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Abstract

Traceability data provides the knowledge on dependencies and logical relations existing
amongst artefacts that are created during software development. In reasoning over
traceability data, conclusions can be drawn to increase the quality of software.

The paradigm of Model-driven Software Engineering (MDSD) promotes the generation
of software out of models. The latter are specified through different modelling languages.
In subsequent model transformations, these models are used to generate programming
code automatically. Traceability data of the involved artefacts in a MDSD process can be
used to increase the software quality in providing the necessary knowledge as described
above.

Existing traceability solutions in MDSD are based on the integral model mapping of
transformation execution to generate traceability data. Yet, these solutions still entail a
wide range of open challenges. One challenge is that the collected traceability data does
not adhere to a unified formal definition, which leads to poorly integrated traceability
data. This aggravates the reasoning over traceability data. Furthermore, these trace-
ability solutions all depend on the existence of a transformation engine. However, not in
all cases pertaining to MDSD can a transformation engine be accessed, while taking into
account proprietary transformation engines, or manually implemented transformations.
In these cases it is not possible to instrument the transformation engine for the sake of
generating traceability data, resulting in a lack of traceability data.

In this work, we address these shortcomings. In doing so, we propose a generic traceabil-
ity framework for augmenting arbitrary transformation approaches with a traceability
mechanism. To integrate traceability data from different transformation approaches,
our approach features a methodology for augmentation possibilities based on a design
pattern. The design pattern supplies the engineer with recommendations for designing
the traceability mechanism and for modelling traceability data. Additionally, to provide
a traceability mechanism for inaccessible transformation engines, we leverage parallel
model matching to generate traceability data for arbitrary source and target models.
This approach is based on a language-agnostic concept of three similarity measures for
matching. To realise the similarity measures, we exploit metamodel matching techniques
for graph-based model matching. Finally, we evaluate our approach according to a set
of transformations from an SAP business application and the domain of MDSD.
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Introduction

In the IEEE Standard Glossary of Software Engineering Terminology [IEE90] the no-
tion of traceability is defined as: The degree to which a relationship can be established
between two or more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another; for example,
the degree to which the requirements and design of a given software component match.
Traceability data in model-driven software development (MDSD) [SV06] can be under-
stood as the runtime footprint of model transformation execution [CHO06]. Essentially,
trace links provide this kind of information by associating source and target model ele-
ments with respect to the execution of a certain model transformation. Trace links have
a manifold application domain [RJ01, CHO6]:

System comprehension to understand system complexity by navigating via trace
links along model transformation chains

Coverage analysis to determine whether all requirements were covered by test cases
in the development life cycle, where the traceability of models and model elements
is an integral part

Change impact analysis to analyze the impact of a model change on existing gen-
erated output

Orphan analysis to find orphaned model elements with respect to a specified trace
link

Model transformation debugging to locate bugs during the development of trans-
formation programs and later in shipped applications

According to [CH06, VBJB07] model transformation approaches either generate trace
links implicitly or explicitly. In other words, in the former case, they provide an inte-
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grated traceability solution, or in the latter one, they require traceability-specific en-
coding for generating traceability data. Nevertheless, these traceability solutions still
entail a wide range of open challenges. One challenge is that the collected traceability
data does not adhere to a unified traceability metamodel or formal definition, which
aggravates tool interoperability and reasoning over traceability data. At the same time,
traceability data needs to be sufficiently expressive to account for the above-mentioned
traceability scenarios, which is not necessarily compatible with a traceability metamodel
claiming universality. Finding the sweet spot between these objectives is a non-trivial
task according to the Center of Excellence for Software Traceability [ABET06, GHZ11].
Essentially, the inexpressiveness as well as the aggravated standardization and integration
of traceability data result in the problem of poor quality of traceability data.

Furthermore, there is yet room for improving the means to populate a traceability meta-
model, requiring manual encoding for individual transformations. This is likely to be a
cost and time-intensive task, leading to the problem of error-prone and time-consuming
efforts to achieve traceability.

Regarding the approaches for implicit and explicit generation, these traceability solutions
all depend on the existence of a transformation engine. Yet, a transformation engine can-
not be accessed in all cases of model-based development, for example, while taking into
account proprietary transformation engines, or manually implemented transformations.
In these cases, it is not possible to leverage the transformation engine for generating
traceability data automatically. This leads to the problem of lacking traceability data
due to non-existing or inaccessible transformation engines.

In view of these shortcomings, this thesis suggests several methods to generate trace-
ability data automatically. In doing so, we propose a generic traceability framework for
augmenting arbitrary model transformation approaches with a traceability mechanism.
To tackle the problem of poor quality of traceability data, this framework is based on a
traceability metamodel, presenting the formalization on integration conditions needed for
implementing a traceability mechanism. Essentially, this metamodel provides a unified
traceability metamodel, yet on the other hand accounts for an adequate expressiveness
of traceability data needed for the traceability scenarios. To achieve this dual nature,
the traceability metamodel is featured with an extensibility mechanism based on facets
[Pri00b].

Regarding explicit and implicit generation, we advocate two possible augmentation
methods to achieve a traceability mechanism, respectively: a) Augmentation of the
transformation-engine logic based on aspect-oriented programming [EFB01] and b) Aug-
mentation of the traceability-data output through the use of a model transformation.
Once the augmentation method has been applied in either of the two cases, the transfor-
mation approach is featured with a traceability mechanism that generates traceability
data conforming to the proposed traceability metamodel. In the case of explicit gener-
ation, the resulting traceability mechanism does not require manual effort in order to
gain traceability data, as opposed to before.
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In order to address the problem of lacking traceability data due to non-existing or inac-
cessible transformation engines, we propose to use model matching techniques as part of
the traceability framework to generate trace links for arbitrary source and target models.

Based on the above-mentioned problem definition and solution approaches, we formulate
the following hypotheses, to be validated in this thesis:

H1 The quality of traceability data is improved through:
— a generic interface for integration of traceability data
— a generic traceability metamodel
— a facet-based extensibility mechanism of the traceability metamodel.

H2 Efforts to achieve traceability are minimized (for the explicit generation class)
through augmentation of the transformation engine with the means of trace-link
generation.

H3 Parallel model matching can be leveraged for the generation of trace links regarding
inaccessible or non-existing transformation engines.

In the following, we provide an overview on the contributions of this thesis.

1.1. Thesis Contributions

The overall contribution of this thesis is a generic traceability framework for generating
trace links automatically. The framework provides three major components, which each
in itself reflect a contribution: A traceability metamodel (C1), a generic traceability
interface for arbitrary transformation engines (C2) and a model matching component
(C3). These contributions are described in the following.

C1: Facet-based Modelling of Traceability Data with CRUD Trace Links

To account for a sufficient expressiveness of traceability data, the specification of user-
defined artefacts and link types in traceability metamodels is necessary. To allow for
the extensibility of traceability metamodels, corresponding types are defined as facets.
Examples are, a facet for the life cycle of artefacts, with faceted values requirement,
design, code, or test; the location, where artefacts were created and the stakeholder of
artefacts with values like project manager, or developer. Since facets can be varied
independently and re-combined, the extensibility of traceability metamodels is achieved.

Furthermore, we define a minimal set of 4 elementary trace links based on the semantics
of CRUD actions from database operations. This set of trace links builds the foundation
on defining link types in a standardized way, yet may be extended through the use of
facets as described above.
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C2: Design Pattern on Augmentation of Model Transformations with
Trace-Link Generation

We propose a design pattern and a methodology to augment arbitrary model transforma-
tions with a specific traceability mechanism. The design pattern can be realised through
a generic traceability interface for arbitrary model transformation engines. Depending
on the approach of trace link generation (explicit or implicit), we claim two possible
augmentation methods to achieve traceability as described above. In view of the generic
traceability interface, these augmentation methods require the implementation of two
different kinds of connectors. In this way, we propose blackbor and invasive connectors
for implicit and explicit generation, respectively.

The design pattern is evaluated in terms of three connectors for QVT as well as ATL
(blackbox connectors) and Xpand (invasive connector).

C3: Parallel Model Matching for Trace-Link Generation

We contribute a traceability mechanism based on model matching for inaccessible or
non-existing transformation engines (blackbox systems). Thereby, blackbox systems can
be augmented with a traceability mechanism.

To achieve this, we propose a novel, language-agnostic concept defining three similarity
measures for model matching to generate trace links. Furthermore, as common to par-
allel matching systems, the matching results due to different matching algorithms are
combined. In realisation of this concept, 8 matching algorithms are deployed to instan-
tiate the three similarity measures. In doing so, we base our work on the metamodel
matching system from Voigt et al. [Voill] to apply specialised graph-based matching
using planar graphs with the benefit of improving matching results.

Furthermore, we experiment with metamodel-matching techniques applied to model
matching, such as filtering and blocking, defined under the term metamodel-driven
matching. It turns out that the key-enabler for leveraging model matching for trace
link generation is the exploitation of metamodel-matching techniques.

Finally, we contribute an evaluation of model-to-model and model-to-text transforma-
tions with respect to 29 mappings from a prominent set of transformations from the
domain of MDSD, called ATL Zoo, as well as 12 mappings from an SAP business appli-
cation.

1.2. Thesis Outline

The content of this work is structured into the following chapters. First, we give an
overview on the basic concepts of our work in Chapter 2. As such, we introduce the
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notion of traceability in MDSD, typed attributed graphs—used as internal data model
for matching, furthermore, model matching systems and facets.

After having introduced the foundations, we provide a motivating example for traceabil-
ity in Chapter 3, to lead the way to our problem definition. In doing so, we introduce
three categories of trace link generation, which we use throughout this thesis. Based
upon these, we span the scope of our work in terms of our requirements analysis.

The chapters 4 to 7 describe our approach and reflect all components of the generic
traceability framework. Chapter 4 gives an overview on its architecture and description
of its main components, where the following three chapters are dedicated to each of the
components. At first, the generic traceability metamodel is discussed in Chapter 5. We
derive a minimal and elementary set of 4 trace-link types based on the semantics of
CRUD actions from database operations. The derivation is founded on the classification
of source-target relationships from [CHO6]. Next, we define an extensibility mechanism
for the traceability metamodel, achieved through the use of facets and facet hierarchies.

Secondly, in Chapter 6, we present a methodology for achieving the automatic gener-
ation of trace links. The methodology accounts for both explicit as well as implicit
generation approaches. Core to the methodology is the generic traceability interface,
which defines the contract between a given transformation and traceability engine. De-
pending on the generation approach, the methodology proposes two different kinds of
connectors as part of this contract, namely blackboxr and invasive connectors for implicit
and explicit generation, respectively. Both connectors serve the purpose of augmenting
model transformations for the sake of generating traceability data.

Finally, we introduce a matching system as part of the generic traceability framework
in Chapter 7. We define three similarity measures upon which the proposed matching
algorithms work. The matching system implies a parallel matching process by combining
the matching results of numerous matching algorithms. As such, the implementation of
the matching system incorporates 8 matching algorithms, all derived from the similarity
measures.

To demonstrate the feasibility of our approach, an evaluation for both the methodology
for augmenting transformations as well as the matching system is presented in Chapter
8. The evaluation scenarios are from an SAP business application and the ATL Zoo. In
Chapter 9, we discuss related work of our approach in view of the latter methodology
and matching system. Finally, we conclude this thesis in Chapter 10 with a summary
and an outlook on future work.






Foundations

This chapter presents the foundations of our work and is structured as follows. First, we
introduce the paradigm of Model-driven Software Development (MDSD) in Section 2.1
and the notion of traceability in Section 2.2. Since our work is based on model matching,
we provide an overview on the basic concepts of model matching systems in Section
2.3. The introduced matching algorithms operate on graphs. Therefore, Section 2.4 is
dedicated to the fundamentals of graph theory and typed attributed graphs. Finally,
we define the concept of facets in preparation of defining traceability models based on
facets in Section 2.5.

2.1. Model-driven Software Development

This section introduces the paradigm of Model-driven software development (MDSD).
MDSD denotes the—partial or entire—generation of software out of models. The request
for proposal of the Object Management Group on Query/Views/Transformations (QVT)
in 2002 and the final adopted QVT specification [Obj11] in 2005 led to the development
of numerous model transformation approaches, as summarized in [CHOG].

A model is an abstraction of a system or its environment, or both [CHO06]. Models
are derived from a domain-specific modelling language (DSL). In general, a DSL is a
language that provides domain-specific abstractions and language constructs.

Definition 1 (Model). A model defines formal knowledge about an application domain
expressed in a domain-specific language [SV06].

11
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Transformation Program

Source I;l refersto refers to Target
Metamodel IJ__I IJ__I IJ__I B Metamodel
— A

instance of instance of

executes

Source reads Transformation writes Target
Model Engine Model

Figure 2.1.: Transformation Program

Metamodels are domain-specific languages and thus provide the formal definition of
models. The formal definition of models is necessary, since the goal of MDSD is to
automatically generate executable code (at least various parts) from one or more models.

The key to MDSD lies in the concept of model transformations. Through the execution
of a model transformation a given source model is transformed into a target model.
Thereby, the transformation engine is directed through the transformation program at
runtime. A transformation program (cf. Figure 2.1) includes a finite set of transforma-
tion rules, which are defined on the basis of the source and target metamodel elements.
Each transformation rule describes an instruction on how a set of elements of a cer-
tain instance of the source metamodel is transformed into a set of model elements of
a certain instance of the target metamodel. Formally, we define a model transforma-
tions in analogy to [Kle08], as follows. Thereby, we define the instance of relationship
between models and metamodels in terms of an element (a model) of a certain type
(the metamodel) in analogy to the relationship an integer has to the set of integers.

Definition 2 (Model Transformation). Let S be an instance of the source metamodel
SM _ Let T be an instance of target metamodel T™M .

Then, a model transformation is defined as a mapping MT from S™ to TM.
MT : SM — TM with S — T

In other words, a model transformation allows to transform a given source model S
conforming to SM into a target model T conforming to T™.

Generally, model transformations may be applied to multiple source and target models,
for example in the case of model merging or model weaving. The above definition may
be extended accordingly. The transformation program is written in a certain language,
called transformation language or transformation program language. The transformation
rules included in the transformation program have different forms depending on the
transformation language used.

12
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Transformation rules may be distinguished into hard-coded or model transformation rules
according to [Kle08]. Hard-coded transformation rules are written in a template language
(e.g., the model-to-text transformation language XPand from 0oAW [Foug]), or program-
ming language (e.g., Java). Model transformation rules are specified according to the
QVT standard, for example the specification of the Object Management Group [Obj11].

Transformation rules may be characterised according to their domains, where a domain
is defined as the part of a rule used for accessing the model(s) on which the rule op-
erates. When the domain is used for accessing the source model, it is referred to as
source domain, otherwise, if used to access the target model, target domain. We give
examples by using the above classification to underline the variety of possible structures
of domains:

e Hard-coded Rules: In case of template-based approaches, the rule includes vari-
ables (to bind elements from the source and/or target models) next to elements of
the transformation language embedded in a string body. The source domain refers
to the variables, while the target domain is the remaining string body.

e Model Transformation Rules: In QVT Relations, a rule incorporates a distin-
guished typed variable in the domain definition that can be matched in the pro-
cessed model. In QVT Operations, the rule takes on the form of an imperative
procedure. The domain definition then corresponds to the parameter and the code
that accesses model elements by using the parameter as an entry point.

In the scope of this work, we will use sub-units of transformation rules, called operators,
to have a more fine-grained view on how rules transform source elements into target ele-
ments. For example, an operator may be a query, e.g., in OCL, or coding for controlling
the execution flow, such as iterative or conditional clauses.

Definition 3 (Transformation Operators). Given a transformation language TL and
source and target metamodels S™ and T™ with source model S conforming to SM and
target model T conforming to TM .

Then a transformation operator op is defined through the following characteristics:

e an operator is an element of T'L conforming to the abstract syntax of T'L, that is,
op € TL.

e an operator is a mapping from a set of source-metamodel elements
{sM:i=1,...,n} CSM to a set of target-metamodel elements
{té‘/[ cj=1,...,m} CTM such that:

op(s¥t, ... My =M, My with

ren

(81,...,Sk)i—)(tl,...,tl),siES,tjGT,i:1,...,k,j:1,...,l

In other words, the mapping allows to transform a set of source elements from S
(where each source element s; conforms to one of the metamodel elements from
{sM i =1,...,n}) into a set of target elements of T (where each target element
tj conforms to one of the metamodel elements from {t;w cj=1,...,m}).

13



Chapter 2. Foundations

Remark We only provide a classification on the operators relevant to our work in
Chapter 6, Section 6.2.

An operator may also be defined for an empty set, that is,

op(sM, ... My =M, M) with {s)1,... sM} =0

ren

e.g., in model-to-text-transformations to generate static text. Analogously, a delete
operator is defined as

op(s¥t, ... My = (M, My with (¢, £ = ).

Since transformation rules can be interpreted as operators, we define a broader term,
transformers, for both notions.

Definition 4 (Transformers). The notion of transformers comprises transformation
rules and transformation operators. A transformer, thus, relates to a transformation
rule, or a transformation operator.

There are two types of model transformations, model-to-model (M2M) transformations
and model-to-text (M2T) transformations [CH06, SV06]. While a M2M transformation
creates a target model as an instance of the target metamodel, a M2T transformation
creates text in terms of strings. Thus, the target of a M2T transformation is not formal-
ized through a metamodel. Often, M2T transformations are referred to model-to-code
transformations, if the target text represents a particular programming language and
may be interpreted as a special case of a M2M transformation, provided a metamodel
exists for the target programming-language [CHOG].

Furthermore, model transformations may be categorized into exogenous resp. endoge-
nous transformations [MGO06]. Endogenous transformations are transformations between
models expressed in the same language (if S™ = TM), while exogenous transformations
are transformations between models expressed using different languages.

Typical examples for exogenous transformations are [MGO06]:

e Synthesis transforms a higher-level (more abstract) specification into a lower-level
(more concrete) specification, for example, in code generation, where the source
code is translated into bytecode or executable code, or where the design models
are translated into source code.

e Reverse engineering is the inverse of synthesis and extracts a higher-level specifi-
cation from a lower-level one.

e Migration transforms a program written in one language to another, yet the same
level of abstraction is kept.

Typical examples for endogenous transformations are [MGO6]:

e Optimization improves certain operational qualities (e.g., performance), while pre-
serving the semantics of the software.

14
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horizontal vertical

endogenous Refactoring Formal refinement
exogenous Language migration = Code generation

Table 2.1.: Orthogonal model transformation types ([MGO6])

e Refactoring is used for changing the internal structure of software to improve cer-
tain characteristics of software quality without changing its observable behaviour.

o Simplification and normalization decrease the syntactic complexity, e.g., by sim-
plifying the language syntax for better readability.

The same taxonomy [MGO06, GS04| distinguishes between horizontal and vertical trans-
formations. The direction specification refers to the level of abstraction: For vertical
transformations source and target remain on different levels, while for horizontal trans-
formations they are on the same level. A prominent example for a horizontal trans-
formation is refactoring. An example for a vertical transformation also referred to as
refinement transformation, is code generation.

In fact, the above-mentioned transformation types are orthogonal [MGO6] as presented
in Table 2.1 with prominent examples.

In this work, we will use the Java-based implementation of MOF [Gro06], the Eclipse
Modelling Framework (EMF) [SBPMO08] as language for expressing models.

2.2. Traceability in MDSD

Traceability of artefacts provides the means of understanding the complexity of logical
relations existing among artefacts generated during the software development lifecycle.
With the inception of model-driven software development (MDSD) [SVO06] entailing the
use of models for different domains, such as business processes, system requirements,
architecture, design and tests, the scope of artefacts has clearly been diversified. Main-
taining and defining relations and dependencies between artefacts is a nontrivial task
and has been a known challenge since the early 1970s. Questions concerning design de-
cisions, or whether a certain requirement is necessary and what its effect on system level
would be if deleted, all urge the need for continuous traceability of artefacts throughout
the development lifecycle.

Although the advantages of traceability have been identified, its realization in practice
has only taken hold scarcely [Ale02, EH91|. The commonly stated reasons are: (1) the
high cost of manual creation and maintenance of traceability information; (2) lacking
heuristics to what kind of trace link information should be tracked; (3) discrepancies
between traceability stakeholders (those creating links and those using links); (4) lack
of adequate tool support; (5) artefacts are written in different languages (natural vs.
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programming languages) (6) and they describe a software system at different levels of
abstraction (design versus implementation).

In the IEEE Standard Glossary of Software Engineering Terminology [IEE90] the notion
of traceability is defined as:

Definition 5 (Traceability). The degree to which a relationship can be established be-
tween two or more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another; for example,
the degree to which the requirements and design of a given software component match.

Related to MDSD, traceability is defined as follows:

Definition 6 (Traceability in MDSD). Traceability information in MDSD can be un-
derstood as the runtime footprint of the execution of a model transformation [CHO6].

Based on this definition, we interpret the runtime footprint of a transformation as the
tracking of corresponding source and target artefacts of transformers in the transforma-
tion program. Thus, we arrive at the following definition of traceability in MDSD.

Definition 7 (Traceability in MDSD). Traceability information in MDSD is the track-
ing of corresponding source and target artefacts of transformers in the transformation
program.

Essentially, trace links provide this kind of information by associating source and target
model elements with respect to the execution of a certain model transformation.

Definition 8 (Trace Link). Given a model transformation MT from source model S
to target model T. Let {s; : i = 1,...,n} be the set of all model elements of S and
{t; :7=1,...,m} be the set of all model elements of T.

Then, the set of trace links for MT is defined as a binary relation trace_rel between
{si} and {t;}, that is, as subset of the Cartesian product of the sets {s;} and {t;}:

trace_rel C {s;} x {t;}

Generally, we classify trace links into implicit and explicit link types, as proposed by
[POKZ08].

e Implicit trace links—referring to trace links between artefacts that arise due to a
MDSD operation, e.g., a model transformation as in Definition 8.

e Explicit trace links—referring to trace links explicitly defined between artefacts
using one or more languages. Explicit trace links can be further categorised into
trace links between models and corresponding model elements (e.g., a dependency
relationship drawn between two UML packages) or between models and artefacts,
that do not conform to a metamodel (e.g., between a model and a requirement).

Furthermore, any set of collected trace links is referred to as traceability information, or
traceability data.
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2.2.1. Traceability Scenarios

In the following section, we list possible use cases for traceability data, called traceability
scenarios. We introduce each scenario regarding its general applicability in software
development and then state its relevance to MDSD.

System Comprehension

Traceability data may be used to derive logical and functional dependencies between
artefacts, being from the same development phase (e.g., design, implementation and
testing), or different phases within a software development project. In [OO07] this is
also referred to as trace inspection.

Concerning MDSD in particular, the following traceability scenario is conceivable. The
paradigm of MDSD raises the level of abstraction by encapsulating implementation de-
tails into transformations [SV06]. In doing so, the total system complexity concerns,
firstly, the mapping of model to target language (i.e., generation, or interpretation) and
secondly, the complexity of the source model(s) as such. The advantage of this separation
of concerns is, that a developer only interested in the modelling part of a system, not nec-
essarily needs to know the technical details of the implementation. Consequentially, we
have different stakeholders in an MDSD process, a) those using the transformation and
b) those writing a transformation program, which are not necessarily the same person.

To provide the stakeholder using the transformation and likely being unfamiliar with
the transformation language with an adequate system comprehension and still uphold
the above-mentioned advantage of separation of concerns, traceability data may be use-
ful. For example, trace links capturing the logical and functional dependencies between
representations of design artefacts and generated code may aid the developer in compre-
hending the transformation easier. This is especially useful for the system comprehension
of a chain of model transformations and large-scale development.

Coverage Analysis

A coverage analysis is used to determine the degree to which artefacts are followed up
by other artefacts in a development process [0007]. For example, to answer question,
whether all market requirements have been implemented, or whether all software re-
quirements were covered by test cases in the development life cycle.

There are slight variations to the notion of coverage analysis, depending on the types of
artefacts involved. A special case of a coverage analysis is referred to as code coverage
or test coverage, dealing with the coverage of source code through test cases as part of
software testing [MM63, LHLO02, SW08].

Regarding an MDSD process, the traceability of models and model elements is an integral
and necessary part for a coverage analysis. For instance, a coverage analysis may be
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useful for the following scenario motivated through a system compliance check. Assuming
a bug was found and corrected in a low-level artefact and one needs to know, which test
cases to re-run to check whether the system is still correct. Re-running all test cases
may not be a viable solution for a large-scale test suite where time is a limiting factor. A
coverage analysis with respect to the changed artefact allows to find the requirements (or
features), which are covered up by this changed artefact. This is achieved by calculating
the transitive closure on all trace links from the changed artefact to the requirement(s).
From this given set of requirements another coverage analysis renders all associated test
cases again by transitive closure on the corresponding trace links, yet in the opposite
direction.

Another use case for a coverage analysis bound to MDSD is for checking, whether all
necessary parts of the input model are actually utilised by a transformation [O0O07], for
example, in case of a model-to-text transformation generating code documentation from
a specific model. For large models this can be a tedious task due to cross-references. A
coverage analysis allows for checking to which extent all relevant model elements have
been transformed.

A coverage analysis is used in [CHO6] for the feature target incrementality, that is, the
ability to update existing target models based on changes in the source models. A
target-incremental transformation creates the target models if they are missing on the
first execution, in other words, if corresponding source models are not covered or followed
up on yet. To detect whether a certain target model and corresponding model elements
already exist, trace links can be used.

Change Impact Analysis

A change impact analysis allows to determine how changing one artefact would affect
other artefacts [HJD11, AB93|. For example, a high-level artefact needs to be updated,
e.g., by adding a new alternative flow to a use case. Afterwards one needs to provide an
estimate for the effort required for the implementation of the change. Transitive closure
on trace links from the high-level artefact provides an upper bound understanding of
what lower-level artefacts could be impacted, allowing an estimate of the "size” of the
change.

Related to MDSD, traceability data can be useful in analyzing how changing one model
would affect other related models (and corresponding model elements) [CHO6], or existing
generated code due to model-to-text transformations [OO07]. Re-generating artefacts
to propagate a model change is not always a viable option, since it is generally not
possible to generate all artefacts automatically within an MDSD process, consequently,
manually added artefacts need to be maintained. Secondly, generated artefacts may
have cross-dependencies. Thus a change impact analysis is useful in finding an estimate
on potentially impacted artefacts before deciding on re-generating the transformation,
especially in the case of large-scale model transformation chains.
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Orphan Analysis

An orphan analysis is to find orphaned model elements with respect to a specified trace
link [OO07]. A so-called orphan refers to one or more artefacts that are not referenced
by, or reference other artefacts. Orphans are created in case of artefact deletion, e.g.
while deleting a model element, the corresponding code might be outdated. Re-running
the model transformation as a result of an orphan analysis to render updated traceability
data is one part of the analysis in addition to the handling of manually created trace
links.

Model Transformation Debugging

According to [CHO6], trace links may be used for debugging of model transformations,
or model-based debugging (i.e., by mapping the execution of an implementation back
to its high-level model in numerous steps) to locate bugs during the development of
transformation programs and later in shipped applications. For example, if a problem
was discovered in the generated file of a model-to-text transformation, a developer can
utilize the trace links to identify the snippet in the transformation program and model
data that caused the generation of the defective part.

Further Scenarios

In the following, we list other traceability scenarios found in literature [OO07].

e Model Synchronization: While transformation source and target evolve, trace links
may be used to keep both source and target in synchronization [CHO6]. For ex-
ample, while using model transformation approaches that account for preserving
user edits in the target. After changing the model input, re-generating the tar-
get does not automatically update preserved edits, potentially leading to updated
model elements, yet outdated edits. Trace links can be used to resolve this issue of
discrepancy. Another scenario on the synchronization of cardinality-based feature
models and their specializations is given in [KCO05].

e Unprotected Block Checking: For model-to-text transformation approaches pro-
viding support for unprotected blocks (to preserve user edits) in the generated code,
the following functionality is conceivable. After unprotected blocks have been im-
plemented, the corresponding traceability data needs to be updated to show their
completion. A status report on completed and uncompleted unprotected regions
may be useful for more efficient project and resource planning.

e Traceability Model Merging: Merging of traceability models may be used, when
several different transformations are executed from the same source model. Merg-
ing these traceability models provides a more compact view on trace links refer-
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encing the same source elements, yet different target elements, for example while
generating both source code as well as documentation from a source model.

e Traceability Model Evolution: The evolution of traceability models may be used
to understand the evolution of a corresponding transformation source with respect
to its target.

2.2.2. Traceability in MDSD

We look into the possible ways on how trace links can be generated in MDSD. Accord-
ing to Vanhooff et al. [VBJB07] transformation approaches either generate trace links
implicitly or explicitly, also referred to as automatic or manual generation according to
Czarnecki and Helsen [CHO6]). In the former case, an integrated support for traceability
(e.g., QVT [Objl11], MOFScript [Fouf]) is already provided, while the latter case requires
effort to encode traceability as a regular output model from transformation to obtain
a traceability solution. The explicit trace link generation may be achieved in two ways
according to Olsen and Oldevik [OO07], either by writing traceability-specific rules into
the transformation program for each transformation (e.g., ATL [Foud], oAW [Foug]), or
to make use of a higher-order transformation on the transformation model, as described
in [Jou05] for ATL.

In analogy to the classification above, we adopt the terms explicit and implicit trace-link
generation and define the following two classes of model transformation approaches.

Definition 9 (Implicit Trace-Link Generation Class). The implicit trace link genera-
tion class refers to all model transformation approaches with an integrated traceability
mechanism to generate trace links.

Definition 10 (Explicit Trace-Link Generation Class). The ezplicit trace link generation
class refers to all model transformation approaches with a traceability mechanism to
generate trace links requiring the encoding of traceability. Encoding of traceability is the
process of either writing traceability-specific rules into the transformation program, or
making use of a higher-order transformation on the transformation model to achieve
this.

Next, we summarise the advantages and disadvantages of the above two trace link gen-
eration classes, as tabularized in Figure 2.2. The major advantage of implicit trace-link
generation is the fact that no additional effort is necessary to obtain trace links between
input and output models, as they are generated automatically in parallel to the actual
model transformation. A disadvantage is, that the traceability metamodel is fixed and
since most transformation approaches use different metamodels, standardization among
different approaches is aggravated. Essentially, the implicit generation allows less flexi-
bility to control traceability data due to the fixed traceability metamodel. According to
[CHO6] traceability data might be controlled with respect to:
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e The kind of data, e.g., the links between source and target elements, the operators
that created them.

e The granularity level of data, e.g., tracing only on file level instead of more concrete
entities in the file body. Setting the granularity of trace links which may differ
from one traceability scenario to another has been identified as a challenge by the
Center of Excellence for Traceability [ABET06]. When tracing all model element
references, the number of trace links might become incomprehensible and hence
less useful to the developer. Furthermore, it might be a performance issue when
handling large and complex model transformations.

e The scope for which the data is recorded, e.g., tracing for specific rules, or subset
of the source model. Not all model information might be allowed to be traced for
security reasons, mandated for instance by customer requests.

Implicit Trace Link Explicit Trace Link
Generation Generation
e.g. QVT e.g. oAW

Traceability fixed definition flexible definition =>
Metamodel control traceability data:
* kind of information
« level of granularity

* scope
Transformation unchanged polluted & complex
Specification individual adaptation

Figure 2.2.: Implicit and Explicit Trace-Link Generation Class

Alternatively, as in the case of explicit trace link generation, it is possible to treat trace-
ability as a regular output model of the transformation and incorporate additional trans-
formation rules into the transformation template to generate the traceability model (e.g.,
ATL [Foud], oAW [Foug]). The choice of metamodel is then completely at the discretion
of the developer and does not depend on the transformation engine. Hence, control over
the traceability data modelling is given. The drawback however, is, that additional effort
is required to add traceability-specific transformation rules, which may also pollute the
implementation. As this task is generally done manually, it is likely to be error-prone
and time consuming. Moreover, this effort is repeated for each transformation.
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Figure 2.3.: Common Matching Process

2.3. Model Matching

The process of model matching is to find semantic correspondences between model ele-
ments. Such correspondences are called matches. The general matching process receives
a source and target model and creates a mapping between elements of these models,
following the definition of Rahm and Bernstein in [BLPO0O].

Definition 11 (Matching). The matching process is defined through a mapping from a
source S and target model T to a set of n-ary mappings, where each mapping is defined
from a set of source elements of S to a set of target elements of T. FEach mapping
specifies that a set of elements of S corresponds, that is, matches to a set of elements in
T. The semantics (e.g., type and value equality) of a correspondence can be described by
an expression attached to the mapping.

The matching process is implemented through a matching system. There are three kinds
of matching systems as described later in Section 2.3.1. Commonly, a matching system
involves the following steps as depicted in Figure 2.3:

1. Import of models: to transform the models that need to be matched into the
internal data model of the matching system

2. Matching of models: calculates a similarity value between all pairs of source and
target elements

3. Configuration of similarity value cube: aggregates the matcher results to create an
output mapping

1. Import of models: During the import, the source and target models that need to
be matched are transformed into the internal data model of a matching system to have
a common basis for arbitrary matching algorithms. In some systems e.g., [LTLLO0S|,
pre-processing steps are applied, that is, properties of the input models are exploited to
adjust the matching process. For example, in case the element names of the input models
differ to a large extent, the weights of name-based matching techniques are adjusted.
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2. Matching of models: Different matching algorithms are applied to the imported
source and target model in order to identify semantic correspondences (matches) between
source and target elements. A pair of identified source and target elements is called a
match. We define a matching algorithm as follows:

Definition 12 (Matching Algorithm). Let {s; : i =1,...,n} be the set of model elements
of source model S and {t; : j = 1,...,m} be the set of model elements of target model
T.

A matching algorithm is defined through a 2-ary mapping matchAlg from {s;} and
{t;} to the interval of real values between 0 and 1, that is:

matchAlg: {s;} x {t;} = [0,1] CR

A given output value of a matching algorithm represents the degree of similarity of the
related source and target element.

Definition 13 (Similarity Value). Each output value of matchAlg is called a similarity
value, where 1 is the greatest possible similarity.

The matching system can be configured by choosing which matching algorithms should
be involved in the matching process. For a classification on different matching algorithms
refer to Section 2.3.2.

Definition 14 (Matcher). A matcher implements a matching algorithm.

3. Configuration of similarity value cube: Each matching algorithm provides sepa-
rate results for a certain source and target model, where the results describe a similarity
value for all source and target model element combinations, called similarity value ma-
triz. All of these matrices are arranged into a cube, called similarity value cube (SVC).
To derive a mapping (or matches) in terms of Definition 11 between source and target
elements out of these results, the similarity value cube needs to be configured, that is, dif-
ferent strategies [BMPQO04, DR07, VIR10, PMK10] are applied to aggregate the matcher
results. Common strategies are e.g., to form an aggregation matriz by calculating the
average of similarity values for a given source and target element, or selection matriz by
selecting all elements exceeding a certain threshold. More details on the configuration
strategies follow in Appendix B.3.

Definition 15 (Similarity Value Cube). Let S and T' be a source and target model,

respectively.

Let {s; :i=1,...,n} be the set of model elements of S and {t; : j =1,...,m} be the
set of model elements of T and {my, : k =1,...,l} be a set of matchers.

Then, a similarity value cube SV C' is a 3-dimensional data cube defined through the
mapping:
SVC :{s;i} x {t;j} x {m} = [0,1]] C R
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2.3.1. Classification of Matching Systems

If the matchers in the matching system are applied in parallel, this implies a parallel
matching system. Essentially, there are three kinds of matching systems as mentioned
above:

e Parallel matching systems
e Sequential matching systems
e Hybrid matching systems

Parallel matching systems, e.g., [DR07, VIR10], apply each matcher in parallel and
independently on the input models. After execution of the matchers, their results are
aggregated.

Sequential matching systems, e.g., [FV07, FHLNOS], apply matchers in sequential order,
that is, the results of a matcher serve as input for the succeeding matcher. This allows
for an incremental refinement of matching results, however may potentiate an existing
erTor.

Another possibility is a combination of the above-mentioned systems in hybrid matching
systems, for instance [HZLT07] use fix-point calculations by incrementally executing
parallel matchers to use their results as input for the same set of matchers. In [PBR10],
user-specific compositions of matchers are applied. A composition results in a set of
matchers that are combined through operators that have an order. This allows, for
instance, for an intersection or union of matcher results. Our work, however, is based
on a parallel matching system.

2.3.2. Classification of Matching Algorithms

Several classifications on matching algorithms have been proposed. Prominent exam-
ples from schema matching and ontology matching are, the classification of Rahm and
Bernstein [RBO01] as well as Shvaiko [SE05, CSHO06]. A consolidated view on the latter
classifications can be found in [Voill] referring to metamodel matching as summarized
in the following.

Matching algorithms may be divided into two classes, that is, matching is either applied
on element level or structure level. While the former case deals with the comparison of
elements and their properties, e.g., comparing their names, the latter case is based upon
the graph structure.

Element-level Algorithms

Element-level matching algorithms make use of information available as properties of
elements, for example the name or data type of an element. The following classes exist:
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String-based String-based algorithms cover similarity calculation using string
information. For example, an element’s name may be used, or metadata such as
documentation or annotations, etc. Furthermore, the similarity calculation may be
based on common prefixes or suffixes. More advanced processes are based on the
edit-distance by calculating the number of edit operations necessary to transform
one string into another, e.g., the Levenshtein-distance [WEF74].

Constraint-based Constraint-based matching techniques use information of el-
ements which define a certain constraint on an element, e.g., data types, keys,
or cardinalities. Data types are used to derive a similarity of elements based on
the data type’s similarity. For simple types such as integer or float a static type
conversion table can be applied, while for complex types such as structures more
advanced techniques are needed.

Linguistic resources Matching algorithms may rely on external sources such as
linguistic resources. These resources can be dictionaries, a common knowledge
thesaurus or a domain-specific dictionary. An example for a domain-specific dic-
tionary is WordNet [Fel98] a publicly available dictionary used for matching.

Mapping reuse Algorithms with mapping reuse base their calculation on existing
mappings, for instance, by using transitivity as an indicator for similarity, that is,
existing mappings may conclude mappings for their transitive dependent elements.
A more sophisticated approach is used in [DR02], which generalizes this idea to
reuse match results at the level of entire schemas or schema fragments.

