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Abstract

This thesis focuses on improving the SAT solving technology. The improvements
focus on two major subjects: sequential SAT solving and parallel SAT solving.
To better understand sequential SAT algorithms, the abstract reduction system

Generic CDCL is introduced. With Generic CDCL, the soundness of solving
techniques can be modeled. Next, the conflict driven clause learning algorithm is
extended with the three techniques local look-ahead, local probing and all UIP learn-
ing that allow more global reasoning during search. These techniques improve the
performance of the sequential SAT solver Riss. Then, the formula simplification
techniques bounded variable addition, covered literal elimination and an advanced
cardinality constraint extraction are introduced. By using these techniques, the rea-
soning of the overall SAT solving tool chain becomes stronger than plain resolution.
When using these three techniques in the formula simplification tool Coprocessor
before using Riss to solve a formula, the performance can be improved further.
Due to the increasing number of cores in CPUs, the scalable parallel SAT solving

approach iterative partitioning has been implemented in Pcasso for the multi-core
architecture. Related work on parallel SAT solving has been studied to extract
main ideas that can improve Pcasso. Besides parallel formula simplification with
bounded variable elimination, the major extension is the extended clause sharing
level based clause tagging, which builds the basis for conflict driven node killing.
The latter allows to better identify unsatisfiable search space partitions. Another
improvement is to combine scattering and look-ahead as a superior search space par-
titioning function. In combination with Coprocessor, the introduced extensions
increase the performance of the parallel solver Pcasso. The implemented system
turns out to be scalable for the multi-core architecture. Hence iterative partitioning
is interesting for future parallel SAT solvers.
The implemented solvers participated in international SAT competitions. In 2013

and 2014 Pcasso showed a good performance. Riss in combination with Copro-
cessor won several first, second and third prices, including two Kurt-Gödel-Medals.
Hence, the introduced algorithms improved modern SAT solving technology.
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1. Introduction

A common claim is that “computer science solves problems that arise in computer
science”. Especially the satisfiability testing (SAT) problem can be used to solve
scientific problems from theoretical computer science. However, in this chapter we
will also emphasize that real world problems can be solved by translating them into
SAT. Next, how a SAT solver works will be exemplified in an abstract and declara-
tive way. By using this illustration, parallel SAT solving and formula simplification
techniques are also sketched. These illustrations pay attention to two goals: showing
related work and indicating where improvements are required. Finally, the contri-
butions that have been achieved during the work of this thesis are presented, and
the structure of the thesis is given.

Contents

1.1. Decision Problems . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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Today, many problems are solved automatically. Everyday life problems can be
solved with a small circuit in micro controllers, for example opening a car with
a remote control. Furthermore, computers aid designers and engineers to develop
machines, or they are used for fast and convenient communication.

Parallel high performance computers can, among others, simulate the effects in-
side physical objects or analyze protein folding. On the other hand, combinatorial
problems, or optimization problems, can be solved. These combinatorial problems
are not only logic puzzles as the eternity puzzle [ABFM13], but also tasks verify-
ing that a circuit meets its specification [GPB01,MCBE06], whether two circuits
produce identical output [BMP+06,KSHK07], creating the schedule of trains in a
network [GHM+12], setting up the schedule for a job shop [WHH+97], or solving
the round robin problem [BM00] are also combinatorial problems. Even breaking
cryptographic ciphers is a combinatorial problem, where the secret key should be
discovered [SNC09]. Testing whether an algorithm terminates [FGM+07], finding
a counter example for a higher-order logic formula [TJ07], or automated theorem
proving [BN10,WPN08] are further combinatorial problems. The list of all combi-
natorial problems is much longer. An overview is presented in [BHvMW09]. The
high-level problems mentioned above have a natural description in a high-level lan-
guage whose variables do not need to be Boolean. However, these problems have
in common that they can be described as a Boolean formula. For these formulas a
solution has to be found to solve the high-level problem. This satisfiability testing
(SAT) problem can be solved very well with so-called SAT solvers, which have been
studied intensively in the last two decades.

A description as a Boolean formulas allows to solve many further interesting
problems based on SAT technology:

▶ when solving the maximal satisfiability problem, an optimal solution for a
formula can be found, satisfying the largest possible part of unsatisfiable for-
mulas,

▶ a minimum unsatisfiable subformula can be extracted, which represents a sub-
problem that cannot be satisfied,

▶ with the incremental SAT approach a part of the problem can be solved first,
and depending of this result more constraints can be added to the problem,
as used, for example, in bounded model checking [BCC+99].

Again, solving the SAT problem is a crucial part of the algorithmic solutions
to these problems. Hence, this thesis focuses on improving SAT solvers. In this
introduction, a combinatorial high-level problem is introduced briefly, and its opti-
mization variant is discussed. A thorough discussion how to encode such a problem
into a SAT problem is presented in Chapter 4. Next, this introduction illustrates
how a SAT solver works by comparing its search process to the more abstract prob-
lem of finding the exit in a maze. In the same abstraction, formula simplification
processes are explained. With this model an intuitive idea for the SAT problem
should be developed, because the real performance of a modern SAT solver is dif-
ficult to be understood based on formulas: formulas with up to several millions of
Boolean variables and a ten-fold number of constraints can be solved within an hour
of computation time.
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1.1. Decision Problems

Figure 1.1.: Street crossing with three lanes in any direction.

Since modern computing resources became parallel, the SAT solving process is
also analyzed to be able to present parallelization approaches. The parallel solution
approaches that are developed in this thesis are illustrated in the maze model as
well.

1.1. Decision Problems

In everyday life humans solve all kinds of decision problems. One of these problems
is whether one is allowed to pass the traffic light to enter a street crossing. A
corresponding picture is given in Figure 1.1. Imagine we want to go from south
to north and we are already driving on the middle lane. To know whether we
are allowed to drive on we only have to check whether the corresponding traffic
light is green. This decision is simple, because it requires exactly one operation,
independently of the shape of the street crossing. All decision problems that can be
solved with a single operation, or a constant number of operations, belong to the
class of problems that can be solved in constant time.
Another task on this crossing is to count on how many lanes there are waiting

cars in front of a red light. The given street crossing has 12 entering lanes. There
can be a waiting car in each of these lanes. Therefore, the task is to check each
lane, and if there is a car then a counter has to be incremented by one. For the
given street crossing 12 operations are necessary. However, when another crossing
is considered, then the number of necessary operations might change, because the
number of lanes changes. Since the number of lanes matches exactly the number of
operations, the complexity of this task is linear. Compared to the constant number
of operations above, executing the linear number of operations usually takes longer,
especially when the street crossing has a lot more lanes.
Assume there is a traffic light for each lane, and each direction. For these 12

traffic lights, an even higher number of operations is required when the following
problem should be solved:

5



1.1. Decision Problems

Question 1. Can cars on each lane and in each direction pass the street crossing
after four different configurations of the traffic lights have been scheduled?

Given the crossing in the example, solving this problem for one configuration is sim-
ple: since there are intersecting lanes, using only one configuration is not sufficient.
Similarly, for 12 configurations a simple solution is to grant each lane a green light
in a separate configuration, and not to allow the green light in all respective other
configurations. Due to the high symmetry of the given street crossing, a solution
for 6 lanes is also simple: allow green for the two opposite lanes and directions, for
example turning left from south to west, and turning left from north to east.

In the extreme case, all combinations of traffic light configurations have to be
analyzed to solve Question 1. Therefore, the complexity of solving this problem is
exponential in the number of lanes. When more lanes are added, then the num-
ber of possible configuration combinations increases exponentially. Since all these
combinations have to be considered, the number of required operations increases
accordingly.

However, when a solution of the problem can be found with the first set of traffic
light configurations, then the problem becomes easy. Especially if somebody pro-
poses a solution already, verifying this solution is simple, because the constraints of
the question can be tested easily. The SAT problem belongs to this class of problems
– when a solution for a Boolean formula is given, then evaluating the truth value of
the formula is simple.

A solution to the above question (Question 1) allows green for the following con-
figurations of traffic lights:

▶ all lanes that turn right, and north to south, as well as south to north,

▶ west to east, and east to west,

▶ south to west and north to east,

▶ west to north and east to south.

With these four configurations cars on all lanes had the ability to enter the street
crossing. Validating this solution is simple: when having a look at Figure 1.1, then
it can be easily validated that the lanes of cars that are allowed to enter the crossing
simultaneously intersect.

As the throughput of a street crossing should be improved, the optimization next
asks whether the same problem can be solved with only three different configura-
tions:

Question 2. Can cars on each lane and in each direction pass the street crossing
after three different configurations of the traffic lights have been scheduled?

Again, all possible combinations would need to be analyzed. A conclusion should
be that there is no such set of combinations. However, the reader should only
be convinced after a proof. In general, decision problems have the same problem:
while answers to satisfiable problems can be verified easily by checking the answer
against the constraints, the answer“unsatisfiable”alone is not enough. As satisfiable
problems are usually solved with the answer and a witness for this answer that can
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be verified easily, proof complexity requires a proof that can be verified to show that
no solution exists.

For the above question a proof might be along the following lines:

▶ (1) south to north, (2) east to west, and (3) north to east require
three different configurations (1), (2), and (3), because all these lanes intersect.

▶ east to south can only be combined with (2).

▶ Then, south to west can be combined only with (1) or (3).

▶ west to east can only be combined with (1) or (3)

▶ north to south cannot be combined with (2) but neither with south to
west ((1) or (3)) nor west to east((1) or (3))

▶ Since in the last three statements three green lights have to be added to two
different incompatible configurations, there is no positive answer to Question 2.

For general combinatorial problems producing such a proof is challenging, and a lot
of research focused on how such proofs can be emitted by a SAT solver [Gel02,GN03,
HHJW13a,HHJW13b] and [MP14,HMP14]. Similarly, properties of these proofs
are studied [Tse68,Hoo88,Chv73], and the power of propositional reasoning systems
is analyzed. As used in the final step of the proof above, one of those systems, for
example, is able deal with cardinality constraints.

1.1.1. Illustrating SAT Solving with a Maze

As the above example demonstrates, solving combinatorial problems is difficult. Ex-
isting algorithms try to be smart when performing search and use many tricks to
avoid getting stuck. In the unsatisfiability proof of the above example not all lanes
have been used. Otherwise, the proof might have become much longer. Further-
more, the solution for the first question combines pairs of conflicting lanes very
systematically.

To get an intuitive idea how modern SAT algorithms work, solving a Boolean for-
mula with a SAT solver is compared to finding a solution in a maze. The conditions
for moving in the maze are the following:

▶ The exit of the maze is located on the right side.

▶ The start is on the left most column in the maze.

▶ Only when entering the next column to the right of the current position, a
new row can be selected. When moving to the previous (left) column, then
the old path has to be used (backtracking).

Where the first two rules are obvious, the third rule is different from solving a real
maze. However, with this restriction SAT solving algorithms can be explained more
easily.

7



1.1.1. Illustrating SAT Solving with a Maze

Figure 1.2.: Finding a solution in a maze.

Searching in the Maze

SAT solving algorithms are equipped with many heuristics that control their be-
havior. One important heuristic is the decision heuristic (compare Section 5.4.5).
The decision heuristic answers where the search should be continued. When there
exists a valid path from the starting point to the exit, then an optimal heuristic can
find this path and the shortest way to the exit without returning from a dead end.
Hence, such a heuristic is important. In this example, the heuristic is to go right in
the uppermost possible row from the current position.

An example maze and the search is illustrated in Figure 1.2. The left maze shows
the empty maze with the starting point. The maze in the middle shows the maze
with the search that is performed when simple backtracking is used. This search can
be compared with carrying a rope from the starting point to the current position.
Once a dead end has been found, as illustrated with the bolt, then this rope is used
to walk back in the maze. Whenever the position with the latest choice is reached
again, the next choice is considered. A drawback of this approach is the following:
when the search enters the very last column, the used field in the second last col-
umn is known to lead to no solution. However, the algorithm ignores this knowledge
and naively continues its work. In the SAT solving world this behavior is compa-
rable to the Davis-Putnam-Logemann-Loveland (DPLL) algorithm (see [DLL62] or
Section 5.2.3).

An improvement to this scenario is when additionally to the rope a pen is used.
Then, the used field in the second last column is marked as leading to a dead
end (illustrated with the extra line in the third maze in Figure 1.2). Furthermore,
the choice that led to this path in the fourth column is also marked as leading
to dead ends only. After marking all these points, the search continues with the
next alternative in the fifth column. However, since the field in the second last
column is already known to lead to a dead end only, this column is not accessed
any more, such that work is saved. After the second row is found to lead to a dead
end, the corresponding field is marked as well, and the search continues this way.
In the SAT solving world this learning mechanism has been added to the DPLL
algorithm as clause learning. The resulting algorithm is the Conflict Driven Clause
Learning (CDCL) algorithm (see [MSS96] or Section 5.2.4). Both algorithms have
in common that they perform a depth-first search, both in the illustration with the
maze as well as in the actual algorithm. The special situation where there is only
a single child node for continuing the depth-first search improves the search in the
maze, because in such a case less search has to be performed. In the SAT solving
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1.1.1. Illustrating SAT Solving with a Maze

Figure 1.3.: Improving the DFS search with more global reasoning.

world, the process of walking forward in the maze without choice corresponds to
unit propagation. Similarly to a maze with many straight rows, a formula where
much unit propagation is possible is considered superior to a formula that describes
the same problem but which does not offer that much unit propagation.

In Figure 1.3 an improvement to the search algorithm is presented. In the same
maze as in Figure 1.2 three global reasoning techniques are illustrated. The first
technique is look-ahead: a breadth-first search for dead ends is performed on the
second column of the maze. As can be seen in the example, on the last row a
dead end is found. This reasoning does not look too useful. However, the idea can
be extended easily to multiple rows: instead of looking only for one column, two
columns can be considered. Then, a dead end can also be found in the third column.
In the example maze the first row shows such a case. In the SAT solving world these
two techniques correspond to look-ahead search (see [HvM09] or Section 5.2.5).

Furthermore, equivalent alternatives can be identified. In the middle of the maze
the same field is reached independently of the chosen way in the maze. Therefore, the
three alternatives can be replaced by a single representative. The illustrated scenario
can represent two techniques in the SAT solving world: substituting equivalent
variables (see [Gel05] or Section 5.5.1), or probing, which identifies choices that have
to be taken from a certain position (see [LMS03] or Section 5.5.1). In SAT solvers,
these techniques are usually applied only before the search. In this thesis a way
to incorporate these techniques into the search is presented, such that this kind of
reasoning is also applied in the middle of the maze (see Section 5.2.5).

Searching in the Maze with Multiple Workers

In almost all modern computers from mobile phones to high performance clusters
multiple computing resources are available. Then a combinatorial problem can be
solved in parallel. In the maze this parallelism corresponds to let multiple workers
search for the solution from the starting point, as illustrated in Figure 1.4. The used
maze is the result of the initial maze after applying look-ahead from Figure 1.3.

Solving with the Portfolio Approach A common way of using this parallelism is to
let each worker search with a different heuristic. As before, the first worker always
chooses the top most alternative (orange). The next worker (red) chooses the top
most alternative in every second choice. The other choice is the lower most possible
path. Finally, the last worker (blue) always picks the lower most alternative.

The three mazes in Figure 1.4 show the initial search step (left). There, each
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1.1.1. Illustrating SAT Solving with a Maze

Figure 1.4.: Finding a solution in a maze with multiple workers.

worker reached a dead end with its according heuristic. In the next step, as ex-
plained above, each worker marks the fields that directly leads to a dead end with
its corresponding color and continues the search (middle).
Then, a problem is visualized for the first two workers red and orange: the red

worker follows exactly the same path that has been marked as failure by the orange
worker already. However, since no information sharing has been done, the red worker
does not know this fact. Hence, the red worker finds the very same dead end with
the very same path. An improvement of the parallel algorithm is illustrated in the
next maze (right maze in Figure 1.4): instead of marking the field that leads to
dead ends only with the own color, a neutral color is used, such that all workers
gain the corresponding information. Now the description of the maze changes for
each worker, and redundant search is avoided. Unfortunately, in the right maze
another problem is also present: the orange worker and the red worker are using
exactly the same path. This problem can be solved by diversifying the heuristics
of the two solvers more than in the given example, for example by changing the
heuristic of the red worker.
Since the blue worker already found a path to the exit, the search can be termi-

nated. A property of this approach is that as soon as a solution has been found all
workers finish their search.
In the SAT world, the illustrated approach is called parallel portfolio (see [HJS09b,

HJS09b, Rou11] or Section 6.2.5), where the workers correspond to different SAT
solvers, or different configurations of a SAT solver. The input formula is copied for
each worker, and learned information can be shared between the solvers. To avoid
searching at the same place, diversification of the algorithm has been analyzed, and
additional information than the path that leads to dead ends can be shared [HJS09a,
GHJS10].

Solving with Search Space Partitioning Figure 1.5 shows the same maze for par-
allel solving. This time the parallel search is arranged differently: for each of the
four workers a path to the exit is valid only if the exit lies in the target zone of the
corresponding worker. These target zones are marked with the corresponding colors
as rectangles in the very last column.
Then, as shown for the green worker, this worker is not allowed to find the exit

in the blue box, as illustrated in the second maze in Figure 1.5. Hence, the green
worker learns that on its current path there are only dead ends. The corresponding
marked fields are visualized in Figure 1.6. There, in the left maze, the green worker
marked all the fields, similarly as above.

10



1.1.1. Illustrating SAT Solving with a Maze

Figure 1.5.: Finding a solution in a maze with search space partitioning.

Sharing this learned information with the other workers leads to an improvement
in the above portfolio scenario. However, with search space partitioning extra care
has to be taken, because locking all green bars for all workers in this maze would
delete the existing paths to the exit of the maze. On the other hand, there are
other marked fields that can be shared with all workers without destroying the
solution paths. While the green worker tried to find a solution, both the red and
orange worker also analyzed their part of the maze. The corresponding learned
information is illustrated in the left maze as well. All these fields can be shared
without destroying a valid path to the solution.

At this stage both the orange and the green worker finished their task: there
does not exist an exit in their target zones. Different to the portfolio approach,
the search cannot be stopped yet. Therefore, a further improvement of the search
space partitioning is to re-use the workers that finished their task. New tasks can
be achieved by re-partitioning the target zones of the remaining tasks, and re-assign
all workers accordingly. This process is illustrated in the maze in the middle of
Figure 1.6. This partitioning is called plain partitioning.

An alternative is to choose the target zone of a worker, partition this zone for the
idle workers, and only re-assign the idle workers. Another design decision is whether
the green worker should keep its private knowledge. In this case the algorithm has
to ensure that by keeping the knowledge no valid paths are removed from the maze.
In the given example this problem does not occur, since the green lines do not block
a path from the starting point to the new green target zone. This partitioning is
called iterative partitioning.

In the SAT solving world, the search space partitioning approach has been popular
when the DPLL algorithm was still the best sequential solving algorithm [MML12,

Figure 1.6.: Careful sharing and re-partitioning with search space partitioning.
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1.1.1. Illustrating SAT Solving with a Maze

Figure 1.7.: Simplifying the maze by eliminating columns.

BS96, ZBH96, JLU01, SV06]. With the CDCL algorithm, only a few researchers
looked into search space partitioning [SM08,HJN06,HJN10]. Sharing information
with search space partitioning has been discussed only briefly [HJN11]. This the-
sis improves on this research and the number of possible shared information (see
Section 8.2 or [LM13]). With this improvement further scenarios in the maze can
be handled efficiently, for example to abort the search of multiple workers when a
certain worker finds its target zone without an exit (see Section 8.4).

Furthermore, in the published literature plain partitioning is preferred over it-
erative partitioning [Bie13, HKWB12]. Since the literature claimed that iterative
partitioning is more scalable [Hyv11], which means if more workers are used a solu-
tion is found faster, the focus on a parallel solving algorithm is put on the iterative
partitioning approach, because the aim of this thesis is to obtain a robust and scal-
able solving approach. The portfolio approach is claimed to be less scalable when
more workers are added [HJN08].

From a high-level point of view this iterative partitioning is a combination of
the portfolio approach and plain partitioning: the initial workers are executed until
they find a solution. The workers that solve new re-partitioned tasks are executed
in parallel. For plain partitioning, the initial worker would be interrupted and its
solution zone would be updated as well.

Simplifying the Maze

Before the search in a maze is started, the maze can also be simplified. For Boolean
formulas many techniques have been proposed. The starting point is the maze of
Figure 1.3, however, the equivalent alternatives in the middle of the maze have been
simplified already. This maze is presented in Figure 1.7 (left).

Columns in the maze can only be eliminated, as long as all paths that lead to a
solution are not broken. Nevertheless, joining these paths is allowed. The new maze
(right) in Figure 1.7 is obtained by removing the marked barriers and merging the
corresponding columns. For the given maze, finding a solution is now simpler, be-
cause the maze provides a better overview. Likewise, showing that no solution exists
for a given maze after eliminating a column is considered to be an easier problem,
because the search depth in the maze is smaller. In the SAT world merging columns
in the maze corresponds to the simplification technique bounded variable elimination
(BVE) (see [DP60, Fra91, SP05, EB05] or Section 3.2.8). For this technique there
is also the tendency that a simplified formula can be solved faster. Unfortunately,
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Figure 1.8.: Simplifying the maze by removing vertical lines with free upper or lower
ends.

variable elimination cannot ensure the conditions of eliminating columns in the maze:
the resulting formula can be much different from the original formula. A formula
rewriting technique that is called bounded variable addition (BVA) is proposed in this
thesis (see Section 5.6), whose effect corresponds to adding new columns in the maze
with a similar goal: by improving the structure of the formula, a solution can be
found faster.

Another formula simplification technique can be illustrated with the two mazes
in Figure 1.8: with blocked clause elimination (BCE) (see [Kul99, JBH10] or Sec-
tion 5.5.1) parts of a formula can be removed. In the maze, this simplification
corresponds to eliminating vertical lines that have a free upper or lower end. With
this simplification a simpler maze is obtained, and furthermore, the existing path to
the exit of the maze cannot be destroyed. Even better, after eliminating these ver-
tical lines, there are thicker and hence less paths from the starting point to the exit.
As for BVE, a maze with an exit might be solved faster after BCE has been applied.

1.2. Contributions

A first contribution is the illustration of solving the SAT problem with the more
intuitive problem of finding an exit of a maze, which has been presented in this chap-
ter. With this illustration, an intuition of solving SAT and modern SAT technology
is possible without going too much into details.

The goal of this thesis is to develop a robust and scalable parallel SAT solving
algorithm to better utilize the computing power of multi-core CPUs, because the
current trend is to increase the number of available cores. To reach this goal, sequen-
tial SAT solving has to be understood in full detail and the related work on parallel
SAT solving has to be studied. While working in these two fields we contributed to
sequential as well as parallel SAT solving, such that this thesis does not only focus
on parallel SAT solving but in large parts also concerns sequential SAT solving. This
section lists the contributions that have been made in this work. A structured list
of the publications is given in Appendix A. Furthermore, all references that point
to our work are bold printed. The source code of the tools that have been devel-
oped in this thesis is available at http://tools.computational-logic.org. This
web page furthermore contains the list of benchmark formulas that has been used
throughout this thesis.

Since SAT solving techniques are evaluated empirically, the discussed methods
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have also been implemented. Annual SAT competitions evaluate international SAT
solvers from many research groups on selected formulas from applications, crafted
problems and randomly generated formulas [SAT14]. To these benchmarks, formulas
from translating the periodic event scheduling problem [GHM+12], translating
the logic puzzle Hidoku [HMNS12] have been provided. Furthermore, challening
formulas for modern CDCL solvers have been generated to push the development of
solvers forward. Challenging areas are equivalence checking [BHJM13], but also
formulas that are difficult for resolution and interesting from a propositional proof
complexity perspective [Man14c,MS14].

The SAT solver Riss, which has been constructed while working on this thesis, is
furthermore used in tools that solve problems related to SAT: the pseudo Boolean
solver npSolver [MS12b] reached good rankings in the pseudo Boolean Compe-
tition 2012 [PBc14]. Furthermore, the optimization solver Optimax used a SAT
back-end that is based on ideas of Riss. Optimax was ranked best for many tracks
of the incomplete track in the maximum satisfiability competition 2013 [MAX14]
and reached, among a first prize, further good rankings in 2014 [MAX14]. Another
tool to show the performance of the SAT solver Riss is the bounded model checker
ShiftBMC, which furthermore heavily exploits the built in formula simplification
techniques. In 2013 and 2014, ShiftBMC has been awarded a second prize in the
hardware model checking competition [HWM14]. The developed tools in the focus
of this thesis, the sequential SAT solver Riss and the parallel SAT solver Pcasso,
have shown to be competitive in the international SAT competition in 2013 and 2014.
Most recently, Riss received two Kurt Gödel medals for two first prizes [SAT14].

All contributions of this thesis try to improve the performance of current SAT
solvers and may have an impact on future SAT technology. One the one hand into,
future parallel SAT solvers might benefit from the scalable iterative partitioning
approach that can detect and avoid redundant search spaces. On the other hand,
the developed simplification techniques are a starting point to lift the reasoning
power of SAT solvers beyond general resolution. According to Nordström [Nor14]
the latter is currently an active research topic.

Sequential SAT Solving

In order to understand how SAT algorithm can be implemented efficiently for the
architecture of modern computing systems, the SAT solver Riss has been imple-
mented and different data structure layouts have been analyzed [MS12a,HMS10].
While this first version was very close to MiniSAT 1.14, the next version with
improved heuristics, which have been studied in [Man10], has entered the second
phase of the competition in 2010.

During studying and implementing SAT solving techniques the abstract formalism
Generic CDCL has been developed. This formalism is useful to describe modern
SAT solvers. With Generic CDCL properties like soundness of a SAT algorithm
can be shown on a high abstraction level. Then, such a property is guaranteed for a
solver or solving technique if Generic CDCL covers this solver or technique. Next
to related abstract descriptions of solvers, to the best of our knowledge, Generic
CDCL covers all additions to the CDCL algorithm, including formulas simplifica-
tions and reasoning on a higher level (for example with cardinality constraints).

As formula simplification is important, Riss was extended with the formula sim-
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plifier Coprocessor that could also be used as a stand-alone formula simplification
tool [Man11b]. This preprocessor contained a first formula rewriting technique that
replaces inefficient sub formulas with a better representation locally and with only
minor effects on performance [MS11]. In [MHB13], the more global rewriting
technique BVA was added. With the original idea to replace parts of a formula
with a rewritten formula, BVA can reduce the size of certain formulas to half the
original size. Furthermore, from a complexity point of view BVA has the chance
to reduce the complexity of solving the current formula, because the rewritten for-
mula allows higher level reasoning, similarly to reasoning with the cardinality in the
street crossing example above. BVA was made available together with many other
proposed simplification techniques in the next version of Coprocessor [Man12].
This preprocessor has been adapted to apply its simplification only to parts of the
formula, such that this simplification can be applied for the analysis of information
flow in programs [KMM13]. In [BM14a] the effect of formula simplification with
respect to different SAT solving techniques has been studied: the best simplification
technique for both structured and stochastic local search is variable elimination.

The most recent additions in Coprocessor include the implementation of cardi-
nality constraint extraction from formulas and the corresponding reasoning to prove
the unsatisfiability of a formula [BLBLM14]. Furthermore, removing redundant
parts of constraints in the formula with covered literal elimination (CLE) has been
studies and added as a simplification technique [MP14]. The evaluation benchmark
contains 3886 formulas. Adding cardinality reasoning and CLE to the implementa-
tion of Riss with the most widely used simplification technique BVE leads to solving
23 more formulas. This improvement can be considered significant, as the following
quote shows [AS12]:

“To give an idea, improving a solver by solving at least ten more formulas (on a
fixed set of benchmarks of a competition) is generally showing a critical new feature”

The depth-first style search process of the CDCL algorithm has been extended with
three more global reasoning techniques, which are based on look-ahead [Man14a].
When these techniques are enabled, another eleven more formulas of the benchmark
can be solved. According to the above quote, the modifications form another new
feature for the solving process.

The techniques of Riss, including the extensions of the CDCL procedure, have
been enabled to produce unsatisfiability proofs for their simplifications. With this
ability, the version Riss 3g [Man13c] received a gold medal and a bronze medal in
the SAT competition 2013 on the certified unsatisfiability tracks for crafted problems
and application problems, respectively [SAT14]. Producing unsatisfiability proofs
for most of the simplification techniques in Coprocessor has been added after-
wards [MP14]. Due to the high number of available techniques, Riss 3g received a
silver medal and a bronze medal in the Configurable SAT Solver Challenge 2013 for
solving application formulas and randomly created formulas, respectively [CSS14].
These results show that for the year 2013 the developed solver Riss is a state-of-
the-art SAT solver.

In this thesis the solver has been further extended to version Riss 4.27 [Man14e],
which was submitted to the international competitions 2014 again: variants of this
solver won the certified unsatisfiability track for hard combinatorial problems, as
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well as the satisfiable track for combinatorial problems [SAT14]. Three additional
top three ranks have been achieved with variants based on this solver.

Parallel SAT Solving

In [HW13] Hamadi et al. proposed necessary developments for future parallel SAT
solvers. Furthermore, Hamadi et al. also give an estimate in years for the difficulty
of solving the task. Independently of these proposed tasks, the work of this thesis
proposed solutions to some of these tasks. The publication times of the publications
of this thesis overlap with [HW13].

From a theory point of view, unit propagation cannot be parallelized efficiently.
A first parallelization approach was to test whether this statement also holds for
real world application formulas with the result that for no more than two workers
enough parallel work is present [Man11c]. For a higher number of workers the
parallelization is not useful.

Next, an overview on existing parallel SAT solving algorithms has been pre-
sented [HMN+11]. Then, the promising and scalable parallel solving approach
iterative partitioning has been ported from the grid environment to the multi-core
environment [HM12]. This multi-core implementation has been improved with in-
formation sharing [LM13]. Furthermore, with a set of minor improvements and
adding new ideas [ILM14], the resulting parallel SAT solver Pcasso [ILM13]
showed a good performance in the parallel tracks of the SAT competition 2013 and
2014 [SAT14].1 For Pcasso the new search space decomposition technique is devel-
oped by combining scattering with look-ahead. A task in [HW13], estimated with
six years, is developing such a new decomposition. The new scattering cannot be
seen as the final answer to the proposed task, but the given combination outperforms
existing approaches.

Independently of Pcasso, the formula simplification variable elimination has been
parallelized [GM13b,GM13a]. Hamadi et al. estimate six years to parallelize for-
mula simplification in general. The paper [GM13b] has been nominated for the best
paper award of the German AI conference 2013. With the parallelization of variable
elimination, a big sub goal of this process has been achieved already: parallelizing
related simplification techniques can be achieved more easily once the framework
with the locking architecture is set up. Together with the parallel simplification and
Pcasso, a scalable parallel SAT solving approach is developed, reaching the goal
of this thesis. Pcasso is more scalable than other state-of-the-art solvers, because
when using 16 instead of 8 computing resources (cores), then Pcasso benefits most.
In comparison to the other systems, more formulas can be solved faster with the
additional resources.

Similarly to extending Coprocessor with producing unsatisfiability proofs, par-
allel SAT solvers should also be able to produce these proofs. For the portfolio ap-
proach, a first method has been proposed [HMP14]. The portfolio parallelization

1In 2014, due to a minor bug in the external formula simplification tool of Pcasso the parallel
solver has been disqualified: for two very large formulas that have not been simplified at all, the
correct model that was found by Pcasso was not printed to the required output. Pcasso could
show the correct satisfiability of all formulas, but did not print the correct witness. By ignoring
this bug, the hybrid SAT solver CLaS, that builds a portfolio of Pcasso and the SLS solver
Sparrow [BM13], the systems developed in this thesis would have received another first price.
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has also been exploited to improve the extraction of minimal unsatisfiable subfor-
mulas [BMMS13].

For the work on how to combine formula simplification during search with the
parallel portfolio solving approach and with sharing learned information across the
workers, the publication [MPW13] received the best paper award of the SAT con-
ference 2013. The award was handed over with the quote:

“A reason for the selection of this publication for the award was that [MPW13]
combines two currently relevant and high potential research topics.”

The two research topics are simplifying the formula during search and parallel port-
folio solvers with clause sharing.

1.3. Structure

The chapters of the thesis are separated into three parts. Part I with the first
two chapters presents decision problems and propositional logic as a recapitulation.
Then, Part II focuses on sequential SAT solving and Part III focuses on parallel
SAT solving approaches.

After a motivation why improving SAT solving is important and after illustrating
how SAT solvers work, the next chapter introduces the notation for the remainder
of the thesis. Where Chapter 1 is more an abstract illustration, Chapter 2 is specific
on notation.

Since SAT solvers are based on partial interpretations, but classical logic deals
only with total interpretations, Chapter 3 introduces the required terms to relate
formulas with respect to partial interpretations. Furthermore, basic formula rea-
soning techniques are also presented in this chapter, because the search algorithm
is based on this reasoning, but the whole formula simplification content cannot be
presented before the search has been introduced.

In Chapter 4 complexity theory is introduced briefly and the translation from
high-level problems to the SAT problem is illustrated with the example of the logic
puzzle of a Hidoku. In this chapter also common constraints of high-level problems
are discussed, because cardinality constraints and their encodings into Boolean for-
mulas are used in the formula simplification discussion afterwards. After discussing
several possibilities of the translation of Hidokus, Chapter 4 closes with an empirical
evaluation, which compares the different approaches.

Next, sequential solving approaches are discussed. Chapter 5 first presents the
abstract reduction system Generic CDCL and discusses its properties. Different
solving approaches, like the DPLL and the CDCL algorithm, are presented, as well as
a way how to cover these algorithms with Generic CDCL. Then, various heuristics
and additions to the CDCL algorithm from the literature are explained. On the one
hand, these discussions serve to show that solving techniques of the literature can
be modeled with Generic CDCL. On the other hand, many of these techniques
are used again when the improvements of the parallel solving algorithm is discussed.
Therefore, some of these techniques are explained very detailed, for example look-
ahead solving. The detailed discussions about sequential search are also necessary,
because a deep understanding of the sequential process is required to propose a
parallel approach.
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Next to the sequential search additions, propositional proof complexity is also
discussed briefly for the following two reasons: Firstly, there exist formula sim-
plification techniques that reason with cardinality constraints instead of the plain
formula. This reasoning is stronger than the plain CDCL algorithm. Secondly,
proof complexity is used to motivate why the CDCL algorithm should be used for
parallelization. According to proof complexity, the CDCL algorithm is so much
stronger than the DPLL algorithm, that the sequential CDCL algorithm is faster
than a parallel DPLL algorithm even with a high speedup. After discussing proof
complexity, Chapter 5 presents existing and novel formula simplification approaches
and shows how these techniques can be covered with Generic CDCL. Finally, an
empirical evaluation compares the search additions and new simplification methods
to existing approaches, as well as to sequential state-of-the-art SAT solvers.
In Part III, Chapter 6 first presents an overview on existing parallel SAT solvers,

and emphasizes weaknesses and ideas that lead to an improved parallel search. These
ideas and weaknesses are exploit to later on develop the improvements of the par-
allel solving approach in Chapter 8. Before explaining these approaches, Chapter 7
presents how the widely used formula simplification variable elimination can be par-
allelized with a low-level approach.
In Chapter 8, the parallel solving approach iterative partitioning is presented in

detail. Then, based on the ideas that are given in Chapter 6 the algorithm is im-
proved, for example with enhanced information sharing and a better management
of the workers, and the chapter presents the novel search space partitioning scat-
tering with look-ahead. The implemented system Pcasso is compared to parallel
state-of-the-art SAT solvers and furthermore its scalability is evaluated.
Finally, the findings of this thesis are concluded in Chapter 9 and pointers to

future work are given.
Not all the contributions of the publications presented in the previous section can

be described in full details without jumping back and forth. Therefore, a subset has
been selected, such that this thesis has a common theme, which leads to the scalable
parallel search space partitioning solver Pcasso.
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2. Preliminaries

In this chapter we introduce abstract reduction systems as a formalism to describe
algorithms in an abstract way. Furthermore, the notation of propositional logic is in-
troduced and we show how the input formulas of SAT solvers are constructed. Next,
the notation for formula transformations is given. Afterwards, details of computer
architecture are introduced with a focus on parallel algorithms. The final section
discusses commonly used methods to evaluate the performance of SAT solvers and
widely used visualizations are presented.
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2.1. Abstract Reduction Systems

2.1. Abstract Reduction Systems

An abstract way to describe an algorithm is to describe the algorithm as a state
transition system. The set of possible states of the algorithm is the set of states for
such a reduction system. The operations of the algorithm that modify the states
are represented as state transition rules.
As an example, consider the calculation of the digit sum of a natural number

n ∈ N, for example n = 2211. The digit sum s of 2211 is 6 and it is calculated by
starting with s := 0 and then while iterating over all digits of 2211 the value of the
current digit is added to s. The possible states of the corresponding algorithm are
pairs of natural numbers (n, s), where n represents the sequence of remaining digits
that still need to be processed and s is the intermediate result. Now, a transition
from a state (n, s) to (n′, s′) is computed as follows: n′ := ⌊ n

10⌋ (integer division)
and s′ := s + (n mod 10). Given the input n, the algorithm is initialized with the
state init(n) = (n, 0). Finally, a terminal state is reached if the number n assumes
the value 0. On the example input 2211, the state transition system produces the
following states:

init(2211) ; (2211, 0) ; (221, 1) ; (22, 2) ; (2, 4) ; (0, 6).

Any state of the form (0, s) for some s ∈ N represents the digit sum of the initial
state. In the given example, the digit sum of the number 2211 is 6.
Transition systems have been widely studied, for example in [BN98].

Definition 2.1 (Abstract Reduction System). An abstract reduction system is a
pair (A,→), where the reduction → is a binary relation on the set A: → ⊆ A×A.

Instead of writing (a, b) ∈ →, the notation a → b is used. Terminal states are
special states which lead to the termination of the reduction system. A state is a
terminal state if this state cannot be reduced further. Furthermore, the following
notation is used in the remainder of this thesis, where x, y, z ∈ A:

→0 := {(x, x) | x ∈ A} identity
→i+1 := {(x, z) | x→i−1 y, and y → z} i ≥ 0 (i+1) fold composition
→+ :=


i>0 →i transitive closure

→∗ := →+ ∪ →0 reflexive transitive closure
→−1 := {(y, x) | x→ y} inverse closure

→⊡ := {(x, y) | x→∗ y, and y ̸→ z for all y ̸= z} application until
termination

A state x is reducible if and only if there exists another state y such that x→ y.
The state x is reduced or rewritten into the state y. Then, y is called a direct
successor of x. Furthermore, a state z is called a successor of x if x →∗ z. Given
an abstract reduction system, than a subset of its states are initial states which are
the possible starting points of the system. Then, a state y in the system is reachable
if there exists an initial state x such that x→∗ y.
Depending on the problem that is solved with the reduction state, an answer might

be computed for this specific problem. Given such an abstract reduction system,
then the following properties can be defined:
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2.2. Propositional Logic

Definition 2.2 (Soundness). An abstract reduction system is sound if any reachable
terminal state represents a valid answer to the input problem.

Definition 2.3 (Completeness). An abstract reduction system is complete if the
system can reach a terminal state from each initial state.

Definition 2.4 (Termination). An abstract reduction system is terminating if there
does not exist an infinite application of reductions for any initial state to the system.

Definition 2.5 (Correctness). An abstract reduction system is correct if the system
is sound and complete.

For correctness two cases are considered: for total correctness the system always
has to return an answer, and hence, the system has to be terminating. The second
case is partial correctness: if the system produces an answer, than this answer is
valid.
Reconsider the computation of the digit sum in the example above. Since the

computation algorithm always returns the valid answer for the given input n, the
presented system is sound, and furthermore, this system is already partially correct.
Furthermore, the system is terminating, because the remaining number of digits
decreases with each application of the reduction and there exists a lower bound for
which the system terminates. Given an arbitrary input n, then at most log10(n)+1
steps are required to produce the output. Hence, the system is also totally correct.
Finally, this system is also complete, because for each input there exists a reduction
to reach a terminal state.

2.2. Propositional Logic

In this section we introduce the notation of the syntax and the semantics of proposi-
tional logic. The semantics is enhanced so that partial interpretations are supported.
In a next step, special notions that are used to describe SAT solving techniques are
shown. Then, the notation for formula transformations is presented.

2.2.1. Syntax

Propositional logic is well known and its language is defined already, for example
in [vHLP07, Höl11]. Additionally, the symbols ⊤ and ⊥ are added to the set of
atoms, and therefore these symbols need to be taken into account in all definitions
as well.
To describe relations or high-level problems as a propositional logic formula, vari-

ables are necessary. To be able to introduce fresh variables during encoding a high-
level problem into propositional logic, the set of Boolean variables V is countable
infinite. To describe intermediate steps of formula manipulation the special sym-
bols ⊤ and ⊥, which denote true and false, are used in formulas for convenience.
Therefore, these symbols are added to the set of variables in order to obtain the set
of atoms A, in symbols A = V ∪ {⊤,⊥}.
A propositional formula is constructed as usual from the set of atoms A, the unary

operator ¬ for negation, and the binary connectives disjunction ∨, conjunction ∧,
implication→, equivalence↔, and exclusive-or ⊕. By L(V) we denote the set of all
propositional formulas over the Boolean variables V.
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2.2.1. Syntax

If a is an atom, then a and ¬a are literals, where a is a positive literal and ¬a
is a negative literal. The polarity of a literal x is positive if x is a positive literal.
Otherwise, the polarity of x is negative.

The complement x of a literal x is a if x is the negative literal ¬a, and ¬a if x is the
positive literal a. This complement operation is also applied to sequences and sets of
literals: the complement S of a sequence S = (xi | i ≥ 0) of literals is S = (xi | i ≥ 0).
Likewise, the complement M of a set M of literals is M = {x | x ∈M}.
When reasoning with formulas, we often use algorithms which iterate over the

variables or the literals that occur in a formula. Therefore, functions are required
that return these sets for given formulas. Let var be the function that maps a literal
to the corresponding variable. Let F be a propositional formula, then the unary
function vars returns the set of propositional variables that occur in the formula F .
The unary function lits applied to a formula returns the set of maximal literals of
the formula F :

lits(F ) =


{x} if F is the positive literal x

{¬x} if F is the negative literal ¬x
lits(G) if F = ¬G and G ̸∈ A
lits(G) ∪ lits(H) if F = (G ◦H) for ◦ ∈ {∧,∨,→,⊕,↔}

The unary function atoms applied to a formula returns the set of atoms that occur
in the formula F . Furthermore, the functions vars, lits and atoms can be applied to
sets of formulas and sequences of formulas. Then, the functions return the union of
the results that would be obtained when the function is applied to a single element
of such a set or sequence.

When there exist two literals x and y in a high-level language description of a
problem that encode exactly the same information, then the propositional formula
that encodes this problem might become smaller by exploiting this knowledge. In-
stead of using both of these two literals, a representative literal is chosen, for example
y, and afterwards only y is used in the formula. This process can be applied also to
an existing formula F and two literals x and y that encode the same information by
replacing x by the representative y: F [x →→ y] denotes the formula obtained from
F by replacing all occurrences of the literal x with the literal y and replacing all
complements of x with the complement of y:

F [x →→ y] =



y if F = x

y if F = x

z if F = z and z is a literal, z ̸= x, z ̸= x

¬G[x →→ y] if F = ¬G and G ̸∈ A
(G[x →→ y] ◦H[x →→ y]) if F = (G ◦H) for ◦ ∈ {∧,∨,→,⊕,↔}

SAT solvers work on a special kind of formulas, namely formulas in conjunctive
normal form (CNF). A formula in CNF is a finite conjunction of clauses, where a
clause is a finite disjunction of literals. The empty disjunction is defined as ⊥, and
the disjunction of a single literal x is the literal x. The empty formula is defined
as ⊤, and the conjunction of a single clause C is the clause C. Since SAT solvers
ensure that no duplicate literals occur in a clause, a clause may also be regarded as
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2.2.2. Semantics

Table 2.1.: Standard notation used in this thesis. If not indicated otherwise, the fol-
lowing symbols will denote formulas, clauses, literals or interpretations.

Formulas F G H
Clauses C D
Literals l v w x y z
Interpretations I J

a set of literals. Furthermore, a formula is a multiset of clauses,1 because not all
operations inside a SAT solver ensure that duplicate clauses are eliminated. The set
operations are overloaded to multisets. For example, enumerating all clauses C in
a formula F , i.e. C ∈ F , will enumerate duplicate clauses.

Invariant 1 (Duplicate Literals). There are no duplicate literals inside a clause.

Moreover, a unit clause is a clause with a single literal, a binary clause is a clause
with two literals, and a ternary clause is a clause with three literals. Clauses and
formulas in CNF are denoted as disjunctions and conjunctions, respectively, but
with algorithms and functions the set respectively multiset representation is used
to apply set respectively multiset operations. Then, a clause C contains a literal
l if l ∈ lits(C). Due to the commutativity and associativity of conjunction and
disjunction, the brackets inside the formulas are dropped whenever convenient. For
instance, a unit clause C with the literal x is written as C = (x), and a ternary
clause D with the literals x, y and z is written as D = (x ∨ y ∨ z). A clause C is
called larger than another clause D if C contains more literals than D, i.e. |D| < |C|.
Similarly, D is smaller than C. The notation Fx describes the conjunction of those
clauses of a formula F that contain the literal x as an element:

Fx =


C∈F,x∈C
C.

For this thesis we define a set of default symbols whose meaning is specified in
Table 2.1. Furthermore, by abuse of notation we sometimes write F instead of ¬F .

2.2.2. Semantics

Given a high-level problem with variables, then a solution to this problem is an
assignment to the variables of the high-level problem. Such a solution can be ob-
tained by starting with an empty assignment and then iteratively adding variable
assignments until the problem is solved. Similarly, for Boolean formulas a partial
interpretation assigns truth values to some variables. Such an interpretation can be
empty, which means that no truth values are assigned, the interpretation can map
all variables V to a truth value, or just a proper subset of V. Not always considering
total interpretations is convenient, because when looking at a specific formula F

1In the literature formulas are claimed to be sets, however, extra care needs to be taken, because in
this case the implementation of an algorithm must ensure that duplicate clauses are not added
to the formula.
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2.2.2. Semantics

Table 2.2.: Rewrite rules to reduce a formula F that is of the given form. H is an
arbitrary formula.

Negation ⊤; ⊥ ⊥; ⊤
Disjunction (H ∨ ⊤) ; ⊤ (H ∨ ⊥) ; H (⊤ ∨H) ; ⊤ (⊥ ∨H) ; H
Conjunction (H ∧ ⊤) ; H (H ∧ ⊥) ; ⊥ (⊤ ∧H) ; H (⊥ ∧H) ; ⊥
Implication (H → ⊤) ; ⊤ (H → ⊥) ; H (⊤ → H) ; H (⊥ → H) ; ⊤
Xor (H ⊕⊤) ; H (H ⊕⊥) ; H (⊤⊕H) ; H (⊥⊕H) ; H

Equivalence (H ↔ ⊤) ; H (H ↔ ⊥) ; H (⊤ ↔ H) ; H (⊥ ↔ H) ; H

the set of variables in the formula vars(F ) is finite, whereas the set of variables V is
infinite.

Definition 2.6 (Interpretation). An interpretation I is a partial mapping from the
set of variables V to the set of truth values {⊤,⊥}.

The (partial) mapping of variables to truth values can be represented by a (not
unique) sequence of literals. On the other hand, a sequence S of literals, which does
not contain complementary literals, represents an interpretation I by the convention
that all literals in the sequence are mapped to ⊤. An interpretation I is total
if the interpretation maps all variables v ∈ V to a truth value. Otherwise, the
interpretation is called partial. The empty sequence is denoted by ϵ. The set of
variables that are mapped to a truth value by an interpretation I is the domain of
the interpretation, in symbols dom(I).
A formula can be evaluated with respect to an interpretation by replacing the

variables with their assigned truth values. Observe that the initial formula can
already contain the symbols ⊤ and ⊥, which also denote truth values. These two
symbols are no variables, and hence they are not mapped to a truth value by the
interpretation. However, these symbols can be used to evaluate a formula. Since
interpretations are partial mappings, the evaluated formula is not always a truth
value as in classical logic. Instead, variables that occur in the formula but which are
not mapped by the interpretation can remain in the formula. To obtain a unique
normal form that can be a single truth constraint, simplification rules are applied
to the intermediate formula: Let I be an interpretation, F a formula and G be
the formula that is obtained from F when each variable v ∈ dom(I) is replaced by
I(v). The formula F |I is the normal form of G with respect to the reduction system
depicted in Table 2.2. Then I reduces F to the formula F |I . The reduction system
in Table 2.2 is terminating, because each application of a rule of the system reduces
the length of the formula by at least one symbol. Furthermore, the given reduction
system is confluent, because all critical pairs lead to the same normal form.

Lemma 2.2.1 (All critical pairs lead to the same normal form). All critical pairs
in the rules in Table 2.2 lead to the same normal form.

Proof. The proof that the same normal form is reached from a critical pair is done
for each critical pair, where a critical pair is a pair of two input formulas that can
have the same shape by replacing the variable sub formulas. All critical pairs are
grouped by the used propositional operation. Furthermore, the first formula has the
variable sub formula always on the left side of the binary connective and the second
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formula has the variable always on the right side of the binary connective. Then,
the following critical pairs have to be analyzed:

▶ Disjunction:

– (H ∨⊤) ; ⊤ and (⊤∨H ′) ; ⊤ with H = ⊤ and H ′ = ⊤ evaluate to ⊤
in both cases.

– (H ∨ ⊤) ; ⊤ and (⊥ ∨H ′) ; H ′ with H = ⊤ and H ′ = ⊤ evaluate to
⊤ and H = ⊤.

– (H ∨ ⊥) ; H and (⊤ ∨H ′) ; ⊤ with H = ⊤ and H ′ = ⊥ evaluate to
H = ⊤ and ⊤.

– (H ∨ ⊥) ; H and (⊥ ∨H ′) ; H ′ with H = ⊥ and H ′ = ⊥ evaluate to
H = ⊥ and H ′ = ⊥.

▶ Conjunction:

– (H ∧ ⊤) ; H and (⊤ ∧H ′) ; H ′ with H = ⊤ and H ′ = ⊤ evaluate to
H = ⊤ and H ′ = ⊤.

– (H ∧ ⊤) ; H and (⊥ ∧H ′) ; ⊥ with H = ⊥ and H ′ = ⊤ evaluate to
H = ⊥ and ⊥.

– (H ∧⊥) ; ⊥ and (⊤∧H ′) ; H ′ with H = ⊤ and H ′ = ⊥ evaluate to ⊥
and H ′ = ⊥.

– (H ∧⊥) ; ⊥ and (⊥∧H ′) ; ⊥ with H = ⊥ and H ′ = ⊥ evaluate to ⊥
and ⊥.

▶ Implication

– (H → ⊤) ; ⊤ and (⊤ → H ′) ; H ′ with H = ⊤ and H ′ = ⊤ evaluate
to ⊤ and H ′ = ⊤.

– (H → ⊤) ; ⊤ and (⊥ → H ′) ; ⊤ with H = ⊥ and H ′ = ⊤ evaluate to
⊤ and ⊤.

– (H → ⊥) ; H and (⊤ → H ′) ; H ′ with H = ⊤ and H ′ = ⊥ evaluate
to ⊤ and ⊥, where ⊤ is evaluated to ⊥.

– (H → ⊥) ; H and (⊥ → H ′) ; ⊤ with H = ⊥ and H ′ = ⊥ evaluate to
⊥ and ⊤, where ⊥ is evaluated to ⊤.

▶ Xor

– (H ⊕⊤) ; H and (⊤⊕H ′) ; H ′ with H = ⊤ and H ′ = ⊤ evaluate to
⊤ and ⊤, which both evaluate to ⊥.

– (H ⊕⊤) ; H and (⊥⊕H ′) ; H ′ with H = ⊥ and H ′ = ⊤ evaluate to
⊥ and ⊤, where ⊥ is evaluated to ⊤.

– (H ⊕⊥) ; H and (⊤⊕H ′) ; H ′ with H = ⊤ and H ′ = ⊥ evaluate to
⊤ and ⊥, where ⊥ is evaluated to ⊤.

– (H ⊕⊥) ; H and (⊥⊕H ′) ; H ′ with H = ⊥ and H ′ = ⊥ evaluate to
⊥ and ⊥.
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▶ Equivalence

– (H ↔ ⊤) ; H and (⊤ ↔ H ′) ; H ′ with H = ⊤ and H ′ = ⊤ evaluate
to ⊤ and ⊤.

– (H ↔ ⊤) ; H and (⊥ ↔ H ′) ; H ′ with H = ⊥ and H ′ = ⊤ evaluate
to ⊥ and ⊤, where ⊤ is evaluated to ⊥.

– (H ↔ ⊥) ; H and (⊤ ↔ H ′) ; H ′ with H = ⊤ and H ′ = ⊥ evaluate
to ⊤ and ⊥, where ⊤ is evaluated to ⊥.

– (H ↔ ⊥) ; H and (⊥ ↔ H ′) ; H ′ with H = ⊥ and H ′ = ⊥ evaluate
to ⊥ and ⊥, which both evaluate to ⊤.

Since all critical pairs lead to the same normal form, for each pair of a formula
and an interpretation exactly one normal form exists. The formula F |I is the reduct
of the formula F with respect to the interpretation I. Examples for the reduct are
given in Example 1.

Example 1: Partial Interpretations and Reducts Let F formula be a
formula in CNF with F = ((a ∨ b) ∧ (a ∨ b ∨ c)). With the partial in-
terpretation I = (abc) the reduct F |I = ⊤ is the empty conjunction: the
formula G, after replacing all variables in F with their truth value in I is
G = ((⊤ ∨⊤) ∧ (⊤ ∨⊤ ∨ ⊤)). Then, the reduction rules reduce the first clause
to ⊤ and the second clause is also reduced to ⊤ with the intermediate steps
(⊥ ∨⊥ ∨⊤) and (⊥ ∨⊤).
Another partial interpretation is I ′ = (c). After replacing in F the variable in

dom(I ′) with their truth values the formula G′ = ((a∨b)∧(a∨b∨⊥)) is obtained.
After the only possible reduction we get the reduct F |I′ = ((a ∨ b) ∧ (a ∨ b)).

Since in a formula all variables that are mapped to a truth value by an interpretation
are replaced by this truth value, these variables do not occur in the resulting reduct
any longer:

Corollary 2.2.2 (A reduct does not contain variables of the used interpretation).
The reduct F |I of a formula F with respect to an interpretation I does not share
any variable with that interpretation, i.e. vars(F |I) ∩ dom(I) = ∅.

Additionally, when a formula in CNF is reduced by an interpretation, then the
reduct F |J is in CNF again.

Corollary 2.2.3 (Reducts of a CNF formula are in CNF). The reduct F |I of a
formula F in CNF with respect to an interpretation I is in CNF.

The reason for Corollary 2.2.3 is the following: since (⊥∨x) is reduced to x, falsified
literals are removed from the clauses. Then, all clauses stay clauses, even when some
clauses might be turned into a unit clause or the empty clause. Furthermore, the
disjunction (⊤ ∨ x) is reduced to ⊤ and the conjunction (⊤ ∧ C) is reduced to C.
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Hence, a clause with a satisfied literal is removed from the formula. The resulting
reduct contains clauses that are not satisfied and which do not contain falsified
or satisfied literals. Finally, the reduct can be the empty formula, or this reduct
contains only a single clause.
In case an interpretation I reduces a formula F to a truth constant, there are

two special cases. If F |I = ⊤, then the formula is satisfied by the interpretation I
and I satisfies F . Otherwise, if F |I = ⊥, then F is falsified by I and I falsifies
F . In case an interpretation I satisfies a formula F , then I is called a model of the
formula F . Since interpretations are partial, an interpretation may neither satisfy
nor falsify a formula, because the reduct can be a formula that is not a single truth
constant. A partial interpretation I is called a complete interpretation with respect
to a formula F if this interpretation maps exactly all variables that occur in the
formula F to a truth value, i.e. dom(I) = vars(F ). In addition, we define a complete
model as a complete interpretation that satisfies the formula F . Likewise, if a total
interpretation satisfies a formula, then this interpretation is called a total model of
the formula.

Definition 2.7 (Tautology). A formula F is a tautology if every complete interpre-
tation I is a model of the formula.

Example 2: Tautologies and Partial Interpretations Consider the for-
mula F = (x∨x). This formula reduces to ⊤ for any assignment of the variable
x and in classical logic the formula is said to be equivalent to ⊤. Since classical
logic considers only total interpretations, extra care needs to be taken for partial
interpretations. F does not reduce to ⊤ under all possible partial interpreta-
tions, namely not under those interpretations that do not assign a truth value
to x. Therefore, a formula is a tautology only with respect to complete inter-
pretations, because a partial interpretation does not always reduce a tautology
to ⊤.

Tautologies are redundant, because they are reduced to ⊤ by all complete and total
interpretations. Hence, tautologies do not represent valuable information, so that
SAT solvers remove tautological clauses from the input formula. The function isTaut
takes a clause C as its argument and returns ⊤ if C is a tautology, or ⊥ if the clause
is not a tautology:

isTaut(C) =


⊤ if the clause C is a tautology

⊥ otherwise.

Furthermore, the function woTaut is used to remove tautological clauses C from a
CNF formula F is used:

woTaut(F ) =


C∈F,
isTaut(C)=⊥

C.

Observe that non-tautological duplicate clauses stay in the formula.
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Given a high-level problem, the question is usually whether there exists a solution
for this problem. For example, does there exist a valid traffic light combination
such that cars on all lanes are allowed to enter the crossing? Likewise, the property
whether there exists a solution is defined for formulas. A formula F is satisfiable if
there is a model for F ; otherwise, a formula F is unsatisfiable. Then, the problem
in the focus of this thesis is defined as follows:

Definition 2.8 (Satisfiability Testing). The SAT problem is the question whether
a given formula is satisfiable.

Based on the above properties, interesting subsets of the set of formulas can be
identified. The set of all unsatisfiable formulas is denoted as UNSAT, and the set of
all satisfiable formulas is denoted as SAT. Since a formula F cannot be satisfiable
and unsatisfiable at the same time, the intersection of the sets SAT and UNSAT is
empty, and the set of all formulas is the union of these two sets, i.e. SAT ∪ UNSAT.
Furthermore, the set of all tautological formulas is denoted by TAUTOLOGY. This set is
a proper subset of all satisfiable formulas, i.e. TAUTOLOGY ⊂ SAT, since all tautologies
are satisfiable, but there exist satisfiable formulas that are no tautologies. Example 3
provides example formulas that illustrate these properties.

Example 3: Tautologies and Other Formulas Let V = {a, c, b, d, . . .}
be the set of propositional variables and F be the formula

F = (((a ∧ b) ∨ (a ∧ b)) ∨ ((a ∧ b) ∨ ((a ∧ b) ∨ c))).

This formula is a tautology, because the formula is satisfied by all complete
interpretations. Hence, F is also satisfiable. A model is J = (abcd). Evaluating
the formula with this interpretation gives F |J = ⊤. Another model is J ′ = (abc).
Furthermore, the interpretation J ′′ = (ab) is also a model for the formula F ,
because the formula F reduces to ⊤ with J ′′. The reader should observe that
this interpretation does not map all variables of the formula F to a truth value
and nevertheless satisfies the formula.
Another satisfiable formula is G = (c∨ d), but G is no tautology, because the

complete interpretation J ′ = (cd) falsifies the formula, i.e. G|J ′ = ⊥.
A formula that does not have a model is the formulaH = (((a∨b)∧(a∨b))∧b).

Let I be an interpretation that should satisfy H. To satisfy the outermost
conjunction, the variable b has to be mapped to ⊥ to satisfy the literal b, i.e.
I(b) = ⊥. Furthermore, the two clauses (a ∨ b) and (a ∨ b) have to be satisfied.
Independently of the truth value assigned to a the variable b has to be satisfied,
i.e. I(b) = ⊤. This required mapping is a contradiction to mapping I(b) = ⊥,
and therefore, the formula H is unsatisfiable.

A relation between interpretations and formulas can be developed. Again, partial
interpretations have to be taken into account. With a model and a formula, the
entailment relation between two formulas can be defined. Finally, this entailment
is used to describe below the model relation between a partial interpretation and a
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formula with a trick: the partial interpretation is turned into a set of formulas and
next the entailment relation is used:

Definition 2.9 (Entailment). A set of formulas M entails a formula G, in symbols
M |= G, if all total interpretation I that satisfies all formulas F ∈M also model G.

When the set M contains only a single formula F , then the notation F |= G is used
instead of {F} |= G. By abuse of notation we overload the model relation also for
partial interpretations, where the partial interpretation is the representative of all
total interpretations that contain this partial interpretation:

Definition 2.10 (Model Relation). Let I be an interpretation, F be a formula, and
M be the set of all literals in the sequence I. Then I models F , in symbols I |= F ,
if the set M entails F .

Example 4: Modeling Formulas Consider the formula F = (a ∧ (b ∨ c)).
Then, a total interpretation I = (abc . . .) models F , because F is reduced to
F |I = ⊤.
Similarly, the partial interpretation J = (abc) models F , because the set M

of the literals in J is M = {a, b, c}. Now M models F along the following
argumentation: any total model I ′ for all formulas in M contains the literals a,
b and c, so that I ′ reduces F to F |I′ = ⊤. This case is still obvious, because J
maps all variables of F to a truth value.
Now, consider the interpretation J ′ = (ab), which does not assign a truth

value to the variable c. The corresponding set of literals is M ′ = {a, b}. For
M ′ |= F , any total interpretation I ′′ has to map a and b to ⊤. The variable c
can be mapped by I ′′ to any truth value, so this value is represented with a I ′′(c)
in the reduced formulas. Given such a total interpretation for M , then G is the
formula G = (⊤ ∧ (⊤ ∨ I ′′(c))) after replacing all variables with their mapped
truth value. The normal form of G with respect to the rules in Table 2.2 is
obtained with the intermediate step G′ = (⊤ ∧ ⊤). Then, the normal form is
F |I′′ = ⊤. Hence, J ′ models the formula F .

Formula Relations

Two formulas F and G can be related to each other. A rather weak but symmetric
relation is whether there exists a model for both formulas:

Definition 2.11 (Equisatisfiability). Two formulas F and G are equisatisfiable, in
symbols F ≡SAT G, if F is satisfiable if and only if G is satisfiable.

To describe formula simplification techniques, let G be the formula that is obtained
by simplifying a formula F (see, for example, Section 3.2.8). Such a transformation
preserves equisatisfiability, because solving the simplified formula should allow to
construct a solution for the formula F . If G is unsatisfiable, then F is unsatisfiable
as well. On the other hand, given G is satisfiable then F is satisfiable. Usually, an
additional condition is preserved as well: a model of the formula F is also a model
of the formula G. However, a model for G needs not to be a model of F .
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Example 5: Equisatisfiable Formulas Let F,G and H be the formulas
F = (x ∧ y) and G = x and H = y. Then, G ≡SAT H, because JG = x is a
model for G and JH = y is a model for H. However, G ̸|= H, because the
total interpretation I = (xy . . .) satisfies G but falsifies H. The formula F is
satisfiable as well, for instance with JF = (xy), so that F ≡SAT G ≡SAT H.
Furthermore F |= G, because any total model of F maps x to ⊤, so that such
an interpretation reduces G to ⊤.

Definition 2.12 (Unsatisfiability Preserving Consequence). A formula G is an
unsatisfiability preserving consequence of a formula F , in symbols F |=UNSAT G,
if F |= G and if F is unsatisfiable then G is unsatisfiable.

Consider the formulas G and F in Example 5 again: since F ≡SAT G and F |= G,
the formula G is an unsatisfiability preserving consequence of F . There also exist
pairs of formulas F and G such that each model of the formula F is also a model
of the formula G and vice versa. Then, each total interpretation reduces the two
formulas always to the same truth value.

Definition 2.13 (Equivalence). Two formulas F and G are equivalent, in symbols
F ≡ G, if F |= G and G |= F .

Example 6: Equivalent Formulas Let F,G and H be the formulas
F = (x ∧ y) and G = ((x ∧ y) ∧ z) and H = ((x ∧ y) ∧ (z ∨ z)). Then, F ̸≡ G,
because the total model I = (xyz . . .) of F reduces G to ⊥. Note, z ̸∈ vars(F )
but z ∈ vars(G), so that the truth value of z does not influence the reduction
of F , but the reduction of G is influenced. However, the irrelevance of z is no
problem in general, because z ∈ vars(H) and still F ≡ H. Any total model I ′

of F has to satisfy x and y, and maps z to an arbitrary truth value. Then, the
replacement of the variables with their truth values in I ′ is either

H = ((⊤ ∧⊤) ∧ (⊤ ∨⊤)), or H = ((⊤ ∧⊤) ∧ (⊥ ∨⊥)).

Since both cases are reduced to ⊤, any interpretation I ′ is a model for H. The
other way around, any total model of H also satisfies F , because x and y have
to be satisfied to satisfy H.

Corollary 2.2.4 (Reducts of equivalent formulas are equivalent). Given an inter-
pretation and two equivalent formulas with F ≡ G, then the two formulas F |I and
G|I are equivalent, i.e. F |I ≡ G|I .

A proof of this corollary is given for example in [Phi13]. More relations between
two formulas are presented in Chapter 3. This chapter also shows which relation is
covered by another relation and provides counterexamples if such a covering does
not hold.
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2.2.3. Formula Transformations

Since SAT solvers work on formulas in CNF, but problems might be specified in
general propositional logic, a translation process from general propositional logic to
CNF is required. Following the translation rules of propositional logic, a formula F
can be turned into a CNF formula G based on the connectives in the formula F .
When a formula F is transformed into another equivalent formula F ′, the notation
F ≡ F ′ is used. The transformation of an arbitrary propositional logic formula con-
taining any of the given connectives {∧,∨,¬,→,⊕,↔} introduced in Section 2.2.1
can be achieved with a small set of transformation rules.
To transform a generic propositional logic formula F into a CNF formula that is

represented by G, the following rules can be applied. First, G is initialized as the
multiset of formulas G = {F}. Next, G is rewritten into a multiset of clauses. Each
of the following basic transformation rules takes an element H of the multiset G
that contains another element K that is not a literal and has the shape of the above
line of the rule. The rule replaces this element K with the elements of the shape
below the line. In case the shape below the line is of the form D1 | D2, then the
element H is duplicated in G. In the first duplicate the matching pattern is replaced
with D1 and in the second duplicate the matching pattern is replaced with D2.

D

D
,

(D1 ∧D2)

D1 | D2
,

(D1 ∧D2)

(D1 ∨D2)
,

(D1 ∨D2)

D1 | D2

.

With the given set of rules, any propositional formula that contains only the connec-
tives {¬,∧,∨} can be translated into a CNF formula in the multiset representation.
For the remaining connectives {↔,→,⊕} there exist rules to translate them into
formulas in which only the first three connectives may occur:

(D1 → D2)

(D1 ∨D2)
,

(D1 ↔ D2)

((D1 → D2) ∧ (D1 → D2))
,

(D1 ⊕D2)

(D1 ↔ D2)
.

When the latter three rules are used to eliminate the connectives {→,↔,⊕} from a
formula F , and afterwards the basic translation rules are applied until termination,
the final formula is an equivalent formula in CNF.
The above transformation rules can increase the size of a formula – in the worst

case exponentially – for example when the initial formula F consists of disjunctions
of conjunctions. To avoid this exponential increase, introducing fresh variables into
the propositional formula has been first presented by Tseitin [Tse68], and is known
as the Tseitin transformation. Whenever a transformation rule would duplicate the
current element to perform two replacements, a fresh variable is introduced to avoid
this duplication:

Definition 2.14 (Fresh Variable). A variable x that does not occur in a formula F
is called a fresh variable with respect to that formula.

With this technique, the translation rules that duplicate matching patterns can be
replaced by rules that use a fresh variable x as follows:

(D1 ∧D2)

D1 | D2
⇒ (D1 ∧D2)

x
and G := G ∪ {(x ∨D1), (x ∨D2), (x ∨D1 ∨D2)}

(D1 ∨D2)

D1 | D2

⇒ (D1 ∨D2)

x
and G := G ∪ {(x ∨D1), (x ∨D2), (x ∨D1 ∨D2)}
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Consider the replacement of the first rule. Instead of duplicating a whole element
of the multiset G, a new element equivalent to x ↔ (D1 ∧ D2) is added to G
that needs to be translated into CNF as well. This new translation can be done
in a polynomial number of steps and polynomial space with respect to the size of
D1 and D2. Therefore, by using the Tseitin translation any propositional logic
formula F can be translated into an equisatisfiable propositional logic CNF formula
G′ with a polynomial number of steps. The two formulas F and G′ are usually not
equivalent, because the fresh variable x can be assigned arbitrarily in the original
formula whereas in the new formula x depends on the formulas D1 and D2. More
details on the relation of these formulas are discussed in Section 3.1.
To avoid infinite recursions, the equation (x ↔ (D1 ∧ D2)) is added in its CNF

representation: (x ∨D1) ∧ (x ∨D2) ∧ (x ∨D1 ∨D2). Similarly, for the second rule
the fresh variable x represents the equation (D1 ∨D2) and the corresponding CNF
is added to G.

2.2.4. Formula Translation

Propositional logic allows to use only Boolean variables. However, problem descrip-
tions might contain variables that represent integers, intervals, or non-numerical
domains like colors. Such a richer language is, for example, used in the domain of
constraint satisfaction problems (CSP) [RBW06], answer set programming [BET11,
GKS12] or SAT modulo theories (SMT) [BSST09].
For the relation between propositional logic formulas the above operators, for

example ≡SAT or ≡, can be used. Throughout this thesis, the operator ⇐⇒ is used
to denote that a formula from a higher language is translated into a representative
formula in propositional logic. First, a mapping from high-level variables to Boolean
variables has to be defined. Next, for such a representative formula, each model of
the formula represents a solution of the high-level problem. A model is required to
map all the variables that are necessary to reconstruct the values of the high-level
variables with the given mapping.
When each solution to the high-level problem is represented by a partial model

of the propositional logic formula, where the model maps only the Boolean vari-
ables that are required for the representation of the high-level problem, then the
corresponding formula is a correct encoding of the high-level problem. Similarly,
when there exists no model of the formula, then there is neither a solution for the
high-level problem.
The high-level domains can be represented with Boolean variables by labeling each

element of the domain with a consecutive index. Then, this index can be represented
with Boolean variables, for example in a unary representation or a binary representa-
tion. More details on formula translation can be found in [RBW06,BET11,BSST09].
In Chapter 4 a high-level problem is translated into a SAT problem.

2.3. Computer Architecture

Since this thesis focuses on the development of parallel SAT solvers for the multi-
core architecture, this architecture is introduced step by step starting with basic
computer components and the memory hierarchy. Parallel computing with the help
of computing clusters and network communication is out of the focus of this thesis.
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Next, this memory hierarchy is refined and components are given that help to im-
prove the performance under typical workloads for computers. Finally, the hardware
that is used in modern multi-core central processing units (CPUs) is presented. The
underlying architecture for experimental data presented in this thesis is always the
same: an Intel Xeon CPU E5-2670 with 2.6GHz (for more details see Section 2.3.5).
Although general purpose graphic processing units(GPGPU) [OLG+07,Har05] can

execute massively parallel algorithms, GPGPUs are not considered in this thesis. A
first reason is that currently there does not exist a massively parallel algorithm for
solving SAT, and furthermore the memory bandwidth as well as the local storage
per execution unit in GPGPUs is quite limited. Furthermore, the memory footprint
of modern SAT solvers is quite high (see Section 2.3.1).

2.3.1. Basic Computer Architecture

To execute the instructions of the program, a processing unit is needed. Further-
more, memory is required to store the data.

Processing Units The actual component that executes the work is called CPU.
The CPU reads the instruction from the program and processes the input data
accordingly. To be more consistent, the unit that performs the actual execution is
called core. Then a multi-core CPU has multiple cores that can execute different
instructions on different data. In Flynn’s taxonomy of parallel processing this scheme
is calledmultiple instruction multiple data [Fly72]. In a cycle, a core executes a single
(basic) instruction. For a core with a cycle frequency of 2.6GHz the time for a single
cycle is 0.38 nano seconds. Such a core is able to execute 2.6 billion instructions in
one second. This number is only an average number. Modern architectures split the
execution of a single instruction and use pipelines to increase the number of total
instructions that can be executed in one cycle. Furthermore, multiple execution units
are utilized in parallel. An interesting measure for the execution of a program is the
ratio clocks per instruction (CPI): the higher this ratio, the poorer is the performance
of the program on the given architecture. Discussing the whole architecture of the
execution chain of modern cores is beyond the scope of this introduction. The
interested reader can find more details in [HP03,Roj97].

Memory The input data of a program is usually stored in a file that is read before
the execution of the algorithm begins. During execution, additional data structures
might be allocated in main memory. The performance of memory can be measured
in the time it takes to access data. The time unit can either be measured in nano
seconds, or in the number of cycles of a core. The total amount of memory that
is used by a program is called its memory footprint. Summing up the size of the
input data and all other data structures, the memory footprint of a program can be
calculated. Since memory became comparatively cheap, the amount of memory that
is required by a program is usually no limitation for the execution of an algorithm.
During designing an algorithm there is the choice whether the memory footprint
should be low or whether the time complexity of the algorithm should be low. For
some algorithms intermediate calculation results can be cached to speed up the
program that implements the algorithm. In Example 7 an algorithm is given where
the run time complexity of the algorithm can be reduced by using more memory.
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Another well-known technique that utilizes this trade-off is dynamic programming
(for example [DPV08]) or bloom filters [Blo70].
The memory access pattern is another interesting property of an algorithm. De-

pending on the algorithm, memory accesses can either be consecutive (or linear),
random or a mixture of both. Furthermore, an algorithm is called data local if the
algorithm spends many execution steps on a small amount of data.

Example 7: Execution Steps versus Memory Footprint Let S be a
set of integers i and further assume these integers range from 0 ≤ i ≤ n. The
value of n is known before the algorithm is executed on this set. The following
two algorithms implement such a set S with the given conditions:

space saving

list S

contains (integer a)

1 for i in S

2 if a = i then return true

3 return false

insert (integer a)

1 if not contains(a) then

2 append a to S

erase (integer a)

1 if contains(a) then

2 remove a from

time saving

list S

array T with n elements

contains (integer a)

1 return T[a]

insert (integer a)

1 if not contains(a) then

2 append a to S

3 T [a] = true

erase (integer a)

1 if contains(a) then

2 remove a from S

3 T [a] = false

The two implementations for a set use a list as the base data structure. This
list can contain at most n elements, and thus, the space saving approach (left
side) stores only n elements. On the other hand, for finding an element in the
set O(n) steps have to be done. To avoid this time complexity, the time saving
approach (right side) introduces an array T of Boolean variables, where the i-th
Boolean variable indicates whether the corresponding integer i currently occurs
in the set. Thus, the required storage for this implementation doubles. Checking
whether an integer i occurs in this set can be checked by a single instruction.
Little overhead is introduced, because the array T has to be maintained during
insertion and deletion. Thus, in these two methods another instruction is added
as well. However, these two methods also call the method contains, which
has a linear time complexity in the space saving implementation and a constant
complexity in the time saving implementation. Concerning the run time of this
algorithm and if n is sufficiently large, using the time saving approach is always
recommended, even if additional cache misses might be introduced.
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2.3.2. Parallel Execution

A process is the execution of a program. This process can allocate resources, for
example memory or a file. The type of parallel execution dealt with throughout this
thesis does not consider running multiple processes in parallel.

Parallel Algorithms for the Multi-Core Architecture Parallel execution is achieved
by creating threads. A process A can have multiple threads Ti. Differently to
multiple processes, threads can access the same resources, for example memory,
concurrently.

Definition 2.15 (Shared Data). Data that is accessed by multiple threads is called
shared data.

Definition 2.16 (Private Data). Data that is accessed by only a single thread is
called private data.

Accessing private data is safe in a multi thread environment. However, if multiple
threads work with shared data, the consistency of this data needs to be ensured.
Several technologies have been developed to ensure data consistency, namely lock-
ing to restrict access to critical sections, lock free data structures or transactional
memory [HWC+04]. Sometimes data accesses can be arranged in a way that in-
consistencies cannot occur, even when shared data can be accessed simultaneously.
The reason for this safety is that the order of read and write operations on the same
piece of data is not changed for the used architecture x86 and x64, and the order of
read and write operations for a single thread is not swapped.

Definition 2.17 (Critical Section). A critical section is a part of an algorithm that
accesses a shared resource that must not be concurrently accessed.

Locks To enable access to a critical section only for a single thread, locks can be
used [Tan07]. Locks can be based on atomic operations. These operations ensure
that the whole operation is executed in a single step without being interrupted by
another instruction of another thread. If the critical section consists of a single sim-
ple instruction such as addition or multiplication, atomic operations are sufficient to
guarantee data consistency. Otherwise, atomic compare-and-exchange instructions
can build spin locks to perform busy waiting [MCS91].
There also exist locks that suspend the waiting thread until the critical section

is free. These locks can be based on semaphores or on waiting for a conditional
variable [Tan07]. Then, the waiting thread sleeps and does not consume cycles.
In semaphores the threads are awoken in the order they tried to enter the critical
section. When using conditional variables, all threads are awaked once the variable
changes its value. Thus, the latter mechanism can be used only to signal waiting
threads that a certain condition has been reached. Compared to busy waiting,
semaphores and conditional variables introduce an overhead to the program.
Based on the operation in a critical section it might be safe to let multiple threads

enter. Assume, for example, that all threads only read data in the critical section:
no data inconsistency can be produced. However, as soon as one thread wants to
write data, no other thread should be reading the shared data any more. For this
special situation read-write locks have been developed. Depending on the role of
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the entering thread these locks ensure that the thread is either blocked or can enter
the critical section. Especially in a scenario with many readers and few writers
this special lock is useful, because less reading threads are blocked compared to
sequentializing the critical section for all threads.
In the following we refer to workers to talk about parts of the algorithm being

executed in parallel. When locks are used in an incorrect way, then deadlocks can
occur. To show that the implementation of a parallel algorithm is deadlock free, the
Coffman Conditions [CES71] can be used. They state that in a concurrent environ-
ment deadlocks arise only if the following four conditions are met simultaneously:

▶ only a single worker can execute a part of the algorithm at a time (mutual
exclusion condition),

▶ resources are not acquired atomically (lock a resource, wait for the next re-
source),

▶ locks cannot be preempted (return lock if overall locking procedure fails),

▶ and resources can be locked in a circular manner (circular wait condition).

As long as each step of the algorithm ensures that at least one of the above four
conditions is violated, then according to [CES71] the algorithm cannot get stuck in
a deadlock.

Measuring and Comparing Parallel Algorithms For measuring execution time two
cases have to be analyzed. For a sequential algorithm the time that is required to
execute the algorithm is also the same time a core spends to do this computation.
Once two cores can be used independently, there is a difference between the time
that is spent for the execution and the actual computation time. Therefore, two
different times can be measured.

Definition 2.18 (CPU Time). The CPU time is the sum of all the time that is
spent by all used threads to actively execute an algorithm.

Definition 2.19 (Wall Clock Time). The wall clock time is the human perception
of the passage of time of the execution of an algorithm.

Observe that the CPU time is not increased by a sleeping thread, but the wall
clock time increases. For parallel algorithms both times are interesting. Usually,
the higher the number of used threads, the higher the CPU time. On the other
hand, for real world applications where sufficiently many cores are available usually
the wall clock time has to be minimized. To determine the efficiency of a parallel
algorithm, the CPU utilization is measured.

Definition 2.20 (CPU Utilization). Given a program execution with wall clock time
wt and CPU time wc, then the CPU utilization is the ratio wt

wc .

To evaluate a parallel algorithm, the following properties are used.

Definition 2.21 (Speedup). Given a problem, a sequential algorithm with run time
t for this problem and a parallel algorithm that needs time tp to solve the problem.
The speedup S of the parallel algorithm is the ratio between these two values: S = t

tp
.
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Table 2.3.: Run time comparison of running multiple solver incarnations in parallel.

Cores 1 2 4 8 16

Average Time 506.5 497.5 570.5 656 816.6

Solved 215 216 208 200 193

Average Efficiency 100% 102% 89% 77.2% 62%

A speedup S is called linear if for a parallel program with n threads the speedup
S = n. For S < n the speedup is called sub linear, and for S > n the speedup is
called super linear.

Definition 2.22 (Efficiency). Given a problem, a sequential algorithm with run
time t for this problem and a parallel algorithm with n threads that needs time tp to

solve the problem. The efficiency E of the algorithm is the ratio: E =
tp
t·n .

For deterministic sorting algorithms and similar algorithms calculating the above
two values is interesting, because the behavior of these algorithms is very simple and
thus the speedup and the efficiency represent the correlation between the sequential
and the parallel algorithm adequately. Given a sequential algorithm and a speedup
S, then the run time t of the parallelization can be predicted with tp = St. Similarly,
the efficiency can be used to check whether adding or removing threads to solve the
problem increase the performance with respect to the wall clock time. For algorithms
that should be executed on future massively parallel many-core architectures, these
two values are not promising, because of shared resources and non-uniform memory
accesses. The measurement of scalability adds another measure that is more suitable
for this scenario:

Definition 2.23 (Scalability). If the wall clock time of a parallel algorithm decreases
by adding more computation units, the algorithm is called scalable.

When running parallel programs on a multi-core CPU, then slowdowns have been
reported [MML10, ABK+14] due to shared resources. The theoretical measure of
speedup does not take this effect into account. Hamadi and Wintersteiger proposed
another way to compute the speedup [HW13]:

Definition 2.24 (Relative Speedup). Given a problem, a CPU with n cores, a
sequential algorithm with run time t∗1 when being executed n times simultaneously
for this problem and a parallel algorithm that needs time tp to solve the problem.

The relative speedup Sr is the ratio between these two values: Sr =
t∗1
tp
.

For SAT solving this relative speedup is highly relevant, because SAT solvers usually
have almost a random memory access pattern, and a high memory footprint. Given
the Intel Xeon CPU and the SAT solver Riss as well as the 300 formulas of the
application benchmark of the SAT competition 2013, then the average run times
presented in Table 2.3 for the commonly solved formulas can be measured, given
the used number of solvers on a main board and a time limit of 5000 seconds per
formula. As the table shows, for the given architecture with two CPUs, running
one or two solvers does not make a difference, since each solver has its private CPU
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with all the cache levels and memory busses. As soon as more solvers are added, the
cache and the memory busses have to be shared, so that the run time of the solver
slows down. The more solvers are used, the worse becomes the run time. When
the number of cores is fixed, the slowdown of the solver increases with an almost
constant factor with the time that is required to solve a single formula. This factor
depends on the used SAT solver [ABK+14] and the underlying algorithm, as well as
on the memory access pattern of the solver on the particular formula.

Another problem with the theoretical measurements arises when a satisfiable prob-
lem, for example searching an element in an array with n elements, is parallelized.
The element of interest is located at index k. Let the sequential algorithm check
each element starting with index i = 0. Now, the sequential algorithm requires k
steps to find the element. Consider a parallel algorithm A where the first thread
TA1 considers all odd elements starting with index i = 1, and the second thread
TA2 analyzes all even elements, starting with index i = 0. Such an algorithm needs
k
2 steps to find the element, so that the speedup SA = 2 and the efficiency EB is
100%. This speedup and efficiency is obtained for all values 0 ≤ k < n.

Now consider a parallel algorithm B where the first thread TB1 checks all elements
0 ≤ i < n

2 , and the second thread TB2 checks all elements n
2 ≤ i < n. Let k = n

2 ,
then the sequential algorithm needs k steps, but the parallel algorithm needs only
a single step. Now the speedup SB = k and the efficiency EB = k

2 . On the other
hand, for k = n

2 − 1, both algorithms require k steps, the speedup drops to SB = 1
2

and the efficiency is EB = 50%. There also exists a sequential algorithm such that
the speedup of algorithm B is constantly 2 for all indexes k. This algorithm has to
access the elements of the array in the following order: 0, n2 , 1,

n
2 +1, . . . , n2 −1, n−1.

Depending on the combination of a sequential and a parallel algorithm, especially
for satisfiable tasks, both super linear and sub linear speedups can be measured.
These speedups strongly depend on the input of the algorithms and whether the
algorithms are comparable.

2.3.3. The Memory Hierarchy

Over the years, the time to execute a single instruction on a core and accessing a
single byte on memory has diverged. As presented in [HP03,MV99], the execution
time of an instruction is many factors smaller than the time for accessing data.

Cache Due to this increasing gap, CPU manufacturers introduced caches between
the core and main memory. In modern CPUs, there are three levels of caches, called
level 1 (L1) cache, level 2 (L2) cache and level 3 (L3) cache [HP03]. A cache is used
as small and fast data buffer that stores the data that has been recently used by the
CPU. With increasing level, the size of the cache and the time to access the cache
increases. Table 2.4 gives the access cycles and sizes for different memory levels
of the used CPU and the number of cores that share the resource, underlining the
above statement. When higher levels in the memory hierarchy are accessed, then
usually additional penalty has to be paid.

Since most algorithms have some kind of data locality, and since fetching only a
single byte from memory introduces overhead, both main memory and the caches
are maintained in cache lines. When data is read from memory, a whole cache line
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Table 2.4.: Memory hierarchy properties of the Intel Xeon E5-2670.

Memory Type Size Access Cycles Cores

L1 cache 32KB + 32KB ∼ 4 1

L2 cache 256KB ∼ 12 1

L3 cache 20MB ∼ 28 8

Main memory 30GB ∼ 214 16

is loaded into the cache hierarchy and thus neighboring data is also available for fast
accesses. A typical size of a cache line is 64 bytes.

A cache hit occurs when the cache buffers already the data a core wants to access
next. If the requested data is not available in one of the caches, main memory has
to be accessed. This situation is called a cache miss. Usually, the penalty in terms
of waiting cycles for such a miss is high (compare Table 2.4). The cycles a core is
waiting for other resources, for example main memory, are called stall cycles.

For cache hits, the number of access cycles for the CPU can be read in Table 2.4.
The number of access cycles is not equal to the number of stall cycles, because there
might be some more instructions that can be executed until the data from memory
is mandatory for the next instruction. Hence, the number of access cycles is an
upper bound for the introduced stall cycles. In general, the penalty for a cache miss
cannot be predicted easily, because if L1 cache is missed, then the data can still be
buffered in L2 or L3 cache.

Prefetching Memory To reduce the overall penalty, modern cores have a prefetch-
ing unit that can prefetch data from a higher memory level into lower cache levels.
If not explicitly controlled by special instructions, the prefetch unit tries to guess
memory access patterns from the program [HP03] and loads the according data into
the cache. The prefetching unit works especially well for consecutive memory ac-
cesses. Furthermore, this unit can also be instructed to load a certain piece of data.
This instruction is especially useful if the memory access pattern of the program
is not simple, but the programmer already knows in advance which data will be
accessed in the following cycles.

Accessing Memory The interference of the memory hierarchy with the memory
footprint of an algorithm and the memory access pattern is presented in Figure 2.1.
Five small algorithms are given that access data in an array either in a consecutive
(linear), random or mixed manner (pseudoRandom). The mixed access pattern
accesses a word randomly and the next five accesses are consecutive. The fourth
and fifth algorithm improve on the first algorithm by looking ahead in the execution
of the algorithm and prefetching either the next five accesses, or prefetching the next
25 accesses. While increasing the size of the memory footprint, the diagram shows
that the execution time for all algorithms diverges, although each algorithm performs
the same amount of data accesses and each algorithm has almost the same number of
instructions. The figure nicely illustrates that the modern computing architecture is
built for algorithms that are data local. For algorithms whose randommemory access
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Figure 2.1.: Accessing data in an array with different access patterns.

pattern is necessary for a good performance, the prefetch instruction can help to
reduce the drawback of a bad data locality. However, this prefetching also introduces
some overhead that counters its benefits, so that the performance of consecutive data
accesses cannot be reached when prefetching is added to a random access memory
pattern. The mixed access pattern shows that for different randomizations any
performance between linear and random accesses is possible.

