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Preface

Knowledge is necessary to solve problems and to act intelligently in almost all situations –

a simple fact that is true for humans and computers alike. Therefore, to enable humans and

computers to act intelligently, it is necessary to first solve the problem of learning relevant
knowledge, more formally referred to as knowledge acquisition. In the case of computers,

another problem has to be tackled, namely the problem of representing knowledge in a way

that is suitable for a machine consumption.

A common approach to representing knowledge suitable for computer consumption is

to use different kinds of logics, and among these description logics are a very popular choice.

Description logics are a family of logic-based formalisms with varying reasoning complexity

and expressiveness, specifically tailored towards practical decision procedures. Moreover,

description logic knowledge bases (also called ontologies) allow for a powerful mechanism to

represent knowledge, which is used in practical applications like bio-medical ontologies

and the semantic web.

The types of knowledge representable by description logic knowledge bases are assertional
knowledge and terminological knowledge. Obtaining assertional knowledge, like the fact that

Abraham Lincoln was a president, or that John McCarthy was a professor at Stanford

University, is comparably easy, and can (to a certain extent) even be done automatically.

This is mostly due to the rather local nature of assertional knowledge, which just concerns

one or two individuals. On the other hand, obtaining terminological knowledge is much

more involved, because this knowledge relates concepts, and not individuals, to each other:

the fact that every human is mortal, or that every human has a head are examples for

terminological knowledge. Obtaining such knowledge, which may concern a wide and

mainly indefinite range of individuals or things, is much harder, and hoping to obtain it in

an automatic way seems gullible.

Nevertheless, there have been various approaches to obtaining terminological knowledge,

at least in a preliminary version, from various sources of data, like natural language texts,

databases, or linked data. One of these approaches has been developed by Franz Baader

and Felix Distel, and is based on notions from the mathematical theory of formal concept
analysis. This approach allows the extraction of general terminological knowledge in the

form of general concept inclusions that are valid in a given finite interpretation. Interpretations

are structures, which are used in description logics to define the semantics of different



logics, and can be thought of as directed edge- and vertex-labeled graphs. Because of their

graph-like nature, interpretations can be thought of as a variant of linked data, and then

the approach by Baader and Distel in principle allows the extraction of terminological

knowledge from this form of data, which is ubiquitous in the realm of the semantic web.

Thus, one could turn the vast amount of linked data into description logic knowledge bases

and use them to make computers act more intelligently.

However, the approach of Baader and Distel has some drawbacks which make it hard to

apply it to real-world data. One of these is the fact that every real-world data set contains

errors, and in such cases considering only terminological knowledge that is valid in this

erroneous data seems futile. In the worst case, valid terminological knowledge is not

extracted from the data set because a single error invalidates it.

On the other hand, learning terminological knowledge from an interpretation or linked

data is only reasonable if this data set is of sufficiently high quality, meaning that it does not

contain too many errors that are relevant for the learning process. Then one could imagine

that it may be fruitful to also consider terminological knowledge that is almost valid in this

data. In this way, knowledge that is erroneously invalidated by few errors is still recovered

from the data. Of course, one has to make sure that rare but valid counterexamples in this

data set are not accidentally ignored in this way, i. e. the knowledge obtained needs to be

verified by an external source of information, like a human expert.

It is the purpose of this work to present an extension of the results by Baader and Distel

that incorporates the idea of considering general concept inclusions which are almost

valid in the input data. To this end, we shall make use of the notion of confidence from

data mining, and transfer it to general concept inclusions. We then shall show how we

can learn all general concept inclusions with high confidence in our input data. For this

we use ideas from formal concept analysis, more specifically results obtained by Michael

Luxenburger on partial implications in formal contexts. We then shall apply our findings to

a small example interpretation extracted from the DBpedia data set, and assess in how far

our approach yields more error-tolerant results. Finally, we shall show how we can obtain

a semi-automatic algorithm for the expert-based verification step mentioned above, based

on the algorithm of attribute exploration from formal concept analysis.

All these extensions are based on the original results by Baader and Distel, and we shall

review these results to the extent needed for our considerations. This will also include

an introduction to the main notions of formal concept analysis and description logics, as

necessary for this work. It is the aspiration that this extension of Baader’s and Distel’s results

make the techniques of extracting general concept inclusions from finite interpretations

more accessible for practical applications.
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C h a p t e r 1

Introduction

For a machine to interact in an intelligent manner with its outside world, it needs to be

equipped with suitable knowledge. The very same is true for humans, and acquiring this

knowledge is a highly complex task which up to today is not completely understood. To

help within this process, previously acquired knowledge is represented in different ways,

e. g. as books or films, to help others learning it.

However, the way knowledge is represented for human consumption is almost always

not suitable for machines. While humans can extract knowledge from natural language,

which may be full of ambiguity, machines require precise formulations of knowledge. The

representation of knowledge in a machine-understandable way is the main focus of the

area of knowledge representation [56].

One of the most successful approaches to knowledge representations are description

logics [12], a family of logic-based knowledge representation formalisms with varying

expressivity and reasoning complexity. Description logics allow to represent knowledge

as knowledge bases, or ontologies. Essentially, these are collections of axioms, which may be

either assertional or terminological. For example, to represent the fact (the assertion) that an

individual tom is a cat, one can use the assertional axiom

Cat(tom). (1.1)

On the other hand, to state the terminological knowledge that every cat hunts mice, one

can use so-called general concept inclusions (GCIs) and write

Cat Ď Dhunts.Mouse. (1.2)

As soon as a knowledge base is available, it is possible to reason with it, i. e. to extract

knowledge from it that is implicitly contained. For example, from the two axioms stated

above, we can infer that the individual tom hunts mice, although this has never been stated

explicitly.

Knowledge bases can be used to represent knowledge in a machine-consumable way.

However, the question arises how such knowledge bases can be obtained. One way or
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the other, knowledge which is available to humans has to be translated into the form of

a description logic knowledge base. Of course, this could be done by humans, but this

approach would not only be very time-consuming, but also prone to errors. An automatic

translation would thus be highly welcomed. On the other hand, a completely automatic

translation would just mean that machines can consume knowledge in the way humans

represent it, an assumption which is not reasonable.

However, one can still think about approaches which are semi-automatic in the sense that

the results obtained from such a translation are preliminary, requiring further refinement,

or that the translation procedure requires additional assistance by means of human experts.

An approach to achieve such a semi-automatic translation procedure, or learning procedure,
has been made in [41]. There, the focus lies on extracting terminological knowledge of the

form as shown in Equation (1.2) from some given finite interpretation I . More precisely,

the procedures described in [41] would automatically learn all GCIs which are valid in the

data set I . This approach makes use of the mathematical theory of formal concept analysis,
a subfield of mathematical order theory, which has very close connections to description

logics.

Of course, the GCIs learned this way may not be correct, in the sense that the GCI may

hold in I , but this data missed to contain some relevant counterexamples. In this case,

we say that I is incomplete. One way to remedy this is to use an algorithm from formal

concept analysis called attribute exploration, and generalize it to the setting of GCIs. Such a

generalization, called model exploration, has been discussed in [41]. Within this algorithm,

an expert (possibly human) is asked for the correctness of extracted GCIs, and if such a

GCI is not correct, the expert has to provide counterexamples for it. This way, the problem of

I being incomplete can be solved.

However, there are still problems with the original approach of [41], in particular con-

cerning the quality of the data I from which GCIs are learned. The main problem here is

that the data may contain errors. These errors may either cause otherwise valid GCIs not

to be found, because these errors act as false counterexamples, or GCIs to be found which

are not correct, because errors cause positive counterexamples to vanish. While the latter

approach can in theory be handled by the attribute exploration approach sketched above,

the former cannot, because the approach discussed in [41] will not even extract GCIs for

which there may be false counterexamples in I .

In this work, we want to extent the results obtained in [41] to this new setting of where

the data I may contain errors. The main approach for this is to transfer the notion of

confidence [1] from the area of data-mining to GCIs. Intuitively, this means that GCIs may

have few errors in the data, as opposed to having none in the original approach of [41]. The

notion of “few” is quantified by means of the confidence of the GCIs in the data.

In the following, we shall give a more in-depth discussion of what we want to do in this

work. To this end, we first shall introduce description logics and formal concept analysis,

in an exemplary and historic manner. Thereafter, we shall discuss the main results of [41]

in more detail, and also briefly mention some other related work. Finally, we present the
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main contributions of this work.

1.1. Description Logics

Description logics [12] are a family of logic-based knowledge representation formalisms,

with a strong emphasis on well-defined semantics and practical reasoning procedures.

The family of description logics contains various kinds of logical formalisms, varying in

expressiveness and reasoning complexity, allowing users to choose the expressiveness they

need, or the complexity they can afford in their respective applications.

The development of description logics [18] was motivated by earlier knowledge repre-

sentation formalisms like semantic networks [91] or frame [71], whose semantics were highly

ambiguous, and mostly depended on human interpretation or implementation details. The

need for well-defined and predictable knowledge representation formalisms then led to

the first logic-based systems [35], which however were incomplete [86].