Structure-level Algorithms

Matching algorithms using the graph structure to derive similarities between elements
are based on the premise that relations (e.g., inheritance and containment) between
elements and their position (building up the structure) are similar for similar elements.
Numerous algorithms operating on this structure-level have been proposed:

e Graph-based Graph-based algorithms either use the overall graph (global graph-
based algorithms), or only parts of the graph, that is, local graph-based and region
graph-based algorithms:

— Global graph-based: The former case, distinguishes between exact or inexact
algorithms. Exact algorithms calculate a mapping from one node (element)
to another as well as a mapping for edges, as for example in sub-graph isomor-
phism algorithms allowing structure-preserving bijection. In contrast, inexact
algorithms, e.g., the graph edit distance or maximum common sub-graph al-
gorithms, allow for an error-tolerant approach, that is, allow certain distances
between sub-graphs.

Inexact algorithms such as the graph edit distance or maximum common
subgraph algorithms apply a sequence of edit operations, composed of: add,
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remove, and relabel (rename). A sequence of such operations defines a map-
ping from one graph onto another, thus calculating the maximal common
subgraph along with the necessary operations.

— Local graph-based: In contrast, graph algorithms may regard the context
of an element as opposed to the whole graph, that is, the relation of this
element to its neighbours in the graph. Local graph-based matching algo-
rithms operate on a tree use the children, leaf, sibling and parent relationship
[VIR10, DRO2], relative to a given element to derive mappings. An exten-
sion of these algorithms is to generalize a graph’s spanning tree and use the
neighbours in the graph for matching.

— Region graph-based: Region graph-based algorithms make use of regions
within a graph, that is, sub-graphs of a given graph. The algorithm cal-
culated the frequency of such sub-graphs in the given graphs. The underlying
premise of the algorithm is that sub-graphs sharing a high frequency are more
similar. Thus, this frequency is used to derive a similarity between the sub-
graphs’ elements. An example of region graph-based algorithms is the graph
mining matcher in [Voill] or the filtered context matcher in [DRO7].

e Taxonomy-based Taxonomy-based matching algorithms operate on trees and
commonly are specialized on this structure, for instance name path matching. A
name path matcher is an extension of the name matcher and calculates similarities
of model elements with the help of their path, where a path is the concatenation
of the element names from the root to the current element.

e Repository of structures This approach uses a repository of structures contain-
ing mappings, corresponding models and co-efficients denoting similarities between
models. The storage of similarities allows for a faster retrieval of mappings. The
co-efficients are metrics, for example, structure name, root name and maximal
path length. These numbers act as an index for a set of models, thus allowing an
efficient retrieval.

e Logic-based Logic-based matching algorithms make use of additional constraints
defined on models. In doing so, matching is based on these constraints in a logic
language, or by adding mappings upon reasoning via post-processing. For instance,
if a mapping exists between attributes, it follows that a mapping between the
containing classes has to exist as well, since attributes need a containing element.
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2.4. Graph Theory

In the following section, we introduce concepts of graph theory relevant to our work.
From the field of graph transformation, we introduce typed attributed graphs, which have
been used as a modelling technique in software engineering and as a metalanguage to
specify and implement visual modelling techniques such as UML [EEPTO06]. In the
following, we align our work with [EPT04, EEPTO06] to derive the definition of typed
attributed graphs.

2.4.1. Graph Definitions

A graph is a structure consisting of nodes and edges, where each edge links two nodes.
To define the start node (source) as well as the end node (target) of an edge, we introduce
two functions, the source and target function.

Definition 16 (Graph). A graph G = (V,E,s,t) consists of a set V of nodes (also
called vertices), a set E of edges and two functions s,t : E — V, the source and target
function.

A graph is considered directed, if every edge has a distinguished start node (its source)
and end node (its target). To represent undirected graphs, for each undirected edge
between two nodes v and w we add both directed edges (v, w) and (w,v) to the set E
of edges. A graph is finite, if V' is a finite set of nodes. Otherwise, if V' is an infinite set,
the graph is infinite. In this work, we will consider finite graphs.

Definition 17 (Cardinality of Nodes and Edges). The cardinality of the set of nodes
of a graph, denoted as |V|, is defined as the number of nodes n of V. Thus, we write:
|V | = n. Analogously, the cardinality of the set of edges is defined as the number of edges
m of E, that is: |E| =m.

Graphs are related by graph morphisms, which map the nodes and edges of a graph to
those of another one, preserving the source and target of each edge.

Definition 18 (Graph Morphism). Given graphs G1,Go with G; = (V;, E;, s;,t;) for
1=1,2.

Then, a graph morphism [ : Gi — Go, f = (fv, fr) consists of two functions fy :
Vi — Vo and fgp : E1 — E» that preserve the source and target functions, i.e. fyosy =
SQOfE and fvotl :tQOfE.

A graph morphism f is injective (or surjective), if both functions fy, fr are injective
(or surjective, respectively); f is called isomorphic if it is bijective, which means both
injective and surjective.

In order to model attributed graphs with attributes for nodes and edges, we have to
extend the classical notion of graphs (see Definition 16) to E-Graphs. An E-graph has
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two different kinds of nodes, representing the graph and data nodes as well as three kinds
of edges, the usual graph edges and special edges used for the node and edge attribution.

Definition 19 (E-Graph). An E-graph G with
G = (Vo, Vb, Eg, ENa, Ega, (sourcej, target;) jeia,na,pAy) consists of the sets:
e Vi and Vp, called the graph and data nodes (or vertices), respectively;

o Fg, Ena, and Era called the graph, node attribute, and edge attribute edges,
respectively;

and the source and target functions:
e sourceq : Eg — Vg, targetg : Eq — Vo for graph edges;
o sourceny : Ena — Vg, targetna : Ena — Vp for node attribute edges;

e sourcepy : Epa — Eg,targetpa : Epa — Vp for edge attribute edges.

Definition 20 (E-Graph Morphism). Consider the E-graphs G* and G*. An E-graph
morphism f : Gy — Gg is a graph morphism holding for E-Graphs G' and G?.

Remark The main difference between E-graphs and graphs is that we allow edge at-
tribute edges, where the source of these edges is not a graph node but a graph edge.

2.4.2. Typed Attributed Graphs

An attributed graph is an E-graph combined with an algebra over a data signature. In
the signature, we distinguish a set of sorts, where the elements of a sort are attribute
values, e.g., the sorts {natural numbers, strings}. The corresponding carrier sets in the
algebra can be used for the attribution. We give a definition of an algebra as well as
a final algebra and corresponding signature with examples in the following, before we
derive the definition of typed attributed graphs.

An algebraic signature is a syntactical description of an algebra and consists of sorts (of
attribute values) and operation symbols.

Definition 21 (Algebraic Signature). An algebraic signature ¥ = (S, OP) consists of a
set S of sorts s; and a set OP of n-ary operation symbols op on S, that is,
OPC{op:sp...8i...8, —s:0<i<n,s€S s €S}

Remark To define constant symbols, we include the empty set () in S. Hence, if sq. .. s,
is an empty word, that is, s; € ) for i = 0,...,n, then op :— s is called a constant
symbol.

Example Let S = N be the set of natural numbers and

OP = {zero :— nat, succ : nat — nat, add : nat nat — nat, mult : nat nat — nat}
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be a set of operations called constant, successor, addition, and multiplication operation,
respectively. Then 3 = (5, OP) is the data signature for natural numbers.

In the following, we define the concept of ¥-algebras also referred to as universal algebras.
An algebra is a semantic model of a signature.

Definition 22 (3-Algebra). For a given signature ¥ = (S, OP),
a Y-algebra A = ((As)ses, (opa)opeop) is defined by:

e for each sort s € S, a set Ag, called the carrier set;
e for a constant symbol c :— s € OP, a constant cq € As;

o for each operation symbol op : s1...8, — s € OP,
a mapping opa : As, X ... x As, — As.

Example The N-algebra D is the algebra defined over the signature of natural numbers:
e Dy =N
e zerop =0€ Dyt
e succp : Dypogt — Dypgt, t— x+ 1
e addp : Dpat X Dpat — Dpat, (2,y) — x4y

o multp : Dpat X Dpat — Dhat, (x7y) =Xy

Example The STRING-algebra D is the algebra defined over the signature of stings,
where strings are words over characters:

e Dopar ={a,...,2z,A...,Z,0...,9}

*

® Dstring = Ychar

e ap = A € D¢pqr (for constant value a)
o emptyp = A € Ditring (for the empty string \)

e nextp : Depar — Denar,
a—b,....2—AA—B,....Y — Z,Z+— 0,0—1,...,9 — a (for implying an
ordering on characters)

o concatp : Dsiring X Dstring — Dstring, (S,t) — st (for the concatenation of two
strings)

e addp : Dehar X Dstring — Dstring, (2, s) — xs (for adding a character to a string)

o firstp : Dgring — Dchar, A — A, s — s1 with s = s1...5, (for returning a
character from a string)

Next, we define a special kind of algebra, called final algebra, which we use for the
attribution of an attributed type graph.
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Definition 23 (Final Algebra). Given a signature ¥ = (S, OP), the final X-algebra Z
is defined by:

o 7, ={s} for each sort s € S;
e cy =5 € Zg for a constant symbol ¢ :— s € OP;

o opz :{sl} x - x {sp} —> {s}: (s1---sn) — s for each operation symbol
op:81-++8, — s € OP.

Example The final algebra Z for the signature STRING is defined as follows:
® Zchar = {char}
o Zutring = {string}
e ay = char € Z.pur
o emply, = string € Zsiring
e nexty : Zenar — Zehar, char — char
o concaly : Zgring X Zstring — Zstring, (String, string) — string

o addz : Zehar X Zsiring — Zstring, (char, string) — string

firstz : Zsiring — Zchar, string — char

Different algebras can implement the same signature, corresponding to different seman-
tics. To analyze relations between algebras, we define homomorphisms.

Definition 24 (Algebra Homomorphism). Given a signature ¥ = (S,OP) and X-
algebras A and B, a homomorphism h: A — B is a family h = (hs)s € S of mappings
hs : As —> Bs such that the following properties hold:

e for each constant symbol ¢ :— s € OP, we have hs(ca) = cg where cy4 € As and
cp € Bg

e for each operation symbol op : s1...s, — s € OP it holds that
hs(opa(xi,...,xn)) = opp(hs, (1), .., hs, (zn)) for all z; € Ag,.

Remark If, for z; € A, and z; € AS]., s; and s; are different sorts (e.g. nat and string),
that is As; # As,, it follows that hs,, hs; are different mappings. For s; = s;, it follows
that hs, = hs;.

An attributed graph is an E-graph combined with an algebra over a data signature.
In the signature, we distinguish a set of attribute value sorts, where the corresponding
carrier sets in the algebra can be used for the attribution.

Definition 25 (Attributed Graph). Let ¥ = (Sp,OPp) be a data signature with at-
tribute value sorts ST, C Sp. An attributed graph AG = (G, D) consists of an E-graph
G together with a %-algebra D such that Uses, Ds = Vp.
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Remark Attributes graphs allow us to bestow graph nodes as well as edges with certain
attributes. These attributes are also referred to as labels and hence, attributed graphs
as a labelled graphs.

Example We give an example of an attributed graph defining an object-oriented class
specification for a class named Person, depicted as E-Graph in Figure 2.4 (lower graphic).
The Person Class contains two Fields, namely name and age, and according getter
methods, namely getName and getAge. We make use of the following graphical notation:
The solid nodes and arrows refer to the graph nodes Vg and edges E¢, respectively. The
dashed nodes are the (used) data nodes Vp and dashed arrows represent node and edge
attribute edges Fny4 and Epa.

Let Giargetmoder be an E-Graph with
® GuargetModel = (Va, VD, Ec, Ena, Epa, (sourcej, target;) je(a,na,A})
o Vi = {class, fieldy, fieldy, methody, methods}
e Vp = {Person,name, age, get Name, get Age}
o Eqg = {fieldsy, fieldsy, methody, methods}
e Ena = {cname, fnamey, fnames, mname;, mnames}
o Bps=0
e sourceq: Eqg — Vg :x— { class : x € {fieldsy, fieldsy, methodsy, methodss}

fieldy : x = fields;

e targetq : Eq — Vg oz — fieldy : x = fieldsy

methody : x = methods;
methods : x = methodss
class : x = cname

fieldy : x = fname;

o sourceng : Eqg— Vg :x— fieldy : x = fnames
method, : = = mname;
methods : x = mnames

Person : x = cname

name : x = fname;
o targetya: Eqg = Vg :z— age : x = fnames
getName : x = mname;
getAge : x = mnames

e sourcega : Eqg —> Vg :x— O
o targetps: Eg — Vg 2 — O

Furthermore, let D be an algebraic signature with
D = STRING as defined in Example 2.4.2.
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Figure 2.4.: Attributed Graph (lower) and Attributed Type Graph (upper)

Then AGargetMetamodel is an attributed graph with
AGtarget]Wemmodel = (GtargetMetamodeb D)

For the typing of attributed graphs, we use a distinguished graph (called attributed type
graph) attributed over the final ¥-algebra Z. This graph defines the set of all possible

types.

Definition 26 (Attributed Type Graph). Given a data signature ¥, an attributed type
graph is an attributed graph ATG = (TG, Z), where Z is the final ¥-algebra.

Example We give an example of an attributed type graph as formal definition of an
object-oriented class. A class consists of Fields and Methods, owning a name attribute
of type String including the class, depicted as E-Graph in Figure 2.4 (upper graphic).
Essentially, this is the formal definition of the class Person in the example AG from
above.

Let GiargetMetamodel be an E-Graph with
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® GiargetMetamodel = (Va, VD, EGy Ena, Epa, (sourcej, target;) jcia.na,pA})
o Vi = {Class, Field, Method}

® Vb = Dstring

o Eg = {fields,methods}

e Ena = {cname, fname, mname}

o Epi=0

Class : x = fields

e sourceg : Eg — Vg :x— { Class : x = methods

Field : x = fields

e targetg : B — Vg :x — { Method : = = methods

Class : x = cname
o sourceng : Eqg— Vg :x— Field : x = fname
Method : x = mname
string : T = cname
o targetna: Eq — Vg :x— < string : x = fname
string : T = mname

e sourcegs  Eqg —>Vg:x— O
o targetps: Eg — Vg : 2 — O

Furthermore, let D be an algebraic signature with
D = STRING as defined in Example 2.4.2.
Then AGiargetMetamodel 15 an attributed graph with

AGtargetMetamodel = (GtargetMetamodela D)
Let Z be the final D-algebra.

Then AT'GiargetMetamodel 18 an attributed type graph with
ATGtargetMetamodel = (AGtargetMetamodela Z)

Definition 27 (Attributed Graph Morphism). Given two attributed graphs AG; =
(G', DY), AGy = (G2,D?). An attributed graph morphism f : AG' — AG? is a pair
f = (fa, fp) with an E-graph morphism fo : G} — G* and an algebra homomorphism
fp: D' — D2

Definition 28 (Typed Attributed Graph). A typed attributed graph (AG,t) over an
attributed type graph ATG consists of an attributed graph AG together with an attributed
graph morphism t : AG — ATG.

Example Let ¢ be a graph morphism ¢ : AGiargetmodet —+ AT Grarget Metamodel With

o t=(tave ta,vp tG.Ec tG.EnA)

o trgy,(class) = Class
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fieldy) = trav, (fieldy) = Field
methody) = trq v, (methody) = Method

tra,ve(
° tTG,VG(
e trav, (Person) = trg v, (name) = trq v, (age) = tra v, (get Name)
= trq,v, (getAge) = string

o tc . (fields)) =tg g, (fieldsy) = fields
o tc r.(methods,) = tg g, (methodsy) = methods
e tg gy, (cname) = cname

o to Eya(framer) =tg ey, (frnames) = fname
o tc Ey,(Mmnamer) = tg gy, (Mmnames) = mname

Then TAGiargetroder is a typed attribute graph over ATGigrgetMetamodel With
TAGtargetModel = (AGtargetModel; t)-

2.4.3. Model representations through TAGs

According to [EEPTO06] models and their corresponding metamodels can be expressed
through TAGs. We will later use this formalism for model matching and import models
(cf. Section 2.3) into an internal data model based on TAGs. Hence, we describe the
representation of models and metamodels in terms of TAGs. The modelling conventions
are based on the OMG Meta Object Facility (MOF) specification [Gro06].

Graph-based representation

We will represent models as attributed graphs and their corresponding metamodels as
attributed type graphs. Thus, we need to show, how model or metamodel elements are
mapped to nodes and data nodes in terms of a node mapping, secondly, how relationships
between model or metamodel elements are mapped to edges, which we refer to as edge
mapping. In the following, we describe these mappings for metamodels and model
instances:

Node Mapping

e Metamodels: Regarding metamodels, each package, class and attribute (including
operations) as well as an enumeration is mapped to a graph node. The labels
are derived from the element names through attribution as described in Section
2.4.2. For example, in the upper part of Figure 2.5, the graph representation of
a metamodel is given. The metamodel consists of a package P, which contains a
class named A with an attribute called a. The graph representation thus consists
of three corresponding graph nodes, labelled P, A and a. Furthermore, a data type
is mapped to a data node and its label is set to the data type, e.g., data type String
in Figure 2.4.
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Figure 2.5.: Graph Representation of a Metamodel and Model Instance

e Model Instances: The node mapping follows the same principle as for metamodels
above, except that no data type nodes occur. However, on instance-level, we need
to map the values of model elements. These may be from a package, class, attribute
etc. and are mapped to a data node. For a graph node, the label is derived from
the name of the metamodel element to which the model element (represented as
graph node) conforms to. Data nodes receive their labels from the values. For
example, in the lower part of Figure 2.5, the graph representation of a model
instance is described. On instance level, class A (of the depicted metamodel) is
instantiated with the name classvalue contained in the package called packagevalue.
Additionally, the attribute a is set to attributevalue. The graph nodes are labelled
with their corresponding metamodel types, P, A and a. For each of these graph
nodes, there exists a data node with a corresponding label derived from the value.
Thus, the graph nodes P, A and a, refer to the data nodes packagevalue, classvalue
and attributevalue, respectively.

Edge mapping

e Metamodels: Regarding the edge mapping three kinds of relationships need to be
considered: References in general, containment references and inheritance. The
inheritance relationship can be represented in two ways: a) through an edge repre-
senting the inheritance relation or implicitly by copying all inherited members into
the corresponding subclasses. We give more insight into these representations in
the following remark. References and containment can be mapped onto individual
edge types. All three relationships correspond to graph edges, whereas an edge
between a data node (due to a data type node) and graph node is represented as
a node attribute edge.
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Figure 2.6.: Different Representations of a Inheritance Relation

e Model Instances: On instance-level, we consider reference and containment rela-
tionships, which are mapped onto separated edge types corresponding to graph
edges. We additionally use an node attribute edge for the relationship between
instances and their values, e.g., in the lower graph of Figure 2.4 between the graph
node class and data node Person.

Remark A mapping between a metamodel and a graph is not unique due to the different
representations of inheritance relations. Apart from the two above-mentioned options,
alternatively the inheritance relationship can be neglected. In Figure 2.6 an example
metamodel is given with three different representations of the inheritance relationship.
The metamodel contains three classes, A, B and C, where A and B are related by an
inheritance relation and A is related to C in terms of cInA. Finally, A includes an
attribute, a.

Tree-based representation

Numerous matching techniques work more efficiently on a tree, for example, the parent,
children, or leaf matcher described in Section 7.2.2. Thus, we need to consider a mapping
from models (or metamodels) to trees. A tree is a special class of a graph with the
constraint that each node is part of a parent-child relationship and the graph has a
distinguished node, called root node. Formally, we define a tree as follows.

Definition 29 (Tree). A directed graph G is called a directed tree, if the following holds:

e (G has no simple cycles. A simple cycle is a cyclic traversal of nodes, where each
node is traversed once.

e (G is connected.

e Fach node has at most one incoming edge.
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Figure 2.7.: Different Tree Representations of a Metamodel

Regarding the mapping of a metamodel to a tree, we follow the approach proposed
in [VIR10]. The node mapping works the same as for the graph-based representation.
Additionally, certain references need to be mapped to nodes, the reason being, to resolve
the graph into a tree structure. For the edge mapping, we again consider references in
general, containment references and inheritance. To map these relationships onto a
parent-child hierarchy of a tree, relates to the problem of mapping a graph onto a tree.
To solve this, the algorithm of Kruskal [Kru56] is followed to find the Minimal Spanning
Tree (MST) of a metamodel, being the closest related approach amongst others. A MST
is a subgraph of a graph connecting all nodes, thus forming a tree, where the sum of the
costs of all edges is minimal.

The mapping onto a tree structure starts with a package and the elements contained. In
order to compute the MST first all references or containment references are handled as
edges of a graph. Depending on the type of relationship and the choice of flattening for
inheritance, different MST are computed. We give three different MSTs in the following
example, derived from [VIR10]. In Figure 2.7 a), a containment MST is presented.
In this case, the containment relations lead the way to structuring the MST. Thus, P
contains A, while D is contained in C and C in A. Furthermore, P contains B, due to
the package containment. In case b), the references direct the structure of the MST
from A to B to D. In both cases, a) and b), the remaining references are mapped to
elements, e.g., in Figure 2.7 a), dInB of D. Additionally, inheritance relations need to
be considered. As explained above, the import may neglect these relations, or copy all
inherited members into the corresponding subclasses. In the latter case, therefore, the
containment and reference MST are enhanced with these inherited members. We show
this in case c) as flattened containment. The inherited members are bInA and cInA.

For models, the mapping to trees is calculated analogously to metamodels, except that
no inheritance relations need to be considered. Thus, option a) and b) hold.
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2.5. Facets

The inception of facets stems mainly from the interest in classification.

Definition 30 (Classification). A classification is the systematic arrangement in groups
or categories according to established criteria. Commonly, these groups are referred to
as classes and are arranged hierarchically! [MW05].

Classifications may be differentiated by their structure into hierarchies or polyhierarchies.

Definition 31 (Hierarchy versus Polyhierarchy). A classification structured as a hier-
archy (also called monohierarchy) possesses a tree structure, such that each class owns
one and only one parent node. In the case of a polyhierarchy, a class may have more
than one parent node.

The early fields of application for facets are library and information science, dating back
to the work of Shiyali Ramamrita Ranganathan? [Tun09]. Ranganathan recognized
the challenges inherent in using a single taxonomy to represent a diverse collection of
knowledge [Tun09]. We give a formal definition of a taxonomy.

Definition 32 (Taxonomy). A taxonomy refers to a hierarchical classification.

Remark Mathematically, a taxonomy is a tree structure of classifications for a given
set of objects.

The above-mentioned challenges by Ranganathan concern the rigidity of taxonomical
schemes and unstructured indexes [Tun09], as listed below. Let us assume an exemplary
taxonomy on a book catalog in the following. The taxonomy classifies books according
to geographical, literary type and temporal classes as depicted in Figure 2.8 on the left
side. Thereby, books are firstly classified according to their geography distinguished by
the classes of the continents, secondly their literary genre of poetry, drama and prose
and lastly, their temporal occurance in the 17th to 19th century.

e Rigidity of taxonomical schemes: The key property of a taxonomy requests
that every node in the taxonomy has a unique path to the root node. Therefore,
every class exists uniquely within a taxonomy. This has implications on the design
of taxonomies and may be too "rigid”, as described in [Tun09], when classifying
compound classes, that is, classes that are compound of existing classes in the
taxonomy. For example, let us assume a compound class 3 American Poetry of
the 19th Century. The designer of the classification has to decide, whether this
class belongs under America and then Poetry and 19th Century, or first under the

ladapted from Merriam-Webster’s dictionary
2 Ranganathan, an Indian mathematician and librarian, lived from 1892 to 1972.
Sextracted from [Pri00b]
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Figure 2.8.: Taxonomy and Facets for Book Catalog

temporal class, then the geographical and last the literary genre class [PriO0b], or
any other permutation of the classes. In general, 3! = 6 combinations are possible.
Because of the key property mentioned above, it is impossible to classify American
Poetry of the 19th Century as a child of America, Poetry and 19th Century at the
same time, thus the rigidity to incorporate compound classes at multiple points.

A work-around to the above shortcoming is a polyhierarchy. Yet, polyhierarchies
are difficult to maintain, particularly, when having to maintain potential cross-
references, when moving a node with its subtree [Tun09].

e Scalability of taxonomical schemes: When adding a new class to a taxonomy,
this necessitates the adaption of all other classes with corresponding child class
occurrences. For example, when adding a new temporal class to the taxonomy in
Figure 2.8, the Poetry, Drama and Prose class, would have to be adapted with
the new temporal child node, effectively for every geographic class. Thus redun-
dant structures in the sense of common subtaxonomies result in effort during the
maintenance of taxonomies.

Ranganathan introduced the faceted classification scheme, which he called colon classi-
fication in 1933 [Ran33] (first edition), providing a more elegant solution to the above-
mentioned challenges. Revisiting the example above, in a faceted classification scheme
including three facets, that is, a geographical, literary genre and temporal facet, as de-
picted in Figure 2.8, the design decision on incorporating the class American Poetry of
the 19th Century does not have to be made. A book from the class American Poetry
of the 19th Century, would be classified under America in the geographical facet, under
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19th Century in the temporal facet and lastly, under Poetry in the literary genre facet.
The facets would then be postcombined at the time of retrieval.

In summary, facets tackle the challenge of a) rigidity and b) scalability inherent to
taxonomies. In the case of a) a faceted classification has the flexibility to incorporate
compound classes at multiple points, which Ranganathan called ”hospitality at many
points”, due to the post-combination of facets as described above.

In the case of b) facets factorize the hierarchical classification, and thus simplify the
classification scheme, as to factor out common subtaxonomies as facets, or "re-occurring
features” as Priss [Pri08] states. In factoring out these common sub-taxonomies, redun-
dancy is avoided in the classification scheme, thus simplifying the scheme. For example,
a new temporal class from our example, would only have to be added to the temporal
facet itself, leaving all remaining classes unaffected.

We next look into different definitions of the notion facet.

Definition 33 (Facet). Facets are viewpoints or aspects of classification schemes
[Pri00b].

In computer science, facets are used as means of structuring class hierarchies, where the
notion of facet usually refers to "subdivisions of a class hierarchy based on re-occurring
features” [Pri08]. A more formal definition given by Priss is:

Definition 34 (Facet). Facets are relational structures consisting of finite sets of units,
relations and/or other (constituent) facets combined for a certain purpose [Pri00a).

According to Priss [Pri08], the notion of facets has several slightly different definitions
and is used under different names in information processing disciplines. Therefore, we
will state the characteristics a facet owns in the context of our work:

Definition 35 (Facet).
1. Facets own a model which consists of a hierarchy of faceted values and/or facets.
2. Facets may form facet hierarchies.
3. Every facet model contains a faceted value denoting an unknown faceted value.
4

. Facets are independent of each other because any facet can be combined with any
other facet and modifying a single facet does not have impact on other facets.

Remark The difference between facet and faceted values lies in the level of abstrac-
tion. Facets are abstract, whereas faceted values are concrete as per choice of their
implementation.

Remark Without using facets all possible combinations of faceted values are pre-
combined, whereas with faceted classifications the combination of faceted values only
takes place when classification takes place and are thus post-combined.
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In the following, we summarize the advantages of facets resp. faceted classifications.

e Flexibility: Faceted classifications allow for more flexibility to classify compound
classes, due to the post-combination of faceted values at the time of retrieval.

e Simplification: Facets factorize inheritance hierarchies and thus simplify the clas-
sification scheme.

e Extensibility: Faceted classifications do not require the structure of classification
to be fixed a priori. The classification may be adapted by adding facets and/or
faceted values without having to maintain redundant structures (common sub-
taxonomies factorized out into independent facets) and without impact on other
facets.
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Requirements Analysis

In the following chapter, we are going to present our requirements analysis. The un-
derlying approach of this analysis is a problem analysis approach called Zielorientierte
Projektplanung (ZOPP) [HG97] or Objectives-oriented Project Planning in English, pro-
moted by the Deutsche Gesellschaft fiir Technische Zusammenarbeit (German Technical
Cooperation). We start off by giving a motivating example for our work in Section 3.1.
Then, we span the scope of our problem domain by defining three categories of trace
link generation in Section 3.2, on the basis of which we derive our problem definition
and corresponding requirements in Section 3.3.

3.1. Motivating Example

In the following section, we provide a motivating example for the problem definition in
Section 3.2 underlying this work.

A software development process is commonly defined through the standard development
phases, namely, requirements analysis, design, implementation and test phase [Int08]
as portrayed in Figure 3.1, showing an excerpt of the SAP product development pro-
cess, called Product Innovation Life Cycle [PRG07]. Within all phases artefacts are
created, yet, when deploying an MDSD process, the advantage of generating artefacts
automatically may be leveraged.

Given a project manager conducting a change impact analysis (cf. Section 2.2.1), the
following scenario is conceivable. The project manager needs to analyse the effects of
changing a software requirement as part of a customer request. Hence, he needs to
analyse the impact this change will have on all development phases and understand,
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Figure 3.1.: Software Development Process

which artefacts are affected and need to be adapted. For this, the knowledge on all
logical dependencies of artefacts is necessary. Trace links provide this kind of information
as portrayed in Figure 3.1 through the arrows, tracking the dependencies of a certain
software requirement to artefacts of the design, implementation and test phase, thus,
spanning the scope of artefacts potentially in need of adaptation. To an MDSD process,
the same conditions apply, with regard to the necessity of trace links providing the
knowledge on artefact dependencies as motivated through other possible traceability use
cases listed under Section 2.2.1.

This work aims at generating trace links automatically for an MDSD process. The
problem definition of this domain and of our work is described in the following section.

3.2. Problem Definition

Using the integral model mapping of model transformations, to generate trace links
automatically, eases the task of creating and maintaining trace links. In contrast, when
done manually, this entails high development costs [ARNRSGO06]. Yet, the automatic
trace-link generation still holds a wide range of open challenges, upon which we shall
elaborate in this section.

We start off to derive different possibilities on trace link generation, being relevant and
necessary to MDSD in order to define the scope of our work. In this way, we derive three
categories of trace link generation, as summarized in Figure 3.2:

1. Generation of Trace Links through Transformation: The transformation
engine implicitly generates a model mapping directed through the transformation
program at model transformation runtime. The first category uses this integral
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model mapping to derive trace links in parallel to the execution of a model transfor-
mation. Approaches from the classes of implicit and explicit trace-link generation
(cf. Section 2.2.2) are examples of the first category.

. Generation of Trace Links after Transformation and Processing of
Source and/or Target: Post-processing of the source and target of a trans-
formation is a common practice in MDSD [SV06], for model-to-model as well as
for model-to-text transformations. For example, artefacts that cannot be gener-
ated automatically and thus have to be added manually, or in general due to the
evolution of artefacts. While changing the source and/or target after transforma-
tion execution and the resulting trace link generation from the first category, an
update of traceability data may be necessary. Thus, the generation of trace links
after transformation execution needs to be addressed.

Re-executing a model transformation to gather traceability data as in the first
case may not always be a viable option, when generated artefacts have cross-
dependencies to others, or manually added artefacts are unprotected, i.e., may be
overwritten.

. Generation of Trace Links independent from Transformation: The first
two cases are based on the existence of a model transformation, i.e., the generation
of trace links is dependent on the use of a transformation engine. Since this
does not generally hold for the domain of MDSD, as described below, the third
category covers the generation of trace links, while assuming the non-existence (or
inaccessibility) of a transformation engine.
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The latter cases relate to either of two subcases (cf. Figure 3.2). We characterise
these through the transformation program:

e Bridgeable transformation gap: Writing a transformation program is
possible (called bridgeable transformation gap in Figure 3.2), yet the trans-
formation engine cannot be leveraged for the sake of trace-link generation.
An example is, if the transformation engine is proprietary or generally a
third party component and thus, is inaccessible. Further examples are, if a
transformation is implemented manually (e.g., in Java), or development is
model-based instead of model-driven as often the case at SAP, implying a
non-existing transformation engine.

e Unbridgeable transformation gap: In this case, it is impossible to write
a transformation program, since the difference in the level of abstraction of a
given source and target is too great to be able to be bridged through a trans-
formation, while still preserving the semantics, e.g., when mapping features
to design models. We refer to this case as unbridgeable transformation gap
in Figure 3.2.

Thus, we have three categories of trace link generation, as portrayed in Figure 3.2.
Next, we look into the issues and challenges inherent to the above categories of trace
link generation as part of our requirements analysis.

3.3. Requirements Analysis

In this section, we define the range of problems, we wish to tackle in this thesis. Based
on these, requirements are derived for our approach. This derivation process is followed
with respect to the first category in Section 3.3.1 and the second and third category
in Section 3.3.2. The abbreviated notation for requirements and problems is R and P,
respectively.

3.3.1. Requirements: Category 1

Based on the dichotomy of generation classes in Section 2.2.2, we extract the main
issues and challenges we wish to tackle with our approach regarding the first category.
As tabularized in Figure 3.3, we identified three main problems (listed in the fourth
column), which effectively stem from the implicit as well as explicit generation class
(characterised in the second and third column, respectively):

Problem 1 (Error-Prone and Time-Consuming (reoccurring) Efforts). While the
implicit trace link generation class provides a default traceability solution, the explicit
generation class requires manual effort to achieve a traceability solution. As this task
is generally done manually, it is likely to be error prone and time consuming. More-
over, this effort is reoccurring for each transformation. Furthermore, the transformation

46



3.3 Requirements Analysis

Low High P1:Error-prone &
time-consuming Efforts

Unchanged Individual Adaptation - Recurring Efforts
Polluted & Complex - Pollution of
Transformation Program
Fixed Flexible Definiton=>  P2:Aggravated
Definition Control over Standardization &
Traceability Data Integration of Traceability
Data

P3: Inexpressiveness of
Traceability Data
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program is not separated from traceability-specific transformation rules, thus potentially
leading to program pollution with the risk of increasing the above-mentioned efforts.

The following problems relate to the data-integration problem of existing traceability
solutions.

Problem 2 (Aggravated Standardization and Integration of Traceability
Data). The class of implicit trace-link generation provides an integrated traceability
solution, which does not account for the adaption of traceability data. On the contrary,
the class of explicit trace-link generation does. This consequential discrepancy results in
the problem of not generally having traceability data conforming to a unified traceability
metamodel (not even with regard to a generation class itself).

Since each traceability solution is tightly coupled with a certain transformation language,
the reusability of existing traceability solutions is limited to the language used and re-
garding the explicit trace link generation class to the individual transformation itself.
As more than one language may potentially be used in the same model transformation
chain, or project and given the above-mentioned poor reusability of existing traceability
solutions, the standardization of traceability data is aggravated. Furthermore, this short-
coming results in the problem of poor integration of the above-mentioned heterogenous
traceability data.

In summary, the aggravated standardization and integration of traceability data limits
the exchangeability of traceability data among MDSD approaches, needed for reasoning
over traceability data and more importantly, the conduction of traceability scenarios.

Problem 3 (Inexpressiveness of Traceability Data). Since the kind of traceability
data to be collected is dependent on the actual traceability goal, (i.e., traceability scenario)
[KPO02], a unified traceability metamodel (in accordance with Problem 2) with a fizved
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definition does not necessarily account for an adequate data expressiveness with respect to
all possible traceability scenarios. Thus, the problem of traceability-data inexpressiveness
needs to be addressed.

Following the ZOPP-approach, we arrange the identified problems in a hierachy of su-
perproblems and subproblems as shown at the top of Figure 3.4. The arrow direction
points out the relation between subproblem and superproblem, where the arrow’s end
points to the subproblem causing the superproblem pointed to by the arrow’s head. The
goal of this effort is to present the globally defined superproblem of the aforementioned
problems. The manual effort required to achieve a traceability solution leads to the
problem of error proneness and time consumption, additionally reoccurring manual ef-
forts due to the adaption of individual transformations. This problem advances to the
superproblem of high costs. Moreover, the error-prone factor results in the superproblem
of poor quality of traceability data in conjunction with the inexpressiveness and aggra-
vated standardization and integration of traceability data. Furthermore, the high costs
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and poor data quality result in poor traceability practice, which is climaxed together
with the rising complexity of software to a lack in software quality. By following the
ZOPP-approach, we next derive the list of requirements for the first category, where one
or more requirements solve a corresponding problem:

e Problem 1 is solved by Requirement 1.
e Problem 2 is solved by Requirement 2 and Requirement 3.
e Problem 3 is solved by Requirement 4.

In accordance with the above problem hierarchy, we present the corresponding objectives
(requirements) hierarchy to the bottom of Figure 3.4. The root-cause semantics of the
arrow applies analogously to the objectives hierarchy.

Requirement 1 (Minimization of efforts to achieve traceability). Likely error-
prone and time-consuming factors of manual efforts to achieve a traceability solution
are to be reduced, as in the case of the explicit trace link generation class. Further-
more, traceability is seen as a separate concern and should not lead to the pollution of
transformation programs.

Requirement 2 (Unification of traceability metamodels). Traceability metamod-
els need to be unified to have a formal definition of traceability data, that is, to standardize
traceability data.

Apart from the unified traceability metamodel from Requirement 2, which is concerned
with a unified data definition, we additionally require a unified interface for transfor-
mation approaches to be able to exchange data conforming to the unified traceability
metamodel.

Requirement 3 (Unified Interface for Integration of Traceability Data). We re-
quire a unified integration interface for arbitrary transformation approaches, describing,
how the transformation approach is featured with a traceability solution. As a result, the
traceability solution needs to conform to the unified traceability metamodel. Moreover,
the interface needs to account for the integration of existing traceability solutions.

Requirement 4 (Extensibility of traceability metamodels). To guarantee for an
adequate traceabililty-data expressiveness mandated by traceability scenarios (cf. Section
2.2.1), an extensibility mechanism on the basis of a unified traceability metamodel is
required. This extensibility mechanism accounts for case-specific traceability metamodels
with regard to the traceability scenarios. FEssentially, this mechanism needs to hold for
the specification of granularity and scope as well as the trace-link semantics with respect
to a certain traceability scenario, as arqued in Section 2.2.2.
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3.3.2. Requirements: Category 2 and 3

In the following, we present the requirements analysis due to the second and third cate-
gory. In both categories the transformation engine is either non-existing, or inaccessible
and thus, cannot be leveraged for the sake of trace link generation through the transfor-
mation mapping as in the first category. This leads to the problem of lacking traceability
data.

Problem 4 (Lacking Traceability Data). Lacking traceability data arises due to
non-existing or inaccessible transformation engines.

