for a change control process and to allow for automatic notifications of such
changesŮby graphically indicating those links to changed objects that require investigation.
Furthermore, DOORS allows for traceability views across requirement specifications, designs
and tests. Additionally, it provides its own scripting language DXL’s (DOORS Extension
Language) for specifying automatic routines, calculations, triggers, or user-defined menu
options. In this work, we evaluated version 9.1. For detailed information about DOORS
refer to [36] and [118].

15.2.4 Conclusion
DOORS is a universal RE development tool. Typical RE Tasks are fundamentally supported.
Due to its clearly structured user interface, working with DOORS is much easier, but
requires due to its extensive functionality some training. Particularly noteworthy is the
simple and flexible creating of attributes. In addition, it provides an extensive DXL
programming interface whose application cannot be completely estimated in this work.
DOORS supports traceability across multiple requirement documents as well as to designs,

163

15 Comparison of OntoReq with other RE Tools

tests and work items managed in other tools. Additionally, it allows for an automatic
notification of changes by graphically indicating those links to changed objects that require
investigation.
However, DOORS does not support types of requirements and only few features (e.g.,
attributes) are already predefined. Thus, there is no sufficient metamodel provided.
Additional functions, such as UML modelling are not supported. DOORS does not provide
validation or measurements for completeness, consistency or quality of requirements a
priority. But it might be possible to use the DXL to allow for the definition of certain
basic measurements. We summarize the following positive and negative aspects of Rational
DOORS:

Positive

• Traceability across multiple requirement documents as well as to designs, tests and
work items

• Automatic notification of changes

• Clear user interface

• DOORS Extension Language (DXL)

• Simple and flexible creation of attributes

Negative

• No predefined metamodel

• Requirement types are not supported cannot be defined by the user

• No validation support for completeness, consistency or quality of captured require-
ments

• Cumbersome installation

• High learning curve

• Poor integration of external documents

• Generation of reports

• Additional programs needed

15.2.5 Polarion® Requirements 2.0™
Polarion Requirements 2.0 was developed by the Swiss company Polarion Software, which
operates on the market since 2005 and specialized on business applications for the Web 2.0.
Polarion is a web-based RE development tool (Portal37), which is mainly based on the Java
technology, open source applications and Apache Subversion (SVN) touches. The data to
be managed is stored in form of XML documents within the repository. The user-interface
of Polarion Requirements is divided into a navigation pane with different perspectives
(“Projects”, “Repository”, “Administration”) and a work area (see Figure 15.3) and is
similar to the appearance of Microsoft Office Outlook. In Polarion Requirements, objects

164

15.2 Description of Software Tools and Evaluation Results

Figure 15.3: Polarion (2007)

are referred to as units of work (“work items”), which different groups are assigned to (e.g.,
“Time Points”, “Categories”, “Queries”, “Linking”). Folders and modules (collection of
work units) are used for the organisation of projects. Different types (“Work Item Types”)
combine certain units of work and classify them in their function, such as a Requirement,
Task or Test Case. Requirements are hierarchically structured, and may contain many
predefined attributes and may be displayed in different ways, for instance as a table or in a
Wiki page. Here, the Wiki refers to the repository, so that the Wiki pages always represent
the current status of the project. Polarion powerfully supports change management and
traceability. Polario allows for the definition of any requirements artefact (e.g. goal) and
attributes and links between requirements artefacts. Thus, it is possible to define an own
metamodel.
In this work, we evaluated version 3.3.1 in conjunction with the Mozilla browsers Firefox
3.0.13 and Microsoft Internet Explorer 8.0 and Microsoft Office 2007. It shall be noted,
that Polarion Requirements is available both as individual tool and also as an integrated
part of the larger software product PolarionALM.

15.2.6 Conclusion
Polarion Requirements is also a universal RE-development tool. It is very comprehensive in
functionality and supports the typical RE tasks. As a web application the distributed work
is completely supported by default, no additional software is necessary. Especially usable is
working with Wiki pages. They allow for the simple and collaborative specification of many
requirements at the beginning of the RE process. Later on, individual work units may
be extracted from the Wiki pages and managed by Polarion Requirements. Additionally,

165

15 Comparison of OntoReq with other RE Tools

due to the embedded query they may also be used as progress control. Furthermore,
Polarion Requirements predefines several characteristica (e.g., attributes) that may be seen
as a simple metamodel. However, this metamodel may be sufficiently extended by the
user in various ways. Thus, it offers a lot of individual settings via XML configuration
files, whereas the documentation however could be better. Also the navigation to the
various perspectives, levels (module, project, repository) and views requires some time.
However, some useful features are only available with a license for PolarionALM, which is
highly recommended. Polarion does not provide any validation or measurement regarding
the completeness, consistency or quality of requirements a priori. However, due to the
underlying XML technology and the generation of Wiki pages, it might be possible to
implement user-defined queries and measurements. In the following we briefly summarize
some positive and negative characteristics of Polarion:

Positive

• Simple installation

• Many predefined characteristics (work units, attributes, traceability types)

• Configurability of attributes, work units and processes

• User definable requirements artefacts (e.g., requirement types, goals, relations, at-
tributes)

• Wiki pages with embedded repository queries

• Storage of data in XML format

• Report generation using XSL templates

• Reuse of work units and modules

• Web-based collaboration support

Negative

• No validation support for completeness, consistency or quality of captured require-
ments a priori.

• High learning curve

• Lots of (administrative) settings through adjustment of XML configuration files

• Frequent switching between views, levels (module, project, repository) necessary

• Document and folder management partially only possible via repository

• Update of the display partially manually

166

15.3 Comparison of Features of RE Tools and OntoReq

15.3 Comparison of Features of RE Tools and OntoReq
The following tables 15.1 to 15.4 compare the most important classification criteria among
three industrial tools (IBM Rational RequisitePro, IBM Rational DOORS and Polarion
Requirements) and the OntoReq demonstrator. We use the scale positive (+), neutral (0),
negative (-) and without evaluation (x).

167

Feature RequisitePro DOORS Polarion
Requirements

OntoReq

Requirements capture
... through natural language text + + + +
... by tables + + + -
... by diagrams + 0 0 -
... by graphics + - + -
... by models, notation languages - - - +
Attribute assignment
... by predefined attributes + 0 + +
... by individual attributes + + + +
... automatically - + 0 +
... manually + + + +
Import of requirements from documents - - 0 -
Creation of glossaries, request templates, data dictio-
naries

0 0 0 -

Special consideration of non-functional requirements 0 - - +
Metamodel for requirements
... as predefined classification + - 0 +
... by user classification + 0 + -
Structuring of requirements/ information + + + +
Creation of solutions approaches 0 0 0 +
To be continued on the following page.

Table 15.1: Comparison of RE tools and OntoReq

Feature RequisitePro DOORS Polarion
Requirements

OntoReq

Providing templates
... for documents + + 0 -
... Projects + + 0 -
Collaboration
... through automatic user notification + + + -
... by parallel use of the tool + + 0 -
... by distributed use of the tool + 0 + -
... by commenting or review of data 0 + + +
Validation of completeness, consistency, quality - 0 0 +
Clarity of the user interface 0 0 - 0
... Comprehensibility of the tool + + 0 +
... Learnability of the tool + 0 0 +
... Support of labor and resource planning 0 0 0 -
... Definition of project automatisms 0 + + -
... Support for project monitoring - 0 + +
... Project-specific analysis options - - - +
Generation
... Queries + + + 0
... views 0 0 + 0
... Tables, charts, graphs, calculations, charts 0 0 0 +
... Documents, reports - - + +
To be continued on the following page.

Table 15.2: Comparison of RE tools and OntoReq

Feature RequisitePro DOORS Polarion
Requirements

OntoReq

Reuse of requirements
... of previous projects - + 0 0
... of a project-independent requirements archive - - - 0
... prescribed methods support - - - 0
... Support of a formal change process 0 + 0 0
... Documentation/ traceability of changes 0 + + +
... Automatic notification on potential effects of changes 0 0 0 0
... Traceability of requirements 0 + + +
... Configuration of requirements - - - +
... Support of a formal configuration management 0 0 - +
... Allocation of priorities, rank and sequences + + + +
... Compilation of requirements configuration for later analysis - - - +
... Progress control + + + +
... Query language for database/ repository RequisitePro

Query Language
DXL Apache Lucene SPARQL

Operating Systems supported Windows Windows,
Linux, UNIX

Windows, Linux Windows, Linux

Necessary additional software - 0 0 -
Data exchange ...
... between different projects - + + -
... with other tools 0 0 0 0
To be continued on the following page.

Table 15.3: Comparison of RE tools and OntoReq

Feature RequisitePro DOORS Polarion
Requirements

OntoReq

File formats supported for import Word, CSV Word,
Text, RTF,
CSV, TSV,
FrameMaker

Word, Excel RDF, XML

File formats for export Word, CSV,
XML

Word, Excel,
Text, Outlook,
PowerPoint,
RTF, HTML,
FrameMaker

Word, Excel,
Text, CSV,
PDF, XML,
XMLHTML

RDF, XML

Installation effort - - + +
Documentation (manual, online) + + - +
Potential cost - - 0 x

Table 15.4: Comparison of RE tools and OntoReq

15 Comparison of OntoReq with other RE Tools

15.4 Summary
In this chapter, we compare features of three well-known RE tools (IBM Rational Req-
uisitePro, IBM DOORS and Polarion) with OntoReq. We describe their benefits, main
features and weaknesses. The comparison is based on a classification scheme that acknowl-
edges various aspects of software for RE. This tool evaluation shows, that metamodels are
only little provided and supported. In contrast to OntoReq none of the evaluated tools
provide validation for completeness, consistency or quality.

172

16 Conclusions and Future Work
This thesis is concerned with the investigation of problems and shortcomings in Require-
ments Engineering and the development of ontology-driven methods for improving the
completeness, consistency and quality of requirements knowledge. Section 16.1 revisits the
research goals planned in Chapter 1 and summarizes the main results of this thesis. In
addition, Section 16.2 briefly describes the contributions of this thesis to Goal Oriented
Requirements Engineering (GORE). Finally, Section 16.3 clarifies the limitation of our
work and Section 16.4 describes future work.

16.1 Confirmation of Theses
The work presented in this thesis has been motivated by two main movements: goal-driven
approaches in Requirements Engineering and ontologies in general. Within this thesis, the
work is based on three hypotheses (see Section 1.3):

1. The specification of goals and their relation to requirements artefacts supports efforts
in improving the completeness, consistency and quality of requirements knowledge.

2. The formaliation of requirements knowledge allows for automated validation of
requirements knowledge.

3. Ontologies provide means to structure and reason about requirements knowledge,
facilitate traceability and enable the automated validation of completeness, consistency
and quality criteria captured within.

With respect to Hypothesis 1, the work in this thesis is based on Goal Oriented Require-
ments Engineering (GORE). “Goals are declarative statements of intent to be achieved by
the system under consideration” [129]. Goal identification is accomplished preliminary to
requirements identification, but requirements may be elaborated at the same time and, thus,
more goals may be identified when discussing requirements. This way, the specification
of goals drives the identification of requirements since a goal should be satisfied by at
least one requirement [145]. In contrast to requirements that are changing over time, goals
capture stable information. Hence, if goals are not related to any requirement, it can
be assumed that the requirements specification is incomplete and that requirements are
missing. Furthermore, the specification of goals and goal contribution relations between
requirements and goals allow for the identification of a set of requirements that best satisfy
a given set of goals. Thus, goals and goal contribution relations are capable of improving
the quality of requirements knowledge. Therefore, we decided to base our research on
GORE.

Regarding Hypothesises 2 and 3, ontologies are capable of representing and interrelating
various knowledge. Since RE involves knowledge capturing and analysis, there is a clear

173

16 Conclusions and Future Work

synergy between the ontological modelling of a domain and the modelling of requirements
knowledge [34]. Requirements knowledge always needs a particular conceptualization.
Thus, they have much in common with ontologies that are constructed by using a formal
language [34] and provide a shared conceptualization.
These hypothesises have been approved in the thesis. We modelled a Requirements
Ontology (TBox) that serves as requirements metamodel. The ontology elements (e.g.,
classes, properties, instances of classes, relationships between instances) can be used to
specify formalized requirements artefacts and their relationships in the ontology ABox.
This ontology has been successfully evaluated regarding the aspect whether it is capable
of capturing the requirements knowledge contained in a real Software Requirements
Specification (SRS).
Furthermore, Ontology reasoning was applied to automatically identify incomplete and
inconsistent information as well as quality flaws and to provide the requirements engineer
with suggestions on how to resolve these problems. This automatic validation has also
been proven feasible and lead to the desired and correct results.

16.2 Thesis Contributions
The following subsections summarize the main contributions of our research in chronological
order as they appear in the thesis. However, the two main results of the thesis are:

1. Conceptualisation of requirements knowledge, facilitated by ontologies.

2. Automated validation and measurement of requirements knowledge regarding the
internal completeness, consistency and quality.

Classification of Problems in RE and Deduction of Requirements for RE
In this work, we evaluated problems and shortcomings in RE that have been published
in research articles or documented by industry. We developed a classification of these
problems and distinguished six problem categories:

1. Technological: problems based on changes or challenges in general technology
and/or RE, e.g. tools, IT technology, etc.

2. Organisation/Management/Communication: shortcomings due to business
(process) organisation, management of resources (e.g. time, money, human resources),
communication between stakeholders, customers and requirements engineers

3. Requirements: problems originating from the nature of requirements themselves

4. Requirements Engineering Process: challenges regarding the process of require-
ments elicitation, analysis, etc., structure of the process, methods, traceability and
guidance

5. Requirements Documentation: problems with the type of documentation, docu-
mentation structure, traceability, models, reuse, comprehensibility, etc.

6. Validation/Verification: challenges regarding checking specified requirements
during the RE process

174

16.2 Thesis Contributions

Based on these categories and the analysed problems related to them, we deduced a set of
general requirements for Requirements Engineering that may be interpreted for various
aspects (e.g., developing a new RE method, improving a RE tool). A subset of these
requirements has been chosen to be considered for the approach developed in this thesis.

Ontology Metamodel
We developed a requirements metamodel as ontology TBox. This Requirements Ontology
consists of 54 classes, 25 object properties and 3 data properties to interrelate the require-
ments knowledge and acknowledges goal-driven methods. Thus, it does not only allow
for specifying goals and requirements, but also provides sufficient structures to interrelate
them in various ways, e.g., for establishing goal contribution relations. The Requirements
Ontology comprises several requirements artefacts (requirements, goals, use-cases, metrics,
stakeholder, etc.) and a set of requirements relationships that enable their interrelation.
These metadata can be understood as empty slots in the TBox that must be filled (instanti-
ated) during the Requirements Engineering process. This instantiation forms the ABox of
the ontology. The Requirements Ontology allows for a sufficient structure of requirements
knowledge and is reusable. Furthermore, it facilitates the traceability of requirements
knowledge (e.g., decisions for refinements or conflict reasons).
The Requirements Ontology and the contained metadata are the basis for the automated
validation of the requirements knowledge specified within.

Automatic validation of completeness, consistency and quality flaws in
requirements knowledge
Based on Davis’ quality criteria for RE [32] and important requirements metadata defined
by Firesmith et. al. [42], we defined a set of metadata that is measuring the completeness,
consistency of the requirements knowledge and facilitates the quality improvement of
requirements knowledge. These metadata have been used to define a number of complete-
ness, consistency and quality rules. In order to support the requirements engineer, we
developed a software demonstration (OntoReq) that allows for the automatic detection of
incompleteness, inconsistency or quality problems. Therefore, the Requirements Ontology
with the instantiated requirements knowledge is reasoned and the satisfiability of the vali-
dation rules is checked. The validation rules have been implemented by Java methods and
SPARQL queries and use NBox reasoning (Local Closed World Reasoning with Negation as
Failure Box, [114]).

