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1 Introduction 

The Maillard reaction is a network of different non-enzymatic reactions between carbonyl 

groups of reducing sugars and amino groups from amino acids, peptides, or proteins, which 

progresses in three major stages and originates a very heterogeneous mixture of reaction 

products. It is also known as non-enzymatic browning, due to the brown macromolecular 

pigments formed in the final stage of the reaction. The chemistry underlying the Maillard 

reaction is complex. It encloses not only one reaction pathway, but a whole network of 

various transformations. As virtually all foods contain both proteins and carbohydrates, 

Maillard reaction products are present in the daily diet in considerable amounts. The 

endogenous formation of Maillard reaction products, especially related to ageing and 

diabetes, aroused intense discussions about the health consequences of the “glycation”, the 

term that describes the in vivo reaction corresponding to the Maillard reaction in foods.  

Melanoidins are the final brown products of the Maillard reaction. They are responsible for 

the color formed during the heat processing of foods like coffee, bread, malt, and beef. 

Melanoidins are high molecular weight polydisperse polymers containing nitrogen. Their 

structure is largely unknown. Coffee melanoidins, which are object of the present study, 

contain thermally transformed polysaccharides, proteins, and phenolic compounds. Since 

the mechanisms involved on the formation of these macromolecules, and the chemical 

transformations which take place during the heat treatment are not completely elucidated, 

key structural features were analyzed. Especially the incorporation of chlorogenic acids in 

the melanoidin skeleton was object of attention of the present work. 

Another major aim of this work was to investigate the influence of the Maillard reaction on 

the inhibitory potential of food components against zinc metalloproteases. The studied 

enzymes were three human matrix metalloproteases (MMP-1, -2 and -9), which are able to 

degrade matrix proteins and participate in many physiological processes, including tissue 

turnover and repair, but also constitute important targets in malignant and degenerative 

diseases. A microbial collagenase from Chlostridium histolyticum was chosen due to its 

subtract similarity to MMPs. Furthermore, Angiotensin Converting Enzyme (ACE), which 

plays a central role in cardiovascular pathologies such as hypertension and cardiac 

hypertrophy, was investigated. As a prototypical Maillard reaction product, coffee 

melanoidin was adopted.  
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Due to the roast dependent inhibitory activity of the coffee melanoidin fractions against 

matrix metalloproteases, the functionalization caused by the non-enzymatic browning was 

closer investigated. Nα-carboxyalkylated derivatives of a sequence of relevant peptides were 

synthesized, in a variation of the process-induced formation of Nε-carboxymethyllysine, a 

major advanced glycation end-product (AGE). The inhibitory activity against zinc 

metalloproteases of the sequence of selected peptides and their Nα-carboxymethyl- (CM-) 

and Nα-carboxyethyl- (CE-) derivates was investigated. 
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2 Background  

2.1 Maillard reaction in food 

The Maillard reaction is an intricate pathway of interlacing transformations, which happen 

principally during thermal processing of food by the interaction of reducing sugars and their 

degradation products with available nucleophilic amino groups of amino acids, peptides and 

proteins. The many parallel and consecutive reactions promote the formation of an 

extraordinarily complex mixture of compounds, which are present in very different amounts 

(van Boekel, 2001; Ledl and Schleicher, 1990). Furthermore, it is affected by factors such as 

reactants type and concentration, temperature, time, pH, and water activity (Huang et al., 

2005). It is decisive for the sensorial quality of food, being responsible for the color and 

characteristic aroma developed during backing, cooking or roasting, and altering the 

stability of food stuff. Therefore it is called non-enzymatic browning.  

With the identification of a non-enzymatically glycosylated variant of hemoglobin in 

diabetic patients, it was found that the non-enzymatic reaction pathways known from food 

processing are also present in vivo, although the process in food is always much more 

intense, principally due to the drastic conditions of food processing. This reaction net can be 

defined as a post-translational modification of amino acids and protein, being known in 

living systems as “glycation” or “non-enzymatic glycosylation”. Glycation alters the 

structure, function and stability of body proteins, constituting an important cause of the 

physiologic aging and some pathological processes (Hipkiss, 2006; Henle, 2007). It is also 

considered as a type of covalent damage of proteins, not only due to the functional loss, but 

also to the development of potential pathogenic molecules (Cloos and Christgau, 2002).  

For reasons of clarity, the Maillard reaction is usually divided in three stages, designated 

“early”, “advanced” and “final” Maillard reaction, although actually all reactions can occur 

simultaneously and influence each other (Henle, 2005). Classically, the reaction begins with 

condensation between an amino group of amino acids, peptides or proteins and the carbonyl 

group of a reducing carbohydrate. In food, the amino group most frequently involved in the 

Maillard reaction is the ε-amino group of lysine side chains, but also the guanidino group of 

arginine and free α-amino groups from peptides and proteins are possible nucleophilic 

reagents (Ledl and Schleicher, 1990; Silván et al., 2006). The product is an unstable imine, 
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the Schiff base, which can rearrange to a glycosylamine, cyclizates to an N-glycoside, or 

undergoes keto-enol tautomerism to give an enaminol, in a proton catalyzed reaction. The 

following step is the Amadori rearrangement (in case of aldoses), to give a 

1-amino-1-desoxyketose (Amadori product), or Heyns (for ketoses) rearrangement, taking 

to 2-amino-2-desoxyaldose (Heyns product). Amadori products cyclizate in solution in 

similar anomers proportions as the original ketose (Ledl and Schleicher, 1990; Henle, 

2005). An example of formation of 1-amino-1-desoxy-fructose from glucose and a general 

amine can be seen in Figure 2-1. 

 

Figure 2-1: Early phase of the Maillard reaction, leading to formation of the first detectable product 
(Amadori product) in the example of the formation of 1-amino-1-desoxy-fructose from glucose 
and an amino group. Adapted from Belitz et al. (2009) and Hellwig (2011). 
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Amadori and Heyns products are the first stable products of the Maillard reaction and are 

commonly used as marker for the evaluation of the intensity of the reaction. Early products 

of the Maillard reaction do not absorb visible or UV light (Krause, 2005). 

In the advanced stage, Schiff bases and Amadori products are degraded by enolisation, 

water elimination, oxidation and retro aldol cleavages, leading to formation of very reactive 

intermediate 1,2-dicarbonyls. Especially important are 3-deoxyosone, 1-deoxyosone and the 

4-deoxyosone, and retro-aldol fission products such as methylglyoxal and glyoxal, which 

initiate a cascade of reactions to give a myriad of secondary products (Belitz et al., 2009).  

 

Figure 2-2: Formation of deoxyosones from Amadori products. Example from glucosones. Adapted 
from Belitz et al. (2009) and Hellwig (2011). 
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Moreover, 1,2-dicarbonyls may also be formed from the degradation of triosephosphates or 

via lipid peroxidation and by caramelization of sugars in absence of amino groups (Henle, 

2005). In the advanced stage of the Maillard reaction, an increase in the UV-absorbance and 

fluorescence, as well as in color, can be observed (Krause, 2005). 

The final stage of the Maillard reaction is marked by degradation, polymerization and 

reaction of the high reactive dicarbonyl compounds and other sugar degradation products, 

giving a plethora of advanced glycation end products (AGEs), mostly heterocyclic and 

colored. Side chain amino groups of proteins can react with 1,2-dicarbonyls to form stable 

peptide-bound amino acid derivatives and cross-links. Through the reaction of dicarbonyl 

compounds with the α-amino group from free amino acids, with following Strecker 

degradation of the formed Schiff bases, are originated at last aroma active aldehydes. If the 

nucleophile is the N-terminal nitrogen from peptides and proteins, a cyclization to 

fluorescent pyrazinones is possible (Krause et al., 2004). 

The first amino acid derivative of the advanced Maillard reaction, which was detected in 

food, was Nε-carboxymethyllysine (CML) (Henle, 2005). CML is a major glycation end-

product, even though its contents in food can be overestimated due to the formation of from 

fructosyllysine during hydrolysis the hydrolytic step of the classical analytical method 

(Hartkopf et al., 1994). It is not only formed by fragmentation of Amadori product but also 

by a diversity of other mechanisms are possible (Gruber and Hofmann, 2005). Common is 

the reaction of lysine residues with glyoxal, which can also originate via lipid peroxidation 

or caramelization. The formation of Nε-carboxyethyllysine CEL succeeds by analogous 

reactions with methylglyoxal (Henle, 2005; Hellwig, 2011).  

The best characterized and most common AGE products are, besides CML and the similarly 

formed Nε-carboxyethyllysine (CEL), pentosidine, pyrraline, imidazolinone, glucosepan, 

Arg-pyrimidine and several arginine–lysine cross-links formed by glyoxal, methylglyoxal, 

and 3-deoxyglucosulose (Henle, 2005). Thus, most known AGEs are relatively stable 

compounds that are not changed during the isolation and purification process, and do not 

react further. Some structures with markedly involvement on the hypotheses of the present 

study are illustrated in Figure 2-3. 
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Figure 2-3: Example of AGEs of defined structure with direct relevance for the present work.  

The Maillard reaction results, in the final stage of the glycation, after the complex series of 

cyclizations, dehydrations, retroaldolizations, rearrangements, isomerizations, and 

condensations of low molecular weight Maillard-reaction products, in brown-colored 

nitrogenous high molecular weight melanoidins (Ledl and Schleicher, 1990; Hofmann, 

1999; Wang et al., 2011). Due to the importance of this group of products for the present 

work, they are closer described. 

Possible detrimental action of the ingestion of food rich in Maillard reaction products has 

been speculated. The Maillard reaction has nutritional consequences, as loss of 

physiologically absorbable essential amino acids and diminished digestibility of proteins 

(Ledl and Schleicher, 1990). Furthermore, many moieties formed during the Maillard 

reaction show also strong affinity for metallic cations, a fact discussed in the past as a 

nutritional risk, as the micro-minerals supply could be compromised (Wang et al., 2011; 

Wijewickreme and Kitts, 1998; Wijewickreme et al., 1997; O'brien and Morrissey, 1997). In 

vivo, glycation alters the structure, function and stability of body proteins, possibly 

contributing to aging and some pathological processes (Hipkiss, 2006; Henle, 2007). As 

AGEs in living organisms were found to increase during aging and diabetes, and were 

directly linked to the pathophysiology of several diseases like cataract, atherosclerosis, and 

uremia they are also considered as a type of covalent damage of proteins, not only due to 

the functional loss, but also to the development of potential pathogenic molecules (Cloos 

and Christgau, 2002; Henle, 2003). 
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In spite of these early inquietudes concerning possible negative health effects of the dietary 

Maillard reaction products, increasingly evidence strikes the disadvantageous action 

attributed to these substances. The positive impact of the formation of antioxidant moieties 

(reductones) through non-enzymatic browning is nowadays unambiguous (Bianchi et al., 

2010; Hwang et al., 2011). The metal chelation properties of MRPs may also show positive 

perspectives for health. A low-dose chelation therapy has been even proposed as a useful 

clinical tool for prevention and treatment of diabetes complications (Nagai et al., 2012), and 

even a neuroprotective effect in Alzheimer and Parkinson’s disease and other 

neurodegenerative conditions (Hegde et al., 2009; Cuajungco et al., 2000; Kell, 2010; 

Weinreb et al., 2010). Actually, the antioxidant capacity developed in course of the Maillard 

reaction is believed to be due not only to direct reductive activity, but also to the 

sequestration of metals (Wijewickreme and Kitts, 1998). Likewise, a protective effect of 

AGEs in cataract lenses against the UV-induced macular degeneration, the main cause of 

age related blindness, has been evidenced in the last years (Klein et al., 2012; Casparis et 

al., 2009). In conclusion, as humans have been adapting their biochemical repertoire to the 

consumption of heated food for over 100.000 years, we believe to have enough reasons to 

think that deleterious effects of products of common household cooking on human health 

should be rather limited. Even the endogenous glycation, which has been seen as a covalent 

damage to body proteins and a risk factor to health, should be evaluated in light of the 

evolutionary adaptation. 

2.1.1 Melanoidins 

The Maillard reaction results, in the final stage of the glycation, after the complex series of 

cyclizations, dehydrations, retroaldolizations, rearrangements, isomerizations, and 

condensations of low molecular weight Maillard-reaction products in brown-colored 

nitrogenous high molecular weight melanoidins (Ledl and Schleicher, 1990; Hofmann, 

1999; Wang et al., 2011). These macromolecules are not only responsible for the 

development of color in heat-processed food products. High antioxidant capacity is 

associated to the formation of melanoidins (Gu et al., 2010; Vignoli et al., 2011; Liu and 

Kitts, 2011; Rufián-Henares and Morales, 2007; Delgado-Andrade and Morales, 2005; 

Borrelli et al., 2002; del Castillo et al., 2002; Nicoli et al., 1997), which are also able to 

bind metals in food system (Wijewickreme et al., 1997; Gomyo and Horikoshi, 1976; 

Takenaka et al., 2005; Wen et al., 2005; Morales et al., 2005; Rufian-Henares and de la 
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Cueva, 2009; Nunes and Coimbra, 2007; Nunes and Coimbra, 2007), acting as 

preservatives and protecting the quality during storage (Wijewickreme and Kitts, 1998; Liu 

and Kitts, 2011; Delgado-Andrade and Morales, 2005; Lindenmeier et al., 2002; Morales, 

2009). Melanoidins may also contribute to food texture (Zamora and Hidalgo, 2005; 

D'Agostina et al., 2004), foamability and foam stability (D'Agostina et al., 2004; Nunes et 

al., 1997; Redgwell et al., 2005), and play a role in the binding of flavor compounds 

(Hofmann et al., 2001; Hofmann and Schieberle, 2002).  

Different hypotheses on the structural backbone of melanoidins have been proposed 

(Bekedam et al., 2006; Cämmerer et al., 2002; Cämmerer and Kroh, 1995; Adams et al., 

2005). Heyns and Hauber (1970) and Tressl et al. (1998) suggested that melanoidins are a 

complex macromolecular structure consisting of repeating units of furans and pyrroles, 

linked to linear oligomers by polycondensation reactions. Hofmann (1998b) detected low-

molecular-weight colored substances, which were able to crosslink proteins via ε-amino 

groups of lysine or arginine, and proposed that they originate high-molecular-weight 

colored melanoidins. Kato and Tsuchida (1981) and, more recently, Cämmerer et al. (2002) 

and Cämmerer and Kroh (1995), suggested that the melanoidin skeleton is mainly built up 

of sugar degradation products, formed in the early stages of a Maillard reaction, 

polymerized through aldol-type condensation, and possibly branched by amino compounds. 

However, these proposals have been made based on model studies and the complexity and 

structures of melanoidins depend on the nature and number of possible reactants and the 

reaction conditions, such as treating temperature and time, pH, and solvent (Wang et al., 

2011).  

In food, amines and sugars are often proteins and polysaccharides, but also carbonyl groups 

formed by oxidation of fatty acids during heat treatment – for instance, during roasting or 

frying of nuts and seeds - may react with amino group much more efficiently than the 

carbohydrate carbonyl group. Also other structures, as phenolic compounds, are important 

reactants on the melanoidin formation, as exemplified by the incorporation of chlorogenic 

acid in coffee melanoidins (Morales et al., 2012). Actually, not even a single food 

melanoidin structure has been isolated and fully characterized so far. The only information 

available in the literature regards to the contribution of major compounds to the backbone 

structure of food melanoidins (Morales et al., 2012). As remarked by Van Boekel (1998), it 

is quite ironical that the Maillard reaction is called “non-enzymatic browning reaction”, 

while so little is known about the actual browning part. 
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As a result of their thermal induced formation, melanoidins are prevalent in human diet, 

comprising a substantial proportion of several food products, such as coffee, bread, roasted 

malt, cocoa, soy sauces, balsamic vinegar, breakfast cereals, and meat - among which coffee 

and bakery products represent definitely the main dietary sources (Morales, 2009; Morales 

et al., 2012; Fogliano and Morales, 2011). Since the molecular structure of food 

melanoidins are not fully characterized and reference material is lacking, estimations on the 

contents of melanoidins in different foods and dietary intake are missing (Morales et al., 

2012; Fogliano and Morales, 2011).  

Increasingly evidence has been demonstrating beneficial physiological activity of the 

largely indigestible melanoidins (Wang et al., 2011; Morales et al., 2012). Even though 

bioavailability is a general prerequisite for bioactivity of ingested compounds, the effect 

inside the gastrointestinal tract is a remarkable exception (Morales et al., 2012). Both 

soluble and insoluble melanoidins can be considered antioxidant dietary fiber due to their 

abundance of reducing functional groups (Morales et al., 2012), which can quench reactive 

species of oxygen and nitrogen either present in diet or formed endogenously by digestion 

and microflora in gastrointestinal tract (Babbs, 1990). Antioxidant compounds, including 

scarcely-absorbed high molecular weight food melanoidins, are shown to maintain a 

reduced environment in the intestinal lumen, diminishing oxidative damage to intestinal 

mucosa, and potentially reducing the risk of colon cancer and diverticular disease (Bianchi 

et al., 2010; Gökmen et al., 2009; Vitaglione et al., 2008; Vitaglione et al., 2012; Garsetti 

et al., 2000). Moreover, prebiotic potential of food melanoidin has been described in the 

literature, where the fermentability of melanoidins by intestinal flora, particularly 

Bifidobacteria strains, was reported (Gniechwitz et al., 2008a; Reichardt et al., 2009; 

Borrelli and Fogliano, 2005). The metal chelating properties of melanoidins has been 

studied over decades. This property is believed to be greatly responsible for the 

antimicrobial activity. In low concentrations, melanoidins can chelate iron ions, acting 

bacterostatic, and at high concentration they can act bactericide, promoting rupture of the 

extracellular membranes due to removal of Mg(II) ions (Rufian-Henares and de la Cueva, 

2009; Rufián-Henares and Morales, 2008). Furthermore, melanoidins, especially coffee 

melanoidins, show anti-adhesive and anti-biofilm activity and may reduce development of 

dental plaque and caries (Daglia et al., 2002; Stauder et al., 2010). Hiramoto et al. (2004) 

observed that protein-derived melanoidin significantly suppresses colonization of 

Helicobacter pylori, a major etiological agent of gastritis, gastric ulcers and possibly gastric 
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cancer, by inhibiting bacterial adhesion to host mucosa. The authors suggested that foods 

containing melanoidins may be an alternative to antibiotic-based therapy. In summary, the 

positive impact of melanoidin-rich diets to human health may be localized in oro-

gastrointestinal tract, but are of remarkable relevance. 

2.2 Coffee  

The term “Coffee” means the beans and cherries of the trees of several species of the genus 

Coffea, mostly Coffea arabica and Coffea canephora, whether parchment, green or roasted, 

and includes ground, decaffeinated, liquid and soluble coffee (International Coffee 

Organization, 2007). The infusion of ground, roasted coffee beans is one of the most widely 

consumed beverages in the world. It is a complex chemical mixture reported to contain 

more than a thousand different chemicals, including carbohydrates, lipids, nitrogenous 

compounds, vitamins, minerals, alkaloids and phenolic compounds (Belitz et al., 2009). 

Although venerated for its aroma and flavor, the psychoactive alkaloid caffeine is probably 

at least partially responsible for its popularity (Higdon and Frei, 2006). 

2.2.1 General aspects 

Coffee belongs to the botanical family Rubiaceae, which has over 600 genera and 13000 

species (Davis et al., 2009). Coffee was first discovered in Eastern Africa and its cultivation 

was restricted to Arabia until 1600 (Oestreich-Janzen, 2010). Nowadays, coffee is 

cultivated in over 70 countries throughout the tropics, primarily in equatorial Latin 

America, Southeast and South Asia and Africa. The two economically most important 

species of coffee are Coffea arabica, known by the trade name “Arabica coffee”, and Coffea 

canephora, the “Robusta coffee” (Clifford and Willson, 1985). 

Coffee is most widely traded tropical agricultural commodity, accounting for exports worth 

an estimated US$ 15.4 billion (93.4 million bags) in 2009/10. Its cultivation, processing, 

trading, transportation and marketing provide employment for hundreds of millions of 

people worldwide (International Trade Centre, 2012). Coffee is crucial to the economies 

and politics of many developing countries. Brazil is currently responsible for over 35% of 

the world total coffee production. Global coffee consumption has increased on average 

1.2% annually since the early 1980s, rising to more than 2% in recent years. Despite the 

adverse macroeconomic turbulent scenario, the global coffee consumption remained high 
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and reached 135 million bags in 2010, thus confirming the inelasticity of demand for coffee 

(International Coffee Organization, 2012a). 

2.2.1.1 Coffee production 

In Figure 2-4, the sequence of transformations, which make from the tropical primary 

product a beverage drink around the world, mostly in high developed countries 

(International Coffee Organization, 2013; International Coffee Organization, 2012b), can 

be seen.  

 

Figure 2-4: Sequence of coffee production: Transformation of the tropical crop to the beverage 
ready to drink. A shows coffee cherries of increasingly ripeness. B shows a worker inspecting 
unroasted beans in the producing developing land. C shows coffee beans of various roast degrees, D 
shows a common “working hours” form of the beverage, mostly consumed in industrial lands 
(Images obtained from Fujisaki (2010), David Silverman/Getty Images (2012), Food wallpaper 
(2012a), and Food wallpaper (2012b) , respectively). 

Figure 2-4 A shows the maturation cycle of the coffee cherries. The deep red ripe cherries 

are harvested either by selectively picking by hand, or strip picked by hand or using 

mechanical harvesters.  

The fruits are subsequently submitted to drying operation, a process of crucial importance 

for the final quality of the green coffee. It can be done by either dry or wet methods. The 

dry method is the oldest, simplest and requires little machinery and water, but demands a 

uniform flowering and predominance of ripe coffee. This method implicates spreading the 

cherries out in the sun to dry naturally. The coffee is periodically turned to ensure uniform 
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drying and to help prevent deterioration caused by fungi and bacteria. Once proper drying has 

occurred, all the remaining outer layers of the dried cherry are removed by a hulling machine. 

In the ‘fully washed’ wet method, the coffee cherries are washed to remove stones and other 

foreign matter, and passed through a depulper, removing the exocarp (skin) and most of the 

mesocarp (pulp). The remaining mesocarp is removed by fermentation, using pectinases to 

accelerate the process, when needed, to avoid formation of undesirable flavor. The ‘semi 

washed’ wet method is similar to the ‘fully washed’, but a partial or reduced fermentation is 

used, and the coffee is then washed to remove the remaining pulp. From both wet methods, 

the resultant beans are dried to uniform moisture using natural or mechanical methods. After 

drying, the coffee is further mechanically processed to remove the endocarp (parchment) and 

the spermoderm (silverskin) before grading. The wet process generally produces coffee of 

more uniform quality and flavor. After being processed by any of the above methods, the 

coffee is brought to the desired 11–13% moisture range. When properly stored, the quality of 

unroasted green coffee can be maintained for up to a year (Wasserman et al., 2007). The 

unroasted green coffee beans are illustrated in the Figure 2-4 B. 

The pleasant organoleptic characteristics from coffee are developed by the roasting process. 

Roasting is defined as the dry heating of the green coffee beans, normally at atmospheric 

pressure. The roasting process of coffee beans to produce high quality coffee is carried out 

under mild conditions, achieving temperatures between 180°C and 240°C in 8 to 15 

minutes, depending on the degree of roast required, mostly in contact (drum) roasters or in 

convection (hot-air) roasters (Packert, 1993). Industrially, coffee roasting is commonly 

realized at temperatures from 240 °C to 270 °C for 6 min to 3 min. Eventually, even higher 

temperatures can be used (Packert, 1993; Murkovic and Derler, 2006).  

The roasting process of coffee beans can be divided in two steps. The first stage is 

endothermic, demands 80% of the roasting time and is responsive for the loss of free water. 

The second stage is characterized by an abrupt inflation and occasional bursting of the 

beans, with a volume increase of up to 100%, depending on variety and roasting conditions. 

This happens due to a quick increase in the roaster temperature caused by massive 

exothermic reactions, such as pyrolytic fragmentations. Also the Maillard reaction takes 

place, originating the brown melanoidins. These extreme complex reactions produce the 

desired color, flavor and texture of the coffee. The loss of carbon dioxide, other volatile 

substances, and bound water, accounts for most of weight loss during the second stage, 

which can reach up to 6%. Most of the lipid, caffeine, inorganic salts, and polymeric 
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carbohydrate survive the roasting process (Wasserman et al., 2007). An experienced and 

skilled roasting operator can optimize color and aroma development and minimize over-

roasting damage (Belitz et al., 2009). The treatment is conducted until the desired degree of 

roast is achieved. Differently intensive roasted beans can be seen in Figure 2-4 C.  

The best way to make and drink coffee depends not only on cultural or personal 

preferences. It is both a ritual and a practical necessity and can vary from day to day and 

even change according to the momentary circumstances. The drip or filter method is 

possibly the most widely used method today, but espresso and cappuccino are the fastest 

growing methods of making coffee. The plunger method (cafetière) has also an increasing 

market, probably due to its convenience and effective extraction of flavor from ground 

beans. Other methods, such as the Turkish method and the percolator, have decreasing 

predominance, as part of the coffee flavor is lost during the preparation and the market is 

increasingly concerned about the quality of the beverage. The market of soluble coffee did 

not show important changes in the last years (International Trade Centre, 2012; 

International Coffee Organization, 2012b). A very popular way of drinking coffee during 

the working hours can be seen in Figure 2-4 D. 

2.2.1.2 General chemical composition 

Coffee is composed of over thousand different substances among soluble and insoluble 

carbohydrates, acids and phenolics, lipids, proteins and other nitrogenous compounds, and 

minerals. The composition of the natural product is affected not only by coffee variety, but 

also by climate conditions and postharvest handling (Belitz et al., 2009). Not only 

carbohydrates and proteins, but also polyphenols compounds, take directly part in the 

formation of coffee high molecular weight melanoidins during the roasting of the coffee 

beans (Nunes and Coimbra, 2007; Bekedam et al., 2006; Nunes and Coimbra, 2010; 

Bekedam et al., 2008a; Bekedam et al., 2008c). This section provides a short overview on 

these components, which are protagonists on the non-enzymatic browning, and the main 

chemical transformations they undergo during the thermal treatment. Caffeine will be 

briefly mentioned due to its attractiveness for the consumer and to its relevance in the 

discussion related to health issues. 

Green beans contain around 50% carbohydrates, mostly polysaccharides of differing 

molecular weights (Oestreich-Janzen, 2010; Redgwell and Fischer, 2006). Positive 
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characteristics of coffee beverage are developed upon roasting and are related to the 

complex chemical changes, which carbohydrates undergo during the heating process. 

Roasting is responsible for the degradation of up to 40% of the polysaccharides present in 

green coffee beans (Redgwell and Fischer, 2006; Oosterveld et al., 2003; Redgwell et al., 

2002b). The polysaccharides extracted by brewing are directly involved in the viscosity, 

creaminess, foam stability, and the capacity of retaining volatile substances of the beverage 

(Redgwell et al. 2002a). A schematic representation of the main carbohydrates found in 

green coffee beans can be seen in Figure 2-5. 

 

Figure 2-5: General structure of main polysaccharides from green coffee beans extractable in hot 
water: (a) galactomannans and (b) arabinogalactans (polysaccharide moiety of arabinogalactan-
proteins). Adapted from Moreira et al. (2012). 

In mature grains, sucrose compounds 5-12% of the dry weight and is practically the only 

free sugar present (Redgwell and Fischer, 2006). In general, Robusta beans contain 30% 

less sucrose than Arabica varieties (Oestreich-Janzen, 2010). However, this disaccharide is 

readily degraded during roasting and its content is minimal in roasted coffee (Oosterveld et 
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al., 2003; Bekedam, 2008). The polysaccharide fraction of green beans is mainly composed 

by mannans and galactomannans, arabinogalactan-proteins (AGPs) and cellulose. Small 

amounts of pectin and xyloglucan are also present (Redgwell and Fischer, 2006; Redgwell 

et al., 2002a; Oosterveld et al., 2004).  

Arabinogalactan-protein and peptides are widely distributed in the plant kingdom, acting in 

plant growth and development, including signaling, embryogenesis, and programmed cell 

death (Sanchez et al., 2008; Clarke et al., 1979). Coffee arabinogalactans consist of an 

extremely heterogeneous mixture of molecules formed as backbones of β-(1→3) linked 

galactosyl residues, substituted in O-6 position with various combinations of arabinosyl and 

galactosyl residues (Redgwell and Fischer, 2006; Oosterveld et al., 2003; Redgwell et al., 

2002a; Fischer et al., 2001). Most of the arabinogalactans are covalently bound to proteins, 

being more correctly referred to as arabinogalactan-proteins (AGPs) (Redgwell et al., 

2002b; Redgwell et al., 2002a). The AGPs present an average molecular weight of 650 kDa 

and are negatively charged due to the presence of 6 to 10% glucuronic acid residues as non-

reducing terminal units, linked on β-(1→6) galactosyl side chains (Redgwell et al., 2002a). 

The carbohydrates of AGPs are extensively degraded or chemically modified during 

roasting and the fragmentation of their protein backbone is also probable (Bekedam et al., 

2007). Especially the arabinose residues seem to be prone to thermal degradation (Moreira 

et al., 2012). AGPs from roasted coffee beans show high solubility at common brewing 

conditions (Oosterveld et al., 2003).  

Plant galactomannans are reserves from both carbon and solvatation water for germinating 

seeds (Dey, 1978). Coffee galactomannans consist of polymers formed by β-(1→4) linked 

mannosyl residues, with different grades of α-O-6 substitutions with single galactosyl 

residues (Oosterveld et al., 2004). In green beans, the galactomannans are most insoluble 

(Oestreich-Janzen, 2010). Determinant for galactomannan solubility is the frequency of 

galactose substitutions on the mannan backbone (Redgwell and Fischer, 2006). Besides the 

galactosyl side chains, acetyl groups can also be found linked O-2 and O-3 to the mannosyl 

residues in the soluble fraction of galactomannans. O-6 substitutions on the backbone with 

single L-arabinosyl and D-glucosyl can also be observed (Nunes et al., 2005; Nunes et al., 

2006). The general extractability of galactomannans is enhanced after roasting, being 

highest at medium roast (Bekedam et al., 2008c; Redgwell and Fischer, 2006). Although the 

degrees of branching and polymerization of the galactomannans decreases upon roasting, 
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and modification of the reducing ends can be observed, these polysaccharides are more 

stable than the arabinogalactans (Nunes and Coimbra, 2010; Nunes et al., 2005; Nunes et 

al., 2006; Nunes and Coimbra, 2002). 

Cellulose, the main constituent in cell walls of plants, is fibrous, tough and water insoluble 

(O'Sullivan, 1997). Coffee cellulose is mostly not extractable in coffee brew and remains 

unchanged along roasting (Redgwell and Fischer, 2006; Redgwell et al., 2002b). 

The protein fraction of coffee has not been object of intensive investigation. The protein 

content in green coffee beans is relatively high, representing up to 12% of coffee dry weight 

(Montavon et al., 2003), where approximately 45% of total grain protein is estimated to be 

11S storage protein (Rogers et al., 1999). On the other hand, the concentration of free 

amino acids can be as low as 0.3% on dry weight basis, being higher in Robusta than in 

Arabica beans. The extremely low concentrations on free amino acids in the coffee restrict 

their importance in the thermically induced formation of aroma or flavor (Murkovic and 

Derler, 2006; Montavon et al., 2003). The amino acid content decreases rapidly during 

roasting and only negligible amounts of free amino acids can be detected in roasted coffee 

(Bekedam, 2008). The composition of coffee proteins is intensely changed with progress of 

the thermal treatment. A decrease in total amino acids amount of coffee beans is also 

observed, especially of arginine, cysteine, lysine, and serine, as well as an increase in the 

racemization (Casal et al., 2005). However, limited knowledge on the resulting structures is 

available (Nunes and Coimbra, 2002). Montavon et al. (2003) studied the changes in coffee 

protein profile during roasting and found a complete degradation of non storage proteins 

within the first minutes of heating. The storage protein showed a slow pattern of 

degradation and the authors suggested the participation of these proteins, together with 

chlorogenic acids, on the origination of melanoidins.  

Green coffee beans are one of the richest dietary sources of chlorogenic acids, a class of 

compounds belonging to food polyphenols (Crozier et al., 2009). Chlorogenic acids are a 

family of esters of trans-cinnamic acids, such as caffeic, ferulic, and p-coumaric acid, with 

quinic acid (Clifford et al., 2006). Green coffee beans are very rich in chlorogenic acids; 

their contents are up to 7.5% in Arabica beans. Plant phenolic acids play a role in stress 

adaptation, but the high levels found in coffee seeds point to specific physiological 

functions of these compounds in the plant, possibly related to seed germination and cell 

growth, as well as other already unknown roles (Farah and Donangelo, 2006). Although 45 



Background 

 18 

different chlorogenic acids have been identified in green Arabica coffee beans, and 69 in 

Robusta beans (Jaiswal et al., 2010), only nine kinds of these trans-cinnamic acids account 

for 80% of the total, being 5-caffeoylquinic acid, illustrated in Figure 2-6, by far the most 

prevalent one, being simply referred to as “chlorogenic acid” (Nunes and Coimbra, 2010; 

Bekedam et al., 2008a; Clifford et al., 2006). This is accompanied by significant amounts of 

3-O- and 4-O-caffeoylquinic acid, the three analogous feruloylquinic acids and 3,4-O-, 

3,5-O- and 4,5-O-dicaffeoylquinic acids (Crozier et al., 2009). Clifford et al. (2006) 

identified also minor classes of chlorogenic acids in coffee beans, such as diferuloylquinic 

acids, di-p-coumaroylquinic acids, dimethoxycinnamoylquinic acids, and others, which 

together constitute less than 1% of total chlorogenic acid content. Chlorogenic acids and 

their derivatives contribute considerably to coffee flavor, conferring acidity, astringency, 

and bitterness to the beverage (Frank et al., 2008; Farah et al., 2006). 