Non-uniform Memory Access Modern CPUs usually have multiple busses con-
necting main memory and the cores. With a uniform memory access all cores share
one main memory and access this memory via the same bus. With the increasing
number of cores, hierarchies among cores have been introduced, so that some cores
are closer to main memory than others [Cor10], and there are multiple busses to
main memory. Then, memory accesses are non-uniform. In order to guarantee a
good performance and scalability the implementation has to ensure that a core ac-
cesses the closest memory as often as possible. Figure 2.2 illustrates the possible
architecture of a modern parallel computer. If the two CPUs are located on one
main board in one machine, then the connection between CPUs is nowadays a fast
interconnect. Furthermore, the CPUs in the left picture are usually multi-core CPUs
as well. More details can be found in [HP03,BWCC+08].

2.3.4. Accessing Memory in Parallel

As already discussed the memory is maintained in cache lines. For the multi-core
environment protocols have been developed that protect single cache lines to be
modified by multiple cores simultaneously, for example the MESI protocol [PP84].
Whenever a core accesses a cache line, the state of this line is modified accordingly,
and also the state of all copies of this cache line in the caches of other cores has to
be updated. If the current core is the only writer, the cache line can be modified.
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memory memory

cache cache

CPU1 CPU2
network

memory

cache

core1 core2

core3 core4

CPU

Figure 2.2.: The figure compares two parallel architectures: dedicated machines con-
nected via a network (left side) and multi-core CPUs (right side). The
two approaches differ mainly in the communication time and the sharing
of resources. In networks, each CPU has its own cache with dedicated
access. In multi-core systems, multiple cores share the cache and the
access to main memory and communicate via this fast connection. For
few communication, computing networks offer a better performance,
whereas multi-core CPUs share data much faster.

Otherwise, the core needs to wait for other cores to finish their operation on the
cache line. The same constraint holds for reading cores. Even if the cache line is
already in the cache of a core, the line has to be reloaded from a higher memory layer
or the cache of another core if the private copy is invalid. The interested reader can
find more information on the protocol in [PP84,ABC+99]. What can be concluded
from the mechanism is the following: shared data should be accessed as seldom as
possible, and private data should be stored in such a way that no private data of
other threads is stored on the same cache lines.

2.3.5. The Intel Xeon CPU E5-2690

Summarizing the above sections the CPU that is used for the experiments in this
thesis is given with all the necessary details. The Intel Xeon CPU E5-2690 is a 8 core
CPU with three levels of cache and a cycle frequency of 2.6GHz. In the computing
cluster Taurus two of these CPUs are combined on a node, so that 16 cores can be
used simultaneously for a parallel shared memory program. Each CPU is connected
to main memory with four busses, so that non-uniform memory accesses can occur.
Inside a single CPU, the caches are placed as follows: each core has its private L1
cache of 32KB for data and 32KB for instructions and a private L2 cache with
256KB. Finally, eight cores share an L3 cache with 20MB data and instructions.

2.4. Data Evaluation

Due to the high complexity of modern SAT solvers the performance of an imple-
mented solver cannot be predicted based on theoretical properties. Therefore, the
performance of a SAT solver is measured with respect to its robustness. Let tS(F )
denote the time a solver S needs to solve the formula F . Throughout the thesis,
all run times are reported in seconds. Given a benchmark, which is usually a set of
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2.4. Data Evaluation

Table 2.5.: Empirical evaluation of Riss 4.27 and MiniSAT 2.2 on all application
formulas of the SAT competition 2013 and a 5000 second time limit.

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

MiniSAT 2.2 25 161 98 63 852 26 135 850.7
Riss 4.27 61 197 103 94 709 55 135 604

formulas, and a wall clock time limit t, a SAT solver A is considered better, or more
robust, with respect to this benchmark than another solver B if A can solve more
formulas of the benchmark: |{F | tA(F ) ≤ t}| > |{F | tB(F ) ≤ t}|. For tie breaking
the cumulated solving time is used. Although this measure has its drawbacks and
alternative measures have been proposed [VG11a] this robustness measure is still
the most widely used measure, for example in the international SAT competitions
since 2009. Another measure that also considers the time that is used by a solver
to solve a formula is the penalized average run time(PAR10) that usually uses a
penalty factor 10. For the formulas that can be solved the run time is accumulated
and for each formula that could not be solved within the time limit the time limit
multiplied with the penalty factor is added.

Definition 2.25 (Penalized Average Run Time). Given a benchmark B and a wall
clock time limit t, then the penalized average run time (PAR10) for a solver S is

PAR10(B, t, S) =

 
F∈B and tS(F )≤t

tS(F )

+ 10 · t · |{F | F ∈ B and tS(F ) > t}|.

With the above measures the performance of solvers can be documented with num-
bers. For the application benchmark of the SAT competition 2013 such a comparison
is presented in Table 2.5 for the SAT solvers Riss 4.27 and MiniSAT 2.2. For both
solvers the number of solved formulas is given, as well as the median run time
to solve each formula using the value of the time out if the time limit is reached.
Furthermore, the PAR10 measure and the number of uniquely solved formulas – for-
mulas that can be solved only by this solver – is given. This measure is also called
unique solver contribution (UC) and is calculated with respect to a benchmark and
the solvers that are used in the comparison. Furthermore, for a direct comparison
the table gives the number of commonly solved formulas and shows the average run
time on this set of formulas. In this kind of visualization of results, the best value
for a category is printed bold. On the specific benchmark and the given time out,
Riss 4.27 outperforms MiniSAT 2.2 in all measures. Still, there are 26 formulas
that can be solved by MiniSAT 2.2, which cannot be solved by Riss.
A more expressive comparison is required to check how the two solvers are related

to each other. A visualization to compare the run time of two solvers, or another
pair of measures is the scatter plot.

Definition 2.26 (Scatter Plot). Given a benchmark B and two measures f and
g for a formula with f : B → R and g : B → R, then a scatter plot is a two-
dimensional diagram. For each formula F ∈ B a dot (f(F ), g(F )) is added to the
diagram.
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Figure 2.3.: Scatter plot of the run time of Riss 4.27 and MiniSAT 2.2 on all
application formulas of the SAT competition 2013 and a 5000 second
time limit.

An example of a scatter plot that compares the run time of the two SAT solvers Riss
and MiniSAT is presented in Figure 2.3. Observe that both scales are logarithmic.
The diagonal in the diagram is the identity line. For each formula in the benchmark
there is a point in the diagram that represents the run time of MiniSAT on the
x-axis and the run time of Riss on the y-axis. Hence, all points in the upper
triangle indicate that the run time of MiniSAT is better than the run time of Riss.
Likewise, the lower triangle represents all the formulas that can be solved faster by
Riss. Formulas that can be solved by only one of the two solvers are shown on the
border of the diagram: while the run time for the successful solver varies, the value
of the other solver stays fixed.
To compare the run time of multiple solvers on a benchmark, or to compare other

data sets, cactus plots can be used.

Definition 2.27 (Cactus Plot). Given a benchmark B and k measures for a for-
mula Fk(F ) ∈ R, then a cactus plot is a two-dimensional diagram. For each of the
k measures a curve is added, where for each value 0 ≤ x ≤ |B| a dot (x, y) is added
to the diagram, where y is the smallest number z ∈ R set such that

y = min
z

(x = |{F | F ∈ B, fk(F ) ≤ z}|) .

In a cactus plot for a curve two consecutive points (x, y) and (x+1, y′) are connected.
An example of a cactus plot of the two SAT solvers Riss and MiniSAT on the same
benchmark is presented in Figure 2.4. The plot nicely shows the number of formulas
that can be solved by a solver with a given time out: when a horizontal line for y
seconds is added to the picture, then the x-value where this line cuts the curve of a
solver represents the number of formulas that can be solved by that solver with the
chosen time out. Hence, a solver A is more robust than another solver B if the curve
of A is located on the right side of the curve of solver B. Finally, the picture nicely
shows the hardness of solving SAT problems: many formulas can be solved within
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Figure 2.4.: Cactus plot showing the run time of Riss 4.27 and MiniSAT 2.2 on
all application formulas of the SAT competition 2013 and a 5000 second
time limit.

a small time out. By increasing the time out further, the number of additionally
solved formulas does not improve that fast any more.
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Part II.

Sequential SAT Solving

45





3. Formula Relations

In this chapter we introduce novel formula relations which relate two formulas
that do not contain the same set of variables. These new relations can be re-
lated to the formula relations of classical propositional logic. They are useful when
the Tseitin transformation is used, or when formula simplification techniques are
applied. Therefore, basic simplification techniques are also presented, and their
properties with respect to these new formula relations are discussed.
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3.1. Relating Formulas with Different Variables

In general, two formulas with vars(F ) ̸= vars(G) are not equivalent and neither the
entailment relation nor the unsatisfiability preserving consequence relation hold. As
soon as Tseitin variables are used to transform a satisfiable formula into a CNF
formula all above relations break.

Example 8: Transforming a Propositional Formula into CNF
Given the formula F = ((a∧b)→ (c ∨ d)), then a CNF representation with fresh
variables is G = ((x∨y)∧(x∨a)∧(x∨b)∧(x∨a∨b)∧(y∨c)∧(y∨d)∧(y∨c∨d)).
G is constructed with the transformation rules as presented in Section 2.2.3:

G ={((a ∧ b)→ (c ∨ d))}
={{x→ (c ∨ d)}, {x ∨ a}, {x ∨ b}, {x ∨ a ∨ b}}
={{x→ y}, {x ∨ a}, {x ∨ b}, {x ∨ a ∨ b}, {y ∨ c}, {y ∨ d}, {y ∨ c ∨ d}}
={{x ∨ y}, {x ∨ a}, {x ∨ b}, {x ∨ a ∨ b}, {y ∨ c}, {y ∨ d}, {y ∨ c ∨ d}}
=((x ∨ y) ∧ (x ∨ a) ∧ (x ∨ b) ∧ (x ∨ a ∨ b) ∧ (y ∨ c) ∧ (y ∨ d) ∧ (y ∨ c ∨ d))

The formula F is transformed into the formula G by first introducing the fresh
variable x to replace the conjunction (a ∧ b). The corresponding new elements
are added to the multiset G accordingly. Next, the fresh variable y is introduced
because the formula x→ (c ∨ d) contains a negated disjunction. As before, the
corresponding new elements are added. Afterwards, the implication (x → y) is
turned into the disjunction (x ∨ y). Finally, the brackets are removed and the
formula G is turned from the multiset into a conjunction.
A model for the formula F is for example J = (abcdxy . . .). This interpretation

is not a model for the formula G, because the clause (x ∨ y) is not satisfied.
Therefore, G and F are not equivalent. Since G is satisfiable, for example with
the model J = (abcdxy . . .), the two formulas are equisatisfiable.

As already discussed in Section 2.2.3, the two formulas F and G in Example 8
are not equivalent but only equisatisfiable. Unfortunately, equisatisfiability is not
a very expressive formula relation, so that more adequate relations are introduced
next. Formula transformations and formula simplification techniques can change the
set of variables occurring in a formula, for example, this happens with the Tseitin
transformation, extended resolution or variable elimination. Additional formula rela-
tions that take this modified set of variables into account are helpful to be able to
relate such a modified formula to the original formula more precisely.

Definition 3.1 (Model Constructibility). A formula G is model constructible with
respect to a formula F and to a set of variables S, in symbols F ;S

mc G, if for each
total model I of F there exists a total model I ′ of G such that I(x) = I ′(x) for all
x ∈ (V \ S).

Observe that for two formulas F and G with F ;S
mc G the variables in the set S

can be mapped to truth values arbitrarily for finding a total interpretation for G.
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Example 9: Model Constructible Formulas Let F = a, G = a and
H = a ∧ b be three formulas and S = {a}. Then, J = (a . . .) is a total model
for F . F is model constructible with respect to F and S, because all variables of
J that do not occur in S do not occur in F and can be mapped to an arbitrary
truth value. J ′ = (a . . . is a model for G. All variables that do not occur in S are
mapped to the same truth value by J and J ′. Then, G is model constructible
with respect to F , because each model of F must map a to ⊤, so that J ′ can be
used as corresponding model for G.
Likewise, H ;S

mc G, because each total model ofH has to contain a, and again
all other variables can be mapped to the same truth value by an interpretation
J ′ thus obtaining a model of G. However, H is not model constructible with
respect to G, because for the total model J ′′ = (ab . . . of G there is no model for
H that maps all variables except a to the same truth value, since by mapping
b = ⊥, H is falsified.

If the set of variables S that is used for a model constructibility relation between
two formulas contains only a single variable x, then we also write F ;x

mc G. Given a
formula F , then for encoding this formula or during formula simplification techniques
the set of variables usually depends on the formula F . Then, a special case of model
constructibility is obtained:

Definition 3.2 (Constructibility). A formula G is constructible from a formula F ,
in symbols F ⇝∩ G, if for each model I of F there exists a model I ′ for G such that
I(x) = I ′(x) for all x ∈ vars(F ).

Observe that constructibility is a special case of model constructibility and the set
of variables S is given implicitly by the formula F , namely S = V \ vars(F ). When
a formula G is constructible from a formula F , then for any model I of F , the
reduct G|

I∩(vars(F )∪vars(F ))
is satisfiable, because the definition guarantees that for

all variables of G that do not occur in F there exists a mapping to a truth value
such that the formula G is reduced to ⊤. Especially for complete models I of F with
dom(I) = vars(F ) this relation becomes obvious, because in this case all variables
that occur in G but not in F are not mapped to a truth value by I. An example
that compares the two relations is given in Example 10.

Example 10: Entailment of Formulas Given the formulas

F = ((a ∧ b) ∨ (a ∧ b)) , G = ((a ∨ b ∨ c)) and H = ((a ∨ b) ∧ (b ∨ c)),

then the set of models for the formula F with the domain vars(F ) consists
of the two interpretations J = (ab) and J ′ = (ab). Now, evaluating the two
formulas G and H with these two interpretations, as required by the entailment
relation (Definition 2.9), would give G|J = ⊤, G|J ′ = ⊤ and H|J = ⊤, but the
formula H is not evaluated to a truth value by the interpretation J ′: H|J ′ = c.
Hence, the formula G is entailed by F , even when the interpretations J and J ′

are not total interpretations. The formula H is not modeled by the formula F ,
because H is not evaluated to a truth value by J ′.
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When considering total interpretations only, the formula G is entailed by F ,
i.e. F |= G, however, the formula H is not entailed by the formula F , i.e. F ̸|= H,
because J ′′ = (abc . . .) is a total interpretation. This interpretation models the
formula F , but the formula H is mapped to false, i.e. H|J ′′ = ⊥, and thus the
formula H is not entailed by the formula F .
Still, the formula H is strongly related to the formula F , because H is con-

structible from F . Given the two models J and J ′ for the formula F , then the
formula H is constructible according to Definition 3.2, i.e. F ⇝∩ G, because the
two reducts H|J = ⊤ and H|J ′ = (c) are satisfiable, for example by extending
the interpretation J ′ with the literal c, so that c is also mapped to ⊤.

The reader should observe that the relations model constructibility and constructibil-
ity are not symmetric. Since there exist formula simplification techniques that allow
this symmetry, we introduce mutual constructibility :

Definition 3.3 (Mutual Constructibility). Two formulas F and G are mutually
constructible, in symbols F ↭∩ G, if F ⇝∩ G and G⇝∩ F .

The symbols ⇝∩ and ↭∩ are motivated by mutual constructibility, because the
common variables of the two formulas are important for the two formulas being
mutual constructible.1

The mutual constructibility relation is not an equivalence relation, because this
relation is symmetric and reflexive but transitivity cannot be provided. A counterex-
ample is built with the three formulas F = (a), G = (b) and H = (a). Although
F ↭∩ G and G↭∩ H holds, F ↭∩ H does not hold, because the model J = (a)
of F falsifies the formula H, i.e. H|J = ⊥.

Example 11: Equivalence of Formulas Let F,G and H be the formulas

F = ((a ∧ b) ∨ (a ∧ b)), G = ((c ∨ b) ∧ (c ∨ b)) and H = ((b ∧ c) ∧ (b ∨ c)).

The set of complete models for the formula F with the domain vars(F ) contains
the two interpretations J = (ab) and J ′ = (ab). The reduct of the formula G
with respect to these two models gives G|J = (c), G|J ′ = (c). Both reducts are
satisfiable, namely by assigning the variable c to ⊥ and ⊤, respectively. Sym-
metrically, all complete models for G with the domain vars(G), i.e. {(cb), (cb)},
can be extended with a and a, respectively, to satisfy the formula F . Hence, the
two formulas F and G are mutually constructible, i.e. F ↭∩ G. However, F
and G are not equivalent, because the total interpretation J ′′ = (abc . . .) is a
model for the formula F but not for the formula G.
The reducts of the formulaH with respect to the two complete models of F are

H|J = ((c) ∧ (c)) and H|J ′ = ⊤. Since the reduct H|J is unsatisfiable, because
c cannot be mapped to ⊤ and ⊥, the two formulas F and H are not mutually
constructible.

1Two formulas are mutual constructible if their projections on the common set of Boolean variables
are equivalent. This property is also called semi-equivalent in the literature.
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As presented above, equivalence is a more specific relation than equisatisfiability.
With the help of symmetric model constructibility relation, this statement can be
shown more formally:

Proposition 3.1.1. Let S be a set of variables, and F and G be two formulas with
F ;S

mc G and G ;S
mc F . Then,

1. if S = ∅, F and G are equivalent.

2. if S = V, then F and G are equisatisfiable.

Proof. We prove each part of the proposition separately. In 1. the set S is empty,
so that the two interpretations in Definition 3.1 become identical. In this case, the
two formulas F and G have to be equivalent. For 2. the set S contains all variables,
so that the two interpretations in Definition 3.1 can be arbitrary: the condition
collapses to when F has a model than G has to have a model, and vice versa.
Hence, F and G are equisatisfiable.

3.1.1. A Hierarchy on Formula Relations

A hierarchy can be established on formula relations as detailed in the next para-
graphs. Given two formulas F and G, then the following implications can be estab-
lished:

▶ If F ≡ G, then F |=UNSAT G.

▶ If F |=UNSAT G, then F |= G.

▶ If F |=UNSAT G, then F ≡SAT G.

All three implications follow directly from the definitions of the involved relations.
The other directions do not hold. This claim can be shown by means of counterex-
amples:

▶ F |=UNSAT G, but F ̸≡ G:
Let F = (a∧ b) and G = a, then any model of F satisfies a and b, and both F
and G are satisfiable. However, there exists a model J = (ab) for G that does
not satisfy F .

▶ F |= G, but F ̸≡ G:
Let F = (a ∧ b) and G = a, then any model of F satisfies a and b, however,
there exists a model J = (ab) for G that does not satisfy F .

▶ F ≡SAT G, but F ̸|= G, and not F ≡ G:
Let F = a and G = a. Both formulas are satisfiable by mapping a to ⊤ and ⊥,
respectively. However, the formulas are not equivalent, because a cannot be
mapped to ⊤ and ⊥ to satisfy both formulas at the same time.

▶ F |= G, but F ̸≡SAT G:
Let F = (a∧ a) and G = a, then F is unsatisfiable, and hence all models of F
also satisfy G. However, the formula G is satisfiable.
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Furthermore, for two formulas F and G, the following two statements can be
established: if F entails G, then G is constructible from F . Furthermore, when F
and G are equivalent, then F and G are also mutually constructible.

Lemma 3.1.2 (An entailed formula is also a constructible formula). Let F and G
be two formulas with F |= G, then F ⇝∩ G holds.

Proof. A proof can be done along the definitions of the two relations. The entailment
relation uses a total interpretation J , so that all variables in F and G are mapped to
a truth value. The interpretation J also covers all prerequisites from Definition 3.2
of constructibility, because all variables are mapped to the same truth value, and J
is a model for G.

The other direction does not hold: given two formulas F and G, then F |= G does
not always hold if F ⇝∩ G holds. A counterexample is given in Example 10.

Lemma 3.1.3 (Equivalent formulas are also mutually constructible formulas). Let F
and G be two formulas, then F ↭∩ G holds if F ≡ G holds.

Proof. A proof can be done similar to the proof of Lemma 3.1.2. If F and G
are equivalent, then any total interpretation I reduces the two formulas to the
same truth value. If such an interpretation J is a model for F , J is also a model
for G. Therefore, J is the interpretation that satisfies F and is simultaneously the
interpretation that satisfies G, as enforced in Definition 3.2. Symmetrically, this
statement holds for G⇝∩ F . With, F ⇝∩ G and G⇝∩ F the statement F ↭∩ G
holds.

As for the entailment relation, the other direction does not hold. For two formulas F
and G, F ≡ G does not always hold if F ↭∩ G.

A picture that illustrates the order of the technique with respect to covering each
other is presented in Figure 3.1. All arcs that occur in the figure have already been
discussed above, or follow directly from the definitions of the relation. Hence, the
missing links between constructibility and the classical relations need to be discussed.
For the missing links, a counterexample is given, or the link can be excluded because
of transitivity:

▶ F ⇝∩ G, but not F ↭∩ G:
Let F be the unsatisfiable formula F = (a∧a), and G = a. Then each complete
model of F is also a model of G, however, the interpretation J = (a) models G
but does not model F .

▶ F ↭∩ G, but not F ≡ G:
A counterexample is given in Example 10.

▶ F ⇝∩ G, but not F |= G:
A counterexample is given in Example 10.

▶ F ⇝∩ G, but not F |=UNSAT G:
F |= G cannot be ensured from F ⇝∩ G (see line above), but this property is
necessary for F |=UNSAT G.
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F ≡ G

F |=UNSAT G

F |= G F ≡SAT G

F ↭∩ G

F ⇝∩ G

classical relations constructability

Figure 3.1.: Relations between the formula relationships equivalence, unsatisfiability
preserving consequence, entailment, equisatisfiability, constructability
and mutual constructability for two formulas F and G. An arc between
two relations in the picture represents that if the first statement holds,
then the statement where the arc points to holds as well.

▶ F |= G, but not F ↭∩ G:
Let F be the formula F = ((b∨a)∧ (b∨a)), and G be the formula G = (b∨ c).
The set of complete models for F is JF ∈ {(ab), (ab)}, and both models can be
extended to a model JG for G by mapping c to ⊤, i.e. JG ∈ {(abc), (abc), (bc)}.
However, the model (bc) cannot be extended to satisfy the formula F , because
a has to be mapped to both ⊤ and ⊥.

▶ F |=UNSAT G, but not F ↭∩ G:
The same argument holds as for the above line: F |= G, but not F ↭∩ G.

▶ F ≡SAT G, but not F ⇝∩ G:
Given the formulas F = x and G = x. The two formulas are satisfiable,
however, any model of F falsifies G, and any model of G falsifies F .

▶ F ≡SAT G, but not F ↭∩ G:
This statement can be shown with the counterexample for F ≡SAT G, but not
F ⇝∩ G.

▶ F ↭∩ G, but not F |=UNSAT G: Given the two mutually constructible for-
mulas F = (a ∨ b) and G = (b ∨ c), i.e. F ↭∩ G, then F does not entail G,
because the model J = (abc) of F falsifies the formula G.
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3.2. Basic CNF Reasoning Techniques

Modifying a CNF formula F can be done in multiple ways. Here, the most basic
transformations are discussed before more details on the SAT problem and SAT
solving are presented in the later chapters. The properties of these techniques with
respect to the above formula relations are discussed. If not specified otherwise, a
formula in the following thesis is a formula in CNF.

3.2.1. Adding an Entailed Clause

A very basic but also very important invariant is that the equivalence of a formula F
and the formula F ∧ C is preserved if a clause C is added to the formula where C
is entailed by the formula F .

Lemma 3.2.1 (Adding Entailed Clauses). Given a formula F and a clause C that
is entailed by F , i.e. F |= C, then the formula F is equivalent to the formula F ∧C,
i.e. F ≡ (F ∧ C).

Proof. Since the clause C is entailed by the formula F , all total models of the for-
mula F also model the clause C. Hence, all these models also model the conjunction
F ∧ C. The other way round, The other way round, due to the semantics of con-
junction every total model of F ∧ C is both a model of F and of C. Thus, all total
models of F ∧ C model F .

Symmetrically, a clause C can also be removed from a formula F ′ = F ∧ C if the
remaining formula F entails C. In this case the clause C is called redundant. Again,
the two formulas F and F ′ are equivalent.

Lemma 3.2.2 (Removing Redundant Clauses). Given a clause C and a formula
F ′ = F ∧ C. If the formula F entails the clause C the formula F ′ is equivalent to
the formula F , i.e. F ′ ≡ F .

Proof. The proof is analogous to the proof of Lemma 3.2.1. Since the clause C
is entailed by the formula F , adding the clause C to the formula F to obtain the
formula F ′ preserves equivalence. Hence, removing the clause C from the formula F ′

preserves equivalence as well.

The following techniques are built on the fact that a clause is entailed by the re-
maining formula or that a new clause is entailed by a given formula. Therefore the
clause can be removed or added, respectively.

3.2.2. Subsumption

As already discussed in Section 2.2.1, duplicate clauses C can be removed from
a formula F resulting in an equivalent formula. Furthermore, a clause C can be
removed from a formula F if this clause is subsumed by another clause D ∈ F with
D ⊆ C. Since the set of literals in D is a subset of C, any model that satisfies D
also satisfies C, and therefore equivalence is preserved:

F ≡ F \ {C}, if D ⊆ C and D ∈ F and C ̸= D.
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Since for an arbitrary formula F in CNF there can be duplicate clauses C and D,
subsumption should remove the duplicate. However, a clause should not remove itself
due to subsumption. Therefore, the last check is added.

3.2.3. Modeling Unit Clauses

Whenever a unit clause C = (x) occurs in a formula F in conjunctive normal form
(CNF), then any model J of the formula F has to satisfy the literal x, because the
clause C can be satisfied only by satisfying this literal. Hence, the formula F entails
this literal, i.e. F |= x.

Lemma 3.2.3 (Literals of unit clauses are entailed by the formula). Given a for-
mula F , then a literal x that appears in a unit clause in the formula, i.e. (x) ∈ F ,
is entailed by the formula F |= x.

Proof. Any model J for the formula F has to satisfy the unit clause (x) ∈ F , because
a conjunction can only be satisfied by satisfying each element of the conjunction.
Therefore, the literal x has to occur in each model.

The formula F and the reduct F |(x) are mutually constructible, i.e. F ↭∩ F |(x),
and the reduct F |(x) is entailed by the formula F , i.e. F |= F |(x).

Lemma 3.2.4 (Unit clauses lead to entailed reducts). Given a formula F that
contains the unit clause C = (x), then the formula F entails the reduct F |(x),
i.e. F |= F |(x).

Proof. The formula F entails the literal x by Lemma 3.2.3. Hence, any model of F
has to map this literal to ⊤. The reduct F |(x) is obtained by removing all clauses
that are satisfied by mapping x to ⊤, and by removing all occurrences of the literal x.
Exactly these modifications would be applied to the formula F when F is evaluated
under an interpretation that maps x to ⊤. Hence, the reduct F |(x) is entailed by
the formula F .

Unfortunately, classical equivalence does not hold for the two formulas. All total
models of the formula F are also models of the reduct F |(x), because the literal x is
satisfied by all these models. However, a total model J of the reduct F |(x) can also
falsify the literal x, because this literal does not occur in the reduct any more, i.e.
x /∈ lits(F |(x)). Hence, the interpretation J would falsify the unit clause (x) ∈ F ,
and hence such an interpretation J is not a model for the formula F . Still, the
formula F and the reduct F |(x) are mutually constructible:

Lemma 3.2.5 (Unit clauses lead to mutually constructible reducts). Given a for-
mula F that contains the unit clause (x), then the formula F is mutually con-
structible to the reduct F |(x), i.e. F ↭∩ F |(x).

Proof. Since the variable var(x) does not occur in the formula F |(x), the value as-
signed to x in any model J of F |(x) is irrelevant. Hence, a model J ′ for the formula F
can be constructed from the interpretation J by fixing the mapping for x to ⊤. All
the remaining variables are mapped as in J . The other direction holds, because x
is entailed by the formula F , so that any model of F is a model of F |(x).
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Given a formula F , then unit propagation on this formula is the result applying
the following rule until termination, where J is the initial interpretation (which does
not have to be empty):

if there is a unit clause C = (x) in the formula F |J , then extend J with x.

The set of collected literals x is called the immediate consequence of F with respect
to J . Observe that when multiple unit clauses occur in the formula F |J , then the
algorithm does not specify the order on how the corresponding literals are added,
so that any implementation of unit propagation can be covered.

3.2.4. Handling Pure Literals

Given a formula F , then a literal x is pure in this formula if the literal x occurs in
the formula and the complement x does not occur.

Definition 3.4 (Pure Literal). A literal x is pure in a formula F if x ∈ lits(F ) and
x /∈ lits(F ).

Similarly to literals of unit clauses, these pure literals can always be mapped to ⊤
in any attempt to obtain a model for the formula F . This mapping is not required,
as the following example formula F shows:

F = (a ∨ b).

In this formula, both literals a and b are pure. The set of complete models for this
formula F is {(ab), (ab), (ab)}. Both the second and the third interpretation do not
map all pure literals to ⊤. Hence, a pure literal x of a formula F is not entailed by
this formula F . Still, the formula F entails the reduct F |(x).

Lemma 3.2.6 (Pure literals lead to entailed reducts). Let F be a formula with a
pure literal x, then this formula F entails the reduct F |(x), i.e. F |= F |(x).

Proof. The multiset of clauses in the reduct F |(x) is a proper subset of the clauses
in the formula F : since x is pure there are no occurrences of the literal x and all
clauses C with x ∈ C are satisfied when x is mapped to ⊤, so that these clauses are
removed from the formula F to build the reduct F |(x). Any model that satisfies all
clauses of F also satisfies a subset of these clauses.

Furthermore, the reduct F |(x) is an unsatisfiability preserving consequence of the
formula F , because the two formulas F and F |(x) are equisatisfiable.

Lemma 3.2.7 (Pure literals lead to equisatisfiable reducts). Let F be a formula
with a pure literal x, then this formula F is equisatisfiable to the reduct F |(x),
i.e. F ≡SAT F |(x).

Proof. If the formula F is satisfiable with a model J , then the reduct is also satis-
fiable, because the reduct is entailed by the formula (see Lemma 3.2.6). The other
way around, given a model J for the reduct, then a model J ′ = ((J \ {x}), x) for
the formula F can be constructed by mapping the literal x to ⊤: the literal x does
not occur in the formula F nor in the reduct F |(x), and all common clauses do not
contain the literal x. By mapping x to ⊤, the clauses C ∈ F that contain x are
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satisfied, so that J ′ |= F . Since F |= F |(x), the formula F has to be unsatisfiable
if the reduct F |(x) is unsatisfiable. Furthermore, if F is unsatisfiable, then F |(x) is
also unsatisfiable, because if there would be a model J for F |(x), then this model
could be extended for F .

Furthermore, the reduct with a pure literal is mutually constructible to the original
formula.

Lemma 3.2.8 (Pure literals lead to mutually constructible reducts). Let F be a
formula with a pure literal x, then this formula F is mutually constructible to the
reduct F |(x), i.e. F ↭∩ F |(x).

Proof. Since the formula F entails the reduct F |(x) (Lemma 3.2.6), and any total
model J for the reduct can be modified to a model J ′ of the formula by mapping
the literal x to ⊤, mutual constructibility holds.

3.2.5. Resolution

A reasoning technique that preserves equivalence is resolution, which infers a new
clause E based on two clauses C and D of the formula.

Definition 3.5 (Resolution). Given a literal x and two clauses C and D with x ∈ C
and x ∈ D. Then, the resolvent E is (C \{x})∪(D\{x}). We say that E is obtained
by resolution of C and D on the variable x, in symbols E = C ⊗x D.

Given two clauses that have a complementary pair of literals, then resolution can be
applied to obtain a new clause E. With Invariant 1, duplicate literals do not occur
in E. Still, this new clause can contain a complementary pair of literals, so that E
is a tautology.

Example 12: Resolving Clauses Let C1 = (a ∨ b), C2 = (a) and C3 =
(a ∨ b) be three clauses. Then, C1 and C2 can be resolved to obtain D =
C1 ⊗a C2 = (b). Similarly, E = (b ∨ b) is obtained by the resolution C1 ⊗a C3.
Observe that E is a tautology, because the literal b and its complement b occur
in E. E became tautology, because the clauses C1 and C3 have two pairs of
complementary literals, namely a and a as well as b and b.

In this thesis the index x is omitted from the resolution operator ⊗ whenever there
is only one complementary pair of literals in the clauses C and D. A property
of the resolution rule is that when the clause E is a resolvent of the clauses C
and D, i.e. E = C ⊗D, then the formula (C ∧ D) entails the resolvent E, i.e.
(C ∧D) |= E [Rob65]. Thus, the clause E can be added to the formula (C ∧ D)
while preserving equivalence, i.e. (C ∧D) ≡ (C ∧D ∧ E).
In implemented SAT systems tautologies are removed eagerly, and therefore the

two clauses C and D can be assumed to be no tautologies. Thus, when the variable
x already occurs in C, then x does not occur and the same assumption holds for
D. As duplicate literals do not occur in clauses, the following property holds for

57



3.2.6. Clause Strengthening

resolution. Let the clause E be the resolvent of two non-tautological clauses C and
D, i.e. E = C ⊗D, then the minimum size of the resolvent is bounded by the larger
clause that has been used for resolution: |E| ≥ max(|C|, |D|) − 1. Without loss of
generality let C be smaller than D or have the equal size, i.e. |C| ≤ |D|, and let
the positive variable occur in the clause C, i.e. x ∈ C and x ∈ D. Then the size
minimum can only be reached if all literals except x of the smaller clause C also
occur in the larger clause D, i.e. lits(C \{x}) ⊆ lits(D). More than one literal cannot
be removed from the large clause D with a single resolution step.

3.2.6. Clause Strengthening

Let C and D by two non-tautological clauses with |C| ≤ |D|. In the case the
resolvent E on variable x of C and D. Furthermore, let E subsume the larger clause
D. Then E contains exactly the literals lits(D) \ {x}, because the literal x has been
removed during resolution. Thus, when the resolvent E subsumes the larger clause
D, i.e. E ⊂ D, then instead of adding E and removing D from a formula the literal
x can be removed from D while preserving equivalence:

(C ∧D) ≡ (C ∧D ∧ E) ≡ (C ∧ E) ≡ (C ∧ (D \ {x})).

This technique received multiple names in the literature: clause strengthening, self-
subsuming resolution or subsuming resolution. In this thesis, the name strengthening
is used.

Example 13: Strengthening Clauses Let C1 = (a ∨ b ∨ c), C2 = (a ∨ c)
be two clauses with a complementary pair of literals. C1 is the larger clause.
Then, C1 and C2 can be resolved to obtain D = C1 ⊗a C2 = (b ∨ c). Since
D ⊂ C1, C1 is subsumed by D. The formula F = C1 ∧ C2 entails the resolvent
D (see [Rob65]). Therefore, C1 ∧C2 ≡ C1 ∧C2 ∧D. Now, the formula contains
the redundant clause C1, because D subsumes C1. As discussed in Section 3.2.2,
D |= C1, such that (C2 ∧ D) |= C1. Hence, C1 is removed from the formula,
resulting in F = (a∨ c)∧ (b∨ c). Essentially, the same formula can be generated
by simply removing the literal a from C1 in the first place.

3.2.7. Resolution Derivation

When multiple resolution steps on clauses of a formula F are performed to obtain
another clause C, then this process is called a resolution derivation.

Definition 3.6 (Resolution Derivation). Let C be a clause and F be a formula, then
a resolution derivation of C in F is a sequence of clauses S = (C1, . . . , Cn−1, Cn)
where each clause Ci in the sequence either occurs in the formula, or Ci is obtained
by resolving two clauses that either have a lower index than i or that occur in the
formula F . Finally, Cn = C.

Since a resolvent E = C ⊗D is entailed by the two clauses C and D, a resolution
derivation to E in F can be used to show that a certain clause E is entailed by the
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formula F . For example, if the empty clause can be found by a resolution derivation,
given the formula F , then the formula F must be unsatisfiable. On the other hand,
each unsatisfiable CNF formula F is guaranteed to have a resolution derivation for
the empty clause [Rob65]. The length n of such a resolution derivation can be
exponential in the size of the formula F [Tse68,Hak85].

Example 14: Proving the Unsatisfiability of Formulas Let a formula
be F = ((a∨ b)∧ (a∨ b)∧ (a∨ c)∧ (a∨ c)). Then a resolution derivation of the
empty clause D = ⊥ is S = ((a), (a),⊥):

1 (a) from (a ∨ b)⊗ (a ∨ b)
2 (a) from (a ∨ c)⊗ (a ∨ c)
3 ⊥ from (a)⊗ (a)

The length of this derivation is 3.

3.2.8. Variable Elimination

In 1960 a variable elimination procedure has been published by Davis et al. [DP60].
Given a formula F with a variable x ∈ vars(F ) then, since tautological clauses are
initially removed from the formula F , the two formulas Fx and Fx do not share
clauses. Let the formula F consist of the three disjoint formulas F = F ′ ∧ Fx ∧ Fx,
where F ′ contains all clauses that do neither contain x nor x, F ′ = F \ (Fx ∪ Fx).
As defined earlier, Fx contains all clauses that contain the literal x and Fx contains
all clauses that contain the literal x.
Then, the formula2 S of pairwise non-tautological resolvents is defined as

S =


C∈Fx and D∈Fx
E=C⊗xD and isTaut(E)=⊥

E.

As formulas can contain duplicate clauses, all multiset operations also preserve these
duplicates. The new formula F ′′ is obtained after eliminating the variable x. In the
first step, all non-tautological resolvents S are added to the formula. Next, all
clauses that contain the variable x are removed from the formula. The final formula
is F ′′ = F ′ ∧ S.
The algorithm in [DP60] states that eliminating a variable x from a formula

preserves equisatisfiability, so that the two formulas F and F ′′ are equisatisfiable.
Given the concepts introduced above, the formula F ′∧S is entailed by the formula F ,
i.e. F |= F ′ ∧ S, and mutually constructible to F , i.e. F ′ ∧ S↭∩ F .

Lemma 3.2.9 (Variable elimination leads to entailed reducts). Given a formula F ,
then F entails the formula F ′′ that is obtained by eliminating a variable x ∈ vars(F ).

Proof. As discussed above, the formula F can be split into the parts F = F ′∧Fx∧Fx,
and the new formula F ′′ = F ′ ∧ S is obtained by replacing all clauses that contain

2 In the literature S is called a set, however, then the bounded version of variable elimination leads
to an incorrect use of the bound. Therefore, S is treated as a formula here.
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the variable x with the set of pairwise resolvents S. Any model J of F satisfies the
common formula F ′. To show that J also models the formula S, a case analysis on
the mapping of the variable x can be done: If J(x) = ⊤, then the clauses in Fx are
satisfied and all the clauses C ∈ Fx are satisfied by some other literal l ∈ C, l ̸= x.
The literal l occurs in all resolvents E that have been created by using such a clause
C, so that this resolvent E ∈ S is satisfied by J . Since there is such a satisfied
literal l for all these clauses C, all these clauses are satisfied by the interpretation J .
Symmetrically, the same arguments can be used if the variable x is mapped to ⊥.

Since the formula F entails the formula F ′′, and the two formulas are equisatisfiable,
F ′ is furthermore an unsatisfiability preserving consequence of F . Furthermore, F
and F ′′ are mutually constructible.

Lemma 3.2.10 (Variable elimination leads to mutual constructible formulas). Given
a formula F and the formula F ′′ that is obtained by eliminating a variable x ∈ vars(F ),
then the two formulas are mutual constructible, i.e. F ↭∩ F ′′.

Proof. Since F ′′ is entailed by F , any total model of F is also a total model for
F ′′ (see Lemma 3.2.9). On the other hand, given a model J of the formula F ′′,
then mapping of the variable x might be altered, since x does not occur in F ′′. As
presented in [SP05], a truth value for the variable x can always be found in linear
time based on the interpretation J and the clauses Fx and Fx. The underlying idea
is that either Fx or Fx is already satisfied by J , so that x can be assigned a truth
value to satisfy the other formula.

As already mentioned, after eliminating a variable the obtained formula is not equiv-
alent to the original formula any more. Equivalence is lost when the clauses that
contain the variable x are removed from the formula, since adding resolvents pre-
serves equivalence:

(F ′ ∧ Fx ∧ Fx) ≡ (F ′ ∧ Fx ∧ Fx ∧ S)↭∩ (F ′ ∧ S).

Example 15: Eliminating Variables To eliminate the variable a, consider
the formula F = ((a∨b)∧ (a∨b)∧ (a∨c)∧ (a∨c)∧ (b∨c)). Then, the formula F
can be split into Fa = ((a∨ b)∧ (a∨ b)), Fa = ((a∨ c)∧ (a∨ c)) and F ′ = (c∨ b).
Next, to obtain S = ((b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c)) all clauses from Fa are
resolved with all clauses in Fa:

(b ∨ c) from (a ∨ b)⊗a (a ∨ c)
(b ∨ c) from (a ∨ b)⊗a (a ∨ c)

(b ∨ c) from (a ∨ b)⊗a (a ∨ c)

(b ∨ c) from (a ∨ b)⊗a (a ∨ c)

The final F ′′ = ((b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c)) contains F ′ and S.
Observe, that the clause (b ∨ c) occurs twice in F ′′.
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3.2.9. Introducing Fresh Variables – Extended Resolution

Complementary to eliminating variables from a formula F , new variables can also be
introduced. Simply adding a fresh variable (see Definition 2.14) to a formula in form
of a unit clause does not provide useful properties. However, when the new variable
is functionally dependent on a set of literals that already occurs in the formula, then
adding this variable as well as the clauses to describe the functional dependency can
increase the structure of the formula and furthermore reasoning on this formula can
be improved.

Definition 3.7 (Functional Dependency). A variable x is functionally dependent
on a set of literals M in a formula F if any model of the literals in M uniquely
defines the truth value for the variable x to satisfy the formula F .

An example for functional dependency is given in Example 16. There, the functional
dependency is not directly represented in clauses but entailed by the formula F . By
adding a fresh variable, this dependency can be represented more explicitly and
becomes available for further reasoning. This process is known as extension [Tse68],
and the extension is well known to encode general propositional formulas into CNF
with the Tseitin encoding [Tse68].

Definition 3.8 (Extension). A formula F with two literals l and l′ that occur in F
can be extended with a fresh variable x to F ′ = F ∧ (x ∨ l) ∧ (x ∨ l′) ∧ (x ∨ l ∨ l′).

With such an extension, the fresh variable x is added to the formula F , as well
as the equation x ↔ (l ∨ l′). The equation x ↔ (l ∨ l′) can also be understood
as x ↔ (l ∧ l′) based on the transformation of de Morgan. Since the variable x
is functionally dependent on the literals l and l′, the number of complete models
remains the same between the old and the new formula: for each possible truth
value mapping for the literals l and l′ a unique value for the new variable x has to
be assigned.
The formula F can be obtained from the formula F ′ by applying variable elim-

ination to the variable x again, because all resolvents on the fresh variable x are
tautologies. Therefore, the above results hold immediately: the formula F ′ entails
the formula F , and F is furthermore an unsatisfiability preserving consequence of
F ′. Finally, the two formulas are mutually constructible, i.e. F ′↭∩ F .

Example 16: Simple CNF Reasoning An example for a functional de-
pendency is the formula

F = (d ∨ a) ∧ (d ∨ b) ∧ (d ∨ a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c).

The complete models for this formula are {(abcd), (abcd), (abcd), (abcd), (abcd)}.
Although the literal c is pure in the formula, there exists a model (abcd) that
maps this variable to ⊥. For any combination of truth values for the variables
a and b there is only one truth value for the variable d. Hence, the variable d
is functionally dependent on the two variables a and b in the formula, namely
with d↔ (a ∧ b). However, for the variable c such a dependency is not present,
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because for the combination ab the variable c can be mapped to ⊤ or ⊥ to obtain
a model for the formula F , as shown in the last two models.
A fresh variable for the formula F is x, and a possible extension can be based

on the literals c and d, for example x↔ (c ∨ d). The extended formula F ′ is:

F ′ = (d∨ a)∧ (d∨ b)∧ (d∨ a∨ b)∧ (a∨ c)∧ (b∨ c)∧ (x∨ c∨ d)∧ (x∨ c)∧ (x∨ d).

Since the fresh variable is functionally dependent on the literals c and d, the
number of complete models does not increase, but each model has to be extended
with the unique truth value for the new variable x. The new set of complete
models for F ′ is {(abcdx), (abcdx), (abcdx), (abcdx), (abcdx)}.
Now, when applying variable elimination on the variable a, the multiset of

clauses that containing the literal a is F ′
a = {(d∨a)} and the multiset of clauses

that contain the complement a is F ′
a = {(d ∨ a ∨ b), (a ∨ c)}. The formula S of

non-tautological resolvents for the variable a is S = (d ∨ c). Then, the formula
after eliminating the variable a is

F ′′ = (d ∨ b) ∧ (b ∨ c) ∧ (x ∨ c ∨ d) ∧ (x ∨ c) ∧ (x ∨ d) ∧ (d ∨ c).

Since the variable a does not occur in the formula F ′′ any more, the set of com-
plete models is now: {(bcdx), (bcdx), (bcdx), (bcdx), (bcdx)}. Any total model of
the formula F ′′ has the freedom to map the variable a to any truth value, but to
also satisfy the formula F ′, depending on the assignments of the other variables,
variable a needs to be assigned to satisfy the clauses in F ′

a and F ′
a. Hence, the

formulas F ′ and F ′′ are not equivalent, because the variable a does not occur
in F ′′.

3.3. Contributions

This chapter discusses the relations of formulas, where the variables that occur
in the formula are taken into account. To the set of formula relations of classical
logic the three additional relationsmodel constructibility, constructibility, andmutual
constructibility have been introduced, which can describe the relation between two
formulas more detailed than classical logic. These new relations are compared to
the existing relations of classical logic. Finally, the new relations have been used to
describe commonly used formulas reasoning techniques.
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4. From Problem Specification to SAT

In this chapter a translation from a Hidoku puzzle to SAT is presented. Here,
different Boolean representations of high-level domains are discussed and different
encodings for high-level constraints on these variables are explained. Furthermore,
properties and redundancies of the encoded formula are shown. Finally, an empirical
evaluation of modern SAT solvers on these puzzles is given.
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4.1. The Complexity of Decision Procedures

Modern computers are multi-purpose machines, which can process many different
problems with the same hardware. The main difference lies in the program that is
executed and which has to be adapted to the task that should be solved.
Over time, several algorithms with different properties have been invented to

solve the same problems, for example for sorting a sequence of numbers. Since a
fast computation is preferred, the expected run time of an algorithm is interesting
and varies for different algorithms that solve the same task. Since the actual time
an algorithm might consume is hard to predict, this time is expressed in the number
of instructions the algorithm will perform. Furthermore, since the actual run time
will depend on the actual input, usually the worst-case execution time with respect
to the size of the input, for example the number of symbols n, is analyzed and is
denoted with O(n).1 The reader should observe that constant factors are not given
in these characterizations, because these notions are used mostly for asymptotic
analysis and in this case constant factors are not important. From a practical point
of view, having an algorithm with a run time of 3n2 steps is much better than an
algorithm with 100n log n steps, at least for input sizes n < 8.

Example 17: Complexity of Different Algorithms Assume, a list of n
integers should be sorted, then we can choose among well-known algorithms
like insertion sort [SW11, p. 250] or merge sort [SW11, p. 270]. Insertion sort
performs O(n2) steps, since it compares each pair of integers once. Merge sort
uses only O(n log n) steps, because the algorithm divides the list into two sub-
lists recursively, sorts each of the lists separately, and finally merges the two
resulting lists. Since this structure is always used, the worst-case execution time
for merge sort is equal to the average run time for the same input size n, as
well as the best case run time. Algorithms like insertion sort can have a better
average and best case execution time. In case the list of integers is already
sorted, insertion sort will execute n steps, and merge sort will perform n log n
steps.

In this chapter, we will first introduce the run time complexity of solving decision
problems and identify a class of interest that is in the focus of the remaining part
of the thesis. Next, we will show how problems of this class might be specified
in a human readable way. Afterwards, some published transformations from this
specification into the low-level language for SAT solvers are given. Finally, for the
example problem of solving Hidokus, such a transformation is presented.

4.1. The Complexity of Decision Procedures

For the complexity of an algorithm, several classes have been proposed [AB09],
which can be used to describe the difficulty of the problems that are solved by the
best known algorithm. Based on the size n of the input for the program, these
classes are built either on the run time of the algorithm or the space of the algo-
rithm. Furthermore, an algorithm can be deterministic or non-deterministic. An

1The definitions of this section are based on definitions of [AB09].
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Figure 4.1.: Chomsky hierarchy – Complexity classes and their dependencies.

algorithm is deterministic, if at each point in time the algorithm can only execute
a single instruction [AB09, p. 25]. An algorithm is non-deterministic, if the algo-
rithm chooses always the following instruction from the set of currently applicable
instructions, such that the goal of the algorithm is reached in a minimal number of
steps [AB09, p. 39]. The class P contains exactly the problems that can be solved
in polynomial time with a deterministic algorithm. An algorithm has a polynomial
run time with respect to an input of n symbols, if the number of required (atomic)
steps of the algorithm to finish the procedure can be bounded by a polynomial nk,
for k ∈ N and any input [AB09, p. 25]. As presented in Example 17, the sort al-
gorithms have a complexity of O(n2) and O(n log n). Since these run times can be
bounded by a polynomial, the computational problem of sorting a list of integers
has a polynomial complexity. Similarly, decision problems that can be solved with a
polynomial algorithm are in the class P. Furthermore, a problem is called tractable,
if there exists an deterministic algorithm that can solve the problem in polynomial
time. [GJ79, p. 8]. Hence, all tractable computational problems are in P.
An algorithm has an exponential run time with respect to an input of n symbols,

if the run time is not polynomial and if the number of required (atomic) steps of the
algorithm to finish the procedure can be bounded by an exponential function k2n,
for k ∈ N and any input [AB09, p. 56]. An example algorithm with an exponential
run time is to generate all subsets of a given set.

Complexity Classes

A complexity class that contains comparatively simple decision problems is P, where
a deterministic algorithm solves a computational problem of input size n within a
run time that can be bounded by a polynomial. Finding an element in a set of
elements is an example problem for this class of problems [SW11]. From the point
of view of this thesis, there is also the class of problems that can be solved efficiently
in parallel: Nick’s Class NC [KR90, AB09, p. 117]. A problem that belongs to
this class can be solved in polynomial time with a single computing unit. For a
specific problem assume this number of steps of the computing unit to be n. Then,
when m computing units are available, each computing unit has to perform only
O( n

m) steps, so that the overall number of parallel steps for solving the problem is
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O( n
m). If for solving a problem such a parallelization exists, then the problem is in

NC. An example of such a problem is finding an element in an array [GHR95]. A
counterexample is unit propagation [GHR95], which is a polynomial algorithm, but
which there does not exist an algorithm in NC.
Problems of the class NP can also be solved in polynomial time, but then the

execution order of the possible steps in the algorithm is chosen non-deterministically.
Another categorization of this class is the following: given witness of a solution to a
NP–problem, then verifying the solution can be done in polynomial time [GJ79]. So
far, the question whether the two classes NP and P are equal is open. Nevertheless,
the complexity classes NP and P are believed not to be equal, and the complexity
class NP is furthermore assumed to contain more problems than P. The most
prominent problem is the SAT problem [Coo71], for which no polynomial algorithm
exists, as long as the above assumption holds.
The class coNP solves the complement of the problems that can be solved in
NP [AB09, p. 55]. Thus, the question whether a formula is unsatisfiable is part of
coNP. The class PSPACE contains the classes NP and coNP, and is characterized
with respect to the space that is required to solve a problem. When the space of
an algorithm can be bounded by a polynomial with respect to the input size, this
algorithm is in PSPACE . Solving a quantified Boolean formula [BHvMW09], or
finding the interpretation that satisfies most clauses of an unsatisfiable formula in
CNF, known as MaxSAT [BHvMW09], are two representatives of this class. This
class of problems is covered by the problem for which a deterministic algorithm
exists that requires an exponential number of steps with respect to the size of the
given problem. The class of decidable problems contains all problems for which a
solution can be computed in finite time. Finally, there exist problems for which no
algorithm can be specified that always terminates with a solution in finite time. The
problems of this class are called undecidable.
A reduction from a problem A into a problem B is called a polynomial time

reduction, if there exists a polynomial algorithm that translates A into B [AB09, p.
42]. Observe that the space required for a problem B cannot be exponentially
larger than for a problem A, if there exists a polynomial time reduction from A
to B, because producing this exponential output requires exponentially many steps
in the size of A. Then, a problem A is NP-hard, if there exists a polynomial time
reduction from any problem B ∈ NP to A. [AB09, p. 42]. Similarly, a problem A
is NP-complete, if A is in NP and is NP-hard. [AB09, p. 42].
A reason why we are interested in the satisfiability checking problem is that this

problem is NP-complete, and thus any problem in NP can be solved by reducing
this problem into a SAT problem. From a theory point of view, the non-deterministic
classes are nice, because they show a lower bound for the computation. In case each
decision in the algorithm is “guessed” correctly, then the tasks of those complexity
classes can be solved in the given complexity. As long as the equality of the classes P
and NP is not shown, which means that there exists no implementable oracle that
can give the answer to all algorithmic decisions correctly, deterministic algorithms for
solving problems of the non-deterministic classes have to perform search, to simulate
the oracle. This search is usually driven by heuristics, and there has been intensive
research on this topic with respect to solving the SAT problem [HS04,BHvMW09,
MMZ+01,ES04]. Since the search is not polynomial, the actual deterministic solving
algorithm for NP problems is exponential in the worst case.
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4.2. Hidoku – A Number Puzzle

We will motivate the difference between the two complexity classes P and NP on
an exemplary problem. Recently, the interest in number puzzles like the Sudoku
increased. A similar puzzle is the Hidoku, which is also played on a grid of n × n
fields, where the neighborhood of each field contains of the eight surrounding fields.
The rules are the following:

(1) Put exactly one integer i into a field.

(2) Put each number i with 1 ≤ i ≤ n2 somewhere on the grid.

(3) If the number i is placed in a field, then the number i + 1 has to be in a
neighboring field.

The third rule can be rewritten into the following rule, because the grid is finite:

(3′) If the number i is placed in a field, then the number i+ 1 cannot be assigned
to any non-neighboring field.

The neighborhood of fields includes all cells that are directly connected to each
other, horizontal, vertically, and diagonally. In combination with the rules (1) and
(2), the two rules (3) and (3′) are equivalent, because n2 numbers should be assigned
to n2 fields. Furthermore, each field contains exactly one integer. The following
argumentation can be done for any field of the grid: since the grid is finite, the
whole grid consists of the union of the neighboring and non-neighboring cells. Now,
if a number has to be assigned to a neighboring field, then this number cannot be
assigned to a non-neighboring field. The equality of the two statements can also be
seen by the double negation within the second statement (3′).
On an empty grid solving a Hidoku is very simple to be solved by a human,

because there exists easy strategies how to solve these puzzles. For example: put
the numbers 1 to n into the first row of the grid from left to right, then, put the
numbers from n + 1 to 2n into the next row from right to left. By continuing this
scheme, an empty Hidoku can be filled easily, and all above constraints are satisfied.
Obviously, there exist more such strategies. A reason for the numerous solutions is
the fact that the grid of the puzzle is symmetric: if the board is rotated or flipped,
a valid solution for the original grid simply needs to be transformed as well, and
another solution is found. Therefore, to create a challenging Hidoku, preset numbers
are added to the grid. When the grid is partially filled, a simple strategy, like the
strategy mentioned above, does not work any longer and other reasoning methods
need to be found. This can be seen in the example Hidokus in Figure 4.2. The left
Hidoku is an empty Hidoku, where the strategy for empty Hidokus can be applied.
On the right side, a partially filled Hidoku is given, where this strategy cannot
be applied.2

4.2.1. Reasoning Techniques for Solving Hidokus

Of course, any combination of the numbers from 1 to n2 could be assigned to the
fields of the grid, and afterwards we check whether this assignment corresponds

2A solution to this puzzle is given on page 82.
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Figure 4.2.: On the left side an empty Hidoku is given. The right Hidoku contains
preset number (bold printed).

to a valid solution. In case there are already preset numbers, either due to being
preset or due to previous reasoning, a first improvement for the naive idea would
be to consider only assignments that do not violate any of the rules for solving a
Hidoku. Still, if the current partial solution leads to inconsistencies with the rules,
assumptions have to be undone.

This search process can be supported by reasoning, which finds assignments that
are mandatory to obtain a valid solution from the current state. Number assign-
ments that are caused by reasoning do not need to be undone if their previous search
decisions lead to a valid solution. Thus, the set of possible number assignments de-
creases, and then the search process becomes better as well: candidates that do not
lead to a solution have been excluded before being considered for search. Therefore,
reasoning should be preferred over search.

Two simple reasoning techniques are explained briefly: first, a field with the
number i has only a single free neighboring field and i + 1 is not assigned to any
other field yet, then i + 1 has to be filled into the empty field. In the Hidoku in
Figure 4.2, this situation occurs for the field with the number 5.

Second, if there are two fields that have the numbers i and i+2 and furthermore
these two fields are separated by a single empty field. Then, this field is the only field
where the number i + 1 can be set. This assignment is an immediate consequence
of the previous state. In the Hidoku of the example, we can see this situation for
the fields with the numbers 5 and 7. The latter concept uses only local reasoning
and can be extended to longer chains: if there are two cells with the numbers i and
i+ d and the single shortest possible connection between these two fields is d, then
along this connection the numbers i+1 to i+ d− 1 have to be set to fulfill the rules
of the puzzle. An example for the generalized variant in Figure 4.2 can be found in
the top right corner between the numbers 1 and 4 with distance 3.

4.2.2. The Complexity of Solving Hidokus

To show the complexity of the Hidoku puzzle, we reduce it to another well researched
problem whose complexity class is known already. This problem is the Hamiltonian
Path problem [GJ79, p. 199]. For an undirected graph G = (V,E) with the set of
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Figure 4.3.: On the left side an empty Hidoku is given, whose mapping corresponds
to the graph (right side) that can be solved by the Hamiltonian Path
problem to obtain a solution for the Hidoku.

vertices V and the set of edges E, which connect two vertices, the Hamiltonian Path
problem states the question whether there exists a path that connects all vertices of
V , such that each vertex is visited exactly once. Naturally, a vertex v can only be
visited from a vertex v′, if there exists an edge (v, v′) ∈ E in the graph that connects
these two vertices. The problem of solving empty Hidokus can be reduced to the
Hamiltonian Path problem by constructing the following graph:

Let a field fc,r represent the field in the grid with the row r and the column c.
Then, for each field fc,r in the grid of the Hidoku, there has to be a vertex vc,r in
the graph. Next, for each pair of neighboring fields (fc,r, fc′,r′) with |r′− r| ≤ 1 and
|c′ − c| ≤ 1 an edge E := E ∪ (vc,r,, vc′,r′) is introduced. Figure 4.3 illustrates this
mapping by showing the Hidoku on the one side and the corresponding graph on
the right side. The reduction is polynomial, and thus the complexity class of the
two problems is at most NP.
A solution of the Hamiltonian Path problem on such a constructed graph corre-

sponds to the solution of the original Hidoku problem: Let the solution be the path
(vr1,c1, vr2,c2, . . . , vrn2,cn2), then we assign the number 1 to the field fr1,c1, and num-
ber 2 to the field that corresponds to the second vertex in the path, and continue
until all elements in the path are processed. This assignment is a solution to the
Hidoku, because each vertex is visited exactly once, so that exactly one number is
put into one field; and, since neighboring vertices correspond to neighboring fields,
the next higher integer is assigned to a neighboring field. Finally, since there are n2

vertices in the graph, also n2 numbers have been assigned to the Hidoku.

To show that solving Hidokus is NP-hard, we can reduce the Hamiltonian Cycle
Problem in Grid Graphs with Holes to Hidokus [IPS82]. The Hamiltonian Cycle
Problem asks for a Hamiltonian Path on a given graph, with the additional condition
that there has to be an edge between the starting point and the end. The proof
sketch is as follows:3 a given grid graph G can be embedded into a larger Hidoku
by rotating the grid graph by 45 degrees clockwise so that its edges are represented
by diagonal neighborhoods in the Hidoku. Next, we fill the Hidoku with preset

3The proof idea has been published in http://cs.stackexchange.com/questions/11330/

is-hidoku-np-complete, accessed .
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Figure 4.4.: On the left side a grid graph with holes is given. This graph is embedded
into the Hidoku on the right side with a 45 degree clockwise rotation.
A solution to this Hidoku corresponds to a solution of the Hamiltonian
cycle problem of the grid graph. To obtain a cycle, the end point of the
Hidoku is already given as a preset number.

numbers, such that only the numbers of the fields that represent the grid graph
are left empty. Since the entry and end point in a Hamiltonian cycle need to be
connected, the transition between the preset numbers and the embedded grid graph
needs to be chosen carefully, so that there is a unique transition. Furthermore, the
highest number of the Hidoku needs to be given next to the entry point, so that a
connection between entry and end point is ensured. To obtain a valid Hidoku, the
Hamiltonian Cycles Problem of the embedded grid graph has to be solved, because
each field has to be visited exactly once, and by construction the first field of the
grid graph will be next to the last field of the grid graph. The above reduction is
polynomial, since given a grid graph where m is the maximum of the number of
columns c and rows r, i.e. m = max(c, r), then the required grid for the Hidoku has
to have at most the size (2m+2)×(2m+2). An illustration of the idea is given with
an example graph in Figure 4.4. The preset number that represents the end point
of the Hamiltonian Cycle is 36, which is connected to the entry next to number 25.

4.3. Problem Specification Languages

To solve a problem like the Hidoku with a machine, the problem needs to be repre-
sented in a machine readable language. Here, we focus on a rather simple language,
so that the described problems are always decidable.

The language for SAT problems is propositional logic. Modern SAT solvers accept
only a subset of this language: formulas in conjunctive normal form (CNF). Unfor-
tunately, from this language the structure of the specified problem is hidden and
the language itself is hardly human readable. Therefore, more high-level languages
like the language for answer set programming (ASP) [BET11,GKS12], specifications
for SAT modulo theories (SMT) [BSST09], or for expressing constraint satisfaction
problems (CSPs) [RBW06] have been developed. Here, we focus on CSP, because a
problem specified in CNF can also be seen as an instance of CSP.

A CSP P = (V,D, C) is specified as a triple that consists of a finite set of vari-
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ables V, a finite set of domains of these variables D, and a finite set of constraints C.
For simplicity, assume the domain DX of a CSP variable X can contain only finitely
many integers4. Finally, a constraint Ci can enforce limitations on the assignments
of variables, for example Xi < Xj or Xi ̸= Xj . Again, we enforce that these limita-
tions can be computed.

Example 18: A Simple Problem as CSP Consider a street crossing
where two roads cross and from each road we are allowed to continue in the
four possible directions. To avoid accidents, traffic lights are installed, one traf-
fic light for each road at the crossing. These traffic lights can be either green or
red. To obtain a valid combination, exactly one traffic light has to be green.
This problem can be described as CSP (V,D, C) as follows: the set of variables
V represents the four traffic lights with the variables V = {A,B,C,D}. All traffic
lights have the same domain:

D = {dom(A) = dom(B) = dom(C) = dom(D) = {red, green}}.

Finally, the constraint that there has to be exactly one green traffic light is
modeled as a sum constraint:

C = {((A = green) + (B = green) + (C = green) + (D = green)) = 1}.

A nice property that can be enforced on the variable domains of a CSP is generalized
arc consistency, which builds on arc consistency.

Definition 4.1 (Arc Consistent). A domain DX of a CSP variable X is arc con-
sistent with respect to a binary constraint C, if for every value of the domain DX

the constraint C can still be satisfied. [RBW06, p. 35].

The definition of arc consistency can be lifted to general constraints that consider
more than two CSP variables.

Definition 4.2 (Generalized Arc Consistent). A domain DX of a CSP variable X
is generalized arc consistent with respect to a constraint C, if for every value of the
domain DX there exists a solution with respect to the constraint C. [RBW06, p. 35].

Thus, (generalized) arc consistency of a domain can be reached by removing all the
values from a domain DX , until only valid values remain. Arc consistency can be
computed for the whole CSP, by considering all pairs of domains and constraints
until no more domains can be reduced. Therefore, algorithms have been proposed in
the literature that can extend a partial assignment until this termination [RBW06,
Mac77].
Returning to the example of solving a Hidoku, the reasoning techniques that have

been presented in Section 4.2.1 correspond to enforcing generalized arc consistency

4Since the domain is allowed to contain only finitely many elements, one could also regard all the
elements and assign a unique index to each of theses elements. This way, any domain can be
represented with integers. Then, the semantics of the constraints of the CSP has to be adapted.
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(GAC): in case a field with value i has only a single free neighboring field, and i+1
is not assigned to any field yet, then the free field needs to contain the number i+1,
because otherwise the neighbor rule of the Hidoku is violated. All other values for
this field will be dropped. The other way around, enforcing GAC for the three given
rules separately does not assign the single free field between two fields that have the
values i and i+ 2. Also for the longer distance d > 2 between the two fields, GAC
cannot assign any of the intermediate fields. Thus, the presented reasoning is more
powerful than enforcing GAC on the Hidoku.

On the Boolean Level

Even for very small problems that contain only Boolean domains, many different
constraints can be described. For encoding applications, e.g. routing, scheduling,
verification or code-generation [ARMS02, CK03, MSP08], as well as for encoding
formulas from product configuration or radio frequency assignment or the domain
of a CSP variable [KS00,CdGL+99], encoding numerical bounds is necessary. This
encodings can be achieved with cardinality constraints. On the other hand, con-
straints on the parity of a set of literals can be enforced with the XOR constraint.
The XOR constraint enforces that among a given set of literals M , the number of

satisfied literals is either even or odd. Such a constraint for the set M = {a, b, c, d}
can be denoted as follows:

a⊕ b⊕ c⊕ d = 1.

This constraint enforces the number of satisfied literals of this set to be odd. Simi-
larly, by replacing the parity number 1 with the number 0, the constraint enforces
the number of satisfied literals to be even:

a⊕ b⊕ c⊕ d = 0.

The other constraint type, the cardinality constraint, is a sub-category of the even
more expressive pseudo Boolean constraint [RM09]. A cardinality constraint on the
set of literals M = {l1, . . . , ln} is usually written as ◁k(l1, . . . , ln), where k is the
cardinality and the operator ◁ ∈ {≤,=,≥} specifies the type of the equation. For
some combinations of the operator and the cardinality, specialized names have been
proposed in the literature:

▶ The at-most-one (AMO) constraint of a set of literals M enforces at most one
literal l ∈M to be satisfied: ≤1(M).

▶ The at-least-one (ALO) constraint of a set of literals M enforces at least one
literal l ∈M to be satisfied: ≥1(M).

▶ The exactly-one (EO) constraint of a set of literals M enforces that exactly
one literal l ∈M to be satisfied: =1(M).

For most applications these constraints are already sufficient to describe a problem
with a language that contains only Boolean domains, for example with proposi-
tional logic.

4.3.1. The Language of Boolean Logic

Several methods to encode a non-Boolean CSP domain into CNF have been proposed
in the literature. The three most prominent encodings are explained below.
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The Direct Encoding

The most natural encoding is the direct encoding [Wal00], which is also referred
to as sparse encoding [Hoo99], because only one variable out of the used Boolean
determines the high-level value: for each value i in the domain of a CSP variable
X a Boolean variable x is introduced such that this Boolean variable represents
the CSP assignment on the Boolean level: xi = ⊤ ⇐⇒ X = i. Thus, the direct
encoding can also be called unary encoding. From a model I of the resulting for-
mula the value of the CSP variable X can be extracted by checking which xi is
assigned to ⊤. To ensure that exactly one value i is assigned to the CSP variable
X, the constraint =1(


i xi) needs to be encoded. For this Boolean representation of

CSP variables many domain and constraint encodings have been proposed and their
properties have been analyzed. The direct encoding can be considered the most
widely used encoding [Heu08b,LO06].

The Order Encoding

Another sparse encoding or unary encoding is the order encoding [TTKB09]. This
encoding is based on a different idea. Again, for each value i ∈ DX of a domain
a Boolean variable is introduced. However, in the order encoding this Boolean
variable yi represents if the variable X is assigned a value greater equal to i:
yi = ⊤ ⇐⇒ X ≥ i. To ensure that at most one value is assigned to the CSP variable,
in the Boolean representation the encoding needs to ensured that yi → yj for all
1 ≤ i < j ≤ |DX |. This constraint can be encoded with the binary clauses (yi∨yi+1),
for all 1 ≤ i < |DX |, because this set of clauses entails the formula yi → yj . Stating
that the variable X is assigned to at least one variable of its domain, the encoding
needs to enforce that the variable is at least greater equal than the smallest value
of its domain. This effect is reached by adding the unit clause (y1) to the formula.

With the representation of the order encoding, a CSP variable is assigned the
value i if the Boolean variable yi is satisfied, i.e. yi = ⊤, and the variable yi+1 is
falsified, i.e. yi+1 = ⊥. Thus, from a model I of the resulting formula the value
of the variable X can be extracted by finding the pair (yi, yi+1) with yi ∈ I and
yi+1 ∈ I. For the upper bound case, we only need to check whether yi ∈ I, with
yi = |DX |. For the order encoding it has been shown that tractable CSP formulas
can be encoded into tractable SAT formulas [PJ11]. This property does not hold
for the direct encoding, and therefore the order encoding can be considered a more
powerful encoding.

The Log Encoding

Finally, there is the log encoding [IM94], which is also called compact encoding, be-
cause the representation introduces fewer variables. The log encoding can also be
seen as a binary encoding. For a variable X with its domain DX , only ⌈log |DX |⌉
Boolean variables are introduced. Without the loss of generality, assume that the
elements in the domain DX are consecutive, so that they can be assigned a consec-
utive index, starting with 0. Then, this index can be represented with ⌈log |DX |⌉
bits, or ⌈log |DX |⌉ Boolean variables. Thus, if the variable DX would be assigned
the value i, then the Boolean variables are assigned so that they form the binary rep-
resentation of the corresponding index. Although the number of introduced Boolean
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variables is much smaller than for the other two encodings, the CSPs that have been
encoded with the log encoding do not necessarily result in a faster solution process
than when the direct encoding or the order encoding are used.

Encoding a CSP into SAT – An Example

The small CSP presented in Example 18 is encoded into CNF in Example 19, where
the above encodings direct encoding and order encoding are used.

Example 19: Encoding a Simple CSP into CNF The problem of the
traffic lights was described as CSP (V,D, C) with

▶ V = {A,B,C,D}.

▶ D = {dom(A) = dom(B) = dom(C) = dom(D) = {red, green}}.

▶ C = {((A = green) + (B = green) + (C = green) + (D = green)) = 1}.

The domain of each traffic light contains two elements. Therefore, the direct
encoding introduces two Boolean variables for each domain: ag represents that
the traffic light A is green, and ar represents that the traffic light A is red.
Likewise, the variables bg, br, cg, cr, dg and dr are introduced. Next, the CNF
encoding ensures that the traffic lights cannot have two colors, by encoding the
clauses

(ag∨ar)∧ (ag∨ar)∧ (bg∨br)∧ (bg∨br)∧ (cg∨cr)∧ (cg∨cr)∧ (dg∨dr)∧ (dg∨dr).

With each pair of clauses for one traffic light the formula ensures that one of
the two variables is satisfied and the other variable is falsified – hence a model of
the formula assigns exactly one color to each traffic light. Here, the constraints
in C are not encoded. For the direct encoding, the constraint encoding is given
in Example 20.
For the order encoding as well as the log encoding the elements in the domain

of all variables have to be sorted, such that they can be referenced by an index.
Assume that the element red is labeled with index 1, and green is labeled with
index 2. Then, the order encoding introduces the two variables a1 and a2 for the
domain of traffic light A, where a1 represents that red or a color with a higher
index is active and a2 represents that A is at least green, because there is no
color with a higher index. Similarly the variables b1, b2, c1, c2, d1 and d2 are
introduced. The order encoding produces the following clauses for the traffic
lights:

(a1) ∧ (a1 ∨ a2) ∧ (b1) ∧ (b1 ∨ b2) ∧ (c1) ∧ (c1 ∨ c2) ∧ (d1) ∧ (d1 ∨ d2).

The unit clauses ensure that each traffic light has at least one color. The
assignment of the variables a2, b2, c2 and d2 decides whether a traffic light is
actually green or red.
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Other Encodings from CSP to SAT

There exist even more ways to represent a CSP variable with Boolean variables,
for example in a way that an introduced Boolean variable is satisfied if the CSP
variable is assigned a value of a certain interval [AM05]. Other types of encodings
are hierarchical encodings. There, the domain of a CSP variable is split into groups,
whose indexes are represented by Boolean variables, and the element within the
group is represented by different Boolean variables [VG09,NVH13].
In the rest of the thesis, the direct encoding is the most frequently considered

encoding, and the order encoding is used sometimes due to its interesting properties,
for example preserving tractability with the encoding [PJ11] or its small size. We
will not consider the log encoding further. Section 4.3.2 presents a hierarchical
encoding and then Section 5.6 shows how the direct encoding can be transformed
into a hierarchical encoding automatically.

4.3.2. The Language of Constraints

Given a set of literals M = {l1, . . . , ln}, several constraints, for example cardinality
constraints, can be encoded. These constraints can be encoded by either excluding
conflicting assignments with clauses, or by enforcing solutions by implications. For
the former approach no name has been proposed – the approach has simply been
used under the term direct encoding. To improve clarity, this encoding approach is
called conflict encoding. For the latter approach, the name support encoding has
been given [Wal00].
In the conflict encoding for each disallowed combination of literal assignments, for

example disallowing the combination {l1, l2, . . . , ln}, a clause is added to the formula:
(l1 ∨ l2 ∨ . . .∨ ln). On the other hand, the support encoding adds clauses that force
a literal to be assigned, given that the remaining set of literals is already assigned.
The first clause for the example constraint would be (l1∧ l2∧ . . .∧ ln−1 → ln), which
in this simple example results in the same clause as in the conflict encoding.

Example 20: Different CNFs for One Constraint Reconsider the CSP
of Example 18 with the direct encoding of the domain as presented in Exam-
ple 19. The direct encoding introduced two Boolean variables for each domain:
ag represents that the traffic light A is green, and ar represents that the traffic
light A is red. Likewise, the variables bg, br, cg, cr, dg and dr have been intro-
duced. The constraint for the traffic lights was that exactly one light is allowed
to be green:

((A = green) + (B = green) + (C = green) + (D = green)) = 1.

Given the Boolean representation for the traffic light status, this constraint
can be expressed with the conflict encoding by adding a clause for each invalid
combination for the traffic lights, for example, A and B are not allowed to be
green at the same time. By adding a clause for each pair, the following CNF is
obtained:

(ag ∨ bg) ∧ (ag ∨ cg) ∧ (ag ∨ dg) ∧ (bg ∨ cg) ∧ (bg ∨ dg) ∧ (cg ∨ dg).
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Finally, a clause is added that forbids the combination that all traffic lights are
assigned red:

(ar ∨ br ∨ cr ∨ dr).

The support encoding translates the constraint differently: given a combina-
tion of traffic light assignments as soon as this combination forces another light
to be assigned a specific value, this implication is added as a clause: If a traffic
light is assigned to green, for example A, then the implication ag → (br∧cr∧dr)
is encoded. Likewise, the same implications can be encoded for B, C and D:

(ag ∨ br) ∧ (ag ∨ cr) ∧ (ag ∨ dr) ∧ (bg ∨ ar) ∧ (bg ∨ cr) ∧ (bg ∨ dr) ∧

(cg ∨ ar) ∧ (cg ∨ br) ∧ (cg ∨ dr) ∧ (dg ∨ ar) ∧ (dg ∨ br) ∧ (dg ∨ cr)

For the other direction, the fourth traffic light is assigned green as soon as there
are three red traffic lights:

(ar ∨ br ∨ cr ∨ dg) ∧ (ar ∨ br ∨ dr ∨ cg) ∧ (ar ∨ cr ∨ dr ∨ bg) ∧ (br ∨ cr ∨ dr ∨ ag).

Depending on the constraint, the support encoding produces fewer clauses. For
the given constraint this property does not hold. However, as will be presented
below, the number of clauses for encoding Hidokus is smaller when the support
encoding is used for encoding constraints.

Encoding the At-Least-One Constraint

If for a given set of literals M = {l1, . . . , ln} at least one literal li should be assigned
to ⊤, i.e. ≥1(M), then this constraint can be represented by a single clause:

(l1 ∨ . . . ∨ ln).

In order to satisfy this clause, at least one of these literals needs to be assigned to ⊤.
If the support encoding would be used, the same clause is produced multiple times,
because the implication (l1, . . . , ln−1)→ ln is encoded for all permutations.

Encoding the At-Most-One Constraint

A more complex formula is necessary for the at-most-one constraint for a set of
literals M = {l1, . . . , ln}: ≤1(l1, . . . , ln). Since this special cardinality constraint is
used in many applications [ARMS02,CK03,MSP08], most importantly to represent a
CSP variable with Boolean variables for example [LO06] or [HMNS12,GHM+12],
much effort has been spent to study encodings of this constraint. In the following,
some of the proposed encodings and their properties are discussed.

The Pairwise Encoding The pairwise encoding [MSL07], also called naive encod-
ing, or conflict encoding when applied to the Boolean representation of CSP vari-
ables [Wal00], of the at-most-one constraint is the set of clauses that disallow each
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pair of literals of the set M to be assigned to ⊤ at the same time:
1≤i<n


i<j≤n

(li ∨ lj).

Here, no fresh variables are introduced, and n(n−1)
2 binary clauses are created.

The Support Encoding Following the intuition of the support encoding, a literal
li ∈ M needs to be assigned ⊥, as soon as one literal lj ∈ M is assigned ⊤, i ̸= j.
The implication li → lj can be transformed into the clause (li ∨ lj), so that for the
at-most-one constraint the support encoding is equal to the pairwise encoding.

The Nested Encoding A simple way to reduce the amount of required clauses for
an at-most-one encoding is to divide the constraint into two separate constraints
with the help of a fresh variable x:

≤1({l1, . . . , ln})↭∩ ≤1({x, l1 . . . , lj}) ∧ ≤1({{x, lj+1, . . . , ln}).

The integer j, 1 < j < n should be chosen in a way that the two partitions of the
set M are equally large. Therefore, j is usually set to j = ⌊n2 ⌋. For an at-most-one of

a set M with cardinality n the pairwise encoding requires n(n−1)
2 clauses. When the

set is split into two subsets of the size ⌈n2 +1⌉, for which the at-most-one constraint
is encoded with the pairwise encoding again, the amount of clauses is reduced to

2
(1 + n

2 )(
n
2 )

2
=

n

2
+

n2

4
.

Thus, by introducing a fresh variable, the amount of clauses can be reduced, and
thus, the new at-most-one constraints of the subsets should also be encoded with
the nested encoding. For n = 4, both the pairwise encoding and the nested encoding
require 6 clauses. Therefore, the recursion of the nesting can be stopped as soon as
a set that should be encoded has the cardinality |M | ≤ 4.
If this recursion strategy is applied, then for the at-most-one constraint of a set of

literals M with the cardinality n = |M |, the nested encoding can introduce 3
2n fresh

variables, and creates 3n− 4 clauses to encode the constraint [MHB13].

The Two Product Encoding The two product encoding [Che11] of the at-most-
one constraint of a set of literals M also reduces the number of clauses by utilizing
recursion. The idea behind this encoding is visualized in Figure 4.5. The literals li
of the set M are arranged in a two-dimensional grid. By selecting one row (mapping
a variable rj to ⊤) and one column (mapping a variable co to ⊤), the literal li that
is mapped to ⊤ can be selected. All remaining literals have to be mapped to ⊥.
This fact is ensured by the at-most-one constraints of selector variables of the rows
and columns. In the example, mapping l7 to ⊤ requires r1 and c2 to be mapped
to ⊤.
To achieve the arrangement in the grid, let n = |M | be the cardinality of the set

M . Next, a mapping is needed from the index i of each element li ∈M so that the
literal is placed uniquely in the grid. Two helper integers p = ⌈

√
n⌉ and q = ⌈np ⌉, are

calculated so that the product of these two numbers pq ≥ n can cover all elements
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c0 c1 c2 c3

r0
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l1 l2 l3 l4
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AMO
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Figure 4.5.: Encoding the at-most-one constraint with the two product encoding.

li. Next, from each index i of a literal li a row and a column can be calculated:
row(i, n) = ⌊ i−1

p ⌋ and col(i, n) = ⌊(i−1) mod p⌋. For selecting a row and a column,
fresh variables rj with 0 ≤ j < q and co with 0 ≤ o < p are introduced. For these
variables, the at-most-one constraint has to be encoded again. Finally, let li be an
element of M with the row j and the column o. If the variables rj and co are mapped
to ⊤, then li can be mapped to ⊤ as well, but all other elements of M have to be
mapped to ⊥. The following formula ensures this property:

≤1({r0, . . . , rq−1}) ∧ ≤1({c0, . . . , cp−1}) ∧


1≤i≤n

(rj ∨ li) ∧ (co ∨ li),

where in the last term the indexes j and o correspond to the row and column for
the index i, respectively. The first two terms of the formula ensure that at most
one row and at most one column is selected. The last term ensures that the literal,
whose row and column is selected, is allowed to be mapped to ⊤. Because of the
at-most-one constraints for both row and column, two literals li and lj with i ̸= j
are never mapped to ⊤ at the same time, because this would require to map two
row selector variables or two column selector variables to ⊤.
For a set M with n elements, the at-most-one constraint is encoded recursively in

each step for 2⌈
√
n ⌉ literals. Additionally, another 2n clauses are added. Further-

more, for each recursion 2
√
n fresh variables are introduced. Thus, the encoding

requires 2n+ 4
√
n+O( 4

√
n) clauses and 2

√
n+O( 4

√
n) fresh variables.

The Regular Encoding Another way to encode the at-most-one constraint of a set
of literals M is the regular encoding. This encoding utilizes the fact that the binary
clauses of the order encoding (compare Section 4.3.1) ensure that the corresponding
CSP variable has only a single assigned value.
By introducing fresh variables that have the same representation as when using

the order encoding for an at-most-one constraint, these fresh variables can also be
used to encode the at-most-one constraint on a set of propositional literals instead
of the domain of a CSP variable. Let M be the set of literals li in the at-most-one
constraint. The regular encoding [BHM01], also introduced as the ladder encoding
[GPS02], utilizes the order encoding to represent that at most one literal of M can
be mapped to ⊤. Therefore, fresh variables yi, with 1 ≤ i ≤ n, where n = |M |, are
added to the formula. As explained in a previous paragraph, an element li is chosen
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if the propositional variable yj is mapped to ⊥ for all j > i. Thus, the variable
yi needs to be mapped to ⊤ in this case. Combined with the property yi → yi+1

of the order encoding, the formula li ↔ (yi ∧ yi+1) maps from the direct to the
ordered representation. The overall formula to encode the order encoding and these
equalities is: 

1≤i<n

((yi → yi+1) ∧ (li ↔ (yi ∧ yi+1)))

≡


1≤i<n


(yi ∨ yi+1) ∧ (li ∨ yi) ∧ (li ∨ yi+1) ∧ (li ∨ yi ∨ yi+1)


. (4.1)

The first clause in each quadruple encodes the order encoding on the fresh vari-
ables yi. The remaining three clauses encode the mapping from the order encoding
to the literals li ∈M .

Overall, the regular encoding introduces n fresh variables and thus requires 2n
variables in total. Furthermore, for each element of the set M , four clauses are
generated. Thus, the encoding needs 4n clauses. A strength of this encoding is that
inside the formula now the advantages of both encodings can be used. If encoding
the remaining problem into CNF requires to state that the literal li has to have some
value, then this literal can be accessed and the fact can be added as unit clause.
On the other hand, if the encoding requires to state that a literal yi with the index
smaller than some value j has to fulfill some constraint, than the literal yj−1 can
be used.

Encoding the Exactly-One Constraint

To encode the exactly-one constraint of a set of literal M , i.e. =1(M), the constraint
is usually represented by a conjunction of an at-least-one and an at-most-one con-
straint:

=1(M) ≡ ≤1(M) ∧ ≥1(M).

Then, the two constraints are encoded separately, as discussed in the above Sec-
tions 4.3.2 and 4.3.2.

Encoding Cardinality Constraints

Usually, cardinality constraints on a set of literals M with a cardinality n = |M | are
normalized before they are encoded into CNF. Constraints of the type =k(M) are
split into the conjunction of the two constraints ≤k(M) and ≥k(M). Furthermore, a
constraint of the type ≥k(M) can be reformulated into ≤k(M). For this normalized
type of constraint ≤k(M), several encoding methods have been proposed. Most of
them introduce fresh variables to represent sub formulas. After giving the naive
encoding without fresh variables, the sequential counter encoding [Sin05] that uses
fresh variables is presented briefly. Other proposed encodings like an encoding based
on binary decision diagrams (BDDs) [ES06], the sorting network [ES06], cardinality
networks [ANORC11], or the perfect hashing function based encoding [BHIMM12]
are mentioned only briefly.
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The Naive Encoding Given a set of literals M = {l1, . . . , ln} with the cardi-
nality n = |M |, a naive encoding into propositional logic of the cardinality con-
straint ≤k(M) is 

S⊆M
|S|=k+1

(

i∈S

li).

According to the conflict encoding, for any subset S ⊆ M with the cardinal-
ity |S| = k + 1 the formula ensures that all literals li ∈ S of this subset cannot
be satisfied at the same time. As already seen for the at-most-one constraint, the
support encoding would also result in the same set of clauses. This formula re-
quires


n

k+1


clauses and thus when M and k become large the size of the formula

grows exponentially. For small k and n this encoding is still a reasonable choice:
for k = 2, only n(n−1)

2 clauses are required, and for k = 3 the number of clauses

is n3−3n2+2n
6 .

The Sequential Counter Encoding The idea behind the sequential counter encod-
ing [Sin05] is to have a sum Si per literal li ∈ M , which represents the number of
satisfied literals lj with j < i. For the final sum Sn we have to enforce that this
sum does not exceed the cardinality k: Sn ≤ k. In the proposed encoding, each sum
is presented unary with k bits, so that for each sum Si the Boolean variables si,j
are introduced, with 1 ≤ j ≤ k. The counting relation is represented by encoding a
relation between two consecutive sums Si and Si+1, based on the assignment of the
corresponding literal li:

Si+1 =


Si if li = ⊥,
Si + 1 if li = ⊤.