Guidance Support for Resolving Incompleteness, Inconsistencies and Quality
Flaws in Requirements Knowledge
In order to support the requirements engineer in resolving the identified completeness,
consistency and quality problems, we developed decision strategies that allow for automat-
ically presenting concrete solution suggestion particular to the requirements knowledge
at the time of validation. These decisions are evaluated in OntoReq in the background,
for example, the recommendation of alternative requirements or the exclusion of optional
requirements. The decisions satisfy a set of validation rules themselves, since a presented
suggestion must also guarantee to be compliant to the validation rules, e.g. not establishing
new conflicts.

175

16 Conclusions and Future Work

Measuring Completeness, Consistency and Quality of Requirements
Knowledge
The above validation rules involve the requirements engineer in improving the SRS by
pointing to the specific problems. Although these validation rules help to exactly identify
where improvements are necessary and provide solution suggestions, the requirements
engineer will not exactly know how important the modifications were for the overall quality
of the SRS in contrast to any state of the requirements knowledge before. Therefore, we
provide measurements for the quality of the SRS, based on Davis’ criteria and formulas in
[32] and additional specified criteria.
Thus, we provide formulas for the quality criteria “internal completeness”, “correctness”,
“verifiability”, “internal consistency”, “traceability” and “uncriticality” that compute the
percentage of the particular criteria. These measurements can be executed in OntoReq.
The requirements engineer is also equipped with hints on how to improve the particular
criteria if necessary. These measurements can be executed after each validation and state
the quality of the actual requirements knowledge and represent the satisfaction of each
quality criteria. Thus, enhancement or degeneration of the requirements knowledge becomes
visible to the requirements engineer in the form of numerical values that allow for an
objective comparison during different stages of development.

Conceptual Description of Ontology-Driven Process Guidance for OntoReq
Furthermore, we developed an ontology-driven method to guide the requirements engineer
through the process of GORE. Therefore, we defined a set of optional and mandatory
tasks, based on our validation rules. To allow reasoning about the current state of the
requirements knowledge and to identify completed and incompleted process steps, we
defined pre- and post-conditions for each task. Thus, a task is completed if all the post-
conditions are satisfied. Since Requirements Engineering is an ongoing process, the use
of these post-conditions allows for setting an already completed task back to the status
“incomplete” if one or more of the conditions are not satisfied anymore.
We distinguish step guidance and flow guidance. Step guidance offers guidelines for
each task that explains how to accomplish this particular task and flow guidance guides
the requirements engineer in choosing the next task. These tasks and their pre- and
postconditions must be kept in a Guidance Ontology that is linked to the Requirements
Ontology. Therefore, we defined the main ontology components for the Guidance Ontology.
Finally, reasoning allows for the computation of a set of open tasks the requirements
engineer can either follow chronological or flexibly choose from. However, our guidance
approach guarantees that the specified requirements knowledge satisfies all validation rules
if each of the open tasks has been successfully accomplished.

Software Demonstrator OntoReq and GUI Prototype
In order to demonstrate our approach, we developed OntoReq as a software demonstration.
Except for the process guidance, it allows for the execution all of the previously described
research results. Thus, OntoReq automatically identifies incomplete and inconsistent
requirements knowledge and quality flaws. It points directly to the source of a particular
problem and displays concrete solution suggestions for each detected fault. Furthermore, it
measures several quality criteria and provides hints on how to improve them if necessary.
OntoReq has been developed as Eclipse Plugin [37] and uses the OWL API framework

176

16.3 Limitations

[53], Jena Reasoner [44] and TrOWL Reasoner [3]. Furthermore, we use closed world
reasoning with negation NBox reasoning to allow the identification of missing information
in the Requirements Ontology. SPARQL [112] is used to query the requirements knowledge
within.
A prototypic user interface demonstrates the modification of requirements knowledge
(adding requirements, artefacts, changing requirements knowledge, etc.) without the need
to directly manipulate the ontology model. The requirements engineer is presented with
a RE specific user interface, which itself provides means to formalize the requirements
knowledge and to improve the completeness and consistency of the requirements knowledge.
Therefore, we propose appropriate fields for the relevant metadata, depending on the
particular requirements artefact that is modified.

General Guidelines for improving completeness, consistency and quality in
domain ontologies
Increasing the completeness, consistency and quality of knowledge is not only crucial
to Requirements Engineering but to any kind of knowledge repository. Therefore, we
generalized our approach and described the main steps to validate these criteria for any
knowledge domain (e.g., medicine, architecture) whose data is captured in an ontology.
We use domain-independent guidelines to sketch fundamental tasks such as building the
ontology knowledge repository, evaluation and implementation of an application. Code
snippets illustrate the main implementation aspects.

16.3 Limitations
In this thesis, we aimed to improve the internal completeness, consistency and quality of the
requirements knowledge by applying ontology techniques. Thus, the appropriate analyses
and validations are performed with respect to the ABox of the Requirements Ontology
and its metadata. The completeness validation checks the completeness of requirements
metadata, instead of making assumptions about whether requirements are missing in
the SRS. Additionally, we enable the validation of the consistency of the requirements
knowledge in a requirements configuration. Furthermore, it was not our aim to make any
assumptions about the external completeness, consistency or quality of a SRS (e.g. whether
a use-case has been described properly, readability of requirements, etc.).
OntoReq supports a part of the RE process where problems and shortcomings were stated
popular and of significant negative effect. However, the Requirements Engineering process
needs further inspection and probably support to address other known problems and to
include various models, such as use-case or test-case models.
Although we provide sufficient data structures and information to support any effort in
realising seamless traceability, we did not aim to provide seamless traceability of require-
ments for the whole Software Development process, but the Requirements Engineering
process.

16.4 Future Work
The guidance support presented in this thesis comprises the automated validation of the
requirements knowledge regarding completeness, consistency and quality as well as the
suggestion of several solutions according to the present requirements knowledge. We

177

16 Conclusions and Future Work

furthermore describe a conceptual solution to guide the GORE process by facilitating
ontology techniques. Besides the implementation of this concept, further enhancements
may be interesting to guide the requirements engineer in GORE. Kavakli in [73] developed
a systematic way of reasoning about the RE process in terms of goal modelling and
supports the user by a process guidance framework. G-Map is a web-based software
tool that supports the assembling and execution of goal-driven methods. A methodology
roadmap is used as a metaphor to visualize alternative goal-driven ways of working [73].
However, G-Map only guides through the tasks of different GORE methods but is not
connected to real requirements knowledge. Therefore, one possible enhancement of
OntoReq would be to provide the process guidance in a similar way as described by
Kavakli, with the difference that the graphical representation, navigation and display of
tasks and guidelines is connected to the Requirements Ontology and, thus, allows for real
guidance particular to the existing requirements knowledge.

The goal satisfaction relations we provide in the Requirements Ontology only distin-
guish between positive or negative goal contribution. However, it might be applicable
to increase these relations by providing several goal contributions levels, e.g. weak,
medium, strong. Other goal satisfaction approaches propose complex mathematical
formulas and objective criteria to define the goal contribution (e.g., [89]). The Require-
ments Ontology may be extended by modelling appropriate ontology components and
relations to allow for such complex goal contributions. Subsequently, OntoReq may
be modified in a way that decisions regarding goal contribution become more precise
and the selection of the most suitable requirements regarding a set of goals becomes possible.

All available guidelines and standards state the need that requirements must be unambigu-
ous. This means that they must be described in a way that prevents misunderstanding
or wrong interpretations. Such pitfalls are often specific to the use of (natural) language
for description and can actually be easily corrected if identified. Some typical examples
for ambiguous requirements descriptions are: (a) “The system shall respond in less than
2s if possible.” and (b) “The user must be able to input some data.”. Corrected, these
requirements could for example be stated in the following ambiguous way: (a) The system
must respond in less than 2s.” , (b) “The user must be able to input address data.”.
Our approach may be extended by providing validation mechanisms and measurement for
this unambiguity and concrete solution suggestions that point to sources of ambiguity.

According to Parreiras et. al., UML and OWL comprise some constituents which are similar
in many respects, like: classes, associations, properties, packages, types, generalization
and instances [107]. However, both approaches have their advantages and disadvantages.
While UML provides means to express dynamic behaviour, OWL does not. In contrast,
OWL is capable of inferring the specified knowledge while UML does not allow for any
kind of inference per se. Thus, a variety of approaches propose the transformation of
ontologies into UML models and vice versa (e.g., [107]) in order to bridge both technologies.
Especially for Requirements Engineering it might therefore be profitable to enable such
model transformations. Thus, it would be interesting to allow a transformation of the
Requirements Ontology and the data captured within into a UML metamodel for further
specification of, for example, dynamic behaviour.

178

16.4 Future Work

Finally, requirements knowledge often lacks a graphical representation that facilitates the
comprehensibility of the knowledge. Since ontologies provide means to structure knowledge
and allow for graphical visualizations (e.g., [81]), Requirements Engineering could profit
from such a visualization and an improved navigation through particular complex knowledge
structures with many interrelations.

179

180

Appendix

A.1 Requirements Ontology RDF Data Model

1

2

3 <?xml version ="1.0"?>
4

5

6 <! DOCTYPE rdf:RDF [
7 <! ENTITY owl "http :// www.w3.org /2002/07/ owl#" >
8 <! ENTITY swrl "http :// www.w3.org /2003/11/ swrl#" >
9 <! ENTITY swrlb "http :// www.w3.org /2003/11/ swrlb#" >

10 <! ENTITY xsd "http :// www.w3.org /2001/ XMLSchema #" >
11 <! ENTITY owl2xml "http :// www.w3.org /2006/12/ owl2 -xml#" >
12 <! ENTITY rdfs "http :// www.w3.org /2000/01/ rdf - schema #" >
13 <! ENTITY rdf "http :// www.w3.org /1999/02/22 - rdf -syntax -ns#" >
14 <! ENTITY test_ontology "http :// www. semanticweb .org/ ontologies /2012/4/

test_ontology .owl#" >
15]>
16

17

18 <rdf:RDF xmlns="http :// www. semanticweb .org/ ontologies /2012/4/ test_ontology .
owl#"

19 xml:base="http :// www. semanticweb .org/ ontologies /2012/4/ test_ontology .
owl"

20 xmlns :rdfs="http :// www.w3.org /2000/01/ rdf - schema #"
21 xmlns :swrl="http :// www.w3.org /2003/11/ swrl#"
22 xmlns : owl2xml ="http :// www.w3.org /2006/12/ owl2 -xml#"
23 xmlns :owl="http :// www.w3.org /2002/07/ owl#"
24 xmlns :xsd="http :// www.w3.org /2001/ XMLSchema #"
25 xmlns :swrlb="http :// www.w3.org /2003/11/ swrlb#"
26 xmlns :rdf="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#"
27 xmlns : test_ontology ="http :// www. semanticweb .org/ ontologies /2012/4/

test_ontology .owl#">
28 <owl: Ontology rdf:about =""/>
29

30 <!--
31 // /////////////////////////////////////
32 //
33 // Object Properties
34 //
35 // /////////////////////////////////////
36 -->
37

38 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
NegativeContributedBy -->

39

40 <owl: ObjectProperty rdf:about ="# NegativeContributedBy ">
41 <rdfs: domain rdf: resource ="#Goal"/>
42 <rdfs:range rdf: resource ="# Requirement "/>
43 </owl: ObjectProperty >

181

Appendix

44

45

46 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
PositiveContributedBy -->

47

48 <owl: ObjectProperty rdf:about ="# PositiveContributedBy ">
49 <rdfs: domain rdf: resource ="#Goal"/>
50 <rdfs:range rdf: resource ="# Requirement "/>
51 </owl: ObjectProperty >
52

53

54 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
describesRequirement -->

55

56 <owl: ObjectProperty rdf:about ="# describesRequirement ">
57 <rdfs:range rdf: resource ="# Requirement "/>
58 <rdfs: domain rdf: resource ="#Story"/>
59 </owl: ObjectProperty >
60

61

62 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
excludes -->

63

64 <owl: ObjectProperty rdf:about ="# excludes ">
65 <owl: inverseOf rdf: resource ="# isExcludedBy "/>
66 </owl: ObjectProperty >
67

68

69 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasGoal -->

70

71 <owl: ObjectProperty rdf:about ="# hasGoal ">
72 <rdfs:range rdf: resource ="#Goal"/>
73 <rdfs: domain rdf: resource ="# Requirement "/>
74 <owl: propertyChainAxiom rdf: parseType =" Collection ">
75 <rdf: Description rdf:about ="# isAlternativeTo "/>
76 <rdf: Description rdf:about ="# hasGoal "/>
77 </owl: propertyChainAxiom >
78 <owl: propertyChainAxiom rdf: parseType =" Collection ">
79 <rdf: Description rdf:about ="# isRefinementOf "/>
80 <rdf: Description rdf:about ="# hasGoal "/>
81 </owl: propertyChainAxiom >
82 </owl: ObjectProperty >
83

84

85 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasObstacle -->

86

87 <owl: ObjectProperty rdf:about ="# hasObstacle ">
88 <rdfs:range rdf: resource ="# Obstacle "/>
89 <rdfs: domain rdf: resource ="# Requirement "/>
90 </owl: ObjectProperty >
91

92

93 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasRefinementReason -->

94

95 <owl: ObjectProperty rdf:about ="# hasRefinementReason ">
96 <rdfs: domain rdf: resource ="# Refinement "/>

182

A.1 Requirements Ontology RDF Data Model

97 <rdfs:range rdf: resource ="# RefinementReason "/>
98 </owl: ObjectProperty >
99

100

101 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasRefinementSource -->

102

103 <owl: ObjectProperty rdf:about ="# hasRefinementSource ">
104 <rdfs: domain rdf: resource ="# Refinement "/>
105 <rdfs:range rdf: resource ="# Requirement "/>
106 </owl: ObjectProperty >
107

108

109 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasRefinementTarget -->

110

111 <owl: ObjectProperty rdf:about ="# hasRefinementTarget ">
112 <rdfs: domain rdf: resource ="# Refinement "/>
113 <rdfs:range rdf: resource ="# Requirement "/>
114 </owl: ObjectProperty >
115

116

117 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasScenario -->

118

119 <owl: ObjectProperty rdf:about ="# hasScenario ">
120 <rdfs: domain rdf: resource ="# Requirement "/>
121 </owl: ObjectProperty >
122

123

124 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasSoftMetric -->

125

126 <owl: ObjectProperty rdf:about ="# hasSoftMetric ">
127 <rdfs: domain rdf: resource ="# Requirement "/>
128 <rdfs:range rdf: resource ="# SoftMetric "/>
129 </owl: ObjectProperty >
130

131

132 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasSource -->

133

134 <owl: ObjectProperty rdf:about ="# hasSource ">
135 <rdfs:range rdf: resource ="# Source "/>
136 <rdfs: domain rdf: resource ="&owl; Thing "/>
137 </owl: ObjectProperty >
138

139

140 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
hasTrigger -->

141

142 <owl: ObjectProperty rdf:about ="# hasTrigger ">
143 <rdfs: domain rdf: resource ="# Requirement "/>
144 <rdfs:range rdf: resource ="# Trigger "/>
145 </owl: ObjectProperty >
146

147

148 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isAlternativeOf -->

183

Appendix

149

150 <owl: ObjectProperty rdf:about ="# isAlternativeOf ">
151 <owl: inverseOf rdf: resource ="# isAlternativeTo "/>
152 </owl: ObjectProperty >
153