 

Figure 2-6: 5-Caffeoylquinic acid, the principal polyphenolic compound from coffee beans, 
commonly referred to simply as chlorogenic acid. 

During coffee roasting, the content of detectable chlorogenic acid in beans decreases rapidly 

(Bekedam et al., 2008a; Bekedam et al., 2008b; Perrone et al., 2012). Different 

explanations are found in the literature including acyl migration, hydrolysis, oxidation, 

fragmentation, polymerization, and association with denatured and degraded proteins (Bekedam 

et al., 2008b). Those products are not yet fully characterized. However, it is already known 

that they are diverse and range from simple phenols to condensation products of high 

structural complexity (Nunes and Coimbra, 2010). Early in roasting, when the water content 

is still sufficient, isomerization occurs, accompanied by hydrolysis, releasing the cinnamic 

acids and quinic acid. Later, the free quinic acid epimerizes and lactonizes, and several 

chlorogenic lactones including 3-O- and 4-O-caffeoyl-1,5-quinide are formed. The cinnamic 

acids may be decarboxylated and transformed to a number of simple phenols and a range of 

phenylindans, probably via decarboxylation and cyclization of the vinylcatechol 
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intermediate (Crozier et al., 2009). In autoxidation model studies, chlorogenic acids showed 

in solution the ability to form lignin-like products, probably via phenolate anion (Cilliers 

and Singleton, 1989; Cilliers and Singleton, 1991). But not all the “lost” chlorogenic acid 

has undergone a complete degradation of its original molecular structure. Nowadays, the 

incorporation of preserved chlorogenic acid molecules in the melanoidin structure is well 

evidenced (Nunes and Coimbra, 2007; Adams et al., 2005; Nunes and Coimbra, 2010; 

Bekedam et al., 2008a; Gniechwitz et al., 2008b). The retention of the antioxidant activity and 

phenolic characteristics of coffee chlorogenic acids upon incorporation in coffee melanoidins 

was recently reported (Bekedam et al., 2008b). The role of chlorogenic acids on the formation 

of coffee melanoidins is discussed in detail in Section 2.2.2.1.  

The caffeine content in dry matter base is not significantly affected by postharvest 

processing and roasting. A small amount of this alkaloid sublimate during the thermal 

treatment, but this effect is compensated by the general organic weight loss. In coffee brews 

prepared from 55 g coffee powder for one liter beverage, the caffeine content obtained from 

Arabica beans varies between 50 and 88 mg/L and from Robusta beans 77 to 160 mg/L 

(Oestreich-Janzen, 2010). 

The quantitative changes of key chemical components of Arabica coffee beans upon 

roasting can be seen in Table 2-1. Despite the relatively advanced age of the original 

publication, these values are still taken as a compilation of the available data and are still a 

solid reference (Bekedam, 2008). 

Table 2-1: Alterations on the quantitative chemical composition of Arabica coffee beans upon 
roasting (% of dry matter).  

 Green beans Roasted beans 

Proteins  11.0 – 13.0 13.0 – 15.0 

Amino acids 2.0 – 

Polysaccharides 50.0 – 55.0 24.0 – 39.0 

Oligosaccharides 6.0 – 8.0 0.0 – 3.5 

Chlorogenic acids 5.5 – 8.0 1.2 – 2.3 

Caffeine  0.9 – 1.2 ~ 1.0 

Lipids 12.0 – 18.0 14.5 – 20.0 

Minerals 3.0 – 4.2 3.5– 4.5 

Data extracted from (Bekedam, 2008)  were originally produced by Clifford (1975). 



Background 

 20 

 

The melanoidins formed during coffee roasting are object of the present work and this topic 

is presented in more detail in the Section 2.2.2.1. 

2.2.1.3 Coffee and health 

Although coffee beverages have been consumed for already thousand years (Leeb, 2008), it 

still fascinates and challenges the science. Throughout this time, innumerous postulations 

about its possible effects on health have been done, but only in the last 15 years rigorous 

scientific conclusions have been reached (Illy and Pizano, 2004). For decades, solely 

detrimental influence of coffee consumption was object of attention of the scientific 

community, particularly concerning the effects of caffeine on the cardiovascular system. At 

the present, there is merely modest evidence of health risks of moderate consume of coffee. 

Early assumptions, as the deleterious influence of coffee ingestion on chronic diseases, have 

been progressively refused with the advance of the research (Floegel et al., 2012). In 

contrast, voluminous data pointing to health benefits of coffee has been accumulated 

(Higdon and Frei, 2006). Large epidemiological investigations reported an inverse 

association between coffee consumption and total and cause-specific mortality, where the 

beneficial effect of coffee ingestion was especially remarkable for deaths caused to heart 

disease, respiratory disease, stroke, injuries and accidents, diabetes, and infections 

(Tamakoshi et al., 2011; Freedman et al., 2012). 

Contrary to the early anxiety, a protective effect of moderate coffee consumption against 

stroke and heart failure is nowadays well established. In a meta-analysis review, Mostofsky 

et al. (2012) evidenced that moderate coffee consumption is inversely associated with risk 

of heart failure, with the largest inverse association observed for consumption of 4 servings 

per day. A Japanese follow-up study observed a strong inverse association between coffee 

consumption and mortality due to coronary heart disease in women, and no correlation in 

men (Sugiyama et al., 2010), while a Dutch follow-up found a slight risk reduction due to 

moderate coffee consumption (de Koning Gans et al., 2010). To date, no consistent 

detrimental effects of habitual coffee consumption on arterial pressure could be reported. 

Although a raise in plasma homocysteine concentration, a controversial risk factor for 

cardiovascular disease, could be observed in trial studies involving heavy coffee drinking 

(Urgert et al., 2000; Grubben et al., 2000), no alteration was measured for moderate intake 

(Esposito et al., 2003). Putative risk factor for atherosclerosis and subsequent hypertension 
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is elevated serum concentrations of total cholesterol, especially low-density lipoprotein 

cholesterol. A meta-analysis of randomized controlled clinical trials found only a very little 

increase in serum cholesterol caused by consumption of filtered coffee, although coffee 

prepared by other brewing methods were shown to slightly increase serum levels of total 

and LDL cholesterol (Jee et al., 2001). Kempf et al. (2010) recently found no evidence for 

adverse effects of filtered coffee ingestion on proatherogenic lipids. In line with these 

biochemical investigations, no increased risk of hypertension was associated with a habitual 

coffee consumption in recent epidemiologic systematic reviews and meta-analyses of long-

term prospective studies (Mesas et al., 2011; Zhang et al., 2011).  

Various epidemiologic studies attest a positive effect of coffee against neoplasic diseases of 

different sites. In a meta-analysis of cohort studies Yu et al. (2011) found that coffee 

consumption may reduce the total cancer incidence and it has also an inverse association 

with some type of cancers. They observed lower cancer occurrence in regular coffee 

drinkers, particularly in high drinkers. Overall, an increase in consumption of 1 cup of 

coffee per day was associated with a 3% reduced risk of cancers. The protective effect of 

coffee ingestion on prostate cancer is well established. A strong inverse association between 

coffee consumption and risk of lethal prostate cancer, apparently related to non-caffeine 

components of coffee, was evidenced in a follow-up study (Wilson et al., 2011). In a recent 

British prospective cohort study, coffee consumption was likewise observed to reduce the 

risk of aggressive prostate cancer (Shafique et al., 2012). The cohort study from Discacciati 

et al. (2013) reported a clear inverse association between coffee consumption and risk of 

localized prostate cancer, especially among overweight and obese men. A population-based 

case–control study supports the inverse association between coffee and lethal and high-

grade prostate cancer (Wilson et al., 2013). A strong protective effect of coffee intake on 

risk of endometrial cancers has been reported in several cohort and follow-up studies, and in 

meta-analyses (Yu et al., 2011; Arab, 2010; Nkondjock, 2009; Giri et al., 2011; Je and 

Giovannucci, 2012; Je et al., 2011). A recent meta-analysis showed that coffee 

consumption has protective effects on esophageal cancer (Zheng et al., 2013). An inverse 

association of coffee intake with oral and pharyngeal cancer mortality was reported in a  

large prospective study (Hildebrand et al., 2013). Coffee drinking may help reduce death 

due to liver cancer, as shown by numerous meta-analyses. A high lifetime coffee 

consumption was negatively associated with development of hepatocellular carcinoma in 

the hospital-based case–control study from (Jang et al., 2013). Also Larsson and Wolk 
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(2007) observed a reduction in the risk of liver cancer caused by increased coffee 

consumption. The meta-analysis from Bravi et al. (2007) evidenced a real reduction in 

hepatocellular carcinoma risk among coffee drinkers, and suggested a continuum of the 

favorable effect of coffee on liver function. Some of the protective components of coffee 

reported in the literature are caffeine, affecting cell cycle, proliferation, and apoptosis; 

cafestol and kahweol, which decrease mutagenesis and tumorigenesis in animal models; and 

chlorogenic acid, an antioxidant reported to decrease DNA methylation (Arab, 2010). Other 

components of coffee have been related to favorable modifications in liver enzymes such as 

γ-glutamyltransferase and aminotransferase activity. Also the detoxification metabolism via 

induction of glutathione-S-transferase and inhibition of N-acetyltransferase is modified by 

coffee ingestion (Gomaa et al., 2008). 

Of particular interest for the present work are the effects of coffee intake on cancers of the 

digestive tract. The relationship between coffee consumption and colorectal cancer risk has 

been extensively examined over the last decades. Although Arab (2010) affirmed that the 

evidence for cancer reduction caused by coffee ingestion is weak and differences between 

coffee consumers and non-consumers are possibly a threshold effect, Galeone et al. (2010) 

described a 17% lower risk of colorectal cancer for regular coffee drinkers than for non- or 

occasional drinkers. The protection was about 30% for the highest coffee drinkers. A 

significant reduction in the risk of rectal cancer with decaffeinated coffee has also been 

reported in a prospect cohort study (Michels et al., 2005). Results from case–control studies 

suggest a significant decrease of the risks of colorectal cancer and colon cancer by coffee 

consumption (Li et al., 2013). In a recent large cohort study, coffee was inversely associated 

with colon cancer, particularly proximal tumors (Sinha et al., 2012). Tian et al. (2013) 

confirmed, in a dose-response analysis, a significant association between coffee 

consumption and decreased risk of colorectal and colon cancer. The meta-analysis of cohort 

studies conducted by (Yu et al., 2011) also showed coffee drinking to be consistently 

associated with a reduced risk of colorectal cancer. Although some studies question the 

relevance of the protective impact, even small effects on colorectal cancer in persons could 

have a large impact on public health, because of the high consumption of coffee (Yu et al., 

2011; Je et al., 2009).  

Furthermore, a negative association between regular moderate coffee consumption and a 

reduced risk of developing type-2 diabetes is well-documented in several studies. An 

extensive meta-analysis found an inverse log-linear relationship between coffee 
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consumption and subsequent risk of diabetes (Huxley et al., 2009). A population-based 

cohort study found coffee consumption to be associated with a substantially lower risk of 

this disease (van Dam, 2008; van Dam and Feskens, 2002). In a prospective cohort 

investigation,  van Dieren et al. (2009) found the notable reduced risk of developing type-2 

diabetes (about 42% protection by 3 daily cups of coffee) not to be caused by caffeine. Also 

Bhupathiraju et al. (2013) described a prospective association of coffee intake with a lower 

risk of type-2 diabetes, irrespective of the caffeine content. A multi-ethnical prospective 

cohort showed a protective effect of coffee consume against diabetes, more explicit in 

women than in men (Doo et al., 2013). Moderate coffee consumption was also significantly 

associated with lower prevalence of metabolic syndrome (Matsuura et al., 2012; Takami et 

al., 2013), condition known to increase the risk of developing cardiovascular disease and 

diabetes. 

Unambiguous inverse relation of coffee consumption and Parkinson’s disease has been 

described in the literature. An up to 5-fold reduced incidence of Parkinson’s disease for 

those drinking more than 4 cups of coffee a day was observed in prospective investigations 

(Ross et al., 2000). The most probable mechanism for the antiparkinsonian effect is the 

antagonist action of caffeine over adenosine A2A receptors, which are located in the 

striatum, the cerebral region involved in locomotion control and motor function, 

dramatically impaired in Parkinson disease (Fenu and Morelli, 1998; Chen et al., 2001; 

Morelli et al., 2009). In fact, meta-analysis found that the overall risk of developing 

Parkinson diminished up to 32% per 300 mg increase in caffeine intake (approximately 3 

cups of coffee). This inverse correlation could not be explained by bias or uncontrolled 

confounding factors (Hernán et al., 2002; Costa et al., 2010). An overview on the numerous 

data is available in comprehensive reviews (Hernán et al., 2002; Costa et al., 2010; Elbaz 

and Moisan, 2008; Butt and Sultan, 2011). 

Also well established is the protective effect of coffee intake against age related dementia. 

Numerous epidemiological studies suggest that coffee could be effective against 

Alzheimer’s disease (Arendash and Cao, 2010; Maia and De Mendonça, 2002; Lindsay et 

al., 2002; Eskelinen et al., 2009; Cao et al., 2012) and reduce the risk, or delay the onset, of 

dementia (Hernán et al., 2002; Cao et al., 2012; Rees et al., 1999). A systematic literature 

review of human studies estimates a lower cognitive decline of coffee consumers in 

comparison with non-consumers, especially among women (Arab et al., 2013).  
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Coffee drinking seems to have anticaries effects, which can be due to the interference with 

bacterial adhesion and coaggregation mechanisms or inhibition of key enzymes in biofilm 

development (Gazzani et al., 2012). The importance of melanoidins has been proposed 

(Stauder et al., 2010). Also polyphenols are believed to contribute to oral health (Varoni et 

al., 2012) 

A general anxiety issue concerns possible negative effects of maternal caffeine ingestion on 

fetal, neonatal and maternal outcomes. In a recent cohort study neither fetal growth 

restriction nor reduced gestation length mediated by coffee consumption, nor developmental 

programming influences of intrauterine exposure to caffeine on children behavior could be 

observed (Loomans et al., 2012). A systematic Cochrane review found insufficient evidence 

to confirm or refute the effectiveness of caffeine avoidance on birth weight or other 

pregnancy outcomes (Jahanfar and Sharifah, 2013). 

In general, although the epidemiological research approaching the influence of coffee 

consume in health issues is just beginning, and discrepant results and extremely 

heterogeneous quality of experimental designs difficult unequivocal statements about the 

correlation of coffee ingestion and the health of populations, the presence of coffee in the 

diet seems to have a clear positive overall contribution to life quality. 

2.2.2 Coffee melanoidins 

The characteristic aroma, taste, and color of coffee beverage are developed upon roasting of 

the beans. Coffee melanoidins are final products of the Maillard reaction, constituted of a 

heterogeneous macromolecular material containing nitrogen, which responds for the brown 

color of the coffee brew. They account for around 25% of total solids in coffee infusions, 

making these beverages one of the main sources of melanoidin in human diet.  

2.2.2.1 Chemistry of coffee melanoidins 

The chemical structure and properties of coffee melanoidins are very complex and not 

completely elucidated. It is even unclear whether proteins or polysaccharides are the backbone 

in coffee melanoidins. On account of the obscure nature of food melanoidins, their amount in 

coffee is often equated to the proportion of structurally unknown compounds (Gniechwitz et 

al., 2008b). Probably all the structures proposed for melanoidins until today, briefly 

presented in Section 2.1.1, are found among coffee melanoidins, and they may even occur 
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within the same melanoidin complex (Bekedam et al., 2006; Bekedam et al., 2008c; 

Gniechwitz et al., 2008b). Despite the uncertainty about their exact structure, voluminous 

scientific production assert that coffee brew melanoidins are anionic, structurally diverse 

polymers and contain thermally transformed polysaccharides, proteins, and phenolic 

compounds, showing metal chelating capacity (Nunes and Coimbra, 2007; Bekedam et al., 

2006; Reichardt et al., 2009; Nunes and Coimbra, 2010; Bekedam et al., 2008a; Bekedam 

et al., 2008c; Bekedam et al., 2007; Gniechwitz et al., 2008b; Rawel et al., 2005). In 

sequence, a short recapitulation of the principal facts respective to the chemical structure 

and origination of coffee melanoidins is presented. 

Takenaka et al. (2005) observed that the metal-chelating brown melanoidinic polymer from 

coffee is derived from chlorogenic acids, carbohydrates and proteins. Even though it is 

difficult to differentiate proteins, polysaccharides and melanoidins in the high-molecular-

weight fraction of coffee brews, Nunes and Coimbra (2007) isolated a whole range of 

melanoidin fractions from coffee brews by means of differentiated precipitation ethanol 

solutions, anion exchange chromatography and immobilized copper-chelating 

chromatography. They concluded that coffee melanoidins are a heterogeneous mixture, 

differing in characteristics and contents of carbohydrates, proteins, and unknown 

compounds (chromophores, phenolics). In his PhD thesis Bekedam (2008) concludes that 

“no melanoidin molecule is alike” and suggests the major relevance of the investigation of 

general structural properties of coffee melanoidins in detriment to chasing the elucidation of the 

exact chemical structure of a melanoidin molecule. As a matter of fact, intensive research has 

been done focusing the involvement of chlorogenic acids and carbohydrates in coffee 

melanoidin formation as well as on digestibility, ionic charge properties, molecular size 

properties, and acidifying properties of melanoidins (Bekedam et al., 2008c).  

The two main polysaccharides populations in coffee brews are galactomannans and 

arabinogalactans; the latter are predominantly present in arabinogalactan-proteins. Nunes et 

al. (2006) identified brown-colored structures at the reducing end of galactomannans, 

showing that galactomannans may be involved in melanoidin formation. However, the 

contribution of these structures to the overall melanoidins content is rather limited, since 

each galactomannan molecule has only one reducing group. Furthermore, the increase in 

galactomannan content in the extractable fraction of coffee cannot be correlated to the 

increase in melanoidin contents of the brews. Therefore, the results imply that 

galactomannans are not the main polysaccharide involved in melanoidin formation. With 
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respect to arabinose, it can be suggested that this carbohydrate is involved in melanoidin 

formation in form of arabinogalactan-proteins (Bekedam et al., 2007). An inverse 

correlation between arabinose content and melanoidin level could suggest that 

chromophores might be formed from or attached to the arabinose moiety from 

arabinogalactan-proteins upon roasting (Bekedam et al., 2008c). However, melanoidins can 

vary respectively their total carbohydrate contents and proportions, degree of branching of 

the arabinogalactans, and conservation of the AGP structures (Nunes and Coimbra, 2007; 

Bekedam et al., 2006; Bekedam et al., 2007). Contrary to earlier broadly assumed theory, 

Bekedam et al. (2007) found that the notorious negatively charged groups of coffee 

melanoidins, responsible for characteristics as metal chelation and aroma binding, are not 

originated exclusively from uronic acids or from amino acids from original arabinogalactan-

proteins (described in Section 2.2.1.2). The authors concluded that other acid groups, at that 

time still of unknown nature, must be incorporated to the melanoidin structure. 

Differently to the carbohydrate fraction, just a few studies investigate the role of coffee 

proteins in melanoidin formation. During roasting, the protein fraction of coffee beans 

undergoes substantial changes and acquires negative charge density (Nunes and Coimbra, 

2007). Montavon et al. (2003) observed a synchronized disappearance of the intracellular 

11S storage protein and chlorogenic acids upon roasting. The protein subunits were 

observed to be integrated into the polymeric structure of melanoidins. Nunes and Coimbra 

(2007) found a significant amount of coffee melanoidins to be originated from cell walls, 

which indicates the involvement of other proteins besides 11S in the formation of coffee 

melanoidins. Also proteins from arabinogalactan-proteins, which contain hydroxyproline, 

are incorporated in melanoidins (Bekedam et al., 2007). After roasting, alanine, aspartic 

acid/asparagine, glutamic acid/glutamine, and glycine are the most abundant amino acids in 

the melanoidin fraction, whereas histidine, lysine, methionine, and tyrosine are rather rare 

and arginine is not present at all (Nunes and Coimbra, 2007; Bekedam et al., 2006; Moreira 

et al., 2012). A roast-dependent presence of Maillard reaction products derived from lysine 

(Nε-fructosyllysine, Nε-carboxymethyllysine and Nε-carboxyethyllysine) in the high 

molecular fraction of coffee brews has been reported as well (Nunes and Coimbra, 2007). 

The decrease in the content of water extractable chlorogenic acid by more than 50% upon 

coffee roasting is not explained by single formation of flavor compounds (Moon et al., 

2009). Also their incorporation in other molecules is responsible for the loss of detectable 

free phenolic compounds. Although the participation of chlorogenic acids and their 
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derivatives in the genesis of coffee melanoidin has been suspected for decades (Maier et al., 

1968; Heinrich and Baltes, 1987), recent research shows a far more important role of 

chlorogenic acid incorporation in coffee melanoidin than expected until now (Reichardt et 

al., 2009; Bekedam et al., 2008a; Montavon et al., 2003; Gniechwitz et al., 2008b). 

Montavon et al. (2003) suggested a linkage of polyphenols to subunits of the storage protein 

S11 as important for the formation of coffee melanoidins. In the light of the state of 

knowledge at that time, the authors presumed the incorporation into the polymeric matrix to 

happen via ester, ether, and peroxy links. Also Rawel et al. (2005) described an increasingly 

formation of covalent linkages between coffee polyphenols and proteins upon roasting. 

Takenaka (2005) detected several phenolics in the decomposed products of alkaline 

hydrolyses of the high molecular weight melanoidinic material isolated from coffee. Nunes 

and Coimbra 2007) proposed likewise the involvement of phenolics condensation in 

melanoidin formation. In this study, no release of monomeric phenolic compounds could be 

detected after alkaline hydrolysis of the high-molecular-weight melanoidins, neither at room 

temperature nor at 100°C. Not even by pyrolysis-GC-MS or after treating the samples with 

NaCl, aiming to release ionic-bound phenolic compounds, monomeric phenolic compounds 

could be observed. As the only method able to release small amounts of monomeric phenols 

was alkaline fusion, which is a method known to release condensed phenolic structures, the 

authors suggest a covalent incorporation of the chlorogenic acids in the melanoidin 

structure.  

The extensive study from Bekedam et al. (2008a) brought many important facts to the 

discussion. Quinic acid was shown to correlate directly with the negative charge of 

melanoidins, supporting the hypothesis that quinic acid is not linked via its carboxyl group, 

i.e. that chlorogenic acids are not esterified in the melanoidin skeleton. Quinic acid level 

correlated also directly with total phenolics, measured by Folin-Ciocalteu, indicating that 

quinic was incorporated to a similar extent as the polyphenolic moiety, possibly being the 

whole chlorogenic acid molecule incorporated in the melanoidins. Enzymatic experiments 

confirmed the incorporation of intact chlorogenic acids to the melanoidin skeleton. They 

propose the incorporation of intact chlorogenic acids in melanoidins upon roasting via 

caffeic acid moiety, through mainly nonester linkages. 

On the other hand Gniechwitz et al. (2008a and b) questioned the incorporation of intact 

hydroxycinnamates from chlorogenic acids in coffee melanoidins, supposing their 

incorporation as condensed phenolics. They suggested an incorporation via reactions 



Background 

 28 

leading to loss or modification of their propenyl side chains, as these could not be detected 

in by NMR-spectroscopy using two-dimensional heteronuclear single quantum coherence 

(HSQC). 

Also the work from Perrone et al. (2012) described the intensive involvement of 

polyphenolic compounds in the formation coffee melanoidins. They supported the proposal 

that the incorporation mechanism occurs via the caffeic or ferulic acid moiety, mainly 

through nonester linkages. The incorporation of chlorogenic acid lactones into melanoidins 

is likewise proposed. The authors explained the roast dependent increase in the 

dihydrocaffeic acid content in melanoidin samples, detected after saponification, as a sign 

of oxidation of chlorogenic acids posterior to incorporation. 

Recent reviews summarize the most important findings relative to the formation of coffee 

melanoidins and try to schematically represent the knowledge cumulated in the last years 

(Nunes and Coimbra, 2010; Moreira et al., 2012). A simplifying illustration can be seen in 

Figure 2-7.  

In conclusion, it can be said that that proteins and chlorogenic acids are primarily involved in 

melanoidin formation, and arabinogalactans seem to be more involved in melanoidin formation 

than galactomannans (Bekedam et al., 2006; Bekedam et al., 2008a; Bekedam et al., 2007). 

Despite the recent advances in the field, the nature of the meanwhile uncontested covalent 

linkage of chlorogenic acids to proteins, as part of the structural skeleton of the coffee 

melanoidins, is yet unknown (Nunes and Coimbra, 2010). As the phenolic acid moiety from 

chlorogenic acid is far more prone to oxidative changes than the quinic acid, it is generally 

assumed that the phenolic acid is likely the moiety which participates in the chemical reactions 

during roasting (Bekedam, 2008). However, the formation of phenolate radicals and 

modification of the otherwise quite stable aromatic moiety may not be the main incorporation 

mechanism, as still assumed, probably due to the (biosynthesized) examples of condensed 

polyphenols found in nature, as lignins and melanins. Additionally, a recent model study 

questioned the importance of oxidative reactions in the formation of heat degradation products 

of polyphenols (Moon and Shibamoto, 2010). Possibly, the incorporation of the intact 

chlorogenic acids in the melanoidins structure occurs through paths already not investigated. 
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Figure 2-7: Systematization of the state of knowledge relative to the formation of coffee 
melanoidins. Illustration extracted from Moreira et al. (2012) modifying Nunes and Coimbra (2010)  

2.2.2.2 Properties of coffee melanoidins 

Coffee is the main melanoidin source in human diet, attributing primordial relevance to 

their biological activities and impact on health. Also due to water solubility and abundance, 

they are the most extensively studied food melanoidin system. Melanoidins are of interest 

because of their contribution to the color of coffee brew but also for their flavor-binding 

properties (Hofmann et al., 2001; Hofmann and Schieberle, 2002), antioxidative capacity 

(Delgado-Andrade and Morales, 2005; Borrelli et al., 2002; Wen et al., 2005), metal-
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chelating properties (Takenaka et al., 2005; Morales et al., 2005). Also their high content 

on polyphenols can have a positive impact on health. Many of the health promoting 

activities of coffee described in Section 2.2.1.3 can be most probably attributed to the 

melanoidin component of the brew.  

Garsetti et al. (2000) reported a coffee consumption-dependent antioxidant capacity of 

human feces and attributed the effect to the coffee melanoidins. They noted that the 

ingestion of whole grain, fruit and vegetable did not cause a detectable alteration. In fact, 

the antioxidative properties of coffee melanoidin are unquestionable. During the roasting of 

coffee beans, the antioxidative capacity of coffee increases consistently (Vignoli et al., 

2011; Delgado-Andrade and Morales, 2005; Borrelli et al., 2002; del Castillo et al., 2002; 

Nicoli et al., 1997; Bekedam et al., 2008b; Sacchetti et al., 2009; Delgado-Andrade et al., 

2005). The modification of antioxidant properties of coffee and coffee melanoidins caused 

by the thermal treatment has been object of intensive investigation in recent years. The 

antioxidant effect is ascribed to the ability of melanoidins to donate hydrogen and break 

radical chain, to reduce hydroperoxide to non-radical products, or to scavenge oxygen 

radical but also their actuation as metal chelator may play a role on the measured 

antioxidant capacity (Wijewickreme and Kitts, 1998; Moreira et al., 2012; Morales and 

Jiménez-Pérez, 2004). Dependent of the chemical principle of the assay, the improvement in 

the antioxidant activity persists until the end of roasting (Richelle et al., 2001) or decreases 

from medium to dark roast (del Castillo et al., 2002; Nicoli et al., 1997). Many authors 

considered the formation of antioxidant Maillard reaction products as responsible for the 

maintained antioxidant activity of coffee brew over roasting process, compensating the 

decrease on detectable chlorogenic acids caused by the thermal treatment (Delgado-

Andrade and Morales, 2005; Delgado-Andrade et al., 2005). Since the proposal of the 

incorporation of chlorogenic acids in the melanoidin skeleton as a partial cause of the loss upon 

roasting of detectable coffee polyphenolics, the crucial contribution of chlorogenic acids to 

the antioxidant properties of coffee melanoidins has been established. In addition, the 

formation of roast-induced antioxidative structures is still recognized, although the relative 

importance of the different moieties is still unclear (Nunes and Coimbra, 2007; Adams et al., 

2005; Bekedam et al., 2008a; Bekedam et al., 2008b; Delgado-Andrade et al., 2005).. 

Dietary phenolic compounds have shown to influence positively the pathology of 

degenerative diseases (Crozier et al., 2009). Even though most of the chlorogenic acid 

incorporated in high molecular weight melanoidins cannot be absorbed and will pass to the 
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large intestine, it can still have positive impact on both colonic health and the colonic 

microbiota (Crozier et al., 2010). The indigestible coffee melanoidins can hence be defined 

as antioxidant dietary fiber, which diminishes oxidative damage to intestinal mucosa, and 

potentially reducing the risk of colon cancer and inflammatory conditions (Bianchi et al., 

2010; Gökmen et al., 2009; Vitaglione et al., 2008; Vitaglione et al., 2012; Garsetti et al., 

2000).  

Although innumerous model studies investigated the metal chelating ability of Maillard 

reaction products and it is long accepted that ketones and hydroxy groups of pyranones and 

pyridines can be present in melanoidins and act as chelating moieties (Wijewickreme and 

Kitts, 1998; Takenaka et al., 2005; Rufian-Henares and de la Cueva, 2009), it was recently 

reported that the classical cromophoric groups formed through the Maillard reaction are not 

the main coordination sites for metal complexation in coffee melanoidin (Morales et al., 

2005). Takenaka (2005) observed a positive correlation between chlorogenic acid content 

and zinc chelating abilities in melanoidin models. They suggested the polyphenols to be a 

key component for the metal binding capacity of coffee melanoidin.  

Rufian-Henares and Morales (2007) described the inhibition of Angiotensin Converting 

Enzyme (ACE), an upmost important target in the treatment of hypertension, caused in vitro 

by coffee melanoidins. The effect was significantly higher for melanoidins formed at more 

severe heating conditions and could not be reverted by removal of non-covalently bound 

chlorogenic acids. ACE is a zinc-dependent peptidase and the drugs designed to control its 

activity pursue a zinc binding moiety. The causal relation between metal chelation ability 

and enzyme inhibition can be speculated. 

Probably, the antimicrobial effect of coffee melanoidin is also closely related to their metal-

chelating activities. In low concentrations, they seem to sequestrate essential minerals, 

impairing the growth of microorganism. In high concentration they chelate the stabilizing 

Mg(II), causing membrane disruption (Rufian-Henares and de la Cueva, 2009). While the 

presence of coffee melanoidins seem to inhibit the growth of microbiological pathogens, 

prebiotic potential of food melanoidin has been described in the literature, where the 

fermentability of melanoidins by the intestinal flora, particularly by Bifidobacteria strains, 

was reported (Gniechwitz et al., 2008a; Reichardt et al., 2009; Borrelli and Fogliano, 

2005). 
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As already mentioned, the regular ingestion of pure coffee may reduce development of 

dental plaque and caries, as the melanoidin fraction show anti-adhesive and anti-biofilm 

activity, diminishing the invasion in host dental tissue (Daglia et al., 2002; Stauder et al., 

2010).  

Evidence of anti-inflammatory action of coffee melanoidins has been reported. Goya et al. 

(2007) described a protective effect of coffee melanoidins against oxidative stress in 

hepatoma cells. Vitaglione et al. (2010) observed a reduction of pro-inflammatory cytokines 

and increase of anti-inflammatory cytokines caused by coffee melanoidins ingestion in a rat 

model steatohepatitis. High molecular weight Maillard reaction products formed upon 

coffee roasting were recently shown to induce cytoprotective enzymes by activating the 

transcription factor Nrf2 (Nuclear factor erythroid-derived 2-related factor 2) in different 

cell types and in intact gut tissue, having potentially beneficial effects on gut barrier 

dysfunction, intestinal mucosal injury, some intestinal inflammation types as well as 

possibly on prevention of colorectal cancer. The effect was discussed as caused by the 

antioxidative capacity of these products (Sauer et al., 2013). 

The research field involving the effect of coffee and coffee melanoidins is just emerging. 

The improvement of the knowledge about the mechanism of formation, chemical features 

and structural characteristics of coffee melanoidins, will increasingly inspire life science 

hypotheses respective to the influence of coffee melanoidins on human health. Reciprocally, 

new experimental and epidemiological findings arises chemical questions and investigations 

in a very exciting collaboration work.  

2.3 Zinc metallopeptidases 

Based on the mechanism of catalysis, mammalian proteases are classified into five distinct 

classes: aspartic, cysteine, serine, threonine, and metalloproteases (Zucker and Cao, 2010). 

Metalloproteases are the most diverse of the four main types of protease, with more than 50 

families identified to date (Rawlings and Barrett, 1995). 

