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1 Introduction

Let Ω ⊆ Rn be open and bounded and p ∈ (1,∞). One of the most frequently studied

nonlinear di�erential operators is the p-Laplace operator

u →→ ∆p u := −div |Du|p−2Du .

Even though nonlinear, it has many nice properties. It turns out to be the normalized

duality mapping −∆p :W
1,p
0 (Ω) →W−1,p′(Ω), which is a homeomorphism. Moreover

the eigenvalue problem of the p-Laplace operator

−∆p u = λ|u|p−2u (1.1)

proves to be a well posed equation and has been studied intensively from the 80th of

the last century. A weak solution u of (1.1) is called eigenfunction of the p-Laplace

operator and the associated real number λ ∈ R is called eigenvalue of the p-Laplace

operator.

By homogeneity of (1.1) for any eigenfunction u and any α ∈ R the function αu

will also be an eigenfunction for the same eigenvalue and we may thus restrict our

attention to normalized eigenfunctions u with ∥u∥p = 1.

The eigenvalue problem of the p-Laplace operator is related to the following varia-

tional problem:

Ep(v) =
1

p


Ω
|Dv|p dx→ Min!

v∈W 1,p
0 (Ω)

(1.2)

subject to

Gp(v) =
1

p


Ω
|v|p dx = 1 . (1.3)

Since both Ep and Gp are di�erentiable, by application of the classical Lagrange

multiplier rule a function u ∈ W 1,p
0 (Ω) with ∥u∥p = 1 solves (1.1) for some λ ∈ R if

and only if u is a critical point of (1.2), (1.3).
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1 Introduction

It is not di�cult to see that for connected Ω the minimizer u1,p of this variational

problem is unique (up to sign) and the associated eigenvalue λ1,p is given by

λ1,p = E1(u1,p) = min
v∈W 1,p

0 (Ω),
Gp(v)=1

Ep(v) .

Moreover, the �rst eigenvalue is known to be isolated and positive. These results have

been proved without restriction on the boundary of Ω by Lindqvist [37].

Classical critical point theory, in particular Lusternik-Schnirelman theory, veri�es

the existence of a sequence of eigenvalues of the p-Laplace operator by the construction

λk,p := inf
S∈S k,p

sup
u∈S

Ep(u) (1.4)

where

S k,p := {S ⊆W 1,p
0 (Ω) ; S symmetric, compact, Gp = 1 on S and genS ≥ k} .

The genus genS of a symmetric set S is a topological index measuring loosely speak-

ing the complexity of a subset of a Banach space (cf. Appendix p. 140). The �rst

application of these methods for the p-Laplace operator is due to García Azorero &

Peral Alonso [30]. For p = 2 it is known that this construction exhausts the whole

spectrum of the usual Laplace operator, nevertheless for p ̸= 2 there is an example of

an eigensolution with periodic boundary conditions known that solves the eigenvalue

equation, but cannot been obtained via such a minimax procedure (cf. [8]). How-

ever, for homogeneous Dirichlet boundary conditions there seems to be no example

of a solution for the eigenvalue equation known that is not obtainable by minimax

methods.

With the beginning of the 21st century the limit problem p → 1 of the eigenvalue

problem of the p-Laplace operator gained attention. This turned out to be a very

challenging task. As a �rst aspect note that in the de�nition of the eigenvalue problem

of the p-Laplace operator (1.1) the expressions |Du(x)|p−2Du(x) and |u(x)|p−2u(x)

are interpreted as zero in the sense of continuous continuation, provided Du(x) = 0

or u(x) = 0, resp. Simply setting p = 1 does not answer the question how to interpret

the expressions Du(x)/|Du(x)| and u(x)/|u(x)| provided Du(x) = 0 or u(x) = 0 resp.

Even worse, numerical simulations stipulated that the �rst eigenfunction should be

the characteristic function of a certain set, such that we face the foregoing troubles
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almost everywhere in Ω.

First results by the limit procedure p→ 1 are due to Demengel [23], [24].

The second natural idea, carried out by Kawohl & Schuricht in [36], was to focus on

the highly nonsmooth associated variational problem (1.2), (1.3) with p = 1 directly.

It turns out that W 1,1
0 (Ω) is not the suitable limit space. On the one hand it is not

re�exive which causes di�culties for the analysis, on the other hand it does not contain

functions such as the minimizer we expect, a characteristic function of a certain set.

By the results of Federer, Giusti and others from the 80th it is known that BV (Ω),

the space of functions of bounded variation, is the more reasonable space for such

problems with 1-homogeneous growth. Indeed the appropriate lower semicontinuous

relaxation of the functional (1.2) for p = 1 reads as

ETV (v) =


Ω
d|Dv|+


∂Ω

|v∂Ω| dHn−1 . (1.5)

Here the �rst integral term denotes the total variation of the function v within Ω

and the boundary integral over the trace v∂Ω of v relaxes the homogeneous boundary

conditions in terms of a penalization.

Thus

ETV (v) → Min!
v∈BV (Ω)

(1.6)

subject to

G1(v) =


Ω
|v| dx = 1 (1.7)

is the suitable variational formulation of the eigenvalue problem for the 1-Laplace

operator. Apparently a minimizer u of (1.6), (1.7) is a �rst eigenfuntion of the 1-

Laplace operator and λ1,0 = ETV (u) the corresponding eigenvalue.

This problem has been studied intensively by Kawohl & Schuricht [36], Schuricht

[52], Milbers & Schuricht [44], [45], [46], Littig & Schuricht [41], Chang [13] and

Degiovanni & Magrone [20]. In particular the formal eigenvalue equation of the 1-

Laplace operator

−div
Du

|Du|
= λ

u

|u|
(1.8)

was given a well de�ned meaning in terms of the subgradients of ETV and G1. The exis-
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1 Introduction

tence of a sequence of eigensolutions and a variety of properties of these eigensolutions

have been shown. We will review these results in Chapter 2.

Highlights of Own Results and Structure of the Thesis

The contribution of this thesis is to continue and extend the research results for the

eigenvalue problem of the 1-Laplace operator in three directions. The �rst extension

concerns perturbation investigations of the eigenvalue problem of the 1-Laplace oper-

ator. We will show existence of solutions for these problems and will verify that the

eigenvalues of the 1-Laplace operator are bifurcation points for a certain general class

of perturbed problems. The second extension treats vector valued problems, both for

u taking values in RN and, with N = n, for the symmetrized 1-Laplace operator. The

third extension yields some existence results and properties of associated parabolic

problems.

The thesis is organized as follows:

In Chapter 2 we will give the precise framework of the eigenvalue problem of the

1-Laplace operator and review the previously known results of interest in connection

with this thesis.

In Chapter 3 we will provide the tools from nonsmooth critical point theory, which

are needed for our investigations. This chapter also presents a self-contained derivation

of Clarkes generalized gradients for our perturbation functionals (Theorem 5). Even

though these ideas are not totally new (cf. [12]), we did not �nd a reference for this

result in the presented form. Note also Theorem 11, which gives existence of an

unbounded sequence of critical values of a certain class of variational problems with

the aid of genus. This theorem complements previous results that use category as

topological index (cf. [21], [45]) and allows to simplify the proof of the existence

of an unbounded sequence of eigenvalues of the 1-Laplace operator. This Theorem

is the key ingredient to prove existence of eigensolutions of the perturbed 1-Laplace

operator, of the vectorial 1-Laplace operator and the symmetrized 1-Laplace operator.

Chapter 4 is devoted to the investigation of the perturbed eigenvalue problem of the

1-Laplace operator. For the p-Laplace operator these questions are usually treated

with the aid of the Leray-Schauder mapping degree, which is not available in our

highly nonsmooth situation. We thus develop careful estimates of the involved energy

functionals and sophisticated scaling arguments which make use of the 1-homogeneity

of the functionals ETV and G1. This �nally provides local perturbation results close
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to u = 0. These arguments are completely new, to the best knowledge of the author.

In two sections we will consider both perturbations of the energy (Section 4.1) and

perturbations of the constraint term (Section 4.2). In both cases we ensure for a

certain class of perturbations the existence of a sequence of eigensolutions (Theo-

rem 19 and Theorem 25) and verify that the eigenvalues of the 1-Laplace operator are

bifurcation values of eigenvalues of the associated perturbed problem (Theorem 22

and Theorem 25). The proofs in Chapter 4 will need certain results in BV (Ω). We

will thus refer to Propositions and Theorems of Chapter 5, where we investigate

BV (Ω,RN ) and where we can deduce the required statements with N = 1. If the

reader is not familiar with these basic properties of the space BV (Ω) and the scalar

eigenvalue problem of the 1-Laplace operator, we suggest to study Section 5.1 before

reading Chapter 4.

In Chapter 5, which can be read independently of the foregoing chapter, we will

investigate the vectorial eigenvalue problem of the 1-Laplace operator in BV (Ω,RN )

and the eigenvalue problem of the symmetrized 1-Laplace operator. We demonstrate

that the arguments from the scalar case can be transfered to the vectorial situation,

but note that a component-wise reduction of the vectorial problem to the scalar one

is not possible. The main task is to derive Gauÿ-Green formulas in a very general

situation from that we deduce the subdi�erentials of the (vectorial) total variation

and the total deformation functional.

Finally, Chapter 6 is devoted to a variety of associated parabolic problems. Our

method of choice for the investigation is the notion of gradient and subgradient sys-

tems. We will introduce their de�nition and the central existence and uniqueness

results in Section 6.1 and 6.2. The 3rd section contains three applications of the

concepts of (sub)gradient system. The �rst one treats the parabolic problem for the

p-Laplace operator. This subsection is considered as an model example of a gradi-

ent system, these results are well known. The second subsections treats the Porous

medium equation (PME) and the fast di�usion equation (FDE) as gradient system.

Basically there are two approaches to the PME/FDE common. The �rst one is by

classical treatment of singular semilinear di�usion equations (cf. Vázquez [57]), the

second one is in terms of maximal monotone or accretive operators. However, the

treatment as gradient system, which is somewhat in-between the aforementioned ones,

is new and was recently published by the author in a joint work with Voigt in [42].

Let us mention that the main ideas like the derivation of the gradient in H−1(Ω)

and its application to prove order preservation and asymptotic behavior are due to
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List of Notation

the author. And last but not least we consider the parabolic problem of the (vector

valued) 1-Laplace operator and the symmetrized 1-Laplace operator. The problem of

perfectly plastic �uids is also considered.

The appendix contains a short review on some results from geometric measure

theory, linear algebra and topological indices.

Notation and Conventions

All the function spaces in the thesis are considered as real spaces without mentioning

this in the following.

We will denote the eigenvalues of the p-Laplace operator by λk,p, the eigenvalues

of the perturbed 1-Laplace operator, where the energy is perturbed, by λk,α and

the eigenvalues of the 1-Laplace operator with perturbed constraint by λk,β (and the

eigenvalues of the 1-Laplace operator by λk,0). Since we do not intend to compare

these eigenvalues with each other, there is no reason to be confused with the cases

p = α, p = β or α = β. This argument applies for eigenfunctions and critical values

in an analogous manner. Moreover we will also use the subscript "v" to point out

that we talk about eigenvalues or eigenfunctions of the vectorial 1-Laplace operator

and the subscript "s" is used in the notation of eigenvalues and eigenfunctions of the

symmetrized 1-Laplace operator.

The total variation functional (1.6) will always be denoted by ETV and G1 will

always denote the L1-norm, both for functions with values in R and RN . The letter

F stands for an arbitrary function in general and will be �xed from time to time.

We will use the following notation.

List of Notation

⟨w, u⟩V ′,V dual pairing of w ∈ V ′ and u ∈ V

⟨w, u⟩H scalar product of w, u ∈ H

a⊗ b tensor product of a and b, also applied pointwise

between two vector valued functions a and b

a⊙ b symmetric tensor product of a and b, p. 86

a · b :=


i aibi, scalar product of a and b

a : b scalar product of the matrices a, b ∈ RN×n, p. 139

B(x, r) open ball in a metric space with radius r around x
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List of Notation

B(A, r) open neighborhood {y ; d(y,A) < r} of A with

radius r

Bn−1(0, r) open Euclidean ball in Rn−1 around zero with ra-

dius r

BV (Ω,RN ) space of functions of bounded variation, p. 75

BDp(Ω) := BD(Ω) ∩ Lp(Ω,Rn), p. 99

BD(Ω) space of functions of bounded deformation, p. 75

BV (Ω) := BV (Ω,R1), space of scalar functions of bounded

variation

BV p(Ω,RN ) := BV (Ω,RN ) ∩ Lp(Ω,RN ), p. 99

catA category of A, p. 140

Cc(Ω,RN ) continuous functions u : Ω → RN with compact

support in Ω

C0(Ω,RN ) closure of Cc(Ω,RN ) with respect to the supremum

norm

C∞
c (Ω,RN ) arbitrarily often di�erentiable functions u : Ω →

RN with compact support in Ω

C∞
c,σ(Ω,Rn) space of solenoidal test functions, p. 132

χA characteristic function of A, p. 15

D′(Ω,RN ) RN -valued distributions on Ω

∂F(u) convex subdi�erential or generalized gradient of F
in u, cf. Subsections 3.1.1 and 3.1.2

|dF|(u) weak slope of F in u, p. 38

div z divergence of z in the sense of distributions, for z

with values in RN×n the divergence is taken in each

row separately, such that div z ∈ RN pointwise

divs z symmetrized divergence of z, p. 86

dom(F) domain of an operator F , p. 29 and p. 122, or the

e�ective domain of de�nition of the functional F ,

p. 28
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List of Notation

Dsu symmetrized gradient of u, p. 84

F∗ conjugate function of F , p. 28

F0(u; v) generalized directional derivative of F in u in direc-

tion v, p. 30

genA genus of A, p. 140

Hs(A) s-dimensional Hausdor� measure of A

IA indicator function of A, p. 20

L2
σ(Ω) solenoidal L2-functions, p. 132

L∞,q(Ω,RN×n) :=

z ∈ L∞(Ω,RN×n) ; div z ∈ Lq(Ω,RN )


, p. 92

L∞,q
sym(Ω) :=


z ∈ L∞(Ω,Rn×n) ; divs z ∈ Lq(Ω,Rn)


, p. 92

M(Ω,RN ) set of (signed), RN -valued �nite Radon measures

on Ω, p. 137

N, Q, R, R>0 the set of strictly positive integers, rational and real

numbers, strictly positive numbers

(uk)k∈N or short (uk)k, notation for a sequence

P P : L2(Ω,Rn) → L2
σ(Ω), the Helmholz projection,

p. 133

p′ conjugate exponent of p, i.e. 1/p+ 1/p′ = 1

p∗ := np
n−p for p < n and ∞ otherwise, the Sobolev

conjugate of p

PCu best approximation of the Hilbert space element u

on the convex closed set C

Per(A) Perimeter of a set A in Rn, p. 16

r[m] the signed power of r, p. 124

Rn×n
sym vector space of symmetric n× n-matrices, p. 84

Sgn(x) set-valued sign function, p. 18, 29

Sk k-dimensional sphere, the boundary of the Eu-

clidean unit ball in Rk+1

suppϕ support of the function ϕ
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List of Notation

AT transpose of matrix A

A−T := (A−1)T = (AT)−1 for some invertible matrix A

u∂Ω trace of u on ∂Ω

X∗ or X ′ dual space of the Banach space X

(z,Du) Radon measure representing the pairing of z and

Du, p. 100

(z,Dsu) Radon measure representing the pairing of z and

Dsu, p. 100

[z, ν]∂Ω normal trace of z, p. 96

[z, ν]∂Ωs symmetrized normal trace of z, 99
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2 Review of Results for the Eigenvalue

Problem of the 1-Laplace Operator

Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. The variational form of

the eigenvalue problem of the 1-Laplace operator is given by

ETV (v) :=


Ω
d|Dv|+


∂Ω

|v∂Ω| dHn−1 → Min!
v∈BV (Ω)

(2.1)

subject to

G1(v) :=


Ω
|v| dx = α . (2.2)

Any minimizer of the variational problem (2.1), (2.2) for a �xed α > 0 is called

�rst eigenfunction of the 1-Laplace operator. By the compact embedding of BV (Ω)

in L1(Ω) and lower semicontinuity of ETV with respect to L1(Ω)-convergence, it is

not di�cult to verify that such a �rst eigenfunction exists for any α > 0 (cf. [36,

Theorem 3.2]).

Note that both ETV and G1 are 1-homogeneous and, in analogy to the eigenvalue

problem of the p-Laplace operator, the �rst eigenvalue λ1,0 of the 1-Laplace operator

is de�ned by

λ1,0 := min
v∈BV (Ω)\{0}

ETV (v)

G1(v)
= min

v∈BV (Ω),G1(v)=1
ETV (v) .

Kawohl & Fridman [34] stated that the eigenvalue problem of the 1-Laplace operator

is connected to the Cheeger problem. Let here and in the following χE denote the

characteristic function of E, i.e.

χE(x) :=

1 if x ∈ E

0 otherwise .

Recall that a set E ⊆ Rn is said to be of �nite perimeter provided χE ∈ BV (Rn) and
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2 Review of Results for the Eigenvalue Problem of the 1-Laplace Operator

then

Per(E) := |DχE |(Rn) .

If E has a Lipschitz boundary we have Per(E) = Hn−1(∂E), where ∂E is the topo-

logical boundary of E. The Cheeger constant hC is de�ned by

hC := inf
Per(E)

|E|

where the in�mum is taken over all sets E ⊆ Ω with �nite perimeter and nonvanishing

Lebesgue measure |E|. Any minimizer D ⊆ Ω with

hC =
Per(D)

|D|

is a Cheeger set of Ω.

The connection to the Cheeger problem is given by the following proposition.

Proposition 1. It is

hC = λ1,0

and a function u ∈ BV (Ω) solves

ETV (v)

G1(v)
→ Min!

v∈BV (Ω)\{0}

if and only if for almost all t ∈ R the level sets

Et :=

{u > t} for t > 0

{u < t} for t < 0

are Cheeger sets of Ω. In particular there always exists a Cheeger set. Moreover, the

�rst eigenfunction of the 1-Laplace operator on Ω is unique (up to scalar multiples) if

and only if the Cheeger set D of Ω is unique1.

It is well known that the characteristic function of a Cheeger set is an eigenfunction

of the 1-Laplace operator. The contrary statement that a function is a minimizer if

and only if all sublevel sets Et are Cheeger sets was stated in [10] and refers to [34],

where we could not verify the statement in full detail. Thus we present a proof which

is due to the author [40] and extends the coarea idea of [34].

1Uniqueness means uniqueness of χD ∈ L1(Ω) of course.
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Proof of Proposition 1. Obviously λ1,0 ≤ hC , since for each set E ⊆ Ω of �nite

perimeter we have χE ∈ BV (Ω) by de�nition. Let now u be a minimizer of v →→
ETV (v)/G1(v). By application of the coarea formula (cf. Proposition 35 below) and

the Cavalieri principle we have

λ1,0 =
ETV (u)

G1(u)
=


R Per(Et) dt
Ω u

+ + u− dx
=


R Per(Et) dt

R |Et| dt
,

thus 
R
Per(Et)− λ1,0|Et| dt = 0 .

Since λ1,0 ≤ hC ≤ Per(Et)
|Et| for almost all t ∈ R we derive

Per(Et)− λ1,0|Et| ≥ Per(Et)− hC |Et| ≥ 0

and thus

Per(Et)− λ1,0|Et| = 0

by the integral representation above for almost all t ∈ R. But this yields

λ1,0 =
Per(Et)

|Et|
≥ hC

for almost all t ∈ R with |Et| ≠ 0, thus

hC = λ1,0 .

If on the other hand almost all level sets Et of an L1(Ω)-function u are sets of �nite

perimeter we have again by the Cavalieri principle and the coarea formula

λ0,1 G1(u) = hC


R
|Et| dt =


R
Per(Et) dt = ETV (u) ,

i.e. u is a �rst eigenfunction of the 1-Laplace operator.

One usually uses the fact that ETV (u) ≥ ETV (|u|) for all u ∈ BV (Ω) and thus

restricts the attention to nonnegative u (cf. e.g. [34]). However, in the general case

the "only if"-part requires usage of the coarea formula as formulated in Proposition 35.

Let us note that the Cheeger set (and thus the �rst eigenfunction of the 1-Laplace

operator) is unique, provided Ω is convex (cf. [1]). Nevertheless, in contrast to the

p-Laplace operator there exist connected Ω with nonunique �rst eigenfunction (cf. [35]
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2 Review of Results for the Eigenvalue Problem of the 1-Laplace Operator

   Schnelle Notizen Seite 1    Figure 2.1: The sets C1 and C2 and C1 ∪ C2 are Cheeger sets of Ω.

and Figure 2.1 ).

Since ETV and G1 are 1-homogeneous, it is convenient to restrict the attention to

normalized eigenfunctions, i.e. eigenfunctions with α = 1.

Kawohl & Schuricht [36] investigated the variational formulation of the 1-Laplace

operator and derived as necessary condition for a minimizer u of (2.1), (2.2)

0 ∈ ∂E1(u)− λ∂G1(u) ,

where ∂E1(u) and ∂G1(u) denote the subdi�erentials of E1 and G1 in u. This condition

is usually stated as single version of the Euler-Lagrange equation. Before we give this

precise statement, let us introduce the set-valued sign function

Sgn(r) :=


{−1} for r < 0

[−1, 1] for r = 0

{1} for r > 0 .

(2.3)

Now the single version of the Euler-Lagrange equation says that there exists s ∈
L∞(Ω) with

s(x) ∈ Sgn(u(x))

for almost all x ∈ Ω and there is a λ ∈ R and a function z ∈ L∞(Ω,Rn) with

∥z∥∞ = 1 , div z ∈ Ln(Ω) and −

Ω
udiv z dx = ETV (u)

such that the Euler-Lagrange equation

−div z = λs (2.4)
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holds. Note that s replaces the undetermined expression u/|u| and z replaces the

undetermined expressionDu/|Du| in the formal equation for the eigenvalue problem of

the 1-Laplace operator (1.8). Using u as test function in (2.4) we derive λ = ETV (u)/α

and thus obtain a direct correspondence of ETV (u) and the eigenvalue λ for normalized

eigenfunctions.

Moreover Kawohl & Schuricht pointed out that, for a minimizer u of the variational

problem (2.1), (2.2), the relation

λ∂G1(u) ⊆ ∂E1(u)

is satis�ed. In particular this leads to the multiple version of the Euler-Lagrange

equation which says that for any function s ∈ L∞(Ω) with s(x) ∈ Sgn(u(x)) for

almost all x ∈ Ω a function z with the properties described above exists, such that

the Euler-Lagrange equation (2.4) holds.

The question appears how to de�ne higher eigenfunctions of the 1-Laplace opera-

tor. The �rst naive idea might be to use the multiple version of the Euler-Lagrange

equation (2.4) to de�ne higher eigenfunctions, but its derivation relies deeply on the

energy minimizing property and we may thus get the �rst eigenfunction only. The

second natural idea is to call any solution of the single version of the Euler-Lagrange

equation an eigenfunction of the 1-Laplace operator. But this condition turns out to

have too many solutions (see [44]). In particular one can show that the single version

of the Euler-Lagrange equation is satis�ed for any function u of the form u = χB,

where B is a ball compactly contained in Ω. The number λ = Hn−1(∂B)
|B| would be

the associated eigenvalue. Since neither the radius nor the midpoint of B are �xed,

we would end up with a continuum of eigenvalues and in�nitely many associated nor-

malized eigenfunctions whose structure does not really depend on the geometry of

Ω.

Recall that a function u with ∥u∥p = 1 satis�es the eigenvalue equation of the p-

Laplace operator (1.1) if and only if u is a critical point of the associated constraint

variational problem (1.2), (1.3). We thus de�ne higher eigenfunctions of the 1-Laplace

operator as critical points of (2.1), (2.2). Since both ETV and G1 are not di�erentiable

we need to specify, what is meant by "critical point" in this context. It turned out

that the notion of the weak slope is the most powerful concept to de�ne critical points

here. To be a bit more precise, we understand, for some p ∈ [1, n/(n−1)], the function
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2 Review of Results for the Eigenvalue Problem of the 1-Laplace Operator

ETV to be extended on Lp(Ω) by

ETV (v) = ∞ for v ∈ Lp(Ω) \BV (Ω) (2.5)

and we say that u is an eigenfunction of (2.1), (2.2) provided u is a critical point in

the sense of the weak slope of F : Lp(Ω) → R,

F(v) := ETV (v) + I{G1=α}(v) . (2.6)

Here and in the following IA denotes the indicator function of the set A which is

de�ned by

IA(v) =

0 if v ∈ A

∞ otherwise .
(2.7)

We refer to Subsection 3.1.3 below for details on the weak slope |dF|, which is zero

in critical points of F .

Note that the de�nition of the weak slope depends on the metric chosen in the

domain of de�nition of the functional F , in particular it depends on the choice of

p ∈ [1, n/(n− 1)]. In contrast to the p-Laplace operator, where W 1,p
0 (Ω) induces the

natural metric to investigate the eigenvalue problem, for p = 1 it turns out that we

get "too many" eigensolutions if we consider the weak slope with respect to the metric

induced by the BV (Ω)-norm (cf. [46, Section 5.1]).

Milbers & Schuricht [46] derived a further necessary condition for critical points of

F by inner variation and this condition excludes the functions u = χB from above

as critical points. This encourages us to use the notion of the weak slope to de�ne

higher eigenfunctions of the 1-Laplace operator. However, in our highly nonsmooth

situation there seems to be no way to completely characterize higher eigenfunctions

in terms of a partial di�erential equation as e.g. in the case of the p-Laplace operator

at the moment.

Milbers & Schuricht [45] veri�ed the existence of a sequence of eigenfunctions

(±uk,0)k∈N of the 1-Laplace operator with tools from nonsmooth critical point theory

(cf. also [13]). The corresponding eigenvalues

λk,0

are de�ned with the aid of category and the corresponding eigenfunctions uk,0 satisfy
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2.1 Perturbation Results for the p-Laplace Operator

the single version of the Euler-Lagrange equation. This sequence of eigenfunctions

(uk,0)k∈N is a sequence of critical points both with respect to the L1(Ω)- and the

Lp(Ω)-metric (cf. [41, Remark 2.3]).

In Littig & Schuricht [41, Corollary 2.2] was veri�ed that the eigenvalues of the

1-Laplace operator constructed with the aid of category coincide with the values

constructed with the help of genus as topological index. We thus have

λk,0 = inf
S∈S 1

k

sup
u∈S

ETV (u) (2.8)

with

S 1
k := {S ⊆ Lp(Ω) compact, symmetric ; G1 = 1 on S, genLp S ≥ k} , (2.9)

where genLp S denotes the genus of S in Lp(Ω), a topological index whose de�nition

and properties are given in Appendix 7.3. It turns out that the values λk,0 remain the

same for any choice p ∈ [1, n/(n−1))] (with p <∞ for n = 1). Littig & Schuricht also

proved that, for any k ∈ N, the variational eigenvalues λk,p of the p-Laplace operator
(1.4) converge as p → 1 to the variational eigenvalues λk,0 of the 1-Laplace operator

(cf. [41, Theorem 2.14]).

Note that the single eigenvalue equation (2.4) is satis�ed for u = 0 with s = 0,

z = 0 and arbitrary λ ∈ R and u = 0 is the only and trivial critical point of the

variational problem (2.1), (2.2) for α = 0. From this perspective it is reasonable

to consider the eigenvalues of the 1-Laplace operator as bifurcation points: for an

eigensolution (λ, u) the eigensolutions (λ, αu)α∈R branch o� from the trivial solution

curve (γ, 0)γ∈R. Thus the structure of the eingensolutions of the 1-Laplace operator

is given in Figure 2.2

2.1 Perturbation Results for the p-Laplace Operator

Nonlinear eigenvalue problems have a long history and bring together the concepts

of critical point theory, partial di�erential equations and nonlinear functional anal-

ysis. Typically bifurcation points of nonlinear eigenvalue problems are related to a

homogenized (nonlinear) eigenvalue problem and their investigation provides stability

statements. These results �nd, within others, application in numerical approximation

schemes where bifurcations often lead to challenges. A good introduction in the con-

cepts of nonlinear eigenvalue problems are the articles [48] and [49] of Rabinowitz,

21



2 Review of Results for the Eigenvalue Problem of the 1-Laplace Operator

   Schnelle Notizen Seite 1    

Figure 2.2: Structure of the eigensolutions (λ, u).

where it is shown how the Leray-Schauder mapping degree may be used to investigate

global bifurcation results for eigenvalue problems of the form

u = G(λ, u)

where G : R×X → X is a compact and continuous operator mapping to a real Banach

space X. Since G is not assumed to be linear in u, the problem does not have the

structure of a proper eigenvalue problem in general but is merely of parametric nature.

However, we will keep the classical nomenclature of Rabinowitz. A special focus is

on the case G(λ, u) = λLu + H(λ, u), where L is a compact linear operator and H

is o(∥u∥) as ∥u∥ → 0 uniformly with respect to λ on bounded intervals I ⊆ R. Thus
(λ, 0)λ∈R is a trivial solution curve. A point (µ, 0) is called bifuraction point provided

any neighborhood of (µ, 0) contains nontrivial solutions. A necessary condition is that

µ−1 belongs to the spectrum of L, while the contrary is not true in general; not any

number µ−1 in the spectrum gives a bifurcation point (µ, 0) in general [49, p. 162].

However, provided the eigenvalue µ−1 is of odd multiplicity, µ will be a bifurcation

point [49, Theorem 1.4]. Moreover, in that case there evolves a solution curve which

is either unbounded or contains (µ̂, 0), with µ̂ ̸= µ (cf. [49, Theorem 1.10]).

The �rst important article on global bifurcation of the eigenvalues of the p-Laplace

operator is due to del Pina & Manásevich [25], where the authors proved that the �rst
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2.1 Perturbation Results for the p-Laplace Operator

eigenvalue of the p-Laplace operator is a bifurcation point of the perturbed eigenvalue

equation of the p-Laplace operator on Ω ⊆ Rn open, bounded and with C2,β-smooth

boundary. In particular if λ1 is the �rst eigenvalue of the p-Laplace operator they

show that a branch of solutions (λ, u) of−∆p u = λ|u|p−2u+ f(x, u, λ) in Ω

u = 0 on ∂Ω

evolves from (λ1, 0). Here they assume that for the continuous function f

f(x, s, λ) = o(|s|p−1) as s→ 0 (2.10)

and, for some q ∈ (1, p∗)

f(x, s, λ) = o(|s|q−1) as s→ ∞ , (2.11)

both properties uniformly with respect to a.e. x ∈ Ω and with respect to λ on bounded

sets. Here and in the following p∗ denotes the Sobolev exponent

p∗ :=


np
n−p if p < n

∞ if p ≥ n .