The first description logics considered were relatively small fragments of first order

logic, and already for them it could be shown that reasoning is intractable [34, 72]. One

approach to remedy this was to investigate highly optimized reasoning algorithms, which

behave well in practice. The most prominent class of such algorithms are tableau algorithms.
These algorithms were first invented for the description logic ALC [60, 87] for the sub-

sumption problem, and were thereafter extended to other, even more expressive logics.

After a connection of ALC to multimodal logic K(m) was discovered [85], it was seen that

this tableau algorithm is actually a re-invention of the tableau algorithms used in modal

logics. The development of description logics continued to investigate highly expressive

description logics, whose expressiveness exceeds that of ALC , but which still behave well

in practice [62], and for which highly-optimized implementations exist [52, 90, 99]. This

finally led to the adoption of the Web Ontology Language OWL by the W3C, which is based

on the highly expressive description logic SHOIN [61].

The focus of description logics research departed from the sole focus on expressive

description logics when, at the beginning of this millennium, it was discovered that for

the inexpressive description logic EL reasoning is tractable [9, 36], and stays so when the

expressiveness of EL is extended slightly [10, 11]. A practical relevance of these results

is given by the fact that large biomedical ontologies can be reformulated as description
logic knowledge bases (or description logic ontologies) using EL or such slight extensions of

it. Examples for this are the Systematized Nomenclature of Medicine–Clinical Terms, the Gene

Ontology [5], and large parts of the GALEN ontology [80].

The term “description” in “description logics” is motivated by the intention to use de-

scription logics to express knowledge about concept descriptions. For this, description logics

provide a number of constructors, which can then be used to build concept descriptions

from atomic concept names and binary role names. For example, the description logic EL
provides the constructors conjunction ([) and existential restriction (D). Examples of EL
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concept descriptions are

Cat, Cat[Mouse, Dhunts.Mouse,

where Cat, Mouse are concept names, and hunts is a role name.

A description logic knowledge base formulated in EL consists, like most description

logic knowledge bases, of two parts, namely an ABox, holding assertional knowledge, and

a TBox, containing terminological knowledge. An example knowledge base is

K = (tCat Ď Dhunts.Mouse u, tCat(tom) u),

where the first entry denotes the TBox, and the second denotes the ABox. The semantics

of knowledge bases is defined using interpretations I , which can be thought of as directed

edge- and vertex-labeled graphs. The labels of the vertices, which we shall call elements or

individuals, are concept names, and the labels of the edges are role names. An interpretation

is a model of a knowledge base if all elements satisfy the axioms contained in this knowledge

base. For example, the interpretation

tom

Cat

jerry

Mousehunts

hunts

is a model of the knowledge base K, since the element tom is labeled Cat, and every element

which is labeled with Cat is connected to some element labeled Mouse via an edge labeled

with hunts.

As soon as one has a description logic knowledge base, one can conduct reasoning with

it, i. e. one can extract knowledge from the knowledge base that may be only contained

in it implicitly. Two classical reasoning problems are instance checking and subsumption:

given an individual name a and a concept description C, the instance checking problem is

to ask whether a is an instance of C, i. e. whether a satisfies the concept description C in

every interpretation. The subsumption problem is to ask, given two concept descriptions

C and D, whether it is true that C is a subconcept of D, i. e. whether it is true in every

interpretation that every element that satisfies C also satisfies D. Other reasoning problems

are knowledge base consistency and concept satisfiability: a knowledge base is consistent if it

has a model, and a concept description C is satisfiable with respect to a given knowledge

base K if there exists a model of K containing elements that satisfy C. Deciding knowledge

base consistency and concept satisfiability can help to ensure the correctness of the given

knowledge base.
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small medium large inner outer moon nomoon

Mercury ˆ ˆ ˆ
Venus ˆ ˆ ˆ
Earth ˆ ˆ ˆ
Mars ˆ ˆ ˆ
Jupiter ˆ ˆ ˆ
Saturn ˆ ˆ ˆ
Uranus ˆ ˆ ˆ
Neptune ˆ ˆ ˆ
Pluto ˆ ˆ ˆ

Figure 1.1.: Example Formal Context (taken from [103])

1.2. Formal Concept Analysis

Formal concept analysis [48] is a subfield of mathematical order theory, originally concerned

with the study of properties of ordered structures called complete lattices by representing

them in terms of so-called formal contexts. Since then, formal concept analysis has con-

siderably broadened its scope, with connections to previously unrelated subjects such

as logics [44, 77], data mining [105], machine learning [65], and artificial intelligence [41,

82]. Because of this, formal concept analysis today can be considered as a part of theoret-

ical computer science, and thus it provides another link between computer science and

mathematics.

The origin of formal concept analysis as it is used in this work can clearly be marked by

the work of Wille [103], which introduced formal concept analysis as an approach to impose

meaning on complete lattices by considering them as hierarchies of concepts. This work

was motivated by previous results from Birkhoff [23], but also has a strong philosophical

background [57, 102]. Another early work that included some of the ideas of formal concept

analysis is [20].

The fundamental idea of formal concept analysis is to represent complete lattices by an

object-attribute-relationship, which is expressed using formal contexts. These structures can

be thought of as tables of crosses. An example of a formal context is depicted in Figure 1.1.

This example formal context expresses an object-attribute-relationship between the objects
being the known planets of the solar system (including Pluto), and the attributes being

certain properties of these planets, like their size (small, medium, or large), their distance

from the sun (being an inner or outer planet, i. e. having an orbit which is closer to the sun

than the asteroid belt or not), and if they do or do not have a moon. A cross in this table

then means that the object on the corresponding row has the attribute on the corresponding

column. Thus, for example, Mercury is a small planet, and Pluto is an outer planet. The set
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of all pairs of objects g and attributes m where g has the attribute m is called the incidence
relation of the formal context.

Formally, a formal context K can be defined as a triple K = (G, M, I), where G and M
are sets and I Ď GˆM. G is then called the set of objects, M is called the set of attributes,
and the set I is called the incidence. An object g P G has an attribute m P M in K if and

only if (g, m) P I.
From such a formal context one can then extract formal concepts, which can be ordered

in a natural way to yield the concept lattice of the formal context. In our example above,

a formal concept which corresponds to the concept of a medium-sized planet in our known
solar system would be the tuple

(tUranus,Neptune u, tmedium,moon, outer u), (1.3)

where the first set is called the extent, and the second set is called the intent of the formal

concept.

Formal concepts can then be ordered by set-inclusion of their extents, and it can be

shown that the thus-obtained ordered set is a complete lattice, the concept lattice of the

formal context. The concept lattice that corresponds to our small example above is shown

in Figure 1.2. This diagram also uses the usual, abridged annotation of concept lattices:

a node v in the lattice diagram represents the formal concept whose extent consists of

all objects which can be reached by an descending path in the diagram, starting from v.

Likewise, the intent of v is the set of all attributes that can be reached by an ascending path
in the diagram, starting from v. Thus, the gray-shaded node in Figure 1.2 is the formal

concept of Equation (1.3).

One of the key results of formal concept analysis is that every complete lattice can be

represented as a concept lattice of a suitably chosen formal context (this is the so-called

fundamental theorem of formal concept analysis). A major direction of formal concept analysis

research is to consider properties and operations of lattices, such as distributivity, modularity,

direct and semi-direct products, and transfer them to corresponding properties and operations

on the level of formal contexts. See [48] for more details on this.

Another very prominent research direction in formal concept analysis is the study of

implications in formal contexts, which has been discussed as early as [103]. Observe that in

our example formal context above, all outer planets have a moon. We can express this fact

as saying that the implication

t outer u Ñ tmoon u

holds in our formal context. Implications are similar to functional dependencies from the

theory of databases [70], and also play a certain role in classical order theory [101].

One task is to compute the set of all valid implications of a given formal context. Since

this set can be quite large, one usually wants to compute “small” sets of implications which

are sufficient, called bases. One very prominent base is the so-called canonical base [51]
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Mercury

Venus

no-moon

Mars

Earth

Jupiter

Saturn

large

Uranus

Neptune

Pluto

inner outer

small moon

medium

Figure 1.2.: Example Concept Lattice

(also stem base, Duquenne-Guigues base), which is a minimal base, i. e. a base with minimal

cardinality. This base can be computed effectively [46, 75], however these algorithms are

not efficient [40] with respect to the size of the input and the output. Certain complexity

results suggest that efficiently computing the canonical base is not possible in general [19].

However, if this is really the case is an open research question. Therefore, other bases have

been investigated, whose computation is algorithmically easier. An example is the base of

proper premises [48], for which fast algorithms exist [84].

An algorithm that is related to the study of valid implications of formal contexts is attribute
exploration [47, 48], which is an interactive process which extracts valid implications from

incomplete data utilizing expert interaction to obtain missing facts. Within this process, an

external expert is asked questions of the form

Is the implication A Ñ B valid?