Zinc metalloproteases are the hydrolases in which the nucleophilic attack on the scissile 

peptide bond is mediated by a water molecule coordinated to a Zn(II). The catalytic metal 

ion is generally tetrahedrally bond to three donor groups present within the active site from 

the enzyme, most frequently the side chain moieties of the amino acid His, Glu, and Asp. 
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Histidine coordinates via its imidazole substituent as a neutral donor, while glutamate and 

aspartate coordinate via their anionic carboxylate substituents. The catalytic properties of 

enzymes are influenced by the nature of the donor groups and the different spacer lengths 

between the coordinating residues. Typically, two of the coordinating amino acids are 

separated by 1-3 residues, while the third is separated by a long spacer of 5-196 residues 

(Rawlings and Barrett, 1995; Gupta, 2007; Supuran et al., 2002) 

This broad class of peptidases represent high-value medicinal targets, as their disturbed 

activity is associated with many illnesses such as cancer and inflammatory, infectious, 

cardiovascular, and neurodegenerative diseases. The presence of the metal ion in these 

enzymes has been frequently exploited for the development of synthetic inhibitors. The vast 

majority of metalloprotein inhibitors, either under investigation or in clinical use, employ 

metal-binding groups, for interacting with the active site metal ion, coupled to small-

molecule, which mimics of the natural peptide substrates and promotes an efficient 

interaction with substrate domains of the enzyme. Nowadays, metalloprotease inhibitors are 

not limited to substrate derived compounds. Also non-peptidomimetic structures are object 

of intensive investigation aiming to increase activity and specificity, reducing the collateral 

effects of the pharmacological therapy (Jacobsen et al., 2010; Rouffet and Cohen, 2011). 

2.3.1 Matrix Metalloproteinases (MMPs) 

Almost 50 years ago, the interstitial collagenase, the first MMP family member identified, 

was discovered in experiments designed to explain how the collagen-rich tail of the frog is 

resorbed during metamorphosis. After identification of a similar collagenase in human skin, 

this protease was named MMP-1. Since then, a whole family of related enzymes has been 

identified in species from hydra to humans. They were collectively called matrix 

metalloproteinases (MMPs) because of their dependence on Zn(II) ions for catalytic 

activity, their potent ability to degrade structural proteins of the extracellular matrix (ECM), 

and specific evolutionary sequence considerations that distinguish them from other closely 

related metalloproteinases (Zucker and Cao, 2010; Klein and Bischoff, 2011; Sternlicht and 

Werb, 2001).  

These enzymes have both a descriptive name, typically based on a preferred substrate, and a 

MMP number, based on the order of discovery. The initial classification according to 

preferred substrates separates the MMPs in collagenases, which are able to cleave triple 
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helical collagen at a single site across the three chains, gelatinases, which hydrolyze 

denatured collagen and gelatin, stromelysins, which have broad substrate specificity and 

degrade many proteoglycans, and other MMPs, with indefinite biologic functions (Zucker 

and Cao, 2010; Sela-Passwell et al., 2010). Table 2-2 provides a list of the identified 

human MMPs. The family reflects the preferred substrates. 

Table 2-2: Overview of the identified human matrix metalloproteases and their common names. 

Family MMP Alternative names 

Collagenases 1 Collagenase-1, fibroblast collagenase 

 8 Collagenase-2, neutrophil collagenase 

 13 Collagenase-3 

 18 Collagenase-4 

Gelatinases 2 Gelatinase A 

 9 Gelatinase B 

Stromelysins 3 Stromelysin-1, proteoglycanase 

 10 Stromelysin-2 

 11 Stromelysin-3 

Membrane-type MMPs 14 MT1-MMP 

 15 MT2-MMP 

 16 MT3-MMP 

 17 MT4-MMP 

 24 MT5-MMP 

 25 MT6-MMP 

Other 7 Matrilysin-1, PUMP 

 12 Macrophage metalloelastase 

 19 RASI-1 

 20 Enamelysin 

 21  - (human ortholog of Xenopus MMP) 

 23 CA-MMP 

 26 Matrilysin-2, endometase 

 28 Epilysin 

Adapted from (Jacobsen et al., 2010; Klein and Bischoff, 2011) 
 

Most MMPs are secreted and have their function in the extracellular environment (Hadler-

Olsen et al., 2011). Together, MMPs cleave and degrade virtually all other ECM 
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components including laminin, fibronectin, vitronectin, elastin, enactin, and proteoglycans, 

not only intact fibrillar collagen (types I, II, and III) as initially thought. In addition, they 

can process a large number of non-ECM proteins, such as growth factors, cytokines, 

chemokines, cell receptors, serine proteinase inhibitors and other MMPs, and thereby 

regulate the activity of these compounds (Hadler-Olsen et al., 2011). 

The regulation of gene expression can modulate the function of MMPs. A variety of soluble 

factors, as cytokines, growth factors and glucocorticoids, are described to adjust the 

expression of MMPs. Also the cell-cell contact and  interaction of cells with extracellular 

matrix components seem to be important in the modulation, as well as epigenetic processes 

(Klein and Bischoff, 2011). Humans possess 24 MMP genes, but only 23 MMP proteins are 

expressed, as MMP-23 is coded by two identical genes (Hadler-Olsen et al., 2011). The 

multiplicity of MMPs, with distinct but somewhat overlapping functions, probably acts as a 

safeguard against any losses of regulatory control. Although such redundant and 

compensatory mechanisms are advantageous to the organism, they often confound efforts to 

fully understand how MMPs function in vivo (Zucker and Cao, 2010; Sternlicht and Werb, 

2001). 

2.3.1.1 Functions of MMPs 

MMPs have been demonstrated to participate in many physiological processes including 

tissue turnover and repair, as during blastocyst implantation, ovulation, postlactational 

involution, and bone resorption. MMPs have been described to have biological functions in 

multiple cellular processes, including proliferation, angiogenesis, migration, invasion, and 

host defense (Sternlicht and Werb, 2001). A pathological role for MMPs in arthritis, non-

healing wounds, aortic aneurysms, congestive heart failure, and other disorders has also 

been recognized. (Zucker and Cao, 2010). MMPs are invariably upregulated in rheumatoid 

arthritis and malignant disease, with more severe increases often indicating a worse 

prognosis. An important characteristic of these diseases is the capacity of cells to cross 

tissue boundaries and, in the case of cancer, spread to distant sites of the body. Thus ECM-

degrading enzymes must be present to break down the structural barriers to invasion 

(Sternlicht and Werb, 2001). Since collagens represent the major structural proteins of all 

tissues and the chief obstacle to tumor cell migration, collagenolytic enzymes play pivotal 

roles in facilitating dissemination of cancer (Zucker and Cao, 2010). Overexpression of 

many MMPs, including MMP-1, -2, and -9, has been demonstrated in human gastric and 
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colorectal cancers, being a sign of poor prognosis (Zucker and Vacirca, 2004; Sinnamon et 

al., 2008; de Mingo et al., 2007). 

Production of MMPs by stromal cells within a tumor, as well as cancer cells, is well 

established. Cancer progression is recognized to be a complex, multistage process in which 

the transformation from normal to malignant cells involves genetic changes that lead to 

numerous phenotypic alterations (Zucker and Cao, 2010). MMPs appear to exert a dominant 

effect and have been implicated in virtually all aspects of cancer progression and 

dissemination. This proteolytic activity is essential for cell migration in native matrices 

(Pavlaki and Zucker, 2003; Packard et al., 2009) 

Human MMP-1 (EC 3.4.24.7) is detected in a variety of physiological processes including 

embryonic development and wound healing, as well as in a number of pathological 

processes, including chronic cutaneous ulcers and different types of malignant tumors, 

including colorectal carcinoma, gastric carcinoma, and malignant melanoma. In cultured 

cells, MMP-1 is expressed by various normal cells, for example keratinocytes, fibroblasts, 

endothelial cells, monocytes, macrophages, hepatocytes, chondrocytes, and osteoblasts, as 

well as by many different types of tumor cells. MMP-1 cleaves several components of the 

ECM, including collagen of types I, II, III, VII, VIII, and X, aggrecan, as well as serine 

proteinase inhibitors, and a2 macroglobulin (Ala-Aho and Kahari, 2005). 

Two particular members of this family, gelatinases A and B (MMP-2, EC 3.4.24.24 and 

MMP-9 EC 3.4.24.35), seem to play a notably important role in tumor invasion and 

metastasis. These two type IV collagenases are the dominant MMPs released by most 

epithelial and endothelial cells. They are involved in the turnover of basement membrane 

collagen under basal conditions and of other matrix proteins during angiogenesis, tissue 

remodeling, and repair (Demeule et al., 2000). 

The expression of MMPs in human cancer is the result of a complex interaction between 

tumor cells and non-malignant stromal cells including fibroblasts, endothelial cells and 

inflammatory cells, which all actively participate in the production of MMPs in tumor tissue 

(DeClerck, 2000). More recently, MMPs have also been incriminated in more complicated 

processes including the liberation of biologically active proteins such as cytokines, growth 

factors and chemokines from their membrane-anchored pro-forms (Klein and Bischoff, 

2011). 
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2.3.1.2 Structure of MMPs 

As members of the metzincins superfamily of proteases, all MMPs show a Zn(II) ion at the 

catalytic center, coordinated by three histidine residues in the zinc-binding consensus 

sequence, protected in a hydrophobic cleft formed by a strictly conserved methionine 

containing β-turn, the “Met-turn”, which provides a hydrophobic base for the zinc-binding 

site. In MMPs, the catalytic domain is approximately 165 residues in length, spherical, being 

the shallow substrate-binding cleft divided into an upper and a lower sub-domain.  In the 

catalytic domain, containing the zinc-binding motif HEXXHXXGXXH, the three histidines 

bind the Zn(II) ion and the glutamate residue activates a zinc-bound H2O molecule, providing 

the nucleophile that attacks the polarized carbonyl group in the scissile peptidic bond of 

substrate, cleaving the molecule (Zucker and Cao, 2010; Klein and Bischoff, 2011; Hadler-

Olsen et al., 2011).  

Most of the matrix metalloproteases are secreted as proenzymes and their activation occurs in 

the pericellular and extracellular space. MMPs possess a signal peptide, which directs these 

proteases to the secretory pathway.  

A prodomain of around 80 residues, configured as a α-helix globular structure, confers 

latency to the enzymes. The interaction of the catalytic Zn(II) and a conserved cysteine 

residue from the propeptide, known as cysteine switch, inactivates the proMMPs, until this 

blockage of the catalytic center is disrupted, leading to the active enzymes. In vivo, a large 

number of proteinases, such as serine and metalloproteinases, are involved in the activation of 

MMPs, but several other activation mechanisms are described (Klein and Bischoff, 2011; 

Hadler-Olsen et al., 2011). 

All MMPs, except for MMP-7, -23 and -26, contain a C-terminal hemopexin-like domain, 

containing around 200 residues, with a characteristic 3D disc-like four-bladed β-propeller 

structure. This domain mediates interactions with substrates and confers specificity of the 

enzymes. Although MMPs retain catalytic activity toward a wide range of substrates when 

missing this domain, the hemopexin domain is an absolute necessity for the degradation of 

triple-helical collagens. Improving the bonding of the substrates gelatin and collagen, the 

gelatinases (MMP-2 and 9) also contain fibronectin type II domains  (Zucker and Cao, 2010; 

Klein and Bischoff, 2011; Hadler-Olsen et al., 2011).  

As a matter of exemplification, the full MMP-2 is illustrated in Figure 2-8.  
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Figure 2-8: Full-length three-dimensional X-ray crystallography structure of pro-MMP-2 (PDB 
code 1ck7). The first atomic structure of full-length pro-MMP-2 represents the enzyme modular 
domain organization. The structural and catalytic zinc ions are presented as dark orange and light 
orange spheres respectively. The catalytic zinc ion is linked to three conserved histidines and 
cysteine residues. The catalytic domain is presented in gray, facing the extended catalytic pocket. 
The green ribbon represents the pro-domain, and the dark-blue and red ribbons represent the 
fibronectin residue and fibronectin repeats, respectively (Sela-Passwell et al., 2010). 

MMPs can be classified into two main types, depending on their specific substrate S1′ 

pocket: the deep pocket enzymes (such as MMP-2, MMP-3, MMP-8, MMP-9 and MMP-

13), possessing a relatively big S1´ pocket, and the shallower pocket enzymes (MMP-1, 

MMP-7 and MMP-11 among others), which possess a somehow smaller specificity S1´. The 

S2´ and S3´ subsites are also important for the binding of inhibitors, as well as for the 

specificity of such inhibitors towards the different proteases. The S2´ subsite is generally a 

solvent-exposed cleft with a preference for hydrophobic P2´ residues, in both substrates and 

MMP inhibitors. The S3´ subsite on the other hand is a relatively ill-defined, solvent 
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exposed region (Ilies et al., 2003). The active centre of a MMP and the substrate binding 

pockets can be seen in Figure 2-9. The binding of a collagen chain is also schematic 

represented. 

 

Figure 2-9: Above: Molecular surface diagram of an exemplar MMP (MMP-3). The catalytic Zn(II) 
is shown in black and locations of subsites are labeled. Below: Schematic figure of the MMP active 
site with substrate (Puerta and Cohen, 2004). 

2.3.1.3 Inhibition of MMPs 

In vivo activity of MMPs is under tight control at several levels including gene expression, 

cellular compartmentalization, proenzyme activation, inhibition by protease inhibitors, and 

endocytosis (Zucker and Cao, 2010). In the extracellular milieu, the activity of these 

proteases is tightly regulated by endogenous inhibitors designated as Tissue Inhibitors of 
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Metalloproteinases (TIMPs). Four members of the TIMP family have been so far described 

in human and other mammalian species. These inhibitors have many structural and 

functional properties in common, including a primary amino-acid sequence with 12 

disulfide bonded cysteine residues and a tertiary structure that identifies two distinct 

domains, each containing three overlapping disulfide bonds. The N-terminal domain 

contains a region of higher homology among the four TIMPs and is responsible for their 

anti-metalloproteinase activity against all members of the MMP family. TIMPs inhibit 

MMPs by inserting a conserved anchor into the active site of the target MMP, which 

directly coordinates the catalytic zinc ion via an N-terminal cysteine residue. This 

conserved N-terminal segment binds the extended S1′ pocket in a substrate-like manner. 

Modifications that weaken the metal ion chelating ability of TIMPs, via the addition of an 

extra Ala at the N-terminus, or carbamylation of the N-terminal amino group, inactivate 

TIMPs with respect to MMP inhibition. This confirms the mechanistic importance of metal 

chelation by the N-terminal amino group in metalloproteinase inhibitory activity (Sela-

Passwell et al., 2010; Blavier et al., 1999). 

Abundant literature supports the concept that TIMPs can suppress not only tumor invasion 

and metastasis, but also inhibit the growth of the primary tumor, due to their anti-

metalloproteinase activity and their protective role on the extracellular matrix. These 

observations were fundamental in support of the development of synthetic MMP inhibitors 

in cancer clinical trials (Sela-Passwell et al., 2010; Blavier et al., 1999). Controlling the 

enzymatic activity of specific individual MMPs by antagonist molecules has an enormous 

potential for therapeutic applications and has been object of intensive investigations (Sela-

Passwell et al., 2010). Actually, MMPs appear to be ideal drug targets, once they are 

disease-associated, extracellular enzymes with a dependence on zinc for activity (Fingleton, 

2008). Several structural classes of matrix metalloproteases inhibitors (MMPIs) have been 

studied by diverse methods including substrate-based design and combinatorial chemistry. 

The substrate-based design, which has been the principal approach for the identification of 

synthetic MMPIs, generally follow a two-component strategy: a peptidomimetic backbone 

is designed to interact in a non-covalent fashion with the MMP active site, while an 

appended zinc(II)-chelating moiety (zinc-binding group, ZBG) binds via coordinate–

covalent bonds to the hydrolytic zinc(II) ion, rendering the enzyme inactive (Gupta, 2007; 

Puerta et al., 2006). 
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The requirements for a molecule to be an effective matrix metalloprotease inhibitor (MMPI) 

are: 

-The presence of a functional group able to chelate the active site Zn(II) ion of the 

enzyme such as a carboxylic group (-COOH), hydroxamic group (-CONHOH), and 

sulfhydryl group (-SH). Such a group is referred to as a zinc binding group, ZBG. 

-At least one functional group capable of hydrogen bonding with the enzyme backbone. 

-One or more side chains that can have effective van der Waals interactions with the 

enzyme subsites.  

In Figure 2-10, the general structure of a zinc-binding inhibitor is illustrated. P1’, P2’ and 

P3’ represent the groups that interact with the subsites S1’, S2’ and S3’ of the target. 

 

Figure 2-10: Features of a general MMP inhibitor, showing the interaction with the catalytic zinc 
(Puerta and Cohen, 2004). 

Thousands of MPPIs have been synthesized, and some have been tested in clinical trials. It 

is estimated that more than 90% of MPPIs contain a hydroxamic acid as ZBG. Aiming to 

improve the pharmacodynamic and pharmacokinetic of MMPIs, the group from Cohen 

studied a series of heterocyclic zinc-binding moieties and compared their metal affinity. The 

selected ligands selected consisted of hydroxypyridinones, hydroxypyridinethiones, 

pyrones, and thiopyrones. In fact, all of them demonstrated a stronger inhibitory activity 

against MMPs (up to 700 fold lower IC50) as the control acetohydroxamic acid (Puerta et 

al., 2006; Puerta et al., 2004). The tested moieties can be seen in Figure 2-11. 
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Figure 2-11: Heterocyclic zinc binding group (ZBGs) proposed for use in matrix metalloproteinase 
inhibitors (Puerta et al., 2006; Puerta et al., 2004). 

However, blocking the enzymatic activity with synthetic small inhibitors appears to be an 

extremely difficult task. Despite tremendous efforts to explore individual members of this 

target family, along with multiple inhibitor classes, effective drugs for inhibiting individual 

MMPs have not yet emerged (Sela-Passwell et al., 2010). Disappointing results from 

clinical trials of small-molecule MMP inhibitors have prompted reconsideration of 

strategies for more enzyme-specific MMP inhibition by targeting the “exodomain–

substrate” interactions. Such exosites or allosteric sites have been proposed to represent 
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unique opportunities for the design of selective inhibitors (Sela-Passwell et al., 2010). The 

lack of clinical efficacy of MMP inhibitory drugs developed until now do not disprove the 

causal relationship between MMPs and cancer, but rather reflects the incomplete 

understanding of the complexity of cancer pathobiology and of the functions und the 

delicate and highly networked physiological control of this family of enzymes (Sela-

Passwell et al., 2010; Zucker and Cao, 2009).  

2.3.2 Clostridium histolyticum collagenase (ChC) 

Clostridium histolyticum collagenase (ChC, EC 3.4.24.3) is one of the bacterial collagenases 

that, like MMPs, also degrades extracellular matrix (Gupta, 2007; Vanwart and Steinbrink, 

1981). This enzyme is unique in that it can degrade both water-insoluble native collagens 

and water-soluble denatured ones, can attack almost all collagen types, and can make 

multiple cleavages within triple helical regions. Kinetic studies of collagenases have 

provided insight into the high-ordered structure of collagens (Matsushita et al., 1998). 

2.3.2.1 Functions of ChC 

Metalloproteases are widely spread in all types of bacteria, being critical virulence factors, 

and playing various pathogenic roles in infection. In local bacterial infections, such as 

keratitis, dermatitis and pneumonia, metalloproteases act as decisive virulence determinants, 

being generated at the site of infection and causing necrotic or hemorrhagic tissue damage 

through hydrolysis of structural tissular components. In the case of systemic infections, such 

as septicemia, metalloproteases act as a synergistic virulence factor, causing a disordered 

proteolysis of various plasma proteins, inducing imbalances of the proteinase-proteinase 

inhibitor equilibrium, disturbing the physiological homeostasis and leading the host to an 

immunocompromised condition (Supuran et al., 2002). 

2.3.2.2 Structure of ChC 

Very little is known about the structure of this zinc dependent protease. The 116 kDa 

protein belongs to the M-31 zinc-containing metalloproteinase family and is able to 

hydrolyze triple helical regions of collagen under physiological conditions, as well as an 

entire range of synthetic peptide substrates (Gupta, 2007). In addition to the catalytic Zn(II) 

ion, ChC requires two structural Ca(II) ions for full activity (Bond and Vanwart, 1984; 

Matsushita et al., 2001). 
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ChC has the conserved HEXXH zinc-binding motif, with two histidine residues (His 415 

and His 419) acting as Zn(II) ligands, whereas the third ligand seems to be Glu 447, and a 

water molecule/hydroxide ion acting as nucleophile in the hydrolytic cleavage. ChC is also 

a multiunit protein, consisting of four segments, S1, S2a, S2b and S3, with S1 incorporating 

the catalytic domain (Supuran et al., 2002; Scozzafava and Supuran, 2000b; Scozzafava and 

Supuran, 2000a). 

The ChC enzyme catalyzes the cleavage of the Xaa-Gly (Xaa: amino acid residues) peptide 

bond of the repeating sequence of the native collagen in the triple helical region (-Gly-Pro-

Xaa-Gly-Pro-Xaa-). It appears that S3´, S2´, and S1´ subsites of the enzyme are occupied by 

Gly, Pro, and Xaa, respectively (Gupta, 2007). 

2.3.2.3 Inhibition of ChC 

C. histolyticum is known as an etiological agent of necrotizing fasciitis, gas gangrene and 

other serious complications. Isolated cases of clostridial infections evoluting to infective 

endocarditis from injecting drug users has been reported (Jóźwiak et al., 2006). Since 

bacterial corneal keratitis in humans as well as animals has been reported to be associated 

with a highly increased bacterial collagenase activity in ocular tissues, some researchers 

assumed that ChC inhibitors may be of great value for putative ophthalmologic applications 

(Gupta, 2007). Most important, due to the attributed similarity in the binding of the 

inhibitors with ChC and MMPs, it has been proposed that compounds which strongly inhibit 

ChC would also act as potent MMPs inhibitors and many compounds were studied for ChC 

and MMP inhibitors together (Gupta, 2007; Ilies et al., 2003; Scozzafava and Supuran, 

2000b). 

Gupta (2007) compared synthetic inhibitors developed against this enzyme and described 

the following structural elements as important for an effective binding: (a) A strong zinc-

binding function (like a carboxylic acid). (b) A relatively compact spacer between this 

function and the rest of the molecule, i.e., any amino acid moiety. (c) A variant of a benzyl 

group to interact with S2´site. (d) An arylsulfonyl moiety to interact with S3´ site. An 

example of these interactions in active centre is illustrated in Figure 2-12. 
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Figure 2-12: Important structural patterns for adequate ChC inhibition. (Scozzafava and Supuran, 
2000a) adapted by (Gupta, 2007). 

2.3.3 Angiotensin converting enzyme (ACE) 

Angiotensin converting enzyme (ACE, EC 3.4.15.1) is an evolutionarily conserved 

transmembrane zinc-dependent dipeptidyl carboxypeptidase expressed on the surface of 

endothelial cells, in epithelial or neuroepithelial cells, in the brain, and as a soluble form in 

blood and numerous body fluids, with orthologues known to exist in organisms as diverse as 

D. melanogaster, C. elegans and bacteria (Lambert et al., 2010; Dive et al., 2009; Shen et 

al., 2008). In human somatic tissues it exists as a glycoprotein consisting of a single large 

polypeptide chain of 1277 amino acids. In germinal cells, it is synthesized as a lower 

molecular mass form, containing 701 amino acids (Natesh et al., 2004; Natesh et al., 2003). 

2.3.3.1 Functions of ACE 

Angiotensin-converting enzyme is a type-I membrane-anchored dipeptidyl 

carboxypeptidase that is essential for blood pressure regulation and electrolyte homeostasis 

through the renin–angiotensin–aldosterone system (Natesh et al., 2003). The central role 

played by ACE in cardiovascular pathologies such as hypertension and cardiac hypertrophy 

is well established. It hydrolyses substrates such as angiotensin I and bradykinin by 

removing one or more of their C-terminal dipeptides, and working as a hormone system 

regulating blood pressure and water balance so that, if the renin-angiotensin-aldosterone-

system is too active, blood pressure will be too high. Renin, normally secreted by kidney 
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when blood pressure is low, converts the angiotensinogen (secreted from liver) into 

angiotensin I. In sequence this decapeptide is converted to the active octapeptide 

angiotensin II (Ang II) by ACE, which cleaves the C-terminal dipeptide from angiotensin I 

in the lungs. Ang II acts directly on vascular smooth muscle cells by working through the 

angiotensin II type 1 receptor (AT1R). The final result is a potent vasoconstrictor effect 

leading to higher blood pressure. Furthermore, this peptide binds to AT1R of the adrenal 

cortex and of noradrenergic neurons. In adrenal cortex, angiotensin II promotes 

vasoconstriction, aldosterone release, salt retention in the renal proximal tubules, and 

stimulation of the sympathetic nervous system via receptors in the brain, increasing arterial 

pressure (Bader and Ganten, 2008; Lemarie et al., 2008). In noradrenergic neurons, this 

receptor-molecule interaction releases noradrenalin which acts primarily to raise systemic 

vascular resistance and increase heart rate and coronary blood flow, and thus for everything 

blood pressure rises. ACE also plays an important role in the regulation of blood pressure 

by hydrolyzing, and thereby inactivating, the vasodilator bradykinin, a nine amino acid 

peptide that causes blood vessels to enlarge, thus causing lowered blood pressure (De Leo et 

al., 2009). 

The action of ACE as the major mechanism in the biosynthesis of Ang II has made it an 

excellent target for therapeutic intervention in the treatment of cardiovascular diseases. 

While a number of ACE inhibitors have been developed and effectively used for the 

treatment of hypertension, adverse side effects such as persistent cough and angioedema are 

associated with ACE inhibition. It is believed that the accumulation of bradykinin is largely 

responsible for the side effects associated with ACE inhibition. 

To testicular ACE (tACE), produced in germinal cells, is attributed a role in sperm 

maturation and binding of sperm to the oviduct epithelium (Natesh et al., 2004). 

2.3.3.2 Structure of ACE 

Although no crystal structure for full-length ACE has already been solved, crystallographic 

studies on individual domains has been important for the elucidation of the enzymatic 

structure (Dive et al., 2009). Somatic ACE (sACE), expressed on the surface of endothelial 

and epithelial cells in a wide variety of tissues, is composed of two homologous catalytic 

domains, each containing the HEXXH+E zinc-binding active site motif where the two 

histidines are zinc ligands, with a glutamate, 24 residues downstream, forming the third 
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ligand. The ACE ectodomain is composed of two homologous domains (N and C) 

connected by an interdomain linker region. Each of the distinct domains of ACE pursues a 

catalytic active site. Although the two domains of ACE are highly homologous, they differ 

in their substrate specificities, inhibitor and chloride activation profiles, and physiological 

functions. The active sites of both domains catalyze the hydrolysis of angiotensin I and the 

vasodilator bradykinin with similar efficiency. However, inhibition of the N-domain has no 

effect on blood pressure regulation, making the C-domain necessary and sufficient for the 

maintenance of proper basal blood pressure. Hence the C-domain is viewed as the main site 

of Ang II generation (Dive et al., 2009; Natesh et al., 2003). Substrate hydrolysis in the C-

domain active site is strongly activated by chloride in a substrate-dependent manner, but not 

the in N-domain. Therefore, Ang II formation is a highly chloride ion-dependent process, 

whereas bradykinin inactivation is not (Bhuyan and Mugesh, 2011). 

Testis ACE (tACE) is identical to the C-terminal half of somatic ACE, except for a 36-

residue sequence constituting its amino terminus, making tACE a valuable model for 

structural investigations (Natesh et al., 2003). An illustration of the structure of tACE 

binding to an inhibitor can be seen in Figure 2-13. 

 

Figure 2-13: Overview of the structure of a truncated version of tACE. A: Stereo view of the ribbon 
representation of the molecule looking down on the active site. The active-site zinc ion and the 
ligand molecule (lisinopril) are shown in green and yellow, respectively. B: Molecular surface 
representation showing the active-site pocket. The buried lisinopril molecule is shown in yellow. 
Adapted from (Natesh et al., 2004; Natesh et al., 2003). 
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2.3.3.3 Inhibition of ACE 

ACE inhibitors have been effectively used for the treatment of hypertension. The inhibition 

of ACE prevents the secretion of angiotensin II, allowing the treatment of hypertension as 

well as congestive heart failure. However adverse side effects such as persistent cough and 

angioedema are associated with ACE inhibition, probably due to the accumulation of 

bradykinin, whose degradation is also catalyzed by this enzyme (Lambert et al., 2010; Dive 

et al., 2009). 

The first approved inhibitor was developed more than thirty years ago under the name 

captopril. Importantly, this substrate-derived inhibitor interacts with the active site Zn(II) 

ion by direct coordination through the thiol metal-binding group (Rouffet and Cohen, 2011). 

Despite the strong zinc-sulfur interaction of captopril, second-generation ACE inhibitors 

ultimately replaced the thiol group by a carboxylic acid to achieve better pharmacokinetics, 

and carboxylate is nowadays the most frequent of the three zinc-binding moieties present at 

currently clinically used ACE inhibitors (Rouffet and Cohen, 2011; Thunnissen et al., 2002; 

Yiotakis and Dive, 2009). Examples of substrate-derived ACE inhibitors are illustrated in 

Table 2-3. 

Table 2-3: Subsite-binding amino acid residues of substrate-derived ACE inhibitors. ZBGs are 
marked in red.  

Inhibitor Structure Residues 

P1 P1’ P2’ 

Captopril  

 

 Ala Pro 

Enalapril  

 

Phe Ala Pro 

Lisinopril 

 

Phe Lys Pro 

Adapted from  Natesh et al. (2004). 
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Many peptides derived from a multitude of plant (maize, wheat, rapeseed, soybean, 

buckwheat, sunflower, sorghum) and animal (milk meat eggs and fish) foodstuff show in 

vitro inhibitory activity against ACE, being milk the main source of antihypertensive 

peptides. Peptides showing inhibitory activity against ACE have been receiving much 

attention, as they can be a useful tool in the prevention and treatment of hypertension by 

being ingested alone, or in bioactive foods (Hartmann and Meisel, 2007). Potent ACE 

inhibitory peptides from caseins and whey proteins are respectively termed casokinins and 

lactokinins. Encrypted ACE inhibitor peptides may be released from food proteins during in 

vitro and/or in vivo enzymatic degradation (De Leo et al., 2009; Hartmann and Meisel, 

2007; Hernández-Ledesma et al., 2011). Most of the di- and tripeptides active against ACE 

described in the literature have a proline residue in the C-terminal position, although 

tryptophan, tyrosine and phenylalanine at this position also contribute positively to the 

binding. The N-terminal position is usually occupied by a branched amino acid, as 

isoleucine, leucine or valine (Ricci et al., 2010; FitzGerald and Meisel, 2000). Meanwhile, 

even epidemiological investigations evidence a beneficial effect of ACE-inhibiting peptides 

ingestion for hypertensive subjects (Cicero et al., 2013; Cicero et al., 2010; Geleijnse and 

Engberink, 2010). 
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3 Experimental section 

3.1 Chemicals, materials and equipment 

3.1.1 Chemicals 

1-Butanol , high purity (min 99%) 0772 Applichem, Darmstadt, Germany 

ACE Angiotensin Converting Enzyme of 
rabbit lung 

A6778 Sigma-Aldrich, Steinheim, Germany 

Acetic acid glacial, 100%  20104.298 VWR, Darmstadt, Germany 

Ala-Pro (L-alanyl-L-proline) G-1350 Bachem, Bubendorf, Switzerland 

Beta-lactoglobulin  Sigma-Aldrich, Steinheim, Germany 

BSA (Bovine serum albumin) 28-4038-42 Amersham, Little Chalfont, UK 

Brij-35 (polyoxyethylene(23) lauryl ether) P1254 Sigma-Aldrich, Steinheim, Germany 

Captopril (min 99.0%) 21751 Fluka, Taufkirchen, Germany 

ChC Collagenase from Clostridium 
histolyticum Type VII 

C-0773 Sigma-Adrich, Steinheim, Germany 

CH2Cl2 (dichloromethane) HPLC grade 9315-02 Mallinckrodt, Deventer, Holland 

Chlorogenic acid hemihydrate (min 98%) 25700 Sigma-Aldrich, Steinheim, Germany 

DMSO (dimethyl sulfoxide) anhydrous 
(min 99.9%) 

472301 Sigma-Aldrich, Steinheim, Germany 

EDTA (ethylenediamintetraacetic acid)  HB Labor- und Feinchemikalien 
GDR, Germany 

Ferritin  28-4038-42 Amersham, Little Chalfont, UK 

Fluorogenic MMP substrate OmniMMP  (7-
methoxycoumarin-4-yl)-acetyl-Pro-Leu-Gly-
Leu-N-3-(2,4-dinitrophenyl)-L-α-β-diamino-
propionyl-Ala-Arg-NH2 

BML-P276 Enzo, Lörrach, Germany 

Folin-Ciocalteu reagent  F9252 Sigma-Aldrich, Steinheim, Germany 

Formic acid 99%  10123 Grüssing, Filsum, Germany 

Gly-Ala (L-glycyl-L-alanine) 50150 Fluka, Taufkirchen, Germany 

Gly-Leu (L-glycyl-L-leucine) G 2002 Sigma-Aldrich, Steinheim, Germany 

Glyoxylic acid monohydrate pure (min 97%) 50710 Fluka, Taufkirchen, Germany 

Gly-Pro (L-glycyl-L-proline)  G2190 Bachem, Bubendorf, Switzerland 

H2 (hydrogen) 5.0, > 99.999%  Air Liquide, Düsseldorf, Germany 

HCl (hydrochloric acid), concentrated grade 
(37%), p.a.  