On the Boolean variables si,j this behavior is encoded with the conjunction of the
following three formulas:

si,1 ← li ∨ si−1,1 for 1 ≤ i ≤ n, (4.2a)

si,j ← (li ∧ si−1,j−1) ∨ si−1,j for 1 ≤ i ≤ n, 1 < j ≤ k, (4.2b)

⊥ ← li ∧ si−1,k, for 1 ≤ i ≤ n. (4.2c)

The first formula, equation (4.2a), initializes the first bit si,1 of the unary represen-
tation of the sum Si. This bit si,1 has to be satisfied, if the literal li is satisfied,
or if the first bit si−1,1 is set in the previous sum Si−1 already. For the sum S1

there is no predecessor, so that S0 = 0, and thus all bits s0,j = ⊥, and the created
clauses can be simplified immediately. The clauses for this equation are (si,1 ∨ li)
and (si,1 ∨ si−1,1).
For the higher bits si,j with j > 1, there exists already a bit in the previous

sum si−1,j−1, which might be used to increase the current sum Si, if the literal li
is assigned. Alternatively, the previous sum Si−1 had this bit si−1,j set already, so
that the bit in the current sum has to be set as well. These two cases force the
assignment of si,j in equation (4.2b). This equation can also be formulated with two
clauses: (si,j ∨ li ∨ si−1,j−1) and (si,j ∨ si−1,j).
Finally, the formula ensures that no sum Si can be larger than k, by disallowing

the combination of si,k and li being satisfied at the same time in equation (4.2c).
The corresponding clause is (li ∨ si−1,k).
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Table 4.1.: Overview of encodings for the at-most-k constraint with n literals.

Encoding Number of Number of
clauses fresh variables

Naive


n
k+1


0

Binary [FPDN06] O(kn log2 n) O(kn)
Sequential Counter [Sin05] 2nk nk

Sorting Networks [ES06] O(n log2 n) O(n log2 n)

Cardinality Networks [ANORC11] O(n log2 k) O(n log2 k)

BDDs [ES06] 3nk nk

Tree [BB03] O(n2) O(n log n)

PHFs-based [BHIMM12] O(nkcn log n) O(kc log n)

When encoding the above formula into clauses 2n clauses are encoded per sum Si,
resulting in a total of 2nk + n clauses for the whole constraint. Furthermore, nk
fresh variables are introduced.

An Overview on Proposed Cardinality Constraint Encodings Given a set M of
literals with the cardinality n, many more encodings have been described in the
literature. Table 4.1 summarizes these encodings and gives the number of required
clauses, as well as the number of fresh variables per encoding. The given data
shows that many encodings with a small size are available. From a complexity point
of view, the encodings with the smallest formula should be considered for solving.
Furthermore, the encoding should preserve the GAC property when the cardinality
constraint is transformed into CNF. All presented encodings achieve this effect, with
one exception: the perfect hashing function (PHF) based encoding [BHIMM12] does
not always ensure GAC, but tries to cover most cases and at the same time reduce
the number of used clauses. This encoding is a trade-off between encoding fewer
clauses and covering all GAC combinations.

4.4. Hidokus Revisited

In this section, solving a CSP with the help of a SAT solver is illustrated on the
example of solving a Hidoku with preset fields. Therefore, three steps are necessary,
which are illustrated in Figure 4.6: (1) the Hidoku needs to be encoded into CNF,
(2) the formula is solved by a SAT solver, and (3) the solution of the Hidoku has
to be extracted from the model of this formula. Usually, CSP constraints can be
understood more easily than plain propositional logic, or CNF. For simplicity, the
transformation from the Hidoku into CNF is done via CSP, so that the formalization
of the problem is easier to follow.

Let the square grid G of the Hidoku have n×n fields fc,r, which we describe using
their column c and row r in the grid. In the high-level description of the given task,
a CSP variable Xc,r is introduced per field, with a domain DX = {1, . . . , n2}.Since
the domain of all CSP variables is the same, the index of the domain is dropped.
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Encoder SAT Solver Decoder

Figure 4.6.: A tool chain for solving Hidokus with a SAT solver.

Finally, the constraints which represent the rules for a valid Hidoku need to be
specified.

Put Exactly one Integer iii into a Field This constraint is always satisfied, since
the chosen CSP representation expresses each field with a separate CSP variable,
which has exactly one value. Still, to simplify the following discussion, we show how
this constraint is divided into at-least-one constraint and at-most-one constraint:
Since a CSP variable Xc,r needs to have at least one value, the following constraint
is required: 

1≤c≤n,
1≤r≤n


1≤i≤n2

Xc,r = i (4.3)

Furthermore, the fact that a CSP variable can be assigned at most one integer can
be formalized as follows: 

1≤c≤n,
1≤r≤n


1≤i<j≤n2

Xc,r ̸= i ∨Xc,r ̸= j (4.4)

Equation (4.3) is referred to as ALOfield, and equation (4.4) is called AMOfield.

Put Each Number iii with 1 ≤ i ≤ n21 ≤ i ≤ n21 ≤ i ≤ n2 Somewhere on the Grid If each number i
with 1 ≤ i ≤ n2 should be placed somewhere in a grid with n×n fields, in each field
there has to be exactly one integer. Formally, this fact can be stated as follows:

1≤i≤n2


1≤c≤n
1≤r≤n

Xc,r = i (4.5)

Furthermore, the fact that n2 different integers have to be placed into n2 different
fields, we can also conclude that the numbers in two fields have to be different:

1≤i≤n2


1≤c≤n and 1≤r≤n
1≤c′≤n and 1≤r′≤n

,(c ̸=c′ or r ̸=r′)

Xc,r ̸= Xc′,r′ (4.6)
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In the following, equation (4.5) is referred to as ALOboard, and equation (4.6) is
called AMOboard.

If the Number iii is Placed in a Field, then the Number i+ 1i+ 1i+ 1 has to be in a
Neighboring Field. As already discussed in Section 4.2, the third rule of the Hidoku
can be interpreted either by enforcing that a neighbor fc′,r′ of a field fc,r = i is set
to the succeeding integer i+ 1, or by disallowing the integer i+ 1 to be assigned to
any non-neighboring field. The first alternative is specified in equation (4.7a), where
for each integer i and each field fc,r the equation enforces that at least one of the
neighbors is set to the succeeding integer i+1. Any field is a neighbor of another field,
if the difference in row and column is not greater than one. The second alternative,
presented in equation (4.7b) enforces for each integer i and field fc,r that any non-
neighboring field is not assigned the succeeding integer i+1. Observe that compared
to the first equation the second equation constrains exactly the complementary set
of fields of the whole grid.


1≤i≤n2


1≤c≤n
1≤r≤n

Xc,r = i→

 
1≤c′≤n and 1≤r′≤n,
|c−c′|≤1 and |r−r′|≤1

Xc′,r′ = i+ 1

 (4.7a)


1≤i≤n2


1≤c≤n
1≤r≤n

Xc,r = i→

 
1≤c′≤n and 1≤r′≤n,
|c−c′|>1 or |r−r′|>1

Xc′,r′ ̸= i+ 1

 (4.7b)

The two different representations of this rule will be exploited to encode the CSP
representation into CNF. The first representation corresponds to the support en-
coding of the Hidoku rule, because based on one assignment the encoding enforces
another assignment of a neighboring cell. The second representation corresponds
to the conflict encoding. Since assigning a succeeding integer to a non-neighboring
field would violate the rule, this assignment is forbidden.

Choosing an Encoding

In the previous Section 4.3.1 several ways to represent CSP variables with Boolean
variables have been presented. Here, we choose the direct encoding for simplic-
ity, because the constraints that are mentioned above use only constraints of the
form Xc,r = i and Xc,r ̸= i, where i is an integer, or Xc,r ̸= Xc′,r′ = i. Of course,
these types of constraints could also be represented with the log encoding or the
order encoding. For the direct encoding only a single literal is needed to express the
assignment Xc,r = i, whereas the order encoding requires two literals for each such a
statement, and the log encoding requires log n2 literals. Encoding Hidokus with the
order encoding is discussed in Section 4.4. Without loss of generality, the presented
encoding in the following sections could also be transferred to the log encoding.

Encoding the Domains of the CSP Variables

For each CSP variable Xc,r and integer value i of the domain D a Boolean vari-
able xc,r,i is introduced, which is satisfied if only if the CSP variable is assigned
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the value i: xc,r,i = ⊤ ⇐⇒ Xc,r = i. Since there are n2 fields in the grid, this
Boolean representation requires n2n2 = n4 Boolean variables. For each CSP vari-
able Xc,r the resulting CNF has to ensure that exactly one Boolean variable xc,r,i is
satisfied, whereas all the other variables xc,r,j , j ̸= i, have to be falsified (compare
equation (4.3) and (4.4)). This property can be ensured by encoding an exactly-
one constraint on these variables that is split into an at-least-one constraint and an
at-most-one constraint: 

1≤c≤n
1≤r≤n

≥1(xc,r,1, . . . , xc,r,n2) (4.8a)


1≤c≤n
1≤r≤n

≤1(xc,r,1, . . . , xc,r,n2) (4.8b)

The at-least-one constraint in equation (4.8a) results in n2 clauses where each of
these clauses contains n2 literals. The at-most-one constraints for each of the
n2 fields in equation (4.8b) will produce n2 n

2(n2−1)
2 = n6

2 −
n4

2 clauses with the
naive at-most-one encoding. If the nested encoding for this method is chosen,
then n2(3n2 − 4) = 3n4 − 4n2 clauses are required, but 3

2n
2 fresh variables are in-

troduced.

Encoding the Grid of the Hidoku

To ensure that each number appears exactly once in the Hidoku, the two constraints
ALOboard (equation (4.5)) and AMOboard (equation (4.6)) need to be enforced
on the Boolean variables, which represent an at-least-one constraint and an at-most-
one constraint per integer on the whole grid of the Hidoku.

1≤i≤n2

≥1({xc,r,i|1 ≤ c ≤ n and 1 ≤ r ≤ n}) (4.9a)


1≤i≤n2

≤1({xc,r,i|1 ≤ c ≤ n and 1 ≤ r ≤ n}) (4.9b)

For each field, the at-least-one constraint in equation (4.9a) produces a clause with n2

literals, resulting in n2 clauses. Similarly to the n2 at-most-one constraints per field,
the at-most-one constraint on the n2 integers on the board will produce n6

2 −
n4

2 with
the naive encoding, and 3n4−4n2 clauses with the nested encoding. Again, 3

2n
2 fresh

variables are necessary for the latter method.

Redundancy in the Encoding

In the formula that has been achieved so far, there are already redundant clauses.
These redundant clauses are not necessary to obtain a correct representation of the
high-level problem in CNF. For example, if each field needs to contain at most one
integer (equation (4.4)) and each integer has to be placed somewhere on the grid
(equation (4.5)), then any valid solution to this subproblem also ensures that each
field contains at least one integer (equation (4.3)). The reason is that these equations
ensure that there cannot be two integers in a field, but we need to place n2 integers
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into n2 fields. Hence, each field contains a unique integer. A similar argumentation
can be done for equation (4.6): since each of the n2 numbers needs to be in some
field, but each field can only contain a single number, all the numbers i, 1 ≤ i ≤ n2,
have to appear exactly once on the board.

Due to this redundancy, not the whole formula needs to be encoded into CNF to
obtain a correct encoding of the Hidoku. Encoding the set of constraints that imply
the remaining constraint is sufficient. In the above example, the redundant con-
straints are equation (4.3) and equation (4.6), which are implied by the statements
represented in equation (4.4) and equation (4.5).

The following table presents all combinations of the constraints to encode a Hi-
doku and assigns names to them. Since the combinations board and field are
minimal, the combinations that are subsumed by these two combinations are not
given explicitly.

Name Equations to Encode Entailed Encodings

full ALOfield, AMOfield, –
ALOboard, AMOboard

board ALOfield, AMOboard AMOfield, ALOboard

field AMOfield, ALOboard ALOfield, AMOboard

Obviously, any superset of the constraints in the minimal encoding will also result in
a valid encoding for the Hidoku. As discussed above, the full encoding of a Hidoku
will result in a valid CNF formula. The combination field has been discussed above
the table already. Thus, only the soundness of the combination board remains
open. Assume the combination of the equations (4.5) and (4.4). Now, each integer
1 ≤ i ≤ n2 has to be placed somewhere on the grid. However, each field is allowed to
contain at most one integer. Since there are also n2 fields, the second constraint can
only be violated, if there is a field that does not contain any number. This scenario
cannot appear, because n2 integers need to be placed and there are only n2 fields
available, but each field can contain only a single integer. As a consequence, each
field needs to contain a value (equation (4.3)) and each field on the board will have
exactly one integer assigned to it (ensuring equation (4.6)). Thus, the combination
board is also sound.

Now, we show that there are no more combinations that result in a valid encoding
of a Hidoku: Combinations that encode only constraints that restrict only the do-
main of the CSP variables (equation (4.3) and (4.4)) or that restrict only the board
(equation (4.5) and (4.6)) but do not enforce that a CSP variable has only a single
integer can be proven to be wrong by either assigning the same integer to all fields,
or by assigning all integers 1 ≤ i ≤ n2 into a single field, respectively. The remaining
combinations consist of either the two at-least-one constraints (equation (4.3), (4.5))
or the two at-most-one constraints (equation (4.4) and (4.6)). The first case can be
refuted by assigning all integers 1 ≤ i ≤ n for all fields, and the second case can be
refuted by assigning no integer at all.
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Why Redundancy is Important

Classifying encodings from CSP to SAT and determining their complexity has been
posted as one of ten problems of propositional search [SKM97]. Based on the Hamil-
tonian Cycle Problem, which is the same problem as the Hamiltonian Path Problem
except that the beginning vertex and the end vertex have to be connected by an
edge in the graph, two encodings with different redundancies have been analyzed.
For the resulting formulas Hertel et al. analyzed the complexity of the proof that is
required to prove that a certain Hamiltonian Cycle Problem does not have a solu-
tion [HHU07]. Their results show that the conjunction of the formulas ALOfield,
AMOfield and AMOboard together with the conflict encoding of the neighbor-
hood relation results in a proof with exponential length for a resolution based proof
system. When exchanging AMOfield with ALOboard, Hertel et al. showed that
solvers that use clause learning, as modern CDCL solvers do (compare Section 5.4.3),
can produce polynomial bounded proofs. These results show that when encoding a
problem into SAT, the used encoding should be chosen very carefully. Furthermore,
redundancy might help: the smallest correct encoding we found is the combination
of ALOfield and AMOboard. This encoding is part of both analyzed combina-
tions. Still, since the clauses of ALOboard do not occur, a proof for an unsatisfiable
Hamiltonian Cycle Problem of this combination also has exponential length.

Encoding the Neighborhood Relationship with the Support Encoding

Next, the third rule of the Hidoku needs to be encoded. When using the direct
encoding, we need to transform equation (4.7a) into its Boolean representation.
Luckily, this representation can be converted into CNF easily:


1≤i≤n2


1≤c≤n
1≤r≤n

xc,r,i →

 
1≤c′≤n,1≤r′≤n,

|c−c′|≤1 and |r−r′|≤1

xc′,r′,i+1




≡


1≤i≤n2


1≤c≤n
1≤r≤n

xc,r,i ∨

 
1≤c′≤n,1≤r′≤n,

|c−c′|≤1 and |r−r′|≤1

xc′,r′,i+1


 (4.10)

The CNF in equation (4.10) encodes for each integer 1 ≤ i ≤ n2 and for each field
fc,r of the grid G a clause of at most nine literals, depending on the location of
the field fc,r in the grid. For fields that are located in a corner of the grid, there
exist only three neighbors, so that the resulting clause contains four literals. For the
remaining fields that are located at the border of the grid, there exist five neighbors
and thus the resulting clause will contain six literals. In total n2n2 = n4 such clauses
are generated to ensure the third rule of the Hidoku.

Encoding the Neighborhood Relationship with the Conflicting Encoding

Similarly to the support encoding, the conflicting encoding translates the corre-
sponding CSP constraint from equation (4.7b) into its Boolean representation, which

86



4.4. Hidokus Revisited

can also be transformed into CNF easily, as the following formula transformation
shows:


1≤i≤n2


1≤c≤n
1≤r≤n

xc,r,i →

 
1≤c′≤n and 1≤r′≤n,
|c−c′|>1 or |r−r′|>1

xc′,r′,i+1




≡


1≤i≤n2


1≤c≤n
1≤r≤n

xc,r,i ∨

 
1≤c′≤n and 1≤r′≤n,
|c−c′|>1 or |r−r′|>1

xc′,r′,i+1




≡


1≤i≤n2


1≤c≤n
1≤r≤n


1≤c′≤n and 1≤r′≤n,
|c−c′|>1 or |r−r′|>1


xc,r,i ∨ xc′,r′,i+1


(4.11)

The CNF formula in equation (4.11) encodes almost n2n2n2 = n6 binary clauses,
where the first factor comes from the n2 different integers, the next factor results
from the n2 different fields fc,r that have to be considered to contain an integer
fc,r = i and the final factor n2 is caused by the almost n2 non-neighboring fields
fc′,r′ of the currently considered field.

Handling Preset Numbers

The simplest approach to handle preset numbers Xc,r = i of the Hidoku is to add
them as unit clauses to the encoded formula: (xc,r,i). Furthermore, two more sim-
plifications can be achieved immediately: the clauses in the equation (4.8b) that
use the variables of the preset fields xc,r,i will become unit clauses and thus can be
propagated immediately. Even, if these clauses are not part of the used encoding,
this propagation reduces the amount of encoded clauses. In general, on the full en-
coding of the Hidoku, in combination with the clauses of equation (4.10) and (4.11)
basic polynomial reasoning5 could be performed until termination, and afterwards
only the reduct of the CNF with respect to the interpretation that contains all the
found unit literals needs to be encoded, in combination with the unit clauses that
have been found during reasoning.
Another simplification is more sophisticated and cannot be simulated by basic

polynomial reasoning on the presented encoding of Hidokus: Consider the Hidoku
in Figure 4.6 (page 82), with the preset number 18 in field f3,3. With the help of the
rules of the Hidoku we can infer that the number 19 has to be set in a neighboring
field. Based on the given constraints we furthermore can conclude that number
20 has to be placed into a field that has at most distance 2 from field f3,3, for
example f4,1. A constraint that encodes this knowledge for a field based on the
support encoding for an arbitrary distance d < n is


1≤c≤n
1≤r≤n

(Xc,r = i)→

 
1≤c′≤n,1≤r′≤n,

|c−c′|≤d and |r−r′|≤d

Xc′,r′ = i+ d


 . (4.12)

5The basic polynomial reasoning technique of SAT solvers is unit propagation, which is introduced
in Section 3.2.3.
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Similarly, the condition can be expressed with the help of the conflict encoding,
namely with the following formula:


1≤c≤n
1≤r≤n

(Xc,r = i)→

 
1≤c′≤n,1≤r′≤n,

|c−c′|>d or |r−r′|>d

Xc′,r′ ̸= i+ d


 . (4.13)

This redundant constraint is called the distance constraint. For a field fc,r with
distance d the set of considered fields

M = {fc′,r′ | 1 ≤ c′ ≤ n and 1 ≤ r′ ≤ n and (|c− c′| > d or |r − r′| > d)}

grows quadratically with the distance d. For d = 1 at most 9 fields have to be
considered. For d = 2, the cardinality of this set is already 25, and for d = 3 the
amount of fields is 49. The cardinality of the set M can be calculated with the
following formula: |M | = (2d+ 1)2.
As has been seen in the transformation of the support encoding (compare Sec-

tion 4.4), equation (4.12) can be turned into a clause, with size |M | + 1. If these
clauses are added for each of the n2 fields and the n2 integers, n4 large clauses would
be added to the encoding. However, from these clauses not much information can
be concluded, since they become unit only if almost all of their literals are assigned
to ⊥. Still, as the analysis in [HHU07] showed, such a set of clauses can be very
valuable for achieving a good encoding.
On the other hand, for this constraint the conflict encoding can be used. Here,

the constraint has to be transformed into CNF, resulting in many binary clauses:

xc,r,i →

 
1≤c′≤n and 1≤r′≤n,
|c−c′|>d or |r−r′|>d

xc′,r′,i+d



≡ xc,r,i ∨

 
1≤c′≤n and 1≤r′≤n,
|c−c′|>d or |r−r′|>d

xc′,r′,i+d


≡


1≤c′≤n and 1≤r′≤n,
|c−c′|>d or |r−r′|>d

xc,r,i ∨ xc′,r′,i+d (4.14)

The set of fields that is constraint in equation (4.14) is not the setM that is discussed
above, but the difference set G −M . The cardinality of |G −M | = n2 − (2d + 1)2

decreases with increasing the distance d. Since most of the distances d are much
smaller than n, still a quadratic number of clauses per field is encoded. Again,
encoding this constraint for each field and each integer results in n2n2(n2−(2d+1)2)
extra clauses. To achieve the full effect, these clauses are necessary for each distance
1 ≤ d ≤ n, depending on the location of the currently considered field. The number
of extra clauses in equation (4.15) can reach an approximate value of 1

2n
7.

1≤i≤n2


1≤c≤n
1≤r≤n


1≤d≤d′


1≤c′≤n and 1≤r′≤n,
|c−c′|>d or |r−r′|>d

xc,r,i ∨ xc′,r′,i+d, (4.15)
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where d′ represents the maximum distance from the cell fc,r to the border of the
grid, which can range from n

2 to n− 1.

With these clauses and the unit clauses that represent the preset numbers new
unit clauses can be derived, so that the final CNF that is given to the SAT solver can
be smaller. Since more Boolean variables are already assigned and thus the reduct
of the CNF with respect to these assignments contains fewer clauses, the resulting
CNF is smaller than without applying this simplification.

As above, adding these clauses to the final CNF might improve the solving process,
because from a search decision more knowledge can be interfered. However, there
is again a trade-off between the redundancy of the formula, which also increases
the size of the formula, the overhead for processing the formula, and the power of
the inference system of the solver that solves the formula. In Section 4.4 different
encoding combinations are evaluated, illustrating this fact.

Taking Advantage of the Order Encoding

The discussion how to encode a Hidoku to SAT with the direct encoding could
be repeated for the order encoding. The resulting formulas are very similar, so
that only this difference is discussed. The step that introduces the difference is the
replacement of the CSP variable statements Xc,r = i with xc,r,i and Xc,r ̸= i with
xc,r,i, because the representation of the Boolean variables in the order encoding is
different than in the direct encoding (compare Section 4.3.1). To avoid confusion,
Boolean variables of the order encoding are denoted with y. The Boolean variable
yc,r,i represents the fact whether the CSP variable Xc,r ≤ i is assigned to a value
smaller or equal to i.

Encoding a Field As explained above, the statement Xc,r = i can be encoded
with yc,r,i ∧ yc,r,i+1. Thus, no extra clauses are necessary to encode the properties
of the fields: exactly one number will be assigned to a field, if the order encoding
is used with its at-least-one constraint and at-most-one constraint, as introduced
in Section 4.3.1. Similarly to the discussion in Section 4.4 these two parts of the
formula could be enabled and disabled separately.

Encoding the Grid Encoding the grid constraints (equation (4.5) and (4.6)) with
the order encoding is straightforward for the at-most-one constraint, because the
above conjunction is negated and the conjunction is transformed into a disjunction
that does not increase the number of clauses. When the related equation is translated
into CNF with the help of the order encoding, the produced formula is:

1≤c≤n
1≤r≤n


1≤c′≤n and 1≤r′≤n

c ̸=c′ or r ̸=r′

Xc,r ̸= Xc′,r′

⇐⇒


1≤i≤n2


1≤c≤n
1≤r≤n


1≤c′≤n and 1≤r′≤n

c ̸=c′ or r ̸=r′

(yc,r,i ∧ yc,r,i+1)→ (yc′,r′,i ∧ yc′,r′,i+1)

≡


1≤i≤n2


1≤c≤n
1≤r≤n


1≤c′≤n and 1≤r′≤n

c ̸=c′ or r ̸=r′

(yc,r,i ∨ yc,r,i+1 ∨ yc′,r′,i ∨ yc′,r′,i+1) (4.16)
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Encoding the at-least-one constraint for the board is more difficult with the order
encoding than with the direct encoding. Equation (4.5) shows the required relation:
each value should be assigned to at least one field of the board. For the direct
encoding, this constraint can be encoded with a single clause per value. The order
encoding produces many clauses:

1≤i≤n2


1≤c≤n
1≤r≤n

Xc,r = i

⇐⇒


1≤i≤n2


1≤c≤n
1≤r≤n

yc,r,i ∧ yc,r,i+1 (4.17)

Since in the above formula the most inner relation is a conjunction, which is sur-
rounded by a disjunction, now these operators have to be exchanged to achieve a
formula in CNF. The transformation of the formula results in an exponential ex-
plosion, as discussed in Section 2.2.3. The CNF of the formula in equation (4.17)
will contain 2|G|−1 clauses. Thus, the constraint should be encoded by using fresh
variables, or the constraint should not be used in the encoding. The decision has to
be made carefully, because, as discussed in Section 4.4, not encoding this constraint
can result in an exponentially harder formula [HHU07].

Encoding the Distance Constraint

An advantage of the order encoding is to express intervals. None of the rules of a
Hidoku mentions intervals. The discussion in Section 4.4 about preset numbers and
the fields with a certain distance d to these numbers can be understood as intervals.
Let the field fc,r = i contain the integer i. Then, the number i+ 1 can be assigned
only to neighboring fields. The successor i + 2 can be assigned only to neighbors
of those fields. Therefore, a field with distance d > 2 with respect to the field fc,r
cannot contain any number between i − d and i + d. This fact is considered in
the direct encoding by adding a formula for each pair of cells, each integer i and
each distance d, resulting in about 1

2n
7 clauses. Since the idea is different from

the approach presented for the direct encoding, the formula does not differ for the
support encoding or the conflict encoding.
By exploiting the representation of the order encoding, the interval can be ex-

cluded with a single clause for each pair of cells Xc,r and Xc′,r′ with a distance
d = max(|c− c′|, |r − r′|) and each integer i with the following formula:

Xc,r = i→ ((Xc′,r′ ≥ i− d) ∨ (Xc′,r′ < i+ d+ 1))

≡Xc,r = i→ ((Xc′,r′ ≥ i− d) ∨ (Xc′,r′ ≥ i+ d+ 1))

⇐⇒(yc,r,i ∧ yc,r,i+1)→ (yc′,r′,i−d ∨ yc′,r′,i+d+1)

≡(yc,r,i ∨ yc,r,i+1 ∨ yc′,r′,i−d ∨ yc′,r′,i+d+1) (4.18)

If this formula is encoded for all n2 fields and all n2 integers i, the formula for the
distance constraint contains n6 clauses:

1≤i≤n2


1≤c≤n
1≤r≤n


1≤d≤d′


1≤c′≤n and 1≤r′≤n,
(|c−c′|>d or |r−r′|>d)

(yc,r,i ∨ yc,r,i+1 ∨ yc′,r′,i−d ∨ yc′,r′,i+d+1)

(4.19)
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Similarly as in equation (4.15), the formula iterates over all integers i and all fields
on the grid. Furthermore, for each distance d an expression is specified. The major
difference is within this expression: the forth conjunction of the formula does not
iterate over all fields with a distance larger than d, but only over those field with a
distance of exactly d. Thus, for each distance d only a small subset of the fields are
selected and in total there is only one clause for each pair of fields on the grid.

Encoding Unsatisfiable Hidokus Into SAT

Given a Hidoku that has a solution, we can use the NP algorithm for the Hamil-
tonian Path problem, extend the algorithm to be aware of preset numbers, and the
Hidoku can be solved. For an implemented algorithm this means that there is the
chance of always guessing a correct next step, and therefore the solving process can
be quite fast. Thus, in case of satisfiable Hidokus we cannot tell much about the
power of the inference of a procedure, because the algorithm might simply use a
good heuristic for the Hidoku problem. This fact can be generalized to any satis-
fiable problem: if an algorithm has a lucky heuristic, this algorithm will find the
solution for the satisfiable problem and the used inference rules do not change the
performance of the algorithm.

Therefore, analyzing problems without a solution is of great interest. Instead
of guessing a solution, a naive algorithm would enumerate all possible solutions,
before the algorithm can conclude the unsatisfiability of the problem. With a more
powerful reasoning, some solution candidates might be excluded before testing them
already, and thus the improved algorithm can solve the problem faster.

Therefore, unsatisfiable Hidokus are created for the evaluation. Given the ad-
vanced formulas for the neighborhood constraint in the previous paragraph, numbers
cannot be preset without the algorithm detecting the inconsistencies that are based
on distances. On the CNF level, formulas with the direct encoding of the advanced
neighborhood encoding (equation (4.14)) would lead to formulas whose unsatisfi-
ability can be already shown by polynomial techniques like unit propagation, and
hence without any search. Therefore, for unsatisfiable Hidokus these clauses will
not be used.

To obtain unsatisfiable Hidokus, we will violate the rule that states that a field
can contain only a single integer. Figure 4.7 visualizes the idea. As introduced in
Section 4.2.1, the numbers 4 and 6 have to be connected on their connecting diagonal
to not violate the Hidoku rules, since their distance is already 2. Furthermore, the
numbers 27 and 30 need to be connected on their diagonal as well, since their
distance is 3. However, the two diagonals share a field. In order to not violate the
two assignments we just agreed on, this field should contain two numbers, namely 3
and 11. Thus, an unsatisfiable Hidoku can be created by setting four integers that
form the given pattern, such that the numbers on the diagonals are predetermined
to satisfy the neighborhood constraint. Additionally, the two diagonals share a
common field. The resulting pattern in the Hidoku is called cross pattern.

Other ways to create trivially unsatisfiable Hidokus is to set two numbers i and
i + d into two fields whose distance is larger than d. Another alternative is to set
two integers that force a diagonal chain as above, but block a field of the chain with
a different integer. For the following evaluation, we will use the cross pattern in the
unsatisfiable Hidokus.
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Figure 4.7.: By setting the presented four numbers in the cross pattern, the numbers
on the two diagonals are forced to be placed to not violate the neigh-
borhood constraint. Then, the common field of the two diagonals of
the cross has to contain the two numbers 5 and 28. Thus, this Hidoku
cannot have a solution.

A Brief Evaluation on the Encoded Hidokus

For a brief experimental evaluation on the different encodings for a CSP problem,
both unsatisfiable and empty Hidokus of different sizes have been encoded. Using
partially filled Hidokus that can be solved by humans without search is trivial for
modern SAT solvers, because these puzzles contain only a single solution which can
be found without search. Hence, these Hidokus would be solved by the preprocessing
phase of the SAT solver already. Then, only the size of the puzzle determines the
run time of the solver, but power of the search routine is not represented in the
measured run time.
The experiment uses the same Hidoku for each size. As a SAT solverMiniSAT 2.2

is used. The time out is set to 5000 seconds and the memory limit is set to 3.6GB.
The experiment is executed on the cluster that is described in Section 2.3.5. First,
the performance of MiniSAT on unsatisfiable Hidokus is presented in Table 4.2.
For both the direct encoding as well as the order encoding different constraints for
the Hidoku are encoded and run times of the resulting formulas are reported. If
MiniSAT is not able to solve the formula within the time limit, then no run time
is given and the symbol – is written instead. The symbol × is used if the memory
limit is reached. The comparison shows nicely that the constraints for the board
influence the performance. If the Hidoku is encoded with BOARD, then only the
size 5 Hidokus can be solved. For any other size the time out is reached immediately.
Adding the distance constraints to the formula improves the performance for solving
the unsatisfiable Hidokus, even when those constraints are not sufficient to solve
Hidokus greater than n = 7 with the order encoding and FULL any more. For
the order encoding the constraints that are encoded for BOARD, which also occur
in FULL, seem to make the formulas harder. Only when FIELD is used, larger
Hidokus can be solved. For the direct encoding both combinations FIELD and
FULL can be used to solve the puzzle, where FIELD results in a faster solution.
With the nested encoding the unsatisfiable formulas can be solved even faster. If the
distance constraints are added to the formula as well, then the best performance
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is reached, especially for the largest Hidoku. A longer distance leads to proving
unsatisfiability faster.

As presented in Table 4.3, for empty Hidokus the heuristic of MiniSAT seems
to be powerless: although the empty Hidokus are easy to be solved by humans,
MiniSAT hits the memory bound for most puzzles that are encoded with the direct
encoding before finding a solution. Since empty Hidokus are satisfiable, the run time
of the solver heavily depends on the heuristic. For the order encoding, this issue
does not occur, however, similarly to the unsatisfiable Hidokus, when encoding the
constraint sets FULL or BOARD the formulas are very hard. If only the constraints
in FIELD are encoded, then all empty Hidokus can be solved. The solving time
seems to correlate with the size of the puzzle. When the size of the Hidoku is
increased by 1, then the run time of MiniSAT duplicates for most of the steps.

With the direct encoding, most of the time the memory limit is hit before a
solution is found – especially for the larger puzzles. Surprisingly, when adding the
distance constraints to the formula, for n = 8 and n = 10 the performance of the
solver drops. These additional clauses might mislead the search of the solver. Still,
when using the nested encoding for the cardinality constraints helps to solve one
more puzzle before the memory limit is hit. However, when only the run time is
considered, for the formulas that can be solved with the nested and with the naive
encoding there is no clear winner.

Solving empty Hidokus shows a weakness of the input language of SAT solvers: the
structure of the high-level problem is lost in the formula. Furthermore, the decision
heuristic of MiniSAT is not aware of the input problem, so that the heuristic fails
to assign the correct values to Boolean variables that represent the numbers in the
Hidoku. On the other hand, MiniSAT proved to be a powerful SAT solver in many
SAT competitions where formulas from applications with NP problems have to be
solved. Hence, the data shows another insight into solving NP problems: a strategy
that is successful in solving formulas from a certain application domain does not need
to be successful on formulas of another domain, even if solving the actual problem
is simple for humans. Nevertheless, modern SAT solvers are robust tools that can
solve formulas from many different application domains. As the data furthermore
illustrates, choosing a proper encoding is very important.

As the experiments above showed there is no unique strategy to select an encod-
ing for a problem. Both the problem with its constraints as well as the selected
solver influence the performance of the overall tool chain. Not only the way how the
presented constraints are encoded is important. The question whether redundant
constraints are added or whether an alternative set of constraints can be encoded
also has to be analyzed carefully. For the example of solving Hidokus with the help of
SAT solvers the combination FIELD seems to provide the better performance than
picking the combination BOARD, maybe because more at-most-one constraints oc-
cur, but all these constraints are smaller than the constraints that would be encoded
in BOARD. Furthermore there is no clear winner between the direct encoding and
the order encoding. For unsatisfiable formulas the direct encoding showed a better
performance than the order encoding. However, the order encoding seems to be
more robust. With the order encoding more formulas can be solved, even if the
run time for each formula is higher. This robustness is also confirmed for a domain
different than solving Hidokus, namely rail way scheduling [GHM+12].
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4.5. Contributions

This chapter discusses complexity theory and shows how high-level problems can be
encoded into a CNF formula. Therefore, a set of encodings for constraints that are
commonly used to translate applications is presented as well.
Complexity theory plays a role for the parallelization of SAT solving algorithms,

which is discussed in Chapter 6. From a theory point of view, parallelizing an algo-
rithm from the class NP cannot be done efficiently. However, with the scalability
definition (Definition 2.23 on page 37) an improvement can still be achieved. For
the parallelization of polynomial algorithms there exists the chance to find an effi-
cient parallelization. Unfortunately, especially unit propagation, which is a crucial
part of modern SAT solving technology, is not part of the corresponding complexity
class NC.
From the presented encodings especially the cardinality constraint encodings, with

a focus on the at-most-one constraint, are used in the upcoming chapters. A con-
tribution of this chapter is the way Hidokus, or the Hamiltonian Path problem, can
be translated into CNF: adding the distance constraints for neighboring nodes has
not been considered in the literature yet. A simpler variant of the translation of
Hidokus has been presented in [HMNS12].
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5. Sequential SAT Solving

This chapter introduces the abstract formalization Generic CDCL to describe
sequential SAT solving techniques. To the best of our knowledge, this formalization
covers any developed SAT solving technique, especially recently introduced simpli-
fication techniques. These solving techniques are presented in this chapter as well
because they are necessary for the algorithms that we present in upcoming chapters
for parallel SAT solving. Finally, commonly used simplification techniques as well
as the proposed simplification techniques and extensions to the search procedure
are evaluated. This evaluation also compares the implemented SAT solver Riss to
other state-of-the-art solvers, showing that Riss is competitive especially on unsat-
isfiable formulas.
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Figure 5.1.: Abstract view on the SAT solving process: usually a problem is encoded
as CNF and this CNF is simplified before the search is started to find a
solution to this problem. In 2009 the SAT solver PrecoSAT interleaved
formula simplification with search, which received the name inprocessing
because the formula is simplified in the middle of the search process.
In [MHB13] formula reencoding has been introduced – this technique
is described in more detail in Section 5.6.

Finding a model for a given propositional formula is an NP-complete prob-
lem [Coo71] and therefore this task is currently assumed to be difficult for algo-
rithms. However, there exist classes of formulas, for example structured formulas
from applications like scheduling [GHM+12] or haplotype matching [LMS06], that
can be solved easily with modern SAT solvers even if the size of the input formula is
large. Modern solvers contain many different techniques and optimized heuristics to
solve application formulas efficiently, so that their code base became highly complex
and the relation and dependencies of the used techniques become rather involved.

Figure 5.1 shows the work flow of a modern SAT solver. Before we describe
the methods of modern SAT solvers, we will introduce a formal framework that
can be used to show soundness of these techniques, as presented in [HMPS14a].
Afterwards, we will present the methods that are used in modern sequential SAT
solvers and show how they can be simulated by the given framework – ensuring that
the solver is sound. The presented techniques include simplification techniques that
have been published by our group [MHB13,MP14,Man14a,BLBLM14]. Then,
we will show that existing SAT solver formalization approaches do not model recent
techniques adequately to underline the need of the presented framework. Most of
the discussed solving techniques are implemented in the SAT solver Riss and its
formula simplifier Coprocessor [Man12]. Finally, the novel search extensions
and formula simplification techniques are compared in an empirical evaluation.

This chapter, as well as the whole thesis, focuses on structured search algorithms,
which are used for solving industrial application formulas. An alternative solving
approach is stochastic local search (SLS) [HS04], which is good in solving satisfi-
able randomly created formulas [BF10] and satisfiable hard combinatorial bench-
marks [BM14a]. For unsatisfiable formulas, these SLS algorithms cannot be used.

Representation of Structures Inside SAT Solvers

Boolean variables are represented as natural numbers: V = N+. Then, a literal is
an integer i, with i ̸= 0. Positive literals are represented as positive numbers, and
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negative literals are represented as negative numbers. An alternative representation
for a variable v is to use 2v for the positive literal and 2v+1 for the negative literal.
As defined in Section 2.2.1, a clause is a disjunction of literals, and a formula in
CNF is a conjunction of clauses. In the SAT solver, a clause is implemented as
an array of literals, duplicate literals are removed immediately and clauses with
complementary literals are dropped from the formula immediately. A formula is
implemented as an array of clauses where duplicate clauses can occur, since always
checking for duplicate clauses when a new clause is added to the formula introduces
an unacceptable overhead to the algorithms. Since solvers remove tautologies from
the formula and delete duplicate literals in clauses, and since none of the techniques
inside a solver reintroduces tautologies or duplicate literals, the following invariant
holds for these SAT solvers:

Invariant 2 (Irredundant Clauses). None of the clauses of a formula is a tautology
and none of them contains duplicate literals.

Therefore, this invariant will also be used in the remainder of this thesis.
Interpretations are implemented as a set of literals, where the mapping from

literals to truth values is stored in an array, and the sequence of literals is stored
in a random access stack. This implementation is very similar to the time saving
implementation of a set in Example 7 on page 34. The modification is that the
array does not only store whether a variable occurs in the interpretation, but the
array furthermore stores the polarity of the satisfied literal. Furthermore, the SAT
solver constructs only partial models which have the following property: assume the
highest variable in the formula is v, then the model that is created by the SAT solver
contains the variables 1 to v. Such a model might not be a complete model, because
the variables occurring in the formula might not be consecutive, and consequently,
the model maps a variable between 1 and v to a truth value, although this variable
does not occur in the formula.

5.1. An Abstract View on SAT Solvers – Generic CDCL

To solve a formula F , the search process is started with an empty interpreta-
tion J = ϵ. To formalize the execution of a SAT solver, the current state needs
to be represented. Since both the formula and the current (partial) interpretation
determine the SAT solvers state, the state of the SAT solver is represented by the
tuple (F :: J). The brackets are dropped whenever convenient. Both the formula
and the interpretation are present in the state, because both can be changed by SAT
solving techniques. As there are special literals in an interpretation that are anno-
tated, the interpretations in the solving states can be annotated. The annotation is
explained in the following paragraphs. Since a solver might find a solution during
its search, there are two solving states SAT and UNSAT, which represent that the
solver terminated with a satisfying assignment, or with the statement that the given
formula has no model, respectively. Thus, the set of possible solving states is the
set of all possible tuples (F :: J), united with the two states SAT and UNSAT.

Definition 5.1 (Set of Possible Solving States). The set of possible solving states
is the union of the set {SAT,UNSAT} and the set of all combinations of formulas F
and annotated interpretations J .
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(1) F :: J ;sat SAT iff F |J = ∅.
(2) F :: J ;unsat UNSAT iff ⊥ ∈ F |J and J is decision-free.
(3) F :: J ;infer F :: J x iff F |J and F |J x are equisatisfiable.

(4) F :: J ;decide F :: J ẋ iff x ∈ atoms(F ) ∪ atoms(F ) and
{x, x} ∩ J = ∅.

(5) F :: J ′ J ;back F :: J ′

(6) F :: J ;learn F,C :: J iff F |= C and vars(C) ⊆ vars(F ).
(7) F,C :: J ;delete F :: J iff F |= C.
(8) F :: ϵ ;inp F ′ :: ϵ iff F and F ′ are equisatisfiable.

Figure 5.2.: The rules of the abstract reduction system Generic CDCL.

Based on the solving state, a step of a solving algorithm can be formalized by a
transition rule, which covers the effects on the formula F and the interpretation J .
The rules are of the form F :: J ; F ′ :: J ′, F :: J ; SAT or F :: J ; UNSAT,
i.e. the state F :: J can be rewritten into the state F ′ :: J ′ or into the terminal states
SAT or UNSAT.

In order to shorten the representation of the rules, the following abbreviations are
introduced: the pair F,C occurring on the right hand side of a rule is an abbreviation
for the set F ∪ {C}, whereas the pair F,C occurring on the left hand side of a rule
is an abbreviation for the partitioning of a set F ′ = F ∪ {C} of clauses into a set F
and a singleton set {C} such that C does not occur in F . Likewise, the sequence J x
occurring on the right hand side of a rule is an abbreviation for the concatenation
of the sequence J and the singleton sequence (x). Similarly, the sequence J xJ ′

occurring on the left hand side of a rule is an abbreviation for the splitting of a
sequence I of literals into the sequences J , (x) and J ′ such that I is the concatenation
of J , (x) and J ′. A dot on top of a literal marks a so-called decision literal that is a
special kind of literal during the search process. Then, an interpretation J is called
decision-free if J does not contain decision literals (or annotated literals). Decision
literals are properly introduced in more detail in Section 5.1.1.

With the annotated literals the used interpretation is actually an annotated inter-
pretation. However, all established properties and relations for interpretations can
be lifted to annotated interpretations, because an annotated interpretation can be
turned into a usual interpretation by removing the dots from the literals. Given a
formula F and the interpretation J , then the reduct F |Jẋ refers to the same formula
as the reduct F |Jx. Likewise, the functions vars or lits return the variables or literals
of an annotated interpretation as if there were no dots on top of literals.

The combination of the set of possible solving states and the rules in Figure 5.2
is called Generic CDCL, which can be seen as an abstract reduction system (see
Section 2.1).

Definition 5.2 (Generic CDCL). The reduction system Generic CDCL is a
reduction system (S,;) with the set of states S being the set of possible solving states
and the rewrite relation ; being the union of the nine rules presented in Figure 5.2.
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5.1.1. The Rules of the Reduction System Generic CDCL

The rules of the reduction system Generic CDCL are given in Figure 5.2. This set
of rules is the smallest set of rules that is necessary to model modern SAT solving
techniques. To achieve this goal, the given rules are very powerful, and they are
usually implemented in a weaker form in SAT solvers. Most importantly, the rule
;infer is very powerful. To be able to distinguish between the reasoning phase of the
solver, where the interpretation is extended by literals that can be inferred from the
current state, and the search phase, where literals are guessed, another redundant
rule is added to the framework. This new rule ;unit is covered by the rule ;infer.
However, ;unit is much closer to unit propagation (see Section 3.2.3) that is the
actual implemented reasoning of modern solvers. The rule works as follows:

F :: J ;unit F :: J x iff (x) ∈ F |J .

In this section, each single rewrite rule of Generic CDCL, and ;unit, is explained
and its complexity is discussed briefly. Afterwards, an example is given that simu-
lates a run of the generic system.
Since Generic CDCL is a framework to model existing SAT solving approaches,

there is no preference in the application of the rules. However, implemented systems
follow at least the following two preferences: termination rules are preferred over any
other rule: whenever applicable, use {;sat,;unsat}, otherwise use another rule. The
other preference ranks reasoning over search by inferring knowledge from the current
state as long as possible before a search step is applied. With respect to the rules
of Generic CDCL, as long as one of the rules {;unit,;infer} is applicable the rule
;decide is not applied, where the preference focusses on ;unit, as ;infer is too generic
for such an assumption. Based on these preferences, the implemented systems can
establish invariants that cannot be established without these preferences.

Invariant 3 (Rule Preferences). During the execution of a SAT solver the unit
rule ;unit is run until termination. Furthermore, the extension of the interpretation
by ;unit is preferred over extensions by search with ;decide.

With the above invariant, if both ;unit and ;decide are applicable, then ;unit is
preferred. The inference rule ;infer is used to simulate reasoning that is stronger
than ;unit. Since this kind of reasoning is not widely used, ;infer is not included in
the invariant.

The Termination Rules ;sat and ;unsat

Important states of a reduction system are terminal states because from these states
an answer can be extracted. For the task of solving a propositional formula, these
states indicate whether the solved formula is satisfiable or unsatisfiable. Therefore,
if the model J of the current state (F :: J) is a model of the given formula F ,
which is equivalent to F |J = ⊤, the rule ;sat rewrites the given state (F :: J) into
the terminal state SAT. Similarly, a state (F :: J) is rewritten into UNSAT if the
reduct F |J contains an empty clause, i.e. ⊥ ∈ F |J , and the current interpretation
does not contain a decision literal ẋ. The latter part of the condition ensures that
F and F |J are equisatisfiable, because all literals x that are no decision literals,
but are contained in the interpretation J , ensure that the two formulas F and F |J
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are equisatisfiable.1 Thus, if the reduct F |J contains the empty clause, then this
reduct is unsatisfiable, and since this reduct is equisatisfiable to the formula F , F
is unsatisfiable as well, so that the termination with UNSAT is justified.
The complexity of checking the condition of the rule ;sat is linear in the size

of the formula F , since it needs to be checked whether the reduct F |J is empty.
The condition for ;unsat can be checked in constant time when performed during
search in an implemented system: each clause C that is added to F can be checked
immediately, and the presence of decision literals ẋ in the interpretation J can also
be traced on the fly during the execution of the framework. From a theoretical point
of view this check is linear because each clause has to be checked.

The Inference Rule ;infer

The inference rule ;infer is more generic than the implemented inference in most SAT
solvers. The rule only requires that when adding a literal x to the interpretation J
the two reducts F |J and F |Jx are equisatisfiable. Observer that the two reducts do
not need to be mutually constructible. There is no further restriction on the literal
x, because there exist inference techniques like extended resolution [Tse68], which
introduce fresh variables that can be assigned immediately. Since two mutually
constructible formulas are also equisatisfiable, the rule ;unit is subsumed by ;infer.
However, since unit propagation is a major ingredient of modern SAT solvers, this
rule is kept explicitly, so that properties of solvers that rely on the application of
;unit can be illustrated.
For the complexity of ;infer only an upper limit can be specified because the

computation of the literal x can be arbitrary. The equisatisfiability check for the
two reducts F |J and F |Jx is a PSPACE problem because the two reducts can be
either satisfiable or unsatisfiable. To compute the literal x, SAT solvers that use
this rule perform a less complex algorithm, which ensures the equisatisfiability of
the two reducts.

The Basic Inference Rule ;unit

As soon as there is a unit clause C|J = (x) in the reduct F |J that is not yet
satisfied by an interpretation J , there is only a single way to satisfy C, namely by
extending J with the literal x (compare to Section 3.2.3). The clause C is called
the reason clause, or the reason, for the assignment of the literal x.

Definition 5.3 (Reason Clause). A clause C is called a reason clause of a literal x
with respect to an interpretation J if there is an interpretation J ′ with J = J ′J ′′ and
the reduct C|J ′ with respect to the interpretation J ′ is the unit clause C|J ′ = (x).

For convenience, let reason be a function that returns a reason clause for the literal
x with respect to the formula F and the interpretation J , in case there exists a reason
for this literal. Since some literals can have multiple reason clauses, the function
selects one clause from the set of candidate clauses with the method select. The
possible ways of choosing a specific reason clause r are discussed in Section 5.4.1.
Decision literals ẋ or literals that have been added to the interpretation J with the

1Preserving satisfiability by adding literals to the interpretation J is discussed in the related rule
descriptions of the rules ;unit and ;infer.
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rule ;infer might not have a reason, so that for these literals the empty clause is
returned:

reason(F, J, x) =


r = select(S) if S ̸= ∅,
⊥ if S = ∅,

where S = {C | C ∈ F, J = J ′J ′′, C|J ′ = (x)}.
The above inference to satisfy a unit clause C|J is covered by the ;unit rule, which

extends the current interpretation J with the literal x for the unit clause C|J = (x)
in the reduct F |J . Since (x) ∈ F |J , the two formulas F |J and F |Jx are mutually
constructible, and thus also equisatisfiable (compare Section 3.2.3).

Finding a unit clause (x) ∈ F |J requires |F | steps in the worst case. Special data
structures, like the Two Watched Literal data structure, can reduce this complexity
to an almost constant number of steps [MMZ+01, Gen13], which depends on the
average size of the clauses in the formula and the ratio between variables and clauses
in the formula.

The Search Rule ;decide

Since the reasoning techniques, i.e. techniques that extend the interpretation with-
out search, of SAT solvers are in general not strong enough to solve a formula
by themselves, most solvers perform search.2 In case of systematic SAT solvers,
like Davis-Putnam-Logemann-Loveland (DPLL) or Conflict Driven Clause Learning
(CDCL) solvers, the search process selects a still unassigned literal, assumes that
it can be satisfied and tries to prove the satisfiability of the formula under this as-
sumption. This search process can be modeled by adding a literal x as decision
literal ẋ to the interpretation J of the current state (F :: J). Since assuming a
literal x twice or assuming complementary literals x and x does not contribute to
the search, these two steps are forbidden by ensuring that neither the literal x itself,
nor its complement x already occur in the interpretation J : {x, x} ∩ J = ∅.
The most significant difference between the rules that use inference, i.e. ;infer

and ;unit, and the rule ;decide is that the added literal x does not ensure preserving
satisfiability of F |J and F |Jẋ. When adding a decision literal x, then there might
not exist a model for the formula that contains the interpretation Jx, although there
are models that contain the interpretation J . Still, the search is a crucial part of
the solving process, since always choosing the correct decision literal ẋ will lead to
the solution of a satisfiable formula F in a linear number of steps.

A property of the literals x on the interpretation J can be defined. The decision
level denotes how many decision literals have already been added to the interpreta-
tion J once the literal x has been added.

Definition 5.4 (Decision Level). The decision level of a literal x with respect to
an interpretation J is the number of decision literals that have been added to this
interpretation once the literal x has been added: |{y | ẏ ∈ (J ′x) where J = J ′xJ ′′}|.

Observe that when the added literal x is a decision literal, i.e. ẋ, then the decision
level of this literal is always higher than the decision level of all previously added

2SAT solvers based on the DP procedure [DP60] do not perform backtracking search. Instead, the
DP procedure eliminates variables.
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literals in the interpretation. For convenience, the function decision_level is in-
troduced, which maps from a given interpretation J and a literal x to the decision
level of the literal x:

decision_level(J, x) = |{y | ẏ ∈ (J ′x) and J = J ′xJ ′′}|.

Since an interpretation contains a variable at most in one of the two polarities, the
notion of decision level can be lifted to variables.

decision_level(J, v) = |{y | ẏ ∈ (J ′x) and J = J ′xJ ′′ and var(x) = v}|.

The search rule can be implemented in a logarithmic complexity in the number
of atoms in the formula F , by checking whether a literal x ∈ vars(F ) ∪ vars(F ) is
already assigned in J .

The Conflict Correction Rule ;back

Whenever a search algorithm detects that a given assumption ẋ ∈ J of the current
interpretation J does not lead to a solution, the procedure should be able to undo
this assumption. Then, search can proceed with the complement ẋ or by applying
another rule of the framework. When the reduct C|J of a clause C of the formula F
is the empty clause, i.e. C|J = ⊥, then a model for the formula F cannot be found
by extending J further. With respect to the current interpretation J , such a clause
C is called a conflict clause or conflict for short.

Definition 5.5 (Conflict Clause). A clause C is a conflict clause with respect to an
interpretation J if J falsifies this clause, i.e. C|J = ⊥.

Before the reduct of a conflict clause C with respect to an interpretation J = J ′J ′′

becomes the empty clause ⊥, there usually exists a J ′ with J = J ′J ′′ such that the
reduct is a unit clause C|J ′ = (x), before J ′ is extended to J so that the clause C is
finally falsified by J . Furthermore, all complements of the literals of the clause, i.e.
x′ ∈ C, x′ ̸= x, appear in the interpretation: x′ ∈ J . The literal x of the unit clause
C|J ′ is called the conflict literal.

Definition 5.6 (Conflict Literal). Given a conflict clause C with respect to an inter-
pretation J , the conflict literal x ∈ C is the literal of the clause C whose complement
x has the rightmost position in the sequence representation of the interpretation:
J = J ′xJ ′′ and vars(C \ {x}) ∩ vars(J ′′) = ∅.

Therefore, given a formula F , an interpretation J and the conflict literal x, the
conflict clause C can also be found in terms of the reason clause, since according
to Definition 5.6 and Definition 5.3, the reason clause of the conflicting literal x is
turned into the conflict clause C by extending the interpretation.

In modern SAT solvers, the interpretation is not only shrunk to escape from con-
flicts, but the solver starts the search over in regular intervals by clearing the current
assignment, i.e. (J = ϵ), and afterwards tries to continue the search process in an-
other direction. This strategy is called restart. Both escaping from conflicts and
restarts are modeled by the rule ;back, which removes literals from the interpreta-
tion J of the current state (F :: J).
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The Reasoning Rule ;learn

During the solving process, an algorithm might gather additional knowledge. When
working on a propositional formula in CNF, this knowledge is represented by ad-
ditional clauses. In the Generic CDCL framework, learning is modeled by the
rule ;learn, which can add a clause C to the formula F if the clause C is entailed
by the formula F , i.e. F |= C, and if furthermore all variables in the clause vars(C)
also occur in the formula F : vars(C) ⊆ vars(F ).
Again, finding a clause C with the given restriction on its literals can be an

arbitrarily complex procedure. To ensure F |= C, it needs to be checked whether
the formula F ∧ C is unsatisfiable, i.e. F ∧ C ≡ ⊥, which is a coNP problem.
Similarly to the inference rule ;infer, SAT solvers avoid this expensive check by
using techniques for creating the clause C that ensure this property, as for example
resolution.

The Formula Management Rule ;delete

Since an algorithm cannot always ensure that the formula F does not contain re-
dundant knowledge, a rule that models removing redundancy is available as well. In
a propositional formula in CNF, redundant knowledge can be present in redundant
clauses C. A clause C of a formula F is redundant if the formula F \ {C} still
contains the information stored in C. As mentioned in Section 3.2.1, this condition
can be described with F \ {C} |= C. If this property is ensured, the set of total
models of F does not change when C is removed, and therefore removing C does not
remove any information from the formula. However, the strength of unit propagation
can be decreased by removing these clauses.
The check F \{C} |= C is a coNP problem. On the one hand, removing redundant

clauses from a formula does not necessarily result in a complete or terminating pro-
cedure. On the other hand, since the complexity of some rules (as for example ;unit)
depends on the cardinality |F |, removing redundant clauses is a step towards faster
inference. In SAT solvers, redundant clauses are removed but without the coNP
check. Instead, less expensive algorithms are used to identify redundant clauses.

The Formula Modification Rule ;inp

Not all techniques that modify the formula F can be modeled by the reasoning
rule ;learn or the formula management rule ;delete. Therefore, an additional rule,
which models more complex modifications, is necessary. As all the above rules, the
formula modification rule has to ensure that modifying the formula F to F ′ ensures
the equisatisfiability of the two formulas. Furthermore, this rule is only applicable
if the current interpretation J is empty, i.e. J = ϵ. Otherwise, the framework would
result in unsound behavior as illustrated in Example 21.

Example 21: Simplifying with a Non-Empty Interpretation Let F
be the formula F = (x) with the unit clause (x). Then from the initial
state (x) :: ϵ the rule ;unit is applicable and the state (x) :: (x) is reached.
Now, assume the rule ;inp is applied, disregarding the condition that the
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interpretation has to be empty. Then, the satisfiable formula F can be replaced
by the satisfiable formula F ′ = (x). The resulting state is (x) :: (x). Although
the initial formula F and the formula F ′ are satisfiable, Generic CDCL
terminates with UNSAT from the current state. The reason for this faulty
behavior is that the condition for the rule ;inp was not fulfilled. Hence, when
the formula of a state should be replaced by another formula the interpretation
has to be empty.

As already discussed for the inference rule ;infer, the equisatisfiability check is a
PSPACE problem, and therefore is avoided in implemented systems by applying
only algorithms that preserve equisatisfiability.

Example 22: An Example Run of Generic CDCL Consider the satisfi-
able formula

F = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (d∨ a)∧ (d∨ b)∧ (d∨ a∨ c)∧ (a∨ b∨ c)∧ (a∨ e).

Then a possible application of the rules of Generic CDCL to obtain a solution
can be the following:

((a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (d ∨ a) ∧ (d ∨ b) ∧ (d ∨ a ∨ c) ∧ (a ∨ b ∨ c)) :: ϵ)

;inp ((a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) :: ϵ)

Let F ′ = ((a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)).

;decide F ′ :: (ȧ))

F ′|(ȧ) = ((b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c))

;decide F ′ :: (ȧḃ))
F ′|

(ȧḃ)
= ((c) ∧ (c))

;unit F ′ :: (ȧḃc))
F ′|

(ȧḃc)
= ⊥

;learn F ′ ∧ (a ∨ b) :: (ȧḃc))
(F ′ ∧ (a ∨ b))|

(ȧḃc)
= ⊥

;back F ′ ∧ (a ∨ b) :: (ȧ))

(F ′ ∧ (a ∨ b))|(ȧ) = ((b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c) ∧ (b))

;back F ′ ∧ (a ∨ b) :: ϵ)
(F ′ ∧ (a ∨ b))|(ϵ) = (F ′ ∧ (a ∨ b))

;infer F ′ ∧ (a ∨ b) :: (a))
(F ′ ∧ (a ∨ b))|(a) = ⊤

;sat SAT

The example starts with the initial state for the formula F and the empty
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interpretation. As a first step, variable elimination (see Section 3.2.8) is performed
on variable d as formula simplification. The production of the equisatisfiable
formula is modeled with the rule ;inp. Next, search is started by always picking
the smallest free variable with its negative polarity as decision literal. Hence, the
decision rule ;decide is applied twice because no propagation is possible. With

the resulting interpretation (ȧḃ), the first clause of the formula (a∨b∨c) becomes
the unit clause (c) = (a∨b∨c)|

(ȧḃ)
, such that the unit rule ;unit can be applied.

Since the third clause of the formula is falsified with the interpretation (ȧḃc),
a SAT solver would learn a clause and perform backtracking afterwards (see
Section 5.4.3). In this example the clause (a ∨ b) is learned with ;learn because
(a ∨ b) is entailed by the formula. Then, two literals are removed from the
interpretation, so that (a∨b) becomes the unit clause (b) with the interpretation
(ȧ). Assume the heuristic of the SAT solver wants to schedule a restart next.
This restart is done by clearing the whole interpretation (see Section 5.4.7).
Next, with the rule ;infer the literal a is added to the interpretation because
a is entailed by the formula F and could be found as implied literal with local
look-ahead (LLA) (see Section 5.2.5). Finally, the reduct of the formula with
respect to the interpretation (a) becomes the empty reduct, so that the formula
is found to be satisfiable. With the rule ;sat the terminating state SAT is
reached.

5.1.2. Soundness of Generic CDCL

The major motivation for the reduction system Generic CDCL is its abstract
rules, which can be used to prove soundness of SAT solving techniques. Therefore,
soundness of Generic CDCL itself needs to be proven first. Further properties
like confluence, completeness and termination are interesting as well. Since with
the rules of Generic CDCL for any satisfiable formula a model can always be
constructed, and for each unsatisfiable formula the empty clause can be learned,
Generic CDCL can terminate for any input formula. Hence, Generic CDCL is
complete. As we will see next, Generic CDCL is sound, so that Generic CDCL
is furthermore correct.
Depending on the technique or solver that is modeled withGeneric CDCL, more

properties might be ensured, but these properties depend on the system. Exam-
ple 23 gives an example showing that Generic CDCL does not terminate. Hence,
Generic CDCL is not terminating. However, when the application of the rules
is constrained, then termination could be ensured. In this thesis, we focus on the
soundness of SAT solving techniques and how they can be modeled with Generic
CDCL, so that we do not discuss termination in more detail.

Example 23: Infinite Reduction of Generic CDCL Infinite rule appli-
cations can be illustrated with the formula F = (a ∨ b) ∧ (a ∨ b). The following
two reductions can be repeated infinitely often because the first state is exactly
the same state as the third state:
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▶ ((a∨b)∧(a∨b) :: ϵ) ;learn ((a∨b)∧(a∨b)∧(b) :: ϵ) ;delete ((a∨b)∧(a∨b) :: ϵ)

▶ ((a∨b)∧(a∨b) :: ϵ) ;infer ((a∨b)∧(a∨b) :: (b)) ;back ((a∨b)∧(a∨b) :: ϵ)

In the first example execution the entailed clause (b) is added to the formula.
In the next step, this entailed clause is deleted again.
Similarly, since the entailed clause is a unit clause and its literal is entailed

by the formula, this literal can also be added with the rule ;infer and with the
rule ;back the interpretation can be cleared again. Both applications show that
infinite reductions are possible and that Generic CDCL is not terminating by
its own.

By restricting the execution of the rules of Generic CDCL, the system can be
turned into a terminating reduction system. Since these restrictions depend strongly
on the modeled solver and the execution order of such a system, only soundness
is proven in this thesis. The aim of Generic CDCL is not to obtain a system
that represents one solver but a system that can cover many solvers. Therefore,
termination is up to the modeled solver. Furthermore, a modeled solver might not
be complete, because such a solver might not be able to show the unsatisfiability of
a formula. Hence, only soundness of Generic CDCL can be transferred directly
to modeled systems.
Since a simulation of a SAT solvers with Generic CDCL involves multiple appli-

cations of rewriting rules, the initial formula should be equisatisfiable to any formula
of the reachable states.

Lemma 5.1.1 (The rules of Generic CDCL preserve equisatisfiability). Given a
state (F :: J) of Generic CDCL and a successor state (F ′ :: J ′), then n applica-
tions of rules of Generic CDCL, i.e. (F :: J) ;n (F ′ :: J ′), preserve equisatisfia-
bility between the two formulas F and F ′, i.e. F ≡SAT F ′.

Proof. Lemma 5.1.1 can be proven by induction on the number of applications n.
For the base case n = 0, the two formulas F and F ′ are equal, and hence they are
also equisatisfiable. For the induction step, assume that the claim holds for n − 1
steps, i.e. (F :: J) ;(n−1) (F ′′ :: J ′′) ; (F ′ :: J ′) and F ≡SAT F ′′. To show that
F ≡SAT F ′, we first prove that F ′′ ≡SAT F ′ for each rule separately. Then we
conclude the hypothesis of the lemma by transitivity of equisatisfiability.
First, the two rules ;sat and ;unsat are not considered in this proof, because they

do not produce a successor state that is of the form (F ′ :: J ′). For the remaining
rules, the equisatisfiability between F ′′ and F ′ can be shown as follows:

▶ ;infer and ;back: By the definitions of these rules, the formula F ′′ is not
altered, so that F ′′ = F ′, and therefore the two formulas are equisatisfiable.

▶ ;learn: The rule adds a clause C, which is entailed by F ′′, i.e. F ′′ |= C, to the
formula F ′′: F ′ := F ′′ ∧C. As stated in Section 3.2, adding an entailed clause
to a formula preserves equivalence and as a result also equisatisfiability.

▶ ;delete: From the formula F ′′ a clause C is removed, i.e. F ′ := F ′′ \ {C}, so
that F ′ |= C. This operation builds the complement of the rule ;learn, and
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by the same arguments the two formulas are equivalent. Since F ′′ and F ′ are
equivalent, they are also equisatisfiable.

▶ ;inp: From the definition of the rule, we conclude that the two formulas F ′′

and F ′ are equisatisfiable.

From F ≡SAT F ′′ and F ′′ ≡SAT F ′ and the transitivity of equisatisfiability, we can
now conclude that F ≡SAT F ′.

To show soundness of the formalism, the two rules ;sat and ;unsat also need
to terminate the computation with the correct answer. More precisely, the termi-
nal state SAT should only be reachable if the initial formula is indeed satisfiable.
Similarly, UNSAT should only be reachable if the initial formula is unsatisfiable.

Lemma 5.1.2 (The rule ;sat is only applicable on satisfiable formulas). If the
rule ;sat is applicable after an arbitrary number n of applications of rules, i.e.
(F :: ϵ) ;n (F ′ :: J) ;sat SAT, then the initial formula F is satisfiable.

Proof. According to the definition of ;sat, the reduct F ′|J is empty. Then, J is
a model for F ′, and F ′ is satisfiable. From Lemma 5.1.1 we already know that
the initial formula F and the formula F ′ have to be equisatisfiable. Since F ′ is
satisfiable, F is satisfiable as well.

For showing soundness of the application of the rule ;unsat, some intermediate
results are required, namely that when (F :: J) is a reachable state in Generic
CDCL and no decision literal ẋ occurs in the interpretation J , then the two formulas
F and F |J are equisatisfiable. To prove this statement, properties of the reduct
operator have to be shown first.

Lemma 5.1.3 (Reducts with only non-decision literals are equisatisfiable to the
formula). Let (F :: J) be a reachable state after n applications of rules, i.e. (F ′ ::
ϵ) ;n (F :: J). When J is of the form J = J ′xJ ′′, and x is not a decision literal,
then F |J ′ ≡SAT F |J ′x for all interpretations J ′ and J ′′.

Proof. The claim is proven by induction on the number of applications n. For the
base case n = 0, the claim holds, because the interpretation J is empty. For the
induction step assume that the claim holds for the state (F ′′ :: J ′′′) after n − 1
applications, and (F ′ :: ϵ) ;n−1 (F ′′ :: J ′′′) ; (F :: J). Now we show the induction
step for each rule:

▶ ;sat and ;unsat: These two rules do not result in a state of the form (F :: J).

▶ ;learn: In this case, F := F ′′ ∧ C, where F ′′ |= C, and J ′′′ = J . Hence,
F ≡ F ′′, and from Corollary 2.2.4 we conclude F |J ′′′ ≡ F ′′|J ′′′ for arbitrary
interpretations J ′. Since the claim holds for F ′′|J ′′′ , and J ′′′ = J , we conclude
that the claim also holds for F |J .

▶ ;delete: Symmetrically to ;learn, F
′′ := F ∧ C, where F |= C, and J ′′′ = J .

The claim holds along the same arguments as for ;learn.

▶ ;inp: F ′′ ≡SAT F and J ′′′ = J = ϵ. The claim holds, because the interpreta-
tion is empty.
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▶ ;decide: In this case, F ′′ = F , and J = J ′′′ẏ. The claim holds, because the
appended literal ẏ is a decision literal. Formally, let I ′ and I ′′ be interpreta-
tions, and x is not a decision literal, such that J = I ′xI ′′ẏ. By induction, we
conclude that F ′′|I′ ≡SAT F ′′|I′x. Hence, the claim F |I′ ≡SAT F |I′x holds.

▶ ;back: In this case F = F ′′, and J ′′′ = JJ ′′′′. Formally, let I ′ and I ′′ be
interpretations, and x is not a decision literal, such that J = I ′xI ′′. By
induction, we conclude that F ′′|I′ ≡SAT F ′′|I′x. Consequently, we know that
F |I′ ≡SAT F |I′x.

▶ ;infer: In this case, F = F ′′ and J = J ′′′y, where y is not a decision literal
and {y, y} ∩ J = ∅. Consider two additional interpretations I ′ and I ′′, such
that J = I ′yI ′′. Then, either y = x, so that I ′′ is empty, and consequently
F |I′ ≡SAT F |I′′y holds by definition of ;infer. Otherwise, y ̸= x, so that we
can conclude the claim by induction.

Lemma 5.1.4 (The rule ;unsat is only applicable on unsatisfiable formulas). When
the rule ;unsat can be applied, then the initial formula F is unsatisfiable.

Proof. Consider the applications of rules such that (F :: ϵ) ;n (F ′ :: J) ;unsat

UNSAT with ∄ẋ ∈ J and n ≥ 0. First, from the preconditions of the rule ;unsat

we need to show that when the rule ;unsat is applicable, then the formula F ′ is
unsatisfiable as well. Afterwards, we can discuss whether the unsatisfiability of the
initial formula F can be shown. Therefore, we need to show that F ′ ≡SAT F ′|J
when no decision literal ẋ occurs in the interpretation J : ∄ẋ ∈ J . This statement is
shown in Lemma 5.1.3. Furthermore, with Lemma 5.1.1 the two formulas F and F ′

are equisatisfiable, i.e. F ≡SAT F ′. Hence the input formula F is unsatisfiable.

Theorem 5.1.5 (Soundness of Generic CDCL). The reduction system Generic
CDCL is sound.

Proof. The application of the rules ;sat and ;unsat is sound with respect to the
formula F in the preceding state. More precisely, only if the formula F is satisfi-
able the terminal state SAT is reached. This claim is shown by Lemma 5.1.2. By
Lemma 5.1.4, the terminal state UNSAT is only reached if the formula F is unsat-
isfiable. Since, by Lemma 5.1.1, all formulas F in states that are reachable from
the state (F ′ :: ϵ) are equisatisfiable to F , Generic CDCL can reach only valid
terminal states. If F ′ is unsatisfiable, only UNSAT can be reached. Likewise, if F ′

is satisfiable, only SAT can be reached.

5.2. SAT Solving Approaches

In this section, the reduction system Generic CDCL is used to model SAT solving
approaches that have been proposed in the literature as well as novel techniques.
There is a broad set of methods. The most general division is to split these methods
into systematic search algorithms and SLS algorithms. This thesis focuses on sys-
tematic algorithms due to their relevance in solving application benchmarks, as for
example in [GHM+12] or [LMS06]. Stochastic local search algorithms have their
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strength on randomly generated formulas [HS04] as well as on satisfiable crafted
formulas [BM14a].

Systematic search algorithms are usually based on extending a single search path
in a binary search tree. Therefore, this method is discussed first. Afterwards, the
proposed methods for solving the satisfiability problem are discussed in chronolog-
ical order, namely first the Davis-Putnam (DP) procedure, next the DPLL, and
finally the general CDCL procedure. One aim of presenting these three algorithms
is to show that all three procedures can be simulated with Generic CDCL. Af-
terwards, heuristics and other extensions that have been added to these procedures
are presented. Furthermore, look-ahead techniques are introduced in more detail.
Contributions of this thesis are mixed in and are put into the corresponding sections
to obtain a common theme along the thesis. An empirical evaluation of the contri-
butions is given at the end of the chapter after all techniques have been presented.

5.2.1. Semantic Tree

A naive approach to test the satisfiability of a propositional formula F is to generate
a truth table. Let n be the number of variables of the formula, i.e. n = |vars(F )|. For
the set of variables vars(F ), all possible complete interpretations are written down
as a row in the table. Since each variable can be assigned in two ways, the number
of rows in the table is 2n. Now for each of these interpretations J , the evaluated
truth value of the formula F |J is written into the second column of the current row.
As soon as a F |J reduces to ⊤, the interpretation J is a model for the formula F ,
and therefore, the formula F is satisfiable. Otherwise, if none of the rows contains
a ⊤ symbol the formula is unsatisfiable. Since the truth table always contains 2n

rows, this mechanism cannot be used for large formulas. The semantic tree method
is an improvement of the truth table method and uses less space.

Let the semantic tree be a binary tree. Each node t can have two child nodes tl
and tr. The two edges from t to its children are labeled with a variable x that does
not occur on the path from the root node to the current node t but which occurs in
the formula. If a node t has two child nodes tl and tr, then the edge t→ tl is labeled
with the literal x, and the edge t→ tr is labeled with the literal x. Each path from
the root node of the tree to a leaf node corresponds to the partial interpretation J
that satisfies exactly all the literals on this path and does not assign a truth value
to any other variable.

Given a formula F , the corresponding semantic tree is constructed as follows: The
initial tree has only the root node troot. Then, for each node t in the tree that does
not have child nodes yet and given the interpretation J of the path from troot to
t, the reduct of every clause C ∈ F is analyzed. If this reduct F |J contains the
empty clause, i.e. ⊥ ∈ F |J , the node t is called closed. The corresponding clause
C ∈ F , which is falsified by the interpretation J , is a conflict clause with respect to
the interpretation J (compare Definition 5.5).

If the node t is not closed and if there exists a literal x with var(x) ∈ (vars(F ) \
vars(J)), then the node t can be expanded by adding two new child nodes tl and tr
to this node t. The edges from the node t to the child nodes are labeled with the
literals x and x, respectively. Otherwise, if the set vars(F ) \ vars(J) is empty, i.e.
vars(F ) \ vars(J) = ∅, the node cannot be expanded further and the corresponding
interpretation J is a model for the formula F : all variables are assigned in J , and
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no clause C ∈ F is falsified. In the latter case, the node t is called an open node.
If all nodes of the tree have been processed and a model J for the formula F

has been found, then the formula F is satisfiable. Similarly to the truth table
method, the formula is unsatisfiable if for each possible interpretation J the reduct
of the formula F contains the empty clause, i.e. ⊥ ∈ F . In the semantic tree, this
scenario can be reached if each node is either expanded or closed by some conflict
clause C ∈ F . The formula F is found to be unsatisfiable because each partial
interpretation represented by a path in the tree from the root node to a leaf falsifies
some clause C ∈ F . Example 24 shows a binary semantic tree for a satisfiable
formula.

Example 24: Proving Satisfiability with a Semantic Tree With the
formula

F = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ b)

the following binary tree is a possible semantic tree:

(a ∨ b ∨ c) (a ∨ b ∨ c) (a ∨ b)

(a ∨ c)(a ∨ b)

a a

c cb b

b bc c

The tree is built starting with the variable a at the root of the tree. The root
node is expanded with a. On the left subtree, the expansion is continued with
the variable b. There, the second node with the path (ab) is closed with the
clause (a∨ b), because this clause is falsified by the interpretation (ab). The left
node with the path (ab) is expanded with the variable c. Both created nodes
can be closed, namely with the clauses (a ∨ b ∨ c) and (a ∨ b ∨ c).
The right subtree is also expanded, but now the variable c is chosen. Observe

that the rules for the semantic tree do not specify an order, so that any order
of the variables on the path in the tree is possible, and furthermore, the same
order needs not be used in all subtrees. After the expansion, the right node can
be closed with the clause (a ∨ c). The right node with the path (ac) can be
expanded with the variable b. The left node is closed with the clause (a∨ b) and
the right node with the path (acb) cannot be closed by a clause. Furthermore,
there is no variable left for expansion so that the path to this node is open and
represents the model of the formula F .

Simulating the Semantic Tree Procedure with Generic CDCL Since the semantic
tree generates a partial interpretation but does not apply any inference rules other
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than closing a node t if the corresponding interpretation J yields an empty clause
in the reduct, i.e. ⊥ ∈ F |J , this calculus can be modeled with only a few rules
of Generic CDCL, namely ;sat, ;unsat, ;decide and ;back. Only the answer
UNSAT cannot be directly represented with Generic CDCL, since the semantic
tree procedure uses a property over the whole semantic tree and does not evaluate
a single state.3 Nevertheless, soundness of the answer SAT can be modeled.

The path from the root node troot to any node t can be created by using the
search rule ;decide. The length of the path from troot to t corresponds to the number
of decisions that have to be performed in Generic CDCL. Since the underlying
structure is a tree, this property of a node is also called the decision level of the
node t, or the decision level of the interpretation J .

Definition 5.7 (Tree Level). The tree level of a node t in a binary search tree is
the number of branching nodes on the path from the root node to this node.

If the node t is closed, then the conflict correction rule ;back can be used to undo
decisions to model the expansion of other nodes. Otherwise, if a node is expanded,
the search rule ;decide is used for modeling. Finally, returning the answer SAT is
covered by the termination rule ;sat, since the open node t with its interpretation J
fulfills the condition that F |J = ⊤.

5.2.2. The Davis-Putnam Procedure

The original DP procedure, which has been published in [DP60], consists of four
steps. The first step is to convert the formula into CNF, which is already assumed
to be the case for formulas that are considered for Generic CDCL. The pseudo
code of the DP procedure is given in Figure 5.3 and starts with the input formula F
in CNF. During computation this formula is modified in each iteration of the while-
loop (line 1), so that after at most |vars(F )| iterations the algorithm terminates with
either SAT or UNSAT, since all the remaining rules eliminate at least one variable
from the formula. Thus, the final formula F is either empty, i.e. F = ⊤, or contains
only empty clauses.

The algorithm terminates if the current formula F is trivially satisfiable (line 2)
or unsatisfiable, because the formula contains an empty clause (line 3). Otherwise,
the unit rule is applied by replacing the formula F with the reduct F |x if there exists
a unit clause (x) ∈ F (lines 4–5). Similarly, if the formula contains a pure literal
x the formula F is replaced with the reduct F |x in the pure literal rule (lines 7–
8). For simplicity, after both rules the algorithm checks again whether the current
formula F became satisfiable or unsatisfiable and afterwards continues with the
unit rule. The original algorithm in [DP60] omitted the unsatisfiability rule after
applying the pure literal rule, because the reduct F |x cannot become unsatisfiable
if the literal x is pure.4 Finally, if there is no unit clause and no pure literal in

3When the three rules ;back, ;unit and ;learn are used properly, Generic CDCL can be used to
generate all the interpretations of a semantic tree from the left leaf node to the right leaf node
and furthermore prove the unsatisfiability of F . This procedure would be very similar to the
DPLL procedure but the pure literal rule is not required.

4Eliminating pure literals from a formula is an equivalence preserving formula transformation
(compare Section 3.2.4), and furthermore, in the new reduct with respect to pure literals only
clauses are dropped, but no falsified literals have to be removed from remaining clauses.
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DP (CNF formula F )

Input: A formula F in CNF

Output: The solution SAT or UNSAT of this formula

1 while true

2 if F = ∅ then return SAT // satisfiability rule

3 if ⊥ ∈ F then return UNSAT // unsatisfiability rule

4 if (x) ∈ F then // unit rule

5 F := F |x
6 continue

7 if x ∈ lits(F ) and x /∈ lits(F ) then // pure literal rule

8 F := F |x
9 continue

10 G := F \ {Fx ∪ Fx} // clauses in G do not contain the variable x

11 F := G ∪ {Fx ⊗ Fx} // variable elimination rule

Figure 5.3.: Pseudo code of the DP procedure.

the formula, the variable elimination rule is applied, which replaces the clauses that
contain the variable x, i.e. (Fx∪Fx), with the multiset of resolvents Fx⊗Fx (line 11).

Simulating the DP Procedure with Generic CDCL Davis and Putnam discuss
soundness of their algorithm in [DP60]. Furthermore, soundness of the DP proce-
dure can be shown by modeling their framework with Generic CDCL, namely by
mapping each statement of the algorithm to the rules of Generic CDCL. Mapping
the execution order of the single rules is not required for proving soundness – how-
ever, if the mapped rules of Generic CDCL would be executed in the specified
order, the resulting system inherits all the properties of the DP procedure, including
termination.

Let F be the formula that is processed with the DP procedure. Then, Generic
CDCL is initialized with the state (F :: ϵ). Since the DP procedure does not main-
tain an interpretation, but instead replaces the working formula in each step, all
non-terminating rules of the DP procedure can be mapped to the formula modifica-
tion rule ;inp. The interpretation J in the simulation stays empty.

The first check of the procedure, namely the satisfiability rule (line 2), can be
modeled with the termination rule ;sat because the preconditions are equivalent:
F |J = ⊤ and J = ϵ. Similarly, the next step (line 3) is covered by the other
termination rule ;unsat, since J = ϵ and ⊥ ∈ F .

The unit rule of the algorithm (line 4) replaces the formula F , which contains the
unit clause C = (x), with the corresponding reduct F := F |x. Since in this case the
formula F entails the literal x, i.e. F |= x, the formula F and the reduct F |x are
equisatisfiable. In fact, they are even mutually constructible (see Section 3.1). As
discussed above, the unit rule of the algorithm can be modeled with ;inp.

The elimination of pure literals (line 7) can be mapped to the modification
rule ;inp as well, because the interpretation J is empty, i.e. J = ϵ, and further-
more eliminating pure literals from a formula preserves mutual constructibility and
the reduct is an unsatisfiability preserving consequence of the formula. Davis and
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RDPLL (CNF formula F )

Input: A formula F in CNF

Output: The solution SAT or UNSAT of this formula

1 if F = ∅ then return SAT // satisfiability rule

2 if ⊥ ∈ F return UNSAT // unsatisfiability rule

3 if (x) ∈ F then return RDPLL(F |x) // unit rule

4 if x ∈ lits(F ) and x /∈ lits(F ) then return RDPLL(F |x) // pure literal rule

5 if RDPLL(F |x) = SAT and x ∈ lits(F ) then return SAT // backtracking rule

6 else return RDPLL(F |x)

Figure 5.4.: Pseudo code of the recursive RDPLL procedure.

Putnam already discuss the equisatisfiability in [DP60], and mutually constructibil-
ity is discussed in Section 2.2.3. Hence, the pure literal rule of the algorithm can be
modeled with ;inp.

Likewise, the variable elimination rule of the algorithm (line 11) can be modeled
with ;inp, because as in the above two cases, transforming F = Fx ∨ Fx ∨ G into
F := (Fx⊗Fx)∨G by essentially resolving out the variable x is an equisatisfiability
preserving formula transformation (see Section 3.2.8). Consequently, the variable
elimination rule of the algorithm can be modeled with ;inp.

5.2.3. The DPLL Procedure

The DP procedure did not receive much attention, as discussed in [CS00], because
the procedure has been replaced by the successor algorithm only two years after
its publication. The successor algorithm, the DPLL procedure [DLL62], does not
modify the formula F any more but instead works on a partial interpretation J .
The major difference between these two algorithms is the replacement of the vari-
able elimination rule (line 11 in the algorithm in Figure 5.3) with a search and
backtracking rule. The final DPLL algorithm can be written down in a recursive
fashion, similarly to the DP procedure, as presented in Figure 5.4. Compared to the
DP procedure, the DPLL procedure does not overwrite the current working formula
with the reduct in the unit rule and the pure literal rule, but recursively calls the
procedure with the reduct instead (line 3–4). The satisfiability rule and the unsat-
isfiability rule of the two procedures stay the same (line 1–2). The final difference
is the search and backtracking rule. Instead of eliminating a variable, the DPLL
procedure assumes a truth value for a variable (line 5) and tests whether the reduct
F |x is satisfiable. If this reduct is not satisfiable, then the formula F entails the unit
clause (x), so that the satisfiability of the reduct F |x is returned (line 6).

Mapping the Recursive DPLL Procedure to the Iterative DPLL Procedure It-
erative versions of an algorithm are usually more promising, because their execution
is faster and additionally, the number of recursive procedure calls is restricted by
the operating system.5 The iterative version of the DPLL procedure is shown in

5The number of recursive procedure calls is usually limited to 64K, so that the number of variables
in a formula would be restricted to 64K variables for recursive algorithms. Application formulas
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IDPLL (CNF formula F )

Input: A formula F in CNF

Output: The solution SAT or UNSAT of this formula

1 J := ϵ // start with empty interpretation

2 while true

3 if F |J = ∅ then return SAT // satisfiability rule

4 if ⊥ ∈ F |J then

5 if J = J ′ẋJ ′′ and ∄ẏ ∈ J ′′ then // backtrack and undo most recent decision

6 J := J ′x

7 continue

8 else return UNSAT // unsatisfiability rule

9 if (x) ∈ F |J then // unit rule

10 J := Jx

11 continue

12 if x ∈ lits(F |J) and x /∈ lits(F |J) then // pure literal rule

13 J := Jx

14 continue

15 J := Jẋ for some x ∈ lits(F |J) // decide rule

Figure 5.5.: Pseudo code of the iterative IDPLL procedure.

Figure 5.5. Given the recursive version of the algorithm, the iterative version can be
understood as not applying the transformation to the formula F directly by passing
the transformation to the next recursion level but instead applying the modifications
to the partial interpretation J and working on the reduct F |J .
Both versions start with the empty interpretation J = ϵ (line 1). The while-loop

in line 2 represents the start of each recursion in the recursive algorithm. For the
satisfiability rule, no further modifications, except using the reduct F |J instead of the
formula F , have to be performed. Since the UNSAT result is used for the recursion
in the recursive algorithm, this answer needs to be treated specially to cover the
recursion. Instead of simply returning UNSAT (Figure 5.4, line 2), the iterative
algorithm in Figure 5.5 has to check the partial interpretation for a backtracking
point, which is represented by the decision literal ẋ that has been added to the
interpretation J = J ′ẋJ ′′ most recently. If there exists such a backtracking point
(line 4), then the procedure returns to the partial interpretation J ′ and continues
with the negation of the decision literal: J := J ′x. The continue statement simulates
the start of the next recursion in the recursive algorithm. Otherwise, if there is
no further backtracking point, the iterative DPLL procedure returns the answer
UNSAT. Both the unit rule and the pure literal rule can be mapped by extending
the interpretation J instead of modifying the formula F . Finally, the first case
of the recursion (Figure 5.4, line 6) is modeled by simply deciding an unassigned
literal x and adding this literal as decision literal to the interpretation J . Here, a
backtracking point is created implicitly. Since the RDPLL procedure works on the
reduct implicitly, the condition x ∈ lits(F ) is sufficient. For the IDPLL procedure,

contain up to 10M variables, and therefore an iterative algorithm is necessary.
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the reduct needs to be used explicitly by enforcing x ∈ lits(F |J) to ensure a similar
behavior. Otherwise, a literal x would be added to the interpretation J multiple
times. The other branch of the recursion (Figure 5.4, line 7) is already covered
(lines 5–6).

Example 25: Proving Satisfiability with the DPLL Procedure Con-
sider the following formula in CNF:

F=(a∨ b)∧ (b∨ d∨ e)∧ (c∨ d)∧ (a∨ b∨ e∨ f)∧ (a∨ e∨ f)∧ (d∨ f)∧ (c∨ e∨ f).