The expert then can either accept this implication, or decline it by providing a counterexample.
In this way, the expert enriches the currently known formal context by missing objects

and their attributes. As soon as the process finishes, the set of confirmed implications

represents the whole implicational knowledge represented by the expert. Moreover, it can

be shown that the set of confirmed implications is the canonical base of the formal context

which consists of the initially known objects together with all counterexamples provided

by the expert. In this way, attribute exploration can be seen as a semi-automatic knowledge

acquisition algorithm.

Attribute exploration has been a major focus of formal concept analysis research, and

many extensions of this algorithm have been developed and discussed. Examples for this are
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the inclusion of background knowledge [45, 92], concept exploration [93], rule exploration [106],

relational exploration [82], exploration in the presence of partial knowledge [15, 37], and model
exploration [41].

1.3. Extracting Terminological Knowledge from Relational Data

The main purpose of this work is to discuss a way to extract general concept inclusions

from interpretations which are allowed to contain errors. The basis for our considerations

are the results obtained by Baader and Distel [13, 14, 41] on computing finite bases of valid
GCIs from finite interpretations. In the following, we shall briefly summarize the main

results of this approach.

The goal of the work by Baader and Distel is to learn terminological knowledge about a

certain domain of interest. For this we assume that we can represent this domain as a finite

interpretation I , i. e. our domain is representable as relational data. The terminological

knowledge we are then interested in is the set Th(I) of valid GCIs of I , using the description

logic ELK.

A first problem here is that the set Th(I) is infinite in general: if C Ď D is valid in I ,

and if r is a role name, then the GCI Dr.C Ď Dr.D is also valid in I . To remedy this, Baader

and Distel compute finite bases of Th(I), i. e. finite subsets B of Th(I) which are already

complete for I . In other words, finite bases B are finite sets of valid GCIs of I , such that

every GCI valid in I is already entailed by B. One of the main results of their approach is

that such finite bases always exist, and that they can be computed effectively.

To provide these results, Baader and Distel exploit the tight connection between the

description logic ELK and formal concept analysis, established by model based most specific
concept descriptions and induced formal contexts of finite interpretations and sets of concept

descriptions. More precisely, it can be shown that if KI denotes the induced formal context

of I , then every base of KI gives rise to a finite base of I . A technical problem that arises

here is that model-based most-specific concept descriptions are not necessarily expressible

in the description logic ELK. Because of this, Baader and Distel consider the description

logic ELK
gfp, an extension of ELK by cyclic concept descriptions using greatest fixpoint semantics.

The resulting algorithms for computing bases of finite interpretations are all effective. A

preliminary implementation with applications to linked data has been presented in [33].

An additional issue addressed by Baader and Distel is the fact that the interpretation I
may be incomplete, i. e. certain facts from the domain of interest may not be represented in

it. The GCIs which are valid in I may not necessarily be valid in the domain of interest.

This problem is very similar to the problem solved by attribute exploration, and indeed it

can be shown that attribute exploration applied to the context KI can be transferred into

an algorithm for model exploration of I . This algorithm then allows to interactively compute

bases of I , allowing an expert to provide missing facts when required. In this way, learning

GCIs which are invalid in the domain of interest can be avoided.
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1.4. Other Related Work

The work of Baader and Distel is not the first attempt to bring together the worlds of

description logics and formal concept analysis. Indeed, there have been several previous

attempts to utilize formal concept analysis for description logic applications, and to add

ideas from description logics to notions of formal concepts analysis.

One of the first results in description logics that utilizes formal concept analysis is

the work of Baader [6]. In this work, Baader uses the attribute exploration algorithm

on a special formal context to compute a minimal representation of the subsumption

hierarchy between all conjunctions of the defined concept names of a given acyclic TBox T
formulated in the logic ALC . To this end, Baader extends the classical tableau algorithm

for ALC to decide subsumption between single defined concept names [87], and extends it

in such a way that it provides counterexamples to instances of the subsumption problem.

These counterexamples are then collected into a suitable formal context, and from this

context the attribute exploration algorithm eventually computes the canonical base. These

implications give rise to a set of GCIs, which can then be used to decide subsumption

between conjunctions of defined concept names of T .

The results obtained by Baader have been further generalized by Stumme [95] to also

include disjunction. For this, a generalization of attribute exploration called distributive
concept exploration [94] has been used.

Another use of formal concept analysis for description logic applications is in knowledge
base completion [15, 89], for which again attribute exploration was used. For this, the expert

is asked GCIs of the form

l
U Ď

l
V,

where U, V Ď M for some previously chosen set M of interesting concepts. The goal is then

to ensure the given knowledge base is complete with respect to all these GCIs, i. e. the

knowledge base should entail all such GCIs which are confirmed by the expert, and should

contain counterexamples for all other GCIs of the above type. The greatest challenge for

transferring attribute exploration to this setting is to deal with the open world semantics of

description logic knowledge bases: if a fact is not entailed by the knowledge base, then this

does not mean that the negated fact holds. For this, attribute exploration is generalized

to work on partial contexts, i. e. formal contexts in which certain crosses are unknown. The

resulting algorithm has been implemented as a plugin named OntoComp for the ontology

editor Protégé [88].

A third prominent application of ideas of formal concept analysis in description logics is

the work of Rudolph on relational exploration [81, 82]. In this approach the target description

logic is FLE , the extension of EL by value restriction (@). The domain of interest is not

represented as an interpretation, but by means of binary power context families [79], which

however can easily be considered as an interpretation. Then the exploration process is
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conducted in several phases: in phase k, concept descriptions with role depth at most k are

considered as attributes of the current formal context, and on this formal context attribute

exploration is performed. Rudolph then shows that this process has to be considered only

up to a certain maximal role depth, and that the resulting set of implications can be used to

decide whether an arbitrary GCI C Ď D is valid or not in the domain represented by the

expert. However, it is not shown whether and how this set of implications can be transferred

into a base of the domain. Indeed, the decision procedure for checking whether C Ď D
holds in the domain or not is rather complicated. Thus, no GCIs are learned from this

approach, and thus it cannot be used to obtain terminological knowledge from relational

data.

The aforementioned approach of power context families is an attempt to add description

logic expressibility to the world of formal concept analysis. In its easiest form a formal

context is equipped with a family of relations R on the object set to obtain a relational
context. Based on this notion, terminological attribute logic [77] has been introduced that

allows to define new attributes in terms of old ones, using the relational context to extend

the incidence relation to the newly defined attributes. With this semantics, terminological

attribute logic can be seen as a syntactic variant of ALC extended by inverse roles, negated

roles and the identity role. Terminological attribute logic can also be defined for many-
valued contexts to provide a method for logical scaling [78], which transforms many-valued

contexts into the usual (two-valued) formal contexts in another way as the usual scaling

approach of formal concept analysis.

Another approach to bring a flavor of description logics to formal concept analysis is

relational concept analysis [53, 54]. The basic structure in this approach is a relational context
family, which consists of a family of formal contexts and a set of relations between objects

of possibly different contexts of this family. Using a method called relational scaling new

attributes r : C are added to the formal contexts, which roughly correspond to concept

descriptions of the form @r.C or Dr.C, where however C is now a formal concept of a formal

context of the family. In an iterative process, relational scaling is used to construct lattices

from all formal contexts of the relational context family. These lattices can then be used to

derive assertional and terminological knowledge formulated in the description logic FLE .

Other research that is related to this work are approaches in formal concept analysis

and description logics to tackle the problem of uncertainty and vagueness. In the area of

formal concept analysis, the most notable and relevant work is the one by Luxenburger [68,

69], who considers implications in formal contexts together with an accuracy (confidence).

Luxenburger then studies the problem of realizations of partial implications, which in terms

of logic is just the question whether a set of partial implications is satisfiable. The results

obtained here give a characterization in terms of linear programs. Furthermore, he studies

the problem of finding bases of partial implications, and we shall use the main ideas in our

later considerations. Luxenburger’s ideas have been used in the area of data mining, for

instance to obtain smaller representations of association rules [97].

Another prominent approach to handle knowledge that may not be completely correct is
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to consider fuzzy extensions of the respective formalisms. Those exist for both description

logics [27, 67] and formal concept analysis [21, 76], and are either based on Zadeh’s original

approach to fuzzy logics [104], or on the approach by Hájek [55], in which the semantics

is defined using t-norms on lattices. In both cases, logical facts (implications, assertional

knowledge, terminological knowledge) are annotated with truth values from an underlying

lattice, and the semantics then allows to infer truth values for previously unknown facts, or

at least bounds thereof.

Finally, a completely different approach to learning terminological knowledge has been

developed recently [64], based on a general framework of query learning proposed by [2]. In

contrast to the work by Baader and Distel, this approach tries to learn TBoxes T by posing

queries to an oracle. These queries are either entailment queries, in which the oracle has to

decide whether a proposed GCI is entailed by the TBox T to be learned, or equivalence
queries, where the oracle has to decide whether a given TBox is equivalent to T . The

work [64] then considers the question for which description logic the TBox T can be learned

in polynomial time. In particular, it is shown that if T is an acyclic EL-TBox, then it cannot

be learned in polynomial time.