1003172500 Merck, Darmstadt, Germany 
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HEPES (N-2-hydroxyethylpiperazine-N-2-
ethanesulfonic acid), min 95% 

H-3375  Sigma-Aldrich, Steinheim, Germany  

HHL (Hippuryl-histidyl-leucine) M-1485 Bachem, Heidelberg, Germany 

Ile-Ala (L-isoleucyl-L-alanine) G-2370 Bachem, Bubendorf, Switzerland 

Ile-Pro (L-isoleucyl-L-proline) G-2425 Bachem, Bubendorf, Switzerland 

Ile-Pro-Pro (L-isoleucyl-L-prolyl-L-proline) H-4632 Bachem, Bubendorf, Switzerland 

Ile-Trp (L-isoleucyl-L-tryptophane) G-2435 Bachem, Bubendorf, Switzerland 

KI (potassium iodide)99,5%  12044 Grüssing, Filsum, Germany 

KMnO4 (potassium permanganate), p.a.  Grüssing, Filsum, Germany 

Leu-Leu (L-leucyl-L-leucine) M-1535 Bachem, Bubendorf, Switzerland 

Methanol, HPLC grade 20864.320  VWR, Darmstadt, Germany 

MMP-1 Matrix metalloprotease 1 

human recombinant catalytic domain 

BML-
SE180 

Enzo, Lörrach, Germany 

MMP-2 Matrix metalloprotease 2 

human recombinant catalytic domain 

BML-
SE237 

Enzo, Lörrach, Germany 

MMP-9 Matrix metalloprotease 9 

human recombinant catalytic domain, active 

BML-
SE244 

Enzo, Lörrach, Germany 

Na2HPO4.2 H2O (sodium hydrogen phosphate)  Ferak, Berlin, Germany 

NaBH3CN (sodium cyanoborohydride) 8.18053.002
5 

Merck Henbrumm, Germany 

NaCl (sodium chloride), 100%  27810.295 VWR, Darmstadt Germany 

NaH2PO4 (sodium dihydrogen phosphate) 
anhydrous 99.99% 

1063700050 Merck, Darmstadt, Germany 

NaOH (sodium hydroxide), p.a.  Merck, Darmstadt, Germany 

NNGH N-isobutyl-N-(4-methoxyphenyl-
sulfonyl)-glycyl hydroxamic acid 

BML-PI115 Enzo, Lörrach, Germany 

Ovalbumin  28-4038-42 Amersham, Little Chalfont, UK 

Palladium on carbon, 10% Pd (w/w)  205699 Sigma-Aldrich, Steinheim, Germany 

Pyruvic acid, for synthesis, (min 98%)  820170 Merck, Darmstadt, Germany 

PzPLGLDR (4-phenylazobenzyloxycarbonyl-
Pro-Leu-Gly-Pro-DArg) trifluoroacetate salt 

M-1715  Bachem, Bubendorf, Switzerland 

Thyroglobulin  28-4038-42 Amersham, Little Chalfont, UK 

TRIS, (2-amino-2-(hydroxymethyl)-1,3-pro-
panediol), buffer grade 

A1379 Applichem, Darmstadt, Germany 

ZnCl2 (zinc chloride) p.a., 98 % 31650 Sigma-Aldrich, Steinheim, Germany 

o-dianisidine (3,3′-dimethoxybenzidine) p.a.  Ferak, Berlin, Germany 
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3.1.2 Material 

Pipettes Various volumes Eppendorf, Hamburg Germany 

Pipette tips Various sizes Brand, Wertheim, Germany 

Parafilm  Pechiney Plastic Packaging, 
Chicago, USA 

Multichannel pipette 8 channels, 5-50 µL Abimed, Langenfeld 

Cuvettes for visible 
spectrometry (total phenols)  

1 cm path length PMMA, 4.5 mL Brand, Wertheim, Germany 

Syringe membrane filters 13 mm diameter, hydrophilic 
polypropylene, 0.45 µm pore size 

Pall, Craislheim, Germany 

Hydrolysis tubes Duran 6 mL, with screw cap and septum Schott, Mainz, Germany 

Eppendorf tubes, safe-lock  1.5 and 2 mL, Eppendorf, Hamburg, 
Germany 

Disposable syringes 1-10 mL Braun, Melsungen, Germany 

TCL chamber twin-trough Camag, Berlin, Germany 

Absorption micro cuvettes Suprasil quartz, 200-2,500 nm 
spectral range, path length 10 mm 

Hellma Analytics, Germany 

Centrifugation spin filters  Macrosep, MWCO 10 kDa Pall, New York, USA 

Glass column  Econo 2.5 x 20 cm BioRad, Munich, Germany 

Membrane filters 47 mm diameter, hydrophilic 
polypropylene, 0.45 µm pore size 

Pall, Crailsheim, Germany 

Microtiter plate (ACE and ChC 
assays) 

96 wells, flat bottom, transparent Brand, Wertheim, Germany 

Microtiter plate (MMP assay) 96 wells, flat bottom, black Brand, Wertheim, Germany 

Paper filters  No. 288 and 292 Sartorius, Göttingen, Germany 

Strongly basic anion exchange 
resin  

Dowex 1x8, 100-200 mesh, BioRad, Munich, Germany 

TCL sheets precoatet aluminium back, coated 
with silica gel 60 0.25 mm layer 

Merck, Darmstadt, Germany 

 

3.1.3 Equipment 

Amino acid analyser 
(general) 

S4300 Sykam, Fürstenfeldbruck, 
Germany 

Amino acid analyser 4151 Alpha Plus Pharmacia, Freiburg, Germany 

Amino acid analysis column Cation exchange LCA K07/Li Sykam, Fürstenfeldbruck, 
Germany 

Analytical balance  BP 121S, 0.0001 g precision Sartorius, Göttingen, Germany 

Analytical cation exchange 125 x 4.6, 5 µm, PEEK K. Grüning, Olching, Germany 
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column (for pentosidine) 

Analytical cation exchange 
column (for LAL)  

190 x 4.6, 7 µm K. Grüning, Olching, Germany 

Analytical HPLC column C18-Eurosphere 100, 5 μm, 
150 × 4.6 mm, with integrated 
guard column 

Knauer, Berlin, Germany 

Analytical HPLC system  Smartline HPLC system: 
Manager K5000, pump K1000, 
DAD detector K2600, 
autosampler K3950, and column 
oven  

Knauer, Berlin, Germany 

Centrifuge  
(isolation of melanoidins) 

5804R Eppendorf, Hamburg, Germany 

Centrifuge  
(coffee extract) 

Cryofuge 6000i Heraeus, Hanau, Germany 

Fluorescence plate reader Tecan Infinite F 200 Tecan, Crailsheim, Germany 

Freeze dryer  
(small samples) 

Alpha 1-2 Christ, Osterode, Germany 

Freeze dryer  
(coffee extracts) 

Beta 1-8K Christ, Osterode, Germany 

GPC column BioSep-SEC-S3000, 
300 x 7.8 mm, guard cartridge 
GFC 3000, (4 x 3.0 mm),  

Phenomenex, Aschaffenburg, 
Germany 

GPC system Smartline HPLC system: 
manager K5000, pump K1000, 
DAD detector K2600 

Knauer, Berlin, Germany 

Hydrolysis oven WS 986 VEB, Ilmenau, Germany 

Incubation oven ICP 400 Memmert, Schwabach, 
Germany 

Low pressure liquid 
chromatography system 

BioLogic LP, fraction collector 
2128 

BioRad, Munich Germany 

Mill  Retsch GM 100 Retsch, Haan, Germany 

Vortex minishaker MS 1 IKA, Staufen, Germany 

pH meter InoLab Level 1, electrode InLab 
Semi-Micro 

Mettler-Toledo, Weilheim 

Preparative HPLC column C18-Eurosphere 100, 10 μm, 
250 × 16 mm, guard column 
30 x 16 mm 

Knauer, Berlin, Germany 

Preparative HPLC system Smartline HPLC system: 
manager K5000, pump K1000, 
UV detector K2500  

Knauer, Berlin, Germany 

Raman spectrometer Bruker MultiRam  Bruker Optik, Etlingen 
Germany 

Rotary evaporator  VV 2000, controller WB 2000, 
water aspirator 

Heidolph, Schwabach, Germany 
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Rotary evaporator  

 

Laborota 4000, pump MZ2C, 
controller CVC2  

Heidolph, Wertheim, Germany 
and Vacuubrand, Wertheim, 
Germany 

Ultrasonic bath Sonorex RK 510 Super Bandelin, Berlin, Germany 

UV spectrophotometer  Ultraspec 1000 UV Pharmacia Biotech, Cambridge, 
UK 

Vacuum concentrator 
(centrifugal evaporator) 

SPD SpeedVac, condensator 
RVT 4104, vacuum pump OFP 
400 

Thermo Savant, Holbrook, USA 

Water purification system  

 

Purelab plus, 1µm filter, max 
conductivity 0.55 µS 

USFilter, Ransbach-Baumbach, 
Germany 

 

3.1.4 Solutions 

The ultra pure water used for the preparation of buffers and solutions was obtained using a 

Purelab plus purification system (USFilter, Ransbach-Baumbach, Germany). All eluent 

solutions were filtrated through a membrane with 0.45 µm pores and submitted to ultrasonic 

degassing prior to use. Pure HPLC-grades solvents were sonicated for 15 min. The 

preparation of eluents, assay puffers and solutions needed for ion exchange chromatography 

(IEC) are described below: 

ACE-assay 
buffer 

HEPES 50 mM, NaCl 200 mM, pH 8.3: 

Solubilize 1.192 g HEPES (N-2-hydroxyethylpiperazine-N-2-
ethanesulfonic acid) and 1.753 g NaCl in 80  mL bidistillated water, 
set pH at 37 °C to 8.3 using NaOH 1 M. Complete volume to 100 
mL. 

MMP-assay 
buffer 

HEPES 50 mM, CaCl2 10 mM, pH 7.5: 

Solubilize 1.192 g HEPES (N-2-hydroxyethylpiperazine-N-2-
ethanesulfonic acid), 0.148 g CaCl2 and in 0,05 g Brij-35 in 80 mL 
bidistillated water, set pH at 37 °C to 7.5 using NaOH 1 M. Complete 
volume to 100 mL. 

ChC-assay buffer TRIS 50 mM, pH 7.5: 

Solubilize 0.610 g TRIS (2-amino-2-(hydroxymethyl)-1,3-
propanediol), in 80 mL bidistillated water, set pH at 25 °C to 7.5 
using HCl 1 M. Complete volume to 100 mL. 

HPLC 
quantification for 
ACE assay 

Methanol HPLC grade 

0.1% formic acid: Dilute 1 mL formic acid 99% to 1 L with ultra pure 
water. 
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HPLC 
quantification for 
ChC assay 

Methanol HPLC grade 

Phosphoric acid pH 3: 

Set the pH of 900 mL ultra pure water to 3 with H3PO4 85%. 

Gel Permeation 
Chromatography 

Phosphate 50 mM, NaCl 150 mM, pH 6.5: 

Solubilize 4.45 g Na2PO4 and 4.38 g NaCl in ultra pure water to 
500 mL. 

Solubilize 7.80 g NaHPO4 and 8.77 g NaCl in ultra pure water 1 L. 

Achieve the desired pH by progressively mixing the solutions. 

Ion Exchange 
Chromatography 

 

Regeneration Hydrochloric acid 0.1 M:  

Dilute 83 mL 37% HCl to 1000 mL with ultra pure water. 

Conditioning Sodium hydroxide 0.1 M: 

Solubilize 80 g NaOH with ultra pure water to 2 L. 

Acetic acid 1 M: 

Dilute 57 mL glacial acetic acid with ultra pure water to 1000 mL. 

Elution  Acetic acid 0.5 M: 

Dilute 29 mL glacial acetic acid with ultra pure water to 1000 mL. 

Acetic acid 1 M: 

(see Conditioning) 

Acetic acid 1.5 M: 

Dilute 86 mL glacial acetic acid with ultra pure water to 1000 mL. 

3.2 Synthesis of Nα-carboxyalkylated peptides  

The glycated peptides were not commercially available and were prepared from commercial 

L,L-dipeptides by methods described in the literature with alterations. 

3.2.1 Nα-carboxyalkylation of GP, LL, IA, GA, GL, AP, IP and IPP by 

reductive alkylation 

The carboxyalkylated derivatives of GP, LL, IA, GA, GL, AP, IP and IPP were synthesized 

by reductive alkylation of peptides with alpha-keto acids using the catalytic hydrogenation 
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for reduction of the imine intermediates according to Liardon et al. (1987) and Grunwald et 

al. (2006). Commercial peptides (0.500 mmol) and glyoxylic acid monohydrate 

(0.65 mmol) for CM-derivatization, or pyruvic acid (0.65 mmol) for CE-derivatization, 

were dissolved in water (20 mL) and the pH of the solutions was adjusted to 10.0 with 

NaOH (1 M) prior to the addition of 50 mg Pd/C catalyst. The exact amounts of the used 

reagents are described in section 3.3.3. The reaction mixture was put in a round-bottom 

flask with a magnetic stirring bar, connected to a flow-control three way glass adapter, 

closed with a three-way stopcock. After removing the air in the reaction flask by using a 

vacuum pump connected to one of the adapter’s tubes, H2 was filled in a rubber balloon, 

which was also connected to the synthesis flask through the adapter. By changing the 

position of the three way stopcock, the H2 was let in the reaction flask and the mixture was 

hydrogenated at room temperature (RT) under magnetic stirring for 48 h. The H2 was 

renewed after 24 h. The catalyst was then filtered off. The solutions were directly used for 

the subsequent purification. 

The purification of these derivates was performed by ion-exchange chromatography (IEC), 

as described in item 3.3.1. 

3.2.2 Nα-carboxyalkylation of IW using sodium cyanoborohydride 

The syntheses of the Nα-carboxymethyl- and Nα-carboxyethyl-derivatives of IW were 

realized based on the procedure described by Shinonaga et al. (1994).  

For the synthesis of CM-IW, 158.9 mg of Ile-Trp (0.5 mmol) and 147.5 mg of glyoxylic 

acid monohydrate (1.6 mmol) were dissolved in 20 mL methanol and 31 mg NaBH3CN was 

added to the system, which was stirred at 0 °C (ice bad) for 30 min. The solvent was 

evaporated under reduced pressure.  

The residue was dissolved in 30 mL water (in exhaust hood) and the aqueous solution was 

extracted with 1-butanol in a separatory funnel (4 x 30 mL). The organic phase was dried 

overnight with Na2SO4, filtered and concentrated to dryness. The residue was taken up in 

ethanol and dried under N2 flow. The mass spectrum of CM-IW showed the presence of a 

biscarboxymethylated-IW product (bis-CM-IW), and the mixture was purified by RP-

HPLC, as described in item 3.3.2. 
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The synthesis of CE-IW was performed accordingly, starting from 158.5 mg Ile-Trp 

(0.5 mmol) and 141.1 mg pyruvic acid (1.6 mmol). The methanolic solution (20 mL) was 

stirred for 2 h at 0 °C after adding 31 mg NaBH3CN. CE-IW was obtained as mass 

spectrometric pure light yellowish amorphous powder and no further purification was 

needed. The products were stored at -20 °C. 

3.3 Purification 

The separation of target products synthesized by catalytic hydrogenation (section 3.2.1) 

from the non-modified peptides was realized by ion-exchange chromatography (IEC). The 

separation from CM-IW from the sub-product bis-carboxymethylated IW (section 3.2.2) 

was performed by semi-preparative HPLC. 

3.3.1 Ion Exchange Chromatographic purification 

The purification of the carboxyalkylated peptides was performed by ion-exchange 

chromatography (IEC) after Grunwald et al. (2006). The pH of the synthesis mixtures was 

corrected to 3.0 with glacial acetic acid, and the products were applied to the IEC column, 

which was subsequently rinsed with a small volume of 1 M acetic acid. The 

chromatographic system and conditions are described below: 

System: BioRad BioLogic LP low pressure liquid chromatography system, 
with fraction collector 2128 

Column: BioRad Econo glass column (2.5 x 20 cm). filled with strongly basic 
anion exchange resin Dowex 1x8, (100-200 mesh) 2.5 x 15 cm 
(approx 75 mL) 

Conditioning: 1. NaOH 1 M 1 L 
2. Purified water 80 mL 
3. Acetic acid 1 M 250 mL 
4. Purified water 500 mL 

 

Injection volume: 1 mL 

Flow: 0.6 mL/min 

Elution: A: 0.5 M acetic acid, 200 mL 
B: 1 M acetic acid, 200 mL 
C: 1.5 M acetic acid, 200 mL 

Fractions: 7 mL 

Regeneration: 1. HCl 1 M 500 mL 
2. Purified water 500 mL 
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The presence of the product was monitored by spotting 5 µL of each fraction on TLC plates 

and detection with o-dianisidine after chlorination, as described on the following section 

(3.3.1.1). The spotting test showed that the products were well resolved from their educts 

and usually eluted with 0.5-1.0 M acetic acid, being most of them elutable with 1 M acetic 

acid. Fractions containing the target product were concentrated to dryness, and repeatedly 

taken up in water and lyophilized until the smell of acetic acid had become imperceptible, to 

yield white powders or needles. All products were stored at -20 °C. Mass spectra showed 

only signals related to the target molecules. 

3.3.1.1 Spotting test 

The resolution of the purification of the glycated peptides using anion exchange 

chromatography was monitored by spotting test using a variation of the Reindel-Hoppe 

reagent (Jork et al., 1994). 

Each fraction (5 µL) was spotted onto Merck TLC silica gel 60 plates, 0.25 mm layer. A 

chlorine atmosphere was produced in a twin-trough chamber by pouring 5 mL HCl (6 N) on 

0.5 g KMnO4 located in one of the troughs. The plate was placed in the other trough and let 

there for 10 min. After the excess chlorine has been removed from TCL plates by exposure 

to air (30 min), they were homogeneously sprayed with the detection solution. The detection 

solution is prepared by solving 16 mg o-dianisine (3,3′-dimethoxybenzidine)  in 3 ml glacial 

acetic acid, diluting the solution with 50 mL water and adding 100 mg potassium iodide. 

3.3.2 HPLC purification of CM-IW 

The CM-IW synthesis mixture obtained as described at 3.2.2 was dissolved in 15 mL of a 

50% methanol/water solution and 1 mL of the solution was injected in the system and under 

the conditions described below: 

Instrument: Knauer Smartline HPLC system, composed by Manager 5000, Pump 
1000, and UV Detector 2500  

Column: Knauer C18-Eurosphere 100, 10 μm, 250 × 16 mm, with guard 
column (30 x 16 mm)  

Injection volume: 1 mL 

Eluents: A: 0.1% formic acid in purified water 
B: 100% Methanol 
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Flow: 5 mL/min 

Gradient: Time (min) Eluent B (%) 
0 20 
3 20 
50 80 
55 100 
58 100 
65 20 
70 20 

 

Detection: UV, λ = 220 nm 

Fractionation: Manual 
 

CM-IW eluted between 29 and 36.5 min (maximum 32 min) and bis-CM-IW eluted between 

37.5 and 42 min (maximum 40 min). The peak relative to CM-IW was collected, 

concentrated to dryness, taken up in ethanol and dried under N2 flow, to yield a grayish-

white amorphous powder. 

3.3.3 Overview of the synthesis and elution conditions 

The exact amounts of peptides and alpha-keto acid used for each catalytic hydrogenation, 

the elution volumes of target compounds, and their gravimetric amounts after freeze-drying 

are summarized on Table 3-1. 

Table 3-1: Overview of reagents used for the reductive alkylation by catalytic hydrogenation, the 
elution volumes of each target product and the gravimetric yield after lyophilization. 

 Peptide 
Alpha-keto acid 

Elution 
Gravimetric 

yield 
Glyoxylic acid Pyruvic acid 

CM-GP 86.1 mg GP 
(0.500 mmol) 

60.0 mg 
(0.652 mmol)  175 mL-248 mL 

(0.5 M-1 M acetic acid) 
100.2 mg 

(0.436 mmol) 

CE-GP 86.2 mg GP 
(0.501 mmol)  57.5 mg 

(0.653 mmol) 
161 mL-245 mL 

(0.5 M-1 M acetic acid) 
104.2 mg 

(0.427 mmol) 

CM-LL 122.3 mg LL 
(0.501 mmol) 

59.9 mg 
(0.651 mmol)  245 mL-329 mL 

(1 M acetic acid) 
72.4 mg 

(0.239 mmol) 

CE-LL 122.4 mg LL 
(0.501 mmol)  57.1 mg 

(0.648 mmol) 
238 mL-357 mL 
(1 M acetic acid) 

105.5 mg 
(0.333 mmol) 
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Cont. Table 3-1    

 Peptide 
Alpha-keto acid 

Elution Gravimetric 
yield Glyoxylic acid Pyruvic acid 

CM-IA 101.0 mg IA 
(0.499 mmol) 

59.8 mg 
(0.65 mmol)  189 mL-238 mL 

(0.5 M-1 M acetic acid) 
80.2 mg 

(0.310 mmol) 

CE-IA 101.0 mg IA 
(0.499 mmol)  57.1 mg 

(0.648 mmol) 
196 mL-238 mL 

(0.5 M-1 M acetic acid) 
72.5 mg 

(0.264 mmol) 

CM-GA 73.1 mg GA 
(0.500 mmol) 

59.8 mg 
(0.650 mmol)  203 mL-245 mL 

(1 M acetic acid) 
78.0 mg 

(0.382 mmol) 

CE-GA 73.1 mg GA 
(0.500 mmol)  57.5 mg 

(0.653 mmol) 
210 mL-245 mL 
(1 M acetic acid) 

84.4 mg 
(0.387 mmol) 

CM-GL 94.3 mg GL 
(0.501 mmol) 

59.8 mg 
(0.650 mmol)  224 mL-301 mL 

(1 M acetic acid) 
106.2 mg 

(0.431 mmol) 

CE-GL 94.2 mg GL 
(0.501 mmol)  57.2 mg 

(0.650 mmol) 
224 mL-280 mL 
(1 M acetic acid) 

89.0 mg 
(0.342 mmol) 

CM-AP 93.0 mg AP 
(0.499 mmol) 

60.0 mg 
(0.65 mmol)  196 mL-266 mL 

(0.5 M-1 M acetic acid)  
100.0 mg 

(0.410 mmol) 

CE-AP 93.1 mg AP 
(0.500 mmol)  57.3 mg 

(0.651 mmol) 
196 mL-280 mL 

(0.5 M-1 M acetic acid) 
125.  mg 

(0.487 mmol) 

CM-IP 114.2 mg IP 
(0.500 mmol) 

60.0 mg 
(0.652 mmol)  245 mL-350 mL 

(1 M acetic acid) 
134.2 mg 

(0.469 mmol) 

CM-IPP 162.7 mg IPP 
(0.500 mmol) 

60.0 mg 
(0.652 mmol)  210 mL-224 mL 

(1 M acetic acid) 
60.0 mg 

(0.157 mmol) 

CE-IPP 162.7 mg IPP 
(0.500 mmol)  57.1 mg 

(0.648 mmol) 
224 mL-231 mL 
(1 M acetic acid) 

10.2 mg 
(0.026 mmol) 

 

As the reagent proportions and purification conditions of both carboxyalkyl-IW derivatives 

differed from those used for the catalytic hydrogenation, the exact masses of reagents and 

target products, as well as the purification method performed are outline on Table 3-2. 
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Table 3-2: Overview of reagents used for the reductive alkylation of IW, gravimetric yield of target 
products and performed purification. 

 Peptide 
Alpha-keto acid Gravimetric 

yield Purification 
Glyoxylic acid Pyruvic acid 

CM-IW 158.9 mg IW 
(0.501 mmol) 

147.5 mg 
(1.602 mmol)  

38.3 mg 
(0.102 mmol) 

(bis-CM-IW 
42.5 mg) 

HPLC as 
described at 

3.3.2 

CE-IW 158.5 mg IW 
(0.499 mmol)  141.1 mg 

(1.602 mmol) 
161.1 mg 

(0.414 mmol) 
No further 

purification 

 

3.4 Characterization of carboxyalkylated peptides  

3.4.1 Mass spectrometry 

Mass spectra of aqueous solutions were recorded with ion trap mass spectrometer Bruker 

Esquire-LC 00084 instrument (Bruker Daltonics, Billerica, USA) using electrospray 

ionization. Calibration of the mass scale was established using an electrospray calibrant 

solution (Agilent, Palo Alto, CA). Two microlitres of 1 mg/mL aqueous sample solutions 

were injected into the spectrometer by the autosampler from a Hewlett Packard 1100 liquid 

chromatography system (Hewlett Packard Corporation, Palo Alto, USA) at a flow rate of 

0.2 mL/min of methanol with 0.1% ammonium acetate. CM- and CE-IPP were measured in 

the negative mode. For all other derivates, the positive mode was used. The analyses were 

conducted at the Institute of Organic Chemistry, Technische Universität Dresden, by Dr. 

Ingmar Bauer. 

3.4.2 Elemental Analysis  

Elemental analysis data were obtained with a Euro EA 3000 elemental analyzer 

(Eurovector, Milano, Italy) at the Institute of Organic Chemistry, Technische Universität 

Dresden, by Anke Peritz. Elemental analysis was used to calculate the product contents of 

the preparations. The percentage of nitrogen in the preparation was divided by the 

theoretical percentage of nitrogen of the target substance and the content was expressed in 

per cent by weight.  
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3.4.3 Analytical characteristics of carboxyalkylated peptides 

The analytical data of the obtained target products are described below. 

CM-GP 

Elemental analysis: C9H14N2O5, 230.1 g∙mol-1. Theoretical composition: C 46.95%, H 6.13%, N 

12.17%, O 34.75%. Found: C 44.99%, H 5.65%, N 11.10%. 

Content of product: 91.21%. Corrected yield: 79.43% (0.397 mmol). 

ESI-MS: Fragmentation: + 100 V, m/z = 231.0 ([M+H]+) ; 461.1 ([2M+H]+), 483.1 ([2M+Na]+), 

691.0 ([3M+H]+). 

CE-GP 

Elemental analysis: C10H16N2O5; 244.1 g∙mol-1. Theoretical composition: C 49.17%, H 6.60%, 

N 11.47%, O 32.75%. Found: C 47.02%, H 7.72%, N 10.76%. 

Content of product: 94.27%. Corrected yield: 80.42% (0.403 mmol). 

ESI-MS: Fragmentation: + 100 V, m/z = 245.0 ([M+H]+) ; 489.2 ([2M+H]+), 511.1 ([2M+Na]+), 

733.0 ([3M+H]+). 

CM-LL 

Elemental analysis: C13H26N2O5, 302.4 g∙mol-1. Theoretical composition: C 55.61%, H 8.67%, 

N 9.26%, O 26.46%. Found: C 54.42%, H 8.39%, N 9.03%. 

Content of product (N-ratio): 97.52%. Corrected yield: 46.63% (0.233 mmol). 

ESI-MS: Fragmentation: + 10 V, m/z = 303.1 ([M+H]+) ; 605.2 ([2M+H]+). 

CE-LL 

Elemental analysis: C14H28N2O5, 316.4 g∙mol-1. Theoretical composition: C 56.94%, H 8.92%, 

N 8.85%, O 25.28%. Found: C 55.75%, H 6.21%, N 8.15%. 

Content of product (N-ratio): 92.09%. Corrected yield: 61.29% (0.307 mmol). 

ESI-MS: Fragmentation: + 75 V, m/z = 317.2 ([M+H]+) ; 633.2 ([2M+H]+); 655.4 ([2M+Na]+). 

CM-IA 

Elemental analysis: C11H20N2O5, 260.3 g∙mol-1. Theoretical composition: C 50.76%, H 7.74%, 

N 10.76%, O 30.73%. Found: C 48.95%, H 7.60%, N 10.30%. 

Content of product (N-ratio): 95.73%. Corrected yield: 59.06% (0.295 mmol). 

ESI-MS: Fragmentation: + 10 V, m/z = 261.0 ([M+H]+) ; 521.2 ([2M+H]+); 543.2 ([2M+Na]+). 
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CE-IA 

Elemental analysis: C12H22N2O5, 274.4 g∙mol-1. Theoretical composition: C 52.54%, H 8.08%, 

N 10.21%, O 29.16%. Found: C 48.09%, H 6.05%, N 8.92%. 

Content of product (N-ratio): 87.36%. Corrected yield: 46.25% (0.231 mmol). 

ESI-MS: Fragmentation: + 10 V, m/z = 275.1 ([M+H]+) ; 549.2 ([2M+H]+); 571.2 ([2M+Na]+). 

CM-GL 

Elemental analysis: C10H18N2O5, 246.3 g∙mol-1. Theoretical composition: C 48.77%, H 7.37%, 

N 11.38%, O 32.48%. Found: C 47.73%, H 7.35%, N 11.23%. 

Content of product (N-ratio): 98.68%. Corrected yield: 84.93% (0.426 mmol). 

ESI-MS: Fragmentation: + 25 V, m/z = 247.1 ([M+H]+) ; 493.2 ([2M+H]+), 515.2 ([2M+Na]+), 

739.0 ([3M+H]+). 

CE-GL 

Elemental analysis: C11H20N2O5, 260.3 g∙mol-1. Theoretical composition: C 50.76%, H 7.74%, 

N 10.76%, O 30.73%. Found: C 47.83%, H 7.27%, N 10.05%. 

Content of product (N-ratio): 93.36%. Corrected yield: 63.80% (0.319 mmol). 

ESI-MS: Fragmentation: + 25 V, m/z = 261.0 ([M+H]+), 521.2 ([2M+H]+), 781.0 ([3M+H]+). 

CM-GA 

Elemental analysis: C7H12N2O5, 204.2 g∙mol-1. Theoretical composition: C 41.18%, H 5.92%, 

N 13.72%, O 39.18%. Found: C 39.71%, H 5.21%, N 11.90%. 

Content of product (N-ratio): 86.74%. Corrected yield: 66.24% (0.331 mmol). 

ESI-MS: Fragmentation: + 100 V, m/z = 205.0 ([M+H]+), 227.0([M+Na]+), 409.1 ([2M+H]+), 431.1 

([2M+Na]+), 613.0 ([3M+H]+). 

CE-GA 

Elemental analysis: C8H14N2O5, 218.2 g∙mol-1. Theoretical composition: C 44.03%, H 6.47%, 

N 12.84%, O 36.66%. Found: C 40.92%, H 5.52%, N 11.55%. 

Content of product: 89.95%. Corrected yield: 69.62% (0.348 mmol). 

ESI-MS: Fragmentation: + 10 V, m/z = 219.0 ([M+H]+), 437.0 ([2M+H]+), 459.1 ([2M+Na]+), 

655.2 ([3M+H]+), 677.2 ([3M+Na]+). 

CM-AP 

Elemental analysis: C10H16N2O5, 244.3 g∙mol-1 Theoretical composition: C 49.18%, H 6.60%, 

N 11.47%, O 32.75%. Found: C 46.75%, H 5.07%, N 10.59%. 
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Content of product: 92.28%. Corrected yield: 75.64% (0.378 mmol). 

ESI-MS: Fragmentation: + 25 V, m/z = 245.0 ([M+H]+), 267.0 ([M+Na]+), 489.2 ([2M+H]+), 411.2 

([2M+Na]+), 673.3 ([3M+H]+), 755.3 ([3M+Na]+). 

CE-AP 

Elemental analysis:C11H18N2O5, 258.3 g∙mol-1. Theoretical composition: C 51.15%, H 7.02%, 

N 10.85%, O 30.97%. Found: C 48.61%, H 6.71%, N 9.99%. 

Content of product: 92.03%. Corrected yield: 89.54% (0.448 mmol). 

ESI-MS: Fragmentation: + 25 V, m/z = 259.0 ([M+H]+), 281.1 ([M+Na]+), 517.2 ([2M+H]+), 539.2 

([2M+Na]+), 775.3 ([3M+H]+), 797.4 ([3M+Na]+). 

CM-IP 

Elemental analysis: C13H22N2O5, 286.3 g∙mol-1. Theoretical composition: C 54.53%, H 7.74%, 

N 9.78%, O 27.94%. Found: C 50.80%, H 7.04%, N 8.84%. 

Content of product: 90.34%. Corrected yield: 84.62% (0.423 mmol). 

ESI-MS: Fragmentation: + 10 V, m/z = 287.1 ([M+H]+), 573.3 ([2M+H]+), 595.3 ([2M+Na]+). 

CE-IP 

Elemental analysis: C14H24N2O5, 300.3 g∙mol-1 Theoretical composition: C 55.98%, H 8.05%, 

N 9.33%, O 26.63%. Found: C 51.40%, H 7.13%, N 8.51%. 

Content of product: 91.21%. Corrected yield: 23.19% (0.116 mmol). 

ESI-MS: Fragmentation: + 10 V, m/z = 301.1 ([M+H]+), 601.2 ([2M+H]+), 623.3 ([2M+Na]+). 

CM-IPP 

Elemental analysis: C18H29N3O6, 383.4 g∙mol-1 Theoretical composition: C 56.38%, H 7.62%, 

N 10.96%, O 25.04%. Found: C 51.59%, H 7.22%, N 10.78%. 

Content of product: 98.36%. Corrected yield: 30.80% (0.154 mmol). 

ESI-MS: Fragmentation: - 10 V, m/z = 382.0 ([M-H]-), 765.2 ([2M-H]-), 787.1 ([2M+Na-2H]-). 

CE-IPP 

Elemental analysis: C19H31N3O6, 397.4 g∙mol-1 Theoretical composition: C 57.41%, H 7.86%, 

N 10.57%, O 4.15%. Found: C 52.67%, H 5.91%, N 9.03%. 

Content of product: 85.4%. Corrected yield: 4.38% (0.022 mmol). 