154

155 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isAlternativeTo -->

156

157 <owl: ObjectProperty rdf:about ="# isAlternativeTo ">
158 <rdf:type rdf: resource ="&owl; SymmetricProperty "/>
159 </owl: ObjectProperty >
160

161

162 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isAuthoredBy -->

163

164 <owl: ObjectProperty rdf:about ="# isAuthoredBy ">
165 <rdfs:range rdf: resource ="# Stakeholder "/>
166 </owl: ObjectProperty >
167

168

169 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isCoexistentWith -->

170

171 <owl: ObjectProperty rdf:about ="# isCoexistentWith ">
172 <rdf:type rdf: resource ="&owl; SymmetricProperty "/>
173 </owl: ObjectProperty >
174

175

176 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isConnectedWithTestCase -->

177

178 <owl: ObjectProperty rdf:about ="# isConnectedWithTestCase ">
179 <rdfs: domain rdf: resource ="# Requirement "/>
180 <rdfs:range rdf: resource ="# TestCase "/>
181 <owl: propertyChainAxiom rdf: parseType =" Collection ">
182 <rdf: Description rdf:about ="# isRefinementOf "/>
183 <rdf: Description rdf:about ="# isConnectedWithTestCase "/>
184 </owl: propertyChainAxiom >
185 </owl: ObjectProperty >
186

187

188 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isConnectedWithUseCase -->

189

190 <owl: ObjectProperty rdf:about ="# isConnectedWithUseCase ">
191 <rdfs: domain rdf: resource ="# Requirement "/>
192 <rdfs:range rdf: resource ="# UseCase "/>
193 <owl: propertyChainAxiom rdf: parseType =" Collection ">
194 <rdf: Description rdf:about ="# isRefinementOf "/>
195 <rdf: Description rdf:about ="# isConnectedWithUseCase "/>
196 </owl: propertyChainAxiom >
197 </owl: ObjectProperty >
198

199

200 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isExcludedBy -->

201

184

A.1 Requirements Ontology RDF Data Model

202 <owl: ObjectProperty rdf:about ="# isExcludedBy "/>
203

204

205 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isInConflictWith -->

206

207 <owl: ObjectProperty rdf:about ="# isInConflictWith ">
208 <rdf:type rdf: resource ="&owl; SymmetricProperty "/>
209 </owl: ObjectProperty >
210

211

212 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isNegativeContributionToGoal -->

213

214 <owl: ObjectProperty rdf:about ="# isNegativeContributionToGoal ">
215 <rdfs:range rdf: resource ="#Goal"/>
216 <owl: inverseOf rdf: resource ="# NegativeContributedBy "/>
217 <rdfs: domain rdf: resource ="# Requirement "/>
218 </owl: ObjectProperty >
219

220

221 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isPositiveContributionToGoal -->

222

223 <owl: ObjectProperty rdf:about ="# isPositiveContributionToGoal ">
224 <rdfs:range rdf: resource ="#Goal"/>
225 <owl: inverseOf rdf: resource ="# PositiveContributedBy "/>
226 <rdfs: domain rdf: resource ="# Requirement "/>
227 </owl: ObjectProperty >
228

229

230 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isRefinementOf -->

231

232 <owl: ObjectProperty rdf:about ="# isRefinementOf ">
233 <owl: inverseOf rdf: resource ="# refinesTo "/>
234 </owl: ObjectProperty >
235

236

237 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
operationalisesTo -->

238

239 <owl: ObjectProperty rdf:about ="# operationalisesTo ">
240 <rdfs:range rdf: resource ="# RequirementsArtefact "/>
241 <rdfs: domain rdf: resource ="# RequirementsArtefact "/>
242 </owl: ObjectProperty >
243

244

245 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
refinesTo -->

246

247 <owl: ObjectProperty rdf:about ="# refinesTo ">
248 <rdfs: domain rdf: resource ="&owl; Thing "/>
249 <rdfs:range rdf: resource ="&owl;Thing"/>
250 </owl: ObjectProperty >
251

252

253 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
throwsErrorException -->

185

Appendix

254

255 <owl: ObjectProperty rdf:about ="# throwsErrorException "/>
256

257

258 <!--
259 // ///////////////////////////////////
260 //
261 // Data properties
262 //
263 // //////////////////////////////////
264 -->
265

266

267 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isMandatory -->

268

269 <owl: DatatypeProperty rdf:about="# isMandatory ">
270 <rdfs: domain rdf: resource ="# Requirement "/>
271 <rdfs:range rdf: resource ="&xsd; boolean "/>
272 </owl: DatatypeProperty >
273

274

275 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isOptional -->

276

277 <owl: DatatypeProperty rdf:about="# isOptional ">
278 <rdfs: domain rdf: resource ="# Requirement "/>
279 </owl: DatatypeProperty >
280

281

282 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
isValid -->

283

284 <owl: DatatypeProperty rdf:about="# isValid ">
285 <rdfs: domain rdf: resource ="# Requirement "/>
286 <rdfs:range rdf: resource ="&xsd; boolean "/>
287 </owl: DatatypeProperty >
288

289

290 <!--
291 // /////////////////////////////
292 //
293 // Classes
294 //
295 // /////////////////////////////
296 -->
297

298

299 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
AccessibilityRequirement -->

300

301 <owl:Class rdf:about ="# AccessibilityRequirement ">
302 <rdfs: subClassOf rdf: resource ="# NonFunctionalRequirement "/>
303 </owl:Class >
304

305

306 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
AlternativeRequirement -->

307

186

A.1 Requirements Ontology RDF Data Model

308 <owl:Class rdf:about ="# AlternativeRequirement ">
309 <owl: equivalentClass >
310 <owl: Restriction >
311 <owl: onProperty rdf: resource ="# isAlternativeTo "/>
312 <owl: someValuesFrom rdf: resource ="# Requirement "/>
313 </owl: Restriction >
314 </owl: equivalentClass >
315 <rdfs: subClassOf rdf: resource ="# Requirement "/>
316 </owl:Class >
317

318

319 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Attribute -->

320

321 <owl:Class rdf:about ="# Attribute ">
322 <rdfs:subClassOf >
323 <owl: Restriction >
324 <owl: onProperty rdf: resource ="# isAuthoredBy "/>
325 <owl: someValuesFrom rdf: resource ="# Stakeholder "/>
326 </owl: Restriction >
327 </rdfs: subClassOf >
328 </owl:Class >
329

330

331 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
BusinessGoal -->

332

333 <owl:Class rdf:about ="# BusinessGoal ">
334 <rdfs: subClassOf rdf: resource ="#Goal"/>
335 </owl:Class >
336

337

338 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
CompleteRequirement -->

339

340 <owl:Class rdf:about ="# CompleteRequirement ">
341 <owl: equivalentClass >
342 <owl:Class >
343 <owl: intersectionOf rdf: parseType =" Collection ">
344 <rdf: Description rdf: about ="# LevelOfPriority "/>
345 <rdf: Description rdf: about ="# LevelOfRisk "/>
346 <owl: Restriction >
347 <owl: onProperty rdf: resource ="# hasSource "/>
348 <owl: someValuesFrom rdf: resource ="# Source "/>
349 </owl: Restriction >
350 <owl: Restriction >
351 <owl: onProperty rdf: resource ="# isAuthoredBy "/>
352 <owl: someValuesFrom rdf: resource ="# Stakeholder "/>
353 </owl: Restriction >
354 <owl: Restriction >
355 <owl: onProperty rdf: resource ="#

isConnectedWithTestCase "/>
356 <owl: someValuesFrom rdf: resource ="# TestCase "/>
357 </owl: Restriction >
358 <owl: Restriction >
359 <owl: onProperty rdf: resource ="#

isConnectedWithUseCase "/>
360 <owl: someValuesFrom rdf: resource ="# UseCase "/>
361 </owl: Restriction >

187

Appendix

362 </owl: intersectionOf >
363 </owl:Class >
364 </owl: equivalentClass >
365 <rdfs: subClassOf rdf: resource ="# Requirement "/>
366 </owl:Class >
367

368

369 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
ConflictingRequirement -->

370

371 <owl:Class rdf:about ="# ConflictingRequirement ">
372 <owl: equivalentClass >
373 <owl: Restriction >
374 <owl: onProperty rdf: resource ="# isInConflictWith "/>
375 <owl: someValuesFrom rdf: resource ="# Requirement "/>
376 </owl: Restriction >
377 </owl: equivalentClass >
378 <rdfs: subClassOf rdf: resource ="# Requirement "/>
379 </owl:Class >
380

381

382 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
EfficiencyRequirement -->

383

384 <owl:Class rdf:about ="# EfficiencyRequirement ">
385 <rdfs: subClassOf rdf: resource ="# NonFunctionalRequirement "/>
386 </owl:Class >
387

388

389 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
ExcludedRequirement -->

390

391 <owl:Class rdf:about ="# ExcludedRequirement ">
392 <owl: equivalentClass >
393 <owl: Restriction >
394 <owl: onProperty rdf: resource ="# isExcludedBy "/>
395 <owl: someValuesFrom rdf: resource ="# Requirement "/>
396 </owl: Restriction >
397 </owl: equivalentClass >
398 <rdfs: subClassOf rdf: resource ="# Requirement "/>
399 </owl:Class >
400

401

402 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
ExcludingRequirement -->

403

404 <owl:Class rdf:about ="# ExcludingRequirement ">
405 <owl: equivalentClass >
406 <owl: Restriction >
407 <owl: onProperty rdf: resource ="# excludes "/>
408 <owl: someValuesFrom rdf: resource ="# Requirement "/>
409 </owl: Restriction >
410 </owl: equivalentClass >
411 <rdfs: subClassOf rdf: resource ="# Requirement "/>
412 </owl:Class >
413

414

415 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
FunctionalRequirement -->

188

A.1 Requirements Ontology RDF Data Model

416

417 <owl:Class rdf:about ="# FunctionalRequirement ">
418 <rdfs: subClassOf rdf: resource ="# Requirement "/>
419 </owl:Class >
420

421

422 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Goal -->

423

424 <owl:Class rdf:about ="#Goal">
425 <rdfs: subClassOf rdf: resource ="# RequirementsArtefact "/>
426 <rdfs:subClassOf >
427 <owl: Restriction >
428 <owl: onProperty rdf: resource ="# refinesTo "/>
429 <owl: someValuesFrom rdf: resource ="#Goal"/>
430 </owl: Restriction >
431 </rdfs: subClassOf >
432 <rdfs:subClassOf >
433 <owl: Restriction >
434 <owl: onProperty rdf: resource ="# operationalisesTo "/>
435 <owl: someValuesFrom rdf: resource ="# RequirementsArtefact "/>
436 </owl: Restriction >
437 </rdfs: subClassOf >
438 <rdfs:subClassOf >
439 <owl: Restriction >
440 <owl: onProperty rdf: resource ="# operationalisesTo "/>
441 <owl: someValuesFrom rdf: resource ="# Requirement "/>
442 </owl: Restriction >
443 </rdfs: subClassOf >
444 </owl:Class >
445

446

447 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
HighCost -->

448

449 <owl:Class rdf:about ="# HighCost ">
450 <rdfs: subClassOf rdf: resource ="# LevelOfCost "/>
451 </owl:Class >
452

453

454 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
HighPriority -->

455

456 <owl:Class rdf:about ="# HighPriority ">
457 <owl: equivalentClass rdf: resource ="# ImportantRequirement "/>
458 <rdfs: subClassOf rdf: resource ="# LevelOfPriority "/>
459 </owl:Class >
460

461

462 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
HighRisk -->

463

464 <owl:Class rdf:about ="# HighRisk ">
465 <rdfs: subClassOf rdf: resource ="# LevelOfRisk "/>
466 </owl:Class >
467

468

469 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
ImportantRequirement -->

189

Appendix

470

471 <owl:Class rdf:about ="# ImportantRequirement ">
472 <owl: equivalentClass >
473 <owl: Restriction >
474 <owl: onProperty rdf: resource ="# isMandatory "/>
475 <owl: hasValue rdf: datatype ="&xsd; boolean ">true </ owl:

hasValue >
476 </owl: Restriction >
477 </owl: equivalentClass >
478 <rdfs: subClassOf rdf: resource ="# Requirement "/>
479 <rdfs:subClassOf >
480 <owl: Restriction >
481 <owl: onProperty rdf: resource ="# operationalisesTo "/>
482 <owl: someValuesFrom rdf: resource ="# RequirementsArtefact "/>
483 </owl: Restriction >
484 </rdfs: subClassOf >
485 </owl:Class >
486

487

488 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
InconsistentRequirement -->

489

490 <owl:Class rdf:about ="# InconsistentRequirement ">
491 <owl: equivalentClass >
492 <owl:Class >
493 <owl: intersectionOf rdf: parseType =" Collection ">
494 <owl: Restriction >
495 <owl: onProperty rdf: resource ="# isMandatory "/>
496 <owl: hasValue rdf: datatype ="&xsd; boolean ">true </ owl

:hasValue >
497 </owl: Restriction >
498 <owl: Restriction >
499 <owl: onProperty rdf: resource ="# isOptional "/>
500 <owl: hasValue rdf: datatype ="&xsd; boolean ">true </ owl

:hasValue >
501 </owl: Restriction >
502 </owl: intersectionOf >
503 </owl:Class >
504 </owl: equivalentClass >
505 <rdfs: subClassOf rdf: resource ="# Requirement "/>
506 </owl:Class >
507

508

509 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
LevelOfCost -->

510

511 <owl:Class rdf:about ="# LevelOfCost ">
512 <rdfs: subClassOf rdf: resource ="# Attribute "/>
513 </owl:Class >
514

515

516 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
LevelOfPriority -->

517

518 <owl:Class rdf:about ="# LevelOfPriority ">
519 <rdfs: subClassOf rdf: resource ="# Attribute "/>
520 </owl:Class >
521

522

190

A.1 Requirements Ontology RDF Data Model

523 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
LevelOfRisk -->

524

525 <owl:Class rdf:about ="# LevelOfRisk ">
526 <rdfs: subClassOf rdf: resource ="# Attribute "/>
527 </owl:Class >
528

529

530 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
LowCost -->

531

532 <owl:Class rdf:about ="# LowCost ">
533 <rdfs: subClassOf rdf: resource ="# LevelOfCost "/>
534 </owl:Class >
535

536

537 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
LowPriority -->

538

539 <owl:Class rdf:about ="# LowPriority ">
540 <rdfs: subClassOf rdf: resource ="# LevelOfPriority "/>
541 </owl:Class >
542

543

544 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
LowRisk -->

545

546 <owl:Class rdf:about ="# LowRisk ">
547 <rdfs: subClassOf rdf: resource ="# LevelOfRisk "/>
548 </owl:Class >
549

550

551 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
MediumCost -->

552

553 <owl:Class rdf:about ="# MediumCost ">
554 <rdfs: subClassOf rdf: resource ="# LevelOfCost "/>
555 </owl:Class >
556

557

558 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
MediumPriority -->

559

560 <owl:Class rdf:about ="# MediumPriority ">
561 <rdfs: subClassOf rdf: resource ="# LevelOfPriority "/>
562 </owl:Class >
563

564

565 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
MediumRisk -->

566

567 <owl:Class rdf:about ="# MediumRisk ">
568 <rdfs: subClassOf rdf: resource ="# LevelOfRisk "/>
569 </owl:Class >
570

571

572 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
NegativeRequirement -->

573

191

Appendix

574 <owl:Class rdf:about ="# NegativeRequirement ">
575 <owl: equivalentClass >
576 <owl: Restriction >
577 <owl: onProperty rdf: resource ="# isNegativeContributionToGoal