Note that entailment queries are similar to the questions proposed to an expert during

attribute exploration. In fact, it is possible to show that a certain special case of query

learning [3] can be used to obtain an alternative computation of the canonical base [4].

1.5. Contributions

The main contributions of this thesis are the following.

1.5.1. Experiments with Extracting Valid GCIs

All results obtained by Baader and Distel are effective, meaning that the resulting algorithms

can be implemented and applied to relational data. As a first contribution of this work,

we shall present an implementation of these algorithms in Section 5.1. We then apply this

implementation to relational data from the DBpedia project [25], which obtains its data by

crawling infoboxes of Wikipedia articles. We shall see that the approach by Baader and Distel

indeed is able to extract terminological knowledge from this data, and we shall discuss the

corresponding outcome in detail.

The main observation of these experiments however is that the errors in the DBpedia

data set inhibit GCIs from being found which otherwise would be relevant for the domain

of the chosen data. The main example is that the GCI

Dchild.J Ď Person

stating the fact that every individual which has a child is a person, was not found during

our experiments. The reason for this is that input data contained four counterexamples for



12 1. Introduction

this GCI, which however were all erroneous. On the other hand, the input data contained

2547 positive examples for this GCI. This shows that the original approach of Baader and

Distel is very sensitive to errors in the input data, even if they are comparably rare.

1.5.2. Extracting GCIs with High Confidence from Erroneous Data

A main result from our experiments is that errors in the input data can inhibit otherwise

valid GCIs from being extracted. On the other hand, we can assume that the input data must

be of sufficient quality to reasonably extract terminological knowledge from it, i. e. must not

contain too many errors which are relevant for our computations. Based on this assumption

we generalize the approach by Baader and Distel from computing bases of valid GCIs to

computing bases of GCIs which are almost valid in the input data. To formalize the notion

of being almost valid, we make use of the notion of confidence as it is used in data-mining,

and transfer it to the setting of GCIs. Instead of computing bases of valid GCIs, we then

want to compute bases of GCIs whose confidence is above a certain threshold c, for some

chosen value c P [0, 1]. Those GCIs we shall call GCIs with high confidence. We shall see that

we can generalize most of the results of Baader and Distel accordingly, using Luxenburger’s

ideas on his investigation of partial implications in formal contexts. An example for such

a result is the fact that bases of the induced context of a finite interpretation give rise to

a base of the finite interpretation itself. We shall see that we can generalize this result to

obtain that bases of implications with high confidence in the induced context give rise to

bases of GCIs with high confidence in the finite interpretation. Finally, we shall apply our

results to the data sets we used for our experiments, to show that our approach is able to

handle certain errors in the input data.

1.5.3. Exploration by Confidence

The approach of considering GCIs with high confidence is a purely heuristic one: by

considering GCIs with high confidence, we can ignore rare errors in the input data. However,

our approach ignores rare counterexamples as well, i. e. counterexamples which are actually

valid, but occur so infrequently that the confidence measures ignores them. In this case,

an external source of information is needed that can distinguish between errors and rare

counterexamples in the data. An example for such an external source of information could

be a human expert, who then considers all such counterexamples manually, and decides

whether they are valid or not.

Expert interaction can also be used to tackle another problem with data, namely its

incompleteness: for certain GCIs relevant counterexamples may exist in the domain of

interest, but may not be present in the given data set. In other words, we still assume that

our domain is represented by an interpretation, the so-called background interpretation, but

we only have access to some part of it. In this case, both the original approach by Baader

and Distel, as well as our extension to GCIs with high confidence would extract those
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GCIs for which relevant counterexamples are missing. We could use the external expert to

avoid this issue, by querying this expert for possible counterexamples from the background

interpretation for all GCIs we would extract.

This expert interaction may be expensive, however, and an algorithm that keeps this

interaction to a minimum would be highly desirable. In the case of valid implications of

a formal context, the attribute exploration algorithm would be such an algorithm, as it

asks the expert a minimal number of different questions. Therefore, we want to generalize

attribute exploration to the setting of GCIs with high confidence to obtain an algorithm

that allows the use of an expert to distinguish between errors and rare counterexamples.

As a first step, we shall consider the easier problem of exploring implications with high
confidence instead of GCIs. In this step, we shall generalize attribute exploration to exploration
by confidence, where the algorithm not only asks the expert after implications which are

valid in the current context, but also after those which only have high confidence. For this,

we first investigate generalizations of attribute exploration which allow us to explore sets of
implications. In these generalizations, a set L of implications can be specified for which the

expert should decide which elements of L are valid. In attribute exploration, the set L is

just the set of all valid implications of a given formal context. For the case of implications

with high confidence, the set L is then just the set of all implications whose confidence is

above a certain threshold c.

1.5.4. Model-Exploration by Confidence

The problem of incomplete data already arises in the case of valid GCIs, and to approach

this problem Baader and Distel propose extensions of attribute exploration which also

work with valid GCIs. One of these extensions, called model exploration, works mostly in the

same way as attribute exploration does, with the difference that the expert now gets asked

GCIs for confirmation instead of implications. Model exploration is essentially attribute

exploration of the induced context of the given interpretation, although several technical

problems have to be dealt with.

One of these problems it that the attribute set of the induced context depends on the

background interpretation. Clearly, the background interpretation is not available during

the exploration process. Model exploration solves this problem by computing the set of

attributes of the induced context incrementally during the computation. Another problem

is the way counterexamples have to be specified: because of the closed world semantics of

interpretations, every counterexample provided by the expert has to be complete. This

means that as soon as the expert wants to provide an element as a counterexample, all

element which can be reached via directed edges from this elements in the background

interpretation have to be provided as well. In other words, the counterexamples provided

by the expert have to be connected subinterpretations of the background interpretation.

To generalize model exploration to GCIs with high confidence, we essentially follow

the argumentation of model exploration. More precisely, we shall consider exploration
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by confidence of the induced context of the given interpretation, and transform it to model
exploration by confidence, in a very similar way as model exploration arises from attribute

exploration of the induced context.

A notable difference to the argumentation of Baader and Distel is that we first have to

generalize our results about computing bases of GCIs with high confidence to include the

possibility that certain elements of the interpretation are trusted, in the sense that as soon as

a trusted element is a counterexample for some GCI, this GCI is not considered any further,

even if its confidence is high enough. The motivation for this generalization stems from the

fact that we consider all counterexamples provided by the expert as valid.
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Formal Concept Analysis

In this section we shall introduce almost all notions from the area of formal concept analysis

that are relevant for this work. One of the main aspects of formal concept analysis we

are interested in are the methods it provides to extract implicational dependencies from data.

To this end, we shall discuss in detail the notions of implications in formal contexts, bases
of valid implications of formal contexts, and the computation of the canonical base as a

particular example of a minimal base. This will be done in Sections 2.3 and 2.4. We shall

also discuss related topics like Galois connections and closure operators (Section 2.2) and

attribute exploration (Section 2.5). Before we can do so, however, we have to introduce some

of the fundamental notions of formal concept analysis such as formal contexts and contextual
derivation. This will be done in Section 2.1.

The introduction to formal concept analysis as given in this chapter is mainly based

on [48]. Note that this introduction is specifically tailored towards the purpose of the whole

work. As such, the following exposition is not complete in the sense that it discusses all the

mathematical foundations of formal concept analysis. In particular, we may omit proofs or

details of certain argumentations if they are not relevant for our work. In case more details

are needed, we provide pointers to the literature where those details can be found.

2.1. Formal Contexts and Concept Lattices

We introduce the basic notions of formal concept analysis in this section. Most importantly,

we shall discuss how formal concept analysis allows us to represent complete lattices in

terms of formal concept lattices using the notion of formal contexts.
Let us briefly repeat the basic notions of order theory which are relevant for our further

considerations. Let P be a set and let ď Ď Pˆ P be a binary relation on P. Then the pair

(P,ď) is called a (partially) ordered set if ď is reflexive, transitive and antisymmetric. Such

structures can be visualized in terms of order diagrams (often called Hasse diagrams) if they

are finite (and not too large). For this we call two elements x, y P P with x ă y directly
neighbored in (P,ď) if and only if there does not exist an element z P P such that x ă z ă y.
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Then to visualize (P,ď) we mark for every element x P P a node vx on the plane such

that whenever x ă y it is true that the ordinate (the second coordinate) of vx is strictly

smaller then the one of vy. Then, we draw for every two elements x, y with x ă y which

are directly neighbored in (P,ď) an undirected line from vx to vy.

Observe that this construction is not unique, and there are many different possibilities

(good and bad) to visualize ordered sets in this way. Also note that the naming vx of vertices

for elements x is arbitrary and can be chosen as it suits.