The following illustration shows a partial example run of the DPLL algorithm,
including finding a conflict and backtracking:

DPLL

(a ∨ e ∨ f)

a

b
c

d
d

e

f

The tree is created with the assumption that unit propagation is always executed
first, and decisions are always made with the smallest positive literal that is not
in the interpretation yet. For the decision the positive polarity is chosen. First,
the decision ȧ is made. Since decisions might be undone, they are represented
as diagonal arcs in branches of the tree. Literals that are added to the inter-
pretation by unit propagation are visualized with downward arcs. Next, literal
b is added with ;unit, because the reduct (a ∨ b)|(ȧ) is a unit clause. Then, ċ

is used as decision, and since no unit clause is produced the literal ḋ is added
to the path as well. Since the reduct (b ∨ d ∨ e)|(ȧbċḋ) is the unit clause (e), the
literal e is added with ;unit. Similarly, f is added with ;unit, because the clause
(a ∨ b ∨ e ∨ f) became unit. With this state, the clause (a ∨ e ∨ f) is falsified
and builds the conflict. The conflicting node is filled black. Furthermore, the
literals that are assigned at the highest decision level of the conflict are printed
bold.
As described in the DPLL procedure, such a conflict is resolved by undoing the

last decision and not marking this branch as decision any more. Essentially, a
diagonal arc is turned into a downward arc. Here, the branch with the literal ḋ is
turned into the arc d. From this point the DPLL procedure would continue with
the interpretation (ȧbċd). The path that is used after backtracking is visualized
with the dark grey nodes.
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Simulating the DPLL Procedure with Generic CDCL Naturally, soundness of the
algorithm can be shown for both versions of the DPLL procedure. Since modeling
the recursive DPLL procedure with the iterative DPLL procedure has been discussed
already and the upcoming solving algorithms are presented based on their iterative
version, we focus on the iterative version of the DPLL procedure.

Both Generic CDCL and the iterative procedure IDPLL start with the for-
mula F and an empty interpretation J = ϵ. In IDPLL the satisfiability rule (line 1)
can be modeled by ;sat, because the preconditions are equivalent.

The next step of the algorithm, namely finding an empty clause in the formula F ,
i.e. ⊥ ∈ F , is divided into two cases. In the first case (line 5), a decision literal ẋ
occurs in the current interpretation J , which consists of the sequence J = J ′ẋJ ′′,
and the subsequence J ′′ does not contain any further decision literals. Thus, the
algorithm proceeds with the interpretation J = J ′x. This behavior is modeled by
the following rules:

(F :: J);learn (F,C :: J ′ẋJ ′′);back (F,C :: J ′);unit (F,C :: J ′x);delete (F :: J ′x),

where the clause C consists of the literals (J ′∪x). This clause C represents the fact
J ′ → x, which is entailed by the formula F , i.e. F |= C. The proof of their entailment
is given in Lemma 5.2.2 below. Reusing this fact, i.e. F |= C, the clause C can also
be deleted again when ;delete is applied afterwards. In the intermediate application
of the deduction rule ;unit, the clause C is used to extend the interpretation J ′ to
J ′x, since the clause C|J ′ is a unit clause, i.e. C|J ′ = (J ′ ∪ x)|J ′ = (x).

To show that the artificially introduced learned clause C is entailed by the for-
mula F , an auxiliary lemma needs to be proven first. Lemma 5.2.1 states that
dropping trailing literals J ′′ that do not contain decision literals (∄ẏ ∈ J ′′) from an
interpretation J ′ẋJ ′′ preserves the satisfiability of the reduct F :: J ′ẋJ ′′.

Lemma 5.2.1 (Equisatisfiable reducts in Generic CDCL). In Generic CDCL,
given a reachable state (F :: J ′ẋJ ′′), then the reducts of the two states (F :: J ′ẋ)
and (F :: J ′ẋJ ′′) are equisatisfiable, i.e. F |J ′ẋ ≡SAT F |J ′ẋJ ′′, if the interpretation J ′′

does not contain a decision literal.

Proof. Without loss of generality, assume the interpretation J ′′ = (x1, . . . , xk) con-
tains k literals. In Generic CDCL, a literal xi that is not a decision literal can
only be added to the current interpretation J if the according reducts F |J and F |Jxi

are equisatisfiable. This equivalence is the precondition of the rule ;infer that allow
adding a literal xi to the current interpretation. Then, since equisatisfiability is
transitive, this addition can be applied k times, starting with F |J ′ẋ and F |J ′ẋx1 and
continuing until the interpretation J ′ẋx1 . . . xk is reached.

Given this fact, the correctness of the generation process for the learned clause C
with respect to the formula F and the interpretation J ′ẋJ ′′ can be shown.

Lemma 5.2.2 (Modeled conflict clause). If the reduct of a formula F with respect
to the interpretation J ′ẋJ ′′ contains the empty clause, i.e. ⊥ ∈ F |J ′ẋJ ′′, and fur-
thermore the partial interpretation J ′′ does not contain any decision literal, then the
formula F entails the clause C = (J ′ ∪ x), i.e. F |= C.
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Proof. First, the interpretation J ′′ can be dropped from J ′ẋJ ′′ without changing the
satisfiability of the reduct, as already shown in Lemma 5.2.1. If the empty clause ⊥
occurs in the reduct F |J ′ẋJ ′′ , then this reduct is unsatisfiable, i.e. F |J ′ẋJ ′′ ≡ ⊥, and
therefore also the reduct after dropping J ′′ is unsatisfiable: F |J ′ẋ ≡ ⊥.
Next, the construction of the clause C is given: first, the two formulas F ∧ J ′ ∧ x

and F |J ′ẋ are mutually constructible, because adding all literals of the interpreta-
tion J ′ẋ conjunctively to the formula F results in a mutually constructible formula,
i.e. F |J ′ẋ ↭∩ (F ∧ J ′ ∧ x)|Jẋ, because these new clauses are satisfied by the in-
terpretation already and are removed when the actual reduct is built. Thus, the
formula F ∧ J ′ ∧ x is also unsatisfiable, i.e. F ∧ J ′ ∧ x ≡ ⊥. When a clause C is
entailed by a formula F , i.e. F |= C, then this statement is equivalent to F ∧C ≡ ⊥.
Combining the above two statements, the clause C is constructed as the negation
of the interpretation, i.e. C := ¬(J ′ ∧ x), so that this clause is entailed by the for-
mula F . In conjunctive normal form (CNF) this clause has the set representation
C = (J ′ ∪ x).

If the current interpretation of the DPLL procedure (line 5, Figure 5.5) does not
contain a decision literal, then the algorithm returns the answer UNSAT. These two
conditions are exactly the same conditions for the rule ;unsat of Generic CDCL,
and therefore this behavior can be modeled. Similarly, the precondition of the unit
rule (line 9) is equivalent to the conditions of the rule ;unit. For simulating the
pure literal rule (line 12), the rule ;infer can be used, since adding a pure literal
x to the current interpretation J preserves the equisatisfiability of the reduct, i.e.
F |J ≡SAT F |Jx (compare Section 3.2.4). Finally, the search rule (line 15) is covered
by ;decide, since the set of literals in the reduct lits(F |J) is a subset of the set
vars(F ) ∪ vars(F ), and additionally, the intersection of the two sets lits(F |J) and
lits(J) is always empty (compare Corollary 2.2.2).

5.2.4. The Conflict Driven Clause Learning Procedure

The DPLL procedure has been enhanced with clause learning by Marques-Silva and
Sakallah [MSS96] for the first time in 1996. The name conflict driven clause learn-
ing (CDCL) reflects the fact that a learned clause is only added after the procedure
found a conflict clause. Afterwards, many modifications have been proposed, even
for the underlying DPLL algorithm. The pseudo code of the CDCL procedure,
which is presented in Figure 5.6, follows the algorithm presented in [ES04]. Fur-
thermore, the presented algorithm, which is used in most modern implemented SAT
systems is following the preferences of the rules of Generic CDCL as introduced
in Section 5.1.1.

To solve the SAT problem for a formula F , the CDCL procedure starts with
an empty interpretation J = ϵ. Next, the unit rule is applied if unit clauses (x)
occur in the current reduct (line 3). As long as there are such unit clauses, the
current interpretation J is extended (line 4). This part of the algorithm is called
unit propagation.

Definition 5.8 (Unit Propagation). Given a formula F and an interpretation J ,
unit propagation is the application of the unit rule to extend J until termination.

After unit propagation, the consistency of the reduct F |J is checked (line 5). If an
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CDCL (CNF formula F )

Input: A formula F in CNF

Output: The solution SAT or UNSAT of this formula

1 J := ϵ // start with empty interpretation

2 while true

3 while (x) ∈ F |J do // unit rule

4 J := Jx

5 if ⊥ ∈ F |J then // conflict

6 if ∃ẏ ∈ J , such that J = J ′J ′′ẏJ ′′′ then

7 F := F ∪ C with F |= C and C /∈ F // learning

8 J := J ′ // backjumping

9 else return UNSAT // unsatisfiability rule

10 else // no empty clause in F |J
11 if atoms(J) ⊇ atoms(F ) then return SAT // satisfiability rule

12 else J := Jż with atoms(z) ⊆ atoms(F ) // decision rule

Figure 5.6.: Pseudo code of the CDCL procedure.

empty clause ⊥ occurs in the reduct, either conflict analysis is triggered (line 6–8)
or the answer UNSAT is returned.

Conflict Analysis As long as a a decision literal ẏ occurs in the interpretation J ,
conflict analysis is performed by creating a learned clause C, which is entailed by the
formula F . To the best of our knowledge, every implemented SAT solver that uses
the CDCL method creates the learned clauses based on resolution. Since adding
resolvents to the formula preserves equivalence, such an algorithm ensures that a
learned clause C is entailed by the formula F . Next, backjumping is used to undo
parts of the interpretation J ′J ′′ẏJ ′′′. The pseudo code in Figure 5.6 presents a very
general way to perform backjumping. To ensure that the very same conflict can be
avoided by the algorithm, at least one decision literal ẏ needs to be removed from
the interpretation J . However, there exist many heuristics on how to choose J ′

and J ′′, and there are also different ways to generate the learned clause C. A brief
overview on these techniques is given in Section 5.4.3.

Definition 5.9 (Conflict Level). The conflict level of a conflict clause C with respect
to an interpretation J is the highest decision level of all the literals x that occur in
the clause.

The first implementation of the conflict analysis in Grasp [MSS96] chose ẏ to be
the last decision literal, so that the final part of the interpretation J = J ′J ′′ẏJ ′′′, i.e.
J ′′′, does not contain decision literals. The interpretation J ′′ is usually empty. The
reduct of the generated learned clause C of the conflict analysis of Grasp under
the interpretation J ′ became unit, i.e. C|J ′ = (x′′′), so that when continuing with
the algorithm no decision had to be made, but the algorithm can continue with unit
propagation. Similarly to the DPLL procedure, only a single decision is undone, so
that the conflict level and the next decision level differ only by 1, and therefore this
approach could still be considered as backtracking.
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In the SAT solver chaff [MMZ+01], the interpretation J ′′′ should contain as
many decision literals as possible, J ′′ is empty, and the reduct of the clause C with
respect to the interpretation J ′′ should still be a unit clause, i.e. C|J ′ = (x′′′). Since
multiple single decision literals can be removed from the interpretation J by applying
this scheme, the procedure is called backjumping. Here, the gap between the current
conflict level and the next decision level where the search continues can be larger
than 1.

Additionally, there exist backjumping schemes, so-called assignment stack shrink-
ing, that do not enforce that the interpretation J ′′ is empty [MFM05,NR10]. Thus,
the reduct of the generated learned clause C|J ′J ′′ is a unit clause with respect to
the interpretation J ′J ′′, but depending on how the interpretations J ′ and J ′′ are
chosen, the final interpretation J = J ′ does not necessarily turn the clause C into a
unit clause any longer.6

After the CDCL procedure (Figure 5.6) finished conflict analysis, unit propagation
is applied again. If the reduct F |J contained an empty clause (line 5) but the
current interpretation does not contain a decision literal, then the algorithm returns
the answer UNSAT (line 9). If the reduct F |J does not contain an empty clause
(line 10), then all variables of the formula F can occur in the interpretation J , so
that the answer SAT is returned. Otherwise, another literal z is added as decision
literal to the interpretation J , i.e. J := Jż, and the next iteration is triggered, where
the variable var(z) occurs in the formula, i.e. var(z) ∈ vars(F ), and the variable is
not yet mapped to a truth value.

Simulating the CDCL Procedure with Generic CDCL The CDCL procedure has
six major steps that modify either the formula F or the interpretation J , namely unit
propagation, conflict analysis with backjumping, answering SAT, answering UNSAT,
and deciding literals.

As already discussed for the DPLL procedure, the unit rule is covered by ;unit.
The next rule, conflict analysis, is covered by ;learn, since the clause C is entailed
by the formula F , i.e. F |= C. Similarly, reducing the interpretation J during
backjumping can be modeled with the rule ;back, because J ′ is the leading part of
the interpretation J . The output of the answer UNSAT can be covered with ;unsat,
because the current reduct F |J contains an empty clause (line 5), and there does not
exist a decision literal in the interpretation J . Essentially, the else branch (line 9) is
reached, because the interpretation J cannot be separated into the parts J ′, J ′′, ẏ
and J ′′′, even if there are no restrictions on J ′, J ′′ and J ′′′. Thus, the preconditions
of ;unsat are fulfilled, and therefore this rule is applicable.

If there is no empty clause in the current reduct (line 10) and all variables of
the formula F occur in the interpretation J , i.e. vars(J) ⊇ vars(F ), the algorithm
returns the answer SAT. Combining the two statements vars(J) ⊇ vars(F ) and
⊥ /∈ F |J enforces that J models the reduct F |J = ⊤, so that the rule ;sat is
applicable. Finally, the CDCL procedure performs search decisions with literals
z, whose variable var(z) occurs in the formula F , i.e. var(z) ∈ vars(F ). If this
condition is satisfied, then the literal z also occurs in the set (vars(F ) ∪ vars(F )).
Furthermore, the variable of the literal z does not occur in the interpretation J yet,

6This technique can be considered as a trade-off between backjumping and restarts. Restarts are
discussed in Section 5.4.7.
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i.e. var(z) /∈ vars(J), so that the rule ;decide is applicable when the CDCL procedure
performs decisions.

Example 26: Proving Satisfiability with the CDCL Procedure
Consider the formula

F=(a∨ b)∧ (b∨ d∨ e)∧ (c∨ d)∧ (a∨ b∨ e∨ f)∧ (a∨ e∨ f)∧ (d∨ f)∧ (c∨ e∨ f).

Then applying the CDCL algorithm to F can result in the following tree. As for
the DPLL algorithm in Example 25 first unit propagation is executed, and the
smallest variable that does not occur in the interpretation yet is chosen with the
positive polarity as decision literal. Additionally to the tree for each assigned
variable the reason clause is given in a table for the interpretation when the
conflict is found. The index i of a clause Ci refers to the clause at the i-th
position in the formula.

CDCL

(a ∨ e ∨ f)

clause learning

C4 ⊗ C5 : (a ∨ b ∨ e)

minimization
⊗C1 : (a ∨ e)

Variable

Reason

a

-

b

C1

c

-

d

-

e

C2

f

C4

a

b
c

e
d

e

f

The tree starts with the root node and the empty interpretation ϵ. Since no unit
clause occurs in F , the decision literal ȧ is chosen. Next, the clause C1 = (a ∨ b)
becomes a unit clause with the interpretation (ȧ): (a ∨ b)|(ȧ) = (b). Hence,
C1 is added to the table of reason clauses for the variable b. Then, the two
decisions literals ċ and ḋ are added, since no unit clause occurs in the interme-
diate reducts. Finally, with the interpretation (ȧbċḋ) the clause C2 becomes the
unit (b ∨ d ∨ e)|(ȧbċḋ) = (e), so that e is added to the tree. Likewise, the fourth

clause becomes the unit (a ∨ b ∨ e ∨ f)|(ȧbċḋe) = (f) under the interpretation

(ȧbċḋe), so that f and the reason clause are added.
Now, C5 = (a ∨ e ∨ f) is falsified under the interpretation (ȧbċḋef), and

hence, C5 is a conflict clause at the decision level three. All literals that have
been assigned at this decision level are printed bold in the tree. Next, the CDCL
algorithm produces a learned clause with resolution (see Section 5.4.3). In this
process the conflict clause C5 is resolved with the reason clause of the literal
f , because f is the literal that is placed highest in the search tree and which
occurs in the conflict clause. Then, the learned clause is the resolvent of the
resolution C4⊗f C5 = (a∨ b∨ e). A common property of learned clauses is that
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such a clause contains only a single literal of the conflict level. This property is
satisfied, because the literals a and b have the decision level one and the literal
e has the decision level three.
As SAT solvers also minimize the learned clause (see Section 5.4.3), such

a minimization is performed in this example as well. When the learned
clause (a ∨ b ∨ e) is resolved with the reason clause for the variable b, namely
with C1 = (a ∨ b), then the resulting clause is (a ∨ e). Since this clause was
obtained by resolution, the clause is entailed by the formula. Furthermore, the
clause still contains a single literal from the conflict level.
The final step of the conflict analysis is to add the minimized clause (a ∨ e)

to the formula. Then, the interpretation can be reset to the first dark grey
node with the path (ȧb). This way two decision literals are removed from the
interpretation. Observe that in the DPLL algorithm only a single decision was
removed. In the extreme case the CDCL algorithm can remove all decision
literals from the interpretation. With this interpretation, the minimized clause
becomes the unit clause (a ∨ e)|(ȧb) = (e), so that the unit rule can be applied
to add (e). From this point the CDCL algorithm continues. Observe that the
order of the literals in the tree changes from the path of the conflict clause to
the path where the CDCL algorithm continues.

5.2.5. Look-Ahead Procedures

Look-Ahead procedures themselves cannot be used to prove the satisfiability of
a formula F . However, when these techniques are used on top of a DPLL-like
search (as for example the DPLL procedure or the CDCL procedure), two styles
of search can be combined. As has been shown in the two Examples 25 and 26,
the CDCL procedure performs a depth-first-search (DFS) style of search. Thus,
simple inferences that are easy to see for human beings might be missed and the
procedure spends a huge number of steps in an unsolvable search space. To avoid
this behavior, look-ahead techniques can be used, which perform local reasoning
before they continue with a DFS style search.

A usual combination is a look-ahead decision heuristic with the DPLL proce-
dure [HDvZvM05,Li00,HvM09]. Instead of simply picking a yet unassigned literal
x as decision literal (Figure 5.5, line 15), a procedure similar to the pseudo code in
Figure 5.7 is executed to perform some local reasoning and furthermore returning
a simplified formula and a decision literal. The details of each step are discussed
in the following sections. Here, the algorithm itself is presented. Since look-ahead
is an expensive operation, only a few variables P of the free variables are selected
(line 1). Next, look-ahead is performed with these variables until no more infor-
mation can be inferred (lines 2–21). Thus, for each iteration the set Q stores the
current state, which corresponds to the current formula, and is therefore initialized
with the formula F (line 3). Then, for each preselected variable x ∈ P a look-ahead
step is performed (line 4). For the two literals x and x, unit propagation on the
current formula F is executed, and for each literal the immediate consequences J ′

and J ′′ are stored (lines 5–6).
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look-ahead (CNF formula F , interpretation J)

Input: A formula F in CNF, an interpretation J

Output: Unsatisfiable, or the modified formula and a decision literal

1 select P ⊆ atoms(F |J) // preselect rule

2 repeat

3 Q := F // learned clauses

4 for x ∈ P

5 (F ∧ x :: ϵ);unit
⊡ (F ∧ x :: J ′) // positive look-ahead

6 (F ∧ x :: ϵ);unit
⊡ (F ∧ x :: J ′′) // negative look-ahead

7 F := F ∧ ((J ′ ∩ J ′′) \ {x, x}) // necessary assignments

8 P := P \ atoms((J ′ ∩ J ′′) \ {x, x}) // remove assigned variables

9 E := ((J ′ ∩ J ′′) \ {x, x}) // equivalences

10 for L ∈ E do

11 if (x ∨ L) /∈ F then F := F ∧ (x ∨ L) // add implication x→ L

12 if (x ∨ L) /∈ F then F := F ∧ (x ∨ L) // add equivalence L→ x

13 if ⊥ ∈ (F ∧ x)|J′ and ⊥ ∈ (F ∧ x)|J′′ then

return unsatisfiable

14 else if ⊥ ∈ (F ∧ x)|J′ then

15 F := F ∧ x // failed literal rule on x

16 P := P \ {x} // remove assigned literals

17 else if ⊥ ∈ (F ∧ x)|J′′ then

18 F := F ∧ x // failed literal rule on x

19 P := P \ {x} // remove assigned literals

20 else H(x) := heuristic(F, x) // heuristic value

21 until (Q = F ) // abort criteria

22 return < F, polarity(maxH(x)x ∈ P ) > // return decision literal

Figure 5.7.: Pseudo code of the look− ahead procedure.

Based on these two interpretations, the necessary assignments (J ′ ∩ J ′′) can be
extracted and added to the formula (line 7). A literal is a necessary assignment, if
this literal has to be satisfied to satisfy the current formula. If variables of the set P
are part of these necessary assignments, these variables are removed from P , since
their truth value is fixed now (line 8). Another reasoning allows to find pairs of
equivalent literals that are also entailed by the formula. If these equivalences do not
yet occur in the formula F , the corresponding clauses are added to the formula F
(lines 9–12).

Finally, the failed literal rule can be executed, which checks whether (i) assum-
ing the literal x results in a conflict, and (ii) whether assuming the complement x
results in a conflict. A literal is failed, if unit propagation after assuming this literal
yields a conflict. In case both assumptions (i) and (ii) result in a conflict, then the
formula has to be unsatisfiable and the corresponding answer is returned (line 13).
Otherwise, if only (i) results in a conflict, then the complementary literal of the
assumption, i.e. x, can be added to the formula (line 14). In implemented systems,
heuristics might be used to abort this process to reach a balance between achieved
new clauses and run time. The same procedure is performed for the negated as-
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sumption x, and in case of a conflict the literal x is added to the formula (line 15).
In the latter two cases, the variable var(x) is removed from the set of preselected
variables P (lines 16,19). Finally, if the variable x is not set during a failed literal
step, then a heuristic value is calculated for the variable (line 20), which is finally
used to decide which variable is returned as decision variable (line 22).

After processing all variables x ∈ P , the algorithm checks whether the formula
has been modified (line 21). If a modification has been performed, then another
look-ahead on the preselected variables can lead to more necessary assignments,
entailed equivalences or failed literals. Therefore, the look-ahead is usually repeated
until no more clauses can be added to the formula. Finally, the modified formula is
returned, as well as the variable x of the set P with the highest heuristic value H(x)
is selected, and based on another heuristic polarity the decision literal is constructed.

There is one special case that is not considered in the representation of the algo-
rithm due to simplicity: the set of preselected variables P could be empty in line 22.
Then all variables of the reduct F |J are assigned already so that the answer SAT
can be returned. Otherwise, the algorithm starts over again with line 1.

An implementation of the algorithm would apply the rules in a more efficient
order. For simplicity, the given pseudo code is structured according to the rules. A
more efficient version is the following: after unit propagation with F ∧x (line 5), the
check ⊥ ∈ (F ∧ x)|J ′ is performed. If the empty clause is found, then the algorithm
immediately adds the unit clause (x) to the formula and continues with the next
variable x ∈ P . If the check fails, the procedure repeats the same two steps for x.
Only if no unit clause could be revealed, the algorithm searches for the equivalences.

Preselection Heuristics

Selecting a set of variables P to perform look-ahead is an important step of the
algorithm, because a small set P results in a fast procedure and a set P with
variables of high quality with respect to the reasoning of the procedure results in a
good simplification of the formula. Of course, the most simplification is expected if
all variables of vars(F ) are selected. Since the inner look-ahead loop can be executed
up to |P |2 times (in each look-ahead iteration the very last literal is failed), a good
subset should be selected. The preselection can also degrade the performance of
the overall algorithm if only low quality variables are chosen. The following three
preselection heuristics have been proposed in the look-ahead solverMarch [HvM06].

The first heuristic is called clause reduction approximation (CRA) and approxi-
mates the number of clauses that are reduced when a literal is assumed. This value
is used as a score to rank the variables. From the variables of the formula a certain
percentage of the top ranked variables is selected. In the solver March, the top ten
percent are selected. The calculation of the score relies on a helper method freq>2

freq>2(F, x) = |{C | C ∈ Fx and |C| > 2}|,

that returns the number of clauses C which contain the literal x and whose cardi-
nality is greater than 2. These clauses are reduced if the literal x is propagated. The
function CRA calculates for each variable x the impact on the formula by iterating
over all literals that are propagated once x (x, respectively) has been propagated.
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To obtain the final score, the two sums for x and x are multiplied

CRA(F, x) = (


(x∨l)∈F

freq>2(F, l))(


(x∨l)∈F

freq>2(F, l)).

Compared to look-ahead itself, CRA already partially simulates unit propagation of
the literals x and x. Still, the calculated score is only an approximation, because
the function CRA neglects clauses that are satisfied already.

The next preselection heuristic is the recursive weighted heuristic (RWH), which
has been initially designed for 3-SAT formulas [MdWH10] and has been extended for
arbitrary clause sizes in [AF10]. The heuristic can be tuned according to a constant γ
– which is set to 5 in [AF10] for 5-SAT and 7-SAT formulas. The RWH procedure
calculates a score hi(x, F ) that represents the tendency whether the literal x occurs
in a model of the formula F . To increase the accuracy of the heuristic, multiple
recursions can be executed. The value for each literal in the formula is initially
distributed equally, so that h0(x, F ) = 1 is assigned for all literals x ∈ lits(F ). For
each iteration i, a scale factor µi(F ) is added to the equation, which represents the
average of the current iteration i:

µi(F ) =
1

2 vars(F )


x∈vars(F )

(hi(x, F ) + hi(x, F )) .

The value hi+1(x, F ) represents the tendency of x being part of the model by testing
for each clause C with x ∈ C how likely the remaining literals l ∈ (C \ {x}) will be
falsified by the model:

hi+1(x, F ) =

C∈Fx

 γk−|C|

µi(F )|C|−1


l∈(C\{x})

hi(l, F )

 .

For each clause C, the product of its negated literals hi(l, F ) is normalized with the
mean of the previous iteration µi(F ). Since shorter clauses constrain the interpre-
tation of their literals more than longer clauses, this effect is also taken into account
by weighting the product with the constant γk−|C|, that depends on the maximum
clause length k and the size of the current clause C.

Necessary Assignment

The next step of the look-ahead procedure after selecting a set of variables for the
look-ahead procedure is the computation of the immediate consequences J and J ′,
based on assuming the literal x and x, respectively. Any literal l, which appears in
both interpretations J and J ′ is called necessary assignment. Necessary assignments
build a subset of so-called backbones of the formula F [Par97]. Backbones are
required literal assignments to satisfy the formula. All necessary assignments are
implied by the formula F and therefore can be added as unit clauses. The following
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proof shows that the formula F entails the necessary assignments:

(F ∧ x |= J) and (F ∧ x |= J ′)

then ((F ∧ x) ∨ (F ∧ x)) |= (J ∨ J ′)

then (F ∧ (x ∨ x)) |= (J ∨ J ′)

then F |= (J ∨ J ′)

then F |=

(J ∩ J ′) ∧ (J \ (J ∩ J ′))


∨

(J ∩ J ′) ∧ (J ′ \ (J ∩ J ′))


then F |=


(J ∩ J ′) ∧


J \ (J ∩ J ′) ∨


J ′ \ (J ∩ J ′)


then F |= (J ∩ J ′)

Lemma 3.2.3 shows that when using the rule ;unit of Generic CDCL, then all
immediate consequences are entailed by the initial formula. The first statement of
the proof uses this statement from the two propagations of the algorithm (Figure 5.7,
lines 5–6). This statement can be transformed into the next statement, because,
given the two entailment relations, one of the left hand sides always satisfies the
corresponding right hand side. To obtain the third statement, the formula F has to
be factored out on the left hand side of the entailment operation. Next, the clause
(x∨ x) can be dropped, because this disjunction is a tautology. The fifth statement
is an intermediate step, which divides each of the interpretations J and J ′ into their
common part (J ∩ J ′) and the remaining literals. In the next step, the common
part (J ∩ J ′) is factored out, so that the right hand side of the entailment relation
is a conjunction. Finally, the second half of this conjunction is dropped, resulting
in the statement F |= (J ∩ J ′). Although this statement is not equivalent to the
initial fact, the statement is sufficient to justify that adding the unit clauses with the
literals (J ∩ J ′) to the formula F preserves equivalence when the interpretations J
and J ′ are obtained as described in the look-ahead procedure.

Corollary 5.2.3. Adding necessary assignments to a formula preserves equivalence.

Entailed Equivalences

Similarly to necessary assignments, the found pairs of equivalent literals of the look-
ahead procedure are added to the formula. In the following, soundness of this
procedure is given, again starting by the statements how the interpretations J and
J ′ are obtained in the look-ahead procedure.

(F ∧ x |= J) and (F ∧ x |= J ′)

then ((F ∧ x)→ J) and ((F ∧ x)→ J ′)

then F → ((x→ J) ∧ (x→ J ′))

then F → ((x→ J)

l∈J ′

(l→ x))

then F →


l∈(J∩J ′)

((x→ l) ∧ (l→ x))

then F |=


l∈(J∩J ′)

(x↔ l)
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As stated in Lemma 3.2.3, interpretations that are obtained by unit propagation are
entailed by the formula. Next, the entailment relation is replaced with the impli-
cation operation. According to the distributivity of the implication operation, the
formula F can be factored out and moved to the front. To obtain the next line,
the second inner implication is turned around by negating both the premise and the
conclusion. Since J ′ is a conjunction of literals, negating J ′ results in a conjunction
of implications. When restricting the literals l to occur in the intersection of the two
interpretations, i.e. l ∈ (J ∩ J ′), the next implied line is obtained. Similar to the
argument that an entailment relation can be transformed into an implication, the
implication can be transformed into the entailment relation. Furthermore, the for-
mulas (x→ l) ∧ (l→ x) and (x↔ l) are equivalent. With these two statements, the
last statement can be obtained, and since the formula entails the given equivalences,
these equivalences can also be added to the formula F while preserving equivalence.

Corollary 5.2.4. Adding entailed equivalences to a formula preserves equivalence.

Failed Literals

Similarly to backtracking in the DPLL procedure (Section 5.2.3), finding failed lit-
erals is based on assuming a certain literal x. If the corresponding reduct of the
formula F and the interpretation J after unit propagation contains an empty clause,
the complementary literal x is added to the formula. The following proof shows that
the complementary literal x is entailed by the formula.

⊥ ∈ (F ∧ x)|J
then (F ∧ x)|J ≡ ⊥
then (F ∧ x) ≡ ⊥
then F |= x

As stated in the look-ahead procedure, if x is a failed literal, then the empty clause
occurs in the reduct (F ∧ x)|J . This is the first statement. The next statement
is obtained, because with Lemma 3.2.3, the conjunction of literals J is entailed by
the formula (F ∧ x), the two formulas (F ∧ x)|J and (F ∧ x) are equisatisfiable.
Next, the definition of the entailment relation (Definition 2.9) is used to obtain the
next statement: if the conjunction of a formula F and x is unsatisfiable, then the
formula F entails the negation of the formula x. In this simple case, the latter
formula consists of the single literal x.

Corollary 5.2.5. Adding the complement of a failed literal to a formula preserves
equivalence.

Selection Heuristics

After the look-ahead procedure finished its local reasoning, a decision literal has to
be returned. In the literature, several approaches have been proposed as a metric
to select a good decision literal.
A popular heuristic, which is used in look-ahead solvers, is a heuristic that creates

the simplest reduct [Fre95]. The heuristic is rooted in the simplification hypothesis
by Hooker and Vinay [HV95] who claim that a decision heuristic is superior if,
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given a formula F and interpretation J , after selecting the decision literal ẋ the
created reduct F |Jẋ is simpler than with other decision literals, and given all other
components remain the same. Freeman defines a formula F simpler than another
formula G if F has less and shorter clauses [Fre95].
Following this principle, the Difference (short Diff) heuristic has been devel-

oped. The Diff1 heuristic measures the reduction of the free variables of a formula:

Diff1(F, x) = |{vars(F )− vars(F |J) | (F ∧ x :: ϵ;unit
⊡F ∧ x :: J}|.

Another variant Diff2 is to count the number of newly created binary clauses,
which relates to the statement that simpler formulas have shorter clauses:

Diff2(F, x) = |{C | C ∈ F |J andC /∈ F and |C| = 2and (F ∧x :: ϵ;unit
⊡F ∧x :: J}|.

Furthermore, the preselection heuristics CRA or RWH can be used to calculate the
Diff score.
Since for selecting a variable x the values of the Diff heuristic with respect to

the literal x and its complement x have to be considered, a combination MixDiff
has been proposed [HvM09]:

MixDiff(F, x) = 1024 ·Diff(F, x) ·Diff(F, x) +Diff(F, x) +Diff(F, x).

The constant 1024 weights the product of the two Diff values to the sum of them.
Once a variable has been selected, the polarity for the decision literal needs to be

determined. Again, different approaches have been presented in the literature. The
look-ahead solver Satz [LA97] always returns the positive variable. Kcnf [DD04]
chooses the polarity of the variable that occurs more often in the formula. InMarch
the polarity with the lower Diff1 score is used [HvM06], because a lower Diff1
score assumes that there are more free variables that can be still assigned. Heule
and van Maaren assume that this way the heuristic makes fewer mistakes.
On the other hand, using the higher Diff1 score reduces the computation for the

following search steps, since more variables are assigned. Thus, in a later version of
March [Heu08a], the polarity with the lower Diff1 score is chosen if the following
equation does not hold:

c ≤ Diff1(F, x)

Diff1(F, x)
≤ 1

c
.

The above equation is fulfilled if the two Diff scores are comparable [Heu08a],
meaning that their ratio is smaller than a given constant c. Choosing the polarity
with the lower or higher Diff score is called the adaptive polarity heuristic. For
their solver March, Heule and van Maaren chose c = 0.1.
To instantiate the look-ahead procedure in Figure 5.7, the function heuristic(F, x)

can be calculated with the MixDiff heuristic (line 20), and the polarity of the
selected variable (line 22) can be calculated with the adaptive polarity heuristic.

Additional Reasoning with Double-Look-Ahead

As the idea to find necessary assignments (backbones) and equivalent literals by
using one literal for look-ahead is convincing, the next natural step is to consider
more literals. For one literal, two sets of immediate consequences have to be an-
alyzed. In the general case, for n literals 2n sets of immediate consequences have
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to be considered, where each of these sets is implied by a different combination of
truth values for the n literals.

When two literals are chosen, the procedure is called double-look-ahead, since two
look-ahead steps are nested. The procedure works along the following steps, where
F is the initial formula and l as well as l′ are the literals for the two look-ahead
steps. Now, a single look-ahead step can be modified as rewrite rules to obtain more
immediate consequence, resulting in the naive double-look-ahead rule ;NDL, where
the above rules and obtained interpretations are reused:

F ∧ l :: ϵ ;unit
⊡F ∧ l :: J,

F ∧ l ∧ l′ :: ϵ ;unit
⊡F ∧ l ∧ l′ :: J ′, ( where J ⊆ J ′)

F ∧ l ∧ l′ :: ϵ ;unit
⊡F ∧ l ∧ l′ :: J ′′, ( where J ⊆ J ′′)

F ∧ l :: ϵ ;NDL F ∧ l ∧ (J ′ ∩ J ′′) :: ϵ. (5.1)

Since the set J is contained in the intersection (J ′ ∩ J ′′), the number of possible
immediate consequences can only increase by adding more literals. The naive double-
look-ahead rule can be covered with the rule ;inp of Generic CDCL, because the
interpretation of the considered states is empty, and furthermore the added unit
clauses are entailed by the formula. The unit clauses are entailed along the same
arguments for necessary assignments being entailed by the formula.

There are different variants of adding more look-ahead steps. The first approach
is to repeat the above procedure for multiple literals l′ and to add the intersection of
the immediate consequences that corresponds to l′ and l′ to the set of the literal l as
well [HvM07]. Furthermore, whenever a failed literal is found under the assumption
l, then conflict analysis can be performed. Then, generated learned clauses C, which
are entailed by the formula F∧l, i.e. F∧l |= C, but not for the formula F , i.e. F ⊭ C,
can be stored during the double-look-ahead process. These clauses can be created
when a conflict for the formula F under the assumption l is found. Since these
clauses might not be valid for F , they are called locally learned clauses. The locally
learned clauses can be used for finding more implications from the formula F ∧ l.
However, after considering only F again (removing the assumption l) these locally
learned clauses have to be removed again. The final modification of the formula
does not contain any locally learned clause. However, the immediate consequences
that are found for F ∧ l based on these locally learned clauses are still valid.

When looking for necessary assignments of the formula F , another scheme of
double-look-ahead can be applied. Again, let F be the underlying formula and l
and l′ are the literals for performing double-look-ahead. Now, as already described
briefly above, collecting the sets of implied literals for the four combinations of l and
l′ can lead to even more implied literals. This modification can be illustrated with
rewrite rules again:

F ∧ l ∧ l′ :: ϵ;unit
⊡F ∧ l ∧ l′ :: J,

F ∧ l ∧ l′ :: ϵ;unit
⊡F ∧ l ∧ l′ :: J ′,

F ∧ l ∧ l′ :: ϵ;unit
⊡F ∧ l ∧ l′ :: J ′′,

F ∧ l ∧ l′ :: ϵ;unit
⊡F ∧ l ∧ l′ :: J ′′′,

F :: ϵ ;MDL F ∧ (J ∩ J ′ ∩ J ′′ ∩ J ′′′) :: ϵ. (5.2)
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LocalLookAhead (CNF formula F , set of literals S)

Input: A formula F in CNF, a set of literals S

Output: The formula F extended with a set of unit clauses

1 I := lits(F ) // initialize intersection

2 for each M ∈ complementPermutations(S) // all combinations of negated literals

3 (F :: M);unit
⊡(F :: J ′) // execute unit propagation

4 if ⊥ ̸∈ F |J′ then // if there is no conflict

5 I := I ∩ J ′ // update intersection

6 if I = ∅ then break // early abort

7 F := F ∪ I // add the entailed unit clauses

Figure 5.8.: Pseudo code of the LocalLookAhead procedure.

Similarly to the simple double-look-ahead, the intersection of all the implied literals
has to be entailed, since the two literals l and l′ have to be assigned to some truth
value – thus also to one of the four possible combinations. This procedure can be
repeated for an arbitrary number n of literals. Again, 2n sets of implied literals have
to be found, for example by applying unit propagation.

The resulting rule for multiple look-ahead ;MDL adds the intersection of all
implied literals to the formula. Since the interpretation in the states is empty, the
rule ;inp of Generic CDCL can be used to model this rule.

Local Look-Ahead In the SAT solver Riss, the latter procedure is implemented for
n ∈ {1 . . . 5} literals to be applied during search at decision level 0. This technique
is called LLA. Observe that if unit propagation under some assumptions leads to
a conflict, then these assumptions imply all literals of the formula, so that the
corresponding interpretation is not used for the intersection. As a special case,
the unsatisfiability of the formula can be shown if unit propagation fails for all 2n

combinations of assumptions.

Let n be a fixed number of look-ahead literals. When the n-th decision literal ẏn
is added to the current interpretation J , the n decision literals are used to collect 2n

sets of immediate implications by performing unit propagation with the 2n possible
combinations of the literal x1 to xn and their complements. Finally, by building the
intersection of all collected sets, a set of unit clauses that is entailed by the current
formula F can be obtained.

The algorithm in Figure 5.8 presents the pseudo code of this procedure. For the
given set S of n = |S| decision literals, the look-ahead procedure is executed. The
intersection of all immediate implications I is updated iteratively, and hence this
intersection is initialized with the set of all the literals of the formula F (line 1).
Next, for all combinations of the variables in S, where for each variable a polarity
can be chosen (lines 2–6), the actual combination of literals M is created (line 2),
and with this combination unit propagation is performed to collect the immediate
implications J ′ (line 3). If this interpretation J ′ leads to a conflict with respect to
the formula F , then the intersection I is not updated, because a conflict implies all
literals. Otherwise, the intersection I is intersected with J ′ (lines 4–5). The pro-
cedure is interrupted as soon as the intersection I becomes empty (line 6), because
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in this case no additional literals can be added. If the intersection contains literals
after collecting all immediate implications, these literals are added to the formula
(line 7).

As already explained, the first n decision literals of the interpretation J can be
used for this procedure. Hence, the proposed algorithm executes LLA as soon as
the n-th decision literal is added to J . After the look-ahead procedure has been
executed, the search should continue with the empty interpretation J .

Since n decisions will be reached soon again in the search process, and furthermore,
at least the first decision literal will be the same as before, the proposed look-ahead
procedure should not be executed again as soon as the next n-th decision literal
is added. Therefore, the set of used decision literals S is stored as a tabu list.
Only if the variables of this tabu list do not contain any of the current n decision
literals, the look-ahead procedure is executed again and the tabu list is updated.
Furthermore, the presented algorithm is executed only immediately after adding the
n-th decision literal (and not after some number m of decisions greater n is added).
This way, an additional disturbance of the search process that takes place deeper
in the search tree is avoided. In general the number n can be chosen arbitrarily.
Since the number of combinations grows exponentially, the value n = 5 is proposed.
Then, the intersection I can be computed efficiently, because this way a single 64 bit
integer can store the truth value of a variable for all the 32 combinations by using
two bits per variable assignment to represent ⊤, ⊥ or whether the variable is not
assigned.

Local Probing After a clause is learned in the CDCL algorithm, this clause is
added to the formula. Most learned clauses are removed again after a short time
(see Section 5.4.6). By using an approximation of unit propagation and probing,
additional knowledge can be inferred from the formula by testing each learned clause
further.

Given a learned clause C = (x1 ∨ . . . ∨ xk), then unit propagation on each literal
can be performed with the formula F to collect a set of intermediate implications:

(F :: xi);unit
⊡(F :: Ji), 1 ≤ i ≤ k.

As already shown by Lynce et al. in [LMS03], the intersection of these sets Ji is
entailed by the formula F , i.e. F |=


1≤i≤k Ji, so that the literals of the intersection

can be added as unit clauses to the formula. Since, this algorithm is considered
expensive [LMS03] an approximation is proposed.

Similarly to the ideas of Heule et al. in [HJB11], the binary implication graph
(BIG) can be used to cheaply approximate unit propagation (compare Section 5.5.1).
The approximation collects only the literals that are implied by the current literal xi
in the BIG of the formula F . A further approximation is to not compute the tran-
sitive closure of the implied literals in the BIG but only considering the adjacency
list of the literal xi. This adjacency list stores exactly those literals that appear in
a binary clause with the literal xi. This way, the overhead of this technique is re-
duced. When building the intersection of the sets of the immediate implications Ji,
this approximation yields another benefit. By sorting the adjacency lists in the BIG,
the intersection of all sets


1≤i≤k Ji can be computed in a single merging routine,

which is linear in the size of the shortest used adjacency list.
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For special clause sizes extra inferences can be used. For unit clauses no extra
reasoning is necessary, because all immediate implications will be added by unit
propagation. For learned binary clauses C = (a∨b), literals x have to be found, which
are implied by both a and b, i.e. a→ x and b→ x. This check can be performed with
the approximation presented by Heule et al. in [HJB11]. They traverse the BIG in a
depth-first manner and label each literal with two time stamps start and end. The
time stamp start is assigned when the literal is seen the first time in the search. The
time stamp end is set when the depth-first search finished the subtree of the literal.
The value of the stamp is increased whenever a new literal is visited or when visiting
a literal finished. Let start be the function that returns that start time stamp for
a literal, and let end be the function that returns the end time stamp for a literal.
Then, a literal x is implied by another literal a in the BIG if start(a) < start(x)
and end(x) < end(a). Unfortunately, this check is incomplete, as also argued by
Heule et al. Still, such a check enables adding more literals to the set of commonly
implied literals for binary clauses, because literals can be added even when they do
not occur in the adjacency list of both literals a and b.
In general, for binary learned clauses all literals of the formula can be tested with

the above approximation. However, since such an exhaustive check is expensive, the
literals for the check are limited to the literals x that occur in the adjacency lists of
the two literals a and b. A literal x can be added to the set J ′ of commonly implied
literals if x occurs in both adjacency lists, or if x occurs in the adjacency list of one
literal and is implied by the other literal – checked with the above approximation.

Simulating the Look-Ahead Procedure with Generic CDCL When the look-ahead
procedure is combined with the DPLL procedure, then soundness of the combination
of these two procedures depends on how the look-ahead procedure is actually called.
First, assume that to find a decision literal ẋ, the DPLL procedure calls the look-
ahead procedure with the current formula F . Then, since all formula modifications
of the look-ahead procedure preserve equivalence (compare Corollary 5.2.3, 5.2.4
and 5.2.5), the modification of the formula within the look-ahead procedure can be
modeled with the rule ;inp. The same argument holds for the modifications with
double-look-ahead, especially since the locally learned clauses are not added to the
final formula. However, first the current interpretation J needs to be cleared with
;back and after applying the changes to the formula F the interpretation needs to
be restored again. For the reconstruction all the rules of Generic CDCL, which
created the interpretation J , might be used. For the two rules ;unit and ;infer all
preconditions are still satisfied, because the look-ahead procedure only adds clauses
to the formula and preserves equivalence.

Example 27: Adding Clauses Entailed by the Reduct Consider the
satisfiable formula

F = (a ∨ b) ∧ (b ∨ c) ∧ (b ∨ c).

A model for this formula is J = (ab). The reduct with respect to the interpre-
tation (a) is the formula

F |(a) = (b) ∧ (b ∨ c) ∧ (b ∨ c).
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As discussed in Lemma 3.2.3, the literals of unit clauses are entailed by the
formula. Consequently, the clause (b) is entailed by the formula F |(a). When (b)
is added as a clause to F |(a), then this addition preserves equivalence. However,
when (b) is added to the formula F , then the resulting formula F ∧ (b) is unsat-
isfiable. Therefore, adding clauses that are entailed by a reduct of a formula to
the formula itself is in general unsound and does not preserve equisatisfiability.

An alternative approach is to call the look-ahead procedure with the reduct of
the formula F with respect to the current interpretation J . Then, the formula
modifications would be applied to the reduct F |J . Here, there are two alternatives:
either, the modifications are added to the formula F itself, or the additional clauses
are only added to the reduct F |J . As Example 27 illustrates the former approach is
unsound.

The latter approach is more reasonable, because the current reduct F |J repre-
sents the formula of the current search state, and thus the calculated heuristics for
the candidate variables, as well as the detection of necessary assignments, entailed
equivalences and failed literals is more accurate. However, when clauses like the
equivalences are added to the formula, they need to be deleted as soon as the algo-
rithm backtracks over the last decision literal of the current interpretation J . The
method of keeping clauses only for a certain sub-search-space is called local learn-
ing [HvM07]. For the binary clauses of the equivalences (Figure 5.7, lines 11–12)
there exists no simple modification of the look-ahead procedure to simplify the local
learning. These clauses have to be added to be able to make use of the information
afterwards and they also have to be deleted during backtracking again. The unit
clauses, which are added to the formula as necessary assignments and failed literals
(lines 7, 15, 18), could also be added as literals to the current interpretation instead
of being added as clauses to the formula. This way, the effects of these clauses are
removed during backtracking automatically, and the procedure remains sound.

5.3. SAT Solvers as Proof Systems

Given an algorithm for an NP problem, then by definition the nondeterministic
algorithm generates a witness and a polynomial algorithm decides the correctness of
this output. Thus, the output is already given. This statement can be transferred
to SAT solving: if a formula F is satisfiable, then an NP problem is solved and the
model J is returned, so that the reduct F |J can be computed and can be checked
for being empty.

For unsatisfiable formulas this procedure is more difficult, since no model is pro-
duced. Instead, a proof P needs to be generated and emitted during solving the
formula. To illustrate the strength of the CDCL algorithm, these proof systems are
introduced more formally next.

For propositional logic, such a proof system is called a propositional proof sys-
tem [BP98]. Such a system is an algorithm V that accepts the input of the form
(F, P ), where F is a formula in CNF and P is the unsatisfiability proof. More for-
mally, the formula F is a string of the language of propositional formulas in CNF,
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and P is another string. The instantiation for propositional logic asks whether the
given formula F is a tautology, which means the formula always holds, i.e. |= F . A
common way of testing this fact is to negate the formula and to show the unsatisfi-
ability of the negated formula instead: F ≡ ⊥ [Bus98].

Example 28: Resolution Refutation
Assume there are n+1 pigeons that should be placed in n holes. The Boolean

variables xij represent that pigeon i sits in hole j, with 1 ≤ i ≤ n + 1 and
1 ≤ j ≤ n. For n = 2 holes the formula is the following:

▶ in each hole there is a pigeon (at-least-one)

(x11 ∨ x12) ∧ (x21 ∨ x22) ∧ (x31 ∨ x32)

▶ in each hole, there cannot be two pigeons (at-most-hole)

(x11∨x21)∧ (x11∨x31)∧ (x21∨x31)∧ (x12∨x22)∧ (x12∨x32)∧ (x22∨x32)

Given this propositional logic formula, then the empty clause can be obtained
with the following resolution refutation:

1. (x32 ∨ x31) = (x22 ∨ x32)⊗ (x31 ∨ x22),

2. (x32 ∨ x12) = (x32 ∨ x31)⊗ (x31 ∨ x12),

3. (x12 ∨ x21) = (x32 ∨ x12)⊗ (x21 ∨ x32),

4. (x21) = (x12 ∨ x21)⊗ (x21 ∨ x12),

5. (x22) = (x21)⊗ (x21 ∨ x22)

6. (x12) = (x22)⊗ (x12 ∨ x22)

7. (x11) = (x12)⊗ (x11 ∨ x12)

8. (x31) = (x11)⊗ (x11 ∨ x31)

9. (x32) = (x31)⊗ (x31 ∨ x32)

10. (x22) = (x32)⊗ (x22 ∨ x32)

11. ⊥ = (x22)⊗ (x22).

In total, 11 resolution steps are required. After the first unit clause (x21) has
been obtained by resolving the binary clause of the formula, this unit clause is
applied to the clauses of the formula as well and finally leads to the inconsistency
(x22) and (x22). When resolving these two clauses, the empty clause is obtained,
and hence the formula of the pigeon hole is shown to be unsatisfiable. In general,
proving unsatisfiability of a pigeon hole formula requires an exponential number
of resolution steps.
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Propositional proof systems have been studied in terms of proof complexity to
resolve the NP versus coNP problem, for example in [CR74]. The two complexity
classes NP and coNP are equivalent if for each unsatisfiable formula F there exists
a polynomial sized proof P with respect to the size of the formula, such that a proof
system V accepts the input (F, P ) [CR74].
An important property of proofs is their size, which reflects the power of the given

proof system. A propositional proof system V is said to be polynomial bounded if
for any formula F in CNF there exists a proof PF for the formula F , whose size is
at most polynomial in the size of the formula |F | [Bus98]. Based on the generated
proof P of a proof system V , further measurements have been discussed [Nor08].
Based on these measurements, theoretical bounds of proof systems can be studied.
Lower bounds can be seen as a minimum resource requirement, even for an optimal
procedure that produces a proof. On the other hand, upper bounds show that there
might exist algorithms that produce a good proof. With these measurements, the
strength of two instantiations of a proof system can also be compared.

Definition 5.10 (p-simulation). A propositional proof system V1 polynomially sim-
ulates, or p-simulates, another propositional proof system V2 if there exists a poly-
nomial-time computable function f , such that for all unsatisfiable formulas F for
which V2 accepts the input (F, P ), V1 accepts (F, f(P )).

Given a propositional formula F , a proof system for |= F is the resolution proof
system. The proof P that is generated with the resolution proof system is a resolu-
tion derivation of the empty clause with respect to the formula ¬F . Such a proof P
is also called resolution refutation or resolution proof in the literature [Urq87]. An
example of such a proof is presented in Example 28.
Given a formula F , the size of the resolution refutation refers to the lower bound7

– more precisely, the lower bound for the resolution proof system is the smallest
possible resolution refutation that can be produced given any propositional formula.
Given a formula F and the corresponding resolution refutation P , the resolution

steps can be visualized as a graph GP = (N,E). The set of nodes N consists of
the clauses occurring in F and P . An edge (C,C ′) is added if there is a resolution
C ′ = (C ⊗ D) inside the resolution derivation in P . Based on such a graph, a
resolution derivation is called tree-like if all clauses in the derivation are used at
most once as a premise in an application of the resolution rule; or similarly if the
graph GP is a tree [Nor08]. Since a clause C can be derived in multiple ways, these
clauses in the derivation can be considered as time stamped copies, so that the
derivation, as well as the graph, can make use of the specific instances of the clause.
Furthermore, the formalism allows to duplicate different time stamped copies of the
input formula F , so that the graph can be made tree-like [Nor08].

5.3.1. Refutation Methods for Propositional Formulas

Three methods have been discussed on how a refutation of a propositional formula
can be done: the truth table (Section 5.2.1), tree-like resolution and general reso-
lution. As shown in [CCT87], the given order of the techniques is also representing
their strength with respect to the length of the generated proof. Truth tables can

7There are more measures that could be used for specifying a lower bound, however, these mea-
surements are not needed for the remainder of this thesis.
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be p-simulated by tree-like resolution, and tree-like resolution can be p-simulated
by general resolution. The opposite direction does not hold.

Extended Resolution as Proof System

In this thesis, two more proof systems are interesting, namely extended resolu-
tion [Tse83] and cutting planes [Chv73]. In extended resolution, the refutation
does not only consist of clauses that have been derived by resolution, but further-
more, extension steps are allowed. An extension step introduces a fresh variable x,
which neither occurs in the formula nor in previous extension steps. With such a
variable x, the extension step adds the clauses (x ∨ l ∨ l′), (x ∨ l) and (x ∨ l′) to the
refutation, where l and l′ are literals that occur in the formula or refutation already.
The three above clauses represent the equation x ↔ (l ∨ l′). Equipped with this
extension rule, a proof system is obtained, for which – to the best of our knowledge
– no lower bounds have been shown yet. Thus, extended resolution needs to be re-
garded as one of the most powerful proof systems for propositional logic. Similarly
to the resolution proof of the pigeon hole problem in Example 28 with resolution,
the same formula is refuted with extended resolution in Example 29

Example 29: Extended Resolution on the Pigeon Hole Problem
Consider the pigeon hole formula of Example 28 with the Boolean variables xij
again. Then, for n = 2 holes the formula is the following:

▶ (x11 ∨ x12) ∧ (x21 ∨ x22) ∧ (x31 ∨ x32)

▶ (x11∨x21)∧ (x11∨x31)∧ (x21∨x31)∧ (x12∨x22)∧ (x12∨x32)∧ (x22∨x32)

With the argumentation of Cook in [Coo76], fresh variables yij with
yij ↔ (xij ∨ (xin−1 ∧ xnj)) are introduced for 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1.
In CNF, the following clauses are added for each fresh variable yij :

i j

1 1 (y11 ∨ x11) ∧ (y11 ∨ x11 ∨ x21) ∧ (y11 ∨ x11) ∧ (y11 ∨ x11 ∨ x21)
2 1 (y21 ∨ x21) ∧ (y21 ∨ x21) ∧ (y21 ∨ x21) ∧ (y21 ∨ x21)

With all these new clauses, the above set of clauses can be reduced in O(n3)
resolution steps to the formula [Coo76]:

▶ (y11 ∨ y21)

▶ (y11) ∧ (y21)

For the example n = 2, the resolution steps are the following:

1. (y11 ∨ x21) = (y11 ∨ x11)⊗ (x11 ∨ x21)

2. (y11 ∨ y21) = (y11 ∨ x21)⊗ (y21 ∨ x21)

3. (y11 ∨ x12) = (y11 ∨ x11)⊗ (x11 ∨ x12)

4. (y11 ∨ x22) = (y11 ∨ x12)⊗ (x12 ∨ x22)
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5. (y11 ∨ x32) = (x11 ∨ x12)⊗ (x12 ∨ x32)

6. (y11 ∨ x21) = (y11 ∨ x22)⊗ (x21 ∨ x22)

7. (y11 ∨ x31) = (y11 ∨ x21)⊗ (x21 ∨ x31)

8. (y11 ∨ x32) = (y11 ∨ x31)⊗ (x31 ∨ x32)

9. (y11) = (y11 ∨ x32)⊗ (y11 ∨ x32)

10. (y21 ∨ x22) = (y21 ∨ x21)⊗ (x21 ∨ x22)

11. (y21 ∨ x12) = (y21 ∨ x22)⊗ (x12 ∨ x22)

12. (y21 ∨ x32) = (y21 ∨ x22)⊗ (x22 ∨ x32)

13. (y21 ∨ x11) = (y21 ∨ x12)⊗ (x11 ∨ x12)

14. (y21 ∨ x31) = (y21 ∨ x11)⊗ (x11 ∨ x31)

15. (y21 ∨ x32) = (y21 ∨ x31)⊗ (x31 ∨ x32)

16. (y21) = (y21 ∨ x32)⊗ (y21 ∨ x32)

After the required clauses have been obtained, the final resolution steps to show
the unsatisfiability of the formula can be performed.

17. (y21) = (y11 ∨ y21)⊗ (y11) and

18. ⊥ = (y21)⊗ (y21),

Observe that for an arbitrary number n the introduction of fresh variables can
be applied recursively, bounded by the number of holes n. Since each step of
these iterations is polynomially bounded, the overall proof of the pigeon hole
problem with extended resolution requires a polynomial number of steps.

The Proof System Cutting Planes

A proof system that is weaker than extended resolution [Tse68] but also stronger
than general resolution [CCT87] is the cutting planes proof system [Chv73]. This
proof system is based on inequalities on pseudo Boolean constraints:


i aixi ≤ c,

where the variables ai and c are integers and the literals xi are Boolean. Further-
more, for each pair of complementary literals x and x the equation x+ x = 1 holds.
Given a set of these inequalities, the cutting planes proof system allows the following
two rules:

▶ From two integers n and m and two constraints


i aixi ≤ c and


j bjyj ≤ d
a new constraint can be produced by a linear combination:

i naixi +


imbjyj ≤ nc+md

▶ A new constraint can be produced from


i aixi ≤ c and a positive integer d
and is of the following form:


i⌈

ai
d ⌉xi ≤ ⌈

c
d⌉.
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Additionally, constraints are allowed to be normalized according to the common rules
to simplify mathematical equations and with respect to the statement x+x = 1 for
literals x. Given these rules, the set of input constraints is unsatisfiable if the in-
equation 1 ≤ 0 can be derived. This proof system can be applied to formulas in CNF
directly, because each clause C = {l1, . . . , ln} can be seen as the pseudo Boolean con-
straint

n
i=1 li ≥ 1 (compare Section 4.3.2) or the constraint

n
i=1 li ≤ n− 1. How-

ever, constraints like at-most-one, general cardinality constraints or pseudo Boolean
constraints can be represented directly and therefore the cutting planes proof sys-
tem can reason with them directly instead of using all the clauses that are required
in the CNF representation of such a constraint (compare Section 4.3.2). Again, a
formula that represents the pigeon hole problem is refuted with the cutting planes
proof system in Example 30.

Example 30: Cardinality Reasoning on CNF
To illustrate the power of the cutting planes method, consider the pigeon hole

problem with Boolean variables xij , where i identifies the pigeon and j identifies
the hole. Let i range in 1 ≤ i ≤ n+ 1 and let j range in 1 ≤ j ≤ n. Hence, the
variable xij is satisfied if the i-th pigeon sits in the j-th hole. For n = 2, the
following formula in CNF is stated:

▶ In each hole there is a pigeon (at-least-one):n+1
i=1


1≤j≤n xij .

▶ In each hole there cannot be two pigeons (at-most-one):n
j=1


1≤i<i′≤n+1(xij ∨ xi′j).

The clauses in the second part of the formula can be formulated as the following
cardinality constraints:

1 ≤ x11 + x12, 1 ≤ x21 + x22, 1 ≤ x31 + x32.

Furthermore, the clauses of the first part of the formula are formulated as car-
dinality constraints:

x11 + x21 + x31 ≤ 1, x12 + x22 + x32 ≤ 1.

Then, given these constraints, the following steps can be executed to prove the
unsatisfiability of the given problem:

1 + x11 + x21 + x31 ≤ 1 + x11 + x12 = (1 ≤ x11 + x12) + (x11 + x21 + x31 ≤ 1),
x21 + x31 ≤ x12 (simplified)

1 + x21 + x31 ≤ x21 + x12 + x22 = (x21 + x31 ≤ x12) + (1 ≤ x21 + x22),
1 + x31 ≤ x12 + x22 (simplified)

2 + x31 ≤ x31 + x12 + x22 + x32 = (1 + x31 ≤ x12 + x22) + (1 ≤ x31 + x32),
2 ≤ x12 + x22 + x32 (simplified)

2 + x12 + x22 + x32 = (2 ≤ x12 + x22 + x32) .
≤ 1 + x12 + x22 + x32 +(x12 + x22 + x32 ≤ 1)

1 ≤ 0 (simplified)
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In each of the above steps, the constraints on the right hand side are obtained
by adding the two constraints on the left hand side. Whenever a literal appears
both on the right and the left side of the constraint, then this literal can be
removed on both sides without changing the constraint. This simplification, as
well as reducing the constants on the two sides are applied after each addition.
After four additions and simplifications, the constraint 1 ≤ 0 is obtained, which
is a contradiction, and hence the given problem is known to be unsatisfiable. As
a reminder, the resolution proof of this problem takes more than 10 steps.

Comparing Proof Systems in SAT Solving Approaches

Given the five presented proof systems, their strength with respect to the length of
the generated proof can be stated. The longer the produced proof, the more run
time is spent by the corresponding procedure that creates the proof. The DPLL
procedure produces a tree-like resolution proof, whereas the learned clauses of the
CDCL procedure can already form a proof with the same strength as general res-
olution. A series of publications proved this fact by first requiring a modification
of the input formula [HBPVG08], and afterwards, by allowing a restart after every
conflict,8 CDCL was shown to be as strong as general resolution [PD09,PD10].

So far, the cutting planes procedure is not integrated into resolution based search.
However, the Fourier-Motzkin algorithm [Fou27,Mot36], which is described in more
detail in Section 5.5.2, has been integrated into the simplification phase of Lin-
geling [Bie13] as well as in the CNF simplifier Coprocessor. Generalized reso-
lution [Hoo88], which is a subprocedure of the cutting planes reasoning, is used in
Sat4J [BP10], Pueblo [SS06].

Finally, there have been attempts to include the extension rule of extended res-
olution into the CDCL search, yet without the expected exponential runtime im-
provement [Hua10,AKS10], but at least with not reducing the performance of the
solver [Man14b]. More details about these attempts are presented in Section 5.4.3.

To conclude this section, Figure 5.1 shows the presented proof systems ordered
by their strength with respect to the length of generated proofs. Additionally, ap-
proaches that try to exploit the mechanism for propositional formulas are specified.

5.4. CDCL Procedure Extensions and Modern Heuristics

The framework Generic CDCL is very abstract and therefore this system leaves
freedom to the actual algorithm. In this section, modern extension of the CDCL
procedure and used heuristics are discussed, and furthermore the way how to model
them is given. Most of the discussed techniques are implemented in the SAT solver
Riss, which is furthermore used in the parallel SAT solver Pcasso. Pcasso is
presented in more detail in Chapter 8. An experimental evaluation is given at the
end of this chapter after all techniques and their properties have been discussed.

8Restarts are explained in Section 5.4.7.

140



5.4.1. Basic Inference

Table 5.1.: Comparison of the different proof systems. For each system the solver
type is given and modern example solvers are listed.

Technique Solver type Example systems

Tree-like resolution DPLL solvers –
General Resolution CDCL solvers MiniSAT
Cutting Planes Cutting Planes and Sat4J

Pseudo-Boolean solvers Pueblo
CNF simplifier Lingeling, Coprocessor

Extended Resolution – Coprocessor, GlucoseER

5.4.1. Basic Inference

The implementation of the deduction rule ;unit is rather straightforward – if there
is a unit clause in the current reduct then the literal of this clause has to be satisfied
to satisfy this clause. Given the formula F and the current interpretation J , any
unit clause C|J = (x), C ∈ F , can be used as reason clause to add the literal x to
the interpretation J . However, there is some freedom in this rule. Assume, there
occur two unit clauses in the reduct. The framework does not specify an order for
this case, so that the algorithm is free to choose among the two clauses. As already
briefly pointed out in Section 5.1.1, before a conflict clause occurs, the reduct of
this clause is usually a unit clause before, and the algorithm decides to falsify the
conflict literal as well by performing unit propagation to satisfy its complement x.9

Choosing a Reason Clause From a theoretical point of view, the order of propa-
gating clauses is not important, because applying the rule ;unit until termination
always results in the same reduct. Thus, a conflict would be found either way. From
a practical point of view, processing a unit clause C ′ before another unit clause C
might lead to a conflict immediately, whereas when C is processed first more unit
clauses might be found that are also processed before C ′. This way, computational
overhead can be introduced that could be avoided if the right unit clause is chosen
first. To reduce the time of unit propagation, SAT solvers usually process the found
unit clauses in the order they appeared [MMZ+01,Rya04,ES04,Bie08b].
Another choice in the implementation is the selection of the reason clause. Van

Gelder analyzes the selection of the reason clause with a focus on the size and
quality of the learned clauses and the complexity of finding the best learned clause
in [VG11b]. In the SAT solver Riss, the selection of the reason clause has been
implemented as an option, keeping the following criteria in mind: given the current
interpretation J , a clause C can only be used as a reason clause for a literal x if
the interpretation J can be split into two parts J = J ′J ′′ such that C|J ′ = (x). In
other words, all literals x′ ∈ C, x′ ̸= x have to be assigned before the literal x was
assigned (compare Definition 5.3). Once a candidate clause C is found, this clause
is compared to the currently stored reason clause for the according literal, and if C
is considered to be the better reason clause, then the reason clause for the literal
x is updated. The most simple approach is to call a clause C better than another

9During conflict analysis these two clauses are resolved in the first step, so that the order is not
very important.
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clause D if C is smaller than D, i.e. |C| < |D|. Similarly, other clause criteria like
the literal block distance (LBD) (see Section 5.4.3) can be used. Empirically none
of these schemes improved on the strategy to pick the first reason clause.

Beyond Unit Propagation Unit propagation is only applicable if a unit clause occurs
in the reduct F |J with respect to the current interpretation J . However, there exist
reducts with no unit clauses. Then, unit propagation cannot deduce the truth value
for further literals.
Kaufmann et al. proposed to use a probing based method during search [KK11a],

which has already been presented and used for formula simplification [LMS03]. With
this method, the truth value for further literals can be deduced during search, even
if there are no unit clauses. Let C be a binary clause C = (l∨ l′) of two literals that
both imply the same literal l′′ directly, for example (l → l′′) and (l′ → l′′). Then,
whenever the binary clause C has to be satisfied, the literal l′′ has to be satisfied as
well, because either l or l′ are satisfied, and by the two implications the literal l′′ is
satisfied as well. Hence, the literal l′′ is entailed by the reduct F |J .
This rule can be generalized as follows: for each literal l of a formula F , the set

of implied literal Pl can be computed by considering the binary clauses in which
the complement l occurs. Whenever l is part of a binary clause (l ∨ l′′), then the
literal l′′ is added to the set Pl, because l′′ has to be satisfied when l is satis-
fied. After this initialization, the set Pl can be extended by all sets of its literals:
Pl := Pl ∪ {l′′′ | l′′′ ∈ Pl′′ , l

′′ ∈ Pl, l
′′ ̸= l}. For each literal, this procedure can be re-

peated until a fixed point is reached, so that all sets Pl for all literals l of the
formula F do not change any more. Each repetition of the above step corresponds
to applying unit propagation to the reduct of the already collected literals, based on
the implications (l→ l′′) and (l′′ → l′′′).
Equipped with these sets of implied literals of the formula F , unit propagation can

be carried out as usual, resulting in some interpretation J . If there is no conflict
after unit propagation, the clauses of the reduct F |J can be analyzed for implying
more literals. Basically, for each clause C ∈ F |J , the following set of implied literals
can be computed: P =


l∈C Pl. To satisfy the clause C, at least one literal l ∈ C

has to be satisfied. Thus, the common set of literals P that is implied by all literals
of the clause C has to be satisfied. Hence, these literals can be added to the current
interpretation, keeping the corresponding reduct equivalent [KK11a]:

F :: J ;BUP F :: J, (P \ J) iff ∃C ∈ F |J and P =

l∈C

Pl.

Naturally, no duplicate literals should be added to the interpretation. Since, ac-
cording to the discussion above, adding the literals of the set P does not change the
equivalence of the reduct, i.e. F |J ≡ F |J,(P\J), the above behavior of the proposed
method can also be modeled within the Generic CDCL framework. This model-
ing can be done with the rule ;infer, because the literals in P are entailed by the
formula F .
In look-ahead solvers, hyper binary resolution (see Section 5.4.4) is performed after a

decision. Then, the same implied literals are also revealed. Finally, the parallel SAT
solver Treengeling [Bie13] also performs hyper binary resolution after partitioning
the search space of the formula on a literal. Hence, Treengeling can also reveal
these binary clauses.
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5.4.2. More Inference

Similarly to the discussion in Section 5.2.5, more deduction than unit propagation
can improve the performance of the overall algorithm. Another well-known rule is
the pure literal rule, which has been implemented into DPLL style solvers. Due to
the complexity of finding pure literals, this rule is not implemented in most modern
SAT solvers [MMZ+01,Rya04,ES04,Bie08b,SNC09,AS13,Bie13]. Still, in the solver
MINIPURE [Wan13] the pure literal rule is also executed. Modeling the pure literal
rule with Generic CDCL has already been discussed in Section 5.2.2.

5.4.3. Generating a Learned Clause

The rule ;learn allows to add any clause C to a formula F with the two conditions
that the literals of the clause also appear in the formula, i.e. C ⊆ lits(F ), and
that the clause C is entailed by the formula F , i.e. F |= C. In general, proving
unsatisfiability could be done by simply generating the empty clause as the first
step of the framework and afterwards applying the rule ;unsat to terminate with
UNSAT. From a complexity point of view, the empty clause cannot be deduced from
the formula F efficiently in general.10 Therefore, CDCL solvers use an algorithm
called conflict analysis. Learned clauses are generated only in case a conflict occurs
in the current reduct. All methods presented in this section assume that the literals
of an interpretation J have either been added by the rule ;decide and are thus
decision literals or the literals have been added due to unit propagation with the
rule ;unit, and therefore have a reason clause. Furthermore, as also implemented
by all modern SAT solvers, assume that the rule ;unit is always executed until
termination or a conflict is found, as also specified in the preferences for Generic
CDCL (see Section 5.1.1), as well as in the pseudo code of the CDCL algorithm
in Figure 5.6. These assumptions hold for implemented SAT solvers, because this
way a reason clause is present for each non-decision literal in the interpretation. The
rule ;infer is usually only applied when no decision literals are present in the current
interpretation. When a conflict is found for such a scenario, then no learned clause
needs to be generated, because in this case the formula is known to be unsatisfiable.

Given the formula F and the current interpretation J and the fact that a conflict
clause C ∈ F occurs, i.e. C|J = ⊥, then most CDCL solvers generate a learned
clause D. This clause D is initialized with the conflict clause D = C and updated
by resolving the clause D with the reason clauses of its literal x ∈ D. Since the
actual strength of the CDCL procedure comes from adding the learned clauses to
the formula (compare Section 5.3), much effort has been put into creating this
clause [BHvMW09,SB09,AS09b,ABH+08,JLS13].

Modeling Clause Learning with Generic CDCL Most of the techniques that are
presented below can be modeled directly with the rule ;learn of Generic CDCL,
because the learned clause is created by resolution only. As already discussed in
Section 3.2.5, a resolvent is always entailed by the set of clauses that has been used
for resolution. Therefore, any clause that is created by resolution can be added
to the formula with the rule ;learn. If this statement is not sufficient to model

10More precisely, an empty clause cannot be deduced from a formula F in polynomial time, un-
less P = NP.
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a discussed technique, for each technique an additional paragraph illustrates how
modeling with Generic CDCL can be done.

Implication Graphs Before the process of generating a learned clause is discussed,
a visualization schema is presented that is used to illustrate the methods that are
explained afterwards. Based on the clauses of a formula F , the interpretation J of the
current solving state can be visualized by so-called implication graphs [BHvMW09].
Therefore, each literal x of the interpretation J is a node in the graph. If the literal
is a decision literal, i.e. ẋ, then the node has no incoming edge,11. For all remaining
literals x in the interpretation J , there exists a reason clause C = reason(F, J, x).
As agreed earlier, the general rule ;infer is not used in this section, but instead the
restricted rule ;unit is used. The assignment of the literals in the reason clause
are responsible for satisfying the literal x so that this set of literals is called the
explanation of the literal x [JLS13] and is defined as follows:

Definition 5.11 (Explanation). The explanation for a literal x and its reason clause
C = reason(F, J, x) is the set of literals {x′ | x′ ∈ (C \ {x})}.

For convenience, let explanation be the function that maps from a formula F ,
an interpretation J and a literal x to the explanations of the literal x. Given this
function, the implication graph can be defined as follows:

Definition 5.12 (Implication Graph). Given a state F :: J , then the implication
graph is a graph G = (N,E) of F :: J , where N is the set of vertexes and E is the
set of edges, such that

▶ exactly one node per literal of J occurs (both decision and inferred literals),

▶ and there are edges to literals y from each literal x of an explanation of the
literal y, i.e. E = {(x, y) | x ∈ J and y ∈ J and x ∈ explanation(F, J, y)}.

Furthermore, if a conflict clause C with the conflict literal x occurs in the cur-
rent state, then there is another node that is labeled with x, i.e. N = N ∪ {x},
and there are edges from the explanations of the conflict clause C to the literal x:
E = E ∪ {(x′, x) | x ∈ J and x′ ∈ explanation(F, J, x)}.

For a given formula F there exist multiple implication graphs, because a literal x
of an interpretation J can have multiple reason clauses. For simplicity, implication
graphs that are presented in this thesis consider only a single reason clause per literal
x, and therefore a fixed set of explanations for this literal.
The literals in the nodes of the implication graph can be labeled with their decision

level or with their position in the interpretation J . Figure 5.9 shows an example of
such a labeled implication graph.

Creating an Asserting Clause Different approaches to create a learned clause
have been discussed in the literature and have been implemented in modern SAT
solvers [MSS96,MMZ+01,PD08]. A major goal is to be able to perform more unit
propagation once the learned clause is added to the formula. This property is called
1-empowerment [PD08].

11In general, there exist learning schemes that also allow incoming arcs for decision liter-
als [ABH+08] but for all remaining learning schemes these arcs are not used and therefore
these arcs are presented for this scheme separately in Section 5.4.3.
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Figure 5.9.: For the interpretation J = (ȧbċdefgijklm), a possible implication graph
is visualized. The nodes with the decision literals are filled black. The
nodes of the conflicting literals m and m are filled light grey. The
nodes that correspond to UIP literals (see Definition 5.19) are filled
dark grey. The node that is labeled with the literal c is also an UIP.
Finally, each literal is labeled with its decision level. Except for the
nodes of decision literals, the reason clause for a literal in the graph can
be constructed with the incoming arcs of its node: the reason clause
contains all complements of the node on the incoming arcs; and the
literal of the node also occurs in the reason clause.

Definition 5.13 (1-Empowerment). Let C = (x ∨ C ′) be a clause where x is a
literal and C ′ is a disjunction of literals. The clause is 1-empowering with respect
to a formula F via x if and only if

1. F entails the clause C: F |= C, and

2. x cannot be deduced with ;unit from the formula F ∧ C ′:
x /∈ J , where (F ∧ C ′ :: ϵ);unit

⊡(F ∧ C ′ :: J),.

Given a state F :: J , a straightforward way to generate an empowering clause C
that has (1) exactly one literal x of the highest decision levels present in C, i.e.
decision_level(J, x) > max{decision_level(J, x′) | x′ ∈ C \ {x}}, and (2) all
literals x ∈ C are falsified by the current interpretation J , i.e. J(x) = ⊥, is to create
an asserting clause.

Definition 5.14 (Asserting Clause). Given an interpretation J and let C be a clause
of the form C = (x ∨ C ′) where x is a literal, and C ′ is a disjunction of literals.
Then the clause C is called an asserting clause if and only if the clause C is falsified
by J , i.e. C|J = ⊥, and the decision level of the literal x is the highest decision level
in the clause C: ∀x′∈C′decision_level(J, x) > decision_level(J, x′).

Definition 5.15 (Asserting Literal). Given an interpretation J and an asserting
clause C, then the literal x ∈ C with the highest decision level is called the asserting
literal.

Definition 5.16 (Asserting Level). Given an interpretation J and an asserting
clause C, then the asserting level is the second highest decision level of the literals,
i.e. max({0} ∪ {decision_level(J, x′) | x′ ∈ (C \ {x})}), where x is the asserting
literal of C.

Given an asserting clause C with the asserting literal x, then the literal x is already
implied at the asserting level of the clause, and therefore after backjumping to
this level another implied literal x can be added to the interpretation J by unit
propagation.
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Properties of Asserting Clauses Usually, clauses are ranked according to their
size. A quality measurement that has been introduced to rank learned clauses is
the so-called literal block distance LBD [AS09b]. This measurement counts the
number of different decision levels among the literals of a clause, given the current
interpretation.

Definition 5.17 (Literal Block Distance). Given an interpretation J and a clause
C where all literals of C are assigned, i.e. |vars(J) ∩ vars(C)| = |vars(C)|, the lit-
eral block distance counts the number of different decision levels of the clause C:
lbd(C, J) = |{decision_level(J, x) | x ∈ C}|.

An intuition behind the LBD of a clause C is the likelihood that C is used to perform
more unit propagation when being added to a formula F . An asserting clause C with
LBD=2 is considered very valuable, because falsifying all literals of the first decision
level implies the asserting literal x of that clause [AS09b]. For this reason, these
clauses are also called glue clauses, because they glue the assertion literal x of the
clause C to the decision level of the remaining literals.
A straightforward way of generating an asserting clause from a conflict clause D is

to resolve on the literals x ∈ D, as long as they have a reason clause reason(F, J, x)
and a certain criterion to abort the resolution is not yet reached [JLS13]. A useful
invariant to understand the derivation of asserting clauses is the following:

Corollary 5.4.1 (Reason clauses contain two literals of the highest decision level).
Given an interpretation J , a reason clause C = reason(J, x) of a literal x, with
|C| > 1, contains at least one other literal x′ of the same decision level: ∃x′ ∈ C :
decision_level(J, x) = decision_level(J, x′) and x ̸= x.

If there is no other literal x′ of the same decision level, then the reason clause could
have been used at a previous decision level for the application of unit propagation
already. Such a scenario can only be reached by violating the preferences of the rules
in the CDCL procedure, namely if at some previous decision level the unit rule ;unit

is not applied until termination. Another important invariant allows to resolve
reason clauses C = reason(J, x) with another reason clause C ′ = reason(J, x′), for
some literal x′ ∈ C, x ̸= x′.

Corollary 5.4.2 (All literals of a reason clause except one are falsified). Given an
interpretation J and a reason clause C = reason(J, x) of a literal x, then all remain-
ing literals x′ of the clause C, i.e. x′ ∈ (C \ {x}), are falsified by the interpretation,
i.e. J(x′) = ⊥.

Corollary 5.4.2 holds, because the reduct of a reason clause C of the literal x with
respect to an interpretation J of the form J = J ′xJ ′′ has been a unit clause for
some interpretation J ′ before. This interpretation J ′ falsifies all literals in C except
x. Then, x has been added to J by ;unit. By extending J further, the truth value
of the remaining literal of C stayed that same.

Deriving Asserting Clauses Given these two invariants, an asserting clause can be
obtained by a specialized resolution derivation, the asserting clause derivation:

Definition 5.18 (Asserting Clause Derivation). Given a formula F , an interpre-
tation J and the conflict literal x, an asserting clause derivation is a sequence of
clauses {C1, C2, . . . , Ck} satisfying the following conditions:
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1. C1 = (reason(F, J, x)⊗x reason(F, J, x))

2. i ∈ 2 . . . k, Ci = (Ci−1 ⊗x′ reason(F, J, x′)), where the literal x′ occurs in the
clause Ci−1, and the reason for x′ is defined, i.e. reason(F, J, x) ̸= ⊥.

3. Ck is an asserting clause.

The following invariants can be posted on the clauses Ci in the sequence of the
asserting clause derivation:

Corollary 5.4.3 (The asserting level of a learned clause does not decrease). The
asserting level of a clause Ci is greater or equal to a clause Cj in the asserting clause
derivation if i > j.

Corollary 5.4.4 (The LBD of a learned clause does not decrease). The LBD of a
clause Ci is greater or equal to a clause Cj in the asserting clause derivation if i > j.

These two corollaries are rooted in the following observation: a resolution step in
the asserting clause derivation on a literal x is only performed if the literal x has
a reason clause reason(F, J, x). However, since according to Corollary 5.4.1 in a
reason clause there is at least one other literal of the same decision level, the set of
decision levels of the current clause Ci cannot decrease.

12 Thus, the LBD can only
increase during the derivation. Furthermore, once a second highest level occurs,
only higher levels might be added but the second highest level cannot be removed.
Hence, the asserting level can also only increase.

Furthermore, a clause Ci of the asserting clause derivation is usually smaller than
another clause Cj with a higher index i < j. However, due to self-subsuming
resolution steps, the size of the resolvent Ci⊗Cj can also be smaller than the size of
the clause Ci, so that this property does not always hold and cannot be postulated
as invariant.

Exploiting Unique Implication Points Given a formula F , an interpretation J and
a conflict clause C ∈ F with its conflict literal x, then the interpretation J = J ′ẏJ ′′

can be split into two parts, where ẏJ ′′ are all the literals that have been assigned at
the current decision level, which is equivalent to the conflict level, so that there is
no decision literal l̇ ∈ J ′′. Furthermore, there exists a literal x′′ ∈ ẏJ ′′ among these
literals, which implies both the conflict literal x, as well as its complement x, given
the reduct F |J ′ , which corresponds to the reduct before the last decision has been
made. Such a literal x′′ is called a unique implication point (UIP) [MMZ+01].

Definition 5.19 (Unique Implication Point). Given a formula F , an interpreta-
tion J = J ′ẏJ ′′, ∄l̇ ∈ J ′′, and a conflict clause C with the conflict literal x, then a
unique implication point x′′ is a literal x′′ ∈ ẏJ ′′ that is assigned at the conflict level
and that implies the conflict literal x as well as its complement x by unit propagation
on the current decision level: (F |J ′ ∧ x′′);unit

⊡x and (F |J ′ ∧ x′′);unit
⊡x.

12There exists an approach to still remove decision levels from the set of decision levels by resolving
with other clauses of the formula, which are no reason clauses. This approach is presented in
Section 5.4.3 on page 153.
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Lemma 5.4.5 (There is always a UIP). Given a formula F , an interpretation J
and a conflict clause C with the conflict literal x whose decision level is at least 1,
then there always exists at least one unique implication point x′′ that implies both
the conflict literal x and its complement x on the current decision level.

Proof. Given the interpretation J = J ′ẏJ ′′, then at least the last decision literal ẏ
fulfills this property, because all literals in J ′′ are added to the interpretation via
unit propagation, and therefore the literals of J ′′ are implied by F |J ′ẏ. Furthermore,
the conflict literal x has to be implied on the conflict level, because otherwise the
conflict clause C could have been satisfied on a previous decision level already.13

As discussed in Section 5.1.1, before the reduct of the conflict clause C became the
empty clause, this reduct was a unit clause C|J ′ẏJ ′′′ = (x), and therefore, the literal
x is also implied by the reduct F |J ′ẏ.

As discussed in Section 5.4.3 there can exist more than a single UIP. Furthermore,
as already mentioned in Section 5.4.1, there is no order specified on the propagation
of unit clauses. Therefore, for each conflict clause C with the corresponding conflict
literal x, another conflict clause C ′ with the complementary conflict literal x could
have been found as well. Since the first resolution in the derivation of an asserting
clause resolved these two candidates for conflict clauses, this order might not play
a major role for the performance of the search procedure.

Lemma 5.4.6 (There are always two conflict clauses). Given a formula F , an
interpretation J = J ′ẏJ ′′′, with no decision literals in J ′′′, and the corresponding
conflict clause C with the conflict literal x, then there exists another clause C ′ ∈ F so
that given J = J ′ẏ this clause can be found to be a conflict clause by unit propagation.

Proof. Starting with the formula F and the interpretation J ′ẏ there always exists
the unique implication point y that implies both the conflict literal x of the conflict
clause C, as well as its complement x (Lemma 5.4.5). To falsify C, the literal x is
satisfied by unit propagation with a reason clause C ′ = reason(F, J, x). This reason
clause can be turned into the conflicting clause: by Definition 5.6, there exists an
interpretation J ′ẏJ ′′, such that the reduct of the original conflict clause C is the
unit clause C|J ′ẏJ ′′ = (x). Similarly, by Definition 5.3, there exists an interpreta-
tion J ′ẏJ ′′′′ with J ′′′′ ⊆ J ′′′, such that the reduct of the reason clause C ′ is the unit
clause C ′|J ′ẏJ ′′′′ = (x). When these two statements are combined, the union of these
two interpretations J ′ẏ(J ′′∪J ′′′′) necessarily enforces that the two unit clauses occur
in the reduct of the formula F , i.e. {{x}, {x}} ⊆ F |J ′ẏ(J ′′∪J ′′′′), because the clauses
are not satisfied by either of the interpretations but are reduced to unit clauses.
Finally, the unit rule is free to choose to satisfy either the unit clause (x) or (x).
Consequently, the other clause becomes the conflict clause.

Learning Decision Clauses A straightforward way of generating an asserting clause
is to resolve on literals x occurring in the conflict clause D, as long as there is a
literal x left, which has a reason clause reason(F, J, x), so that the abort criterion
is:

continue,until ∀x ∈ D, reason(F, J, x) = ⊥.
13For this reason, modern SAT solvers do not perform partial unit propagation, but apply the unit

rule until termination.
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Since the resulting clauseD consists only of decision literals,14 this scheme is referred
to as the decision scheme. Furthermore, the clause D is an asserting clause, because
there is only a single literal of the conflict level, namely the decision literal of this
level.

Learning UIP Clauses Another approach is to always resolve on the literal x ∈ D
with the highest position in the interpretation J until this literal has no reason
clause any more:

D := D ⊗ reason(F, J, x),

where x ∈ D, reason(F, J, x) ̸= ⊥ and the interpretation J is of the form J = J ′xJ ′′

such that there is no literal in the clause D that occurs behind x: ∄x′ ∈ D : x′ ∈ J ′′.
This scheme is called the last UIP scheme [ZMMM01].

Similarly, there exists the first UIP scheme [MMZ+01]. Here, the literal x with the
highest position in the interpretation J is always used for the next resolution step.
However, the termination criterion is different. The generation is stopped as soon
as there is only a single literal x of the decision level of the current interpretation:

|{x′ | x′ ∈ D, decision_level(J, x′) = maxx′′∈D(decision_level(J, x
′′))}| = 1.

Actually, any learned clause is a UIP learned clause if this property is ensured, so
that also a decision clause is a UIP clause [ZMMM01].

The first UIP clause is the resolvent D, which has only a single literal of the
highest level and which has the smallest index in the asserting clause derivation.
The second UIP clause D′ is the next resolvent that has this property again, after
at least one more resolution step has been performed with D. This way, from a
single conflict many UIP clauses could be learned. Still, most of the modern SAT
solvers add only the first UIP clause [MMZ+01,ES04,Bie08b,SNC09,AS13,Bie13].
Many research groups found independently that this scheme is superior to the other
UIP learned clauses [ZMMM01, Nad09, Cot09, DHN07]. This effect might also be
caused by the fact that the size of the learned clauses usually increases when going
to the next UIP. Likewise, the asserting level increases (Corollary 5.4.3) and the LBD
increases as well (Corollary 5.4.4). Thus, these learned clauses lead to cutting off less
search space, or leading to less propagation and overall might result in a decreased
performance of the solving algorithm. However, as SAT is an NP problem, there
can always exist counterexamples and, as discussed in the following section, adding
more learned clauses might be beneficial for the search of the SAT solver.