In tackling the above problem for the second and third category, we seek a solution of
finding correspondences between arbitrary source and target models, yet independent
from a transformation engine.

Naturally, this solution will include the handling of a traceability metamodel.

Requirement 5 (Unification and extensibility of traceability metamodels). We
require the conformance to traceability data standardization and expressiveness to meet
requirement 2 and 4 holistically for our solution on the three categories of trace link
generation.

The following two requirements stem from the problem domain of a traceability solution
requiring manual effort.

Requirement 6 (Automation of achieving Traceability without Transforma-
tion Engine). In analogy to requirement 1 and for the same reasons to minimize manual
efforts, we require an automatic mechanism (at least to a high degree) for the generation
of trace links without the use of a transformation engine.

Requirement 7 (Language-independence of Traceability Solution). For the sake
of genericity, we require the traceability solution to be independent from the modelling
language used to specify source and target models. With a broad language applicability
the effort to achieve a traceability solution is minimized.

Although the problem hierarchy from the upper part of Figure 3.4 holds for the first
categoy’s problems, it may be applied to the other categories as well. Essentially, re-
quirement 5 is the objective of the two bottom right problems (P2 and P3) in Figure 3.4
regarding the inexpressiveness and standardization of traceability data, while require-
ments 6 and 7 are aligned with the problem domain of manual efforts on the bottom left
(P1), where automation and language-genericity reduce this effort.

To summarize, we present the corresponding objectives hierarchy of our approach in
Figure 3.5 by incorporating the requirements of all categories (omitting duplicates),
where the overall goal of our approach is to increase software quality.
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3.4. Big Picture

In the following, we sketch the big picture of our approach to the problem definition given
in Section 3.2. The key-enabling techniques of our approach are referred to in Figure 3.6
on the lower level. The arrows point out the mapping of the proposed techniques to the
problem space defined through the three categories of trace link generation. To tackle
the challenges as per problem definition of the first category of trace link generation, we
propose a novel way of constructing connectors inherent to the extraction of traceability
data from model transformations. In this sense, the connector essentially is seen as an
abstraction from arbitrary transformation engines and traceability engines. Thereby,
we identify two classes of connectors either working as a blackbox, or invasively by
augmenting the transformation engine for the purpose of trace link generation.

Secondly, for the second and third category, we propose model matching techniques
from the field of ontology alignment and schema matching [CSH06, RB01] to generate
trace links for arbitrary source and target models. The promising idea of this technique
is its potential in the automation of trace link generation without executing a model
transformation, which is restricted in the second and third category and thus cannot be
leveraged for the sake of trace link generation.

Both above-mentioned techniques of trace link generation are incorporated into a frame-
work, called generic traceability framework.
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Generic Traceability Framework (GTF)

The following chapter gives an overview of our approach, realised as the Generic Trace-
ability Framework (GTF). A detailed description of the GTF is provided in the next
three chapters, that is, Chapter 5 to Chapter 7.

We begin this chapter with an architecture of the GTF in Section 4.1. Thereafter, we
elaborate on the two possibilities of trace link generation of our approach, the connector-
based approach on invasive and black-box connectors in Section 4.2 and the approach
on model matching in Section 4.3.

4.1. Architecture

The GTF can be instantiated to arrive at a traceability solution accounting for the three
categories of trace link generation. In the next section, we give a high-level overview on
the architecture of the GTF. In doing so, we reflect the three categories to show, how
they are realised.

Regarding category 1, we require the GTF to augment arbitrary model transformation
approaches with a traceability mechanism. To rely on existing traceability solutions
(cf. Section 2.2.2), our approach does not implement another transformation language.
Thus, the aim is to consolidate the benefits of implicit and explicit trace-link generation
and to tackle their disadvantages and challenges as motivated in the requirements anal-
ysis in Section 3.3.1. Essentially, the GTF is based on a Generic Traceability Interface
(GTT), which provides the connection point for arbitrary transformation engines, as de-
picted in Figure 4.1. In this case, the interface supplies the engineer with an API to
connect his transformation engine to a traceability engine in terms of a corresponding
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Secondly, our architecture entails a matching system as depicted in Figure 4.1 in reali-
sation of the requirements of category 2 and 3. The matching system receives a certain
source and target model upon which the matching system works. In doing so, the sys-
tem finds a potential mapping between source and target model elements on the basis
of which trace links may be generated and written to the traceability engine.

Thirdly, our approach is based on a generic traceability metamodel. Essentially, the
traceability data exchangeable through the GTI between arbitrary transformation and
traceability engines conforms to this traceability metamodel. The same applies to
the exchange of traceability data between the matching system and traceability en-
gine. In Figure 4.2 the data exchangeability is indicated by circular arrows, whereas
the instance-of relation is reflected through the dotted arrows with a corresponding
“instance-of” label. All categories necessitate a traceability metamodel, that is, require
a standardized handling of traceability-data modelling in alignment with Requirement 2
and Requirement 5.

We go into more details of our approach in the following chapters, in accordance with
Figure 4.3, depicting a road map on the chapters describing our concept. In Chapter 5,
we explain our view on how traceability data is modelled through a generic traceability
metamodel. Furthermore, Chapter 6 and Chapter 7 are dedicated to the generation of
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trace links in terms of the connector-based approach in the former case and the model-
matching system in the latter.

4.2. Connector-based Extraction of Traceability Data

We propose two classes of connectors for the extraction of traceability data by means
of the generic traceability interface. The underlying reason for this classification stems
from the dichotomy on generation classes (implicit and explicit) from Section 2.2.2, since
we suggest a certain kind of connector for each generation class.

The question arises, how the choice of model-transformation approach influences the kind
of connector. In case a developer uses a model-transformation approach from the implicit
generation class, he may use the advantage of a traceability solution at the price of having
no control over the modelling of traceability data. In this case, we propose a blackbox
connector as depicted in Figure 4.4 on the left side. The blackbox connector serves the
purpose of glue code between the traceability engine and transformation engine, without
changing the latter two components, since there is no need to intrinsically change their
functionality for the sake of gaining a traceability solution. According to [ABmO03] glue
code maps component protocols specifically to each other.
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For the explicit trace link generation class a different situation pertains, primarily due
to the non-existence of a traceability solution, which comes out of the box. Thus,
to overcome this disadvantage, we propose an invasive connector between traceability
engine and transformation engine, as sketched in Figure 4.4 on the right side. This
kind of connector has an invasive nature to augment the transformation engine, which
is necessary for the purpose of generating traceability data.

We continue describing the details of the above-mentioned connectors in Chap 6, com-
paring their expressiveness, communalities and variability. In particular, we align our
work with the principle of invasive software composition in [ASm03].

4.3. Model-Matching System

The model-matching system takes two models as input and creates a mapping, that is,
correspondences between model elements, as output. This mapping is further analysed
with respect to extracting potential trace links. This approach to model matching is
based on a parallel matching system (cf. Section 2.3.1).

In the following, we explain the processing steps of our proposed matching system, which
involves the following successive steps, as depicted in Figure 4.5:
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1. Import of Models: The available source and target models need to be imported
into a common data model, to have a common basis for arbitrary matching algo-
rithms.

2. Matching of Models: Different matching algorithms are applied to the imported
source and target models. A matching algorithm calculates a similarity value for
all pairs of source and target elements. The matching system can be configured
by selecting a set of matching algorithms involved in the matching process.

3. Configuration of Similarity Value Cube: Each matching algorithm provides
separate results for a certain source and target model, where the results describe a
similarity value for all source and target model element combinations, called sim-
ilarity value matrix. All of these matrices (one matrix due to a certain matching
algorithm) are arranged into a cube, called similarity value cube (SVC), as de-
picted in Figure 4.5. To derive a mapping between source and target elements out
of these results, the similarity value cube needs to be configured, e.g., to form an
aggregation matriz by calculating the average of similarity values, or selection ma-
triz by selecting all elements exceeding a certain threshold. We provide a detailed
description of possible configurations in Section 7.1.4.

4. Extraction of Trace Links: The resulting mapping is analysed and trace links
are extracted according to certain heuristics, or configurations.

The matching system is further described in Chapter 7.
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with CRUD Trace Links

This chapter is dedicated to the modelling of traceability data in view of accounting for
the unification and extensibility of traceability metamodels. The unification is targeted
at in Section 5.1 through the presentation of a generic traceability metamodel with a
minimal set of elementary trace links. The trace link derivation process is described in
Section 5.2. Furthermore, we present a facet-based approach for the extensibility of the
proposed traceability metamodel in Section 5.3. We conclude this chapter by modelling
different sets of traceability data by applying graph theory. In doing so, we claim that
traceability scenarios essentially are views on a certain traceability graph.

5.1. Traceability Metamodel

The traceability metamodel of the GTF depicted in Figure 5.1 includes a root element,
TraceModel, which contains several concepts. These are successively discussed in the
following sections.

An Artefact represents any traceable product generated in the development pro-
cess, such as a requirement or class, or a compound artefact, e.g., a method inside a
class. Every artefact is uniquely identified by a Universal Unique Identifier (UUID).
A TraceLink is the abstraction for the transition from one artefact to another, such
that an instance corresponds to a hyperedge linking numerous source and target arte-
facts. Working with hyperedges opens the possibility to track, whether a model element
was generated in parallel to other model elements through a particular transformer
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(cf. Definition 4). The above-mentioned transition is always directed, therefore a from-to
relation between artefacts is defined through a trace link from source to target artefacts.

In the following sections, we will explain the remaining classes of the traceability meta-
model.

5.2. Type Set of CRUD Trace Link

In the following section, we will derive a set of trace-link types for the traceability
metamodel. Inherent to this derivation process are the questions, how many trace links
are necessary for this set and what influences the set’s semantic richness? To answer
these questions, we essentially propose four elementary link types, called CRUD trace
links, based on minimal MDSD-operations as we will show in the following section.

The derivation of link types for the traceability metamodel is based on the following
general conditions:

e Semantic Richness: The link set has to account for sufficient semantic richness
to enable the mapping of arbitrary model transformations to traceability data.
Furthermore, since the modelling of traceability data is coupled with the kind of
underlying reasoning the user performs on the collected data [RJ01], that is, to a
particular traceability scenario, this has consequences for the choice of semantics
bestowed on a trace link. The choice of semantics for the trace link set is therefore
dependent on the set of traceability scenarios. Thus, we fix the set of traceability
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scenarios from Section 2.2.1 to have a frame of reference for deriving the trace-link
semantics. Concluding, these traceability scenarios are: System Comprehension,
Coverage Analysis, Change Impact Analysis, Orphan Analysis and Transformation
Debugging.

e Minimal Number: In addition, this set needs to define a type set with a sufficient
and necessary number of links with no redundancies, therefore constituting the
minimal number of link types needed to account for the mentioned traceability
scenarios.

e Elementary Links: Furthermore, the goal is to derive elementary links, where
no two links from this set are linear combinations of each other. This is to avoid
compositions in the type set.

The second and third conditions aim at lowering the semantic richness to the maxi-
mum possible extent. Minimising the semantic richness this way, has an advantage with
respect to eliminating unnecessary link types such that the traceability user is not bur-
dened with these potentially leading to inconsistent usage. In summary, we follow a
scenario-driven derivation process of link types with the maxim to define a minimal set
of elementary links.

In realising, the derivation process, we focus on the kind of relationships between source
and target model elements of a transformation, e.g., a relationship of creation, or dele-
tion. Key to the derivation process is to capture these relationships through the seman-
tics of the proposed set of trace links. In order to get a complete view on the different
kinds of relationships, we turn to the classification of source and target relationships
of model-transformation approaches proposed by [CHO06]. This classification holds for
the following different classes as summarized in Figure 5.2: Approaches either create
a new target model and/or allow for transformations to operate on an existing target
model. The latter case may be split up into update transformations, where the existing
target model is updated (other than the source model, which remains unchained), or
in-place transformations, where the source and target model are the same model. Fur-
thermore, update as well as in-place transformations work destructively or (exclusively)
by extension only, that is, model elements may be updated or extended.

Based on the above classification, we will define a set of trace-link types for each
class, describing the semantics of the possible relationships between source and tar-
get model elements. In addition, we base our definition on the well-known set of
CRUD-actions [Cod70], which seem promising as frame of reference to describe the se-
mantics of all possible changes on models [GK09], since a model element may be created,
retrieved, updated or deleted.
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In doing so, we identify three types of trace links on the basis of the above-mentioned
classification, as depicted in Figure 5.2:

e For a newly created target model, we define a create link between respective
source-model elements and all newly created target-model elements.

e For an extension-only update as well as in-place transformation, we define a
create link between respective source-model elements and newly created target-
model elements, while the extension constraint allows for the creation of new model
elements. Otherwise, we define an update link between respective source-model
elements and updated target-model elements to record that model elements are
modified through an update operation.

e For a destructive update as well as in-place transformation, we define a delete link
between respective source-model elements and deleted target-model elements to
record the deletion of model elements, as supported in some endogenous transfor-
mation approaches, e.g., the refinement mode in ATL.

In addition, we identify two more links: For a query operation on a model returning a
subset of model elements from the source model, we define a retrieve link between each
source model element of this subset and returned target model element, in analogy to
the retrieve operation from the set of CRUD actions. Finally, in addition to the CRUD
link types, we propose a containment link due to containment relationships of model
elements.

Therefore, the traceability metamodel in Figure 5.1 is defined through five types of trace
links in total: CreateTraceLink, RetrieveTraceLink, UpdateTraceLink, Delete-
TraceLink and ContainmentTraceLink. The containment relationship is defined as
a special case of a model query und thus subclasses the RetrieveTraceLink.
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TextFacet JavaCodeFacet
TextFileFacet TextBlockFacet JavaPackageFacet | | JavaClassFacet JavaMethodFacet JavaAttributeFacet
-location -startPosition -name -name -name -name
-name -endPosition -parameter -type
T -returnType
REnTextracet UnknownTextFacet T

Figure 5.3.: Facets for the Traceability of Source Code

5.3. Facets for Modelling of Traceability Data

Furthermore, to assign types to artefacts and trace links, we use the concept of facets as
defined in Section 2.5 through Definition 35. This means that the traceability metamodel
assigns a set of facets (Facet) to every artefact and trace link.

Possible facets for modelling traceability data are given below. These might capture: the
life cycle of artefacts, taking on the faceted values, such as, requirement, design, code,
or test artefact; the location, where artefacts were created; the stakeholder of artefacts
with values like project manager, or developer. We provide another example facet in
Figure 5.3, namely a source-code facet. This facet has two subfacets called TextFacet
and JavaCodeFacet, as explained in the following. The TextFacet identifies code
artefacts, either being a text file or a text block within such a file. For these types, we
introduce two faceted values TextFileFacet and TextBlockFacet, respectively. The
attributes of the TextFileFacet can be set to identify the location and name of a file.
In terms of the TextBlockFacet, the startPosition and endPosition of a block inside
a file can be set. For the purpose of identifying source code the usage of start and
end position may not be sufficient. Therefore, a more advanced approach is provided
by the JavaCodeFacet for tracing programming code written in Java. Hereby, we
distinguish between faceted values referring to packages, classes, methods and attributes.
Hence, it is possible to identify Java-specific artefacts, e.g., a Java method with a specific
name, as opposed to general artefacts, such as strings, bounded by the startPosition and
endPosition of the TextBlockFacet.

The motivation for choosing facets is twofold. Since facets factorize inheritance hierar-
chies and thus, simplify them, we use this advantage for the sake of simplifying artefact-
and link type hierarchies. Without the use of facets, a full model would multiply all
classes, leading to the product of nins..ny classes, where n; denotes the number of
instances holding for a facet, ¢ € N and N is the set of natural numbers with f de-
noting the number of facets. On the contrary, modelling with facets amounts to using
ni +mng + ... + ny classes.
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Secondly, facets account for an extensibility mechanism for the type system of the trace-
ability metamodel. Since facets can be varied independently, the extensibility of the
traceability metamodel is achieved, aligned with Requirement 4 of the requirements
analysis (p. 49). More precisely, the definition of case-specific traceability metamodels
(with regard to the traceability scenarios) through facet-based extensibility implies the
following adaptations: a) Selecting the required facets for a given traceability scenario
and b) Configuration of Granularity and Scope.

The Configuration of the granularity level of traceability data implies the specification
of those artefacts and trace links that need to be traced with regard to a particular
traceability scenario. Thus, in the context of facets, this implies, choosing facets and
faceted values from the set of facets defined in a). For instance, regarding the previously
mentioned code facets, the traceability of artefacts referring to text blocks might be too
fine-grained, whereas the granularity of artefacts referring to files might be sufficient. In
this case, artefacts with a TextBlockFacet would not be traced.

The Configuration of the traceability scope implies to constrain the traceability data in
the sense of having a specific attribute-value combination. While the configuration of
granularity solely checks for the existence of facets, the configuration of scope addition-
ally examines a facet-specific property. For instance, regarding the TextFileFacet it
might be necessary to trace only TextFiles of a certain name. In this case, the config-
uration of scope requires the TextFileFacet’s attribute, name, to be set accordingly.

5.4. Expressiveness of Traceability Data

Traceability scenarios essentially are views on the traceability graph. The chain of
reasoning for this statement is as follows. Since the traceability scenario dictates the
traceability model and consequentially the traceability-data expressiveness, it is of vital
importance to have an adequate expressiveness in order to conduct traceability scenarios
successfully. Principally, it is possible to use a separate traceability graph for each
scenario, yet for reasons of maintenance, we choose to work with one traceability graph
in total. This graph in turn has to account for the expressiveness mandated by all
traceability scenarios chosen by the user. Therefore, the scenarios are views on the
traceability graph.

In the following, we define classes of traceability graphs based on the interpretation of
transformers (cf. Definition 4) with respect to the traceability metamodel from Sec-
tion 5.1. Recalling from Definition 7 in Section 2.2, traceability is the tracking of cor-
responding source and target artefacts of transformers in the transformation program.
According to the traceability metamodel, the basic unit of traceability data relates a
certain source and target artefact through a trace link. This raises the question how, to
interpret the transformers regarding the above-mentioned triple. There are two different
ways of modelling a traceability graph, depending on whether the transformer is per-
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ceived as a trace link with certain attributes, e.g., name and identifier, or as an artefact
as such.

In Figure 5.4 an example graph of the former way of modelling is depicted as an instance
of the traceability metamodel in Figure 5.1. Regarding the semantics of the graphical
notation, we refer to Section 2.4 on typed attributed graphs. A source and target artefact
both with a data node artefact name and graph node identifier are connected through
a trace link of the CRUD type set. This trace link carries a graph node, identifier and
a data node, operator name.

artefact ~ [«— Source crudTaceLink — target i artefact
1// /// .,/
name id operatorname  operator id name id
7 \ \ 4 \
rd ¥ /
artefact artefact operator operator artefact artefact
name identifier name identifier name identifier
'rL_____:: data nodes ----> node attribute edge

|:| graph nodes

— graph edge

Figure 5.4.: Traceability Graph with Transformer represented as Trace Link

In contrast, Figure 5.5 shows an example of the other type of traceability-graph modelling
on the basis of defining a transformer as an artefact. In this case, two different trace
links are needed, one, to link the source artefact to the transformer and another one
between the transformer and the target artefact. Therefore, two corresponding trace
links are represented as graph nodes with exemplary labels, that is, transformer input
and transformer output. The naming of the labels is chosen for illustrative purposes
only.

transformer input transformer output

TraceLink TraceLink
source target source target
artefact / \ artefact [ \ artefact
/// /// ///
name id operator name  operator id name id
/ -
£ N\ i N ¥ N
artefact artefact operator operator artefact artefact
name identifier name identifier name identifier
'rl_______l data nodes ----> node attribute edge

|:| graph nodes

Figure 5.5.: Traceability Graph with Transformer

— graphedge

65

represented as Artefact




Chapter 5. Facet-based Modelling of Traceability Data with CRUD Trace Links

The above classification gives insight into two alternative ways of modelling traceability
data. As we will show in Chapter 6, this has consequences for the design of connectors.
Furthermore, we describe, how the set of CRUD trace links are used with respect to
different transformers, that is, we assign the set of CRUD trace links to transformers.

5.5. Contributions

This chapter contributes the following;:
C1: Facet-based Modelling of Traceability Data with CRUD Trace Links

In this chapter, we contribute a generic traceability metamodel with a minimal set of 4
elementary trace links founded on the set of CRUD actions from database operations.
The derivation process of these link types is based on the classification of source and
target relationships from [CHO6], to capture the semantics of all possible relationships
between source and target elements of model transformations. In doing so, corresponding
link types are derived for each class by using the set of CRUD actions.

Furthermore, the traceability metamodel includes an extensibility mechanism based on
facets to account for a sufficient expressiveness of traceability data. The specification
of user-defined artefacts and link types in traceability models is possible through the
definition of corresponding types as facets. Since facets factorize inheritance hierarchies
and thus, simplify them, we use this advantage for the sake of simplifying artefact and
link type hierarchies. Furthermore, since facets can be varied independently and re-
combined, the extensibility of traceability metamodels is achieved. The set of CRUD
trace links builds the foundation on defining link types in a standardized way, yet may
be extended through the use of facets as described above.
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Trace-Link Generation

In the following chapter, we propose a methodology for the generation of trace links in
terms of a design pattern, called Generic Traceability Interface (GTI), which essentially
is a contract the developer has to comply with in order to gain a traceability solution
for his model transformation approach. Implementing the GTI necessitates three de-
velopment steps, as we will show in Section 6.1. Depending on the class of trace-link
generation (explicit or implicit), the methodology proposes two different kinds of con-
nectors as part of the GTI, namely blackboxr and invasive connectors in Section 6.2.
Both connectors serve the purpose of augmenting model transformations for the sake of
generating traceability data.

6.1. Generic Traceability Interface (GTI)

The Generic Traceability Interface (GTI) needs to allow the cooperation of arbitrary
transformation and traceability engines in order to collect traceability data. Conse-
quently, in defining the GTI, we need to abstract from both the transformation engine
performing model operations and the traceability engine collecting traceability data.
Figure 6.1 depicts the GTI. Interfaces regarding the transformation engine are sum-
marized in the subpackage TransformationEngine, analogously, traceability-engine
concerns are grouped in the TraceabilityEngine subpackage. Common structures and
behaviour are contained in the Core package. In the next sections, we will discuss every
interface in detail and derive the steps a developer has to take, to implement the GTI.
In summary, three steps are necessary by implementing the following classes:
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1. UUID for the artefact identification mechanism and Facets for defining custom
facets

2. Repository for storing traceability data and Configuration for the specification
of Scope and Granularity (as defined in Chapter 5, Section 5.3)

3. Connector for extracting traceability data from the transformation engine and
FacetFactory for creating facets

Step 1: UUID and Facets

The Core package provides essential interfaces used by both the transformation and
traceability engine. Essentially, the Core package realises the left part of the traceability
metamodel (Artefact, TraceLink, UUID, Facet) as depicted in Figure 5.1. TraceLinks
are characterised by a type, referring to the 5 TraceLink subclasses in the traceabil-
ity metamodel. The relationship is modelled as an association to an enumeration. We
disregard an alternative subclassing realisation, due to the fact that the types of trace
links are fixed to a number of five, as specified in the traceability metamodel. Further-
more, TraceLinks aggregate a set of source and target artefacts, while establishing a
directed relationship among them. An Artefact is required to encapsulate an unam-
biguous reference, denoted as Universal Unique Identifier (UUID). A UUID is split up
into a Unique Resource Identifier (URI) and a fragment identifier. The URI is used to
uniquely identify resources. This is an open-ended concept, since an URI may refer to a
file in the file system, a web page on the internet or any other kind of data. A fragment
identifier, on the other hand, uniquely identifies objects within a resource. The usage of
UUIDs solely depends on the implementation of the GTI, yet it is important to define a
mapping between the identification format used by the transformation and traceability
engine and the UUID interface implementation.

Since facets (defining the artefact type) encapsulate any conceivable view on artefacts
to allow for a flexible artefact type definition, the interface IFacet is kept as generic as
possible, yet we require a facet to have a name and value.

Thus, the first development step entails to define the types of facets to be used, as
implementations of [Facet. Secondly, an implementation of UUID is needed.

Step 2: Repository and Configuration

In the TraceabilityEngine subpackage, all interfaces relevant to the traceability engine
are summarized. The central interface is the TraceEngineManager, providing access
to registered repositories and configurations. Repositories implement the IRepository
interface, which constitutes the connection point for arbitrary traceability engines to the
generic interface. IRepositories own a name for providing an identifier. Additionally,
they own the methods connect() and disconnect(), which hold for possible database
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Figure 6.1.: Generic Traceability Interface
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connections for persistency. The most fundamental method is storeTraceLink(), which
persists a trace link, its source and target artefacts and all contained facets.

Furthermore, the exception handler methods are used for the configuration of traceability
data, which essentially is realised by IConfiguration. IConfiguration has a validation
method for validating traceability data. The method, thus takes a trace link as input
and checks, whether the trace link and referred source and target artefacts are within
the correct scope and granularity level (cf. Section 5.3).

Concluding, a developer has to implement IRepository and IConfiguration, as described
above.

Step 3: Connector and Facet Factory

The TransformationEngine subpackage contains all interfaces relevant to the trans-
formation engine and provides the connection point for arbitrary transformation engines.
The central interface is the TransEngineManager, which provides access to registered
connectors and facet factories. Connectors implement the IConnector interface, which
constitutes the connection point for arbitrary transformation engines to the generic in-
terface. The connector’s task is to collect traceability data in parallel to the execution
of a model transformation. We propose two phases for completing this task: The Ex-
traction Phase and Typing Phase of traceability data. The extraction phase is to
derive traceability data from the integral model mapping of a model transformation and
is defined as follows:

Definition 36 (Extraction Phase). The extraction phase determines the traceability
graph structure through the instantiation of Artefact and TraceLink of the traceability
metamodel.

Therefore, the extraction phase concerns the left region without the use of Facet of the
traceability metamodel.

The typing phase uses the result of the extraction phase and is defined as follows:

Definition 37 (Typing Phase). The typing phase enhances the traceability graph result-
ing from the extraction phase by determining the types of its artefacts and trace links
through the instantiated Facets and settings from the configuration of Granularity and
Scope of the traceability metamodel.

Essentially, the typing phase revolves around the ezecuteModelOperation() method,
which is the core method triggering all necessary steps from receiving trace links from
the extraction phase to their persistence.

In Section 6.2, we will elaborate on the detailed working of connectors, the extraction
as well as typing phase and present a novel way of combining and automating the
traceability-data extraction with aspect-oriented programming.
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Finally, the TransEngineManager includes IFacetFactories. Facet factories are facili-
ties creating facet objects out of traceability data and/or transformation-engine specific
knowledge by adding faceted values to artefacts and trace links. For instance, the cre-
ation of the so-called TransformationEngineFacet for tracing a specific version of
transformation engine is completely independent of the traceability data. This is due
to the fact that the current version of a transformation engine is available within its
framework. On the contrary, the JavaCodeFacet factory (cf. Figure 5.3), solely ap-
plying to Java files, is dependent on the traceability data. Additionally, there are facet
factories, which are decoupled from both factors, transformation engine and traceability
data, e.g., a TransformationTimeFacet for tracing the time of creation for a certain
artefact with respect to a Gregorian time stamp (date and time), or fiscal time stamp
(fiscal year and week) depending on a given Java Virtual Machine providing the correct
time stamp.

All in all, regarding the third step, it is necessary to implement a connector and the
necessary facet factories.

Collaboration Behaviour of Interfaces

In the following, we show the collaboration of the GTI interfaces in order to collect
traceability data. Thereby, we describe the tracing process, starting with the creation of
trace links out of a model transformation and ending with their persistence in a trace-
ability repository. The individual process steps are outlined in Figure 6.2 as sequence
diagram.
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Figure 6.2.: The Tracing Process regarding the GTI
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6.2 Augmentation of Model Transformations with Generation of Trace Links

First of all, the executeModelOperation() method is invoked by the IConnector, which
triggers the tracing process, whenever a model transformation is executed. At this time,
we abstract from the issue how to extract traceability data and provide the details in
Section 6.2. Thus, we start explaining the tracing process after the extraction phase,
that is, trace links referencing source and target artefacts have been created.

The following process steps relate to the typing phase. After creating a trace link
and its corresponding source and target artefacts, facets have to be added. There-
fore, the TransEngineManager is required to provide all registered IFacetFactories.
Facets are then added to the traceability data by iterating over all source artefacts
(Process Step 4-5), target artefacts (Process Step 6-7) and finally, the currently pro-
cessed trace link itself (Process Step 8-9). In each iteration, the createFacet() method
of the IFacetFactory is invoked. In case the factory can be applied to the traceability
data, the currently processed facet is returned and stored in the respective artefact or
trace link.

Afterwards, the registration of trace links to corresponding repositories is carried out. In
this way, the TraceEngineManager is called to invoke the getRepositories() method.
In turn, a connection to the repository is established through IRepository. Thereafter,
traceability data is validated (Process Step 16-17), and hence, all registered configura-
tions are requested from the TraceEngineManager. A trace link is validated by every
IConfiguration to check, whether the trace link and respective source and target arte-
facts are within the correct scope and granularity level (cf. Section 5.3).

Finally, if the validation does not fail, the trace link is stored in the traceability repository
and the connection is closed. In summary, the typing phase concerns the storage of facets
to artefacts and trace links (Process Steps 4-9) and the validation of granularity and
scope (Process Step 16-17).

6.2. Augmentation of Model Transformations with Generation
of Trace Links

In the following two sections, we come back to the proposal of two classes of connectors,
namely invasive connectors and blackbox connectors. For the explicit generation class,
we propose the former connector with an invasive nature to augment the transformation
engine. This allows for custom modelling of traceability data. On the other hand, the
blackbox connectors are proposed for the implicit generation class. A blackbox connec-
tor serves the purpose of glue code between the traceability engine and transformation
engine, without changing the latter two components.

We continue with a detailed description on the design of invasive connectors in Section 6.3
and blackbox connectors in Section 6.4.
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6.3. Invasive Connectors

As mentioned before, the implementation of a connector entails using the executeMod-
elOperation() method, taking a trace link, referencing source and target artefacts as
input and proceeding with the tracing process outlined in Figure 6.2. Essentially, these
processes concern the typing of traceability data. What has not been dealt with is, how
traceability data is extracted, that is, what happens before the executeModelOperation()
method is invoked. Yet, the issue of extraction is at the core of an invasive connector.

In the following section, we shed light on the invasive connector’s functionality concerning
the two phases: a) extraction and b) typing (cf. Definition 36 and 37) of traceability
data. Recalling from Chapter 5, the choice of traceability scenario determines the kind
of traceability model used, which in turn defines the traceability data, as pointed out in
Figure 6.3. We will show that this contract applies to the extraction as well as typing
phase.

Transformation . ( Invasive Connector
determines
Language
Transformer
determines Extracti determines
xtraction
ili determines
Traceability Traceability Model . _ Traceability Data
Scenario determines X determines
Typing

N

Figure 6.3.: Scenario- and Transformer-driven Invasive Connector

Furthermore, we investigate the influence of transformers (cf. Definition 4), that is,
transformation rules and operators, on the extraction phase. In order to describe the
influence of the transformation rules on the extraction phase, we take on a more fine-
gained view on transformation rules, that is, their contained operators (cf. Definition 3).
In doing so, we will show that the extraction depends on the transformation rules and
certain kind of operators included in the rule (i.e., the process is transformer-driven)
as well as on the traceability scenarios (i.e., the process is scenario-driven). The typing
phase in turn is only scenario-driven.

6.3.1. Running Example

In order to explain the extraction phase, we provide an example transformation. As rep-
resentative from the explicit generation class, we chose the model-to-text transformation
language, Xpand [Foug] with an example transforming entities to object-oriented class
specifications. The source model, as depicted in Figure 6.4, contains an Entity, called
Person with respective Features name, age and address.
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Figure 6.4.: Source Model representing the Person Entity

This source model is transformed through the transformation program (Xpand template)
from Listing 6.1. The resulting target source-code is represented in Listing 6.2 showing
a class, called Person, containing three Fields, namely name, age and address as well
as according getter and setter methods.

<<IMPORT metamodel>>
<<EXTENSION template::GeneratorExtensions>>

<<DEFINE main FOR Model>>
<<EXPAND javaClass FOREACH entities()>>
<<ENDDEFINE>>

<<DEFINE javaClass FOR Entity>>
<<FILE name+".java'>>
public class <<name>> {
<<FOREACH features AS £>>
private <<f.type.name>> <<f.name>>;

public void <<f.setter()>>(<<f.type.name>> <<f.name>>) {
this.<<f.name>> = <<f.name>>;

}

public <<f.type.name>> <<f.getter()>>() {
return <<f.name>>;
}
<<ENDFOREACH>>
}
<<ENDFILE>>
<<ENDDEFINE>>

Listing 6.1: Xpand Template
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public class Person {
private String name;

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}
private Integer age;

public void setAge(Integer age) {
this.age = age;

}

public Integer getAge() {
return age;

}
private Address address;

public void setAddress(Address address) {
this.address = address;

}

public Address getAddress() {
return address;

3

Listing 6.2: Target Source-Code representing the Person Class
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6.3.2. Extraction Phase

We start off with the extraction phase and provide a guideline on designing this phase
for the connector. Essentially, there are two steps to follow:

1. Structuring of Traceability Graphs: To determine the structure of
the traceability graph, we look at,

a) the constraints the traceability metamodel imposes on the extraction,

b) the influence of traceability scenarios on the extraction,
i.e., scenario-driven extraction

c¢) the influence of transformation rules and operators on the extraction,
i.e., transformer-driven extraction

d) the necessity of containment relationships

2. Automation of Extraction: To automate the augmentation of
model transformations, we apply aspect-oriented programming.

In the following, we go into the details of the above-mentioned road map by pro-
ceeding with the same outline:

1. Structuring of Traceability Graphs:
1. a) Traceability Metamodel Constraints

Traceability in MDSD is the runtime footprint of transformation execution (cf. Defini-
tion 6). Based on this definition, we interpret the runtime footprint of a transformation
as the tracking of corresponding source and target artefact(s) of transformers, that is,
rules and operators, in the transformation program (cf. Definition 7). Thus, the ex-
traction needs to capture this runtime footprint and extract the implicitly given logical
dependencies of source and target artefacts per rule and operator relevant to traceabil-
ity. On an abstract level, the extraction essentially implements a mapping of the model
transformation to traceability data.

The constraints that the traceability metamodel imposes on the extraction essentially
concerns the region left of the dotted line in Figure 6.5. According to the traceability
metamodel, one or more source and target artefacts are related through a trace link.
Thus, this principle holds for the modelling of traceability data during extraction and is
the format we will adhere to. However, as differentiated and motivated in Section 5.4,
there are two different ways of modelling traceability graphs, depending on whether
the above-mentioned rule or operator is interpreted as a trace link, or as an artefact
(cf. Figure 5.4 and 5.5). For the rest of this section, we will explain our approach based
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on the former option. However, all proposals on modelling can be transferred to the
latter option in applying the same CRUD link types to the pair of trace links modelled
in the graph of Figure 5.5.

1. b) Scenario-driven Extraction

The kind of traceability data to be collected depends on the selection of traceability
scenarios. For example, for a debugging use case it is essential to trace certain at-
tributes (e.g., an identifier) of a given rule and/or operator to reflect the debugging of
the transformation program, while it might not be the case for a simple system analysis
for inspecting the dependencies of model elements. Provided the application of the inva-
sive connector-based approach, this kind of data can only be traced during the runtime
of transformation and thus, needs to the traced during the extraction phase.

Since we have fixed the traceability scenarios to System Comprehension, Coverage Anal-
ysis, Change Impact Analysis, Orphan Analysis and Transformation Debugging, we in-
stantiate a single traceability graph with an expressiveness valid for the above-mentioned
scenarios without loss of generality of our approach, since the individual scenarios are
views on the traceability graph as argued in Section 5.4. In doing so, we propose to
trace the identifier and name of rules and operators next to their associated trace links
as described under 1.a). Furthermore, the trace links are typed over the set of CRUD
link types. How these are interrelated, follows from the transformer-driven extraction
presented next.

1. c) Transformer-driven Extraction

We begin this section by looking closer at the definition of rules and their operators
regarding the difference of model-to-model transformations and model-to-text transfor-
mations. The former uses rule-based transformations as specified in the QV'T standard,
while the latter is based on hard-coded transformations typically given in template lan-
guages [Kle08]. In Table 6.1, examples for corresponding rules and operators are given for
the above classification. We will show that this classification has an impact on the way

Transformer Model-to-Model Model-to-Text Traceability
Operator OCL query our operator classification fine-grained
Rule QVT rule [Obj11]  MOFScript rule [Fouf] coarse-grained

Table 6.1.: Rules and Operators regarding the Granularity of Traceability

traceability data is modelled. In doing so, we present a course-grained and fine-grained
level on modelling, respectively for rules and operators (cf. Table 6.1, 4th column). Fur-
thermore, we provide a classification on operators relevant to traceability-data modelling.
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In turns out that this classification is applicable to model-to-model and model-to-text
transformations.

I Model-to-Text transformations: In this section, first the operator classification
necessary for model-to-text transformations is derived. Thereafter, we follow up on the
traceability of rules.

We identified certain reoccurring patterns applying to the extraction of traceability data.
These depend on the type of operator used. In order to explain this principle of operator-
driven extraction, we analyse the different operators in template processing and derive
for each such operator, how the extraction has to take place, that is, a) which specific
CRUD-trace link type(s) to use and b) which enhancements to the traceability data are
necessary to account for an adequate expressiveness to conduct the traceability scenarios
successfully.