2.1.1 Example Let us consider the set t 1, 2, 3 uwith the usual orderď on natural numbers.

Then a line diagram of this ordered set is

3

2

1

We can readily read of this diagram that 1 ă 2 and 2 ă 3, because there are lines connecting

the corresponding vertices. But we can also see that 1 ă 3 because there is an ascending
path from 1 to 3. ♦

More generally, in a line diagram of an ordered set (P,ď), two elements x, y P P satisfy

x ď y if and only if there is an ascending path from x to y in the line diagram (where also

paths of length 0 are allowed).

2.1.2 Example Let P = t 1, 2, 3 u and consider the ordered set (P(t 1, 2, 3 u),Ď), where

P(t 1, 2, 3 u) denotes the set of all subsets of t 1, 2, 3 u. This set can be visualized as a line

diagram as follows:

000

100 010 001

110 101 011

111

Here we denote subsets of t 1, 2, 3 u by sequences of 0 and 1, meaning that the first position

is 1 if and only if the number 1 is an element of the corresponding subset, and so on. Then

101 corresponds to the set t 1, 3 u. ♦

An element x P P is said to be the smallest element of (P,ď) if and only if x ď y is true

for all y P P. Likewise, x is the greatest element of (P,ď) if and only if y ď x is true for all
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y P P. Note that neither smallest nor greatest elements have to exist in P. However, if these

elements exist, they are unique.

Let Q Ď P. An element x P Q is said to be the smallest element in Q (with respect to

(P,ď)) if and only if x ď y is true for all y P Q; greatest elements in Q are defined likewise.

Again, neither smallest nor greatest elements in Q have to exist.

Let x P P. The order-ideal Óx and the order-filter Òx of x in (P,ď) are defined as

Óx := t y P P | y ď x u,

Òx := t y P P | x ď y u.

In other words, Óx contains all elements which are below x in (P,ď), and Òx contains all

elements which are above x in (P,ď).
Let again Q Ď P. Then the sets Q˚ and Q˚ defined as

Q˚ :=
č

qPQ

Òq,

Q˚ :=
č

qPQ

Óq

are called the set of upper bounds and lower bounds of Q in (P,ď), respectively, where we

employ the convention that
Ş

H = P. If Q˚ has a smallest element (a least upper bound) in

(P,ď), it is called the supremum of Q in (P,ď) and is denoted by sup Q. Likewise, if Q˚

has a greatest element (a greatest lower bound) in (P,ď), then it is called the infimum of Q in

(P,ď) and is denoted by inf Q.

Note again that neither infimum nor supremum have to exist in (P,ď).

2.1.3 Example Let P = t a, b, c u and let ď be given by the smallest order relation that

satisfies a ă b and a ă c. Then inf t b, c u exists in (P,ď) and is equal to a. However,

sup t b, c u does not exist in (P,ď), as ÒbX Òc = H. ♦

Structures in which supremum and infimum always exist for finite sets Q are called lattices.
If the sets Q can be chosen arbitrary, then we call such a structure a complete lattice.

2.1.4 Definition (Lattice) Let L = (L,ď) be an ordered set. Then L is called a lattice if and

only if for each non-empty finite Q Ď L there exist both sup Q and inf Q in L. If for all

Q Ď L there exist both sup Q and inf Q in L, then L is called a complete lattice. ♦

From time to time we may also use another notation for inf and sup: if Q is finite, then

Q = t q1, . . . , qn u and we may write

q1 ^ ¨ ¨ ¨ ^ qn instead of inf Q,

q1 _ ¨ ¨ ¨ _ qn instead of sup Q.
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It is also common to write
Ź

Q instead of inf Q, and
Ž

Q instead of sup Q.

Note that every finite lattice is also a complete lattice. Moreover, every complete lattice

has a smallest and greatest element, given by supH and infH, respectively. Furthermore,

every ordered set (P,ď) in which the supremum exists for each Q Ď P is already a complete

lattice, as the infimum is then given by

inf Q = sup t x P P | @y P Q : x ď y u.

The same is of course true if supremum and infimum are exchanged.

The ordered sets from Examples 2.1.1 and 2.1.2 are lattices, but not the one from 2.1.3.

More generally, if P is a set, then (P(P),Ď) is always a complete lattice.

The study of lattices as mathematical structures has received much interest over the last

decades, and thus constitutes a major branch of order theory [23, 38, 49]. Additionally, (com-

plete) lattices also allow for a quite natural interpretation as a hierarchy of generalizations
and specializations: an element x is below an element y if and only if x is more special than

y, or alternatively, if y is more general than x. Then for a set Q of elements its supremum

sup Q can be thought of as a most-specific generalization of all elements in Q, and inf Q can

be seen likewise as the most general specialization of all elements in Q.

Formal concept analysis now provides an approach to understand complete lattice in

terms of this interpretation, by representing these lattices in terms of objects and their

attributes. For this, we need to introduce the notion of a formal context.

2.1.5 Definition (Formal Context) A formal context K is constituted of three sets G, M, I,
where I Ď Gˆ M. Formally, a formal contexts K is a triple K = (G, M, I) where G, M
are sets and I Ď GˆM. We shall call G the set of objects of K, M the set of attributes of K

and I the incidence of K. Two formal contexts are equal if and only if their sets of objects,

attributes and their incidences are equal, respectively. ♦

Formal contexts can be thought of as simple data structures which record, for a given set of

objects G and a given set of attributes M, for each object g P G the set of attributes from M
that g has. More precisely, we shall say that in a formal context K an object g P G has an

attribute m if and only if (g, m) P I.

2.1.6 Example Let us consider a small toy example KTNG to illustrate the definition of a

formal context. As sets of objects we choose some fictional characters from Star Trek: The
Next Generation, namely

G := tPicard,Worf,Data,BorgQueen u.

As sets of attributes we choose

M := tHuman,Honorable,Artificial, StarFleet u.
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To illustrate the incidence relation of our example formal context we make use of a cross table,
i. e. we depict KTNG as a table where the rows are labeled with objects and the columns are

labeled with attributes. Then in every cell we write a cross if and only if the object labeling

the corresponding row has the attribute labeling the corresponding column.

KTNG Human Honorable Artificial StarFleet

Picard ˆ ˆ ˆ
Worf ˆ ˆ
Data ˆ ˆ ˆ

BorgQueen ˆ

Then, for example, BorgQueen has the attribute Artificial, but not Honorable. ♦

To now expose the connection between formal contexts on the one hand and complete

lattices on the other we shall introduce the derivation operators in formal contexts.

2.1.7 Definition (Contextual Derivation) Let K = (G, M, I) be a formal context and let

A Ď G be a set of objects. Then the set of common attributes A1 of A is defined to be

A1 := tm P M | @g P G : (g, m) P I u.

Likewise, for a set B Ď M of attributes we define the set B1 of shared objects as

B1 := t g P G | @m P M : (g, m) P I u.

The functions A ÞÑ A1 and B ÞÑ B1 are called the derivation operators of K, and the sets A1

and B1 are called the derivations of A and B in K, respectively. ♦

For (A1)1 we may also simply write A2.

Note that both derivation operators are denoted by (¨)1, which usually does not lead to

confusion, as it is most often clear from the context whether we deal with a set of objects or

a set of attributes from which we want to compute its derivation. If it nevertheless happens

that a single name for the derivation operator leads to confusion, then we shall locally

introduce separate names for both of them.

What occurs more often, for example in Chapters 6 and 7, is the derivation of sets

in different formal contexts. For example we may have given two formal contexts K1 =
(G1, M1, I1) and K2 = (G2, M2, I2) and a set A Ď M1 X M2. When writing A1, it is not

clear in which context we do the derivation. To remedy this, we shall add a subscript to

the set A to make clear of which context we consider it as a set of attributes: AK1
denotes

the set A considered as a set of attributes in K1, and likewise AK2
. While this notation is

not useful as it stands, it becomes handy if we consider derivations of A: (AK1
)1 denotes

the derivation of A in the formal context K1, while (AK2
)1 does the same for the formal

context K2. Of course, we can drop the parentheses if that does not lead to ambiguity,

and write A1
K1

and A1
K2

instead. Of course, the same can be done for sets of objects. In

particular, instead of writing (A1
K1
)1

K1
we shall often only write A2

K1
.
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2.1.8 Example Consider our Star Trek example context from 2.1.6 and let A := tHuman u.
Then A1 = tPicard u, A2 = tHuman,Honorable, StarFleet u, and A3 = tPicard u = A1.♦

The case that A3 = A1 is true in the previous example is not a coincidence, but an instance

of a more general result: the derivation operators of a formal context form a Galois connection
between the ordered sets (P(G),Ď) and (P(M),Ď).