Learning Multiple Asserting Clauses – All-Unit-UIP Learning Revisiting the
failed literal rule of the look-ahead procedure (line 14 and 17 in Figure 5.7) shows
that the added unit clause corresponds to the last UIP clause, which in the case of
the failed literal rule is similar to the decision clause. However, learning the first
UIP clause might also be beneficial for the search. Example 31 shows that adding
each possible UIP clause can be beneficial after a failed literal has been found.

14We enforced that in this section the rule ;infer is not applied, as this rule is also not used in
implemented systems during search.
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Example 31: Learning all UIP Clauses Consider the following formula

F = (a ∨ b) ∧ (a ∨ b ∨ c) ∧ (c ∨ d) ∧ (c ∨ d).

Assume the literal a is a decision. Then, from F :: (ȧ) the first clause becomes
the unit clause (b) and after propagating (b) the second clause becomes the unit
clause (c). Finally, the third clause becomes the unit clause (d):

F :: (ȧ) ;unit F :: (ȧb) ;unit F :: (ȧbc) ;unit F :: (ȧbcd).

Now the fourth clause in F is falsified. The implication graph for this conflict
is the following:

The graph has two UIPs: the node with literal c and the node with literal a.
The first UIP learning routine adds only the clause (c) to the formula, but from
this clause no further unit propagation is possible:

F ∧ (c) :: ϵ ;unit
⊡F ∧ (c) :: (c).

However, when the learned clause for the second UIP is added as well, then the
formula F is satisfied:

F ∧ (c) ∧ (a) :: ϵ ;unit
⊡F ∧ (c) ∧ (a) :: (ca) ;sat SAT.

Hence, when there are multiple UIPs in a conflict graph with a unit clause as
the learned clause, then all these unit clauses should be added to the formula,
because this way more unit propagation is achieved.

Since the failed literal rule is computed always for the first decision literal (the
literal x is considered to be the decision literal), all UIP clauses are actually unit
clauses, because the conflict level is equal to the decision level. Since the decision
level is equal to one, there cannot be literals from previous levels in the UIP clause
(see Definition 5.16). Therefore, during the failed literal rule, all UIP clauses should
be learned. This scheme is implemented in the probing routines of Coprocessor.

Furthermore, a similar scenario is possible during search. Assume the formula F
of Example 31 is only the reduct of another formula F ′ and an interpretation J ′,
i.e. F = F ′|J ′ , where furthermore none of the clauses in F has been shrunk by J ′.
Then deciding the literal ȧ next still results in a conflict and the first conflict clause
is still a unit clause. According to the example, the next UIP clause can also be
a unit clause if the used reason clauses for resolution also occur in the formula F ′

and are not altered by the current interpretation J ′. Since the asserting level of
a unit clause C = (x), as well as its LBD and its size is the same as for any unit
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clause C ′ = (x′), but these two unit clauses do not necessarily imply each other as in
Example 31, the following learning scheme, called the all-unit-UIP (AUIP) learning,
can be established:

If a UIP clause is a unit clause, the next UIP clause should also be checked for
being a unit clause!

According to the results of Zhang et al. [ZMMM01] the first UIP clause is beneficial
and is therefore always calculated, so that the condition of this statement can be
always checked for the first UIP clause without overhead. Then, the next UIP clause
has only to be generated if the current UIP clause is a unit clause. Since most of
the time the premise is false, no overhead is introduced. As the example illustrates,
learning all unit clauses can lead to improved unit propagation.

Learning Bi-Asserting Clauses All learned clauses that are generated following
one of the above schemes have the empowerment property. As long as clauses are
learned that have this property, the CDCL procedure can perform backjumping and
afterwards continue with unit propagation, because the asserting learned clause leads
to unit propagation again.

Still, not all SAT solvers add only empowering clauses after conflict analysis. For
example, CircUs adds another intermediate clause D′, which is a resolvent of the
learning procedure before the first UIP clause D has been reached – thus, adding
two clauses per step [JS06]. Furthermore, the clause D is not always guaranteed to
be an empowering clause, similarly to the learning schemes in [Rya04,DHN07] that
also add non-empowering clauses additionally to a UIP clause.

Nevertheless, a clause D′, which is not an asserting clause, can be empowering,
namely if one of the performed resolution steps to obtain the clause D′ has been a
merge resolution step [And68]:

Definition 5.20 (Merge-Resolution). A resolution of two clauses C and C ′ is called
merge resolution if the two clauses share a literal: C ∩ C ′ ̸= ∅.

Pipatsrisawat and Darwiche have shown in [PD08] that a clause D that is generated
according to the above first UIP scheme but contains two literals of the current
decision level, is always empowering if a merge-resolution step was used.

Definition 5.21 (Bi-Asserting Clause). Given a formula F and an interpretation J ,
then a learned clause C of a learned clause derivation is a bi-asserting clause if the
clause C is falsified by the interpretation J , i.e. C|J = ⊥, and C has exactly two
literals with the highest decision level:

|{x | x ∈ D, decision_level(J, x) = maxx′∈D(decision_level(J, x
′))}| = 2.

In [PD08], these clauses are generated by following the asserting clause derivation
(Definition 5.18), however, with a modified termination criterion. The final clause Ck

of the derivation can be an asserting clause or a bi-asserting clause if furthermore one
of the resolution steps is a merge resolution. This way, the bi-asserting clause Ck is
only selected if Ck can be generated with less resolution steps than the corresponding
asserting clause.
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Since a bi-asserting clause C has two literals of the highest decision level, the
clause C does not contribute to the propagation directly. After backjumping to the
asserting level the reduct is binary, and therefore unit propagation is not possible as
a next step of the CDCL procedure.

Another scheme of bi-asserting clauses was proposed by Jabbour et al. [JLS13].
The resulting clauses have still the bi-asserting property but are created with another
order of resolution steps than asserting clauses.

Minimizing Learned Clauses Assume a clause C is learned according to the as-
serting clause derivation for learning a first UIP clause (compare Section 5.4.3),
where essentially only literals of the conflict level are used for resolution. Then, this
clause C might contain further literals x that can be used for resolution so that,
when resolving with the corresponding reason clause reason(F, J, x), results in a
resolvent C ′, which subsumes the current learned clause. Then, performing this
resolution shrinks the learned clause further. This clause minimization scheme has
been proposed in [BKS04] and is called local clause minimization.

In contrast to the local clause minimization, the recursive clause minimization is
allowed to perform more resolution steps before a subsuming resolvent has to be
produced [SB09,Nad09, SE02]. Whereas a subsuming resolvent in the local clause
minimization procedure necessarily reduces the size and keeps the set of decision
levels in the clause constant, this property is not ensured for recursive clause min-
imization. Intermediate resolvents might be larger than the current learned clause
and, as discussed in Section 5.4.3, literals with new decision levels might be added to
the current resolvent. Thus, eliminating a literal from the learned clause is aborted
as soon as the corresponding resolution process would introduce another decision
level to the learned clause, or if no more literals occur that can be used for resolution.
More details on recursive clause minimization can be found in [SB09].

Shrinking Reason Clauses with On-The-Fly Improvement Assume the clause C
is a conflict clause with respect to the formula F and the current interpretation J .
Then the learned clause D is generated according to the asserting clause derivation
(Definition 5.18). Let Ci be some resolvent of the sequence of the derivation. To
produce the next clause in the sequence, i.e. Ci+1, the clause Ci is resolved with
a reason clause reason(F, J, x) of some literal x ∈ Ci+1. Similarly to the learned
clause minimization, this clause Ci+1 might subsume the previous clause Ci. On
the other hand, this clause Ci+1 can also subsume the reason clause reason(F, J, x).
Then, the reason clause reason(F, J, x) can be replaced with the clause Ci+1. The
replacement of a clause by its self-subsuming resolvent has been introduced as on-
the-fly clause improvement [HS09]. There, Han and Somenzi recommend to not only
use this technique during conflict analysis but also for any other resolution that is
performed during solving a CNF formula.

The presented method can be modeled by Generic CDCL in the following way:
let F be the formula, J be the interpretation, C be the conflict clause, and, as
described above, Ci+1 is a clause that has been created by resolving another in-
termediate resolvent Ci and the reason clause reason(F, J, x). First, since Ci and
Ci+1 are created by resolution on clauses of the formula F , these two clauses are
also entailed by the formula, i.e. F |= Ci and F |= Ci+1. Therefore, the clauses
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can be added to the formula with the rule ;learn. As a next step the procedure
replaces the reason clause reason(F, J, x), because this clause is subsumed by Ci+1.
Even if the two clauses Ci and Ci+1 are not added to the formula F , they are en-
tailed, because they could be created again with the same resolution derivation.
The clause Ci+1 is added to the formula with the rule ;learn. Finally, the clause
reason(F, J, x) is removed with ;delete, because this clause is entailed by the new
formula (F ∪ {Ci+1}) \ {reason(F, J, x)} |= reason(F, J, x). Essentially, this rea-
son clause is subsumed by Ci+1, and thus the clause is also entailed (compare Sec-
tion 3.2.2):

F :: J ;learn F ∪ {Ci+1} :: J ;delete (F ∪ {Ci+1}) \ {reason(F, J, x)} :: J.

Using Inverse Arcs to Improve Learned Clauses In Section 5.4.3 invariants on the
learned clause derivation have been presented, namely that doing more resolution
steps can worsen the backjumping level (Corollary 5.4.3), as well as the LBD of
the learned clause can be increased by resolution (Corollary 5.4.4). Based on the
definition of reason clauses (Definition 5.3), especially with the property that all
literals x′ in the explanation of a literal x are always falsified before the literal x,
these variants cannot be broken. Furthermore, the resulting implication graph for a
given conflict is directed and acyclic.
Nevertheless, being able to remove all literals of a decision level can still be in-

teresting, since this way the asserting level of the learned clause can be influenced.
Therefore, Audemard et al. proposed to add further arcs to the implication graph
and to allow the asserting clause derivation to use further clauses in the resolution
derivation [ABH+08].
There is one property of reason clauses that needs to be softened to be able

to remove decision levels from a learned clause: the literal x is assigned after all
literals x′ of its explanation are falsified. Since unit propagation is applying the unit
rule until termination, a literal x cannot be assigned as a decision if this literal
has a reason clause. However, let ẋ be a decision literal, consider the clauses C =
(x∨x′∨x′′), D = (yx′) and E = (yx′′), and let the current interpretation be empty,
i.e. J = ϵ. After the decision ẋ another decision ẏ is performed, such that J = ẋẏ.
With unit propagation the literal x′ is added to J with the reason clause D, because
D|(ẋẏ) = (x′). Likewise, the literal x′′ is added to J with the reason clause E,

because E|(ẋẏx′) = (x′′). Hence the literals x′ and x′′ of the clause C are falsified.
The current interpretation contains the following sequence of literals: J = ẋẏx′x′′.
Furthermore, the reduct of the clause C under J is the unit clause C|J = (x). This
clause fulfills the property of reason clauses: all remaining literals of the reason
clause are falsified (Corollary 5.4.2). Another property is broken, namely that the
other literals are assigned before x is assigned. Still, the clause C can be used to
resolve on the literal x during conflict analysis, and thus, eventually remove the
corresponding decision level from the learned clause. Again, since all operations on
the clause are based on resolution, this modified learning technique can be covered
with the rule ;learn.

Improving the Power of Reasoning by Utilizing Extended Resolution From a
proof complexity point of view, general resolution proof systems are exponentially
more powerful than DPLL-style proof systems. When a CDCL search is combined
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with restarts (see Section 5.4.7), then the CDCL algorithm becomes as powerful as
general resolution [PD09,PD10]. Also empirically, Katebi et al. showed in [KSMS11]
that clause learning is the most crucial ingredient of the modern CDCL algorithms.
As explained in Section 5.3, there exist proof systems that are even stronger than
general resolution, for example cutting planes and extended resolution.
Since additional data for cardinality reasoning is usually not present in a CNF

formula, integrating extended resolution into the CDCL search is more obvious and
has been already investigated. Almost at the same time, two independent research
groups proposed a mechanism to add extended resolution into the CDCL procedure:
Huang [Hua10] and Audemard et al. [AKS10].
Given a formula F and the interpretation J that form a conflicting state and

the current learned clause C, then Huang proposes to add a fresh variable x,
i.e. x /∈ vars(F ) and x /∈ vars(J), together with the following formula (x↔ D), where
D is a disjunction of literals with vars(D) ⊆ vars(F ). More specifically, the literals
of D occur negated in the current interpretation J , i.e. D = {x | x ∈ J}. Given this
extension or the clause learning rule, Huang shows that his extended clause learning
procedure produces a proof system that is as strong as the extended resolution proof
system. Huang furthermore presents a heuristic how to choose the extension D and
when to add the learned clause C instead of performing an extension step.
An extension is only performed if the learned clause C contains more than thirty

literals, i.e. |C| ≥ 30. Then, a fresh variable x is introduced and the clause C is
split into two disjunctions, i.e. C = (C ′ ∨ C ′′), where C ′ contains the two literals of
C with the lowest decision level and C ′′ contains the remaining literals. Then, the
clause x ∨ C ′′ is added, the equation x ↔ C ′ is added in its CNF representation,
and the learned clause C itself is not added. Finally, Huang proposes to perform a
restart (see Section 5.4.7) after each extension to avoid calculating where the new
variable x has to be added to the interpretation. In [Hua10], Huang reports that on
the tested formulas an extension is performed every 2.7 conflicts.
Audemard et al. follow a different strategy. In [AKS10], a fresh variable is intro-

duced if two learned clauses Ci and Ci+j share all except one literal: Ci = (l1 ∨D)
and Ci+j = (l2 ∨ D), where D is a disjunction of literals with l1 /∈ D and l2 /∈ D.
In the proposed implementation, the distance between the learned clauses is set to
j = 1. In the so-called local extension, the introduced variable x represents the
disjunction of the two literals l1 and l2, i.e. x ↔ (l1 ∨ l2). In CNF, this equation
produces the following three clauses: (x∨ l1∨ l2), (x∨ l1) and (x∨ l2). Theses clauses
are added to the formula F . Furthermore, the clauses Ci and Ci+j are replaced by a
new clause C ′ = (x∨D), because Ci and Ci+j can be obtained by resolution from C ′

with the two binary extension clauses. Differently to the work of Huang, Audemard
et al. introduce extensions already when the considered learned clauses contain at
least four literals, and furthermore propose to undo extensions if the introduced
variables do not seem to be useful, i.e. the activity of these variables is below a
certain threshold with respect to all variables of the formula. On average, [AKS10]
reports an extension every 1000 conflicts. Furthermore, in an extension, all clauses
in the formula are checked whether they contain both literals l1 and l2. A clause C
that contains these two literals is modified by replacing these two literals with the
fresh variable x. Similarly to the learned clause, the other modified clauses can be
obtained by resolution again, and hence this modification preserves equivalence.
The extended resolution rules that have been presented in [Hua10] and [AKS10]

154



5.4.4. Shrinking Reason Clauses with Lazy Hyper Binary Resolution

can also be modeled with the Generic CDCL framework. First, extended clause
learning can be modeled based on a small trick. To be allowed to add clauses to the
formula F that preserve equisatisfiability, the current interpretation J needs to be
undone. If only clauses are added to the formula F with the rule ;inp, then all the
steps that have been used to create the current interpretation J can be repeated.
This process is similar to the procedure described by Huang: before adding the
learned clause with the extension, a restart is performed, where the restart itself
undoes the interpretation J , so that the required property of Generic CDCL
is already met. The clauses that are added by extended clause learning need to
preserve equisatisfiability. This property can be shown by first having the original
learned clause being entailed by the formula. Next, this clause is modified by adding
a fresh variable x, which in this moment is pure and therefore adding such a clause
does not change the satisfiability of the formula. Finally, the negation of the fresh
variable x is added in a clause with the two literals l1 and l2, such that resolving
the two clauses results in the original learned clause again. Now, the variable x can
be seen as a selector to choose between satisfying the first added clause, namely
when l1 and l2 are both assigned to ⊥, or to satisfy the second clause when all the
other literals are assigned to ⊥. Thus, if there exists a satisfying assignment for the
originally learned clause, then there also exists a satisfying assignment for the two
clauses that are added by extended clause learning.

The last statement of the above paragraph can also be used to show that the clause
modifications of restricted extended resolution preserve satisfiability. All the clauses
that are removed during restricted extended resolution can be recreated by pairwise
resolution on the fresh variable x. According to [DP60], the formula that is obtained
by this so-called variable elimination is equisatisfiable to the original formula. Since
equisatisfiability is symmetric, the opposite direction holds as well. As for extended
clause learning, the simulation of restricted extended resolution can also be done by
simulating a restart and recreating the interpretation J afterwards.

5.4.4. Shrinking Reason Clauses with Lazy Hyper Binary Resolution

The general resolution rule allows to create a new clauseD by resolving two clausesC1

andC2. Given multiple binary clauses Ci with 1 ≤ i ≤ n and another clause
C, then hyper binary resolution allows to create a binary resolvent D by resolving
all clauses Ci with the clause C. To obtain a binary resolvent D = (l ∨ l′) with
a clause C = (l ∨ l1 ∨ . . . ∨ ln), the binary clauses Ci have to contain the literals
Ci = (l′ ∨ li).

Hyper binary resolvents can either be created in a preprocessing step or during
search. Figure 5.10 motivates using hyper binary resolvents. Once the hyper binary
resolvent (e ∨ i) is added, the unit clause (i) implies the unit clause (e) directly by
unit propagation. If this clause does not occur, then this implication cannot be found
by unit propagation.

During search, a hyper binary resolvent can be found by analyzing clauses that
are used as reason clause C = (l ∨ l1 ∨ . . . ∨ ln) for propagated literals l. This
procedure is called lazy hyper binary resolution. If all literals li inside C are implied
by the same literal l′, meaning that the reason clause Ci for each literal li is of the
form Ci = (li ∨ l′), then the hyper binary resolvent D = (l ∨ l′) can be created and
used as reason clause for the literal l, instead of using the clause C [Bie09].
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Figure 5.10.: Consider the implication graph of Figure 5.9 once more. The solid arcs
represent implications in the formula and the dashed arc from e to i
represents a clause that could be generated by hyper binary resolution.

This procedure can be lifted even one step further: the binary clauses Ci = (li∨ l′)
does not need to occur in the formula. For creating the hyper binary resolvent D
a sufficient condition is if the literal l′ dominates all literals li, which means that
the formula F entails all the implications l′ → li that correspond to the binary
clause [HJS11]. If the literal l′ dominates all literals li, then the hyper binary
resolvent D can be created. During search, domination can be calculated by storing
the common dominator l′ of an implied literal li by picking the dominator of all
literals of the reason clause Ci. If the literals in Ci do not have a common dominator,
then the literal li can be stored as its dominator.

Applying the hyper binary resolution rule can be modeled with Generic CDCL,
because the resolvent D is modeled by the formula F , and therefore adding D to F ,
i.e. F := F ∪ D, preserves equivalence. Hence, the rule ;learn can be used for
modeling.

5.4.5. Selecting Decision Literals

The selection of a decision literal is crucial for the performance of the search algo-
rithms. Obviously, always selecting the right literal can lead to a model J for a
given formula F in a linear number of steps. Thus, the way how decision literals are
chosen is clearly relevant for the performance on satisfiable formulas.

On the other hand, in case of a conflict clause the order of the decision literals
in the current interpretation, as well as the corresponding implied literals and their
reason clauses, play a major role in the derivation of the learned clauses. By picking
decision literals “nicely”, the number of required learned clauses to produce the
empty clause with resolution can be influenced.

For these two reasons, picking decision literals is a crucial part of the solving
procedure. The precondition of the rule ;decide gives much freedom to this process.
Most SAT solvers couple the selection of a decision literal tightly to the asserting
clause derivation [MMZ+01, ES04,Bie08b,Bie13]. Since there is no conflict before
the first decision, the decision heuristic needs to be initialized before the search.
Therefore, selecting decision literals can be divided into three parts: picking a de-
cision variable, picking the corresponding polarity to receive a decision literal and
furthermore initializing the heuristic.

Since there is no change to the formula or the interpretation, the selection of
decision literals does not have to be modeled with Generic CDCL. Still, these
heuristics are discussed in more detail as foundation for the next chapters.
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Picking Decision Variables The most successful, and therefore currently most
used, decision heuristic is the variable state independent decay sum (VSIDS) heuris-
tic [MMZ+01]. The VSIDS heuristic assigns a score to each variable of the formula.
This score is called the activity of the variable. If a variable for the decision should
be picked, the variable with the highest activity is returned. In the understanding
of the VSIDS heuristic, a variable x is active if this variable appeared in a clause
that has been used in a recent asserting clause derivation [MMZ+01]. The activity
of variables is initialized as explained in the below paragraph. Then, the activity of
a variable x is updated as follows:

activity(x) = α activity(x) + decayi,

where α is a parameter, and the variable decayi represents the importance of the
current conflict. This update is performed during conflict analysis if this variables
occurred in a clause that occurred in the learned clause derivation. For VSIDS,
this series increases geometrically. After a learned clause has been produced, the
following update is performed:

decayi+1 =
decayi
decay

,

and decay is a parameter of the algorithm that needs to be less equal to one,
i.e. decay ≤ 1, to result in an increasing importance. Proposed values of this pa-
rameter range between 0.87 and 0.95 [ES04,Bie08b,RvdTH11]. Recently, Audemard
and Simon even made this parameter to increase dynamically during search from
0.85 to 0.95 in Glucose 2.2 as the number of conflicts arise [AS13].
The parameter α modifies the behavior of the VSIDS heuristic. When α is set

to α = 1, the above method calculates the importance of a variable x according to
the original VSIDS scheme [MMZ+01]. However, when set to α = 0, the activity
of the variable x is calculated according to the variable move to front (VMTF)
heuristic [Rya04]. Here, the highest priority is given to the most recent learned
clause derivation of a given variable. All variables that participated in the most
recent learned clause derivation are moved to the front, and thus are chosen as
decision variable next.

Choosing the Polarity for Decision Variables A very simple way to assign a polar-
ity to a given decision variable is to constantly choose a preset polarity, for example
negative. This heuristic has been the default heuristic in MiniSAT, until phase-
saving [PD07] has been introduced. Polarities can also be assigned according to
precomputed ratios like the Jeroslow-Wang measure [JW90], or by simply counting
the number of occurrences in the initial formula and afterwards assigning the po-
larity with the higher or lower frequency. Finally, polarities can also be assigned
randomly.
The Jeroslow-Wang measure is computed for each literal of the formula as follows:

JW(x) =

C∈Fx

2−|C|.

Given the values JW(x) and JW(x), the polarity with the higher value is returned,
because satisfying this literal constraints less the reduct with respect to the new
interpretation J .
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The phase-saving heuristic is a dynamic heuristic that follows a strict goal [PD07].
After learning a conflict the search of a SAT solver can remove many literals from
the current partial interpretation by backjumping. Hence, the information about
their polarity is lost. Once such a removed variable should be assigned a polarity
again, the heuristic has to return a new value again. By storing the polarity of the
most recent assignment of the corresponding variable, this polarity can be reused
to assign a new polarity to the current decision variable. By using this heuristic,
the search process memorizes how to satisfy a certain subformula without search by
simply assigning the previous decisions again.

Therefore, a polarity cache Jcache is maintained, which stores the last polarity of
each variable of the formula. Hence, this cache is initialized with the initialization
of the decision heuristic (as discussed in the next section). Whenever backjumping
is performed with the rule F :: J ′ J ;back F :: J ′, the cache is updated as follows:

Jcache = (Jcache \ (J ∪ J)) ∪ J.

The previously assigned polarities of the currently backtracked variables J are re-
moved, i.e. (J ∪ J), and afterwards their most recent assigned polarity J is added
to the set. If a polarity of a variable x should be determined, the tests x ∈ Jcache
and x ∈ Jcache determine whether x or x should be returned.

Initializing the Decision Heuristic When the satisfiability of a formula should be
tested, the SAT solver is provided only with a formula F . Based on this formula,
the solver can initialize its state and then start to search for the solution. The
initialization of the decision heuristic needs to prepare the above two methods:
choosing a decision variable and its polarity.

A naive approach is to randomly initialize both the variable order and the po-
larity. Another way is to assign the variables as they appear in the formula, in
numeric order, or by reversing these orders. More sophisticated methods calculate
the Jeroslow-Wang values for all literals [JW90] to choose the polarity and further-
more calculate the Jeroslow-Wang values for all variables to choose the decision
variables next. Another way is to calculate the RWH values for all literals and use
them to initialize the decision heuristic [MdWH10,AF10].

As already discussed above, the initialization of the heuristic might lead to a
model in a linear number of search steps. Additional information from the outside
might help the search process to improve its search decisions. Two examples for
such an approach are the specialized decision heuristics for planning [Rin10]. In
a different example, information of an SLS solver is used to initialize the decision
heuristic of a SAT solver in the hybrid SAT solver SparrowToRiss [BM13].

5.4.6. Removing Redundant Clauses

Since the performance of unit propagation depends on the size of the formula, hav-
ing as few clauses as required to find a model for the current formula F seems to
be useful. Only clauses C should be removed in the middle of the search if these
clauses are entailed by the formula F \ {C} and if C is not used as reason clause.
If only clauses are removed that ensure these properties, preserving the equivalence
of F is ensured. If J = ϵ, then also equisatisfiability preserving modifications to
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the formula are allowed. However, the clauses C that are removed should be cho-
sen carefully, so that only these clauses are removed that produce search overhead.
Since an algorithm cannot determine this property, heuristic choices are made. The
balance of removing the clauses that introduce overhead and keeping and adding
clauses that lead to the solution has to be found. For this task, several heuristics
have been developed to decide which clause should be kept [ES04,AS09b,ALMS11].
These heuristics are tightly coupled with heuristics when to perform a clause re-
moval [AS09b,ALMS11,AS12].

To ensure soundness, most SAT solvers remove only clauses that have been added
during learning before, or clauses that are subsumed by learned unit clauses. Any
clause C that is added by conflict analysis (the rule ;learn), could directly be removed
again. Otherwise, algorithms are used that ensure that the removed clauses are
entailed by the formula (see Section 5.5 for more details). Furthermore, not all
redundant clauses are removed: only a percentage of all redundant clauses to ensure
that the search does not get stuck or ends up in a cycle.

Using the Clause Size as Filter A very naive approach is to remove large learned
clauses during a removal. However, there also exist unsatisfiable CNF formulas
that can only be refuted by resolution proofs if large clauses are used for reso-
lution [BSW01]. Therefore, the size is not a very sophisticated measure. Still,
keeping very small clauses, for example all binary clauses, is considered to be bene-
ficial [AS13].

Using an Activity as Filter Very similar to the VSIDS decision heuristic, an ac-
tivity can be assigned to each (learned) clause [GN02]. Then, when a removal step
is performed, the clauses with the lowest activity are selected and removed. Sim-
ilarly to the decision heuristic, the participation in a more recent conflict leads to
a stronger increase of the activity. During the removal, the clauses with the lowest
activities are deleted.

Using the Literal Block Distance Score as Filter As described in Section 5.4.3,
once a learned clause is derived, its LBD score can be calculated and assigned
to the clause. As long as all literals of a clause are assigned, the calculation is
straightforward. In general not all literals of a learned clause need to be always
assigned to a truth value, and therefore the LBD cannot always be calculated exactly
during search.

The LBD value of a clause C describes how many decision levels are used to
imply a literal x ∈ C – however, only when the current interpretation J = J ′J ′′ is
considered. After backtracking to J ′, such that the reduct of C contains at least two
literals, i.e. |C|J ′ | ≥ 2, the LBD of that clause might increase. Therefore, whenever
a learned clause is used as a reason clause to imply some literal and the reduct is a
unit clause, the LBD measure of this clause can be updated.

During removal, the clauses with the highest LBD values are removed, because
these clauses tend to be used in fewer applications of unit propagation than clauses
with a small LBD. The empirical evaluation in [AS09b] confirms this assumption.
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Using the Progress Saving Measure as Filter Another way of handling learned
clauses is to remove them from the current formula but to keep them in some extra
storage [ALMS11]. The intention behind this scheme is to remove clauses that are
not relevant for the current search space, and also to be able to re-introduce these
learned clauses if they become relevant later in the search process again. Therefore,
a measurement is required that can heuristically decide the usefulness of a clause C
with respect to the current interpretation J , even if not all literals of this clause are
assigned.

To accomplish this task, Audemard et al. proposed the progress saving mea-
sure [ALMS11]. Provided the solving algorithm uses the phase-saving heuristic
as decision heuristic, the algorithm has also access to the polarity cache Jcache. This
cache stores the progress of the search, because Jcache previously assigned literals.
Given a full initialization, or sufficiently many search steps, each variable has been
assigned a polarity during search and eventually has been removed from the inter-
pretation again during backjumping. Therefore, the union of the variables in the
cache Jcache and in the current interpretation J is the set of variables of the for-
mula F , i.e. vars(Jcache) ∪ vars(J) = vars(F ). Now, for each variable a polarity is
stored, either in the current interpretation J , or in the cache Jcache. The set P of
satisfied literals prefers literals from J and fills the set with the cache afterwards:
P = J ∪ (Jcache \ J). Given such a set P , the progress saving measure of a clause C
is defined as

psmP (C) = |C ∩ P |.

Intuitively, this measure specifies how many literals of the clause C are satisfied if
the search follows the previous search path. Thus, lower psm values indicate more
useful clauses. Naturally, the search does not strictly continue in previous search
spaces, but still the psm function can be used as heuristic.

In [ALMS11], Audemard et al. use the psm function to decide whether a clause
should be frozen, meaning to move the clause from the active formula to the extra
storage. If the psm of such a frozen clause becomes low enough, the clause is re-
activated and moved to the active formula again. If the psm of a frozen clause
remains high for a longer time, the clause is removed from the extra storage as well.

Static and Dynamic Removal Schedules Different heuristics for removing learned
clauses have been proposed. The number of added learned clauses, specified as
#learned, is used to determine when to remove a clause. Furthermore, the num-
ber of already performed removals is stored in the variable #removals. In Glu-
cose 2.2 [AS09b], the learned clause database is reduced if the following equation
holds: 20000 + 500 #removals ≥ #learned. A more dynamic way to schedule re-
movals is to try to keep a ratio between the learned clauses and the initial formula.
In MiniSAT, the following equation is used: #learned ≥ 1.1#restarts|F | [ES04]
that also considers the number of performed restarts. Naturally, all constants in the
formulas can be seen as parameters and therefore can be adapted.

5.4.7. Restarting the Search

The CDCL algorithm presented until now can escape the current search space only
by finding a refutation for this subspace. Such a refutation results in a learned
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clause that allows the search process to backjump to another subspace by shrinking
the current interpretation. This behavior is known to be heavy-tailed [GSCK00],
meaning that when solving a formula F with different search procedures the variance
in the solving time is very high. To avoid the high variance and to achieve a more
stable behavior, Gomes et al. propose to restart the search. In the context of SAT
solving, such a restart clears the current interpretation, so that the current search
space is escaped and another search space can be entered. Naturally, not all learned
information should be deleted, because otherwise the solver would enter the very
same search space again. Usually, learned clauses and activities are kept. Such a
restart can be easily modeled within the Generic CDCL framework:

F :: J ;back F :: ϵ.

By adding restarts to the algorithm, the mean run time for solving a formula can
be reduced. Thus, research has been done in scheduling restarts. In [Hua07], Huang
compares restart schedules that have been proposed until 2007. An important con-
clusion is that scheduling restarts according to any schedule (of the schedules used
in [Hua07]) is better than not performing restarts at all. A current trend is to in-
crease the frequency of restarts [RvdTH11, vdTRH11] – however, restarts are also
skipped if certain conditions are reached [AS12]. The schedules that are used in re-
cent SAT solvers are presented in the next paragraphs. All schedules use constants
that could be adjusted to the needs of solving the current formula. As the basis
for scheduling a restart, the number of conflicts that occurred so far is used. This
number is denoted with #conflicts. Likewise, the number of restarts is denoted
with #restarts.

Using the Geometric Series When the geometric series is used, the next restart
is triggered if the following equation holds:

#conflicts ≥ factorI baseI#restarts.

The two parameters factorI and baseI can be used to control how fast the series
increases. This series has been used for scheduling restarts in the first version of
MiniSAT [ES04] with the parameters set factorI = 100 and baseI = 1.5.

Nesting the Geometric Series Since geometric series grow quite fast, nesting two
geometric series is a way to decrease the number of conflicts until another restart
is scheduled. Similarly to the geometric series, a restart is triggered when the inner
bound is reached. Furthermore, an outer bound is added, which forces the inner
series to start from its initial value again. Based on the variables #innerR, outerB
and lastRestart, which store the number of inner restarts, the number of conflicts
when the last restart was triggered and the outer bound respectively, the algorithm
in Figure 5.11 computes whether a restart should be scheduled. The initialization
of the used variables is also left to the user of the algorithm. The nested geometric
series with the given values factorI = factorO = 100 and baseI = baseO = 1.5 is
used for scheduling restarts in PicoSAT [Bie08b].

Luby Another series, which has been introduced by Luby et al. in [LSZ93] for
the ideal length of Monte Carlo runs, performed quite promising in the analysis of
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perform-nested-geometric-Restart (#conflicts)

Input: number of conflicts

Output: true, if a restart should be performed

1 load innerR, outerB, lastRestart // use values from previous call

2 if #conflicts < lastRestart+ factorI baseIinnerR // restart not reached

3 then return false

4 else

5 innerR := innerR+ 1 // increase inner limit

6 if factorI baseIinnerR ≥ factorO baseOouterB then // inner limit reaches outer bound

7 innerR := 0 // reset inner counter

8 outerB := outerB+ 1 // increase outer bound

9 lastRestart := #conflicts // memorize last restart

10 return true

Figure 5.11.: Pseudo code of the nested geometric restart scheduling parameterized
with factors (factorI, factorO) and base values (baseI, baseO) for
both the inner and the outer series.

Huang [Hua07]. The series is constructed to behave well if no information is known
about the problem to be solved [LSZ93]. Based on the author’s name, the series
received the name Luby series in the literature. Similarly to the nested geometric
series, the three variables #innerR, outerB and lastRestart are used to describe
when a restart should be performed. The pseudo code of this decision procedure is
given in Figure 5.12. The Luby series is implemented as default restart strategy for
example in MiniSAT 2.2 [Nik10] with the parameter factor set to 32.

Scheduling Restarts Dynamically Dynamic restart schedules could for instance
use metrics of the decision level instead of the number of conflicts. The Luby series
empirically proved to be the best series in [Hua07] if no information about the
search process is known and shared among the search before and after the restart.
In the CDCL algorithm, the current state with all the learned clauses, as well as the
activities of the variables and other measurements of the previous search steps are
available and can be used to trigger restarts better than with the Luby series.

One dynamic scheduling approach has been proposed by Audemard et al. [AS09a],
where the backjumping level of the last conflicts in a so-called window with a fixed
window size is analyzed. For this window the average of the backjumping levels is
calculated. If this average does not decrease sufficiently, then a restart is triggered.
According to [AS09a], the motivation is to “encourage solver to search at the right
place”. Therefore, the global average of all backjumping levels is also calculated.

A more formal representation of this scheme is the following: if the local aver-
age backjumping level for the window multiplied with a constant is greater than
the global average, then a restart is triggered and the window is cleared. A lower
limit between two restarts is the window size: the next restart can only be trig-
gered if enough conflicts occurred to fill the window again. The version of the SAT
solver Glucose 2.2, presents in [AS09a] uses the constant 0.7 and a window size
of 100 conflicts.
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Luby-Restart (#conflicts)

Input: number of conflicts

Output: true, if a restart should be performed

1 load innerR, outerB, lastRestart // use values from previous call

2 if #conflicts < lastRestart+ factor 2innerR then // restart not reached

3 return false

4 else

5 innerR := innerR+ 1 // increase inner limit

6 if innerR = outerB then // inner limit reaches outer bound

7 innerR := 0 // reset inner counter

8 outerB := outerB+ 1 // increase outer bound

9 lastRestart := #conflicts // memorize last restart

10 return true

Figure 5.12.: Pseudo code of the Luby restart scheduling parameterized with the
parameter factor.

Rejecting Restarts Based on Search Agility Another dynamic strategy is to reject
a restart if the search itself seems to be agile enough [Bie08a]. The intuition behind
this agility is the following: if a variable is assigned the same polarity as before (which
can be checked by maintaining the cache interpretation Jcache from Section 5.4.5),
then the search got stuck, so the agility measure should decrease. Otherwise, the
solver is moving its current focus and therefore has a higher agility.

Let α describe the current agility of the search with the possible values α ∈ [0, 1].
Furthermore, a decay value δ ∈ [0, 1] is used to control how fast the agility actually
increases and decreases. Then, the following two calculation steps can be used for
increasing and decreasing the agility measure:

▶ α := δα+ (1− δ), if search is agile.

▶ α := δα, if search gets stuck.

As long as the value of δ is in the interval [0, 1], the above equations also ensure that
the agility measure α stays in this interval. Equipped with the measure of agility,
restarts are rejected if the agility of the search is higher than a certain limit, for
example more than α > 20% [Bie08a]. This limit has been used in PicoSAT 741
and showed an improved performance on unsatisfiable formulas. On the other hand,
the impact on satisfiable benchmarks was only minor [Bie08a].

Rejecting Restarts Based on Solution Distance Another way to reject restarts is
based on the estimated distance to a solution [AS12]. If the size of the current inter-
pretation recently increased much more than on average, then a restart is postponed
to give the search the chance to actually reach the model.

Similarly to the first dynamic schedule, this approach is based on a window of
the most recent conflicts. After backjumping from a conflict, the size of the current
interpretation is stored in a window of the most recent sizes. Once the window is
filled with values and the restart schedule wants to trigger a restart, the restart is
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skipped if the size of the current interpretation is higher than the average size of the
window, multiplied with a constant R: if |J | > R ∗ average(window). Audemard et
al. proposed a window size of 5000 entries and the constant R = 1.4.

5.5. Formula Preprocessing

After a problem has been encoded to CNF (see for example Section 4.2), the formula
can be solved with the CDCL algorithm. However, the formula might also contain
redundancies. Therefore, formula simplification techniques have been developed,
which aim at simplifying the formula with a polynomial algorithm to speed up the
solving task. There are two major categories of techniques, namely simplifications
that preserve the equivalence of the formula and simplifications that preserve only
the equisatisfiability, or that produce only unsatisfiability preserving consequences.
Techniques from the latter group allow stronger simplifications. In [JHB12] a frame-
work is given, which shows how simplification techniques can be modeled formally,
even when being applied during search. This framework furthermore shows which
information has to be kept to be able to construct a model for the original formula
when being provided only with a model for the simplified formula. Differently to
Generic CDCL, the given rules operate only on clauses and do not simulate the
partial interpretation. Still, Generic CDCL can simulate all presented techniques
by applying the rule ;learn and ;delete for equivalence preserving techniques and
the rule ;inp for the equisatisfiability preserving rules.

The following sections will first discuss equivalence preserving techniques that op-
erate on the CNF, and afterwards present known equisatisfiability preserving tech-
niques. Finally some high-level reasoning techniques are presented, that first require
to extract constraints from the CNF. The simplification techniques that preserve the
equivalence of the formula do not alter the number of complete models for the given
formula. For the techniques that preserve only equisatisfiability, there exist two
kinds: most techniques keep the number of complete models or even increase this
number. Known techniques are blocked clause elimination, covered clause elimination
or RAT elimination. Techniques that can decrease the number of complete mod-
els are blocked clause addition, adding pure literals as unit clauses, or covered literal
elimination.

Motivating Formula Simplification There are always discussions about the advan-
tages and disadvantages of formula simplification techniques on the Boolean level.
The arguments against formula simplification are as follows: as long as the encoding
procedure does not produce redundancies, there is no need to use formula simplifica-
tions. Still, there exist formula techniques like variable elimination (see Section 3.2.8),
which allow to remove a variable from the formula. While encoding a problem such
a removal is hardly possible, because the encoded formula needs the information
about the variable.15 Therefore, variable elimination cannot be simulated during en-
coding a problem. As presented in Section 5.8, variable elimination is a very powerful
simplification technique. Therefore, variable elimination should be used. Since the

15For certain applications, variable elimination can be performed partially during the encoding phase,
for example when encoding circuits into CNF [MV07].
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Subsumption (CNF formulas F ,G)

Input: formula F and clauses G to test

Output: formula F without redundant clauses

1 for C ∈ G do // for each clause

2 l := argminl∈C |F l| // select the least frequent literal

3 for D ∈ F l do

4 if C ⊆ D ∧ C ̸= D // find subsumed clauses with l

5 then F := F \ {D}

Figure 5.13.: Pseudo code of the subsumption procedure.

encoder has no control over the formula after variable elimination any more, redun-
dancies might be introduced during the simplification with variable elimination, so
that other simplification techniques may help to improve the obtained formula fur-
ther. Hence, formula simplification techniques are important and having specialized
techniques for special kinds of redundancy is important, even if the encoder never
produces this kind of redundancy. For this reason, simplification techniques should
also be interleaved and repeated. On the other hand, simplifying the high-level
problem before encoding it into CNF is an important part of the overall tool chain
as well and should not be neglected due to the fact that there are CNF simplification
techniques available.

5.5.1. Formula Simplifications

First, all the equivalence preserving techniques are discussed. unit propagation, sub-
sumption, strengthening and resolution have been discussed in Section 3.2 already
and their properties have been discussed. Furthermore, hyper Binary Resolution is
presented in Section 5.4.4. Another simplification technique is the so-called ternary
Resolution, which simply keeps all ternary and binary resolvents that can be pro-
duced when resolving all ternary clauses of the formula and adding the resolvents.
The latter two techniques inherit all the properties of resolution.

Subsumption and Strengthening

Besides the theoretical description of subsumption and strengthening, also the pseudo
code of the procedures to actually apply these rules is necessary for the remainder of
this thesis. Figure 5.13 shows the algorithm for subsumption, Figure 5.14 presents the
algorithm for strengthening, and finally, Figure 5.15 shows how these two algorithms
are executed to reach a formula that cannot be simplified by the two algorithms any
more. All algorithms are applied to a formula F and the clauses in the set G are
tested for the simplification. The simplest approach is to call each algorithm for the
complete formula, i.e. G = F . Very similar implementations are used for example
in the CNF simplifier SatELite [EB05].
First, subsumption is performed in a backward manner (algorithm in Figure 5.13),

so that for each clause C another clause D is removed if C subsumes D [Zha05].
This check is rather simple, because a candidate D has to contain all literals of C.
This algorithm is confluent, because subsumption is transitive. Given a formula F
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Strengthening (CNF formulas F , G)

Input: formula F and clauses G to test

Output: formula F without redundant literals

1 Q = G // use a queue of clauses, as set

2 for C ∈ Q do

3 Q := Q \ {C} // process the clause C

4 l := argminl∈C |F l ∪ F l| // select the least frequent literal

5 for D ∈ F l ∪ F l do

6 if (C ⊗D) ⊆ D then // ∃(C ⊗D), then test for strengthening

7 D := (C ⊗D) // remove a literal from D

8 Q := Q ∪ {D} // consider D again

Figure 5.14.: Pseudo code of the strengthening procedure.

and a set of clauses G, then each clause C ∈ G is considered as candidate (line 1).
As discussed, only for one literal l ∈ C the clauses in Fl have to be analyzed (line 3).
To reduce the computational work, the least occurring literal is selected (line 2). If
C subsumes D (line 4), then D is removed from the formula (line 5). The forward
check starting from D and looking for a clause subsuming C is more expensive and
requires a quadratic number of steps.

A similar idea is used for the implementation of strengthening (Figure 5.14). Given
a clause C and the literal l of the least frequent variable, then the clause D that is
used for strengthening should contain the literal l if this literal is used for resolution
or the literal l, such that the resolvent subsumes the clause D. Observe that in the
latter case the resolution operation might not be defined, because C and D might
not contain a complementary literal. In this case, no strengthening is applied.
Otherwise, the resolvent C ⊗ D is produced and checked to subsume D (line 6).
In this case, D is replaced with this resolvent (line 7) and furthermore the new D
is added back to the working queue Q, so that the now shorter clause can be re-
tested for strengthening other clauses again (line 8). To reach a formula that cannot
be simplified further, this addition is necessary. Otherwise, the algorithm would
not recognize possible strengthening steps that are possible with a reduced clause.
Similarly to subsumption, this algorithm is also based on the backward checking idea.

The reader should observe, that strengthening is not confluent, as presented in
Example 32. The reason is that clause D is removed from the formula, because
D is replaced with the resolvent (C ⊗ D). Hence, after this replacement, another
strengthening step on D is not possible any more. To avoid this scenario, the clause
D can be kept in the formula and the resolvent is added additionally. This approach
is called all-strengthening. Once the strengthening procedure finished, the clause D is
allowed to be removed, because the resolvent is also in the formula and subsumes D.
There is a drawback of the all-strengthening approach: assume the clause D has n
literals, i.e. n = |D|, then there are n possible clauses that could be added, because
strengthening removes exactly one literal. Out of these n clauses with n− 1 literals
each, another n − 1 clauses could be created. Where the original strengthening
procedure keeps only one clause of the current size, all-strengthening keeps all of
them. Hence, a limit on the size of the clause D is used: only if the clause D has
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SubSimp (CNF formulas F ,G)

Input: formula F and clauses G to test

Output: formula F without redundant clauses and redundant literals

1 Subsumption(F ,G) // call subsumption

2 Strengthening(F ,G) // call strengthening

3 H := {C | C ∈ F,C changed}
4 Subsumption(F ,H) // check subsumption with the strengthened clauses

Figure 5.15.: Pseudo code of combining strengthening and subsumption.

less than k literals, the clause is kept. Otherwise, the clause is replaced with the
resolvent eagerly.

Example 32: Strengthening a Formula Let F be the formula consisting
of the clauses C1 = (a ∨ b), C2 = (a ∨ b ∨ c) and C3 = (a ∨ c). Then, C1 can
be used to strengthen C2, so that C2 is replaced with D1 = (b ∨ c). Now, no
more strengthening steps are possible. On the other hand, the procedure could
also choose to start with C3 to strengthen C2. Then, the clause D2 = (a ∨ b) is
produced. With this clause, C1 can also be strengthened, resulting in D3 = (b).
However, D3 could not be found by starting with C1 and eager replacement.

Being provided with an algorithm for both strengthening and subsumption, the two
procedures should be combined to produce a formula that cannot be reduced fur-
ther by any of the two procedures (algorithm in Figure 5.15). In general, calling
subsumption after strengthening is sufficient to reach a formula that cannot be simpli-
fied any more by the two algorithms, because subsumption only removes clauses, but
does not reduce clauses. Since subsumption is less expensive, subsumption is called
first, so that the work load of strengthening can be reduced (line 1). Afterwards,
strengthening is applied to the whole formula as well (line 2). Finally, the backward
subsumption check has to be performed only with clauses that have been shrunk by
strengthening. Since none of the clauses in the formula was enlarged, other clauses
cannot subsume further clauses after strengthening. Hence, only shrunk clauses can
now subsume additional clauses (line 3–4). Observe that this combination of the
simplification techniques simulates unit propagation: satisfied clauses are removed,
because they are subsumed by the unit clause, and furthermore, falsified literals are
removed by strengthening with the unit clause. An illustration is given in Exam-
ple 33.

Example 33: SubSimp Simulates Unit Propagation Consider the for-
mula

(a) ∧ (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (d ∨ e) ∧ (a ∨ d ∨ f) ∧ (c ∨ d).
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SubSimp first applies subsumption. The clause (a) subsumes the clause (a ∨ b),
and the clause (a∨ d) subsumes the clause (a∨ d∨ f). Hence, these two clauses
are removed from the formula, resulting in:

(a) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (d ∨ e) ∧ (c ∨ d).

Next, strengthening is applied. The clause (a) can strengthen the clause (a∨c).
The resulting clause is (c), which replaces the latter clause. Likewise, (a) reduces
the clause (a∨ d) to the unit clause (d). Since reduced clauses are added to the
strengthening queue again, the clause (d) furthermore strengthens the clause
(d ∨ e) which is replaced with (e). The final formula after strengthening is

(a) ∧ (c) ∧ (d) ∧ (e) ∧ (c ∨ d).

The second application of subsumption in SubSimp finally removes the clause
(c ∨ d), which is subsumed by the clause (c). The final formula is

(a) ∧ (c) ∧ (d) ∧ (e).

These unit clauses would also be found by unit propagation, as well, and further-
more, when building the reduct with respect to the interpretation J = (acde),
the other clauses would be subsumed as well.

Tautology Elimination

In [HJB10], Heule et al. introduce the reverse technique of strengthening. Instead
of removing literals from a clause by strengthening, a so-called literal addition is
introduced. If a clause C can be turned into a tautology by iteratively adding
literals, then the clause C is removed, otherwise the added literals are removed
again. The following modification of a clause is allowed:

C := (C ∨ l), if D ∈ F and ((C ∨ l)⊗D) = C.

Equivalently, the clause D needs to fulfill the following property: D \ {l} ⊆ C,
because then the resolvent C can be produced as shown above. If the used clause
D is restricted to being binary, then the procedure is called hidden literal addition
(HLA). For the general case, the name asymmetric literal addition (ALA) is used.
Due to the differences in the implementation, these two methods are separated.
Given the above schema, a clause C can be removed from a formula F by hidden
tautology elimination or asymmetric tautology elimination if its extension via literal
addition is a tautology. Removing this kind of clauses preserves the equivalence, i.e.
F ≡ F \ {C} [HJB10].
The same property of asymmetric tautologies can be stated as follows:

Definition 5.22 (Asymmetric Tautology). Given a formula F , then a clause C ∈ F
is an asymmetric tautology if there exists a J , such that

F \ {C} :: (C) ;unit
⊡(F \ {C}) :: J , and ⊥ ∈ (F \ {C})|J .
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In other words, the clause C is entailed by the formula F \ {C} and this property
can be shown by using only unit propagation. The following example illustrates this
property.

Example 34: Asymmetric Tautologies Consider the formula

F ′ = (a ∨ d) ∧ (a ∨ d ∨ e) ∧ (c ∨ e).

Then, the clause C = (a∨b∨c) is an asymmetric tautology, because the formula

(a ∨ d) ∧ (a ∨ d ∨ e) ∧ (c ∨ e) ∧ ¬(a ∨ b ∨ c)

≡(a ∨ d) ∧ (a ∨ d ∨ e) ∧ (c ∨ e) ∧ (a) ∧ (b) ∧ (c) = F

can be shown to be unsatisfiable by unit propagation. Therefore, we apply the
rule ;unit until the empty clause is present in the reduct.

F :: ϵ

;unit F :: (a) F |(a) = (d) ∧ (d ∨ e) ∧ (c ∨ e)) ∧ (b) ∧ (c)

;unit F :: (ac) F |(ac) = (d) ∧ (d ∨ e) ∧ (e)) ∧ (b)

;unit F :: (ace) F |(ace) = (d) ∧ (d) ∧ (b)

;unit F :: (aced) F |(aced) = ⊥

;unsat UNSAT

Since the unsatisfiability of the formula F ′∧¬C can be shown by unit propagation,
C is an asymmetric tautology.

Probing Based Techniques

Many preprocessing techniques are based on probing [LMS03]. The following tech-
niques are based on assuming a literal l to be satisfied.

A failed literal l is found if assuming the literal leads to a conflict by unit prop-
agation, i.e. there exists a J such that F :: (l);unit

⊡F ′ :: J and ⊥ ∈ F ′|J . Since
satisfying the literal l cannot result in a satisfying assignment, the complementary
literal has to be satisfied by every model of the formula, and hence l is added to the
formula F , i.e. F := F ∧ l.

As already explained in Section 5.2.5, the number of assumed literals can be
increased, for example to two resulting in a double-look-ahead procedure. Similarly,
necessary assignments and equivalent literals can be found based on probing.

A simplification technique, similar to strengthening is clause vivification [PHS08],
also known as clause distillation [HS09]. Let C = (l1 ∨ . . . ∨ ln) be a clause, where
without loss of generality the literals li are sorted according to some measure. Then,
in this order the complementary literals li are assumed to be satisfied one after
another, and propagated on the formula F \{C}. All formula modifications preserve
equivalence on the formula [PHS08]. The following cases can occur, where the clause
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C is replaced with a new clause C ′ in the formula F , if a corresponding interpretation
J can be constructed as follows:

1. F \ {C} :: (l1, . . . , li);unit
⊡F :: J and ⊥ ∈ F |J and i < n,

then C ′ = (l1 ∨ . . . ∨ li).

2. F \ {C} :: (l1, . . . , li);unit
⊡F :: J and lj ∈ J and i < j < n,

then C ′ = (l1 ∨ . . . ∨ li ∨ lj).

3. F \ {C} :: (l1, . . . , li);unit
⊡F :: J and lj ∈ J and i < j ≤ n,

then C ′ = C \ {lj}.

In the first case 1., the clause C is replaced by the shorter clause C ′ = (l1 ∨ . . .∨ li),
because this clause is implied by the formula F \ {C}. The clause C ′ subsumes the
clause C, so that C is replaced with the new clause. Next, in case 2., the implication
(l1 ∧ . . . ∧ li)→ lj is entailed by the formula F \ {C}. This entailment relation can
be written as clause C ′ = (l1 ∨ . . .∨ li ∨ lj), which again subsumes the clause C, and
therefore C is replaced by C ′. Likewise, in case 3. the implication (l1∧. . .∧li)→ lj is
entailed. The corresponding clause is C ′ = (l1∨ . . .∨ li∨ lj), and with strengthening
on literal lj , this clause can be used to remove the literal lj from the clause C.

Bounded Variable Elimination

The elimination of a variable (see Section 3.2.8) from a formula has a long tradi-
tion. First, the elimination rule has been used in the DP procedure [DP60] (see
Section 5.2.2). Afterwards, Franco introduced the preprocessor INFREQ [Fra91].
The real break-through has been achieved by putting a limit on the elimination.
During one year, two research groups introduced a CNF simplifier that performs
variable elimination: Subbarayan et al. introduced NiVER [SP05], and Eén et al.
presented SatELite [EB05]. By additionally adding subsumption and strengthen-
ing, as well as exploiting functional dependencies of the variable to be eliminated,
the procedure of SatELite turned out to be very powerful. Since its introduction,
many SAT solvers use this preprocessor to simplify a formula before solving, because
usually, the run time of the solver can be decreased this way. The name bounded
variable elimination (BVE) is used, because a variable is usually eliminated only if
the number of the resolvents is less than or equal to the number of clauses that have
been used for resolution.
Given the formula F and let v be the variable that should be eliminated. The

variable v might be functionally dependent on some other variables in the formula F ,
for example v ↔ (a ∧ b). In clauses, this dependency is Gv = {(v ∨ a ∨ b)} and
Gv = {(v ∨ a), (v ∨ b)}. Then, the formulas Fv = Gv ∧ Rv and Fv = Gv ∧ Rv

can contain both the clauses that are used for the functional dependency and the
remaining clauses. The set of resolvents S is built in the following way:

S =


Rv ⊗Rv , iff Gv = ∅ ∧Gv = ∅
Gv ⊗Rv ∧Rv ⊗Gv , otherwise.

In case there is a functional dependency, so that Gv and Gv are not empty, then it
has been shown in [EB05] that keeping the resolvents from Gv ⊗ Rv and Rv ⊗ Gv
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VariableElimination (CNF formula F )

Input: formula F and clauses G to test

Output: formula F after variable elimination

1 Q := vars(F ) // working set

2 do

3 P := ∅ // touched variables

4 SubSimp(F ,F ) // remove all redundant clauses

5 for v ∈ Q do // use heuristic for order

6 Q := Q \ {v}, P := P \ {v}
7 S := F v ⊗ F v // create all resolvents, could consider gates

8 if |S| ≤ |F v|+ |F v| then // check formula growth

9 F := F \ (F v ∪ F v)

10 F := F ∪ S

11 P := P ∪ vars(S) // collect all touched variables

12 SubSimp(F ,S) // check redundancy based on new clauses

13 Q := P // reconsider variables of modified clauses

14 while P ̸= ∅ // repeat if changes have been performed

Figure 5.16.: Pseudo code of bounded variable elimination.

is sufficient to preserve equisatisfiability and model constructibility, because the set
Gv⊗Gv contains only tautologies, and the resolvents in Rv⊗Rv are entailed by the
set S and could be created in a linear number of resolution steps.
The literature leaves the question on how to find the functional dependency open.

In the implementation of BVE in Coprocessor only AND-gates are searched, be-
cause of their simple structure: given a clause C = (v ∨ l1 ∨ . . . ∨ ln), then the
corresponding binary clauses (v ∨ li), for all 1 ≤ i ≤ n, have to be found. If all
binary clauses occur, then the dependency v ↔ (l1 ∧ . . . ∧ ln) has been found.
Since BVE is empirically one of the most powerful simplification procedures, and

because the algorithm will be referred to later on again, this algorithm is presented
in Figure 5.16. The algorithm maintains a queue Q of variables that are considered
for simplification (line 1). Furthermore, a set of variables P is maintained, which
keeps track of variables that should be reconsidered for being eliminated (line 3).
Next, subsumption and strengthening are applied. This way unit clauses are also
propagated (line 4). Then, for each variable of the queue the elimination is tested
(lines 5–6). The order for the variables is usually based on the number of occurrences
of the variable v. Usually, the least frequent variable is tested first [EB05], but other
measures are possible as well [BM14a]. Next, the set of resolvents S is generated
(line 7). For simplicity, functional dependencies are not handled in the pseudo code
– they have to be found in this step, so that the set S can be created accordingly.
Then, if the number of resolvents is less than or equal to the number of clauses that
contain the variable v (line 8), then the clauses in Fv and Fv are replaced by the
resolvents S (lines 9–10).16 The variables occurring in the new clauses are added
to the set P , because these variables might be eliminated now with the new clauses

16These clauses could also be kept, for example as learned clauses. Lingeling [Bie13] follows this
strategy.
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(line 11). Furthermore, the new clauses S are used for simplifying the formula F
(line 12). After all variables in Q have been considered, the queue Q is updated
again by passing the variables in P , which occur in added resolvents but have not
been tested for elimination. To reach a formula that cannot be simplified further,
the presented algorithm has to be repeated until no more eliminations have been
performed in the inner loop and hence until the set P remains empty.
A few more heuristics have been introduced to reduce the computational effort

for the variable elimination procedure. For example, a variable v is only considered
if the number of clauses that contain this variable meet a certain condition. The
limitation applied in SatELite for a variable v is to execute the elimination only if

|Fv| ≤ 5 ∨ |Fv| ≤ 5 ∨ (|Fv| ≤ 10 ∧ |Fv| ≤ 10).

Otherwise, the algorithm in Figure 5.16 continues after line 6 with line 5 again.
As discussed already in Section 3.2.8, variable elimination produces an unsatisfi-

ability preserving consequence F ′ if the variable v is eliminated of the formula F .
Hence, F and F ′ are equisatisfiable, so the rule ;inp of Generic CDCL can be
used to model this simplification technique. Since BVE does not preserve equiva-
lence, a model J ′ |= F ′ does not necessarily model F as well, but a SAT solver will
only find the model J ′ of the simplified formula. In [EB05, JB10] the construction
for a model J |= F for the original formula F is presented:

J =


(J ′ \ {v}) ∪ {v}, if J ′ ̸|= Fv

(J ′ \ {v}) ∪ {v}, if J ′ ̸|= Fv

J ′, otherwise

Eliminating and Adding Blocked Clauses

Given a formula F , a clause C can be removed if C contains a blocking literal l,
which makes the clause C a blocked clause with respect to the formula F .

Definition 5.23 (Blocking Literal). Given a formula F and a clause C with the
literal l, then l is a blocking literal with respect to the formula F and the clause C
if for all clauses D ∈ Fl the resolvent (C ⊗l D) is a tautology.

Definition 5.24 (Blocked Clause). Given a formula F , then a clause C is blocked
if C contains a blocking literal.

An example that illustrates properties of blocking literals and blocked clauses is
Example 35.

Example 35: Blocking Literals and Blocked Clauses Let

F = (x ∨ a ∨ b) ∧ (x ∨ a) ∧ (x ∨ b) ∧ (x ∨ c) ∧ (x ∨ c) ∧ (b ∨ d) ∧ (b ∨ d).

be the formula, then the clause C = (x ∨ a ∨ b) is a blocked clause with two
blocking literals. First, x ∈ C is a blocking literal, because all resolvents with
clauses D ∈ F with x ∈ D are tautologies:

(x ∨ a ∨ b)⊗ (x ∨ a) = ⊤ (x ∨ a ∨ b)⊗ (x ∨ b) = ⊤.
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The first resolvent is obtained by resolution on a or on x, and there are no other
clauses D ∈ F with a ∈ D. Hence, a is also a blocking literal.
When removing the clause C from the formula, then the following formula is

obtained:

F ′ = (x ∨ a) ∧ (x ∨ b) ∧ (x ∨ c) ∧ (x ∨ c) ∧ (b ∨ d) ∧ (b ∨ d).

The literal a in the clause (x∨ a) is also blocked, because there exists no clause
D ∈ F ′ with a ∈ D. Since there are no resolvents on a, all resolvents are
tautologies. The formula F ′′ after removing (x ∨ a) is unsatisfiable.

F ′′ = (x ∨ b) ∧ (x ∨ c) ∧ (x ∨ c) ∧ (b ∨ d) ∧ (b ∨ d) ≡ ⊥.

Furthermore, the formulas F and F ′ are unsatisfiable. Removing the blocked
clauses did not change the satisfiability.

In [JBH10], Järvisalo et al. introduce blocked clause elimination (BCE) as CNF
simplification technique, which allows to remove blocked clauses from a formula.
This technique has been shown to be confluent. Furthermore, BCE is not equivalence
preserving. In [Kul99, JBH10], the addition, and hence also the elimination, of
blocked clauses is shown to preserve satisfiability. Hence, given a formula F = F ′∪S
where S is the set of blocked clauses with respect to the formula F . Then F ′ is an
unsatisfiability preserving consequence of F , i.e. F |=UNSAT F ′. This fact can be
shown by the following two statements:

▶ F ′ is equisatisfiable to F [JBH10].

▶ F ′ ⊆ F and therefore any model of F is also a model of F ′.

Since BCE preserves equisatisfiability, BCE can be modeled with the ;inp rule of
Generic CDCL. Observe that BCE does not produce a formula F ′ that is con-
structible with respect to the original formula F , because given a model for the
formula F , then the mapping of a variable that occurs in F might be changed to
satisfy F ′. However, such a modification contradicts the assumptions of constructible
formulas (see Definition 3.2). BCE produces model constructible formulas.

BCE can furthermore be combined with the above literal addition techniques. A
clause C can first be extended by hidden literal addition or asymmetric literal addition
to C ′. If this extended clause C ′ is blocked on some literal l ∈ C, then the clause
C can be removed as well. Heule et al. argue that for both the original BCE as well
as for the extended version the same information is required to construct a model J
for the formula F if a model J ′ for the simplified formula F ′ is given.

Let C be the (extended) blocked clause with the blocking literal l in a for-
mula F = F ′ ∪ {C} and the interpretation J ′ is a model for the formula F ′, i.e.
J ′ |= F ′. If J ′ ̸|= F , then the interpretation J = (J ′ \ {l}) ∪ {l} is a model for the
formula F [JB10].
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Covered Clause Elimination

A redundant cause C can be removed from a formula F by the even more pow-
erful elimination technique covered clause elimination (CCE). CCE is a combination
of another literal addition technique, covered literal addition (CLA), and a tautology
elimination or BCE. Similarly to BCE, a clause C is covered with respect to a for-
mula F if this clause C can be extended by CLA, such that the extended clause C ′

is a tautology or blocked. A literal l covers a clause C if for some other literal l′ ∈ C
the literal l occurs in all resolvents C ⊗l′ D for all clauses D ∈ Fl′ .

Definition 5.25 (Covering Literal). Given a formula F , then a literal l covers a
clause C if there exists a literal l′ ∈ C, such that:

l ∈


D∈F
l′ and not isTaut(C⊗D)

(D \ {l′}).

The literal l is called the covering literal of C on l′ with respect to the formula F .

Definition 5.26 (Covered Literal Addition). Given a formula F and a clause C ∈ F
with a covering literal l, l ̸∈ C, then CLA adds the literal l to the clause C, i.e.
C := C ∪ {l}.

The following example shows covering literals of a formula.

Example 36: Covering Literals Consider the formula

F = (a ∨ b) ∧ (a ∨ b ∨ c) ∧ (b ∨ d ∨ e) ∧ (b ∨ d ∨ f) ∧ (c ∨ d ∨ e ∨ f).

Then, the literal d is a covering literal on the literal b of the clause (a∨b). First,
the clauses that can be resolved with (a ∨ b) on b are given with the according
resolvent in the following table:

1. (a ∨ b) ⊗b (a ∨ b ∨ c) is a tautology (with c and with d)

2. (a ∨ b) ⊗b (b ∨ d ∨ e) = (a ∨ d ∨ e)

3. (a ∨ b) ⊗b (b ∨ d ∨ f) = (a ∨ d ∨ f)

Since the last two resolvents are no tautologies, the intersection R of the corre-
sponding two clauses is build:

R = ({b, d, e} \ {b}) ∪ ({b, d, f} \ {b}) = {d}.

Since the literal d is present in this intersection, d is a covering literal of the
clause (a ∨ b) with respect to the formula F .

The simplification technique CCE tries to extend a clause C of a formula F with
covered literals so that the extended clause becomes a tautology or becomes blocked.
If a tautology can be produced or the extended clause is blocked, then the clause C
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can be dropped from the formula [HJB13]. Otherwise, the extensions are dropped
again and the original clause C is kept.

Similarly to BCE, removing covered clauses preserves equisatisfiability [HJB13].
Hence, along the same arguments as for BCE, the formula F ′ that is obtained by
dropping a covered clause C from the formula F is an unsatisfiability preserving
consequence, i.e. F |=UNSAT F ′. Likewise, CCE produces constructible formulas.

This simplification technique can also be modeled with Generic CDCL. Also,
according to Heule et al., CLA can be mixed with asymmetric literal addition.

Given a formula F ′ that has been simplified by CCE and a model J ′ for this
formula, then the construction of a model J for the formula F can also be done: for
each extension of the clause C with a covering literal l′ on the literal l, the following
step has to be done, starting from J = J ′:

J = (J \ {l}) ∪ {l} if J ̸|= C.

The covered clause elimination process should therefore be viewed as an iterative CLA
to some clause C, which in the end becomes a tautology or becomes blocked. For
each of the intermediate versions of C, the above check has to be executed.

Eliminating Covered Literals Techniques like strengthening try to remove literals
from clauses instead of adding literals to the clause, because a shorter clause prunes
the solution space more. Strengthening is the counter technique for asymmetric literal
addition, such that an obvious step is to have a technique for CLA that results in the
opposite modification of the formula. Hence, intuitively covered literals should be
eliminated from clauses. This technique has not been considered in the literature
yet.

Given a formula F , then a literal l inside a clause C is covered if all possible
resolvents (C \ {l}) ⊗l′ D contain the literal l, where resolution is performed on
another literal l′ ∈ C for all clauses D ∈ Fl′ . According to the definition of CLA (see
Definition 5.25), the formulas F and F ′ = F \ {C} ∪ {C \ {l}} are equisatisfiable,
because F is the result of CLA on F ′, but now a literal from the clause C has been
removed. By applying CLA, the formula F can be retrieved from the formula F ′

again. Furthermore, any model of the formula F ′ is a model of the formula F , so
that no information needs to be stored to construct a model for the formula F .
Instead, possible models might be eliminated. Covered literal elimination is defined
as follows:

Definition 5.27 (Covered Literal Elimination). Let F be a formula, D be a clause
D ∈ F and x be a literal with x ∈ D. If D is the result of CLA on some clause
C = D \ {x} with respect to F , then replace D by C.

Although reversing the idea of CLA sounds simple, extra care needs to be taken for
tautological resolvents. Example 37 illustrates the problem that has to be taken
care of, because simply removing all the covered literals of a clause is unsound and
can result in turning satisfiable formulas into unsatisfiable formulas.
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Example 37: Incorrectly Computing CLE Consider the formula

F = (a ∨ b ∨ c ∨ d) ∧ (a ∨ c) ∧ (a ∨ c ∨ d) ∧ (a ∨ c ∨ e) ∧ b ∧ d ∧ e.

covered literal elimination (CLE) uses the intersection of all the clauses that pro-
duce a non-tautological resolvent, not considering the literal that is used for
resolution. Consider the clause C = (a∨ b∨ c∨ d) to perform CLE on the literal
a. We compute the following resolvents:

1. (a ∨ b ∨ c ∨ d) ⊗a (a ∨ c) = (b ∨ c)

2. (a ∨ b ∨ c ∨ d) ⊗a (a ∨ c ∨ d) is a tautology (with c and with d)
3. (a ∨ b ∨ c ∨ d) ⊗a (a ∨ c ∨ e) is a tautology (with c)

Since the first resolvent is the only non-tautological resolvent, the intersection
of all used clauses without the resolution literal is {c}. Hence, the incorrectly
applied CLE removes the literal c from the clause (a ∨ b ∨ c ∨ d). However, we
do not obtain the original formula by CLA with the clause again. Consider the
following resolvents:

4. (a ∨ b ∨ d) ⊗a (a ∨ c) = (b ∨ c)

5. (a ∨ b ∨ d) ⊗a (a ∨ c ∨ d) is a tautology (with d)
6. (a ∨ b ∨ d) ⊗a (a ∨ c ∨ e) = (b ∨ e)

Observe that resolvent 6 is not a tautology in contrast to resolvent 3. The
problem is that the literal c cannot be used for CLA, because c does not occur in
the intersection of all the resolvents. Consequently, we do not obtain the original
formula by applying CLA. While the formula F is satisfiable, for example with
the model (abcde), the formula after the incorrect reduction is unsatisfiable.
The incorrect reduction did not consider the literals that produced tautological
resolvents, as for resolvent 3. This kind of literal has to be excluded from the
set of literals that can be reduced from the clause.

Next, we show a property of CLE, and afterwards an algorithm is presented that
performs CLE correctly. The execution order of CLE influences the resulting formula,
as the following proposition claims:

Proposition 5.5.1 (Confluence of CLE). Covered literal elimination is not confluent.

Proof. Consider the formula

F1 = (b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ c).

CLE on the clause (a ∨ b ∨ c) with literal a produces the following formula:

F2 = (b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c).

Essentially, c is covered in the clause (a ∨ b ∨ c), and hence this occurrence c can
be eliminated. Observe that no further elimination steps are possible, because all
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Covered Literal Elimination (CNF formula F )

Input: A formula F in CNF

Output: formula F without covered literals in its clauses

1 P := lits(F ) // initial working set

2 while P ̸= ∅
3 Q := P

4 P := ∅ // consider touched literals

5 for x ∈ Q // pick next literal heuristically

6 for C ∈ Fx

7 S := C, appl := ⊥ // initialize CLE

8 for D ∈ Fx

9 if C ⊗D is a tautology then

10 S := (S ∩D) \ (C ∩D) // extra care for intersection

11 else // there is a non-tautological resolvent

12 appl := ⊤
13 S := S ∩D // update candidate set

14 if S = ∅ then break // early abort

15 if S ̸= ∅ and appl = ⊤ then

16 C := C \ S // remove covered literals

17 P := P ∪ S // recheck these literals

Figure 5.17.: Pseudo code of the covered literal elimination procedure and the exten-
sions to simultaneously compute blocked clause elimination.

clauses contain only one common variable for resolution. Consider a different exe-
cution order, where we use the literal c for resolution. The resulting formula is

F3 = (b ∨ c) ∧ (a ∨ c) ∧ (a ∨ c).

Then F3 ̸= F2, and there is another elimination step: the clause (a ∨ c) can be
reduced by resolving on the literal a (likewise, the third clause can be used). As
above, the literal c is covered and can be removed, resulting in the formula

F4 = (b ∨ c) ∧ (a) ∧ (a ∨ c) or F5 = (b ∨ c) ∧ (a ∨ c) ∧ (a)

Note that CLE is not applicable in F4 and F5. Moreover, we have that F4 ̸= F2 and
F5 ̸= F2. Consequently, CLE is not confluent.

This result is not surprising as also other techniques, such as self-subsuming res-
olution, are also not confluent. Since CLE preserves equisatisfiability, all produced
formulas are equisatisfiable. However, as can be shown with the formulas F2 and
F5 of the proof of Lemma 5.5.1, the resulting formulas are also not equivalent: the
interpretation I = (abc) is a model for the formula F2, but falsifies the formula F5.

The algorithm presented in Figure 5.17 computes the formula F ′ that is obtained
after removing correct and easily computable covered literals from all clauses in the
formula F . First, a set of literals P is initialized with all the literals for which CLE
should be checked (line 1). As long as there are literal in the set P , the main loop
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is repeated (lines 2–17). We store the literals in P in Q and set P to the empty set
(lines 3–4). Then, we iterate over the literals x in Q (line 5). Next, each clause C
that contains the literal l is analyzed (line 6). For CLE, the set of literals that are
covered can be at most the literals that occur in C. The candidate set S is initialized
with S = C and furthermore if no resolution with another clause D is possible, then
CLE is not applicable. Hence, the indicator variable appl is set to ⊥ (line 7). Then,
resolution is done for all clauses D in Fx that contain the literal x (line 8). If the
current resolvent (C ⊗D) is a tautology, the set of covered literal candidates S has
to be updated, namely by restricting these literals to the literals that occur in D but
that are not responsible for producing the tautological resolvent (lines 9–10). The
algorithm removes all literals from the candidate set S that are problematic (line 10,
see Example 37). If the resolvent is no tautology, the intersection of clauses can be
used to perform CLE, so that appl is set to ⊤ (line 12) and the set of candidates S
is updated (line 13). If S became empty, then CLE is not possible for C, so that the
analysis for C is aborted (line 14). If CLE can be performed for C after processing
all clauses D, because the set of candidate literals S is not empty (line 15), then
the covered literals S are removed from C. The complements of the literals in S
are added to the set of literals P , because these literals should be reconsidered for
CLE. Since the clause C cannot be used for resolution on these literals any more,
new redundant literals could be removed (lines 16–17). The literals that remain
in the clause C are not added to the set of literals P , because C became smaller
and the resolvents that are produced with C are not tautologies if they have not
been tautologies before. Hence, the analysis of the corresponding literals would not
improve.

Eliminating Resolution Asymmetric Tautologies

A more generic, but yet not implemented, simplification technique is the elimination
of a resolution asymmetric tautology (RAT). Since the related redundancy property
is quite strong, the corresponding elimination procedure is implemented into Riss
and evaluated in Section 5.8. RAT is a concept that builds on top of asymmetric
tautologies [HHJW13b]:

Definition 5.28 (Resolution Asymmetric Tautology). Given a formula F , then a
clause C ∈ F is a resolution asymmetric tautology, if there exists a literal l ∈ C,
such that for all clauses D ∈ Fl the clause C ∪ (D \ {l}) is an asymmetric tautology
with respect to F \ {C}.

Naturally, any clause that is an asymmetric tautology with respect to some formula
is also a RAT. Furthermore, blocked clauses and clauses that can be eliminated by
covered clause elimination are also resolution asymmetric tautologies [HHJW13b].
Since removing resolution asymmetric tautologies from a formula F preserves equi-
satisfiability, Generic CDCL models this elimination with the help of ;inp. Let F

′

be the formula that was initialized by F but all resolution asymmetric tautologies
have been removed. Along the arguments for BCE and CCE, the formula F ′ is an
unsatisfiability preserving consequence of F , i.e. F |=UNSAT F ′.
Due to the fact that the simplification does not preserve equivalence a model

construction is required. From a model J ′ of the simplified formula F ′ the model J
for the original formula F can be constructed by considering each eliminated RAT
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C and the related literal l [HHJW13b]. If the clause C is not satisfied by J ′ already,
then the related literal has to be satisfied:

J = (J \ {l}) ∪ {l} if J ̸|= C.

Equivalent Literal Substitution

Another redundancy within a formula is the equivalence of two literals l and l′. In
the simplest case, such an equivalence is present by two binary clauses (l ∨ l′) and
(l ∨ l′), which encode the statement (l ↔ l′). Another possibility is that there are
other intermediate literals li, so that the binary clauses form an implication chain
of the form l → l1 → . . . → lj → l′ → lj+1 → . . . → lk → l, with 1 ≤ j ≤ k.
In the latter case, the literals l, l′ and li form a strongly connected component in
the binary implication graph of the formula F . All literals li inside the strongly
connected component can be replaced by a single representative literal, for example
l, and the formula F has to be modified accordingly into a formula F ′:

F ′ = F [l1 →→ l] . . . [lk →→ l].

The analysis of strongly connected components on the binary implication graph has
been proposed in [APT79,Gel05].

Another way to find equivalent literals is based on probing, as already explained
in Section 5.2.5. These equivalences can be used to modify the formula as well.

Finally, equivalent literals can be found by structural hashing. Structural hashing
compares two gates that occur in the formula and tries to deduce equivalent literals.
This approach has been presented in [MS00]. For example, given the two AND-
gates x ↔ (a ∧ b) and y ↔ (a ∧ b), then both x and y are functionally dependent
on (a ∧ b), and hence their truth value has to be the same if both gates should be
satisfied. There are a few more, and more general, gate types that allow a similar
reasoning:

▶ OR-gates: x↔ (l1 ∨ . . . ∨ lk),

▶ AND-gates: x↔ (l1 ∧ . . . ∧ lk),

▶ XOR-gates: x↔ (l1 ⊕ . . .⊕ lk),

▶ ITE-gates: x↔ ITE(s, t, f).

The literal x is called the output of the gate, whereas the literals l1 to lk are called
inputs. If-then-else (ITE) gates (ITE-gates) are satisfied under the following condi-
tion: if the literal s is satisfied, then the literal t has to be satisfied as well, whereas
if the literal s is falsified, then the literal f has to be satisfied. Hence, the truth
assignment of the literal s chooses among the two literals t and f . For a pair of two
gates of the same type, the two output literals have to be equivalent if the two gates
have the same input literals. Similarly as for the strongly connected components
of the binary implication graph, the output literals of more than two gates with
the same input literals can also be connected and form a class of equivalent literals.
Again, all literals of such a class can be replaced by one representative literal and
then the formula can be modified accordingly.
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Assume the formula F ′ can be obtained from the formula F by replacing a set
of literals li with an equivalent representative literal l. Since the variables of l
and li do not occur in F ′, this simplification produces unsatisfiability preserving
consequences. Furthermore, F ′ and F are mutually constructible. With F |=UNSAT

F ′, the substitution of equivalent literals can be modeled with the rule ;inp of
Generic CDCL.

A Fast Simplification Approximation

In [HJB11] Heule et al. presented a preprocessing method that approximates many
of the above mentioned formula simplification techniques. Instead of fully comput-
ing each simplification, the approximation performs only a partial and incomplete
simplification. Therefore, the binary implication graph of the formula is traversed
in a depth-first way and for each literal a time stamp for the point in time when
the literal has been visited first, and when the subtree of that literal was finished, is
stored. With these time stamps, approximate implication checks can be done very
cheaply. Hence it can be checked whether a binary clause is entailed by the formula
(as already used in Local Probing in Section 5.2.5).

Given a literal x with the begin stamp a and the end stamp b, and a literal y with
the stamps c and d, where a < c and b > d holds, then this information represents
the fact that the formula F on which the stamps have been created, entails the
implication x → y. Therefore, based on such a pair of literals the simplification
techniques that rely on the existence of such a clause can be performed without
actually finding this binary clause in the formula. Hence, a clause (x ∨ y ∨ . . .) can
be removed from the formula F , because this clause is subsumed by the implication.
This approximation is called unhiding tautology elimination. Furthermore, this binary
clause can be used for strengthening, for example with a clause (x∨y∨. . .), where the
literal x can be removed by strengthening. This technique is called unhiding literal
elimination and is the confluent variant of strengthening [HJB11].

During the traversal of the binary implication graph also strongly connected com-
ponents of literals can be detected which can be used to substitute equivalent literals.
Next, redundant implications can be detected and removed. Finally, failed literals
can be detected and exploited.

5.5.2. Higher Level Reasoning – Beyond Resolution

The representation of the formula in CNF has its limits, not in the expressiveness
but in the structure. For some natural high-level constraints, like for example the
cardinality constraints discussed in Section 4.3, a huge number of clauses is required
and furthermore fresh variables are used to reduce the number of clauses. Hence,
CNF formulas might contain higher level constraints, however these constraint are
not obvious present. An algorithm that works on CNF formula might not be aware
of these constraints. For two families of constraints, extraction and reasoning tech-
niques have been presented, to apply higher level reasoning afterwards, and to use
the power of the stronger underlying proof systems (compare to Section 5.3):

▶ XORs, for which Gaussian Elimination can be used,

▶ Cardinality Constraints, for which the Fourier-Motzkin algorithm can be used.
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In the following, these two methods are presented briefly. Since both methods are
equivalence preserving, both of them can be modeled with the ;inp rule.

XOR Reasoning with Gaussian Elimination

Before reasoning with XORs of a formula F , an algorithm has to show that a certain
set of XORs is entailed by the given formula. Hence, an extraction method is
necessary. In general, an XOR (l1 ⊕ l2 ⊕ . . . ⊕ lk) with k literals is encoded into a
set of clauses S with |S| = 2k−1 and each clause contains k − 1 literals, all with the
same parity.

Definition 5.29 (Parity of a Clause). The parity of a clause C is defined as the
number of negative literals in the clause C modulo 2:

|{l | l ∈ C and l = v and v ∈ vars(C)}| mod 2.

Amore detailed description of the XOR extraction methods can be found in [SNC09].
Here, only the main ideas are sketched.
To extract the XOR, in the simplest case, the set S of clauses with the same size

and same parity has to be found in the formula, as shown in Example 38.

Example 38: Encoding XORs in CNF Consider the XOR (a ⊕ b ⊕ c).
The set of complete models for this constraint is {(abc), (abc), (abc), (abc)}. The
four other interpretations of these variables, i.e. {(abc), (abc), (abc), (abc)}, are
not allowed. Hence, they can be forbidden by the corresponding clauses:

(a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c).

Each of the forbidden interpretations falsifies one clause.

(a∨b∨c)|(abc) = ⊥ (a∨b∨c)|(abc) = ⊥ (a∨b∨c)|(abc) = ⊥ (a∨b∨c)|(abc) = ⊥.

As described above, the four clauses that are necessary to encode the given
XOR constraint all have the same parity. The parity of the first clause is even,
because this clause does not contain a negative literal. The remaining three
clauses contain two negative literals each, so that their parity is even as well.

The extraction algorithm proposed by Soos in [SNC09] detects XOR gates by first
sorting all literals in all clauses, and furthermore sorting all clauses in the formula
first according to their size and then according to the variables within the clauses. In
this process duplicate clauses are removed. Let V ′ = vars(S) be the set of variables
of the XOR. Then, if there are 2k−1 clauses with the same parity for all clauses of
size k − 1 that all contain all variables in V ′, then an XOR is found. Observe that
the parity of the clauses determines whether the XOR constraint of the variables
in the clause is either equal to one or equal to zero. Since the variables within a
clause are sorted, and furthermore, the clauses are sorted according to their size,
the candidate clauses with the same variables are located next to each other. Hence,
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the computational effort for this procedure is linear for the detection and O(n log n)
for sorting, when n is the number of clauses in the formula.

Not all XORs that are entailed by a formula can be recovered with such an
algorithm, as shown in Example 39. Hence, a first extension is to consider clauses
that subsume clauses of the full XOR encoding. Similarly, as also illustrated in the
example, an XOR constraint can be hidden because asymmetric tautologies have
been removed. However, as in the formula of the example, missing clauses can be
reconstructed by resolution, so given another clause D with k − 1 literals, where D
contains only one literal l with a variable that does not occur in the XOR variables,
then by resolution on this literal l with a binary clause (l ∨ li) a resolvent can be
created that contains the missing literal li, and hence is a participating clause of the
XOR if the resulting parity is correct.

Example 39: Partially Encoded XORs The high-level formula contains
the XOR constraint a ⊕ b ⊕ c, and furthermore the problem requires that the
two variables a and b are equivalent, i.e. a↔ b. Furthermore, there are the two
clauses (a ∨ d) and (b ∨ c ∨ d) in the description that have to be added. Then
the naive CNF representation is the following:

(a∨b∨c)∧ (a∨b∨c)∧ (a∨b∨c)∧ (a∨b∨c)∧ (a∨b)∧ (a∨b)∧ (a∨d)∧ (b∨c∨d)

The first four clauses encode the XOR constraint, and the next two clauses
encode the equivalence. Observe that the fifth clause subsumes the third clause,
i.e. (a ∨ b) ⊆ (a ∨ b ∨ c), and the sixth clause subsumes the fourth clause, i.e.
(a ∨ b) ⊆ (a ∨ b ∨ c). Hence, an equivalent formula in CNF is

(a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ d) ∧ (b ∨ c ∨ d).

Given this formula, the naive XOR extraction algorithm cannot find the XOR
constraint any more, because not all clauses occur. Even worse, when encoding
the CNF formula, clauses that are asymmetric tautologies can be removed and
equivalence is still preserved. In the above formula, the second clause, namely
(a∨ b∨ c), can be removed for this reason. The final formula, which still entails
the XOR constraint, is:

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ d) ∧ (b ∨ c ∨ d).

With this formula, even an algorithm that searches for subsuming clauses to
retrieve all clauses of the XOR will fail, because the clause that has just been
deleted is not subsumed by any of the remaining clauses.

Finally, equipped with the set of XORs X , the Gaussian elimination procedure [Hog13]
can be executed to produce either an empty clause, unit clauses, or binary XORs,
for example (a ⊕ b) which correspond to equivalent literals (a ↔ b), or new longer
XOR constraints. New longer XORs could be encoded into CNF and added to the
formula. Since the CNF representation of these clauses can be large, a size threshold
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might be necessary. In Coprocessor, the found unit clauses and equivalent literals
are used to simplify the underlying formula with unit propagation (see Section 3.2.3)
and equivalent literal substitution (Section 5.5.1).

Cardinality Reasoning with the Fourier-Motzkin Method

Another commonly used constraint is the cardinality constraint
n

i=1 li ≤ k with the
literals li and an integer threshold k. Widely used instantiations of this constraint are
the at-most-one constraint, with k = 1. Furthermore, a clause C = (l1 ∨ . . . ∨ lk+1)
can be expressed as equivalent cardinality constraint

k+1
i=1 li ≤ k. For this con-

straint reasoning techniques like the cutting planes proof system [CCT87] can be
used. For a preprocessing step, similarly to variable elimination and Gaussian elimina-
tion, the Fourier-Motzkin method [Fou27,Mot36] can be applied, either as simplifica-
tion [Bie13] or during search after extracting cardinality constraints [BLBLM14].
Again, the constraints need to be extracted first. As discussed in Section 4.3.2,
already for the at-most-one constraint there exist many encodings. The still most
widely used encoding is the pairwise encoding. From a formula size point of view, the
nested encoding should be preferred as soon as the number of literals ranges between
6 and 46 [MHB13]. Afterwards, the two product encoding should be used. Hence,
detection methods for these encodings are useful. Furthermore, the naive binomial
encoding of the at-most-two constraint for n literals,

M⊆{1,...,n}
|M |=k+1

(

i∈M

li),

should be detected.
The following paragraphs present the algorithm to extract cardinality constraints,

where the syntactic approach for the pairwise at-most-one constraint, as well as for
the naive at-most-two constraint have already been presented in [vL06,Bie13] and
the semantic approach by Le Berre has already been published in [BLBLM14].
Another existing approach that is based on BDDs by Weaver in [Wea12] is out of
the scope of the section.

Detecting the Pairwise Encoding of At-Most-One constraints For the syntactic
detection of at-most-one constraints the NAND graph (NAG) of a formula can be
used.