This problem can be studied by investigation of the properties of the operator

G :W 1,p
0 →W 1,p

0 ,

G(u) = (−∆p)
−1

λ|u|p−2u+ f(x, u, λ)


.

In particular one has to calculate the mapping degree of u →→ u + G(u). Wherever

these methods apply we may think of the eigensolutions of the perturbed p-Laplace

operator as in Figure 2.3

A very detailed and self-contained review of the known results of the perturbed

eigenvalue problem of the p-Laplace operator on smooth bounded domains Ω ⊆ Rn

is given in the lecture notes of Peral [47]. While the �rst chapter of these notes deals

with the existence of a sequence of eigensolutions of the p-Laplace operator (making

use of the di�erentiable framework and classical Lusternik-Schnirelman theory) and

their properties, the second chapter is devoted to the perturbed eigenvalue problem
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   Schnelle Notizen Seite 1    

Figure 2.3: Eigensolutions of the perturbed problem.

of the p-Laplace operator−∆p u = λ|u|q−2u+ |u|r−2u in Ω

u = 0 on ∂Ω .

For the parameters it is assumed 1 < q, 1 < p < r and λ > 0.

However, all the methods to prove these results rely on the nice properties of the

p-Laplace operator W 1,p
0 (Ω) ∋ u →→ − div |Du|p−2Du ∈ W−1,p′(Ω) and the nonlinear

operator Lp(Ω) ∋ u →→ |u|p−2u ∈ Lp′(Ω). In fact, both operators turn out to be

normalized duality mappings and are thus homeomorphisms by the smoothness of

the underlying norms. This allows e.g. to use degree theory to treat the solution

branches (λ, u) of the perturbed eigenvalue problem of the p-Laplace operator which

leads to global bifurcation results. To the best knowledge of the author these mapping

degree concepts are not available in our nonsmooth situation.

Note that in contrast to the p-Laplace operator the 1-Laplace operator is far

away from being invertible. Any reasonable notion of the 1-Laplace operator in

terms of a subdi�erential is multi-valued and by 1-homogeneity of ETV we even have

∂ETV (αu) = ∂ETV (u) for any α > 0 such that we even cannot expect invertibility

of the 1-Laplace operator on 1-dimensional subspaces. Thus we follow a completely

di�erent approach and develop estimates of the energy functions involved that allow

24



2.1 Perturbation Results for the p-Laplace Operator

to investigate bifurcation results for the 1-Laplace operator at least locally for u close

to zero in Chapter 4.
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3 Concepts of Nonsmooth Critical

Point Theory

3.1 Generalized Concepts of Di�erentiability

The eigenvalue problem of the 1-Laplace operator is a model example of a variational

problem lacking di�erentiability. Basically we face three major challenges concerning

di�erentiability. The �rst point is that the integrands of the leading energy functionals

(and thus the functionals themselves) are convex but not di�erentiable. This case is

rather standard to treat with the subdi�erential of convex analysis. We will summarize

the main concepts in Subsection 3.1.1.

The second challenge appears in the perturbation problems that we will investigate,

where the associated potentials of the perturbation terms are Lipschitz continuous but

again not di�erentiable in general. The notion of Clarkes generalized gradient is the

method of choice to treat this and we will introduce these concepts in the second

subsection of this chapter.

The full complexity arises, when we consider constrained variational problems of

the type

F(u) + FPer(u) → Min!

subject to

G(u) + GPer(u) = α .

Here α is a given parameter, F is merely convex and lower semicontinous, G is convex

and continuous (and thus locally Lipschitz continuous, see below) and FPer and GPer
are (locally) Lipschitz continuous perturbations. The problem in this form can neither

directly be treated with methods from convex analysis nor with the notion of Clarkes

generalized gradients. However, we can paraphrase the constrained problem to an

unconstrained problem

F(u) + FPer(u) + I{G+GPer=α}(u) → Min! (3.1)
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3 Concepts of Nonsmooth Critical Point Theory

where I denotes the indicator function (2.7). This functional (3.1) turns out to be

lower semicontinuous and the notion of the weak slope applies. Moreover, due to the

special structure of the setting we recall a Lagrange multiplier rule derived in [22] as

necessary condition for critical points in the sense of the weak slope. These results

will be presented in the third subsection and connect the concepts of the convex

subdi�erential and Clarkes generalized gradient.

3.1.1 Convex Subdi�erential

For this subsection let X be a re�exive Banach space and X∗ the associated dual

space1. Let F : X → R∪ {∞} be convex. The e�ective domain of de�nition dom(F)

of F is de�ned by

dom(F) := {u ∈ X ; F(u) <∞} .

In this situation the functional F is called proper provided dom(F) ̸= ∅.

The epigraph epi(F) of a functional F : X → R ∪ {∞} is de�ned by

epi(F) := {(u, β) ∈ X × R ; β ≥ F(u)} . (3.2)

It is not di�cult to see that F is convex if and only if epi(F) is convex and F is lower

semicontinuous if and only if epi(F) is closed.

The conjugate function F∗ : X∗ → R ∪ {∞} of F is de�ned by

F∗(u∗) := sup
u∈X

⟨u∗, u⟩ − F(u) .

As supremum of a�ne functions it is easily seen that F∗ is convex and lower semicon-

tinuous. This construction can be iterated and it turns out that F∗∗ = F for convex,

lower semicontinuous functions F .

Provided a convex functional de�ned on a Banach space is bounded on some open

subset of X, it is locally Lipschitz continuous on all of the interior of the e�ective

domain of de�nition (cf. [16, Prop. 2.2.6, p. 34]).

The subdi�erential ∂F(u) of a convex function F in some point u is de�ned by

∂F(u) := {u∗ ∈ X∗ ; F(u) �nite and ∀v ∈ X : ⟨u∗, v − u⟩+ F(u) ≤ F(v)}

1In the following we will sometimes consider the slightly more general situation X = L1(Ω). In this
context the dual space X∗ = L∞(Ω) is considered to be equipped with the weak* topology and
the results hold in an analogous manner.
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3.1 Generalized Concepts of Di�erentiability

and is a closed convex subset of X∗. The function F is said to be subdi�erentiable at

u ∈ X, provided ∂F(u) ̸= ∅ and the domain of the subdi�erential dom(∂F) is

dom(∂F) := {u ∈ X ; ∂F(u) ̸= ∅} .

The subdi�erential can be characterized via conjugate functions. In particular the

Fenchel identity

u∗ ∈ ∂F(u) if and only if F∗(u∗) + F(u) = ⟨u∗, u⟩ (3.3)

holds (cf. [56, II, Prop. 5.1]).

We have the following calculus rules for the subdi�erential. Let F : X → R ∪ {∞}
be convex. Then for all α > 0 and u ∈ X we have

∂(αF)(u) = α∂F(u) .

Moreover, for convex functions F1, F2 there is always

∂(F1 + F2)(u) ⊇ ∂F1(u) + ∂F2(u) , (3.4)

however equality does not hold in general.

In the following we will need the subdi�erential of the L1(Ω,RN )-norm, in Chapter 4

with N = 1 and in Chapter 5 for N ≥ 1. Even though well known for people familiar

with convex analysis we will state a proof for completeness.

Proposition 2. Let Ω ⊆ Rn be bounded, p ∈ [1,∞) and de�ne G1 : Lp(Ω,RN ) → R
by G1(u) =


Ω |u| dx. Then G1 is subdi�erentiable at all points u ∈ Lp(Ω,RN ) and we

have u∗ ∈ ∂G1(u) if and only if for almost all x ∈ Ω the relation u∗(x) ∈ Sgn(u(x))

holds, where Sgn denotes the subdi�erential of the Euclidean norm in RN , i.e.

Sgn(y) :=


 y
|y|


if y ̸= 0

B(0, 1) if y = 0

Note that this notation is consistent with the notation introduced in (2.3).
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3 Concepts of Nonsmooth Critical Point Theory

Proof. To keep the situation simple2 let us concentrate on the case p ∈ (1,∞).

Let us de�ne the closed and convex set

S := {u∗ ∈ Lp′(Ω,RN ) ; |u∗(x)| ≤ 1 for a. e. x ∈ Ω} .

Thus the indicator functional IS is a convex lower semicontinuous functional on

Lp′(Ω,RN ). Let now u ∈ Lp(Ω,RN ) and let us calculate the conjugate functional

of IS

I∗S(u) = sup
u∗∈S


Ω
u∗(x) · u(x) dx =


Ω
|u(x)| dx . (3.5)

We have thus shown I∗S = G1 and the supremum is achieved for any u∗ with u∗(x) ∈
Sgn(u(x)) for almost every x ∈ Ω. The assertion follows then from the Fenchel identity

(3.3).

3.1.2 Clarkes Generalized Gradient

The notion of Clarkes generalized gradient extends the concept of the gradient to

merely locally Lipschitz continuous functionals on a Banach space X. The following

tools and properties are basically due to the monograph of Clarke [16]. Given F :

X → R locally Lipschitz continuous we de�ne the generalized directional derivative

F0(u; v) of F at u ∈ X in the direction v ∈ X by

F0(u; v) := lim sup
t↓0

w→u

F(w + tv)−F(w)

t
.

Note that letting w tend to u in some sense considers the directional derivatives in a

neighborhood of u ∈ X. This is the key point to get a continuity property of Clarkes

generalized gradient that turns out to be very fruitful for the analysis. The function

v →→ F0(u; v) is positively homogeneous and subadditive, such that we can de�ne the

generalized gradient of F at u ∈ X by

∂F(u) := {u∗ ∈ X∗ ; ∀v ∈ X : ⟨u∗, v⟩ ≤ F0(u; v)} .

2For p = 1 the arguments concerning the topology in Lp′(Ω,RN ) = L∞(Ω,RN ) need to be modi�ed
in the sense that one has to work with the weak*-topology in L∞(Ω,RN ). The calculations are
the same.
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By an easy application of the Hahn-Banach theorem ∂F(u) ̸= ∅ and the elements of

∂F(u) are norm bounded by the Lipschitz constant L that holds for F in a neighbor-

hood of u. Moreover, the formula

F0(u; v) = max
u∗∈∂F(u)

⟨u∗, v⟩ (3.6)

holds.

Provided a functional F is continuously di�erentiable at u ∈ X with derivative

F ′(u) ∈ X∗ we have

∂F(u) = {F ′(u)} .

However if F is not continuously di�erentiable Clarkes generalized gradient might be

strictly larger than {F ′(u)}.

Clarkes generalized gradient is upper semicontinuous, i.e. we have

∂F(u) =

δ>0

co


w∈Bδ(u)

∂F(w) ,

where coA denotes the closed convex hull of A (cf. [16, Proposition I 2.1.5]).

Example 3. The function g : R → R, g(x) = x2 sin(1/x) for x ̸= 0 and g(0) = 0 is

well known to be di�erentiable with discontinuous derivative

g′(x) =

2x sin(1/x)− cos(1/x2) for x ̸= 0

0 for x = 0 .

Recalling continuity of g′ for x ̸= 0 and upper semicontinuity of Clarkes generalized

gradient we derive

∂g(x) =

{2x sin(1/x)− cos(1/x2)} for x ̸= 0

[−1, 1] for x = 0 .

Note that convex functions, which are �nite at some interior point of the e�ective

domain are locally Lipschitz continuous on all of the interior of the e�ective domain (cf.

[16, p. 34]) and it turns out that the notion of the convex subdi�erential and Clarkes

generalized gradient coincide. Moreover, in that case F0(u; v) coincides with the one-

sided directional derivative F ′(u, v) := limt↓0
F(u+tv)−F(u)

t (cf. [16, Proposition 2.2.7,

p. 36]).
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For the notion of Clarkes generalized gradient, calculus rules similar to those of the

subdi�erential hold. For scalars α ∈ R we have

∂(αF)(u) = α∂F(u)

and Clarkes generalized gradient of a sum of two functions may be estimated by

∂(F1 + F2)(u) ⊆ ∂F1(u) + ∂F2(u) , (3.7)

while equality in this formula fails in general (cf. [16, p. 38f]).

For the notion of Clarkes generalized gradient a mean value theorem, the Theorem of

Lebourg (cf. [16, p. 41]), holds: Let u, v ∈ X and assume that F : X → R is Lipschitz

continuous on an open neigborhood of the line segment {tu + (1 − t)v ; t ∈ [0, 1]},
then there exists a point w = tu + (1 − t)v, t ∈ (0, 1), and some w∗ ∈ ∂F(w), such

that

F(u)−F(v) = ⟨w∗, u− v⟩ . (3.8)

Our major application of the provided tools will be the derivation of Clarkes gen-

eralized gradient for functionals F of Nemytsky type, i.e. F(u) =

Ω F (x, u(x)) dx,

where F (x, ·) is absolutely continuous and satis�es certain growth restrictions. Before

we treat this general case let us consider the following simpler proposition (which is

[16, Example II, 2.2.5.]).

Proposition 4. Let h ∈ L∞(R,R) and de�ne F : R → R by

F(x) :=

 x

0
h(s) ds .

De�ne the essential supremum of h at x ∈ R by

ess sup
y→x

h(y) := lim
r↓0

ess sup
y∈B(x,r)

h(y) (3.9)

and the essential in�mum of h in x ∈ R in an analogous manner. Then F is locally

Lipschitz continuous and Clarkes generalized gradient is given by

∂F(x) = [ess inf
y→x

h(y), ess sup
y→x

h(y)] .

This result is needed in the derivation of Clarkes generalized gradients of the per-
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turbation functionals EPer and GPer, which we consider below. In order to present a

complete self-contained proof let us thus recall the proof of Proposition 4 from [16,

p. 34].

Proof. It is easily seen that F is globally Lipschitz continuous. Since F is absolutely

continuous it is di�erentiable almost everywhere with derivative F ′(x) = h(x) for

almost all x ∈ R. For those points of di�erentiability we have h(x) ∈ ∂F(x). Thus,

from upper semicontinity we conclude that ∂F(x) contains all essential cluster points

of h at x, that is all cluster points of h at x that persist, after removing arbitrary

sets E with measure zero from R. This implies, together with the fact that ∂F(x)

is convex and closed, that [ess infy→x f(y), ess supy→x f(y)] ⊆ ∂F(x). To prove the

reverse inclusion we recall F(y + t) − F(y) =
 y+t
y h(s) ds, such that it is easily

seen that F0(x; 1) ≤ ess supy→x h(y). However, by de�nition of Clarkes generalized

gradient this implies ess supy→x h(y) ≥ F0(x; 1) ≥ 1x∗ for all x∗ ∈ ∂F(x). Similarly

we obtain ess infy→x h(y) ≤ x∗ for all x∗ ∈ ∂F(x).

Let us now derive Clarkes generalized gradient of a function which is related to

the potential of a Nemytskii type operator with weaker continuity assumptions on

the integrand than usual. Note that similar results of this type are known (cf. e.g.

[12, Chapter 2]), however the statement under the speci�c symmetry and growth

assumptions is due to the author and the statements on the norm bounds on the

functional and Clarks generalized gradients are due to the author. We give our own

self-contained proof, which does not require rather abstract measurability arguments.

Theorem 5. Let Ω ⊆ Rn be open and let p ∈ (1,∞). Let f : Ω × R be integrable on

Ω× [−T, T ] for any T > 0 and assume

(i)

f(ξ, s) = −f(ξ,−s) (3.10)

for almost all (ξ, s) ∈ Ω× R and

(ii) there exists CPer > 0 such that

|f(ξ, s)| ≤ pCPer|s|p−1 (3.11)

for almost all ξ ∈ Ω.
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Then F : Lp(Ω) → R given by

F(u) :=


Ω

 u(x)

0
f(x, s) ds dx. (3.12)

is a well de�ned even function and F(u) = F(|u|) holds. Moreover, F is Lipschitz con-

tinuous on bounded subsets of Lp(Ω) and if u∗ ∈ Lp′(Ω) belongs to Clarkes generalized

gradient ∂F(u) at u, then for almost all x ∈ Ω

u∗(x) ∈ [ess inf
y→u(x)

f(x, y), ess sup
y→u(x)

f(x, y)] . (3.13)

In particular we have

∥u∗∥p′ ≤ pCPer ∥u∥p−1
p (3.14)

for all u∗ ∈ ∂F(u).

Moreover, for all u ∈ Lp(Ω) and all α ≥ 0 the estimate

|F(αu)| ≤ αpCPer∥u∥pp (3.15)

holds true.

Apparently provided we assume continuity of f with respect to the second variable

Clarkes generalized gradient reduces to a singleton ∂F(u) = {u∗} with

u∗(x) = f(x, u(x))

for almost all x ∈ Ω. In this sense ∂F(u) generalizes the classical Nemytskii operator

u →→ f(·, u(·)).

Proof of Theorem 5. Let us assume that F is well de�ned �rst, then it is easily seen

that antisymmetry of f with respect to the second variable (3.10) implies that F is a

symmetric functional, i.e. F(u) = F(−u). Moreover, we have

F(u) =


Ω

 u(x)

0
f(x, s) ds dx =


Ω

 |u(x)|

0
f(x, s) ds dx = F(|u|) .

We will thus without loss of generality restrict our attention on f de�ned on Ω×[0,∞)

in the following.

Let us verify that F is well de�ned now. In particular we need to justify that
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x →→ f(x, u(x)) is measurable and integrable. Assume f ≥ 0 on Ω × [0,∞). By

assumption (3.11) the function f is integrable on Ω × [0, T ] for all T > 0. Thus

the Fubini Theorem states that f(·, t) is measurable for almost all t ∈ [0, T ] and

s →→ f(x, s)χ{s≤T}(x, s) is measurable for almost all x ∈ Ω on [0, T ], but thus also on

[0,∞). Thus

f(x, ·) = sup
T>0

s →→ f(x, s)χ{s≤T}(x, s)

is measurable for almost all x ∈ Ω.

We de�ne F : Ω× [0,∞) → R by

F (x, t) :=

 t

0
f(x, s) ds .

Obviously F (x, ·) is continuous for almost all x ∈ Ω. Since f is integrable on Ω× [0, T ]

for any T ∈ [0,∞) again the Fubini Theorem states that F (·, t) is measurable for

almost all t ∈ [0,∞). This shows that F is a Carathéodory function and thus for

a measurable function u the composition function x →→ F (x, u(x)) is measurable.

The general case follows by separate treatment of the positive and negative part of

f = f+ − f−.

Assume that F is indeed well de�ned, i.e. F(u) �nite for u ∈ Lp(Ω). Let u,w ∈
Lp(Ω), R > 0 with ∥u∥p ≤ R, ∥w∥p ≤ R. Then by (3.11) and Hölders inequality

|F(u)−F(w)| =



Ω

 |u(x)|

|w(x)|
f(x, s) ds dx


≤ pCPer


Ω

|u(x)| − |w(x)|
(|u(x)|+ |w(x)|)p−1 dx

≤ pCPer∥u− w∥p∥(|u|+ |w|)p−1∥p′

≤ pCPer(2R)
p−1∥u− w∥p , (3.16)

which shows that F is uniformly Lipschitz continuous on bounded subsets of Lp(Ω).

Here we have used that for u,w ∈ Lp(Ω) we have (|u|+ |w|)p−1 ∈ Lp′(Ω) with

∥(|u|+ |w|)p−1∥p
′

p′ = ∥(|u|+ |w|)∥pp ≤ (2R)p.

Note that the same calculation (3.16) with w = 0, and thus F(w) = 0, also justi�es

our assumption that F is �nite at all.
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Assertion (3.15) is proved by a straightforward calculation

|F(αu)| ≤

Ω


 αu(x)

0
f(x, s)ds

 dx
≤

Ω


 |αu(x)|

0
pCPers

p−1 ds

 dx
=


Ω
CPer|αu|p dx

= CPer α
p∥u∥pp ,

where we used (3.11) again.

It remains to prove the structure of Clarkes generalized gradient for F . To do so

let u ∈ Lp(Ω) and u∗ ∈ ∂F(u) and v ∈ Lp(Ω). With the notation

Fx(u) := F (x, u) . (3.17)

we derive
Ω
u∗v dx ≤ F0(u; v) = lim sup

w→u, t↓0

F(w + tv)−F(w)

t

= lim sup
w→u, t↓0


Ω

Fx(w(x) + tv(x))− Fx(w(x))

t
dx .

Note that by (3.11) for almost every x ∈ Ω the function Fx is the primitive of a

locally bounded function, such that Proposition 4 applies and we derive that Fx is

locally Lipschitz continuous and Clarkes generalized gradient of Fx is given by

∂Fx(a) =

ess inf
y→a

f(x, y), ess sup
y→a

f(x, y)


for a ∈ R. Now, again by (3.11) the implication

a∗ ∈ ∂Fx(a) ⇒ |a∗| ≤ pCPer|a|p−1 (3.18)

holds true.

Let us take sequences (wk)k in Lp(Ω) and tk ↓ 0 such that

F0(u; v) = lim
k→∞


Fx(wk(x) + tkv(x))− Fx(wk(x))

tk
dx . (3.19)
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Without loss of generality we may assume that wk(x) → u(x) a.e. By the Lebourg

Theorem (3.8) for almost every x ∈ Ω and every k ∈ N there is some θ ∈ (0, 1) and

g∗k(x) ∈ ∂Fx


wk(x) + θtkv(x)


such that

Fx


wk(x) + tkv(x)


− Fx


wk(x)

 = g∗k(x)wk(x) + tkv(x)− wk(x)
 (3.20)

= tk
g∗k(x)v(x)

≤ pCPer(|wk(x)|+ |v(x)|)p−1 |v(x)| ,

where we used (3.18). Obviously hk := |wk| + |v| → |u| + |v| in Lp(Ω). The non-

linear operator Jp : Lp(Ω) → Lp′(Ω) given by Jp(u)(x) := |u(x)|p−1 sgn(u(x)) is a

homeomorphism (cf. [15, p. 72]) and thus the functions h∗k ∈ Lp′(Ω) given by

h∗k = Jp(hk)

converge in Lp′(Ω) to Jp(|u| + |v|). Whence gk := h∗k |v| converges in L1(Ω) and,

by assumption also pointwise a.e., to g = (|u| + |v|)p−1|v|. Choosing an appropri-

ate subsequence we may moreover assume that


k∈N ∥gk − g∥1 < ∞, such that

g +


k∈N |fk| is easily seen to be a majorant of all gk and thus also all integrands in

(3.20). We may thus invoke the Fatou Lemma in (3.19) in order to get
Ω
u∗(x)v(x) dx ≤ F0(u; v) ≤


Ω
lim sup
k→∞

Fx(wk(x) + tkv(x))− Fx(wk(x))

tk
dx .

Note that the integrand on the right hand side of the previous inequality is bounded

by F 0
x (u(x); v(x)) for almost all x ∈ Ω and thus varying v ∈ Lp(Ω) (choose v of the

form v = aχE for appropriate subsets E ⊆ Ω) we derive

u∗(x)a ≤ F 0(u(x); a)

for all a ∈ R and almost all x ∈ Ω. But this is by de�nition

u∗(x) ∈ ∂Fx(u(x))
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for almost all x ∈ Ω, which proves (3.13). We thus obtain with (3.11)

∥u∗∥p
′

p′ ≤

Ω
max{|f−(x, u(x))|, |f+(x, u(x))|}p′ dx

≤

Ω
(pCPer)

p′ |u(x)|p dx

= (pCPer)
p′∥u∥pp

and (3.14) follows by taking the p′-th root of the previous equation.

Let us note that under slightly stronger conditions on f one has that (3.13) char-

acterizes Clarkes generalized gradients of F (cf. [16, p. 83f]).

3.1.3 Weak Slope and a General Lagrange Multiplier Rule

As pointed out before, the energy functions of the problems we will investigate are

highly nonsmooth. Thus a very general concept of criticality is needed. For the

1-Laplace operator the notion of the weak slope turned out to be the method of choice.

This notion to de�ne critical points of continuous (and to some extent also lower

semicontinuous) functionals on metric spaces was introduced by Corvellec, Degiovanni

& Marzocchi [18], [17], [21] and, independently, by Io�e, Katriel and Schwartzmann

[32], [33].

Let X be a metric space and F : X → R be continuous. The weak slope |dF|(u) ∈
[0,∞] of F at some point u ∈ X is de�ned as

|dF|(u) := sup
σ∈[0,∞)


∃δ > 0, η : B(u, δ)× [0, δ] → X continuous, such that

d(η(v, t), v) ≤ t and F(η(v, t)) ≤ F(v)− σt

for all (v, t) ∈ B(u, δ)× [0, δ]


.

Loosly speeking we look for homotopies η with deformation speed not faster than one,

such that the energy F declines along all paths at least with speed σ (cf. Figure 3.1).

This de�nition is motivated by critical point theory, where in the classical situation

such local deformation mappings η are constructed for noncritical points u with the

aid of the derivative at u in order to �nally derive the desired Lusternik-Schnirelmann

defomations. The weak slope generalizes the norm of the derivative. Indeed it is not

di�cult to see that, provided X is a Banach space and F is continuously di�erentiable
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3.1 Generalized Concepts of Di�erentiability

   Schnelle Notizen Seite 1    Figure 3.1: The energy F declines along the homotopy η.

39



3 Concepts of Nonsmooth Critical Point Theory

with derivative F ′(u) ∈ X∗, we have |dF|(u) = ∥F ′(u)∥X∗ . Thus we say that u is a

critical point of F provided

|dF|(u) = 0 .

Let X be a metric space as above and let F : X → R be continuous. We de�ne

GF : epi(F) → R, GF (v, t) := t ,

where epi(F) denotes the epigraph of F de�ned in (3.2). We equip epi(F) with the

metric

d((v, t), (u, s)) :=

d(u, v)2 + (t− s)2 , (3.21)

then GF turns out to be Lipschitz continuous (with Lipschitz constant 1) and |dF|
and |dGF | are connected by the following proposition.

Proposition 6. Let F : X → R be continuous, then

|dGF |(u, t) =


|dF|(u)√

1+(|dF|(u))2
if t = F(u) and |dF|(u) <∞

1 otherwise .

Proof. Cf. [21, Prop. 2.3].

This allows to de�ne in a consistent way the weak slope for merely lower semicon-

tinuous functionals F : X → R ∪ {∞} on a metric space X by setting

|dF|(u) :=


|dGF |(u,F(u))

1−

|dGF |(u,F(u))

2 if |dGF |(u,F(u)) < 1

∞ if |dGF |(u,F(u)) = 1.

By application of critical point theory for the continuous function GF we then obtain

critical points (u, t) ∈ epi(F). Although, we may get "arti�cial" critical points (u, t)

with F(u) < t. A natural way to rule out this case is requiring that the (epi)-condition

holds for F , which means that for all b > 0

inf{|dGF |(u, t) ; u ∈ dom(F), F(u) < t, |t| ≤ b} > 0 . (3.22)

Our main application will be the investigation of constraint variational problems of
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the form

E(v) → Min!
v∈X

(3.23)

subject to

G(v) = 0 . (3.24)

and we say that u is a critical point of (3.23), (3.24), provided u is a critical point of

the functional F : X → R ∪ {∞} de�ned by

F(v) := E(v) + I{G=0}(v) .

The epigraphs of the function F and the restricted function E|G : G → R ∪ {∞},
where G := {G = 0} is equipped with the induced metric from X, coincide and thus

|dF|(u) =
dE|G(u) for u ∈ G. This shows that this approach is consistent with the

classical notion of criticality (cf. [45, Lemma 3.1] for details).

In [21, Theorem 2.11] it is pointed out that for convex, lower semicontinuous func-

tionals F we have

|dF|(u) = min{∥u∗∥ ; u∗ ∈ ∂F(u)} .

The weak slope for locally Lipschitz continuous functionals may be estimated by

|dF|(u) ≥ min{∥u∗∥ ; u∗ ∈ ∂F(u)}

(cf. [21, Theorem 2.17]). Nevertheless we are in a more general situation, where we

consider the weak slope of the sum of a Lipschitz and a convex, lower semicontinuous

function subject to a Lipschitz constraint. This situation has been treated in [22].

Theorem 7 (Lagrange multiplier rule, general form). Let X be a real Banach space

and let F0 : X → R ∪ {∞} be convex and lower semicontinuous and F1,G : X → R
be locally Lipschitz continuous. Let u ∈ X be a critical point of F : X → R ∪ {∞}
given by

F = F0 + F1 + I{G=0}

and assume that there exist u1, u2 ∈ X with F(u1) <∞ and F(u2) <∞ such that

G0(u; u1 − u) < 0 and G0(u; u− u2) < 0 . (3.25)
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3 Concepts of Nonsmooth Critical Point Theory

Then ∂F(u) ̸= ∅ and there exist λ ∈ R, u∗0 ∈ ∂F0(u), u
∗
1 ∈ ∂F1(u) and w

∗ ∈ ∂G(u)
such that

u∗0 + u∗1 = λw∗ .

Proof. Note that condition (3.25) implies the (epi)-condition by [22, Theorem 3.5].

The theorem is thus an immediate consequence of [22, Corollary 3.6], applied with

f0 = F0, f1 = F1, g0 = −1 and g1 = G.

Note that the foregoing theorem only allows to derive the existence of some elements

u∗0, u
∗
1 and w

∗. If we additionally know that the critical point u is indeed a minimizer

we can assure under slightly stronger assumptions that for all w∗ ∈ ∂G(u) there exists
some element in the subdi�erential of the energy at u, such that the corresponding

Euler-Lagrange equation is satis�ed (cf. [36, Proposition 6.4]):

Theorem 8 (Lagrange multiplier rule for minimizers of convex energies). Let X be

a real Banach space and let F : X → R ∪ {∞} be convex and G : X → R be convex

and continuous. Assume u ∈ X solves

F(u) = min
v∈X

G(v)=0

F(v) <∞

and assume the existence of w ∈ X with F(u + w) < F(u), F(u − w) < ∞ and

G(u+ w) < 0. Then

∂G(u) ⊆

α≥0

α∂F(u).

In other words, for each w∗ ∈ ∂G(u) there exists λ ≥ 0 and u∗ ∈ ∂F(u) such that

u∗ = λw∗ .