2.1.9 Lemma Let K = (G, M, I) be a formal context and let A Ď M and B Ď G. Then it is
true that

A Ď B1 ðñ B Ď A1. (2.1)

From this the following properties of the derivation operators of K can be derived: let A, A1, A2 Ď
M and B, B1, B2 Ď G. Then

i. A1 Ď A2 ùñ A1
2 Ď A1

1,

ii. B1 Ď B2 ùñ B1
2 Ď B1

1,

iii. A Ď A2,

iv. B Ď B2,

v. A1 = A3,

vi. B1 = B3.

In the proof of the lemma we shall only show Equation (2.1), as the remaining claims

then are an immediate consequence of the more general result Lemma 2.2.3 on Galois

connections.

Proof (Lemma 2.1.9) We can easily compute that

A Ď B1 ðñ @m P A : m P B1

ðñ @m P A @g P B : (g, m) P I

ðñ @g P B @m P A : (g, m) P I

ðñ @g P B : g P A1

ðñ B Ď A1

which shows the claim. ˝

Another useful property of the derivation operators is

A1 =
č

aPA

t a u1

for A Ď M. This can easily be generalized into the following statement.
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2.1.10 Lemma Let K = (G, M, I) be a formal context, let A Ď M and let (Bj | j P J) be a
family of sets Bj Ď M such that

A =
ď

jPJ

Bj.

Then

A1 =
č

t B1
j | j P J u. (2.2)

In particular, for every A Ď P(M) it is true that

č

APA

A1 =
(

ď

APA

A
)1

. (2.3)

Of course, the same is true if A and all Bj are sets of objects instead of sets of attributes.

Proof (Lemma 2.1.10) Since Bj Ď A for all j P J, we can infer from Lemma 2.1.9 that A1 Ď B1
j.

It therefore suffices to show that A1 Ě
Ş

t B1
j | j P J u.

To this end, let g P
Ş

t B1
j | j P J u. Then g P B1

j for each j P J, and therefore t g u1 Ě Bj,

again for all j P J. Since A =
Ť

jPJ Bj, we obtain from this that t g u1 Ě A, and thus g P A1,

as required. ˝

We have claimed earlier that there exists a close connection between complete lattices on

the one hand and formal contexts on the other. Having introduced the derivation operators,

we are now able to expose this connection. To this end, we shall introduce the notion of

formal concepts of a formal context.

2.1.11 Definition (Formal Concept) Let K = (G, M, I) be a formal context. Then a formal
concept of K is a pair (A, B) such that A Ď G, B Ď M, and A1 = B, B1 = A holds. The first

entry of a formal concept is called its extent, and the second one called its intent. The set of

all formal concepts of K is denoted by B(K). ♦

Note that for each B Ď M, the pair (B1, B2) is a formal concept of K. Moreover, a set

B Ď M is an intent of K if and only if B = B2: if B = B2, then (B1, B) is a formal concept

of K, and if (A, B) is a formal concept of K, then B2 = A1 = B. The same is of course true

for A Ď G: A is an extent of K if and only if A = A2.

Formal concepts have a strong philosophical motivation, as they are an attempt to for-

malize the rather vague notion of a concept. This formalization is based on the perception

that every formal concept is uniquely determined by the objects which are instances of it,

its extension, as well as by a characterization in terms of attributes, its intension. We shall,

however, not pursue this philosophical motivation any further here, as it is not immediately

relevant for our work. See [48] for further discussion and references.
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2.1.12 Example Two formal concepts of KTNG from Example 2.1.6 are

(tPicard u, tHuman,Honorable, StarFleet u),

(tPicard,Worf,Data u, tHonorable, StarFleet u).

The first formal concept could be said to represent the concept of an honorable human, which

in KTNG has Picard as its only instance. The second formal concept describes everything

honorable, having as extension Picard, Worf and Data. ♦

Formal concepts can be ordered by generality: a formal concept (A1, B1) is more general than

another formal concept (A2, B2) if it covers more objects, i. e. if

A1 Ď A2.

2.1.13 Definition (Concept Lattice) Let K = (G, M, I) be a formal context. We define the

relation ď on B(K) by

(A1, B1) ď (A2, B2) :ðñ A1 Ď A2.

The structure B(K) := (B(K),ď) is called the concept lattice of K. ♦

By Lemma 2.1.9 we can observe that

(A1, B1) ď (A2, B2) ðñ B2 Ď B1,

as B1 = A1
1 and B2 = A1

2. Furthermore, it is rather easy to see that the relation ď from

Definition 2.1.13 is an order relation on B(K). However, even more is true, namely that

B(K) is indeed a complete lattice.

2.1.14 Theorem Let K be a formal context. Then B(K) is a complete lattice, and for formal
concepts ((Aj, Bj) | j P J) of K we have

sup t (Aj, Bj) | j P J u =
(

(

č

jPJ

Bj

)1
,
č

jPJ

Bj

)

,

inf t (Aj, Bj) | j P J u =
(

č

jPJ

Aj,
(

č

jPJ

Aj

)1
)

.

On the other hand, every complete lattice can be represented as a concept lattice of a suitably

chosen formal context. To formalize this correctly, we shall introduce the notion of an order
isomorphism between two ordered sets.

2.1.15 Definition (Order Isomorphism) Let P = (P,ď1) and Q = (Q,ď2) be two or-

dered sets. A bijective mapping ϕ : P Ñ Q is called an order isomorphism if and only if ϕ is

order-preserving and order-reflecting, i. e. it is true for all a, b P P that

a ď1 b ðñ ϕ(a) ď2 ϕ(b). ♦

The statement now is that every complete lattice is order-isomorphic to some concept lattice.
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Human

Picard Data

Worf

StarFleet, Honorable

BorgQueen

Artificial

Figure 2.1.: Drawing of the concept lattice of KTNG

2.1.16 Theorem Let V = (V,ďV) be a complete lattice. Then the mapping ϕ : V Ñ B(K)
defined by

ϕ(v) := (tw P V | w ďV v u, tw P V | v ďV w u)

is an order isomorphism between V and B(V, V,ďV).

Both Theorem 2.1.14 and Theorem 2.1.16 are actually part of the Basic Theorem of formal

concept analysis [48, Theorem 3]. We shall not give a proof of it here, as it is not within the

scope of this work.

2.1.17 Example Let us consider the formal context KTNG of Example 2.1.6 again, and let us

draw the concept lattice of KTNG in form of a line diagram. There are six formal concepts

of KTNG, and they can be depicted as shown in Figure 2.1.

The line diagram of Figure 2.1 uses an abridged annotation which is common for con-

cept lattices: instead of annotating every node in the diagram with the formal concept it

represents (which would yield an unreadable diagram), we only write every object g of

KTNG below the smallest formal concept that has g in its extent. This formal concept always

exists by Theorem 2.1.14. Then, by the definition of the order on formal concepts, every

formal concept which can be reached from the one labeled with g by an ascending path in

the line diagram has g in its extent, and all other formal concepts do not. For example, the

formal concept labeled with Picard has this object in its extent, as well as the two formal

concepts above it. No other formal concept has Picard in its extent.

Likewise, we write every attribute m of KTNG only at the largest formal concept that

has this attribute in its intent. Then every formal concept that can be reached from the
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one labeled with m by a descending path in the line diagram has m in its intent, and all the

others do not. Therefore, the node labeled with Artificial has this attribute in its intent, as

has the formal concept labeled with Data and the bottom concept. No other formal concept

has Artificial in its intent. ♦

2.2. Galois Connections and Closure Operators

For the proof of Lemma 2.1.9 we invoked some general arguments from the theory of Galois

connections between ordered sets. The notion of a Galois connection is fundamental for

order theory, and is closely connected to other important concepts such as closure operators.

As both Galois connections and closure operators play an important role in this work, we

shall review their general theory in this section, to the extent needed in this work.

2.2.1 Definition (Galois Connection) Let P = (P,ďP), Q = (Q,ďQ) be two ordered sets,

and let ϕ : P Ñ Q and ψ : Q Ñ P be two mappings. Then the tuple (P, Q, ϕ, ψ) is called a

Galois connection between P and Q if and only if

x ďP ψ(y) ðñ y ďQ ϕ(x) (2.4)

is true for all x P P, y P Q. ♦

Note that this form of a Galois connection is sometimes called an antitone Galois connection,

as the position of the elements x and y is reversed. There is the corresponding notion of an

isotone Galois connection, where Equation (2.4) is replaced by

x ďP ψ(y) ðñ ϕ(x) ďQ y. (2.5)

Of course, both notions are closely related: if we denote with Qd = (Q,ď´1
Q ) the dual of the

ordered set Q, then (P, Q, ϕ, ψ) is an antitone Galois connection if and only if (P, Qd, ϕ, ψ)
is an isotone Galois connection.

2.2.2 Example Two examples of Galois connections are the following.

i. If ϕ is an order isomorphism from P = (P,ďP) to Q = (Q,ďQ), then (P, Q, ϕ, ϕ´1)
is an isotone Galois connection, because

x ďP ϕ´1(y) ðñ ϕ(x) ďQ ϕ(ϕ´1(y))

ðñ ϕ(x) ďQ y

is true for all x P P and y P Q.