"/>
578 <owl: someValuesFrom rdf: resource ="#Goal"/>
579 </owl: Restriction >
580 </owl: equivalentClass >
581 <rdfs: subClassOf rdf: resource ="# Requirement "/>
582 </owl:Class >
583

584

585 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
NoAlternativeRequirement -->

586

587 <owl:Class rdf:about ="# NoAlternativeRequirement ">
588 <owl: equivalentClass >
589 <owl:Class >
590 <owl: unionOf rdf: parseType =" Collection ">
591 <rdf: Description rdf:about ="# ConflictingRequirement "/>
592 <rdf: Description rdf:about ="# ExcludedRequirement "/>
593 <rdf: Description rdf:about ="# NegativeRequirement "/>
594 </owl:unionOf >
595 </owl:Class >
596 </owl: equivalentClass >
597 <rdfs: subClassOf rdf: resource ="# Requirement "/>
598 </owl:Class >
599

600

601 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
NonFunctionalRequirement -->

602

603 <owl:Class rdf:about ="# NonFunctionalRequirement ">
604 <rdfs: subClassOf rdf: resource ="# Requirement "/>
605 <rdfs:subClassOf >
606 <owl: Restriction >
607 <owl: onProperty rdf: resource ="# hasSoftMetric "/>
608 <owl: someValuesFrom rdf: resource ="# SoftMetric "/>
609 </owl: Restriction >
610 </rdfs: subClassOf >
611 </owl:Class >
612

613

614 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Obstacle -->

615

616 <owl:Class rdf:about ="# Obstacle ">
617 <rdfs: subClassOf rdf: resource ="# RequirementsArtefact "/>
618 <rdfs:subClassOf >
619 <owl: Restriction >
620 <owl: onProperty rdf: resource ="# operationalisesTo "/>
621 <owl: someValuesFrom rdf: resource ="# Requirement "/>
622 </owl: Restriction >
623 </rdfs: subClassOf >
624 <rdfs:subClassOf >
625 <owl: Restriction >
626 <owl: onProperty rdf: resource ="# refinesTo "/>
627 <owl: someValuesFrom rdf: resource ="# Obstacle "/>
628 </owl: Restriction >

192

A.1 Requirements Ontology RDF Data Model

629 </rdfs: subClassOf >
630 <rdfs:subClassOf >
631 <owl: Restriction >
632 <owl: onProperty rdf: resource ="# operationalisesTo "/>
633 <owl: someValuesFrom rdf: resource ="# RequirementsArtefact "/>
634 </owl: Restriction >
635 </rdfs: subClassOf >
636 </owl:Class >
637

638

639 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
PerformanceRequirement -->

640

641 <owl:Class rdf:about ="# PerformanceRequirement ">
642 <rdfs: subClassOf rdf: resource ="# NonFunctionalRequirement "/>
643 </owl:Class >
644

645

646 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
PlatformRequirement -->

647

648 <owl:Class rdf:about ="# PlatformRequirement ">
649 <rdfs: subClassOf rdf: resource ="# Requirement "/>
650 </owl:Class >
651

652

653 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
PositiveGoal -->

654

655 <owl:Class rdf:about ="# PositiveGoal ">
656 <rdfs: subClassOf rdf: resource ="#Goal"/>
657 </owl:Class >
658

659

660 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
ProcessGoal -->

661

662 <owl:Class rdf:about ="# ProcessGoal ">
663 <rdfs: subClassOf rdf: resource ="#Goal"/>
664 </owl:Class >
665

666

667 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
RefinedRequirement -->

668

669 <owl:Class rdf:about ="# RefinedRequirement ">
670 <owl: equivalentClass >
671 <owl: Restriction >
672 <owl: onProperty rdf: resource ="# isRefinementOf "/>
673 <owl: someValuesFrom rdf: resource ="# Requirement "/>
674 </owl: Restriction >
675 </owl: equivalentClass >
676 <rdfs: subClassOf rdf: resource ="# Requirement "/>
677 </owl:Class >
678

679

680 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Refinement -->

681

193

Appendix

682 <owl:Class rdf:about ="# Refinement ">
683 <rdfs: subClassOf rdf: resource ="&owl;Thing"/>
684 </owl:Class >
685

686

687 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
RefinementReason -->

688

689 <owl:Class rdf:about ="# RefinementReason ">
690 <rdfs: subClassOf rdf: resource ="&owl;Thing"/>
691 </owl:Class >
692

693

694 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Requirement -->

695

696 <owl:Class rdf:about ="# Requirement ">
697 <rdfs: subClassOf rdf: resource ="&owl;Thing"/>
698 <rdfs:subClassOf >
699 <owl: Restriction >
700 <owl: onProperty rdf: resource ="# isConnectedWithTestCase "/>
701 <owl: someValuesFrom rdf: resource ="# TestCase "/>
702 </owl: Restriction >
703 </rdfs: subClassOf >
704 <rdfs:subClassOf >
705 <owl: Restriction >
706 <owl: onProperty rdf: resource ="# hasObstacle "/>
707 <owl: someValuesFrom rdf: resource ="# Obstacle "/>
708 </owl: Restriction >
709 </rdfs: subClassOf >
710 <rdfs:subClassOf >
711 <owl: Restriction >
712 <owl: onProperty rdf: resource ="# hasScenario "/>
713 <owl: someValuesFrom rdf: resource ="# Scenario "/>
714 </owl: Restriction >
715 </rdfs: subClassOf >
716 <rdfs:subClassOf >
717 <owl: Restriction >
718 <owl: onProperty rdf: resource ="# isAuthoredBy "/>
719 <owl: someValuesFrom rdf: resource ="# Stakeholder "/>
720 </owl: Restriction >
721 </rdfs: subClassOf >
722 <rdfs:subClassOf >
723 <owl: Restriction >
724 <owl: onProperty rdf: resource ="# isConnectedWithUseCase "/>
725 <owl: someValuesFrom rdf: resource ="# UseCase "/>
726 </owl: Restriction >
727 </rdfs: subClassOf >
728 <rdfs:subClassOf >
729 <owl: Restriction >
730 <owl: onProperty rdf: resource ="# isPositiveContributionToGoal

"/>
731 <owl: someValuesFrom rdf: resource ="#Goal"/>
732 </owl: Restriction >
733 </rdfs: subClassOf >
734 <rdfs:subClassOf >
735 <owl: Restriction >
736 <owl: onProperty rdf: resource ="# isValid "/>
737 <owl: someValuesFrom rdf: resource ="&xsd; boolean "/>

194

A.1 Requirements Ontology RDF Data Model

738 </owl: Restriction >
739 </rdfs: subClassOf >
740 <rdfs:subClassOf >
741 <owl: Restriction >
742 <owl: onProperty rdf: resource ="# hasSoftMetric "/>
743 <owl: someValuesFrom rdf: resource ="# SoftMetric "/>
744 </owl: Restriction >
745 </rdfs: subClassOf >
746 <rdfs:subClassOf >
747 <owl: Restriction >
748 <owl: onProperty rdf: resource ="# refinesTo "/>
749 <owl: someValuesFrom rdf: resource ="# Requirement "/>
750 </owl: Restriction >
751 </rdfs: subClassOf >
752 <rdfs:subClassOf >
753 <owl: Restriction >
754 <owl: onProperty rdf: resource ="# isMandatory "/>
755 <owl: someValuesFrom rdf: resource ="&xsd; boolean "/>
756 </owl: Restriction >
757 </rdfs: subClassOf >
758 <rdfs:subClassOf >
759 <owl: Restriction >
760 <owl: onProperty rdf: resource ="# hasSource "/>
761 <owl: someValuesFrom rdf: resource ="# Source "/>
762 </owl: Restriction >
763 </rdfs: subClassOf >
764 <rdfs:subClassOf >
765 <owl: Restriction >
766 <owl: onProperty rdf: resource ="# isNegativeContributionToGoal

"/>
767 <owl: someValuesFrom rdf: resource ="#Goal"/>
768 </owl: Restriction >
769 </rdfs: subClassOf >
770 </owl:Class >
771

772

773 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
RequirementsArtefact -->

774

775 <owl:Class rdf:about ="# RequirementsArtefact ">
776 <rdfs: subClassOf rdf: resource ="&owl; Thing"/>
777 <rdfs:subClassOf >
778 <owl: Restriction >
779 <owl: onProperty rdf: resource ="# isAuthoredBy "/>
780 <owl: someValuesFrom rdf: resource ="# Stakeholder "/>
781 </owl: Restriction >
782 </rdfs: subClassOf >
783 </owl:Class >
784

785

786 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Scenario -->

787

788 <owl:Class rdf:about ="# Scenario ">
789 <rdfs: subClassOf rdf: resource ="#Story"/>
790 </owl:Class >
791

792

195

Appendix

793 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
SecurityRequirement -->

794

795 <owl:Class rdf:about ="# SecurityRequirement ">
796 <rdfs: subClassOf rdf: resource ="# NonFunctionalRequirement "/>
797 </owl:Class >
798

799

800 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
SoftMetric -->

801

802 <owl:Class rdf:about ="# SoftMetric ">
803 <rdfs: subClassOf rdf: resource ="# RequirementsArtefact "/>
804 <rdfs:subClassOf >
805 <owl: Restriction >
806 <owl: onProperty rdf: resource ="# refinesTo "/>
807 <owl: someValuesFrom rdf: resource ="# SoftMetric "/>
808 </owl: Restriction >
809 </rdfs: subClassOf >
810 </owl:Class >
811

812

813 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Source -->

814

815 <owl:Class rdf:about ="# Source ">
816 <rdfs: subClassOf rdf: resource ="# RequirementsArtefact "/>
817 <rdfs:subClassOf >
818 <owl: Restriction >
819 <owl: onProperty rdf: resource ="# refinesTo "/>
820 <owl: someValuesFrom rdf: resource ="# Source "/>
821 </owl: Restriction >
822 </rdfs: subClassOf >
823 </owl:Class >
824

825

826 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Stakeholder -->

827

828 <owl:Class rdf:about ="# Stakeholder ">
829 <rdfs: subClassOf rdf: resource ="&owl;Thing"/>
830 </owl:Class >
831

832

833 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
State -->

834

835 <owl:Class rdf:about ="#State ">
836 <rdfs: subClassOf rdf: resource ="# Attribute "/>
837 </owl:Class >
838

839

840 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Story -->

841

842 <owl:Class rdf:about ="#Story ">
843 <rdfs: subClassOf rdf: resource ="# RequirementsArtefact "/>
844 <rdfs:subClassOf >
845 <owl: Restriction >

196

A.1 Requirements Ontology RDF Data Model

846 <owl: onProperty rdf: resource ="# hasSource "/>
847 <owl: someValuesFrom rdf: resource ="# Source "/>
848 </owl: Restriction >
849 </rdfs: subClassOf >
850 <rdfs:subClassOf >
851 <owl: Restriction >
852 <owl: onProperty rdf: resource ="# describesRequirement "/>
853 <owl: someValuesFrom rdf: resource ="# Requirement "/>
854 </owl: Restriction >
855 </rdfs: subClassOf >
856 </owl:Class >
857

858

859 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
SystemGoal -->

860

861 <owl:Class rdf:about ="# SystemGoal ">
862 <rdfs: subClassOf rdf: resource ="#Goal"/>
863 </owl:Class >
864

865

866 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
TestCase -->

867

868 <owl:Class rdf:about ="# TestCase ">
869 <rdfs: subClassOf rdf: resource ="# RequirementsArtefact "/>
870 </owl:Class >
871

872

873 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
TraceableRequirement -->

874

875 <owl:Class rdf:about ="# TraceableRequirement ">
876 <owl: equivalentClass >
877 <owl:Class >
878 <owl: intersectionOf rdf: parseType =" Collection ">
879 <owl: Restriction >
880 <owl: onProperty rdf: resource ="# hasSource "/>
881 <owl: someValuesFrom rdf: resource ="# Source "/>
882 </owl: Restriction >
883 <owl: Restriction >
884 <owl: onProperty rdf: resource ="# isAuthoredBy "/>
885 <owl: someValuesFrom rdf: resource ="# Stakeholder "/>
886 </owl: Restriction >
887 <owl: Restriction >
888 <owl: onProperty rdf: resource ="#

isConnectedWithTestCase "/>
889 <owl: someValuesFrom rdf: resource ="# TestCase "/>
890 </owl: Restriction >
891 <owl: Restriction >
892 <owl: onProperty rdf: resource ="#

isConnectedWithUseCase "/>
893 <owl: someValuesFrom rdf: resource ="# UseCase "/>
894 </owl: Restriction >
895 </owl: intersectionOf >
896 </owl:Class >
897 </owl: equivalentClass >
898 <rdfs: subClassOf rdf: resource ="# Requirement "/>
899 </owl:Class >

197

Appendix

900

901

902 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
Trigger -->

903

904 <owl:Class rdf:about ="# Trigger ">
905 <rdfs: subClassOf rdf: resource ="# Attribute "/>
906 </owl:Class >
907

908

909 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
UsabilityRequirement -->

910

911 <owl:Class rdf:about ="# UsabilityRequirement ">
912 <rdfs: subClassOf rdf: resource ="# NonFunctionalRequirement "/>
913 </owl:Class >
914

915

916 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
UseCase -->

917

918 <owl:Class rdf:about ="# UseCase ">
919 <rdfs: subClassOf rdf: resource ="# Story "/>
920 </owl:Class >
921

922

923 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
ValidatedRequirement -->

924

925 <owl:Class rdf:about ="# ValidatedRequirement ">
926 <rdfs: subClassOf rdf: resource ="# RequirementsArtefact "/>
927 </owl:Class >
928

929

930 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
VerifiableRequirement -->

931

932 <owl:Class rdf:about ="# VerifiableRequirement ">
933 <owl: equivalentClass >
934 <owl:Class >
935 <owl: unionOf rdf: parseType =" Collection ">
936 <owl: Restriction >
937 <owl: onProperty rdf: resource ="# hasSoftMetric "/>
938 <owl: someValuesFrom rdf: resource ="# SoftMetric "/>
939 </owl: Restriction >
940 <owl: Restriction >
941 <owl: onProperty rdf: resource ="#

isConnectedWithTestCase "/>
942 <owl: someValuesFrom rdf: resource ="# TestCase "/>
943 </owl: Restriction >
944 </owl:unionOf >
945 </owl:Class >
946 </owl: equivalentClass >
947 <rdfs: subClassOf rdf: resource ="# Requirement "/>
948 </owl:Class >
949

950

951 <!-- http:// www. semanticweb .org/ ontologies /2012/4/ test_ontology .owl#
VerificationMethod -->

198

A.1 Requirements Ontology RDF Data Model

952

953 <owl:Class rdf:about ="# VerificationMethod ">
954 <rdfs: subClassOf rdf: resource ="# Attribute "/>
955 </owl:Class >
956

957

958 <!-- http:// www.w3.org /2002/07/ owl#Thing -->
959

960 <owl:Class rdf:about ="&owl;Thing "/>
961

962

963 <!--
964 // ////////////////////////////////
965 //
966 // General axioms
967 //
968 // ///////////////////////////////
969 -->
970

971 <rdf: Description >
972 <rdf:type rdf: resource ="&owl; AllDisjointClasses "/>
973 <owl: members rdf: parseType =" Collection ">
974 <rdf: Description rdf:about ="# InconsistentRequirement "/>
975 <rdf: Description rdf:about ="# Refinement "/>
976 <rdf: Description rdf:about ="# RefinementReason "/>
977 </owl:members >
978 </rdf: Description >
979 </rdf:RDF >

199

Appendix

A.2 Completeness Rules
1. AT LEAST ONE goal must be specified.