3.2 Critical Point Theory

The solutions of many partial di�erential equations can be considered as critical points

of an associated variational problem. Critical point theory treats methods to �nd such

critical points in terms of minimax methods and thus proves existence of solutions

of the associated partial di�erential equation. A good introduction to critical point

theory is the monograph of Rabinowitz [50]. To present the basic idea of critical point

theory let us state the idea of the existence principle in critical point theory in a casual

form.
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Existence Principle 9. Let X be a given space and let F : X → R ∪ {∞}. Assume

that:

(a) There exist so called Lusternik-Schnirelmann deformations, i.e. for every non-

critical value c and ε̃ > 0 there is ε ∈ (0, ε̃) and a continuous deformation

η ∈ C([0, 1]×X,X) with η(0, v) = v for all v ∈ X and

η(1, {F ≤ c+ ε}) ⊆ {F ≤ c− ε} ,

(b) There exists a class S of, typically compact, subsets of X that is invariant under

the Lusternik-Schnirelmann deformations, i.e.

S ∈ S ⇒ η(1, S) ∈ S .

Then

c := inf
S∈S

sup
u∈S

F(u) ,

provided it is �nite, is a critical value of F .

For a more explicit statement see [50, Theorem A.4], compare also [58, Chapter 44].

In classical theorems of critical point theory it is assumed that F is continuously

di�erentiable. In that case the derivative F ′(u), provided it is nonzero, can be used to

�nd a direction, where the energy decreases and thus some kind of gradient �ow can

be constructed to prove existence of the Lusternik-Schnirelmann deformations. Note

that the derivative itself does not directly appear in the above existence principle

(apart from the de�nition of "critical value") and it turns out that the property of

being a critical value is essentially a topological property.

Example 10. Consider the function f1 : R2 → R, f1(x, y) = x2 − y2, with zero

being the only critical value. Note that the superlevel sets {f1 ≥ c} change from

connectedness for c ≤ 0 to disconnetedness for c > 0 at the critical level c = 0. The

graph of the function f2 : R2 → R, f2(x, y) := |x| − |y| is also saddle shaped, and the

superlevel sets also change their topological property at zero (cf. Figure 3.2). Thus it

is reasonable to consider zero as critical point of f2 despite f2 is not di�erentiable in

that point (and zero indeed turns out to be a critical point in the sense of the weak

slope).

With increasing technical a�ord such Lusternik-Schnirelmann deformations have

been derived for di�erentiable (but not continuously di�erentiable) functionals, locally
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   Schnelle Notizen Seite 1    

Figure 3.2: Superlevel sets of the functions f1 and f2.

Lipschitz continuous functionals and for functionals of the form F1 +F2, where F1 is

convex and F2 is continuously di�erentiable.

It was a very big break through in the early 90s, when critical point theory was

pushed to merely continuous and even lower semicontinuous functionals on metric

spaces. The key idea was the introduction of the notion of the weak slope, which allows

the derivation of very general Lusternik-Schnirelmann deformations for noncritical

values more or less strait forward from its de�nition (cf. [21]).

Beside the relaxation of the di�erentiability there are several ways to adapt the

Existence Principle 9 to various situations. On the one hand the theory demonstrates

its power for functionals with certain symmetries. We will apply the simplest sym-

metry possible: all our functionals are even, i.e. F(u) = F(−u). Nevertheless critical
point theory has successfully been extended to situations with much more complex

symmetry properties (cf. e.g. the monograph [6] of Bartsch). These concepts are quite

cumbersome to write down, since the symmetry not only comes up in the class S ,

but also in the Lusternik-Schnirelmann deformations which should be invariant with

respect to the symmetry.

On the other hand there are various di�erent ways to de�ne the class S . Maybe

the most known appears in the mountain pass theorem where S consists of all paths

connecting two given points in X. This construction typically provides existence

of some critical point. Nevertheless in certain situations it is possible to de�ne,

dependent on a topological index, an ordered sequence S1 ⊃ S2 ⊃ . . . and one
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can verify that each

cj := inf
S∈Sj

sup
u∈S

F(u)

is a critical point of F . In our situation of even functionals one typically makes use of

two topological indices, either the genus or the category in the projective space X/∼,

where antipodal points of X are identi�ed. Cf. the Appendix 7.3 for details on genus

and category.

The Palais-Smale condition ensures the required compactness of the sets of critical

points in a level set and in the framework of the weak slope we will apply the following

form of the Palais-Smale condition (cf. [22, De�nition 2.3]).

De�nition. Let X be a metric space and F : X → R∪{∞} be lower semicontinuous.

The function F is said to satisfy the Palais-Smale condition (PS)c for the level c ∈
R, provided any Palais-Smale sequence (uj)j for the level c, i.e. F(uj) → c and

|dF|(uj) → 0, admits a convergent subsequence. The function F is said to satisfy the

Palais-Smale condition (PS) provided it satis�es (PS)c for any level c ∈ R.

We will repeatedly apply the following existence theorem for critical points in the

thesis.

Theorem 11. Let X be a real Banach space and let F : X → R ∪ {∞} satisfy

(A) F is lower semicontinuous, even, and F (0) = ∞,

(B) F is bounded from below,

(C) F satis�es the (PS)-condition,

(D) F satis�es the (epi)-condition (3.22).

(E) Assume that for all k ∈ N there exists Φ : Sk−1 → X bijective continuous anti-

symmetric (i.e. Φ(−x) = −Φ(x)) with

sup{F(Φ(x)) ; x ∈ Sk−1} <∞ .

Here Sk−1 denotes the (k − 1)-dimensional sphere in Rk.

Then there exist in�nitely many pairs ±u1,±u2, . . . of critical points of F and the

corresponding critical values ck = F(±uk) are given by

ck := inf
S∈Sk

sup
v∈S

F(v) (3.26)
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where

Sk := {S ⊆ X \ {0} symmetric and compact ; genS ≥ k}

for k ∈ N.
If moreover the sublevel sets {F ≤ β} are compact for any β ∈ R, then ck → ∞ as

k → ∞.

Let us state some remarks on the theorem before we turn to its proof.

Remark 12. (a) With minor modi�cation we can apply Theorem 2.5 from [22] in

the situation of our Theorem, which provides us the existence of in�nitely many

critical points. However, it does not provide unboundedness of the sequence (ck)k

and the minimax-characterization is not stated in [22, Theorem 2.5] (and indeed

the proof uses a slightly di�erent characterization of the critical values).

(b) Unboundedness of the sequence of critical values could probably also be derived

from [21, Theorem 3.10], but there the category is used as topological index. By

classical results of Rabinowitz [49, Theorem 3.7] and Fadell [28, p. 40] it is well

known, that the genus of a closed symmetric set equals its category in the projective

space where antipodal points are identi�ed. However, since critical point theory for

merely lower semicontinuous functionals F is reduced to the investigation of the

continuous functional GF , some rather technical arguments are needed to verify

that the critical values obtained with the concept of category agree with the values

obtained by using genus as topological index (cf. [41, Corollary 2.2] and its proof).

Thus Theorem 11 will essentially shorten the existence proof of eigensolutions of

the perturbed eigenvalue problem of the 1-Laplace operator instead of working with

the category in a projective space.

(c) The situation of the theorem might also be covered by the results of [17], but

is seems to be very complex to show that all the technical preliminaries of the

abstract framework are satis�ed and it is also not immediate how to deduce the

desired statements.

(d) If condition (E) is satis�ed not for all k ∈ N but only for some k0 ∈ N (which

is certainly the case provided X is not �nite dimensional) it is not di�cult to

adopt our proof below in order to show that there exist at least k0 pairs of critical

points ±u1, . . .± uk0 and the corresponding critical values are given by (3.26) for

k = 1, . . . , k0.
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(e) Let us �nally remark that the argument with the Blaschke Theorem in our proof

below, can easily be modi�ed in order to prove that the inf in (3.26) is indeed a

min.

Proof of Theorem 11. Condition (E) ensures (cf. Property (vi) on p. 141) that the

classes Sk are nonempty and thus, by boundedness of F from below, the values ck

are �nite. Let k ∈ N.

Note that with

S̃k := {S̃ ⊆ epi(F) ; S̃ compact, gen1 S̃ ≥ k, ∀(u, s) ∈ S̃ : (−u, s) ∈ S̃, }

where gen1 S̃ denotes the genus of the projection of S̃ on the �rst coordinate, i.e.

gen1 S̃ := gen{u ∈ X ; (u, s) ∈ S̃} ,

and with

c̃k := inf
S̃∈S̃k

sup
(u,s)∈S̃

GF (u, s)

we have

ck = c̃k .

Indeed, invoking the de�nition of GF and S̃ ⊆ epi(F) we easily see that we can restrict

our attention to sets S̃ ∈ S̃k of the form

S̃ = S ×

supu∈S F(u)


with S ∈ Sk without changing the value c̃k. Note that by (E) we may assume

supu∈S F(u) <∞. However, for those sets S̃ the equality is immediate.

We de�ne the set of critical points of F for the level ck by

Kck := {u ∈ X ; F(u) = ck and |dGF |(u) = 0} .

Let us now assume that ck is not a critical value, i.e. Kck = ∅.
Claim: There is ε̃ > 0, such that there is no critical value of F in (ck − ε̃, ck + ε̃).

Proof of the claim: Assume this is not true, we will then �nd a sequence of critical

points (uj)j of F with F(uj) → ck. Recall that by de�nition (uj ,F(uj))j is a sequence

of critical points of the continuous functional GF : epi(F) → R. Since (uj)j is a

Palais-Smale sequence for F it admits a convergent subsequence (for simplicity again
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3 Concepts of Nonsmooth Critical Point Theory

denoted by (uj)j) with limit u and by lower semicontinuity of F we have F(u) ≤ ck.

Since the weak slope is lower semicontinous with respect to the graph metric (see [21,

Propostion 2.6]) we obtain that (u, ck) = limj→∞(uj ,F(uj)) is a critical point of GF .

From the (epi)-condition (3.22) we derive that ck = F(u). But this amounts to say

that u ∈ Kck , a contradiction.

According to the �rst part of the proof of Theorem 2.5 from [22] (applied with

f = GF , X = epi(F), Φ(u, s) = (−u, s), O = ∅) there is ε ∈ (0, ε̃] and a continuous

map η : epi(F)× [0, 1] → epi(F) such that for all (u, s) ∈ epi(F) and t ∈ [0, 1]

d

η((u, s), t), (u, s)


≤ t

s ̸∈ [ck − ε̃, ck + ε̃] ⇒ η

(u, s), t


= (u, s)

η


GF ≤ ck + ε

, 1

⊆

GF ≤ ck − ε


(3.27)

η

(−u, s), t


= −η((u, s), t) (3.28)

where d is the epigraph metric (3.21).

By construction (3.26) there is S1 ∈ Sk such that

sup
u∈S1

F(u) ≤ ck + ε .

For a := supu∈S1
F(u) de�ne η1 : X → X × {a} by

η1(u) := (u, a) and de�ne T1 := η1(S1) = S1 × {a} .

Note that T1 ⊆ epi(F). Let η be the Lusternik-Schnirelmann deformation from above

and consider

T2 := η(T1, 1) ⊆ epi(F) .

Note that by (3.27) for all (u, s) ∈ T2 we have s ≤ ck − ε. Thus, with the projection

η2 : epi(F) → X,

η2(u, s) := u and with S2 := η2(T2)

we have

sup
u∈S2

F(u) ≤ sup
(u,s)∈T2

s ≤ ck − ε .

We will show that S2 ∈ Sk, which will then provide a contradiction to the de�nition

(3.27) of ck. The set S2 is obtained as continuous image of S1 under η2 ◦ η ◦ η1 and

thus compact. Moreover, due to (3.28) it is not di�cult to see that η2 ◦ η ◦ η1 is
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3.2 Critical Point Theory

antisymmetric. Thus by Property (iii), p. 141 of genus we have

genS2 ≥ genS1

as desired.

It remains to prove that the sequence of critical values (ck)k is unbounded. The

essential tool for this result is a result of Blaschke (cf. [2, Theorem 4.4.15]), which

says that the set of nonempty compact subsets K of a compact metric space (K, d),

equipped with the Hausdor� distance dH ,

dH(K,L) := sup
x∈K

d(x, L) + sup
x∈L

d(x,K) ,

is again a compact space. Moreover, if Kj → K in Hausdor� distance, then x ∈ K

if and only if for each j ∈ N there is xj ∈ Kj , such that xj → x (cf. [2, Proposi-

tion 4.4.14]).

Assume that the monotone increasing sequence (ck)k converges to some c < ∞.

Then {F ≤ c + 1} is compact by assumption. Moreover, for each k ∈ N there is

Sk ∈ Sk with

sup
u∈Sk

F ≤ ck + 1/k .

Thus the Sk are all compact subsets of the compact set {F ≤ c+ 1} and there exists

a compact subset S ⊆ {F ≤ c + 1} such that a subsequence of (Sk)k, for simplicity

also denoted (Sk)k, converges to S in Hausdor� metric by the Blaschke's Theorem.

By the pointwise characterization of the limit S it is immediate that S is symmetric

with respect to the origin and 0 ̸∈ S, since this would otherwise contradict the lower

semicontinuity of F (recall F(0) = ∞). By property (v), p. 141 of genus there is

an open neighborhood U of S, such that genU = genS. By convergence of (Sk)k

to S in Hausdor� metric we �nally have Sk ⊆ U for all k large enough and thus by

Property (ii), p. 141 we have for eventually all k ∈ N

k ≤ genSk ≤ genU = genS ,

a contradiction to the �niteness of genS, Property (v), p. 141.
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4 Perturbations of the Eigenvalue

Problem in BV (Ω)

In this chapter we will derive perturbation results for the 1-Laplace operator. Note

that already the existence of solutions of the perturbed problems is a nontrivial task

and beside the investigations of Kawohl & Schuricht [36] and the investigation of one

speci�c perturbation in [20] by Degiovanni & Magrone, our existence proofs for se-

quences of solutions for a large class of perturbed eigenvalue problems of the 1-Laplace

operator are new. Moreover, in contrast to the well studied properties of the p-Laplace

operator, bifurcation investigation for the 1-Laplace operator was not accessible up

to now. This is not only due to the fact that eigensolutions of the 1-Laplace operator

are not elementary to de�ne (and in particular the Euler-Lagrange equation is not

suitable to de�ne eigensolutions), but also relies on the fact that both the 1-Laplace

operator and the nonlinearity "u →→ u/|u|" are of multi-valued nature. In particular

the concepts developed for the di�erentiable framework of the p-Laplace eigenvalue

problem do not apply. Nevertheless critical point theory gives the powerful tools to

obtain a sequence of eigensolutions with a certain robustness inherited from their

construction as we will demonstrate below.

In particular we will study the perturbed eigenvalue problem of the 1-Laplace op-

erator which is formally given by

−div
Du

|Du|
+ f(x, u) = λ

 u
|u|

+ g(x, u)

,

where f and g are functions representing the perturbation. As in the unperturbed

case this equation is not suitable to de�ne eigenfunctions of the perturbed 1-Laplace

operator, and we will thus investigate the associated variational problem
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4 Perturbations of the Eigenvalue Problem in BV (Ω)

E(v) := ETV (v) + EPer(v) → Min!
v∈BV (Ω)

(4.1)

subject to

G(v) := G1(v) + GPer(v) = β , (4.2)

where EPer and GPer are suitable potentials of f and g resp. In order to keep our

calculations short we will split the investigation in two cases, we will assume either

GPer = 0 in Section 4.1 or EPer = 0 in Section 4.2.

Recall that u ̸= 0 is de�ned to be an eigenfunction of the 1-Laplace operator

provided, with α = ∥u∥1, the function u is a critical point of the variational problem

ETV (v) :=


Ω
d|Dv|+


∂Ω

|v∂Ω| dHn−1 → Min!
v∈BV (Ω)

(4.3)

subject to

G1(v) =


Ω
|v| dx = α , (4.4)

where we implicitly assume that ETV is de�ned on all of Lp(Ω) as in (2.5) and critical-

lity is meant in the sense of the weak slope for the functional F : Lp(Ω) → R ∪ {∞}
from (2.6).

In the following we will consider eigenfunctions of the 1-Laplace operator with

respect to the Lp(Ω)-metric, where p is chosen in such a way that the perturbation

functions EPer or GPer are Lipschitz continuous functions on Lp(Ω).

By 1-homogeneity of ETV and G1 it is easily seen that for any eigenfunction u and

any β ∈ R \ {0} the function βu will be an eigenfunction as well and the Lagrange

multiplier λβ associated to the critical point βu coincides with the eigenvalue λ of u.

In analogy to the eigenvalue problem of the p-Laplace operator we will, for λ ∈ R,
consider (λ, 0) to be a trivial solution of the eigenvalue problem of the 1-Laplace

operator, such that the same situation as in Figure 2.2 is met.

In particular we can consider any (λ̃, 0) ∈ R×BV (Ω) as bifurcation point, provided

λ̃ is an eigenvalue of the 1-Laplace operator, since the solution branches (λ, 0)λ∈R and

(λ̃, βu)β∈R of the eigenvalue problem for the 1-Laplace operator intersect in (λ̃, 0).

Recall that a sequence of eigenvalues (λk,0)k∈N of the 1-Laplace operator is given by
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the Lusternik-Schnirelman construction (2.8), (2.9) and by homogeneity of ETV and

G1 this is equivalent to

λk,0 =
1

α
inf

S∈S α
k

sup
u∈S

ETV (u) (4.5)

where

S α
k := {S ⊆ Lp(Ω) compact ; G1 = α on S, genLp S ≥ k} (4.6)

for α > 0.

In Section 4.1 we will consider the variational problem

ETV (v) + EPer(v) → Min!
v∈Lp(Ω)

, (4.7)

with EPer typically of the form

EPer(v) =

Ω

 v(x)

0
f(x, s) ds dx , (4.8)

subject to

G1(v) =


Ω
|u| dx = α .

In a �rst step we will prove existence of eigensolutions for a certain class of perturba-

tions f and each α > 0 su�ciently small. In particular this provides us eigenfunctions

uk,α and we will show that those eigenfunctions satisfy the single version of the Eu-

ler-Lagrange equation. I.e. for any α > 0 and any k ∈ N there exists a function

sk,α ∈ L∞(Ω) with

sk,α(x) ∈ Sgn(uk,α(x))

for almost all x ∈ Ω, a vector �eld zk,α ∈ L∞(Ω,Rn) with

div zk,α ∈ Lp′(Ω) , ∥zk,α∥∞ = 1 and ETV (uk,α) = −

Ω
uk,α div zk,α dx ,

a function u∗k,α ∈ ∂EPer(uk,α) and a Lagrange multiplier λk,α, such that the Euler-La-

grange equation

−div zk,α + u∗k,α = λk,αsk,α

is satis�ed. We will thus call λk,α eigenvalue of the perturbed eigenvalue problem
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4 Perturbations of the Eigenvalue Problem in BV (Ω)

of the 1-Laplace operator for the eigenfunction uk,α. Note that, in contrast to the

homogeneous situation f = 0, the eigenvalue λk,α in general depends on α and it is

not even clear whether λk,α is uniquely determined for �xed k and α.

In our second result we show that λk,α → λk,0 as α → 0. In other words the

eigenvalues of the 1-Laplace operator are bifurcation values of the eigenvalues of the

perturbed problem. In this sense the situation of Figure 2.2 holds at least locally for

eigenfunctions of small norm.

In Subsection 4.2 we investigate the perturbed eigenvalue problem of the 1-Laplace

operator for perturbations of the form

−div
Du

|Du|
= λ


u

|u|
+ g(x, u)


.

As before this equation is not well posed and we thus investigate the variational

problem

ETV (v) → Min!
v∈BV (Ω)

(4.9)

subject to

G1(v) + GPer(v) = β (4.10)

where GPer is typically of the form

GPer(v) =

Ω

 v(x)

0
g(x, s) ds dx .

Eigenfunctions of this perturbed eigenvalue problem of the 1-Laplace operator are, by

de�nition, critical points (4.9), (4.10) and we will prove the existence of a sequence

of eigenfunctions for a suitable class of perturbations GPer. Again such critical points

satisfy the single version of the Euler-Lagrange equation, i.e. for any β > 0 and any

k ∈ N there exists a function sk,β ∈ L∞(Ω) with

sk,β(x) ∈ Sgn(uk,β(x))

for almost all x ∈ Ω, a vector �eld zk,β ∈ L∞(Ω,Rn) with

div zk,β ∈ Lp′(Ω) , ∥zk,β∥∞ = 1 and ETV (uk,β) = −

Ω
uk,β div zk,β dx ,
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a function u∗k,β ∈ ∂GPer(uk,β) and a Lagrange multiplier λk,β , such that the Euler-La-

grange equation

−div zk,β = λk,β

sk,β + u∗k,β


is satis�ed and we will thus call λk,β eigenvalue of the perturbed eigenvalue problem

of the 1-Laplace operator for the eigenfunction uk,β .

Again as for the perturbations of the �rst type the eigenvalue λk,β depend on β in

general and might not be uniquely determined for �xed k and β. However, we can also

prove the convergence λk,β → λk,0 as β → 0 as before. In this sense we verify that the

eigenvalues of 1-Laplace operator are bifurcation values of the perturbed eigenvalue

problem of the 1-Laplace operator (4.9), (4.10).

In both Sections 4.1 and 4.2 we assume that EPer and GPer resp. can be bounded

by v →→ C∥v∥pp for some p ∈ (1, n/(n − 1)) and the main challenge in our derivation

below is to bound the higher order growth of v →→ C∥v∥pp by the lower order growth

of v →→ G1(v) and v →→ ETV (v). This can be done due to the following proposition and

the corollary following it.

Proposition 13. Let Ω ⊆ Rn be open and bounded and let u ∈ W 1,1
0 (Ω). Let CBV

denote the embedding constant of W 1,1
0 (Ω) (equipped with the norm u →→ ∥Du∥1) in

Ln/(n−1)(Ω). Then for any p ∈ [1, n/(n− 1)] the estimate

∥u∥p ≤ C

p−1
p n

BV ∥u∥
1−p−1

p n

1 ∥Du∥
p−1
p n

1

holds for all u ∈W 1,1
0 (Ω).

Proof. For u ∈ Ln/(n−1)(Ω) we have

∥u∥p ≤ ∥u∥θ1∥u∥1−θ
n/(n−1)

with
1

p
=
θ

1
+

1− θ

n/(n− 1)
⇔ θ = 1− p− 1

p
n

by the interpolation inequality. Due to the embedding of W 1,1
0 (Ω) in Ln/(n−1)(Ω) the

term ∥u∥n/(n−1) can be estimated by CBV∥Du∥1, thus the assertion follows.

In other words this proposition states that we can control the p-norm of u by joint

knowledge of ∥u∥1 and ∥Du∥1. Since ∥Du∥1 = ETV (u) for u ∈W 1,1
0 (Ω) the following
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4 Perturbations of the Eigenvalue Problem in BV (Ω)

statement for BV -functions is unsurprising.

Corollary 14. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary and let

p ∈ [1, n/(n − 1))]. Let ETV : BV (Ω) → R be de�ned as in (4.3) and let CBV be the

embedding constant of W 1,1
0 (Ω) (equipped with the norm u →→ ∥Du∥1) in Ln/(n−1)(Ω),

then

∥u∥pp ≤ C
(p−1)n
BV ∥u∥n−(n−1)p

1 ETV (u)
(p−1)n

for all u ∈ BV (Ω).

If additionally p ≤ n+1
n we have

∥u∥pp ≤ C
(p−1)n
BV ∥u∥n−(n−1)p

1 ETV (u) + C
(p−1)n
BV ∥u∥n−(n−1)p

1 . (4.11)

Proof. The assertion follows by taking the p-th power of the estimate in the previous

proposition and by approximation of ETV (u) as in Theorem 36. The second estimate

follows from the elementary estimate x(p−1)n ≤ 1 + x for x ≥ 0 since (p − 1)n ≤ 1

applied with x = ETV (u).

Having this result at hand we will now investigate the two cases of perturbations

of the eigenvalue problem of the 1-Laplace operator.

4.1 Perturbation of the Energy

Let α > 0, 1 < p < n/(n − 1) and let Ω ⊆ Rn be open and bounded with Lip-

schitz boundary. In this section we will investigate the following perturbed eigenvalue

problem of the 1-Laplace operator

ETV (v) + EPer(v) → Min!
v∈Lp(Ω)

(4.12)

G1(v) = α . (4.13)

Here ETV is the total variation functional as in (4.3) and G1(v) =

Ω |v| dx is the

L1(Ω)-norm. For the perturbation function EPer : Lp(Ω) → R we assume that

(i) EPer is locally Lipschitz continuous,

(ii) EPer is even, i.e. EPer(v) = EPer(−v),
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4.1 Perturbation of the Energy

(iii) there is a constant CPer > 0, such that

|EPer(v)| ≤ CPer∥v∥pp (4.14)

for all v ∈ Lp(Ω) and

(iv) for all v ∈ Lp(Ω) and v∗ ∈ ∂EPer(v) there holds

∥v∗∥p′ ≤ pCPer∥v∥p−1
p . (4.15)

Note that these conditions are satis�ed, provided EPer is of the form

EPer(v) =

Ω

 v(x)

0
f(x, s) ds dx (4.16)

as in Theorem 5.

Since ETV is lower semicontinuous on Lp(Ω), the functional ETV +EPer turns out to
be lower semicontinuous on Lp(Ω). By de�nition u is a critical point of (4.12), (4.13),

if |dF|(u) = 0, where F := ETV + EPer + I{G1=α}.

Theorem 15 (Euler-Lagrange Equation). Let u be a critical point of the variational

problem (4.12), (4.13). Then there exists a function s ∈ L∞(Ω) with

s(x) ∈ Sgn(u(x))

for almost all x ∈ Ω, a vector �eld z ∈ L∞(Ω,Rn) with

div z ∈ Lp′(Ω) , ∥z∥∞ = 1 and ETV (u) = −

Ω
udiv z dx ,

a function u∗ ∈ ∂EPer(u) and a Lagrange multiplier λ, such that the Euler-Lagrange

equation

−div z + u∗ = λs (4.17)

holds.

If EPer is of the form EPer(v) =

Ω

 v(x)
0 f(x, s) ds dx as in Theorem 5, then for

u∗ ∈ ∂EPer(u) we have

u∗(x) ∈

ess inf
t→u(x)

f(x, t), ess sup
t→u(x)

f(x, t)


for almost every x ∈ Ω .
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4 Perturbations of the Eigenvalue Problem in BV (Ω)

Proof. This result follows with the same arguments as in the well known unperturbed

case. I.e. we need to verify that we can apply Theorem 7 with F0 = ETV , F1 = EPer
and G = G1. Let u ∈ BV (Ω) with G1(u) = α. As in the unperturbed case we need to

show that there are u1, u2 ∈ X such that

G0(u; u1 − u) < 0 and G0(u; u− u2) < 0 .

Recalling Proposition 2 we derive with (3.6) for u1 = 0 and u2 = 2u

G0(u; u1 − u) = G0
1(u; u− u2) = G0

1(u; −u) = max
s∈∂G1(u)

⟨s,−u⟩ = −α < 0. (4.18)

The Euler-Lagrange equation is now a consequence of Theorem 56, Proposition 2 and

the properties of Clarkes generalized gradient of EPer derived in Theorem 5.

Remark 16. Note that in contrast to the di�erentiable case of the p-Laplace operator

we can not expect that the contrary of the previous theorem is true, i.e. a function u

that satis�es the single version of the Euler-Lagrange equation need not be a critical

point of (4.12), (4.13). This is already known for the unperturbed case f = 0, where

we have solutions of the single version of the Euler-Lagrange equation which are not

critical points of the associated problem.

Let uα be a critical point of (4.12), (4.13). Using uα as test function in the Euler-

Lagrange equation (4.17) we immediately arrive at

ETV (uα) + ⟨u∗α, uα⟩Lp′,Lp = αλα

(subscripts are used to outline the dependence on α) which is equivalent to

λα = ETV (
uα
α ) + ⟨u∗α, uα

α ⟩Lp′,Lp (4.19)

For u∗α = 0 we have an immediate correspondence of λα and the critical value ETV (uα).

However for FPer ̸= 0 we do not have equivalence of the Lagrange multiplier and the

critical value any more. Note that Theorem 15 doesn't even state that the eigen-

value λα for a critical point uα is unique. Nevertheless, provided we can control

⟨u∗α, uα
α ⟩Lp′,Lp as α→ 0 we get an asymptotic correspondence of λα and the (normal-

ized) critical value ETV (
uα
α ) as α→ 0.

We will verify the existence of a sequence of eigenfunctions (uk,α)k for any α > 0

now. The main task is the veri�cation of the Palais-Smale condition in our situation.
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4.1 Perturbation of the Energy

Proposition 17 ((PS)-condition). Let ETV and EPer be as above and α > 0. Assume

that one of the following conditions holds:

(a) EPer is globally bounded from below or

(b) p ≤ 1 + 1
n and α is such that for the embedding constant CBV of W 1,1

0 (Ω) in

Ln/(n−1)(Ω) and the constant CPer from (4.14), (4.15) we have

αn−(n−1)p < C−1
PerC

−(p−1)n
BV . (4.20)

Then the Palais-Smale condition (PS) holds for F := ETV + EPer + I{G1=α}.

Remark 18. Condition (a) is in particular satis�ed, provided GPer is of the form

(4.16) and the corresponding f in is bounded on [0,∞) from below (cf. Theorem 5).

Since with p ≤ 1 + 1
n we have n − (n − 1)p ≥ 1

n condition (4.20) can always be

achieved for α su�ciently close to zero.

Proof. Let c ∈ R and let (uj)j be a Palais-Smale sequence for the functional F , i.e.

F(uj) → c and |dF|(uj) → 0. Note that ∥uj∥1 = α for all j ∈ N by assumption. If

EPer is bounded by L ≤ 0 from below, we eventually have

ETV (uj) ≤ c+ 1− EPer(uj) ≤ c+ 1− L .

Since ETV is a norm on BV (Ω), which is equivalent to the standard norm, we can

apply the compact embedding of BV (Ω) in Lp(Ω) (Theorem 32) to obtain a desired

Lp-convergent subsequence (ujl)l of (uj)j .