ESI-MS: Fragmentation: - 10 V, m/z = 395.9 ([M-H]-), 793.2 ([2M-H]-). 
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CM-IW 

Elemental analysis: C19H25N3O5, 375.4 g∙mol-1. Theoretical composition: C 60.79%, H 6.71%, 

N 11.19%, O 21.31%. Found: C 56.00%, H 5.80%, N 9.38%. 

Content of product: 83.78%. Corrected yield: 17.08% (0.085 mmol). 

ESI-MS: Fragmentation: + 75 V, m/z = 376.2 ([M+H]+), 398.3 ([M+Na]+), 751.5 ([2M+H]+), 773.5 

([2M+Na]+), 795.4 ([2M+K]+). 

CE-IW 

Elemental analysis: C20H27N3O5, 389.2 g∙mol-1. Theoretical composition: C 61.68%, H 6.99%, 

N 10.79%, O 20.54%. Found: C 58.2%, H 7.66%, 8.89N %. 

Content of product: 82.35%. Corrected yield: 68.30% (0.341 mmol). 

ESI-MS: Fragmentation: + 75 V, m/z = 390.3 ([M+H]+), 412.3 ([M+Na]+), 779.6 ([2M+H]+)  

3.5 Preparation of coffee fractions 

Although the principal object of study among the coffee samples were the high molecular 

weight coffee melanoidins, which are product of the Maillard reaction during the thermal 

treatment of coffee beans, the whole coffee brews and the low molecular weight fractions 

were also investigated. The roasting process, the extraction and fractionation of the coffee 

brews are described below. 

3.5.1 Roasting conditions 

Coffee beans from Coffea arabica var. Santos (NY 2/3; screening 17/18) of varying 

roasting degree (RD) were obtained from a local coffee roaster (K+M Kaffee und 

Maschinen, Dresden, Germany).  

The coffee was submitted to a conventional artisanal roasting process in a drum roaster. The 

green coffee beans (RD 0) were given to the roaster at room temperature and the drum 

temperature was progressively increased. RD 1 was taken from the roaster after 10 min 

treatment and presented light roast (cinnamon roast). The roaster temperature at the time of 

removal was 174°C. RD 2 was roasted for 12 min, until the drum temperature reached 

190°C. This sample presented medium roast (American roast). RD 3 was treated 14.5 min 

and showed dark roast (French roast). The drum temperature at the time of removal was 

194°C. RD 4 is the commercial espresso. It was roasted 16 min until the temperature in the 

roaster reached 200°C, when the expected roasting characteristics for the final product were 
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achieved. These beans presented very dark roast (Italian roast). The roasting process and the 

times of removal of each coffee sample are illustrated on Figure 3-1. 

 

Figure 3-1: Roasting conditions used for preparation of the coffee samples. 

The roasted beans were provided as coarse grind powder, appropriate for percolation. The 

unroasted sample (RD0) was provided in form of beans and was ground in laboratory. 120 g 

of the green beans were frozen with liquid nitrogen and ground subsequently for 0.5 min at 

3000 rpm and for 1.5 min at 10000 rpm using a Retsch GM 100 mill equipped with a 

0.74 mm sieve. All samples were stored at -20 °C. The appearance of the coffee samples 

can be seen on Figure 3-2.  

 

Figure 3-2: Coffee samples of increasingly roast degrees, obtained as described above. 
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3.5.2 Fractionation of coffee samples: Isolation of coffee melanoidins 

Coffee extracts were prepared by percolation as described by Bekedam et al. (2006) and 

illustrated in Figure 3-3.  For the extraction of RD0, 600 mL of water heated to 90 °C was 

poured on 100 g of powder. Extracts of the roasted samples RD1 to RD4 were prepared 

accordingly, using 150 g powder and 900 mL water at 90 °C. After cooling to room 

temperature, the extracts were centrifuged at 4000 rpm for 10 min and filtered under 

reduced pressure, using paper filters No. 288 and 292 subsequently. The filtrates (coffee 

brews), named cb0 to cb4, were freeze dried and used for the next steps.  

 

Figure 3-3: Overview of extraction and fractionation of coffee samples. Samples used in following 
experiments are underlined.  

Samples of 5 g of each lyophilized coffee brew were solubilized in 10 mL water and 

subjected to ultrafiltration using centrifugation spin filters, as described by Bekedam et al. 
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(2006). The use of membranes with MWCO of 10 kDa was based on Rufian-Henares and 

Morales (2007). The retentates were resuspended in 10 mL water and ultrafiltrated until the 

filtrates showed absorption below 0.1 at a wavelength of 405 nm, using purified water as 

blind (Bekedam et al., 2006). 

The filtrates were lyophilized and named “low molecular weight fraction” (lmw0 to lmw4), 

according to the corresponding roast degree. The retentates were likewise freeze-dried and 

named “high molecular weight fractions” (hmw 0 to hmw4).  

The complete hmw were defatted by Soxhlet extraction (Bekedam et al., 2006), for 4 h, 

using 500 mL dichloromethane. The so obtained pure high molecular weight melanoidins 

mRD0 to mRD4 were again lyophilized. 

All brews and fractions were stored at -20 °C. They are illustrated in Figure 3-4. 

 

Figure 3-4: Photographic documentation of all studied coffee samples. Cb0-4 are the lyophilized 
coffee brews obtained from coffee beans of increasingly roast degree. Analogously, lmw0-4 are the 
low molecular fractions isolated from cb0-4 and mRD0-4 are the correspondent melanoidin fraction. 
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3.6 Structural studies 

Aiming to evaluate key structural changes during formation of the coffee melanoidins with 

upon thermal treatment, the following aspects were investigated. 

3.6.1 Estimation of the molecular weight  

The changes on the molecular weight of the components of coffee brews and their fractions 

along the roasting process were evaluated by gel permeation chromatography (GPC). The 

chromatographic conditions were developed according to (Kwak et al., 2005). A broad 

range column was chosen in order to cover the complete range of molecular weights 

described in the literature for coffee melanoidins. 

Samples of coffee brews, low molecular weight fraction and melanoidins of the five studied 

roast degrees were dissolved in elution buffer at a concentration of 2 mg/mL, filtrated and 

submitted to the chromatographic analysis under the following conditions: 

Instrument: Knauer Smartline composed by manager K5000, pump K1000, and DAD 
detector K2600 

Column: BioSep-SEC-S3000 (300 x 7.8 mm), 5-700 kDa separation range, 
Phenomenex. 

Injection volume: 100 µL 

Eluent: 50 mM phosphate buffer, containing 0.15 M NaCl, pH 6.5 

Flow: 10 min 0.5 mL/min  

11-90 min 0.2 mL/min 
 

Detection: UV, λ = 220, 280 and 405 nm, DAD spectrum between 200-500 nm 

The molecular weight was estimated after calibrating with thyroglobulin (669.0 kDa, 

21.7 min), aldolase (158.0 kDa, 30.2 min), bovine serum albumin (66.0 kDa, 31.6 min), 

ovalbumin (43.0 kDa, 33.0 min), beta-lactoglobulin (dimeric at pH 6.5, 36.8 kDa, 33.5 min) 

and lysozym (14.6 kDa, 41.4 min). Dextran blue (2000 kDa, 15.6 min) was also was used 

for void volume determination. The linear regression y = -0.08816x + 7.6869, 

r2= 0.93537912 was obtained by plotting the logarithmic molecular weights of the protein 

standards against their respective retention times. DAD spectra from melanoidins were 
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registered and used to choose the wavelengths, in which the analysis was carried out. The 

analyses and reporting were carried out with the softwares Eurochrom 2000 and EZChrom 

Elite. 

3.6.2 C/N ratio 

The contents of nitrogen, hydrogen and carbon were quantified using elemental analysis 

(Elemental Analyser Euro EA 3000, Eurovector, Milan, Italy), as described on section 3.4.2. 

The C/N ratio was calculated as the proportion between the carbon and the nitrogen 

contents.  

3.6.3 Amino acid analysis 

The amino acid analysis was realized in order to evaluate transformations of the amino acid 

content caused by the roasting of the coffee beans, as well as to investigate the formation of 

the crosslink amino acids, lysinoalanine (LAL) and pentosidine, which have a potential role 

on the formation of high molecular coffee melanoidins. 

3.6.3.1 Acid hydrolysis 

The samples were submitted to acid hydrolysis as described by Förster (2006). 

Hermetically closed Schott hydrolysis tubes, containing 5 mg of the sample and 5 mL of 

HCl 6 N under N2 atmosphere, were heated for 23 h at 110 °C. After cooling down, the 

samples were filtrated and 1.5 mL aliquots were taken up. The hydrochloric acid was 

removed from the samples by vacuum concentration.  

The residues of the aliquots designated for general amino acid analysis were dissolved in 

0.5 mL of lithium citrate buffer (0.12 M, pH 2.2). For the analysis of LAL and pentosidine, 

the buffer used was sodium citrate 0.2 M (pH 2.2). 

3.6.3.2 General amino acid analysis 

The amino acid analysis was performed by Karla Schlosser after the method developed by 

Henle et al. (1991). It consists of a cation exchange chromatographic separation followed by 

post-column derivatization with ninhydrin and detection at λ = 570 nm and 440 nm. The 

samples prepared as described in section 3.6.3.1 were transferred to glass vials and 

submitted to the chromatography under the described conditions: 
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Instrument: Amino acid analyser S433, Sykam 

Column: Cation exchange column LCA K07/Li, Sykam  

Injection volume: 80 µL (except for mRD0 = 20 µL) 

Eluents: Sykam lithium citrate buffer system: 

 Li+ concentration and pH 
Loading buffer: 0.12 M pH 2.20  
Buffer A-1: 0.12 M pH 2.90  
Buffer B-1: 0.30 M pH 4.20 
Buffer C-4: 0.30 M pH 8.00 (citrate-borate) 
Regeneration: LiOH 0.5 M  
  

 

Flow: 0.45 mL/min   

Gradient system: Time 
(min) 

Buffer 
A-1 (%) 

Buffer 
B-1 (%) 

Buffer 
C-4 (%) 

LiOH Column 
temperature (°C) 

0 85 15 0 0 42 
3 85 15 0 0 42 
4 79 21 0 0 42 
21 43 57 0 0 42 
25 43 57 0 0 42 
33 0 100 0 0 42 
39 0 0 100 0 42 
40 - - - - 60 
43 0 0 68 32 60 
46 - - - - 74 
63 0 0 68 32 74 

 

Derivatization:  Sykam derivatization reagent: 1% ninhydrin, containing 0.08% 
hydrindantin in a mixture of glycol and 5 M sodium acetate 7:3 

0.25 mL/min. Coil temperature: 130 °C Flow: 

Detection: UV, λ = 570 nm and 440 nm 

The peaks were integrated manually using the software Chromstar 6.3. 

3.6.3.3 Lysinoalanine 

The quantification of the crosslink amino acid LAL on the coffee samples was performed 

accordingly to Henle et al. (1993). Similarly to the general amino acid analysis, 

lysinoalanine is determined in samples after acid hydrolysis (Section 3.6.3.1) under the 

following conditions: 
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Instrument: Alpha Plus 4151 LKB-Biochrom, Pharmacia 

Column: Cation exchange analytical column 200 x4.6 mm, 7 µm, Grüning 

Injection volume: 80 µL  

Eluents: Sodium citrate system: 

 Na+ concentration and pH 
Loading buffer: 0.12 M pH 2.20  
Buffer 1: 0.2 M, pH 3.20,  7% isopropanol 
Buffer 2: 0.2 M, pH 3.20 
Buffer 3: 0.2 M, pH 4.20 
Buffer 4: Buffer 3 + Buffer 5, 1/1 (v/v) 
Buffer 5: 1.2 M, pH 6.45 
Buffer 6: 
 

NaOH 0.4 M  
 

 

Flow: 0.27 mL/min  

Gradient system: Time (min) Buffer Column temperature (°C) 
0 1 85 
5 1 85 
18.5 2 85 
32.5 3 85 
40.5 4 60 
50.5 4 60 
61.5 5 60 
69.5 5 85 
75.5 6 85 

 

Derivatization: Sykam derivatization reagent: 1% ninhydrin, containing 0.08% 
hydrindantin in a mixture of glycol and 5 M sodium acetate 7:3 

Flow: 0.18 mL/min. Coil temperature: 135 °C  

Detection: UV, λ = 570 nm  

The peaks were integrated with EZChrom 1.3 and the quantification was done after external 

calibration. 

3.6.3.4 Pentosidine 

Pentosidine, another important crosslink amino on the non-enzymatic browning in food, 

was determined after acid hydrolysis (Section 3.6.3.1) using the method described at Henle 

et al. (1997) with the elution program described at Henle et al. (1991).  
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Instrument: Alpha Plus 4151 LKB-Biochrom, Pharmacia 

Column: Cation exchange analytical column 125 x4.6 mm, 5 µm, Grüning 

Injection volume: 80 µL  

Eluents: Sodium citrate system. 

 Na+ concentration and pH 
Loading buffer: 0.12 M pH 2.20 
Buffer 1: 0.2 M, pH 3.20 
Buffer 2: 0.2 M, pH 4.25 
Buffer 3: 1.2 M, pH 6.45 
Buffer 4: 1.2 M, pH 8.00 
Buffer 5: NaOH 0.4 M 

 

Flow: 0.33 mL/min 

Gradient system: Time (min:s) Buffer Column temperature (°C) 
0:00 1 55 
5:00 1 55 
5:05 2 55 
5:30 1 55 
5:35 2 55 
6:00 1 55 
6:05 2 55 
6:30 1 55 
6:35 2 55 
7:00 1 55 
7:10 2 55 
7:30 1 55 
7:40 2 55 
8:00 1 55 
27:00 2 55 
32:00 3 65 
53:00 3 90 
58:00 3 90 
80:00 4 90 
92:00 5 90 
104:00 1 90 

 
 

Detection: Flurescence, λex/λem = 335/385  nm  

Quantification after external calibration was realized with the software EZChrom 1.3. 

To calculate the content of pentosidine on protein basis, the nitrogen content, determined by 

elemental analysis (Section 3.6.2), and the universal conversion factor 6.25 were used to 

estimate the protein content of the samples.  
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3.6.4 Total phenols 

This was determined with the Folin-Ciocalteu reagent according to Singleton et al. (1999), 

with modifications. Solutions from all coffee samples and the standard chlorogenic acid 

solutions were prepared in purified water. The method conditions are described below: 

Instrument: Ultraspec 1000 UV-spectrophotometer, Pharmacia  

Sample solutions: Coffee brews: 0.5 mg/mL 
Low molecular weight fractions: 1.5 mg/mL 
Coffee melanoidins: 1.0 mg/mL 

Calibration solution: Chlorogenic acid 0.2 to 0.02 mg/mL 

Folin-Ciocalteu reagent: 0.2 N 

Sodium carbonate solution: 0.7 M 

Pipetting scheme: 

 

 Volume (µL) 

 Calibration Test 

Water 40 - 

Sample - 40 

Folin-Ciocalteu reagent 200 200 

Na2SO4 solution 160 160 

Reaction conditions: 2 h, room teperature 

Detection: Absorption, λ= 750 nm (Blank = water) 

Absorption was measured in suprasil quartz absorption cuvettes, 10 mm pathlength. 

Concentration of phenolics compounds was calculated as chlorogenic acid equivalents in 

the total sample dry matter (mg/mg). 

3.6.5 Raman spectroscopy 

The Raman spectroscopy was conducted on the Institute of Wood and Plant Chemistry, 

Technische Universität Dresden by Alexander Feldner. FT Raman spectra of the sample in 

Raman quartz cuvettes were recorded on a Bruker MultiRam spectrometer (Bruker Optik 

GmbH, Etlingen Germany) with a liquid-nitrogen cooled Ge diode as detector. The samples 

were dissolved in water. 



Experimental section 

 75 

A cw-Nd:YAG-laser with an exciting line of 1064 nm was applied as light source for the 

excitation of Raman scattering. The Raman spectra were recorded over a range of 

3500-150 cm-1 using an operating spectral resolution of 4 cm-1. A laser power output of 

100 mW was used. Every sample was analyzed under the same conditions three times and 

100 scans were accumulated. An average spectrum was formed as final spectrum of the 

corresponding sample. 

An iterative baseline correction (32 iterations) was executed and the spectra were submitted 

to a min-max normalization in the region between 1200-1000 cm-1. Spectra treatment and 

peak integration were carried out with help of the operating spectroscopy software OPUS 

Ver. 6.5 (Bruker Optik). The analysis of the data was executed with Excel. 

3.7  Study on inhibition of zinc metalloproteases 

3.7.1  Inhibition of ACE 

The inhibitory potentials against ACE of the studied peptides and their carboxyalkylated 

derivatives, as well as of coffee melanoidins gained from coffee samples of increasingly 

roast degree, were determined using the method described by Martin et al. (2008), with 

some modifications. It is based on the hydrolysis of the synthetic substrate hippuryl-L-

histidyl-L-leucine by the ACE of rabbit lung, releasing hippuric acid, which is 

chromatographic quantified. 

3.7.1.1 General enzymatic assay 

Angiotensin converting enzyme (ACE from rabbit lung, Sigma-Aldrich, Steinheim, 

Germany) was dissolved in bidistillated water to reach an activity of 0.4 mU/mL and stored 

in aliquots at -18 °C. The synthetic substrate hippuryl-histidyl-leucine (HHL, Bachem, 

Switzerland) was dissolved in assay buffer (50 mM HEPES and 300 mM NaCl at pH 8.3, 

section 3.1.4) to give a 5 mM solution.  

Dilution rows of inhibitor solutions were prepared with 6 concentrations, comprising at 

least three logarithmic units in the relevant range for the inhibition (from 100 to 0% residual 

activity of the enzyme, when possible).  
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The assays were realized in flat-bottom transparent 96 wells microtiter plates, following the 

procedure described in Table 3-4, for the assays involving peptides and alkylated 

derivatives, and in Table 3-5, for the study of the inhibitory potential of coffee melanoidins. 

Each vertical row of the plate had a negative control, which was prepared by replacing the 

inhibitor solution by the same volume of water. As positive control, captopril (3 nM, Fluka 

Taufkirchen, Germany) was periodically tested. All assays were performed at least in 

duplicate. 

The inhibitor concentration necessary to reduce the enzymatic activity to 50 % (IC50) was 

calculated as described in section 3.7.4. 

3.7.1.1.1 Inhibition of ACE by Nα-carboxyalkylated peptides 

All peptides and derivates were diluted in ultra pure water and membrane filtered for 

dilution. The concentration of the test substances in assay comprised the ranges listed in 

Table 3-3. The exact final concentrations, used for the calculation of IC50 (Section 3.7.4) 

considered the content of the target substance, determined by the elemental analysis 

(Section 3.4.2). 

Table 3-3: Ranges of the inhibitor concentrations used for the determination of IC50 values of native 
and glycated peptides against ACE.  

Concentration in assay (µM) Test substance 

10-2 to 102 CE-IA 

10-1 to 102 CM-IW, CE-IW 

10-1 to 103 CM-GL, CE-GL, CM-IA, CM-GP, CE-GP, CM-AP, 
CE-AP, CM-IP, CE-IP, CM-LL, CE-LL, CM-IPP, CM-GA, 
CE-GA 

100 to 102 CE-IPP, IW 

101 to 103 AP, IP, GP; GL GA, IA IPP, LL 

The determination of the ACE activity in absence (negative control) and presence of 

inhibitors (test sample) was realized as follows: 
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Table 3-4: Scheme of the enzymatic assay for the determination of in vitro inhibition of ACE by 
peptides and carboxyalkylated derivatives. 

 Volume (µL) 

 Negative control Test sample 

Enzyme solution:  
ACE 0.4 mU/mL 

10 10 

Test sample: - 10  

Purified water: 10 - 

10 min pre-incubation at 37 °C 

Substrate solution:  
HHL 5 mM  

80  80 

2 h incubation at 37°C 

Stopping solution:  

HCl 1 M 

100 100 

HPLC quantification 

The amount of enzymatically liberated hippuric acid was measured via RP-HPLC as 

described in section 3.7.1.2. 

3.7.1.1.2 Inhibition of ACE by coffee melanoidins 

From each sample, 5 g was weighed and dissolved in 1 mL water in an Eppendorf tube. Due 

to the difficult resolubilization of the high molecular melanoidins after lyophilization, the 

tube was sonicated for 30 min, centrifuged at 10,000 rpg for 10 min, and the supernatant 

was carefully transferred into a new tube, used to prepare the dilution for the assay. The 

insoluble residue was freeze-dried and subsequently reweighed. The actual concentration of 

solution was calculated by difference.  

In order to achieve higher melanoidin concentrations in the assay as permitted by the 

solubility of the samples, the volumes were slightly adapted, as can be seen in Table 3-5.  
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Table 3-5: Scheme of the enzymatic assay for the determination of in vitro inhibition of ACE by 
coffee melanoidins. 

 Volume (µL) 

 Negative control Test sample 

Enzyme solution:  
ACE 0.4 mU/mL 

10 10 

Test sample: - 10, 20 or 30 

Purified water: 30 20,10 or 0 

10 min pre-incubation at 37 °C 

Substrate solution:  
HHL 5 mM  

60 60 

2 h incubation at 37°C 

Stopping solution:  
HCl 1 M 

100 100 

HPLC quantification as described in section 3.7.1.2. 

In spite of the lower concentration, the excess on substrate was retained and the system 

provided reliable results. 

3.7.1.2 Quantification 

The HPLC system used for the quantification of the hippuric acid liberated to the hydrolytic 

activity of ACE on the synthetic substrate hippuryl-histidyl-leucine (HHL) is described 

below:  

Instrument: Knauer Smartline composed by manager K5000, pump K1000, DAD 
detector K2600, autosampler K3950, and column oven. 

Column: C18-Eurosphere 100, 5 μm, 150 × 4.6 mm, Knauer. 25 °C 

Injection volume: 30 µL 

Eluents: A: 0.1% formic acid in purified water 
B: 100% Methanol 

Detection: UV, λ = 228 nm 
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For the determination of IC50 of peptides and glycated derivatives, the elution was as 

follows:  

Flow:  1 mL/min 

Gradient: Time (min) Eluent B (%) 
0 15 
5 40 
7 80 
9 80 
10 15 
11 15 

 

 

The analyte hippuric acid eluted at 7.6 min elution time and the substrate HHL at 8.9 min.  

In order to prevent co-elution of coffee constituents and hippuric acid, a longer elution was 

realized for the study of the inhibitory potential of coffee melanoidins, as described below: 

Flow: 1 mL/min 

Gradient: Time (min) Eluent B (%) 
0 15 
2 15 
10 25 
21 80 
22 80 
24 15 
27 15 
  

 

Using this gradient, hippuric acid eluted at 8.9 min elution time and the substrate HHL at 

10.4 min. The evaluation software was ChromGate V3.3.1. The product peak was integrated 

to calculate the ACE activity in the absence or presence of inhibitors.  

3.7.2 Inhibition of MMP-1, -2 and -9 

The determination of the enzymatic activity of matrix metalloproteases was realized using 

the synthetic fluorogenic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, where Mca is 

the fluorophore substituent (7-methoxycoumarin-4-yl)-acetyl- and Dpa is the quencher group N-

3-(2,4-dinitrophenyl)-L-α-β-diamino-propionyl (Knight et al., 1992) and recombinant human 

MMP-1, -2 and -9. After cleavage of the Gly-Leu bond, the fluorescence of the unquenched 

peptide Mca-Pro-Leu liberated can be measured. The enzymatic activity is reflected by the 

increase on the system fluorescence at 393 nm emission upon excitation at 328 nm 

(Troeberg and Nagase, 2004). 
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The inhibitory potential of peptides and derivatives was tested and IC50 from coffee 

fractions against the enzymes was established.  

3.7.2.1 General enzymatic assay 

Recombinant human MMP-1, -2 and -9 active domains were commercially available (Enzo, 

Lörrach, Germany). The supplied solutions were diluted in assay puffer (50 mM HEPES, 

10 mM CaCl2, 0.05 % Brij-35, pH 7.5, Section 3.1.4) to the following activities: MMP-1: 

0.765 U/µL, MMP-2: 0.058 U/µL, MMP-9: 0.045 U/µL. The resulting solutions were 

divided in aliquots and stored at -80°C until use. The substrate Mca-Pro-Leu-Gly-Leu-Dpa-

Ala-Arg-NH2 (Enzo) was dissolved in DMSO to give a 400 µM solution, which was also 

divided in aliquots, stored at -80 °C and diluted with assay puffer to 40 µM prior to use. As 

positive control, a 6.5 µM N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycyl hydroxamic 

acid (NNGH, Enzo) solution was prepared. This control inhibitor was stored as a 1.3 mM 

solution in DMSO, which was diluted 1:200 in assay buffer prior to use. The preparation of 

test solutions is described in sections 3.7.2.1.1 and 3.7.2.1.2. The assays were realized in 

flat-bottom black 96 wells microtiter plates, following the procedure described in Table 3-6.  

Table 3-6: Scheme of the enzymatic assay for the in vitro determination of the MMP inhibition. 

 Volume (µL) 

 Negative 
control 

Positive 
control 

Test 
sample 

Enzyme solution:  
MMP-1 (0.765 U/µL), or MMP-2 
(0.058 U/µL), or MMP-9 (0.045 U/µL). 

20 - 20 

Test sample: - - x 

Standard inhibitor: NNGH 6.5 µM - 10 - 

Assay puffer: 70  70 - x 

60 min pre-incubation at 37 °C 

Substrate solution:  10  10 

30 s shaking  

Measurement of fluorescence (λex = 328 nm, λem = 393 nm)  
in 1 min intervals for 15 min 
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Each vertical row of the plate had a negative and a positive control. All assays were 

performed at least in duplicate. 

The fluorescence was measured by using a Tecan Infinite F 200 plate reader and Tecan-i-

Control software. The curve was plotted and the slope of the linear region of the regression 

curve (initial velocity) was used to compare the activities between the samples. 

All assays were performed at least in duplicates. The inhibitor concentration necessary to 

reduce the enzymatic activity to 50 % (IC50) was calculated as described in section 3.7.4. 

3.7.2.1.1 Inhibition of MMPs by Nα-carboxyalkylated peptides 

The peptides and alkylated derivatives were tested in a screening in their highest 

concentrations, as described in Table 3-3. The whole concentration ranges of IA and LL 

derivatives were used for the determination of IC50. 

3.7.2.1.2 Inhibition of MMPs by coffee fractions 

Solutions were prepared as described on section 3.7.1.1.2 for the coffee melanoidins, using 

assay puffer in place of water to solubilization. Due to the high inhibitory potential of 

melanoidins measured, all other coffee fractions were accordingly investigated. 

The concentration range tested was between 0.0005 and 2 mg/mL in the enzyme solution. 

The concentrations above 0.5 mg/mL were achieved by giving 20 or 30 µL test solution to 

the system, as described in table, to the limited solubility of the samples. 

3.7.2.2 Effect of zinc addition on the inhibition of MMP-1 by melanoidins 

In order to study if inhibition of MMPs by melanoidins is due to zinc sequestration, ZnCl2 

was dissolved in MMP-assay buffer (Section 3.1.4) to a concentration of 0.5 mM. This 

solution was diluted to 0.05 and 0.005 mM with the same buffer. The MMP-1 inhibition 

assay was conducted as described above (Sections 3.7.2.1 with observations of section 

3.7.2.1.2), substituting 10µL of buffer by 10 µL of each of the zinc solutions, providing zinc 

concentrations of 0.5, 5 and 50 µM in the assay. The melanoidins were tested at a 

concentration of 0.5 mg/mL. Negative and positive controls were also measured. The 

inhibitory activity of each sample was calculated as described in section 3.7.4. All assays 

were performed in duplicate. 
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For the estimation of the inhibitory potential against ChC of the peptides and the 

carboxyalkylated derivatives, as well as of coffee melanoidins gained from coffee samples 

of increasingly roast degree, a chromatographic method was developed based on a 

spectrophotometric method (Wunsch and Heidrich, 1963). In this method, the synthetic 

substrate 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg-OH dehydrate 

(PzPLGLDR) is hydrolyzed by the microbial collagenase between the residues Leu-Gly, 

liberating the more hydrophobic molecule PzGL, which can be separated 

chromatographically from the more hydrophilic original peptide.  

3.7.3 Inhibition of ChC 

3.7.3.1 General enzymatic assay 

Collagenase from Clostridium histolyticum (ChC, Type VII, Sigma-Aldrich, Steinheim, 

Germany) was dissolved in bidistillated water to an activity of 0.4 FALGPA mU/mL 

(FALGPA = N-(3-[2-furyl]acryloyl)-Leu-Gly-Pro-Ala) and stored in aliquots at -18 °C. A 

4 mM solution of the substrate was prepared by dissolving 62.1 mg of the PzPLGLDR 

(Bachem, Switzerland) in 200µL methanol, adding 19800 µL of assay puffer (50 mM 

HEPES pH 7.5, Section 3.1.4) and mixing until complete solubilization. 

The assays were realized in flat-bottom transparent 96 wells microtiter plates, following the 

procedure described in Table 3-7, for the assays involving peptides and alkylated 

derivatives, and in Table 3-8, for the study of the inhibitory potential of coffee melanoidins. 

Each vertical row of the plate had a negative control, which was prepared by replacing the 

inhibitor solution by the same volume of water. As positive control, EDTA (1 mM) was 

periodically tested. All assays were performed at least in duplicate. 

The calculation of IC50, the inhibitor concentration necessary to reduce the enzymatic 

activity to 50 %, is described in section 3.7.4. 

3.7.3.1.1 Inhibition of ChC by Nα-carboxyalkylated peptides 

The peptides, both IW derivatives and CE-IPP were studied in the highest concentrations 

described in Table 3-3. All other alkylated derivatives were tested in the concentrations 

described in the same table. The enzymatic assay is described in Table 3-7. 
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Table 3-7: Scheme of the enzymatic assay for the determination of in vitro inhibition of ChC by 
peptides and carboxyalkylated derivatives. 

 Volume (µL) 

 Negative control Test sample 

Enzyme solution:  
ChC 0.4 mU/mL  

10 10 

Test sample: - 10  

Purified water: 10 - 

10 min pre-incubation at 25 °C 

Substrate solution:  
PzPLGLDR 4 mM  

80  80 

15 min incubation at 25°C 

Stopping solution: Methanol 100 100 

HPLC quantification as described in section 3.7.3.2. 
 

3.7.3.1.2 Inhibition of ChC by coffee melanoidins 

Aqueous melanoidin solutions were prepared as described on section 3.7.1.1.2 . In order to 

achieve higher melanoidin concentrations in assay system, the procedure was slightly 

changed. The adapted scheme can be seen in Table 3-8. 

Table 3-8: Scheme of the enzymatic assay for the determination of in vitro inhibition of ChC by 
coffee melanoidins. 

 Volume (µL) 

 Negative control Test sample 

Enzyme solution:  
ChC 0.4 mU/mL 10 10 

Test sample: - 25 

Purified water: 25 - 

10 min pre-incubation at 25 °C 

Substrate solution:  
PzPLGLDR 4 mM  

65 65 

15 min incubation at 25°C 

Stopping solution: Methanol 100 100 

HPLC quantification as described in section 3.7.3.2. 
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3.7.3.2 Quantification 

The amount of enzymatically liberated 4-phenylazobenzyloxycarbonyl-Pro-Leu-OH (PzPL) 

was measured via RP-HPLC. The chromatographic system was as follows: 

Instrument: Knauer Smartline composed by manager K5000, pump K1000, DAD 
detector K2600, autosampler K3950, and column oven. 

Column: C18-Eurosphere 100, 5 μm, 250 × 4.6 mm, Knauer, 35°C. 

Injection volume: 30 µL 

Eluents: A: H3PO4 solution pH 3 / B: 100% Methanol 

Gradient: Time (min) Eluent B (%) 
0 15 
2 15 
8 25 
12 80 
30 80 
34 15 
37 15 

 

Flow:  0.75 mL/min 

Detection: UV, λ = 320 nm 

The analyte (PzPL) could be detected at 23.1 min elution time and the substrate PzPLGLDR 

at 18.0 min. 

The evaluation software was ChromGate V3.3.1. The product peak was integrated to 

calculate the enzymatic activity in the absence or presence of inhibitors. IC50 values were 

calculated as described at 3.7.4. 

3.7.4 Calculation of IC50 

To calculate the inhibitor concentrations needed for 50% inhibition of the enzyme activity 

(IC50 values), the residual activity of the enzyme in presence of a test solution was 

transformed to the relative inhibition [Inhibition (%) = 100%- residual activity (%)]. 

Inhibition was plotted against the inhibitor concentration (in logarithmic scale). The 

obtained sigmoidal curve was submitted to a non linear regression using a four-parameter 

logistic model with the software Origin 6.1. The concentration of inhibitor at 50% 

enzymatic activity (IC50) was calculated using the formula (1):  
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Where,  

A1 = initial value (left horizontal asymptote),  

A2 = final value (right horizontal asymptote),  

X0 = center (point of inflection), 

p = power (parameter that affects the slope of the area about the inflection point). 

The significance of the observed differences was calculated by one-way ANOVA using the 

software Origin 6.1 (OriginLab, Northampton, USA). 
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4 Results and Discussion 

This work investigates the influence of the Maillard reaction on the inhibitory potential of 

food components against zinc metalloproteases. As a prototypical Maillard reaction product, 

coffee melanoidins were chosen. Since the mechanisms involved on the formation of these 

macromolecules and the chemical transformations which take place during the heat 

treatment are not completely elucidated, key structural features were analyzed. Due to the 

impressive IC50 values observed, the role of the functional group introduced by the non-

enzymatic browning on the inhibition the metalloproteases was studied. Specific advanced 

glycation end-products of relevant peptides were synthesized and submitted to the 

enzymatic assays. 