Definition 5.30 (NAND Graph). A NAND graph G = (V,E) of a formula F
contains all the literals of F as vertices, i.e. V = lits(F ), and an edge is placed
between two literals if their complements occur together in a binary clause, i.e.
E = {(l, l′) | (l ∨ l′) ∈ F}.

Given such a NAG, then an at-most-one constraint
n

i=0 li ≤ 1 forms a clique in
the graph with exactly the mentioned literals. Since finding a clique in a graph is
NP-complete [Kar72], the proposed detection algorithm approximates the expensive
algorithm. In Lingeling, all literals that do not already occur in a found at-most-
one constraint are considered. Then, let S be the set of candidate literals for the
constraint, which is initialized with such a literal l. Next, all literals l′ which occur
negated in binary clauses (l ∨ l

′
) together with l, which means the literals l and l′
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Merge at-most-one (set of at-most-one constraints S, set of variables V )

Input: A set of “at-most-one”cardinality constraints S, the set of variables V

Output: An extended set of “at-most-one”cardinality constraints

1 for v ∈ V // satisfiability rule

2 for A ∈ Sv // constraints that contain literal v

3 for B ∈ Sv // constraints that contain literal v

4 S := S ∪ simp(A+B) // simplified linear combination

Figure 5.18.: Algorithm to retrieve the nested encoding by combining already found
at-most-one constraints.

are connected in the NAG, are considered in an arbitrary order. Such a literal l′

is greedily added to S after checking that for each previously added literal k ∈ S
a binary clause (l′ ∨ k) also occurs in the formula, or similarly the literals l and k
have an edge in the NAG too.

The final set S of nodes forms a clique in the NAG. If there are more than two
literals in the candidate set, i.e. |S| > 2, then the clique is non-trivial and the
at-most-one constraint


l∈S l ≤ 1 is added to the set of found constraints [Bie13].

Detecting the Nested Encoding Consider the following at-most-one constraint
l1 + l2 + l4 + l5 ≤ 1 encoded using the nested encoding by the cardinality constraints
l1 + l2 + l3 ≤ 1 and l3 + l4 + l5 ≤ 1 (compare Section 4.3.2) with the fresh variable l3.
The two constraints are represented in CNF by the six clauses

(l1 ∨ l2) ∧ (l1 ∨ l3) ∧ (l2 ∨ l3) ∧ (l3 ∨ l4) ∧ (l3 ∨ l5) ∧ (l4 ∨ l5).

Since there is no binary clause (l1 ∨ l4), this encoding of l1 + l2 + l4 + l5 ≤ 1 cannot
be revealed by the above method. Here, a new method is presented that recognizes
this encoding. The assumption is that the two small constraints have been found
already by the above method (their literals form two cliques in the NAG). Then,
there is an at-most-one constraint for the literal l3, as well as for the literal l3. By
resolving17 the two constraints, the original constraint can be obtained.

The algorithm in Figure 5.18 searches for exactly this nested encoding by com-
bining pairs of already found at-most-one constraints. For each variable v (line 1),
all at-most-one constraints with a different polarity (lines 2–3) are summed up pair-
wise, simplified and afterwards added to the set of constraints (line 4). During
the simplification in simp the constraint is checked for duplicate literals or whether
complementary literals occur. In the former case, the duplicated literal has to be
assigned ⊥, because that literal has now a weight of two in that constraint, while
the threshold is 1. In the latter case, all literals of the constraint (A+B), except the
complementary literal, have to be falsified, because in pseudo Boolean constraints
the equation x+ x = 1 holds, so that the threshold is reduced by one to zero. The
simplified constraint is added to the set of at-most-one constraints, which is finally
returned by the algorithm.

17There is a form of generalized resolution that allows to resolve cardinality constraints [Hoo88].
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e Selection Clauses
(x1 ∨ r1) (x1 ∨ c1) (x2 ∨ r1)
(x2 ∨ c2) (x3 ∨ r1) (x3 ∨ c3)
(x4 ∨ r1) (x4 ∨ c4) (x5 ∨ r2)
(x5 ∨ c1) (x6 ∨ r2) (x6 ∨ c2)
(x7 ∨ r2) (x7 ∨ c3) (x8 ∨ r2)
(x8 ∨ c4) (x9 ∨ r3) (x9 ∨ c1)
(x10 ∨ r3) (x10 ∨ c2)

Recursive at-most-one
(r1 ∨ r2) (r1 ∨ r3) (r2 ∨ r3)
(c1 ∨ c2) (c1 ∨ c3) (c1 ∨ c4)
(c2 ∨ c3) (c2 ∨ c4) (c3 ∨ c4)

Figure 5.19.: Encoding the at-most-one constraint
i≤10

i=1 xi ≤ 1 with the two product
encoding, and two auxiliary at-most-one constraints r1 + r2 + r3 ≤ 1
and c1 + c2 + c3 + c4 ≤ 1.

Since the nested encoding can be encoded recursively, the algorithm can be called
multiple times to find these recursive encodings.18 Since the variables in a formula
are sorted, the implemented algorithm loops over the variables in ascending order
exactly once. This seems to be sufficient, because the recursive encoding of con-
straints requires that the “fresh” variable does not occur yet, so that the ascending
order in the variable finds this encoding.

Detecting the Two Product Encoding The two product encoding has a similar
recursive structure as the nested encoding, however, its structure is more complex.
Hence, this encoding is discussed in more detail. The constraint in Figure 5.19
illustrates an at-most-one constraint that is encoded with the two product encoding.
For all concerned literals, in the example x1 to x10, two implications are added to

set the column and row selectors. For example, as x7 is on the second row and the
fourth column, the constraints x7 → r2 and x7 → c3 are added. In order to prevent
two rows or two columns selectors to be set simultaneously, we also add at-most-
one cardinality constraints on the ci and on the ri literals. Those new cardinality
constraints are encoded using the pairwise encoding if their size is low, or using the
two product encoding.
In the given constraint, the following implications to select a column and a row

for x7 are entailed by the encoding: x7 → c3 and x7 → r2. Additionally, the
implications c3 → c2 and c2 → (x2 ∧ x6) show by transitivity that x7 → (x6 ∧ x2).
Since all implications are built on binary clauses, the reverse direction also holds:
x6 → x7 and x2 → x7. Hence, the constraints x6 + x7 ≤ 1 and x2 + x7 ≤ 1 can be
deduced. However, the constraint x2 + x6 ≤ 1 cannot be deduced via the columns
and their literals c2 and c3. This constraint can still be found via rows, namely with
the literals r1 and r2. The same reasoning as for columns applies also to rows.

18To not resolve the same constraints multiple times, for each variable an implementation could
memorize the already considered constraints, so that in a new iteration only resolution steps
with new constraints are performed.
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Extract two product constraints (set of at-most-one constraints S, set of variables V )

Input: A set of “at-most-one”cardinality constraints S, the NAG of the formula

Output: An extended set of “at-most-one”cardinality constraints

1 for R ∈ S // for each row constraint

2 r := min(R) // smallest literal in A

3 l := min(NAG(r)) // smallest literal l, with r → l

4 for c ∈ NAG(l) // c can be a column selector

5 for C ∈ Sc // use column constraint C

6 P := ∅ // construct a new constraint

7 for k ∈ C

8 hitSet := R // to hit each literal once

9 for hitLit ∈ NAG(k), hitLit ̸∈ P

10 for targetLit ∈ NAG(hitLit)

11 if targetLit ∈ hitSet // found selector pair

12 hitSet := hitSet \ {targetLit} // to not hit twice

13 P := P ∪ {hitLit} // increase constraint

14 S := S ∪ P // store new AMO constraint

Figure 5.20.: Algorithm to extract at-most-one constraints that have been encoded
with the two product encoding.

More generally, given an at-most-one constraint R, where the complement of a
literal ri ∈ R implies some literal xi, i.e. ri → xi, and furthermore, this literal xi im-
plies a literal ci, which belongs to another at-most-one constraint C, i.e. ci ∈ C, then
by using R as row constraint, and C as column constraint, an at-most-one constraint
that includes xi can be constructed by searching for the remaining literals xj . Per
literal ri in the row constraint R, literals xi implied by ri can be collected as candi-
dates to form a row in the two product representation. Only literals xi that imply
a different literal ci of the column constraint C are considered, so that the literal
inside each row matches exactly one column in the matrix. The literals for one row
already form an at-most-one constraint. For the next row ri+1, more literals xi are
collected in the same way and added to the at-most-one constraint. This addition
is sound based on the construction of the encoding: if one of the elements in the
new at-most-one constraint is assigned to ⊤, then this assignment implies its row
and column variable to be satisfied as well. Since there is an at-most-one constraint
enforced for both the rows and the columns, all other row and column variables
are assigned ⊥. Due to the implications in the two product encoding, these falsified
selector variables also falsify all variables (except the currently satisfied one) in the
new at-most-one constraint, and hence only the initially satisfied variable remains
satisfied.

To the best of our knowledge, no existing system is able to detect at-most-one
constraints which are encoded in this way. The following algorithm is able to find
some of these constraints. Furthermore the presented algorithm is able to extract
at-most-one constraints that form the structure of the two product encoding partially.

Constructing new at-most-one constraints based on the idea of the two product
encoding is done by first finding two at-most-one constraints R and C, which contain
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a literal r and c. These two literals are used by some literal l as row selector
and column selector (lines 1–5). Therefore, all at-most-one constraints R ∈ S are
considered and a literal r ∈ R is considered as row selector variable. Next, the
literal l is chosen to be in the new two product encoding of the at-most-one constraint.
To reduce the computational work, the literal r is assumed to be the smallest literal
in R and the literal l is the smallest literal, such that r → l holds (lines 2–3).
Finally, another at-most-one constraint C is selected, which contains the column
selector literal c. For each pair of at-most-ones R and C, a new at-most-one can
be constructed (line 6), by collecting all literals li. The literals li are called hitLit

in the algorithm, because each such literal needs to imply a unique pair of row
selector literal of R and column selector literal of C. This condition can be ensured
by searching for literals that are implied by the complement of the column selector
literal k: k → hitLit. Furthermore, a literal hitLit has to imply a row selector
variable r ∈ R (lines 10–11). To ensure the second condition, an auxiliary set of
literals hitSet is used, which stores all the literals of the row selector at-most-
one constraint R during the analysis of each column. If for the current column
selector c and the current literal hitLit a new selector targetLit ∈ hitSet is
found (line 10), then the set hitSet of hit literals is updated by removing the
current hit literal targetLit, and furthermore, the current hitting literal hitLit
is added to the currently constructed at-most-one constraint (lines 12–13). Finally,
the new at-most-one constraint is added to the set of constraints after all literals
of C have been processed (line 14).

With this algorithm the two product encoding of at-most-one constraints can be
found. Even if not all cells inside the at-most-one constraint in the two-dimensional
grid structure of the encoding are filled with literals, the literals of this partial
encoding can be found as at-most-one constraint. Hence, this algorithm is capable
of revealing at-most-one constraints that do not directly occur in the description
of the high-level problem. As presented in [BLBLM14], the algorithm is able to
reveal at-most-one constraints that have not been encoded with the two product
encoding.

Detecting At-Most-Two Constraints Similarly as for finding cliques of binary
clauses, a set of ternary clauses can be found that encodes an at-most-two constraint.
Given a constraint

n
i=1 li ≤ 2, then for each triple of literals li a ternary clause

with the complementary literals needs to occur in the formula.

Again, a greedy algorithm has been proposed in [Bie13]. Given a formula F , all
literals l ∈ lits(F ) are considered. For the current literal l, the set of literals S
that occur in ternary clauses with l is constructed by only considering the literals
that occur at least twice in such a ternary clause. Then, for all literals l′ ∈ S
the algorithm checks, whether for each possible triple of literals of S a ternary
clause in F can be found. If this check fails, then the literal l′ is removed from the
set S. If the cardinality of the set S is reduced to less than 4 elements, the current
computation for the literal l is stopped and the next literal is chosen. However,
if for all literals in S all triples can be found and furthermore |S| ≥ 4, then the
at-most-two constraint


l∈S l ≤ 2 is added.

To reduce the computational cost, literals that participate in a found constraint
already, are not checked again by the algorithm in Lingeling [Bie13].
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Detecting Cardinality Constraints Semantically Instead of finding cardinality
constraints by a syntactic approach, Le Berre et al. proposed a semantic algorithm
that uses unit propagation to find cardinality constraints of a formula [BLBLM14].
Given a formula F , the algorithm starts with a clause C = (l1∨ . . .∨ lk). This clause
is equivalent to the cardinality constraint

k
i=1 li ≤ k−1. Let S be the literals inside

this constraint, i.e. S = {l | l ∈ C}. Then, for each subset M ⊂ S with |M | = k − 1
literals, unit propagation on the formula F ∧M should falsify all remaining literals
S \M of the constraint. Therefore, if all these subsets imply the same literal l′, then
this literal l′ can be added to the set S. This way, the revealed constraint becomes
more expressive, because it constraints more literals. After such a literal has been
added, the procedure can be repeated again, because the updated constraint is also
entailed by the formula.

Another update to the constraint can be done if all propagations for all the for-
mulas F ∧M result in a conflict, because in this case given the literals S, none of the
combination of k− 1 literals can be satisfied. Hence, the threshold of the constraint
can be updated, so that the resulting constraint is

k
i=1 li ≤ k − 2.

Le Berre et al. present an algorithm to extract cardinality constraint of a for-
mula F with the above method and furthermore show that the executed steps are
correct. Additionally, they show that not all clauses C of the formula need to be
considered due to redundancy [BLBLM14]. However, for example for at-most-one
constraints, due to the fact that the algorithm starts with a clause C that needs to
contain at least two literals of the resulting constraint, this algorithm can not detect
constraints that have been encoded with the two product encoding either. Hence,
at least the presented method to extract at-most-one constraints based on the two
product encoding should be combined with the semantic approach.

Preprocessing with Cardinality Constraints Once a set of cardinality constraints
is obtained, an algorithm similar to variable elimination on clauses can be executed.
In general, this algorithm can be applied to pseudo Boolean constraints as well –
however, their detection in CNFs is much more complicated. The algorithm that is
used in Lingeling [Bie13] is able to process only cardinality constraints. Hence, if
an intermediate constraint is a pseudo Boolean constraint, the constraint is modified
so that an entailed cardinality constraint is produced. Another alternative is to drop
the constraint, but in this case information about the problem is lost. The idea of
the simplified version of the Fourier-Motzkin algorithm was already presented in
Example 30 on page 139.

The pseudo code of the actual algorithm is given in Figure 5.21. The algorithm
makes the assumption that the used constraints have a certain form.19 First, no
complementary literals are allowed to appear in the constraint. Furthermore, a
literal is not allowed to appear on both sides of the equation symbol. Tautological
constraints like 1 ≤ 1, 0 ≤ x or x ≤ 1 are also removed eagerly. Finally, the algorithm
does not support pseudo Boolean constraints, so that no weights are allowed. Hence,
those constraints are either simplified, or dropped from the set of constraints. Since
the Fourier-Motzkin method is considered only as a preprocessing step, dropping
or simplifying constraints is not harmful for soundness of the overall procedure.

19In general, the Fourier-Motzkin algorithm can also handle general pseudo Boolean constraints,
however, the implementations in Lingeling and Coprocessor do not support the full format.
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FourierMotzkin (Set of constraints F )

Input: A set of constraints F

Output: The solution UNSAT, or UNKNOWN if no solution could be found

1 Q := vars(F ) // working set

2 do

3 P := ∅ // touched variables

4 for v ∈ Q do // use heuristic for order

5 Q := Q \ {v}, P := P \ {v}
6 S := {simp(A+B) | A ∈ F v, B ∈ F v} // create all simplified pairwise sums

7 if |S| ≤ |F v|+ |F v| then // check formula growth

8 F := F \ (F v ∪ F v)

9 F := F ∪ S

10 P := P ∪ vars(S) // collect all touched variables

11 Q := P // reconsider touched variables

12 while P ̸= ∅ // repeat if changes occurred

13 if 1 ≤ 0 ∈ F then return UNSAT // found a contradiction

14 return UNKNOWN // did not find a contradiction

Figure 5.21.: Pseudo code of the simplified Fourier-Motzkin method.

If the algorithm proves the current set of constraints to be unsatisfiable, then the
underlying formula is unsatisfiable as well. On the other hand, the algorithm will
never show satisfiability. Hence, the algorithm is not complete. To simplify an
intermediate pseudo Boolean constraint


iwili ≤ k +


j w

′
jl
′
j according to the

mentioned rules, the simplification method simp is used.

Then, the Fourier-Motzkin algorithm works as follows: similarly as for variable
elimination a priority queue Q is used to determine the order of the elimination steps
and is initialized with all variables of the formula (line 1). Then, as long as there
are touched variables P , the main loop of the algorithm is executed (lines 2–14).
First, the touched variables are reset (line 3). Next, each variable v in the priority
queue Q is considered for an elimination step (line 4), and hence the variable is
removed from the corresponding structures P and Q (line 5). Then, the set S is built
as the set of all pairwise sums where each sum is simplified with the method simp.
Similarly to BVE, the elimination is only performed if the set of constraints in the
formula decreases (line 7). In this case, the old constraints in Fv and Fv are removed
from the formula (line 8), and the new constraints are added (line 9). Finally, the
set of touched variables P is updated with all the variables that occur in the new
constraints (line 10), so that their elimination can be tested again. After all variables
in Q have been processed, Q is updated with the touched variables of the previous
round (line 11), as long as there are touched variables left (line 12). Finally, the
procedure returns whether a contradicting constraint has been found (lines 13–14).

The presented algorithm is used as a CNF simplification in Coprocessor. Fur-
thermore, the constraints that are created during the algorithm can be encoded into
CNF and added back to the underlying formula. Adding these clauses preserves the
equivalence of the formula, because generalized resolution on cardinality constraints
preserves equivalence [Hoo88]. Hence, new clauses can be derived from at-least-one
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constraints, and newly derived at-most-one constraints can be encoded and added
to the formula.

Since equivalence is preserved, the addition of the presented clauses can be mod-
eled with the rule ;learn of Generic CDCL. Furthermore, with more intermediate
steps, systems that handle cardinality constraints and pseudo Boolean constraints
natively during the search, like for example SAT4J [Hoo88], Clasp [GKNS07], and
MiniCard [LM12] or Pueblo [SS06], can also be simulated. The constraints that
are added by these systems can also be expressed by clauses, so that these clauses
can be added in the simulation of Generic CDCL. Moreover, the above men-
tioned systems also perform generalized resolution (SAT4J), or create a clause that
is entailed by a constraint (Clasp and MiniCard), so that all these steps preserve
equivalence as the above preprocessing method.

5.5.3. Inprocessing – Simplifications during Search

In [JHB12] a discussion is given how simplification techniques can be used when
learned clauses occur in the formula. By considering all these rules, any of the pre-
sented simplification techniques can be applied during search. The most important
rule to be considered is the following:

Whenever a learned clause is used during simplification to drop an irredundant
clause, then this clause needs to be made irredundant.

Otherwise, the removal heuristic might remove the corresponding learned clause,
and an unsatisfiable formula might be turned into a satisfiable formula. If tracing
learned clauses is not easy, as for example during unhiding, or the Fourier-Motzkin
method, then the learned clauses should not be considered to remove clauses from a
formula. Finally, bounded variable addition (see Section 5.6) should not reencode the
formula with a fresh variable if the corresponding pattern does not involve sufficiently
many irredundant clauses of the formula. The motivation behind this statement is
the following: the newly introduced variable becomes redundant after removing all
these redundant learned clauses from the formula again.

5.6. Formula Reencoding

The original idea of reencoding a CNF formula has been motivated by the wide use
of the pairwise encoding of the at-most-one constraint, because quadratically many
clauses are used. Many applicants of SAT technology might not be aware of more
sophisticated encodings, so that an automatic reencoding of the formula is a valuable
contribution. As an example consider the translations from CSP to SAT, where the
order encoding has shown a good performance, for example when being used in the
CSP solver Sugar [TTKB09], which won several categories of CSP competitions
2008 and 2009. The order encoding turned out to be very powerful also in practi-
cal applications, like for example for scheduling in rail way networks [GHM+12].
Hence, translating CNF formulas from the direct encoding to the order encoding is
promising.

A related approach is the reencoding technique by Condrat et al. [CK07], which
partitions the formula and removes clauses that define functional dependencies. The
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remaining clauses are clustered based on shared variables. Then, each cluster is
transformed into a Gröbner basis, the basis is reduced and afterwards the reduced
basis is transformed back into CNF. Condrat et al. show that in combination with
BVE, this transformation can lead to a faster solving process. However, this reen-
coding technique itself is reported to be sometimes quite expensive [CK07].

The application of formula reencoding is questionable. Similarly to the argumen-
tation at the beginning of Section 5.5, after variable elimination has been executed
on a formula, the obtained formula might contain structure that cannot be avoided
even by clever encoding techniques. Therefore, the following technique is still use-
ful: reencoding can be applicable on a formula after variable elimination, even if the
original formulas could not be reencoded before.

In a first approach we tried to reencode the at-most-one constraint of exactly-one
constraints that are encoded in a CNF formula [MS11]. After a naively encoded
exactly-one constraint has been extracted with a syntactic analysis (compare Sec-
tion 5.5.2), a set of fresh variables is introduced and the at-most-one constraint has
been encoded with the order encoding. This construction is also known as the lad-
der encoding [AM05]. The original formula and the reencoded formula are mutually
constructible, because extended resolution is used and a sub formula is replaced by
an equivalent formula. Hence, this reencoding preserves equisatisfiability, so that
the procedure can be covered with the ;inp rule of the Generic CDCL framework.

Although the number of clauses inside the formula has been decreased by this
approach, the performance of SAT solvers was not improved. Furthermore, although
extended resolution has been used during reencoding (fresh variables have been
added), the power of the solving procedure was not improved. This result is in
line with the results on extended resolution by Huang [Hua10] and Audemard et
al. [AKS10]: although there exist ways to apply extended resolution in a modern
SAT solver it is yet unclear which kind of variables should be introduced to improve
the performance.

5.6.1. Bounded Variable Addition

Simply reencoding a sub formula had no superior effect on the performance of the
SAT solver. Another more global reencoding turns out to give better results. The
general idea is to reencode a part of a formula with the help of fresh variables such
that the number of clauses in the formula decreases. This operation can be seen as
the opposite operation of variable elimination. In this section the formula is assumed
to not contain duplicate clauses – the implemented algorithm ensures this property
by eliminating duplicate clauses before being applied. Given a formula F = G ∪ S
and furthermore let x be a fresh variable. Then, there exist sets of clauses S, such
that with the help of the variable x two sets of clauses Sx and Sx can be constructed,
such that the set S is the set of all non-tautological pairwise resolvents of Sx and Sx:

S = woTaut(Sx ⊗ Sx).

The set S can contain arbitrary clauses of the formula, such that the two sets Sx

and Sx can be constructed. However, to be able to actually find and compute all
sets, some restrictions are applied, as explained in Section 5.6.2. The formula F
can be reencoded into the mutually constructible formula F ′ by replacing the set of
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clauses S with the two sets Sx and Sx:

F ′ = (F \ S) ∪ (Sx ∪ Sx).

The two formulas are mutually constructible, because the formula F can be ob-
tained from F ′ by eliminating variable x. Variable elimination produces mutually
constructible formulas, as explained in Section 3.2.8. However, when the above
reencoding is combined with BVE, then this reencoding is undone as soon as the
sets Sx and Sx introduce at least the same number of clauses that occur in the set S.
Hence, variable addition is applied only when the number of clauses decreases, i.e.
|S| > |Sx|+ |Sx|.

5.6.2. Using AND-Gates as Extension

For bounded variable addition on a formula F the possibilities of extensions with
a fresh variable are numerous. Hence, a restriction is put on the structure of the
extension, so that finding these extensions becomes feasible [MHB13]. An example
formula with the corresponding extension is presented in Example 40. Given this
small example, the following condition is put on the new variable x and the sets Sx

and Sx:

The positive literal x is allowed to occur only in binary clauses.

There is no restriction on the occurrence of x. Let li be the literals that occur
together with x in the binary clauses in Sx, then with the above condition, the
following implication will always be found:

x→

i

li.

Since the variable x does not occur in the formula F before reencoding, the clause
C = (x∨


i li) is blocked with respect to the reencoded formula F ′ on the variable x

and can be added to the formula with blocked clause addition. Then, the full defini-
tion of the AND-gate x↔


i li would be present. However, since C is blocked and

blocked clause elimination will remove C again. Since the reduction of the technique
degrades when more clauses are added to the formula, C is not added.

Next, the reencoding algorithm is presented, which uses two sets: The set of
literals Mlit contains all the literals li that will occur in binary clauses with the new
variable x. Furthermore, the set of clauses Mcls stores the current representative set
of clauses that will be reencoded into the set Sx after the clauses S have been found.
The pair {Mlit,Mcls} is called a replaceable matching with respect to the formula F
if for all l ∈ Mlit and C ∈ Mcls the clauses (C \ {Mlit}) ∪ {l} are either in F or
tautological.

Definition 5.31 (Replaceable Matching). Given a formula F , a set of literals Mlit

and a set of clauses Mcls. The pair {Mlit,Mcls} is a replaceable matching if for all
literals l ∈Mlit and all clauses C ∈Mcls, the clause (C \ {Mlit}) ∪ {l} either occurs
in the formula, or this clause is tautological.
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Given a replaceable matching {Mlit,Mcls}, the matching-to-clauses construction is
applied that creates the sets Sx and Sx as follows: for all literals l ∈Mlit the binary
clauses are created that form the implication x→


i li,

Sx = {(l ∨ x) | l ∈Mlit},

and in all clauses occurring in Mcls the literals in Mlit are replaced with the fresh
literal x:

Sx = {(C \Mlit) ∪ {x} | C ∈Mcls}.

The final step of the reencoding procedure is to remove all clauses occurring in S,
namely (C \ {Mlit}) ∪ {l} with l ∈ Mlit and C ∈ Mcls, and replace them with the
new clauses Sx ∪ Sx.

Example 40: Smallest Formula for BVA The smallest formula F for
which adding a variable decreases the number of clauses consists of six clauses.
This formula F contains the pattern

F = (a ∨ c) ∧ (a ∨ d) ∧ (a ∨ e) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (b ∨ e).

By adding a fresh variable x, F can be reencoded into the mutually constructible
formula F ′ with five clauses:

F ′ = (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x) ∧ (d ∨ x) ∧ (e ∨ x).

Observe that the number of occurrences of the literals a and b decreased from 3
in F to 1 in F ′. Furthermore, the occurrences of the literals b, c and d are
reduced by 1.

Consider Example 40 again: For the formula F there exists the replaceable matching
with Mlit = {a, b} and Mcls = {(a ∨ c), (a ∨ d), (a ∨ e)}. Applying the matching-to-
clauses construction to this replaceable matching results in the sets Sx = {(a∨ x)∧
(b∨x)} and Sx̄ = {(c∨x)∧(d∨x)∧(e∨x)}, which finally give the formula F ′ = Sx∪Sx̄.

Theorem 5.6.1 (Properties of reencoding with a replaceable matching). Given a
replaceable matching {Mlit,Mcls} of a CNF formula F , then a formula F ′ can be
constructed by adding a fresh Boolean variable such that (1) F ′ is mutually con-
structible to F and (2) F ′ contains |F |+ |Mlit|+ |Mcls|−|Mlit| · |Mcls| clauses if none
of the resolvents is a tautology.

Proof. Applying BVE on x in F ′ produces F . Then (1) holds, because BVE produces
mutually constructible formulas. Given a replaceable matching {Mlit,Mcls}, F ′ can
be constructed as follows: remove from F all clauses (C \ {Mlit})∪{l} with l ∈Mlit

and C ∈ Mcls and replace these clauses with the set of clauses Sx ∪ Sx̄, which
are obtained using the matching-to-clauses construction method. The number of
removed clauses is |Mlit| · |Mcls|, while the number of added clauses is |Mlit|+ |Mcls|
showing (2).
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We refer to the reduction of a replaceable matching {Mlit,Mcls} with respect to the
number of clauses as |Mlit| · |Mcls| − |Mlit| − |Mcls|. Heuristically the most interest-
ing replaceable matching is the matching with the largest reduction. Finding the
matching with the largest reduction is more difficult, because for this task all literals
have to be considered. Hence, when computing the set S of clauses that should be
reencoded, we heuristically consider the literal that occurs most frequently in the
formula first. Based on this heuristic, an algorithm that reencodes formulas based
on AND-gates can be specified.

The SimpleBoundedVariableAddition algorithm in Figure 5.22 finds and re-
places matchings with a positive reduction with the above pattern. In order to find
matchings with large reductions first, a priority queue Q is used that sorts liter-
als l ∈ lits(F ) in descending order of the number of occurrences of l in F (line 1).
While Q is not empty (line 2), the top element l is used to initialize Mlit := {l}
and Mcls := Fl (line 3).

In the next seven lines a sequence P of literal-clause pairs (l′, C) is created such
that C ∈Mcls and (C \ {l}) ∪ {l′} ∈ F . After initialization (line 4), for each clause
C ∈ Mcls a literal lmin that occurs least frequently in F is selected (line 5). Next,
the algorithm tries to find a clause D ∈ Flmin

(line 7), such that the two clauses C
and D differ in exactly one literal (line 8). Let the different literal be l′ (line 9),
then P is extended with (l′, C) (line 10).

After finding all candidates for the matching clauses in the sequence P , a lit-
eral should be added to the matching such that the reduction increases. The
best candidate for this addition is the literal lmax occurring most frequently in P
(line 11). If adding lmax increases the reduction (line 12), then lmax is added to Mlit

(line 13) and Mcls is updated such that Mlit and Mcls is a replaceable matching
again (lines 14–15). In this step, some clauses might be removed from Mcls, because
they are not matched by the new literal any longer. If a literal lmax was found such
that the reduction increased, the algorithm tries to further increase the matching
by rebuilding P (line 16).

The last part of the algorithm implements the replacement if Mlit contains more
than one literal (line 17). The fresh variable x is added (line 18) and all clauses
(C \ {Mlit}) ∪ {l} with l ∈ Mlit and C ∈ Mcls are removed from F and replaced
by (l′ ∨ x) with l′ ∈ Mlit and (C \ {l}) ∪ {x̄} with C ∈ Mcls (lines 19–24). The
last step inserts the literals l, x and x̄ in the queue Q again for possible future
replacements (line 25).

Algorithm Improvements The SimpleBoundedVariableAddition algorithm in
Figure 5.22 can be extended in several ways. Especially for a high performance,
two properties have to be noticed. First, for some problems the literals l and lmax

are equal, i.e. l = l̄max. In this special case, the resolvent R = C ⊗D between the
clauses C ∈ Fl and D ∈ Flmax such that |C| = |D|, C \D = l and R subsumes the
antecedents. This scenario is also known as strengthening, or self-subsumption [EB05]
(compare Section 3.2.6). Hence, the literal l can be removed from the corresponding
clause in C ∈ Fl, and the clause D ∈ Flmax can be removed from the formula. So
even if l̄ occurs only once in P , this literal is selected as lmax to reduce the number
of clauses without adding a new variable.

The second observation is exploring how to reduce the cost to detect patterns. For
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SimpleBoundedVariableAddition (CNF formula F )

Input: A formula F in CNF

Output: The extended formula F in CNF

1 let Q be a priority queue of l ∈ lits(F ) sorted by |Fl|
2 while Q ̸= ∅ do // process all literals

3 l := Q.top(), Q.pop(), Mlit := {l}, Mcls := Fl // setup for l

4 P := ∅ // clear candidate set

5 foreach C ∈Mcls do

6 let lmin ∈ C \ {l} be least occurring in F // lmin must be in C and D

7 foreach D ∈ Flmin
do // search match partner

8 if |C| = |D| and C \D = l then // C and D match

9 l′ := D \ C // the candidate literal is l′

10 P := P ∪ {l′, C} // store candidate pair

11 let lmax be occurring most frequently in P // look for best reduction

12 if adding lmax to Mlit further reduces |F | then // if lmax helps

13 Mlit := Mlit ∪ {lmax},Mcls := ∅ // add lmax

14 foreach (lmax, C) ∈ P do // update the set Mcls

15 Mcls := Mcls ∪ {C} // keep only matching pairs

16 goto 4 // check for more reduction

17 if |Mlit| = 1 then continue

18 let x be a fresh variable not occurring in F

19 foreach l′ ∈Mlit do

20 F := F ∪ {l′, x} // add Sx

21 foreach C ∈Mcls do

22 F := F \ {(C \ {l}) ∪ {l′}} // remove S

23 foreach C ∈Mcls do

24 F := F ∪ {(C \ {l}) ∪ {x̄}} // add Sx

25 Q.push(l), Q.push(x), Q.push(x̄) // reconsider l, x and x

26 return F

Figure 5.22.: Pseudo code of the SimpleBoundedVariableAddition algorithm.

instance, all literals l ∈ Q which occur less than three times in F can be removed
because the check in line 12 would fail for those literals. Also, all clauses in Mcls

must have at least one literal occurring in Q. These observations can be used to
speed up the detection. Since a number of occurrences is usually stored for each
literal in the formula, the first observation can be added cheaply to the algorithm.
The second check is added to line 6 of the algorithm, because each literal has to be
analyzed to find the least occurring literal, so that finding the maximal occurring
literal can be done cheaply. Then, the presence of this literal in the queue Q can
be checked.
Finally, to speed up these two steps, the algorithm furthermore does not add

variables back into Q if they occur less than three times.

Using the Full AND-Gate The SimpleBoundedVariableAddition algorithm reen-
codes only patterns that match the form x→ ∧ni=1li. In CNF, n binary clauses are
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Figure 5.23.: Clauses required to encode the at-most-one constraint with different
encodings.

added to the formula and the clause for the opposite direction ∧ni=1li → x is not
added, because for the above pattern this clause is not needed and would decrease
the reduction of each replaceable matching. As long as the reduction of the current
replaceable matching is greater than 1, then this clause can be added to the formula
as well. Since the clause corresponds to x → ∨ni=1li, a clause C that contains all
literals li ∈ C, 1 ≤ i ≤ n, can be reencoded into C ′ = (C \ {li | 1 ≤ i ≤ n}) ∪ {x}.
Only in the case when such a replacement can be done, the clause for x → ∨ni=1li
needs to be added to the formula, because otherwise this clause is blocked on the lit-
eral x, and would be removed by techniques like blocked clause elimination (compare
Section 5.5.1).
SimpleBoundedVariableAddition in Figure 5.22 can be enhanced with this ad-

dition. After the set of clauses S has been removed, and the two sets Sx and Sx

have been added, the presence of candidate clauses C that contain all literals li for
1 ≤ i ≤ n is checked. If at least one such clause occurs, these clauses are reencoded
as explained above, and the clause for x → ∨ni=1li is added to the formula so that
the original clauses can be obtained by resolution again.

Applying BVA to Cardinality Constraints Encoding high-level problems into CNF
has been discussed in Chapter 4 in details. Here, the opportunity of using BVA to
improve encoded formulas is analyzed. This analysis starts with the example of
encoding a simple cardinality constraint into CNF.

Example 41: BVA for an At-Most-One Constraint Consider the pair-
wise encoding of ≤1 (a, b, c, d, e, f) :

D = (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (ā ∨ ē) ∧ (ā ∨ f̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧
(b̄ ∨ ē) ∧ (b̄ ∨ f̄) ∧ (c̄ ∨ d̄) ∧ (c̄ ∨ ē) ∧ (c̄ ∨ f̄) ∧ (d̄ ∨ ē) ∧ (d̄ ∨ f̄) ∧ (ē ∨ f̄).
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Applying BVA on the formula D replaces nine clauses by six clauses when using
Mlit = {ā, b̄, c̄} and Mcls = {(ā ∨ d̄), (ā ∨ ē), (ā ∨ f̄)}:

(ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (b̄ ∨ c̄) ∧ (d̄ ∨ ē) ∧ (d̄ ∨ f̄) ∧ (ē ∨ f̄) ∧
(ā ∨ x) ∧ (b̄ ∨ x) ∧ (c̄ ∨ x) ∧ (d̄ ∨ x̄) ∧ (ē ∨ x̄) ∧ (f̄ ∨ x̄).

The formula D corresponds to the pairwise encoding, and the formula after ap-
plying BVA to D is the nested encoding for the same at-most-one constraint.

As the example shows, BVA can be used to turn the pairwise encoding automati-
cally into the nested encoding by introducing fresh variables. Hence, the number
of required clauses drops from a quadratic complexity to a linear complexity. This
reduction is illustrated in Figure 5.23 for different types of encodings of the at-
most-one constraint. The different encodings are the direct encoding (DE), the log
encoding (LE), the two product encoding (PE) and the sequential counter encoding
(SE). Additionally, BVA is applied to the CNF that is created by the direct encoding
(DE+BVA) and the log encoding (LE+BVA). The pictures shows clearly that when
using BVA the number of clauses can be dropped significantly. For the constraint
size n < 47 the combination DE+BVA requires the least number of clauses. Af-
terwards, the two product encoding produces the least number of clauses. Table 5.2
shows the asymptotic values for the considered constraints.

The number of clauses for the two product encoding or the sequential counter en-
coding cannot be improved by applying BVA to the corresponding formulas, because
these encodings already use fresh variables to produce the CNF. Therefore, the pat-
terns that are required to apply BVA are not found for these encodings and hence
BVA will not introduce fresh variables. However, since the direct encoding is still
widely spread, BVA can be used as a useful tool to turn the pairwise encoding into
the smaller nested encoding. Although the performance of SAT solvers on the new
formula has to be tested, the nested encoding is usually superior, as shown for ex-
ample for the encoded Hidokus in Chapter 4. Naturally, using the nested encoding
during the construction of the CNF should be the first choice.

For cardinality constraints with a higher value for the threshold the situation is
similar. As long as the naive exponential encoding of these constraints is used,
BVA can improve the formula. However, as soon as an encoding is used that al-

Table 5.2.: Encodings for the at-most-one constraint.

Encoding Clauses Variables

direct encoding n·(n−1)
2 n

log encoding [Pre07] n · ⌈log n⌉ n+ log n
two product encoding [Che11] 2n+ 4 ·

√
n+O( 4

√
n) n+

√
n+O( 4

√
n)

sequential counter encoding [Sin05] 3n− 4 2n− 1
direct encoding + BVA 3n− 6 ∼ 2n
log encoding + BVA ∼ 3n ∼ 1.5n
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ready uses fresh variables, as for example the sequential counter encoding (compare
Section 4.3.2), BVA cannot improve the formula any more. Additionally, the gap
between the formula that is produced by BVA and the formula that can be produced
by a BDD encoding or cardinality networks differs even more than for the at-most-
one constraint, because BVA cannot remove the exponential property from the naive
encoding.

5.7. Generic CDCL Revisited

This section discusses related work and motivates once more why the Generic
CDCL framework is important. So far, multiple frameworks to model sequential
SAT solvers have been proposed. The following three systems model both the work-
ing formula of the solver as well as the current partial interpretation:

▶ Linearized DPLL [Arn10],

▶ Rule-based SAT Solver Descriptions [Mar09],

▶ Abstract DPLL [NOT06],

▶ Inprocessing Rules [JHB12].

The most recent system in [JHB12] aims at modeling CNF simplification techniques
and hence does not represent the partial interpretation. Additionally, the formula
is divided into redundant and irredundant clauses. Hence, the removal of learned
clauses as well as other CNF simplifications can be modeled adequately. Further-
more, this set of rules describes how to reconstruct a model for the original formula.
Since this system does not allow to model the partial interpretation, this system is
not discussed in more detail.

5.7.1. Coverage of Proposed Systems

Given the systems presented in the literature, this section shows briefly which rules
are allowed by all these systems, shows how each system can be modeled with
Generic CDCL. Finally, for each system an existing technique that is used in
modern SAT solvers is given, which is not covered by any of the proposed systems.

Linearized DPLL

Since SAT solvers follow a certain procedure, the rules that have been used to
describe these solvers formally do not differ much among the presented approaches.
However, the rules in Linearized DPLL [Arn10] combine some operations of a
SAT solver that are treated independently in Generic CDCL. The following table
gives all the rules that have been introduced in [Arn10] and shows how these rules
are simulated in Generic CDCL. If there are no remarks, then the rules of both
formalizations match exactly. The rules of [Arn10] are:
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Given Rule Simulated by Remarks

Unsatisfiable ;unsat –
Decide ;decide see explanation
Propagate ;unit –
Back ;back, ;learn, ;unit see explanation
Learn ;learn –
Delete ;delete –
BackDP ;back –
Conflict – see explanation
Resolve ;learn see explanation
Back-and-Learn ;learn, ;back see explanation

For backtracking, atomic functionalities in SAT solvers have been combined. Espe-
cially the backtracking rules are coupled tightly together.

▶ Decide: A decision literal x is picked only if the corresponding variable is not
mapped to a truth value yet, and if x appears in the formula. These conditions
are covered with ;decide, because all literals of the formula F also appear in
vars(F ) ∪ vars(F ).

▶ Back: For the rule Back a clause C has to be given and a backtracking point
has to be specified via the decision literal that is backtracked so that C becomes
a unit clause. The clause C does not need to be part of the formula F but
needs to be a logical consequence of F . The clause C can be found with the
rule ;learn. Afterwards, backtracking is performed equally in both systems
and the unit literal is enqueued to J .

▶ Conflict: This rule enriches the state of the system with a conflict clause C
whose reduct with respect to the current interpretation J is empty. Further-
more, there need to be decision literals in J . Since Generic CDCL does not
use a conflict clause state and all operations that depend on this state can be
modeled, this rule does not need to be covered.

▶ Resolve: This rule performs resolution on the current conflict clause C and
another clause C ′ that is entailed by the formula F . Furthermore, C ′ was unit
at some point in the derivation after the last backtracking and before finding
the current conflict. In Generic CDCL, we learn the resolvent C ⊗ C ′,
because this clause is also modeled by F . Since neither the interpretation J
nor F are changed, we just need to remember that the conflict clause is modeled
by F .

▶ Back-and-Learn: The current conflict clause C is added to the formula F
and backtracking on the interpretation J is performed so that C becomes a unit
clause. Furthermore, the unit literal of C is added to J . Adding the conflict
clause in Generic CDCL is done with ;learn. Observe that C is entailed
by F . Afterwards, backtracking is performed equally in both systems.

Two techniques that cannot be modeled with Linearized DPLL are on-the-fly
clause improvement and lazy hyper binary resolution.
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Abstract DPLL

Abstract DPLL specifies some rules in exactly the same way as Generic CDCL
and thus do not require any further remarks. However, since [NOT06] does not use
the notation of a reduct we give brief explanations on the rules that involve the
reduct in their condition and show how to cover the rules that cannot be covered in
an obvious way:

Given Rule Simulated by Remarks

Unit ;unit –
PureLiteral ;inp see explanation
Decide ;decide –
Fail ;unsat –
Backtrack ;back –
Backjump ;back (;learn, ;delete) see explanation
Learn ;learn –
Forget ;delete –
Restart ;back –

More detailed explanations to the rules that cannot be easily matched are as follows:

▶ Unit: A clause C is required to occur in the formula F where all literals
except the literal x are mapped to ⊥ and x is not mapped to a truth value by
the current interpretation J : exactly this case appears if the clause (x) is an
element of the reduct F |J in Generic CDCL.

▶ PureLiteral: A literal x occurs in the formula F but its negation x should
not appear in F . Furthermore, the literal x should not be mapped to a truth
value by the interpretation J . The given pure literal rule requires the literal x
to occur in the reduct F |J . With the properties discussed in Section 3.2.4 it
can be shown that ;inp covers this rule of Abstract DPLL.

▶ Fail: Both systems, Abstract DPLL and Generic CDCL, require that
the current interpretation J does not contain decision literals to show UNSAT.
Furthermore, Abstract DPLL requires a clause C that is falsified by the
current interpretation J and thus C becomes an empty clause if the reduct F |J
is considered. Hence, the two conditions of the two systems are the same.

▶ Backjump: There has to exist a clause C whose reduct C|J ′ = (x) becomes
unit when parts of the current interpretation J ′ẋJ are removed. The clause C
does not need to be part of the formula F . The literal x of this unit clause C|J
has to occur either in the formula F or in the initial interpretation J ′ẋJ .
In Generic CDCL this clause C can be added with ;learn. Since all the
rules in Abstract DPLL do not allow to add atoms to the formula, the
latter condition can also be fulfilled. Finally, the clause C can be removed in
Generic CDCL with ;delete again.

This system does not model the decision heuristic of the SAT solver MiniSAT
adequately: MiniSAT can also use literals for a decision that do not occur in the
formula.
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Rule-based SAT Solver Descriptions

A more detailed rule description is presented in [KG07]. The main difference to
Generic CDCL is that the state is enriched by an additional clause C that rep-
resents the current learned clause. Some rules in this system are only applicable if
there is not such a learned clause. Furthermore, a clause C can only be added to
the formula F if C has been derived via resolution from the current conflict. Thus,
for example on the fly clause improvements [HS09] cannot be modeled.

Given Rule Simulated by Remarks

Decide ;decide picks only literals x ∈ lits(F )
UnitPropag ;inp –
Conflict ;learn see explanation
Explain ;learn see explanation
Learn ;learn see explanation
Backjump ;back (;learn, ;delete) see explanation
Forget ;delete –
Restart ;back only if there is no conflict

Some rules of rule-based SAT solver description are specified in exactly the
same way as in Generic CDCL and thus do not require further remarks. However,
since [KG07] does not use the notation of a reduct we give brief explanations on the
rules that involve the reduct in their condition and show how to cover the rules that
cannot be covered in an obvious way:

▶ Conflict, Explain: If the current interpretation J falsifies a clause, then this
clause is set to be the current learned clause. Furthermore, this clause is not
removed from the formula. The learned clause in the state is altered by the
rule Explain by performing resolution with clauses that occur in F . Note,
that a clause that is derived this way is always entailed by the formula F . Since
there is no conflict clause in the state of Generic CDCL, this rule cannot be
covered explicitly. However, since no changes are done to the formula F and
the interpretation J there is also no need to cover these rules.

▶ Learn, Backjump: The current learned clause C can be added to the for-
mula F . This behavior can be simulated by ;learn in Generic CDCL, be-
cause C is always entailed by F . The clause C is also used to derive the
backtrack point in the interpretation J ′ẋJ so that the reduct C|J ′ becomes
a unit clause as in ;back. This backjumping can be added with ;back in
Generic CDCL.

5.7.2. Coverage of SAT Solvers

Starting in Section 5.2, for each discussed SAT solving technique a way has been pre-
sented how the technique can be simulated with Generic CDCL. Even the newly
introduced techniques are covered with Generic CDCL. Since most techniques are
based on resolution, usually ;learn and ;delete are sufficient to model these simplifi-
cations. For simplification techniques that produce constructible formulas or extend
the interpretation by more complex reasoning, ;infer and ;inp can be used.
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Table 5.3.: Main methods of MiniSAT.

Given Rule Simulated by Remarks

SAT ;sat if all variables are assigned without a conflict
return SAT (page 5)

UNSAT ;unsat return UNSAT if there is a conflict and there
are no decisions in J (page 5)

Decide ;decide pick an unassigned variable, assign any
polarity

Propagate ;unit as long as there is no conflict, assign the
literal of the next unit clauses

Learning ;learn learned clause C is a resolvent, even with
minimization (page 4)

;back backtrack position in interpretation is
chosen so that C becomes unit (page 14)

Delete ;delete only learned clauses are removed

Restart ;back at some point, perform a restart by clearing
the interpretation until the first decision

SimplifyDB ;delete remove clauses that are subsumed by
(learned) unit clauses

Many successful SAT solvers, for example Glucose [AS13], are based on Min-
iSAT [ES04]. Therefore, we will show thatMiniSAT is covered byGeneric CDCL,
even without the advanced rule ;inp. The methods that are performed in MiniSAT
are listed in Table 5.3. If possible, we give the page number of the publication where
the technique is described in detail. All the methods are presented in pseudo code
in [ES04]. Furthermore, Eén et al. give an algorithm when to execute which method.
This algorithm does not restrict being covered by a formalization but can be under-
stood as strategy when to apply a rule of the formalization.
We now briefly discuss why Generic CDCL covers MiniSAT. Answering that

the formula is satisfiable is done if all variables are mapped to a truth value and there
is no conflict. Observe that in this case there cannot be a clause with unassigned
variables. Therefore, all the clauses in the formula have to be satisfied. This sit-
uation matches the condition in Generic CDCL. For the unsatisfiability answer,
the conditions in both systems are identical. Decisions in MiniSAT are done by
selecting a variable that is not mapped to a truth value already. Afterwards the
negated variable is picked as decision literal. The developers of MiniSAT discuss
that any other scheme to pick the polarity can be used. A more recent version of
MiniSAT uses polarity caching [PD07] to pick polarities. Therefore, claiming that
only literals that appear in the formula are chosen as decision is not safe. Propaga-
tion in MiniSAT follows the same conditions as the ;unit rule. Clause learning and
clause minimization is performed by resolution only. Thus, the learned clause C is
entailed by the formula and does not contain other literals. Therefore, C can also be
added with ;learn. Afterwards, MiniSAT backtracks so that the learned clause be-
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comes unit and assigns its literal. This procedure matches the combination of ;back

and ;unit. Since MiniSAT deletes only learned clauses, which are always entailed
by the formula, the ;delete rule covers this procedure as well. Restarts can be cov-
ered easily. The interpretation after a restart in MiniSAT can be reconstructed in
Generic CDCL by performing ;back. Finally, MiniSAT adds a simplification rule
to CDCL that removes clauses that are subsumed by unit clauses of the formula.
This method is covered by the ;delete rule. Then, MiniSAT can be covered with
Generic CDCL, because all its methods are covered and the application of the
methods is only a strategy.

5.8. The SAT Solver Riss – An Evaluation

In this thesis the sequential SAT solver Riss has been developed with the goal in
mind to make many different SAT solving techniques available and to be highly
configurable. The motivation behind this setup is that for a new application the
parameters of the solver can be tuned with an automated configuration tool like
SMAC [HHLB11] or ParamILS [HHLBS09]. With each additional solving tech-
nique, the overhead to select the current technique for the current formula increased.
Therefore, the performance of the base solver on a benchmark is expected to be lower
than the performance of the baseline solver without the added techniques. Still, be-
ing able to configure the solver easily is regarded as the higher goal compared to
raw execution speed.

The first version of the SAT solver Riss was developed from scratch to analyze the
relevance of the implementation of the solving algorithms and the representation of
the data structures. The results have been presented in [MS12a,HMS10], where
the major contribution is to increase the data locality of the representation of the
formula and to use prefetching during search. Furthermore, this solver was extended
with formula simplification techniques. This preprocessor was made available as the
stand-alone tool Coprocessor [Man11b] and [Man12], where the later version
was then improved by adding bounded variable addition. Finally, the original search
engine of Riss was exchanged and the data structures of MiniSAT [ES04] have
been used, as well as the heuristic decisions of Glucose 2.2.20 While Audemard
et al. chose to implement a separate watch list for propagating binary clauses in
Glucose, Riss uses a Boolean flag to indicate whether a clause in the watch list is
binary, so that binary clauses can be treated specially as in Glucose. Furthermore,
prefetching watch lists is enabled in Riss as discussed in [HMS10]. This final
version is enhanced with various options for the simplification techniques, verbose
output during the execution, as well as the novel SAT solving techniques that have
been introduced in this chapter. Furthermore, the parallel solving methods that are
introduced in the following chapters are implemented. In this section the Riss 4.27
is used for the evaluation of the proposed formula simplification techniques, as well
as the extensions that have been proposed for the search algorithm.

The comparison of all techniques is based on selected runs. The used config-
urations have been created during the preparation of the solver for international
competitions. A fair comparison of all techniques that are presented in this thesis

20Unfortunately, the developers of Glucose do not make the source code of the intermediate
version Glucose 2.2 available any more.
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on a fair benchmark is difficult, because all techniques have multiple parameters. For
each configuration an optimal configuration of all of the parameters would have to be
found, for example with automated configuration tools like ParamILS [HHLBS09]
or SMAC [HHLB11]. For each new benchmark a new parameter optimization would
be necessary. Such a process is rather time consuming and computationally expen-
sive, especially when all techniques are made available Riss allows to specify 486
parameters. The minority, namely 190, of these parameters are Boolean, and the
remaining parameters have either a floating point domain or an integer domain.
Obtaining the best, or a very good configuration for the size of the used benchmark
would require very long run times, in particular with the high solving time out of
5000 seconds. Since the used computational resources during the development of
the solver and the parallel extensions for the upcoming chapters is already huge,
this optimization process has been omitted.

Data Structure Details In order to implement simplification techniques and to
be able to perform formula simplifications with parallel algorithms (as explained in
Section 7.1), the internal data structures of Glucose have been adapted as follows:
clauses are represented as an array of literals and a header that, amongst others,
contains the size information and a delete flag. During formula simplification, the
literals of a clause are always ordered, which makes the determination of the smallest
variable of a clause efficient and is also profitable for subsumption and resolution
computations.

Invariant 4 (Sorted Clauses During Simplification). During formula simplification
the literals of a clause are always sorted.

The above invariant is only loosened when the formula simplification technique
relies on unit propagation. Then, the invariant is ignored to be able to use the
two watched literal scheme. However, as soon as the corresponding simplification
technique finishes, the literals are sorted again. Variable and clause locks are imple-
mented as spin locks based on an atomic compare-and-exchange operation. Hence,
kernel level switches can be avoided and the required amount of locks can be sup-
plied. The lock for a clause is implemented by a single Boolean flag inside the header
that can be modified by atomic operations.

Evaluation Details The evaluation is performed on all formulas from the recent
SAT competitions 2009 to 2013. For each year, the selected as well as the unselected
formulas from the competition tracks application and hard combinatorial have been
used.21 All formulas are available at the web page of [SAT14]. For the evaluation
the measurements that have been presented in Section 2.4 are used. Among them,
the unique solver contribution (UC), which measures the number of formulas that
can be solved only by the current solver configuration.
The used architecture is the Intel Xeon CPU E5-2670 with 2.6GHz (for more

details see Section 2.3.5). Each solver incarnation is allowed to consume 3.6GByte
of memory. Furthermore, the run time limit is set to 5000 seconds, as in the most
recent SAT competitions.

21The selection of the formulas for the benchmark includes duplicate formulas. Identifying duplicate
formulas is not always simple, as sometimes formulas have been shuffled and afterwards added
to the competition of another year again.

204



5.8.1. Simplifying Formulas with Coprocessor

5.8.1. Simplifying Formulas with Coprocessor

The most widely used preprocessor is SatELite, which is the result of the work pre-
sented in [EB05]. The major technique there is BVE. Furthermore, clause vivification
is implemented. Another SAT solver that implements more formula simplification
techniques is CryptoMiniSAT [SNC09]. The most recent version even provides
bounded variable addition (BVA). CryptoMiniSAT is furthermore able to perform
formula simplification during search as inprocessing. Lingeling [Bie13] also imple-
ments most known simplification techniques and strongly relies on executing simpli-
fication during search. Instead of BVA, Lingeling offers simplification techniques
like the Fourier-Motzkin method. None of the formula simplifiers implements CLE,
RAT elimination (RATE) or Fourier Motzkin (FM) with the generic extraction of car-
dinality constraints. Therefore, these three simplification techniques and BVA are
analyzed in more detail.

In the following, the performance of Riss without formula simplification is com-
pared to a configuration that allows formula simplification. Each simplification
techniques has preset step limits, because an unlimited technique can consume much
more time for simplification than for the actual search process. This effect is also
illustrated for two selected simplification techniques. Finally, combinations of sim-
plification techniques are analyzed and a final combination is presented, which is
then used for performance analysis of the proposed search extensions.

Simplifying with Bounded Variable Addition

First, BVA is evaluated on the benchmark and compared to the configuration NoPP,
which runs Riss without the search. An overview over the performance of the two
configurations is presented in the following table:

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

NoPP 53 2404 1269 1135 8817 1004.07 2351 544.67
BVA 97 2448 1301 1147 8598 903.35 2351 497.53

The data shows that when BVA is used, the number of totally solved formulas
increases and the average solving time decreases, as shown for the commonly solved
formulas. Surprisingly, the number of solvable satisfiable formulas increases stronger
than the number of solved unsatisfiable formulas. Since BVA is close to extended
resolution, the opposite behavior would have been expected.

With the high time out, the run time of each configuration has to be considered
as well, because when BVA can reduce the run time on a formula by a high factor
there is still enough time for the other configuration to solve the formula as well.
Therefore, Figure 5.24 presents the run time of NoPP and BVA in the first diagram
as a scatter plot. The median solving time decreases mostly due to the formulas on
the right side of the diagram. There are more formulas that can be solved faster
by BVA than by NoPP. Still, there exist also formulas where BVA misleads the SAT
solver, so that NoPP can solve the formula and BVA reaches the time out. This
behavior explains the 57 formulas that can be solved by NoPP, but which cannot
be solved by BVA.
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Figure 5.24.: Cross plot of the run time without simplification (NoPP, x-axis) and
with BVA (y-axis).

Next, the diagram in Figure 5.25 presents the number of clauses that can be
reduced by BVA on the formulas in the benchmark. There are formulas where almost
half the clauses can be removed by BVA, as the diagonal close to the identity line
shows. For many formulas there is a reduction of at least one percent. Compared
to the high number of clauses, this reduction is significant.
Finally, the reduction of the formula with respect to the introduced variables is

interesting. Figure 5.26 visualizes the corresponding ratio. Since there is no dot
in the lower triangle, the reduction of BVA is at least the number of introduced
variables. As most dots are above the identity, the reduction of a single introduced
variable is usually higher than one clause. In the extreme case, adding only a few
variables leads to a reduction of more than 20000 clauses, as illustrated by the points
in the top left corner of the diagram.

Simplifying with Covered Literal Elimination

The following table compares eliminating covered literals (CLE) to not using simpli-
fication (NoPP):

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

NoPP 25 2404 1269 1135 8.817e+06 1004.07 2379 555.19
CLE 54 2433 1289 1144 8.671e+06 956.23 2379 522.09

Clearly, the number of solved formulas increases and the average solving time de-
creases when CLE is used. Similarly to BVA, the improvement on satisfiable formulas
is unexpected. CLE reduces the size of the clauses in the formula by deleting literals.
Hence, the assumption is that unsatisfiable formulas can be solved faster. The data
gives a different picture: the number of solvable satisfiable formulas improves more
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Figure 5.25.: Comparing the number of clauses after applying BVA to the number
of clauses in the formula.
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Figure 5.26.: Ratio of introduced variables and removed clauses with BVA.
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Figure 5.27.: Comparing the run time of covered literal elimination to not using sim-
plification.

than for unsatisfiable formulas. Reducing the clauses in the formula seems to be
useful to solve satisfiable formulas as well, maybe to produce better learned clauses,
or to avoid certain parts of the search space right from the beginning of the search
process.

The different performance between NoPP and CLE becomes visible only on 605
formulas where covered literals are actually eliminated. Figure 5.27 visualizes the
run time comparison of NoPP and CLE in the first diagram. While the run time
remains almost stable for most of the formulas, only a minority of all formulas are not
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Figure 5.28.: The number of eliminated covered literals.
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Figure 5.29.: Comparing the run time for FM with using no simplification.

located near the identity line. The reason for this effect is illustrated in the diagram
in Figure 5.28, which shows the number of eliminated literals : only 16 percent of all
formulas provide literals that can be eliminated by CLE. This number ranges from a
single literal up to more than 50000 literals in the whole formula. Furthermore the
evaluation shows that crafted formulas contain more covered literals than application
formulas.

Simplifying with Fourier-Motzkin

The Fourier-Motzkin (FM) method is a simplification technique that is stronger than
resolution. However, the cardinality constraints have to be revealed from a formula
first. The configuration that is used in the evaluation uses all the extraction methods
that have been explained in Section 5.5.2 with a step limit.

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

NoPP 66 2404 1269 1135 8817 1004.07 2338 521.21
FM 84 2422 1279 1143 8577 842.53 2338 476.64

Compared to CLE in the above section, FM does not improve the number of solved
formulas as much as CLE, only 18 more formulas can be solved. Still, FM improves
the median and average solving time more than when CLE is used. Although CLE
can solve more formulas, the PAR10 value of FM is better. The performance on
satisfiable and unsatisfiable formulas increases similarly.

The run time behavior of FM is compared per formula in Figure 5.29. More points
are below the diagonal, hence using FM results in a faster solving process. Further-
more, there exist formulas that can be solved extremely fast by one configuration
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Figure 5.30.: Comparing the number of found cardinality constraints with the num-
ber of clauses in the formula.

and that cannot be solved at all by the other configuration. This statement holds
for both directions.
Another interesting value is the number of constraints that can be revealed by FM

from a formula. This data is visualized in the second diagram of Figure 5.30: for
the number of clauses in the formula the number of revealed cardinality constraints
is presented, where a limit of 2 million is applied, so that the diagram shows the
relevant part. Any formula with more than 2 million clauses is used as if the for-
mula contains exactly 2 million clauses. The diagram shows that already for small
formulas a high number of constraints can be extracted. The y-axis of the diagram
has a log-scale. Then, the diagram also shows how the step limit of the FM imple-
mentation is hit for larger formulas. Intuitively the number of extracted constraints
should increase with the size of the formula. However, in the diagram, the ratio
between clauses and constraints for small formulas is rather high, whereas this ratio
becomes lower and lower the more the formulas grow. This effect is present, because
the extraction of constraints is limited. Furthermore, formulas with many cardinal-
ity constraints are usually crafted formulas. These formulas do not contain as many
clauses as application formulas.

Simplifying with RAT Elimination

The redundancy property RAT of clauses has been considered in a theoretical frame-
work only. Here, the analysis of eliminating RAT clauses (RATE) from a formula
are presented for the first time:

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

NoPP 144 2404 1269 1135 8817 1004.07 2260 496.25
RATE 66 2326 1252 1074 9585 1696.17 2260 725
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Figure 5.31.: Comparing the simplification time of RATE to the overall solving time.

Although the number of solved formulas decreases from NoPP to RATE, there is
still a significant number of 66 formulas that can be solved only after RATE has
been applied. When eliminating the RAT clauses, the performance especially on
unsatisfiable formulas decreases significantly. Hence, adding the right RAT clauses
to the formula might give the opposite effect and improve the performance of SAT
solvers on unsatisfiable formulas.

The bad performance of the approach can also originate from the simplification
time. Therefore, Figure 5.31 presents the ratio between the simplification time
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Figure 5.32.: Comparing the number of clauses that can be removed with RATE to
the number of clauses in the formula.
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and the solving time. In the diagram there are many formulas that show that the
simplification time is very close to the solving time. Furthermore, there are many
formulas that cannot be solved at all (points on the right side of the diagram).
Hence, an improvement to RATE would be an improved implementation, or even a
parallel version of the algorithm.

Additionally, Figure 5.32 analyzes the number of RAT clauses in a formula. The
diagram shows the number of clauses that can be removed from a formula with
RATE with respect to the number of clauses. The clauses that can be eliminated are
separated into the following classes: clauses that have AT, clauses that are blocked,
and all remaining clauses that are a RAT. The separation is meaningful, because
the properties AT and blocked can be tested with more efficient algorithms than
the algorithm for testing RAT. Therefore, the number of clauses that have RAT is
interesting. For the diagram only the clauses that are not blocked and do not have
AT are visualized. Still, as shown in the diagram, there exist formulas that contain
up to 10 percent redundant clauses with respect to RAT as redundancy property.
Hence, using RATE is considered helpful to improve SAT solving.

Unlimited Formula Simplifications

All above evaluation use step limits for the simplification techniques, so that the tech-
niques do not run too long compared to the overall solving time limit. This method
is also applied to all other simplification techniques in Coprocessor. When the
limits are disabled, formula simplification takes very long time. The comparison
for SubSimp and BVE with and without limits is presented in Figure 5.33 and Fig-
ure 5.34. Where for most formulas the run time is similar, for larger formulas the
unlimited variants start to consume much more run time. For SubSimp a factor
higher than 100 can be seen, for BVE the same effect is present. An open question
is whether the huge amount of additional run time is worth its effect.

Another solution to limit the high simplification time is to use inprocessing, as
used for example in Lingeling [Bie13]. Then, the search algorithm is interrupted
regularly to perform limited formula simplification. As soon as a solution for the
formula has been found, the overall process is terminated. If the search requires very
much time, then formula simplification also receives a larger amount of time. In the
extreme case, formula simplification might be executed until completion. On the
other hand, when a solution can be found fast by search, then formula simplification
does not waste too much run time. As explained already above, in Riss inprocessing
is not used, because no robust schedule for the simplification intervals, as well as
a schedule for simplification techniques or the limits for the techniques has been
found.

The third diagram in Figure 5.35 shows that the number of clauses does usually
not decrease too much when BVE runs longer. Additionally, the reduction that has
been achieved in the additional run time has to compensate this overhead by a faster
search to still be superior to the limited variant. The evaluation in Table 5.4 shows
that this goal is not achieved: limited BVE solves 19 more formulas than unlimited
BVE, and limited SubSimp solves 11 more formulas than unlimited SubSimp.

212



5.8.1. Simplifying Formulas with Coprocessor

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01  0.1  1  10  100  1000  10000

S
U

B
S

IM
P

SUBSIMPnoLimit

Figure 5.33.: Comparing the simplification time for unlimited SubSimp (x-axis) with
the limited variant (y-axis).
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Figure 5.34.: Comparing the simplification time for unlimited BVE (x-axis) with the
limited variant (y-axis).
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Figure 5.35.: Number of reduced clauses for BVE with and without step limits.

5.8.2. Comparing Coprocessor to SatELite

In this section the implementation of BVE in Coprocessor is compared to BVE of
SatELite. The two implementations differ in a few points:

▶ Coprocessor does not apply a maximum size limit for the resolvents,

▶ Coprocessor removes blocked clauses when the elimination is rejected,

▶ and Coprocessor exploits AND-gates to reduce the number of resolvents.

The data is presented in the following table:

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

BVE 77 2455 1283 1127 8369 674.45 2378 308.98
SatELite 86 2464 1288 1176 8304 484.52 2378 415.48

The implementation of SatELite is superior on all metrics. A detailed analysis
why the implementation of BVE leads to worse results is beyond the scope of this
thesis. The more important fact is that the implementation of BVE is competitive,
so that its parallelization is competitive as well.22

An analysis for different measures per formula is presented next. In Figure 5.36,
the run time of the solver is compared when using one of the two simplification
implementations. Where the majority of the formulas can be solved with a similar
run time, there are also outliers for both configurations.
Figure 5.37 compares the simplification times. The step limit of BVE can be seen

nicely: for most formulas, BVE does not require more run time than 50 seconds,
whereas SatELite consumes up to 200 seconds for many formulas. When the

22The parallelization of BVE is presented in Section 7.1.
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Figure 5.36.: Comparing the solving time when using SatELite (x-axis) or Copro-
cessor (y-axis).
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Figure 5.37.: Comparing the simplification time when using SatELite (x-axis) or
Coprocessor (y-axis).
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Figure 5.38.: Comparing the number of removed clauses by SatELite (x-axis) and
Coprocessor (y-axis).

solving time out is set to 5000 seconds, then this effect is no real drawback. However,
with a smaller time out, the run time consumed by SatELite would lead to a smaller
number of solved formulas compared to BVE.
The third diagram, presented in Figure 5.38, shows that the reduction of the for-

mula for BVE and SatELite is comparable: for most formulas the same number
of clauses is kept, and only for a few formulas much more clauses are removed with
SatELite. Likewise, for a few formulas Coprocessor produces much smaller for-
mulas, so that no clear winner can be determined. However, keep in mind that
SatELite does not use a step limit, so that there exist formulas where Coproces-
sor removes more clauses within fewer steps. Still, since BVE is not confluent, the
two simplifiers might also eliminate variables in a different order, resulting in very
different formulas.

5.8.3. Combining Simplification Techniques

The simplification techniques that have been discussed in Section 5.5 and Section 5.6
are implemented in Coprocessor and have been run on the selected benchmark.
The evaluation metrics that have been discussed in Section 2.4 are presented in
Table 5.4. For the benchmark and the different configurations the UC is given, as
well as the number of solved formulas. Next, the PAR10 value for the configuration
and the median solving time is presented. Finally, for the commonly solved formulas
the average time of each technique is given.
The simplification techniques are sorted by the number of solved formulas, because

this number is the commonly used measure. To evaluate the contribution of a
simplification technique, the UC is also important. The techniques BVE, FM and
BVA have a higher contribution than SubSimp. Furthermore, RATE, the poorest
simplification technique with respect to the number of solved formulas, has a high
UC. Even not using formula simplification at all results in three uniquely solved
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Table 5.4.: Evaluation of simplification techniques. The given technique simplifies
the formula and afterwards Riss solves the resulting formula.

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

RATE 13 2326 1252 1074 9585 1696.17 2156 659.91
CCE - 2396 1263 1133 8886 1089.75 2156 419.11
NoPP 3 2404 1269 1135 8817 1004.07 2156 422.86
FM 20 2422 1279 1143 8577 842.53 2156 371.69
UNHIDE 7 2422 1283 1139 8675 901.97 2156 371.75
PROBE 9 2424 1282 1142 8733 965.60 2156 396.25
ELS 3 2426 1279 1147 8689 953.68 2156 391.40
CLE - 2433 1289 1144 8671 956.23 2156 395.47
BVA 17 2448 1301 1147 8598 903.35 2156 395.63
BVE 20 2455 1283 1172 8369 674.45 2156 308.98
SubSimp 6 2458 1300 1158 8573 909.66 2156 387.94

no limits

BVE – 2436 1274 1162 8440 686.56 – –
SubSimp – 2447 1292 1155 8647 934.65 – –

Riss 4.27 – 2510 1309 1201 8103 553.56 – –

formulas. Concerning the PAR10 value, BVE is the winner, even with 3 fewer
solved formulas. This effect is also highlighted by the small median run time that
is obtained when using BVE. The PAR10 value and the median run time of FM
are also close to SubSimp, although even fewer formulas can be solved within the
time out.

When only the formulas are considered that can be solved by all simplification
techniques, then SubSimp becomes worse among the configurations. Both FM and
UNHIDE have a better average time on this subset of formulas. Not using formula
simplification is the second poorest configuration, just before the expensive RATE.

Next, Table 5.4 also shows the unlimited version of SubSimp and BVE. Without
the limits, SubSimp solves 11 fewer formulas and the median solving time increases
by 25 seconds. Even worse, for BVE the number of solved formulas decreases by 19
formulas. The PAR10 value, as well as the median run time of the unlimited BVE
still remains below the time that is spent for any of the SubSimp configurations.

The best configuration of combining simplification techniques for Riss on the
given benchmark leads to the configuration that is used in Riss 4.27. There, the
simplification techniques are executed in the specified order:

1. FM

2. Unhiding Redundancy (UNHIDE)

3. BVE

4. CLE
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Table 5.5.: Evaluation of search additions.

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

Riss 4.27 9 2510 1309 1201 8103 487.329 2424 415.107

+LProbe 5 2507 1314 1193 8096 504.75 2424 414.592
+LLA 48 2507 1306 1201 8112 543.32 2424 417.219
+AUIP 3 2508 1318 1190 8103 548.14 2424 425.428

+Extended – 2521 1320 1201 8076 496.561 – –

Adding BVA, or exchanging FM with BVA did not result in an improvement of the
solver. When combining the two used existing techniques BVE and UNHIDE, then a
total number of 2487 formulas can be solved. Hence, adding the new simplification
methods results in solving another 23 formulas.
The best configuration that has been found is a result of not using any simplifica-

tion and adding the best performing technique next. An alternative approach is to
enable all techniques and then to disable each technique separately. The configura-
tion with the best performance is kept. Then, by iteratively repeating this procedure,
another good configuration of the solver can be obtained. A third alternative is to ap-
ply automated configuration tools like SMAC [HHLB11] or ParamILS [HHLBS09].
However, with the large benchmark these two alternatives are rather expensive, so
that this analysis is left for future work.

5.8.4. Enhancing Search with Additional Reasoning

In the above section the configuration Riss 4.27 has been introduced. With this
configuration the search extensions that have been presented in this chapter are
evaluated:

▶ Local Look-Ahead (LLA, compare Section 5.2.5),

▶ Local Probing (LProbe, compare Section 5.2.5),

▶ All UIP Learning (AUIP, compare Section 5.4.3).

in Table 5.5. The number of solved formulas is almost as high as for the basic
algorithm. However, the PAR10 value for local probing is better. Furthermore,
the average solving time on commonly solved formulas is slightly faster. Local look-
ahead solves a completely different set of formulas: although the number of solved
formulas is almost as high as with Riss 4.27, there are 48 formulas that can be
solved only by this configuration. Finally, the configuration AUIP gives another
three formulas that cannot be solved by another configuration. When all extensions
are enabled together (in Riss 4.27 Extended), then the number of solved formulas
can be increased: where Riss 4.27 solves 2510 formulas of the benchmark, Riss 4.27
Extended can solve 11 additional formulas. Furthermore, the PAR10 score of this
combination is the best among all configurations. Still, the median run time of
Riss 4.27 is smaller, because Riss 4.27 Extended carries the overhead of all three
additions, also for all formulas where no extra unit clauses can be found.
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Figure 5.39.: Additional unit clauses that are found by the search extensions.
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Figure 5.40.: Comparing the number of revealed unit clauses to the number of vari-
ables in the formula.

219



5.8.5. Comparing State-of-the-Art Solvers

 0.1

 1

 10

 100

 1000

 10000

 0.0001  0.001  0.01  0.1  1

R
is

s
4

.2
7

-L
L

A

LLA

Figure 5.41.: Comparing the relative number of revealed unit clauses to the run time
of LLA.

Depending on the input formula, the number of conflicts and decisions is influenced
positively or negatively. The number of additional unit literals that can be found
by the different techniques is presented in Figure 5.39. First, the absolute number
of additional unit clauses is given. For most formulas LLA can produce the highest
number of additional unit clauses. AUIP contributes the least number of additional
clauses. Since the found units are orthogonal, the highest number of units can be
found when all extensions are enabled.
Next, in Figure 5.40, this value is shown relative to the variables of the formula

that is solved by the CDCL algorithm after formula simplification. Again, LLA
contributes most unit clauses.
Finally, for LLA the diagram in Figure 5.41 this relative number is compared to

the overall solving time: a high percentage of additional added unit clauses is not
only achieved on easy formulas, but the LLA procedure also helps to solve difficult
formulas. A similar effect is measured for the other two techniques. Furthermore,
the diagram shows that there is no correlation between the solving time of a formula
and the number of additional unit clauses.

5.8.5. Comparing State-of-the-Art Solvers

Riss has been created fromGlucose. Hence, the performance of Riss is expected to
be as high as the performance of Glucose. However, Riss adds many more options
to the search algorithm, so that the execution of the solver slows down. Therefore,
the final variant of Riss cannot beat Glucose on the overall benchmark.
A cactus plot for the three solvers is not given, because the difference can barely

be seen. Instead, Table 5.6 presents detailed results.
Lingeling solves most of the formulas, is the fasted solver among the three

solvers, and contributes the highest number of uniquely solved formulas. Riss con-
tributes more unsatisfiable formulas than Glucose but cannot solve as many sat-
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Table 5.6.: Comparing the state-of-the-art SAT solvers Riss 4.27 Extended,
Glucose 2.2 and Lingeling.

UC solved ⊤ ⊥ PAR10 median commonly
(×103) time solved avg. time

Riss 41 2521 1320 1201 8076 496.56 2273 375
Glucose 41 2521 1322 1199 8072 495 2273 330.21
Lingeling 151 2560 1364 1196 7895 484.14 2273 374.47

isfiable formulas as Glucose. Furthermore, the median run time of Riss is higher.
The reason for the higher median run time is overhead that is introduced by all the
options that are implemented in Riss. During the execution of the search algorithm,
on many places a decision has to be made whether a certain addition should be ex-
ecuted or not. Glucose does not perform these decisions, so that Glucose can
traverse the search space faster than Riss, resulting in a higher number of solved
satisfiable formulas.

Overall the performance of the presented configuration Riss 4.27 Extended
is competitive to the two state-of-the-art solvers Lingeling and Glucose. For
unsatisfiable formulas Riss shows a very good performance, and on satisfiable for-
mulas Riss lacks performance due to the overhead of the implemented algorithm
additions. Still, these additions remain in the solver to be able to adapt Riss to
the needs of a given benchmark or application. With tools like SMAC [HHLB11]
or ParamILS [HHLBS09] Riss can be easily improved. Glucose would have to
be extended with all the additions before an automated configuration process can
be started. Lingeling also provides many options and additions already. Still,
the algorithm for the improved syntactic detection and the semantic detection in
FM, BVA or CLE is not implemented in Lingeling. Hence, Riss is a state-of-the-
art SAT solver. These results have also been confirmed in the SAT competition
2014 [SAT14], where variants of Riss won two gold medals.

5.9. Contributions

The section analyses sequential SAT solving techniques ranging from reencoding
the formula over simplification methods to search algorithms and extensions. For
the formal analysis of new solving methods the abstract reduction system Generic
CDCL has been introduced [HMPS14a]. With this system a modern SAT solver
can be modeled, and properties like soundness can be shown in the abstract reduction
system. Based on this reduction system many proposed solving techniques from the
literature have been discussed. Next, a way how to model these techniques with
Generic CDCL was shown. The techniques that have been presented in more
detail are used in the upcoming chapters again, so that their introduction in this
section is more verbose. Furthermore, the techniques have been implemented into
the SAT solver Riss.

Formulas simplification techniques are a crucial part of the SAT solving tool chain.
Therefore, the formulas simplifier Coprocessor has been implemented [Man11b,
Man12]. Furthermore, the implemented formula simplification techniques from
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the literature have been discussed, and a way how to model them with Generic
CDCL has been presented. The implementation of some of these techniques has
been adapted to work only on a subset of the variables of the formula, so that the
simplifier can also be used for formula transformations [Wer13], or for simplifying
formulas from information flow theory [KMM13]. During the work of this thesis
two formula simplification techniques have been proposed, namely bounded variable
addition [MHB13] and covered literal elimination [MP14]. Before the development
of bounded variable addition, another formula reencoding technique was analyzed,
but whose effects are not as robust as the ones of BVA [MS11]. With BVA, many
formulas that resulted from naive CNF encodings can be reencoded into formulas
that lead to an improved performance of the SAT solver [MHB13]. Furthermore,
the cardinality constraint recognition for the Fourier-Motzkin simplification technique
has been improved [BLBLM14]. When these additional techniques are used in
Riss, then Riss can solve more unsatisfiable formulas from the used benchmark
than Glucose or Lingeling.
During discussing the search algorithms three algorithm extensions have been pro-

posed [Man14a]: Local Look-Ahead, Local Probing and All UIP Learning. When
all these extensions are added to the implemented SAT solver Riss, then its perfor-
mance can be improved over the default configuration. The resulting configuration of
Riss can solve as many formulas asGlucose, with a focus on unsatisfiable formulas.
The lack of performance on satisfiable formulas with respect to Lingeling is due
to the overhead of Riss with the alternative strategies and additional implemented
techniques, as well as the fact that Lingeling performs formula simplifications
during search. This inprocessing is not used in Riss. Although the implementation
provides the opportunity to use inprocessing, no robust schedule for this technique
has been found so far.
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Parallel SAT Solving
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6. Parallel SAT Solving – Ideas and
Weaknesses

This chapter revisits parallelization approaches for SAT solvers and identifies
weaknesses as well as ideas that turned out to be useful. Especially ideas that
allow an approach to be scalable are highlighted. Furthermore, the literature study
focusses on recently published solvers, the multi-core hardware, and parallelizations
of the CDCL algorithm. In between the related work, our publications contribute
to parallel SAT solving, but which do not fit to the common theme of this thesis are
discussed briefly as well.
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6.1. The Potential of Parallel SAT Solving
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Figure 6.1.: The typical SAT solving tool chain from the high-level problem until the
search process. The complexity of each stage is presented, as well as
the usual percentage of run time that is spent on each stage. For paral-
lelization the polynomial formula simplification inside the preprocessor
as well as the exponential search process are candidates for paralleliza-
tion.

6.1. The Potential of Parallel SAT Solving

Figure 6.1 shows the work flow of a sequential SAT solver with a typical run time
distribution. Where encoding a problem takes less than a percent of the overall run
time, formula simplification consumes up to 20 percent of the run time. This ratio is
only achieved, because the run time of the simplification methods is limited. For an
unlimited formula simplification, even a polynomial algorithm can consume more
run time than the search process. Finally, the search algorithm has exponential
complexity and consumes most of the run time. Since search and simplification
consume most of the run time, both parts of the tool chain are candidates for
parallelization.

From a complexity point of view, only formula simplification is an actual candi-
date for being parallelized efficiently, because the class of efficiently parallelizable
algorithms – Nick’s class (see Section 4.1 or [KR90, p. 117]) – is a proper subclass
of the polynomial algorithms. The exponential CDCL algorithm for the SAT prob-
lem is not part of this class. Furthermore, since the complexity classes P and NP
are believed to be disjoint, there is no efficient parallelization for solving the SAT
problem.

The parallelization of an algorithm can be categorized into two directions: low-
level parallelization, where the algorithm itself is parallelized, and high-level paral-
lelization, where the work of solving the formula is partitioned and the partitions
are solved separately. In the context of SAT solving, these two classes refer to par-
allelizing the sequential solving algorithm or partitioning the search space of the
given formula, or running multiple solvers on the same formula simultaneously. The
latter approach is also known as solver portfolio, or portfolio for short. For both
the low-level parallelization and the high-level parallelization improvements to the
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state-of-the-art are presented in Chapter 7 and Chapter 8, respectively.

As discussed earlier, there is another level of parallelism that comes from the
application. When there are many independent combinatorial problems that have
to be solved, then of course these problems can be solved simultaneously. When these
problems are somehow related, then the dependencies can be taken into account.
Although this research topic is interesting, for the development of a scalable parallel
SAT solver in the thesis this kind parallelism is not considered in this thesis.

Parallelizing SAT Solving From a Theoretical Point of View This parallelization
is not trivial as the following paragraphs discuss: the sequential CDCL algorithm
spends about 80 percent of its run time on unit propagation [HMS10]. This al-
gorithm is known to be P-complete, which means that this algorithm is not part
of Nick’s class, and therefore, there is no efficient parallelization of unit propaga-
tion [GHR95]. According to Amdahl’s law, the best parallelization of an algorithm
is achieved by parallelizing the most time consuming part. Since this most time
consuming part is P-complete, parallelizing the CDCL algorithm itself is not very
promising. For application formulas a parallelization of unit propagation has been
presented [Man11c], which is discussed in more details in Section 6.2.6.

Parallelizing SAT Algorithms As already discussed, a parallelization of an algo-
rithm to solve satisfiable problems can easily achieve super linear speedups (see
Section 2.3.2). Therefore, an evaluation for satisfiable problems might behave very
diverse. Hence, unsatisfiable formulas are more in the focus of the evaluation. Two
sequential solving algorithms have been presented, the DPLL algorithm (see Sec-
tion 5.2.3) and the CDCL algorithm (see Section 5.2.4). Where the DPLL algorithm
iterates over the search space in a very structured manner, the CDCL algorithm is
known to be able to produce exponentially shorter unsatisfiability proofs for selected
formulas. By parallelizing the DPLL algorithm, a linear speedup on unsatisfiable for-
mulas is expected, because the way the search space is traversed can be exploited.
However, compared to the exponential improvement when using the CDCL algo-
rithm instead of the DPLL algorithm, this linear improvement is not good enough.
Therefore, the focus is put on the CDCL algorithm, and related work on the DPLL
algorithm is not analyzed in the same level of detail. As a reminder: the paralleliza-
tion in this thesis focuses on the parallelization for the multi-core architecture.

Notation We will use the following notation throughout the upcoming sections: a
task refers to a job that has to be executed. Usually, such a task is to solve a certain
formula. Furthermore, we refer to an incarnation of a solver if an instance of a solver
is created that solves a formula. For example, a parallel solving approach can be
designed to execute multiple incarnations that solve the input formula in parallel.
Finally, the term partition means a formula that encodes a part of the search space
of a given formula. For example, given the formula F , then with some clause C
the formula F ∧ C is a partition of F , because F ∧ C restricts the solution space
of the formula. By slight abuse of notation we use the term partition to describe a
formula, although the partition F ∧C does not partition the clauses of the formula,
but instead such a partition represents a part of the solution space of the formula
F .
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6.2. Overview of Parallel SAT Solving Approaches

This section presents an overview on existing parallel SAT solving approaches and
collects useful ideas as well as weaknesses that can be exploited to improve existing
parallelization approaches for SAT solving.

While sequential solvers have been improved incrementally, also parallel systems
have been developed. In principle there are two ways of parallelism to search for
a model of a formula: Competitive parallelism runs multiple incarnations on the
same formula and finishes when the first incarnation returns a result. In contrast,
cooperative parallelism partitions the search space so that each incarnation solves
its part of the formula. For the latter a master-slave approach is often used: a
master is responsible for the maintenance of the search space partitioning and the
communication. The slaves usually solve a given partition and send the results back.
When the CDCL algorithm is used, also learned clauses might be shared with the
master.

Concerning early single-core architectures, the first parallelizations are based on
network communication. When computers got more main memory and multi-core
CPUs, the shared memory was also used for fast communication. Additionally, the
sequential algorithms have been improved dramatically. While the DPLL procedure
is very structured, the introduction of clause learning and non-chronological back-
tracking in the CDCL algorithm quickly guide the solver into different parts of the
search space. This effect has been boosted further with restarts. Thus, new methods
to parallelize the search had to be found.

In 2006, a first overview on parallel SAT solvers was presented by Singer in [Sin06].
However, much of the work on parallel SAT solvers was done after this paper has
been published, so that we focus more on these recent developments, which have
been also summarized in [HMN+11] or [MML12]. We further restrict the attention
to complete solvers. In the following, we first categorize these systems and further
developments by the algorithm the solver is based on, and secondly we categorize
on the communication method that has been used.

6.2.1. DPLL Based Parallelizations

As already explained above, parallelizations of the DPLL algorithm are discussed
only briefly. Still, selected approaches are presented here to collect their useful ideas.

The First Parallel SAT Solver The recursive application of the split rule in the
DPLL algorithm provides a natural way to parallelize the search. The first parallel
DPLL solver [BS96] is based on a computing “grid” of up to 256 computing nodes.
Here, Böhm and Speckenmeyer mean a cluster of computing units that are con-
nected in the shape of a grid. The modern term grid has been developed afterwards
and stands for a specialized computing network without communication between
simultaneously running jobs.

Each computing node was equipped with two jobs, namely a worker and a bal-
ancer. Solving a problem on a single node works as follows: the worker splits the
formula and estimates the remaining workload per created subtree. As long as the
estimated workload is higher than a certain threshold, the first subtree after the split
is processed further and the other subtree is added to a work queue. If the workload
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for the subtree is lower than a threshold, a sequential DPLL solver is executed on
this partition. Thus, a depth-first search in the tree is performed. If the current
partition is unsatisfiable, the worker proceeds with the next element in the work
queue, where the next element is the one that has been added last to the queue.
The solver stops if a worker finds a model, because this model also satisfies the input
formula. To balance the workload, work is moved to computing nodes with less load
by moving subtrees from the own work queue.

Idea 1. Distribute search space partitions to balance the workload!

As expected for parallel DPLL solvers, the efficiency for solving unsatisfiable formu-
las is close to 1. For satisfiable formulas, a super linear speedup has been reported.

The Parallel SAT Solver PSATO PSATO [ZBH96] is another parallel DPLL
solver that is based on the sequential solver SATO [Zha97]. The computing nodes
are organized according to a master-slave principle. There is one master that main-
tains all the slaves and provides them with partitions. A slave is assigned a partition
of the masters list and a time out to solve this job.