If condition (b) is satis�ed, we can estimate, using (4.11),

c+ 1 ≥ ETV (uj) + EPer(uj)

≥ ETV (uj)− CPer∥uj∥pp

≥ ETV (uj)− CPer


C

(p−1)n
BV ∥uj∥n−(n−1)p

1 ETV (uj) + C
(p−1)n
BV ∥uj∥n−(n−1)p

1


= ETV (uj)− CPerC

(p−1)n
BV αn−(n−1)p ETV (uj)− CPerC

(p−1)n
BV αn−(n−1)p

= ETV (uj)

1− CPerC

(p−1)n
BV αn−(n−1)p


− CPerC

(p−1)n
BV αn−(n−1)p . (4.21)

Recalling c = limj→∞ ETV (uj) + EPer(uj) we thus obtain by (4.20)

ETV (uj) ≤
c+ 1 + CPerC

(p−1)n
BV αn−(n−1)p

1− CPerC
(p−1)n
BV αn−(n−1)p

.
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4 Perturbations of the Eigenvalue Problem in BV (Ω)

Whence as above it turns out that (uj)j is bounded in BV (Ω) and the desired Lp(Ω)-

convergent subsequence is obtained by the compact embedding of BV (Ω) in Lp(Ω).

Theorem 19. Let α > 0 and assume either that EPer is globally bounded from below

or that p ≤ 1 + 1/n and that α > 0 satis�es (4.20). Then there exists a sequence

of eigenfunctions (±uk,α)k with G1(±uk,α) = α of the perturbed eigenvalue problem

(4.12), (4.13) with corresponding critical values given by

ĉk,α := inf
S∈S α

k

sup
v∈S

ETV (v) + EPer(v) , (4.22)

where

S α
k := {S ⊆ Lp(Ω) compact, symmetric ; G1 = α on S, genLp S ≥ k} . (4.23)

The sequence of eigenvalues (ĉk,α)k is unbounded. Moreover, the Euler-Lagrange equa-

tion (4.17) as in Theorem 15 holds for any critical point uk,α.

Proof. We will apply Theorem 11 to F := ETV + EPer + I{G1=α}. Property (A) is

obviously satis�ed.

Property (B) is obviously satis�ed, provided EPer is bounded from below. It thus

remains to consider the case p ≤ 1 + 1/n. We invoke Corollary 14 to derive for

v ∈ BV (Ω) with G1(v) = α similar to (4.21)

F(v) = ETV (v) + EPer(v)

≥ ETV (v)− CPer∥v∥pp
≥

1− CPerC

(p−1)n
BV αn−(n−1)p


ETV (v)− CPerC

(p−1)n
BV αn−(n−1)p .

The latter term is bounded from below provided by (4.20). Moreover, this estimate

also shows that the sublevel sets {F ≤ β} are compact in Lp(Ω) by Proposition 33

and Proposition 32.

The Palais-Smale condition (PS) holds due to Proposition 17.

The (epi)-condition is satis�ed by (4.18) (cf. [22, Theorem 3.4]).

It remains to prove property (E) of Theorem 11. To do so let k ∈ N and let

v1, . . . vk ∈ C∞
c (Ω) be linearly independent. Then it is easily seen that a desired map
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4.1 Perturbation of the Energy

Φ : Sk−1 → Lp(Ω) is given by

Φ(x) = Φ(x1, . . . , xk) =
α
n

j=1 xjvjn
j=1 xjvj


1

.

We have thus justi�ed all preliminaries of Theorem 11 and Theorem 15 applies.

Let us introduce for α > 0, k ∈ N the values

ck,α :=
ĉk,α
α

.

In particular for EPer = 0 we have ck,α = λk,α. Even though ck,α and λk,α do not

coincide in general, we will see in a moment that we have coincidence in the limit as

α→ 0.

Proposition 20. Let 1 < p ≤ n+1
n , then for any k ∈ N it holds

ck,α → λk,0

as α→ 0.

Proof. (1) Initially we show lim supα→0 ck,α ≤ λk,0. For that we essentially use the

estimates (4.14) and (4.11) with ∥u∥1 = 1 for u ∈ S ∈ S 1
k . Thus

lim sup
α→0

ck,α = lim sup
α→0

inf
S∈S α

k

sup
u∈S

1

α


ETV (u) + EPer(u)


= lim sup

α→0
inf

S∈S 1
k

sup
u∈S


ETV (u) +

1
αEPer(αu)


≤ lim sup

α→0
inf

S∈S 1
k

sup
u∈S


ETV (u) +

1
αCPer∥αu∥pp


= lim sup

α→0
inf

S∈S 1
k

sup
u∈S


ETV (u) + αp−1CPer∥u∥pp


≤ lim sup

α→0
inf

S∈S 1
k

sup
u∈S

ETV (u)

1 + αp−1C

(p−1)n
BV CPer


+ αp−1C

(p−1)n
BV CPer

= inf
S∈S 1

k

sup
u∈S

ETV (u) = λk,0 .

(2) The reverse inequality follows by the same estimates

lim inf
α→0

ck,α = lim inf
α→0

inf
S∈S 1

k

sup
u∈S


ETV (u) +

1
αEPer(αu)


≥ lim sup

α→0
inf

S∈S 1
k

sup
u∈S


ETV (u)− 1

αCPer∥αu∥pp
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≥ lim sup
α→0

inf
S∈S 1

k

sup
u∈S

ETV (u)

1− αp−1C

(p−1)n
BV CPer


− αp−1C

(p−1)n
BV CPer

= inf
S∈S 1

k

sup
u∈S

ETV (u) = λk,0 .

The question is, how the eigenvalues λk,0 of the unperturbed problem and the

eigenvalues λk,α of the perturbed problem are related to each other. The answer will

follow from the next proposition.

Proposition 21. Let 1 < p ≤ n+1
n and let (uα)α>0 be a family of critical points of

(4.12), (4.13). Let cα := 1
α


ETV (uα) + EPer(uα)


be bounded as α→ 0. Then

vα := uα/α

is bounded in BV (Ω) as α→ 0.

Moreover, (cα)α converges to some c0 > 0 as α→ 0 if and only if the corresponding

family of eigenvalues (λα)α converges as α → 0 and in that case c0 = limα→0 λα =

limα→0 cα.

Proof. Without loss of generality we may assume α small enough such that condition

(4.20) is satis�ed.

Again we use the estimates (4.14) and (4.11) with ∥uα∥1 = α and derive

cα = 1
α


ETV (uα) + EPer(uα)


≥ ETV (vα)− 1

αCPer∥αvα∥pp
= ETV (vα)− αp−1CPer∥vα∥pp

≥ ETV (vα)− αp−1CPer


C

(p−1)n
BV ∥vα∥n−(n−1)p

1 ETV (vα) + C
(p−1)n
BV ∥vα∥n−(n−1)p

1


=

1− αp−1CPerC

(p−1)n
BV


ETV (vα)− αp−1CPerC

(p−1)n
BV .

For α su�ciently small we obtain

ETV (vα) ≤
cα + αp−1CPerC

(p−1)n
BV

1− αp−1CPerC
(p−1)n
BV

, (4.24)

whence ETV (vα) is bounded and since ETV is a norm on BV (Ω) the �rst assertion

follows.

62



4.1 Perturbation of the Energy

Analogously to the derivation of (4.24) we obtain

ETV (vα) ≥
cα − αp−1CPerC

(p−1)n
BV

1 + αp−1CPerC
(p−1)n
BV

. (4.25)

We thus derive with (4.19), assumption (4.15) for u∗α ∈ ∂EPer(uα) and (4.24)

λα = ETV (
uα
α ) + α−1⟨u∗α, uα⟩Lp′,Lp

≤ ETV (
uα
α ) + α−1pCPer∥uα∥pp

= ETV (vα) + αp−1pCPer∥vα∥pp

≤

1 + αp−1pCPerC

(p−1)n
BV


ETV (vα) + αp−1pCPerC

(p−1)n
BV

≤

1 + αp−1pCPer C

(p−1)n
BV

cα + αp−1CPerC
(p−1)n
BV

1− αp−1CPerC
(p−1)n
BV

+ αp−1pCPerC
(p−1)n
BV

and therefore

lim sup
α→0

λα ≤ lim inf
α→0

cα . (4.26)

provided (λα)α or (cα)α is convergent as α→ 0.

On the other hand we obtain in a similar manner

λα = ETV (
uα
α ) + α−1⟨u∗α, uα⟩Lp′,Lp

≥ ETV (
uα
α )− α−1pCPer∥uα∥pp

≥

1− αp−1pCPer C

(p−1)n
BV

cα − αp−1CPerC
(p−1)n
BV

1 + αp−1CPerC
(p−1)n
BV

− αp−1pCPerC
(p−1)n
BV

and thus

lim sup
α→0

λα ≥ lim inf
α→0

cα . (4.27)

provided (λα)α or (cα)α is convergent as α→ 0.

The assertion follows now by combination of (4.26) and (4.27).

We have thus proved the following theorem.
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Theorem 22. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Let

1 < p ≤ n+1
n and consider some perturbation functional EPer as in Theorem 5.

Then the eigenvalues λk,α of the eigenfunctions ±uk,α corresponding to the critical

values ĉk,α given in (4.22) are bifurcation points of the perturbed eigenvalue problem

(4.12), (4.13) in the sense that for any α > 0 with (4.20) there exist a critical points

±uk,α of (4.12), (4.13) with corresponding critical value ĉk,α = ETV (uk,α)+EPer(uk,α)
and eigenvalue λk,α and it holds

lim
α→0

ck,α = lim
α→0

ĉk,α
α = lim

α→0
λk,α = λk,0

for all k ∈ N.

4.2 Perturbation of the Constraint

In the foregoing section we considered perturbations of the energy functional ETV , this

section is devoted to perturbations of the constraint G1. While the main challenge

in the previous section relayed on the derivation of a suitable compactness argument

for the (PS) condition, the perturbation of the constraint causes di�culties for the

veri�cation of the (epi) condition. This is also the reason, why we need slightly

stronger requirements on GPer then on EPer in the previous section.

Let r ∈ (1, 1 + 1/n) and let GPer : Lr(Ω) → R be a given functional with

(i) GPer is even and locally Lipschitz continuous.

(ii) There exists a constant CPer such that

0 ≤ GPer(v) ≤ CPer∥v∥rr (4.28)

for all v ∈ Lr(Ω).

(iii) For all v ∈ Lr(Ω) and all v∗ ∈ ∂GPer(v) holds

∥v∗∥r′ ≤ r CPer∥v∥r−1
r (4.29)

and v∗(x) > −1 for v(x) > 0

v∗(x) < 1 for v(x) < 0
(4.30)
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4.2 Perturbation of the Constraint

for a. e. x ∈ Ω.

Let us note that condition (4.30) is equivalent to

v∗(x)
v(x)

|v(x)|
> −1

for a.e. x ∈ Ω with v(x) ̸= 0, such that (4.30) implies

v∗(x)v(x) > −|v(x)| (4.31)

for a. e. x ∈ Ω with v(x) ̸= 0.

Note that these conditions are satis�ed provided GPer is a Nemytskii functional of

the form

GPer(v) =

Ω
Fx(v(x)) dx

with Fx(t) =
 t
0 f(x, s) ds as in in Theorem 5 and additionally satis�es Fx ≥ 0 for

a. e. x ∈ Ω in (3.17) and f > −1 a.e. on Ω× [0,∞).

It is not too di�cult to show that convexity of Fx implies (4.30).

For perturbations GPer given above we intend to investigate the following perturbed

eigenvalue problem of the 1-Laplace operator

ETV (v) → Min!
v∈Lr(Ω)

(4.32)

subject to

G1(v) + GPer(v) = β , (4.33)

where ETV is the total variation functional (4.3) extended by ∞ on Lr(Ω) \ BV (Ω)

and G1(v) = ∥v∥1 as before.

We say that u ̸= 0 with G1(u) + GPer(u) = β is an eigenfunction of the perturbed

eigenvalue problem (4.32), (4.33) of the 1-Laplace operator, provided u is a critical

point of the function F : Lr(Ω) → R ∪ {∞},

F := ETV + I{G1+GPer=β} .

Before we continue, let us derive some properties of GPer.
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4 Perturbations of the Eigenvalue Problem in BV (Ω)

Lemma 23. Let u ∈ Lr(Ω) \ {0}. Then the function

t →→ G1(tu) + GPer(tu)

is strictly monotone increasing on [0,∞).

Moreover, for the directional derivative (G1 + GPer)0(u; −u) we have

(G1 + GPer)0(u; −u) < 0 .

Proof. For the proof let G := G1 + GPer. Let 0 ≤ t1 < t2. By Lebourgs Theorem (3.8)

there is θ ∈ (0, 1) and w∗ ∈ ∂G

(θt1 + (1− θ)t2)u


, such that

G(t2u)− G(t1u) = ⟨w∗, (t2 − t1)u⟩ = (t2 − t1)


Ω
w∗(x)u(x) dx . (4.34)

By the sum rule for Clarkes generalized gradient (3.7) there are s ∈ ∂G1(u) and

u∗ ∈ GPer(u) with w∗ = s + u∗. Note that s(x) ∈ Sgn(u(x)) for almost every x ∈ Ω

by Proposition 2. Whence for almost every x ∈ Ω with u(x) ̸= 0 we have

w∗(x)u(x) = s(x)u(x) + u∗(x)u(x) = |u(x)|+ u∗(x)u(x) > 0

by (4.31). But this implies strict monotonicity of G in (4.34).

The generalized directional derivative can be expressed in terms of Clarkes gener-

alized gradient. By formula (3.6) we can calculate

G0(u; −u) = max
w∗∈∂G(u)

⟨w∗,−u⟩

≤ max
s∈∂G1(u)

⟨s,−u⟩+ max
u∗∈∂GPer(u)

⟨u∗,−u⟩

= −

Ω
|u(x)| dx+ max

u∗∈∂GPer(u)
−

Ω
u∗(x)u(x) dx

= −∥u∥1 − min
u∗∈∂GPer(u)


Ω
u∗(x)u(x) dx

< −∥u∥1 −

Ω
−|u(x)| dx

= −∥u∥1 + ∥u∥1 = 0 ,

where we made use of (4.30) again.

This technical result allows us to derive the following theorem.
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Theorem 24. Any eigenfunction u of the perturbed eigenvalue problem (4.32), (4.33)

satis�es the single version of the Euler-Lagrange equation, i.e. there is s ∈ L∞(Ω)

with

s(x) ∈ Sgn(u(x))

for almost all x ∈ Ω, a function z ∈ L∞(Ω,Rn) with

div z ∈ Lr′(Ω) , ∥z∥∞ = 1 and ETV (u) = −

Ω
div z u dx ,

a function u∗ ∈ ∂EPer(u) and λ ∈ R such that the Euler-Lagrange equation

−div z = λ(s+ u∗) (4.35)

holds.

Proof. It is not di�cult to see that we can apply Theorem 7 with F0 = ETV , F1 = 0

and G = G1+GPer−β. Note that condition (3.25) is satis�ed with u1 = 0 and u2 = 2u

by the preceding lemma.

We call the Lagrange multiplier λ an eigenvalue of the perturbed eigenvalue problem

of the 1-Laplace operator (4.32), (4.33) for the eigenfunction u and the tuple (λ, u)

will be called eigensolution of the 1-Laplace operator. Note that as in Section 4.1 it

is not clear, whether λ is uniquely determined for each eigenfunction u and obviously

it depends on β, provided GPer ̸= 0.

The next theorem summarizes our perturbation results for the perturbed eigenvalue

problem of the 1-Laplace operator (4.32), (4.33). In particular it states the existence

of eigensolutions of the perturbed eigenvalue problem (4.32), (4.33) and speci�es that

the eigenvalues of the 1-Laplace operator are bifurcation points of the perturbed

eigenvalue problem of the 1-Laplace operator (4.32), (4.33).

Theorem 25. For each β > 0 there exists a sequence of pairs of critical points

(±uk,β)k of (4.32), (4.33) and the corresponding critical values ĉk,β = ETV (±uk,β) are
characterized by

ĉk,β = inf
S∈Ŝ β

k

sup
u∈S

ETV (u) , (4.36)
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4 Perturbations of the Eigenvalue Problem in BV (Ω)

with Ŝ β
k given by

Ŝ β
k := {S ⊆ Lp(Ω) compact ; G1 + GPer = β on S, genLp S ≥ k} . (4.37)

For each k ∈ N the family of rescaled eigenfunctions vk,β := uk,β/∥uk,β∥1 is bounded
in BV (Ω) for β from bounded sets (and in particular as β → 0).

Moreover, the rescaled critical values

ck,β :=
ĉk,β
β

and the eigenvalues λk,β for the eigenfunctions uk,β converge, as β → 0 to the eigen-

values λk,0 of the 1-Laplace operator (de�ned in (2.8)),

lim
β→0

ĉk,β = lim
β→0

λk,β = λk,0

for all k ∈ N.

Proof. Let β > 0 �rst. Again we intend to apply Theorem 11 for the function F :=

ETV + I{G1+GPer=β}. Properties (A) and (B) are immediate.

The sublevel sets {F ≤ c} are compact in Lr(Ω) by the compact embedding of

BV (Ω) in Lr(Ω) (Proposition 32) and the fact that ETV is an equivalent norm in

BV (Ω) (Theorem 33). Note that any (PS)-sequence is for the level c ∈ R is eventually

contained in the sublevel set {F ≤ c + 1} and thus compactness of all sublevel sets

implies the (PS)-condition (C).

The (epi)-condition follows from the estimate on the directional derivative in Lem-

ma 23 and [22, Theorem 3.4] applied with g0 = −1, C = BV (Ω), g1 = G1 + GPer − β,

u− = 0 and u+ = 2u.

In order to prove property (E) we need the following technical result.

Lemma 26. Under the assumptions of Theorem 25, given u ∈ Lr(Ω)\{0} and β > 0

there exists a unique tu > 0 such that

G1(tuu) + GPer(tuu) = β .

Moreover, the mapping u →→ tu is continuous on Lr(Ω) \ {0}.

Proof. Let u ∈ Lr(Ω) \ {0}. By Lemma 26 the mapping

[0,∞) ∋ t →→ ∥tu∥1 + GPer(tu)
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is strictly monotone increasing and continuous. From assumption (4.28) we infer

∥0u∥1 + GPer(0u) = 0 and lim inft→∞ ∥tu∥1 + GPer(tu) ≥ t∥u∥1 = ∞. Thus tu exists

by the intermediate value theorem and is uniquely determined by strict monotonicity.

Let now uj → u and let (tj) be the corresponding sequence of numbers such that

∥tjuj∥1 + G1(tjuj) = β. From β ≥ tj∥uj∥1 and the convergence of uj in Lr(Ω) (and

thus also in L1(Ω)) we infer that (tj)j must be bounded. By picking a subsequence

we may assume without loss of generality that (tj)j converges to some t0 ≥ 0. By

continuity we infer

β = lim
j→∞

G1(tjuj) + GPer(tjuj) = ∥t0u∥1 + GPer(t0u) ,

thus by uniqueness of tu we obtain t0 = tu and thus continuity of u →→ tu.

By the previous arguments there exists a homeomorphism

Φβ : {u ∈ Lr(Ω) ; G1(u) + GPer(u) = β} → {u ∈ Lr(Ω) ; ∥u∥1 = 1} ,

u →→ u/∥u∥1

with inverse Ψβ : {u ∈ Lr(Ω) ; ∥u∥1 = 1} → {u ∈ Lr(Ω) ; G1(u)+GPer(u) = β} given
by

u →→ tuu

where tu > 0 is the uniquely determined number such that G(tuu) + G1(tuu) = β

(Bijectivity and continuity of Φβ is elementary and continuity of Ψβ is proven in

Lemma 26).

By property (iii) from page 141 and since Φβ is a homeomorphism we thus have

S ∈ Ŝ β
k ⇔ Φβ(S) ∈ S 1

k ,

where S 1
k is the set de�ned in (4.23) with α = 1. In the proof of Theorem 19 we

ver�ed that S 1
k is nonempty and by the observation above we derive the classes Ŝ β

k

to be nonempty as usually guaranteed by property (E) in Theorem 11. We have

thus veri�ed the preliminaries of Theorem 11 and thus obtain that (4.36) de�nes an

unbounded sequence of critical values of the variational problem (4.32), (4.33).

We will now prove the convergence results. Let k ∈ N.

Using assumption (4.28) and Corollary 14 we derive for any u ∈ Lr(Ω) ∩ BV (Ω)
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4 Perturbations of the Eigenvalue Problem in BV (Ω)

with G1(u) + GPer(u) = β

∥u∥1 ≤ β = ∥u∥1 + GPer(u)

≤ ∥u∥1 + CPer∥u∥rr
≤ ∥u∥1 + CPerC

(r−1)n
BV ∥u∥n−(n−1)r

1 ETV (u)
(r−1)n

= ∥u∥1

1 + CPerC

(r−1)n
BV ∥u∥r−1

1 ETV (u/∥u∥1)(r−1)n


≤ ∥u∥1

1 + CPerC

(r−1)n
BV βr−1ETV (u/∥u∥1)(r−1)n


.

This implies

∥u∥1 ≥
β

1 + CPerC
(r−1)n
BV βr−1ETV (u/∥u∥1)(r−1)n

for any admissible u in the e�ective domain of de�nition of the variational problem

(4.32), (4.33).

We continue to estimate

ck,β = inf
S∈Ŝ β

k

sup
u∈S

1

β
ETV (u)

= inf
S∈Ŝ β

k

sup
u∈S

∥u∥1
β

ETV

 u

∥u∥1


≤ inf

S∈Ŝ β
k

sup
u∈S

β

β
ETV

 u

∥u∥1


= inf

S∈S 1
k

sup
v∈S

ETV (v) = λk,0 . (4.38)

To be able to estimate in the reverse direction we need the following lemma.

Lemma 27. For each β > 0 there exists a set Sβ ∈ S β
k with ĉk,β = supu∈Sβ

ETV (u).

Proof. Let β > 0 and consider a sequence (Sj)j in Ŝ β
k with supu∈Sj

ETV (u) → ĉk,β .

Since {ETV ≤ ĉk,β + 1} is compact in Lr(Ω) (cf. the beginning of this proof), the

sequence (Sj)j admits a subsequence (also denoted by Sj without loss of generality)

convergent with respect to Hausdor�-convergence in Lr(Ω) to a compact Sβ ⊆ Lr(Ω)

(compare the arguments in the proof of Theorem 11 on page 49). There is some δ > 0

such that genSβ = genB(Sβ, δ) (cf. Property (v) on page 141). Since Sj ⊆ B(Sβ, δ)

for j large enough we get genSβ ≥ lim supj→∞ genSj ≥ k. Moreover, by convergence

in Hausdor� metric we have v ∈ Sβ if and only if there is a sequence vj ∈ Sj with vj →
v. Thus we derive by continuity of G1 + GPer that Sβ ∈ S β

k . By lower semicontinuity
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of the total variation we conclude

ĉk,β = sup
u∈Sβ

ETV (u) .

By the preceding lemma for β > 0 we �nd Sβ ∈ S β
k with

ck,β =
ĉk,β
β

= sup
u∈Sβ

ETV (u)

β
.

For u ∈ Sβ we can estimate with (4.28) and Corollary 14

β ≤ ∥u∥1 + CPer∥u∥rr
≤ ∥u∥1 + CPerC

(r−1)n
BV ∥u∥n−(n−1)r

1 ETV (u)
(r−1)n

= ∥u∥1

1 + CPerC

(r−1)n
BV ∥u∥r−1

1 ETV (u/∥u∥1)(r−1)n

. (4.39)

Hence,

λk,0 ≥ ck,β = sup
u∈Sβ

ETV (u)

β

≥ sup
u∈Sβ

1

∥u∥1

1 + CPerC

(r−1)n
BV ∥u∥r−1

1 ETV (u/∥u∥1)(r−1)n
ETV (u) .

This implies for all β > 0 and u ∈ Sβ

λk,0


1 + CPerβ

r−1ETV

 u

∥u∥1

(r−1)n


≥ ETV

 u

∥u∥1


Since we are interested in the limit β → 0 we may assume β ≤ β0 for some β0 > 0

and thus derive for those β and u ∈ Sβ

λk,0


1 + CPerβ

r−1
0 ETV

 u

∥u∥1

(r−1)n


≥ ETV

 u

∥u∥1


Since the right hand side of this inequality is of linear growth in ETV (u/∥u∥1) and

of sublinear growth in ETV (u/∥u∥1) on the left hand side (recall (r − 1)n < 1 by

assumption), we conclude that ETV (u/∥u∥1)(r−1)n is bounded by some C̃ > 0 for all

u ∈


0<β≤β0
Sβ .
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We thus obtain from (4.39) for β ≤ β0

ck,β = sup
u∈Sβ

ETV (u)

β
≥ sup

u∈Sβ

1

1 + βr−1C
(r−1)n
BV CPer C̃

ETV

 u

∥u∥1


≥ 1

1 + βr−1C
(r−1)n
BV CPer C̃

λk,0

From this and (4.38) we derive

lim
β→0

ck,β = λk,0 .

We have thus shown that the eigenvalues of the 1-Laplace operator are bifurcation

values of the critical values of the perturbed problem. Our next goal is to verify

that the eigenvalues of the perturbed problem also converge to the eigenvalues or the

1-Laplace operator as β → 0.

Let uk,β be an eigenfunction of (4.32), (4.33) corresponding to the critical value ĉk,β .

Then ETV (uk,β) = βck,β by de�nition. Testing the Euler-Lagrange Equation (4.35)

with uk,β and division by β yields

ck,β =
ETV (uk,β)

β
= λk,β

∥uk,β∥1 + ⟨u∗k,β, uk,β⟩
β

,

where u∗k,β is an element of ∂GPer(uk,β).

Since |⟨u∗k,β, uk,β⟩| ≤ r CPer∥uk,β∥rr by assumption (4.29) we derive

ck,β ≥ λk,β
∥uk,β∥1 − r CPer∥uk,β∥rr
∥uk,β∥1 + CPer∥uk,β∥rr

≥ λk,β
∥uk,β∥1 − r CETV (uk,β)

r

∥uk,β∥1 + CETV (uk,β)r

= λk,β
∥uk,β∥1 − r Cβr


ck,β

r
∥uk,β∥1 + Cβr


ck,β

r ,

for some constant C > 0 due to the embedding BV (Ω) ↩→ Lr(Ω) and since ETV is a

norm in BV (Ω).

Since (ck,β)β is convergent to a limit strictly greater than zero as β → 0 we obtain

lim sup
β→0

λk,β ≤ lim
β→0

ck,β .
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On the other hand we may estimate

ck,β ≤ λk,β
∥uk,β∥1 + r CPer∥uk,β∥rr

β

≤ λk,β
∥uk,β∥1 + r CETV (uk,β)

r

∥uk,β∥1

= λk,β
∥uk,β∥1 + r Cβr


ck,β

r
∥uk,β∥1

and again by the convergence properties of ck,β as β → 0 we derive

lim inf
β→0

λk,β ≥ lim
β→0

ck,β .
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5 The Eigenvalue Problem in

BV (Ω,RN) and BD(Ω)

In this chapter we will investigate the eigenvalue problem of the 1-Laplace operator in

BV (Ω,RN ) and BD(Ω). The �rst two sections contain a review of known properties

of the function spaces BV (Ω,RN ) and BD(Ω). Our main results are Theorems 54

and 55, which prove the existence of solutions of the eigenvalue problem in BV (Ω,RN )

and BD(Ω) and certain properties of these solutions. Crucial for the investigation of

the eigenvalue problems �nally considered in Section 5.4 is the derivation of suitable

Gauÿ-Green formulas in our vectorial framework. This is done in Section 5.3. In the

scalar case this was basically done by Anzellotti [5], but the vectorial case can not

directly be deduced from the scalar case. Since we could not completely follow the

arguments in [5] concerning the construction of the normal trace with the aid of an

abstract Hahn-Banach argument and in particular its continuity properties, we will

provide an own, alternative proof.

Let Ω be always an open subset of Rn. We will additionally frequently require

stronger properties of Ω as a �nite measure |Ω| or regularity of the boundary ∂Ω.

5.1 BV (Ω,RN) and its Properties

The space BV (Ω,RN ) consists of those L1(Ω,RN )-functions u = (u1, . . . uN ) where

the distributional gradient

Du =

∂ju

i

i=1,...,N
j=1,...,n

is represented by a �nite RN×n-valued signed Radon measure1 on Ω. Equipped with

the norm

u →→ ∥u∥BV :=


Ω
|u| dx+ |Du|(Ω) ,

1For more details cf. Appendix p. 137
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5 The Eigenvalue Problem in BV (Ω,RN ) and BD(Ω)

it becomes a Banach space. Here |Du| denotes the total variation measure of the

measure Du (cf. Proposition 73) and |Du|(Ω) is also called the total variation of u in

Ω. The BV (Ω,RN )-norm is too strong for most applications. Two other notions2 of

convergence are usually applied.

De�nition. A sequence (uj)j in BV (Ω,RN ) converges weakly* to u ∈ BV (Ω,RN ),

if (uj)j converges to u in L1(Ω,RN ) and (Duj)j converges weakly* in M(Ω,RN×n)

to Du. A sequence (uj)j in BV (Ω,RN ) converges strictly to u ∈ BV (Ω,RN ), if (uj)j

converges to u in L1(Ω,RN ) and (|Duj |(Ω))j converges to |Du|(Ω).

It is easily seen (cf. [3, Proposition 3.13]) that a sequence (uj)j converges weakly*

if and only if (uj)j converges in L1(Ω,RN ) and (uj)j is norm bounded in BV (Ω,RN ).

Thus strict convergence implies weak*-convergence. While BV (Ω,RN ) can indeed be

considered as dual space of a suitable Banach space (cf. [3, Remark 3.12]), and weak*-

convergence is there equivalent to the usual weak*-convergence in Banach spaces. The

notion of strict convergence is much more di�cult to understand completely. We may

metrize the notion of strict convergence with the metric

ds(u, v) := ∥u− v∥1 +
|Du|(Ω)− |Dv|(Ω)

 .
However, this metric turns out to be not translation invariant. To give a simple

example let Ω = (0, 3) and let u := χ[1,2], then ds(u,−u) = ∥2u∥1 + |2 − 2| = 2,

ds(0, 2u) = ∥ − 2u∥1 + |0 − 4| = 6, such that u ∈ Bds [−u, 2], but 2u = u + u ̸∈
Bds [−u + u, 2] = Bds [0, 2]. Thus one has to be very careful with the application of

topological vector space arguments (in particular with the application of Hahn-Banach

arguments) when considering the strict topology in BV (Ω,RN ). A consequence is that

the vector space addition is not continuous with respect to strict convergence. To give

an example let Ω and u be as above and consider uj := χ[1+1/j,2], then uj → u strictly.