On the other hand, if ϕ : P Ñ Q is a bijective mapping such that (P, Q, ϕ, ϕ´1) is an

isotone Galois connection, then clearly ϕ is an order isomorphism by Lemma 2.2.3. In

this sense, Galois connections are a generalization of order isomorphisms.
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ii. If K = (G, M, I) is a formal context, then the derivation operators (¨)1 : P(G) Ñ
P(M) and (¨)1 : P(M)Ñ P(G) form an antitone Galois connection by Lemma 2.1.9.

♦

Indeed, the converse of the last example is also true to some extent, i. e. every antitone

Galois connection between powerset lattices (P(G),Ď), (P(M),Ď) can be represented by

a formal context K, such that the derivation operators of K are just the mappings from the

Galois connections. However, we shall not go into details here, as this is not relevant for

the purpose of our work. See [48] for more details.

Instead, we shall review some useful properties of antitone Galois connections.

2.2.3 Lemma Let (P, Q, ϕ, ψ) be an antitone Galois connection between the ordered sets P =
(P,ďP) and Q = (Q,ďQ). Then the following statements hold for all a1, a2 P P and b1, b2 P Q:

i. a1 ďP a2 ùñ ϕ(a2) ďQ ϕ(a1),

ii. b1 ďQ b2 ùñ ψ(b2) ďP ψ(b1),

iii. a1 ďP ψ(ϕ(a1)),

iv. b1 ďQ ϕ(ψ(b1)),

v. ϕ(a1) = ϕ(ψ(ϕ(a1))),

vi. ψ(b1) = ψ(ϕ(ψ(b1))).

Proof We only show statements (i), (iii) and (v), as the others follow from similar arguments.

We immediately obtain the truth of (iii), since from ϕ(a1) ďQ ϕ(a1) we can infer a1 ďP

ψ(ϕ(a1)) by Equation (2.4) of a Galois connection.

Then for (i) we assume a1 ďP a2 and obtain from (iii) that then a1 ďP ψ(ϕ(a2)). Using

again the definition of a Galois connection we obtain that ϕ(a2) ďQ ϕ(a1).
Finally, for (v) we already know that ϕ(ψ(ϕ(a1))) ďQ ϕ(a1) is true. On the other

hand, ψ(ϕ(a1)) ďP ψ(ϕ(a1)), so by the definition of a Galois connection, we obtain

ϕ(a1) ďQ ϕ(ψ(ϕ(a1))). Since ďQ is antisymmetric, equality follows. ˝

Galois connections are closely related to the notion of closure operators.

2.2.4 Definition (Closure Operator) Let P = (P,ďP) be an ordered set, and let c : P Ñ P
be a mapping. Then c is called a closure operator on P if and only if

i. a ďP c(a) for all a P P (c is extensive),

ii. a ďP b ùñ c(a) ďP c(b) for all a, b P P (c is monotone), and

iii. c(a) = c(c(a)) for all a P P (c is idempotent).
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The element c(a) for a P P is called the closure of a under c. An element a P P is called

closed under c if and only if a = c(a). ♦

Closure operators arise naturally in many situations, and we shall encounter them in

the next section when we introduce implications. Moreover, closure operators and Galois

connections always appear together: If (P, Q, ϕ, ψ) is a Galois connection, then the mapping

ψ ˝ ϕ is a closure operator on P, and the mapping ϕ ˝ ψ is a closure operator on Q. This

is true because we know that ψ ˝ ϕ is extensive (2.2.3, iii), monotone (2.2.3, i and ii) and

idempotent (2.2.3, v), i. e. a closure operator. Showing that ϕ ˝ ψ is a closure operator as

well can be done similarly.

Conversely, if c is a closure operator on the ordered set P, then there always exists a

Galois connection (P, Q, ϕ, ψ) such that c = ψ ˝ ϕ. See [48] for more details on this.

There are two interesting properties of closure operators which are also relevant for our

purpose. The first observation is that if c is a closure operator on the ordered set P then

the infimum c(x)^ c(y) is again closed under c for all x, y P P. This is because on the one

hand we have

c(c(x)^ c(y)) ďP c(c(x)) = c(x),

c(c(x)^ c(y)) ďP c(c(y)) = c(y),

by monotonicity and idempotency of c. Therefore c(c(x)^ c(y)) ďP c(x)^ c(y). On the

other hand, c(x)^ c(y) ďP c(c(x)^ c(y)) because c is extensive, and thus

c(c(x)^ c(y)) = c(x)^ c(y), (2.6)

i. e. c(x)^ c(y) is closed. It is also not hard to see that this argumentation can be lifted to

arbitrary infima, i. e. for all Q Ď P, the element

ľ

xPQ

c(x)

is closed under c. In other words, the closed sets of c always form a complete sublattice of

P. In particular, for all x P P there always exists a smallest element z P P above x which is

closed under c, namely

z =
ľ

yPP,xďPc(y)

c(y) = c(x).
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2.3. Implications

Let us recall Example 2.1.6, were we had considered the formal context KTNG with

KTNG Human Honorable Artificial StarFleet

Picard ˆ ˆ ˆ
Worf ˆ ˆ
Data ˆ ˆ ˆ

BorgQueen ˆ

In this formal context we see that whenever an object has the attribute StarFleet, it also has

the attribute Honorable. This expresses a certain dependency between these two attributes,

in the sense that StarFleet implies Honorable in the formal context KTNG. Knowing such

implicational dependencies between attributes in a formal context can be very helpful, for

example for reducing databases by transferring them into suitable normal forms or, as in

our case, for learning knowledge from data.

We will model such implicational dependencies by means of implications on sets, which

will be valid in a formal context.

2.3.1 Definition (Implications, Validity in Formal Contexts) Let M be a set. Then an im-

plication A Ñ B on M is constituted of two sets A, B Ď M, where A is called the premise
of A Ñ B, and B is called the conclusion of A Ñ B. The set of all implications on M is

denoted by Imp(M).
Let K = (G, M, I) be a formal context. An implication (A Ñ B) P Imp(M) is said to

be valid in K (or: holds in K) if and only if A1 Ď B1. We shall write K |ù (A Ñ B) in this

case, and K |ù L, where L Ď Imp(M) is a set of valid implications of K. The set of all

valid implications of K is called the (implicational) theory of K, and is denoted by Th(K).♦

Note that the condition A1 Ď B1 on the validity of an implication A Ñ B in K can be

characterized as saying that every object which has all attributes from A has all attributes

from B. This coincides with our initial example.

Moreover, the condition A1 Ď B1 can equally be rephrased as

B Ď A2, (2.7)

i. e. all elements of the conclusion of A Ñ B are in the closure of the premise with respect

to the closure operator (¨)2. This little observation can be helpful for proofs.

2.3.2 Example As already mentioned, the implication t StarFleet u Ñ tHonorable u holds

in KTNG. On the other hand, the implication tArtificial u Ñ tHuman u is not valid in

KTNG. ♦
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Implications introduce a flavor of logic into formal concept analysis (indeed, implications

can be seen as a notational variant of definite Horn formulas of the propositional variables

M). As such, we can talk about entailment between implications in a very natural sense.

2.3.3 Example In KTNG the implications

tHuman u Ñ tHonorable u

tHonorable u Ñ t StarFleet u

tHuman u Ñ t StarFleet u

are all valid. However, we can intuitively see that the implication tHuman u Ñ tStarFleet u
is entailed by the other two: by the first implication, every object that has Human as attribute

has also Honorable as attribute. By the second implication, every object that has Honorable

as attribute also has StarFleet as attribute. Therefore, every object that has Human as

attribute also has StarFleet as attribute. ♦

We shall put this more formally in the following definition.

2.3.4 Definition (Entailment between Implications) Let M be a set and let L Ď Imp(M).
Then an implication (A Ñ B) P Imp(M) is entailed by L, written L |ù (A Ñ B), if and

only if for all formal contexts K with attribute set M it is true that

K |ù L ùñ K |ù (A Ñ B).

We shall denote with CnM(L) the set of all implications on M which follow from L. We

may drop the subscript M, and may only write Cn(L), if it is clear from the context.

If K Ď Imp(M), then we say that L and K are equivalent if and only if CnM(L) =
CnM(K). ♦

The mapping CnM : P(Imp(M))Ñ P(Imp(M)) is a first example of a closure operator

which arises due to implications. However, there is also another closure operator induced

by a set L of implications, which lets us easily decide whether an implication A Ñ B
follows from L or not.

2.3.5 Definition (Induced Closure Operator) Let M be a set and let L Ď Imp(M). Define

for X Ď M

L1(X) := XY
ď

t B | (A Ñ B) P L, A Ď X u,

Li+1 := L1(Li(X)) (i P Ną0).

Then the induced closure operator of L is defined by the mapping X ÞÑ L(X), where

L(X) :=
ď

iPNą0

Li(X).