Idea 2. Use a time out to solve a search space partition!

In case the slave times out, it reports two splits of its partition, so that they can be
processed again by more resources.

Weakness 1. No information of an aborted search is used.

Load balancing is done by asking a slave to partition its current search tree at the
first branch. For the running client the returned partition is marked as closed so
that the corresponding subtree is not solved twice. Again, for unsatisfiable formulas,
the efficiency is close to 1, especially if the size of the formula grows.

The Parallel SAT Solver //SATZ A similar approach has been followed in the
solver //SATZ [JLU01]. The base solver is satz [LA97], where the DPLL procedure
does not re-use any knowledge from solving a subtree of a node in the DPLL search
tree to solve the other subtree. Thus, this solver can be easily parallelized. How-
ever, before a next branch is generated //SATZ applies look-ahead on the selected
splitting variable.

Idea 3. Use look-ahead during partitioning the search space!

Thus, if one of the branches reaches a conflict immediately, the branch is closed and
the variable is not treated as decision variable. Load balancing is done by splitting
the search tree with the least number of closed splits. The efficiency of //SATZ
reaches almost 1 for both satisfiable and unsatisfiable formulas, where also super
linear speedup is reached for satisfiable formulas.

A More General Parallel Variant of SATZ As shared memory computing systems
become more popular, the costly communication among computing nodes has been
replaced by using multi-core CPUs.
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The study in [SV06] parallelizes satz for both architectures by using several
splitting heuristics, namely the original satz heuristic or picking variables ran-
domly or by picking the variable that occurs most frequently in small size clauses
(MOMS) [Rya04]. Load balancing is reached by creating sufficiently many parti-
tions.

Weakness 2. Use a static number of search space partitions.

The network parallelization of the solver, which is based on message passing interface
(MPI) [GGHL+96], has been compared to shared memory communication, which is
based on OpenMP [ope08]. Observe that only a path of splitting variables and the
solution for the according formula are transmitted between master and slave. There
is only little communication among the nodes compared to the calculation times.
The study showed that the network parallelization is more efficient than using the
multi-core architecture. The result can be explained as follows: using a dedicated
machine gives a solver full access to all the resources to maintain a high performance
with overhead only for high communication times. If multiple solvers are executed
on a multi-core architecture, the communication overhead is much smaller. Due
to sharing resources, more cache misses will occur and the performance of a single
solving process is decreased by at least 15% (compare [MML10] and Section 2.3.2).
Due to little communication, the slowdown on the multi-core architecture is higher
than the network communication costs and thus the network configuration is more
efficient. The study in Aigner et al. [ABK+14] shows that on more recent hardware
this multi-core slowdown is smaller, namely below 10%. Hence, if there are only
multi-core CPUs available, this architecture should be used to not waste resources.

By the presence of multi-core CPUs in almost any computer, the focus of this
thesis is justified. Furthermore, in the CDCL algorithm much more communication
is performed, because learned clauses and additional information about the own
search process can be shared with other incarnations.

6.2.2. CDCL Based Parallelizations

When CDCL was introduced in the year 1996 [MSS96], most parallel computing
systems still have been networks of single core CPUs. First, research on computing
networks is presented and afterwards systems that are based on shared memory
architectures are analyzed. With the introduction of clause learning several ques-
tions arose, namely: Which learned clauses should be send to other solvers? Which
clauses should be incorporated into the own search? Furthermore, the effect of
learned clauses is still not clear. An observation is that even for unsatisfiable for-
mulas super linear speedup can be reached, because learned clauses are shared, or
because the way the search space is traversed differs from the sequential solver.

6.2.3. Network Communication

The Parallel SAT Solver GridSAT Solving the SAT problem in parallel on a net-
work architecture can be done by using grids. These grids provide a job queue and
a computing node maintenance so that resources can be added if a formula is hard
to solve. GridSAT [CW03] implements this approach by using a master-slave ap-
proach. Again, the term grid refers to a computing cluster and not to modern grids.
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A single slave starts to solve the formula on a computing node using a modification
of the sequential solver zChaff [MFM05]. When the run time of this task exceeds
a certain limit, or the slave seems to run out of memory, the slave splits the for-
mula at the first branch. The second branch is reported to the master, so that this
partition can be assigned to a new computing node. This approach tries to solve a
formula sequentially as long as possible. When a slave proved the unsatisfiability of
its formula, the slave asks the master for a new task.

Since several slaves work on the same formula, sharing learned clauses can boost
the performance of the solver. Short clauses are sent and incorporated in the par-
allel running incarnations. The performance analysis revealed that by parallelizing
a CDCL based SAT solver, the speedup can be sub linear to super linear for both
satisfiable and unsatisfiable formulas. Still, Chrabakh et al. claim that the paral-
lel solver is more efficient than a sequential solver because of the following three
reasons [CW03]:

1. by using more CPUs, more parts of the search space can be analyzed concur-
rently,

2. by splitting and removing redundant parts of the partition, each node can
solve smaller formulas, and

3. resources can be added, whenever they are required, by splitting the formula.

The Parallel SAT Solver PMSat A problem of GridSAT is that learned clauses
are not kept when a slave finishes to analyze an unsatisfiable partition. PM-
Sat [GFS08] is a solver that is based on MiniSAT 1.14 and uses MPI to handle
the communication in a cluster environment among the incarnations. Differently
to GridSAT, PMSat assigns a fixed number of slaves to the formula. Thus, new
partitions are only assigned if a slave becomes idle. Load balancing is implemented
by providing sufficiently many tasks.

After a slave solved its task and proved unsatisfiability, a set of selected most
active and small learned clauses are sent to the master.1

Idea 4. Send learned clauses to the master!

Weakness 3. Information is not sent during the search process

The master forwards these learned clauses to the running slaves. Furthermore, the
master removes jobs from its job queue that became unsatisfiable due to received
clauses.

Picking Variables for Search Space Partitioning Picking partition variables can
be done by either selecting the most frequent variable or by selecting a variable that
occurs most frequent in big clauses. Applying the partition variables to produce
the partition is done by either creating a simply binary search tree based on these
variables or by applying scattering [HJN06] (compare Figure 6.2). By always picking
the best configuration, on unsatisfiable formulas an efficiency upper bound of 200%

1How valid learned clauses for partition trees are created is discussed for example in [GFS08] or
in [LM13] and is discussed in more detail in Section 8.2.
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Figure 6.2.: The figure shows how the search space of a formula can be partitioned
by using the simple partitioning (left) or by using scattering (right) with
F=(a∨b)∧(b∨d∨e)∧(c∨d)∧(a∨b∨e∨f)∧(a∨e∨f)∧(d∨f)∧(c∨e∨f).
Simple partitioning picks a variable and simply creates two child nodes.
Based no the reduct, it repeats this step until enough child nodes are
created. Note, that one could strictly force that the order of the picked
variables has to be the same on each path. Scattering builds a first
partition constraint. Next, the second constraint uses the negation and
creates another partition constraint. This scheme is applied iteratively.
Each generated partition Fi is the conjunction of all formulas on the
path from the root to the leaf node. Note that for the partitioning the
following two statements hold: F ≡


i Fi and ∀i ̸=jFi ∧ Fj ≡ ⊥. The

former condition provides the equivalence of solving F or solving all
partitions Fi. The latter guarantees that the search space is partitioned
into disjunct parts.

has been reported. For satisfiable formulas almost always a super linear speedup
has been reached. However, for the worst configuration satisfiable formulas show
only sometimes super linear speedup and unsatisfiable formulas have most often an
efficiency below 0.5. The following important question remains open:

Weakness 4. How should the best configuration be determined before a formula is
solved?

A Portfolio on Grids Based on Restart Schemes Another method to solve SAT
in parallel is to run incarnations in parallel by applying different search strategies.
In [HJN08] for parallel solving with a grid different restart strategies have been
implemented into MiniSAT 1.14. After discussing the effect of restarts on the
expected run time for a formula, Hyvärinen et al. analyze the effectiveness of restart
schemes based on the Luby series [LSZ93] and the exponential series 21.2×x where x
is the number of the next restart. Differently to generic computing networks, in a
grid the run time per job is limited and not communication among jobs is possible.
Hence, different jobs with different restart schemes are applied to one formula in
parallel. Furthermore, learned clauses are not shared.
The results of this study show that the efficiency of this schedule parallelization

ranges from 0.5 to almost 1 if there are no delays in the grid. When the job sub-
mission delay is included into the run time, no super linear speedup is obtained.
Furthermore, the study shows that the more parallel solvers are executed, the less
important is the used restart strategy. Additionally Hyvärinen et al. report that
already a small number of parallel solvers is sufficient to achieve a small solving
time for a given formula [HJN08].
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Figure 6.3.: A formula can be solved with a master-slave approach. A master task
(e.g. Master1 partitions the input formula F and distributes the par-
titions to a set of slaves (e.g. Slave 1-1 and Slave 1-2). Now both
slaves can share clauses with each other via the master (C1,1 and C1,2).
Finally, either the slaves conclude unsatisfiability of their formula, or
they return a model J that also satisfies the input formula F . In a
bigger picture, multiple master-slave architectures can be executed in
parallel and are connected by a grand master. The grand master collects
and distributes valid shared clauses among all masters. Furthermore, it
waits for the masters to solve the input formula.

Weakness 5. A small number of incarnations in a portfolio is sufficient, because
adding more incarnations does not scale.

Therefore, Hyvärinen et al. see this parallelization approach more suited for solving
a set of formulas instead of improving the performance on a single formula.

The Parallel SAT Solver c-sat The parallel solver c-sat [OU09] combines coop-
erative and competitive parallelism. The solver is based on MiniSAT 1.14 and uses
the MPI for communication. The first configuration usesMiniSATs implementation
of the VSIDS heuristic [MMZ+01] with a score for each variable, whereas the second
heuristic stores a score for each literal. Search space partitioning is implemented by
the guiding paths approach (see Figure 6.4). The decision variable for the split is
never taken from a decision level higher than 5 to avoid aborting the newly created
job if a learned clause closes the related subtree.

Idea 5. Avoid tasks with a short run time!

C-sat is organized in three layers. In the top layer there is a grand master that
connects several masters as its slaves (see Figure 6.3). The grand master distributes
the input formula to the masters, shares clauses and checks them for redundancy. All
masters work on the same input formula. Each master maintains a group of slaves
that work on partitions. The highest performance of the solver has been achieved by
using both decision heuristics in parallel to be able to learn more different conflict
clauses.

Idea 6. Combine portfolio solving and search space partitioning!

The efficiency of this approach is super linear for satisfiable formulas and more than
0.6 for unsatisfiable formulas. Furthermore, the experiments of Ohmura and Ueda
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revealed that by running more slaves the chance of learning redundant clauses in-
creases [OU09]. Finally, the stability of the solver with respect to run time increases
if more processing units are used to solve a formula.

Idea 7. A larger portfolio is more robust!

Solving the Formula and its Partitions If no computer cluster is available but a
grid environment with job submission queues, sharing learned clauses as in c-sat,
PMSat or GridSAT is hard. Still, a grid provides parallel resources. In [HJN10],
MiniSAT 1.14 is used to analyze search tree partitioning techniques. In contrast
to all previously mentioned solvers that partition the search space, the presented
solver does not only partition the input formula and solves the partitions but also
solves the original formula to solve the formula at least as fast as the sequential
solver. This approach is called iterative partitioning.
Three tree partitioning techniques for iterative partitioning are discussed: the

first technique solves the formula by using several parallel solvers. The second
technique, called simple splitting, splits the tree according to the DPLL procedure
and additionally applies a look-ahead before the next split. This way, branches
that result in a conflict at the next level are closed immediately and better splitting
variables can be selected.

Idea 8. Use look-ahead for search space partitioning!

The third technique splits the search tree based on scattering (compare Figure 6.2)
and selects partition variables based on their VSIDS score.

Idea 9. Use scattering to partition the search space!

Since the grid environment limits the job execution time, an incarnation might
time out. Still, the solution of the formula can be found because the partition is
split further and its child nodes are solved again by new tasks. The comparison
of the partition techniques shows that the DPLL look-ahead partitioning can solve
formulas faster than the VSIDS partitioning. However, the latter is able to solve
more formulas of the benchmark. A major disadvantage of the approach is that
learned clauses are completely lost when a certain partition is solved or times out,
because the slave is removed from the grid. Furthermore, it is not known whether
a created partition is easier to solve by a solver.
Hyvärinen discusses this effect as follows [Hyv11]: when a formula is solved with a

SAT solver, then when the solver is executed multiple times with a different initial-
ization, then the run times of each run can be regarded as a run time distribution.
Next, Hyvärinen gives a distribution such that the average solving time decreases
when the solver does not solve the initial formula F but the two formulas F1 and
F2, which correspond to the two search space partitions that are based on F . Then,
Hyvärinen concludes that when using the plain partitioning approach, the average
run time of the parallel solver can increase.

Weakness 6. When using the plain partitioning approach, the solving time of a
parallel solver can increase.

The disadvantage of not using learned clauses from a failed run in the grid has
been tackled in further research [HJN11]. Now, learned clauses are submitted back
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to the master if a slave finishes its job. Two approaches to handle these clauses are
presented.

Idea 10. Share clauses in a search space partitioning solver!

The first approach, called assumption tagging, always sends the original formula to
the slave and adds a list of assumption literals, which correspond to the partition
constraints. The overall performance of the approach decreases, because all partition
variables are added to shared clauses so that these clauses can be incorporated
by other incarnations without losing soundness. To overcome this drawback, a
second approach, called flag-based tagging, is introduced. A clause that depends on
assumptions is tagged. If a tagged clause participates in the derivation of a learned
clause, the learned clause is also tagged. This way, the entailed learned clauses with
respect to the input formula are underestimated, but they are much shorter than in
the first approach.

Idea 11. Approximate clause dependencies by tagging!

The latter approach has two benefits: firstly, the formula in each job can be sim-
plified and secondly, the sent clauses are much smaller compared to assumption
tagging. The results in [HJN11] show that assumption tagging slows down solving
easy formulas but improves solving more difficult formulas. For difficult formulas
fewer clauses are shared with flag-based clause tagging.

Weakness 7. Flag-based clause tagging approximates too strong.

6.2.4. Shared-memory Communication

When the multi-core architecture became available, shared memory has been utilized
as communication basis. As shown in [SV06,MML10] running parallel solvers slows
down each incarnation by about 15%, where this number strongly depends on the
used architecture and the implementation of the solver. Since using two cores is
still more efficient than using a single core, the performance of the SAT solvers
increased by exploiting more cores, although the efficiency might be bad. Similar to
the previous sections, and due to historical developments, we focus again on solvers
that partition the search space of a formula to solve the formula in parallel.

The Parallel Solver PaSAT PaSAT [SBK01] is the first shared memory solver
that implements clause learning. Each incarnation picks the next decision literal by
choosing a literal from short clauses to prune the search tree fast. A slave splits a
part of the guiding path and sets up another solver, marks the according branch as
closed and the other solver starts analyzing the obtained subtree (see Figure 6.4).
Each incarnation has its physical copy of the formula and also incorporates all shared
clauses. Learned clauses are shared among the solvers in a global storage. Due to
received clauses the partition of clients might become unsatisfiable immediately.
The experiments showed that the effect of sharing learned clauses is highly non-

trivial. Depending on the formula, sharing can increase or decrease the performance
of the solver. Furthermore, the global storage for the learned clauses can become
a bottleneck, because write accesses block the data structure. Without sharing, a
super linear speedup can be reached for satisfiable formulas and for unsatisfiable
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Figure 6.4.: When tasks are created based on the guiding path method, the current
search path from a solver is taken. To create a task, a split node (dark)
is selected and marked as closed. The solver would not enter the second
branch, because another task already covers that part of the search tree.
For the given search path the picture shows all possible tasks that can
be created.

formulas the efficiency is close to 1. If sharing is activated, the performance for
satisfiable formulas increases whereas it remains close to 1 for unsatisfiable formulas.
By combining several multi-core computing systems to a network, the performance

of parallel solvers can be increased further. A high-level parallelization has been
applied to PaSAT [BSK03], because Blochinger et al. claim that parallelizing an
optimized sequential search that is already extended by storing knowledge during
search to shortcut future computation is hard.

Idea 12. Parallelizing the CDCL algorithm is difficult!

Thus, PaSAT has been distributed and different decision heuristics are used among
the incarnations (compare to Section 6.2.5). Clause sharing is also extended to the
network. Each incarnation lazily collects learned clauses from the other incarnations.
Blochinger et al. noticed that the run time distribution of the parallel solver heavily
depends on clause learning and sharing, because different parts of the search space
might be analyzed in different runs resulting in very different run times.

Weakness 8. A parallel solver has a high variance in the solving time for a formula.

The Parallel Solver ySAT By sharing all learned clauses and implementing two
global accessible data structures, [FDH05] argues that exploiting multi-core architec-
tures for parallel SAT solvers is not worth the effort. Their solver ySAT implements
the CDCL algorithm almost as powerful as the winner of that years SAT compe-
tition zChaff [MFM05]. The formula is physically shared. Tasks are created by
splitting the search tree based on a split that is close to the root of the tree (see
Figure 6.4). These splits are stored in a global work queue, all learned clauses are
also stored in a global list and both these data structures have to be read and writ-
ten by all threads. Feldman et al. report a blocking overhead of up to 10% for their
implementation [FDH05].

Weakness 9. Using multiple shared structures results in high blocking times.
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The scalability analysis in [FDH05] is based on an input formula of 1.5MB. It can
be noticed that by using n cores (where n is limited to four in the publication) n times
more learned clauses are generated per time unit and the storage for these clauses
also increases n-fold compared to the sequential solver. Feldman et al. measure
exactly this effect. Furthermore, the clocks per instruction ratio scales inversely
with the number of incarnations, because the huge learned clause storage introduces
many cache misses compared to the small formula. If the input formula would be
much larger, then this measured effect might be much smaller, so that the obtained
result might have been more positive.

Weakness 10. Do not use only small formulas for evaluation.

The Parallel Solver MiraXT The solver MiraXT [LSB07] showed a different pic-
ture by using different design decisions. It parallelizes the solver Mira [LSB04] by
splitting the formula based on the guiding path of already running solvers. Lewis
et al. claim that by using a preprocessor [EB05] bad splitting variables are removed
from the formula.

Idea 13. Apply formula simplifications before parallel search and search space par-
titioning!

As ySAT, MiraXT shares all clauses physically and shares all learned clauses, but
each incarnation can decide which clause it incorporates. The main difference is the
way how learned clauses are shared: only clauses that are useful are incorporated.
An incarnation receives only clauses whose reduct has at most 10 literals with respect
to their current interpretation.

Idea 14. Received clauses should be filtered!

The performance analysis showed that the two core solver is more powerful than the
single core solver, although the efficiency seems to be below 1.

The Parallel Solver pMinisat The parallel solver pMinisat [CSH08], which is
based on MiniSAT 2.0, adds another strategy to the portfolio of ideas: A work
queue of tasks is provided based on the guiding path and splitting the first open
decision. Then, shared clauses are kept if they become unit for open jobs in the
work queue. Thus, whenever an idle solver is assigned the next job, it immediately
can propagate further implications.

Idea 15. Store shared clauses for new solver incarnations!

The Parallel Solver Sat4J// The way of partitioning the search space of a formula
has been analyzed in [MML10]. The novel idea for partitioning is to execute several
CDCL solvers with the VSIDS decision heuristic in parallel: after running CDCL
in parallel for a short time, the activities of each variable are accumulated and
the variables with the highest activities are chosen for partitioning, resulting in
better search space partitioning. Additionally to partitioning the formula, Sat4J//
implements solving a formula with different configurations. The solver first splits
the formula and if the run time reaches a limit, the solver switches to the portfolio
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approach. The performance of the hybrid approach is higher than using either
partitioning or portfolio solving.
Furthermore, the analysis shows that running four times Sat4J [BP10] on a quad-

core CPU in parallel slows down each solver by 25%. Compared to this Java solver,
running four times MiniSAT 2.0 on the same CPU slows down each solver by 15%.
From these measurements it can be concluded that by using programming languages
like C or C++ the provided parallel architecture can be exploited better compared
to Java.

Idea 16. Parallel Java solvers have a higher slowdown than C++ solvers!

A reason for this behavior is also the increased memory footprint of Java programs,
as studied in [ABK+14].

The Parallel Solver Cube-And-Conquer Another recent approach is to combine
a look-ahead SAT solver with CDCL solvers [HKWB12]. The expensive look-ahead
procedure is used to partition the formula into many partitions, which are solved by
the CDCL solvers afterwards. Based on the formula up to 220 partitions are created,
where most of them can be solved very fast, but some partitions remain hard to be
solved.

Weakness 11. Producing search space partitions statically can result in partitions
of unbalanced difficulty and might result in long solving times for a few partitions.

Since the produced partitions can be solved in parallel, this solving approach is well
suited for a multi-core architecture. Heule et al. showed that Cube-And-Conquer
solves some hard formulas, which could not be solved before in a reasonable time.

The Parallel Solver Splitter As also used for the grid environment, the iterative
partitioning approach can be used to solve difficult partitions. In [HM12] formula
partitioning has been compared to portfolio SAT solvers. Moreover, Hyvärinen
et al. showed that the iterative partitioning approach scales better than a plain
partitioning or portfolio solvers if the number of cores increases up to 12 cores and
the formulas that should be solved are hard to be solved.

Idea 17. Iterative partitioning is a scalable solving approach!

The Parallel Solver Treengeling Treengeling [Bie13] is based on the sequential
solver Lingeling [Bie13] and follows the plain partitioning solving approach. The
parallel solver is an extension of the concurrent cube and conquer approach pre-
sented in [vdTHB12]. However, Treengeling produces partitions dynamically on
demand. A search space partition is produced by selecting a splitting variable via
look-ahead. Furthermore, the formulas that are produced for the new search space
partitions are simplified.

Idea 18. Simplify the formulas of the search space partitions!

Finally, instead of terminating the incarnation that worked on the parent node,
this solver is cloned, so that the original incarnation continues to work on the first
partition, and a clone of this solver continues working on the other partition.

Idea 19. Reuse information of the sequential solving process of the parent node!
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6.2.5. Pure Portfolio Solvers

With the introduction of restarts [GSCK00] and with increasing the frequency of
restarts [Hua07, RvdTH11] the performance of sequential SAT solvers improved.
With restarts enabled, partitioning based on guiding path is not easy any more,
as also reported in the literature (see Idea 5). Another reason to avoid partition-
ing is that there exist run time distributions for formulas for which the expected
run time increases if partitioning is used but the time decreases for portfolio ap-
proaches [HM12]. These two arguments have caused the trend to move from co-
operative parallelism to competitive parallelism, resulting in a strong increase of
research on portfolio solvers. For portfolio solvers, no efficiency comparisons are
provided any more, but the publications compare the performance of solvers on a
given benchmark, because clause learning is a mechanism whose effect is hard to
be predicted. The efficiency on a single formula gives no information about the
performance of the parallel solver on a set of formulas. For both unsatisfiable and
satisfiable formulas clause learning influences the traversal of the search space heav-
ily.

The Parallel Solver ManySAT With ManySAT [HJS09b] portfolio solvers be-
came popular. ManySAT is based on MiniSAT 2.0 and applies several restart,
decision and learning heuristics to its four parallel incarnations. Learned clauses with
at most eight literals are shared among the incarnations. Experiments with smaller
and larger limits showed that the threshold of size eight seems to perform best.
Furthermore, each incarnation has its private physical copy of all the clauses. The
obtained efficiency for the chosen combination of the heuristics is reported with 1.5,
when compared to the best sequential solver of the SAT Race 2008, MiniSAT 2.1.

Idea 20. The number of shared clauses must be limited!

Further experiments on the size threshold for shared clauses in [HJS09a] showed
that the performance can be increased if dynamic limits are used. Hamadi et al.
showed that the average size of learned clauses increases over time, so that with a
static limit after a certain run time no clauses would be shared any more. Hamadi
et al. suggest two dynamic adaptions: the first adaption keeps the number of the
exchanged clauses between two incarnations within an interval. The second criterion
is based on the quality of the clauses.

Idea 21. Use dynamic sharing limits!

The quality is measured by the size of the reduct of the clause with respect to the
interpretation of the receiving incarnation. For both measurements the limits are
tightened or loosened if the number of exchanged clauses leaves the interval.
Ongoing research on portfolio solvers showed that further information might be

exchanged to improve the performance. The work in [GHJS10] suggests to send
the last decision literals, the asserting literals of the last conflict analysis, or the
literals that have been used to derive the last conflict clause. With each of the
information, an incarnation could either search in the same search space as another
incarnation, could use shared clauses better or search around the same conflict,
respectively. Experiments showed that solving around the same conflict results in
the best performance of the parallel solver.
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Idea 22. Share more information about the search process than the learned clauses!

Furthermore, if four incarnations run in parallel using two sending incarnations and
two receiving incarnations for extra information results in the best performance of
the solver, both in the number of solved formulas and in the average run time.

Since parallel solvers are non-deterministic, reproducing previous runs is difficult.
Hamadi et al. showed in [HJPS11] that sensitively adding sharing barriers to the
solver solves the problem. The number of conflicts between two barriers is deter-
mined per incarnation based on the number of learned clauses in the incarnation to
avoid waiting times. With this technique, the deterministic parallel solver performed
at least as well as the non-deterministic version of ManySAT.

The Parallel Solver SArTagnan A different portfolio approach has been imple-
mented in the lock free implementation of the SAT solver SArTagnan [KK11b].
This solver supports up to eight threads, where only six of them execute the CDCL
algorithm. A remaining thread uses Decision Making with Reference Points [Gol08]
to solve the formula and the last thread simplifies the formula. Since the formula
is shared physically, all simplifications can be incorporated into all incarnations
immediately. For sharing clauses and using the two watched literal unit propaga-
tion [MMZ+01], a watch literal reference for each clause and incarnation has to be
added. This reference has been implemented by applying the XOR-operation to the
two watched literals, so that only half the information has to be stored. The literals
can be revealed, because one of the two literals is known during all operations that
are performed with a clause.

The Parallel Solver ppfolio Pointing into the direction of using multiple solving
approaches as in SArTagnan has inspired the portfolio solver ppfolio [Rou11].
By simply running very different solvers in parallel, ppfolio was ranked high in
most of the tracks of the SAT Competition 2011. The different solvers have been
executed without any communication. Still, by using a stochastic local search (SLS)
solver, several Conflict Driven Clause Learning (CDCL) solvers and a look-ahead
solver the overall performance is good enough to achieve a good ranking with respect
to the ranking scheme.

Idea 23. Have diverse solver incarnations in a portfolio solver!

The Parallel Solver Plingeling Another recent successful parallel portfolio solver is
Plingeling [Bie10]. Additionally to restarts, Plingeling even runs simplification
methods during search to simplify the formula based on the knowledge that has been
gathered during search. Inside Plingeling the same solver configuration is executed
in parallel and differs only in the used random seed per incarnation. Usually only
very short clauses are shared. A more recent version of Plingeling [Bie13] uses
different configurations and also shares longer clauses. Plingeling furthermore
exchanges knowledge about equivalent literals.

Idea 24. Share information about formula simplification results!
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Barriers to Portfolio Solvers Parallel portfolio solvers have been analyzed for their
scalability on unsatisfiable formulas [KSSS13]. The structure of the unsatisfiability
proof that has been generated by a sequential CDCL solver has been analyzed.
The study revealed that for many applications the proof contains bottlenecks and
dependencies. A bottleneck is built by a clause which is necessary for the resolution
derivations for all clauses that are produced later in the proof. Independently of
the number of used computing resources, such a bottleneck restricts the scalability
of a parallel solver. The proof cannot be constructed without the clause in the
bottleneck, but then the whole proof cannot be generated in parallel. The analysis in
the paper showed that for the considered formulas from real world applications that
the efficiency with an optimal proof generation process is high for a small number
of up to 32 workers. For most formulas an efficiency of 80% is reached. The more
workers are considered, the lower is the efficiency. Observe, that the study uses
only relevant clauses for the proof and furthermore considers the optimal clause
generation order. An implemented CDCL algorithm produces irrelevant clauses and
does not follow the optimal order. Hence, the actual efficiency of an implemented
algorithm is much smaller.

Weakness 12. Portfolio solvers cannot produce an unsatisfiability proof in parallel.

Clause Sharing and Inprocessing In [MPW13] portfolio solvers like Plingeling
have been analyzed. A formal model is presented that allows to model portfolio
solvers that apply formula simplification techniques to the formula but furthermore
also use clause sharing. Therefore, the simplification techniques have been cate-
gorized into two classes: clause elimination techniques are, for example, variable
elimination, blocked clause elimination, or equivalent literal substitution. On the other
hand, a clause addition technique is for instance blocked clause addition. The new
simplification technique covered literal elimination is also a clause addition technique.
The results of [MPW13] show that when all incarnations can send and receive
clauses from and to all incarnations, then

▶ either all incarnations are allowed to only perform clause elimination tech-
niques,

▶ or one dedicated incarnation is allowed to perform clause addition techniques,
and all remaining incarnation are allowed to perform clause elimination tech-
niques.

Simplifications that preserve equivalence are allowed in all incarnations.

Idea 25. Selected formula simplification techniques can be combined with clause
sharing!

6.2.6. Different Parallelization Approaches

The following research cannot be categorized as easily as the above publications,
because each focuses on a different way of how to parallelize SAT solving, not only
by partitioning the search space or using several configurations to solve the same
formula.
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Figure 6.5.: By nagging many parallel solvers try to solve the same search space
competitively. The solver and all the tasks solve the input formula F and
all agree on branching on positive variables first. The solver and task 1
search in the same search space with the common partial interpretation
(a, b, c). Note that the order of decisions is important for this approach.
They try to solve the resulting formula FJ by continuing with a different
decision variable. Task 2 shares only the partial interpretation (a, b) and
task 3 does not share an interpretation with the other formulas.

Parallel Solving by Nagging The first parallelization is implemented in Nagsat
for computing networks [FS02]. There, the DPLL algorithm has been parallelized
by nagging [SS94].
Nagging, as also illustrated in Figure 6.5, works as follows: there is one master

incarnation that executes the DPLL algorithm. Additional slaves are added that
perform nagging by picking a decision literal from the first r decision literals of the
master in the same polarity, where r is a randomly chosen integer. The chosen
decision literal is called nagpoint. Afterwards, the slave mixes the order of the
decision literals in the interpretation of the master until the nagpoint. With this
modified first decisions, the slave tries to solve the same subspace as the master but
with a different variable ordering. Three cases can occur.

▶ The slave finds a solution.

▶ The slave proofs unsatisfiability of the sub-space before the master.

▶ The master backtracks over the nagpoint.

As restarts, which have been introduced after nagging, nagging is suited to tackle
the heavy-tailed behavior of depth-first searches as DPLL [GSCK00]. For improving
the search by nagging threads both the first and second case have to occur more
often than the third case for an improved result. Otherwise, the master solves the
sub-space faster than the nagging slave, so that this slave is redundant. Experiments
on Nagsat showed that for two computing nodes the efficiency for both satisfiable
and unsatisfiable formulas is higher than 1, but the approach does not scale well
for 64 processors: the measured efficiency for all formulas is sub linear. For satisfi-
able formulas, the efficiency 0.65 can be reached and for unsatisfiable formulas an
efficiency of only 0.11 has been reported. Observe once more, the used algorithm is
the DPLL algorithm, for which an exponential improvement due to parallelization
is unexpected.
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F1 F2F3

V1 V2Vjs

Figure 6.6.: By dividing the variable set V of a formula F , parts of the formula can
be solved in parallel. The variables are divided into the sets V = V1 ∪
V2∪Vjs with i ̸= j : Vi∩Vj = ∅. Similarly, we partition F = F1∧F2∧F3.
All clauses in F1 have only variables from V1, similarly for F2 and V2.
F3 contains the remaining clauses. Now, if a model is found for F3, this
model is modified in parallel to also satisfy the other two sets. Since
the variable sets are disjoint, for each formula only the corresponding
variables need to be considered and modified. If the extension fails, the
next model for F3 has to be analyzed.

Partitioning the Variables of a Formula An alternative partitioning approach for
partitioning the search space is to divide the variables of the given formula into
two partitions [SM08]. Then, for one partition a model has to be found such that
this model can be extended to satisfy the other partition as well. The approach is
illustrated in Figure 6.6.

The partitioning for a formula F works as follows: firstly, the set of variables
V = vars(F ) is divided into two sets V = V1 ∪ V2. The intersection Vjs = V1 ∩ V2

of these two sets should be as small as possible, because this set determines the
number of possible partial interpretations. The formula is partitioned into three
sets: in F1 there are all clauses that contain only variables not occurring in V2, F2

contains all clauses with variables not occurring in V1. Finally, F3 contains all the
remaining clauses. Solving is now done by creating a model J for either F1 or F2.
If this interpretation cannot be extended to satisfy F3, J is rejected. Otherwise, the
algorithm tries to extend J further to satisfy the whole formula. Finding models for
F1 and F2 can be done in parallel. By using an all-model-finding SAT solver, such as
relsat [JP00], partitioning is applied recursively and the models for the formulas
are enumerated in parallel. A weakness of this approach is that a good partitioning
that minimizes |Vjs| is required. Another drawback is that multiple models for each
formula have to be found. This additional work leads to the following results: even
for small formulas, the run time of the parallel solver is worse than the run time of
the sequential solver.

Parallelizing The Most Expensive Part Another parallel outlier tries to parallelize
the most time consuming part of the CDCL algorithm, the optimized two watched
literal unit propagation, which consumes 80% of the solvers run time [Man11c].
Although it has been shown in [Kas90] that unit propagation itself is a P-complete
algorithm, the work in [Man11c] shows that on real world formulas the performance
of the solver can still be increased. For application formulas, propagating a single
literal during search implies at least another two literals in 13% of all propagated
literals. In 5% of all cases even at least four new literals are implied with one
literal. The idea of parallel unit propagation is to separate the input formula and
the generated learned clauses into partitions. The idea is illustrated in Figure 6.7.
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Figure 6.7.: Parallelizing unit propagation can be done by partitioning the formula
F and sharing the partial interpretation J . Let F = F1 ∧ F2 with the
two formulas F1 = (a ∨ b) ∧ (b ∨ d ∨ e) ∧ (c ∨ d) ∧ (a ∨ b ∨ e ∨ f) and
F2 = ∧(a ∨ e ∨ f) ∧ (d ∨ f) ∧ (c ∨ e ∨ f). After each decision two work-
ers propagate units on their private formula and afterwards they share
the found variable assignments. This process is repeated until ter-
mination or until a conflict is reached. Assume, the interpretation
J = (a, b, c, d) (dark node) has been created already. For all the filled
nodes on the path the shared interpretation does not result in a conflict
or more implied literals. On F1 the implied literal e with the reason
C2 is found and shared. Afterwards, in F2 the literal f is implied by
C5 and f is implied in F1 by C4. By sharing the knowledge about the
variable f , a conflict is detected.

Each thread is assigned a private partition and only the assigned thread has access
to the clauses of its partition during unit propagation. Thus, each thread has to
propagate the current decision and its implied literals on its private clause partition.
Furthermore, found implied literals have to be shared with the other threads to keep
completeness. In this part of the algorithm overhead is introduced. The remaining
parts of the CDCL algorithm are executed only by a single thread. The results of
this study show that in average an efficiency of 0.65 for two threads can be reached.
Furthermore the presented results show that parallel unit propagation does not scale
beyond two threads.

Simplifying Clauses Simultaneously to Search In [WH13], Wieringa et al. exe-
cuted formula simplification in parallel to solving the formula. Let the master thread
solve the formula, then this master sends all generated learned clauses to a slave
thread. This slave thread executes clause vivification (see Section 5.5.1 or [PHS08])
on selected learned clauses. As a reminder, clause vivification removes redundant
literals from clauses. If a clause can be shrunk by this operation, then this clause
is sent back to the master and the master incorporates the shorter clause into its
formula. By sensitively setting the sharing limits for the clauses that are sent to
the slave and back to the master, the performance of the sequential solver has been
improved especially on unsatisfiable formulas, even when only a single core was
available during the process.
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6.3. Contributions

This chapter analyzed the parallel SAT solving approaches that have been presented
in the literature. A first contribution is that for each of these proposed techniques
weaknesses have been pointed out and that ideas that led to improvements have been
emphasized, as also indicated in [HMN+11]. Where for sequential SAT solvers
clause learning and formula simplification is very important, parallel SAT solvers
benefit especially from sharing the learned clauses. During the literature study also
work on the compatibility of clause sharing and formula simplification in parallel
SAT solvers has been presented. Similarly as in [MPW13], the sound combinations
of simplification and sharing has been explained. This paper received the best paper
award of the SAT conference 2013.
Portfolio solvers are a simple way to improve an existing algorithm. The extraction

of minimal unsatisfiable formulas has been parallelized with clause sharing and a
portfolio setup in [BMMS13]. The resulting parallel algorithm achieved linear
speedups. Since this work does not fit exactly into the line of arguments of this
thesis, the work has not been presented in more detail.
Parallel SAT solving approaches can be divided into high-level parallelization

and low-level parallelization. Although not presented in much detail, the paral-
lelization of unit propagation has been investigated with the result that this low-
level parallelization does not scale beyond two workers. These results are in line
with [Man11c].
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7. Low-Level Parallelizations of SAT
Technology

In this chapter, a low-level parallelization of polynomial SAT algorithms is given,
namely parallel formula simplification techniques. A parallel variant of the vari-
able elimination, strengthening and subsumption is introduced. These variants are
compared to the sequential algorithms and a robustness and scalability analysis is
presented.
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7.1. Parallel Formula Simplification

As already presented in Section 5.8, a SAT solver uses about 20% of its run
time for formula simplifications and the remaining 80% for search. According to
Amdahl’s Law [Amd67], the solving algorithm can be parallelized efficiently only
if all components are parallelized. On the other hand, the best improvement is
achieved when the most time consuming part of the algorithm is parallelized. As
reported in [HMS10], unit propagation consumes about 80% of the search time.
Therefore, parallelizing unit propagation is the most promising step, and its relevance
should be tested although unit propagation is known to be P-complete. As already
reported in [Man11c] or in [HW12], parallelizing unit propagation efficiently cannot
be achieved for formulas that originate from real world applications. Furthermore,
the proposed algorithms do not scale beyond two computing resources.
Nevertheless, the tool chain of modern SAT solvers also includes other polyno-

mial algorithms, for example formula simplification methods. As reported in Sec-
tion 7.1.3, using a preprocessor is mandatory to obtain a competitive SAT solver.
Therefore, the parallelization of formula simplification techniques should be consid-
ered. Hence, this section introduces the parallelization of bounded variable elimina-
tion (BVE). This parallelization is a low-level parallelization, because the sequential
algorithm is parallelized.

7.1. Parallel Formula Simplification

Successful SAT solvers either use simplifications only before search in an incomplete
way, or utilize these techniques also during search – known as inprocessing – and
spend even less time per simplification iteration. This treatment points exactly to
the weakness of simplification techniques: applying them until the formula cannot
be simplified further can consume more time than solving the initial formula. There-
fore, inprocessing seems an appealing idea to follow. Here we do not discuss when
preprocessing and inprocessing can be exchanged, but we focus on another point in
parallel SAT solving: powerful parallel SAT solvers as PeneLoPe [AHJ+12] use the
sequential preprocessor SatELite [EB05], which has been developed in 2005. Al-
though PeneLoPe can utilize up to 32 computing units, during preprocessing only
a single core is used. By parallelizing the preprocessor, the efficiency of any parallel
SAT solver can be improved – however to the best of our knowledge, there exists no
publicly available work on parallel formula simplification. This comes as a surprise,
because preprocessing techniques are much more likely to be apt for parallelization,
since their complexity class usually is P. Differently than for the complexity class
NP, for problems in P there exists the chance to be efficiently parallelized [KR90].
We picked the most widely used and most effective preprocessing techniques BVE
as well as subsumption and strengthening (see Section 5.5.1), which are implemented
in the modern preprocessors SatELite [EB05] and Coprocessor [Man12]. For
the three techniques we present a way to parallelize them.

7.1.1. Variable Graph Partitioning

Variable graph partitioning can be used to divide a formula in pairwise disjoint
sets on which the workers can perform simplifications without additional synchro-
nization. It seems to be desirable to find the partition with the fewest connections
between the subgraphs, because the border variables cannot be processed by any
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worker. On the other hand, BVE and strengthening are not confluent and a partition
heavily effects which of the sequential simplification steps can actually be performed.
This property makes it difficult to predict the utility of a partition in advance. Fi-
nally, as already the minimum graph bisection is NP-hard [GJS74], obtaining an
efficient parallelization with graph partitioning, in which all parts of the algorithm
are executed in parallel, is not expected. Therefore, we preferred a locking-based
parallelization approach.

7.1.2. Locking Based Parallel Simplification

Locking based parallel simplification tries to overcome the shortcomings of variable
graph partitioning by creating only temporary partitions. With regard to the sim-
plification technique, exclusive access rights to a subformula Fi are granted to a
worker W . After a simplification step has been performed, W returns its privileges.
Exclusive access rights are ensured with the help of locks.

For the implementation of the presented parallel simplification techniques an addi-
tional invariant is necessary. Without the loss of generality we assume the variables
of the set of variables V to be ordered, i.e. there is a total order on the variable in
V. To obtain a simpler implementation, the literals in a clause are always sorted
according to the order of their variables, as already required for formula simplifica-
tion in Invariant 4. Since tautological clauses do not occur in SAT solvers, for each
clause there exists a unique ordered clause.

Parallel Subsumption

The algorithm for subsumption has no critical sections, because the only manip-
ulation of F is the removal of clauses (line 5 of the algorithm in Figure 5.13 on
page 165). If a worker Wi tests whether C subsumes other clauses and C is removed
by Wj , further subsumption checks with C will not lead to wrong results, due to the
transitivity of ⊆. The formula Fl is changed only if another worker removed a clause
containing l, which will even reduce the workload for Wi. Therefore, subsumption
can be parallelized by dividing F in subsets Fi, such that F =

n
i=1 Fi. Note, that

the formula Fl is labeled with a literal l, whereas the formula Fi is labeled with
an integer i. Where Fi can be an arbitrary subset of F , Fl is defined as the set
of all clauses of F that contain the literal l. Then each worker Wi executes sub-
sumption on its formula Fi in parallel to the other workers. This parallel algorithm
ParallelSubsumption is the modified variant of the sequential algorithm.

The pseudo code of the parallel subsumption algorithm ParallelSubsumption is
presented in Figure 7.1. For each clause C of the formula Fi, which is a subformula of
the formula F , the algorithm tests whether there are clauses in F that are subsumed
by C (line 1). To achieve better performance, the least frequent literal l of C is
selected (line 2) and all clauses D which also contain l are analyzed (line 3). If the
clause D is different from C, but C subsumes D (line 4), then D is removed from
the formula (line 5).

This procedure does not require a lock, because the implementation treats the
deletion of the clause from the formula by simply setting a Boolean flag in the
representation of the clause. This Boolean flag indicates that the clause is removed.
Any worker that detects a clause D is redundant will write the same Boolean flag
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ParallelSubsumption (CNF formula F , Fi ⊆ F )

Input: formula F and subset Fi ⊆ F to test

Output: modified formula F

1 for C ∈ Fi do

2 l := argminl l ∈ C

3 for D ∈ F l do

4 if C ⊆ D ∧ C ̸= D

5 then F := F \ {D}

Figure 7.1.: Pseudo code of the parallel subsumption algorithm

and hence the same data word, so that the operation is safe although there can be
data races. Hence, setting this Boolean flag is done with a lock-free implementation.
After this flag is set, the corresponding clause is not considered any more. Setting
this flag in a critical section, such that D could be ignored eagerly, might have a
small benefit on the overall workload, because this way the worker who has to test
D could stop these checks immediately. However, using a critical section would
introduce a lot of locking overhead, so that deleting clauses is done lazily.

Parallel Strengthening

Strengthening requires each worker Wi to have exclusive access rights to the clauses
C and D while performing the strengthening test and overwriting D when indicated
(lines 6–7 in Figure 5.14 on page 166). The two clauses C and D should not be
modified when their resolvent E on a variable x is produced. Without exclusive
access, x could be removed from C or D, such that the resolvent is not valid any
more. Furthermore, when the clause D is modified during the check E ⊆ D, then
the result of this check might be wrong as well.
Therefore, a lock-free implementation as for subsumption is not possible and the

following locks are introduced. A lock for each variable v ∈ vars(F ) is used. These
locks are shared among all workers. If a worker Wi holds a lock on a variable v,
Wi has exclusive access to all clauses whose smallest literal is v or v. Remember
that the variables v are ordered. The total order ≤ on vars(F ) is exploited to
avoid deadlocks: after Wi locked v it may request locks only on smaller variables.
Then, locks are allocated only in order, and hence the circular wait condition of the
Coffman conditions (see Section 2.3.2 or [CES71]) is always broken.

Example 42: Strengthening Clauses Let F = F1 ∧ F2 be the formula

F1 = (c ∨ d) ∧ (d ∨ e) ∧ (d ∨ f) F2 = (c ∨ f) ∧ (b ∨ c ∨ d) ∧ (b ∨ c).

The variables of the formula are ordered according to the alphabetical order.
Observe that all literals in all clauses are sorted accordingly. Then, assume two
workers W1 and W2 to perform strengthening on F in parallel according to the
following steps. W1 strengthens with the clause (c ∨ d) with respect to variable
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d, and W2 strengthens with clause (b ∨ c) with respect to variable b. The table
gives, next to the clauses that are considered for strengthening, the minimal
variable of the left hand clause (minLH) and the right hand clause (minLH).

minLH minRH comment

W1 (c ∨ d)⊗d (d ∨ e) = (c ∨ e) c d no strengthening
W1 (c ∨ d)⊗d (d ∨ f) – c d not defined
W1 (c ∨ d) ⊗c (b ∨ c ∨ d) c b wait for variable b

W2 (b ∨ c) ⊗b (b ∨ c ∨ d) = (c ∨ d) b b release b

W1 (c ∨ d) ⊗c (b ∨ c ∨ d) = (b ∨ d) c b original attempt
W1 (c ∨ d) ⊗c (c ∨ d) = (d) c c actual repeated attempt

Worker W1 iterates over all clauses in Fd, which is (d ∨ e) with the minimal
variable d. The resolvent does not subsume this clause, so that the clauses in
Fd are considered next. Since the resolvent (c ∨ d)⊗ (d ∨ f) is not defined, the
clause (d ∨ f) is not considered. Next, the clause (b ∨ c ∨ d) with the smallest
variable b is considered.
However, worker W2 is currently working on b. Hence, W1 will wait until W2

releases b. Before, W2 strengthens (b∨c∨d) with (b∨c) to the new clause (c∨d)
and releases b afterwards.
Then, the original attempt of W1 would strengthen the old clause (b ∨ c ∨ d)

with (c ∨ d) to obtain (b ∨ d). However, since the clause changed, and also its
smallest variable changed, W1 will now wait for the new smallest variable c,
which is already the smallest variable of W1’s strengthening clause. Hence, the
new clause (c ∨ d), which has been created by W2, is strengthened by W1 with
(c ∨ d) to obtain the unit clause (d).
Observe the following properties in this example: a worker strengthens a

clause D with the minimal variable v only, if no other worker is currently
strengthening with the variable v. Furthermore, if a worker strengthens with a
clause C and the minimal variable v′, then clauses E are only strengthened if
E’s smallest variable is smaller equal to v′.

The properties of the steps in Example 42 can be discussed more generally for
strengthening. Consider the clause C that is used for strengthening, with v =
min vars(C). Then, a clause D with w = min vars(D) can only be simplified by C,
if w ≤ v.

Either, v is used for resolution, so that there is at least a variable inD that is equal
to v, namely the variable of the literal that is used for resolution. There can even
exist smaller variables in D. Otherwise, if v is not used for resolution, then D needs
to contain another smaller variable w, w ̸= v to create a resolvent that subsumes
D. If w > v, then v cannot be the variable for resolution. However, in this case,
the resolvent E = C ⊗D contains v, because v is not used for resolution. But then
E ̸⊆ D, because v ∈ vars(E) and v ̸∈ vars(D). Hence, D cannot be simplified by C,
so that any candidate D with w > v can be ignored for strengthening. Hence, after
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ParallelStrengthening (CNF formulas F , Fi)

Input: formula F and clauses Fi to test

Output: formula F withstrengthened clauses

1 Qi := Fi

2 for C ∈ Qi do

3 v := var(minC)

4 lock v

5 if var(minC) ̸= v then // check if C was modified

6 unlock v

7 goto 3 // repeat locking procedure

8 l := argminl∈C |F l ∪ F l|
9 for D ∈ F l ∪ F l do

10 v′ := var(minD)

11 if v < v′ then // C ⊗D ⊈ D

12 goto 9

13 if v > v′ then // no locking if v = v′

14 lock v′

15 if var(minD) ̸= v′ then // check if D was modified

16 unlock v′

17 goto 10 // repeat locking procedure

18 if (C ⊗D) ⊆ D then

19 atomic D := (C ⊗D) // remove literal from D

20 Qi := Qi ∪D

20 if v > v′ then

21 unlock v′

22 unlock v

Figure 7.2.: Pseudo code of the parallel strengthening algorithm

locking v, the parallel strengthening algorithm can lock variables in decreasing order.
The argumentation can be summarized more formally in the following statement:

C ⊗D ⊆ D =⇒ var(minC) ≥ var(minD),

Consequently, the smallest variable v′ of D needs to be locked only if v′ is smaller
than v. A slightly modified parallel strengthening algorithm, that exploits the same
idea, is discussed during the presentation of the parallel BVE.
The pseudo code of the parallel algorithm is presented in Figure 7.2. This algo-

rithm is executed by all workers, but each worker has its private local data structures.
For a formula Fi the working queue Qi is initialized with Fi (line 1). For each clause
C in this queue the strengthening check is executed, in parallel to the checks of the
other workers (line 2).
Therefore, additional modification steps have to be executed during the algorithm.

First, we check whether another thread currently works on the same clause C and
just removed a literal from this clause. Therefore, the smallest variable v ∈ C is
locked (lines 3–4). If the other thread removed the smallest literal from the clause
C, then the smallest variable of the clause is unlocked and the check for the new
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smallest variable is repeated again (lines 5–7). Otherwise, the variable v is the
smallest variable of C. Since the current worker Wi locked the variable v, Wi has
exclusive write access to C. C cannot be changed by any other worker until the
lock on the variable v is released again. As in the sequential algorithm, the least
frequent literal l of C is selected (line 8). Next, all clauses D that contain the
variable var(l) are considered for strengthening (line 9), and their smallest variable
v′ is selected (line 10). If the smallest variable v′ of D is larger than the variable v,
then C and D cannot be resolved on v. Hence, D can also not be strengthened, so
that the next clause D is considered (lines 11–12). If v and v′ are equal, then Wi

already has exclusive write access on D and no locking is necessary. Furthermore,
no other thread could have changed D since the variable v was locked. Otherwise, if
v′ is smaller than v, then Wi does not have exclusive write access to D yet (line 13).
Consequently, the variable of v′ is locked similarly as for C: in case of a modification
of D by another worker (line 15), the steps with D are repeated, i.e. the lock on v′

is released, the new smallest variable is selected again, and is locked again (lines 14–
17). This procedure is repeated until Wi has the lock on v′, and v′ is the smallest
variable of D.

Next, if the resolvent of C and D exists and when this resolvent subsumes the
clause D (line 18), then D is updated to contain exactly the literals of the resolvent
(line 19). This step is implemented by removing the literal that has been used for
resolution from D, which can be done correctly without a lock. The smallest literal,
which is always at the first position in the clause, has to be modified latest, because
only this literal of a clause is accessed by other workers without a lock. Hence, the
remaining literals are modified first. The literal on the first position is overwritten
last. Afterwards, the shortened clause D is added to the working queue Qi of the
worker, so that the formula can be analyzed with respect to this new clause as well.
Finally, if the variable v′ was locked separately, then this lock is released and the
next clauseD is considered (lines 20–21). After all candidatesD have been analyzed,
the lock for the variable v is released, so that the next clause C can be considered
by Wi (line 22).

The occurrence lists Fl of clauses D ∈ Fl have to be maintained as well. When
the literal l has been removed from D by strengthening, then this clause should not
be present in this list any longer. Hence, these lists also form a critical section.
However, by ignoring this the assumption that l ∈ D, if D ∈ Fl, no maintenance is
necessary. Then, the only overhead is that a clause D is still present in Fl even if
l ̸∈ D any longer, because has been removed from D by a previous elimination step.
This overhead is preferred to always locking lists when clauses should be accessed.
The occurrences are updated once all workers finished their task.

Parallel Variable Elimination

Variable elimination requires a more complex locking scheme: an elimination of a
variable v requires a worker to have exclusive access to the set of clauses F v ∪ F v

while the steps in lines 7–9 of the sequential algorithm are performed (Figure 5.16
on page 171). We will use the stronger condition of exclusive access to all clauses
that consist of neighbor-variables (or neighbors) of v. The neighbor variables of a
variable v are the variables that appear together in clauses with v, i.e. vars(F v∪F v).
A further difficulty in contrast to the parallel strengthening algorithm is that BVE
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cannot simply remove literals from clauses but has to create new clauses. Therefore,
a multiple reader – single writer synchronization of the formula in the solver is
necessary. Finally, SubSimp shall be executed in parallel to BVE, as also done in
the sequential BVE algorithm.
To meet all requirements three kinds of locks are used:

▶ a lock for each variable,

▶ a reader-writer lock for the whole formula data structure,

▶ and a lock for each clause.

Before the locking procedures are motivated, variable elimination is performed on
a formula, and accesses to clauses and variables are discussed in Example 43.

Example 43: Eliminating Variables Consider the following formula

F = (a ∨ b ∨ c) ∧ (b ∨ d) ∧ (a ∨ b) ∧ (a ∨ d ∨ e) ∧ (e ∨ a) ∧ (e ∨ d).

Furthermore, assume two workers W1 and W2, that want to eliminate the vari-
able b and e, respectively. To allow exclusive access to the clauses that contain
the working variable, the corresponding variable neighborhoods need to be cre-
ated first. Therefore, W1 collects N1 = {a, b, c, d} from the first three clauses,
and W2 collects N2 = {a, d, e} from last three clauses. Next, both workers want
to make sure that they have exclusive access to their clauses. Hence, they lock
all variables of their neighborhoods in descending order. W1 locks d, W2 locks
e. Next, W1 locks c, and W2 has to wait for the lock for d. Then W1 locks the
remaining variables b and a.
Afterwards, W1 performs variable elimination on b with the two sets :

Sb = {(a ∨ b ∨ c), (a ∨ b)} and Sb = {(b ∨ d)}.

By pairwise resolution, the multiset of resolvents S is created:

S = {(a ∨ c ∨ d), (a ∨ d)}.

Observe that the set of variables vars(S) is a subset of the set vars(Sb)∪vars(Sb),
so that no additional variables need to be locked.
As a next step, W1 will replace the clauses Sb ∪ Sb with S in the formula.

While writing to the formula, no other worker is allowed to read any clause
from F , or write to F , because the location of F in memory might change.
Hence W2, which currently waits for the lock on d, is not allow to own a lock on
the formula.
Assume the algorithm ensures this property, then W1 can continue with the

replacement. The current formula is now

F = (a ∨ d ∨ e) ∧ (e ∨ a) ∧ (e ∨ d) ∧ (a ∨ c ∨ d) ∧ (a ∨ d).

Now, W1 finished its elimination step, so that W1 releases the write lock, and
W2 can continue locking its variables. Now W2 owns the locks for e, d and a,
and is allowed to eliminate the variable e.
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In parallel, according to the BVE procedure, W1 continues with subsumption
and strengthening. The clauses (a ∨ c ∨ d) and (a ∨ d) are used for this sim-
plification. However, as W2 owns the lock of the smallest a, W1 has to wait
until W2 finished the elimination. Furthermore, W1 is not allowed to own a read
lock on the formula, because W2 has to modify the formula. Hence, the locking
procedure for subsumption and strengthening in parallel to variable elimination is
slightly more complicated than in the stand-alone variants. To still be able to
lock only a single variable per clause during subsumption and strengthening the
additional clause locks are introduced.

Along the steps outlined in Example 43, and to ensure that no data races exist,
the following assumptions are made for accessing data in the parallel algorithm.
A worker Wi may access clauses only if the formula, i.e. the clause storage, was
read-locked. Next, Wi may write clauses only in previously reserved memory. In
this previously reserved memory, Wi has exclusive read and write access, i.e. other
workers gain only read access after Wi finished the creation of all clauses. Wi has
exclusive access to a clause C if Wi locked all variables of C or if Wi locked at
least one of the variables of C and the clause lock corresponding to C. These
conditions will lead to a correct concurrent algorithm if all modifications of the
formula result from exclusive read and write operations, To circumvent deadlocks
that locks are always acquired in a fixed order: variables are always locked orderly,
afterwards the clause storage is locked and finally at most two clause locks are
acquired, where the second clause lock must be preemptable. Here, preemptable
means that a worker tries to lock a clause, and if this attempts fails, then the
worker continues with another step in the algorithm. Hence, from the four Coffman
conditions (see Section 2.3.2) the third condition (non-preemptable locks) or the
fourth condition (circular-wait) is violated.
The pseudo code for the parallel BVE algorithm is given in Figure 7.3. The

algorithm consists only of the inner for-loop of the sequential BVE algorithm, which
is given in Figure 5.16 (lines 4–10) on page 171. The call to a parallel SubSimp
(Figure 5.16 line 3) is executed before the outlined algorithm. All workers share a
variable queue Q and request variables v to process (line 3). Afterwards v is locked,
to prevent other workers to change v’s neighborhood and the formula is read-locked
(line 6) for clause access. Now, the current worker is allowed to read clauses of
the formula that contain the variable v. All neighbors are determined (lines 6–7),
which requires to lock each clause for consistent reading. The current time stamp
is requested successively (line 8), to cheaply check whether the neighborhood of the
variable v has been altered since previous locking. After unlocking v and the formula
(line 9), by keeping the locking order, all variables v′ in the neighborhood N are
locked. Next, formula is read-locked again (line 10), ensuring the lock order.
If another worker modified the formula in the meantime such that F v∪F v changed

(line 11), the variable locks have to be renewed (lines 12–13), because the neigh-
borhood might have changed. Otherwise the underlying data for the utility of the
elimination is computed as usual: the number of clauses before resolution (line 14),
the number of clauses after resolution (line 15) and additionally the total size of the
resolvents (line 16) are determined. Again, as the current thread locked all vari-
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ParallelVariableElimination (CNF formula F , Q ⊆ vars(F ))

Input: formula F and clauses Q to test

Output: formula F after variable elimination

1 while Q ̸= ∅ do
2 QS := ∅ // reset SubSimp queue

3 atomic v := v′ ∈ Q, Q := Q \ {v′} // get variable from Q

4 lock v, readlock formula // freeze neighbors

5 N := ∅
6 for C ∈ Fv ∪ Fv do // calculate neighbors

7 lock C, N := N ∪ vars({C}), unlock C

8 ts := current time stamp // time stamp for neighborhood

9 unlock formula, unlock v

10 lock all v′ ∈ N , readlock formula

11 if time stamp(v) > ts then // check correctness of neighbors

12 unlock all v′ ∈ N , unlock formula

13 goto 4

14 cold := |F v|+ |F v| // simulate elimination

15 cnew := |F v ⊗ F v|
16 size :=


C∈Fv⊗Fv

|C| // total size of resolvents

17 unlock formula

18 if cnew ≤ cold then

19 atomic reserveMemory(size, cnew, formula) // reserve memory for resolvents

20 readlock formula

21 S := F v ⊗ F v

22 F := (F ∪ S) \ (F v ∪ F v)

23 QS := S // add resolvents to SubSimp queue

24 unlock formula

25 atomic inc current time stamp // increment time stamp

26 for v′ ∈ N do // set time stamp to all neighbors

27 time stamp(v′) := current time stamp

28 unlock all v′ ∈ N

29 for C ∈ QS do // SubSimp

30 lock v = var(minC), formula, and C

31 if v ̸= var(minC) then // if smallest variable of C changed

32 unlock C, formula, v, goto 30 // renew locks

33 l := argminl∈C |F l ∪ F l|
34 for D ∈ (F l ∪ F l) \ {C} do
35 if preemptableLock D = success then // abort, if var(minD) > v

36 if C ⊆ D then F := F \ {D}
37 else if C ⊗D ⊆ D then

38 D := C ⊗D, Q := Q ∪ {D}
39 unlock D

40 unlock C, unlock formula, unlock v

Figure 7.3.: Pseudo code of the parallel variable elimination algorithm with its
phases neighbor calculation (lines 4–9), variable elimination simula-
tion (lines 10–17), variable elimination (lines 18–28), subsumption and
strengthening (lines 29–40).
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ables of all clauses in F v and F v, these clauses could not be changed by any other
worker. After the formula lock is released (line 17), the algorithm decides whether
an elimination should be performed (line 18).

If the elimination is performed, a space reservation in the formula for the resolvents
is created (line 19). Since creating a space reservation might result in a memory
relocation of the formula, the formula needs to be write locked, and no other thread is
allowed to read clauses of the formula. While the formula is read-locked (line 20–24)
the usual clause elimination is performed and all resolvents are added to the SubSimp
queue (lines 21–23). Afterwards the global time stamp is incremented (line 25) and
assigned to all neighboring variables (lines 26–27), since their neighborhood could
have changed. This change is due to the elimination, which might combine new
pairs of variables in the resolvents. Finally all variable locks are released (line 28).

Afterwards, subsumption and strengthening are carried out in SubSimp similarly
to algorithm in Figure 7.2: The smallest variable v of the clause C is determined and
locked (which requires an enclosing formula lock), followed by locking the formula
and C (line 30). If v is not the smallest variable of C any more, because C was
changed in the meantime by some other worker, this step is repeated (lines 31–32).
Then all candidate clauses are locked with preemptableLock (line 35), which verifies
that the smallest variable of D is still less or equal to v while waiting for the lock. If
a clause D cannot be locked, because some other worker currently holds the lock of
D, then the candidate D is ignored for subsumption and strengthening. Otherwise,
if the algorithm would require to lock D, then a deadlock may arise. For example,
the two clauses C and D can be equal, then worker W1 first locks C, and worker W2

first locks D. Next, the two workers try to lock the other clause. This combination
would result in a deadlock, even if both workers do not wait for the second lock, but
try to renew it until they own it. Candidates that cannot be locked are not used.

If the worker successfully locks the clause D, then tests for subsumption (line 36)
and strengthening (line 37) are performed and strengthened clauses are added to the
SubSimp queue (line 38). Notice that a worker has exclusive access to D only if D
contains the variable v. However, v ∈ vars(D) is a necessary condition for C ⊆ D or
C ⊗D ⊆ D. In contrast to the sequential SubSimp, the single loops for subsumption
and strengthening are joined to reduce the locking overhead.

Implementation

The above parallel algorithms are implemented in Coprocessor. Clauses are rep-
resented as a vector of literals and a header that, amongst others, contains the size
information and a delete flag. The literals of a clause are always ordered, which
makes the determination of the smallest variable of a clause efficient and is also
profitable for subsumption and resolution computations. Variable and clause locks
are implemented as spin locks based on an atomic compare-and-exchange operation.
Hence, kernel level switches can be avoided and the required amount of locks can
be supplied.

7.1.3. Evaluation of Parallel Preprocessing

In this section we want to point out that exploiting parallel resources is beneficial for
formulas for which sequential preprocessing consumes a lot of run time. The above
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algorithms have been implemented into Coprocessor, which already provides the
sequential routines [Man12] and uses step limits for each technique. Since the
step limits are used to avoid high simplification times, these limits are disabled to
see the benefit of parallelization. Hence, the simplification methods are run until
termination. As in previous experiments, the timeout is set to 5000 seconds. If
not specified otherwise, 8 workers are used during parallel preprocessing. Since
the preprocessor has to be initialized, this sequential initialization also influences
the results of the following paragraphs: for large formulas the initialization time is
high, and the simplification method might not require much run time. Then, the
initialization time might lead to a fast conclusion that the parallelization is not well
done. Hence, extra care has to be taken when evaluating the results. Additionally,
especially on small formulas there is an overhead of the initialization for the parallel
simplification. Therefore, whenever the set of clauses to be simplified drops below
a certain limit, then the sequential simplification is used instead of the parallel
simplification. For BVE, the limit is 10000 clauses, for strengthening the sequential
algorithm is used when the formula has fewer clauses than 250000. Finally, parallel
subsumption is executed only if more than 100000 clauses occur in the formula.

Analyzing the Simplification Time

First, the more basic techniques subsumption and strengthening are analyzed. Each
parallel version pays a small overhead for initializing the work for all threads. There-
fore, for very small execution times, the overhead of the parallel implementation is
comparably high. The run times of the sequential algorithm (x-axis) and the paral-
lel algorithm (y-axis) are compared in Figure 7.4 and Figure 7.5. For subsumption
(Figure 7.4), a lock free implementation is used, so that there is almost no slowdown
for the parallel algorithm. However, there are also formulas that show a slowdown.
These formulas have a very small sequential run time: for all formula with a simplifi-
cation time higher than 10 seconds the parallel variant is much faster. With respect
to the whole benchmark only a few formulas with a simplification time higher than
0.1 seconds are simplified faster with the sequential version.

This effect can be explained with properties of the algorithm: as discussed in
Section 5.5.1, subsumption is confluent. Hence, the compared versions produce the
same resulting formula. Since subsumption is transitive, the work can be distributed
nicely without much overhead. Then, the algorithm reaches a speedup of 0.99, with
a variance of 1.97955. These numbers alone do not tell much about the actual
performance of the parallel algorithm, because the variance is very high. For large
sequential run times the speedup of the parallel algorithm increases and for large
times a speedup of up to an order of magnitude has been measured.

For SubSimp the picture is not that clear. Still, the speedup of the parallel algo-
rithm increases with the run time required by the sequential algorithm. For eight
workers, there exist formulas with a superior speedup. Especially, for formulas with
a large sequential simplification time, using 8 workers improves the run time of the
simplification method. However, formulas with a sequential run time around 20
seconds require a much higher run time with the parallel version. There are two
reasons for this behavior: firstly, strengthening is not confluent and therefore the
parallel as well as the sequential algorithm might be able to perform more reduc-
tions, depending on the execution order. This effect can result in an increased run
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Figure 7.4.: Comparing the run time of sequential subsumption (x-axis) with the
parallel version, which utilizes eight cores (y-axis).

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1  1  10  100  1000  10000

S
U

B
S

IM
P

8

SUBSIMP1

Identity
Quartered

Fourfold

Figure 7.5.: Comparing the run time of sequential SubSimp (x-axis) with the parallel
version, which utilizes eight cores (y-axis).
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Figure 7.6.: Comparing the run time of sequential BVE (x-axis) with the parallel
version, which utilizes eight cores (y-axis).

time. Secondly, the threads might wait for each other to be able to access clauses
that are used in many strengthening steps. With such a clause, locking might add
more run time than the parallel version can save. All in all, the results still show
that by parallelizing the algorithm, an improvement can be achieved.
Finally, we compare the effect on variable elimination in Figure 7.6: when using

more cores, the average simplification time can be decreased. Especially for long runs
of variable elimination, we can see a clear improvement. As BVE uses SubSimp as a
sub-routine and both algorithms are not confluent, the speedup of the parallel variant
is not robust: the average speedup is 1.03 with the variance 3.11. Furthermore, there
are formulas that can be simplified within the resource limits with the sequential
algorithm, but the parallel algorithm cannot simplify them. Similarly, there are
formulas that can be simplified with the parallel algorithm, but which cannot be
simplified with the sequential algorithm.

Analyzing the Scalability

The scalability of an algorithm can be compared by analyzing whether the relevant
measure improves with an increase of the used resources. Here, the run time is the
measure that should be optimized. A parallel algorithm is scalable if the implemen-
tation itself has a high CPU time to wall time ratio, meaning that the speedup is
well. Then, adding another resource is useful, because this resource does not spend
time for waiting, but the new resource can perform actual work. Therefore, the ratio
of the CPU time and the wall clock time is interesting.
For analyzing the scalability as defined in Definition 2.23 on page 37, the wall

clock time of the parallel algorithm with 8 cores is compared to the wall clock time
for 16 workers for each simplification technique. A problem during performance
measurements is the slowdown due to shared resources, as already discussed in
Section 2.3.2. Since this slowdown is unique for each combination of formula and
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Figure 7.7.: Analyzing the scalability of subsumption. The first diagram compares
the CPU time of the parallel subsumption algorithm (x-axis) with the
wall clock time (y-axis) for 8 workers. The second diagram compares
the wall clock time for 8 workers and 16 workers.
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algorithm, this effect is not considered in the evaluation. Still, this effect has to
be taken into account, so that when moving from 8 to 16 cores a slowdown might
occur, even when the theoretical algorithm has a speedup.

Figure 7.7 visualizes the relevant measures for subsumption. For subsumption
the ratio of CPU time and wall clock time is good for all formulas with a high
simplification time. For eight workers and longer simplification times the CPU time
is more than four times higher than the wall clock time. This result is also consistent
with the properties of the algorithm: since there is no locking, the efficiency of the
algorithm is expected to be close to the number of workers. This goal is reached,
however, due to shared resources the speedup does not reach the number of workers.
When comparing the wall clock time for 8 workers and 16 workers, then the longer
the simplification time, the clearer is the improvement from the additional resources.
For small simplification times the shared resources and the higher initialization time
can lead to a smaller run time of the 8 worker variant. Still, the parallelization
of subsumption is scalable, because this effect disappears for longer simplification
times.

For the combination of subsumption and strengthening the picture is not that clear
any more, because strengthening is not confluent and the parallelization of strength-
ening requires locks. Therefore, in Figure 7.8 there are more formulas where the CPU
time and the wall clock time are similar. However, since strengthening requires more
time than subsumption, there are also more long running simplifications, so that the
diagram shows the speedup of the parallel version nicely: for long running simpli-
fication times and eight workers the wall clock time is always higher than factor
four and most of the time the ratio is even close to a factor of six. When adding
resources to the parallel variant, SubSimp gains performance for simplifications up
to 50 seconds. For longer running simplification times the variant with 16 workers
needs more time than the variant with 8 workers. Again, confluence and the over-
head of shared resources influence these results. While the performance improves in
the average case, for long sequential simplification times the additional resources do
not improve the simplification time. Hence, the parallel variant would also benefit
from a step limit.

For BVE the formulas can be separated even better into formulas that do not im-
prove at all and formulas with high speedup. The first diagram in Figure 7.9 shows
this effect nicely. Since SubSimp is a part of BVE, the arguments for SubSimp also
hold for the parallel variant of BVE. Furthermore, BVE also requires locking of the
formula and the neighborhood of a variable has to be locked. Therefore, the locking
overhead of BVE is even higher than for SubSimp. Still, for long running simplifi-
cation times the speedup is close to 6. When looking at the run time for adding
another 8 workers, then the diagram illustrates that the heuristic to select variables
to be eliminated is important: there are many formulas that can be simplified faster
with 8 workers than with 16 workers. However, there are even more formulas where
using 16 workers improves the simplification time and there are formulas that can
be simplified with 16 workers, but which cannot be simplified with 8 workers. As
for SubSimp and for the same reasons, when the simplification time increases, the 8
worker variant is the better choice. On the given architecture, using 8 workers even
on 16 cores yields the best results.
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Figure 7.8.: Analyzing the scalability of SubSimp. The first diagram compares the
CPU time of the parallel subsumption algorithm (x-axis) with the wall
clock time (y-axis) for 8 workers. The second diagram compares the
wall clock time for 8 workers and 16 workers.
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Figure 7.9.: Analyzing the scalability of BVE. The first diagram compares the CPU
time of the parallel subsumption algorithm (x-axis) with the wall clock
time (y-axis) for 8 workers. The second diagram compares the wall clock
time for 8 workers and 16 workers.
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Figure 7.10.: Comparing the number of removed clauses of sequential SubSimp
(x-axis) with the parallel version, which utilizes eight cores (y-axis).

Analyzing the Simplification Quality

The next two figures show that the quality of the resulting formula does not decrease
if a parallel algorithm is used, especially for strengthening and BVE. The quality
can be illustrated with the number of removed clauses in the formula.

Figure 7.10 compares the number of reduced clauses for SubSimp. For most for-
mulas the number of the sequential matches the number of the parallel variant of
the simplification technique. There are only a few outliers, namely a formula where
the parallel version does not finish simplification in time and a few formulas where
the parallel version can remove a few more clauses than the sequential version.

For BVE the picture is not that clear any more. The number of removed clauses is
visualized in Figure 7.11. There are many formulas that have a comparable number
of removed clauses. However, there are more formulas with a higher reduction with
the sequential variant compared to the reductions with SubSimp. The reason for
this difference is the way BVE works: in the sequential algorithm the least frequent
variable is chosen for the next elimination step. In the parallel variant, this variable
is chosen in one worker, and consequently the other workers cannot choose this
heuristically best variable any more. As shown in [BM14a], choosing the least
frequent variable first is the best choice.

7.1.4. Remarks on the Parallel Variable Elimination

All in all, the provided experimental evaluation shows that the parallel version
improves the state of the art by improving the run time measured as wall clock time
that is required to simplify a formula. When using the simplifier in a real world
scenario, a heuristic needs to be applied to determine when to use the sequential
and when to use the parallel implementation, since for small run times the overhead
of the parallel algorithm cannot be neglected. Without such a heuristic decision,
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Figure 7.11.: Comparing the number of removed clauses of sequential BVE (x-axis)
with the parallel version, which utilizes eight cores (y-axis).

the parallel algorithm would perform much worse for small formulas. Hence, the
parallelization of BVE should be used especially to equip parallel SAT solvers with
parallel formula simplification techniques.

7.2. Contributions

This chapter presents low-level parallelizations for SAT solving techniques. A par-
allel algorithm for the most powerful formula simplification techniques subsumption,
strengthening and BVE have been discussed. The evaluation showed that espe-
cially on large formulas the simplification time improves for the parallel variants
and that the implementation of these algorithms is scalable on the hardware that
has been used for the benchmarks. The parallel algorithms have also been presented
in [GM13a,GM13b].
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8. A Scalable Parallel SAT Solving
Approach – Iterative Partitioning

In this chapter the existing parallel search space partitioning SAT solving ap-
proach for grids iterative partitioning is taken as a starting point and adapted for
the multi-core architecture. Next, this solving approach is modified according to
the findings of the previous chapter to obtain a robust and scalable system. Ex-
tensions that are considered are clause sharing with a good approximation of which
clauses can be shared, dynamic search information sharing heuristics, using look-
ahead during partitioning the search space, and building a hybrid between search
space partitioning and portfolio solving. This chapter describes the development of
the parallel search space partitioning solver Pcasso. Furthermore, the ideas that
are highlighted in the previous chapter are used to improve the solver. While pre-
senting each modification the performance of the intermediate solver is evaluated, so
that the effect of each modification can be traced iteratively from each development
step of the system. Finally, the scalability of the final parallel solver is analyzed and
compared to portfolio parallelizations and other parallel state-of-the-art solvers.
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8.1. A Scalable Parallel Solving Algorithm

8.1. A Scalable Parallel Solving Algorithm

Due to the high number of parameters of modern SAT solvers, high-level paral-
lelizations of SAT algorithms are interesting, because a parallelization of the CDCL
algorithm is believed to be difficult (Idea 12). Such a parallel algorithm should be
scalable. However, as reported, for example, in [HJN08] related to Weakness 5, a
small number of incarnations is already sufficient to obtain a good performance and
adding further incarnations to a portfolio does not increase the performance much.
Hence, portfolio solvers are assumed to not scale. Instead, this chapter focuses
on another high-level parallelization: partitioning the search space and solving the
obtained partitions in parallel.

Iterative partitioning is a parallel high-level solving approach that is claimed to
be scalable (see Section 6.2.4, Idea 17 and [HM12]). From a resource consumption
point of view new resources can be added easily, because the search space of the
formula is partitioned recursively when a resource becomes available. Since over
time resources become available again, because they finished their last task, the
term iterative partitioning is used. This way the unbalanced partitions of plain
partitioning (Weakness 11) are avoided, since more computational power can be
spent on difficult partitions. Hence, plain partitioning (Weakness 6) is avoided. In
the next section iterative partitioning is presented in a detailed way, and afterwards
in Section 8.1.2 the implementation for the multi-core architecture is discussed.
The resulting parallel SAT solver Pcasso is an abbreviation for the implemented
procedure: Parallel CooperAtive SAT SOvler.

8.1.1. Solving Formulas in Parallel with Iterative Partitioning

When a formula F should be solved with n solvers in parallel, then the first solver
starts solving the formula F . For the remaining solvers partitions Fi are created. By
slight abuse of notation we use the term partition to describe a formula, although
the partition Fi does not partition the clauses of the formula, but instead such a
partition Fi represents a part of the solution space of the formula F . To generate
these partitions, a partition function ϕ is used that ensures that the disjunction
of the partitions is equivalent to the formula. Furthermore the resulting partitions
have disjoint search spaces:

Given a formula F and a natural number n ∈ N+, ϕ(F, n) := (F1, . . . , Fn), where

▶ F ≡ F1 ∨ . . . ∨ Fn,

▶ Fi ∧ Fj |= ⊥ for all 1 ≤ i < j ≤ n.

Without loss of generality the formulas of the partitions Fi are always of the form
F ∧Ki, where Ki is a partition constraint. Hence, the partition function generates
the set of formulas Ki in CNF.

The created partitions have the following properties: when a model for a parti-
tion Fi is found, then this interpretation is also a model for the formula F , because
Fi is of the form F ∧ Ki. Furthermore, when all partitions Fi of a formula F are
found to be unsatisfiable, then F is unsatisfiable as well. Therefore, instead of solv-
ing F , solving all partitions Fi for all 1 ≤ i ≤ n is sufficient. This property is
similar to plain partitioning (see [HJN10] or Section 6.2.3). Additionally, iterative
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partitioning also solves the formula F , because this way the parallel solver solves a
given formula at least as fast as the sequential solver. Likewise, a hybrid procedure
is obtained that combines plain partitioning with portfolio solving (Idea 6).
Details how the partitions can be created are given in Section 8.1.3. Furthermore,

solving the formulas and its partitions can be done in different ways. The proposed
algorithm partitions each formula at most once. When a solver solves its formula
and finds a model, then a model for the initial formula F is found. Otherwise,
the resource of this solver becomes available again, so that a new partition can be
assigned to this resource.
Since solving some partitions can require much time, unsolved partitions are par-

titioned recursively if computing resources are available to distribute the work load.
This way, a partition tree of partitions is created. Furthermore, load balancing is
achieved (Idea 1).

Iterative Partitioning – An Example

Except of the formula in the root node, each partition in this tree has a parent, and
a unique path to the root node. The length of the path determines the level of a
node in the tree. Then, the path of a node is uniquely determined by a sequence
of integers, where each integer in the path corresponds to the index of the partition
that is considered. For example, the sequence (132) is the path to the formula
F = ((F ∧ G1) ∧ H3) ∧ K2 for some partition constraints G1, H3 and K2. For
convenience, this sequence of indexes to reach the formula F is considered the path
of F . Hence, formulas F in illustrations are labeled with their path. This labeling
is also also required in later sections,for example in Section 8.2.2. Hence, also the
partition constraints are labeled with their path.
To illustrate the iterative partitioning, solving a formula F is illustrated and the

partition tree is created step by step. The example uses five computational resources,
so that the five solvers S1 to S5 can be used. The illustration starts with the formula
F in the root node.

F

Next, the first solver S1 is assigned the formula F , and furthermore, the formula is
partitioned into four partitions. Furthermore, the remaining four solvers S2 to S5 are
assigned to the new partitions in order. The nodes, which are currently processed
by a solver are filled grey. Furthermore, the partition constraints are given as well.

F , S1

F 1, S2 F 2, S3 F 3, S4 F 4, S5

K1
K2 K3

K4

Next, assume solver S2 finishes solving F 1 by showing F 1 to be unsatisfiable. If F 1

would be satisfiable, then a model for F is found, because F 1 is of the form F ∧K1.
Likewise, S4 shows F 3 to be unsatisfiable. Hence, there are to free computing re-
sources available, that can be used to solve further partitions. Since F is partitioned
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already, and F 1 is known to be unsatisfiable, the next formula to be partitioned is
F 2. In the following level, only three child nodes are created in the example. The
two solvers S2 and S4 are assigned to the new partitions as follows.

F , S1

F 1 = ⊥ F 2, S3 F 3 = ⊥ F 4, S5

K1
K2 K3

K4

F 21, S2 F 22, S4 F 23

K2
1 K2

2 K2
3

Again, the solver S2 can show its formula F 21 to be unsatisfiable. Hence, S2 is
assigned to the formula F 23 next. Similarly, S4 shows F

22 to be unsatisfiable. Then,
for S4 a new partition has to be created. Since F 3 is known to be unsatisfiable, the
formula F 4 is partitioned. For the example, assume two partitions F 41 and F 42 are
created. Then S4 is assigned F 41.

F , S1

F 1 = ⊥ F 2, S3 F 3 = ⊥ F 4, S5

K1
K2 K3

K4

F 21 = ⊥ F 22 = ⊥ F 23,S2

K2
1 K2

2 K2
3

F 41, S4 F 42

K4
1 K4

2

Now, solver S5 shows the unsatisfiability of the formula F 4. Since the formula F 41

is of the form F 41 ∧ K4, F
41 is known to be unsatisfiable as well. Hence, solver

S4 becomes available again. For the same reason, the formula F 42 is known to
be unsatisfiable, although no solver has worked on this formula. Therefore, F 42 is
also not considered for being partitioned. For the two solvers the formula F 23 is
partitioned again into three partitions. Then solver S4 is assigned to formula F 231,
and S5 is assigned to F 232.
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F , S1

F 1 = ⊥ F 2, S3 F 3 = ⊥ F 4 = ⊥

K1
K2 K3

K4

F 21 = ⊥ F 22 = ⊥ F 23,S2

K2
1 K2

2 K2
3

F 41 = ⊥ F 42 = ⊥

K4
1 K4

2

F 231, S4 F 232, S5 F 233

K23
1 K23

2 K23
3

When the current snapshot is reached, then the following observation can be made:
as soon S1, S3 or S2 solve their formula, then F is solved. More precisely, the
formula F is equivalent to the formulas F 1

2 and F 2
3 , because all other partitions of

the corresponding partitioning are known to be unsatisfiable already. Therefore,
this special situation represents a redundant solving process. This special situation
is discussed in more detail in Section 8.4.2.

Finally, let the formula F 232 be satisfiable, and S5 returns a model for this formula.
Then, since F 232 is of the form F 23∧K23

2 , the formula F 23 is known to be satisfiable
as well. Similarly, the formulas F 2 and F are satisfiable with the same model.
Finally, the parallel solving algorithm can return the model of the formula F .

F = ⊤

F 1 = ⊥ F 2 = ⊤ F 3 = ⊥ F 4 = ⊥

K1
K2 K3

K4

F 21 = ⊥ F 22 = ⊥ F 23 = ⊤

K2
1 K2

2 K2
3

F 41 = ⊥ F 42 = ⊥

K4
1 K4

2

F 231, S4 F 232 = ⊤ F 233

K23
1 K23

2 K23
3

Observe, that the satisfiability of the formula F 231 has not yet been determined.
However, for solving F , this information is not required any more.

Notation

Let T denote a partition tree. The partitions inside the partition tree are also called
nodes of the tree. Then, each node with a formula F has a unique path p to the
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root node in the tree. This path is a string over the natural numbers N+. Hence,
the prefix relation of two paths p and q can be used. The root node is labeled with
the empty path ϵ.
The elements in the path p refer to the indexes of the partitions that are created

during a partition. To simplify the location of a formula in the tree, the formula
is labeled with its path p, in symbols F p. The set of all positions in T is pos(T ).
A formula, or its node, is assigned to a certain partition level in the partition tree.
The level of a formula F p corresponds exactly to the length of the path p.
To describe the status of a node F p at a certain point of execution of the parallel

algorithm, the triple (F p, s, r) is used. The component s represents whether the al-
gorithm knows the formula to be satisfiable (⊤), whether the formula is unsatisfiable
(⊥), or whether no result for the formula is known yet (?). The third component r
indicates whether a solver is currently solving the formula (▶), or whether no solver
is assigned to the formula yet (■). Given the notion of this status, we can differ-
entiate between plain partitioning and iterative partitioning: a cooperative solver
exploits the iterative partitioning strategy if two incarnations are allowed to run at
the same time on nodes F p, F q such that p ≤ q. Otherwise, the solver is said to be
exploiting the plain partitioning strategy. More informally, plain partitioning solves
only the leaf nodes of the partition tree, whereas iterative partitioning processes all
nodes in the partition tree in a breadth-first order. In principle, using any other
order to process the nodes is possible as well. However, since we want to distribute
computational resources equally over the partitions, the breadth-first order offers
nice properties. On of these properties is that when the formula of a node in the
tree is known to be unsatisfiable, then the formulas of all its child nodes are known
to be unsatisfiable as well. The opposite direction does not hold.

8.1.2. Iterative Partitioning for Multi-Core CPUs

Implementing iterative partitioning for computing grids has originally been done
in [HJN10]. Porting this approach to multi-core systems has several benefits: the
approach can be compared more easily to existing parallel SAT solvers and the ap-
proach can be used without a computing grid. Another advantage is that there
are no delays in submitting a job to the grid, because threads can be executed
immediately on a multi-core architecture. This section gives details about the im-
plementation for the multi-core environment. The resulting solver is implemented in
C++, because the resulting program is assumed to scale better than Java programs
(Idea 16).
Since the original version of the algorithm has been implemented as master-slave

approach, where the master maintains the formula and the search tree and the slaves
solve and construct partitions, this style is kept for the multi-core implementation.
In this environment, the master and each slave is implemented as a thread. The
communication is handled via the shared main memory. The master fulfills the
following tasks:

1. Maintain the partition tree

2. Maintain the queue of nodes to split

3. Submit split-tasks
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4. Submit solve-tasks

5. Finalize the result of the search

There are two kinds of slaves, namely the partitioning slave and the solving slave.
As for the grid environment, the run time for each slave is limited (Idea 2) so
that the partitioning slave has a shorter run time than the solving slave. The
partitioning slave is responsible for partitioning a specified node with a given method
and returning the created child nodes. This slave returns the child nodes upon
reaching the time limit. The solving slave tries to solve a given node and either
returns a satisfying assignment or concludes unsatisfiability. In case the run time
limit is reached, no such solution is returned. An unsolved node remains open and
is solved by solving all its child nodes.

The Master Thread

The master thread controls all the slave threads and provides them with work. The
master furthermore collects the results of the slaves and decides whether an idle slave
should split another node to create more nodes or whether the slave should solve
a node. This subsection introduces the algorithm that is executed by the master
thread and gives some design decisions.

The algorithm that is executed by the master thread is illustrated in Figure 8.1.
Since the pseudo code of the procedure would be very technical, a control flow
graph representation is used instead. During the initialization the input formula F
is parsed and the root node ν0 is created that represents the formula F . Two queues
with nodes are created, namely a solving queue and a splitting queue. The node ν0
is added to both queues. Initially all slave threads are idle. After the initialization,
the master tries to evaluate the search tree by checking whether all rooted paths
in the tree contain a node shown unsatisfiable. If a solution has been found, this
solution is printed and the algorithm terminates.

As long as there is no solution, the master thread executes the following algorithm:
first, the master checks whether one of the slave threads is idle. In case there is no
idle thread, the master enters a sleep state and is woken up again when a thread

initialize
solution
found?

print
result

sleep
submit

solve slave
submit
split slave

idle
threads

more nodes
needed?

yes

no

no

yes

wake

no
yes

Figure 8.1.: Algorithm of the master thread in iterative partitioning.
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becomes idle. If there is an idle thread, the master determines whether a node should
be split by that thread or whether another node should be solved. This decision is
made based on the number of nodes in the solving queue. If this number is smaller
than twice the number of slave threads, a node will be split.