Nevertheless u− uj = χ[1,1+1/j] does not converge to u− u = 0 strictly.

InW 1,p(Ω,RN ), p ∈ (1,∞), the corresponding notion of strict convergence is equiv-

alent to strong convergence in the usual sense, i.e.

uj → u in Lp(Ω,RN ) and ∥Duj∥Lp(Ω,RN×n) → ∥Du∥Lp(Ω,RN×n)

is equivalent to uj → u in W 1,p(Ω,RN ). Indeed, both properties imply that (uj)j

2There is a third, slightly stronger notion of convergence in BV (Ω,RN ) � the concept of area-strict
convergence, cf. [51] and references therein. However, this slightly more involved techniques are
not needed for the investigation of our 1-homogeneous energy functionals.
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is bounded in W 1,p(Ω,RN ) and thus admits a weakly convergent subsequence (ujl)l

with ujl ⇀: ũ. However, the limit is unique, u = ũ by strong convergence of uj to u

in Lp(Ω,RN ). Thus uj ⇀ u in W 1,p(Ω) and in particular Duj ⇀ Du in Lp(Ω,RN×n).

However, the latter implies in connection with ∥Duj∥p → ∥Du∥p strong convergence

Duj → Du in Lp(Ω,RN×n) by uniform convexity of the Lp-norm (which is not evident

for the norm we use, but follows e.g. from [29] with A(x, ξ) = |ξ|p, cf. also [43]). Both
properties, re�exivity and uniform convexity of the norm get lost for p = 1, which is

one reason making W 1,1(Ω,RN ) unappropriate for many applications.

The embedding

W 1,1(Ω,RN ) ↩→ BV (Ω,RN )

and the identity |Du|(Ω) =

Ω |Du| dx for u ∈ W 1,1(Ω,RN ) are immediate from the

de�nition. Moreover, W 1,1(Ω,RN ) is a proper subset of BV (Ω) when Ω ̸= ∅.

For u ∈ L1
loc(Ω,RN ) we introduce the variation V (u,Ω) by

V (u,Ω) := sup


Ω
u · divϕ dx ; ϕ ∈ C1

c (Ω,RN×n), ∥ϕ∥∞ ≤ 1


. (5.1)

As supremum of continuous linear functionals it is easily seen that u →→ V (u,Ω) is

lower semicontinuous as functional on L1
loc(Ω,RN ). Moreover, for u ∈ L1(Ω,RN ) we

have u ∈ BV (Ω,RN ) if and only if V (u,Ω) <∞ and in that case

|Du|(Ω) = V (u,Ω)

(cf. [3, Remark 3.5, Proposition 3.6]).

Let us quote Theorem 3.9 from [3], which states that C∞-functions are dense in

BV (Ω,RN ) in terms of strict convergence.

Proposition 28. Let u ∈ L1(Ω,RN ). Then u ∈ BV (Ω,RN ) if and only if there is a

sequence (uj)j in C
∞(Ω,RN ) ∩ L1(Ω,RN ), such that uj → u in L1(Ω,RN ) and

lim sup
j→∞


Ω
|Duj | dx <∞.

Moreover, if u ∈ BV (Ω,RN ), then there is a sequence (uj)j in C
∞(Ω,RN )∩L1(Ω,RN ),

converging to u in L1(Ω,RN ) and

lim
j→∞


|Duj | dx = |Du|(Ω).
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Before we continue let us recall the following classical Gauÿ-Green Theorem.

Proposition 29 (Classical Gauÿ-Green Theorem). Let Ω ⊆ Rn be open and bounded

with Lipschitz boundary and let u ∈ C1(Ω,RN ) ∩ C(Ω,RN ), z ∈ C1(Ω,RN×n) ∩
C(Ω,RN×n). Then

Ω
u · div z dx+


Ω
Du : z dx =


∂Ω

(u⊗ ν) : z dHn−1 =


∂Ω
u · (z ν) dHn−1, (5.2)

where ν is the outer unite normal on ∂Ω and Hn−1 is the (n−1)-dimensional Hausdor�

measure.

The validity of this formula follows from the usual Gauÿ Theorem applied to div(u ·
z). In Section 5.3 we will extend this formula to functions u and z belonging to larger

classes of function spaces.

We will now state the trace theorem in BV (Ω,RN ).

Theorem 30. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary and outer

unit normal ν. There exists a linear trace operator ·∂Ω : BV (Ω,RN ) → L1(∂Ω,RN ),

continuous with respect to strict convergence in BV (Ω,RN ) such that
Ω
u · div z dx+


Ω
z : dDu =


∂Ω
u∂Ω · (zν) dHn−1 =


∂Ω
z : (u∂Ω ⊗ ν) dHn−1

(5.3)

for all z ∈ C1(Ω,RN×n) ∩ C(Ω,RN×n) and u ∈ BV (Ω,RN ). In particular u∂Ω can

be obtained as continuous extension of u on ∂Ω, provided u ∈ C(Ω,RN ) and for

u ∈W 1,1(Ω,RN ) it coincides with the usual trace of Sobolev functions.

Proof. This result is well known and proofs are given in [27, Theorem 1, p. 177] (for

N = 1) and [3, Theorem 3.88] (N > 1)3. We will need to refer to the technique of the

proof and therefore sketch the procedure from [27].

Since Ω has a Lipschitz boundary we can assume u ∈ BV (Ω ∩ V,RN ) and u has

compact support in Ω ∩ V , where V := Bn−1(0, r)× (−h, h) and there is a Lipschitz

function γ : Bn−1(0, r) → [−h/2, h/2] such that ∂Ω∩ V = {(x, γ(x)), x ∈ Bn−1(0, r)}
and Ω ∩ V = {(x, y) ; x ∈ Bn−1(0, r), γ(x) < y < h} (cf. [27, p. 177]) �rst. This

situation is sketched in Figure 5.1.

For our further treatment we introduce the following notation. For a function g :

Ω∩V → X (X is arbitrary at the moment) and 0 < τ < h/2 we de�ne gτ : ∂Ω∩V → X

3Note that the technique of the proof for the scalar case BV (Ω,R) can be transfered to the vectorial
case, however a reduction of the vectorial to the scalar case arguing component-wise is not possible.
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   Schnelle Notizen Seite 1    

Figure 5.1: Local representation of the Lipschitz boundary of Ω.

by setting

g(x, γ(x))τ := g(x, γ(x) + τ) , (x, γ(x)) ∈ ∂Ω ∩ V (5.4)

where we made use of the standard parametrization Φ : Bn−1(0, r) → ∂Ω,

x →→ (x, γ(x)) of ∂Ω ∩ V .
The �rst step to prove the trace theorem for BV (Ω,RN )-functions is to show

that the trace u∂Ω for u ∈ C∞(Ω ∩ V,RN ) ∩ BV (Ω ∩ V,RN )4 is (locally) obtained

as L1(∂Ω ∩ V,RN )-limit of (uτ )τ as τ → 0. Then formula (5.3) is established

for u ∈ BV (Ω,RN ) ∩ C∞(Ω,RN ) using a partition of unity argument. General

u ∈ BV (Ω,RN ) is then approximated by functions uj ∈ BV (Ω,RN ) ∩ C∞(Ω,RN )

in terms of strict convergence and, using similar estimates as in the �rst step, one

veri�es that (u∂Ωj )j converges in L1(∂Ω,RN ) as j → ∞ to a limit u∂Ω (which turns

out to be independent of the approximating sequence).

A straightforward calculation and the application of the preceding theorem yields

the following extension theorem for the situation as in Figure 5.2

Theorem 31. Assume that Ω1 and Ω2 are disjoint open subsets of Rn and let Ω =

4still assumed to be compactly supported in Ω ∩ V
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   Schnelle Notizen Seite 1    

Figure 5.2: The sets Ω1 and Ω2 with joint boundary Γ.

Ω1 ∪ Ω2 ∪ Γ, where Γ = ∂Ω1 ∩ ∂Ω2 is the joint boundary of Ω1 and Ω2 which is

assumed to be Lipschitz. Let ν be the unit normal on Γ pointing from Ω1 to Ω2. Let

u1 ∈ BV (Ω1,RN ) and u2 ∈ BV (Ω2,RN ). By Theorem 30 the traces u∂Ω1 of u1 and

u∂Ω2 of u2 on Γ exist. The function u : Ω → RN de�ned by

u(x) =

u1(x) for x ∈ Ω1

u2(x) for x ∈ Ω2

is in BV (Ω,RN ). Viewing Du1 and Du2 as measures on Ω (extended by the zero

measure on Ω \ Ω1 and Ω \ Ω2 resp.), the weak derivative of Du is given by

Du = Du1 +Du2 + (u1 − u2)⊗ νHn−1|Γ ,

where the latter term denotes the (n − 1)-dimensional Hausdor� measure on Γ with

density (u1 − u2)⊗ ν. In particular for the total variation we have

|Du|(Ω) = |Du1|(Ω1) + |Du2|(Ω2) +


Γ
|u1 − u2| dHn−1 .

Proof. Let us refer to [3, Corollary 3.89] and [27, p. 183f] for these statements.

Note that in view of the previous theorem for Ω bounded with Lipschitz boundary
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we have u ∈ BV (Ω,RN ) if and only if the extended function ũ : Rn → RN , given by

ũ(x) =

u(x) for x ∈ Ω

0 otherwise

is in BV (Rn,RN ). Thus by an abuse of notion we will also write u for the extended

function ũ, such that for u ∈ BV (Ω,RN ) the identity

|Du|(Rn) = |Du|(Ω) +

∂Ω

|u∂Ω| dHn−1 (5.5)

holds. A further consequence of the trace theorem is the following embedding result.

Proposition 32. Let N,n ∈ N and let Ω ⊆ Rn be open and bounded with Lipschitz

boundary. Then the embedding

BV (Ω,RN ) ↩→ Lp(Ω,RN )

is continuous for p = n/(n− 1) and even compact for p ∈ [1, n/(n− 1)).

Proof. Cf. [3, Corollary 3.49].

Proposition 33. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Then

the functional ETV : BV (Ω,RN ) → R given by

ETV (u) := |Du|(Rn) =


Ω
d|Du|+


∂Ω

|u∂Ω|dHn−1

is a norm on BV (Ω,RN ), equivalent to the BV (Ω,RN )-norm. Moreover, ETV is lower

semicontinuous with respect to L1(Ω,RN )-convergence.

Proof. It is not di�cult to verify that ETV is indeed a norm.

Obviously |Du|(Ω) ≤ ETV (u). By the Poincaré inequality in BV (cf. [3, Theo-

rem 3.47]) we can bound the L1-norm of u by ETV (u) times a constant which depends

only on the space dimensions n and N . Thus it remains to show that ETV can be

bounded by the usual BV -norm. Since |Du|(Ω) ≤ ∥u∥BV it su�ces to bound the trace

term. Let u ∈ BV (Ω,RN ). There exists a sequence (uj)j in W 1,1(Ω,RN ) converging

strictly to u (cf. Proposition 28). Since the trace is continuous inW 1,1(Ω,RN ) (cf. [27,

p. 133]), there is a constant CW 1,1 > 0 such that ∥v∂Ω∥L1(∂Ω,RN ) ≤ CW 1,1 ∥v∥W 1,1 for

all v ∈ W 1,1(Ω,RN ). By strict convergence of (uj)j and the continuity of the trace
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operator with respect to strict convergence we thus obtain

∥u∂Ω∥L1 = lim
j→∞

∥u∂Ωj ∥L1 ≤ lim
j→∞

CW 1,1∥uj∥W 1,1 = CW 1,1∥u∥BV

as desired.

By Proposition 28 and the remarks preceding it the total variation u →→ V (u,Rn)

is lower semicontinuous with respect to L1
loc(Rn,RN )-convergence and in particular

for L1-convergence of functions with support on Ω, i.e. L1(Ω,RN )-convergence. Note

that V (u,Rn) = ETV (u) for any u ∈ BV (Ω,RN ), where we used the convention after

Theorem 31.

We �nish our review of properties of BV (Ω,RN ) with a statement which holds

only for N = 1, the coarea formula. A measurable set E ⊆ Ω is said to be of �nite

perimeter in Ω, provided χE ∈ BV (Ω) and its perimeter Per(E,Ω) in Ω is de�ned as

Per(E,Ω) := |DχE |(Ω) .

We write Per(E) := Per(E,Rn). The next theorem states that almost all superlevel

sets of a BV (Ω)-function are sets of �nite perimeter and its total variation can be

obtained as integral over the perimeter of the superlevel sets.

Proposition 34 (Coarea Formula (1)). Let u ∈ BV (Ω), then for almost all t ∈ R
the superlevel sets

Ẽt := {u > t} (5.6)

are sets of �nite perimeter in Ω and the total variation of u is given by

|Du|(Ω) =

R
Per(Ẽt,Ω) dt . (5.7)

If on the other hand for an L1(Ω)-function almost all superlevel sets Ẽt as in (5.6)

are sets of �nite perimeter and the function t →→ Per(Ẽt,Ω) is integrable on R, then
u ∈ BV (Ω) and the total variation of u is given by (5.7).

Proof. See [27, p. 185].

We will need the following variant of the coarea formula

82



5.1 BV (Ω,RN ) and its Properties

Proposition 35 (Coarea Formula (2)). The statements of the foregoing theorem re-

main unchanged, provided ">" in the de�nition of the superlevel sets is replaced by

"≥" or provided we use the alternative de�nition

Et :=

{u > t} for t > 0

{u < t} for t < 0

for the sub-/superlevel sets.

Proof. The starting point of the proof of Proposition 34 is to write the positive part

u+ of u as

u+(x) =

 ∞

0
χ{u>t}(x) dt =

 ∞

0
χẼt

(x) dt .

And in this formula replacing > by ≥ does not make a di�erence.

The validity of the proposition with the sublevel sets Et = Ω \ {u ≥ t} for t < 0

(for t > 0 there is nothing to do) follows from Proposition 34, provided we can show

Per(E,Ω) = Per(Ω \ E,Ω) (5.8)

for all sets E ⊆ Ω of �nite perimeter. To see this let ϕ ∈ C∞
c (Ω) with ∥ϕ∥∞ ≤ 1, then

E
divϕ dx =


Ω
χE divϕ dx =


Ω
(1− χΩ\E) divϕ dx = −


Ω\E

divϕ dx

since

Ω divϕ dx = 0 by Gauÿ' theorem. Taking the supremum over all ϕ ∈ C∞

c (Ω)

equation (5.8) follows.

Last but not least let us provide a Theorem that supplements the approximation

result in Proposition 28.

Theorem 36. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary and let

u ∈ BV (Ω) ∩ Lp(Ω) for some p ∈ [1,∞). Then there is a sequence (uk)k in C∞
c (Ω)

such that, for any q ∈ [1, p],

uk → u

in Lq(Ω) and

|Duk|(Rn) → |Du|(Rn) =


Ω
d|Du|+


∂Ω

|u∂Ω| dHn−1 .
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Proof. Cf. [41, Theorem 3.2].

Note that in contrast to the standard approximation from Proposition 28 the ap-

proximating functions are assumed to be compactly supported in Ω and we do not

only approximate the total variation in Ω, but also the boundary term.

5.2 BD(Ω) and its Properties

We will introduce spaces occurring in the theory of plasticity now. Basically one

considers some body Ω ⊆ Rn, n ≥ 2 that is deformed by a mapping u : Ω → Rn.

Thus appropriate spaces for deformations contain maps u : Ω → Rn where Ω has

the same dimension as its image. The energy of the deformation can usually be

expressed in terms of the symmetrized gradient of u. In particular for a distribution

u = (u1, . . . un) ∈ D′(Ω,Rn) we de�ne the symmetrized gradient of u by

Dsu :=
1

2


Du+ (Du)T


=

1

2


∂ju

i + ∂iu
j

i,j=1,...,n

.

De�nition. The space BD(Ω) is de�ned to be the space of those functions u ∈
L1(Ω,Rn), for which the symmetrized gradient

Dsu

is represented by some �nite Rn×n-valued Radon measure on Ω, i.e. Dsu ∈ M(Ω,Rn×n).

It becomes a Banach space with the norm

∥u∥BD :=


Ω
|u| dx+ |Dsu|(Ω)

where |Dsu| denotes the total variation measure of Dsu ∈ M(Ω,Rn×n).

If u ∈ BD(Ω), we may write Dsu = σ|Dsu|, where σ ∈ L1(Ω,Rn×n
sym ; |Dsu|) and

|σ| = 1 |Dsu|-a.e. by an application of Proposition 73. Here and in the following Rn×n
sym

denotes the vector space of symmetric n× n-matrices.

Remark 37. Note that the de�nition of the symmetrized gradient is independent of

the orthonormal frame chosen in Rn. In fact an equivalent de�nition of Temam &

Strang [56, p. 9] reads: u ∈ L1(Ω,Rn) is in BD(Ω) if and only if

(α ·D)(α · u) ∈ M(Ω)
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for any α ∈ Rn.

Note that α in this characterization acts both on Ω (i.e. in the di�erential operator

α ·D on Ω) as well as on the image u(Ω), i.e. α · u.

We carried out a transformation formula in BD(Ω). It will not be applied within

our further results of the thesis, but might be of general interest for approximation

results in BD(Ω).

Proposition 38. Let Ω ⊆ Rn be open and of �nite measure and let Φ : Rn → Rn be

an a�ne transformation of Rn represented by

Φ(x) = Ax+ y = x̃

for some invertible matrix A ∈ Rn×n and some y ∈ Rn and let Ω̃ := Φ(Ω). Then

u ∈ BD(Ω) if and only if the function ũ : Ω̃ → Rn,

ũ(x̃) := A−Tu(A−1(x̃− y))

is in BD(Ω̃) and there holds
Ω̃
|ũ(x̃)| dx̃ = |detA|1−1/n


Ω
|u(x)| dx

and

Dsũ(x̃) = A−T

(Dsu)(A

−1(x̃− y))

A−1 = A−TDsu(x)A

−1 ,

where x = Φ−1(x̃), such that

|Dsũ|(Ω̃) = |detA|1−2/n|Dsu|(Ω) .

Proof. By the transformation theorem we have
Ω̃
|ũ(x̃)| dx̃ =


Ω
|detA|1|A−Tu(x)| dx =


Ω
| detA|1−1/n|u(x)| dx ,

where we have used that by the invariance of the Frobenius norm under unitary

transformations |A−Tu| = | detA−T|1/n
 A−T

| detA−T|1/nu
 = | detA|−1/n|u|.
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The transformation of the derivative follows from the calculation

2Dsũ = D

A−T(u ◦ Φ−1)


+

D

A−T(u ◦ Φ−1)

T
= A−T(Du) ◦ Φ−1A−1 +


A−T(Du) ◦ Φ−1A−1

T
= 2A−T (Dsu) ◦ Φ−1A−1

in the sense of distributions. Obviously the left hand side is a Radon measure if and

only if the right hand side is a Radon measure. Applying the transformation formula

and the invariance of the Frobenius norm with respect to unitary transformations we

obtain

|Dsũ|(Ω̃) =

Ω̃
d|Dsũ| =


Ω
| detA| d|A−TDsuA

−1|

=


Ω
| detA|1−2/n d

| detA|1/nA−TDsu |detA|1/nA−1


= | detA|1−2/n|Dsu|(Ω) .

Note that by the transposition operation in the de�nition of the symmetrized gra-

dient it is necessary to perform a transformation both in the domain of de�nition of

u and in the range of u. In particular in contrast to BV (Ω,RN )-functions (cf. [31,

Lemma 10.1]) we did not succeed to perform a transformation formula with respect

to arbitrary di�eomorphic deformations of Ω and conjecture that it does not exist in

general.

De�nition. For Ω ⊆ Rn open and z = (zi,j)i,j=1,...,n ∈ D′(Ω,Rn×n) we de�ne the

symmetrized divergence divs z ∈ D′(Ω,Rn) by

divs z :=
1

2


div(z + zT)


:=

1

2


n

i=1

∂i(z
i
j + zji )


.

The symmetrized tensor product a⊙ b for vectors a, b ∈ Rn is de�ned by

a⊙ b :=
a⊗ b+ b⊗ a

2
.

Crucial for the investigation of functions of bounded deformation will be the fol-

lowing symmetrized Gauÿ-Green formula.

Proposition 39. Let Ω ⊆ Rn be open with Lipschitz boundary and let u ∈ C1(Ω,Rn)
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and z ∈ C1(Ω,Rn×n), then
Ω
u · divs z dx+


Ω
Dsu : z dx =


∂Ω

(u⊙ ν) : z dHn−1

=
1

2


∂Ω
uT z ν + νTzu dHn−1 . (5.9)

Proof. Let u ∈ C1(Ω,Rn) and z ∈ C1(Ω,Rn×n). Adding the Gauÿ-Green formula

(5.2) to the same equation with z replaced by zT we get
Ω
u · (div z + div(zT)) dx+


Ω
Du : (z + zT) dx =


∂Ω

(u⊗ ν) : (z + zT) dHn−1 .

The �rst integral gives two times the �rst term in the proposition by de�nition. For

the second and third integrals it su�ces to recall that the decomposition of matrices

in their symmetric and antisymmetric parts is orthogonal with respect to the matrix

product ":" (cf. equation (7.1)) and thus only two times the symmetric parts Dsu of

Du and u⊙ ν of u⊗ ν persist.

Thus by de�nition for u ∈ BD(Ω) (with the decomposition Dsu = σ|Dsu| of the
derivative) and z ∈ C∞

c (Ω,Rn×n) the partial integration formula
Ω
u · divs z dx = −


Ω
z : σ d|Dsu| (5.10)

holds.

In analogy to the variation of a function, we introduce for u ∈ L1
loc(Ω,Rn) the

deformation

D(u,Ω) := sup


Ω
u · divs ϕ dx ; ϕ ∈ C1

c (Ω,Rn×n), ∥ϕ∥∞ ≤ 1


.

Instead of using the symmetrized divergence of general tensor �elds it is common

to use the usual divergence of symmetric tensor �elds in specialist literature. This

is justi�ed by the following lemma. We will keep our approach with the symmetric

divergence operator in the following to point out the analogy to the BV (Ω,RN )-

situation.

Lemma 40. For any u ∈ L1
loc(Ω,Rn) we have

D(u,Ω) = sup


Ω
u · divϕ dx ; ϕ ∈ C1

c (Ω,Rn×n
sym ), ∥ϕ∥∞ ≤ 1


.
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Proof. Note that for symmetric distributions u in D′(Ω,Rn×n) we have divs u = div u

and for skew symmetric distributions we have divs u = 0. Thus the unique (and

pointwise orthogonal with respect to the Frobenius norm) decomposition

ϕ =
1

2
(ϕ+ ϕT) +

1

2
(ϕ− ϕT)

of ϕ ∈ C1
c (Ω,Rn×n) shows that it su�ces to consider the classical divergence of

symmetric tensor �elds ϕ only.

Proposition 41. The deformation is convex and lower semicontinuous with respect

to the L1
loc(Ω,Rn)-topology.

Proof. By de�nition the deformation is the supremum of continuous linear functionals

on L1
loc(Ω,Rn).

The following proposition similar to the situation in BV (Ω,RN ) holds.

Proposition 42. A function u ∈ L1(Ω,Rn) is in BD(Ω) if and only if D(u,Ω) <∞
and in that case

D(u,Ω) = |Dsu|(Ω) ,

where |Dsu| denotes the total variation of the measure Dsu ∈ M(Ω,Rn×n).

Proof. Let u ∈ BD(Ω) and ϕ ∈ C1
c (Ω,Rn×n). By de�nition we have

Ω
u · divs ϕ dx =


Ω
ϕ : σ d|Dsu| ≤ ∥ϕ∥∞


Ω
d|Dsu| <∞,

thus D(u,Ω) ≤ |Dsu|(Ω) <∞ for u ∈ BD(Ω).

Let now u ∈ L1(Ω,Rn) and assume D(u,Ω) < ∞, then by homogeneity in ϕ we

obtain 
Ω
u · divs ϕ dx

 ≤ D(u,Ω)∥ϕ∥∞

for all ϕ ∈ C1
c (Ω,Rn×n), which is a dense subspace of C0(Ω,Rn×n). Thus there is a

unique continuous linear functional L : C1
c (Ω,Rn×n) → R with

L(ϕ) =


Ω
u · divs ϕdx

for ϕ ∈ C0(Ω,Rn×n) and with ∥L∥ ≤ D(u,Ω). By Riesz' Theorem 74 L is represented
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by a �nite Rn×n-valued Radon measure µ = (µij)i,j=1,...,n, such that

L(ϕ) =


Ω
ϕ : dµ

for all ϕ ∈ C0(Ω,Rn×n). Considering ϕ ∈ C∞
c (Ω,Rn×n) it is immediate that u ∈

BD(Ω) and −µ = Dsu and

|Dsu|(Ω) = |µ|(Ω) = ∥L∥ ≤ D(u,Ω) .

Similar to BV (Ω,RN ) the norm topology of BD(Ω) is too strong for many appli-

cations and we often use strict convergence instead. A sequence (uj)j in BD(Ω)

is said to converge strictly5 to u ∈ BD(Ω), provided uj → u in L1(Ω,Rn) and

|Dsuj |(Ω) → |Dsu|(Ω). Smooth functions are dense in BD(Ω) with respect to strict

convergence.

Proposition 43. Let u ∈ L1(Ω,Rn). Then u ∈ BD(Ω) if and only if there is a

sequence (uj)j in C
∞(Ω,Rn) ∩ L1(Ω,Rn) converging to u in L1(Ω,Rn) with

lim sup
j→∞

D(uj ,Ω) <∞ .

Moreover, the latter implies weak*-convergence of the measures Dsuj to Dsu as

j → ∞, and uj → u in Lp(Ω,RN ) as j → ∞ for all p ∈ [1, n/(n − 1)) provided

Ω is bounded with Lipschitz boundary. If u ∈ BD(Ω) we can �nd a sequence (uj)j

with lim supj→∞D(uj ,Ω) = D(u,Ω) or, in other words, u can be approximated in

terms of strict convergence by smooth functions.

Proof. The "if"-part is a consequence of Propositions 41 and 42. The approximation

by smooth functions follows from [55, Theorem 3.2, p. 162]. There the theorem is

stated for Ω with smooth boundary. It is however easily seen that one can adapt

the technique from [3, Theorem 3.9] to derive the approximation by functions in

C∞(Ω,Rn). The convergence in Lp(Ω,Rn) is a consequence of Theorem 44 below.

Similar to the BV (Ω,RN )-case we can prove the continuous embedding of BD(Ω)

in Ln/(n−1)(Ω,Rn) and the compact embedding in L1(Ω,Rn) (and thus compact in

Lp(Ω,Rn) for all p ∈ [1, n/(n− 1)) by interpolation), provided Ω is bounded.

5In [55] the terminus "intermediate topology" is used to denote the topology induced by strict
convergence here.
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Theorem 44. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Then the

embedding

BD(Ω) ↩→ Lp(Ω,Rn)

is continuous for p = n/(n− 1) and even compact for p ∈ [1, n/(n− 1)).

Proof. Combine the statements from [55, Theorem 2.2 p. 152] and [55, Theorem 2.4

p. 153].

An essential tool in the proof of Theorem 44 is the following trace theorem in

BD(Ω).

Theorem 45. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. There exists

a linear trace operator ·∂Ω : BD(Ω) → L1(∂Ω,Rn), continuous with respect to strict

convergence in BD(Ω,Rn) such that
Ω
z : dDsu+


Ω
u · divs z dx =


∂Ω
z : (u∂Ω ⊙ ν) dx

for all z ∈ C1(Ω,RN )∩C(Ω,RN ). In particular u∂Ω is obtained by continuous exten-

sion of u on ∂Ω, provided u ∈ C(Ω,Rn) and for u ∈W 1,1(Ω,Rn) it coincides with the

usual trace for Sobolev functions.

Proof. Existence of the trace operator is shown in [55, Theorem 2.1, p. 148]. Note

that it is stated for C1-boundaries there only. Since Lipschitz boundaries are almost

everywhere di�erentiable by Rademachers theorem and the continuity of the normal

ν on ∂Ω is not needed in the proof of [55], the proof is easily adapted to Ω with

Lipschitz boundary.

Similar to the BV -case we have an extension property as in the situation of Fig-

ure 5.2.

Proposition 46. Assume that Ω1 and Ω2 are disjoint open subsets of Rn and let

Ω = Ω1 ∪Ω2 ∪ Γ, where Γ = ∂Ω1 ∩ ∂Ω2 is the joint boundary6 of Ω1 and Ω2 which is

assumed to be Lipschitz. Let ν be the unit normal on Γ pointing from Ω1 to Ω2. Let

u1 ∈ BD(Ω1) and u2 ∈ BD(Ω2) and let u∂Ω1 denote the trace of u1 and u∂Ω2 the trace

of u2 on Γ, resp. The function u : Ω → Rn de�ned by

u(x) =

u1(x) for x ∈ Ω1

u2(x) for x ∈ Ω2

6The equation Γ = ∂Ω1 ∩ ∂Ω2 should be interpreted in the Hn−1-a.e. sense of course.
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is in BD(Ω). Interpreting Dsu1 and Dsu2 as measures on Ω (extended by the zero

measure on Ω \ Ω1 and Ω \ Ω2 resp.), the weak derivative of Dsu is given by

Dsu = Dsu1 +Dsu2 + (u1 − u2)⊙ νHn−1|Γ

where the latter term denotes the n − 1-dimensional Hausdor� measure on Γ with

density (u1 − u2) ⊙ ν. In particular for the total variation of the measures Dsu we

have

|Dsu|(Ω) = |Dsu1|(Ω1) + |Dsu2|(Ω2) +


Γ
|(u1 − u2)⊙ ν| dHn−1 . (5.11)

Proof. See [55, Propostion 2.1, p. 151] and [55, Remark 2.3, p. 151].

Note that, in contrast to Theorem 31, we can not neglect the normal ν in the

boundary term in 5.11. This is due to the algebraic fact that for |b| = 1

|a⊗ b| = |a| ,

but merely

|a⊙ b| ≤ |a|

and strict inequality occures in general.