IF NO goal is specified
THEN print error: ”You did not specify any goal.”
”Please specify at least one goal.”

a) Every goal must have AT LEAST ONE author.

IF goal has NO author
THEN print error: ”You did not specify an author for the following goals: [Gn].”
”Please specify an author for the following goals: [Gn].”

b) Every goal should be related to a Use-Case.

IF goal is NOT linked to an Use-Case
THEN print warning: ”You did not relate the following goals a Use-Case: [Gn].”
”You should link the following goals to a Use-Case: [Gn].”

2. AT LEAST ONE Use-Case must be specified.

IF NO Use-Case is specified
THEN print error: ”You did not specify any Use-Case.”
”Please specify at least one.”

a) Every Use-Case must have AT LEAST ONE author.

IF Use-Case has NO author
THEN print error: ”You did not specify an author for the following Use-Cases
[UCn]”.
”Please specify at least one author for the Use-Cases: [UCn].”

200

A.2 Completeness Rules

b) Every Use-Case must have AT LEAST ONE scenario.

IF Use-Case has NO scenario
THEN print error: ”You did not specify any scenario for the following Use-Cases
[UCn]”.
”Please specify at least one scenario for the Use-Cases: [UCn].”

c) Every Use-Case should be connected to AT LEAST ONE goal.

IF Use-Case is NOT connected to any goal
THEN print warning: ”You did not connect the Use-Case to any goal.”
”Please specify at least one goal that is described by the following Use-Cases:
[UCn].”

d) Every Use-Case must describe AT LEAST ONE requirement.

IF Use-Case is NOT connected to any goal
THEN print warning: ”You did not connect the Use-Case to any requirement.”
”Please specify at least one requirement that is described by the following
Use-Cases: [UCn].”

3. AT LEAST ONE Scenario must be specified.

IF NO Scenario is specified
THEN print error: ”You did not specify any Scenario.”
”Please specify at least one.”

a) Every Scenario must have an Author.

IF Scenario has NO Author
THEN print error: ”You did not specify an author for the following Scenarios
[Sn]”.
”Please specify at least one author for the Scenarios: [Sn].”

b) Every Scenario should be connected to AT LEAST ONE goal.

IF Scenario is NOT connected to any Goal
THEN print warning: ”You did not connect the Scenario to any goal.”
”Please specify at least one goal for the following Scenarios: [Sn].”

c) Every Scenario must describe AT LEAST ONE requirement.

IF Scenario does NOT describe AT LEAST ONE Requirement
THEN print error: ”You did not relate the Scenario to any requirement.”
”Please specify at least one requirement for the following Scenarios: [Sn].”

201

Appendix

4. AT LEAST ONE Functional Requirement (FR) must be specified.

IF NO FR is specified
THEN print error: ”You did not specify any FR.
”Please specify at least one Functional Requirement.”

5. AT LEAST ONE Non-Functional Requirement (NFR) must be specified.

IF NO NFR is specified
THEN print error: ”You did not specify any NFR.
”Please specify at least one Non-Functional Requirement.”

6. AT LEAST ONE Platform Requirement (PR) should be specified.

IF NO PR is specified
THEN print warning: ”You did not specify any PR.
”Please specify at least one Platform Requirement.”

7. Every requirement must define whether it is mandatory or optional.

IF requirement is not mandatory AND not optional
THEN print error: ”You did not specify whether the following requirements are
mandatory or optional”
”Please specify whether the following requirements are mandatory or optional: [Rn].”

8. Every requirement should be connected to AT LEAST ONE goal.

IF requirement is NOT connected to any goal
THEN print warning: ”You did not connect the FR to any goal.”
”Please specify at least one goal that describes the following FRs: [FRn].”

9. Every requirement should have a priority.

IF requirement has NO priority
THEN print warning: ”You did not define a priority for the requirements [Rn].
”Please choose a priority for the following requirements: [Rn].”

10. Every requirement should have an author.

IF requirement has NO author
THEN print warning: ”You did not specify the author for the requirements [Rn].
”Please specify the author for the following requirements: [Rn].”

202

A.2 Completeness Rules

11. Every requirement should define its risk.

IF requirement has NO risk defined
THEN print warning: ”You did not specify a risk level for the requirements [Rn].
”Please specify the risk for the following requirements: [Rn].”

12. Every requirement must specify AT LEAST ONE property
has_requirement_relationship.

IF requirement has NOT specified a property ”has_requirement_relationship”
THEN print out error: ”You did not specify any requirement relationship for the
requirements [Rn].
”Please check the relationships for the following requirements: [Rn].”

13. Every requirement should be linked to a metric or soft-metric.

IF requirement is NOT linked to a metric
THEN print out warning: ”You did not specify a metric or soft-metric for the
requirements [Rn].
”Please specify a metric or soft-metric for the following requirements: [Rn].”

14. Every requirement should be connected to AT LEAST ONE Use-Case.

IF requirement is NOT connected to AT LEAST ONE USE-Case
THEN print out warning: ”You did not specify a USE-Case for the requirements
[Rn].
”Please specify a Use-Case for the following requirement: [Rn].”

15. Every requirement should have AT LEAST ONE Test-Case.

IF requirement is NOT linked to AT LEAST ONE Test-Case
THEN print out warning: ”You did not specify a Test-Case for the requirement [Rn].
”Please specify a Test-Case for the following requirements: [Rn].”

16. Every refinement of a requirement must define a refinement reason.

IF requirement is refined and NOT linked to a refinement reason
THEN print out warning: ”You did not specify a refinement reason for the following
refined requirement [Rn].
”Please specify a refinement reason for the following requirements: [Rn].”

17. At least one stakeholder must be specified.

IF NO stakeholder is specified

203

Appendix

THEN print error: ”You did not specify any Stakeholder.”
”Please specify at least one Stakeholder.”

18. At least one Source must be specified.

IF NO source is specified
THEN print error: ”You did not specify any source.”
”Please specify at least one source.”

A.3 Consistency Rules
1. All mandatory requirements must be included in the requirements con-

figuration.

IF NOT all mandatory requirements are included
THEN print error: ”The following requirements are mandatory and should therefore
be included in the requirements configuration as well: [Rn].”
”Please include these requirements or revise their mandate.”

2. All coexistent requirements must be included in the requirements config-
uration.

IF NOT all coexistent requirements are included
THEN print error: ”There are unsatisfied requirements relationships. The following
requirements are coexistent with the ones included in the requirements configuration
and should therefore be included as well: [Rn].”
”Please include these requirements in your requirements configuration or revise the
relationships of [[Rx, Ry],...] .”

3. Excluding requirements must not be included in the requirements con-
figuration.

IF excluding requirements are included in the requirements configuration
THEN print error: ”The following requirements exclude others of the requirements
configuration[Rn].”
”Please choose one of the following options:

- Exclude the following requirements: [Rn],
- find alternatives for [Rn] or
- revise the requirement relationships of [[Rx, Ry],...].”

4. Conflicting requirements should not be included in the requirements
configuration.

204

A.4 Quality Rules

IF any requirement is in conflict with any other requirement in the require-
ments configuration
THEN print error: ”The following requirements are in conflict: [[Rx, Ry],...].
”Please solve these conflicts and revise the requirement relationships of [[Rx, Ry],...].”

5. Requirements with negative contributions to other requirements should
be avoided.

IF any requirement has a negative contribution to any other requirement
THEN print warning: ”The following requirements are a negative contribution to
other requirements: [[RntoRm], ...].”
”Please reconsider your requirements configuration.”

6. Refinements of requirements should be considered.

IF a refinement for a requirement exists
THEN print warning: ”A refinement exists for the following requirements: [Rn].”
”Please consider to include these refined requirements in the requirements configura-
tion: [Rm].”

A.4 Quality Rules
1. AT LEAST EACH most refined requirement must be described by a use-

case.
Error: "‘The following requirements have no use-case assigned: [Rn]
"‘Please choose one of the following options:
- Assign or extend an existing use-case for these requirements,
- Specify a use-case for the requirements and assign them to the appropriate require-
ments.

2. EVERY most refined requirement must have a test-case or metric as-
signed.
Error: "‘The following requirements are not assigned to any test-case or metric: [...]
“Please choose one of the following options:
- Assign or extend an existing test-case for these requirements,
- Assign an existing metric to the requirements,
- Specify a test-case and assign it to the appropriate requirement,
- Specify a metric and assign it to the appropriate requirement.”

3. There should be no requirement that is a negative contribution to a goal
to be achieved.
WARNING: "‘The following requirements are a negative contribution to a goal: [r1
on the goal g1, ...]
“Please choose one of the following options:
- Exclude the optional requirements [...] from the requirements configuration,
- Choose one of the alternative requirements instead of [r1]: [rx],

205

Appendix

- Choose one of the alternative requirements instead of [r2]: [ry],
- Revise the goal satisfaction relationship.”

4. There should be no optional requirement with a high risk or high cost.
WARNING: "‘The following optional requirements have a high risk and/or high cost
[Rn]
"‘Please choose one of the following options:
- Exclude the following optional requirements from the requirements configuration
[Rn]
- Choose one of the alternative requirements instead of [r1]: [rx], ...
- Revise the cost and/or risk of these requirements,
- Specify the requirements as mandatory (if reasonable).

5. ALL requirements must state their priority.
Error: "‘The following requirements do not state their level of priority [Rn]
"‘Please add the level of priority to these requirements.

6. ALL requirements must state their mandate (optional or mandatory).
Error: "‘The following requirements do not specify their mandate [Rn]
"‘Please add a mandate to these requirements.

7. Requirements with a positive contribution to a goal should be included
in the requirements configuration.
Warning: "‘The following requirements are a positive contribution to a challenge or
goal: [r1 to g1, ...]
"‘Please consider to include them in the requirements configuration.

8. Requirements must be complete.
Error: "‘The following requirements miss relevant information [Rn]
"‘Please execute the completeness validation and add missing information.

9. The requirements configuration must be consistent.
Error: "‘The requirements configuration is inconsistent.
"‘Please execute the consistency validation and resolve inconsistency.

206

A.5 OntoReq Exemplar Complete Requirements Knowledge
Italic relations are inferred by the reasoner and not explicitly stated.

ID Relation (Object/ Data Property) Priority Cost Risk
Goal1_IncreaseSatisfaction hasSource Source1_Survey,

isAuthoredBy Author_Katja,
isPositiveContributedBy UC2_IdentifyProduct,
isPositiveContributedBy UC1_LocalizeProduct

Goal2_CustomerGuidance isAuthoredBy Author_Katja,
isPositiveContributedBy FR8_AudioOutput,
isPositiveContributedBy, UC2_IdentifyProduct,
isPositiveContributedBy UC1_LocalizeProduct

Goal3_ImproveOrientation refinesTo Goal3.1_SupportProdIdentification,
refinesTo Goal3.2_SupportProdLocalization,
isAuthoredBy Author_Katja,
hasRefinementReason Ref2,
hasObstacle O1,
isPositiveContributedBy UC1_LocalizeProduct

Goal3.1_SupportProdIdentification isAuthoredBy Author_Katja,
hasSource Source1_Survey,
hasObstacle O1,
hasRefinementReason Ref2,
isPositiveContributedBy UC2_IdentifyProduct,
isPositiveContributedBy FR5.2_SearchByCategory,
isRefinementOf Goal3_ImproveOrientation

ID Relation (Object/ Data Property) Priority Cost Risk
Goal3.2_SupportProdLocalization hasSource Source1_Survey,

isAuthoredBy Author_Katja,
hasObstacle O1,
hasRefinementReason Ref2,
isPositiveContributedBy UC1_LocalizeProduct,
isRefinementOf Goal3_ImproveOrientation

FR1_CustomerInfo hasRefinementReason Ref1,
hasSource Source2_Thesis,
refinesTo FR1.2_CustomerInfoAsAudio,
refinesTo FR1.3_CustomerInfoAsPic,
refinesTo FR1.1_CustomerInfoAsText,
isAuthoredBy Author_Katja,
isOptional “true”, isConnectedWithUseCase UC3_Advertisement

M

FR1.1_CustomerInfoAsText isAlternativeTo FR1.2_CustomerInfoAsAudio,
isAlternativeTo FR1.3_CustomerInfoAsPic,
isAuthoredBy Author_Katja,
hasSource Source2_Thesis,
isMandatory “true”,
isAlternativeOf FR1.3_CustomerInfoAsPic,
isAlternativeOf FR1.2_CustomerInfoAsAudio,
hasRefinementReason Ref1,
isConnectedWithUseCase UC3_Advertisement,
isRefinementOf FR1_CustomerInfo

H L L

FR1.2_CustomerInfoAsAudio isAuthoredBy Author_Katja,
excludes FR1.3_CustomerInfoAsPic,
isAlternativeTo FR1.3_CustomerInfoAsPic,
hasSource Source2_Thesis,
isOptional “true”,
isAlternativeOf FR1.1_CustomerInfoAsText,
isAlternativeOf FR1.3_CustomerInfoAsPic,
hasRefinementReason Ref1,
isConnectedWithUseCase UC3_Advertisement,
isRefinementOf FR1_CustomerInfo,
isAlternativeTo FR1.1_CustomerInfoAsText

M H L

ID Relation (Object/ Data Property) Priority Cost Risk
FR1.3_CustomerInfoAsPic hasSource Source2_Thesis,

isAuthoredBy Author_Katja,
isMandatory “true”,
isAlternativeOf FR1.1_CustomerInfoAsText,
isAlternativeOf FR1.2_CustomerInfoAsAudio,
hasRefinementReason Ref1,
isExcludedBy FR1.2_CustomerInfoAsAudio,
isConnectedWithUseCase UC3_Advertisement,
isRefinementOf FR1_CustomerInfo,
isAlternativeTo FR1.1_CustomerInfoAsText,
isAlternativeTo FR1.2_CustomerInfoAsAudio

M

FR2_PhysicalAvailabilityOfProducts isCoexistentWith NFR1_Modifiability,
isAuthoredBy Author_Katja,
isMandatory “true”,
isConnectedWithTestCase TC2_Learnability_Localization,
isConnectedWithUseCase UC1_LocalizeProduct

H M

FR4_ProductPlaceDescription refinesTo FR4.2_InteractiveRoute,
isAuthoredBy Author_Katja,
hasRefinementReason Ref3, refinesTo FR4.1_ProductPicture,
isMandatory “true”

FR4.1_ProductPicture isAuthoredBy Author_Katja,
isConnectedWithTestCase TC2_Learnability_Localization,
isConnectedWithUseCase UC2_IdentifyProduct,
isAlternativeTo FR4.2_InteractiveRoute,
isConnectedWithUseCase UC1_LocalizeProduct,
isMandatory “true”,
isAlternativeOf FR4.2_InteractiveRoute,
hasRefinementReason Ref3,
isRefinementOf FR4_ProductPlaceDescription

H L

FR4.2_InteractiveRoute isAuthoredBy Author_Katja,
isOptional “true”

L H H

ID Relation (Object/ Data Property) Priority Cost Risk
FR5_ProductSearch refinesTo FR5.1_SearchByTerm,

refinesTo FR5.2_SearchByCategory,
isAuthoredBy Author_Katja,
isMandatory “true”,
isInConflictWith FR8_AudioOutput,
isInConflictWith NFR1_Modifiability,
isAlternativeOf FR4.1_ProductPicture,
hasRefinementReason Ref3,
isConnectedWithTestCase TC2_Learnability_Localization,
isRefinementOf FR4_ProductPlaceDescription,
isAlternativeTo FR4.1_ProductPicture

L

FR5.1_SearchByTerm isAuthoredBy Author_Katja,
isMandatory “true”,
isConnectedWithTestCase TC2_Learnability_Localization,
isConnectedWithUseCase UC1_LocalizeProduct,
isRefinementOf FR5_ProductSearch