For the pattern derivation, we investigated different template-based approaches and
identified 6 different kinds of operators as summarized in Table 6.2. This classification

Operator Source Artefact Target Artefact Link Type
i. Static Text template snippet  text block CREATE
ii. Model Access Operators model element text block CREATE
iii. Data Manipulation Operators model element(s)  text block CREATE
iv. Control Flow Operators model element text block CREATE
v. Modularization Operators model element text block/file CREATE
vi. Query Operators model element template snippet RETRIEVE

Table 6.2.: Derivation of Traceability Data out of Operators

is aligned with the work of [Harll] on template processing of XML documents, includ-
ing a classification of operators on slot markup languages. Recalling from Chapter 5,
the classification on source-target relationships and the derivation process of the set of
CRUD trace links (cf. Figure 5.2), model-to-text transformations are exogenous trans-
formations, thus creating a new target. Thus, all operators will be implemented with a
CreateTraceLink, except for one case using a RetrieveTraceLink. In the following,
we describe each identified patterns and give an example based on the running example
of Section 6.3.1. To identify artefacts in templates as well as source code, we will use the
line numbering as references in corresponding Listings. Furthermore, the proposed ap-
proach on modelling of traceability data is specified in terms of TAGs (cf. Section 2.4).
To differentiate between the levels of model abstraction, the graphical notation on the
level of the traceability metamodel uses capital words, while its instantiation uses cursive
letters and non-capital words:

i. Static Text Operators generate static text without modification to the target.
Since the static text operator receives its input from the template, we choose this input
of static text as source artefact, which is linked to the static text in the target by using
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the trace link type Create. Additionally, we propose to track the operator name and
identifier, leading to the following traceability ATG:

Artefact [«~— source — CreateTraceLink — target — Artefact

/\\ ]
\

operatorid operator name artef:fct id
\\‘ I
uuID String | uuID
]

In Xpand, TEXT-statements result in textual information from the template being writ-
ten to the output file, where a TEXT statement is any text, which is not surrounded
by guillemets, e.g., public class in Listing 6.1, Line 11. According to the above concept,
the following traceability graph results, as instance of the above attributed typed graph.
The source artefact refers to the textblock public class in Line 11 of the template and
the target artefact to its corresponding textblock in the generated source code in Line 1:

artefact [~— source — createTraceLink — target —| artefact
operatorid operator name artefactid
\\\A l
line 11 TEXT linel

ii. Model Access Operators retrieve data from the model to either directly generate
it to the target, or to do some additional processing with it. To model the traceability
data structure, we propose to link the source-model element from which the data was
retrieved to the generated target artefact by using a CreateTraceLink:

Artefact 1« source — CreateTraceLink — target —j Artefact
| // \\ |
Artefactid Operator/r]ame Op(\a\ratorld Artefact id
l .(/ \x l
uuIiD String String uuIiD

The EXPRESSION-statement of Xpand evaluates properties of the source model ele-
ments according to its metamodel, for example, the operator «name» in Listing 6.1,
Line 11 retrieves its value Person from the name of the model element Entity Person.
In order to capture this traceability relationship, we define a CreateLink between the
source-model element and the text block in the target:
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artefact [~ source - createTraceLink | target — artefact
l // \\ |

artefactid operatorname  operatorid artefact id
A’/ \\\ . l

model identifier:
Entity Person

EXPRESSION line 11

line 1

iii. Data Manipulation Operators execute different operations (e.g., string concate-
nation, addition of integer values or set operations) to finally create a string that is
generated to the target. Data manipulation operators are treated as model access op-
erators and use the same type of trace link, namely a CreateTraceLink, where the
source artefact(s) refer(s) to the operator input and the target artefact to the result of
the operator as part of the generated target.

iv. Control Flow Operators enable iterations (loops) and conditional execution (if
statement) of certain template parts. In order to extract traceability data, we map the
source, the control flow target holds for, to the target generated through one iteration
of the control flow operation in accordance with the same ATG as for Model Access
Operators.

In Xpand, FOREACH-statements expand the body of the FOREACH block for each
element of the target collection that results from the expression:

<<FOREACH expression AS variableName

[ITERATOR iterName] [SEPARATOR expression]>>
a sequence of statements using variableName

to access the current element of the iteration
<<ENDFOREACH>>

Thus, we define a CreateTraceLink between the model element the expression refers
to and the target collection that results from the expression, as denoted by the following
graph:

artefact — source - createTracelLink  target — artefact
| AN |

artefactid operator name operator id artefactid
l .’/ \\x l

model identifier:
feature age

FOREACH line 12-22 line 13-21

v. Modularization Operators allow structuring of complex templates into sub-
templates similar to procedures in programming languages and into separate files using
an include mechanism like in modular programming. Examples of operators in Xpand,
for a) generating files, b) defining template units and c¢) expanding templates are given
below.
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a) The Xpand FILE-statement invokes the generation of an output file from its body
statement to the specified target, where the ”expression” denotes the file name in the
statement syntax:

<<FILE expression [outletName]>>
a sequence of statements
<<ENDFILE>>

Therefore, we derive a CreateTraceLink, which connects the currently processed model
element as source artefact and the actual file in the file system as the target artefact.
We show this as example by generating the Java class Person from the model element
Entity Person as shown in the following graph:

artefact — source - createTraceLink  target —| artefact
| /N |

artefactid operator name operatorid artefactid
l .// \\x l

model identifier:

Entity Person FILE line 10-24 line 1-33

b) As example, we take the Xpand DEFINE statement (also called block). This DEFINE
block is the smallest identifiable unit in a template file, where the tag consists of a name,
an optional comma separated parameter list as well as the name of the metamodel class
for which the template is defined.

<<DEFINE templateName(formalParameterList) FOR MetaClass>>
a sequence of statements
<<ENDDEFINE>>

The methodology proposes to define a CreateTraceLink from the metamodel (class)
instance to the generated target defined through the beginning and ending of the define
statement. For example, regarding the DEFINE statement in Line 9-25, a create link is
defined from the model element Entity Person to the Java class Person as shown in the
following graph:

artefact |- source - createTraceLink | target — artefact
artefactid operator name operatorid artefactid
A/// \\x l

model identifier:
Entity Person

DEFINE line 9-25 line 1-33

¢) The EXPAND statement is an example of template expansion and acts as a sub-
routine call. While expanding a DEFINE block (in a separate variable context), the
EXPAND statement inserts its output at the current location and continues with the
next statement.
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<<EXPAND definitionName [(parameterList)]
[FOR expression | FOREACH expression [SEPARATOR expression] ]>>

Thus, we derive a CreateTraceLink from the currently processed expression to the
generated target defined through the definitionName. Given the following statement
from the template (Line 6) of the illustrative example,

<<EXPAND javaClass FOREACH entities()>>

then, a CreateTraceLink is defined from the Entity Person (as currently processed En-
tity) to the generated target defined through the template module javaClass, as depicted
below. In this context, the javaClass corresponds to the Java class Person:

artefact — source - createTraceLink  target —| artefact
| // \\ |

artefactid operator name operatorid artefactid
l A'/ \\\ l

model identifier:

Entity Person EXPAND line 6 line 1-33

vi. Query Operators A model query effectively navigates through a model and gen-
erates a collection of model elements that satisfy one or more properties, for example,
a model query generating a collection of class elements that have exactly one feature.
The operator logic accessing the source model may have different forms [CHO06]. For
example, the operator could be a declarative query as in OCL (e.g., Acceleo [Foual)
or XPath [Lan|, or in another case witten in Java accessing the API provided by the
internal representation of the source model.

For query operators a RetrieveTraceLink is defined from the set of returned source
model-elements to the template snippet defining the query.

We now turn to the traceability of rules, that is, the coarse-grained view on modelling.
Regarding model-to-text transformation languages, the definition of a transformation
rule is not always represented syntactically in the transformation program, for example,
as in the case of Xpand. Cleary distinguishable are the rules, for example in MOF-
Script. In the latter case, the rule input and output are traced, by linking the processed
source model element(s) (rule input) to the generated text (rule output) with a Create-
TraceLink. The trace link carries the rule name and identifier as properties in analogy
to the above cases.

II Model-to-Model Transformations: Rule-based transformations of model-to-
model transformations work differently than hard-coded rules of model-to-text trans-
formations with respect to the output of the rule directed through the rule’s target
domain. In model-to-text transformations the rule output does not correspond to a
model element, but is degenerated to a string. In fact, the rule output is a concatena-
tion of strings due to the operators. However, in model-to-model transformations, the
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output corresponds to one or more model elements directed through the target domain.
Thus, we need to track the input and corresponding output of a certain rule. Regarding
our proposal on modelling, this reflects the coarse-grained traceability of rules. Yet, on
this level, the properties of model elements that might have been set through the rule
are not traced. This follows on the level of fine-grained traceability based on operators.
Furthermore, regarding the following proposal for model-to-model transformations, we
distinguish between mapping and update transformations.

Update transformations Regarding update transformations, model elements may be
modified, deleted or added. Accordingly, the methodology accounts for update, delete
and create links, respectively, as described in the classification on source and target re-
lationships from Chapter 5, Section 5.2. Following this straightforward approach, there
are, however, some points to note, for avoiding dangling edges in the traceability graph.
We present example transformations in ATL to demonstrate our approach, essentially
proposing the following two patterns on extension-only and destructive update transfor-
mations.

i. Extension-only Rules Extension-only rules allow for updating existing model ele-
ments and/or creating new model elements, for example, the following ATL transforma-
tion that changes the visibility of attributes and adds corresponding getters:

rule PublicAttribute {
from
source : ClassDiagram!Attribute (
not s.isPrivate and
not s.owner.op->exists(o | o.name = ’get’ +
s.name.toUpperCase() and o.returnType = s.type)

to

target : ClassDiagram!Attribute (
name <- s.name,
owner <- s.owner,
isPrivate <- true,
type <- s.type

),

getter : ClassDiagram!Operation (
name <- ’get’ + s.name.toUpperCase(),
owner <- s.owner,
isPrivate <- false,
returnType <- s.type

Listing 6.3: Extension-only Update Transformation in ATL
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Regarding the modelling of traceability data, we distinguish between two cases:

e Element creation - where the generated element is not represented through a meta-
model element in the rule input, e.g., in Listing 6.3, the element getter is not
represented in the from clause.

e Element update - where the generated element is represented through the same
metamodel element in the rule input as well as output, e.g., in Listing 6.3, the
elements target and source represent the same metamodel element Attribute.

Since there is no corresponding source artefact in the first case, our approach uses the
given rule input as pseudo-source artefact to avoid dangling edges. Furthermore, a
CreateTraceLink from the given rule input as source artefact is linked to the newly
generated element. In the above example, this corresponds to the following traceability
graph:

In case of updating an element an UpdateTraceLink is defined from the to-be updated
element and the generated target element. In addition to the given graph above, the

artefact |- source - createTracelLink [ target — artefact
| l
artefactid rule name ruleid artefactid
| N |
identifier: source PublicAttribute line 1 i identifier: getter

following traceability graph holds:

createTraceLink | target — artefact
S |
source rule name rule id artefactid
p’/ \\ l
PublicAttribute line 1 identifier: getter
artefact
|
artefact id source
i dentifiei: source \‘ updateTracelLink - target — artefact
rule namé Arule id artefc!ict id
.’/ \\ . l
PublicAttribute line 1 E identifier: target

ii. Destructive Rules For a destructive update as well as in-place transformation,
we define a DeleteTraceLink between respective source elements and updated target
elements to record that model elements are modified through a delete operation, as
supported in some endogenous transformation approaches, e.g., the refinement mode
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in ATL. Traceability data is persisted in terms of trace links referencing source and
target artefacts. In case of deleted model elements, the outdated references (of deleted
elements) are persisted to track the state of deletion even though the references are
technically invalid. Further processing on the invalid references is necessary for the
maintenance of traceability data, yet this is out of scope of this work next to other
possibilities on recording deleted elements.

rule PrivateAttribute {

from
s : ClassDiagram!Attribute (s.isPrivate and
s.owner.op->exists(olo.name = ’get’ +
s.name.toUpperCase() and o.returnType = s.type)
)
to

t : ClassDiagram ! Attribute (
isPrivate <- false
)
}
rule DeleteOperation {
from
s : ClassDiagram!Operation (s.owner.attr
->exists(ala.name = s.name.toUpperCase().substring(3, s.name->size())
and a.isPrivate))
to
drop

Mapping transformations For mapping transformations, only CreateTraceLinks
are used, since all target elements are newly created.

In summary, Table 6.3 gives an overview on the patterns used to define trace links for
rules in model-to-model transformations:

Rule Link Type

Update  i. Extension-Only CREATE/UPDATE
ii. Destructive DELETE

Mapping CREATE

Table 6.3.: Derivation of Traceability Data out of Rules

Regarding the fine-grained level of traceability based on operators, we need a classi-
fication as in the case of model-to-text transformations. Model-to-model transforma-
tion approaches mostly use an embedded query language, such as OCL or a dialect of
OCL [BCW12]. Hence, model-to-model transformations use the same classification on
operators as presented above for operator class i.-iii. and vi. (cf. Table 6.2), since they
may be represented in OCL. Static Text may be presented through the basic types of
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OCL, Model Access Operators as OCL queries and Data Manipulation Operators, for
example through OCL concatenation. Query Operators use OCL queries. Furthermore,
the classes iv. and v. are aligned with the QVT standard. Examples for Control Flow
Operators are the when and where or forFEach clause in QVT as well as the foreach!
clause in ATL. Regarding Modularization Operators (v.), a simple separation of a call
to a rule and its definition is possible in QVT. In ATL, rules can be grouped in several
files and be composed by the superimposition mechanism. Thus, in summary, the same
classification on operators for model-to-text transformations may be used for model-to-
model transformation and with this the same proposal on traceability data modelling.

Iterative Execution and Hyperedges Both proposals for modelling a traceability
graph (cf. Section 5.4) need to be enhanced for operators as well as rules that are
executed iteratively. According to our approach, iteratively executed operators (and
rules) are modelled through the use of hyperedges in the traceability graph, for example,
control flow operators in connection with model access operators. Recalling from our
running example, the expression «f.name» (e.g., in Listing 6.1, Line 13) is executed for
every feature, namely name, age and address, regarding the generation of the Person
class. Due to the iterative nature of the control flow operator, all source as well as
target artefacts due to all iterations of the «f.name» operator are linked through a
CreateTraceLink, which is modelled as a hyperedge, as indicated in the graph of
Figure 6.6.

artefact_source artefact_target
'/ \\ //,\\\
name  id name id
//' \\ yé N
d Y 4 X '
. source target . .
name artefactidl 9 name line3 !
!
artefact_source —— source createTraceLink K—— target —— artefact_target
/’\\ N VRN
name id operator operator name id
- - source name id target - . i
. . I
age artefactid2 v N 9 age line13 |
!
EXPRESSION line 13
artefact_source artefact_target
/// \\\ ‘// \\
name id name id
, \ / AN
I'd M 4 X
address artefactid3 address line 23

Figure 6.6.: Modelling of Hyperedges and Iterative Execution

'In newer ATL versions the execution flow is controlled by using lazy rules or imperative code.
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Our definition of traceability requests to track corresponding source and target artefacts
due to a particular transformer. Yet, this also implies the need for assigning source and
target artefacts due to one iteration of the control flow operator. Hyperedges do not
include this information per default, for example, in the graph below, it is not clear
which of the three target artefacts was generated from a specific feature. Without this
information, a user may interpret that a given source artefact, e.g., the feature name is
transformed into the three target artefacts, field name, field age and field address, which
is incorrect information, for a change impact analysis, for example. One possibility to
solve this issue, is to introduce a mapping from each feature to its generated output due
to one iteration, as depicted in the graph below by the dotted arrow, exemplified for
the feature name. Furthermore, this mapping may be added to the properties of the
trace link itself. The above-mentioned approach applies to rules the same way as for
operators.

We now turn back to our roadmap and continue with the modelling of containment
relationships.

1. d) Containment Relationships

Apart from the trace links leading to the traceability graph structure due to the nature
of transformers, a second type of trace link is proposed. This type results from the
implicitly given containment relationships of the source and target artefacts. According
to the traceability metamodel, we propose to use the type ContainmentTraceLink
for all containment relationships. The ContainmentLink is defined as a subtype of the
RetrieveLink, since a containment relationship may be interpreted as a model query
returning a subset of model elements or text sequences (cf. Section 5.2 on the derivation
of CRUD links).

The primary motivation for adding trace links to the trace graph due to containment
relationships, is for reasons of maintenance and system comprehension (traceability sce-
nario). Looking at the illustrative example, not having a trace link between the Entity
Person and its contained feature name and deleting the Entity Person results in a lack
of information for reasoning about updates on the traceability graph. Consequently,
all subelements of the Entity (i.e., features and their dependencies) would remain in
the traceability graph. In analogy, this applies to the target artefacts, for example for
generated static text strings.

Regarding the collected traceability data for the traceability scenario, system compre-
hension, the above modelling not only allows for understanding, which source and target
artefacts are related due to a certain transformer, yet, also the hierarchy of containment
relationships inherent to these artefacts.
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2. Automation of Extraction

Furthermore, we base our approach on the following train of thought leading to the
invasive nature of the connector. The implementation of the GTI requires the adaption
of a transformation engine for the explicit generation class. Therefore, we adopt the
concept of aspect-oriented programming [EFBO01] to augment the transformation engine
with traceability-specific code to instrument the engine for a traceability solution. The
use of aspects has the advantage of easier maintenance for this traceability-specific code.
Furthermore, its integration is achieved automatically.

In applying aspect-oriented programming to the extraction phase, we encapsulate the
mapping of transformation execution to traceability data (in terms of traceability-specific
code) into aspects. The mapping results by way of the identified patterns on the mod-
elling of traceability data. In this way, the advice of an aspect contains this mapping.

Generally applying to model-transformation approaches, at runtime, the transformation
engine instantiates the abstract syntax tree (AST) of the transformation language, in-
cluding the rules and operators. The execution of each model transformation necessitates
for each rule and its containing operators, the invocation of specific internal methods
(amongst others) directing the AST instantiation. Thus, we propose to use these internal
methods for the pointcut definition to implement the mapping of model transformations
to traceability data by analysing the AST at runtime according to our proposed patterns.

To be able to "weave” this mapping, it is necessary to identify the coding in the trans-
formation engine that is specific to the execution of rules as well as operators to derive
a corresponding pointcut definition. This process depends on three factors. Firstly, the
way the engine is implemented influences the pointcut definition, for example, if the
above-mentioned internal methods are scattered, or, if there is a single point of entry to
the AST instantiation. Secondly, the language used for the base code, where weaving
takes place, needs to be compatible with the aspect language. Finally, the expressiveness
of the pointcut language needs to be sufficient in order for weaving to take place in the
correct parts of the base code.

In the following, we present an example integration based on AspectJ [EFB01] and
Xpand. The Listing in 6.4 presents an aspect exemplary for the FILE statement of
Xpand.
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Q@Aspect
public class OawConnector extends AbstractTransEngineConnector {
QAfter("execution(* * evaluate(..)) && this(fs) && args(ctx)")
public void executeModelOperationInternal(FileStatement fs,
XpandExecutionContext ctx) {

// Model Artefact
Artefact sourceArtefact = new Artefact(...);

// File Artefact
Artefact targetArtefact = new Artefact(...);

// Trace Link

Tracelink link = new TraceLink(sourceArtefact, targetArtefact,
CreateTracelLink) ;

this.executeModelOperation(link);

Listing 6.4: Pointcut Definition for FILE Statement

In Xpand, the execution of each model transformation necessitates for each Xpand Stat-
ment (operator), the invocation of a particular internal method (amongst others) direct-
ing the AST instantiation. In Line 3, the corresponding method evaluate() is used as
pointcut definition. After the execution of this method, triggered by the FILE state-
ment, the traceability-specific code is woven, which is captured through the execute-
ModelOperationInternal() method (Line 4). This leads to the creation of corresponding
source (of type Model) and target (of type File) artefacts based on the framework-
internal XpandExectutionContext (Line 4). Finally, a CreateTraceLink between both
artefacts is established (Line 13), followed by the invocation of the executeModelOpera-
tion() method. Recalling from Section 6.1, the latter call is required by the connector
to trigger the typing phase.

6.3.3. Typing Phase

As mentioned in the beginning of this section, the typing phase depends on the traceabil-
ity scenarios and starts with the execution of the ezecuteModelOperation() method. Es-
sentially, the typing phase involves the typing of the traceability graph after its structure
is fixed through the extraction phase. Regarding the typing, we look at the constraints
the traceability metamodel imposes on the typing phase. As depicted in Figure 6.5,
the typing of the traceability graph, that is, of the artefact and link types (apart from
the already defined CRUD-link types due to the extraction phase) is achieved through
the region of the traceability metamodel right of the dotted line. Depending on the
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defined Facets, FacetFactories and the configuration of Scope and Granularity, the
resulting traceability graph is typed as described in Chapter 5.

6.4. Blackbox Connectors

We recall that the implicit generation class already provides an integrated traceability
solution, that is, traceability data is generated in parallel to the transformation execu-
tion. In order to make use of this advantage, the implementation of a blackbox connector
is based on this traceability solution. In doing so, our approach proposes a model trans-
formation from the traceability model generated from the transformation engine of the
implicit class to an instance of the GTF traceability metamodel. With this, the connec-
tor implementation does not include an extraction phase (as opposed to the invasive
connector), which is actually solved by the transformation engine. Thus, the blackbox
connector only implements the typing phase, involving the typing of the traceability
graph, as we will show in the following. For an illustrative example, we refer to Sec-
tion 8.1, where we present a blackbox connector for QV'T, being a representative of the
implicit generation class.

6.4.1. Extraction Phase

With the extraction, as depicted in Figure 6.7, the transformation engine delivers the
traceability graph structure in terms of its generated traceability model. The black-
box connector transforms this model into an instance of the GTI traceability metamodel
through a mapping transformation, while preserving the traceability graph expressive-
ness. Apart from this predefined structure, containment relations need to be added to
the connector output as argued for the invasive connector, if not already present. Possi-
ble sources for containment relations may be the traceability model or source and target
models.

Regarding the typing of CRUD trace links, the same way of modelling applies as for the
invasive connector. However, the applicability of each case depends on the expressiveness
of the implicit traceability model, potentially missing information. In case the transfor-
mation creates new elements (mapping transformations), we propose to use create links.
In case of an update or in-place transformation, update links and create links are used
for extension-only rules (cf. update transformations of invasive connector). However,
this requires that the implicit traceability model reflects the difference between an up-
date and a create link. Generally, the traceability data needs to be expressive enough
to gather the information as proposed for the invasive connector regarding update and
in-place transformations. With respect to destructive rules, if the information of dele-
tion is not persisted in the implicit traceability model, it is impossible to reproduce this
information from the traceability model.

92



6.4 Blackbox Connectors

ereq Anjiqessel |

I03D9UU0)) XOqIDR[( 9} U0 [POUIRIDIN AN[IqRIDRIT, O} JO SJUTRIISUO)) :'/ 0 9INST]

saulwIa1ep

)uljade. | juswuleluo)

b

yureoe.s|a191ed

juijaoesjaepdn

)uI90el | aAd1IRY

)uljades]aeal)

\ v

BuidAL
AV..|T
|lopo@oel | Y 1 yurjaoes]
1
10108uu0) @ ‘_mzzcm_u_.“ «:F_\_mm_ﬂ «:—/—.me;om
X0Q-)oe 19084
aHeld saulwlaep uoneinbyuo) - 1
. O_|_IAv 10B8UY ainn
3 2 _
1
adoog | | Ajienuern 1
1
1
uoloenx3y
SENE

auibu3 uonewlolsuel |

93



Chapter 6. A Methodology for Automatic CRUD Trace-Link Generation

6.4.2. Typing Phase

As in the case of the invasive connector, the typing phase concerns the typing of the
traceability graph, i.e. the process is scenario-driven. In order to do this, the user has to
define Facets and FacetFacories by using the above-mentioned model transformation.
Hence, the constraints the traceability metamodel imposes on the blackbox connector
concern the region of the traceability metamodel right of the dotted line in Figure 6.7.
Consequently, the control over the expressiveness of traceability data with regard to
artefact typing is limited to the traced entities of the implicit generation approach. It
is only possible to define artefact types on the basis of existing artefact types in the
traceability model due to the implicit generation approach (implicit traceability model).
For example, in a model-to-text transformation, if the granularity level of traceability is
kept on file level, it is not possible to capture a more fine-grained level, e.g., through a
facet for text blocks within a file (cf. Figure 5.3). Thus, the control over traceability data
is restricted to the granularity level of the integrated traceability solution, yet still allows
for the flexibility to choose the artefact types on the basis of the given granularity level.
This is achieved through the configuration setting of Scope and Granularity. The
above-mentioned is valid for model-to-text as well as model-to-model transformations.

6.5. Contributions

In this chapter, we contribute the following;:

C2: Design Pattern on Augmentation of Model Transformations with Trace
Link Generation

We propose a methodology entailing three steps to augment arbitrary model transfor-
mations (model-to-model as well as model-to-text transformations) with a specific trace-
ability mechanism. The methodology is based on a design pattern that can be realised
through the generic traceability interface for arbitrary transformation engines.

Regarding the explicit and implicit generation class, we present two possible augmenta-
tion methods to achieve a traceability mechanism, respectively: a) Augmentation of the
transformation engine based on aspect-oriented programming and b) Augmentation of
the traceability-data output through the use of a model transformation. In terms of the
generic traceability interface, these augmentation method require the implementation of
two different kinds of connectors, that is, blackboxr and invasive connectors for implicit
and explicit generation, respectively.

Thus, the different kind of connectors realise two different kinds of traceability ap-
proaches:

e A priori traceability: Augmentation of the transformation engine before transfor-
mation execution
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e A posteriori traceability: Augmentation of the traceability-data output after trans-
formation execution

Once the augmentation method has been applied in either of the two cases, the transfor-
mation approach is featured with a traceability mechanism that generates traceability
data conforming to the proposed traceability metamodel.

Furthermore, the methodology proposes a guideline for modelling traceability data based
on a classification of operators applicable to model-to-model as well as model-to-text
transformations.
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Model Matching for Trace-Link Generation

The following chapter demonstrates how parallel model matching can be instrumented
for the generation of trace links. This matching approach applies to the second and
third category of trace link generation as per problem definition in Chapter 3, Section
3.2. In this case, the generation takes place after and independently from the execution
of a model transformation.

We first explain the conceptual work of the model matching system in Section 7.1,
followed by an overview on its realisation in Section 7.2.

7.1. Model-Matching System for Traceability

In this section, we describe our proposed model-matching system for traceability, es-
sentially, taking two models as input and creating a mapping, that is, correspondences
between model elements, as output. This mapping is further analysed with respect to
the extraction of potential trace links.

Next, we explain the processing steps of our proposed matching system, which involves
the following successive steps, as depicted in Figure 7.1:

1. Import of Models: The available source and target models need to be imported
into a common data model, to have a common basis for arbitrary matching algo-
rithms.

2. Matching of Models: Different matching algorithms are applied to the imported
source and target models. A matching algorithm calculates a similarity value for
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Source Model

Import
of Models
Internal Matching
Data Model of Models
Matching Configuration
Results of SVC

Extraction
of Trace Links

Mapping

Figure 7.1.: Process Steps of the Model-Matching System for Traceability

all pairs of source and target elements. The matching system can be configured
by selecting a set of matching algorithms involved in the matching process.

3. Configuration of Similarity Value Cube: Each matching algorithm provides
separate results for a certain source and target model, where the results describe
a similarity value for all source and target model element combinations, called
similarity-value matrix. All of these matrices (one matrix due to a certain match-
ing algorithm) are arranged into a cube, called similarity-value cube (SVC), as
depicted in Figure 7.1. To derive a mapping between source and target elements
out of these results, the similarity value cube needs to be configured, e.g., to form
an aggregation matriz by calculating the average of similarity values, or selection
matriz by selecting all elements exceeding a certain threshold. We provide a de-
tailed description of possible configurations in Section 7.1.4.

4. Extraction of Trace Links: The resulting mapping is analysed and trace links
are extraced according to certain heuristics, or configurations.
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7.1.1. Step 1: Import of Models

The first process step requires models to be imported into a common data model for the
sake of genericity. The idea behind this choice is to have a standard data model, upon
which the matching algorithms operate. Alternatively, one could adapt the matching
algorithms individually to be able to work on each source and target model potentially
being from different languages. Yet, this would result in a higher implementation effort.
Thus, we choose the first option and implement an importer for each modelling language.

To be able to base our work on the field of graph theory to make use of graph-based
matching algorithms, we require the internal data model of our matching system to have
a graph structure. Thus, for the model import, we need a graph formalism on the basis
of which arbitrary models can be expressed uniformly as graphs, yet with an adequate
expressiveness. Secondly, we require this formalism to express models in relation to
their corresponding metamodels, since we make use of the instance-of relationship in
our matching approach as explained in more detail in Section 7.1.3.

The formalism of Typed Attributed Graphs (TAG) (cf. Section 2.4, Definition 28) fulfils
the above-mentioned requirements [EEPT06], concerning the universality and expres-
siveness of typed attributed graphs to represent models including instance-of relation-
ships. Therefore, TAGs serve as the foundation of our graph construction.

The key idea is to model attributed graphs with node and edge attribution. On the
basis of TAGs, we consider models as Attributed Graphs (AG) (cf. Definition 25) and
metamodels as Attributed Type Graphs (ATG) (cf. Definition 26). Recalling, an AG
is an E-graph combined with an algebra over a data signature, whereas an ATG is a
special kind of AG used for typing of AGs. Thus, the ATG defines the set of all possible
types used for typing an AG. Formally defined, an AG is typed over an ATG by an
attributed graph morphism ¢ : AG — ATG. We provide an example in Section 7.1.2.
For the graphical representation of models in terms of TAGs, we refer to Section 2.4.3.

Since we require the import of models as well as their referring metamodels, yet claim
one internally used data model (as we will substantiate in the following train of thought),
both models as well as metamodels need to be transformed into one internal data model.
Since models and metamodels lie on different levels of abstraction, this has consequences
for the import. In general, there are numerous possibilities for this transformation,
as depicted in Figure 7.2. Per definition of a model transformation, instances of a
metamodel are transformed into instances of another metamodel, where the metamodels
may be different or the same. Thus, a model transformation is defined at the metamodel
level.

If we follow possibility a) (called upper import) and specify the model transformation
responsible for the import at the metalevel M,, 92, meaning that we specify the trans-
formation program to transform instances of the metametamodel level to instances of
the ATG (internal data metamodel), we solve the import for arbitrary metamodels for
one modelling language. To be able to import model instances as well, which are on a
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Mo [ Metametamodel ] [ ATG ] ATG

" [ Metamodel ]»[ AG ] [ ATG

M, Model } ———————————————————————————————————————————————————————— >[ AG

Figure 7.2.: a) Upper Importer, b) Lower Importer, ¢) Bridging Importer

lower level of abstraction as their corresponding metamodels, a model transformation
at metalevel M, ;1 is necessary, as shown in case b) (called lower import). Together
with the upper as well as lower import, our goal of importing models and their referring
metamodels is achieved, yet the implementation effort is still higher as the possibility
portrayed under c¢). We propose to use one importer (bridging importer) per modelling
language applicable to both the model as well as metamodel level. Essentially, we bridge
the gap in the level of abstraction by regarding metamodels as instances of metameta-
models and models as instances of instances of metametamodels. In this way a model
and its metamodel are transformed into a TAG.

7.1.2. Running Example

To underline our matching process, we introduce a matching scenario, which we use
across the following sections. The example is based on a model transformation from
certain entities to object-oriented class specifications, the same as in Section 6.3.1. In
Figure 7.3, the source and target model are represented as AGs (lower level), while
their respective metamodel is depicted as ATGs (upper level). Each AG is typed over
a particular ATG by a corresponding attributed graph morphism ¢ : AG — ATG. A
formal definition is given in Appendix A.

We adopt the graphical notation as introduced in Section 2.4.2 for E-graphs. An E-graph
has two different kinds of nodes, representing graph and data nodes, and three kinds of
edges, the usual graph edges and special edges used for the node and edge attribution.
The solid nodes and arrows refer to the graph nodes Vi and edges F¢, respectively. The
dashed nodes are the (used) data nodes Vp and dashed arrows represent node and edge
attribute edges En4 and Egy. In Figure 7.3 a), the ATG-Source Metamodel includes
Entities, which contain Features. Both, Entities and Features, are characterised by
a name of type String. The AG-Source Model (an instance of AT G-Source Metamodel)
in ¢) includes an entity called Person owning two features, carrying the names, name
and age. The target metamodel in b) specifies Classes that consists of Fields and
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Figure 7.3.: Running Example for Model Matching

Methods. Again, all model elements own a name of type String. The AG-Target
Model in d) describes a Person class containing two fields, called name and age as well
as according getter methods, namely getName and getAge.

7.1.3. Step 2: Matching of Models

In the following, we explain the matching process and different matching algorithms
used. Model matching is the process of finding a mapping between two AGs based on
a given similarity measure. In other words, the Cartesian product of the set of source
as well as target graph nodes is generated. For each source-target combination, a simi-
larity is calculated according to a pre-defined similarity measure. Finally, the resulting
similarities are analysed to derive matches. Our approach deals with numerous ways
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of finding feasible similarity measures regarding the generation of trace links from the
resulting mapping. For this purpose, we identified three measures to calculate similarity
values:

1. Attribute Similarity Measure: Similar data nodes from source and target
graphs, indicate shared characteristics, referred to as attributes, and thus, a po-
tential similarity between the graph nodes that the data nodes are connected to.

2. Connection Similarity Measure: The similarity between a set of source and
target children nodes acts as a similarity measure. The measure is based on the
rationale that similar children graph nodes, have similar parent graph nodes. Thus,
the connectivity of a graph node to its children graph nodes is used to propagate
the similarity from child to parent node.

3. Instance-of Similarity Measure: We base the matching process on model level
on the results of metamodel matching by making use of the instance-of relation.
Thus, we investigate the outcome of propagating the similarity of metamodel ele-
ments to their conforming model elements.

In the next subsections, we propose a configurable base-matching algorithm making
use of the above-mentioned similarity measures. Depending on the chosen similarity
measure, the algorithm’s functionality is defined. In Section 7.1.3, we introduce the
attribute as well as connection similarity measure to configure matching algorithms
for model (as well as metamodel) matching, followed by an example in Section 7.1.3.
Thereafter in Section 7.1.3, the instance-of similarity measure is used for model matching
on the basis of metamodel matching results, which we call metamodel-driven model
matching. An example of the latter is given in Section 7.1.3.

Model Matching

The model-matching process with regard to the first two, above-mentioned similarity
measures is outlined in Algorithm 1 and 2, as explained in the following. For the sake
of clarity, we choose two algorithms for separating the matching process generally ap-
plying to graphs (Algorithm 1) from the similarity-value calculation of two graph nodes
(Algorithm 2).

The core idea of Algorithm 1 is to match an attributed source and target graph and to
return a mapping between corresponding source and target graph nodes. In more detail,
the algorithm works as follows: The procedure MATCHGRAPHS (Line 1-8) matches two
attributed graphs AG' and AG? on the basis of the similarity measure denoted with
the variable similarityMeasure from the set {ATTRIBUTES, CONNECTIONS}. In
either way, the Cartesian product of source and target graph nodes is calculated (Line
2-3), thereby assigning to each Cartesian pair (s;,s;) a similarity value through the
matchNodes function (Line 4 resp. 9-16) and depending on the similarity measure cho-
sen in Line 1. Accordingly, all similarity values are arranged in a similarity value matrix
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denoted by SIM va|[v2| (Line 4), such that the following holds: A certain similarity

value of (s;,s;) is assigned to a cell, denoted by sim;;, from SIM]VGlHV5|‘

The RETRIEVEMATCHES function (Line 7) receives SIM va||vz| 28 input and renders
G G

a mapping between source and target graph nodes. There are numerous ways to this
mapping calculation, depending on the configuration of the SVC. For the details of this
calculation, we refer to Section 7.1.4 and Appendix B.3.

In case the similarity values are calculated according to the ATTRIBUTES similarity
measure, the MATCHATTRIBUTES function (Line 11) is called. Accordingly, the MATCH-
CONNECTEDNODES function (Line 13) is called for the CONNECTIONS similarity mea-
sure. The detailed working of these functions is described in Algorithm 2.

Algorithm 1. Matching of two attributed graphs

Require: AG!
Require:

= (G, DY) and AG? = (G?, D?)

(Vcla Vi, Eéw ENaEha, (307”"06}7 taTget})je{G,NA,EA})
Require: (VE, V3, B4, E% 4, E% 4, (sourcejz, targetjz)je{aNA’EA})
Require: D' = (S},0P}) and D? = (§%,0P3)
Require: similarityValues = {r|r € R and 0 <r < 1} U{UNKNOWN}
Ensure: similarityMeasure € {ATTRIBUTES, CONNECTIONS}

G =
G* =

procedure MATCHGRAPHS(AG!, AG?, similarityM easure)
for all s; € Vcl;, i={1,..., Vé|} do
for all t; € V2, i={1,...,|v¢|} do
SIM\V5\|V§| > sim;j <— matchNodes(s;, tj, similarityMeasure)

end for

1:

2

3

4

5: end for
6

7 matches < retrieveMatches(SIM’Vé"Vé‘)
8: end procedure

Ensure: s; € Vcl;
Ensure: t; € VG2

9: function MATCHNODES(s;, t;, similarityMeasure)
10: if similarityMeasure = ATTRIBUTES then

11: return matchAttributes(s;,t;)
12: else if similarityMeasure = CONNECTIONS then
13: return matchConnectedNodes(s;,t;)

14: end if
15: return UNKNOWN
16: end function

end
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Through Algorithm 2, the similarity of two graph nodes is calculated as follows. In case
Algorithm 1 uses the similarity measure ATTRIBUTES, the similarity value assigned to
a certain Cartesian pair (s;,t;) is calculated through the MATCHATTRIBUTES function
(Line 4-13). In particular, the set of data nodes of s; as well as t; is rendered (Line 5-6),
denoted by NodesAIT  resp. N odes;‘gg;t, followed by the calculation of the Cartesian
product of these sets (Line 7-8). For each such Cartesian pair (of data nodes), the degree
of similarity is calculated through the COMPUTESIMILARITY function (Line 12 resp. 1-3)
and placed into a similarity matrix STM ]A\/[Ef(k) Maz(l) (Line 9). Afterwards, the resulting
similarity matrix is reduced to a single similarity value according to a certain selection
strategy by applying a set similarity function called computeSetSimilarity (Line 12).
This value is returned as similarity value of the two given graph nodes (s;,t;). We assume
the existence of the computeSetSimilarity function to calculate a single similarity value
from the matrix of similarity values due to the source and target data nodes of a certain
graph node pair (s;,t;). In general, there are several possibilities to calculate such a
value. We provide an example on page 105, where the average value is calculated. For
a description of possible configuration strategies, we refer to Appendix B.3.