In the light of the foregoing Proposition we will identify functions u ∈ BD(Ω) with

their extension by zero on Rn \ Ω, which is then in BD(Rn), in the following.

We �nish this review with a proposition stating that the function ETD is a norm on

BD(Ω).

Proposition 47. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Then

the functional ETD : BD(Ω) → R given by

ETD(u) := |Dsu|(Rn) =


Ω
d|Dsu|+


∂Ω

|u∂Ω ⊙ ν|dHn−1

is a norm on BD(Ω), equivalent to the usual norm and lower semicontinuous with

respect to L1(Ω,Rn)-convergence.

Proof. The function ETD is a norm due to [55, Proposition 2.4, p. 155] and the sub-

sequent remark.

It remains to prove lower semicontinuity. Let (uj)j be a sequence in BD(Ω) with

lim infj→∞ ETD(uj) < ∞ and uj → u in L1(Ω,Rn). Identifying uj and u with their
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extensions by zero outside Ω we have uj ∈ BD(K,Rn), where Ω ⊆ K is an open ball

containing Ω. Since the total deformation is lower semicontinuous with respect to

L1(K,Rn)-convergence (Proposition 41) we have u ∈ BD(K) and

ETD(u) =


K

d|Dsu| ≤ lim inf
j→∞


K

d|Dsuj | = lim inf
j→∞

ETD(uj) ,

which veri�es the assertion.

5.3 Spaces with Integrable Divergence Fields

A key point in the derivation of the subdi�erentials of the total variation and the total

deformation functional is to derive suitable Gauÿ-Green formulas. We thus follow the

ideas of Anzelotti [5] and introduce the spaces

L∞,q(Ω,RN×n) :=

z ∈ L∞(Ω,RN×n) ; div z ∈ Lq(Ω,RN )


and

L∞,q
sym(Ω) :=


z ∈ L∞(Ω,Rn×n) ; divs z ∈ Lq(Ω,Rn)


for q ∈ (1,∞).

The key idea is to show that the normal trace of functions in L∞,q(Ω,RN×n) exists

and to verify that suitable Gauÿ-Green formulas for functions from BV (Ω,RN ) and

L∞,q(Ω,RN×n) hold. An analogous procedure will be carried out between BD(Ω)

and L∞,q
sym(Ω).

We may not expect uniform approximation of the functions in L∞,q(Ω,RN×n) and

L∞,q
sym(Ω) by smooth functions. Thus let us introduce the following notion of conver-

gence in L∞,q(Ω,RN×n) and L∞,q
sym(Ω).

De�nition. A sequence (zj)j in L
∞,q(Ω,RN×n) is said to be L∞,q-convergent to z ∈

L∞,q(Ω,RN×n), provided zj
∗
⇀ z in L∞(Ω,RN×n) and div zj → div z in Lq(Ω,RN×n).

Similarly a sequence (zj)j in L
∞,q
sym(Ω) is said to be L∞,q

sym-convergent to z ∈ L∞,q
sym(Ω),

provided zj
∗
⇀ z in L∞(Ω,Rn×n) and divs zj → divs z in Lq(Ω,Rn).

Smooth functions are dense in L∞,q(Ω,RN×n) in the sense of L∞,q-convergence:

Proposition 48. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Then

C∞(Ω,RN×n)∩L∞,q(Ω,RN×n) is dense in L∞,q(Ω,RN×n) in the following sense: For

any z ∈ L∞,q(Ω,RN×n) there is a sequence (zj)j in C∞(Ω,RN×n) ∩ L∞,q(Ω,RN×n)

such that
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   Schnelle Notizen Seite 1    

Figure 5.3: Exhaustion of Ω by Ωk.

(i) zj → z in Lr(Ω,RN×n) for all r ∈ [1,∞),

(ii) zj
∗
⇀ z in L∞(Ω,RN×n),

(iii) zj(x) → z(x) for almost every x ∈ Ω,

(iv) |zj(x)| ≤ ∥z∥∞ for all x ∈ Ω, and

(v) div zj → div z in Lq(Ω,RN )

as j → ∞. In particular all z ∈ L∞,q(Ω,RN×n) can be approximated by L∞,q-

convergent sequences in C∞(Ω,RN×n) ∩ L∞,q(Ω,RN×n).

Proof. Set Ω0 := ∅ and let (Ωk)k≥1 be the standard exhaustion (cf. Figure 5.3) of Ω

de�ned by

Ωk := {x ∈ Ω ; dist(x, ∂Ω) > 1/k} .

Take a smooth partition of unity of Ω,

0 ≤ ρk ≤ 1 , ρk ∈ C∞
c (Ω) ,


k∈N

ρk = 1 ,

such that supp ρ1 ⊆ Ω1 and supp ρk ⊆ Ωk+1 \ Ωk−1 (k ≥ 1). For z ∈ L∞,q(Ω,RN×n)

we de�ne

zk := ρkz ,

such that zk ∈ L∞,q(Ω,RN×n) with div zk = ρk div z + zDρk. Note that all zk

are compactly supported in Ω, such that the convolution (in each component of zk)
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is well de�ned, provided the molli�cation parameter is su�ciently small. Let η ∈
C∞
c (B(0, 1)), 0 ≤ η ≤ 1, ∥η∥1 = 1 be the standard molli�er and for δ > 0 let

ηδ ∈ C∞
c (B(0, δ)) be de�ned by

ηδ(x) := δ−nη
x
δ


.

Let ε > 0, take a sequence εk > 0, such that the convolutions (performed component-

wise)

vk := zk ∗ ηεk

are still compactly supported in Ωk+1 \ Ωk−1 (k ≥ 1) and such that

∥zk − vk∥1 ≤
ε

2k

and

∥div zk − (div zk) ∗ ηεk∥q ≤
ε

2k
. (5.12)

Since for all x ∈ Ω

|vk(x)| ≤ ∥ηεk∥1∥zk∥L∞(B(x,εk),RN×n) = ∥zk∥L∞(B(x,εk),RN×n)

and |zk(y)| ≤ ∥z∥∞ρk(y) for almost all y ∈ Rn we may, by equicontinuity of ρk, choose

the εk small enough to obtain

|vk(x)| ≤ ∥zk∥∞ρk(x) + ε/2 (5.13)

for all x ∈ Ωk+1 \ Ωk−1.

De�ne zε :=


k∈N vk ∈ C∞(Ω,RN×n).

By integration and (locally �nite) summation we obtain

∥zε − z∥1 =

Ω


k∈N

zk − vk

 dx ≤

Ω


k∈N

zk − vk

 dx ≤ ε ,

such that zε → z in L1(Ω,RN×n) as ε→ 0.

Moreover, (zε)ε is bounded in L∞(Ω,RN×n): Since for each x there are at most

two summands vk(x) di�erent from zero, we obtain from (5.13) and the partition of
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unity property

∥zε∥∞ ≤ ess sup
x∈Ω


k∈N

|vk(x)| ≤ ∥z∥∞(1 + ε) .

Thus, by a standard application of Hölders' theorem the convergence zε → z is also

strong in Lr(Ω,RN×n) (for all r ∈ (1,∞)) and weak* in L∞(Ω,RN×n).

It remains to prove strong convergence div zε → div z. Again, using that in a

neighborhood of each x ∈ Ω there are at most two ρk(x) di�erent from zero we derive

∥div z − div zε∥q =
div z − div


k∈N

vk


q

=
div z −

k∈N
div vk


q

=

k∈N

div zk − div(zk ∗ ηεk)

q

=

k∈N

div zk − (div zk) ∗ ηεk

q

≤

k∈N

∥ div zk − (div zk) ∗ ηεk div ∥q

≤ ε

by (5.12).

A sequence with the claimed convergence properties as in the theorem (in partic-

ular with |zj |∞ ≤ ∥z∥∞) is then obtained by choosing a suitable pointwise almost

everywhere convergent subsequence from zε :=
1

1+εzε.

Proposition 49. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Then

C∞(Ω,Rn×n) ∩ L∞,q
sym(Ω) is dense in L∞,q

sym(Ω) in the following sense: For any z ∈
L∞,q
sym(Ω) there is a sequence (zj)j in C

∞(Ω) ∩ L∞,q
sym(Ω) such that

(i) zj → z in Lr(Ω,Rn×n) for all r ∈ [1,∞),

(ii) zj
∗
⇀ z in L∞(Ω,Rn×n),

(iii) zj(x) → z(x) for almost every x ∈ Ω,

(iv) |zj(x)| ≤ ∥z∥∞ for all x ∈ Ω, and

(v) divs zj → divs z in Lq(Ω,RN )

as j → ∞. In particular all z ∈ L∞,q
sym(Ω) can be approximated by L∞,q

sym-convergent

sequences in C∞(Ω,Rn) ∩ L∞,q
sym(Ω).
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Proof. The proof is analogous to the proof of the proposition above, where div is

replaced by divs.

It is well known that integrability of the divergence of a vector �eld leads to in-

tegrability of the normal component of this vector �eld. In particular the ideas for

the following results are due to Anzellotti [5]. But note that our results may not

be deduced from the scalar valued theorems in [5] and it is necessary to repeat the

proofs in the vectorial situation. Note that basically one faces the following di�culty:

The naive idea is to de�ne the normal trace for continuous functions �rst and to

extend it then by a Hahn-Banach argument to the whole space. Nevertheless since

L∞,q(Ω,RN×n) is not separable with the norm ∥z∥∞ + ∥ div z∥q the extension might

be not unique. Since we could not follow the arguments concerning the continuity

of the Hahn-Banach argument in [5] completely, we decided to give an own proof.

Our idea is to derive the trace as unique weak*-limit of traces of continuous functions

and we will show that this limit is continuous with respect to L∞,q-convergent (or

L∞,q
sym-convergent) sequences. This de�nes the normal trace uniquely by Propositions

48 and 49.

Proposition 50. Let Ω be open and bounded with Lipschitz boundary. There exists

a linear trace operator [·, ν]∂Ω : L∞,q(Ω,RN×n) → L∞(∂Ω,RN ), such that
Ω
z : Dϕ dx+


Ω
div z · ϕ dx =


Ω
[z, ν]∂Ω · ϕ dHn−1

for all ϕ ∈ C1(Ω,RN ) ∩ C(Ω,RN ). In particular for z ∈ C1(Ω,RN×n) ∩ C(Ω,RN×n)

we have

[z, ν]∂Ω(x) = z(x)ν(x) .

Moreover, the mapping z →→ [z, ν]∂Ω is sequentially continuous with respect to L∞,q-

convergent sequences and there holds

∥[z, ν]∂Ω∥L∞(∂Ω,RN ) ≤ ∥z∥L∞(Ω,RN×n)

for all z ∈ L∞,q(Ω,RN×n).

Proof. Let us assume z ∈ C∞(Ω,RN×n) ∩ L∞,q(Ω,RN×n) �rst. Let us moreover

assume z to be compactly supported in Ω∩ V with V as in the proof of Theorem 30.

Using the parametrization and notation (5.4) we de�ne [z, ν]τ ∈ L∞(∂Ω,RN ) by
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   Schnelle Notizen Seite 1    Figure 5.4: The set Ωσ,τ .

setting

[z, ν]τ := zτν

where ν is the outer unit normal at ∂Ω. Since z ∈ C∞(Ω,RN×n)∩L∞,q(Ω,RN×n), it

is easily seen that [z, ν]τ is bounded in L∞(∂Ω,RN ).

Let ϕ̃ : ∂Ω → RN be Lipschitz continuous. We de�ne ϕ : Ω ∩ V → RN , by

ϕ(x, γ(x) + y) := ϕ̃(x, γ(x)) (x, γ(x) + y) ∈ Ω ∩ V ⊆ Bn−1(0, r)× [−h, h],

Note ϕτ = ϕ̃ for all 0 < τ < h/2. It is easily seen that ϕ is Lipschitz continuous

and is thus in W 1,∞(Ω ∩ V,RN ) ∩C(Ω ∩ V,RN ) (cf. [27, Theorem 5, p. 131]). Let us

write ∂Ω for ∂Ω∩ V in the rest of the proof for simplicity. Recalling the Gauÿ-Green

formula (cf. Theorem 30) and the support of z we derive for 0 < σ < τ < h/2 
∂Ω

([z, ν]τ − [z, ν]σ) · ϕ̃ dHn−1

 =  
∂Ω

(ϕτ )Tzτν − (ϕσ)Tzσν dHn−1


=

 
Ωσ,τ

div(ϕTz) dx
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=

 
Ωσ,τ

div z · ϕ dx+


Ωσ,τ

z : Dϕ dx


≤ ∥div z∥Lq(Ωσ,τ ,RN ) ∥ϕ∥Lq′ (Ωσ,τ ,RN )

+ ∥z∥L∞(Ωσ,τ ,RN×n)∥Dϕ∥L1(Ωσ,τ ,RN×n) ,

where Ωσ,τ := {(x, γ(x)+y) ∈ Ω∩V ; σ < y < τ}. Note that σ and τ can be choosen

arbitrarily small. Moreover the calculation above can be performed for each Lipschitz

continuous φ̃ from a countable set of the unit ball in L1(∂Ω,RN ). We thus obtain

that ([z, ν]τ )τ is a Cauchy sequence for the metric

d∗(w1, w2) :=

j∈N

2−j min

1,
 

∂Ω
(w1 − w2) · ϕ̃j dHn−1

 ,
where {ϕ̃j ; j ∈ N} is a dense subset of Lipschitz functions in the unite ball of

L1(Ω,RN ). Since L1(∂Ω,RN )∗ = L∞(∂Ω,RN ) is complete and the weak* topology

in L∞(∂Ω,RN ) can be metricized by the metric d∗, there is a unique limit [z, ν]∂Ω ∈
L∞(∂Ω,RN ) with [z, ν]τ

∗
⇀ [z, ν]∂Ω as τ → 0.

Letting σ → 0 in the previous inequality we derive the estimate 
∂Ω

([z, ν]τ − [z, ν]∂Ω) · ϕ̃ dHn−1

 ≤ ∥div z∥Lq(Ω0,τ ,RN ) ∥ϕ∥Lq′ (Ω0,τ ,RN )

+ ∥z∥L∞(Ω0,τ ,RN×n)∥Dϕ∥L1(Ω0,τ ,RN×n) ,

which also shows that the limit does not depend on the chosen orthonormal frame of

the cylinder V . For ϕ ∈ C1(Ω ∩ V,RN ) we derive by dominated convergence
Ω
div z · ϕ+ z : Dϕ dx = lim

τ→0


Ω\Ω0,τ

div z · ϕ+ z : Dϕ dx

= lim
τ→0


∂Ω

[z, ν]τ · ϕτ dHn−1 =


∂Ω

[z, ν]∂Ωϕ∂Ω dHn−1 ,

where we used ϕτ → ϕ∂Ω in L1(∂Ω,RN ).7

General z (still assumed to be compactly supported in Ω ∩ V ) are approximated

by a sequence (zj)j as in Proposition 48. Using the previous formulas we derive for

7Note that ϕ is uniformly continuous and thus ϕτ → ϕ∂Ω uniformly.
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5.3 Spaces with Integrable Divergence Fields

ϕ ∈ C1(Ω ∩ V,RN ) ∩ C(Ω ∩ V,RN ) 
∂Ω


[zj , ν]

∂Ω − [zl, ν]
∂Ω

· ϕ dHn−1

 =  
Ω
(div zj − div zl) · ϕ+ (zj − zl) : Dϕ dx


≤ ∥div zj − div zl∥Lq(Ω,RN ) ∥ϕ∥Lq′ (Ω,RN )

+

 
Ω
(zj − zl) : Dϕ dx


Since zj is L∞,q-convergent we obtain arguing as above that


[zj , ν]

∂Ω

j
is a weak*-

convergent sequence in L∞(∂Ω,RN ) and the limit [z, ν]∂Ω has the desired properties.

We have thus de�ned the normal trace [z, ν] locally on ∂Ω. The general case follows

using compactness of ∂Ω and a standard partition of unity argument.

In the symmetric case we have the following result.

Proposition 51. Let Ω be open and bounded with Lipschitz boundary. There exists

a linear trace operator [·, ν]∂Ωs : L∞,q
sym(Ω) → L∞(∂Ω,Rn), such that

Ω
z : Dsϕ dx+


Ω
divs z · ϕ dx =


∂Ω

[z, ν]∂Ωs · ϕ dHn−1

for all ϕ ∈ C1(Ω,Rn)∩C(Ω,Rn). In particular for z ∈ C1(Ω,Rn×n)∩C(Ω,Rn×n) we

have

[z, ν]∂Ωs (x) = 1
2


z(x) + z(x)T


ν(x) .

Moreover, the mapping z →→ [z, ν]∂Ωs is sequentially continuous with respect to L∞,q
sym-

convergence and there holds

∥[z, ν]∂Ωs ∥L∞(∂Ω,Rn) ≤ ∥z∥L∞(Ω,Rn×n)

for all z ∈ L∞,q
sym(Ω).

Proof. The proof is similar to the previous one, one has to replace the BV - and

L∞,q-arguments by their symmetrized counterparts.

5.3.1 Gauÿ-Green Formulas

We �nally prove the desired Gauÿ-Green formulas for BV (Ω,RN ) and L∞,q(Ω,RN×n)

functions (and BD(Ω) and L∞,q
sym(Ω) functions resp.).
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Let p ∈ [1,∞) and p′ ∈ (1,∞] with 1/p+ 1/p′ = 1 and de�ne

BV p(Ω,RN ) := BV (Ω,RN ) ∩ Lp(Ω,RN )

and

BDp(Ω) := BD(Ω) ∩ Lp(Ω,Rn) .

For u ∈ BV p(Ω,RN ) and z ∈ L∞,p′(Ω,RN×n) we de�ne a distribution

(z,Du) : C∞
c (Ω) → R by setting

⟨(z,Du), ϕ⟩ := −

Ω
ϕu · div z dx−


Ω
z : (u⊗Dϕ) dx.

Analogously for u ∈ BDp(Ω), z ∈ L∞,p′
sym (Ω) we de�ne a distribution

(z,Dsu) : C
∞
c (Ω) → R by setting

⟨(z,Dsu), ϕ⟩ := −

Ω
ϕu · divs z dx−


Ω
z : (u⊙Dϕ) dx.

Of course if Du and Dsu or z resp. are su�ciently regular (e.g. u ∈W 1,1) we have

⟨(z,Du), ϕ⟩ =

Ω
ϕz : Du dx and ⟨(z,Dsu), ϕ⟩ =


Ω
ϕz : Dsu dx .

However, the products z : Du and z : Dsu might not be de�ned pointwise for general

z and u. Nevertheless the distribution above has a representation as Radon measure:

Theorem 52. For the distribution de�ned above we have the estimate

|⟨(z,Du), ϕ⟩| ≤ ∥z∥∞ ∥ϕ∥∞

Ω
d|Du|

and thus the distribution (z,Du) has a representation as �nite signed Radon measure

on Ω.

Moreover, the measure (z,Du) and its total variation measure |(z,Du)| are abso-

lutely continuous with respect to |Du|.
Likewise for the BD-case we have

|⟨(z,Dsu), ϕ⟩| ≤ ∥z∥∞ ∥ϕ∥∞

Ω
d|Dsu|

such that again (z,Dsu) has a representation as �nite signed Radon measure on Ω

and we have that (z,Dsu) and its total variation measure |(z,Dsu)| are absolutely
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continuous with respect to |Dsu|.

Proof. Let u ∈ BV p(Ω,RN ), z ∈ L∞,p′(Ω,RN×n) and A ⊆ Ω be open. Take ϕ ∈
C∞
c (A). Approximate u by a strictly convergent sequence (uk)k in C∞(Ω,RN ) ∩

BV p(Ω,RN ) and z by a sequence (zj)j as in Proposition 48, then

|⟨(z,Du), ϕ⟩| =
− 

Ω
ϕu · div z dx−


Ω
z : (u⊗Dϕ) dx


= lim

k→∞
lim
j→∞

− 
Ω
ϕuk · div zj dx−


Ω
zj : (uk ⊗Dϕ) dx


= lim

k→∞
lim
j→∞

 
Ω
ϕzj : Duk dx


≤ lim sup

k→∞
lim sup
j→∞

∥ϕ∥∞ ∥zj∥∞

suppϕ

|Duk| dx

≤ ∥z∥∞∥ϕ∥∞|Du|(suppϕ)

≤ ∥z∥∞∥ϕ∥∞|Du|(A) .

Here we applied the Gauÿ-Green formula (5.2) and the boundary term vanishes by

the support properties of ϕ.

The �rst estimate of the theorem follows now with A = Ω and since A was arbitrary,

absolute continuity of (z,Du) with respect to |Du| is proved.
The BD-case follows analogously with the symmetric Gauÿ-Green formula (5.9).

Theorem 53 (Gauÿ-Green formulas). Let Ω ⊆ Rn be open, bounded and with Lip-

schitz boundary. Then for u ∈ BV p(Ω,RN ) and z ∈ L∞,p′(Ω,RN×n) the generalized

Gauÿ-Green formula
Ω
d(z,Du) +


Ω
u · div z dx =


∂Ω

[z, ν]∂Ω · u∂Ω dHn−1

holds. Moreover, for u ∈ BDp(Ω) and z ∈ L∞,p′
sym (Ω) the generalized symmetrized

Gauÿ-Green formula
Ω
d(z,Dsu) +


Ω
u · divs z dx =


∂Ω

[z, ν]∂Ωs · u∂Ω dHn−1

holds.

Proof. By compactness of ∂Ω we can cover the boundary ∂Ω by a �nite number of

cylinders V1, . . . , VM , which are, upon a rotation and translation of the coordinate
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   Schnelle Notizen Seite 1    

Figure 5.5: The sets V0,. . .V10 cover Ω.

system such as V in the proofs of Theorem 30, Theorem 45, Proposition 50 and Pro-

position 51. We �nd V0 ⊆ Ω open with V0 ⊆ Ω, such that
M

k=0 Vk covers Ω. Choose a

partition of unity, 0 ≤ ρk ≤ 1 (k = 0, . . . ,M),
M

k=0 ρk = 1 on Ω and ρk has compact

support on Vk (k = 0, . . . ,M).

In the local coordinates of each cylinder V1, . . . VM , for 0 < τ < hk/2, we de�ne

Ωτ,k := {(x1, . . . , xn) ∈ Vk ; xn > γk(x1, . . . , xn−1) + τ}

for k = 1, . . . ,M . Cf. Figure 5.5. For each such τ > 0 su�ciently small we �nd a

cuto� function ϕτ ∈ C∞
c (Ω) with 0 ≤ ϕ̃τ ≤ 1 and ϕ = 1 on V0 ∪

M
k=1Ωτ,k. Thus ϕτ

approximates χΩ as τ → 0.

Let us carry out the proof for theBV (Ω,RN )-case �rst. To do so let u ∈ BV p(Ω,RN )

and z ∈ L∞,p′(Ω,RN×n). By majorized convergence we have


Ω
d(z,Du) = lim

τ→0


Ω
ϕτ

M
k=0

ρk d(z,Du)

= lim
τ→0

M
k=0


Ω
ϕτρk d(z,Du)
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=
M
k=0

lim
τ→0


Ω
ϕτρk d(z,Du)

=

M
k=0

lim
τ→0


−

Ω
(ϕτρk)u · div z dx−


Ω
z : (u⊗D(ϕτρk)) dx



= lim
τ→0

−

Ω
ϕτ u · div z dx−

M
k=0

lim
τ→0


Ω
z : (u⊗D(ϕτρk)) dx

= −

Ω
u · div z dx−

M
k=0

lim
τ→0


Ω
ρk z : (u⊗Dϕτ ) dx

− lim
τ→0


Ω

M
k=0

ϕτ z : (u⊗Dρk) dx

= −

Ω
u · div z dx−

M
k=0

lim
τ→0


Ω
ρk z : (u⊗Dϕτ ) dx ,

where we applied the de�nition of the distribution (z,Du), majorized convergence for

the �rst integral and
M

k=0Dρk = 0 by the partition of unity property.

Thus it remains to prove

−
M
k=0


Ω
ρk z : (u⊗Dϕτ ) dx→


∂Ω

[z, ν]∂Ω · u∂Ω dHn−1

as τ → 0. We will show

−

Ω
ρk z : (u⊗Dϕτ ) dx→


∂Ω
ρk [z, ν]

∂Ω · u∂Ω dHn−1

for each k ∈ {0, . . . ,M}, in which the case k = 0 is elementary. Thus let k ∈
{1, . . . ,M} and approximate u by (ul)l strictly and z by (zj)j as in Proposition 48.

In the following we neglect the dependence of the representation of the boundary of

Ω on k and introduce

Ω0,τ := (Ω ∩ Vk) \ Ωτ,k .

With Dϕτ = 0 on Ωτ,k and by application of the classical Gauÿ-Green theorem we

derive 
Ω
ρk z : (u⊗Dϕτ ) dx+


∂Ω
ρk [z, ν]

∂Ω · u∂Ω dHn−1


= lim

j→∞
lim
l→∞

 
Ω0,τ

ρk zj : (ul ⊗Dϕτ ) dx+


∂Ω
ρk [zj , ν]

∂Ω · u∂Ωl dHn−1
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   Schnelle Notizen Seite 1    Figure 5.6: The set Ω0,τ and the support of ρk.

= lim
j→∞

lim
l→∞

− 
Ω0,τ

ϕτ div

ρku

T
l zj

dx

+


∂Ω
ρτk [zj ,−ν]τ · uτl dHn−1 +


∂Ω
ρk [zj , ν]

∂Ω · u∂Ωl dHn−1


= lim

j→∞
lim
l→∞

− 
Ω0,τ

ϕτ


zj : (ul ⊗Dρk) + ρk


div zj


· ul + ρk zj : Dul


dx (5.14)

−

∂Ω
ρτk[zj , ν]

τ · uτl dHn−1 +


∂Ω
ρk[zj , ν]

∂Ω · u∂Ωl dHn−1


≤ lim sup

j→∞
lim sup
l→∞


∥zj∥L∞(Ω0,τ ,RN×n) ∥ul∥L1(Ω0,τ ,RN ) ∥Dρk∥∞

+ ∥ div zj∥Lp′ (Ω0,τ ,RN )∥ul∥Lp(Ω0,τ ,RN )

+ ∥zj∥L∞(Ω0,τ ,RN×n)∥Dul∥L1(Ω0,τ ,RN×n)

+

− 
∂Ω
ρτk[zj , ν]

τ · uτl dHn−1 +


∂Ω
ρk[zj , ν]

∂Ω · u∂Ωl dHn−1


≤ ∥z∥L∞(Ω,RN×n) ∥u∥L1(Ω0,τ ,RN ) ∥Dρk∥∞

+ ∥ div z∥Lp′ (Ω,RN )∥u∥Lp(Ω0,τ ,RN )

+ ∥z∥L∞(Ω,RN×n)|Du|(Ω0,τ ∩ Ω)

+ lim sup
j→∞

lim sup
l→∞

− 
∂Ω
ρτk[zj , ν]

τ · uτl dHn−1 +


∂Ω
ρk[zj , ν]

∂Ω · u∂Ωl dHn−1

 .
(5.15)
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Here we used the notation (5.4) and took into account that |ρk| ≤ 1 and |ϕτ | ≤ 1.

Note that the �rst three terms can be made arbitrarily small, provided τ is chosen

small enough, it thus remains to prove that the lim sup-term converges to zero as

τ → 0.

Again by the classical Gauÿ-Green theorem and the support properties of ρk we

calculate

−

∂Ω
ρτk[zj , ν]

τ · uτl dHn−1 =


Ω0,τ

zj : (ul ⊗Dρk) + ρk

div zj


· ul + ρ kzj : Dul dx

−

∂Ω
ρk [zj , ν]

∂Ω · u∂Ωl dHn−1 .

Recalling the convergence properties ul → u and zj → z the integral over Ω0,τ can be

assumed to be arbitrarily small provided τ is chosen small enough with the estimates

similar to that after (5.14). But this proves that the limsups in (5.15) tend to zero as

τ → 0, which �nishes the proof of the BV -case.

Replacing D, div and [·, ν]∂Ω by their symmetrized counterparts, we get the proof

for the BDp(Ω)-L∞,p′
sym (Ω)-setting.

5.4 Investigation of the Eigenvalue Problem in BV (Ω,RN)

and BD(Ω)

Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. In this section we will

investigate the vectorial and the symmetrized eigenvalue problem of the 1-Laplace

operator, formally given by −div Du
|Du| = λ u

|u| in Ω

u = 0 on ∂Ω
(5.16)

for u with values in RN and−div Dsu
|Dsu| = λ u

|u| in Ω

u = 0 on ∂Ω
(5.17)

for u with values in Rn.

As in the well studied case N = 1 these problems are not well de�ned, since it is
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not clear how to interpret expressions 0/0. Nevertheless the associated variational

problems ETV : BV (Ω,RN ) → R,

ETV (v) =


Ω
d|Dv|+


Ω
|v∂Ω ⊗ ν| dHn−1 (5.18)

for the BV -case and of ETD : BD(Ω) → R,

ETD(v) =


Ω
d|Dsv|+


Ω
|v∂Ω ⊙ ν| dHn−1 (5.19)

for the BD case, both subject to the constraint

G1(v) =


Ω
|v| dx = α , (5.20)

are well posed for α > 0. We de�ne u to be an eigensolution of the vectorial 1-Laplace

operator or the symmetrized 1-Laplace operator provided u is a critical point of the

variational problem (5.18), (5.20) or (5.19), (5.20) resp. As before criticality is meant

in the sense of the weak slope on the metric space Lp(Ω,RN ) or Lp(Ω,Rn): That is

we take p ∈ (1, n/(n − 1)) and extend ETV to Lp(Ω,RN ) and ETD to Lp(Ω,Rn) by

setting

ETV (u) = ∞ for u ∈ Lp(Ω,RN ) \BV (Ω,RN )

and

ETD(u) = ∞ for u ∈ Lp(Ω,Rn) \BD(Ω) .

A function u is said to be an eigenfunction of the vectorial 1-Laplace operator or the

symmetrized 1-Laplace operator provided u is a critical point, |dF|(u) = 0, of the

function F : Lp(Ω,RN ) → R ∪ {∞},

F := ETV + I{G1=α}

or F : Lp(Ω,Rn) → R ∪ {∞}, F := ETD + I{G1=α} in the BD-case.