H

FR5.2_SearchByCategory isPositiveContributionToGoal Goal3.1_SupportProdIdentif,
isAuthoredBy Author_Katja,
hasSource Source2_Thesis,
isOptional “true”,
isConnectedWithTestCase TC2_Learnability_Localization
isConnectedWithUseCase UC1_LocalizeProduct
isRefinementOf FR5_ProductSearch,
isMandatory “true”

L

FR6_SelectionOfDesire isAuthoredBy Author_Katja,
isMandatory “true”
isConnectedWithUseCase UC2_IdentifyProduct
isConnectedWithUseCase UC1_LocalizeProduct

L

FR7_CustomerDialogue isCoexistentWith NFR1_Modifiability,
isCoexistentWith NFR2_Comprehensibility,
isAuthoredBy Author_Katja,
isMandatory “true”,
isInConflictWith FR8_AudioOutput,
isConnectedWithTestCase TC1_Learnability_Identification,
isConnectedWithUseCase UC2_IdentifyProduct

H

ID Relation (Object/ Data Property) Priority Cost Risk
FR8_AudioOutput isInConflictWith FR7_CustomerDialogue,

isPositiveContributionToGoal Goal2_CustomerGuidance,
isInConflictWith FR4.2_InteractiveRoute,
hasConflictReason Conf1,
isMandatory “true”

H

NFR1_Modifiability isInConflictWith FR4.2_InteractiveRoute,
isAuthoredBy Author_Katja,
isMandatory “true”,
isCoexistentWith FR7_CustomerDialogue,
isCoexistentWith FR2_PhysicalAvailabilityOfProducts

H M

NFR2_Comprehensibility isAuthoredBy Author_Katja,
isMandatory “true” ,
isCoexistentWith FR7_CustomerDialogue

M

NFR3_Learnability isAuthoredBy Author_Katja,
hasSoftMetric SM1,
isMandatory “true” ,
isConnectedWithTestCase TC2_Learnability_Localization,
isConnectedWithTestCase TC1_Learnability_Identification

H

Author_Katja
Source1_Survey isAuthoredBy Author_Katja
Source2_Thesis isAuthoredBy Author_Katja
SM1 isAuthoredBy Author_Katja,

isSoftMetricOf NFR3_Learnability
UC1_LocalizeProduct describesRequirement FR2_PhysicalAvailabilityOfProducts,

describesRequirement FR5.2_SearchByCategory,
isPositiveContributionToGoal Goal1_IncreaseSatisfaction,
isAuthoredBy Author_Katja,
describesRequirement FR6_SelectionOfDesire,
isPositiveContributionToGoal Goal3_ImproveOrientation,
describesRequirement FR5.1_SearchByTerm,
describesRequirement FR5_ProductSearch,
isPositiveContributionToGoal Goal2_CustomerGuidance,
isPositiveContributionToGoal Goal3.2_SupportProdLocalization,
describesRequirement FR4.1_ProductPicture

ID Relation (Object/ Data Property) Priority Cost Risk
UC2_IdentifyProduct isPositiveContributionToGoal Goal3.1_SupportProdIdentif,

isAuthoredBy Author_Katja,
describesRequirement FR7_CustomerDialogue,
describesRequirement FR6_SelectionOfDesire,
isPositiveContributionToGoal Goal1_IncreaseSatisfaction,
isPositiveContributionToGoal Goal2_CustomerGuidance,
describesRequirement FR4.1_ProductPicture

UC3_Advertisement describesRequirement FR1.1_CustomerInfoAsText,
describesRequirement FR1.3_CustomerInfoAsPic,
isAuthoredBy Author_Katja,
describesRequirement FR1_CustomerInfo,
describesRequirement FR1.2_CustomerInfoAsAudio

TC1_Learnability_Identification testsRequirement FR7_CustomerDialogue,
isAuthoredBy Author_Katja,
testsRequirement NFR3_Learnability

TC2_Learnability_Localization testsRequirement FR5.1_SearchByTerm,
testsRequirement FR5.2_SearchByCategory,
testsRequirement FR5_ProductSearch,
testsRequirement FR4.2_InteractiveRoute,
testsRequirement NFR3_Learnability,
testsRequirement FR2_PhysicalAvailabilityOfProducts,
isAuthoredBy Author_Katja,
testsRequirement FR4.1_ProductPicture

O1 isAuthoredBy Author_Katja
Ref1 isAuthoredBy Author_Katja,

isRefinementReasonOf FR1.1_CustomerInfoAsText,
isRefinementReasonOf FR1.3_CustomerInfoAsPic,
isRefinementReasonOf FR1_CustomerInfo,
isRefinementReasonOf FR1.2_CustomerInfoAsAudio

Ref2 isAuthoredBy Author_Katja,
isRefinementReasonOf Goal3.1_SupportProdIdentification,
isRefinementReasonOf Goal3.2_SupportProdLocalization,
isRefinementReasonOf Goal3_ImproveOrientation

ID Relation (Object/ Data Property) Priority Cost Risk
Ref3 isAuthoredBy Author_Katja,

isRefinementReasonOf FR4.2_InteractiveRoute,
isRefinementReasonOf FR4_ProductPlaceDescription,
isRefinementReasonOf FR4.1_ProductPicture

Conf1

Appendix

A.6 Results of Consistency Validation (1)

Listing A.1: Consistency Validation (1)

1 13 inconsistency errors detected .
2

3 - The following requirements are mandatory and should be included in the
requirements configuration :

4 [FR1 .3 _CustomerInfoAsPic , FR4 .1 _ProductPicture , FR5 .1 _SearchByTerm , FR5 .2
_SearchByCategory , FR8_AudioOutput , NFR3_Learnability]

5

6 ---
7 - Error: FR8_AudioOutput and FR7_CustomerDialogue are specified as

conflicting .
8 You have the following options :
9 - Revise the requirements FR8_AudioOutput or FR7_CustomerDialogue to

solve the conflict
10 - Revise the requirements relationship (conflict) between FR8_AudioOutput

and FR7_CustomerDialogue
11 - Choose one of the following alternative requirements instead of FR4 .2

_InteractiveRoute : [FR4 .1 _ProductPicture]
12

13 ---
14 - Error : FR5_ProductSearch was refined to FR5 .2 _SearchByCategory which is

not included in your requirements configuration .
15 You have the following options :
16 - Revise the requirements FR5 .2 _SearchByCategory or FR5_ProductSearch to

solve the refinement problem
17 - Revise the requirement relationship (refinement) between FR5 .2

_SearchByCategory and FR5_ProductSearch
18 - Include the requirement FR5 .2 _SearchByCategory in your requirements

configuration .
19

20 - Error : FR5_ProductSearch was refined to FR5 .1 _SearchByTerm which is not
included in your requirements configuration .

21 You have the following options :
22 - Revise the requirements FR5 .1 _SearchByTerm or FR5_ProductSearch to

solve the refinement problem
23 - Revise the requirement relationship (refinement) between FR5 .1

_SearchByTerm and FR5_ProductSearch
24 - Include the requirement FR5 .1 _SearchByTerm in your requirements

configuration .
25

26 - Error : FR1_CustomerInfo was refined to FR1 .3 _CustomerInfoAsPic which is
not included in your requirements configuration .

27 You have the following options :
28 - Revise the requirements FR1 .3 _CustomerInfoAsPic or FR1_CustomerInfo to

solve the refinement problem
29 - Revise the requirement relationship (refinement) between FR1 .3

_CustomerInfoAsPic and FR1_CustomerInfo
30 - Include the requirement FR1 .3 _CustomerInfoAsPic in your requirements

configuration .
31

32 - Error: FR1_CustomerInfo was refined to FR1 .2 _CustomerInfoAsAudio which is
not included in your requirements configuration .

33 You have the following options :
34 - Revise the requirements FR1 .2 _CustomerInfoAsAudio or FR1_CustomerInfo

to solve the refinement problem

214

A.6 Results of Consistency Validation (1)

35 - Revise the requirement relationship (refinement) between FR1 .2
_CustomerInfoAsAudio and FR1_CustomerInfo

36 - Include the requirement FR1 .2 _CustomerInfoAsAudio in your requirements
configuration .

37

38 - Error : FR4_ProductPlaceDescription was refined to FR4 .2 _InteractiveRoute
which is not included in your requirements configuration .

39 You have the following options :
40 - Revise the requirements FR4 .2 _InteractiveRoute or

FR4_ProductPlaceDescription to solve the refinement problem
41 - Revise the requirement relationship (refinement) between FR4 .2

_InteractiveRoute and FR4_ProductPlaceDescription
42 - Include the requirement FR4 .2 _InteractiveRoute in your requirements

configuration .
43

44 - Error : FR4_ProductPlaceDescription was refined to FR4 .1 _ProductPicture
which is not included in your requirements configuration .

45 You have the following options :
46 - Revise the requirements FR4 .1 _ProductPicture or

FR4_ProductPlaceDescription to solve the refinement problem
47 - Revise the requirement relationship (refinement) between FR4 .1

_ProductPicture and FR4_ProductPlaceDescription
48 - Include the requirement FR4 .1 _ProductPicture in your requirements

configuration

215

216

Abrevations
FODA Feature Oriented Domain Analysis

GORE Goal Oriented Requirements Engineering

GUI Graphical User Interface

OWL Web Ontology Language

RE Requirements Engineering

RSG Requirements Specification Guidance

SPL Software Product Line

SRS Software Requirements Specification

UI User Interface

UML Unified Modeling Language

217

218

Bibliography
[1] Pellet Reasoner. http://clarkparsia.com/pellet/. (accessed 20.05.2011).

[2] Software Product Line. http://www.sei.cmu.edu/productlines/. (accessed
10.08.2013).

[3] TrOWL. http://trowl.eu/. (accessed 02.06.2012).

[4] Yoji Akao. Quality Function Deployment QFD: Integrating Customer Requirements
into Product Design. Productivity Press, 1990.

[5] Ian F. Alexander and Richard Stevens. Writing Better Requirements. Pearson
Education, 2002.

[6] A. I. Antó, E. Liang, and R. A Rodenstein. A web-based requirements analysis
tool. In Proceedings of the 5th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET ICE’96, WET-ICE ’96, pages
238–244, Washington, DC, USA, 1996. IEEE Computer Society.

[7] Annie I. Antón. Goal-Based Requirements Analysis. In ICRE ’96: Proceedings of
the 2nd International Conference on Requirements Engineering (ICRE ’96), page
136, Washington, DC, USA, 1996. IEEE Computer Society.

[8] Annie I. Antón and Colin Potts. The Use of Goals to Surface Requirements for
Evolving Systems. In Proceedings of the 20th international conference on Software
engineering, ICSE ’98, pages 157–166, Washington, DC, USA, 1998. IEEE Computer
Society.

[9] Sohail Asghar and Mahrukh Umar. Requirement Engineering Challenges in Devel-
opment of Software Applications and Selection of Customer-off-the-Shelf (COTS)
Components. In International Journal of Software Engineering (IJSE), volume 1,
pages 32–50, 2010.

[10] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics for the Semantic
Web. IEEE Data Engineering Bulletin, 16(25):4–9, 2001.

[11] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal Question
Metric Approach. In Encyclopedia of Software Engineering. Wiley, 1994.

[12] Sean Bechhofer. OWL Reasoning Examples. http://owl.man.ac.uk/2003/why/latest/,
2003. (accessed 15.07.2011).

[13] Tom Beger. Evaluation von Werkzeugen fïür das Requirements Engineering bezueglich
der Spezifizierbarkeit von nicht-funktionalen Anforderungen. Groï£¡er beleg, Tech-
nische Universitïät Dresden, September 2009.

219

Bibliography

[14] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34–43, 2001.

[15] Andreas Birk and Gerald Heller. Challenges for Requirements Engineering and
Management in Software Product Line Development. In Requirements Engineering:
Foundation for Software Quality, volume 4542/2007, pages 300–305. Springer Berlin
/ Heidelberg, 2007.

[16] Ryan Blace. OWL 2 in Action: Property Chains.
http://semwebprogramming.org/?p=175, June 2009. (accessed 02.08.2013).

[17] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative Evaluation of Software
Quality. In Proceedings of the 2nd International Conference on Software Engineering,
ICSE ’76, pages 592–605, Los Alamitos, CA, USA, 1976. IEEE Computer Society
Press.

[18] Karin Breitman and Julio Cesar Sampaio do Prado Leite. Ontology as a Requirements
Engineering Product. In Requirements Engineering Conference, 2003, pages 309–319.
IEEE Computer Society, 2003.

[19] Christopher Brewster, Simon Jupp, Joanne Luciano, David Shotton, Robert Stevens,
and Ziqi Zhang. Issues in Learning an Ontology From Text. BMC Bioinformatics,
10(Suppl 5):S1+, 2009.

[20] Ronald S. Carson. Requirements Completeness: A Deterministic Approach, 1995.

[21] Verónica Castañeda, Luciana Ballejos, Ma. Laura Caliusco, and Ma. Rosa Galli. The
Use of Ontologies in Requirements Engineering. Global Journal of Researches in
Engineering, 10:2–8, 2010.

[22] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards Requirements-Driven
Information Systems Engineering: The Tropos Project. Information Systems, 27(6),
2002.

[23] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional
Requirements in Software Engineering, volume 5 of International Series in Software
Engineering. Kluwer Academic Publishers, 1999.

[24] Racer Systems GmbH & Co. RacerPro User’s Guide. http://www.racer-
systems.com/products/racerpro/users-guide-2-0-0-preview.pdf, October 2012. (ac-
cessed 04.11.2013).

[25] Bill Curtis, Marc I. Kellner, and Jim Over. Process Modeling. Commun. ACM,
35(9):75–90, 1992.

[26] Luiz Marcio Cysneiros, Vera Werneck, and Eric Yu. Evaluating Methodologies: A
Requirements Engineering Approach Through the Use of an Exemplar. In Proc. of
7th Workshop on Requirements Engineering, pages 40–55, 2004.

[27] K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Tools and
Applications. ACM Press/Addison-Wesley Publishing Co. New York, NY, USA, 2000.

220

Bibliography

[28] Mohamed Yehia Dahab, Hesham A. Hassan, and Ahmed Rafea. TextOntoEx:
Automatic Ontology Construction From Natural English Text. Expert Syst. Appl.,
34(2):1474–1480, 2008.

[29] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed Require-
ments Acquisition. Sci. Comput. Program., 20:3–50, 1993.

[30] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde. GRAIL/KAOS: an
Environment for Goal-driven Requirements Engineering. In Proceedings of the 19th
international conference on Software engineering, ICSE ’97, pages 612–613, New
York, NY, USA, 1997. ACM.

[31] Robert Darimont and Axel van Lamsweerde. Formal Refinement Patterns For
Goal-driven Requirements Elaboration. SIGSOFT Softw. Eng. Notes, 21:179–190,
1996.

[32] Alan M. Davis. Software Requirements: Analysis and Specification. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2nd edition edition, 1993.

[33] Frank van Harmelen Deborah L. McGuinness. OWL Web Ontology Language
Overview. http://www.w3.org/TR/owl-features/, 2004. W3C Recommendation.

[34] Glen Dobson and Peter Sawyer. Revisiting Ontology-Based Requirements Engineering
in the Age of the Semantic Web. In Dependable Requirements Engineering of
Computerised Systems at NPPs, 2006.

[35] A. Eberlein. Requirements Acquisition and Specification for Telecommunication
Services. PhD thesis, UK: University of Wales, Swansea, 1998.