Alternatively, the similarity of two graph nodes is calculated on the basis of the similarity
measure CONNECTIONS and thus, the MATCHCONNECTEDNODES function (Line 14—
23) is called. The function takes as input a Cartesian pair (s;,t;) from Algorithm 1,
renders the set of all children graph nodes from s; (Line 15) resp. from ¢; (Line 16),
denoted by Nodes(ON, resp. N odest%%\ét and calculates the Cartesian product of these
sets (Line 17-18). For each such Cartesian pair (of graph nodes) a similarity value is
calculated on the basis of the function MATCHATTRIBUTES and placed into a similarity
matrix SI M]%Ea];\ép) Maz(q) (Line 19). Finally, the computeSetSimilarity reduces this
matrix to a single similarity value, which is assigned to the two given initial graph nodes

(sistj).

Remark The above two algorithms are applicable for a given source and target ATG
as well, since an ATG can be interpreted as an AG (cf. Definition 26).
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Algorithm 2. Similarity of two graph nodes

Require: compare : D} x D? — similarityV alues
Ensure: dataNodesouree € D} C Vll)
Ensure: dataNodeyqrger € Dg - Vg

1: function COMPUTESIMILARITY (dataN odesource, dataNodeiqrget)
2: return compare(dataN odesoyrce, dataN odeiqrget)
3: end function

Ensure: s; € VG1
Ensure: t; € VG2

4: function MATCHATTRIBUTES(S;, ;)

5 NodesATT <« {targeth 4(e)|e € EX 4 and sourcek 4(e) = s;}
6: Nodesﬁlf;t «— {target?; 4(e)le € E% 4 and source?; 4(e) = t;}
7: for all s;, € NodesIT k= {1,...,|v3[} do

8 for all ¢, € Nodesﬁgjg;t, 1={1,...,|v2]} do

9

SIM]@E?(@MMU) > sim;, j, < computeSimilarity(s;,,t;,)
10: end for

11: end for

12: return computeSetSimilarity(SIMA“}Ef(k)Max(l))

13: end function

14: function MATCHCONNECTEDNODES(S;, t;)

15: NodesSON, « {targets(e)|e € E} and sourceZ(e) = s;}
16: Nodesgl%gt + {targett(e)le € EZ and sourceZ(e) = t;}
17: for all s;, € NodesSON,, p=1{1,...,|vi| -1} do
18: for all t;, € Nodes{,ON,, a={1.....|v2| -1} do
CON . .
19: S[MMM(p)Max(q) > simy,j, < matchAttributes(s;,,t;,)
20: end for
21: end for
22: return computeSetSimilarity(SIMﬁgﬁp)Max(q))

23: end function

end

Example: Model Matching

In the following, we demonstrate the above model matching process on the basis of the
similarity measure ATTRIBUTES as well as CONNECTIONS in accordance with the
running example from Section 7.1.2. Essentially, we match the two AGs depicted in
Figure 7.4.
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According to the procedure (Algorithm 1, Line 1), the Cartesian product of the set of all
source graph nodes (entity, featurel, feature2) and the set of all target graph nodes
(class, field1, field2, methodl and method2) is calculated (Line 2-3), yielding a
similarity matrix of 15 cells.

If the similarity values are derived on the basis of the similarity measure ATTRIBUTES,
the MATCHATTRIBUTES function (Algorithm 2, Line 4) is invoked by the MATCHNODES
function (Algorithm 1 Line 4). Thus, the data nodes of each Cartesian pair are re-
trieved (Algorithm 2, Line 5-6) and their similarity values are calculated according to
the computeSimilarity function (Algorithm 2, Line 9). For the sake of simplicity, we
assume this function to calculate string similarity values on the basis of the following
definition:

Given the data sorts D! = D? = String (where a sort is defined as a certain label type
used for attribution, i.e., String, cf. Section 2.4.2) with v € D} and w € D?, we define

S
the function compare : D! x D? — similarityValues such that the following holds:

1, ifv=w
compare(v,w) =< 0,5, ifvCw
0, ifv#w

For example, for the Cartesian pair (entity, class), the data node Person is retrieved
for the source graph nodes entity as well as for the target graph node class (cf. Figure
7.4). Since their labels (i.e., strings) are identical, a similarity value of 1 is assigned
to the data node pair (Person, Person). Since the resulting similarity-value matrix
SIMATT (Algorithm 2 Line 12) contains only one cell with the similarity value 1, the
computeSetSimilarity functions assigns the same value to the node pair (entity, class),
as depicted in Table 7.1. For the Cartesian pair (featurel, class) a similarity value

‘ class ‘ field1 ‘ field2 ‘ method1l ‘ method2

entity 1 0 0 0 0
featurel 0 1 0 0,5 0
feature2 0 0 1 0 0,5

Table 7.1.: Similarity Values of Graph Nodes

of 0 is calculated, since the labels of the data nodes name and Person are unequal (cf.
Figure 7.4). In analogy, the similarity values of the other Cartesian pairs are calculated,
as depicted in Table 7.1. The resulting mapping of the graph nodes due to the similarity
measure ATTRIBUTES is depicted by the dashed lines in Figure 7.4.

In case the similarity values are calculated on the basis of the similarity measure
CONNECTIONS, the MATCHCONNECTEDNODES function (Algorithm 2, Line 14) is
invoked through the MATCHNODES function (Algorithm 1, Line 4). This entails the re-
trieval of all children graph nodes per Cartesian pair of graph nodes. Their similarity
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Figure 7.4.: Model-Matching Mappings for AG-Source Model and AG-Target Model

values are computed according to the MATCHATTRIBUTE function (Algorithm 2, Line
19). For example, the graph nodes featurel, feature2 resp. field1, field2, method1
and method2 are retrieved for the source graph node entity resp. target graph node
class. Traversing the Cartesian product of the retrieved sets, we assign to each Cartesian
pair a similarity value on the basis of the similarity measure ATTRIBUTES as shown
in Table 7.1. The resulting similarity value matrix (Algorithm 2, Line 19) essentially is
the 2 x 4 matrix from Table 7.1, except for the first column and row. For this example,
we assume for the computeSetSimilarity function (Line 22) to reduce this matrix to a
similarity value by taking the average of all matching results from corresponding source-
target children nodes. Thus, a similarity value of 0,75 is calculated and propagated to
the node pair (entity, class). Afterwards, the similarity of all remaining Cartesian pairs
of graph nodes are calculated analogously. Since featurel and feature2 do not contain
any related children graph nodes, no further similarity values are calculated. Thus, as
a resulting mapping, only one mapping is retrieved by the retrieveM atches function in
Algorithm 1 (Line 7), as depicted in Figure 7.4 by the full line.

107



Chapter 7. Model Matching for Trace-Link Generation

Metamodel-driven Model Matching

In the following section, we introduce an algorithm to realise the idea, how mappings due
to metamodel matching may be used for improving model matching results. Essentially,
this improvement can be achieved by verifying or rejecting found matches based on the
metamodel mapping. This idea is called metamodel-driven model matching and imple-
ments the third similarity measure, called INSTANCEOF. For this purpose, we extend
the algorithms in Section 7.1.3 by the similarity measure INSTANCEOF. Additionally,
in order to use of the instance-of relationship between metamodels and models, which
is a necessary step in the process of metamodel-driven model matching, we base the
algorithms on TAGs. In analogy to Section 7.1.3, we again introduce two algorithms
for the sake of clarity. While Algorithm 3 focuses on the matching process of graphs,
Algorithm 4 deals with the matching process of graph nodes.

The procedure MATCHTYPEDGRAPHS in Algoritm 3 works according to the procedure
in Algorithm 1, calling the MATCHGRAPH function to work on source and target AGs,
which in turn calls the MATCHNODES function, (Algoritm 3, Line 4). However, the
latter function is extended by the use of the similarity measure INSTANCEOF (Line
9-10). In case this parameter is used, the MATCHNODETYPES function is evoked,
which is defined in Algorithm 4. The MATCHNODETYPES function takes a certain
Cartesian pair (s;,t;) of graph nodes from Algorithm 3 as input, thus working on re-
spective source and target AGs. For each such pair (s;,t;) the corresponding graph

nodes NodeATC-Tvpe Node A TC-TUPe of source and target ATGs are returned by the at-

source target
tributed graph morphism t (Line 2-3). For each pair Nodell'G.Tvre N odefgg%Typ “a

similarity value is calculated through the MATCHNODES function (Algorithm 4, Line
4), the same way as in Algorithm 1. As a consequence, the similarity value of
(Node;ﬂ:%gype,Nodeﬁlzgifype is propagated to (s;,t;) (Algorithm 1, Line 4). We re-

strict the use of the similarity measure INSTANCEOF to avoid potential cycles.
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Algorithm 3. Matching of two typed attributed graphs

Require:
Require:
Require:

Require:
Require:
Require:
Require:
Require:

Require:
Require:

Require:

AG' = (G, DY) and AG? = (G?, D?)
G'= (VA VA, EL EX A, EL A, (source}, target})jE{QNA’EA})
G* = (VE V3, E%4, E% 4, E% 4, (Source?, target?)je{aNA’EA})

ATGY = (TG, Z') with Z! as final algebra of D!
ATG? = (TG?, Z?%) with Z? as final algebra of D?
TG = (G', Z') and TG? = (G2, Z?)

Gt = (Vé,Vb,g(l;, 5]1\,14,5}914, (Source},Targetjl-)je{(;,NA’EA})
G? = (VA V3, E2,E% 4, E0 4 (S’ourcejz, Target?)je{G7NA7EA})
TAG' = (AGY,t') over ATG" with t' : AG' — ATG!
TAG? = (AG?,t?) over ATG? with t? : AG? — ATG?

similarityValues = {r|r € R and r > 0 and » < 1} U {UNKNOWN}

Ensure: similarityMeasure € {ATTRIBUTES, CONNECTIONS, INSTANCEOF}

1: procedure MATCHTYPEDGRAPHS(TAGY, TAG?, similarityMeasure)
2: matchGraphs(AG, AG?, similarity M easure)
3: end procedure

Ensure: (s;,t;) € (V& x V3)U (VS x VE)

4:
5
6:
7
8
9

10:

function MATCHNODES((s;, t;), similarityM easure)
if similarityMeasure = ATTRIBUTES then

return matchAttributes(s;,t;)

else if similarityMeasure = CONNECTIONS then

return matchConnectedNodes(s;,t;)

else if similarityMeasure = INSTANCEOF then

return matchNodeTypes(s;,t;)

11: end if
12: return UNKNOWN
13: end function

end
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Algorithm 4. Similarity of two typed graph nodes

Ensure: s; € V4 and Node lLG-Tvpe € Y,

source

Ensure: t; € V2 and N odeﬁggifyp “eV?

Ensure: typeSimilarityMeasure € similarityMeasure \ {INSTANCEOF'}

function MATCHNODETYPES(s;,t;)
ATG.T 1
NOdesource YPE 1 (SZ)

1:
2
ATG Type 2
4
5

return matchNodes(NodelLG-Tvre N odeégg%Typ “, typeSimilarityMeasure)

: end function

end

Example: Metamodel-based Model Matching

We illustrate the above two algorithms according to our running example in Section
7.1.2 with corresponding source and target AGs and their referring ATGs. In doing so,
we assume a given metamodel mapping according to Algorithm 1 working on source and
target ATGs, since we have illustrated its execution already in the previous example
(see p. 105). The final metamodel mapping is depicted in the upper layer of Figure 7.5
with a mapping from Entity to Class as well as from Feature to Field and Method.
Regarding this mapping, we assume the similarity values to be equal to 1. Secondly, we
set the similarity measure to INSTANCEOQOF in Line 1 of Algorithm 3 to demonstrate
the newly introduced similarity measure.

First, the Cartesian product of the set of all AG-source graph nodes (entity, featurel,
feature2) and the set of all AG-target graph nodes (class, field1, field2, method1
and method?2) is calculated, yielding a similarity matrix of 15 cells. For each Cartesian
pair, the MATCHNODES function (Algorithm 1, Line 4) from the MATCHGRAPH proce-
dure (Algorithm 1, Line 1) is invoked, returning a similarity value on the basis of the
MATCHNODETYPE function (Algorithm 3, Line 10). For example, for the graph nodes
entity and class, the attributed graph morphism ¢ (Algorithm 4, Line 2-3) yields the
graph nodes Entity and Class (being the metamodel types), respectively. Since a map-
ping exists between Entity and Class (as an outcome of the MATCHNODES function
(Line 4), the similarity value, 1, is propagated to the pair (entity, class). Regarding
the graph nodes entity and field1, the following similarity is calculated. Since their ac-
cording types Entity and Field do not match, the similarity of source and target graph
node is set to 0. Analogously, the similarities of the other Cartesian pairs is calculated
and assigned to the final similarity matrix (Algorithm 1, Line 4) as depicted in Table
7.2. As a result, matches are computed (Line 7).

Due to the propagation of similarities of metamodel elements to corresponding model
elements, numerous false mappings are computed, such as featurel to field2 and
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‘ class ‘ field1 ‘ field2 ‘ methodl | method2

entity 1 0 0 0 0
featurel 0 1 1 1 1
feature2 0 1 1 1 1

Table 7.2.: Similarity Values of AG-Graph Nodes

method?2 as well as feature2 to field1 and method1. This motivates the fact to
combine matching results due to differently configured matching algorithms to filter out
false mappings and to ideally render a correct and complete mapping as depicted in the
lower level of Figure 7.5. In the following section, we will show a specific combination of
matchers and configuration of the SVC that provides the matching results as portrayed
in Figure 7.5.

Entity Class
features ename fields methods
S o~
Feature -- fname - String Field chame Method
fname mname
\\\A k///
String
ooy
entity |- ename 1 Person | class - cname -# Person
featurel feature2 fields1 methods2
<«
featurel feature2 fieldl \%I/dsz methdsl method2
T 1
fnam fname2 fnamel field2 mett‘mdl mnaimez
' e Y. ' T I
fname2 mnamel A
name —_age | name i i getAge
age getName

Figure 7.5.: Mappings of Metamodel-driven Model Matching

7.1.4. Step 3: Configuration of Similarity Value Cube

As motivated in the previous example (see p. 110), there is a need to configure the SVC.
This is achieved in terms of the strategies and parameters listed in Appendix B.3.
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In the following, we demonstrate the aggregation and selection strategy regarding the
running example. Let us assume, the results of the attribute (cf. Table 7.3) and instance-
of similarity measure (cf. Table 7.4) from the previous examples. By applying the
aggregation strategy, Average, the above-mentioned matrices are aggregated to the ag-
gregation matrix in Table 7.5. Thereby, the average value is calculated for each source
and target node. Next, we use the selection strategy, Threshold, by setting the threshold
to 0,75. Hence, the resulting selection matrix is obtained as presented in Table 7.6.
This matrix represents the configured SVC and corresponds to a complete and correct
mapping as required and presented in the lower level of Figure 7.5.

‘ class ‘ field1 ‘ field2 ‘ methodl | method2

entity 1 0 0 0 0
featurel 0 1 0 0,5 0
feature2 0 0 1 0 0,5

Table 7.3.: Results of Attribute Similarity Measure

‘ class ‘ field1 ‘ field2 ‘ methodl | method2

entity 1 0 0 0 0
featurel 0 1 1 1 1
feature2 0 1 1 1 1

Table 7.4.: Results of Instance-of Similarity Measure

‘ class ‘ fieldl ‘ field2 ‘ method1 ‘ method?2

entity 1 0 0 0 0
featurel 0 1 0,5 0,75 0,5
feature2 0 0,5 1 0,5 0,75

Table 7.5.: Aggregation Matrix

‘ class ‘ fieldl ‘ field2 ‘ methodl | method2

entity 1 0 0 0 0
featurel 0 1 0 0,75 0
feature2 0 0 1 0 0,75

Table 7.6.: Selection Matrix
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7.1.5. Variations of Metamodel-driven Model Matching

This section describes the dimensions of metamodel-driven model matching. We inves-
tigate how metamodel matching may improve the results of model matching by propa-
gating the similarity of metamodel elements to their conforming model elements. In this
way, we examine three possible ways of influence, differing in a) the quality of provided
metamodel mappings and b) the point in time, when applied to the model matching
process.

Model element mappings due to model matching may be filtered, that is, validated, if
a correct metamodel mapping exists, or rejected otherwise. This requires a correct and
complete metamodel mapping to be beneficial for the quality of the mapping.

Besides the quality of the metamodel mappings, the point in time can be varied, when
metamodel element mappings are used in the matching process. We analyse three pos-
sibilities: a) before matching, referred to as blocking, b) during matching, referred to
as instance-of (as demonstrated in Algorithm 3 for the similarity value INSTANCEOF)
and c) after matching, referred to as filtering.

In the following, we elaborate on the principle understanding of the above-mentioned
three possibilities:

e Blocking: The key idea of blocking is to reduce the combinations of source and
target elements of the Cartesian product, being a necessary step in the matching
process. According to [KR09] blocking is needed for large inputs to reduce the
search space for model matching from the Cartesian product to a small subset of
the most likely matching pairs. Blocking techniques typically use a key to partition
the model elements to be matched into blocks. In the case of applying metamodel
matching, this key can be derived based on metamodel element matches. In doing
so, all source elements conforming to a certain source metamodel element and all

target elements conforming to a certain target metamodel element are assigned to
a block.

Thus, by the process of blocking only model elements assigned to a block and with
a corresponding metamodel mapping are incorporated into the matching process
and found mappings are constraint to model elements whose metamodel elements
match (provided a correct and complete metamodel mapping). As a consequence,
complexity is reduced. This can be seen in our running example, where the com-
plexity is reduced from 15 calculations to 5.

e Instance-of Matching: During the matching process, metamodel matching can
be applied in two ways: a) as an independent matcher, or b) as a filter mechanism
applied on the results of existing matchers. The first approach is to implement a
matching algorithm on the basis of the instance-of similarity measure as described
in Section 7.1.3. The similarity of a given source and target model element is
derived from the similarity of the according source and target metamodel elements.
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Assuming a correct and complete metamodel mapping, the resulting similarity
would be either 0 (no similarity) or 1 (equivalence).

The second approach to instance-of matching, filters the results of existing match-
ers. In particular, existing matchers calculate the similarity between model el-
ements as usual, yet, afterwards the result can be invalidated due to the non-
existence of a metamodel match.

Both approaches influence the computed similarities during the matching process.
In contrast to the blocking mechanism, the instance-of matchers has an impact
on both the similarity of certain source and target model elements and potentially
on other source-target combinations. The latter is due to the aggregation and
selection strategies applied on the SVC.

e Filtering: Filtering refers to the process of applying metamodel matching results
to the resulting mappings obtained from model matching. In this way, the re-
sulting model mapping may be validated with respect to a metamodel mapping.
In particular, all found model matches are checked for an appropriate metamodel
match. If an according match is found the match is kept, otherwise it is removed
from the mapping. As a consequence, the resulting model mapping exclusively
contains matches which have an according metamodel match. In summary, this
mechanism has the same effect as blocking, yet does not reduce complexity.

For an evaluation of the above-mentioned approaches with respect to matching quality,
we refer to Section 9.2.

7.1.6. Step 4: Extraction of Trace Links

The result of the matching process is a mapping from source to target elements. During
the process of extraction, traceability data is derived from this mapping. Numerous
possibilities on how this derivation works are proposed in the following. Common to all
derivation possibilities is the use of additional information. Given that, the derivation
entails an analysis of the additional information, which may be an automatic, or a
manual process. Finally, the extracted traceability data is populated to the traceability
repository.

Automatic Analysis

The automatic analysis may be based on existing traceability data to increase data con-
sistency, or stochastic data to deliver filtered matches. Both analyses are to improve the
quality of found matches.

e Existing traceability data: The extraction may rely on existing data from a given
repository for traceability data. The repository is used to perform consistency
checks on the basis of existing traceability data and the newly proposed state of
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data due to the extraction process. In doing so, potential duplicates and depen-
dency cycles can be calculated and avoided in the traceability data by filtering the
to-be extracted matches.

e Stochastic data: The extraction of traceability data is based on the distribution
function of found matches (result of matching process) according to their similarity
value. The distribution of certain similarity values is analyzed to derive traceability
data, for example, by applying a threshold to filter out matches with a similarity
value below the threshold, or more generally, by allowing matches from a certain
quantile. In both cases, the input mapping is filtered and the remaining matches
are populated to the traceability repository.

Manual Analysis

Beyond the automatic processes, the extraction may be based on user-specific data. This
form of analysis is a manual process as opposed to the formerly-mentioned. In effect,
the user is provided with a suggestion system over the resulting matches to analyse
and evaluate these, for example, by incorporating domain knowledge. Afterwards, the
user-selected matches are extracted to the traceability repository. The matching process
potentially delivers incorrect and incomplete matching results (cf. Section 8.2) due to
insufficient information in models for matching, or missing context information [Voill].
Therefore, the suggestion system gives way to another optimization to improve the
quality of matches and thus, the traceability data.

In summary, the above-mentioned possibilities may also be combined to a semi-automatic
process. However, further investigation on their feasibility is out of scope of this work.
Regarding their implementation, each possibility (or combination) essentially is a reali-
sation of the IConnector in terms of the GTT (cf. Section 6.1). The extraction phase
concerns the derivation of trace links out of a given mapping due the above-mentioned
possibilities, followed by the typing phase, which takes these trace links—referencing
source and target artefacts—as input for the ezecuteModelOperation() function. As a
result, trace links from matched source and target models are populated to registered
traceability engines of the GTI. Therefore, this connector is a blackbox connector. The
matching system can be interpreted as an engine delivering traceability data and thus,
realising the extraction phase, whereas the blackbox connector implements the typing
phase as depicted in Figure 7.6.
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7.2. Implementation of the Model-Matching System

In this section, we provide an overview on the implementation of the model matching
system as introduced in Section 7.1. The realization of this matching component is
based on a metamodel matching framework, called Matchboxr. This framework is build
upon the SAP Auto Mapping Core, an implementation inspired by the schema matching
framework, COMA++ [DRO7]. We refer to Appendix B for a detailed description on
the used matchers and the approach on parallel matching of Matchbox. The reason for
choosing Matchbox is its language genericity and broad scope of optimized metamodel
matchers, fully aligned with our conceptual work on the three similarity measures for
model matching. Based on Matchbox, we introduced 8 matchers for model matching in
realization of these three similarity measures: Name and name path matcher in terms of
the Attribute Similarity Measure; children, parent, leaf, sibling, graph edit distance
and pattern matcher being structural matchers and variations of the Connection Sim-
ilarity Measure. Furthermore, we implemented an instance-of matcher based on the
Instance-of Similarity Measure, which works in analogy to the data type matcher.
Apart from instance-of matching, we investigated blocking and filtering techniques as
part of metamodel-driven model matching.

The main adaptions to Matchbox concern the introduction of model matchers. Model
instances differ in structure and content compared to metamodels and thus requires a
different approach to leveraging model-specific characteristics for matching. These main
characteristics are:

e Instances provide values of attributes.
e Instances provide an instance-of relation.

e Instances may contain other instances, e.g., attributes, which characterise the con-
taining instance.

Matchbox provides several existing matchers, which were built for the purpose of meta-
model matching (cf. Appendix B). Yet, these do not make use of the above-mentioned
characteristics. As a consequence, an instance-specific version of each metamodel match-
ers is implemented. In the following sections, we shed light on the model import and
new versions of matchers with respect to the above-mentioned characteristics.

7.2.1. Model Import

The importers of Matchbox hold for Ecore, XSD and OWL. Each importer transforms
models of the according language into the internal data model of Matchbox, called Genie
(cf. Appendix B). Regarding our work, these importers need to account for metamodels
as well as for model instances.

Since the internal data model of Matchbox is able to express models and metamodels
as TAGs and for the sake of generality, we abstract from technical names in the fol-
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lowing discussion. For a technical description, we refer to [Kasll]. In order to make
use of model-specific characteristics, the import follows the description of Section 2.4.3
for model instances and their corresponding metamodels, that is, for metamodels, we
base the import on flattened containment relationships, while for model instances on
containment relationships.

In addition, we summarise the most important aspects of the model import with respect
to:

e ambiguousness of labels for graph nodes
e mandatory attribute values
e compatibility of tree structure

Regarding metamodel matching, numerous matchers, as described in Appendix B.2, are
based on the name and name path matcher, which essentially are string-based matching
algorithms. The algorithms are founded on the assumption that graph nodes of source
and target with the similar labels refer to similar model elements corresponding to the
graph nodes. Thus, the metamodel-element name is an important source of linguistic
information for metamodel matching. By way of import of metamodels, the label of a
graph node is set to the metamodel element’s name. However, for model instances, the
element name does not guarantee uniqueness, since numerous instances of a metamodel
element carry the same name (or null, if not set). This has implications for the attribute
matcher as explained in Section 7.2.2 below.

In Section 2.4.3, we have described, how the labels of graph nodes and data nodes are
set. The import of model instances (representing classes, attributes, references etc.)
results in a graph node, where its label is set to the metamodel element’s name and a
corresponding data node with its label set to the value of the instance. In terms of the
running example from Figure 7.3, an attribute instance, for example, the feature with
value name (denoted as featurel) is represented as a graph node, where the label is set
to the metamodel element’s name Feature', while the corresponding data node’s label
is set to name. The allocation of this value property is mandatory for attributes and
reference for corresponding representations in the graph model.

In order to be compatible with previous versions of Matchbox, in particular, with respect
to the existing matchers, parent, children and leaf matcher, working more efficiently on a
tree, the internal data model of Matchbox features a primary tree structure. Essentially,
this upward compatibility requires the transformation of a graph into a tree, as discussed
in Section 2.4.3. Regarding model instances, the primary tree structure is based on
containment relationships, while for metamodels, the flattened containment mode is
chosen.

1We have chosen the label featurel over Feature for the sake of better readability to be able to differ-
entiate between different features, which would carry the same label.
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7.2.2. Applied Model Matchers

Matchbox provides several existing matchers which were built for the purpose of meta-
model matching. As mentioned in the beginning of this section, the metamodel matchers
(cf. Appendix B) do not make use of the above-mentioned model-specific characteristics
and thus need to be extended. As a consequence, an instance-specific version of each
metamodel matcher is implemented. In the following, we list the adapted matchers and
state their characteristics.

Attribute Similarity Measure

The name and name path matcher for metamodel matching calculate string similarities
based on the names of metamodel elements. As mentioned under Section 7.2.1 regarding
the import of model instances, the labels of graph nodes are set to their corresponding
metamodel element names. Consequentially, numerous instances of a metamodel ele-
ment carry the same name (or null, if not set) and are not unique and thus, the name
matcher would calculate false similarities. Therefore, the names of elements alone do not
suffice for name matching on instance-level. To tackle, this shortcoming, we additionally
analyse the values of attributes. Not every instance’s value is set. Yet, instances may
contain attribute instances with set values. In fact, a very important characteristic of
attributes is that, not only the name of an attribute is set, but also its value. We use this
information and define the attribute similarity measure as such: Two model elements
are similar, if their containing attributes have a similar name and wvalue. The result-
ing matcher is called attribute matcher and replaces the name and name path matcher
used on metamodel-level. In contrast to the latter matchers, the attribute matcher uses a
value matcher, which is an adaption of the name matcher. Essentially, the value matcher
calculates the string similarities on the values of instances. Since a value (cf. Appendix
B, data model of Matchbox) is a list of strings, rather than a single string (as in the case
of the entityName), the algorithm uses an additional aggregation step.

Connection Similarity Measure

Regarding the connection matcher, we take following relationships (i.e., containment
and reference) of instances into account. Inheritance relationships are not needed at
the level of models. The connection matcher essentially derives the similarity of two
instances based on the similarity of its related instances. To derive the similarity of
related instances, the connection matcher uses the attribute matcher. In Matchbox, the
children, parent, sibling and leaf matcher, all employ the name and name path matcher
(cf. Appendix B). These are adapted by replacing the name and name path matcher
with the attribute matcher.
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The graph matchers of Matchbox, namely graph edit distance and pattern matcher, use
an additional internal data model, whose creation requires instance-specific adaptions.
In the following, we highlight these adaptions.

The graph edit distance matcher (GED) calculates the similarity of two given model
elements based on their connection in a common subgraph. The GED matcher of
Matchbox is an approximate subgraph isomorphism algorithm based on Neuhaus and
Bunke [NBO04]. Since the calculation of the maximal common subgraph is NP-complete
[GXTL10], the GED of Matchbox calculates a lower bounded graph edit distance, in-
stead of the minimal graph edit distance for two given input graphs. The input graphs
are restricted to be planar. In doing so, the problem of complexity can be solved in
almost quadratic time. If the graphs are non-planar, these are transformed to planar
graphs by carrying out a minimal set of graph modifications. As an adjustment to meta-
model matching, the GED requires a seed mapping (set of correct matches), which is
used as an initial mapping for the similarity calculation in order to increase the quality of
matching results. For a detailed description of the algorithm, we refer to [Heil0, Voill].

The pattern matcher calculates the similarity of two given model elements based on
reoccurring patterns (information) in the source and target model. The underlying
matching algorithm is based on the premise that model elements, which are part of
the same pattern in different models are assumed to be similar. Patterns indicate re-
dundant information or the usage of established design structures. Both scenarios are
accounted for in terms of the pattern matcher. A comprehensive description follows in
[Voill, Mucl0]. First, the algorithm needs to identify patterns (pattern mining), after
subsequently matching these patterns in order to identify possible element mappings.

Adaptions to the graph matchers relate to the model import, particularly to adaptions of
the internal graph model used by the graph matchers of Matchbox. In the first place, this
graph model needs to be enhanced with respect to model instances, not being required
for metamodel matching and thus not present. For metamodel matching, metamodel
elements are transformed into graph nodes with a corresponding label. Both, GED and
pattern matcher, use these label names for matching. Yet as argued above, according to
the current implementation of the model import, this name does not characterise model
instances uniquely. Therefore, the setting of the label is based on the value of instances.
As a result, the labels of graph nodes are more expressive for matching on instance level.

Furthermore, in order to provide a seed mapping for the GED matcher, a specific flag
as attribute of the imported model elements is set to true for corresponding root model
elements of source and target model. The GED matcher uses a mapping between both
root elements as seed mapping.

Instance-of Similarity Measure

The realisation of the instance-of similarity measure requires the implementation of a
new matcher, the instance-of matcher. Since the internal data model of Matchbox
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reflects the instance-of relationship between model and metamodel elements, no further
adaptions to the data model are necessary in order to propagate similarity values of
metamodel elements to their corresponding instances. The instance-of matcher uses
4 other matchers in order to compute the similarity of metamodel elements, that is,
name matcher, name path matcher, parent matcher and leaf matcher. This choice and
number of matchers is founded on the work of [DR02, Mucl0]. Their evaluations show
matcher combinations of 3 — 4 matchers rendering best matching quality as opposed
to combinations with a higher or lower number. The adoption of graph matchers was
omitted due to runtime concerns.

7.3. Contributions

This chapter contributes the following:
C3: Parallel Model Matching for Trace-Link Generation

The main contribution of this work is a traceability solution based on parallel model
matching for arbitrary source and target models. This solution is proposed in addressing
the problem of lacking traceability data due to non-existing or inaccessible transforma-
tion engines (blackbox systems). Aligned with the approach on blackbox and invasive
connectors, this is an a posteriori traceability approach, since the blackbox system is
extended by the matching system and its resulting mapping is augmented afterwards
through a blackbox connector.

Furthermore, this contribution is based on a novel, language-agnostic concept, defining
three similarity measures for model matching to generate trace links:

1. Attribute Similarity Measure: Similar data nodes from source and target
graphs, indicate shared characteristics, referred to as attributes, and thus, a po-
tential similarity between the graph nodes that the data nodes are connected to.

2. Connection Similarity Measure: The similarity between a set of source and
target children nodes acts as a similarity measure. The measure is based on the
rationale that similar children graph nodes, have similar parent graph nodes. Thus,
the connectivity of a graph node to its children graph nodes is used to propagate
the similarity from child to parent node.

3. Instance-of Similarity Measure: We base the matching process on model level
on the results of metamodel matching by making use of the instance-of relation.
Thus, we investigate the outcome of propagating the similarity of metamodel ele-
ments to their conforming model elements.

In realisation of this concept, 8 matching algorithms are implemented on the basis of the
three similarity measures: Name and name path matcher in terms of the Attribute Sim-
ilarity Measure; Children, parent, leaf, sibling, graph edit distance and pattern matcher
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being structural matchers and variations of the Connection Similarity Measure and fi-
nally, an instance-of matcher based on the Instance-of Similarity Measure.

As common to parallel matching systems, the matching results due to different matching
algorithms are combined. In doing so, we base our work on the metamodel matching
system from Voigt et al. [Voill] to apply specialised graph-based matching using planar
graphs with the benefit of improving matching results. Since metamodel matching does
not incorporate attribute values of model instances, the metamodel matching algorithms
from [Voill] are extended to instantiate the proposed similarity measures.
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The evaluation of this work concerns two parts. First, we evaluate the connector-based
approach in terms of the generic traceability interface in Section 8.1. Secondly, we eval-
uate our approach regarding the model matching system for traceability in Section 8.2.
In this way, we evaluate the two main components of the generic traceability framework.

The evaluation for both components was performed on a laptop running Java 1.6.0.22
64-bit on 4 Intel i5 cores with 2.4 GHz each (OS Windows 7, 64 bit). The main memory
comprises 4 GB with 2 GB assigned to Java.

8.1. Methodology for Automatic CRUD Trace-Link Generation

In this section, we evaluate the connector-based approach on invasive and blackbox
connectors regarding the first category. The evaluation strategy is based on building
representative connectors and evaluating their generated traceability data against refer-
ence data. The strategy is further described in Section 8.1.1, followed by the evaluation
setup in Section 8.1.2. Next, we present the examined connectors in Section 8.1.3. Fur-
thermore, we evaluate the conduction of traceability scenarios on the generated data due
to the connectors in Section 8.1.4. Finally, we conclude this section with a summary of
our results in Section 8.1.5.

8.1.1. Evaluation Strategy

The goal of the evaluation for the first category is to show that the methodology for con-
nector development can account for traceability solutions based on invasive and blackbox
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connectors. Therefore, the resulting traceability data is evaluated against a reference
mapping, called gold mapping, which is used as a frame of reference to analyse the
quality of the connector-generated data.

Secondly, to acquire representative results, the following prerequisites are adhered to:
1. evaluate diverse language scope to prove language-independency

2. evaluate with respect to the dichotomy of trace link generation classes, to show
the feasibility of both connector approaches (invasive and blackbox connector)

3. evaluate scenarios with model-to-model and model-to-text transformations, to
demonstrate the difference in granularity in terms of traceability-data modelling
(cf. rule-based versus operator-based tracing).

Thirdly, the connector-based solutions need to deliver traceability data with a sufficient
expressiveness to conduct traceability scenarios successfully. The traceability scenarios
taken into account for this evaluation are: System Comprehension, Coverage Analysis,
Change Impact Analysis, Orphan Analysis and Transformation Debugging. Since trace-
ability scenarios are views on the traceability graph as argued in Section 5.4, we need
to show that the resulting traceability graph has an adequate expressiveness to execute
the above traceability scenarios successfully.

8.1.2. Evaluation Setup

In the following two sections, we describe the evaluation scenarios and the derivation of
the gold mapping.

Evaluation Scenarios

To cover a broad language scope (1.) with representatives from both generation classes
(2.), the following language spectrum was chosen as summarized in Table 8.1. The first
row refers to the illustrative example introduced previously in Section 6.3.1. This exam-
ple is based on a Xpand transformation, Person2JavaClass, rendering Java classes from
a given source model representing a person. For this scenario an invasive connector is
evaluated. We extend this scenario with a range of Xpand model-to-text transformations
from an SAP business application called the Sales Scenario. For a detailed description,
we refer to Appendix C.

With respect to the Sales Scenario, the evaluation is demonstrated for the feature Quo-
tation Management (QM) exemplary for one domain-specific language (DSL) to avoid
repetition, since it suffices to implement the connector for all Xpand statements rele-
vant to traceability, that is, according to the operator classification in Section 6.3. This
operator-complete reference implementation works analogously for all DSLs and features
of the Sales Scenario. Therefore, we chose the View DSL as its transformations include
a representative of each operator class. This DSL is used to model the graphical user
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interface for the Sales Scenario including the Quotation Management capabilities. The
source and target artefacts of the selected transformation as well as the transformation
program are listed in Appendix D.1. The transformation program consists of 135 lines
of code and generates two Java classes with 32 and 48 lines of programming code.

Furthermore, we evaluate blackbox connectors for QVT and ATL. The former connector
is evaluated against a QV'T transformation, QVTO UML2RDB, receiving an UML source
model and issuing an instance of a relational database model as specified in Appendix
E.1. The ATL connector is tested for a range of 41 model-to-model transformations from
the ATL Zoo [Fouc].

Therefore, the evaluation scenarios include model-to-model and model-to-text transfor-
mations (3.). In total, the evaluation entails three different connectors (one per lan-
guage). Accordingly, we provide a description of each connector in Section 8.1.3.

Generation Class Language Connector Type Scenarios

Explicit Xpand Invasive Person2JavaClass
Explicit Xpand Invasive Sales Scenario
Implicit QVT Blackbox QVTO UML2RDB
Implicit ATL Blackbox ATL Zoo

Table 8.1.: Language Representatives

Evaluation Gold Mapping

The resulting traceability data of the connectors is evaluated against a certain gold
mapping, which is used as a frame of reference to analyse the quality of the connector-
generated data. In this sense, the gold mapping represents what the connector is sup-
posed to deliver. The derivation process of the gold mapping is manual. For the explicit
generation class (invasive connectors), this gold mapping is derived by analysing the
transformation program and identifying its operators and rules. For each operator (or
rule, if applicable), corresponding trace links are defined according to the methodology
from Chapter 6. Regarding the implicit generation class, the gold mapping is derived
from the existing traceability model by capturing its expressiveness. Additionally, we
add the expected CRUD link types according to the methodology.

This derivation process is executed for a representative from each generation class, that
is, for the selected transformation from the Sales Scenario as described above and the
QVTO UML2RDB transformation. The resulting gold mappings for these transforma-
tions are listed in Appendix D.2 and E.2, respectively.
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8.1.3. Evaluation Connectors

This section presents three different connectors for Xpand, QVT and ATL, respectively.

Xpand Connector

The Xpand connector (invasive connector) for the Sales Scenario is the same connector as
proposed for the Person2JavaClass transformation in Section 6.3. In this section, we add
additional information, where necessary to give a complete view on the Sales Scenario
evaluation. In doing so, we follow the proposed steps from Section 6.3 regarding the two
phases from the methodology, namely the extraction and typing phase.