Submitting a slave thread includes dequeuing a node νi from the splitting queue.
Afterwards, the slave splits the formula that is attached to this node. If the node
has been split, the new child nodes ν1, . . . , νk are added to both the solving queue
and the splitting queue. Next, the master thread is woken up again.

When a node νi should be solved, the corresponding formula is solved by a slave.
If a solution for the formula is found, the satisfiability component of νi is changed
accordingly. Again, the master is woken up afterwards.

8.1.3. Partitioning Formulas

When a formula F p should be partitioned, then a solver in the grid variant executed
the CDCL algorithm for a limited amount of time. The exact construction of this
partition constraint is explained in Figure 6.2 on page 232, and more details are
presented in the following paragraphs. After a few seconds the set of variables V
with the highest VSIDS scores (compare Section 5.4.5) are selected to build the
first partition constraint. After the first partition has been created, the execution
of the CDCL algorithm continues to select the next set of literals. This process is
repeated until sufficiently many partitions have been created. For the multi-core
implementation the next set of literals is selected after 8096 conflicts occurred in
the CDCL search. The number of conflicts is used instead of run time, because the
number of conflicts is independent of the used architecture.

For the simple partition approach and n literals l1 to ln, the 2n possible com-
binations are produced to create 2n partitions. With scattering [HJN06], different
partition constraints are constructed, which are claimed to partition the search space
in a more balanced way: The idea is to define each partition constraint Kj as a con-
junction of so-called cubes [HKWB12]. A cube is a conjunction of unit clauses
Q =


iCi such that |Ci| = 1, where no duplicate clauses occur in the cube. The

negation of a cube Q = (l1∧ . . .∧ lk) with k literals is the clause (l1∨ . . .∨ lk). Given
a formula F0 and an integer n, then scattering creates the n partitions F1, . . . , Fn by
using n − 1 cubes Q1, . . . , Qn−1. To obtain the partition constraints, the following
scattering schema [HJN06] is applied, where Fj = F ∧Kj :

▶ K1 := Q1,

▶ Km+1 := (
m
i=1

Qi) ∧Qm+1 (1 ≤ m < n− 1) ,

▶ Kn :=
n−1
i=1

Qi.

In the grid version of the algorithm, and hence also for the multi-core implemen-
tation, scattering is used for partitioning (Idea 9). Example 44 illustrates the con-
struction of partition constraints for a given formula.
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Example 44: Partitioning with Scattering Let F be a formula that con-
tains the literals li ∈ lits(F ) for 1 ≤ i ≤ 5 and let l1 to l5 be the literals in the
cubes that are selected for scattering. Then, when four partitions should be
created, the following four partition constraints K1 to K4 are constructed with
scattering. For this scattering, the cubes are used. The first cube isQ1 = (l1∧l2),
the second cube is Q2 = (l3 ∧ l4) and the third cube is Q3 = (l5).

▶ K1 := (l1) ∧ (l2),

▶ K2 := (l1 ∨ l2) ∧ (l3) ∧ (l4),

▶ K3 := (l1 ∨ l2) ∧ (l3 ∨ l4) ∧ (l5),

▶ K4 := (l1 ∨ l2) ∧ (l3 ∨ l4) ∧ (l5).

On the other hand, the following partition constraints are created with the
simple partitioning scheme:

▶ K1 := (l1) ∧ (l2),

▶ K2 := (l1) ∧ (l2),

▶ K3 := (l1) ∧ (l2),

▶ K4 := (l1) ∧ (l2).

In the latter set of partition constraints fewer literals are used and the constraints
build a simpler structure.

8.1.4. Solving Tree Nodes

For solving a tree node, Riss has been chosen without all the additions to its CDCL
implementation, namely without Local Look-Ahead, Local Probing and All UIP
Learning. Hence, the plain CDCL algorithm is use. Since Riss includes a pre-
processor, its formula simplification methods might be used. In general, using a
preprocessor is beneficial for the performance of a SAT solver (compare Section 5.5
as well as [EB05] or [BM14a]). In this work, no formula simplification is applied
during the parallel search. Hence, while a solver is working on a formula of a node
in the search tree, the formula remains equivalent to the formula before the solver
started its search. By preserving the equivalence, clause sharing in the parallel
solver is possible (clause sharing is discussed in Section 8.2). Nevertheless, in the
final evaluation (Section 8.5), formula simplification is applied on the initial formula
before this formula is passed to the parallel solver.

Solving a node νi is done by first creating the formula of the corresponding search
space partition. The partition is obtained by first conjoining all the clauses that
are stored as partition constraints in the nodes on the path from the root node
ν0 to νi. Afterwards, SubSimp with unit claues, which is an equivalence preserving

275



8.1.5. Naive Clause Learning and Clause Sharing

simplification, is applied. Let F be the conjoined formula, then first unit propagation
is applied:

F :: ϵ ;unit
⊡ F :: J.

Next, the reduct of the formula with respect to J is build, and furthermore, the
literals of J are added as unit clauses:

F :: ϵ ;unit
⊡ F :: J ; (F |J ∧ J) :: ϵ.

Since the interpretation J has been found by unit propagation, the according unit
clauses are entailed by the formula, so that adding these unit clauses preserves
equivalence (compare Section 3.2.1). The additional reduct F |J is build, to remove
clauses that are already subsumed by the found unit clauses and to remove falsified
literals from the remaining clauses. To preserve equivalence, the unit clauses J are
added to the reduct again. As already stated in Section 5.5.1, the same formula
is obtained when the SubSimp simplification algorithm is run on the formula. As
discussed earlier, subsumption and strengthening preserve the equisatisfiability (see
Section 3.2.6).

When a solver finished solving a node without reaching the time limit, then the
satisfiability is stored in the node. If a model for the current partition has been
found, this model is stored globally so that the master can access this model, be-
cause this model is also a model for the formula of the root node. If a node is found
unsatisfiable, the second component of its tuple representation changed to unsatis-
fiable. In case the time limit is reached, this second component stays unknown.

When the partition tree is evaluated, the satisfiability component of a parent
node can be changed from unknown to unsatisfiable if all its child nodes are already
known to be unsatisfiable.

Since the chance increases that a tree node on a higher tree level is unsatisfiable,
the clause removal heuristic is adapted to exploit this fact: With an increasing
tree level, clause removal is scheduled less frequently. Then, during the search
of the solver more learned clauses are kept, which can help the solver to prove
unsatisfiability faster.

8.1.5. Naive Clause Learning and Clause Sharing

According to Idea 4 learned clauses should be shared among incarnations but glob-
ally by using another storage. To keep the discussion and the results generalizable,
the underlying solvers of the approaches are only allowed to distribute the clauses
they learn in a limited form. In the first version of the algorithm, distributing only
unit clauses is allowed, since sharing longer clauses might have negative impact on
the overall performance of the approaches [HJN09,HJN11].

When unit clauses are learned while solving a formula related to a node, these
clauses are also stored in the partition tree by adding them to the partition con-
straint of the node where they have been found. Whenever a solver starts solving the
partition of the current node, these unit clauses are part of its formula, because the
formula for the solver incarnation is built by conjoining all formulas along the path
from the root node to the current node. Hence, in contrast to Weakness 1 informa-
tion of aborted incarnations is still available and is used. Although this method is
an underestimation of the validity of the unit clauses [HJN11], this estimation is a
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first step into the direction of using information of aborted searches to improve the
performance of slaves that have to solve a child node of the current node (Idea 19).
The approximation is used in the first version of the algorithm, because clause shar-
ing is not straightforward in parallel solving approaches that partition the search
space. A clause learned in a partition is not, in general, a logical consequence of
another partition, as the following example illustrates.

Example 45: Careless Upward-Distribution of Clauses Let F be

F = (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ c).

This formula is satisfiable with the model J = (abc). Consider, the following
two partitions: F 1 = F ∧ (b) and F 2 = F ∧ (b). Then, creating the formula F 1

is done by conjoining the two formulas and applying simplification afterwards.
Hence, the formula F1 contains the following clauses:

F1 = (a) ∧ (a ∨ c) ∧ (a ∨ c).

Since (a) ∈ F1, we furthermore have F1 |= (a). If the clause (a) would be send
to the formula F , then the formula F ∧ (a) is obtained. However, the resulting
formula is unsatisfiable:

F = (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ c) ∧ (a) ≡ ⊥.

To avoid loosing soundness, learned clauses are not transferred between slaves,
but instead the learned clauses are reused in case the search is terminated, for
example due to running out of memory (see Section 8.2.4). However, sharing clauses
downwards in the partition tree is always possible, due to the way how partitions
are created:

Lemma 8.1.1 (Downward sharing is sound). Given two arbitrary paths p and q
and a formula F , then sending clauses C with F p |= C to a formula F pq is sound.

Proof. Any model of the formula F p also models C. Since F pq is of the form F p∧Kq

for some partition constraint Kq, the set of models for the formula F pq is a subset
of the set of models for F p. Hence, the clause C is entailed by tF pq.

8.1.6. A First Evaluation

As discussed already in Section 2.3.2, the run time of a parallel solver is intrinsically
non-deterministic: running the solver several times on the same formula may result
in different run times. However, in our set-up execution times have been quite stable,
and thus the results here exposed are likely to be replicated.
In the following the solver is evaluated on a benchmark of 771 formulas. These 771

formulas are the subset of formulas of the benchmark that was used in [ILM14],
where improvements to the iterative partitioning approach have been presented.
Since this benchmark contains formulas that have not been used in recent SAT com-
petitions, only the subset of available formulas is considered in this thesis. Hence,

277



8.1.6. A First Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  100  200  300  400  500  600  700

ti
m

e
 i
n
 s

e
c
o
n
d
s

solved formulas

Initial
Long

Infinite

Figure 8.2.: The plot compares the number of solved formulas and the corresponding
run time for the initial solver setup with three different limits for the
conflicts that are spent on the formulas in the partition tree.

Weakness 10 is avoided by using difficult and large formulas for the evaluation.
This benchmark is used throughout this chapter. If not specified differently, each
parallel solver is assigned 8 cores of the 16 available cores. After all improvements
and modifications to the parallel solving approach have been presented and have
been evaluated for 8 cores, the scalability of the solver is analyzed by increasing the
number of cores to the 16 available cores. The wall clock time out for each formula
is set to 5000 seconds and each parallel solver can use up to 20GB main memory.
The number of produced partitions in a single partitioning step is set to 8.
In this first evaluation the solver is evaluated with respect to the configuration

as described above and in [HM12] for the multi-core architecture. Three config-
urations are used: Initial, where each formula in the partition tree is analyzed
with at most 8096 conflicts (based on the setup in [HM12]). According to Idea 5
no short running times of workers should be used, hence the number of conflicts
for a worker is increased in the next configuration: The configuration Long allows
512000 conflicts for each node. Finally, to analyze Idea 3 that proposes time outs for
workers, the configuration Infinite puts no conflict restriction on each node. The
motivation behind the limit is the following: with a small limit, nodes that can be
solved easily are solved, but nodes that cannot be solved easily are partitioned again,
so that partitions can be solved in parallel. When increasing the limit of conflicts,
more sequential time is spent on a formula. Finally, without a limit a formula of a
node is always evaluated to ⊤ or ⊥, so that fewer partitions are produced.
The results are presented in Table 8.1 and are visualized in Figure 8.2.1 In the visu-

alization the best configuration can be spotted clearly: Infinite solves many more
formulas than the other two configurations, where Long still solves significantly
more formulas than Initial. A closer look is given in the table: since Infinite

1Data evaluation for SAT solver has been introduced in Section 2.4.
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Table 8.1.: Comparing the initial solver setup with different numbers of conflict lim-
its during search.

UC solved ⊤ ⊥ PAR10 median commonly
time solved avg. time

Initial 2 362 243 119 2.17e+06 5000 354 302.37
Long 5 536 281 255 1.33e+06 162.355 354 123.216
Infinite 109 636 283 353 918943 151.185 354 131.481

solves many more formulas, its unique solver contributions (UCs) are also much
higher. Interestingly, increasing the number of conflicts for each node from 512000
to infinity does not influence the performance on satisfiable formulas. For these for-
mulas the smaller limit seems to be sufficient. However, when using no conflict limit,
many more unsatisfiable formulas can be solved. This effect might be explained with
the reasoning power of CDCL: when more conflicts are used, many more clauses are
learned, so that the unsatisfiability proof can be constructed. With a conflict limit,
this proof construction is interrupted. Since no learned clauses except unit clauses
are shared, repartitioning the formula requires to start over producing an unsat-
isfiability proof although the formula changed only slightly. Solving all nodes for
a longer run time also comes with a run time cost: the median run time for the
two configurations Long and Infinite differ only slightly. Furthermore, for the
354 commonly solved formulas the run time of Long is better. A reason for this
behavior is the distribution of commonly solved formulas. Since Initial can solve
many more satisfiable than unsatisfiable formulas, in the commonly solved formulas
there are many more satisfiable formulas. The higher number of uniquely solved
formulas is related to the higher total number of solved formulas.

From the presented results a first insight can be learned: the formulas within
the partition tree should be solved without a conflict limit, because the resulting
procedure becomes much more robust with respect to unsatisfiable formulas.

8.2. Clause Sharing in the Partition Tree

In this section we present an improved clause sharing mechanism for the paral-
lel iterative partitioning approach. To divide the search space of a formula into
sub-spaces, partition constraints are added to the formula [HJN11]. In the liter-
ature, only learned clauses that do not depend on these partition constraints are
distributed to other solvers, and clauses are only sent after a solver finished to work
on a sub-space. To further improve the scalable parallel algorithm, we contribute
a more general sharing mechanism for the iterative partitioning approach. First,
we distribute learned clauses that also depend on partition constraints, but we send
these clauses only to incarnations where these clauses are valid. Hence, clauses
are shared over partitions (Idea 10). Additionally, in the multi-core environment
learned clauses are sent during search so that other solvers may benefit immediately
(in contrast to Weakness 3).

The partitioning of the search space of a formula F is illustrated by the partition
tree in Figure 8.3.
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F p := ((x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x2, x6, x1) ∧ (x2 ∨ x6))

F p1 := ((x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x2 ∨ x6) ∧ . . .)

(x1)

F p2 := ((x3 ∨ x4) ∧ . . .)

(x1)

Figure 8.3.: Partition tree for F p. The successor F pi of a node F p is created by
applying conjoining F p with the partition constraint Kpi. Furthermore,
the simplification of the formulas in the child nodes with respect to the
unit clauses in the partition constraints (x1) and (x1) is given.

With F p we denote the node at position p of a tree rooted in F . Observe
that, for every position p ∈ pos(T ), it holds that F p = F ∧ Ki1 ∧ Ki1i2 ∧ . . . ∧
Ki1...in if p := i1...in and ij is a possible index of a child node at tree level j, i.e.
ij ∈ {1, . . . , |ϕ(F i1...ij−1)|}. Since a partition tree is created upon a partition func-
tion, according to the definition F p ≡


i F

pi and ∀i ̸=j(F
pi ∧ F pj) ≡ ⊥, for every

p ∈ pos(T ), i, j ∈ {1, . . . , |ϕ(F p)|}. Sharing learned clauses among solvers that solve
child formulas has been considered briefly in [HJN11]. There, Hyvärinen et al. intro-
duce an expensive mechanism called assumption-based (learned) clause tagging and
a fast approximation method flag-based (learned) clause tagging. Since assumption-
based (learned) clause tagging is found to be expensive and not competitive, we
focus on flag-based clause tagging and improve on this mechanism afterwards.

8.2.1. Flag-Based Clause Tagging

Consider the formula F 1 = ((x2∨x5)∧(x3∨x4)∧(x2, x6)∧(x2∨x6)) in the partition
tree of Figure 8.3 and the following local sequential run of some solver incarnation:

F 1 :: ϵ ;decide F
1 :: (ẋ5) ;unit F

1 :: (ẋ5x2) ;unit F
1 :: (ẋ5x2x6)

Observe, this run leads to a conflict after the decision ẋ5 and unit propagations of
the literals x2 and x6 so that the clause (x2) := (x2, x6)⊗ (x2, x6) is learned. Since
F ⊭ (x2), this clause cannot be added to the clauses of F . This example motivates
the related work by Hyvärinen et al. [HJN09]: if the clause to be distributed does
not depend on a partition constraint the problem can be avoided. To keep track
of these clauses, Boolean flags have been introduced by Hyvärinen et al., which
indicate whether a clause can be distributed “safely”. This approach is called flag-
based tagging. Observe that the approach of Hyvärinen et al. does not consider
formula simplification during search.

Definition 8.1 (Safe and Unsafe Clauses). Consider a node F p of a partition tree
rooted in F . Then a clause C ∈ F p is unsafe if and only if:

1. C belongs to a partition constraint,

2. C is a learned clause obtained as the result of a resolution derivation involving
unsafe clauses.

A clause that is not unsafe is called safe.
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F = ((x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2) ∧ (x2 ∨ x4 ∨ x1)

∧(x2 ∨ x4 ∨ x1) ∧ (x4 ∨ x2 ∨ x5) ∧ (x4 ∨ x2 ∨ x5))

F 1 = ((x3 ∨ x2) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4)

∧ (x4 ∨ x2) ∧ . . .)

(x1)

((x2 ∨ x3) ∧ (x3 ∨ x2) ∧ . . .)

F 21 = ((x2), (x4 ∨ x2 ∨ x5) ∧ (x4 ∨ x2 ∨ x5))

(x3)

F 22

(x3)

(x1)

Figure 8.4.: Partition tree over F with clause-tagging. Unsafe clauses are underlined.
The highlighted clause (x4 ∨ x2) ∈ F 1 is a shared clause that has been

incorporated from F 21.

Usefulness of Sharing Safe Clauses If a clause C is safe, then for every position
p we have that F p |= C. Figure 8.4 shows an example of a partition tree in which
unsafe clauses are underlined. Consider the following CDCL execution for F 21,
which yields the conflict (x4 ∨ x2 ∨ x5):

F 21 :: ϵ ;unit F
21 :: (x2) ;decide F

21 :: (x2ẋ4) ;unit F
21 :: (x2x4x5)

The learned clause is D = (x4 ∨ x2) = (x4 ∨ x2 ∨ x5) ⊗ (x4 ∨ x2 ∨ x5). Since only
safe clauses have been used in the resolution, D is a safe clause and thus D can be
distributed among every node in the partition tree. Observe that clause (x4 ∨ x2)
speeds up the computation on node F 1. Consider Figure 8.4 and the following
sequential execution over node F 1 after incorporating the shared clause (x4 ∨ x2):

F 1 :: ϵ ;decide F
1 :: (ẋ4) ;unit F

1 :: (ẋ4x2) ;back F
1 :: ϵ ;learn F 1 ∧ (x4) :: ϵ

After the decision ẋ4, the local solver can immediately use the shared clause (x4∨x2)
to derive the learned clause (x4). Performing the same decisions and propagating
without using the safe shared clause would lead to the learned clause (x4 ∨ x2).
Hence, flag-based clause sharing can effectively speed up the local computation of
some node in the partition tree.

Weaknesses of Flag-Based Tagging A weakness of the flag-based tagging is shown
in Figure 8.5, where we slightly changed the shape of the partition tree. The tree
of Figure 8.4 is now located at the node with F 1 and is the result of simplifying the
initial formula with the unit clause (x7). Assume the clause D = (x4∨x2) is learned
from the two clauses (x4 ∨ x2 ∨ x5)⊗ (x4 ∨ x2 ∨ x5) while working on formula F 121.
Since the resolution of the two clauses involves the unsafe clause (x4∨x2∨x5), which
is underlined in the figure, the resolvent D is also tagged as unsafe. Consequently,
D is not distributed at all. However, from the previous paragraph we know that this
clause can be “safely” distributed among all the formulas F 1p, for all positions p of
the tree rooted in F . This example illustrates that flag-based tagging is a limited
approximation of clause sharing. The following two scenarios cannot be covered
with this basic tagging:
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F = ((x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2)

∧(x2 ∨ x4 ∨ x1) ∧ (x2 ∨ x4 ∨ x1)

∧(x4 ∨ x2 ∨ x5 ∨ x7) ∧ (x4 ∨ x2 ∨ x5) ∧ (x7 ∨ x8))

F 1 = (. . . ∧ (x2 ∨ x4 ∨ x1) ∧ (x4 ∨ x2 ∨ x5) ∧ (x4 ∨ x2 ∨ x5))

((x3 ∨ x2) ∧ (x2 ∨ x4)

∧(x2 ∨ x4) ∧ . . .)

(x1)

((x2 ∨ x3) ∧ (x3 ∨ x2) ∧ . . .)

F 121 = ((x2) ∧ (x4 ∨ x2 ∨ x5)

∧(x4 ∨ x2 ∨ x5))

(x3)

((x2) ∧ (x4 ∨ x2 ∨ x5)

∧(x4 ∨ x2 ∨ x5))

(x3)

(x1)

(x7)

F 2

(x7)

Figure 8.5.: The clause (x4 ∨ x2), learned by the incarnation working on the node
with formula F 121, is not safe any more, because the clause depends on
the partition constraint x7. Observe that the subtree F 1 corresponds
to the tree in Figure 8.4.

▶ An unsafe clause can be a semantic consequence of the original formula and
can be distributed.

▶ An unsafe clause is not distributed at all. However, such a clause might be
considered safe with respect to some subtree of the original partition tree and
thus be distributed to the nodes of this subtree.

The first problem can only be solved by an algorithm that is more complex than
the presented approximation. As shown in [HJN11], using the approximation instead
of the complex mechanism still results in higher performance, because the benefits of
the complete algorithm cannot overcome its overhead. Solving the second problem
can be done by extending the tagging, which we present in the following paragraphs.

8.2.2. Position-Based Clause Tagging

Flag-based sharing is designed in a way that a clause can be distributed only if this
clause is a semantic consequence of the original formula. In other words, unsafe
clauses that are only semantic consequences of formulas belonging to some strict
subtree of the partition tree are not distributed at all. If the tag encodes the subtree
where a clause is safe, this clause can at least be distributed in this subtree. The key
idea of position-based tagging is to associate each clause a position in the partition
tree. If C is a clause and p a position in the partition tree, Cp denotes that the
clause C is tagged with the position p. Given a partition tree T for a formula F ,
clauses belonging to F are tagged with the empty position ϵ. Clauses in a partition
constraint Kp are tagged with the position p.
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Invariant 5 (Tagging Resolvents). A clause Dq that has been obtained from a
resolution derivation (Rp1

1 , . . . , Rpn
n ) is tagged with the longest position q among

the positions of the clauses that are used for resolution, i.e. q = argmaxpi |pi|,
where 1 ≤ i ≤ n.

This way the path q in Invariant 5 represents the highest node of the tree on which
the clause Dq depends on. Hence, the tags of clauses that have been simplified
when the formula of a node to be solved was created are set accordingly. Observe
that a clause can be derived in different nodes of the partition tree and thus could
be labeled with different positions. This fact is not considered in the presented
approximation.

In general, a clause Cp will only be added to a formula F q if F q |= Cp. This
way the set of models of F does not change by adding Cp. In the corresponding
incarnation the clause Cp could be added with the rule ;learn. Given an incarnation
that solves the node F pq, then the clause Cp is received, where Cp is created by some
other solver as explained above.

Definition 8.2 (Distribute Rule). Let J be a partial interpretation, and Gp and
F pq be the formulas of two nodes at position p and pq of a partition tree rooted in
F . Then a clause Cp with path p can be distributed to a node with formula Gp if
this clause was obtained from a formula F pq with the path pq before:

(Gp :: J) ;dist (Gp, Cp :: J) iff (F pq :: ϵ) ;∗ (F pq, Cp :: J).

Observe that the position p of the clause Cp is a prefix of the position pq of the
formula F pq. Distributing clauses downwards is known to be sound as discussed in
Section 8.1.1. The correctness of the upward distribution with the new distribute
rule is obtained by showing that the formula F pq entails any clause Cp, which we
formally state as Corollary 8.2.4 below. In order to prove this corollary, we make
use of an auxiliary definition to be able to identify clauses that have been used to
obtain the next clause:

Definition 8.3 (Resolution Order). Let F q be a node in a partition tree rooted in
F . Consider a sequential reduction F q :: ϵ ;∗ G :: J such that Cp ∈ G. Consider a
clause Rs. Then Cp >res R

s if and only if Cp is a learned clause and Rs is one of
the resolvents used to derive Cp.

The transitive closure >+
res of >res is a well-founded strict partial order, since each

learned clause is the result of a finite resolution derivation and each partition tree is
finite. Thus, the well-founded induction principle [BN98] is valid on >+

res. With this
resolution order, invariants of the parallel solving algorithm with clause sharing can
be established. For example, a clause Cp cannot be learned in a formula F q where
the path p is not a prefix of q. In Example 46, the major properties of position-based
clause tagging are illustrated with the help of a small formula and a simple partition
function. Then, from the derived formulas of the child nodes, resolvents are build
and tagged with their path. Finally, the resolvents are related to the formulas of
the child nodes and to the formula of the root node.
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Example 46: Clauses in a Partition Tree Consider the formula F

F = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2) ∧ (x2 ∨ x4 ∨ x1) ∧ (x2 ∨ x5)

Then, assume the formulas F 1 and F 2 of the two child nodes are obtained the
partition constraints (x1) and (x2), respectively.

F 1 = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2) ∧ (x2 ∨ x4 ∨ x1) ∧ (x2 ∨ x5) ∧ (x1)
1

= (x3 ∨ x2) ∧ (x2 ∨ x4)
1 ∧ (x2 ∨ x5) ∧ (x1)

1

F 2 = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2) ∧ (x2 ∨ x4 ∨ x1) ∧ (x2 ∨ x5) ∧ (x1)
2

= (x2 ∨ x3)
2 ∧ (x3 ∨ x2) ∧ (x2 ∨ x5) ∧ (x1)

2

After adding the partition constraints, the formulas are simplified as explained
above. Due to Invariant 5, the clauses that have been simplified are labeled
according to the resolution during strengthening. Now, consider the clauses that
can be learned from the two formulas. In F 1, possible resolvents labeled with
the according path along Invariant 5 are

C1
1 = (x3∨x4)1 = (x3∨x2)⊗(x2∨x4)1 and C2 = (x3∨x5) = (x3∨x2)⊗(x2∨x5).

Likewise, the following two resolvents can be obtained from F 2:

D2
1 = (x3)

2 = (x2 ∨ x3)2 ∧ (x3 ∨ x2) and D2 = (x3 ∨ x5) = (x3 ∨ x2) ∧ (x2 ∨ x5).

Observe that the path of the the resolvents of formula F 1 are a prefix of its path.
The path of the first resolvent (x3∨x4)1 is equal to the formulas path. Since the
second resolvent has the empty path, this path is also a prefix of the formulas
path. The same argumentation holds for the resolvents of F 2. Furthermore, in
F 1 no resolvent can be produced with the path of F 2, because there is no clause
Cq with q = (2) in F 1.
Consider the formula F again. F |= C2, and F |= D2, because the very same

resolvents can be created from the clauses of F . Hence, these clauses could
be distributed to F . However, F ̸|= D2

1, because the model J = (x1x2x3x4x5)
satisfies F , but falsifies D2

1. On the other hand, by resolving the first two clauses
of F , the resolvent

E = (x1 ∨ x3) = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x2)

is obtained. The clause E is modeled by both F 1, because E is subsumed by
the clause (x1)

1 ∈ F 1. Likewise, E is modeled by F 2, because E subsumed by
the resolvent D2

1 = (x3)
2.

Lemma 8.2.1 (Possible path of learned clauses). Consider a node F q, a formula G,
and a sequential reduction F q :: ϵ ;n G :: J such that Cp ∈ G and n ≥ 0. Then the
path p is a prefix of the path q.
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Proof. The proof is given by well-founded induction with respect to the resolution
order >+

res (Definition 8.3). If Cp is not learned, then Cp ∈ F q and thus the thesis
follows from construction. Otherwise, Cp has been obtained in some node with a
resolution derivation (Rr1

1 , . . . , Rp
j , . . . , R

rn
n ) and assume that the theorem holds for

each of these resolvents. If Cp has been distributed by some other node, then p must
be a prefix of q by definition of the distribute rule (Definition 8.2). Otherwise, Cp

is a resolvent, and according to Invariant 5, Cp is labeled with the longest path p of
some Rp

j . Then the hypothesis holds for Rp
j already. Hence, the path p is a prefix

of q.

As the formulas in Example 46 furthermore demonstrate, the path of a resolvent
depends on the path of the used resolvents.

Lemma 8.2.2 (Path dependencies in resolution). If Cp is a learned clause that has
been obtained from a resolution derivation (Rp1

1 , . . . , Rpn
n ), then pi is a prefix of p,

for every 1 ≤ i ≤ n.

Proof. This lemma is a consequence of Lemma 8.2.1 and of the fact that we always
assign the longest path p = argmaxpi |pi| to the new resolvent Cp (Invariant 5).

Furthermore, any clause that is labeled with the path Cp and that is present in
some formula of the partition tree is entailed by the according formula F p. Observe,
as illustrated in Example 46, such a clause does not need to be present in the formula
F p, but could be present in a formula F pq as well.

Theorem 8.2.3 (A formula F p models clauses Cp). Given a clause Cp that occurs
in some formula in a partition tree T and a node of T with the formula F p, then
F p |= Cp.

Proof. The proof is done by well-founded induction with respect to >+
res. If C

p is not
learned, then Cp occurs (or occurred due to equivalence preserving simplifications)
in F p, i.e. Cp ∈ F p, and thus F p |= Cp. Otherwise, Cp is created by resolution from
resolvents (Rq1

1 , . . . , Rqn
n ). Assume the theorem holds for each of these resolvents.

By Lemma 8.2.2, q1, . . . , qn are prefixes of p. Hence, F qi |= Rqi . Furthermore, from
the definition of the partition tree we know that the initial formula F pq is defined
to be of the form F p∧Kq for some partition constraint Kq. Since during search the
equivalence of each formula in a nodes is preserved, we can conclude:

F p |= F qi , for each 1 ≤ i ≤ n.

From the hypothesis and transitivity we derive that F p models every resolvent of
Cp, concluding that F p |= Cp.

Additionally, any formula F pq that is located deeper in the tree than a formula F p

also entails the clause Cp, as also illustrated in Example 46.

Corollary 8.2.4 (A formula F pq models clauses Cp). Given a clause Cp that occurs
in some formula in a partition tree T and a formula F pq of some node in T , then
Cp is entailed by F pq, i.e. F pq |= Cp.
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Proof. Assume that the path q has to following integers q := i1 . . . im, where each
ij ∈ {1, . . . , |ϕ(F pi1...ij−1)|}, such that pq is a valid path in T . Then the thesis follows
directly from Theorem 8.2.3 and from the equivalence

F pq ≡ F p ∪Kpi1 ∪Kpi1i2 ∪ . . . ∪Kpi1i2...im .

Properties of Position-Based Tagging Now reconsider the example in Figure 8.5,
which is an extension of Figure 8.4. Flag-based clause tagging was not able to
distribute the learned clause (x4 ∨ x2) any more, because (x4 ∨ x2) is considered
unsafe. The new sharing rule with position-based tagging can distribute this clause
again as in the situation of Figure 8.4: all solvers working on formulas F 1p can
receive this clause for arbitrary path p. Hence, the discussion on the usefulness
of shared clauses for flag-based tagging holds for position-based tagging as well.
However, with position-based tagging more clauses can be shared.
Summarizing the above finding, sharing a clause downwards in the partition tree

is always possible. For sharing clauses upwards in the tree, the dependencies of the
clause to be distributed have to be respected: a clause C that depends on a clause
D cannot be shared higher than the position where D depends on. This property is
ensured by that distribution rule ;dist.

8.2.3. Implementing Position-Based Clause Sharing

For flag-based tagging only a single Boolean program variable is used to store
whether a learned clause is safe or unsafe. Position-based tagging tags each clause
with a position and does expensive position operations during conflict analysis for
assigning the right position and during the receive rule application to receive only
those clauses tagged with a position prefix of the current position. The imple-
mentation of this approach is less complicated and has no overhead compared to
the flag-based approach: each node in the partition tree provides a clause storage,
where all shared clauses that are tagged with the position of this node are stored.
Instead of encoding positions, tagging clauses with an integer is sufficient. This
integer stores the position length, which represents a level in the partition tree: a
clause tagged with an integer n has to be sent to the storage of the ancestor of level
n on the path to the root node of the current node in the partition tree. With the
level based approach, the clause dependencies are approximated (Idea 11), however,
the approximation is not as strong as with the safe tagging (Weakness 7). Since
the shared clauses are stored in the partition tree, they are also available for new
solver incarnations (Idea 15). When an incarnation incorporates shared clauses, the
incarnation receives clauses only from storages that belong to the positions on the
path from the incarnation’s current node to the root of the partition tree.
Again, from incorporated clauses only the length of the position is sufficient to

tag learned clauses correctly. Instead of considering the maximum position, only
the maximum length has to be selected, which is a simple integer comparison and
thus not more expensive than comparing Boolean variables.
During conflict analysis, a learned clause is not minimized with clauses that would

decrease the level of the learned clause. Then, the created clause can be distributed
higher in the partition tree.
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8.2.4. Comparing Position-based Sharing to Previous Approaches

Table 8.2.: Comparing the initial solver setup without a conflict limit to static clause
sharing configurations.

UC solved ⊤ ⊥ PAR10 median commonly
time solved avg. time

Infinite 8 636 283 353 918943 151.185 622 385.9

Flag 2 635 287 348 932012 157.175 622 379.95
Level 1 630 287 343 945649 165.245 622 377.714

All the storages do not store all shared clauses over the whole run. Ring buffers
with a size of 15000 are used, so that the first clause is overwritten with the 15001th

clause. Incarnations often receive clauses from a storage, but incarnations seldomly
add clauses to the pools, so that reader-writer locks protect the pools instead of usual
mutexes. By using reader-writer locks, waiting for shared data structures is reduced
(Weakness 9). Experiments showed that reader-writer locks give an improvement
of up to 10% against mutual exclusion semaphores. Another way of reducing the
blocking is to distribute learned clauses in blocks. In Pcasso learned clauses are
distributed every 16 conflicts. An incarnation receives shared clauses immediately
after a restart.

8.2.4. Comparing Position-based Sharing to Previous Approaches

On the same experimental setup and the benchmark of 771 formulas as in Sec-
tion 8.1.6 the so far best configuration Infinite is compared to the two implemen-
tations of clause sharing. According to Idea 20, in both cases clauses are distributed
if they have a size less equal 10, or if their literal block distance (LBD) is less
equal to 6. The only difference is that a clause is distributed only if the clause is
safe. This configuration is called Flag. In the configuration Level, clauses are
also distributed to the subtree where the clause is safe, based on the calculation of
the level as explained above in Section 8.2.2. The remaining setup of the solvers is
not altered.

Table 8.2 presents the results for these configurations. Surprisingly, when sharing
is enabled more satisfiable formulas can be solved. However, the level based approach
solved 5 formulas less then Flag, which again solves one formula less than Infinite.
Due to the less solved formulas, the PAR10 measure as well as the median run time
increase accordingly. Still, on commonly solved formulas the effect of the sharing
mechanism can be seen: when using clause sharing the run time to solve a formula
decreases. The better the distributed clauses, the smaller is this run time. Hence, the
level based approach solves the 622 commonly solved formulas fastest. Observe that
almost all formulas that can be solved by the configurations are commonly solved.

Another interesting measure is whether sharing clauses based on their level is
actually happening. Therefore, the plot in Figure 8.6 compares the number of totally
distributed clauses to the number of safe distributed clauses for the configuration
Level. The plot clearly shows that not all dots of the diagram are placed on
the diagonal. Furthermore, there exist many formulas where the number of safe
distributed clauses is half the number of distributed clauses. Hence, enabling level
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Figure 8.6.: Comparing the number of totally distributed clauses to the number of
safe distributed clauses.

based sharing allows to distribute approximately twice as many clauses.

Dynamic Sharing

In the above experiment only clauses lower than a certain size and LBD score are
allowed to be distributed. However, as discussed along Idea 21, the filtering heuris-
tics should be dynamic. Hence, based on the LBD of a clause a dynamic sharing
filter is introduced: in the new setting, a learned clause is eligible for sharing by an
incarnation if the LBD score of this clause is lower than a factor δ of the global LBD
average of this incarnation. For the parameter the value δ = 0.5 is chosen. With
this dynamic filtering, the configurations Flag-Dyn and Level-Dyn are set up.

As presented in Table 8.3, using the dynamic sharing clause sharing limits im-
proves the solvers. Now both clause sharing approaches can solve more unsatisfiable
formulas, where the number of satisfiable formulas remains the same. Furthermore,
the PAR10 measure improves for both configurations, so that Level-Dyn now has
the best measure, and has also the smaller median run time, as well as the best
average run time on the set of commonly solved formulas. Now Level-Dyn is the

Table 8.3.: Comparing the initial solver setup without a conflict limit to dynamic
clause sharing configurations.

UC solved ⊤ ⊥ PAR10 median commonly
time solved avg. time

Infinite 4 636 283 353 918943 151.185 626 369.033

Flag-Dyn – 637 287 350 916232 157.265 626 376.148
Level-Dyn 2 639 287 352 901672 150.285 626 368.866
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Figure 8.7.: Comparing the number of totally distributed clauses for static clause
sharing filters and dynamic clause sharing filters.

best configuration so far, so that this configuration is used as reference for the next
evaluation.

Another interesting measure is the number of clauses that are distributed with the
static and the dynamic filter. These values are compared in Figure 8.7. Clearly, the
number of distributed clauses increases when the dynamic filter is used. However,
there are also a few counterexamples where the static limits allow more clauses to be
distributed. This effect is due to the fact that the average LBD of a solver incarnation
might be smaller than the static limit, so that fewer clauses are distributed with the
dynamic limit.

8.3. Improving Search Space Partitioning

Hyvärinen et al. compared several partitioning functions in [HJN10]. There they
used partitioning based on VSIDS scores combined with scattering, or performing
a simple version of look-ahead with the simple partition scheme (see Section 8.1.3).
Other search space partitioning solvers use the full power of look-ahead for par-
titioning the search space. However, these systems also use only the simple par-
titioning method. A novel idea is to combine scattering with look-ahead: cubes
are created with look-ahead, but the partition constraints are built with scattering
(combine Idea 9 with Idea 3). For selecting the partition literals the double-look-
ahead procedure as explained in Section 5.2.5 is used, and the variables with the
highest MixDiff score are selected for the cube. The polarity for the variable is
chosen such that a lower reduction is achieved. Furthermore, according to Idea 18,
brief formula simplifications are performed during look-ahead, namely failed literal
probing (Section 5.5.1 or [LMS03]) and equivalent literal substitution (Section 5.5.1).
Furthermore, locally learned clauses are added to the partitions when they become
unit. These simplifications are also stored for future child nodes (Idea 24) and fur-

289



8.3.1. Creating Partitions – Modifications

thermore can be combined safely with clause sharing (Idea 25). Several refinements
can be added to creating partitions with the look-ahead procedure.

8.3.1. Creating Partitions – Modifications

The current Pcasso chooses the literals in the cubes for creating partition con-
straints by using VSIDS heuristic: it runs a solver for a certain number of conflicts
(8196 conflicts) and picks the literals with highest VSIDS score and their saved po-
larity. Then, Pcasso creates the partition, adds the negated cube to the current
formula and repeats the process, by continuing search for another 8096 conflicts,
until enough partitions are created.

Creating Cubes with Look-Ahead The idea of the proposed improvement is to
use look-ahead techniques [HvM09] to choose the literals for creating partitions
with scattering. More precisely, the variable with the maximum MixDiff score
(see [HvM09] or Section 5.2.5) should be selected. After selecting the variable with
the maximum MixDiff score, we choose the polarity of the variable that has the
lowest Diff score for creating cubes. We also use the reasoning techniques during
the calculation of the look-ahead scores: failed literals, necessary assignments, pure
literals, and add local learned clauses to the partition constraints. Techniques like
constraint resolvent, double-look-ahead, and adaptive preselection heuristics are also
used as proposed in the literature [HvM09] (see Section 5.2.5). Previously look-ahead
has already been used in CubeAndConquer for creating partitions but without
scattering [HKWB12,vdTHB12].

Tabu Scattering In the experiments, we have observed that scattering creates
partitions for a given node using cubes such that there are common variables among
the cubes. We define tabu scattering as an extension of scattering, by putting a
restriction that a variable used in one cube, must not be used in the cubes for creating
remaining partitions. More formally, for the cubes Q1 to Qn that are created in the
partition function the following condition must hold: vars(Qi) ∩ vars(Qj) = ∅ for
all 0 ≤ i < j ≤ n. When using tabu scattering, the created partition constraints
involve more variables and therefore the search space partitions are more diverse.

Sorting Partition Nodes Another observation is that scattering does not always
create partitions that have equal difficulty in terms of solving time. Due to this
difference, consider a scenario where the solver has some idle resources, so the solver
creates partitions of some running unsolved node (F p, ?,▶) in the partition tree,
but it may happen that (F p, ?,▶) is very close to find the result ⊥ and thus the
solver may waste resources on the newly created partitions. We propose a solution
to decrease the chance of this scenario to happen, by sorting the child nodes in
decreasing order of difficulty level. Since solving the nodes of the tree, as well
as partitioning them, is performed in a breadth-first-search manner, by having the
more difficult formulas first, these formulas are re-partitioned before the less difficult
formulas are handled. Therefore, the chance decreases that a less difficult formula
is partitioned before another worker finished solving the formula. We predict the
difficulty level of a node by a simple heuristic that counts the number of propagated
literals: the more literals occur in the interpretation after unit propagation has been

290



8.3.1. Creating Partitions – Modifications

Table 8.4.: Comparing different partitioning schemes.

UC solved ⊤ ⊥ PAR10 median commonly
time solved avg. time

Level-Dyn 1 639 287 352 901672 150.285 620 344.611

LA – 653 283 370 837014 115.105 620 314.839
LA-tabu 1 649 283 366 854398 123.025 620 339.486
LA-simple – 635 282 353 923116 151.185 620 353.782
LA-sorted – 651 282 369 840681 115.43 620 314.422

performed on the formula of a new node, the lower the estimated difficulty of the
analyzed formula.

Evaluation The presented modifications are put into different configurations and
evaluated on the same experimental setup as above with the same 771 formula bench-
mark. All modifications have in common that they use look-ahead instead of VSIDS
scores to select the literals for partitioning. Then, the following configurations are
used:

▶ LA that uses look-ahead to select partition variables,

▶ LA-tabu that additionally uses tabu scattering,

▶ LA-simple that does not use scattering but creates simple partitions,

▶ LA-sorted that sorts the partitions.

Table 8.4 compares the different configurations to the current reference configura-
tion. When using look-ahead instead of the VSIDS score the biggest improvement
can be achieved: the number of solved unsatisfiable formulas increases significantly.
Hence, the PAR10 measure as well as the median run time on the benchmark im-
prove as well. Furthermore, the median run time on commonly solved formulas
improves. The additions to look-ahead do not improve the robustness of the solver.
However, with tabu scattering another formula can be solved, and when the parti-
tions are sorted, then the average run time on the commonly solved formulas has
the best value. Another result is that scattering is superior to the simple parti-
tioning scheme: the configuration LA-simple is the worst configuration: the least
number of formulas is solved, the PAR10 measure and the median run time have
the highest values and the average run time on commonly solved formulas has also
the worst value among the configurations. Hence, for partitioning the combination
of look-ahead and scattering is crucial for the performance of the solver.
Based on the partitioning the number of distributed clauses might decrease when

the partitioning of the formula becomes better. Intuitively, fewer clauses can be
distributed when a formula is partitioned into ideal partitions, because in this case
no search space is shared, and hence no information must be shared to improve
the search process in the other partition. However, since a typical formula con-
tains several hundred variables and the partitioning function produces partition
constraints that are based only on a few variables, the search space still overlaps
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Figure 8.8.: Comparing the number of totally distributed clauses when partitioning
is based on the VSIDS measure or on look-ahead.

enough. Furthermore, since the partitions are of the shape Fi−1 ∧Ki, any resolvent
that is produced only from the formula Fi−1 can be distributed. Since this formula
might not be changed too much after simplification with the partition constraint
Ki, there is still a significant part of the formula that can produce sharable learned
clauses. This discussion is supported by the diagram in Figure 8.8 that compares
the number of distributed clauses for the VSIDS partition approach with dynamic
level based sharing Level-Dyn, and the configuration LA that uses look-ahead
instead. The figure shows that the number of distributed clauses is higher for LA
and moves towards Level-Dyn when the number of totally distributed clauses in-
creases. However, there is no clear picture, as there are formulas where the one
configuration distributes many more clauses, and for other formulas the other con-
figuration distributes many more clauses. Hence, at least for the given partition
schemes no clear answer on the relation between the number of distributed clauses
and partitioning the formula can be given.

Another interesting measure is the height of the partition tree that was required
to actually solve the formula. Here, tree height of the nodes that have already
been used for solving is not taken into account if these nodes did not contribute
to evaluating the truth value of the root node. Only nodes that contributed to the
evaluation of the formula are considered in the height. This measure is compared
for the two configurations LA and Level-Dyn in Figure 8.9. Based on the color of
the dot in the diagram the given combination of evaluation heights is more frequent
if the dot is darker. The diagram shows that a small evaluation height is most
frequent, but there also exist formulas that can be solved only at a deeper height.
When comparing the two measures, LA seems to produce partitions that require
more levels for their evaluation than Level-Dyn. Nevertheless, with LA more
formulas can be solved than with Level-Dyn. From a scalability perspective the
requirement of a deeper partition tree also provides more parallel work, so that the
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Figure 8.9.: Comparing the evaluation tree height for LA and Level-Dyn.

configuration LA should be more scalable than Level-Dyn.

8.3.2. Diversifying the Solving Process

The nodes of the search tree are solved and re-partitioned, in a breadth-first-search
manner. Furthermore, in iterative partitioning a formula is shown to be unsatisfiable
if either the parent formula is known to be unsatisfiable, or all its child formulas are
known to be unsatisfiable. Therefore, the search space of two running solvers might
overlap. Then, using diverse configurations should be considered as in portfolio
solvers to improve the parallel solving process (Idea 23).

Different Restarts Portfolio solvers like ManySAT and PeneLoPe, use different
restart policies for each incarnation, to diversify their search. Inspired by this idea,
we diversify by using different restart policy parameters in Pcasso. As Pcasso uses
Riss, the dynamic restart policy in Riss [AS12] (see Section 5.4.7) can be modified
to diversify the search of Pcasso as well. Similarly to Glucose, Riss maintains a
global average of LBD scores. As a reminder, a restart is performed if the average
LBD score of the last X learned clauses is greater than the global average times
a magic constant K, where both X and K are parameters. First we classify the
nodes in partition tree into three categories: (i) root node: the node at the root of
the partition tree, (ii) leaf node: the nodes which do not have any child node, (iii)
middle node: the node which is neither a root node nor a leaf node. According to
these node categories, we apply different restart policies:

▶ the root node uses X = 75 and K = 0.7,

▶ leaf nodes use X = 50 and K = 0.8,

▶ parent nodes use X = 75 and K = 0.8.
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We have selected the values of X and K based on experiments and the data provided
in [AS12]. When new child nodes are added to a node that was a leaf-node before,
then the parameters of the corresponding solver are changed during its computation.

Different Learned Clauses Cleaning The parallel portfolio solver PeneLoPe uses
different intervals between cleaning learned clauses for different incarnations to di-
versify its search. The purpose is that some incarnations keep learned clauses for
a longer time than others. When keeping more learned clauses, the unsatisfiability
of a formula might be shown faster, because a learned clause might be reused an-
other time for another resolution derivation. On the other hand, the overhead for
unit propagation increases, so that less satisfiable formulas might be solved with the
same amount of resources.

We add this idea to Pcasso as well, according to the above node category. We
give different cleaning intervals to the root node, middle nodes, and leaf nodes. Let
Introot, Intmiddle, Intleaf be the cleaning intervals of the root node, nodes that have
child nodes, and leaf nodes, respectively. Then we have the following relationship:

▶ Decrease Introot > Intmiddle > Intleaf ,

▶ Equal Introot = Intmiddle = Intleaf ,

▶ Increase Introot < Intmiddle < Intleaf .

Note that a leaf node changes its cleaning policy dynamically when the node is
changed to a middle node by adding child nodes. The configuration Increase is
used as default in Pcasso.

Sharing VSIDS Scores and Progress Saving

As discussed by Hamadi et al. [GHJS10], diversification of the search can help as
well as intensification. One way of the intensification is to share learned clauses.
However, Hamadi et al. [GHJS10] share also information about the search process
itself.

In Pcasso this additional sharing can be used as well (Idea 22). The VSIDS
scores and progress saving information are candidates for being shared. Portfolio
solvers do not share this information, because all incarnations start their search at
the same time. In case of iterative partitioning, there is the tree structure of the
dynamically built partition tree that we can exploit. Furthermore, the search on the
nodes in the partition tree does not start at the same time. Thus, sharing heuristic
information like VSIDS and progress saving from parent to child nodes could help
to solve the formulas in the child nodes. When Pcasso starts solving, the root
node and the nodes at the partition tree level one start at almost the same time.
The nodes at higher partition tree levels are usually created after some time, so
we initialize their search process with the VSIDS and progress saving information
of their parent, because a child node always searches in a sub-search space of its
parent. The idea is that whatever is learned by a parent solver can help to solve the
formula in the child node as well.
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Table 8.5.: Comparing different search modifications.

UC solved ⊤ ⊥ PAR10 median commonly
time solved avg. time

LA – 653 283 370 837014 115.1 640 338.182

Restart – 650 281 369 842930 120.8 640 340.966
EqualClean – 649 283 366 845709 121.8 640 342.96
DecreaseClean 1 650 284 366 847543 119.5 640 344.958
VSIDS – 649 281 368 851847 121.8 640 340.843
Polarity 3 653 282 371 838980 119.5 640 337.01

Evaluation The presented search modifications are evaluated again on the same
benchmark, where LA is the reference configuration from the previous evaluation.
The following configurations are used:

▶ Restart that uses the above restart modification,

▶ EqualClean that uses the same cleaning heuristic for all incarnations,

▶ DecreaseClean that uses the decreasing cleaning policy,

▶ VSIDS that passes VSIDS scores downwards,

▶ Polarity that passes phase-saving information downwards.

With the given configurations and the reference configuration LA, the data in Ta-
ble 8.5 is obtained. The variance of the number of solved formulas is very close
among the configurations. The reference LA remains the most robust configuration
with the highest number of totally solved formulas and the best median time and
PAR10 measure. When the polarity information is passed, then another unsatisfi-
able formula can be solved and in total Polarity can solve three formulas uniquely.
In DecreaseClean the effect of having fewer clauses in each incarnation is visible:
more satisfiable formulas can be solved, and even when four unsatisfiable formulas
cannot be solved the median run time of this configuration is quite small. Keeping
the same amount of learned clauses, or sharing the VSIDS scores of the variables
does not improve the search process. Hence LA remains as reference configura-
tion, since the proposed diversification of the search process does not improve the
performance of the solver.

8.4. Special Situations in Iterative Partitioning

During solving the nodes in a partition tree several special situations occur. In this
section, these scenarios are explained, illustrated, and an approach on how to exploit
these scenarios is presented.

8.4.1. Conflict-Driven Node Killing

When clauses are tagged by position-based tagging [LM13] as described above,
additional information can be obtained by performing a conflict analysis on solved
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F, ?,▶

F 2, ?,▶F 1,⊥,■ F 3,⊥,■

F 22,⊥,■F 21, ?,▶ F 23,⊥,■

F 212,⊥,■F 211,⊥,■ F 213, ?,▶

Figure 8.10.: The given snapshot of the iterative partitioning solving process shows
the only child scenario for four computation units: for each node, only
a single child is still unsolved, and all other nodes are evaluated to ⊥.

unsatisfiable nodes. Consider a partition tree of a formula F and a node (F p,⊥,■).
Then, let ⊥q be the empty clause labeled with position q, which was derived by the
incarnation that solved the formula F p. From Theorem 8.2.3, we conclude that ⊥q

is the semantic consequence of the node of position q in the partition tree. Observe
that position q is a prefix of position p: q ≤ p. Consequently, not only the node
at position p can be marked as unsatisfiable but also the node F q as well as all its
child nodes. As a result, more incarnations can be terminated and start solving
different partitions. We call this kind of technique conflict driven node killing. A
similar approach is reported in [HJN11] with assumption-based clause tagging, but
Hyvärinen et al. did not report benefits from exploiting this technique.

8.4.2. The Only Child Scenario

During preliminary experiments we have observed, on some formulas, that the height
of the partition tree grows until the height hits the number of available parallel
computing resources. This means that there is only one unsolved node at each
partition level of the partition tree. On a smaller scale, there could be only one
unsolved node at some partition level. For that reason, we call this scenario the
only child scenario.
Figure 8.10 shows an extreme case of only child scenario for a solver with four

available resources. Only one node is unsolved at each level of the partition tree,
i.e. the nodes solving the partitions F , F 2, F 21, F 213 are unsolved and running.
Consider that only child scenario happens at some level of the partition tree, then

there are two cases:

▶ the parent node is looking into the search space that has been solved by one
of its children already,

▶ the parent node is looking into the same search space where its unsolved chil-
dren are looking.

In either case, we have the risk of doing redundant work. We propose an approach
to get out of this scenario by reintroducing the solving limit in a node that has
only one unsolved child. To be on safe side, we do not apply this limit for the root
node. The introduced limit grows with the level of the node: per partition tree
level another 4096 conflicts are allowed. Since in the only child scenario all learned
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clauses can be shared among the two participating nodes, we can also exploit
this situation: by ignoring the differences of the corresponding partition tree levels
certain clauses can be distributed higher in the partition tree. In the extreme case,
this configuration is very similar to portfolio solvers, since then all clauses can be
shared without restrictions.

8.4.3. Simulate Portfolio Systems

As reported in Section 8.4.2, the iterative partitioning solver can also be used to
simulate a portfolio solver. Remember, in portfolio solvers incarnations solve the
same input formula and all learned clauses can be shared among all incarnations.
Given n computing resources, then with the conditions for the child nodes Fi and

the parent node F

F ≡

i

Fi and Fi ∧ Fj for all 1 ≤ i < j ≤ n,

where the child formulas Fi are of the form F ∧Ki. To achieve that all incarnations
solve the same formula, the partition constraints Ki have to be empty. Then, there
can be only a single child formula, because otherwise the search space of multiple
child formulas cannot be made disjoint. Hence, for n resources n partitions are
created, where each partition solves the formula F . According to Definition 8.1, all
clauses that are learned in this scenario are safe. Hence, all these clauses are entailed
by the formula F and furthermore the clauses can be shared with all incarnations.
With this setup, the performance of the iterative partitioning approach can be

compared directly to the portfolio approach, because all internals of the solver re-
main the same. Diversification as in portfolio solvers is implemented already. Fur-
thermore, the same clause sharing is used. For the first additional four threads
extra configurations are added to increase the diversity. The first thread uses an-
other restart scheme as presented in Section 8.3.2, the second thread uses a different
cleaning strategy. The third additional thread initializes the search activities ran-
domly. The fourth thread triggers restarts differently. All remaining configurations
start with a randomly chosen activity and polarity for all variables.

8.4.4. Evaluation

To the reference configuration LA a configuration for each special situation is added:

▶ Killing where conflict-driven-node killing is enabled,

▶ Child where the only child scenario is avoided,

▶ Portfolio where only one child is created in each partition.

To the best configuration the preprocessor Coprocessor with the best configura-
tion for the sequential SAT solver Riss is added, since formula simplification is used
in state-of-the-art SAT solvers. Again, all the configurations are evaluated on the
same setup and benchmark.
Table 8.6 shows the results of the comparison. First, adding the conflict driven

node killing to the configuration results in solving most formulas of the benchmark
and furthermore results in the best PAR10 score. When avoiding the only child
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Table 8.6.: Comparing handling special situations during parallel search.

UC solved ⊤ ⊥ PAR10 median commonly
time solved avg. time

LA – 653 283 370 837014 115.105 633 315.298

Killing 2 656 284 372 829097 116.35 633 308.759
Child – 655 284 371 832082 113.28 633 315.298
Portfolio 8 642 274 368 895488 136.83 633 359.379

CP+Pcasso – 651 291 360 745207 67.17 – –
CP8+Pcasso – 656 284 372 740003 69.41 – –

scenario, the median solving time is slightly reduced, because redundant search is
avoided. However, with this approach one less unsatisfiable formula can be solved.
The portfolio approach based on the very same solver setup solves less satisfiable
and less unsatisfiable formulas. However, the unique solver contribution of this
configuration is higher.

Since the configuration Killing is the configuration with the best performance,
this configuration is also used as default configuration in the parallel solver Pcasso.
As for other SAT solvers, formula simplification can be added, so that to Pcasso
the sequential simplification of Coprocessor is added, resulting in the configu-
ration CP+Pcasso. Furthermore, as eight computing resources are available, the
parallel formula simplification with eight workers is added to the evaluation as well
(CP8+Pcasso).

When applying sequential formula simplification, then the number of solved sat-
isfiable formulas increases, but the performance on unsatisfiable formulas decreases.
This effect is known as overtuning. In the previous sections, always the best per-
forming configuration has been selected and extended with extra additions. How-
ever, after applying formula simplification, the formulas that have to be solved by
Pcasso are not the same formulas any more, such that using configuration together
with Coprocessor might lead to a better performance. The order of introduced
extension has been chosen, because this way the configuration of the solver can
been developed nicely. Of course, by using this configuration process, a local opti-
mum in the configuration space is reached. However, a global search for the best
configuration on the given benchmark with the given resource limits is beyond the
computational resources of the thesis, because the used SAT solver Riss together
with Coprocessor provide almost 500 parameters. An alternative would be to first
enable all extensions and then step by step disable extensions until a local minimum
is reached. For the better presentation, the former configuration approach has been
chosen.

Assume that the final configuration of Pcasso is a local minimum for the given
benchmark. Then, applying any change to this configuration decreases its perfor-
mance. Such a change is also adding formula simplification. Hence, the performance
of the new configuration decreases CP+Pcasso. On the other hand, when using the
parallel evaluation in CP8+Pcasso, then, by chance, same number of satisfiable
and unsatisfiable formulas can be solved. Furthermore, for both configurations with
formula simplification, the PAR10 measure and the median solving time are better
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Table 8.7.: Comparing parallel SAT solvers with eight workers and sequential sim-
plification.

UC solved ⊤ ⊥ PAR10 median commonly
time solved avg. time

CP+Pcasso – 651 291 360 745207 67.17 575 161.92
Treengeling 8 615 273 342 909488 90.29 575 160.493
Plingeling 3 674 289 385 598922 33.51 575 101.104
PeneLoPe – 664 290 374 653309 28.815 575 121.778

than for any configuration without formula simplification. Hence, the conclusion
in [LSB07] to improve partitioning by formula simplification can be confirmed.

8.5. Evaluating the Parallel Solver

This section compares the final version of Pcasso with state-of-the-art SAT solvers.
The preprocessor Coprocessor is used for formula simplification with the final
configuration of Section 5.8.3, because state-of-the-art SAT solvers also use formula
simplification. Then, this solver is compared to three parallel state-of-the-art SAT
solvers in their versions of the SAT competition 2013 [SAT14]:2 Plingeling [Bie13],
Treengeling [Bie13] and PeneLoPe [AHJ+13].

Table 8.7 presents the results. The combination of the sequential formula sim-
plification with Pcasso solves the highest number of satisfiable formulas but, as
discussed above, cannot solve that many unsatisfiable formulas. The other state-of-
the-art search space partitioning SAT solver Treengeling solves the least num-
ber of satisfiable and unsatisfiable formulas, however, eight unique formulas can be
solved by this solver. Similarly, Plingeling solves three formulas that cannot be
solved by another solver of the presented set. Plingeling solves the highest num-
ber of unsatisfiable formulas and since the total number of solved formulas is the
highest also the PAR10 score of Plingeling is the best score. A reason of the
unique contributions of Treengeling and Plingeling is that both systems are
based on the sequential solver Lingeling, while both PeneLoPe and Pcasso use
a MiniSAT style search engine. PeneLoPe is the solver with the smallest median
solving time.

On the set of commonly solved formulas the two parallel portfolio solvers show
the best performance. While Plingeling and PeneLoPe have an average solving
time of 101 and 121 seconds, respectively, the two search space partitioning solvers
Treengeling and Pcasso require both about 160 seconds in average. A reason for
this difference is that in the portfolio specialized solver configurations are combined,
such that the chance is high that such a configuration can solve a formula fast. This
effect also explains the small median solving time. The same idea cannot be adapted
for search space partitioning solvers, because the formula cannot be considered being
solved as soon as the first solver incarnation solved its partition.

For the number of eight cores the solver Plingeling provides the best overall

2The results of this section have been produced before the solvers of the SAT competition 2014
have been made publicly available.
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performance. Still, the combination of tools that have been developed along this
thesis, namely Coprocessor and Pcasso result in a similar number of solved
formulas, and the number of solved satisfiable formulas is the highest number. A
reason for the good performance on satisfiable formulas is the conflict driven node
killing technique, which requires the partition tree level information of the clauses in
all solver incarnations. With the help of this technique, redundant search in already
solved search space partitions can be aborted eagerly, improving the performance of
the solver.

Since a goal of the thesis is to obtain a scalable SAT technique for future archi-
tectures, the scalability among the above mentioned state-of-the-art SAT solvers is
analyzed in the next section.

8.5.1. Scalability Analysis

This section analyses the performance of the presented parallel SAT solvers when
increasing the number of available workers from 8 to 16. For Pcasso, the number
of cores for the formula simplification in Coprocessor for the two simplification
techniques bounded variable elimination (BVE), subsumption and strengthening can
be increased as well as the number of workers for the actual search. Hence, cor-
responding configurations are evaluated in Table 8.8. The number of used workers
in Coprocessor is usually one. If more workers are used, then the corresponding
number is given explicitly (for example eight workers in CP8). The table furthermore
presents the data for the other three parallel SAT solvers.

Different variants of Pcasso are presented in the table, varying the number of
workers for simplification and search. As the scalability of the search process is
interesting, there is a combination of sequential simplification and a search with
16 workers. This combination has the same formula simplification as the configu-
ration CP+Killing. The table already shows that the PAR10 measure improves
with more workers, as well as the average run time of commonly solved formulas.
However, unique contributions are achieved if the number of workers during formula
simplification is raised as well. As already discussed in Section 7.1.3, Coprocessor
with its parallel BVE does not benefit much from additional resources on the used
architecture. Always using 16 workers results in a slightly better median run time,
the same number of solved formulas, but in a slightly higher PAR10 measure. To-
gether with the version that always uses 8 workers, the two configurations have the
highest number of solved formulas among the presented configurations: 656 formulas
can be solved.

For Treengeling the number of solved formulas does not change when moving
from 8 to 16 workers. However, as Table 8.8 illustrates, Treengeling is affected
from the slowdown due to shared resources on the multi-core architecture (compare
Section 2.3.2). Consequently, the PAR10 score as well as the median solving time
are worse for the higher number of workers. Similarly, Plingeling suffers from
the higher number of used cores, although the median time improves, the PAR10
score increases and the number of solved formulas drops by three formulas. Finally,
PeneLoPe improves from the additional resources: six more unsatisfiable formulas
can be solved, while losing two satisfiable formulas. Both the PAR10 score and the
median solving time improve for PeneLoPe.

When only considering the number of solved formulas, then PeneLoPe and

300



8.5.1. Scalability Analysis

Table 8.8.: Comparing solvers with different numbers of workers.

UC solved ⊤ ⊥ PAR10 median commonly
time solved avg. time

CP+Pcasso – 651 291 360 745207 67.17 631 190.498
CP8+Pcasso 5 656 284 372 740003 69.41 631 203.05
CP+Pcasso16 – 654 290 364 736066 68.7 631 183.775
CP16+Pcasso16 5 656 286 370 757085 69.24 631 191.799

Treengeling – 615 273 342 909488 90.29 – –
Treengeling16 – 615 273 342 914782 95.695 – –

Plingeling – 674 289 385 598922 33.51 – –
Plingeling16 – 671 287 384 599558 32.42 – –

PeneLoPe – 664 290 374 653309 28.815 – –
PeneLoPe16 – 668 288 380 619395 27.5 – –

Pcasso can be considered as scalable. However, as scalability also considers the
actual run time to solve a formula, another comparison is given. Table 8.9 compares
for a given parallel solver the time that is required to solve a formula with 8 and with
16 workers. These two times are compared and the faster configuration is awarded a
point. The points are presented in the table for satisfiable and unsatisfiable formu-
las. Furthermore, the improvement with respect to the number of solved formulas
is given once more. Therefore, this table can be considered the actual scalability
analysis of the parallel solvers.

Pcasso is the most scalable solver when satisfiable formulas are considered: when
moving to 16 cores, then 159 formulas can be solved faster and 139 formulas result in
a slowdown. On unsatisfiable formulas the effect is even higher: on 205 formulas the
performance can be improved. Furthermore, with more resources during search 4
additional formulas can be solved. A reason for the scalability on satisfiable for-
mulas might be the conflict driven node killing in combination with the level based
sharing: partitions that do not contain a solution are recognized better, allowing
to focus on more promising partitions. Treengeling is scalable for both satis-
fiable and unsatisfiable formulas. Although no additional formulas can be solved,
the additional resources are used such that slightly more satisfiable formulas can be
solved faster when 16 cores are used. For unsatisfiable formulas the result is even
better, because the difference between solving formulas slower and improved solving
is bigger. Plingeling improves only on satisfiable formulas. For unsatisfiable for-
mulas the number of slower solved formulas dominates. Among the analyzed SAT
solvers Plingeling is affected most on its performance on unsatisfiable formulas.
Surprisingly, the performance of PeneLoPe on satisfiable formulas decreases. This
effect might be due to two reasons: first, as also discussed in [ABK+14], the Min-
iSAT search engine is affected heavily be the parallel architecture. Furthermore, the
shared clauses in PeneLoPe can lead to an overhead in the search process of each
sequential incarnation. Since Plingeling does not share that many clauses, this
effect is not present that much for Plingeling. However, for unsatisfiable formulas
these shared clauses are useful and the effect is very positive: by using more workers,
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Table 8.9.: Scalability analysis for 8 and 16 cores for the search in parallel SAT
solvers.

⊤ ⊥
16 cores faster slower faster slower additional

CP+Pcasso 159 131 205 152 4
Treengeling 139 132 183 159 0
Plingeling 148 141 183 202 -3
PeneLoPe 107 183 247 126 4
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Figure 8.11.: Comparing the CPU time (x-axis) to the wall clock time (y-axis) for
Pcasso(left) and Treengeling(right).

more clauses are shared, and these additional shared clauses seem to improve the
performance of PeneLoPe. As a result, the number of faster solved unsatisfiable
formulas is much higher when using 16 cores.

The scalability among the presented systems is diverse. While PeneLoPe de-
grades on satisfiable formulas, Plingeling has a worse performance on unsatisfi-
able formulas. Only the two search space partitioning solvers improve on both parts.
The improvement of Pcasso is better than for Treengeling: both the difference
on satisfiable formulas and unsatisfiable formulas is in favor of Pcasso. Hence, the
search space partitioning approach with look-ahead and scattering, as well as with
partition tree level based clause sharing and conflict driven node killing results in a
scalable parallel SAT solver.

Another visualization underlines the fact that Pcasso is more scalable than
Treengeling. In Figure 8.11 the wall clock time of the solvers is compared to
the corresponding CPU time. A solver exploits the available resources better if the
ratio of wall clock time to CPU time is closer to the number of available resources.
As can be seen in the figure, Pcasso reaches this limit faster than Treengeling.
Treengeling also reaches a speedup of 16, but only for longer solving times. Ac-
cording to the author of Treengeling, this effect is caused by the intensive and
sequential formula simplification of the solver.
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8.6. Contributions

This chapter presents the parallel and scalable SAT solving approach iterative par-
titioning. A first multi-core implementation has been presented in [HM12]. Along
the chapter modifications and extensions are proposed, which increase the perfor-
mance of the resulting parallel solver. The most important extensions are the fol-
lowing. Clause sharing with the partition tree level based clause tagging, which has
been presented in [LM13]. The search space has to be partitioned with the help
of the look-ahead procedure and the scattering approach, as discussed in [ILM14].
Finally, the partition tree level of the clauses can also be used to abort search in
redundant search space partitions. This technique has been introduced as conflict
driven node killing [ILM14].
The resulting parallel SAT solver Pcasso has been compared to state-of-the-art

SAT solvers, and their scalability has been evaluated when moving from 8 cores to
16 cores. Similarly to the findings in [HM12], the iterative partitioning solving
approach is the most scalable SAT solving routine.
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9. Conclusion and Future Work

This chapter summarizes the results of this thesis and puts them into a broader
picture. Then, conclusions are drawn and relevant future work is pointed out.
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9.1. Architecture Shift

9.1. Architecture Shift

Every modern computer runs on the multi-core architecture. Even mobile phones
use up to four cores to speed up their calculations. Worldwide, computational power
can be rented in large computing grids, which make hundreds of computing nodes
available. Each node might be equipped with a multi-core CPU again. Therefore,
to speed up the computation of any problem the corresponding algorithm should
be parallelized, in order to be able to exploit the huge amount of different parallel
architectures.

In many other research areas general purpose GPUs (GPGPUs) provide a simple
way to speed up the computation. In a GPGPU, multiple simple execution units
can execute a lot of tasks in parallel. For problems that require to solve a lot of
independent tasks, where solving each task requires only a small amount of memory,
GPGPUs are an excellent platform.

Similarly, many-core CPUs with up to 50 cores per chip are also available for
computation. As in GPGPUs, all cores share a small number of memory channels
and only a small amount of cache is provided.

The currently available parallel architectures do not fulfill the needs, namely fast
random memory accesses of huge amount of memory, of modern SAT solvers that
rely on the powerful Conflict Driven Clause Learning (CDCL) algorithm. This al-
gorithm is control flow dominated, whereas massively parallel hardware exploits
data parallelism. The CDCL algorithm itself is inherently sequential and heuristic
decisions depend on the most recent result of another part of the procedure. Fur-
thermore, for large formulas a large memory footprint is required and moreover the
memory accesses of the algorithm are almost random. Hence, dividing this algorithm
into independent jobs is very difficult, and by reducing the amount of available fast
cache memory the performance of modern SAT solvers decreases. However, neither
GPGPUs nor many-core CPUs provide cache memories that are comparable to the
cache levels of CPUs. Therefore, current CDCL solvers are not suited for current
parallel architectures.

On the other hand, the previous Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm presented above could be used, because this algorithm provides independent
jobs and a parallelization of this algorithm is known to scale well (see Section 6.2.1
or [BS96,JLU01]). This alternative has a significant drawback: on unsatisfiable for-
mulas the DPLL algorithm is known to perform exponentially worse than the CDCL
algorithm for certain problem classes. Therefore, even when an optimal speedup for
the DPLL algorithm would be achieved, a sequential CDCL solver might remain
more powerful. Hence, switching back to the DPLL algorithm is no solution to
obtain a scalable SAT solver.

The above developments leave two alternatives on how to improve modern SAT
solvers:

▶ use a high-level parallelization to solve SAT in parallel,

▶ and improve the sequential solving algorithm.

With the first step the computational power of the CDCL algorithm is not altered
by modifying the procedure. Additionally, a high-level parallelization immediately
benefits from improvements on the sequential algorithm. The current sequential
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algorithm is known to be powerful, and on a wide range of formulas its performance is
surprisingly high. Still, from the perspective of propositional proof complexity there
exist stronger reasoning procedures than resolution, so that the CDCL algorithm
might be replaced by another, more powerful, algorithm in the future. The search
additions proposed in this thesis are a step into integrating higher level reasoning
into these SAT solvers. Future research might focus on the extraction of cardinality
constraints, the simplification by covered literal elimination, or on how additional unit
clauses can be derived during search. As long as a high-level parallelization is used,
such new algorithms can be easily integrated into parallel solvers easily, similarly to
other improvements of the current sequential algorithm.

9.2. Conclusion

This thesis contributes to the two alternatives motivated above on how to improve
parallel SAT solving: an existing high-level parallelization approach for computing
grids is implemented for the multi-core architecture in the SAT solver Pcasso.
The procedure has been enriched with clause sharing, an improved search space
partitioning function by combining look-ahead and scattering, and an additional
way on how to avoid redundant search. With each of these improvements, the
overall performance of the parallel solving procedure has increased, although some
techniques of the sequential algorithm have been disabled to obtain a simple and
sound algorithm. All these improvements are inspired by related work, which has
been studied intensively. The main contributions of each presented parallel SAT
solver have been extracted to be integrated into Pcasso afterwards. The final
configuration of Pcasso is shown to be competitive to state-of-the-art parallel SAT
solvers, and Pcasso performed very well in recent SAT competitions. Furthermore
the final parallel solving procedure is shown to be scalable on current multi-core
machines.

However, the high performance of Pcasso would not be possible without formula
simplification procedures, or without a powerful sequential SAT solver. In this thesis,
the most powerful simplification technique bounded variable elimination (BVE) has
been parallelized to improve the efficiency of the parallel SAT solver. Furthermore,
three additional simplification techniques have been introduced and have been inte-
grated into the state-of-the-art formula simplification tool Coprocessor. All three
additional simplification techniques are stronger than resolution, which is a first step
to improving the reasoning power of the sequential SAT solver. bounded variable ad-
dition (BVA) introduces fresh variables to compact the representation of the formula.
Furthermore, these variables improve the structure of the formula. For the Fourier
Motzkin (FM) method, first cardinality constraints are extracted from the formula
and then reasoning is applied on these constraints instead of clauses. Since cardi-
nality reasoning is stronger than resolution, with this technique, for example, the
well-known pigeon hole problem can be solved even when being formulated as con-
junctive normal form (CNF) formula. Finally, covered literal elimination (CLE) allows
to remove redundant literals from clauses, which are not redundant when consider-
ing only resolution. When being combined with a state-of-the-art stochastic local
search (SLS) solver, a state-of-the-art SAT solver for satisfiable hard combinatorial
formulas is obtained, that also performed very well in recent SAT competitions.
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An even stronger system is obtained when a formula is simplified first, for example
with Coprocessor, and afterwards both an SLS solver and a CDCL solver search
for the result of the formula. The resulting solver SparrowToRiss won a gold
medal for the best performance on satisfiable hard combinatorial formulas [SAT14].
The SAT solver Riss, which is part of this solver and has been developed in this
thesis, is a highly configurable CDCL SAT solver. During working on this thesis,
Riss has been extended continuously and additional reasoning techniques and for-
mula simplification techniques have been integrated. The following techniques have
also been presented in this thesis: all-unit-UIP (AUIP) tries to learn multiple unit
clauses from a single conflict, local look-ahead (LLA) performs look-ahead during the
sequential search process, and local probing tries to infer unit clauses from learned
clauses. By integrating these three reasoning techniques into the CDCL algorithm,
the overall performance has been improved.

To ensure a sound procedure and to understand the interplay of the different
SAT techniques of a SAT solver as well as the formula simplification techniques, the
abstract reduction system Generic CDCL has been developed. Therefore also an
extension to classical propositional logic has been presented, which is able to handle
partial interpretations adequately, a major ingredient of modern SAT algorithms.
Then, Generic CDCL has been shown to be sound. Finally, while SAT solving
techniques are discussed in the thesis, Generic CDCL is also shown to cover, to
the best of our knowledge, all existing SAT solving techniques.

The final configuration of Riss won a gold medal for the best performance on
unsatisfiable hard combinatorial formulas and a silver medal on unsatisfiable appli-
cation formulas in 2013 [SAT14]. In 2014, variants of Riss won again a gold medal
for the best performance on unsatisfiable hard combinatorial formulas. Due to the
high number of integrated techniques, Riss was also awarded a silver medal and a
bronze medal in the Configurable SAT Solver Challenge 2013.

From the above developments a few conclusions can be drawn: since there is cur-
rently no known approach to parallelize the sequential SAT algorithm, high-level
parallelizations are the only possible way to exploit modern hardware. While the
portfolio approach is a simple way to obtain a robust parallel solving procedure,
search space partitioning results in a better scalability. An important fact is that
improvements to the sequential algorithm can be easily added to the parallel pro-
cedure. Since parallelization is not believed to result in super linear speedups in
average, the sequential solving algorithm should remain in the research scope so
that parallel SAT solvers are improved by developments on both the parallel and
the sequential part.

9.3. Future Work

In this thesis, several issues remained open. These open problems can be divided into
two classes: minor improvements, which are necessary to improve the performance
of the presented techniques, and major improvements that might lead to different
SAT solving approaches.

Among the minor improvements there is the implementation of the three tools
Riss, Coprocessor and Pcasso. While for the purpose of research the source
code should remain easily adaptable, such that new ideas can be easily integrated,
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productive SAT technology should be implemented as efficient as possible. Espe-
cially the memory footprint of the sequential algorithm can be reduced. Then, the
sequential solver and even more the parallel solver, benefit from the reduced cache
misses. Furthermore, this effect results in a better scalability of the parallel solver.
Similarly, eliminating resolution asymmetric tautologies can be implemented better
than presented in this thesis. By doing so, another powerful formula simplification
technique might become available and applicable.

Furthermore, Riss currently uses formula simplification only before search, while
other systems as Lingeling [Bie13] also successfully apply formula simplification
during search. Developing generic heuristics to decide when to use a particular sim-
plification technique during search is a topic where we still lack answers good enough
to integrate inprocessing into most SAT solvers. Currently redundant clauses, like
blocked clauses or resolution asymmetric tautology (RAT) clauses in general are only
removed from the formula, but there does not exist an efficient procedure and knowl-
edge on which clauses to add.1 By doing so, the performance of the solver might
be improved, especially on unsatisfiable formulas. Furthermore, the first naive im-
plementation of RAT elimination (RATE) already showed interesting results and
a high unique solver contribution (UC). By improving this implementation, RATE
might become another well-established formula simplification technique. A yet un-
touched and orthogonal approach is to improve the performance of Riss by applying
automated configuration tools like SMAC [HHLB11] or ParamILS [HHLBS09].

Since the massively parallel architectures are currently out of reach for the current
SAT solving algorithms, the major open problems concern the reasoning power of the
algorithm: first, instead of reasoning with clauses and resolution, the CDCL algo-
rithm can also be adapted to handle pseudo Boolean constraints. In Sat4J [BP10],
Pueblo [SS06] and galena [CK03] such a method is implemented. However, on
formulas from recent benchmarks these systems show a poor performance compared
to plain CDCL solvers. A reason might be that implementing this richer reasoning
technique is expensive and is not worth the introduced overhead. Since the reason-
ing power of such a solver can be exponentially stronger than for resolution based
solvers, modifications of the CDCL algorithm that can work on pseudo Boolean
constraints should be studied.

Furthermore, extended resolution is a candidate to extend SAT solvers. In cur-
rent solvers extended resolution is only implemented in form of BVA due to the
small benefit from the on-the-fly procedures in [Hua10, AKS10] and its high code
complexity. In [Man14b] a first attempt was made to extend the CDCL algorithm
with a light-weight on-the-fly extended resolution reasoning, which might not have
the full reasoning power, but whose overhead is small enough to still improve the
performance of the solver. Much more effort has to be put into this direction, such
that extended resolution is used more often during search. Only then the reasoning
strength of extended resolution can actually be exploited by the search procedure.

Another open problem, which has been handled partially in [HMP14], is the
question how to construct unsatisfiability proofs for parallel SAT solvers. While
for the sequential solver there exists a generic proof format [HHJW13b], and the
proof contains only the learned clauses of the CDCL algorithm, especially for the
iterative partitioning algorithm the construction of such a proof is difficult. For

1Lingeling adds binary blocked clauses [JHB12].
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simplification techniques beyond resolution, i.e. which are not based on clauses, no
proof format has been presented yet. Although the most generic format [HHJW13b]
supports the introduction of fresh variables, this formal uses only clauses. Hence,
for example cardinality constraints from the cutting planes proof system are not
supported directly. Currently no transformation of proofs of the cutting planes
system into this format is known. Similarly, a proof generation for the scalable
parallel solving approach is also useful to be able to produce verifiable unsatisfiability
answers with parallel solvers.
An open weakness of parallel SAT solvers, and also of highly configurable sequen-

tial SAT solvers, is the question which configuration should be used to solve a given
formula. While in SLS adaptive strategies are common, CDCL solvers still use many
static heuristics and only shift slowly towards adaptive heuristics. Another approach
is to extract features from a formula and then apply a configuration that performed
well on similar formulas. Although there exists related work in this direction, as for
example [XHHLB08,NMJ09] or [AM14a], a fast and generic approach is yet beyond
reach, maybe also due to the quality of currently used formula features. Identifying
formula features that correlate with the run time of a SAT solver on a family of
formulas is considered highly relevant, because the power of modern CDCL SAT
solvers is still not understood well.
Due to the missing understanding of the reason why modern CDCL SAT solvers

are so powerful, this thesis contributes more to the engineering side of SAT solv-
ing by introducing an appropriate extension to classical propositional logic and an
abstract reduction system. Then, extensions of sequential search are introduced
and additional prototypical formula simplification techniques are presented, which
already boost the reasoning power of current CDCL solvers. Finally, a scalable
parallel solving approach is ported to the multi-core architecture and has been ex-
tended to increase its performance. All these novelties do not consider studying
the reasoning power of the CDCL solvers, and neither try to improve the reasoning
systems. To obtain a next generation SAT solver, the underlying reasoning system
should become stronger, also by exploiting the knowledge about the power of current
solvers. However, Such a next generation SAT solver cannot compete with current
state-of-the-art solvers if the engineering that leads to the implemented system is not
performed well. Hence, both theory and engineering have to work closely together
in future research to enter the next generation of SAT solving.
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ALA asymmetric literal addition. 168

ALO at-least-one. 72

AMO at-most-one. 72

ASP answer set programming. 70

AUIP all-unit-UIP. 151, 218, 308

BCE blocked clause elimination. 13, 173–175, 178

BDD binary decision diagram. 79

BIG binary implication graph. 132, 133
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CPU central processing unit. 33
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DFS depth-first-search. 123
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GAC generalized arc consistency. 71, 72, 81

GPGPU general purpose GPU. 306

HLA hidden literal addition. 168

ITE if-then-else. 179

LBD literal block distance. 142, 146, 147, 159, 287

LLA local look-ahead. 107, 131, 132, 218, 220, 308

MPI message passing interface. 230, 231, 233

NAG NAND graph. 183, 184

RAT resolution asymmetric tautology. 178, 210–212, 309

RATE RAT elimination. 205, 210–212, 309

RWH recursive weighted heuristic. 126, 129, 158

SLS stochastic local search. 98, 110, 240, 307, 308, 310

SMT SAT modulo theories. 70
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UIP unique implication point. 147, 148

UNHIDE Unhiding Redundancy. 217, 218

VMTF variable move to front. 157

VSIDS variable state independent decay sum. 157, 159
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A.1. Conference Publications

2014 CDCL Solver Additions: Local Look-ahead, All-Unit-UIP Learning and
On-the-fly Probing [Man14a]

A More Compact Translation of Pseudo-Boolean Constraints into CNF
such that Generalized Arc Consistency is Maintained [MPS14]

Formula Simplifications as DRAT Derivations [MP14]
Detecting Cardinality Constraints in CNF [BLBLM14]
Détection de contraintes de cardinalité dans les CNF [BBLM14]

2013 Parallel Variable Elimination on CNF Formulas [GM13b]
SAT-based Analysis and Quantification of Information Flow in
Programs [KMM13]

Soundness of Inprocessing in Clause Sharing SAT Solvers [MPW13]
Parallel MUS Extraction [BMMS13]
Sharing Information in Parallel Search with Search Space
Partitioning [LM13]

2012 Automated Reencoding of Boolean Formulas [MHB13]
Coprocessor - a Standalone SAT Preprocessor [Man13a]
ACompactEncoding of Pseudo-BooleanConstraints to SAT [HMS12]
Designing Scalable Parallel SAT Solvers [HM12]
Coprocessor 2.0 -A Flexible CNF Simplifier [Man12]
Solving Periodic Event SchedulingProblems with SAT [GHM+12]
Solving Hidokus using SAT Solvers [HMNS12]

2011 A Short Overview on Modern Parallel SAT-Solvers [HMN+11]
2010 Improving Resource-Unaware SAT Solvers [HMS10]

313



A.2. Peer Reviewed Workshop Publications

A.2. Peer Reviewed Workshop Publications

2014 Extended Resolution in Modern SAT Solving [Man14b]
Generic CDCL – A Formalization of Modern Propositional Satisfiability
Solvers [HMPS14a]

Validating Unsatisfiability Results of Clause Sharing Parallel SAT
Solvers [HMP14]

New CNF Features and Formula Classification [AM14a]
Generic CDCL – A Formalization of Modern Propositional Satisfiability
Solvers [HMPS14b]

2013 Boosting the Performance of SLS and CDCL Solvers by Preprocessor
Tuning [BM14a]

Parallel Variable Elimination on CNF Formulas [GM13a]
Modern Cooperative Parallel SAT Solving [ILM14]

2012 The SAT Solver Framework priss [MS12c]
npSolver –ASATBased Solver forOptimizationProblems [MS12b]

2011 Coprocessor - a Standalone SAT Preprocessor [Man11b]
Parallel SAT Solving - Using More Cores [Man11c]
Quadratic Direct Encoding vs. Linear Order Encoding [MS11]

2010 Towards Improving the Resource Usage of SAT-solvers [MS12a]

A.3. Non–Peer Reviewed Publications

2014 SparrowToRiss [BM14b]
CLAS – A Parallel SAT Solver that Combines CDCL, Look-Ahead and
SLS Search Strategies [BLIM14]

MinitSAT [Man14d]
Pcasso — a Parallel CooperAtive Sat SOlver [LIM14]
Riss 4.27 [Man14e]
Riss 4.27 BlackBox [AM14b]
Generating Clique Coloring Problem Formulas [Man14c]
Too Many Rooks [MS14]

2013 The SAT Solver RISS3G at SC 2013 [Man13c]
PCASSO – a Parallel CooperAtive Sat SOlver [ILM13]
Sparrow+CP3 and SparrowToRiss [BM13]
MiniGolf [Man13b]
Equivalence Checking of HWMCC 2012 Circuits [BHJM13]
Unsatisfiable, Almost Empty Hidokus [Man13d]
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and Cédric Piette. Revisiting clause exchange in parallel SAT solv-
ing. In Alessandro Cimatti and Roberto Sebastiani, editors, Theory
and Applications of Satisfiability Testing – SAT 2012, volume 7317 of
Lecture Notes in Computer Science, pages 200–213. Springer Berlin
Heidelberg, 2012.
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domain variables to problems with Boolean variables. In Holger H.
Hoos and David G. Mitchell, editors, Theory and Applications of Sat-
isfiability Testing, volume 3542 of Lecture Notes in Computer Science,
pages 1–15. Springer Berlin Heidelberg, 2005.

[AM14a] Enrique Alfonso and Norbert Manthey. New CNF features and for-
mula classification. In Daniel Le Berre, editor, POS-14, volume 27 of
EPiC Series, pages 57–71. EasyChair, 2014.

[AM14b] Enrique M. Alfonso and Norbert Manthey. Riss 4.27 BlackBox. In
Belov et al. [BDHJ14], pages 68–69.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of the April
18-20, 1967, spring joint computer conference, AFIPS ’67 (Spring),
pages 483–485, New York, NY, USA, 1967. ACM.

[And68] Peter B. Andrews. Resolution with merging. Journal of the ACM,
15(3):367–381, July 1968.
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