[36] Christof Ebert. Systematisches Requirements Engineering und Management: An-
forderungen Ermitteln, Spezifizieren, Analysieren und Verwalten. dpunkt-Verl.,
Heidelberg, 2., aktualisierte und erw. aufl. edition, 2008.

[37] Eclipse. Eclipse modeling - emf. http://www.eclipse.org/modeling/emf/. (accessed
09.03.2011).

[38] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. Quality Evaluation of Software
Requirements Specifications. http://fmt.isti.cnr.it/WEBPAPER/paper8A2.pdf. (ac-
cessed 04.11.2013).

[39] Stefan Farfeleder, Thomas Moser, Andreas Krall, Tor Stålhane, Inah Omoronyia, and
Herbert Zojer. Ontology-driven Guidance for Requirements Elicitation. In Proceedings
of the 8th Extended Semantic Web Conference on The Semantic Web: Research and
Applications - Volume Part II, ESWC’11, pages 212–226, Berlin, Heidelberg, 2011.
Springer-Verlag.

[40] C.J. Fidge and A.M. Lister. The Challenges of Non-Functional Computing Re-
quirements. http://sky.fit.qut.edu.au/ fidgec/Publications/fidge93c.pdf. (accessed
10.07.2012).

[41] Donald Firesmith. Specifying Good Requirements. Journal of Object Technology,
2:77–87, 2003.

221

Bibliography

[42] Donald Firesmith. Are Your Requirements Complete? Journal of Object Technology,
4(1):27–44, 2005.

[43] Donald Firesmith. Quality Requirements Checklist. Journal of Object Technology,
4(9):31–38, 2005.

[44] The Apache Software Foundation. Reasoners and Rule Engines: Jena Inference
Support. http://jena.apache.org/documentation/inference/. (accessed 03.04.2013).

[45] Piotr Gawrysiak, Grzegorz Protaziuk, Henryk Rybinski, and Alexandre Delteil. Text
Onto Miner - A Semi Automated Ontology Building System. In ISMIS, pages 563–573,
2008.

[46] Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebastiani.
Reasoning with goal models. In Proceedings of the 21st International Conference on
Conceptual Modeling, ER ’02, pages 167–181, London, UK, UK, 2002. Springer-Verlag.

[47] Martin Glinz. A Glossary of Requirements. Engineering Termi-
nology. https://files.ifi.uzh.ch/rerg/amadeus/publications/various/RE-
Glossary_version_1.1b.pdf, 2011. (accessed 12.08.2011).

[48] Leah Goldin and Anthony Finkelstein. Abstraction-Based Requirements Management.
In Proceedings of the 2006 International Workshop on Role of Abstraction in Software
Engineering, ROA ’06, pages 3–10. ACM, 2006.

[49] Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An Analysis of the Requirements
Traceability Problem. In Proceedings of the First International Conference on
Requirements Engineering, pages 94–101, 1994.

[50] Sol Jaffe Greenspan. Requirements Modeling: A Knowledge Representation Approach
to Software Requirements Definition. PhD thesis, Department of Computer Science,
University of Toronto, 1984.

[51] M. Grüninger and M. Fox. Methodology for the Design and Evaluation of Ontologies.
In IJCAI’95, Workshop on Basic Ontological Issues in Knowledge Sharing, April 13,
1995, 1995.

[52] Georges Grosz, Colette Rolland, S. Schwer, Carine Souveyet, Véronique Plihon,
Samira Si-Said, Camille Ben Achour, and Christophe Gnaho. Modelling and En-
gineering the Requirements Engineering Process: An Overview of the NATURE
Approach. Requir. Eng., 2(3):115–131, 1997.

[53] W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview.
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/, November 2012. (ac-
cessed 04.11.2013).

[54] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications.
KNOWLEDGE ACQUISITION, 5:199–220, 1993.

[55] Tom Gruber. Ontology. Springer US, 2009.

[56] H. Verheul H. d. Vries and H. Willemse. Stakeholder Identification in IT Standard-
ization Processes. In Standard Making: A Critical Research Frontier for Information
Systems MISQ Special Issue Workshop, 2003.

222

Bibliography

[57] Mariele Hagen, Berit Jungmann, and Kim Lauenroth. Ein Prozessmodell für ein Agiles
und Wiki-basiertes Requirements Engineering mit Unterstützung durch Semantic-
Web-Technologien, February 2010.

[58] Tracy Hall, Sarah Beecham, and Austen Rainer. Requirements Problems in Twelve
Software Companies: An Empirical Analysis. IEE Proceedings - Software, 149(5):153–
160, 2002.

[59] Terry Halpin. Ontological Modeling: Part 10. Business Rules Journal. LogicBlox
and INTI International University.

[60] Jan Hendrik Hausmann, Reiko Heckel, and Gabi Taentzer. Detection of Conflict-
ing Functional Requirements in a Use Case-Driven Approach: A Static Analysis
Technique Based on Graph Transformation. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, pages 105–115, New York, NY, USA,
2002. ACM.

[61] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for OWL
Ontologies. In Semant. Web, volume 2, pages 11–21, Amsterdam, The Netherlands,
The Netherlands, 2011. IOS Press.

[62] IEEE. IEEE 829-1998 – IEEE Standard for Software Test Documentation. Standard,
September 1998.

[63] IEEE. IEEE Recommended Practice for Software Requirements Specifications.
Technical Report 830-1998, IEEE, 1998.

[64] Hoh In, Barry Boehm, Thomas Rodgers, and Michael Deutsch. Applying WinWin
to Quality Requirements: A Case Study. In Proceedings of the 23rd International
Conference on Software Engineering, ICSE ’01, pages 555–564, Washington, DC,
USA, 2001. IEEE Computer Society.

[65] Carnegie Mellon Software Engineering Institute. Software Product Lines.
http://www.sei.cmu.edu/productlines/. (accessed 02.03.2013).

[66] Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Soft-
ware Engineering Terminology : IEEE Std 610.12-1990. Institute of Electrical and
Electronics Engineers, New York, NY, USA, 1990.

[67] Mark S. Fox Jinxin Lin and Taner Bilgic. A Requirement Ontology for Engineering
Design. Concurrent Engineering: Research and Applications, 4:279–291, 1996.

[68] Ivan J. Jureta, John Mylopoulos, and Stéphane Faulkner. A Core Ontology for
Requirements. Appl. Ontol., 4(3-4):169–244, 2009.

[69] Haruhiko Kaiya and Motoshi Saeki. Ontology Based Requirements Analysis:
Lightweight Semantic Processing Approach. In Proc. Fifth International Conference
on Quality Software (QSIC 2005), 2005.

[70] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie-
Mellon University Software Engineering Institute, 1990.

223

Bibliography

[71] M. Kassab, O. Ormandjieva, and M. Daneva. An Ontology Based Approach to
Non-functional Requirements Conceptualization. Software Engineering Advances,
International Conference on, 0:299–308, 2009.

[72] E. Kavakli and Loucopoulos P. Goal Driven Requirements Engineering: Evaluation of
Current Methods. In the 8th CAiSE/IFIP8.1 International Workshop on Evaluation
of Modeling Methods in Systems Analysis and Design (EMMSAD ’03), 2003.

[73] Evangelia Kavakli. Goal-driven Requirements Engineering: Modelling and Guidance.
PhD thesis, University of Manchester, 1999.

[74] Kahn Keller and Panara. Specifying SoftwareQuality Requirements with Metricsn.
In R.H. Thayer and M. Dorfman, editors, System and Software Requirements Engi-
neering, pages 145–163. IEEE Computer Society Press, 1990.

[75] Marc I. Kellner. Process Guides: Effective Guidance For Process Participants,
volume 12 of IESE-Report // Fraunhofer Einrichtung experimentelles Software Engi-
neering. Fraunhofer-IESE, 1998.

[76] Chang Hwan Peter Kim. On the Relationship Between Feature Models and Ontologies.
University of Waterloo (Canada), 2006.

[77] B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case Studies for Method and Tool
Evaluation. IEEE Software, 12(4):52–62, 1995.

[78] Leonid Kof. Natural Language Processing For Requirements Engineering Applicability.
In Proceedings of the Workshops, page 2004, 2004.

[79] M. Kossmann, R. Wong, M. Odeh, and A. Gillies. Ontology-driven Requirements En-
gineering: Building the OntoREM Meta Model. In Information and Communication
Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International
Conference on, pages 1 – 6, 2008.

[80] A. Kott and J. Peasant. Representation and Management of Requirements: The
RAPID-WS Project. Concurrent Engineering, 3(2):93–106, 1995.

[81] Simone Kriglstein. OWL Ontology Visualization: Graphical Representations of
Properties on the Instance Level. In Ebad et. al. Banissi, editor, IV, pages 92–97.
IEEE Computer Society, 2010.

[82] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological Spaces: An Initial
Appraisal. In International Symposium on Distributed Objects and Applications,
DOA 2002, 2002.

[83] Giuseppe Lami and Gianluca Trentanni. An Automatic
Tool for Improving the Quality of Software Requirements.
http://www.ercim.eu/publication/Ercim_News/enw58/EN58.pdf, 2004. (ac-
cessed 04.11.2013).

[84] A. Lamsweerde, R. Darimont, and P. Massonet. Goal-Directed Elaboration of
Requirements For a Meeting Scheduler: Problems and Lessons Learnt. In Proceedings
of the Second IEEE International Symposium on Requirements Engineering, RE ’95,
pages 194–, Washington, DC, USA, 1995. IEEE Computer Society.

224

Bibliography

[85] Axel Van Lamsweerde and Laurent Willemet. Inferring Declarative Requirements
Specifications From Operational Scenarios. IEEE Transactions on Software Engi-
neerin, 24:1089–111, 1998.

[86] Alexei Lapouchnian. Goal-oriented Requirements Engineering: An Overview of the
Current Research, 2005.

[87] Yuquin Lee and Wenyun Zhao. An Ontology-Based Approach for Domain Require-
ments Elicitation and Analysis. Computer and Computational Sciences, International
Multi-Symposiums on, 2:364–371, 2006.

[88] Jens Lemcke, Andreas Friesen, and Tirdad Rahmani. Validating Component-based
Implementations of Business Processes. In Electronic Business Interoperability:
Concepts, Opportunities and Challenges, chapter 7, pages 124–151. IGI Global, 2011.

[89] Emmanuel Letier and Axel van Lamsweerde. Reasoning About Partial Goal Sat-
isfaction For Requirements and Design Engineering. SIGSOFT Softw. Eng. Notes,
29:53–62, 2004.

[90] L. Liu and E. Yu. From Requirements to Architectural Design - Using Goals and
Scenarios, 2001.

[91] Jacques Lonchamp. A Collaborative Process-centered Environment Kernel. In CAiSE
’94: Proceedings of the 6th international conference on Advanced information systems
engineering, pages 28–41, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

[92] Pericles Loucopoulos and Vassilios Karakostas. System Requirements Engineering.
McGraw-Hill, Inc., New York, NY, USA, 1995.

[93] Mich Luisa, Franch Mariangela, and Inverardi Pierluigi. Market Research for Re-
quirements Analysis Using Linguistic Tools. Requirement Engineering, 9(1):40–56,
2004.

[94] Bharat B. Madan, Katerina Goseva-Popstojanova, Kalyanaraman Vaidyanathan, and
Kishor S. Trivedi. Modeling and Quantification of Security Attributes of Software
Systems. In Proceedings of the 2002 International Conference on Dependable Systems
and Networks, DSN ’02, pages 505–514, Washington, DC, USA, 2002. IEEE Computer
Society.

[95] Alexander Maedche and Steffen Staab. Mining Ontologies from Text. In EKAW ’00:
Proceedings of the 12th European Workshop on Knowledge Acquisition, Modeling and
Management, pages 189–202. Springer-Verlag, 2000.

[96] Zohar Manna, Nikolaj S. Bjørner, Anca Browne, Michael Colón, Bernd Finkbeiner,
Mark Pichora, Henny B. Sipma, and Tomás E. Uribe. STeP: Deductive-algorithmic
Verification of Reactive and Real-time Systems. In In 8th CAV, pages 415–418.
Springer-Verlag, 1996.

[97] Mayank, Kositsyna, and Austin. Requirements Engineering and the Semantic Web:
Part II. Representation, Management and Validation of Requirements and System-
Level Architectures. Technical report, University of Maryland, 2004. ISR Technical
Report 2004-14.

225

Bibliography

[98] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language.
http://www.w3.org/TR/owl-features/, November 2009. (accessed 10.11.2011).

[99] Krzysztof Miksa, Marek Kasztelnik, Pawel Sabina, and Tobias Walter. Towards
Semantic Modeling of Network Physical Devices. In MoDELS Workshops, volume
6002 of Lecture Notes in Computer Science, pages 329–343, 2009.

[100] Mikyeong Moon, Keunhyuk Yeom, and Heung Seok Chae. An Approach to Developing
Domain Requirements as a Core Asset Based on Commonality and Variability
Analysis in a Product Line. EEE Trans. Softw. Eng., 31:551–569, 2005.

[101] J. Mylopoulos, L. Chung, and B. Nixon. Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach. IEEE Trans. Softw. Eng, 18(6):483–
497, 1992.

[102] John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Telos:
Representing Knowledge About Information Systems. ACM Trans. Inf. Syst., 8:325–
362, 1990.

[103] John Mylopoulos, Lawrence Chung, and Eric Yu. From Object-oriented to Goal-
oriented Requirements Analysis. Communications of the ACM, 42(1):31 – 37, 1999.

[104] Joost Noppen, Pim Van Den Broek, and Mehmet Aksit. Imperfect Requirements in
Software Development. In Proceedings of the 13th international working conference
on Requirements engineering: foundation for software quality, REFSQ’07, pages
247–261, Berlin, Heidelberg, 2007. Springer-Verlag.

[105] Natalya F. Noy and Deborah L. Mcguinness. Ontology Development 101: A Guide
to Creating Your First Ontology. Technical Report KSL-01-05, Stanford Knowledge
Systems Laboratory, 2001.

[106] Bashar Nuseibeh and Steve Easterbrook. Requirements Engineering: A Roadmap.
In ICSE ’00: Proceedings of the Conference on The Future of Software Engineering,
pages 35–46, New York, NY, USA, 2000. ACM.

[107] Fernando Silva Parreiras, Steffen Staab, and Andreas Winter. TwoUse: Integrating
UML Models and OWL Ontologies. Technical Report 16/2007, Universität Koblenz-
Landau, Fachbereich Informatik, 2007.

[108] Klaus Pohl. PRO-ART: Enabling Requirements Pre-Traceability. In ICRE’96, pages
76–85, 1996.

[109] Klaus Pohl. Requirements Engineering. Grundlagen, Prinzipien, Techniken, volume 1.
Dpunkt Verlag, 2007.

[110] Names Project. Requirement Specification. http://names.mimas.ac.uk/documents/
Names_Software_Requirements_11Jul2008.pdf, 2008.

[111] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/, January 2008. (ac-
cessed 01.02.2011).

226

Bibliography

[112] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/, March 2013. (ac-
cessed 04.11.2013).

[113] Balasubramaniam Ramesh and Matthias Jarke. Toward Reference Models of Re-
quirements Traceability. IEEE Trans. Software Eng., pages 58–9, 2001.

[114] Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Closed World Reasoning for OWL2 with
NBox. Journal of Tsinghua Science and Technology, 15(6), 2010.

[115] Thomas Riechert, Kim Lauenroth, and Jens Lehmann. Semantisch unterstütztes
Requirements Engineering. In Proceedings of the SABRE-07 SoftWiki Workshop,
2007.