4.1 Coffee melanoidins  

4.1.1 Isolation of coffee fractions 

The coffee beans used in this study were submitted to roasting under the mild conditions 

conventionally used for the production of high quality espresso beans. The extracts were 

obtained by extraction with hot water in conditions proportions often used to prepare the 

beverage at home, so that the results are expected to represent realistically the daily ingested 

brew. The whole extracts were lyophilized and named “coffee brew” (cb) 0 to 4, where the 

numbers reflect the intensity of thermal treatment. The attribute “0” describes the non-

treatment and the samples with roast degree “4” were obtained from the beans roasted until 

they were ready to proportionate a high quality espresso. Numbers “1” to “3” represent the 

intermediary roast intensities. The methods for preparation of coffee brews of increasingly 

roast degrees (cb0-cb4) and the isolation of the respective low molecular weight fractions 

(lmw0-lmw4) and high molecular weight melanoidins (mRD0-mRD4) is described in 

details in section 3.5.  

The yields on coffee brew after lyophilization can be seen in Table 4-1. From 100 g non 

roasted coffee beans were obtained almost 20 g extract. The extractability of coffee solids 

decreases with progression of roast. From the beans with cinnamon roast (RD 1, removed 

from roaster after 10 min thermal treatment, which presented 174 °C at the moment of 

removal), 17 g extract (cb1) were obtained from 100 g coffee powder. From the beans with 

American roast (RD 2, 12 min, 190 °C), 16 g of cb2 were obtained, and the French roast 
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beans (RD 3, 14.5 min, 194 °C) proportionate only 15 g of cb3. The final Italian roast beans 

(RD 4, 16 min, 200 °C) gave over 16 g of cb4. The observed variation in the contents of 

soluble solids of coffee upon roasting is well known. Initially, a decrease on the extractable 

matter from coffee powder is observed, most due to denaturation and aggregation processes 

of native proteins of the green beans, which diminishes the solubility of the macromolecules 

in hot water. At the end of the roasting process, a slight increase on the soluble solids can be 

noticed, due to fragmentations caused by the heat treatment, and formation of polar and 

charged functional groups, which contributes to the general extractability. The yield of 

coffee brews are consistent with literature results, where values between 17 and 23% (w/w) 

dry matter, depending on roast grade and brew method, are described (Borrelli et al., 2002; 

Bekedam et al., 2006; Bekedam et al., 2008c; Nunes and Coimbra, 2002). Borrelli et al. 

(2002) obtained 14 g dry extract from 100 g green coffee beans and 17 g dry extract/100 g 

roasted beans, from brews prepared by solid-liquid extraction with hot water. Bekedam et 

al. (2006, 2008c) describe yields from 16 g/100 g and 19 g/100 g for extracts obtained from 

green and roasted beans, respectively, at the same conditions as the used in the resent work. 

Table 4-1: Amount of extractable matter (coffee brew) of coffee samples of increasingly roast degrees 
and respective isolated fractions (low molecular weight fractions and melanoidins over 10 kDa), 
represented in g dry matter per 100 g coffee beans powder. Values in brackets are the relative amounts 
of each fraction in relation to the respective coffee brew total solids, which corresponds to column 
“Total”, represented as g to 100 g coffee brew total solids.  

 Dry mass (g/100 g)  

Roast degree Total 
Low molecular weight 

fraction (lmw) 

Melanoidins 

(mRD) 

0 19.73 16.18 (82.0%) 2.27 (11.5%) 

1 17.35 15.78 (90.9%) 1.27 (7.3%) 

2 16.32 13.92 (85.3%) 1.39 (8.8%) 

3 15.21 12.92 (85.0%) 1.75 (11.5%) 

4 16.43 14.16 (86.2%) 2.02 (12.3%) 

 

There is no consensus in the literature concerning the molecular weight of melanoidins. The 

exclusion limit for their isolation is still rather arbitrary chosen, ranging in the literature 
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between 2 and 100 kDa. In the present study, a 10 kDa cutoff was used in order to better 

compare our results, once this is the most often nominal pore size choice in investigations 

involving melanoidins obtained from coffee. In addition, preliminary work showed a similar 

behavior of melanoidins over 3 kDa and over 10 kDa in respect to their inhibitory activities.  

The low molecular weight fraction is the quantitatively most important fraction of the coffee 

brew, accounting for 80 to 90% of the entire extracts (Table 4-1, values in brackets). As the 

main components from coffee extract, the yields with increasingly roasting come along with 

the tendency for the whole extracts, the amount in soluble low molecular weight compounds 

decreases with progress of roasting until the last roasting stage, where a slight increase can 

be noticed. In most studies the low molecular weight fraction cannot be precisely 

quantified, as the fractions are separated often by dialysis, with disposal of dialysate. 

Bekedam (2008c) found 82% of the coffee brew solids isolated by ultrafiltration to be 

smaller than 3 kDa (Bekedam et al., 2008). 

The content of coffee melanoidins over 10 kDa isolated in the present work represented 

between 1.3 and 2.3% of the coffee powder weight (Table 4-1). Based on coffee brew dry 

matter, the melanoidins respond for 12.3 % of the solids, considering the espresso sample, 

which is the commercial coffee. Melanoidin contents in coffee brew up to 25% have been 

described in the literature (Gniechwitz et al., 2008b). This variation is due to the fact that 

the definition of melanoidins is not good established, permitting a broad choice of isolation 

procedures. Parameters of the fractionation procedure, as method (dialysis, ultrafiltration or 

GPC) and material and cut-off of the membrane used, strong influence the proportion of low 

and high molecular weight fractions (Bekedam et al., 2007). In addition, purification 

procedures will inevitably influence the yield.  

In the melanoidin fraction, the effect of the roasting on the solubility of the coffee solids is 

clear. With beginning of the heat treatment, the amount on extractable high molecular 

weight components decreases due to denaturation and aggregation of proteins and 

polysaccharides. With progression of roasting, the macromolecules are continuously 

modified and acquire hydrophilic functional groups, showing an improved solubility in hot 

water. Similar results were observed by Vignoli et al. (2011), who describes an initial 

reduction in the high molecular weight fraction of brews, which increases again in advanced 

heat treatment, achieving the highest ratio in the final roasted beans. 
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4.2 Inhibition of zinc-dependent peptidases by coffee fractions 

This section describes the in vitro effect of coffee brews and coffee fractions with progress 

of the roasting on selected zinc-dependent peptidases. The main objective was to evaluate 

the food borne inhibitory activity in coffee fractions, especially in the melanoidin fraction, 

as they arise from the thermal treatment, i.e. they are by definition Maillard reaction 

products. The following enzymatic models were investigated: 

- three human matrix metalloproteases (MMP-1, -2 and -9), which participate in many 

physiological processes including tissue turnover and repair, and are involved in numerous 

pathological conditions, especially in malignant diseases. The catalytic domain has an 

extended zinc-binding motif, HEXXHXXGXXH, where the three histidine residues bound 

the zinc atom. A conserved methionine provides a hydrophobic base for the zinc-binding 

site.  

- Clostridium histolyticum collagenase (ChC), which is a zinc-containing bacterial 

metalloproteinase that is also able to degrade extracellular matrix. ChC has the conserved 

HEXXH zinc-binding motif, where two histidine and a glutamic acid residues coordinate 

the catalytic zinc. 

- Angiotensin converting enzyme (ACE), which is a zinc-dependent dipeptidyl 

carboxypeptidase, essential for blood pressure regulation and electrolyte homeostasis 

playing a central role in cardiovascular pathologies such as hypertension and cardiac 

hypertrophy. Somatic ACE is composed of two homologous catalytic domains, each 

containing the HEXXH+E zinc-binding active site motif. 

4.2.1 Inhibition of MMPs 

In the present study, a continuous fluorimetric enzymatic assay based on the enzymatic 

hydrolysis of the fluorogenic peptide was used. The synthetic substrate 

(7-methoxycoumarin-4-yl)-acetyl-Pro-Leu-Gly-Leu-(3-[2,4-dinitrophenyl]-L-2,3-

diaminopropionyl)-Ala-Arg-NH2 (Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2) contains a 

highly fluorescent 7-methoxycoumarin (Mca) fluorophore and a dinitrophenyl quencher 

(Dpa) located on opposite sides of the susceptible peptide bond. The excitation peak of the 

quencher overlaps with the emission peak of the fluorophore, allowing the quencher to 

absorb the energy from the fluorophore in a distance-dependent manner. This prevents 
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fluorescence of the intact substrate by a process of fluorescence resonance energy transfer 

(FRET). Upon cleavage of the susceptible Gly-Leu bond, the quencher and the fluorophore 

become physically separated, leading to a 190-fold increase in fluorescence of the Mca 

(λex=328 nm, λem=393 nm) (Knight et al., 1992; Troeberg and Nagase, 2004). The structure 

of the fluorogenic substrate can be seen in Figure 4-1.  

The option for a kinetic measurement instead for a stop-assay indented principally to 

diminish the interference of samples, as the final products of the non-enzymatic browning 

are known for their UV- and fluorescence activities. As the measured parameter was the 

increase in the fluorescence over the time, and not its absolute value, the intrinsic 

fluorescence of the different samples should not alter the slope in the initial rate period 

(linear ascending region) of the plotting of time versus fluorescence. In fact, no ground 

sample disturbance in measurements was observed. 

 

Figure 4-1: Fluorogenic substrate used for the quantification of MMP activities (7-
methoxycoumarin-4-yl)-acetyl-Pro-Leu-Gly-Leu-(3-[2,4-dinitro-phenyl]-L-2,3-diaminopropionyl)-
Ala-Arg-NH2 (Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2). The susceptible peptide bond is 
represented by a green wavy bond. 
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The activity of the high molecular weight melanoidins formed during roasting of coffee 

beans against MMP-1, MMP-2 and MMP-9 was investigated. Figure 4-2 shows the IC50 

values of the melanoidin preparations obtained from progressively roasted coffee beans.  

 

Figure 4-2: IC50 values of melanoidins extracted from coffee brews of increasing roast degrees 
against MMP-1, -2 and -9. Values are means of triplicates ( ±SD). Assay is described in section 
3.7.2. 

An evident increase in the inhibitory potential of samples, depending on the roasting degree, 

can be observed. The high molecular fraction obtained from green coffee beans (mRD0) 

showed no inhibitory activity against any of the studied enzymes at concentrations up to 

2.5 mg/mL in assay system. With beginning of the thermal treatment, the onset of inhibitory 

activity can be seen. The most lightly roasted melanoidin sample, mRD1, shows weak 

inhibitory potential against MMP-1 (IC50 = 2.42 ± 0.02 mg/mL) and against MMP-2 

(IC50 = 1.19 ± 0.05 mg/mL), although no inhibitory activity against MMP-9 (up to 

2.5 mg/mL) could be detected.  

With advance of roasting, a significant improvement of the inhibition can be seen. The 

inhibitory potential of the melanoidins increases continuously until reaching the dark roast 

grade of mRD3. From mRD3 to mRD4 is the difference significant (p<0.05) only for 
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MMP-1. The melanoidins from the final roasted product (mRD4) provided IC50 values of 

0.461 ± 0.006 mg/mL against MMP-1, 0.224 ± 0.040 mg/mL against MMP-2; and 

0.728 ± 0.014 mg/mL against MMP-9.  

These results indicate that the thermal treatment during roasting has a direct impact on the 

formation of MMP-inhibiting structures within the complex melanoidins. In fact, drastic 

changes on the enzymatic inhibition of food protein after induced Maillard reaction has 

been described in the literature. In experiments involving the IgE-binding activity of 

peanuts and cherry proteins, strong alteration on the binding behavior of the proteins after 

induced browning was reported (Gruber et al., 2004; Gruber et al., 2005). The authors 

suggested that carbohydrate-induced modification of nucleophilic amino acid side chains of 

proteins reaction resulted in molecules with altered binding ability. The capacity of Maillard 

reaction products to inhibit metalloenzymes has been receiving increasingly attention. The 

inhibition of apple polyphenoloxidase by model MRP was reported already over 20 years 

ago (Tan and Harris, 1995; Nicoli et al., 1991; Billaud et al., 2003; Brun-Merimee et al., 

2004). Inhibitory effect of CML and of the arginine derivatives carboxymethylarginin and 

carboxyethylarginine against enzymes implicated in the generation of NO, with possible 

repercussion in chronic vasculopathy, was reported (Lai et al., 2010). Rufian-Henares and 

Morales (2007) described the inhibition in vitro of ACE by food melanoidins, especially by 

the ones isolated from coffee. Also del Castillo et al. (2007) observed the inhibition of ACE 

by Maillard reaction products obtained in gluten–glucose model systems. This effect is 

probably related to the formation of metal-chelating characteristic of Maillard reaction 

products, as carboxymethyl- and carboxyethyl- modification in the side chains of proteins, 

as well as heterocyclic structures as maltosin. Particularly carboxylic groups, like the 

generated with the formation of CML and CEL, and hydroxypyridinones, including the 3-

hydroxy-4-pyrone maltol, another well known Maillard reaction product, show high affinity 

for the catalytic zinc in the active sites of numerous metalloproteases, constituting 

promising ZBGs for the development of new inhibitors of MMPs (Rouffet and Cohen, 2011; 

Puerta and Cohen, 2004; Puerta et al., 2006; Puerta et al., 2005; Jacobsen et al., 2011; 

Lewis et al., 2003).  

Nevertheless, the highly complex coffee melanoidins cannot be reduced to melanoidins 

produced in model system by heating together amino acids and sugars. Recently, Miyake et 

al. (2011) described a dose-dependent inhibitory effect of green tee catequins against 

MMP-7. Strong inhibitory effect of chlorogenic acid on MMP-9 activity (IC50 of 30–50 nM) 
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in a concentration-dependent manner without relevant effect on cell viability was reported 

in a hepatocarcinoma model (Jin et al., 2005). A correlation between polyphenol content in 

food and in vitro inhibition of ACE has already been observed (Kwon et al., 2007).  Narita 

and Inouye (2011) also studied the effect of chlorogenic acids on the activity of 

metalloenzymes and observed inhibition in mili- or high micromolar concentrations for all 

the tested compounds. They found the inhibitory capacity of polyphenols to be dependent 

on the number of caffeic acid moieties or the number of hydroxyl groups introduced. A 

roast-induced formation of diverse groups with potential zinc binding ability, as a result of 

the degradation of caffeoylquinic acids as well as of the Maillard reaction (mostly di- and 

trihydroxybenzenes) was described (Muller et al., 2006). High coordination ability of 

hydroxycinnamates and phenol-based derivatives in the active site of zinc-dependent 

enzymes have recently been reported in a series of kinetic studies (Durdagi et al., 2011; 

Şentürk et al., 2011; Innocenti et al., 2010a; Innocenti et al., 2010b). In silico investigations 

suggested that mono and polyphenols, including caffeic acid, may anchor at the Zn(II)-

coordinated water molecule. By binding more externally within the active site cavity, they 

interact with various amino acid residues in the active site of the studied enzymatic system 

(Durdagi et al., 2011; Şentürk et al., 2011; Innocenti et al., 2010a; Innocenti et al., 2010b; 

Beyza Öztürk Sarıkaya et al., 2010). As a matter of fact, studies on squid-ink melanin, a 

pigment formed from polycondensed polyphenols, also evidenced the binding of metallic 

cation on both carboxylic acid and catecholate binding sites (Liu et al., 2004). In 

conclusion, polyphenols are incorporated to melanoidin skeleton upon roasting (Nunes and 

Coimbra, 2007; Bekedam et al., 2008a; Gniechwitz et al., 2008b), providing other chelation 

possibilities to the macromolecular fraction of coffee. Therefore, the incorporation of 

chlorogenic acid in the melanoidin structure seems to be at least partially responsible for the 

observed roast-dependent inhibitory activity of this fraction. 

The differences of IC50-values of one melanoidin sample among the MMPs cannot be 

discussed in terms of inhibition specificity, as the inhibitory potentials range in the same 

order of magnitude. Although the specificity of a classical low molecular weight drug for a 

MMP is influenced by the interactions with the named ‘selectivity subsites’, the catalytic 

site and binding pockets of MMPs are structurally rather very similar (Overall and Kleifeld, 

2006a; Overall and Kleifeld, 2006b; Borkakoti, 2004). This characteristic is reflected in the 

overlapping functions of many of the family members, which partially cleave the same 

substrates, even though with distinct affinities (Zucker and Vacirca, 2004; Fingleton, 2008). 
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As complex high molecular weight compounds, melanoidins provide a multitude of 

interaction possibilities, and binding points to each MMP are potentially found also outside 

of the catalytic center. Therefore, the specificity within the family in mostly improbable and 

inhibitory property of the melanoidins against MMPs will be discussed as the inhibition of a 

group of enzymes, not against individual components of the MMP family. 

Due to the encouraging results observed for the coffee melanoidins, the evaluation of the 

effect of roasting on the inhibitory activity of the complementary low molecular weight 

fractions and of the whole coffee brews was undertaken.  

Contrary to the high molecular weight fraction, where enzymatic inhibition can only be 

measured after onset of thermal treatment, the low molecular weight fraction from non-

roasted coffee beans shows already impressive inhibitory effect, as illustrated in Figure 4-3.  

 

Figure 4-3: IC50 values of low molecular weight fractions of coffee brews of increasing roast 
degrees against MMP-1, -2 and -9. Values are means of triplicates ( ±SD). Assay is described in 
section 3.7.2. 

Furthermore, the effect of the thermal treatment over the inhibitory potential of the low 

molecular weight compounds did not follow the trend found for the melanoidins. Except for 
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MMP-2, which seems to be better inhibited by thermally treated samples of both high and 

low molecular weight fractions of coffee brew, the roasting exerts a rather attenuating effect 

on the bioactivity of the low molecular weight fraction of coffee.  

After an initial decrease in IC50 values, with beginning of the roasting process, the 

inhibitory activity of the low molecular weight samples worsens with progress of the 

treatment. While the low molecular weight fraction isolated from non roasted coffee beans 

(lmw0) provided IC50 values of 0.226 ± 0.004 mg/mL against MMP-1, 

0.217 ± 0.101 mg/mL against MMP-2; and 0.484 ± 0.018 mg/mL against MMP-9, the low 

molecular weight compounds obtained from the final roasted product (lmw4) inhibit the 

studied enzymes with IC50 values from 0.335 ± 0.044, 0.123 ± 0.083 and 

0.625 ± 0.049 mg/mL against MMP-1, -2 and -9, respectively. The thermally induced 

decrease of the fraction can possibly be due to a loss in naturally present polyphenols, 

which can coordinate zinc and possibly impair the hydrolytic function of matrix 

metalloproteases. It is known that the heat degradation of chlorogenic acids gives a variety 

of lactones and volatile di- and trihydroxyphenols, quinones and catechols, which contribute 

to the formation of aroma and flavor of roasted coffee (Moon et al., 2009; Moon and 

Shibamoto, 2010; Muller et al., 2006; Sharma et al., 2002). The decrease in the inhibitory 

activity of the low molecular weight fraction upon roasting can thus be caused, to some 

extent, by the pyrolytic degradation of polyphenols, with formation of structural features 

less effective for the zinc coordination and, therefore, in samples less prone to impede the 

enzymatic activity. However, as the roasting temperatures used to prepare the coffee 

samples used in the present study did not exceed 200°C, temperature at which pyrolysis of 

chlorogenic acids begins in model systems, the migration of the coffee free polyphenols to 

the high molecular weight fraction, caused by their incorporation in melanoidin skeleton, 

can be the principal cause of depletion of chelating moieties in the lmw. 

Beholding whole brews, it is evident that the quantitative dominance of the lmw fraction on 

the extracts shapes the behavior of brew, overshadowing the observed increase in the 

bioactivity of the melanoidin fraction. The brew from non-roasted coffee beans (cb0), 

presented IC50 values from 0.271 ± 0.079, 0.253 ± 0.043 and 0.547 ± 0.018 mg/mL against 

MMP-1, -2 and -9, respectively, as represented in Figure 4-4. The effect of roasting over the 

inhibitory potential of the samples was initially slightly positive, showing cb0 IC50 values of 

0.207 ± 0.047, 0.180 ± 0.023 and 0.370 ± 0.003 mg/mL against MMP-1, -2 and -9, 

respectively. However, with progress of the roasting, the inhibitory capacity of the samples 
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decreased continuously, until IC50 values reached about the levels for cb0, except for MMP-

2, where the effect of the roasting on the enzyme inhibition was not accentuated. IC50 values 

of brew from espresso beans (cb4) were 0.333 ± 0.092, 0.154 ± 0.054 and 

0.614 ± 0.039 mg/mL against MMP-1, -2 and -9, respectively.  

 
Figure 4-4: IC50 values of coffee brews of increasing roast degrees against MMP-1, -2 and -9. 
Values are means of triplicates ( ±SD). Assay is described in section 3.7.2. 

The results presented in this section are an evidence of the process-induced formation of 

compounds with inhibitory activity against metalloproteases in coffee beans. Although this 

effect cannot be perceived by considering only the inhibitory potential of the whole coffee 

brews, it is very clear by the analysis of isolated high molecular weight melanoidins, which 

are formally food borne molecules, that the thermal treatment originates characteristics 

which were not present in the fraction ahead the heating. However, coffee is a very complex 

matrix and roasting promotes not only the classical Maillard reaction, but also extensive 

chemical transformations of polyphenolic compounds, which represent around 7% of green 

coffee beans dry matter and are almost completely ‘degraded’ after roasting. These include 

pyrolysis, polymerization and incorporation in high molecular weight compounds. In 

summary, the thermal treatment leads to a functionalization of macromolecular fraction by 
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incorporation of low-molecular compounds with efficient zinc-binding moieties, such as 

carboxylic, catechol and hydroxypyridinone groups.  

The generated non-dialyzable macromolecules cannot be absorbed in intestinal tract, 

accumulating in lumen, were they can show an important dietary contribution in the 

protection against intestinal dysplastic formations. We dare to propose that much of the 

beneficial effects of coffee consumption described in section 2.2.1.3 are caused by the 

melanoidin fraction. Principally the well-established protective property on colorectal 

cancer can be a reflex of the action of these final products of the Maillard reaction. A 

general discussion about the physiological relevance of the observed inhibition is outlined 

in section 4.2.3. 

Effect of zinc addition 

As it is known that melanoidins are able to chelate metal ions, it had to be elucidated 

whether simple zinc complexation, resulting in a removal of the zinc ion from the active 

center of the metallopeptidases, might be responsible for the observed inhibitory activity of 

coffee melanoidins, rather than specific interactions of the macromolecules with the 

enzymes. To check this hypothesis, inhibition of MMP-1 by the melanoidin isolates was 

measured in the presence of varying amounts of zinc. Melanoidins isolates were tested at 

0.5 mg/mL, which is a concentration around the IC50 of mRD4 against this enzyme. Zn(II) 

concentrations were increased only until no impairment on enzymatic function could be 

measured in the controls. The exact assay conditions are described in section 3.7.2.2. The 

effect of the zinc addition on the inhibitory potential of the melanoidin samples can be seen 

in Figure 4-5.  

It can be noticed that the inhibitory potential of the melanoidins was not negatively affected 

by increasingly zinc concentrations. Although the already very low inhibitory effect of 

mRD0 (0.4%) could not be measured after zinc addition, with progress of roasting the 

inhibitory potential was even positively affect by the increasingly zinc concentrations; 

although the differences were not significant under the assay conditions. The reduction of 

17.0 ± 3.7 % of the MMP-1 activity caused by the melanoidin isolate mRD1, measured in 

absence of zinc, increased up to 46.1 ± 4.2 % in presence of 50 µM Zn(II). Under the 

described conditions, no trend of a restorative impact of zinc on the enzyme activity could 

be noticed in isolates of more intensively roasted beans. The 51.0 ± 3.9 % metalloprotease 
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inhibition caused by 0.5 mg/mL of mRD2 in absence of zinc, changed to 46.9 ± 13.8 % in 

presence of 0.5 µM Zn(II), 42.5 ± 12.4 % at 5 µM Zn(II), and 46.5 ± 1.1 % in presence of 

50 µM zinc. Similarly, mRD3 reduced the activity of MMP-1 on 46.2 ± 8.3%, 

41.6 ± 20.2 %, 38.9 ± 4.8 %, 44.5 ± 14.9 % and mRD4 on 59.7 ± 1.7 %, 49.4 ± 4.8 %, 

56.6 ± 9.9 %, 49.3 ± 3.4 %, in presence of 0 µM, 0.5 µM, 5 µM, and 50 µM Zn(II), 

respectively. 

 

Figure 4-5: Influence of the Zn(II) concentration on the inhibition of coffee melanoidins against 
MMP-1. Values are means of duplicates ( ±SD). Assay is described on section 3.7.2.2. 

Once the decrease in MMP activity due to the presence of melanoidins cannot be restored 

by zinc addition, specific molecular interactions between the inhibitor and the active center 

of the enzymes are supposed.  

4.2.2 Inhibition of other zinc metalloproteases 

Aiming to proof the specificity of the heat-induced inhibitory properties of the observed for 

coffee melanoidins against MMPs, two other zinc metalloproteases were tested, namely 

ChC, which shows relevant substrate similarity to MMPs, and ACE, which plays a central 
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role in cardiovascular pathologies such as hypertension and cardiac hypertrophy. The two 

enzymes have a catalytic Zn(II) coordinated to two histidine and a glutamic acid residue. 

Both assays were based on a time-controlled hydrolysis of a synthetic substrate followed by 

the chromatographic separation, UV-detection and quantification of the product, according 

to section 3.5.2. 

The high molecular weight melanoidins isolated from coffee beans of increasingly roast 

degrees did not show any detectable inhibition against ACE in concentrations up to 

1.5 mg/mL, which was the highest concentration obtainable in assay. No effect of the 

roasting on the inhibitory potential could be observed in this concentration. Likewise, the 

inhibition against ChC was tested up to concentration of 1.25 mg/mL. Once more, no 

inhibition of the enzymatic activity was found for any of the studied melanoidin isolates. 

Rufian-Henares and Morales (2007)  reported inhibitory activity of coffee melanoidins of 

different roast intensities against ACE. The authors found that, at a concentration of 

2 mg/mL, the high-molecular coffee melanoidins showed an inhibition of ACE ranging 

from 36.8% (light roasted) via 43.1% (medium roasted) to 45.1%. This observation 

reinforces the hypothesis of the present work, that coffee melanoidins have the potential of 

reducing the activity of zinc metalloproteases. However, this very high concentration could 

not be reproduced in the present study due to insufficient sample solubility.  

In summary, concentrations needed to inhibit MMPs are significantly lower compared to 

concentrations needed to inhibit the zinc-containing peptidases ACE and ChC, indicating a 

specific inhibition mechanism based on a molecular interaction between the melanoidins 

and the catalytic centre of the MMPs rather than simple zinc chelation.  

4.2.3 General considerations 

An undoubtedly increase in the inhibitory activity due to roasting was described in this 

chapter. Upon roasting, modifications in the chemical structure of the high molecular 

weight fraction of coffee brews progressively increased the inhibitory potential of the brown 

non-enzymatic glycation products against zinc-dependent MMPs. Nevertheless, the classical 

Maillard reaction products may not be the only possible cause of the enhanced inhibitory 

potential. The incorporation of chlorogenic acids, which are known for inhibiting MMPs in 

a dose-response manner (Demeule et al., 2000), on the melanoidin structure is good 

documented (Adams et al., 2005; Nunes and Coimbra, 2010; Bekedam et al., 2008a; 
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Bekedam et al., 2008c). The thermally-induced inhibitory potential of coffee melanoidins 

towards MMPs is probably an additive effect of new groups formed by through the routes of 

the Maillard reaction, and the incorporation of molecules present in the green beans, 

principally hydroxycinnamic acids. 

MMPs have physiological inhibitors, a family of 22–28 kDa proteins that form 

stoichiometric inhibitory complexes with MMPs (Packard et al., 2009). In fact, an 

increasing number of studies have shown that processing of some protein and peptide 

substrates by MMPs requires that the substrates interact not only with the active site, but 

also with regions outside the active site. Such regions are referred to as non-catalytic sites 

or exosites, which can be motifs localized in the catalytic domain or in one of the other 

domains. An important role of the exosites may be to orient the substrate properly for 

cleavage and, for some substrates, exosite-binding is an absolute requirement for 

degradation (Hadler-Olsen et al., 2011). This observation may explain the preference of the 

matrix metalloproteases for very complex and voluminous structures, which are able to 

occupy simultaneously diverse binding pockets inside and outside of the catalytic centre. 

This study evidences additionally, that the observed inhibitory potential is not primarily due 

to the zinc depletion, as the activity of the zinc-containing metallopeptidases ACE and ChC 

were not affected by melanoidins, and the addition of zinc to the MMP-1 assay system did 

not restore the enzymatic activity in the presence of coffee melanoidins. The detailed 

structural background of the interactions between MMPs and melanoidins in order to 

explain the MMP-selective inhibition remains to be elucidated.  

In order to evaluate whether the observed in vitro activity of coffee melanoidins are possible 

to cause physiological consequences, some theoretical estimations were done. The 

concentration of melanoidins on coffee brew depends on the degree of roast, the type and 

conditions of extraction, and the strength of the brew. Furthermore, the amount of ingested 

melanoidins will also depend on the serving size and drinking habits (Fogliano and 

Morales, 2011). According to the isolation method used in the present study, 100 g of 

roasted coffee provides around 2 g of soluble high molecular weight melanoidins. 

Therefore, a 200 mL cup of coffee brew, prepared from 50 g of roasted beans per liter of 

water, contains around 200 mg of high molecular melanoidins, under the conditions used in 

the present work. In other words, a cup of coffee supplies 200 mg mRD4, which presents 

the inhibitory activity presented in Figure 4-2. 
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Considering the fact that the colon accumulates its content over at least 24 h within its 

maximum volume of 2 L (Rogalla et al., 2005), the concentration of the non-absorbable 

high molecular weight melanoidins reaches 0.2-0.3 mg/mL in the lumen, following the 

ingestion of 2 to3 cups of this coffee brew. This concentration is in the range of the IC50 

values measured for MMPs. In lumen, a direct contact of the melanoidins with the MMPs 

secreted by tumoral tissues may happen, proportioning the possibility of effective 

inhibition. In other words, even conventional drinking habits can result in intestinal 

melanoidin concentrations, which may lead to a significant inhibition of MMPs. This 

estimation concerning an uptake of melanoidins is comparable with recently published data 

(Fogliano and Morales, 2011). Nevertheless, it must be underlined that this is a very 

conservative estimation. Under normal conditions, the total human colon content comprises 

only around 200g (Mackay et al., 1997), a fact which indicates that actual much higher 

concentrations of coffee melanoidins in colonic lumen are commonly reached. 

4.3 Structural studies on coffee melanoidins 

The chemical structure of coffee melanoidins is largely unknown. Despite several efforts, an 

exact definition of these food polymers is still impossible (Nunes and Coimbra, 2010). The 

involvement of proteins, polysaccharides and chlorogenic acids and the influence of heat 

treatment to form polymers of varying size have been already demonstrated (Nunes and 

Coimbra, 2007; Cämmerer et al., 2002; Nunes and Coimbra, 2010; Bekedam et al., 2008a; 

Bekedam et al., 2008c; Bekedam et al., 2007; Nunes and Coimbra, 2002; Manzocco et al., 

2001). Melanoidins are formed by cyclizations, dehydrations, retroaldolizations, 

rearrangements, isomerizations, and condensations of initial Maillard reaction products 

(Martins et al., 2000), but none of the processes have been fully characterized yet. 

Structural information is quite limited, mainly because the Maillard reaction in real foods is 

far more complicated than in model systems, since many more possible reactants are present 

(Bekedam et al., 2007).  

In this context, aiming to elucidate the main chemical transformations caused by the non-

enzymatic browning on the high molecular weight fraction of the coffee brew, to chemically 

characterize the isolated melanoidins, and to localize the groups responsible for the 

enzymatic inhibition described in section 4.2, it was necessary to draw an exploratory 

sequence of structural studies, which are reported in the following section. 
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4.3.1 Gel permeation chromatography 

In the present work, a silica-based gel filtration column developed for protein and peptide 

separations was used. The determination of melanoidin molecular weight by conventional 

methods, including gel permeation chromatography, can be much inaccurate, due to the 

complexity of melanoidins molecules, with indefinite, most likely irregular structure and 

shapes. It makes the choice of standards for the estimation of their molecular weight crucial, 

as the common standards do not show structural similarity to melanoidins. In addition, 

aggregation phenomena are frequent in solution, difficulting the interpretation of the 

obtained apparent molecular weights (Borrelli et al., 2002; Gniechwitz et al., 2008b). Since 

the reports concerning the molecular weight of melanoidin material are very controversial, 

some of them describing the main fraction around 3 kDa, some describing relevant fraction 

above 100 kDa (Borrelli et al., 2002; Reichardt et al., 2009; Gniechwitz et al., 2008b), a 

broad separation range was preferred. Under native conditions, the exclusion sizes are 5-

700 kDa, adequate range to analyze such molecules with still largely unknown structure. 

The most adequate elution was obtained with isocratic flow of 50 mM phosphate buffer, 

containing 0.15 M NaCl, pH 6.5. The protein standards were used as they exhibited a 

similar behavior to the melanoidins during the development of the method, with alteration 

of their elution times caused by the modification of ion force or pH of eluent, in the same 

manner as melanoidins. Dextran standards were also tested, but they did not show any 

similarity to the melanoidins elution pattern. This observation suggests that the brown food-

borne polymers still maintain a strong protein character, rather than a carbohydrate 

preponderance. 