For an eigenfunction u we de�ne λ := ETV (u)/G1(u) or λ := EBD(u)/G1(u) to be

the corresponding eigenvalue of the eigenfunction u. This is justi�ed by Theorem 54

and Theorem 55 below. As before we call eigenfunctions u with G1(u) = 1 normalized.
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5.4.1 Existence of Eigensolutions and the Euler-Lagrange Equation

The next two theorems are the main results of this chapter concerning the eigenvalue

problem of the 1-Laplace operator in RN and the symmetrized 1-Laplace operator.

In particular we recover the results already known for the scalar 1-Laplace operator.

Theorem 54. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary.

Then each eigenfunction u of the vectorial 1-Laplace operator satis�es the single

version of the Euler-Lagrange equation, i.e. there is a function s ∈ L∞(Ω,RN ) with

s(x) ∈ Sgn(u(x))

for almost all x ∈ Ω and a function z ∈ L∞(Ω,RN×n) with

∥z∥∞ = 1 , div z ∈ Lp′(Ω,RN ) and ETV (u) = −

Ω
div z · u dx

such that for the eigenvalue λ = ETV (u)
G1(u)

the Euler-Lagrange equation

−div z = λs (5.21)

is satis�ed.

There exists a sequence of pairs (±uk)k of normalized eigenfunctions of the vectorial

1-Laplace operator.

Moreover, the corresponding sequence of eigenvalues8 (λk,v)k, λk,v = ETV (±uk) is
unbounded and characterized by

λk,v := inf
S∈Sk

sup
w∈S

ETV (w)

where

Sk := {S ⊆ Lp(Ω,RN ) compact and symmetric,G1 = 1 on S and genS ≥ k} .

In particular the smallest eigenvalue λ1,v is given by

λ1,v = min
w∈BV (Ω,RN )

∥w∥1=1

ETV (w)

8The subscript "v" is used to point out that we mean the eigenvalues of the vectorial 1-Laplace
operator.
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and for each eigenfunction u corresponding to λ1 = ETV (u) the multiple version of

the Euler-Lagrange equation is statis�ed, i.e. for each function s ∈ L∞(Ω,RN ) with

∥s∥∞ = 1 and s(x) ∈ Sgn(u(x)) for almost all x ∈ Ω there exists a function z with the

properties described above such that the corresponding Euler-Lagrange equation (5.21)

is satis�ed.

The proof will be given in the next subsection.

Note that the functions s and z are well de�ned replacements for the unde�ned

expressions u/|u| and Du
|Du| in the formal Euler-Lagrange equation (5.16). In contrast

to the scalar case we can not characterize the �rst eigenfunctions in terms of Cheeger

sets, since the coarea formula is not available in BV (Ω,RN ).

In BD(Ω) we derive an analogous theorem for the symmetrized 1-Laplace operator.

Theorem 55. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Then each

eigenfunction u of the symmetrized 1-Laplace operator satis�es the single version of

the Euler-Lagrange equation, i.e. there is a function s ∈ L∞(Ω,Rn) with

s(x) ∈ Sgn(u(x))

for almost all x ∈ Ω and a function z ∈ L∞(Ω,Rn×n) with

∥z∥∞ = 1 , divs z ∈ Lp′(Ω,Rn) and ETD(u) = −

Ω
divs z · u dx

such that for the eigenvalue λ = ETD(u)
G1(u)

the Euler-Lagrange equation

−divs z = λs (5.22)

is satis�ed.

There exists a sequence of pairs (±uk,s)k of normalized eigenfunctions of the sym-

metrized 1-Laplace operator.

Moreover, the corresponding sequence of eigenvalues9 λk,s = ETD(uk,s) is unbounded

and characterized by

λk,s := inf
S∈Sk

sup
v∈S

ETV (v) ,

9The subscript "s" is used to point out that we mean the eigenvalues of the symmetrized 1-Laplace
operator.

108



5.4 Investigation of the Eigenvalue Problem in BV (Ω,RN ) and BD(Ω)

where

Sk := {S ⊆ Lp(Ω,Rn) compact and symmetric, G1 = 1 on S and genS ≥ k} .

In particular the smallest eigenvalue λ1,s is given by

λ1,s = min
v∈BD(Ω)
∥v∥1=1

ETD(v)

and for each �rst eigenfunction u corresponding to λ1,s = ETD(u) the multiple version

of the Euler-Lagrange equation is statis�ed, i.e. for each function s ∈ L∞(Ω,Rn) with

∥s∥∞ ≤ 1 and s(x) ∈ Sgn(u(x)) for almost all x ∈ Ω there exists a function z with the

properties described above such that the corresponding Euler-Lagrange equation (5.22)

is satis�ed.

The proof is given in the next subsection, too.

Note as above that the function s in (5.22) is a well de�ned replacement for the

formal expression u/|u| in (5.17). Moreover, we see that for any function z in (5.22)

we may also consider the symmetric part zs := z+zT

2 , then divs z = divs zs = div zs

and ∥zs∥∞ ≤ ∥z∥∞ ≤ 1, such that zs also satis�es the Euler-Lagrange equation (5.22)

and is thus a well de�ned replacement for the formal expression Dsu
|Dsu| in (5.17).

5.4.2 Proof of Theorems 54 and 55

By Proposition 33 the function ETV is convex and lower semicontinuous on Lp(Ω,RN ).

Similarly by Proposition 47 the function ETD turns out to be convex and lower semi-

continuous on Lp(Ω,Rn). As preparation of the proof of Theorem 54 and Theorem 55

we need to calculate the subdi�erentials of ETV and EBD.

Theorem 56 (Characterization of subdi�erentials). Let u ∈ BV p(Ω,RN ). For v∗ ∈
Lp′(Ω,RN ) we have v∗ ∈ ∂ETV (u) if and only if there is z ∈ L∞,p′(Ω,RN×n) with

∥z∥∞ ≤ 1, div z = v∗ and

ETV (u) = −

Ω
div z · u dx . (5.23)

Similary for u ∈ BDp(Ω) we have v∗ ∈ ∂ETD(u) if and only if there exists z ∈ L∞,p
sym(Ω)
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with ∥z∥∞ ≤ 1, divs z = v∗ and

ETD(u) = −

Ω
divs z · u dx . (5.24)

Remark 57. (a) When u ̸= 0 the requirement ∥z∥∞ ≤ 1 in connection with (5.23)

or (5.24) turns out to be equivalent to ∥z∥∞ = 1. Let us sketch the argument in

the symmetrized case (the vectorial case is analogue). Indeed, if we assume the

Euler- Lagrange equation is satis�ed for some z with ∥z∥ < ∞, we �nd γ > 1,

such that for z̃ := γz we have ∥z̃∥∞ = 1 and
Ω
divs z̃ · u dx = γ


Ω
divs z · u dx = γETD(u) > ETD(u) .

It is not di�cult to see, that this �nally contradicts the relation (5.25) that we

will verify below.

(b) Provided u ∈W 1,1
0 (Ω) we may integrate by parts in (5.23) to derive

ETV (u) =


Ω
|Du| dx =


z : Du dx .

The latter is certainly satis�ed provided z(x) = Du(x)
|Du(x)| , where Du(x) ̸= 0. In this

sense the subgradients in ∂ETV (u) are well de�ned replacements for the undeter-

mined symbol −div Du
|Du| of the 1-Laplace operator.

A similar calculation shows that the subgradients in ∂EBD(u) are a well de�ned

replacements for the symbol −div Dsu
|Dsu| of the symmetrized 1-Laplace operator.

Proof of Theorem 56. We extend the proof of [36] to the vectorial setting. Since the

case in BV p(Ω,RN ) and BDp(Ω) is very similar, we will treat the second case only.

Let u ∈ BDp(Ω) and de�ne the convex set

M∗ := {v∗ ∈ Lp′(Ω,Rn) ; ∃z ∈ L∞,p
sym(Ω) with ∥z∥∞ ≤ 1 and v∗ = −divs z} .

It is straightforward to see that M∗ is weakly closed in Lp′(Ω,Rn×n): By separability

of Lp(Ω,Rn) it su�ces to show that M∗ is weak-sequentially closed. Thus take some

sequence (v∗k)k in M∗ with v∗k ⇀: v∗. There exists a sequence (zk)k in L∞,p
sym with

v∗k = −divs zk, ∥zk∥∞ ≤ 1 and by the Banach-Alaoglu Theorem we may thus assume

(by picking a subsequence) that zk
∗
⇀: z in L∞(Ω,Rn×n). Note that by weak-lower
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semicontinuity of the norm we obtain ∥z∥∞ ≤ 1. Moreover
Ω
z : Dsϕ dx = lim

k→∞


Ω
zk : Dsϕ dx

= lim
k→∞


Ω
−divs zk · ϕ dx

= lim
k→∞


Ω
v∗k · ϕ dx

=


Ω
v∗ · ϕ dx

for all ϕ ∈ C∞
c (Ω,Rn) and thus −divs z = v∗ in the sense of distributions. This

veri�es v∗ ∈M∗.

Following the proof of [36] we intend to show

ETD =

IM∗

∗
, (5.25)

the assertion will then follow from the Fenchel identity (3.3).

In order to show (5.25) we take v∗ = −divs z ∈M∗ and w ∈ BDp(Ω) and calculate

with the Gauÿ-Green formula from Theorem 53
Ω
w · v∗ dx = −


Ω
w · divs z dx

=


Ω
d(z,Dw)−


∂Ω

[z, ν]∂Ω · w∂Ω dHn−1

≤ ∥z∥∞


Ω
d|Dw|+


∂Ω

|w∂Ω| dHn−1


≤ ETV (w),

which veri�es I∗M∗(w) ≤ E(w) for all w ∈ Lp(Ω,Rn).

For the reversed inequality we take w ∈ BDp(Ω) and a large ball K containing Ω.

By Proposition 46 we derive

ETD(w) =


K

d|Dsw|

= sup


K
w · divs z dx ; z ∈ C∞

c (K,Rn×n), ∥z∥∞ ≤ 1


= sup


Ω
w · divs z dx ; z ∈ C∞

c (K,Rn×n), ∥z∥∞ ≤ 1
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≤ sup


Ω
w · divs z dx ; z ∈ L∞,p′

sym (Ω), ∥z∥∞ ≤ 1


= sup


Ω
w · v dx ; v ∈M∗


=

IM∗

∗
(u) .

Now the proof is complete.

Proof of Theorem 54. For the veri�cation of the single version of the Euler-Lagrange

equation we intend to apply Theorem 7 with F0 = ETV , F1 = 0 and G = G1 − α.

Note that the subdi�erential of ETV is characterized in Theorem 56 above and the

subdi�erential of G1 was given in Proposition 2. It remains to prove (3.25). For convex

functions the subdi�erential and Clarkes generalized gradient coincide and obviously

∂G = ∂G1. We thus calculate for u ∈ BV (Ω,RN ) with G1(u) = α, u+ := 2u and

u− := 0

G0(u; u− u+) = G0(u; u− − u) = G0
1(u; −u) = max

u∗∈∂G(u)
⟨u∗,−u⟩ = −α < 0 (5.26)

by formula (3.6).

Thus the single version of the Euler-Lagrange equation (5.21) follows for some λ ∈ R
by Theorem 7 and we get λ = ETV (u)/G1(u) by testing the Euler-Lagrange equation

with the eigenfunction u.

The existence of a sequence of eigenfunctions follows from Theorem 11 with F =

ETV + I{G1=α}: The preliminary (A) was already veri�ed and (B) is immediate since

F ≥ 0. For any β ∈ R the sublevel sets {F ≤ β} are compact in Lp(Ω,RN ) by

Proposition 32 and Proposition 33, which also implies preliminary (C). The estimate

(5.26) implies the (epi)-condition (D) by [22, Theorem 3.4].

We �nally need to show (E), i.e. that for k ∈ N there is some odd function ψ :

Sk−1 → Lp(Ω,RN ) with sup{F(ψ(x)) ; x ∈ Sk−1} <∞. To do so we take v1, . . . , vk ∈
C∞
c (Ω,RN ) linearly independent and using Euclidean coordinates x = (x1, . . . , xk) for

x ∈ Sk−1 we de�ne ψ : Sk−1 →W 1,1
0 (Ω,RN ) ⊆ Lp(Ω,RN ) by

ψ(x1, . . . , xk) :=

k
j=1 xjvjk
j=1 xjvj


1

.

Since enumerator and denominator of ψ are continuous in x and by compactness of

Sk−1 we thus observe the desired property for ψ.

The multiple version of the Euler-Lagrange equation for normalized eigenfunctions
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minimizing the energy follows from Theorem 8 with F = ETV and G = G1 − 1.

Proof of Theorem 55. By taking into account Propositions 41, 42, Theorem 44, Pro-

position 47 and Theorem 56, the proof is analogous to the proof of Theorem 54.

Remark 58. • With minor modi�cations concerning the weak/weak*-convergence

arguments the investigations above can be extended to BV 1(Ω,RN ) and BD1(Ω).

Similarly we may also consider the situation in BV p(Ω,RN ) and BDp(Ω) for

p ∈ [n/(n− 1),∞).

• Note that the derivation of the subdi�erentials and the necessary Gauÿ-Green

formulas in Section 5.3 was the main task in the foregoing investigations.

• With the arguments from [41, Remark 2.12] it is not too di�cult to see that the

eigenvalues λk,v and λk,s remain unchanged, provided we replace the requirement

"compact" by "closed" in the de�nition of Sk or provided we switch from the

Lp(Ω,RN )-topology to the Lr(Ω,RN )-topology with p ̸= r and r ∈ [1, n/(n− 1))

in the determination of genS.
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In the �nal chapter we will treat some nonlinear parabolic equations related to the

p- and the 1-Laplace Operator. In particular we will consider the parabolic prob-

lems of the p-, the vectorial and the symmetrized 1-Laplace operator, the problem

of perfectly plastic �uids, the Porous Medium Equation (PME) and Fast Di�usion

Equation (FDE). The fundamental idea of approach to these problems is in terms

of (sub)gradient systems. The author learned these methods in the 13th Interna-

tional Internet Seminar (ISEM), a lecture series organized from Chill and Fa²angová

in 2009/2010. In the 'self-study phase' of ISEM 2009/2010 the author discovered that

the FDE and the PME can be considered as gradient systems in the Hilbert space

H−1(Ω). This �nally lead to the article �Porous Medium Equation and Fast Di�usion

Equation as Gradient Systems� published by the autor in a joint work with Voigt, TU

Dresden.

Note that existence results for the FDE/PME are known for a long time (in terms of

maximal monotone or accretive operators), however the higher regularity framework,

in terms of what we will call gradient system below, was new. Moreover, the approach

allows to treat the PME/FDE without any restriction on the parameter m ∈ R>0,

without any regularity assumption on ∂Ω and with weak assumptions on Ω (which

need not be bounded or of �nite volume) � in contrast to former treatments.

The problem of perfectly plastic �uids came to the focus of the author in a coop-

eration with Naumann who investigated this problem by a limiting procedure of the

related parabolic symmetrized p-Laplace problem as p → 1. The author applied the

subgradient system framework to derive an existence result without the limiting pro-

cedure and was even able to include the incompressibility constraint in the framework

using tools from convex analysis and Fredholm decomposion techniques.
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6.1 Subgradient Systems

In this chapter letH be a Hilbert space. A subgradient system1 is an abstract ordinary

di�erential inclusion of the form

u̇(t) + ∂E

u(t)


∋ f(t) , t ∈ I . (6.1)

The solution u takes values in the Hilbert space2 H, E is a given convex lower semi-

continuous energy functional on H, ∂E denotes the convex subdi�erential and f is

assumed to be in L2
loc(I,H). The function E : H → R∪{∞} is called elliptic, provided

there is ω > 0, such that u →→ E(u) + ω
2 ∥u∥

2
H is coercive. This is obviously satis�ed,

provided E is bounded from below.

A solution of the subgradient system (6.1) is a function

u ∈W 1,2
loc (I;H), with

u(t) ∈ D(∂E) := {u ∈ H ; ∂E(u) ̸= ∅} for almost all t ∈ I, and

equation (6.1) holds for almost all t ∈ I.

Since W 1,2
loc (I;H)-functions have continuous representatives, initial conditions

u(0) = u0 (6.2)

are well posed and according to [14] we have the following existence and uniqueness

result.

Theorem 59. Let H be a Hilbert space and E : H → R∪{∞} be convex and elliptic.

Then for any u0 ∈ dom(E) and any f ∈ L2(0, T ;H) there exists a unique solution

1Note that in literature subgradient systems are commonly just denoted "gradient systems". How-
ever, in our context the notion "gradient system" refers to evolution equations that have higher
regularity as pointed out below.

2Our framework of gradient systems is based on the Hilbert space structure. There are several more
general approaches to nonlinear evolutionary equations (e.g. in terms of accretive operators or
in terms of gradient systems in metric spaces). However these concepts are more sophisticated
and one can not expect the higher regularity results of solutions as in the case of (sub)gradient
systems. Note that on the other hand the focus on Hilbert spaces is no essential restriction.
We will see below that the Hilbert space structure does not lead to a restriction on the partial
di�erential equation/inclusion we can solve, but on the regularity of initial data and the regularity
of the right hand side f of the associated evolution equation that can be treated.
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6.1 Subgradient Systems

u ∈W 1,2(0, T ;H) of the initial value problemu̇(t) + ∂E

u(t)


∋ f(t) , t ∈ I

u(0) = u0 .

For the proof we refer to [14, Theorem 14.1]. Let us mention that the solution is

obtained by an implicit Euler scheme. Moreover, the proof shows that for f = 0 the

solution is obtained by the exponential formula

u(t) = lim
k→∞

Jk
t
k
u0

uniformly for t ∈ [0, T ], where the operator Jh is de�ned by

Jhg := argmin
v∈H


E(v) +

∥v − g∥2H
2h


. (6.3)

Note that this is well de�ned due to the strict convexity of the functional on the right

hand side and the ellipticity assumption on E .

6.1.1 Invariance of Convex Sets

A set C ⊆ H is called invariant under a subgradient system, provided for all u0 ∈ C

and the corresponding solution u we have u(t) ∈ C for any t > 0. Many properties

of certain gradient systems can be reduced to the question, whether a closed, convex

set C is invariant under a subgradient system. Fortunately there is an often easy to

check condition, if a given closed, convex set C is invariant under a gradient system.

For a closed convex set C ⊆ H let PCu denote the best approximation (sometimes

also called metric projection or orthogonal projection) of u ∈ H on C.

Theorem 60. Let E : H → R ∪ {∞} be a lower semicontinuous, proper, convex,

coercive function and C ⊆ H be closed and convex. If

E(PCu) ≤ E(u)

for any u ∈ H, then the set C is invariant under the gradient system

u̇(t) + ∂E

u(t)


∋ 0 . (6.4)

If on the other hand C ⊆ dom(E) and C is invariant under the gradient system (6.4),
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then E(PCu) ≤ E(u).

This result is due to Brézis [9, Proposition 4.5, p. 131]. A proof of the �rst statement

is also given in [14, Theorem 15.3].

In many applications the Hilbert space is L2(Ω). Let us give some examples of

convex sets and the associated best approximation on those sets.

Positivity preserving systems

Let H := L2(Ω) and let C := {u ∈ H ; u ≥ 0 a.e.}. If C is invariant under a subgra-

dient system on H, then the system is called positivity preserving, i.e. nonnegative

initial values lead to nonnegative solutions. In many di�usion problems u models a

density and thus positivity preservation is a very natural physical property.

It is well known that the metric projection in H on C is given by

PCu = u+ ,

where u+ := uχ{u≥0} denotes the positive part of u.

Thus it su�ces to check if

E(u+) ≤ E(u)

for all u ∈ H to verify positivity preservation of the gradient system (6.4) (cf. [14,

Corollary 15.5]).

Order preserving systems

A subgradient system is called order preserving, provided pointwise ordered initial

data have pointwise ordered solutions for all times t > 0. It is not immediate how this

property can be expressed in terms of an invariant convex set. The key is to duplicate

the gradient system and to add the two energy functionals.

Let E1 and E2 be two convex lower semicontinuous, elliptic functions de�ned on

L2(Ω). We can then de�ne

E(u) = E1(u1) + E2(u2) for u = (u1, u2) ∈ H := L2(Ω)× L2(Ω) .

It is easily seen that ∂E(u1, u2) = ∂E1(u1)×∂E2(u2) and thus u = (u1, u2) is a solution
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of the gradient system with inital valueu̇(t) + ∂E

u(t)


∋ 0 , t ∈ [0, T ]

u(0) = (u0,1, u0,2)

if and only if uj is a solution of the gradient system with inital valueu̇j(t) + ∂Ej

uj(t)


∋ 0 , t ∈ [0, T ]

uj(0) = u0,j

for j = 1, 2.

Thus order preservation of a subgradient system with energy E : L2(Ω) → R∪{∞}
is equivalent to verify that the convex closed set

C := {u = (u1, u2) ∈ H ; u1 ≤ u2 a.e.}

is invariant under the gradient system

u̇(t) + ∂E

u(t)


∋ 0 , t ∈ [0, T ] ,

with E1 = E2 = E .

Using a well known characterization of the best approximation in Hilbert spaces it

is not too di�cult to verify that the best approximation on C is given by

PC(u1, u2) = (u1 ∧ u2, u1 ∨ u2) ,

where ∧ and ∨ denote (pointwise) minima and maxima resp. (cf. [14, p. 169]).

Thus order preservation can be proved by verifying the inequality

E(u1 ∧ u2) + E(u1 ∨ u2) ≤ E(u1) + E(u2) (6.5)

for any (u1, u2) ∈ H.

Note that the projection above essentially relies on the metric in L2(Ω).

Let us �nally note that certain other properties of subgradient systems like contrac-

tion properties can also be proved in terms of invariance of closed convex sets. For a

detailed description we refer to [14, Lecture 15].
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6.2 Gradient Systems

In many applications a higher a priori regularity of subgradient systems is satis�ed.

Let us consider the following Gelfant triple framework (cf. also [60, Chapter 23] where

the framework is called evolution triple):

Let H be a Hilbert space and let V be a re�exive separable Banach space and

assume V is continuously and densely embedded in H. It is well known that in this

case H ′, which is identi�ed with H by the Riesz representation Theorem, embeds

continuosly and densely in V ′.

Moreover, let E : V → R be a continuously di�erentiable functional. Note that the

derivative E ′ is a map from V to V ′ in general. The gradient of E in H is the mapping

E ′ restricted in the image to H ′ = H, i.e.

dom(∇HE) := {u ∈ V ; ∃v =: ∇HE(u) ∈ H ∀w ∈ V : ⟨v, w⟩H = ⟨E ′(u), w⟩V ′,V } .

It is not di�cult to see that for convex E and for the extended, convex, lower

semicontinuous functional Ẽ : H → R,

Ẽ(u) :=

E(u) for u ∈ V

∞ otherwise ,
(6.6)

the following connection between the subdi�erential of Ẽ and the gradient of E holds:

dom(∇HE) = dom(∂Ẽ) and ∂Ẽ(u) = {∇HE(u)} for all u ∈ dom(∇HE) .

A gradient system is an H-valued evolution equation of the form

u̇(t) +∇HE(u(t)) = f(t), t ∈ I , (6.7)

where I is some time interval and f is a given L2
loc(I;H)-function.

A solution of (6.7) is a measurable function u : I → V , such that

u ∈W 1,2
loc (I;H) ∩ L∞(I;V ) ,

u(t) ∈ D(∇HE) for almost all t ∈ I, and

equation (6.7) holds for almost all t ∈ I.

Thus solutions of gradient systems are obviously solutions of the associated sub-

gradient system, where the energy functional Ẽ is given by (6.6). Moreover, due to
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the embedding of W 1,2(I;H) in C(I;H) initial value problems for gradient systems

are well de�ned. Before we state the following existence and uniqueness theorem for

gradient systems we need to introduce a notion. A convex function E : V → R is said

to be H-elliptic, provided there is an ω > 0, such that V ∋ u →→ E(u) + ω
2 ∥u∥H is

coercive with respect to the norm in H.

Theorem 61. Let V be a separable re�exive Banach space that is continuously and

densely embedded into a Hilbert space H, and suppose that E : V → R is a convex,

H-elliptic, continuously di�erentiable function and that E ′ maps bounded sets of V to

bounded sets of V ′. Then for all T > 0, f ∈ L2(0, T ;H) and u0 ∈ V the gradient

system with initial value u̇+∇HE(u) = f ,

u(0) = u0

(6.8)

admits a unique solution u ∈W 1,2(0, T ;H)∩L∞(0, T ;V ). The solution can be chosen

as a weakly continuous function u : [0, T ] → V , and for this function one has the energy

inequality  t

s
∥u̇(τ)∥2H dτ + E


u(t)


≤ E


u(s)


+

 t

s
⟨f(τ), u̇(τ)⟩H dτ , (6.9)

for all 0 ≤ s ≤ t ≤ T .

This is essentially Theorem 6.1 from [14]. Compare also [42] for the proof

6.3 Applications

Having this general framework at hand we will give three examples of (sub)gradient

systems. The �rst one is the well known example of the p-Laplace evolution. The

second example covers the PME and FDE without any restriction on the parameter

m and no restriction on the regularity on the boundary of Ω. Even though construc-

tions of solution for the PME/FDE are known for a long time, the higher regularity

context as gradient system is new to the best knowledge of the author and was re-

cently published in [42]. The third class of examples covers certain problems with

1-homogeneous energies that occure for example in the treatment of perfectly plastic

�uids. This topic was recently also treated by Bildhauer, Naumann & Wolf, [7], how-

ever our approach is di�erent to the construction of the aforementioned, who use an
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approximation procedure of associated symmetrized p-Laplacian evolutions and the

limiting process p→ 1.

6.3.1 The p-Laplace Evolution

Let Ω ⊆ Rn be bounded3 and let H := L2(Ω). Let p ≥ 2n
n+2 and let V := W 1,p

0 (Ω) =

C∞
c (Ω)

∥Du∥p
, where ∥Du∥pp =


Ω |Du|p dx. Due to the usual Sobolev embedding we

have V ↩→ H and the embedding is dense, since C∞
c (Ω)-functions are also dense

in L2(Ω). Moreover, W 1,p
0 (Ω) is separable. The dual space of W 1,p

0 (Ω) is denoted

by W−1,p′(Ω), where 1/p + 1/p′ = 1. W−1,p′(Ω) can be characterized as the set of

divergences of Lp′(Ω,Rn)-vector �elds.

Let us de�ne

Ep(u) :=
1

p


Ω
|Du|p dx.

It is not di�cult to verify that Ep is convex and continuously di�erentiable on V and

the derivative of Ep in u ∈ V is given by

⟨E ′
p(u), v⟩W−1,p′ (Ω),W 1,p

0 (Ω)
=


Ω
Du|Du|p−2 ·Dv dx

for all v ∈W 1,p
0 (Ω). In particular the derivative of Ep in u is just −∆p u and since the

p-Laplace operator is the normalized duality mapping between W−1,p(Ω) and W 1
0 (Ω)

the derivative E ′
p maps bounded sets on bounded sets (cf. [15, Proposition 4.12]). A

detailed and elementary proof of the aforementioned results is given in [14, Chapter

4.3]. Since Ep is nonnegative, it is obviously H-elliptic.

Let us �nally characterize the gradient ∇HEp of Ep in L2(Ω). By de�nition we have

dom(∇HEp) =

u ∈W 1,p

0 (Ω) ; ∃w =: ∇HEp(u) ∈ L2(Ω) :
Ω
|Du|p−2Du ·Dv dx =


Ω
wv dx for all v ∈W 1,p

0 (Ω)


In other words the e�ective domain of the gradient is the set of those W 1,p
0 (Ω)-

functions, where −∆p u, which is merely a distribution in general, has a representation

as L2(Ω)-function.

Thus by application of Theorem 61 we obtain the following existence and uniqueness

result.

3Note that there is no boundary regularity needed for this approach, in particular the embedding
W 1,p

0 (Ω) in L2(Ω) need not be compact.
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Theorem 62. Let Ω ⊆ Rn be bounded and T > 0. For any f ∈ L2(0, T ;L2(Ω)) and

any u0 ∈W 1,p
0 (Ω) the gradient system with initial valueu̇(t)−∆p u(t) = f(t) ,

u(0) = u0

(6.10)

admits a unique solution u ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,p
0 (Ω)). The solution is

weakly continuous as mapping u : [0, T ] →W 1,p
0 (Ω), and for this function one has the

energy inequality t

s
∥u̇(τ)∥22 dτ + 1

p∥Du(t)∥
p
p ≤ 1

p∥Du(s)∥
p
p +

 t

s
⟨f(τ), u̇(τ)⟩L2 dτ , (6.11)

for all 0 ≤ s ≤ t ≤ T .

Let us �nally note that the energy inequality can be used to prove asymptotic decay

properties of the parabolic p-Laplace operator and the validity of order preservation

can be veri�ed with the arguments from Subsection 6.1.1.

6.3.2 The Porous Medium and the Fast Di�usion Equation

For m ∈ R>0 the porous medium equation/fast di�usion equation is given by

u̇(t, x)−∆u(t, x)m = f(t, x) in (0, T )× Ω .

For m = 1 we obtain the well known linear heat equation, for m > 1 the equation

is called porous medium equation and for m < 1 it is called fast di�usion equation.

In applications u usually models some density or other nonegative quantity, however

below we will de�ne and consider signed solutions u, too.

The calculation

−∆um = −divmum−1Du

shows that in this model the di�usion coe�cient is given by mum−1. In particular the

di�usivity depends monotonously on the density u. For m > 1 the coe�cient is small,

when the density is small and large, when the density is large. This is a reasonable

assumption e.g. in porous media where, due to sorption powers, the di�usion of some

in�ltrating �uid is smaller as long as it can still cover the surface of the porous media

and it gets higher, the more saturated the surface of the porous medium is.

For m < 1 we expect the opposite behavior, the smaller the density, the larger

123



6 Associated Parabolic Problems

the di�usion. This can e.g. be observed in plasma physics, where molecular powers

suppress di�usion, the higher the density of the plasma is.

Note that due to the fact that the nonlinearity u →→ um is applied before the dif-

ferential operator, it is not immediate, which is a suitable space where one should

seek for solutions. Moreover, the PME and FDE are prototypes of semilinear di�er-

ential operators, which are either, degenerate for u = 0 and singular at in�ntiy for

m > 1 or singular for u = 0 and degenerate at in�nity in the FDE-case. Thus the

classical approach requires di�erent techniques to construct solutions in the PME and

the FDE case and the consideration of signed solutions is more complicated (cf. [57,

Chapter 5.5]). A di�erent approach to the PME/FDE is in terms of accretive or

maximal monotone operators in H−1(Ω), however these approaches usually neglect

some of the structure of the equation and one usually assumes some regularity of the

boundary of Ω and boundedness of Ω to get a suitable compact Sobolev embedding.