[116] C. Rolland and Colette Rolland. A Comprehensive View of Process Engineering. In
In Proc. 10 th Intl. Conf. Advanced Information Systems Engineering, (CAiSE 98),
pages 1–24. Springer, 1998.

[117] Pere P. Sancho, Carlos Juiz, Ramon Puigjaner, Lawrence Chung, and Nary Subra-
manian. An Approach to Ontology-aided Performance Engineering Through NFR
Framework. In WOSP ’07: Proceedings of the 6th international workshop on Software
and performance, pages 125–128, New York, NY, USA, 2007. ACM Press.

[118] Bruno Schienmann. Kontinuierliches Anforderungsmanagement: Prozesse - Techniken
- Werkzeuge. Addison-WesleAddison-Wesley, München, 2002.

[119] F.T. Sheldon and H. Y. Kim. Validation of Guidance Control Software Requirements
Specification for Reliability and Fault-Tolerance. In IEEE annual proceedings on
Reliability and Maintainability Symposium, Washington, DC, USA, 2002.

[120] Samira Si-Said and Colette Rolland. Guidance for Requirements Engineering Pro-
cesses. In DEXA ’97: Proceedings of the 8th International Conference on Database
and Expert Systems Applications, pages 643–652, London, UK, 1997. Springer-Verlag.

[121] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practices
Guide. John Wiley & Sons, 1997.

[122] Carine Souveyet, Camille Ben Achour, Camille Ben Achour, Colette Rolland, and
Colette Rolland. A Proposal for Improving the Quality of the Organisation of
Scenarios Collections. In Eric Dubois, Andreas L. Opdahl, and Klaus Pohl, editors,
REFSQ, number 98, pages 33–45. Presses Universitaires de Namur, 1998.

[123] John F. Sowa. Ontology. http://www.jfsowa.com/ontology/, 2010. (accessed
28.05.2010).

[124] A. Terry Bahill and Steven J. Henderson. Requirements Development, Verification,
and Validation Exhibited in Famous Failures. Syst. Eng., 8(1):1–14, 2005.

[125] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund. Abstract Features in Feature-
Modeling. In Software Product Line Conference (SPLC), pages 191–200, 2011.

[126] Erik Tittel. Ontology-based Guidance for Requirements Engineering, 2010.

[127] Dmitry Tsarkov. FaCT++. http://owl.man.ac.uk/factplusplus/. (accessed 2011).

227

Bibliography

[128] Mike Uschold, Michael Gruninger, Mike Uschold, and Michael Gruninger. Ontologies:
Principles, Methods and Applications. Knowledge Engineering Review, 11:93–136,
1996.

[129] Axel van Lamsweerde. Requirements Engineering in the Year 00: A Research
Perspective. In International Conference on Software Engineering, pages 5–19, 2000.

[130] Axel van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.
In RE ’01: Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering, page 249, Washington, DC, USA, 2001.

[131] Axel van Lamsweerde. Reasoning About Alternative Requirements Options. In
Alexander Borgida, Vinay K. Chaudhri, Paolo Giorgini, and Eric S. K. Yu, editors,
Conceptual Modeling: Foundations and Applications, volume 5600 of Lecture Notes
in Computer Science, pages 380–397. Springer, 2009.

[132] Axel van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing Conflicts in
Goal-Driven Requirements Engineering. IEEE Transactions on Software Engineering,
24:908–926, 1998.

[133] Axel van Lamsweerde and Emmanuel Letier. From Object Orientation to Goal
Orientation: A Paradigm Shift for Requirements Engineering. In RISSEF, pages
325–340, 2003.

[134] Philippe Vincke. Multicriteria Decision-Aid. Wiley, 1992.

[135] Wikipedia. Closed World Assumption. http://en.wikipedia.org/wiki/Closed-
_world_assumption. (accessed 07.09.2011).

[136] Wikipedia. Foda. https://en.wikipedia.org/wiki/Feature-oriented_domain_analysis.
(accessed 10.08.2013).

[137] Wikipedia. Ontology Merging. http://en.wikipedia.org/wiki/Ontology_merging.
(accessed 13.09.2013).

[138] Wikipedia. Ontology TBox. http://en.wikipedia.org/wiki/Abox. (accessed
08.08.2013).

[139] Wikipedia. Open World Assumption. http://en.wikipedia.org/wiki/Open-
_world_assumption. (accessed 13.08.2013).

[140] S. P. Wilson, T. P. Kelly, and J. A. McDermid. Safety Case Development: Current
Practice, Future Prospects. In OF SOFTWARE BASED SYSTEMS - TWELFTH
ANNUAL CSR WORKSHOP. Springer-Verlag, 1997.

[141] Yang Ying-ying, Li Zong-yon, and Wang Zhi-xue. Domain Knowledge Consistency
Checking for Ontology-Based Requirement Engineering. In CSSE ’08: Proceedings of
the 2008 International Conference on Computer Science and Software Engineering,
pages 302–305, Washington, DC, USA, 2008. IEEE Computer Society.

[142] Ralph Rowland Young. The Requirements Engineering Handbook. Artech House Inc.,
2004.

228

Bibliography

[143] Eric S. Yu. An Organization Modelling Framework for Multi-Perspective Information
System Design. Technical report, Tech. Rpt. DKBS-TR93 -2, Dept. of Comp. Sci.,
Univ. of Toronto, 1993.

[144] Eric S. K. Yu. Towards Modelling and Reasoning Support for Early-Phase Require-
ments Engineering. In Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering, RE ’97, pages 226–235, Washington, DC, USA, 1997.
IEEE Computer Society.

[145] K. Yue. What Does It Mean to Say that a Specification is Complete? Proc. IWSSD-4,
Fourth International Workshop on Software Specification and Desig, 1987.

[146] Pamela Zave. Classification of Research Efforts in Requirements Engineering. ACM
Comput. Surv., 29(4):315–321, 1997.

[147] Pamela Zave and Michael Jackson. Four Dark Corners of Requirements Engineering.
ACM Transactions on Software Engineering and Methodology, 6(1):1–30, 1997.

[148] Zhang and Eberlein. Architectural Ddesign of an Intelligent Requirements Engineering
Tool. In Canadian Conference on Electrical and Computer Engineering, CCECE,
Montreal, 2003.

[149] Wei Zhang, Hong Mei, and Haiyan Zhao. Feature-driven Requirement Dependency
Analysis and High-level Software Design. Requir. Eng., 11(3):205–220, 2006.

[150] Xuefeng Zhu. Inconsistency Measurement of Software Requirements Specifications:
An Ontology-Based Approach. In ICECCS ’05: Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems, pages
402–410, Washington, DC, USA, 2005. IEEE Computer Society.

[151] Didar Zowghi and Vincenzo Gervasi. The Three Cs of Requirements: Consistency,
Completeness, and Correctness. In Proceedings of 8th International Workshop on
Requirements Engineering: Foundation for Software Quality, (REFSQ’02), 2002.

229

230

Glossary
Application Domain: “A set of current and future applications which share a set of

common capabilities and data” [70].

Coexistence (Implication) Relationship: A requirement implies (requires) one or
more other requirements.

Completeness Rules: Completeness rules comprise three parts: rule definition, fault
message and solution suggestion. The definition states all the requirement artefacts
that need to be specified in the SRS and their associated metadata that must
(or should) be specified. The fault message provides additional information of
the concrete problem for each rule that fails and the solution suggestion proposes
knowledge-specific opportunities for each incompleteness problem to be eliminated.

Conflict Relationship: A requirement r1 conflicts with another requirement r2 if the
fulfilment of r1 excludes the fulfilment of r2 and vice versa. A conflicting relationship
must also specify a conflict reason (p). This relationship is symmetric.

Consistency Rule: Consistency rules comprise three parts: rule definition, fault message
and solution suggestion. The definition states a condition of the requirements
configuration to ensure consistency. The fault message provides additional information
of the concrete problem for each rule that fails and the solution suggestion proposes
options for each inconsistency problem to be eliminated, based on the specified
requirements knowledge. A requirements configuration is consistent if all consistency
rules are satisfied.

Domain Analysis: “The process of identifying, collecting, organizing, and representing
the relevant information in a domain based on the study of existing systems and
their development histories, knowledge captured from domain experts, underlying
theory, and emerging technology within the domain” [70].

Domain Model: “A definition of the functions, objects, data, and relationships in a
domain” [70].

Exclusion Relationship: The exclusion of a requirement by another requirement. In
contrast to the conflict relationship, this exclusion is non-symmetric and may define
an exclusion reason (p).

External Completeness (of Requirements Specification): External Completeness
is stated with regard to the whole SRS, which may include various documents and
models [42].

Functional Requirement: A requirement concerning a result of be- haviour that shall
be provided by a function of a system, a component or service [47].

231

Glossary

Goal Satisfaction: The satisfaction of goals comprises the avoidance of negative goal
contributions and the consideration of positive goal contributions.

Goal-oriented Requirements Engineering (GORE): Goal-oriented Requirements
Engineering is the branch of systems engineering concerned with the development of
requirements through a systematic, iterative and co-operative process. This process
involves the elicitation, negotiation, specification and validation of real-world goals
and requirements for, functions of, and constraints on software systems. It is also
concerned with the relationship of these RE artefacts to precise specifications of soft-
ware behaviour, their evolution over time and across software families. Requirements
and all related artefacts are documented in a Requirements Specification that needs
to be validated regarding customer wishes, correct understanding and accuracy.

Goal: Goals are declarative statements of intent to be achieved by the system under
consideration.

GORE: See Goal-oriented Requirements Engineering.

Internal Completeness (of Individual Requirements): An individual requirement
is complete if it contains all necessary information to avoid ambiguity and needs no
amplification to enable proper implementation [42].

Internal Consistency of a Requirements Configuration: A requirements configura-
tion is internally consistent if it is free of conflicting and excluding requirements.
All mandatory requirements and coexistent requirements must be included. The
requirements configuration must contain the most refined requirement of each par-
ticular requirement refinement and comply to the alternative relationships (or- and
ex-alternative).

Mandatory Attribute: A requirement is mandatory if it is definitely required by the
system and must be realised.

Metadata: Metadata comprise all attributes for requirements artefacts (e.g., priority,
state, cost) and the relations between requirements artefacts (e.g., goal contribution,
refinements).

Metric: A functional description of values that can be measured, e.g., response time.

Non-functional Requirement: A non-functional requirement (also quality requirement)
is a requirement that pertains to a quality concern that is related to a functional
requirement citeGlinz2011.

Obstacle: Obstacles are declarative statements of identified behaviour that have a negative
effect on the satisfaction of goals or requirements.

ODRE: See Ontology-Driven Requirements Engineering.

Ontology-Driven Requirements Engineering (ODRE): Ontology-driven (or some-
times ontology-based) RE describes a RE process or at least a RE method compre-
hensively aided by ontologies. Therefore, ontologies are involved for some or all tasks
of the RE process. ODRE clearly states the method how to integrate a proposed
ontological technique into a continuous RE process.

232

Glossary

Ontology: In the context of computer and information sciences, an ontology defines a
set of representational primitives with which to model a domain of knowledge or
discourse. The representational primitives are typically classes (or sets), attributes (or
properties), and relationships (or relations among class members). [...] Ontologies are
typically specified in languages that allow abstraction away from data structures and
Ontology-Driven Requirements Engineering implementation strategies; in practice,
the languages of ontologies are closer in expressive power to first-order logic than
languages used to model databases. For this reason, ontologies are said to be at the
“semantic” level, whereas database schema are models of data at the “logical” or
“physical” level. Due to their independence from lower level data models, ontologies
are used for integrating heterogeneous databases, enabling interoperability among
disparate systems, and specifying interfaces to independent, knowledge-based services
[55].

Optional Attribute: A requirement is optional if it is in scope but not necessarily
required by the system. It is not mandatory.

Optional-Alternative Relationship: One requirement may be replaced by another.

Or-Alternative Relationship: A choice limited to at least one requirement of a set of
requirements.

Platform Requirement: Platform Requirements (also System Requirements) refer to
requirements regarding the platform of the software, e.g., RAM size, Operating
System, Hardware Architecture, etc.

Process Requirement: Process requirements are constraints placed upon the develop-
ment process of the system.

Quality Flaw: A quality flaw is an undesired characteristic in the requirements knowledge
that decreases its quality.

Quality Rules: Quality rules comprise three parts: rule definition, fault message and
solution suggestion. The definition states a condition of the requirements configuration
to improve quality. The fault message provides additional information of the concrete
problem for each rule that fails and the solution suggestion proposes options for each
quality flaw detected, based on the specified requirements knowledge.

Refinement Relationship: A requirement r1 refines a requirement r2 if r1 is derived
from r2 by adding more details to it. r1 can be seen as an abstraction of the
detailed requirement r2. The triple relationship consists of the refinement source, the
refinement target and the refinement reason (p).

Requirement: “(1) A condition or capability needed by a user to solve a problem or
achieve an objective. (2) A condition or capability that must be met or possessed
by a system or system component to satisfy a contract, standard, specification, or
other formally imposed documents. (3) A documented representation of a condition
or capability as in (1) or (2).” [66].

233

Glossary

Requirements artefacts: Requirements artefacts are parts of the requirements knowl-
edge that hold specific types of information, e.g., requirements, test-cases, metrics,
prioritiess.

Requirements Configuration (RC): A requirements configuration is a set of require-
ments to be implemented. A requirements configuration is valid if and only if it does
not violate constraints imposed by the Requirements metamodel.

Requirements Engineering: Requirements Engineering is the branch of Systems En-
gineering concerned with the development of requirements through a systematic,
iterative and co-operative process. This process includes the elicitation, negotiation,
specification and validation of requirements. It is also concerned with the relationship
of these RE artefacts to precise specifications of software behaviour, their evolution
over time and across software families. Requirements and all related artefacts are
documented in a Requirements Specification that needs to be validated regarding
customer wishes, correct understanding and accuracy.

Requirements Specification: A Software Requirements Specification (SRS) is a com-
prehensive description of the intended purpose and environment for software under
development. The SRS fully describes what the software will do and how it will be
expected to perform.

Requirements Validation: “Ensuring that (1) the set of requirements is correct, com-
plete, and consistent, (2) a model can be created that satisfies the requirements,
and (3) a real-world solution can be built and tested to prove that it satisfies the
requirements.” [124].

Requirements Verification “Ensuring that the system complies with the system re-
quirements and conforms to its design.” [124].

Risk: A risk is an event that threatens the success of an endeavour, e.g., of developing
or operating a system. A risk is typically assessed in terms of its probability and
potential damage [47].

Scenario: A textual description of a small part of a Use-Case that leads to a desired (or
undesired) result. A scenario describes a sequence of user actions in general terms.

set A collection of distinct objects.

Soft-Metric: A non-functional description of quality values that cannot be easily mea-
sured, but still provide important information for the verification of non- functional
requirements, e.g., learnability, understandability.

Software Feature: “A distinguishing characteristic of a software item (e.g., performance,
portability, or functionality)” [?].

Source: The origin of a requirements artefact (e.g., document, guidelines, law).

Stakeholder: A person or organization that has a (direct or indirect) influence on a
systemť’s requirements. Indirect influence also includes situations where a person or
organization is impacted by the system [47].

234

Glossary

Test-Case: A description of possible interactions between actors and the system to be
tested for. Every test-case describes some functionality that the system must (or
must not) provide for the actors involved in the test-case.

Use-Case: A description of the interactions possible between actors and a system that,
when executed, provide added value. Use-cases specify a system from a userŠs (or
other external actorŠs) perspective: every use case describes some functionality that
the system must provide for the actors involved in the use case [47].

X-Alternative Relationship (XOR): A choice limited to exactly one requirement of a
set of requirements.

235

236

Confirmation
I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, March 13, 2015