Extraction phase: Per Definition 36, the extraction phase determines the trace graph
structure per transformer through the instantiation of Artefact and TraceLink of the
traceability metamodel. Thus, we need to implement a mapping from each transformer-
specific execution to traceability data. The traceability graph is constructed by instan-
tiating operators as attributes of the trace links (see Section 5.4 on alternative ways to
modelling traceability graphs).

Following the methodology, the extraction is scenario-driven as well as transfomer-driven.
For the purposes of this evaluation, we focus on all traceability scenarios mentioned in
Section 8.1.1.

Regarding the transformer-driven extraction in terms of operators, we need to imple-
ment the connector for all Xpand statements relevant to traceability. Since Xpand is a
model-to-text transformation, we need to consider the operator classification from Ta-
ble 6.2. Since all operator classes are applicable to Xpand statements, the connector
is implemented accordingly. Rules are degenerated in Xpand and therefore not traced.
We refer to Section 6.3 for a detailed description on deriving traceability data out of
Xpand statements and only provide a summary of selected transformations in Table 8.2.
Recalling from Section 6.3, since the target is newly created in model-to-text transfor-
mations, a CreateTraceLink is used in all above cases, except for the query operator
(cf. Table 8.2). Regarding model queries, Xpand allows the definition of extensions for
user-defined queries on accessing information of the source model, which are modelled
through a RetrieveTraceLink.

For a technical representation of the traceability data due to the above-mentioned op-
erators regarding the feature (Quotation Management (in terms of the View DSL), we
refer to Appendix D. All operators and trace links are represented including 81 operators
distributed over 135 lines of transformation program.

Typing phase: The typing phase determines the types of the artefacts and trace links
of the traceability graph on the basis of Facets and Configuration. The evaluation is
based on the following facets:

e NameFacet for the name of a model element, if applicable,

126



8.1 Methodology for Automatic CRUD Trace-Link Generation

Operator Xpand-statement Source Artefact Target Artefact Link Type
Static Text TEXT template snippet  text block CREATE
Model Access EXPRESSION model element text block CREATE
Data Manipulation EXPRESSION model element(s)  text block CREATE
Control Flow FOREACH model element text block CREATE
Module Control FILE model element file/text block CREATE
Query ext file! model element template snippet ~RETRIEVE

Table 8.2.: Derivation of Traceability Data out of Xpand Statements

o TextFileFacet and TextBlockFacet (cf. Figure 5.3) for file or text-block infor-
mation of a given artefact,

e ArtefactTypeFacet for the metamodel type of a given artefact and

e TransformerFacet for the name of a given rule or operator, for example, EX-
PRESSION and its identifier.

QVT Connector

The QVT connector is a blackbox connector based on the integrated traceability solution
of the QVT engine. The evaluation is based on QVT Operational from the Eclipse
project?, which offers a dedicated traceability support by generating a so-called trace
file. While executing a transformation, operational mappings are logged into the trace
file containing the traceability data conforming to the QV'T traceability metamodel.

Following the line of argumentation from Section 6.4, we need to implement a map-
ping transformation for transforming instances of the QV'T traceability metamodel to
instances of the GTF traceability metamodel. Regarding the mapping transformation,
we go into more depth regarding the following points. First, we describe the QVT trace-
ability metamodel and its mapping to the GTF traceability metamodel. Secondly, we
explain the typing phase and the mapping to facets.

The QVT traceability metamodel contains the following structures (see Figure 8.1 show-
ing a simplified version). The root class of the model is the Trace, which contains a
collection of TraceRecords. A TraceRecord represents a trace link (in terms of the
traceability model of our approach) containing four kinds of information: The EMap-
pingOperation specifies the QVT operation, which is responsible for the trace link
creation. In addition, an EMappingContext, EMappingParameters and EMap-
pingResults are provided. The context contains information regarding the source arte-
facts of the transformation. Parameters passed to the QVT mapping specification are
traced with the help of EMappingParameters. Finally, the resulting model elements are
tracked by EMappingResults, which fundamentally correspond to target artefacts. These

2QVT Operational http://projects.eclipse.org/projects/modeling. mmt.qvt-oml
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Figure 8.1.: QVT Traceability Metamodel
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metamodel elements are correspondingly mapped to the GTF traceability metamodel in
terms of the transformation program described in the following excerpt:

main() {

qvt.objects0fType (QVTTraceDSL: : Trace) . traceRecords->map TraceRecord2TraceLink
(O

b

mapping TraceRecord::TraceRecord2TracelLink() : CreateTraceLink {
init {
var facetsList := List {
self .map TraceRecord2TracelLinkNameFacet (),
self .map TraceRecord2TracelLinkMappingFacet ()

}
3
sources := self.map TraceRecord2SourceArtefact()->asList();
targets := self.map TraceRecord2TargetArtefact()->asList();
facets := facetslList;

}

mapping TraceRecord::TraceRecord2SourceArtefact() : Artefact {
uuid := self._context._context.value.modelElement.map EO0bject2UUID();
facets := self.map TraceRecord2SourceArtefactTypeFacet()->asList();

}

mapping TraceRecord::TraceRecord2TargetArtefact() : Artefact {
uuid := self._result._result.value.modelElement->first() .map EO0bject2UUID();

facets := self.map TraceRecord2TargetArtefactTypeFacet()->asList();
b
mapping TraceRecord::TraceRecord2SourceArtefactTypeFacet() : Facet {
id := "com.sap.gtf.facet.TypeFacet";
value := self._context._context.type;

}

Listing 8.1: Trace File to GTF Traceability Model Transformation

A TraceRecord maps to a trace link (Line 2). Since the QVTO trace file implies suc-
cessful executions of model-elements mappings, each trace link corresponds to a Cre-
ateTraceLink. Hence, TraceRecords are converted into CreateTraceLinks (Line 5-15).
Secondly, the source and target artefacts correspond to EMappingContext and EMap-
pingResults, respectively and are transformed in terms of the mappings in Line 17 (for
the source) and Line 22 (for the target).

The UUID? of source artefacts is drawn from the EMappingContext (Line 18), whereas
the identifier for target artefacts is derived from the EMappingResults (Line 23).

3Since the QVTO implementation does not support a mechanism to get the fragment of an EObject’s
resource, we only derive the URI. Nevertheless, a possible solution could be to base the implementa-
tion on EcoreUtil.
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Since the QVT traceability metamodel only accounts for traceability on the level of rules,
the traceability of operators cannot be extracted and are thus not considered.

The QVT connector’s typing phase is based on the following facets, which are stored in
the respective artefacts and trace links:

e TraceLinkNameFacet to trace the name of a given transformation rule (Line 8),
e TraceLinkMappingFacet to trace the transformation rule (Line 9) and

o ArtefactTypeFacet to trace the name of the metamodel type of source and target
artefacts (Line 19, 24).

In particular, trace links are enhanced with information such as the name of the re-
sponsible mapping (TraceLinkNameFacet) and the EMappingOperation (mapping) itself
(TraceLinkMappingFacet). Besides that, artefacts store an object of the ArtefactType-
Facet containing the name of the artefact’s metamodel type.

ATL Connector

The ATL connector is a blackbox connector and is built in analogy to the QVT con-
nector. The traceability data in the standard ATL virtual machine (EMFVM) is not
stored in a model, but is internally represented as classes of type TransientLinkSet and
TransientLink as described in the specification of the ATL vitual machine [Foub]. For
obtaining traceability data as a model, there are several options:

1. By applying the higher order transformation (HOT) ATL2Tracer [Jou05] to ren-
der a modified version of the transformation that produces a traceability model
conforming to a simple traceability metamodel as depicted in Figure 8.2,

2. By applying the HOT ATL2W Tracer® as in the case above to render a modified
version of the transformation that produces a traceability model conforming to a
weaving metamodel,

3. By modifying the ATL Virtual Machine to serialize the traceability information
conforming to the same metamodel as option 2, or use the experimental ATL
virtual machine EMFTVM?® that uses a metamodel evolved from option 2.

We follow the first option based on the HOT, ATL2Tracer in order to gain the advantages
of an already integrated traceability solution requiring no additional effort. The used
traceability metamodel is depicted in Figure 8.2. The first option uses a subset of the
traceability metamodel used in the second option, yet the latter is applied for model
weaving, which has not been regarded in this work. To explain the phases of the ATL
connector, we first describe the mapping of the ATL traceability metamodel® to the

“http://www.cclipse.org/gmt/amw /examples/#ATL2W Tracer
Shttp://wiki.eclipse.org/ATL/EMFTVM# Advanced_tracing
Shttp://www.eclipse.org/atl/atl Transformations/# ATL2Tracer.
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Figure 8.2.: ATL Traceability Metamodel

GTF traceability model, secondly the mapping to the used facets. The ATL traceability
metamodel is mapped to the following corresponding GTF metamodel elements:

e The ATL TraceLink corresponds to the GTF TraceLink.

e The ATL EODbject corresponds to the GTF Artefact: Source and target
elements—instances of EObject—are mapped to source and target artefacts—
instances of Artefact.

e The ATL ruleName corresponds to the rule name captured as a facet (cf. typing
phase below) of the GTF CRUD-TraceLinks.

e Regarding the UUID of artefacts, ATL generates identifiers based on XMI upon
serialization of the traceability model.

The ATL connector’s typing phase is based on the following facets:
e TraceLinkNameFacet to trace the name of a given rule and

e ArtefactTypeFacet to trace the name of the metamodel type of source and target
artefacts.

Since the ATL traceability metamodel only applies to traceability on the level of rules,
the traceability of operators cannot be extracted from the generated traceability model
of ATL2Tracer. Thus, the conditions of typing apply to rules only. With the above
ATL traceability solution, only the rule name is traced. For enhanced information, such
as a rule identifier, for example, the offset, additional support from the ATL VM is
needed, which is out of scope of this work. Thus, a facet as in the case of QVT with
the TraceLinkMappingFacet is omitted. In summary, trace links are enhanced with
the following information: The ATL ruleName, being an attribute of TraceLink, is
gathered through the TraceLinkNameFacet. Besides that, artefacts are linked with an
ArtefactTypeFacet which contains the name of the artefact’s metamodel type.

More information on the 41 ATL transformations is followed up on in Section 8.2.4
regarding the matching approach. Essentially, the ATL connector is used to collect
traceability data, which is used as reference data for the mappings extracted through
the matching approach.
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8.1.4. Evaluation Results

In the following section, we present the evaluation result for a representative of each
generation class, that is, for the Xpand and QVT connector. The results concern the
gold-mapping coverage and traceability-graph expressiveness. While the former refers
to the achieved quality of trace links in terms of covering the gold mapping, the latter
requires an analysis on the expressiveness of the resulting traceability graphs.

Both connector-based approaches were implemented to achieve a complete coverage of
the gold mapping (cf. Section 8.1.2). Regarding the data-manipulation operators of the
Sales Scenario, the evaluation included simple expressions of string concatenation. The
traceability of complex manipulations needs to be further investigated. An analysis of
the benefits in relation to the granularity level of traceability is necessary.

Regarding the expressiveness of traceability graphs, the outcome is summarised in the
subsequent two sections for the invasive and blackbox connector.

Invasive Connectors

Recalling that traceability scenarios are views on a traceability graph, we show to which
extent the connector delivers a sufficiently expressive graph with respect to each trace-
ability scenario.

System Comprehension: Since all operators in the transformation program are
traced, the traceability graph’s expressiveness provides a complete view on the transfor-
mation mapping. The user may navigate along trace links between source and target
artefacts of the transformation to understand their logical and functional dependencies.
Additionally, the CRUD trace links capture the kind of transformation as classified in
Section 5.2 and related operations on model elements, e.g., several elements were created
and updated.

Coverage Analysis: To determine, whether all requirements were covered by test cases
in a given MDSD process, the traceability of models and model elements is coupled with
the task of collecting traceability data for an end-to-end development process. Since the
runtime footprint of all operators is traced as per connector design, all transformed source
models and elements are traced. Thus, it is possible to follow all outgoing links from
a set of design models (e.g., from the feature Quotation Management) to all generated
target classes. This expressiveness can be used for a coverage analysis on an end-to-end
traceability graph, for example, to decide, whether a certain requirement related to the
feature Quotation Management and all of its generated classes are followed up by a set
of test cases, which are run for the coverage analysis.

For a coverage analysis, it might be convenient to vary the granularity level of trace-
ability, for example, regarding the generated classes, methods and/or files can be linked
to test cases referring to unit and integration tests. Depending on the more suitable
view, the granularity of the traceability data needs to be configured, for example, the
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granularity level is set to file level only. Since it is possible to configure traceability data
though the settings of granularity and scope (cf. Section 5.3), a coverage analysis can
be conducted on the configured data. This applies to the other scenarios the same way.

Change Impact Analysis: As mentioned in the motivating example a change impact
analysis determines how changing one artefact would affect other artefacts. For an end-
to-end traceability scenario, the same conditions as for a coverage analysis apply to the
traceability graph’s expressiveness. In addition, explicit dependencies on model elements
need to be considered, e.g., bestowed through requirement dependencies. The derivation
of these links is beyond the scope of this work, however, they can be incorporated into
our way of modelling in storing them as facet objects in the corresponding CRUD trace
links.

Recalling the modelling adaption due to hyperedges and the iterative execution of oper-
ators (see p. 88), we capture the additionally needed mappings (from source to target
artefacts) in the trace links. Therefore, a change impact analysis can be conducted on
individual source-target relationships directly related to a specific operator as explained
on p. 88.

Orphan Analysis: An orphan analysis is used to find so-called orphaned artefacts (that
are not referenced by, or reference other artefacts), e.g., while deleting a model element,
the corresponding code might be outdated. The traceability graph is used to find such
orphaned elements by searching for dangling edges, e.g., the deleted model element leads
to a dangling edge pointing to outdated code in the generated target. Since our approach
does not propose to model dangling edges, their occurrence as described above can be
used for identifying orphans exclusively. To update the outdated information due to
occurring orphans, the transformation may be re-run in order to synchronise models,
code and traceability data.

Transformation Debugging: For debugging model transformations, information
about the processing stack must be collected during the execution of the generation
process, that is, the implementation of the transformation engine needs to account for
this. The set of operators must be recorded in the order of execution by the transforma-
tion engine. Nested operators of modularization and control flow operators are stored
in this context. This leads to a tree structure of recorded operators.

The traceability graph generated from the Xpand connector is sufficiently expressive for
debugging a transformation program, since the output index is traced for each operator
as well as its used model input. Let us assume the following debugging scenario as
an example. The static text Person (Line 1) in the generated code from the running
example in Section 6.3.1, requires the processing stack as depicted in Table 8.3. In this
example, the index is defined through the line numbers. Given the processing stack of
operators, needed to generate a specific code block (e.g., Person), it is possible to debug
operator by operator up to this specific code block (row by row in Table 8.3). The
traceability data of each operator is tracked for its used model element(s) and all code
that is generated directly and indirectly by the operator. Indirect generation occurs,
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Operator Output Index
«DEFINE javaClass FOR Entity » 1-33
«FILE name +”. java”» 1-33
«name » 1

Table 8.3.: Processing Stack

since there may be more operators involved for the generation of a code block, e.g.,
DEFINE and FILE from Table 8.3 link to the same generated code.

Thus, if a problem was discovered in a generated file, a developer can utilize this trace-
ability data to identify template expressions and model data that caused the generation
of the defective part. The defective part can be identified up to a granularity level of
static text. Therefore, if a developer uses erroneous static text in the transformation
program, which leads to errors in the programming code, it is easily possible to locate
this static text.

Blackbox Connectors

The blackbox connector’s graph expressiveness is dictated (and potentially restricted)
by the nature of the implicit traceability metamodel (of the implicit transformation
approach). For instance, this is reflected in the Scope and Granularity of the GTF
traceability metamodel. Given a model-to-text transformation approach, if the trace-
ability solution’s granularity level is restricted to file level, the traceability data on the
level of code blocks in the generated files is unavailable for analysis (cf. Section 6.4.2).

In applying the mapping transformation of the blackbox connector (implicit traceability
metamodel is mapped to the GTF traceability metamodel), the expressiveness of the
original traceability data is preserved for the target. If this expressiveness was sufficient
for conducting the traceability scenarios successfully, before the mapping execution, the
same applies after, permitted no errors occur during the mapping. Alternatively, it is
advisable to build an invasive connector to have control over the data expressiveness as
shown above. The focus of this work is to evaluate traceability graphs due to invasive
connectors and not due to implicit traceability metamodels. Hence, we refer to [Kas09],
for a description on the conduction of the above-mentioned traceability scenarios for the
QVTO UML2RDB transformation.

8.1.5. Summary and Analysis
We have demonstrated that the invasive connector has control over the modelling

of traceability data, defined through facets, scope and granularity, and its generated
traceability-graph expressiveness is user-specific. By following the connector design pre-
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sented for Xpand, we have shown, how the traceability graph can be used to conduct
the traceability scenarios System Comprehension, Coverage Analysis, Change Impact
Analysis, Orphan Analysis and Transformation Debugging.

On the contrary, the blackbox connector has no control over the extraction of traceability
data, yet allows for the typing of the resulting graph from the extraction phase. Thus, the
resulting traceability graph’s expressiveness is dictated (and potentially restricted) by the
nature of the implicit traceability metamodel. Consequently, the resulting expressiveness
is as expressive as the default solution’s traceability graph.

8.2. Model Matching for Traceability

In the following section, we evaluate our approach regarding the second and third cate-
gory, that is, our model matching-based approach to traceability data extraction.

The goal of this evaluation is to measure the quality of our matching-system and hence,
the generated trace links. In doing so, we need to find representative evaluation scenarios
and measures to express the matching quality as described in Section 8.2.2. The chosen
evaluation scenarios, the Sales Scenario and ATL Zoo are introduced in Section 8.2.3
and 8.2.4, respectively. We present the evaluation results in Section 8.2.5 followed by
a summary in Section 8.2.6. Finally, Section 8.2.7 provides a brief overview on the
scalability of our matching system.

8.2.1. Evaluation Strategy

As argued in Section 7.2, we base our work on the Matchbox framework as described in
Appendix B. In order to measure the quality of our matching system, we need to evaluate
the three similarity measures proposed in Chapter 7. Since these similarity measures
are realised through 8 matching algorithms integrated into Matchbox, the evaluation
is based on finding optimal configurations for a similarity value cube to generate trace
links.

In finding optimal configurations, the evaluation relies on the brute force method
[LLC10], entailing the variation of all parameters with respect to their values to gain all
possible configurations. These configurations are then evaluated with respect to their
quality of matching results. One possibility is to choose the configuration with the best
quality for each matching scenario (mapping), however on average, this configuration
may not deliver the best quality. Therefore, a more realistic estimate would be to cal-
culate the average quality of all mappings. In particular, to estimate the quality of our
matching system with respect to the chosen evaluation scenarios, we answer the following
questions:

1. What is the average quality of our matching results?

2. What is the best quality per mapping?

135



Chapter 8. Evaluation

Retrieved Correct
Mappings Mappings

Figure 8.3.: Retrieved Mappings and Correct Mappings represented as Sets

3. What is the influence of metamodel-driven matching?

8.2.2. Evaluation Setup

Regarding the evaluation setup, we provide a detailed description of the varying param-
eters and quality measures used. Furthermore, we present the evaluation scenarios.

Evaluation Measures

For measuring the quality of the resulting mapping, we introduce classical measures
known from information retrieval. This involves the measures, precision, recall and f-
measure [Rij79]. Formally, we define these measures by considering two sets of mappings,
the set of retrieved mappings (actual set) and the set of correct mappings (intended set).

Definition 38 (Precision, Recall, F-measure). Let R be the number of retrieved map-
pings, P the number of correct (positive) mappings and C' be the total number of correct
mappings (see Figure 8.3), then the following measures can be defined:

e Precision: prec = P/R

e Recall: rec = P/C

prec-rec
prec+rec

e F-Measure: F-measure = 2 -

Precision expresses the number of correct mappings found relative to the number of
found mappings, whereas recall describes the number of correct mappings relative to the
number of total mappings. The f-measure is a weighted harmonic mean and requires
recall and precision to be balanced in order to achieve a high value. All measures take
on values (real numbers) between 0 and 1, where a higher value is a better result. Based
on the above definition, one can interpret precision as a measure for the correctness of
the retrieved mappings. Analogously, recall is a measure for the completeness of the
retrieved mappings. For example, if the precision amounts to 0.9, this means that 90%
of the matches are correct.
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In order to state the above-defined measures for a given matching scenario, a reference
mapping is needed, which is a complete and correct set of mappings. We call this the
gold-standard mapping or abbreviated, gold mapping.

Evaluation Parameters

The evaluation is setup to use four kinds of parameters, namely matcher, metamodel-
driven matching, aggregation, and selection. We sketch the possible values of each suc-
cessively.

The matcher parameter has a range of 7 matchers, implemented in Matchbox (cf. Section
7.2.2). Therefore, all 127 combinations of matchers are evaluated (equal to the power
set of matchers excluding the empty set).

Secondly, the evaluation comprises configurations with respect to variations of
metamodel-driven matching (cf. Section 7.1.5), namely blocking, instance-of (see p.
120), and filtering. Additionally, configurations without metamodel-driven matching are
considered. Thereby, the matching process at meta-level is based on the gold-standard
mapping, and therefore an additional metamodel-matching process is avoided.

Thirdly, aggregation and selection strategies are applied (cf. Appendix B.3). The ag-
gregation strategies include Max and Awverage. Finally, mappings are identified by the
selection strategy, Threshold, selDelta, and selN. In this way, the following variations
are considered. The Threshold values lie between 0.1 and 1.0 ascending in steps of 0.1.
Accordingly, the considered selDelta starts at 0.0 and ends at 0.15 in steps of 0.05. In
order to include configurations with a disabled selDelta, additionally, selDelta is set to
1.0. Furthermore, the selN is set to infinity, 1, 3 and 5. The chosen parameter val-
ues are derived from experiments prior to the evaluation as well as best practises of
[Do06, VIR10].

To summarize, 203200 (= 127 matcher combinations x4 metamodel-driven matching
techniques x2 aggregation strategies x10 selection thresholds x5 selDelta values x4
selN values) parameter configurations per source-target combination are evaluated.

Evaluation Scenarios

In the following, we describe the used scenarios or use cases to demonstrate the evaluation
and motivate their choice. Our evaluation is based on 41 model transformations from
the ATL Zoo [Fouc] as well as a SAP business application, called Sales Scenario. For
a description of the latter, we refer to Appendix C. The motivation for these scenarios
stems from our requirements regarding the mapping tasks:

1. varying level of abstraction between source and target models,
2. broad language scope and

3. broad application domain.
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While the ATL Zoo covers model-to-model transformations, the Sales Scenario covers
Xpand model-to-text transformations. Since models are more abstract than text, both
scenarios have a different level of abstraction, thus fulfilling the first requirement. Both
mapping scenarios complement each other with respect to the language scope and ap-
plicability. Regarding the Sales Scenario domain-specific models are transformed to
Java source code in order to generate a complete business application with large-scale
transformations. On the other hand, the ATL Zoo comprises common languages like
UML, XML, and KM3 as well as domain-specific ones with transformations ranging
from technical-space bridges and refactorings to model refinements.

8.2.3. Sales Scenario

In this section, we characterise the Sales Scenario with respect to the size of its models.
Furthermore, we show the retrieval of the gold-standard mappings that needs to be
automated in case large model repositories are being used.

As described in Appendix C, the Sales Scenario entails a range of model-to-text trans-
formations. The size of source models varies between 72 — 1231 model elements, while
the target models contain 95 — 2593 model elements. The considered source models are
instances of six domain specific languages (DSLs) describing different domains of the
business application:

e Action DSL to declare invokable behaviour

Business Object DSL for data structure modelling

Context DSL for session contexts to buffer in-memory data models in addressable
spaces

State DSL for transitions based on state machines

Dialog DSL for page flow definitions
e View DSL for graphical user interfaces

Regarding the specification of application features, such as account management, quota-
tion management, order management and product management, domain-specific models
per DSL are defined for each application feature. Given this repetitive nature for each
application feature, similar domain-specific models with respect to structure and values
are created. Thus, the same transformations are performed on similar domain-specific
models. Therefore, the evaluation scope is limited to one application feature, namely,
quotation management, without a loss of generality.

Furthermore, the models of the Context and View DSL are characterised by large source
and target models and therefore require long matching times. With respect to 203200
configurations per source-target model combination, according transformations are omit-
ted in the evaluation due to runtime concerns. In summary, the model repository of the
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DSL Source models Target models Mappings
Action 2 12 7
BusinessObject 1 14 3
Context 1 38 -
Dialog 1 1 1
State 2 2 1
View 6 81 -
Total 13 148 12

Table 8.4.: Sales Scenario Models

Sales Scenario consists of 12 model combinations (see Table 8.4), that conform to Action,
BusinessObject, Dialog and State DSL.

Evaluation Setup

In order to evaluate the Sales Scenario a gold mapping is needed to be able to measure
the quality of the matching results, that is, to calculate the above-mentioned quality
measures. Therefore, the evaluation setup needs to account for the gold mapping as well
as the mapping created by our matching system. In Figure 8.4, we sketch the evaluation
setup. To extract this gold mapping, the GTI is utilized with an invasive connector for
Xpand, as depicted on the left side. Firstly, the transformation is considered as model
element mapping that explicitly captures matches between model elements. Secondly,
the target being Java source code is transformed into a java model. For the latter, the
Java Model Parser and Printer (JaMoPP7) is used for parsing Java source code into an
EMF-based model. Therefore, the connector is instructed to capture this mapping of
source and target model elements. The used connector does not follow the fine-grained
approach as presented in Section 8.1.3, yet is instrumented to only trace respective source
and target model elements that result from the mapping transformation, for example
the mapping in Figure 7.5 (lower level). In other words, the captured source and target
model elements need to conform to a corresponding metamodel element.

Thus, an automatic approach is used in terms of model transformations as opposed to a
manual process, which is more time-consuming and likely error-prone. In doing so, we
consider only source and target model combinations that correspond to each other. This
constraint significantly eases the task of matching and leads to better matching results.

On the other hand, the traceability matching system delivers the mapping results (right
side). Afterwards, the assessment of matching quality works on the mapping and gold
mapping (lower part) both populated to a traceability repository. For this evaluation

"JaMoPP http://www.jamopp.org/index.php/JaMoPP
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Figure 8.4.: Evaluation Setup for the Sales Scenario

the repository of the AMPLE Traceability Framework (ATF) was used (see p. 157) for
reusing repository-specific functionalities and therefore integrated into the GTF. Thus,
two sources of traceability data exist in the ATF and are compared against each other,
the gold mapping and mapping.

8.2.4. ATL Zoo

This section introduces the ATL Zoo [Fouc| used as evaluation scenario. The ATL Zoo
consists of a collection of 103 model transformations. The selected transformations for
evaluation are based on the following criteria:

o EMF-compatibility,
e existing instances and
e feasible evaluation effort.

Since the implementation of the matching system for traceability builds up on Matchbox,
the inherited technical space of EMF restricts the evaluation of transformations based
on Netbeans (e.g., UML-to-Java). Furthermore, transformations without examples of
model instances are omitted. Moreover, the source model from the UML2-to-Measure
transformation comprises more than 30 thousand model elements and therefore can not
be matched within the evaluation setup and scalability properties. All in all, 41 examples
from the ATL Zoo are selected. The size of source models ranges from 41 — 3253 model
elements, while the target models consist of 14 — 1813 model elements.

Evaluation Setup

Analogously to the Sales Scenario setup, two sources of traceability data are needed: the
gold mapping and the mapping due to the model matching system. Both are compared
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Figure 8.5.: Evaluation Setup for the ATL Zoo

and serve as foundation for the evaluation of quality. Throughout the evaluation of the
ATL Zoo, we only consider source and target model combinations that correspond to
each other. The evaluation setup is depicted in Figure 8.5.

In order to extract the gold mapping, we make use of an automatic approach as opposed
to a manual extraction to minimize effort and potential errors. Thereby, we instantiate
the ATL traceability support as presented in [Jou05], using a high-order transformation
to incorporate traceability-specific transformation rules into the transformation program.
As a result, the ATL transformation produces a traceability model next to its regular
output. A blackbox connector of the GTI populates this traceability model to the
traceability repository of the ATF as depicted on the left side. The connector corresponds
to the ATL connector from Section 8.1.3. Consequently, the ATF contains the gold

mapping.
Again, the traceability matching system creates the mapping results (right side) and

subsequently populates traceability data into the ATF, where upon gold mapping and
mapping are compared to each other and serve as foundation for the evaluation of quality.

8.2.5. Evaluation Results

Since the goal of the matching system is to generate traceability data, we are interested
in finding optimal configurations that provide a high quality of matching results. To
ease this task for the traceability user, we aim at finding configurations that have a
broad applicability for matching tasks and achieve a high quality. The traceability user
can then apply these configurations per default. For this investigation, we turn to the
questions raised in the beginning of Section 8.2.1:

1. What is the average quality of our matching results?
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2. What is the best quality per mapping?
3. What is the influence of metamodel-driven matching?

These questions provide an outline for the next three sections:

Default Configuration

Regarding the first question, the average f-measure per configuration over the Sales
Scenario and ATL Zoo mappings is examined. In other words, all configurations are
applied to each source-target combination (mapping). Then, the f-measures of all map-
pings with the same configuration are considered and their average is calculated. This
is repeated for all configurations. Based on these resulting average f-measures, the max-
imum average f-measure is identified. Finally, configurations assigned to this maximum
average f-measure are selected. These configurations are called default configurations
and provide a measure for the average quality of the matching results.

It turns out, that the Sales Scenario and ATL Zoo are characterised by significantly
different default configurations. Regarding the matcher combination, the results are
particularly striking. While the Attribute Matcher is most successful for the Sales Sce-
nario, the Graph Edit Distance Matcher best accounts for the ATL Zoo. Furthermore,
different selection strategies achieve the best average results in both scenarios as shown
in Table 8.5. Both default configurations are independent of the aggregation strategy,
i.e., either Average or Max can be chosen, which is a common observation according to

[Do06].

Sales Scenario ATL Zoo
Matcher Attribute Matcher GraphEditDistanceMatcher
SelN -1 -1, 1, 3,5
SelDelta 0,1 0, 0.05, 0.1, 0.15, 1
Threshold 0.5 0.7
Number of configurations 8 40

Table 8.5.: Default configurations for Sales Scenario and ATL Zoo

The resulting matching quality by using the default configurations for the Sales Sce-
nario and ATL Zoo is depicted in Figure 8.6 and Figure 8.7, respectively. Both figures
illustrate the maxima of recall, precision, and f-measure against the according mappings.
Thereby, the vertical axis indicates the value of recall, precision and f-measure, while the
combinations of source and target models are plotted on the horizontal axis. Regarding
the Sales Scenario, the mappings are named after corresponding DSLs (cf. Table 8.4),
while the ATL Zoo naming is derived from the respective transformation names.
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Regarding the Sales Scenario, the average of recall ranges from 0.16 — 1 (column 4 and
3) and the average of precision from 0.05 — 0.48 (column 10 and 4). In accordance, the
average f-measure lies between the value of 0.1 —0.4 (column 10 and 5). BusinessObject
(column 1 — 3) and Action (column 6 — 12) DSL achieve high recall values as opposed
to Dialog (column 4) and State (column 5), that in return feature a higher precision. In
total, the default configuration of the Sales Scenario achieves an average recall of 0.5,
an average precision of 0.17 and a resulting average f-measure of 0.2.

Regarding the ATL Zoo, the average of recall and precision ranges between 0.03 — 1 and
0.33 — 1, respectively. In accordance, the average f-measure lies between 0.05 (Ant-to-
Maven3) and 1 (Book-to-Publication). Also, all source-target combinations have a higher
precision than recall (except for Book-to-Publication). This means that the degree of
correctness of a mapping is greater than its completeness. This implies that default
configurations lead to a more pessimistic approach in rendering mappings with correct
matches rather than incorrect ones.

Further, the default configuration did not find any correspondences for Families-to-
Persons, Software Quality Control-to-Bugzilla, Software Quality Control-to-Mantis Bug
Tracker, and Syntax-to-SBVR-to-UML1. This points out that finding a single config-
uration for all source-target combinations, which delivers matching results of sufficient
quality, is not realistic. Therefore, mapping-specific configurations need to be investi-
gated as described in the next section. In total, the default configuration of the ATL Zoo
achieves an average recall of 0.14, an average precision of 0.72 and a resulting average
f-measure of 0.21.

Profiles

In answer to the second question concerning the best quality per mapping, we investi-
gate how mapping-specific configurations achieve a higher quality in matching results.
We call these configurations profiles. Regarding the best quality per mapping, the con-
figurations (profiles) with the highest f-measure for each mapping are considered. The
recall, precision and f-measure due to these configurations are depicted in Figure 8.8 for
the Sales Scenario and in Figure 8.9 for the ATL Zoo. Again, the vertical axis indicates
the value of recall, precision and f-measure and accordingly ranges from 0 to 1. In ad-
dition, combinations of source and target models are plotted on the horizontal axis. In
general, the average f-measure of profiles increases by half in comparison to the default
configuration. In particular, the average f-measure rises from 0.20 to 0.34 for the Sales
Scenario and from 0.21 to 0.31 for the ATL Zoo.

Metamodel-driven Matching
Recalling from Section 7.1.5, metamodel-driven matching has an impact on the quality

of matching results as well as the scalability of the matching process. Since the focus
of this work lies on the former, the delta of applying metamodel-driven matching to
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Figure 8.6.: Average Results of Sales-Scenario Default Configuration against Mappings
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non-metamodel-driven matching is examined. The delta is calculated with respect to
the results of the default configurations. Thus, the maximum recall, precision and f-
measure between non-metamodel-driven matching and blocking, filtering and instance-
of matching are discussed. The differences in terms of quality measures are depicted in
Figure 8.10 for the Sales Scenario and for the ATL Zoo in Figure 8.11 and Figure 8.12.
In all diagrams, the vertical axis indicates the delta of maximum recall, precision and
f-measure and accordingly ranges from —1 to 1, while the combinations of source and
target models are plotted on the horizontal axis.

Regarding the Sales Scenarios, Figure 8.10 is divided into an upper and lower part, where
the upper part illustrates the delta of recall, precision and f~-measure against according
mappings in comparison to blocking and filtering. In contrast, the lower chart illustrates
the delta of recall, precision and f-measure against the same mappings in comparison to
instance-of matching. Blocking and filtering produce the same evaluation results, since
both techniques essentially remove matches having unmatched types. Hence, both are
plotted into a single figure. The same separation applies to the ATL Zoo, except that
the results have been split into two different figures, that is, blocking is presented in
Figure 8.11 and instance-of matching in Figure 8.12.

Regarding blocking and filtering for the Sales Scenario, the maximum values of recall,
precision and f-measure are improved or remain the same for all considered mappings.
In contrast, only 4 out of 29 models of the ATL Zoo show an increase in maximum
precision, yet most mappings already achieved a maximal precision of 1 (cf. Figure
8.7) without blocking techniques. Nevertheless, for 21 mappings of the ATL Zoo, the
maximum recall is raised.

As a result, when metamodel-driven blocking is performed on the default configuration
mappings, the average f-measure increases from 0.20 to 0.26 for the Sales Scenario and
from 0.21 to 0.48 for the ATL Zoo.

Moreover, by applying blocking on profile configurations, the average f-measure increases
from 0.34 to 0.85 for the Sales Scenario and from 0.31 to 0.90 for the ATL Zoo. Hence,
blocking is more effective for models of the ATL Zoo than for the Sales Scenario. The
reason for this is the lower number of instances per metamodel element regarding the
ATL Zoo. Recalling from Section 7.1.5, blocking decreases the number of Cartesian pairs
considered in the matching process. Regarding more instances, this number is increased
and may lead to the calculation of false positives (found, yet incorrect matches).

In applying instance-of matching to the Sales Scenario, the f-measure decreases (5 map-
pings), or remains the same (7 mappings). Regarding the ATL Zoo only three mappings
show an increase in f-measure, while the other mappings illustrate an unchanged (16
mappings), or decreased f-measure (10 mappings).

In summary, the maximum f-measure is lower, than without metamodel-driven matching
for both evaluation scenarios. An exception is the Families-to-Persons mapping of the
ATL Zoo, which may be substantiated by the small model sizes. In particular, the
average recall and precision of the Sales Scenario mappings decreases minimally. This
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results in a decrease of the average f-measure from 0.21 to 0.07. In contrast, regarding
mappings of the ATL Zoo, the average recall remains almost the same, while the average
precision decreases. As a consequence, the average f-measure decreases from 0.21 to 0.08.

To summarise, the application of instance-of matching decreases the matching quality
for our considered evaluation scenarios. For an explanation, we recall the instance-
of matcher from the running example on page 112 with example results from Table
7.4. By introducing matches to model elements that conform to matching metamodel
elements, false positives are introduced, for example, featurel to field2 and featurel
to method2. If these matches are not filtered out through the configuration of the SVC,
they reduce the matching quality. With a higher number of instances per metamodel
element, false positives are likely to increase and can decrease the matching quality.

8.2.6. Summary and Analysis

To conclude the evaluation of the quality of our matching system, we provide a summary
and analysis of our results.

Summary

The summary of our results are presented in Table 8.6. Firstly, we presented default
configurations, which stand for a more pessimistic assessment of quality as the profile
configurations. The latter configurations are derived from the maximum f-measure of
each mapping. Finally, we evaluated metamodel-driven matching, that is, blocking,
filtering and instance-of matching.

The average results pertaining to the default configurations are listed under default. In
general, the average of the highest f-measure for each mapping (called profile in Table
8.6) increases by a factor of 1.6 in comparison to the average results of default configura-
tions. Applying metamodel-driven blocking with a default configuration (denoted with
Blocking®”) improves matching results by a factor of 1.8. Executing blocking with profile
configurations (cf. Blocking”) even improves results by a factor of 4.2 (compared to de-
fault configurations). Moreover, instance-of matching turns out to be effective only for
models with a low number of instances per metamodel element. Blocking and filtering
produce the same results, yet blocking has the advantage of reducing the complexity of
a matching process by decreasing the number of visited model-element pairs.