UV-absorption from high molecular weight fractions of coffee were registered using diode 

array (DAD) detection of samples submitted to GPC, with the objective of selecting the 

wavelengths for the measurement sequences. In Figure 4-6 the spectra of the unroasted 

sample mRD0 and from the melanoidins obtained from coffee with the final roast (mRD4) 

are illustrated.  

In the spectrum of the high molecular weight fraction of green beans (mRD0) three 

individual peaks can be seen in the high molecular weight region. The maximum around 

220 nm can be explained principally by the presence of proteins. Low molecular weight 

components with pronounced absorption in this region could not be detected. With onset of 

thermal treatment, the distinct peaks seen at mRD0 give place to an individual peak, which 
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elutes around 30 min. The 220 nm maximum is still marked, however the high molecular 

weight compounds are progressively functionalized, acquiring UV-active character along 

the roasting. The final melanoidin isolate (mRD4) shows, besides the 220 nm absorption, 

maxima at 320 nm, possibly explained by the presence of chlorogenic or caffeic acid 

(Bekedam et al., 2006) and at 420 nm, due to the formation of chromophores. 

 

Figure 4-6: DAD spectra of the high molecular weight fraction of green coffee beans (mDR0) and 
melanoidins from final roasted coffee (mRD4) 
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The general absorption is less intensive at 405 nm than at 220 nm, but the analysis of the 

chromatogram can be more specific for melanoidins at the higher wavelength, once the 

absorption of light at 405 nm is characteristic for these brown compounds and widely used 

in the literature (Borrelli et al., 2002; Hofmann et al., 2001; Bekedam et al., 2006). In this 

work, 405 nm was thus the wavelength chosen to accompany the changes in the melanoidin 

profile. The absorption of peptide bounds of the assumed protein skeleton of the 

melanoidins (220 nm) constitutes a stable base for comparisons. The absorptions at 280 nm 

were likewise registered, in order to follow the formation/incorporation of aromatic systems 

in the melanoidin complex. 

The gel permeation chromatograms of the coffee brews, obtained as described in Section 

3.6.1 and detected at 220 nm and 405 nm, can be seen in Figure 4-7. The elution times of 

the standards, used for the estimation of the apparent molecular weight of the peaks, are 

pointed out. 

With beginning of the roasting, major modifications on the profile of the coffee brew can be 

observed. The peaks at 23 and 34 min from cb0, corresponding to 181 and 22 kDa, 

respectively, are intensive in cb0, but absent in cb1. Probably, these macromolecules are 

proteins, which were denaturated and aggregated with beginning of the thermal treatment 

and could not be extracted by hot water. Noteworthy is the roasting-dependent increase of 

the peak around 39 min. This peak corresponds to emerging melanoidinic structures, 

product of the non-enzymatic browning. A closer look at this fraction will be taken 

following. 

Also the continuously decreasing peak at 55 min must be noticed. Even though the used 

column does not separate analytically within this molecular weight range, the region 

corresponds to the elution of chlorogenic acid. This fact suggests the decomposition or 

condensation of the free polyphenolic compound, or the reaction of these with other coffee 

components, forming structures of higher molecular weight. It can therefore be concluded, 

by means of this figure, that the detectable alterations at 405 nm are principally relative to 

the formation of high molecular weight compounds and the decomposition of polyphenols 

or their migration in other structures. 
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Figure 4-7: Analytical gel permeation chromatogram of coffee brews (cb) of different roast grades, 
detected at 220 nm and 405 nm. Conditions are described in section 3.6.1. The elution times of the 
standards used for the calibration are pointed out, as well as the elution time corresponding to the 
MWCO of the membranes used for isolation of coffee fractions. 
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In the Figure 4-8, the elution patterns of the low molecular weight fractions are shown. The 

profile of each lmw isolate is very similar to the respective original coffee brew. This is a 

consequence of the quantitative dominance of low molecular weight compounds in coffee 

extract. The fractions used in the present work were isolated by exhaustively resuspending 

the retentates in water and repeating the ultrafiltration, until the absorption at 405 nm of the 

filtrate was found to be below 0.1. Since all filtrate was collected, the recovery was almost 

complete, what is impracticable by using dialyzation as separation method. This extensive 

isolation procedure led to the recovery of nearly all detectable peaks of the coffee brews in 

the low molecular weight fraction, which responds also for around 90% of the total coffee 

extract dry matter.  

 

Figure 4-8: Analytical gel permeation chromatogram of low molecular weight fractions (lmw) 
obtained from coffee brews of different roast grades, detected at 220 nm. Conditions are described 
in section 3.6.1. The elution time corresponding to the MWCO of the membrane used for isolation 
(10 kDa) is shown. 

By examining the analytical chromatograms of the lmw fraction, it can be noticed that 

quantitatively relevant peaks with apparent molecular weights far above the nominal pore 

size of the membranes used for ultrafiltration (10 kDa) can be seen. This fact was expected, 
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as, for proteins, a MWCO at least 3 times smaller than the molecular weight of the solute 

being retained should be chosen to ensure that the target molecules will end up in the 

filtrate. Furthermore, retention of a molecule by an ultrafiltration membrane is determined 

by a variety of chemical and physicochemical characteristics, among which its molecular 

weight should be used merely as orientation. Many other factors including molecular shape, 

electrical charge, sample concentration, sample composition, and operating conditions 

influence enormously the separation. However, as the intention of this separation was to 

obtain pure melanoidin preparations, free from any low molecular weight compounds, the 

isolation was regarded as successful and adequate to the aims of this work, as can be seen in 

Figure 4-9. In fact, the high molecular weight fraction (mRD) is composed virtually 

exclusively by molecules over 10 kDa. No free phenolics or low molecular weight 

compounds could be chromatographically detected, what shows that the exhaustive washing 

during ultrafiltration is an efficient tool to gain pure high molecular weight melanoidins. 

The high molecular weight isolate obtained from the green coffee beans (mRD0) showed 

three distinct peaks with apparent molecular masses of 446, 181, and 22 kDa. On the basis 

of literature facts, it can be supposed that the first peak is composed by arabinogalactan-

proteins and the two other peaks with apparent molecular masses of 181 and 22 kDa are 

basically of a proteinous nature (Redgwell et al., 2002a; Nunes et al., 2005; Nunes and 

Coimbra, 2002). 

Upon roasting, a distinct change can be observed for the chromatographic profiles. Already 

for mRD1, only one broad peak with a mean molecular mass of approximately 14 kDa was 

detectable, indicating transformations and degradation of the high molecular polymers from 

the green coffee beans. Due to the high temperatures, denaturation and aggregation of 

proteins and polysaccharides occurred, leading to insoluble products (Bekedam et al., 

2008c). With progress of roasting, a gradual increase in the apparent mean molecular mass 

of this melanoidin peak can be noticed, increasing from 14 (mRD1) to 17 (mRD2), 21 

(mRD3), and 28 kDa (mRD4). This progression can be better observed in the 

chromatograms of mRDs detected at 405 nm. This confirms findings by (Wen et al., 2005), 

who correlated the molecular size of polymers from coffee with the progress of roasting. 
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Figure 4-9: Analytical gel permeation chromatogram of melanoidin fractions (mRD) obtained from 
coffee brews of different roast grades, detected at 220 nm and 405 nm. Conditions are described in 
section 3.6.1. The elution time corresponding to the MWCO of the membrane used for isolation 
(10 kDa) is shown. 
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The absence of very high molecular weight peaks in the melanoidin chromatograms, even 

by using a broadband column, corroborates the most recent studies. Coffee extracts or 

melanoidin isolates obtained by GPC fractionations have been subject of several studies 

during the last years. Although an important fraction of melanoidins have been reported to 

show molecular weights above 100 kDa (Borrelli et al., 2002), this observation could not be 

supported by many groups (Gniechwitz et al., 2008a; Reichardt et al., 2009). Hofmann et 

al. (2001) fractionated coffee brew in a Sephadex G-25 column and obtained melanoidin 

peaks with molecular weight between 3 and 60 kDa. Bekedam et al. (2006) observed that 

chromatography of this same material, which is broadly used in investigations with coffee 

melanoidins, showed very poor reproducibility, and concluded that the elution of coffee 

components on this material was not only based on size exclusion but also on 

physicochemical interactions. Therefore, they opted for a size exclusion separation in a 

broadband polymethacrylate column, using an HPLC system. Gniechwitz et al. (2008b) 

isolated from coffee brews, using a Sephadex LH-20 column, a fraction with molecular 

weight above 100 kDa and another with the components between 3 and 10 kDa. They found 

both isolates to have similar chromatographic and electrophoretic behaviors and no relevant 

differences in carbohydrate and amino acid contents or composition could be observed. The 

authors suggest that extremely-high-molecular-weight coffee melanoidins (>100 kDa) may 

not be real but are confounded with non-covalent complexes, made up of melanoidins with 

molecular masses around 3–22 kDa and high-molecular-weight carriers. In line with these 

findings, Takenaka et al. (2005) estimated a molecular weight of about 35 kDa to the zinc-

chelating melanoidinic fraction of coffee. 

In addition to the raise of the mean molecular mass, a continuous increase of the peak areas 

was shown. As the enlargement in the melanoidin content in coffee (yield, Table 4-1) was 

not as intense as the intensification of the AUC for the same isolates, this can be explained 

as a progressive increase in the absorption coefficient of the melanoidin isolate due to 

intensified formation of chromophores in the melanoidin complex.  

But not only compounds absorbing at 405 nm are formed during the roasting. The formation 

of compounds absorbing at 280 nm has also been reported (del Castillo et al., 2002). On 

Figure 4-10 the gel permeation chromatograms of the isolated coffee melanoidins obtained 

at 280 nm can be seen. 
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Figure 4-10: Analytical gel permeation chromatogram of melanoidin fractions (mRD) obtained 
from coffee brews of different roast grades, detected at 280 nm. Conditions are described in section 
3.6.1. 

The chromatographic profiles of the melanoidin isolates, measured at 280 nm, are 

qualitatively comparable to the ones detected at 405 nm. The extinction at 280 nm is 

generally used, in coffee melanoidin investigations, as a basis of comparison, being 

considered a sign of protein presence. However, also at this wavelength a progressive 

increase in the absorption coefficient can be observed with progress of roasting, suggesting 

an incorporation of unsaturated systems to the melanoidin skeleton simultaneously to the 

development of the pigmentation. This fact led the decision for not using the extinction at 

280 nm as the standard absorption for comparisons relative to the roast intensity, as the 

extinction at 220 nm is less prone to be altered by functionalization.  

The general progression of the area under the curve of melanoidin peaks can be seen in 

Figure 4-11. The alterations reflect the changes in the extinction coefficient of the 

melanoidins, once the injected solutions presented the same the concentration. It is evident 

that the formation of characteristic melanoidin chromophores and of unsaturated systems 

occurs. Their incorporation on the macromolecular structures, manifested as the increase on 
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the absorptions at 405 and 280 nm of the high molecular weight fraction, are parallel heat-

induced phenomena.  

 

Figure 4-11: Area under the curve of melanoidins gel permeation chromatographic peaks in the 
different detected wavelengths. mRD0 to mRD4 are the melanoidin isolates obtained from coffee 
samples of increasingly roast grades. The areas of all mRD0 peaks were summed. 

Hofmann (1998a) developed a method for the assessment of chromophores formation 

during Maillard reaction systems, based on the visual threshold of colored fractions. This 

method has been currently used in the literature to estimate the melanoidin character of a 

sample (Gniechwitz et al., 2008b). Bekedam et al. (2006) introduced specific extinction 

coefficients, aiming to determine the relative amount of chlorogenic acid and/or proteins 

compared to the amount of melanoidins coffee samples. The authors suggested the 

calculation of extinction constants by comparing the extinction of the samples at 280, 325 

and 405 nm. However, they did not take in account that UV-active compounds are formed 

through the Maillard reaction and other conjugated systems apart from chlorogenic acid can 

distort the expected prediction. 
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By means of the absorption areas described in Figure 4-11, another estimation parameter 

can be suggested. By comparing the area under the curve detected at 405 nm with the area 

at the more constant “basis” absorption (220 nm) a “browning index” can be proposed*. The 

Figure 4-12 illustrates the evolution of the browning index of the coffee melanoidins 

isolated in the present work with progress of the roasting. 

 

Figure 4-12: Browning index of coffee melanoidin samples. The index is obtained by diving the 
area under the curve of the melanoidin peak detect at 405 nm by the area under the curve using a 
220 nm detection. Values used for the calculation are described in Figure 4-11. mRD0 to mRD4 are 
the melanoidin isolates obtained from coffee samples of increasingly roast grades. 

The suggested estimation seems to qualitatively follow the same trend as the 

transformations observed in the gel-permeation chromatographic investigations presented 

until now, as well as with the results to be reported in the sections 4.3.2. and 4.3.4. 

Following the rapid initial changes of the high molecular weight structures until RD2, a 

slower progression of the modifications is observed in the last stage of the roasting. This 
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observation correlates also with the fact that the last three melanoidin isolates were obtained 

from coffee beans in roast stages commercially available, ingested according to personal 

and cultural preferences. As described in section 3.5.1, the ‘American roast’ of RD2 

correspond to the mildly roasted product, while RD3 is the dark ‘French roast’, and RD4 is 

the very dark ‘Italian roast’, the adequate point for the production of a quality espresso 

coffee. A validation of the proposed method should be done. 

4.3.2 Elemental analysis: C/N ratio 

With the study of the evolution of the ratio between carbon and nitrogen contents of isolated 

melanoidins upon roasting, measured by elemental analysis (described in section 3.4.2), we 

aimed to get clear evidence about the chemical nature of the melanoidin backbone and the 

main transformations taking place in the high molecular weight fraction of coffee during the 

thermal treatment. The results are illustrated in Figure 4-13. 

 

Figure 4-13: Ratio between carbon und nitrogen contents (C/N ratio) in whole coffee brews of 
increasing roast degree and their respective low molecular weight and melanoidin and their 
fractions. (RD, roast degree). 
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Once again, the influence of the low molecular weight fraction on the behavior of the whole 

coffee brew can be seen. With beginning of the heating, the carbon-rich low molecular 

weight fraction undergoes a relative content loss of carbon in comparison to nitrogen. This 

fact can be explained by the initial degradation of sugars with cleavage of the carbon chain 

and formation of volatile fragmentation products, which, by the way, play a considerable 

role in aroma formation substances (Ledl and Schleicher, 1990). The pyrolytic loss due to 

decarboxylation of many other low molecular with is also a much probable event. Also the 

incorporation of C-rich molecules in the melanoidin complex through the Maillard reaction 

or other chemical processes, causing carbon depletion in the lmw fraction, should be 

considered. In roasted beans, the most nitrogen-containing low molecular weight 

compounds are caffeine and some trigonelline, but also nitrogen from glycated amino acids 

and peptides is present in the fraction (Bekedam et al., 2008). Except for trigonelline, which 

shows marked thermolability, partially originating volatile compounds as pyridine and 

pyrazines, it is likely that the nitrogen composing low molecular weight molecules do not 

migrate from the fraction. Thereby, the decrease in C/N-ratio is clear. 

In regard to the melanoidin fractions, the pattern is opposed. A continuous increase in the 

C/N ratio can be seen. The changes in the C/N ratio are significant when mRD0 (4.2) and 

mRD1 (14.4) as well as mRD1 and mRD2 (28.2) are compared. The drastic increase in the 

carbon content relative to nitrogen suggests a sudden loss or degradation of nitrogen-rich 

substances, such as amino acids, peptides, and proteins via reactions such as deamidation. 

Furthermore, an incorporation of carbon-rich substances, such as carbohydrates, sugar 

degradation products and polyphenols, are much likely to occur, resulting in the final 

polymeric melanoidin structure.  

With further roasting progress from mRD2 to mRD3 or from mRD3 to mRD4, the increase 

in the C/N ratio is less pronounced. The principal reaction in the formation of a high 

molecular melanoidin structure, therefore, should be coupling of carbon-rich compounds 

such as carbohydrates, polyphenols and their degradation products, to a nitrogen-rich 

protein skeleton. Similar results were found by Bekedam et al. (2008c), who demonstrated a 

strong carbohydrate-like component on high molecular weight melanoidins, describing a 

positive correlation between the roasting and the content of galactomannans for the 

melanoidin fraction of a coffee brew. In the same paper, the authors reported a close relation 
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of nitrogen and melanoidin levels, indicating a direct involvement of nitrogenous 

compounds in melanoidins formation.  

Interestingly, Maillard reaction products with high C/N ratios have been related to higher 

metal affinity when compared to counterparts of lower C/N ratios in model studies 

(Wijewickreme and Kitts, 1998; Wijewickreme et al., 1997). 

The N contents, measured by means of elemental analysis, were used to estimate the 

“protein content” of the coffee brews and their fractions. The universal conversion factor 

6.25 was used. The calculated results can be seen on Table 4-2. 

Table 4-2: Estimated protein content of coffee samples, calculated using the nitrogen content 
determined as described in Section 3.6.2 and the universal conversion factor (6.25).  

 “Protein” content on dry matter (%) 

 RD0 RD1 RD2 RD3 RD4 

Coffee brews 24.22 ± 0.13 16.59 ± 0.04 20.41 ± 0.13 21.34 ± 0.13 21.13 ± 0.18 

lmw 14.88 ± 0.09 16.47 ± 0.04 22.66 ± 0.04 22.69 ± 0.18 22.41 ± 0.13 

Melanoidins 68.19 ± 0.27 17.72 ± 0.22 9.06 ± 0.35 8.81 ± 0.09 8.63 ± 0.09 

The values are means of duplicates (±SD) and are based on dry matter (%, w/w). 

It can be noticed that the early denaturation and aggregation removes proteinaceous material 

from coffee brew, reducing its protein content on almost 1/3. This effect disappears with 

continuation of the roasting process, what can be interpreted as an evidence of 

resolubilization of denatured proteins with prolonged roasting. The improved extractability 

could have been caused by chemical modifications of the protein, like chlorogenic acid 

incorporation. 

In the lmw fraction, no initial decrease in protein content can be seen. It must have been 

caused by the fact that most low molecular weight nitrogen compounds from coffee are not 

of protein origin, like caffeine and trigonelline, which are not significantly altered. With 

continuance of the treatment, degraded proteinous material turn extractable, and C-rich low 

molecular weight compounds, like sugar degradation products and phenolic compounds, 

migrate to the high molecular weight fraction. 
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In the melanoidin fraction, the loss in “protein” is abrupt and continuous. The initial 

decrease is, as discussed above for the coffee brews, due to the diminished extractability of 

proteins after the initial roasting. The following steps bring C-rich compounds to the 

originating melanoidinic structure, changing the relative contents of C and N and giving the 

impression of a decrease in protein content. This observation is in line with the observations 

of Nunes and Coimbra (2007), who reported a decrease in the amount of protein-like 

material in the high molecular weight melanoidins quantified by amino acid analysis after 

acid hydrolysis. 

Bekedam et al (2008c) related an increase of the nitrogen amount in all molecular weight 

ranges, including the high molecular weight fraction, at the final step of roasting process. 

These results are not in conformity with the values presented in Table 4-2. This 

contradiction is most probably due to the roasting method. Although the author does not 

describe the roast conditions of the studied samples, the common industrial process uses 

temperatures of about 250 °C. The coffee used in the present work was roasted under gentle 

conditions, aiming to preserve the full aroma and foamability of the espresso beans. 

Apparently, the mild treatment prevented the extreme degradation of coffee compounds 

frequently related in the literature for dark roasted coffees. 

4.3.3 Amino acid analysis 

To better understand the transformation of the proteinaceous material of coffee melanoidins, 

the coffee brews and their fraction were submitted to amino acid analysis after acid 

hydrolysis, according to section 3.6.3. The Figure 4-14 illustrates the changes in total amino 

acid content of the melanoidin fractions along the roast treatment. 
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Figure 4-14: Total amino acids content after acid hydrolysis of coffee brews of increasingly roast 
degrees (RD0-RD4) and their fractions. 

The thermal treatment caused an impressive decrease in the amount of detectable amino 

acids, in particular for the high molecular weight components of green coffee. This decrease 

from RD0 to RD1 may be due to aggregation and denaturation processes, leading to limited 

protein extractability. This alteration is visible principally in the melanoidin fractions, and is 

so intensive, that reflects in the pattern observed for the whole brew. With advance of 

roasting, increasingly amounts of amino acids can be measured in the lmw fractions, 

probably as result from fragmentations of higher molecular weight compounds. Even if the 

decrease in the amino acid content of the melanoidin fraction can partially be explained by 

the migration of protein fragments in the lmw fraction, the losses of the high molecular 

weight fractions are also to be explained by the participation of amino acids as nucleophiles 

in the Maillard reaction, during which they can be blocked or transformed, originating, for 

example, heterocyclic AGEs. In general, it can be noticed that the course of the relative 

alterations are very similar to the data observed in Table 4-2, where the protein content was 

estimated using the nitrogen contents based on elemental analysis. 
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Also Bekedam et al. (2008c) described a massive initial loss of the proteinaceous material 

of green coffee. Investigating nitrogen and protein losses, this author estimated that 25% of 

the total amino acid degradation in the high molecular weight fraction should be due to 

participation of amino acids in Maillard-like reactions and that 75% should be due to 

limited solubility of denatured proteins. Cämmerer et al. (2002) found a marginal liberation 

of intact amino acids after acid hydrolysis of melanoidins, obtained from heating amino 

acids and sugars in model systems. The authors interpreted this observation as evidence for 

either the incorporation of only small amounts of proteins in the melanoidins skeleton, or 

for an amino acid depletion caused by decomposition and participation in the branching of 

sugar degradation products. Nunes and Coimbra (2007) reported both reduction in the 

recoverable protein-like components of melanoidins upon roasting and the formation of 

CML in this fraction. Based on literature discussions and results of this work, it can be 

suggested that the melanoidins are not poor on protein, as suggested in earlier 

investigations, but rather the protein backbone loses its native character, and the nitrogen 

components loses quantitative importance due to massive incorporation of carbon-rich 

moieties. 

Pentosidine  

Pentosidine is a crosslink amino acid formed at the final phase of the Maillard reaction 

between lysine and arginine, and is thus an interesting marker for protein oligomerization 

induced by glycation reactions. As illustrated in the Figure 2-3, pentosidine contains an 

imidazo-pyridine ring, which confers to the molecule a characteristic fluorescence 

(λex = 335 nm, λem = 385 nm). Although its presence in food is limited, the detection is 

very sensitive, and its presence can be also an indicator of intensity of food processing 

(Schwarzenbolz et al., 2000). 

The Table 4-3 provides an overview on the pentosidine contents in the coffee samples and 

their fractions, quantified by fluorescence, after acid hydrolysis and chromatographic 

separation, as described in Section 3.6.3.4. This cross-link amino acid could only be 

detected from middle roasted samples on. It is remarkable that, after the suddenly initial 

increase, the pentosidine content stayed almost constant until the end of the roasting 

process. This observation evidences the major importance of the carbohydrate-dependent 

non-enzymatic protein cross-link for the initial stages of roasting, which however, is not 
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observed with advance of roasting, suggesting an early depletion of the available reactive 

structures in protein skeleton.  

Table 4-3: Pentosidine content in coffee samples of increasingly roast degrees (RD0 to 4), analyzed 
and calculated as described in section 3.6.3.4.  

 Pentosidine content (mg/kg protein) 

 RD0 RD1 RD2 RD3 RD4 

Coffee brews n.d. n.d. 1.40* 1.84 ± 0.10 2.10 ± 0.49 

lmw n.d. n.d. 1.54 ± 0.28 1.83 ± 0.47 1.93 ± 0.61 

Melanoidins n.d. n.d. 7.96 ± 1.31 9.06 ± 1.05 8.77 ± 0.52 

Results are means of duplicates (±SD).  n.d.= not determinable: No pentosidine peak was present on 
chromatogram. * = Single determination. Protein content was calculated on the basis of nitrogen 
content, measured by elemental analysis.  

Higher values were described by Henle et al. (1997), who found contents between 11 and 

40 mg/kg protein (1-4 mg/kg coffee) in roasted coffee. As already discussed in section 

4.3.2, the coffee samples used in the present study were especially mildly treated, and the 

lower temperatures can possibly have favored different kinds of derivatization.  

The prevalence of this cross link amino acid in the high molecular weight fraction of coffee, 

in comparison with the low molecular weight fraction, can also be noticed. The high 

molecular weight protein of coffee extracts are at least four times more intensively cross-

linked than in the nitrogenous components in low molecular weight isolate, probably due to 

the abundant presence of non-protein nitrogen in this last fraction, which cannot be 

glycated.  

In summary, the observed pentosidine contents point to the participation of protein cross-

link mediated by carbohydrates in the formation of high molecular melanoidins in the early 

stages of the roasting, forming a nucleus, which later undergoes different modifications 

through other mechanisms.  

Lysinoalanine  

The crosslink amino acid lysinoalanine (LAL) was quantified using ion exchange 

chromatography, as described in section 3.6.3.3. No lysinoalanine peak could be detected, 



Results and Discussion 

 120 

suggesting that crosslinks involving lysine are not important features in the formation and 

“growth” of melanoidins, what can have been caused by the acidity of coffee beans and the 

short heating time, unfavorable conditions for LAL formation. It can be said that protein 

cross-link in absence of carbohydrates plays no role in the formation of high molecular coffee 

melanoidins.  

Taken together, these results point to multiple mechanisms, other than the single Maillard 

reaction, described for model system. The consideration of polyphenols as one part of the 

process is essential. 

4.3.4 Total phenolics 

In the recent years, growing evidence points to a crucial role of coffee phenolics on the 

formation of melanoidins upon roasting (Nunes and Coimbra, 2007; Nunes and Coimbra, 

2007; Nunes and Coimbra, 2010; Bekedam et al., 2008a; Gniechwitz et al., 2008b). Aiming 

to improve the knowledge about this important parameter, and, principally, to characterize 

the samples used in this work, the total contents of polyphenols of the coffee brews of 

increasingly roast degrees and their respective low molecular weight fractions and high 

molecular weight melanoidins were measured using Folin-Cioucalteu reagent, as described 

in Section 3.6.4. The Folin-Ciocalteu reagent may give positive results with reductones or 

other reducing or metal-chelating substances formed during glycation, possibly 

overestimating the total phenolic content of a food sample. Especially in coffee samples, 

were the high levels of polyphenolic antioxidants are expected to dominate, a precise 

quantification of the contribution of Maillard reaction products over the total antioxidant 

activity of coffee samples is difficult (Delgado-Andrade and Morales, 2005; Bekedam et 

al., 2008b; Delgado-Andrade et al., 2005). However, studies comparing various antioxidant 

capacity assays found the Folin-Ciocalteu results to be related to the reducing capacity of 

the coffee beverage and its radical scavenging potential (Vignoli et al., 2011). Although the 

chemical principals of the reaction are not completely elucidated, the convenience, 

simplicity and reproducibility of the Folin-Cioucalteu reaction made it the routine assay in 

studying phenolics, in particular on coffee melanoidins (Borrelli et al., 2002; Bekedam et 

al., 2008b; Gniechwitz et al., 2008b; Huang et al., 2005; Delgado-Andrade et al., 2005). 

The results are illustrated in Figure 4-15. With beginning of the thermal treatment, an 

increase in the total phenol content of the coffee brew was observed, changing from 
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0.22 mg/mg chlorogenic acid equivalents for green beans brew (cb0) to 0.27 mg/mg for the 

brew after initial roasting (cb1). This tendency was inverted with progress of roasting and 

the total phenol content decrease continuously to reach 0.20 mg/mg at the most intensively 

roasted sample (cb4).  

 

Figure 4-15: Total phenol content of coffee brews and their fractions, determined by Folin-
Cioucalteu reagent and represented as chlorogenic acid equivalents (mg/mg). RD0 to RD4 
correspond to the increasingly roast degree of the samples. Values are means of triplicates 
(± SD). 

In line with the present results, del Castillo et al. (2002) reported a decrease in chlorogenic 

acid contents between light and medium roasting samples. Also Sacchetti et al. (2009) 

described a decrease in total phenolics content of whole coffee brews with the increase of 

the intensity of thermal treatment, using Folin-Cioucalteu reagent.  

With respect to the low molecular weight fraction of coffee brews, a similar curve profile 

was observed. After a slight initial increase from 0.24 mg/mg chlorogenic acid equivalents 

in lmw0 to 0.28 mg/mg in lmw1, a continuously decrease in phenolics content could be 

observed, reaching 0.17 mg/mg chlorogenic acid equivalents for lmw4.  
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In relation to the melanoidin fraction, the principal object of study of the present work, the 

course of the curve deviated from the other samples studied. The initial rapid increase in the 

apparent polyphenol content, from 0.02 mg/mg chlorogenic acid equivalents in the high 

molecular weight fraction of green beans (mRD0) to 0.10 mg/mg in the medium roasted 

sample (mRD2), was substituted by a flatter progression, achieving 0.11 mg/mg in the 

melanoidins obtained from final espresso roasted beans (mRD4). The observed increase in 

the total phenolics content in the high molecular weight fraction is most probably 

prevalently due to covalent incorporation of chlorogenic acids into the melanoidin 

structures, as the contribution of the roasting-induced antioxidants to the overall antioxidant 

activity of coffee brews is rather limited in comparison to the predominating antioxidant impact 

of the phenolic compounds (Bekedam et al., 2008b). 

The nature of the incorporation of polyphenols on the melanoidin backbone has been object 

of intensive investigations, and the interpretations of the findings are often contradictory. 

The most likely linkage between the phenolic compounds and melanoidins has been 

supposed to be via the protein fragments incorporated in the coffee melanoidins during the 

roasting process (Nunes and Coimbra, 2007; Bekedam et al., 2006). By submitting a high 

molecular weight isolate of coffee extract to hydrolysis under weak conditions, such as acid 

or alkaline hydrolysis and alkaline decomposition in glycerol, Takenaka et al. (2005) found 

that phenolic compounds are not present in esterified form in the melanoidins, as no 

effective degradation of could be found. Alkaline fusion is a method commonly used in the 

literature to liberate covalently bound phenolics (Takenaka et al., 2005; Nunes and 

Coimbra, 2007), in which the dry sample is heated at 350°C with excess of solid NaOH, in 

presence or not of zinc dust. Under these conditions, double bonds and ether bindings are 

also hydrolyzed, and not only the ester linkages, as in the conventional saponification. Due 

to the low amount of recoverable phenolic compounds by alkaline fusion found in the 

investigation of Nunes and Coimbra (2007), the suggestion of incorporation of condensed 

hydroxycinnamic acids into the melanoidins complex by non-ester chemical bounds was 

corroborated. A series of NMR studies realized by Vignoli et al. (2011) refuted the 

existence of intact caffeic acid or ferulic acid moieties as integral units of the melanoidins 

and favors the concept of condensed phenolics as melanoidin constituents. In his extensive 

chromatographic investigations about the incorporation of chlorogenic acids in coffee 

melanoidins, Bekedam et al. (2008a) demonstrated the presence of intact chlorogenic acids 

in the melanoidin backbones, and proposed incorporation to take place upon roasting via 
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caffeic acid through mainly non-ester linkages. Gniechwitz et al. (2008b) questioned the 

existence of intact caffeic acid or ferulic acid moieties as integral units of the melanoidins, 

once the propenyl side chains could not be detected in by NMR-spectroscopy. They 

defended the concept of condensed phenolics as melanoidin constituents, integrated via 

reactions leading to loss or modification of their conjugated double bound. Perrone et al. 

(2012) also reported on the involvement of polyphenolic compounds in the formation coffee 

melanoidins via the caffeic or ferulic acid moiety, mainly through nonester linkages and 

propose likewise the incorporation of chlorogenic acid lactones into the melanoidin 

structure. The observed roast-dependent increase in the dihydrocaffeic acid content in 

melanoidin samples, detected after saponification, was discussed as a sign of oxidation of 

chlorogenic acids posterior to incorporation. As the phenolic acid moiety from chlorogenic 

acid is far more prone to oxidative changes than the quinic acid, it is generally assumed that 

the phenolic acid is likely the moiety which participates in the chemical reactions during 

roasting (Bekedam, 2008). Phenolic acid can be oxidized to quinone in alkaline milieu, 

which in turn can undergo attack by nucleophiles such as lysine, methionine, cysteine and 

tryptophan moieties in a protein chain (Kroll et al., 2003). However, the coffee matrix has a 

strong acid character, and, furthermore, the importance of oxidative reactions in the heat 

degradation of polyphenols has been recently questioned (Moon and Shibamoto, 2010). 

Possibly, the incorporation of the intact chlorogenic acids in the melanoidin structure occurs 

through reactions still not investigated. 

In conclusion, the present section shows a progressive increase in the total phenol content of 

the melanoidin fraction of coffee brew upon roasting, quantified using Folin-Ciocalteu 

reagent. This evolution follows the same tendency as the inhibitory potential of coffee 

melanoidins against MMPs, as described in section 4.2. This corroborates the suggestion 

that incorporation of polyphenols to the melanoidin structure can have been at least partially 

responsible for the observed emerging of inhibitory activity of this fraction against MMPs.  

4.3.5 Correlation between total phenols content and C/N ratio in coffee 

melanoidins 

By comparing the results presented in sections 4.3.2 and 4.3.4, a direct correlation between 

the C/N-ratio and the total phenol content of melanoidins of increasing roasting degrees can 

be assumed. In order to proof this presumption, total phenol contents were plotted against 

C/N ratio for each melanoidin sample. The results can be seen in Figure 4-16.  
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Figure 4-16: Correlation between the increase in C/N ratio and total phenol content in coffee 
melanoidins with progress of the roasting. mRD0 to mRD4 are the melanoidin isolates of 
increasingly roast degree. 