This results in restrictions on the parameter m from below4. It was an observation of

the author that the PME/FDE can be considered as gradient system in the Hilbert

space H−1(Ω). This allows to derive very elegant existence and uniqueness results

for the PME/FDE in a simultaneous fashion, without regularity assumptions on ∂Ω,

with very weak assumptions on Ω and without technical restrictions on the parameter

m. Furthermore we will also allow signed solutions and thus introduce for r ∈ R the

following notation

r[m] := sgn(r)|r|m ,

i.e. r →→ r[m] is the odd extension of the mapping [0,∞) ∋ r →→ rm on R.

In the following let Ω ⊆ Rn be open and assume that the Poincaré inequality holds

on Ω, i.e. there is a constant CP > 0, such that

∥u∥2 ≤ CP ∥Du∥2

for all u ∈ C∞
c (Ω). This is satis�ed, provided Ω does not contain, loosely speaking,

arbitrary large balls. In particular it is su�cient that

ρ(Ω) := sup{R > 0 ; there exists a ball B ⊆ Rn with radius R,

such that B ∩ (Rn \ Ω) contains no interior point}

is �nite (see [54]). As usual de�ne H1
0 (Ω) to be the closure of C∞

c (Ω) with respect to

4Usually m > n−2
n+2
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the H1(Ω)-norm ∥u∥2 + ∥Du∥2. However due to the Poincaré inequality we will use

the equivalent norm ∥Du∥2 in the following. It is well known that this is a Hilbert

space norm for the scalar product

⟨u, v⟩H1
0
=


Ω
Du ·Dv dx . (6.12)

The spaceH−1(Ω) is de�ned to be the dual space ofH1
0 (Ω). Usual characterizations

state that it can be considered as set of distributions being the sum of a regular

distribution induced from an L2(Ω)-function and the distributional divergence of an

L2(Ω,Rn) vector �eld (cf. [26, p. 283, Theorem 1]). However, for our alternative norm

we have a slightly di�erent characterization.

Lemma 63. The mapping −∆: H1
0 (Ω) → H−1(Ω) is an isometric isomorphism (and

in fact the Riesz mapping) between H1
0 (Ω) and H

−1(Ω). In particular, H−1(Ω) can

be identi�ed with the set of all distributions of the form −∆ v, for v ∈ H1
0 (Ω).

Cf. [42, Lemma 1.3] for a proof of the Lemma.

In the following let

G := (−∆)−1

denote the inverse of −∆: H1
0 (Ω) → H−1(Ω). Then the scalar product in H−1(Ω)

can be written as

⟨u, v⟩H−1 = ⟨Gu,Gv⟩H1
0
=


Ω
∇Gu · ∇Gv dx ,

because G is an isometry.

For m ∈ (0,∞) de�ne5 E : Lm+1(Ω) → R by

E(u) := 1

m+ 1


Ω
|u|m+1 dx .

It is easy to see (cf. i.e. [42, Proposition 1.4]) that E is convex, continuously di�eren-

tiable and the derivative is characterized by

⟨E ′(u), v⟩ =

Ω
u[m] v dx = ⟨u[m], v⟩L1+1/m,Lm+1 (6.13)

5The case when m = 0 turns out to be not di�erentiable, however, if �ts in the framework of a
subgradient system and can be treated in a similar manner.
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for all v ∈ Lm+1(Ω). Moreover, the identity

∥E ′(u)∥1+1/m =


Ω
|u[m]|

m+1
m

 m
m+1

= ∥u∥mm+1 (6.14)

shows that E ′ maps bounded sets of Lm+1(Ω) to bounded sets of L1+1/m(Ω).

The following proposition (which is stated in this form in [42] as Proposition 1.5)

answers the question when Lm+1(Ω) embeds to H−1(Ω).

Proposition 64. Let Ω ⊆ Rn be open and assume that the Poincaré inequality (6.12)

holds on Ω. Then:

(i) For all

m ∈ (0, 1] ∩

n−2
n+2 ,∞


the space Lm+1(Ω) embeds continuously and densely into H−1(Ω).

(ii) If moreover the measure of Ω is �nite the embedding Lm+1(Ω) ↩→ H−1(Ω) is

continuous and dense even for

m ∈ (0,∞) ∩

n−2
n+2 ,∞


.

For the proof we refer to [42, Proposition 1.5]

Note that for bounded Ω the continuous embeddings above (except for m = n−2
n+2)

are even compact, a fact that we will not use. However this is needed in certain

alternative solution techniques for the PME/FDE and is the reason for the restriction

on the parameter m in these treatments.

It remains to ask, whether we may get rid of the restriction on the parameter m at

all? In fact this can be done by considering the Banach space (the intersection is well

de�ned, since both spaces embed in the space of distributions)

V := Lm+1 ∩H−1(Ω) := Lm+1(Ω) ∩H−1(Ω)

with the norm

∥u∥V := ∥u∥m+1 + ∥u∥H−1

This space is separable and re�exive because it is isomorphic to the closed subspace

{(u, u) ; u ∈ Lm+1 ∩H−1(Ω)} of the product space Lm+1(Ω) ×H−1(Ω). Moreover,

the obvious embedding Lm+1 ∩ H−1(Ω) ↩→ H−1(Ω) is dense since C∞
c (Ω)-functions
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are contained in Lm+1 ∩H−1(Ω) and dense in H−1(Ω). Thus the restriction of E to

Lm+1 ∩H−1(Ω) is continuously di�erentiable and


E|Lm+1∩H−1

′
: Lm+1 ∩H−1(Ω) →


Lm+1 ∩H−1(Ω)

′
maps bounded sets to bounded sets by 6.13 and 6.14.

Without danger of confusion we will use the same letter E for the functional de�ned

on V = Lm+1 ∩H−1(Ω) below and recall the identiy Lm+1 ∩H−1(Ω) = Lm+1(Ω) for

the cases given in Proposition 64.

Let us �nally calculate the gradient of E in the Hilbert space H−1(Ω).

By de�nition for u ∈ dom(∇HE) and all v ∈ Lm+1 ∩H−1(Ω) we have

⟨E ′(u), v⟩V ′,V =


Ω
u[m]v dx = ⟨∇HE(u), v⟩H−1

=


Ω
DG∇HE(u) ·DGv dx .

Considering v ∈ C∞
c (Ω) we immediately obtain G∇HE(u) = u[m] in the sense of

distributions:

Proposition 65. There holds u ∈ dom(∇HE) if and only if u[m] ∈ H1
0 (Ω). Moreover

in that case ∇HE(u) = −∆u[m] in the sense of distributions.

Thus, by application of Theorem 61 we derive the following existence and uniqueness

result for the PME/FDE.

Theorem 66. Let Ω ⊆ Rn be open and such that a Poincaré inequality (6.12) holds

on Ω, and let m ∈ (0,∞). Then for all T > 0, f ∈ L2(0, T ;H−1(Ω)) and u0 ∈
Lm+1 ∩H−1(Ω) the PME/FDE gradient systemu̇−∆u[m] = f

u(0, ·) = u0

(6.15)

admits a unique solution u ∈ W 1,2(0, T ;H−1(Ω)) ∩ L∞(0, T ;Lm+1 ∩ H−1(Ω)). The

solution can be chosen as a weakly continuous mapping u : [0, T ] → Lm+1 ∩H−1(Ω),

and for this mapping one has the energy inequality t

s
∥u̇(τ)∥2H−1 dτ + E


u(t)


≤ E


u(s)


+

 t

s
⟨f(τ), u̇(τ)⟩H−1 dτ , (6.16)
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for all 0 ≤ s ≤ t ≤ T . (Recall that Lm+1 ∩H−1(Ω) reduces to Lm+1(Ω), provided the

embedding Lm+1(Ω) ↩→ H−1(Ω) holds; cf. Proposition 64.)

Remark 67. (a) The property that u(t) ∈ dom(∇HE), or equivalently, that u(t)[m] ∈
H1

0 (Ω), is a weak replacement for u(t)|∂Ω = 0.

(b) Note that elements of the domain of ∇HE are regular distributions and thus

have a reasonable physical interpretation. In particular we can consider u as element

of L1
loc([0, T ]× Ω).

(c) For a more detailed analysis it might be helpful to get a better understanding of

the structure of dom(∇HE). Note that by the invertibility of −∆: H1
0 (Ω) → H−1(Ω)

we obtain that

dom(∇HE) =

u ∈ Lm+1 ∩H−1(Ω) ; −∆u[m] ∈ H−1(Ω)


=

u ∈ Lm+1 ∩H−1(Ω) ; u[m] ∈ H1

0 (Ω)

.

(6.17)

Moreover, recall that u →→ u[m] is the duality map Lm+1 → L(m+1)′ = L
m+1
m . This

continuous nonlinear map is bijective and we have that

⟨u, u[m]⟩
Lm+1,L

m+1
m

= ∥u∥m+1
m+1 and ∥u[m]∥m+1

m
= ∥u∥mm+1 ,

and the inverse of u →→ u[m] is given by v →→ v[1/m]. (For details on duality map-

pings we refer to [15, Chapter II, Sec. 4].) If Ω and m are such that the embedding

Lm+1(Ω) ↩→ H−1(Ω) holds (cf. Proposition 64), this allows to rewrite

dom(∇HE) =

u ∈ Lm+1(Ω) ; u[m] ∈ H1

0 (Ω)


=

v[1/m] ; v ∈ L

m+1
m (Ω) ∩H1

0 (Ω)

.

Note that Lm+1(Ω) ↩→ H−1(Ω) if and only if H1
0 (Ω) ↩→ L

m+1
m (Ω) (see the proof of

Proposition 64), and then

dom(∇HE) =

v[1/m] ; v ∈ H1

0 (Ω)

.

Littig & Voigt showed in [42], how the energy inequality (6.16) can be used to derive

the asymptotic decay of solutions of the PME/FDE. In particular we assume f = 0 and

that the embedding Lm+1(Ω) ↩→ H−1(Ω) holds (cf. Proposition 64). Let µ1 denote

the square root of the inverse of the embedding constant from Lm+1(Ω) ↩→ H−1(Ω).

Then for any solution u of the initial value problem (6.15) the energy E(u(t)), t > 0
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is dominated by

Gm(t) :=




E(u0)

1−m
1+m − µ1 (1−m) (m+ 1)−

1−m
1+m t

+ 1+m
1−m

if m < 1 ,

E(u0) e−2µ1t if m = 1 ,
µ1 (m− 1) (m+ 1)

m−1
m+1 t+ E(u0)−

m−1
m+1

−m+1
m−1

if m > 1 .

The (·)+ - notation in the case m < 1 indicates that we take the positive part, and

therefore Gm(t) = 0 for all

t ≥ tmax :=
(m+ 1)

1−m
1+m

µ1 (1−m)
E(u0)

1−m
1+m .

In particular we obtain a decay of the energy of the solution

(1) polynomially with decay rate −m+1
m−1 , for the PME,

(2) exponentially with decay rate −2µ1, for the heat equation

(3) in �nite time, in case of fast di�usion.

In [42] it is also shown that the PME/FDE is order preserving. Remarkably this

was done by straightforward calculations, but not by application of Theorem 60 in

favor of Subsection 6.1.1. The challenge is that the best approximation in H−1(Ω)

on, lets say the set of positive distributions for simplicity, is very hard to calculate

and an open question at the moment.

6.3.3 Subgradient Systems with 1-Homogeneous Energies

For this subsection let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Let

N ∈ N and de�ne

ETV : L2(Ω,RN ) → R ∪ {∞} by

ETV (u) =



Ω d|Du|+


Ω |u∂Ω ⊗ ν| dHn−1 u ∈ BV (Ω,RN ) ∩ L2(Ω,RN )

∞ otherwise
(6.18)

and ETD : L2(Ω,Rn) → R ∪ {∞} by

ETD(u) =



Ω d|Dsu|+


Ω |u∂Ω ⊙ ν| dHn−1 u ∈ BD(Ω) ∩ L2(Ω,Rn)

∞ otherwise
(6.19)

129



6 Associated Parabolic Problems

By Proposition 33 and Proposition 47 the functions ETV and ETD are convex and

lower semicontinuous on L1(Ω,RN ) and L1(Ω,Rn) resp., and by boundedness of Ω

also on L2(Ω,RN ) and L2(Ω,Rn) resp.

The subdi�erentials of ETV and ETD have been derived in Theorem 56:

w∗ ∈ ∂ETV (u) ⇔∃z ∈ L∞(Ω,RN×n) with ∥z∥∞ ≤ 1, w∗ = −div z ∈ L2(Ω,RN )

and

Ω
w∗u dx = ETV (u) .

Thus we may apply Theorem 59 with H = L2(Ω) to obtain

Theorem 68. Let Ω ⊆ Rn be bounded with Lipschitz boundary and let ETV :

L2(Ω,RN ) → R ∪ {∞} be de�ned as in (6.18). Then for all u0 ∈ BV (Ω,RN ) and all

f ∈ L2(0, T ;L2(Ω,RN )) there is a unique solution u ∈ W 1,2(0, T ;L2(Ω,RN )) of the

initial value problem u̇(t) + ∂ETV (u(t)) ∋ f(t) , t ∈ [0, T ]

u(0) = u0 .
(6.20)

Recall that the subdi�erential of ETV is a well de�ned substitute for the 1-Laplace

operator. Thus, in other words our theorem proves the existence of unique solutions

for the Dirichlet problem of the vectorial total variation �ow. Obviously for N = 1

we recover the existence result for the scalar total variation �ow (cf. [4, Chapter 5]).

To give an application of the subgradient system notion let us state and prove the

comparison principle for the total variation �ow, which seems to be new.

Theorem 69. The scalar (i.e. N = 1) total variation �ow from Theorem 68 is order

preserving, i.e. if u01, u02 ∈ BV (Ω) ∩ L2(Ω) with u01 ≤ u02 and if u1 and u2 are the

solutions of (6.20) with f = 0 for the initial values u01 and u02 resp., then

u1(t) ≤ u2(t)

for t ∈ [0, T ].

Proof. Let u1, u2 ∈ BV (Ω). According to (6.5) we need to verify

ETV (u1 ∧ u2) + ETV (u1 ∨ u2) ≤ ETV (u1) + ETV (u2) (6.21)

130



6.3 Applications

By the coarea formula from Proposition 35 the above condition is equivalent to
R
Per(Ê1,2,t) + Per(Ě1,2,t) dt ≤


R
Per(E1,t) + Per(E2,t) dt , (6.22)

with

Ej,t :=

{uj > t} for t > 0

{uj < t} for t < 0 ,

for j = 1, 2,

Ê1,2,t : =

{u1 ∧ u2 > t} for t > 0

{u1 ∧ u2 < t} for t < 0

=

E1,t ∩ E2,t for t > 0

E1,t ∪ E2,t for t < 0 ,

and

Ě1,2,t : =

{u1 ∨ u2 > t} for t > 0

{u1 ∨ u2 < t} for t < 0

=

E1,t ∪ E2,t for t > 0

E1,t ∩ E2,t for t < 0 .

For almost every t ∈ R the sets E1,t and E2,t (and thus also E1,t∩E2,t and E1,t∪E2,t)

are sets of �nite perimeter. We may thus estimate for almost every t ∈ R

Per(E1,t ∩ E2,t,Rn) + Per(E1,t ∪ E2,t,Rn) ≤ Per(E1,t,Rn) + Per(E2,t,Rn)

by [31, Lemma 15.1] which proves the assertion in (6.22).

Analogously to Theorem 68 we get the following existence theorem for the total

deformation �ow.

Theorem 70. Let Ω ⊆ Rn be bounded with Lipschitz boundary and let ETD :

L2(Ω,RN ) → R ∪ {∞} be de�ned as in (6.19). Then for all u0 ∈ BD(Ω) and all

f ∈ L2(0, T ;L2(Ω,Rn)) there is a unique solution u ∈ W 1,2(0, T ;L2(Ω,Rn)) of the
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initial value problem u̇(t) + ∂ETD(u(t)) ∋ f(t) , t ∈ I

u(0) = u0 .
(6.23)

Since the subdi�erential of ETD is a well de�ned replacement for the formal sym-

metrized 1-Laplace operator −div Dsu
|Dsu| this theorem states the existence of unique

solutions for the Dirichlet problem of the symmetrized total variation �ow.

Let us remark that in many problems of plasticity one additionally assumes incom-

pressibility of the material, which is expressed by the additional constraint

div u = 0 .

In classical approaches this constraint is quite tricky to handle for analytical reasons.

Many approximation techniques can not ensure that the requirement div u = 0 is

satis�ed for approximating functions (cf. [7] for certain results in this direction). Ne-

vertheless there is a very elegant trick to include this constraint in the subgradient

models above with the aid of the Helmholz decomposition and a standard idea from

Convex Analysis.

Before we continue let us recall the following results from Sohr [53].

Let n ≥ 2 in the following. The space of solenoidal test functions is de�ned by

C∞
c,σ(Ω,Rn) := {ϕ ∈ C∞

c (Ω,Rn) ; divϕ = 0} (6.24)

and

L2
σ(Ω) := C∞

c,σ(Ω,Rn)
∥·∥2

is the closure of this space in L2(Ω,Rn). Furthermore we de�ne

G(Ω) := {u ∈ L2(Ω,Rn) ; ∃p ∈ L2
loc(Ω) : u = Dp} ,

where D denotes the usual gradient operator and the equality is interpreted in the

weak sense. These spaces are orthogonal to each other,

G(Ω) = {u ∈ L2(Ω,Rn) ; ⟨u, v⟩L2 = 0 for all v ∈ L2
σ(Ω)} ,

and each u ∈ L2(Ω,Rn) has a unique decomposition u = u0 +Dp with u0 ∈ L2
σ(Ω),
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Dp ∈ G(Ω) and ⟨u0, Dp⟩L2 = 0, such that ∥u∥22 = ∥u0∥22 + ∥Dp∥22 (cf. [53, p. 81]).

The operator P : L2(Ω,Rn) → L2
σ(Ω),

Pu = u0

is called the Helmholz projection.

The previous results hold for arbitrary open Ω ⊆ Rn. However, provided Ω is

bounded with Lipschitz boundary we have a more detailed characterization of L2
σ(Ω)

and G(Ω) (cf. [53, p. 83]).

Lemma 71. Let Ω ⊆ Rn be open and bounded with Lipschitz boundary. Then

L2
σ(Ω) = {u ∈ L2(Ω,Rn) ; div u = 0, [u · ν]∂Ω = 0} ,

where [u · ν]∂Ω denotes the normal trace of u on ∂Ω (which exists in W−1/2,2(∂Ω),

cf. [53, p. 50f], and

G(Ω) = {u ∈ L2(Ω,Rn) ; ∃p ∈ L2(Ω) with u = Dp} .

Thus we intend to include the constraint by adding IL2
σ
to the energy functional,

i.e. we consider the convex, nonnegative, lower semicontinuous energy functional

ETD,σ(u) := ETD(u) + IL2
σ(Ω)(u)

for u ∈ L2(Ω,Rn). In order to derive the subdi�erential of ETD,σ let us calculate the

subdi�erential of the indicator functional IL2
σ(Ω) �rst. Let u

∗ ∈ L2(Ω,Rn), then

I∗L2
σ
(u∗) = sup

u∈L2(Ω,Rn)

⟨u∗, u⟩L2 − IL2
σ
(u)

= sup
u∈L2

σ(Ω,Rn)

⟨u∗, u⟩L2 − IL2
σ
(u)

=

0 if u∗ ∈ G(Ω)

∞ if Pu∗ ̸= 0

= IG(Ω)(u
∗).

In particular by the Fenchel identity (3.3) we derive that ∂IL2
σ(Ω)(u) = G(Ω) for any

u ∈ L2
σ(Ω) \ {0} by orthogonality of the spaces G(Ω) and L2

σ(Ω). Note that by the
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sum rule of convex analysis we have

∂ETD,σ(u) ⊇ ∂ETD(u) + ∂IL2
σ(Ω)(u)

for all u ∈ L2(Ω,Rn). However, since neither IL2
σ
nor ETD,σ is continuous on L2(Ω,Rn)

equality in the above inclusion is not to expect and in order to characterize which

di�erential inclusion is solved by Theorem 72 below, we are actually interested in a

superset of ∂ETD,σ. Nevertheless, we can at least characterize the subdi�erential of

ETD,σ in terms of a closure of the Minkowski sum of certain sets. In order to do so

we de�ne

M∗ := {v∗ ∈ L2(Ω,Rn) ; ∃z ∈ L∞(Ω,Rn×n), ∥z∥∞ ≤ 1, v∗ = −div z}

and have

ETD(u) = I∗M∗(u) = sup
u∗∈M∗

⟨u∗, u⟩L2

for any u ∈ L2(Ω,Rn) by (5.25). We thus derive

ETD,σ(u) = sup
v∗∈M∗

⟨v∗, u⟩L2 + sup
w∗∈G(Ω)

⟨w∗, u⟩L2

= sup
w∗∈M∗+G(Ω)

⟨w∗, u⟩L2

= IM∗+G(Ω)(u) .

The Minkowski sup M∗ + G(Ω) is obviously convex but not necessarily closed in

L2(Ω,Rn). However, with the closed and convex set

N∗ :=M∗ +G(Ω)
L2(Ω,Rn)

we thus derive

ETD,σ = IN∗ .

From that we obtain by the Fenchel identity (3.3)

u∗ ∈ ∂ETD,σ(u) ⇔ u∗ ∈ N∗, u ∈ BD(Ω) ∩ L2
σ(Ω), and ⟨u∗, u⟩L2 = ETD(Ω)

for all u, u∗ ∈ L2(Ω,Rn).

Summarizing the previous results we obtain the following existence and uniqueness

result for the �ow of incompressible perfectly plastic �uids.
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Theorem 72. Let Ω ⊆ Rn be bounded and with Lipschitz boundary and let T > 0.

Then for all u0 ∈ L2
σ(Ω) ∩ BD(Ω) and all f ∈ W 1,2(0, T ;L2(Ω,Rn)) there exists a

unique solution of the gradient system with initial valueu̇(t) + ∂ETD,σ(u(t)) ∋ f(t) , t ∈ I

u(0) = u0 .
(6.25)

Let us note that we have thus found a precise existence and uniqueness result for

the initial value problem formally given by
∂tu(t, x)− div Dsu(t,x)

|Dsu(t,x)| = f(t, x) for (t, x ∈ (0, T )× Ω)

u(0, x) = u0(x) for x ∈ Ω

div u(t, x) = 0 for (t, x) ∈ (0, T )× Ω .

(6.26)
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The �nal chapter summarizes some general results needed for our derivations. In

three sections we will concentrate on basics from measure theory, linear algebra and

topological indices.

7.1 Basics from Measure Theory

Let X be a locally compact separable metric space and µ is a Rm-valued measure on

X (cf.[3, p. 2] for de�nition).

Proposition 73. (a) The total variation functional |µ| on the Borel sets of X, de-

�ned by

|µ|(E) := sup

 ∞
k=1

|µ(Ek)| ; Ek ⊆ X Borel, pairwise disjoint, E =
∞
k=1

Ek


,

is a positive �nite measure on X and µ is absolutely continuous with respect to

|µ|, i.e.
|µ|(B) = 0 ⇒ µ(B) = 0 .

(b) There is a unique Sm−1-valued function f ∈ L1(X,Rm, |µ|), such that

µ = f |µ|

(c) If µ is additionally Radon regular, then for all open sets A ⊆ X we have

|µ|(A) = sup


X
u · dµ ; u ∈ Cc(A)

m, ∥u∥∞ ≤ 1


Proof. Combine the statements of [3, Theorem 1.6], [3, Corollary 1.29] and [3, Propo-

sition 1.47] .
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The following theorem states that the set of �nite Radon measures M(X,Rm) on

X is the dual space of

C0(X,Rm) := Cc(X,Rm)
∥·∥∞

,

where ∥ϕ∥∞ := supx∈X
m

i=1 ϕi(x)
2
1/2

.

Be aware that the subscript c is used to denote compactly supported functions,

while the subscript 0 is used to denote the closure of those functions with respect

to the supremum norm. Moreover note that X is not assumed to be open and thus

C0(X,Rm)-functions need not vanish at the boundary.

Theorem 74. Let X be a locally compact separable metric space and suppose that

L : C0(X,Rm) → R is an additive bounded functional, i.e.

∀u, v ∈ C0(X,Rm) : L(u+ v) = L(u) + L(v)

and

∥L∥ := sup
u∈C0(X,Rm)

∥u∥∞≤1

L(u) <∞ .

Then there is a unique Rm-valued �nite Radon measure µ on X, such that

∀u ∈ C0(X,Rm) : L(u) =


X
u · dµ ,

and

∥L∥ = |µ|(X)

where |µ| denotes the total variation of the measure µ.

Proof. Cf. [3, Theorem 1.54].

Note that ∥L∥ and |µ| depend on the choice of the norm in Rm (which is the

Euclidean norm | · | in the setting above). Choosing a di�erent norm (which is e.g. the

case, when we equip Rm = RN×n with some operator norm) yields di�erent values of

|µ|(X) and ∥L∥ in general1. However, the statement remains true for RN×n-valued

spaces equipped with the Frobenius norm

|u| :=


i, j

u2ij

1In particular it is not too di�cult to show that equality of ∥L∥ and |µ|(X) holds if and only if the
underlying norms in Rm in the de�nitions of ∥L∥ and |µ| are dual to each other.
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for all u = (uij)i,j ∈ RN×n, since the Frobenius norm is the norm induced from the

Euclidean norm in Rm ∼= RN×n.

Moreover, our preference of the Euclidean and Frobenius norm is stipulated from

applications. Those norms are invariant under orthonormal transformations of Rm and

thus are reasonable to model isotropic problems. In cases of non-isotropic materials

lp-norms with p ̸= 2 might be a better choice. The derivation of our results would

be similar. However, one has to be aware of choosing the p-norm or the conjugate

p′-norm at the right situation.

A small analytic drawback of this approach is that we can not reduce questions of

higher dimensions to the one-dimensional case. Instead we need to treat all dimensions

simultaneously.

7.2 Linear Algebra

In this section we will summarize some results for the scalar product of matrices and

the corresponding Frobenius norm. For matricesA = (aij)i,j=1,...n, B = (bij)i,j=1,...,n ∈
Rn×n we consider the scalar product

A : B :=

i, j

aijbij

and the induced norm, denoted by | · |, is called Frobenius norm. The identity

|A| =

trace(ATA)

holds. We will use the property that the Frobenius norm is invariant under rotations

of the coordinate system.

Lemma 75. For any orthogonal matrix S ∈ O(n) and any A ∈ Rn×n we have

|SA| = |AS| = |A|

Proof. Since obviously |A| = |AT|, we show |SA| = |A| only. Let A = (aij)i,j=1,...,n ∈
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Rn×n and S = (sij)i,j=1,...n ∈ O(n), then

|SA|2 =

i, l


j

sijajl

2
=

i, l


j, k

sijajlsikakl

=

j, k, l

ajlakl

i

sijsik =

j, k, l

ajlaklδjk =

j, l

a2jl = |A|2

where we have used that the columns of S are an orthonormal basis of Rn.

A crucial property is that the decomposition of matrices A ∈ Rn×n in their sym-

metric and antisymmetric parts A = A+AT

2 + A−AT

2 is orthogonal with respect to

the scalar product of matrices, such that for a symmetric matrix A ∈ Rn×n and any

B ∈ Rn×n we have

A : B = A :

B+BT

2


(7.1)

and in particular A : B = 0, provided B is antisymmetric.

7.3 Topological Indices

Topologial tools are useful concepts to classify families of certain subsets of a topolog-

ical space for the constructions in critical point theory. Let us introduce the notion

of genus and category and their basic properties here.

Let X be a Banach space. A subset S ⊆ X is called symmetric, provided u ∈ X

implies −u ∈ X. The genus of a symmetric set S ⊆ X \ {0}, denoted

genS ,

is de�ned to be the least k ∈ N such that there exists an odd continuous map Φ :

S → Rk \ {0}. Note that it is not di�cult to see that this notion is equivalent to

require that Φ maps to Sk−1 := {x ∈ Rk, |x| = 1}. If no such k exists at all we set

genS = ∞. Moreover, we de�ne gen ∅ := 0 for technical reasons. Frequently we will

also write genX S wherever it is helpful to highlight that the genus of S is determined

in the space X.

The genus has the following properties. Let A,B be nonempty symmetric subsets

of X \ {0}. Then

(i) if A is �nite, then genA = 1. In particular gen{±u} = 1 for any u ∈ X \ {0}.
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(ii) A ⊆ B ⇒ genA ≤ genB.

(iii) If there exists a continuous antisymmetric (i.e. Φ(−x) = −Φ(x)) map Φ : A →
B, then genA ≤ genB.

(iv) gen(A ∪B) ≤ genA+ genB

(v) For each compact symmetric set A the genus is �nite and there is some open

neighborhood U ⊇ A, such that genU = genA.

(vi) If there is an antisymmetric homeomorphism Φ : A→ Sk−1, then genA = k.

Properties (i)-(iv) are elementary to prove. The proof of property (v) makes use of

the Tietze extension theorem. Property (vi) is more delicate to show and requires

usage of the Borsuk-Ulam theorem (cf. [58, Chapter 44.3]).

A second widely used topological index is the category. A subset A of a metric

space X is said to be of category 1, catA = 1, provided it is contractible within X.

The category catA of an arbitrary subset A ⊆ X is de�ned as the least number of

sets of �rst category covering A. If no such number exists, then catA := ∞.

In contrast to the genus, which can be directly applied within a Banach spaceX, this

is not suitable for the category, since every subset of a Banach space is contractible.

Thus one goes to the projective space X/∼ which is the quotient space of X \ {0},
where antipodal points (i.e. u and −u) are identi�ed. It is well known that the genus

of compact symmetric sets A ⊂ X and the category of the corresponding set

Ã := {±u ; u ∈ A}

in the quotient space X/∼ coincide (cf. [49, Theorem 3.7] for compact sets A or [28,

p. 40] for the case of merely closed sets A).
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