Analysis

In order to successfully conduct traceability scenarios, the collected traceability data
needs to be sufficiently expressive. The above results show that metamodel-driven
matching effective as blocking is the key-enabler for leveraging model matching for trace
link generation by raising the matching quality up to an f-measure of 0.9. In doing
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Default Profile  Blocking” Blocking” Instance-of

Sales Reca.ll‘ 0.500 0.291 0.193 0.787 0.136
Scenario Precision 0.174 0.539 0.556 0.971 0.104
F-measure 0.204 0.338 0.257 0.851 0.072

ATL Reca.ll' 0.144 0.261 0.366 0.885 0.143
700 Precision 0.724 0.734 0.951 0.975 0.170
F-measure 0.210 0.313 0.477 0.901 0.084

Table 8.6.: Summary of Average Results for Sales Scenario and ATL Zoo

so, our approach achieves a traceability-data expressiveness of approximately 90% with
respect to the correctness and completeness of trace links.

8.2.7. Scalability

The scope of our work concerns the evaluation of matching quality, yet we provide a
brief discussion of the scalability of our matching system in this section.

Figure 8.13 depicts the average time for performing single matching configurations
against the model complexity. In this context, model complexity means the number
of source-target model element combinations, since each matcher in the matching sys-
tem needs to calculate the Cartesian product of source and target elements (without
blocking). Based on the measured matching times of single configurations, an approxi-
mate exponential function is calculated. The latter is represented through a line, whereas
the times are depicted by crosses. The vertical as well as horizontal axis is logarithmic.
The runtimes for aggregation and selection are neglected. A further analysis on the
runtime of individual matchers with respect to specific model combinations needs to be
investigated.
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Related Work

In this chapter, we present related work in conjunction with the GTF. Following the
three categories of trace link generation and their solution approaches, we delve into
related work with respect to the connector-based approach in Section 9.1 and the model
matching approach in Section 9.2. Where appropriate, we describe the related work
according to the objectives from our requirements analysis of Chapter 3.

0.1. Automatic CRUD Trace Link Generation

In the following, we outline related work on traceability solutions in MDSD. Detailed
survey papers have been contributed by Aizenbud-Reshef et al. [ARNRSGO06] and Galvao
et al. [GGO7]. In particular, we focus on approaches generating trace links through
model transformations in view of those that address the problem of poor integration
and quality of traceability data. In doing so, these approaches are most closest related
to our work as described in Section 9.1.2.

If applicable, we describe the related work with respect to the following characteristics:
o Effort to achieve a traceability solution (cf. R1)
e Unification and extensibility of traceability metamodels (cf. R2 and R4)
e Integration of traceability data and existing traceability solutions (cf. R3)

In the following sections, we classify related work into how trace links are generated start-
ing with general approaches, followed by traceability frameworks, that is, approaches
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that consider the integration of traceability data from arbitrary transformation ap-
proaches. Lastly, we present different works on the modelling of trace links.

0.1.1. Generation of Trace Links

Numerous model transformation approaches provide support for the generation of trace
links. We classified these into the two classes of implicit and explicit generation. While
all approaches provide a traceability solution, the integration of traceability data from
arbitrary transformation approaches is not tackled. Our approach makes a point of re-
using existing traceability solutions to consolidate the benefits of implicit and explicit
trace-link generation and to tackle their disadvantages and challenges as motivated in
the requirements analysis from Section 3.3.1. We mention several prominent examples
in the following.

The ATLAS Transformation Language (ATL) uses a higher-order transformation (HOT)
to augment the transformation program with traceability-specific code [Jou05]. The ad-
vantage of this approach minimizes the effort to achieve traceability for different transfor-
mations. In comparison, our approach is concerned with keeping the logic for traceability
apart from the transformation logic to avoid potential pollution. Apart from this, the
extensibility of the traceability metamodel is not considered as well as the integration
with other traceability data. The ATLAS Model Weaver (AMW) [FV07] can be used
to automatically generate trace links conforming to a specific weaving metamodel. In
fact, the traceability metamodel used for the above-mentioned HOT is a specific exten-
sion of the core weaving metamodel of the AMW [OBFO08]. Thus, the AMW accounts
for an extensibility mechanism in that the user can capture different types of links in a
specific weaving model. However, the actual augmentation of the model transformation
with a traceability mechanism is realised through the HOT, as opposed to our approach.
Apart from this, we additionally focus on the integration of traceability data due to
model-to-text transformation approaches.

The Epsilon framework [KP13] provides an integrated traceability solution for numerous
model operations, such as, model merging with the Epsilon Merging Language (EML),
model-to-model transformation with the Epsilon Transformation Language (ETL) and
model-to-text transformation with the Epsilon Generation Language (EGL) [RPKPO0S|.
The traceability data can be kept in a separate traceability model as described in
[KPPO6b]. Since the former languages are part of a model management tool chain,
the traceability models can be accessed by other model management tasks, such as val-
idation or visualization [PDK*11]. In this sense, integration of traceability approaches
is achieved for Epsilon languages. In contrast, our approach takes into account arbi-
trary transformation languages. Yet, with a blackbox connector for epsilon, the inte-
gration with other approaches could be achieved. Furthermore, the Epsilon traceability
approach allows to model case-specific traceability models based on a domain-specific
metamodelling language for traceability [DKPF08]. In comparison, our solution is based
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on a facet-based extensibility mechanism. The Epsilon comparison language is discussed
separately in Section 9.2.4 as part of our matching approach.

The following approaches are from the class of implicit generation. MOFScript is
a model-to-text transformation language with integrated traceability support [OO07].
Acceleo [Foua] is a commercial tool for code generation with traceability support for
model-to-text transformations. Both tools do not provide support for the user to define
case-specific traceability models.

9.1.2. Traceability Frameworks

The work of Falleri et al. [FHNO06] describes a traceability framework written in Kermeta
for generating trace links due to chains of model transformations. In this approach a
model transformation is defined as a relation between the set of source and target model
elements, therefore, the traceability data due to a single model transformation is reflected
as a bipartite graph. The framework includes a simple traceability metamodel to describe
trace links based on chains of model transformations. It includes a link, which references
a source and target object. The object is the most general kind of element in Kermeta.
A set of links due to one transformation composes a step, whereas a set of steps (due
to a chain of transformations) composes a Trace. The approach of [FHNO6] falls into
the class of explicit trace-link generation, since the traceability-specific code needs to be
added to the transformation program.

In summary, the proposed traceability metamodel is generic (not case-specific) with sim-
ilar structures as the GTI traceability metamodel (cf. Artefact, TraceLink and UUID).
However, it is not possible to model hyperedges (links) with the former. Apart from this,
no extensibility mechanism has been foreseen, in contrast to our faceted-based approach.

Since, [FHNO06] et al. suggest a traceability solution requiring the adaption of the trans-
formation program with traceability-specific code, efforts to achieve traceability are not
minimized, as argued for the explicit trace-link generation in Section 3.3.1. Furthermore,
our approach regards traceability as a separate concern and therefore does not allow a
potential pollution of transformation programs through traceability-specific code.

The AMPLE traceability framework (ATF) is a development as part of the AMPLE
(Aspect-Oriented, Model-driven Product Line Engineering) project [Con]. Through ap-
plying the combination of aspect-oriented software development and MDSD, the project’s
focus is a software product line (SPL) development methodology that offers improved
modularisation of variations and their holistic treatment across the software lifecycle. In-
tegral to this methodology is the maintenance of traceability for these variations during
SPL evolution as described in [AGG108].

The traceability framework allows for a flexible specification of trace links between dif-
ferent kinds of SPL artefacts. In doing so, the definition of a variability model is required
for the traceability of common and variable features along the domain and application
engineering stages. Yet, although the framework focuses on the traceability of SPL
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artefacts, the design of the framework is generic to support traceability outside of SPL
development [SKR'10]. The main functionalities are concerned with the creation and
maintenance of trace links based on a traceability repository as well as front-end func-
tionalities for querying and visualising traceability data. In order to collect traceability
data for the repository an extractor needs to be implemented and registered to the ATF.
For example, an extractor might be implemented to capture feature dependencies to
related artefacts.

Furthermore, the framework is based on a generic traceability metamodel with an ex-
tensibility mechanism. A description of the traceability framework including the ar-
chitecture and traceability metamodel can be found in [SKR™10]. In comparison to
our approach on the unification and extensibility of metamodels, the ATF uses a fixed
traceability metamodel, yet allows extensibility to encode any artefact and link type as
an extension in the type hierarchy through the definition of profiles registered to the
repository. The latter is an XML file apart from the metamodel and may be re-used for
domains with similar traceability requirements. In contrast, our approach uses facets
and faceted hierarchies, which can be varied independently for extending the type system
for artefacts and links. Additionally, facet definitions may be re-used.

Regarding the effort to achieve traceability, a corresponding extractor needs to be imple-
mented manually and registered to the ATF at a foreseen extension point. Nevertheless,
yielding trace links automatically through transformation to minimize efforts is not the
focus of AMPLE. Our connector-based approach provides a methodology for invasive and
black-box connectors based on AOSD and a minimal set of CRUD link types. These
connectors can be used as extractors given the correct accessibility.

The MODELPLEX (MODELing solution for comPLEX software systems) project’s focus
is on the development of an open solution for complex systems engineering improving
quality and productivity. MDSD is a key-enabling technology for the development and
subsequent management of complex systems. Numerous works regarding traceability in
MDSD have been covered in Modelplex, [0007], [Jou05], [FV07] (as discussed earlier),
[WJISAO06], [O1s09] etc. The latter is a trace analyser tool, TRAMDE, for storing trace
links of different traceability solutions. Furthermore, this tool provides support for
defining trace links manually, which is out of scope of this work. In contrast, our work
focuses not only on the integration of existing traceability solutions, yet the means
to achieve a traceability solution through different connector designs including an a
posteriori traceability mechanism based on matching.

Walderhaug et al. [WJSAOQ6] present a generic solution for traceability in MDSD that
offers a set of services for specifying traceability data as well as related applications
[WJSAO06]. Their approach addresses, the definition of traceable artefacts, automatic
and manual trace management, trace analysis services and trace query and navigation.
In doing so, these concepts are supported by a so-called trace model, which needs to
be implemented for a traceability solution. The main components of the trace model
incorporate: a traceability metamodel for specifying trace models; a system component
for creating, storing and using traces and finally, a repository component for users to
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interface the traceability repository. Based on these components, Walderhaug derives
the mentioned set of traceability services, all related to the life-cycle management of
traceability data. These concern the management of trace models, traceability reposi-
tories including functionality for data analysis and monitoring of traceability repository
events.

In view of the unification and extensibility of traceability metamodels (R2 and R4), the
approach in [WJSAO06] requests the user to specify a trace model in advance to the tracing
process as mentioned above. This model has a fixed definition during a given tracing
process and thus necessitates the user to define which kind of artefacts should be traced.
The GTI requires the definition of a traceability model as well, however the definition
is a compromise between a fixed and variable and/or extensible definition. The latter
is achieved through the use of facets and their power to re-combination. Therefore, a
previous specification of what should be traced can be modified in contrast to [WJSAO06].

Furthermore, Walderhaug et al. present a directive for modelling traceability data, which
assumes attributes (name and type) for all model elements. For artefacts not based on a
formal definition (i.e., metamodel) this does not hold, for example, the target of model-
to-text transformations. Since our methodology for modelling traceability data accounts
for model-to-model as well as model-to-text transformations, the GTI traceability meta-
model needs to be able to define artefacts that are unstructured next to those, based on
a formal definition. Therefore, the GTI traceability metamodel offers are more generic
approach, where the only obligation to an artefact is a universal unique identifier.

Lastly, the requirement of minimizing efforts to achieve traceability is not covered in
[WJSA06].

9.1.3. Modelling of Trace Links

In [PB08, POKZO08| a derivation process for a classification of trace links is presented.
The authors define a classification as a view on the technical space of trace links. In
doing so, two classifications are defined, for implicit and explicit trace links (see p. 16).
The former is derived by defining and classifying possible MDSD operations. These are
classified to different kinds of implicit traceability relationships. The identified oper-
ations refer to a model query, model transformation (as defined for our work), model
composition, model update, model creation, model deletion and model serialisation (i.e.,
model-to-text). Furthermore, all operations can be concatenated to a chain of opera-
tions. The derivation of the explicit trace links differentiates between trace links inher-
iting from internal-model link and external-model links, which reflect model-to-artefact
relationships. An detailed description can be found in [PBO0S].

In contrast, our work analyzes model transformations in detail based on the classifica-
tion of source-target relationships of [KC05] and CRUD operations. Therefore, the view
was adopted to derive link types to describe operations within the execution of a model
transformation with an adequate expressiveness for conducting the presented traceabil-
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ity scenarios. A classification of explicit links is out of scope of this work. Furthermore,
the focus of our work is to factorize hierarchies of link and artefact types and at the
same time provide a feasible extension mechanism for artefact and link types through
facets. However, the presented type hierarchies could be incorporated into the faceted
hierarchies of our approach. Looking at the presented hierarchies, links are classified ac-
cording to the kind of creation (explicit and implicit), implicit links based on their model
operation and explicit links in terms of their durability (static and dynamic). Therefore,
as an example, facets could be defined for the kind of creation, model operation, and
durability.

We mention further link classifications in the following. In Ramesh et al. [RJ01] reference
models for requirements traceability are defined. Users are categorized into low-end and
high-end users of traceability. Thus, corresponding reference models are presented. The
former offers a smaller set of different link types as the latter, yet both are defined with
a fixed set of link types. No extensibility concept is discussed.

In [Adel2], Adersberger proposes a modelling language for traceability information. The
approach describes an organisation scheme for traceability information and the process
of traceability through an ontology and a value chain. In contrast, our work uses a
facet-based approach for reasons as explained previously.

Limon et al. propose a unifying traceability scheme in [Lim09]. The derivation process is
based on a the following analysis criteria, similar to those in the work of [RJ01]: process-
related or product-related links; pre-requirements and post-requirements traceability
relations categories; the traceability link purpose; and the items or objects to which the
traceability link will relate. The unifying schema results from the common features of
the above analysis of different schemes and is composed of a traceability link type set (to
define which attributes a link type will define), a minimal set of traceability links (for
a specific project or traceability baseline), a metrics set to verify quality requirements
and a traceability link dataset. The traceability scheme (metamodel) is extensible with
respect to its language constructs based on the power type pattern.

9.2. Model Matching for Trace Link Generation

In the following section, we give an overview on approaches related to or dealing with
model and/or metamodel matching. None of the following approaches have addressed
nor tackled the problem of generating trace links on the basis of model and /or metamodel
matching with the same language genericity, quality (precision and recall) of acquired
matches and evaluation (authenticity and model size of evaluation scenario(s)) as our
approach.

Model Matching is related to the field of schema matching and ontology matching (also
called alignment). Yet, the ideas of these matching approaches are based on finding
correspondences between source and target being on the same abstraction level. For a
detailed survey, we refer to [CSH06, RB01, SE05]. The same applies to entity matching
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Figure 9.1.: Dimensions of Model Matching

(also referred to as duplicate identification, record linkage, entity resolution or reference
reconciliation), which focuses on identifying entities (objects, data instances) referring
to the same real-world entity for the sake of data integration and data cleaning [KR09].
Our approach additionally allows for source and target models to conform to different
metamodels, thus allowing models to be on different levels of abstraction. The demar-
cated red area in Figure 9.1 shows matching between models conforming on to the same
as well as different metamodels. To underline the difference of these matching cases, we
use the notion of intra-matching in the first case and inter-matching in the second.

More closely related is the field of metamodel matching [VIR10]. Yet, these approaches
do not account for model-specific matching requirements, such as, leveraging on model-
specific attributes for matching, or import mechanism for instance-of relations from a
model into a graph structure. Hence, these need to be extended, for example as in the
case of our approach with MatchBox.

In the following, we focus on model matching, the most closest related to our work,
where we evaluate the different approaches according to the quality and genericity of
approaches. In particular:

1. the quality with respect to correctness and completeness of acquired matches,

2. the genericity regarding the language applicability aligned with R7 on the
language-independence of a traceability solution and

3. the user effort needed for the matching approach (cf. R6 on the automation of
achieving a traceability solution).

A range of technologies are available for comparing (differencing) and merging of models
as classified by [KRPP09], both pertaining to model matching. In the following sections,
we compare these classes to our approach.
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9.2.1. Static ldentity-Based Matching

One possibility to computing model differences is static identity-based matching. This
approach necessitates a closed development environment in which all model editors and
other tools, which modify models, assign and maintain a persistent unique identifier
at each model element. In such a context, one can efficiently compute differences on
the basis of persistent unique identifiers. Thus, model matching is reduced to finding
equal identifiers, however relies on the maintenance of the persisted identifiers. For
example, in [AP03, EPK06] a metamodel-independent algorithm is proposed to calculate
the difference and union of MOF-based models in the context of a version control system.

Identity-based matching provides the following advantages. There is no need for config-
uration. Furthermore, the used algorithm is simplified due to the given uniqueness of
elements, which increases the algorithm’s efficiency. However, the approach relies on the
maintenance of identifiers and is dependent on the history of changes applied to mod-
els. The latter may cause invalid results, when models are created independently from
each other, e.g., when both versions have been created with the same contents, yet in-
dependently by different users. Furthermore, this matching approach is tool-dependent,
thus requiring a standardized handling for the management of unique identifiers, if used
across tools.

Our approach to matching takes a different direction, in terms of the advantages of an
import-based matching system, that is, import and matching of models conforming to
arbitrary metamodels. In case the above-mentioned disadvantages are avoided, it is how-
ever possible to integrate a static identity-based matching algorithm into our framework.
The implementation would follow an attribute matcher, that checks whether the UUID
of two given model elements is equal, for example on the basis of XMI identifiers within
the EMF framework.

9.2.2. Signature-Based Matching

Signature-based model matching approaches do not rely on a static identifier, as de-
scribed above, yet compute a signature for each model element. Such a signature is
based on certain characteristics of model elements that are used for uniquely identifying
model elements. Hence, a certain effort for configuration is required for defining the way
of calculation for the signature. In [RFFBO05], an algorithm for model composition is
presented using signature-based matching.

Signature-based matching approaches do not use an import-based matching system as
in our approach. While our approach applies multiple similarity measures to a model
element, a signature may be interpreted as a single similarity measure, which analyses
the same model characteristics for each model element. Our approach investigated the
benefits of applying numerous matching algorithms.
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A signature-based algorithm requires configuration effort for defining the signature cal-
culation. If this configuration effort is language-specific or domain-specific, this stands
in contrast to the language-agnostic approach of our matching system. Nevertheless,
a signature-based algorithm could be used as an additional matcher in our matching
framework.

9.2.3. Similarity-Based Matching

Similarity-based matching focuses on aggregating different similarity metrics applied on
model elements to obtain matches. The metrics are defined on the features of model
elements. A similarity-based matching algorithm usually determines the similarity be-
tween two elements by either local features or by elements in the near proximity, e.g.,
referenced- or child-elements. Typically inherent to the matching algorithm is a certain
configuration that specifies the relative weight of each feature. The data model upon
which matching takes place may be represented as typed attributed graphs. Typical
examples that follow these approaches are:

SiDiff [KWNO05, SG08] is based on a generic difference algorithm for UML models
(generally, metamodel independent), supporting the three major state of the art match-
ing strategies, i.e., ID-based, signature-based and similarity-based matching. It is also
possible to combine the different approaches where applicable, e.g., using an id-based
matching first and apply a signature-based matching on the remaining unmatched model
elements.

SiDiff uses an intra-matching approach with an algorithm traversing a tree bottom-up
and top-down similar to the propagation of our Connection similarity measure. A possi-
ble simulation could be achieved through a parent matcher combined with a leaf matcher.
However, SiDiff uses language and/or domain-specific characteristics to weight the sim-
ilarity results, while our approach follows a language-agnostic matching framework for
intra and inter-matching. Regarding the matching of UML models, SiDiff makes use
of UML-characteristics, by weighting similarity results according to element types and
therefore evaluation results are likely to outperform our approach in this certain domain.
In contrast to our graph model, the data model of SiDiff is limited to containment (and
reference) relationships and lacks, e.g., representations of inheritance or instantiation as
used in metamodel-driven matching in our approach.

DSMDiff [LGJ07] is a differentiation tool for domain-specific models. The underlying
metamodel-independent algorithm detects mappings and differences between domain-
specific models (intra/inter-matching) with the use of signature-based matching. In
doing so, the algorithm follows a level-wise approach, starting at the root nodes of source
and target model and continuing at the level of their children. A level thus reflects a
parent-child relationship. At each level, node comparison is performed to detect the node
mappings by using a) signature-based matching, followed by b) structural matching, to
detect the edge mappings and differences. These steps are repeated on the mapped child
nodes until the bottom level is reached.
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a) Signature matching refers to the comparison of nodes and edges with the help of the
node and edge signature, respectively.

e Node signature matching: The node signature is the concatenation of the type,
kind and name of a node.

e Edge signature matching: The edge signature is the concatenation of the type,
kind and name of an edge as well as of the signature of its source and destination
node.

In both above cases, matching refers to finding equivalent strings of the signatures. In
case two given node signatures (or edge signatures) are equivalent, their corresponding
nodes (or edges) define a match.

b) After signature-based matching, a given node from the source model may have more
than one matching candidate. In this case, the signature cannot identify a unique map-
ping. Therefore, structural matching, using edge similarity, is performed in order to find
the most similar candidate. In calculating the edge similarity, each edge connecting to a
given candidate node is matched (through edge signature matching) to each edge of the
source node. This is repeated for all candidate nodes. The candidate with the maximum
edge similarity is chosen to match the corresponding node from the source model.

In summary, the DSMDiff algorithm is based on two metrics (i.e., signature matching
and structural similarity), which are applied at each level. The algorithm is a local
graph-based matching approach with the restriction to only compute one-to-one matches,
that is, a node can only belong to one match relationship as opposed to our approach.
Furthermore, signature matching relies on the calculation of string equivalence, a fixed
condition with no possibility of configuration to use more flexible element-level matching
approaches, e.g., Trigram, or string-edit distance. On the contrary, our approach is based
on a configurable parallel matching system, with the capability of gaining the maximum
possible quality of matching results through configuration. In addition, our approach
employs global graph-based matching algorithms next to local ones.

Another approach from the category of similarity-based matching is presented in [RVO0S]
by Rivera et. al. As DSMDiff, this approach is a generalization of the above-described
works from [SG08, XS05, AP03]. The authors of [RV08] propose an algorithm for calcu-
lating differences between models conforming to arbitrary metamodels, next to a mod-
elling management environment based on the Maude language. The matching part of
[RV08] is based on persistent identifiers (as in [AP03] using static identity-based match-
ing) and structure-level algorithms. Regarding the latter, the following 5 measures for
structural similarities are incorporated into the matching process (for class and structural
features). Two metaclasses match if they are the same, or there exists an inheritance re-
lation between them. Boolean attributes and enumerations match if they have the same
value. String attributes are matched, based on the Levenshtein edit-distance [WEF74]
of their values. Numerical attributes are matched by applying a relative distance func-
tion to their values. References are matched recursively, by applying the same match
operation to non-reference attributes (to avoid cycles).
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The algorithm compares each model element pair from the Cartesian product of the
elements of source and target model. Thereby, each pair is compared on the basis of the
above-mentioned measures. Afterwards, their results are aggregated as weighted average
to an overall similarity. The final matches are derived by applying a certain threshold to
all values and secondly by selecting the highest similarity value for each model element,
which restricts the approach to one-to-one matches. In comparison, our approach is not
limited to this cardinality, yet allows 1:n matches (depending on the configuration of the
similarity value cube). In fact, in model-to-text transformations, 1:n matches need to
be considered.

Furthermore, the structural similarity metric is restricted to the comparison of referenced
elements. In contrast, our approach applies graph matchers (graph edit distance and pat-
tern matcher) considering the complete graph structure (global-based graph matching).
The graph edit distance matcher turns out to achieve best results for the model-to-
model-transformations from the ATL Zoo (cf. Section 8.2).

Similarity Flooding [MGMRO02] The similarity flooding algorithm is a hybrid matching
algorithm that is based on the premise, that, if two elements are similar, then there
is also a certain similarity between their neighbouring elements. In fact, similarity
flooding was first implemented for schema matching as in [MGMRO02], but has since then
been adapted to be used in other domains, e.g., ontologies [ZZLT10] and metamodels
[FHLNO8]. The internal data model used in [MGMRO2] is able to represent directed
labelled graphs and the algorithm runs in an iterative fix-point computation to produce
a mapping between nodes of the input graphs. First, string-based matching techniques
(analyzing common prefixes and suffixes) are applied to obtain an initial mapping for
the fix-point computation. Starting from similar elements, the similarity is propagated
to neighbouring elements through propagation co-efficients. The process is finished,
when a fix point is reached, upon which the final mapping is returned. In addition, the
resulting mapping may be filtered by applying constraints, namely typing, cardinality
and selection metrics.

In contrast to the matching system for traceability, similarity flooding provides an in-
ternal data model representing directed labelled graphs. Since directed labelled graphs
need to first be extended to express typed attributed graphs [EEPT06], our require-
ments to a generic internal model are not met. Furthermore, the similarity flooding
algorithm analyses different metrics and is configurable (in terms of the filter mecha-
nism mentioned above). To draw a parallel, our matching system is configurable and
aggregates matching results of numerous matchers. In particular, the application of the
typing constraint is similar to the metamodel-driven matching techniques blocking and
filtering. Yet, similarity flooding does not apply algorithms considering the complete
graph structure as the graph matchers (graph edit distance and pattern matcher) of
our approach, but rather investigate neighbouring relations. Additionally, the algorithm
depends on an initial mapping being propagated. Hence, an occurring error is multiplied
through the propagation. As shown in the work of [Do06], a parallel matching system
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tends to be superior to similarity flooding. For these reasons, we have not based our
work on similarity flooding.

EMF Compare [Foue| provide a similarity-based matching algorithm for model com-
parison and merging of EMF models. The algorithm is built-in and thus requires no
configuration effort for the user. In general however, the EMF Compare framework is
extensible for integrating custom specific-language algorithms (cf. Section 9.2.4). The
framework engine is composed of a generic matching engine as well as a differencing
engine, hence the algorithm constitutes two corresponding phases. Furthermore, the
algorithm pertaining to the above-mentioned engines is metamodel-independent and is
defined through four similarity metrics, which are aggregated to an overall result:

e Name similarity: first the attribute, which is the best candidate to be the iden-
tifying name is retrieved, afterwards string-based matching of the names takes
place

e Type similarity: compares the meta-class features

e Value similarity: uses all attributes values for the similarity calculation (incorpo-
rates a filter mechanism, as described below)

e Relations similarity: considers the linked instances based on containment and non-
containment relations

Beyond the similarity metrics, EMF Compare improves its results by applying a filter
mechanism on certain model characteristics, for example, the setting of default values in
model instances. If used for the similarity calculation, this kind of information poten-
tially lowers the matching quality, such as for the value-similarity metric. Thus, filters
may be applied to the to-be matched models to exclude inferring information from the
subsequent matching process.

Moreover, EMF Compare reduces complexity to gain performance in limiting the num-
ber of combinations of source and target elements. Instead of executing comparisons
sequentially for the Cartesian product of source and target elements, EMF Compare
analyses both models at the same time while matching elements within the limits of
a given search space. This approach follows the assumption, that the probability of
moving an element outside a certain "neighborhood” is low. Upon completion of the
analysis, elements, which have not been matched, are in turn compared with each other.

EMF Compare is the closest related to our approach for the following reasons. The com-
bination of numerous similarity metrics is applied in accordance with the combination
effect of our parallel matching system. The internal data model of EMF Compare is able
to express typed attributed graphs. Furthermore, the language-independent approach
of the generic match engine covers the language-independent aspect of our approach.
No configuration effort is requested for the user regarding the built-in generic algorithm.
Yet, the potential to configure similarity metrics is given, as in the case of our matching
system (matcher combination, aggregation and selection strategies etc.).
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In comparison to EMF Compare, our matching system has not invested in scalability to
an extent as the above-mentioned for EMF Compare. However, the focus of our matching
system lies on the quality of matches. Given that the matching system for traceability
is required to derive traceability data from the matching results, clearly, the quality of
matches has a very high priority (even over scalability, if there is a trade-off between
scalability and quality). Poor quality of traceability data is likely to disqualify certain
traceability scenarios. Regarding the quality of matching results, a comparative evalu-
ation was conducted between EMF Compare and our matching framework to evaluate
this quality. The evaluation is based on the evaluation scenarios from Section 8.2.4, that
is, the ATL Zoo and corresponding gold mappings. The evaluation’s results show that
EMF Compare identified correct matches for 29% of the available source-target combi-
nations, with no correspondences in the Sales Scenario and a total of 12 combinations
from the ATL Zoo. Regarding the latter, the resulting recall, precision, and f-measure
is depicted in Figure 9.2. The vertical axis indicates the values of recall, precision, and
f-measure and accordingly ranges from 0 to 1. In addition, combinations of the source
and target model are plotted on the horizontal axis. The resulting average f-measure of
0.1 (average recall of 0.10 and precision of 0.18) is doubled by the default configuration
and tripled by the profiles of our matching system. When applying metamodel-driven
matching techniques, in particular, blocking, EMF Compare is outperformed by a fac-
tor of at least 4.7 (cf. Table 8.6). As a result, the matching system for traceability is
superior over EMF Compare in terms of matching quality and the proposed evaluation
scenarios.

9.2.4. Custom Language-Specific Matching Algorithms

Custom specific-language algorithms are specialized on a particular modelling language.
For example, the algorithm in [NSCT07] specializes on state charts, while UMLDIff
[XS05] is a domain-specific algorithm for calculating differences of UML models. The
latter algorithm takes two class models of a Java software system as input and produces
a change tree as output. Thereby, the algorithm works on an internal data model
conforming to a Java representation and thus, requires an initial transformation (reverse
engineering) of corresponding Java source code into the input class models. Furthermore,
UMLDIff is based on a structure-level algorithm with top-down traversal, combining a
name matcher and relying on UML semantics.

Another approach within the category of custom language-specific algorithms is ECL,
called, Epsilon Comparison Language! [Kol09, KPP06a]. ECL is a domain-specific lan-
guage for specifying comparison algorithms that are language-specific, that is, incor-
porate the semantics of a targeted language. In specifying the algorithm, a user is
required to define domain-specific match rules, which account for the comparison logic.
In doing so, the user profits from the language’s specificity to the domain of matching,
furthermore, the semi-automatic approach for implementing algorithms as well as the

'Epsilon Comparison Language: http://www.eclipse.org/epsilon/doc/ecl/
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high abstraction level of specification. Thus, the effort of implementation is reduced as
opposed to other custom language-specific matching algorithms such as UMLDIff, that
require the implementation of a complete algorithm. Beyond that, ECL is integrated
into the Epsilon? framework, providing a whole range of domain-specific languages and
tools for tasks revolving around MDSD.

In summary, custom language-specific algorithms use a domain-specific matching ap-
proach, as opposed to our parallel matching system with the claim of language general-
ity. Regarding UMLDIff, the internal data model is constrained to a Java-specific model
and is thus bound to language-specific matching (and comparison) of UML class models.
ECL algorithms depend on metamodel-specific information to a high degree. Further-
more, custom language-specific algorithms require a considerable effort for implementing
an algorithm. In UMLDIff, this entails the complete algorithm, while ECL uses a semi-
automatic approach through the specification of match rules. The latter reduces the
effort to some extent. On the other hand, the advantages of using language semantics in
the matching process increases the algorithm’s efficiency (quality of matches and search
space) [KRPP09, FWO07] for a given language-specific use case. However, our approach
takes a different point of view by requiring no effort for the user and applying a paral-
lel matching system to achieve the maximum possible quality of matching results. To
benefit from the above-mentioned advantages, an integration of custom language-specific
algorithms into our matching system seems promising, provided the applicability of algo-
rithms to a given matching task. In analogy, an integration of the proposed matchers of
our work into ECL is conceivable. Given that ECL supports element-level matching al-
gorithms, such as (fuzzy) string-based and linguistic resource-based algorithms, in effect,
these language constructs could then be extended towards our matching algorithms.

*Epsilon: http://www.eclipse.org/epsilon/
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Conclusion

In this chapter, we conclude this thesis by revisiting our stated contributions of the
introduction and show, how these validate the hypotheses of our work. Finally, we
provide an outlook on future work.

10.1. Conclusion and Contributions

In this thesis, we introduced a generic traceability framework for automatically gener-
ating trace links in MDSD. The framework accounts for different use cases, which are
grouped into three categories of trace link generation. The fist category deals with the
generation of trace links by using the integral mapping of a transformation to derive
trace links in parallel to its execution. The second category handles the generation
of trace links after the transformation execution and source and target artefacts have
evolved. Finally, the third category covers the generation of trace links independent
from a transformation engine due to its non-existence or inaccessibility. The latter cases
occur, for example, if transformations are implemented manually (non-existence), or the
transformation engine is proprietary (inaccessibility).

In dealing with the above categories two independent solutions are presented. In view of
the first category, we proposed a design pattern in terms of a methodology to augment
arbitrary model transformations with a specific traceability mechanism. The design
pattern is realized through a generic traceability interface for arbitrary model trans-
formation engines. Regarding the second and third category, we presented a matching
component. Both solutions are based on a generic traceability metamodel to which all
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generated traceability data conforms to and are integrated into the generic traceability
framework.

In the introduction, we claimed three contributions:
C1 Facet-based Modelling of Traceability Data with CRUD Trace Links

C2 Design Pattern on Augmentation of Model Transformations with Trace Link Gen-
eration

C3 Parallel Model Matching for Trace Link Generation

Each contribution is directly related to one of the above-mentioned components: The
traceability metamodel (C1), the generic traceability interface for arbitrary transforma-
tion engines (C2) and the model matching component (C3).

In the following sections, we discuss these contributions with respect to their fulfillment
of the requirements analysis and the evaluation results. The goal of this discussion
is to validate, the stated hypotheses of the introduction. To recapitulate, the stated
hypotheses are:

H1 The quality of traceability data is improved through:
— a generic interface for integration of traceability data
— a generic traceability metamodel
— a facet-based extensibility mechanism of the traceability metamodel.

H2 Efforts to achieve traceability are minimized (for the explicit generation class)
through augmentation of the transformation engine with the means of trace-link
generation.

H3 Parallel model matching can be leveraged for the generation of trace links regarding
inaccessible, or non-existing transformation engines.

H1: Increasing Quality of Traceability Data

As per requirements analysis, three objectives need to be fulfilled to increase the quality
of traceability data. These are the unification (R2) and extensibility (R4) of traceability
metamodels. Furthermore, a unified interface for integration of traceability data (R3)
is needed. In answer to the first two requirements we proposed C1, while for the latter
C2, as we will discuss in more detail in the next two subsections.

C1: Facet-based Modelling of Traceability Data with CRUD Trace Links

The unification of metamodels (R2) is fulfilled through the generic traceability meta-
model of the GTF. To account for a sufficient expressiveness of traceability data and in
answer to R4, an extensibility mechanism based on facets is proposed. The specification
of user-defined artefacts and link types in traceability models is achieved by defining
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corresponding types as facets. Since facets factorize inheritance hierarchies and thus,
simplify them, we use this advantage for the sake of simplifying artefact and link type
hierarchies. Furthermore, since facets can be varied independently, the extensibility of
traceability metamodels is achieved. This has the advantage that a priorly defined set
of types may be varied through the re-combination of facets and thus does not have
to be fixed to hold for all possible traceability scenarios. Therefore, case-specific trace-
ability models may be defined on a selection of facets. In addition, the configuration
of granularity (for selecting the granularity level, and thus checking for the existence of
certain facets, e.g., text-file facets excluding text-block facets) and scope (for selecting
a facet-specific property) contribute to the expressiveness of case-specific traceability
models. Finally, the minimal set of elementary links based on CRUD actions captures
the semantics of all possible relationships between source and target elements of a model
transformation. The set of CRUD links account for an adequate expressiveness to con-
duct the traceability scenarios evaluated in Section 8.1.4. Thus, we conclude that C1

fulfills R2 and RA4.

C2: Design Pattern on Augmentation of Model Transformations with Trace Link
Generation

Regarding the realisation of R3, we proposed a design pattern and a methodology
to augment arbitrary model transformations (model-to-model as well as model-to-text
transformations) with a specific traceability mechanism. The design pattern is real-
ized through a generic traceability interface for arbitrary model transformation engines.
For the explicit and implicit generation approach, we presented two possible augmenta-
tion methods to achieve a traceability mechanism, respectively: a) Augmentation of the
transformation-engine logic based on aspect-oriented programming and b) Augmenta-
tion of the traceability-data output through the use of a model transformation. In terms
of the generic traceability interface, these augmentation methods require the implemen-
tation of two different kinds of connectors, that is, blackbox and invasive connectors
for implicit and explicit generation, respectively. Once the augmentation method has
been applied in either of the two cases, the transformation approach is featured with
a traceability mechanism that generates traceability data conforming to the proposed
traceability metamodel. We evaluted the design pattern in terms of three connectors for
QVT and ATL (blackbox connectors) as well as Xpand (invasive connector).

Effectively, the design pattern (generic interface) provides the means to integrate trace-
ability data from arbitrary transformation approaches, either through blackbox or inva-
sive connectors by enforcing the conformance to the traceability metamodel. Therefore,
R3 is fulfilled.

To validate hypothesis H1, we provided a generic traceability interface including a generic
traceability metamodel to tackle the problem of aggravated standardization and integra-
tion of traceability data (P2) by realizing R2 and R3 (cf. Figure 3.4 on ZOPP approach).
Secondly, we solved the problem of inexpressiveness of traceability data (P3) through the
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facet-based extensibility mechanism in conjuction with R4. All these fulfilled objectives
contribute to generating traceability data with an adequate traceability expressiveness
and conformance to a generic traceability metamodel. Essentially, this allows easier rea-
soning over traceability data with respect to traceability scenarios, leading to an increase
in the quality of traceability data.

H2: Minimization of Efforts to achieve Traceability

In answer to the minimization of efforts (R1) for the explicit generation class, we pro-
posed to use an invasive connector (cf. C2). After taking into account the initial effort
of developing the connector, the following advantages hold: a) no likely error-prone and
time-consuming factors of manual encoding of traceability-specific rules, b) no reoccur-
ring efforts for individual model transformations and ¢) no pollution of transformation
programs. Thus, R1 is fulfilled. Concluding, we have tackled the problem of reoccurring
efforts to achieve traceability for the explicit class (P1) and thus confirmed H2.