A linear correlation between the total phenolics contents and C/N ratio of the melanoidin 

fractions of coffee brews with progress of roasting was observed (y = 0.00358 x + 0.00036, 

r2 = 0.9947). This correlation evidences the simultaneity of the thermally induced increase 

of the proportion of carbon rich compounds in the high molecular weight fraction of brews, 

and the increase of total phenol contents of the same fraction, strengthening the suggestion 

of a progressive incorporation of chlorogenic acid into the melanoidin polymer upon 

roasting, although the thermally induced incorporation of carbohydrates, mainly 

arabinogalactans, to coffee melanoidin structure also takes place (Bekedam et al., 2007) and 

probably contributes for the increase in the C/N ratio. 

4.3.6 Raman spectroscopy 

The aim of this preliminary experiment was to evaluate the changes on the signal intensity 

of Raman spectra of the coffee samples of increasing roast intensities, trying to find some 

evidence about the character of the chemical transformations which take place in the 

polyphenolic structure upon heating, and the mechanism of chlorogenic acid incorporation 
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into the melanoidin structure. Unfortunately, due to massive background intensity, the 

isolated melanoidins could not be analyzed under the conditions described in section 3.6.5. 

The results will thus be interpreted indirectly, based on the differences between the 

alterations in coffee brews and the low molecular weight fraction, assuming that the 

responses of the melanoidin fraction correspond to the “lacking piece”. 

The Figure 4-17 shows the Raman spectrum of standard chlorogenic acid and the relevant 

signals for the present investigations, normalized in the region between 1200-1000 cm-1. 

The band at 1632 cm-1 corresponds to the signal from the conjugated carbonic acid (or its 

ester) and the signal at 1606 cm-1 is originated by the aromatic ring of caffeic acid.  

 

Figure 4-17: Raman spectrum of 5-caffeoylquinic acid. Experimental conditions are described in 
section 3.6.5. 

The Figure 4-18 illustrates the spectroscopic patterns of the whole coffee brews (above) and 

the respective low molecular weight fractions (below). Considering the whole coffee brews 

(cb), a marked and continuous roast-dependent decrease in both signals can be noted.  
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Figure 4-18: Raman spectrum of coffee brews of increasingly roast degrees (cb0 to cb4) and their 
respective low molecular weight fractions (lmw0 to lmw4). Experimental conditions are described 
in section 3.6.5. 

This observation denotes the degradation of the studied groups. This fact could be explained 

by oxidation and pyrolytic degradation of the polyphenols, if the decrease of both signal 

intensities were similar. As can visually be suggested and will be better discussed later, the 
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decrease of the signal of the conjugated double-bound of the carbonic acid from caffeic acid 

is faster than the disappearance of the phenolics moiety. 

In opposition to that trend is the progress of the caffeic acid signals upon roasting in the low 

molecular weight fraction (lmw). With onset of heating, a balanced and slight decrease of 

both peaks could be measured. With progress of the roasting, no significant alteration was 

detected. In Figure 4-19 the comparison can be done more clearly. As the Raman signals are 

overlapping, the integration of the single peaks is not possible and their height was used to 

calculate the ratio between the intensity of the signals originated from the conjugated 

double bound of the carbonic acid (or its ester) and the aromatic system from polyphenol. 

While in the low molecular weight fraction the relative intensities are quite stable, in the 

whole coffee brew a notable decrease on this ratio can be seen. These observations allow 

the attribution of the difference in behavior to the lacking fraction: the melanoidins. 

 

Figure 4-19: Ratio between the peak heights of the conjugated double bond of the carbonic acid and 
of the phenolics ring, with evolution of the roast degree of the samples. RD0 to RD4 correspond to 
the increasingly roast degree of the samples. 

Taking together all the literature reports about the role of chlorogenic acids in the formation 

of coffee melanoidins and the results from the present work, we suggest that the 
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incorporation of polyphenols on the melanoidin backbone happens, at least in part, by a 

Michael-like nucleophilic addition of amino or sulfhydryl groups of proteins on the 

conjugated double-bond of the caffeic or chlorogenic acid. The adduct is stabilized by tauto-

enol isomery. The proposed mechanism can be seen on Figure 4-20.  

 

Figure 4-20: Suggested reaction mechanism for the incorporation of chlorogenic acids on 
melanoidin structure 

This mechanism could explain the experimental findings about the incorporation of 

chlorogenic acid in melanoidin structure reported in the last years and conciliate much of 

the contradictory interpretations found in the literature, as described in sections 2.2.2.1 and 

4.3.4. A Michael-like addition of a nucleophilic group from a protein in the conjugated 

double bound of caffeic acid: 

- is a covalent and nonester linkage; 

- the incorporation takes place at a nitrogenous structure; 

- allows the incorporation of the intact chlorogenic acid molecule; 

- explains the absence of the propenyl resonance in the NMR investigations. 

On the basis of these observations, the proposed reaction pathway may be one of the 

reactions responsible for the heat-induced incorporation of chlorogenic acids in coffee 

melanoidins. 

In order to study the reactivity and gain some evidences about the mechanism of polyphenol 

incorporation, model melanoidins can be prepared in complex systems that simulate 

realistically the conditions of coffee beans during the roasting. Interesting would be the 

study of variation of the phenolics acid, as illustrated in Figure 4-21. 
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Figure 4-21: Phenolic compounds proposed for the model investigation of the mechanism of 
incorporation of phenolic compounds in the coffee melanoidin structure, under roasting conditions. 

By comparing the behavior of coumaric acid (only one phenolic group in para position), 

caffeic acid, ferulic acid (meta-methylated derivative of caffeic acid), and sinapic acid (2 

meta-methylated phenolics groups, one free phenolic group at para position) in presence of 

a standard protein, the structural features involved in the incorporation can be closely 

investigated, as the reactivity of the phenolic groups and of the conjugated double bound 

can be closely compared, depending on the presence of activating groups in the aromatic 

ring and disponibility of phenolic groups for the reaction. 

4.4 Derivatization of peptides 

Potent ACE-inhibitors used in therapy of arterial hypertension, including captopril, enalapril 

and lisinopril, combine an effective zinc-binding group with a substrate-mimicking 

structure, characteristics which assure a competitive tight-binding at the active site of ACE, 

by both coordinating with the catalytic Zn(II) and satisfactorily occupying substrate pockets 

of the enzyme (Natesh et al., 2004; Natesh et al., 2003; Hayashi and Camargo, 2005). One 

of the most frequently used zinc-binding moieties in clinically used ACE inhibitors is 

carboxylate (Yiotakis and Dive, 2009).  

The purpose of this section is to compare the inhibitory activity of native peptides and their 

Nα-carboxymethyl- and Nα-carboxymethyl derivates, products of N-terminal glycation 

possibly found in food, against ACE.  

The glycated peptides studied are not commercially available and were synthesized. Nine 

peptides (IW, AP, IP, IPP, GP, LL, IA, GA, GL) were chosen based on their relevant 

inhibitory potential against metallopeptidases, being five of them (IW, GP, AP, IP, IPP) 

known in the literature for their bioactivity against ACE. All of them correspond to 
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sequences commonly found in food, especially milk, but also gelatin, seed storage proteins, 

and a diversity of other alimentary plant and animal protein sources contain known ACE-

inhibitory di- and tripeptides encrypted in their primary structures, which can be liberated 

by proteolysis (De Leo et al., 2009; Hernández-Ledesma et al., 2011; Murray and 

FitzGerald, 2007; Fitzgerald and Murray, 2006; Saito, 2008) 

4.4.1 Nα-carboxyalkylation of peptides by reductive alkylation 

In the present study, the Nα-carboxymethyl- and Nα-carboxyethyl-derivates of selected 

peptides were synthesized by reductive alkylation of commercial peptides with glyoxylic 

acid and pyruvic acid, respectively. The reaction between aldehydes and ketones with 

primary or secondary amines under reductive conditions is currently a broadly used method 

for both laboratory and industrial preparation of N-substituted amines (Krupka and Patera, 

2007). In fact, it is among the most useful and important methods for the production of 

mixed secondary amines, which are difficult to prepare by other methods (Nishimura, 

2001). Generally, after the condensation and the amine to form a carbinolamine, the loss of 

a H2O molecule takes place, to give an imine or Schiff base. The reduction of the imine 

intermediate to give the aimed amine can occur by action of different reagents, being the 

use of hydride donating reagents or molecular hydrogen in the presence of a catalyst 

convenient and broadly applied procedures (Gomez et al., 2002). The formation of the 

iminium species is reversible, but not the reduction (Baxter and Reitz, 2004). The general 

pathway of a reductive alkylation is illustrated on Figure 4-22.  

All derivates were obtained with high purity. Except for the alkylation of IW, the 

heterogeneous hydrogenation using Pd as catalyst was shown to be chemoselective and led 

to appropriate purities of all peptide derivatives. The chemoselective hydrogenation of C=C 

from unsatured carbonyl compounds is usually achieved under mild conditions by catalytic 

hydrogenation (Nishimura, 2001), however aromatic rings often also hydrogenated under 

Pd-catalized C=C hydrogenation conditions (Kyriakou et al., 2011). In fact, in the present 

work, the derivatization of tryptophan was shown to be impossible using this method. The 

indolyl group is highly sensitive to hydrogenolysis. The reduction from tryptophan by 

treatment with gaseous hydrogen in presence of palladium on charcoal was described, and 

the extent of tryptophan modification appears to be difficult to reduce (Mery and Calas, 

1988). For the conditions where the catalytic hydrogenation does not lead to a 

chemoselective reduction, the use of hydride reducing agents can be possible (Abdel-Magid 
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and Mehrman, 2006). Sodium cyanoborohydride is considered to be the best known reagent 

for reductive alkylations (Baxter and Reitz, 2004). Thus, the syntheses of the Nα-

carboxymethyl- and Nα-carboxyethyl-derivatives of IW were realized using NaBH3CN as 

reducing agent. Sodium cyanoborohydride has shown to be a suitable hydride reagent for 

the present reductive alkylation of IW, even though the formation of considerable amount of 

bis-carboxymethylated IW was observed. The occurrence of dialkylation of amines as a side 

reaction, especially by the use of an aldehyde as carbonyl compound, is well known in the 

literature (Baxter and Reitz, 2004; Abdel-Magid and Mehrman, 2006). Monoalkylation with 

aliphatic aldehydes can be stimulated by using either an excess of amine or a 1:1 mixture of 

aldehyde to amine and ensuring that imine formation is complete prior to addition of 

reducing agent (Baxter and Reitz, 2004). Future syntheses should take this into account. 

 

 

Figure 4-22: General reaction pathway of N-terminal reductive alkylation of dipeptides by 
aldehydes or ketones R = H, alkyl or aryl substituent. R1 and R2 are amino acid side-chains. Adapted 
from Nishimura (2001) and Abdel-Magid and Mehrman (2006). 
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The synthetic pathway and purification procedures are described in sections 3.2 and 3.3. 

The structures of the obtained carboxyalkylated peptides can be seen at Figure 4-23.  

 

Figure 4-23: Structures of the studied peptides and their synthesized CM- and CE-derivatives. 

The yields of the derivatives of IPP (30% for CM-IPP and 4 % for CE-IPP) were markedly 

lower than of their counterparts, from which at least 40%, mostly around 70% yield was 
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obtained. This is probably due to steric hindrance, as the peptide IPP has longer 

substituents. It is known that the rate of the reaction between an amine and a carbonyl group 

to form the intermediate imine and the rate of the hydrogenation of the imine both decrease 

with increasing the size of the groups in the neighborhood of the mentioned functions. 

Therefore, yield and selectivity are strongly dependent upon the steric hindrance of the 

starting compounds (Gomez et al., 2002). The yield of reductive alkylation is also known to 

be variable dependent on reagents, solvent, temperature, and H2 pressure, in addition to the 

catalyst chosen for the hydrogenation of the imine (Krupka and Patera, 2007). In most 

hydrogenation reactions, an increase in the hydrogen pressure increases the rate of reaction, 

reduces reaction time and favors an efficient use of the catalyst (Nishimura, 2001). For the 

preparation of derivatives of slow reacting peptides, the reaction under pressure is 

suggested. 

It must be noticed that all CE-derivatives are likely to be diastereoisomeric mixtures, as the α-

C-atom of the carboxyethyl substituent is chiral, as well as the α-carbons of the amino acids. 

Fast racemization during palladium-catalyzed hydrogenation is described in the literature 

(Murahashi et al., 1983). In general, the critical step, which leads to stereodifferentiation, is 

not the hydrogen transfer, but the adsorption of the reactant on the catalyst, and the formation 

of the half-hydrogenated state (Kyriakou et al., 2011; Tungler and Fogassy, 2001). Which 

diastereotopic face of the substrate will preferentially bind to the catalyst surface is defined by 

steric features and electrostatic interactions (Heitbaum et al., 2006). Higher diastereoisomeric 

excesses were observed using NaBH3CN than by catalytic hydrogenation. Equimolar 

diastereoisomeric mixture would be an advantage in the present study, as is not known which 

of the diastereoisomers show activity against the enzyme and diastereoisomeric excesses 

distort the results difficulting comparisons and interpretation on the bioactivity. 

4.5 Preliminary investigations on the inhibitory potential of Nα-

carboxyalkyl derivatives of peptides against metalloproteases 

This section aimed to investigate the potential of non-enzymatic glycation on the generation 

of inhibitors of metalloproteases, by introducing a zinc-binding group in a relevant peptide 

structure. The selectivity of the molecules was evaluated by testing the three zinc-

metalloproteases, which were investigated under action of coffee melanoidins (section 4.2). 
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4.5.1 Inhibition against ACE 

Solutions of the synthesized Nα-alkylated derivates and the original peptides were tested as 

inhibitors for angiotensin converting enzyme. Assay details are reported in section 3.7.1.  

ACE is an exopeptidase, which cleaves the C-terminal dipeptide (HL) from the decapeptide 

angiotensin I. Important knowledge about the specificity of substrate and inhibitor binding 

in the catalytic site of ACE has been gained without any insight from the three dimensional 

structure of the enzyme (Natesh et al., 2004). A systematic study of inhibitory potency of L-

dipeptides showed a range of four orders of magnitude, from VW to PG. Analyzing these 

results, it was found that ligands possessing C-terminal aromatic or prolyl residues have 

high affinity for the catalytic binding pockets of ACE, while dicarboxylic amino acid cannot 

bind efficiently. In N-terminus, branched-chain amino acids, valine and leucine promotes 

stronger interactions as other residues (Ondetti and Cushman, 1984). The peptides studied 

in this work are variations over these motifs. 

As can be seen on Table 4-4, the glycation of the studied dipeptides increased enormously 

the inhibitory potential of the molecules against ACE.  

Table 4-4: In vitro IC50 values of peptides and their Nα-carboxymethyl- and Nα-carboxyethyl-
derivatives against ACE. 

Peptide 
IC50 (µM) 

native Nα-carboxymethyl- Nα-carboxyethyl- 

GA  1907 ± 61 863 ± 95 103 ± 7 

GL  2785 ± 204 834 ± 32 41.0 ± 1.7 

GP  371 ± 44 138 ± 25 15.6 ± 3.2 

AP  37.5 ± 6.7 3.69 ± 0.66 0.27 ± 0.16 

IP  241 ± 32 46.2 ± 15.6 10.1 ± 0.1 

IA 1023 ± 160 30.6 ± 0.8 0.26 ± 0.05 

LL n.d. 760 ± 57 50.0 ± 14.1 

IW  1.71 ± 0.12 4.31 ± 0.48 0.41 ± 0.01 

IPP  3.42 ± 0.45 434 ± 54 203 ± 14  

n.d. = not determinable; means ± SD, n = 2-3. 
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In all cases, besides for IW, the CM-derivates showed IC50 values 2 to over 30 times lower 

than the original peptides. The CE-derivatization was even more effective, leading to 

molecules almost 4000 times more active than the underivatized peptides. In fact, a general 

advantage of the carboxyethyl derivatization, in comparison with the carboxymethyl 

functionalization, can be observed. Similar tendency was reported by Patchett et al. (1980), 

who synthesized a series of substituted N-carboxymethyl-dipeptides, which inhibited ACE 

in nanomolar levels. Among the reported substances, CM-AP and CE-AP can be seen. 

Using a slightly diverging in vitro assay, these authors described IC50 of 2.4 µM for CM-AP 

and 0.09 µM for CE-AP, which are in line with the inhibitory potentials measured in the 

present work. They also found the ACE inhibition of the derivates to be independent of zinc 

concentration, ruling out the inhibition by removing Zn(II) from active site. The competitive 

tight-binding inhibitor ACE inhibitor captopril is a substrate-derived molecule. Its 

peptidomimetic structure, which simulates the peptide Ala-Pro, interacts with the active site 

Zn(II) ion by direct coordination through a thiol metal-binding group, deep inside the 

channel at the active site (Natesh et al., 2004).  

As schematically represented in Figure 4-24, the subsite S1 is a relevant affinity-giving 

position. It can be supposed that the additional methyl group from CE-derivatives, in 

comparison with CM-derivatives, interacts in this region, leading to an energetic advantage 

for the binding, even if not so markedly as the phenylalanine residues of the represented 

drugs. 

A very important observation is the positive effect of proline residues at the carboxyl 

terminus of the dipeptide. GP and their derivates were more active as their counterparts 

from GA and GL. Also between native IA and IP a positive effect of C-terminal proline can 

be seen. Proline and hydroxyproline at the C-terminus of peptides are known to increase the 

inhibitory potency against ACE (Ondetti and Cushman, 1984). However, although this trend 

could be extrapolated to the derivates of the glycyl-peptides, the effect of the 

carboxyalkylation over IA is much more intensive as the observed for IP, resulting in more 

active carboxyalkylated IAs, than the respective IP derivates. In this case, energetic 

compensations in the active site, other than the interactions of proline, must have been 

decisive. 
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Figure 4-24: Schematic illustration of the substrate subsites of ACE, binding to the three important 
inhibitors: captopril, enalapril and lisinopril, showing important features for a competent enzyme 
blockage. Extracted from Natesh et al. (2004). 

Comparing AP and GP, we can notice a positive effect of the longer alkyl substitute, 

possibly indicating a more competent interaction with S1’. Nevertheless, despite the 

branched side-chain, IP and its derivates were less active as their AP counterparts. In this 

case, the alteration may have involved other changes additional to the occlusion of P1’. 

Bulky substituents in P1’ and P2’ are known to give domains specificity. As both N- and C- 

domains cleave the synthetic substrate used in the study with distinct affinity, the measured 

activity of the enzyme is dependent from which substrate is occluded. 

The most successful modification could be observed with IA and its derivate CE-IA, whose 

IC50 decreased from 1023 µM (IA), to 31 µM (CM-IA) until 0.3 µM (CE-IA). The 

improvement of two orders of magnitude by changing the carboxymethyl group, for the 

carboxyethyl- substituent was observed only for this peptide. Probably, other forces, either 

than the increased interaction with S1, take place. As observed in Figure 4-25, a possible 

explanation for the remarkable/striking increase in the inhibitory activity could be the 

perfect bilateral symmetry of the molecule. In this case, the probability of a successful 

interaction is increased, and more molecules will be bound, decreasing the concentration 

necessary for the catalytic impairment. 
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Figure 4-25: Carboxyethyl-Ile-Ala structure, showing bilateral symmetry. 

But also the derivatization of LL induced an inhibitory potential not observed for the 

original peptide. The IC50 from LL was too high to be determined, while the CM-derivative 

inhibited the target enzyme already in µM concentrations (760 µM). The CE- derivatization 

increased this potential in another order of magnitude, reaching 50µM. 

On the other hand, CM-IW showed lower inhibitory potential against ACE as its parent 

peptide, despite the introduction of a new zinc binding group. Although classic ACE 

inhibition rely on the ability of the inhibitors to establish coordination with the Zn(II) at the 

catalytic site (Hayashi and Camargo, 2005), it has been known for a long time that the 

binding zinc ion alone is not sufficient to produce efficient inhibitors, but, in concert with 

other interactions, high inhibitory activity can be achieved (Ondetti and Cushman, 1984). 

Having in mind that IW is one of the most potent peptides against this enzyme, it can be 

assumed that the interactions in the active site could not be further optimized trough 

glycation, and molecular modifications displaced the original fittings in the subsites. The 

glycated molecules might show distinct patterns of interactions with the enzyme as the 

native peptide, in such a way that glycated IW lacks in some stabilizing intermolecular 

forces involving the peptide backbone, which are otherwise present in native IW bounding.  

Interestingly, the glycation of the studied tripeptide promoted also the inverse effect as the 

glycation of almost all studied dipeptides. CM- and CE-IPP possess 125 und 60 times 
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higher IC50-values as the original peptide, respectively. Probably, similarly as discussed for 

CM-IW, the intermolecular interactions between enzyme and inhibitor happens in a 

different pattern as with IPP and the introduction of the new group did not contribute for the 

bioactivity. It is noteworthy that the CE- derivative is still more active as the CM- molecule, 

suggesting that interaction of this side-chain is crucial for the stabilization of the enzyme-

inhibitor complex. 

These observations show that the glycation of dipeptides is a very effective tool to improve 

their inhibitory potential against ACE. The enhanced bioactivity could be explained by a 

more efficient fitting of the glycated molecules into the catalytic centre of the enzyme, 

comparing to the original peptides, but no ultimate affirmations about the molecular 

interaction can be done without a more comprehensive kinetic study.  

4.5.2 Inhibition against other zinc metalloproteases 

Glycation also caused a positive effect on the inhibitory potential of peptides against 

Clostridium histolyticum collagenase, even though the values were less impressive than the 

data observed for inhibition of ACE. The IC50 values measured in vitro according to section 

3.7.3 can be seen in Table 4-5. 

Table 4-5: In vitro IC50 values of peptides and their Nα-carboxymethyl- and Nα-carboxyethyl-
derivatives against ChC. 

Peptide 
IC50 (µM) 

native Nα-carboxymethyl- Nα-carboxyethyl- 

IA n.d. (12% at 5  mM) 4300 ± 640 4150 ± 380 

LL n.d.(16% at 5 mM) 2880 ± 1200 4120 ± 180 

IW  n.d. (12% at 1  mM) n.d. (0% at 5  mM) n.d. (0% at 5  mM) 

GL  n.d. (0% at 5  mM) 2790 ± 950 3010 ± 1390 

GP  n.d. (0% at 5  mM) 3100 ± 130 2350 ± 640 

AP  n.d. (0% at 5  mM) 2546 ± 459   1952 ± 846   

IP  n.d. (10% at 5  mM) 2441 ± 1878 1484 ± 349 

IPP  n.d. (11% at 5  mM) 1320 ± 537 n.d. (38% at 5  mM) 

n.d. = not determinable.  
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No studied peptide showed a measurable inhibition against ChC. Nevertheless, an improved 

inhibitory potential of the peptides through glycation could be observed. Except for the IW 

derivates and CEIPP, all carboxyalkylated derivatives presented a weak, but significant, 

inhibitory potential. The weak inhibitory potentials can be possibly explained by the lack of 

interaction of the studied molecules in the hydrophobic subsites S2’ and S3’, which were 

shown to be important for ligand affinity (Gupta, 2007). 

The IC50 values did not differ between the CM- and CE- derivatives. Also among the 

different peptide basic structures, the values are in the same range. This observation points 

to the absence of hydrophobic binding pockets around the catalytic cation, and that a 

substitution in this region does not confer any advantage. 

Some of the studied peptides were chosen as possible cleavage sequence within the natural 

substrate of MMP-1. Therefore, the inhibition potential of the glycated peptides against 

human matrix metalloproteases was studied. The results of the assay are listed in Table 4-6.  

Table 4-6: In vitro IC50 values of peptides and their Nα-carboxymethyl- and Nα-carboxyethyl-
derivatives against MMP-1. 

Peptide 
IC50 (µM) 

native Nα-carboxymethyl- Nα-carboxyethyl- 

IA n.d. (0% at 5  mM) 1340 ± 110 2210 ± 2100 

LL n.d. (0% at 5  mM) 720 ± 210 1510 ± 1180 

IW  n.d. (39% at 1  mM) n.d. (4% at 5  mM) n.d. (26% at 5  mM) 

GA  n.d. (0% at 5  mM) n.d. (0% at 5  mM) n.d. (0% at 5  mM) 

GL  n.d. (0% at 5  mM) n.d. (0% at 5  mM) n.d. (16% at 5  mM) 

GP  n.d. (0% at 5  mM) n.d. (0% at 5  mM) n.d. (0% at 5  mM) 

AP  n.d. (0% at 10  mM) n.d. (17% at 5  mM) n.d. (0% at 5  mM) 

IP  n.d. (0% at 10  mM) n.d. (15% at 5  mM) n.d. (21% at 5  mM) 

IPP  n.d. (0% at 10  mM) n.d. (0% at 5  mM) n.d. (0% at 5  mM) 

n.d. = not determinable.  
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In this experiment, no inhibitory potential of peptides and their derivatives was measurable, 

with two exceptions, namely carboxyalkylated IA and LL, which caused a weak to 

moderate inhibition. IA and LL are the sequences liberated by the MMP-1 by cleavage of 

triple-helical collagen (Whittaker et al., 1999). This means that these peptides fit perfectly 

into the active site of the enzyme. Probably, the modification increased the affinity of the 

molecules to the active site, serving as anchor and keeping them in the catalytic centre. The 

general inefficiency observed support the affirmation that an efficient MMP-inhibition 

needs more than interaction in active centre, as discussed for the melanoidins in section 

4.2.3. The glycated peptides, due to their small structure, cannot supply the allosteric 

binding requirements, although they are able to complexate zinc and inhibit other zinc-

peptidases. Apparently, competent ligands of this family of enzymes, which are selected to 

split macromolecules and are endogenously inhibited by proteins of 22–28 kDa, interact 

also with non-catalytic sites.  

In conclusion, the present results demonstrate that specific inhibition against ACE could be 

obtained by non-enzymatic glycation of peptides. 
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5 Summary 

With the present work, it was shown for the first time that Maillard reaction products are 

selective inhibitors for matrix metalloproteases. 

In the first part of the study it was demonstrated that high molecular melanoidins, formed 

during roasting of coffee, have a specific and effective inhibitory potential against human 

matrix metalloproteases (MMPs), which correlated with the roast degree of the samples. 

While no inhibitory activity of the high molecular fraction obtained from green coffee beans 

(mRD0), at concentrations up to 2.5 mg/mL, could be measured against the studied MMPs 

1, 2 and 9, a continuous increase on the inhibitory potential of the melanoidin fraction was 

observed upon roasting. For the melanoidins from the final roasted product (mRD4), IC50 

values of 0.461 ± 0.006 mg/mL against MMP-1, 0.224 ± 0.040 mg/mL against MMP-2; and 

0.728 ± 0.014 mg/mL against MMP-9 were measured. These results indicate a direct effect 

of the roasting process on the formation of MMP-inhibiting structures within the melanoidin 

complex. Noteworthy is the fact that zinc addition, in concentrations up to 50µM, did not 

restore the MMP activity in the presence of melanoidins, suggesting more specific 

molecular interactions between the inhibitor and the active center of the enzymes other than 

single metal sequestration. Considering that a cup of coffee brew supplies 200 mg of 

mRD4, the ingestion of 2 to 3 cups of coffee promotes concentrations of 0.2-0.3 mg/mL of 

the non-absorbable high molecular weight melanoidins in the colonic lumen. This 

concentration is in the range of the IC50 values of mRD4 against the studied MMPs, 

suggesting that even conventional drinking habits can result in significant inhibition of 

intestinal MMPs. 

The reported thermal-induced inhibitory potential of coffee melanoidins towards MMPs is 

suggested to result from the functionalization of the macromolecular fraction, both by the 

formation of efficient zinc-binding moieties through the Maillard reaction, such as 

carboxyalkyl side chains or pyridones, and the incorporation of compounds of low 

molecular weight present in the green beans, principally hydroxycinnamic acids.  

Contrary to the process-induced inhibitory activity observed for the high molecular weight 

fraction, the low molecular weight melanoidin fraction (lmw melanoidin, molecular weight 

below 10 kDa) showed an impressive inhibitory effect already for the sample isolated from 

non-roasted coffee beans, which was, however, attenuated upon roasting. The thermal 
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induced decrease in the inhibitory potential of this fraction can possibly be due to depletion 

of chelating moieties in the lmw melanoidin, most probably caused by the incorporation of 

free polyphenols, naturally present in high concentrations in coffee beans, in the high 

molecular weight melanoidin fraction with progress of roasting. 

The activities of the zinc-containing metallopeptidases angiotensin converting enzyme  

(ACE) and Clostridium histolyticum collagenase (ChC) were not affected by melanoidins, 

reinforcing the suggestion of a specific inhibition mechanism based on a molecular 

interaction between the melanoidins and the catalytic centre of the MMPs rather than simple 

zinc chelation. Considering the preference of matrix metalloproteases for complex and 

voluminous substrates, able to occupy simultaneously pockets inside the catalytic centre and 

exosites, classical enzyme-inhibitor binding of the melanoidins in the active centre of the 

MMPs is supposed: parts of the melanoidin molecules, with high affinity to zinc, may 

interact with the zinc ion in the active center, and other parts of the melanoidin molecule 

can maintain the whole structure into the active pocket of the enzyme via non-covalent 

interactions. However, an allosteric inhibition type cannot be excluded.  

Investigations concerning the structure of coffee melanoidins were performed. Using gel-

permeation chromatography (GPC), the disappearance of the chromatographic peaks, 

originally present in the high molecular weight fraction of green coffee beans, with onset of 

the thermal treatment, was observed. Only one broad melanoidin peak was detected in the 

light roasted sample. With progress of roasting, a gradual increase in the apparent mean 

molecular mass of the coffee melanoidins was noticed, changing from 14 kDa (mRD1) to 

17 kDa (mRD2), 21 kDa (mRD3), and 28 kDa (mRD4). This observation corroborates 

results of the literature, which suggest that extremely-high-molecular-weight coffee 

melanoidins (>100 kDa) may not be real, but made up of non-covalent complexes of 

melanoidins with molecular masses around 3–22 kDa and high-molecular-weight carriers. 

A progressive increase in the absorptivity of the melanoidin isolate at λ=280 nm and 

405 nm, due to the incorporation of chromophores and unsaturated systems to the 

melanoidin, was found. Via elemental analysis, a continuous increase in the C/N ratio of 

melanoidins upon roasting was also observed, suggesting the formation of a high molecular 

melanoidin structure to happen most probably by the coupling of carbon-rich compounds 

such as carbohydrates, polyphenols and their degradation products, to a nitrogen-rich 

protein skeleton. The increase in the C/N-ratio correlated with the increase in the apparent 
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polyphenol content, which changed from 0.02 mg/mg chlorogenic acid equivalents in the 

high molecular weight fraction of green beans (mRD0) to 0.10 mg/mg, in the medium 

roasted sample (mRD2), achieving 0.11 mg/mg in the melanoidins obtained from final 

espresso roasted beans (mRD4). The observed increase in the total phenols content in the 

high molecular weight fraction is most probably due to covalent incorporation of 

chlorogenic acids into the melanoidin structure. This results support the findings of the 

current publications, which suppose the melanoidins as proteinous backbones where 

carbohydrates, sugar degradation products and polyphenols are progressively incorporated.  

A new mechanism of polyphenol incorporation on the melanoidin structure has been 

suggested, based on evidences of the Raman spectroscopy. A Michael-like nucleophilic 

addition of amino or sulfhydryl groups of proteins on the conjugated double-bond of the 

caffeic or chlorogenic acid, could explain not only the findings of the present work, but also 

reconciliate discrepant interpretations of experimental evidence recently reported.  

In the second part of the present work, the inhibitory potential of carboxyalkyl derivatives 

of selected peptides against zinc-containing proteases was studied. The Nα-carboxymethyl- 

and carboxyethyl- peptide derivatives were obtained via reductive alkylation in good yields 

and adequate purity. Nα-carboxyalkylation of peptides proved to be an efficient tool to 

improve the specific binding affinity of dipeptides to angiotensin converting enzyme. The 

carboxymethylated derivatives of GA, GL, GP, AP, IP, IA showed 2 to 30times stronger 

inhibitory potentials against ACE than the original peptides. The carboxyethyl 

derivatization was, for all studied peptides, more effective than the carboxymethylation, and 

improved in almost 4000 times the inhibitory potential of IA, which showed  IC50-values of 

1023 µM in the native form,  30.6 µM as CM-IA, and 0.26µM as CE-IA. 

Against the other studied metalloproteases, the increase in the inhibitory potential due to the 

derivatization was also present, although less impressive. The derivatized peptides were 

able to reduce the in vitro activity of ChC, showing IC50 values in mM concentrations, while 

the original peptides did not show any relevant inhibition. No explicit difference between 

the inhibitory potentials of CM- and CE- could be measured. We suggest that the lack of big 

hydrophobic substituents can have been responsible for the poor affinity to the enzyme. 

The inhibition against the MMP-1 was only measurable for the derivatives of the peptides 

IA and LL, which represent the sequence liberated by the MMP-1 during the hydrolysis of 
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native triple-helical collagen. We supposed that this enzyme is adapted to the binding of 

bulky substrates and the small peptides and their derivatives studied are not able to supply 

all necessary binding motifs for a competent activity inhibition. 

In conclusion, as melanoidins and carboxymethyl and carboxyethyl groups are major 

products of the Maillard reaction, and are present in considerable amounts in an average 

diet, a potential positive impact of non-enzymatic glycated food in health should not be 

underestimated. The heat-induced browning is not only a source of sensorial stimuli, but can 

maybe also represent a daily input of food-borne protective substances. 
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