We now turn to the second and third category of trace link generation.

H3: Leveraging Parallel Model Matching for Traceability Data

The derived requirements for these categories are: unification and extensibility of trace-
ability metamodels (R5), automation of achieving traceability without transformation
engine (R6) and language-independence of a traceability solution (RT).

C3: Parallel Model Matching for Trace Link Generation

In realization of the above-listed requirements, we proposed a parallel model matching
system for generating trace links for arbitrary source and target models. As claimed
in the introduction, this system tackles the problem of lacking traceability data due to
non-existing or inaccessible transformation engines (P4). We look into C3 to discuss
this claim.

The matching system is founded on the idea of using a graph-based internal data model
based on typed attributed graphs upon which the matching process takes place. On
the grounds of this data model, we derived three novel, language-agnostic similarity
measures for model matching:

1. Attribute Similarity Measure: Similar data nodes from source and target
graphs, indicate shared characteristics, referred to as attributes, and thus, a po-
tential similarity between the graph nodes that the data nodes are connected to.

2. Connection Similarity Measure: The similarity between a set of source and
target children nodes acts as a similarity measure. The measure is based on the
rationale that similar children graph nodes, have similar parent graph nodes. Thus,
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the connectivity of a graph node to its children graph nodes is used to propagate
the similarity from child to parent node.

3. Instance-of Similarity Measure: We base the matching process on model level
on the results of metamodel matching by making use of the instance-of relation.
Thus, we investigate the outcome of propagating the similarity of metamodel ele-
ments to their conforming model elements.

Furthermore, the implementation of our approach is build upon the metamodel match-
ing framework, Matchbox [Voill]|, which we extended with eight matchers in realisation
of the three derived similarity measures. Since metamodel matching does not incorpo-
rate the use of attribute values of model instances, the metamodel matching algorithms
from [Voill] cannot be used to instantiate the proposed similarity measures. Therefore,
eight new matching algorithms are implemented and integrated into Matchbox. Further-
more, we exploited metamodel-driven matching with filtering, blocking and instance-of
matching.

Returning to the claimed requirements, (R5) is fulfilled, since the mappings resulting
from matching are transformed into traceability data conforming to the traceability
metamodel of the GTI (C1). Regarding the automation of achieving traceability (R6),
no user effort is required, once a suitable matching configuration has been found. Yet,
finding a suitable configuration is bound to effort. Once the configuration is set and the
matching system is pre-configured, the generation of trace links works automatically,
letting aside potentially incorporated manual processes of the extraction phase. Hence,
our proposed system allows for the generation of trace links in a semi-automatic manner.
We will reflect on this issue in Section 10.2 on future work. Finally, the matching system
is language-independent, therefore (R7) is satisfied.

The evaluation of our approach is based on the ATL Zoo (29 mappings) and a SAP
business application (12 mappings). The results show that configuration profiles achieve
1.5 — 1.7 times better matching results with respect to default configurations. Further-
more, metamodel-driven blocking on default configurations improves matching results by
a factor of 1.3 — 2.3, whereas on profile configurations the results are even improved by
a factor of 4.2 — 4.3. The above results show that metamodel-driven matching effective
as blocking is the key-enabler for leveraging model matching for trace link generation
by raising the matching quality up to an f-measure of 0.9. In doing so, our approach
achieves a traceability data expressiveness of approximately 90%! with respect to trace
link correctness and completeness.

Regarding the validation of hypothesis H3, this proves that parallel model matching can
be leveraged to generate trace links. We thus tackled the problem of lacking traceabil-
ity data due to mon-existing or inaccessible transformation engines. However, in order
to successfully conduct traceability scenarios, the collected traceability data needs to
account for adequate data expressiveness. Whether the matching quality (with an f-

'requiring that all mappings are extracted as trace links
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measure of 0.9 regarding the evaluated scenarios) of our matching system suffices for the
conduction of traceability scenarios is bound to future work.

Nevertheless, we contributed an augmentation method for inaccessible or non-existing
transformation engines (blackbox systems) to achieve a traceability mechanism. This
augmentation method is based on a novel combination of similarity measures for match-
ing in the category of similarity-based matching algorithms.

In conclusion to this thesis, we turn back to our requirements analysis reflecting all three
categories of trace link generation (cf. Figure 3.5). In fulfilling all requirements, as we
have shown, the quality of traceability data is increased and costs to achieve traceability
are decreased. This leads to the overall goal of increasing traceability practice and with
this, the quality of software.

10.2. Future Work

In the following, we discuss possible directions for future work on the generic traceability
framework pertaining to the matching system as well as the generic traceability interface.

Matching System

Improvements and future development is discussed regarding the effort to gain suitable
configurations for matching, secondly the quality and scalability of matching.

Configuration Effort Regarding the matching component, the best possible quality is
inherent to an optimal configuration. However, finding such a configuration is bound to
effort. Once the matching system is pre-configured, the generation of trace links works
automatically, letting aside potentially incorporated manual processes of the extraction
phase. Hence, our proposed system allows the generation of trace links in a semi-
automatic manner. Since from a traceability-user perspective, the effort should be as low
as possible and in the ideal case automatic as required by our requirements analysis, we
envision future work on minimizing the effort of defining configurations with automation.

We list numerous possibilities on this endeavour: We look into the automatic derivation
of configuration profiles and their relation to similar matching scenarios. The inves-
tigation aims at finding correlations between a) certain characteristics of models and
modelling languages and b) configurations or configuration subsets. Results on this re-
search should be beneficial in determining a suitable configuration without effort. That
is, if a matching scenario fulfils the above-mentioned characteristics, the matching system
can be pre-configured out of the box.

Another possibility is to incorporate language-specific matchers (cf. Section 9.2.4 on
custom language-specific matchers) into our matching framework, for example, UMLDIff,
ECL, SiDiff etc. By using a language-specific matcher out of the box, this may spare the
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configuration effort for a given language-specific use case and opens up the advantage of
using language semantics in the matching process to increase the efficiency of algorithms.

Furthermore, a research direction on defining suitable configurations based on self-
configuring matching workflows is conceivable, such as [PBR10] seem to be a promising.
This allows users to specify, for example, the matcher interaction and combination in a
suitable way to optimize default configurations.

Matching Quality Apart from generally improving the current set of matchers to
achieve a higher precision and/or recall, the integration of language-specific matchers
is worth investigating. Hence, for a language-specific matching scenario an increase
in quality is expected due to the algorithms efficiency. Further analysis is necessary,
on how to leverage language-specific configurations for an increase in matching quality.
This applies to others matching approaches (cf. Section 9.2 on related work) as well.
An evaluation based on parallel matching of the current and newly integrated matchers
could lead to valuable results.

Another direction aims at the modularization of matching algorithms into a language
independent and dependent part. In this sense, a language-independent matching algo-
rithms is enhanced with language-specific user-defined mappings, for instance, in terms
of seed mappings or language-specific match rules as used in ECL [Kol09]. Further in-
vestigation is necessary on evaluating this hybrid approach to our approach with a set of
language-independent algorithms tuned through configuration to specific use cases and
to the other extreme case of language-specific algorithms.

In our evaluation, we have considered only source and target model combinations that
correspond to each other as opposed to matching a certain source model to the remaining
models within a repository. How the matching quality (and scalability) differs without
this constraint, needs to be evaluated. Furthermore, matching models of other languages
e.g. UML is part of future work.

Last, but not least further investigation is necessary on conducting traceability scenar-
ios on the basis of traceability data gained through our matching system to see how
profitable the evaluation results are.

Matching Scalability So far, only blocking and filtering have been applied to reduce
the number of comparisons und thus to reduce runtime. However, more research is seen
in the following areas. To allow matching of elements within the limits of a given search
space (e.g., matching of neighbouring elements) to reduce the matching context as in
EMF Compare [Foue], or [HA09]. Thus, the Cartesian product is not calculated sequen-
tially, but split into phases or reduced. As mentioned above, self-configuring matching
workflows, such as [PBR10] are worthwhile looking into. Regarding this direction it
has to be explored, which matching configurations for matcher interaction and com-
bination are profitable for reducing the runtime. All the above-mentioned approaches
reduce runtime. Therefore, investigation into approaches additionally tackling memory
consumption issues is necessary, for example, through partitioning. Thereby, the match-
ing input is separated into parts to be processed in successive matching steps, as in
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[DRO7, SvKJ06, GHKR10] or structure-preserving partitioning by [Voill] to account for
graph matchers. Given the above directions for scalability, again, the dependency to
matching configurations and quality needs to be studied.

Generic Traceability Interface

In this thesis, we have investigated generating trace links for model transformations.
Another research direction is the extension of our work to other model operations such
as model merging and model composition.

Regarding our concept on building connectors and the claim of a language-independent
generic traceability interface, the set of available connectors needs to be extended with
respect to other languages. Since connectors can be re-used, this promotes the applica-
bility of our framework and spares the development for other users. Furthermore, the
means to create explicit (manual) links needs to be incorporated to allow for end-to-
end traceability and trace links to non-MDSD artefacts. We recommend existing tools,
such as, the Trace Analyser Tool TRAMDE [Ols09], which is capable of establishing
user-defined links conforming to a generic traceability metamodel.

Another research direction analyzes the boundary between transformation engine and
connector with the aim to minimize efforts of the connector implementation. Therefore,
it needs to be investigated, whether certain parts of the connector logic can be generally
incorporated into the transformation engine. One possibility might be, for the connector
logic to be taken over completely by the transformation engine and thus belonging to
the implicit generation class of trace links. However, this approach should not come
at the price of losing the accomplished goal of the generic traceability interface in pro-
viding a connection point for arbitrary transformation engines to overall achieve the
standardization and integration of traceability data.

Experimenting with aspect-oriented programming to weave traceability-specific logic into
the transformation engine led to the problem of incompatible pointcut definitions due to
version mismatches between the implementation of transformation language (e.g., 0AW)
and aspect-oriented language (e.g., AspectJ). Hence, more stable proposals on this topic
should be investigated.

Finally, we propose to extend the GTF to support more functionalities as part of a
holistic lifecycle management for trace links. In this sense, administration, storage and
visualization of traceability data need to be addressed. Regarding visualization, our
facet-based extensibility approach is well suited for faceted browsing of traceability data
as foreseen in [Hri09]. The faceted browsing applied on traceability data allows users
to access (navigate) the data via multiple paths corresponding to different orderings of
facets.
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Appendix

A. Attributed Graph Definitions

A.l.

Source Definitions

Definition 39 (AGsourcertodel). Let GsourceMioder be an E-Graph with

G sourceModel = (Va, VD, Ea, ENa, Epa, (sourcej, target;) jcia,na,EA})
Vo = {entity, featurel, feature2}

Vp = {Person,name, age}

E¢ = {featuresy, featuress}

Ena = {ename, fnamey, fnames}

Epa=0
tity = t
sourceq : Eqg = Voo — en l y o = Jeatures,
entity : x = featuress
featurel : x = features;
t tqg: EFg — Tx
arget : Eg = Ve @ { feature2 : x = featuress
entity : T = ename
sourcena : Ena — Va:xz— ( featurel : x = fname;
feature2 : x = fnames
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Person : x = ename
e targetna: Ena — Vp:ix— name : x = fname;
age : x = fnames

e sourcepa: Epa — Vg o — O
o targetpa: Ega — Vpix— @

Furthermore, let D be an algebraic signature with
D = STRING as defined in Section 2.4.2, p. 29.
Then AGgourceModel 1S an attributed graph with

AG sourceModel = (G'sourceModel; D)

Definition 40 (AGsourceMetamodel): Let GsourceMetamodel b€ an E-Graph with
o GourceMetamodel = (Va, Vp, Ec, Ena, Epa, (sourcej, target;) e, N a,EA})
e Vi = {Entity, Feature}
e Vp = Dgiring
o Eg = {features}
o Ena = {ename, fname}
o ppa=0

e sourceg : Fg — Vg :x— { Entity : x = features

o targetg : Eq - Vg :x — { Feature : x = features

Entity : x = ename
e sourcena : Ena— Vg :xz—
Feature : x = fname
tri : =
o targetya: Ena— Vp { string T = ename
string : x = fname

e sourcega : Epa > Voo — @
o targetps: Epa — Vp :x— .

Furthermore, let D be an algebraic signature with
D = STRING as defined in Section 2.4.2, p. 29.
Then AGsourceMetamodel 1S an attributed graph with
AGsourceMetamodel = (GsourceMetamodela D)

Definition 41 (AT G sourceMetamodel)- Let Z be the final D-algebra.
Then AT GgourceMetamodel 18 an attributed type graph with
ATGsourceMetamodel = (AGsourceMetamodela Z)

Definition 42 (T AGsourcerodel)- Let t be a graph morphism
t : AGsourceModel = AT G source Metamodel With

o = (tG,VGatG,VDa tG,EGatG,ENA)
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ta v, (entity) = Entity,

ta v, (featurer) = tg v, (featurey) = Feature,

ta,v, (Person) = ta v, (name) = tq v, (age) = string,

(
ta, B (featuresy) = tq g, (featuress) = features

tq By 4 (ename) = ename

ta. ey, (framer) = ta gy, (frames) = fname

Then TAG sourceModel 1S 6 typed attribute graph over AT G gourceMetamodel
with TAGsourceModel - (AGsourceModela t)-

A.2,

Target Definitions

Definition 43 (AGiargetiodet). Let Grargetnodel be an E-Graph with

GtargetModel = (Va, VD, Eg, Ena, Epa, (sourcej, target;)icia,na,pA})
Vo = {class, field;, fieldy, method;, methods}

Vp = {Person,name, age, get Name, get Age}
Eq = {fieldsy, fieldsa, methody, methods }

Ena = {cname, fnamey, fnames, mnamey, mnames}

FEpa=0

sourceg : Fg — Vg : x — { class
fieldl
fields

method;
methods

targetq : BFg — Vg : x —

class
fieldl
fields
method;
methods

sourcena : Eqg - Vg :x —

Person
name
age
getName
getAge

targetya : Eqg — Vo :

sourcepa : Fg — Vg :x— O

targetpa : Eq - Vg o — O
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x € {fieldsy, fieldse, methods,, methodssy}

x = fieldsy
x = fieldss
x = methods;
T = methodsy

T = cname
r = fname;
r = fnames
T = mname;
T = mnames

x = cname
x = fname;
r = fnames
T = mnamej
T = mnames
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Furthermore, let D be an algebraic signature with
D = STRING as defined in Section 2.4.2, p. 29.
Then AGiargetMetamodel @5 an attributed graph with

AG1argetMetamodel = (GiargetMetamodel, D)

Definition 44 (AGiargetMetamodel). Let GiargetMetamodel be an E-Graph with
® GiargetMetamodel = (Va, VD, Ec, Ena, Ega, (sourcej, target;) jc(a,na,EA})
o Vi = {Class, Field, Method}
® Vb = Dstring
o Eg = {fields, methods}
o Ena = {cname, fname, mname}
e Fpp=0

Class : x = fields

e sourceg: bg — Vg 1o — { Class : x = methods

Field : x = fields

e targetg : Eg — Vo : 2 { Method : x = methods

Class : x = cname
e sourceng: Fqg— Vg :xw— Field : x = fname
Method : x = mname
string : x = cname
o targetya: Eq — Vg :x— < string : x = fname
string : T = mname

e sourcegpa  Eg —Vag:x— O

targetpa : Eg - Vg :ix— O

Furthermore, let D be an algebraic signature with
D = STRING as defined in Section 2.4.2, p. 29.
Then AGiargetMetamodel @5 an attributed graph with

AGtargetMetamodel = (GtargetMetamodeb D)

Definition 45 (AT GiargetMetamodel) Let Z be the final D-algebra.
Then AT G argetMetamodel 15 an attributed type graph with
ATGtargetMetamodel = (AGta’/‘getMetamodeh Z) .

Definition 46 (T'AGiargethodet). Let t be a graph morphism
t: AGtaTgetModel — ATGtargetMetamodel with

o t=(tave tavy:tG Eq tG.ExA)

e trg v, (class) = Class
o trg v, (field) = trg v, (fieldy) = Field
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tra.ve(methody) = tra.v, (methods) = Method

tre, v, (Person) = trg,vy, (name) = tre,v, (age) = tra,vy, (get Name)
= lrq,v, (getAge) = string

ta.p,(fieldsy) = tq g, (fieldsy) = fields

te. 5. (methodst) = tg g, (methodss) = methods
ta. By 4 (cname) = cname

ta.Eya(framer) = tg gy, (frnames) = fname

ta, By, (mnamer) = tg gy, (Mnames) = mname

Then T AG argetModel @5 a typed attribute graph over ATGurgetMetamodel
with TAGtargetModel = (AGtargetModela t)'
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B. Matchbox

Matchbox is a metamodel matching framework based on the combination of different
matching algorithms [Voi09, VIR10]. This framework is build up on the SAP Auto
Mapping Core, an implementation inspired by COMA++ [DRO07], a schema matching
framework.

Matchbox is a parallel matching system and follows the classical process steps from
Section 2.3 (cf. Figure 2.3). In the following sections, we provide an overview on the
internal data model and matching algorithms of Matchbox as well as the possibilities on
aggregation of the matcher results to create an output mapping.

B.1. Model Import

The internal data model of Matchbox is a typed graph called Genie. A comprehensive
description is given in [Ival0]. To be matched metamodels are transformed into this
internal data model. A model element is reflected as an entity with an unique resource
identifier (amongst other properties) to the original model element of representation.
Additonally, the entity has a name, which is set to the metamodel elements name.
Relationships between model elements are defined through containment, association or
inheritance. Important for the scope of this work, the instance-of relationship between
model elements (instances) and metamodel elements can be expressed. Instances are
characterized through their metamodel type and captures its value as a list of strings.
Moreover, attributes are assigned to entities and feature a primitive type, e.g., Integer,
Float, String etc.

B.2. Matching Algorithms

Matchbox supplies a range of different matchers based on element-level algorithms (name
matcher, name path matcher and data type matcher) as well as structure-level algorithms
(parent matcher, children matcher, sibling matcher, leaf matcher, graph edit distance
matcher and pattern matcher).

Element-level Algorithms

The Name Matcher compares the names of source and target-metamodel elements and
calulates similarities based on Trigrams. Generally, an n-gram is a contiguous sequence
of n tokens from a given sequence of a string. The Trigram approach calculates equal
character sequences of size three (trigram) in the names. The sum of all occurances of
trigrams is then compared to the overall number of trigrams. Furthermore, the user
may specify synonyms, that are stored in a dictionary and support the calculation of
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similarities. Alternatively, a string edit distance based on Levenshtein [WF74] can be
used.

The Name Path Matcher is an extension of the Name Matcher and calculates the
similarities of metamodel elements with the help of their path (containment path of an
element). A path is the concatenation of the element names from the root to the current
element, called name path. The name matcher is applied on the name paths of the
metamodel elements.

The Data Type Matcher makes use of a transformation table that provides the degree
of compatibility between types of metamodel elements. Therefore, the similarity is based
on the type of metamodel elements.

Structure-level Algorithms

The Parent Matcher calculates similarities on the rationale that elements with similar
parents indicate a similarity of the contained elements. That is, the parent matcher
computes the similarity of a source and target element by applying a specific matcher
(e.g., the name matcher) to the parents of source and target element. Afterwards, this
calculated similarity is propagated to its containing elements.

The Children Matcher is based on the inverse rationale of the parent matcher and as-
sumes that similar model elements have similar children. That is, the similarity between
contained elements of source and target are computed and propagated to the parents
of the source and target. Matchbox uses the leaf matcher for an initial calculation of
similarities for the set of children elements of source and target. This resulting matrix
of similarities is then combined by using the average of all values.

The Sibling Matcher follows an approach similar to the children matcher. The matcher
works on the assumption that similar model elements have similar siblings. In Matchbox,
the calculation of similarity values for the siblings is calculated through the leaf matcher.
The resulting similarites are combined the same way as for the children matcher. Re-
garding the children and sibling matcher, other matchers than the leaf matcher could be
used to calculate the initial similarity, however the leaf matcher provides the best results
[Voill].

The Leaf Matcher calculates similarities based on similar leaves. That is, the simi-
larities of the set of all leaves (elements with no children) to a given source and target
element are calculated. This is achieved through the name matcher. Again, the result-
ing matrix of similarities is aggregated by using the average of all values. This resulting
similarity is propagated to the currently processed source and target element. Finally,
these aggegated results are aggregated again by computing their average result. The leaf
matcher is used to detect structural re-organisations.

The Graph Edit Distance Matcher applies a sequence of edit operations, composed
of: add, remove, and relabel (rename). A sequence of such operations defines a mapping
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from one graph onto another, thus calculating the maximal common subgraph along
with the necessary operations.

The Pattern Matcher computes a complex structural similarity between model ele-
ments based on existing patterns. Patterns indicate redundant information or the usage
of established design structures.

B.3. Configuration of Similarity Cube

Each matcher produces an output in the form of a matrix with cells holding the similarity
values. In doing so, the matcher calculates a similarity value for each pair of the cartesian
product between the set of all elements of a certain source and target model. The
similarity values are from the interval of real numbers between 0 and 1 denoted by
[0...1]. All similarity matrices are arranged along the set of matcher types to form a
similarity value cube. To derive a mapping between source and target elements out of
these results, the similarity value cube needs to be configured. This configuration is
dependent on the following strategies and parameters. The strategies are Aggregation,
Selection, Direction. Furthermore, these strategies may be combined.

e Aggregation: The aggregation reduces the similarity cube to a matrix, by ag-
gregating all matcher’s resulting matrices into one. In Matchbox, four different
strategies for aggregation are provided: Max, Min, Average and Weighted. The
Mazx strategy follows an optimistic mode and selects the highest similarity value
calculated by a matcher. On the contrary, the Min strategy selects the lowest
value. Average evens out the matcher’s results by calculating the average for each
source and target element. Through user-defined weights on certain matcher re-
sults, accordingly, the Weighted aggregation computes the weighted sum of the
results w.r.t. each source and target element.

e Selection: The selection filters possible matches from the aggregated matriz ac-
cording to a defined strategy. Possible strategies are Threshold, selN and selDelta:
Threshold selects all matches exceeding a particular threshold. selN returns the
highest N similarity values compared to all matches. Finally, selDelta firstly
chooses, the match with the highest similarity value; secondly returns those sim-
ilarity values within a certain relative range. This range is defined through the
specified value for delta, that is, through the interval [Maz — Max - Delta, Max].
Furthermore, the above-mentioned selection strategies can be combined, such as
Threshold and selDelta.

e Direction: The direction is dedicated to a ranking of matched model elements
according to their similarity. In the Forward strategy elements of the source are
selected for each element of the target model. The Backward strategy is the inverse
of the Forward strategy. The above strategies can be combined in the Both strategy,
where a match then has to have a similarity value for each direction forward and
backward.
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C. Case Study: Sales Scenario

This section is dedicated to the description of the Sales Scenario. The Sales Scenario
is a model-driven software product line, demonstrating SAP’s core business regarding
application engineering in the domain of enterprise software. From exemplary solutions
centered around this domain including Product Life Cycle Management, Supply Chain
Management or Supplier Relationship Management, the Sales Scenario mainly focuses
on Customer Relationship Management in combination with the aforementioned do-
mains. The main purpose of this case study is the holistic management of business data,
including central storage and access controlled retrieval in accordance with the official
guide book to SAP CRM of Buck-Emden and Zencke [BEZ04].

The engineering side of the Sales Scenario is based on feature-oriented product line en-
gineering [KLDO02]|. Consequently, the end user has to configure a feature tree in order
to select a valid set of features for a resulting application. The required mapping to
achieve a customer-specific application is twofold, that is, two types of model trans-
formations take place: a) transformations from the configured feature tree to a set of
domain-specific models, which require an explicit mapping from problem to solution
space and b) model-to-text transformations essentially building the executable business
application.

For the scope of our work, we make use of the second transformation type, while assuming
a feature configuration, where every feature is selected. The features of the sales scenario
entail account management, quotation management, order management and product
management. The the input models of the model-to-text transformations are instances
of six domain specific languages (DSLs), describing different domains of the business
application. In particular, these are:

e Action DSL to declare invokable behaviour
e Business Object DSL for data structure modelling

e Context DSL for session contexts to buffer in-memory data models in addressable
spaces

e State DSL for transitions based on state machines
e Dialog DSL for page flow definitions
e View DSL for graphical user interfaces

For more information about the nature of the above-mentioned DSLs, we refer to
[LGO8, EJFT09]. To specify the application features, domain-specific models per DSL
are defined for each application feature.
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D. Evaluation: XPand Connector

D.1. Data Models and Transformation Program

From the source model in Figure D.1, two Java classes are generated QuotationManage-
mentDialog (see Listing 11.1) and QuotationManagementComposite (see Listing 11.2).

4 (K| platferm:/rescurce/com.sap.salesscenanio/sro/solution/model/com/sap/salesscenario/view/ quetation_managementxmi
4 < View Bundle com.sap.salesscenario.quotation.view
4 | <= Dialeg quotationManagement
4 <= Container Widget
4~ Layout Data FILL
4 < Form QMform
4~ Layout Data FILL
4 <= Header gmHead
4 <= Tool Bar gMHeaderTools
<= Tool Ikem gMCreateQuotation
4 < Container Widget gmBody
4 <4 Table quotationTable
4 Layout Data FILL
4 <» Table Column
4 Label colMame
a <4 Table Column
4 Label colState
4 <4+ Table Column
4 < Container Widget
<4 Layout Data BEGIM
4 <= Tool Bar quotationTools
4 Tool Item filled
<+ Tool ltem prepare
<= Tool kem propose
4= Tool kem accept
4= Tool ltem reject
< Tool Item archive
< Tool Item viewQuotation
4 Tool tem editQuotation
4 Tool tem deleteQuotation
<= Layout false
<4+ Layout false
<4 Layout true
Dialeg showQuotation
Dialeg createQuotationnsertHeader
Dialog createQuotationlnsertltemns
Dialeg createQuotationReviewAndFinish
Dialeg editQuotation

R

Figure D.1.: Quotation Management Source Model
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The latter classes relate to a container widget with a tool bar including tool items. In
the generated code, a Toolltem to prepare a quotation is added to the container widget.
The Toolltem is labelled with the tool tip text "Propose quotation”. The transforma-
tion program for QuotationManagementDialog and QuotationManagementComposite is
presented in Listing 11.3.

package com.sap.salesscenario.quotation.view;

public class QuotationManagementDialog
extends
Dialog<QuotationManagementComposite> {

public QuotationManagementDialog(Display display) {
super (display) ;
}

@0verride
protected int getHeight() {
return 250;

}

@0verride
protected void createControl() {
this.control = new QuotationManagementComposite(this, this.shell,
SWT.NONE) ;

this.shell.setText ("Quotation Management");

}

protected void shellDisposed(/*Transition closingTransition*/) {
System.out.println("Closing QuotationManagementComposite shell.");

}

@0verride
public void update() {
// implement your UI updates here
}
}

Listing 11.1: Generated Target: QuotationManagementDialog.java

package com.sap.salesscenario.quotation.view;
public class QuotationManagementComposite extends Composite {
private boolean isWizard = false;

private int maxHeight = O;
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private final QuotationManagementDialog dialog;
private FormToolkit toolkit = null;

public QuotationManagementComposite(QuotationManagementDialog dialog,
Composite parent, int style) {
super (parent, style);
this.dialog = dialog;
toolkit = new FormToolkit(parent.getDisplay());
this.initialize();

3

public QuotationManagementDialog getDialog() {
return dialog;

}

public TableLine<?> tableQuotationTableCreateLine() {
TableItem item = new TableItem(tableQuotationTable, SWT.NONE);
final TableLine<?> result = this
.tableQuotationTableCreateTableLine(item) ;

item.setData(result);

final TableEditor tableColumn7826d729_0a89_4b89_ 9a88_b99052992e8d = new
TableEditor (
tableQuotationTable) ;

Composite containerWidget2d85dcb9_7248_46f1_b4eb5_c106b6077ael = new
Composite(
tableQuotationTable, SWT.NONE);

ToolBar toolBarQuotationTools = new ToolBar(
containerWidget2d85dcb9_7248_46f1_b4e5_c106b6077ael, SWT.FLAT);

ToolItem toolItemPropose = new ToolItem(toolBarQuotationTools,
SWT.HORIZONTAL) ;

toolItemPropose.setToolTipText ("Propose quotation");

toolItemPropose.setData(toolBarQuotationTools);

return result;

}
}
Listing 11.2: Generated Target: QuotationManagementComposite.java
<<REM>> --——--— generateDialogs: -—-—————————————————————- <<ENDREM
>>
<<REM>> Dialog classes for dialogs <<ENDREM>>
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<<REM>> --- -7 <<ENDREM
>>

<<DEFINE swtFile(ViewBundle bundle) FOR Dialog>>

<<FILE getFileForPackage(bundle.id, this.id.toFirstUpper() + "Dialog")>>

package <<bundle.id->>;

public class <<this.id.toFirstUpper()->>Dialog extends Dialog<<<this.id.
toFirstUpper () ->>Composite> {

public <<this.id.toFirstUpper ()->>Dialog(Display display) {
super (display) ;
}

<<EXPAND getSize FOR this->>
<<DEFINE getSize FOR Dialog>>
<<IF this.width >= 0->>
@0verride
protected int getWidth() {
return <<this.width->>;

}
<<ENDIF->>

<<IF this.height >= 0->>
Q@0verride
protected int getHeight() {
return <<this.height->>;
¥
<<ENDIF->>
<<ENDDEFINE>>

@0verride

protected void createControl() {
<<EXPAND swtElement(bundle, this) FOR this.content->>
this.shell.setText ("<<this.title>>");

¥

protected void shellDisposed(/#Transition closingTransitionx*/) {
System.out.println("Closing <<getCompositeName (this)->> shell.");
}

@0verride
public void update() {
// implement your UI updates here
}
3
<<ENDFILE>>
<<ENDDEFINE>>

191




49

69
70
71
72
73
74

76
7
78
79
80
81
82
83
84
85
86
87
88

89

90
91
92
93

Chapter 11. Appendix

<<KREM>> -- -7 generateComposites: -—-————-—-—-————————————- <<ENDREM
>>

<<REM>> Composite classes for the ContainerWidget child of a dialog <<ENDREM>>

<<REM>> ——=————————— e <<ENDREM
>>

<<DEFINE swtElement(ViewBundle bundle, Dialog dialog) FOR ContainerWidget->>
this.control = new <<getCompositeName(dialog)->>(this, this.shell, SWT.NONE);
<<FILE getFileForPackage(bundle.id, getCompositeName(dialog))->>

package <<bundle.id->>;

public class <<getCompositeName(dialog)->> extends Composite {
private boolean isWizard = false;
private int maxHeight = 0;
private final <<dialog.id.toFirstUpper()->>Dialog dialog;
private FormToolkit toolkit = null;

public <<getCompositeName(dialog)->>(<<dialog.id.toFirstUpper ()->>Dialog
dialog, Composite parent, int style) {
super (parent, style);
this.dialog = dialog;
toolkit = new FormToolkit( parent.getDisplay() );
this.initialize();

}

public <<dialog.id.toFirstUpper()->>Dialog getDialog() {
return dialog;

3

<<EXPAND TableGenerator FOR this>>
¥

}

<<ENDFILE>>

<<ENDDEFINE>>

<<DEFINE TableGenerator FOR Table>>
public TableLine<?> <<getWidgetName(this)->>CreateLine() {

TableItem item = new TableItem(<<getWidgetName(this)->>, SWT.NONE);

final TableLine<?> result = this.<<getWidgetName (this)->>CreateTableLine(
item);

item.setData(result);

<<FOREACH this.columns AS column ITERATOR it->>
<<EXPAND tableEditor (getWidgetName(this), it.counter0) FOR column->>
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<<ENDFOREACH>>

return result;

}
<<ENDDEFINE>>

<<DEFINE tableEditor(String swtParent, Integer index) FOR TableColumn>>
final TableEditor <<getWidgetName(this)->> = new TableEditor(<<swtParent->>)

)

<<EXPAND localSWTElement (swtParent, true) FOR this.itemDefinition->>

<<getWidgetName (this.itemDefinition)->>.pack();
<<getWidgetName (this.itemDefinition)->>.setData(
TableHelper.TABLE_LINE, result);
result.setEditor(<<index->>, <<getWidgetName(this.itemDefinition)->>, <<
getWidgetName (this)->>);
<<ENDDEFINE>>

<<DEFINE localSWTElement (String swtParent, boolean inTable) FOR ContainerWidget
>>
<<EXPAND swtElement (swtParent, inTable) FOR this->>

<<ENDDEFINE>>

<<DEFINE swtElement (String swtParent, boolean inTable) FOR ContainerWidget>>
Composite <<getWidgetName(this)->> = new Composite(<<swtParent>>, SWT.NONE);
<<EXPAND swtElement(getWidgetName(this), inTable) FOREACH this.widgets->>
<<ENDDEFINE>>

<<DEFINE localSWTElement (String swtParent, boolean inTable) FOR ToolBar>>
<<EXPAND swtElement (swtParent, inTable) FOR this->>
<<ENDDEFINE>>
<<DEFINE swtElement(String swtParent, boolean inTable) FOR ToolBar>>
ToolBar <<getWidgetName (this)->> = new ToolBar(<<swtParent->>, SWT.FLAT);
<<EXPAND localSWTElement (getWidgetName(this), inTable) FOREACH this.items->>
<<ENDDEFINE>>

<<DEFINE localSWTElement (String swtParent, boolean inTable) FOR ToolItem>>
ToolItem <<EXPAND swtElement (swtParent, inTable) FOR this->>

<<ENDDEFINE>>

<<DEFINE swtElement (String swtParent, boolean inTable) FOR ToolItem>>
<<getWidgetName (this)->> = new ToolItem(<<swtParent->>, SWT.HORIZONTAL);
<<getWidgetName (this)->>.setToolTipText ("<<this.toolTipText->>");
<<getWidgetName (this)->>.setData(<<swtParent->>);

<<ENDDEFINE>>

Listing 11.3: Transformation = Program  for  QuotationManagementDialog  and
QuotationManagementComposite
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D.2. Gold Mapping

In this section, the reference traceability data, so-called gold mapping, is documented.
First, we present the gold mapping for the generation of QuotationManagementDi-
alog.java in Table 11.1 and Table 11.2, followed by the gold mapping for Quotation-
ManagementComposite.java in Table 11.3 to Table 11.5. We omitted containment
links for the sake of clarity. Secondly, static text snippets generated between expressions
(marked by guillemets) are concatenated to a unit of traceability data (one row in the
table), rather than listing single text snippets in the processed string.
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Source Artefact 7 Operator 7 Target Artefact 7 Trace Link
Dialog quotationManagement 7 EXPAND Block (Line 14) 7 text block (Line 11-14) 7 Create
Dialog quotationManagement | DEFINE Block (Line 15-29) | text block (Line 11-14) | Create
Dialog IF Block (Line 23-28) text block (Line 11-14) Create
quotationManagement.height

template snippet: @QOverride static text: @Override @OQOverride protected int Create
protected int getHeight() { protected int getHeight() { getHeight() { return (Line

return (Line 24-26) return (Line 24-26) 11-13)

Dialog «this.height -» (Line 26) 250 (Line 13) Create
quotationManagement.height

template snippet: ;} (Line static text: ;} (Line 26-27) ;} (Line 13-14) Create
26-27)

template snippet: @QOverride static text: @Override @OQOverride protected void Create
protected void createControl() | protected void createControl() | createControl() { (Line 16-17)

{ (Line 31-32) { (Line 31-32)

Container Widget | EXPAND Block (Line 33) | text block (Line 18-19) | Create
Container Widget | DEFINE Block (Line 52-53) | text block (Line 18-19) | Create
template snippet: static text: this.shell.setText(” | this.shell.setText(” (Line 21) Create
this.shell.setText(” (Line 34) (Line 34)

Dialog «this.titley (Line 34) Quotation Management (Line Create
quotationManagement.title 21)

template snippet: 7); } (Line static text: 7); } (Line 34-35) ”); } (Line 21-22) Create
34-35)

template snippet: protected static text: protected void [...] protected void [...] Create
void [...] println(”Closing (Line | println(”Closing (Line 37-38) println(”Closing (Line 24-25)

37-38)

Table 11.2.: Gold Mapping for QuotationManagementDialog: Part 2/2
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Source Artefact Operator Target Artefact 7 Trace Link
Dialog query: toFirstUpper() (Line template snippet: Retrieve
quotationManagement.id 64) toFirstUpper() (Line 64)
template snippet: Dialog static text: Dialog dialog; |...] Dialog dialog; [...] public (Line | Create
dialog; [...] public (Line 64-68) | public (Line 64-68) 9)
Dialog «getCompositeName(dialog)-» QuotationManagementComposit¢ Create
quotationManagement.id (Line 68) (Line 13)
Dialog query: template snippet: Retrieve
quotationManagement.id getCompositeName(dialog) getCompositeName(dialog)
(Line 68) (Line 68)
template snippet: { (Line 68) static text: { (Line 68) { (Line 13) | Create
Dialog «dialog.id.toFirstUpper()-» QuotationManagement (Line Create
quotationManagement.id (Line 68) 13)
template snippet: Dialog Dialog dialog; [...] public (Line | Dialog dialog; [...] public (Line | Create
dialog; [...] public (Line 68-75) | 68-75) 13-21)
Dialog «dialog.id.toFirstUpper()-» QuotationManagement (Line Create
quotationManagement.id (Line 75) 21)
template snippet: Dialog Dialog getDialog() [...] } (Line | Dialog getDialog() [...] } (Line | Create
getDialog() [...] } 75-77) 21-23)
Dialog quotationManagement «EXPAND TableGenerator text block (Line 25-48) Create
FOR this» (Line 79)
Table quotationTable «DEFINE TableGenerator text block (Line 25-48) Create
FOR this» (Line 85-89)
template snippet: public public TableLine<?> (Line 86) | public TableLine<?> (Line 25) | Create

TableLine<?> (Line 86)

Table 11.4.: Gold Mapping for QuotationManagementComposite: Part 2/3
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E. Evaluation: QVT Connector

E.1. Data Models

The QVTO UML2RDB transformation is based on a simplified UML and relational
database model. The transformation specification is discussed in [Obj11].

Example models and the transformation program can be found at:
http://wiki.eclipse.org/QVTo#Examples

E.2. Gold Mapping

The gold mapping is represented in Table 11.6.
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