If no confusion is possible, we shall denote the closure operator induced by L again with

L, i. e. we shall identify the set of implications and its induced closure operator. ♦
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It is easy to see that the induced closure operator is indeed a closure operator on (P(M),Ď).
Furthermore, the induced closure operator yields a characterization of entailment between

implications. For this we first consider some technical results.

2.3.6 Proposition Let K = (G, M, I) be a formal context and let L Ď Th(K) a set of valid
implications of K. Then

L(A) Ď A2.

Proof By Lemma 2.1.9, it suffices to show that A1 Ď L(A)1. Let g P A1. If then (X Ñ Y) P L
is such that X Ď A, then

g P A1 Ď X1 Ď Y1,

since X Ñ Y holds in K. Therefore,

g P A1 X
č

tY1 | (X Ñ Y) P L, X Ď A u.

However,

A1 X
č

tY1 | (X Ñ Y) P L, X Ď A u

= (AY
ď

tY | (X Ñ Y) P L, X Ď A u)1

= (L1(A))1

by Lemma 2.1.10, and thus g P (L1(A))1. Iterating this argumentation yields g P (Li(A))1

for all i P Ną0, and therefore

g P
č

iPNą0

(Li(A))1 =
(

ď

iPNą0

Li(A)
)1
= (L(A))1

as required. ˝

2.3.7 Proposition Let L Ď Imp(M) for some set M. Then the formal context

KL := (tL(A) | A Ď M u, M, Q)

satisfies X2 = L(X) for all X Ď M.

Note that this proposition has the interesting consequence that Th(KL) = CnM(L). In

other words, every set L of implications which is closed under CnM can be represented as

a theory of a suitable chosen formal context, namely KL.
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Proof It is easy to see that KL |ù L: if (X Ñ Y) P L and g P X1, then t g u1 Ě X. However,

every set t g u1 is of the form L(A) for some A Ď M. Therefore, we have L(A) Ě X.

Applying L on both sides yields L(A) Ě L(X). Since (X Ñ Y) P L, Y Ď L(X) and

therefore t g u1 Ě L(X) Ě Y, so g P Y1 as required.

For the other direction L(X) Ě X2 we first show (L(X))2 = L(X). Then X Ď L(X)
implies

X2 Ď (L(X))2 = L(X).

We compute

(L(X))1 = tL(A) | A Ď M,L(A) Ě L(X) u,

and obtain in particular that L(X) P (L(X))1. On the other hand, for a subset A of objects

of KL we have

A1 =
č

APA

A,

since the incidence relation of KL is just Q. Therefore,

(L(X))2 = tL(A) | A Ď M,L(A) Ě L(X) u1

=
č

tL(A) | A Ď M,L(A) Ě L(X) u

= L(X),

as required. ˝

Based on these two technical results we can now rephrase entailment between implications

in terms of induced closure operators.

2.3.8 Lemma Let M be a set and let L Ď Imp(M). Then for (A Ñ B) P L it is true that

L |ù (A Ñ B) ðñ B Ď L(A). (2.8)

Proof Suppose that L |ù (A Ñ B). For the formal context KL from Proposition 2.3.7 we

have

L(X) = X2

for all X Ď M. Since KL |ù (A Ñ B), A1 Ď B1 is true in KL. But then

B Ď A2 = L(A)

as required.

Conversely, let B Ď L(A), and let K be a formal context such that K |ù L. Then

L(A) Ď A2 by Proposition 2.3.6, and therefore B Ď L(A) Ď A2. But then A1 Ď B1, i. e.

A Ñ B holds in K. Since K was chosen arbitrarily, it follows that L |ù (A Ñ B). ˝
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The computation of L(A) for sets A Ď M can be done naively with time quadratic in |L|,
assuming the size of the underlying set M is fixed. However, one can improve this by using

the “LinClosure” algorithm from the theory of relational databases [70], which achieves

the same goal with time linear in |L|. Finally, one can also exploit the tight connection

to Horn-formulas as mentioned above, and use the algorithm by Dowling and Gallier to

decide satisfiability of Horn formulas in linear time [42].

2.4. Bases of Implications

When studying the valid implications of a formal context, it may be helpful not to consider

the whole set, but a smaller still equivalent set of implications. The advantage of this

approach is that this smaller set may be much easier to handle, especially from a computa-

tional point of view. We therefore introduce in this section the notion of a base of a set of

implications, and introduce a well known minimal base of all valid implications of a formal

context, the canonical base.

2.4.1 Definition (Sound and Complete Sets of Implications, Bases) LetL Ď Imp(M) be

a set of implications on a set M. A set K Ď Imp(M) of implications on M is called sound
for L if CnM(K) Ď CnM(L). The set K is called complete for L if CnM(K) Ě CnM(L).
Finally, the set K is called a base of L if K is sound and complete for L, i. e. if

CnM(K) = CnM(L). (2.9)

If L = Th(K), then a set K which is sound or complete for L is also called sound or

complete for K, respectively. Moreover, we shall call bases of L also bases of K.

A base K of L is called irredundant if no proper subset of K is a base of L. K is called

minimal, if there does not exist a base of L of smaller cardinality. ♦

Note that any base of a set L is also a base of CnM(L), and vice versa.

A simple example of a base of a formal context K = (G, M, I) is the set

K = t A Ñ A2 | A Ď M, A ‰ A2 u. (2.10)

Obviously, this set contains only valid implications of K. Furthermore, if A Ñ B holds in

K, then B Ď A2, and by Lemma 2.3.8, A Ñ B follows from t A Ñ A2 u, and thus from K.

From this we can also infer that1

Th(K)(A) = A2

for all A Ď M, because

Th(K)(A) = K(A) = A2.

1This notation Th(K)(A) may be a bit misleading. What is meant here is that the induced closure operator

of the set Th(K) of implications is applied to A, so this expression could also be written as (Th(K))(A).



32 2. Formal Concept Analysis

To see the latter equality we first observe that K(A) Ě A2, because (A Ñ A2) P K. On the

other hand, A2 is closed under K and is a superset of A, thus K(A) Ď A2, and so equality

holds.

Checking soundness of a set of implications L Ď Imp(M) for a formal context K is rather

trivial, but checking completeness of L for K is not so easy (indeed, it is coNP-complete [63,

Theorem 12]). There is a simple characterization, however, if L is complete for a formal

context, which is at least helpful for proofs.

2.4.2 Lemma Let K = (G, M, I) be a formal context and let L Ď Imp(M). Then L is complete
for K if and only if

@U Ď M : L(U) = U ùñ U = U2. (2.11)

Proof Assume that L is complete for K and suppose by that there exists U Ď M such that

U ‰ U2. Then the implication U Ñ U2 is valid in K, and since L is complete for K we

obtain that

L |ù (U Ñ U2).

But then U2 Ď L(U), and thus U Ĺ L(U), and in particular U ‰ L(U) as required.

Now suppose that (2.11) holds, and let U Ď M. Since L(U) is closed under L, i. e.

L(L(U)) = L(U), we obtain from (2.11) that

L(U) = (L(U))2

for each U Ď M. But then U2 Ď (L(U))2 = L(U), and therefore L |ù (U Ñ U2) by

Lemma 2.3.8. Therefore, L is complete for K. ˝

The base from (2.10) is not very practical, as it will almost always have exponentially

many elements in the size of the set |M| of attribute of K. Processing such a base may be

computationally infeasible, and it is therefore desirable to have a smaller base. Indeed, it is

possible to explicitly describe even a minimal base of every formal context K (or for every

set of implications), namely its canonical base [51, 70] (also called Duquenne-Guiges base or

stem base).
To introduce this base, we first need to discuss the notion of pseudo-intents. Note that we

only introduce the canonical base for bases of formal contexts. However, this can be done

without loss of generality, as a base of a set L of implications is always also a base of its

closure CnM(L), and such sets can be represented as theories of formal contexts by virtue

of Proposition 2.3.7.

The variant of pseudo-intents as introduced here is due to [92].

2.4.3 Definition (Pseudo-Intents) Let M be a set, K a formal context with attribute set M
and let S be a set of implications on M. Then a set P Ď M is called an S-pseudo-intent of K

if and only if
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i. P ‰ P2,

ii. P = S(P), and

iii. for each S-pseudo-intent Q of K satisfying Q Ĺ P, it is true that Q2 Ď P.

If S = H, then an S-pseudo-intent is just called a pseudo-intent. ♦

As it is given, the definition of S-pseudo-intents is quite inaccessible, and the motivation for

it may only become apparent while working with them. However, the role of the set S can

already be motivated now: this set will be used as background knowledge when computing

the canonical base. Let us make this more precise, and recall that we have defined the

notion of a base K of a set of implications L to just mean that CnM(K) = CnM(L). The

motivation for this was that we want bases of the set L to be a different, potentially smaller

but logically equivalent representation of L. However, within this scenario, we can assume

that we already “know” a certain set S Ď L of implications, and we only want to find a

base that somehow represents the “difference” between L and S .

2.4.4 Definition (Bases with Implicational Background Knowledge) Let L and S be sets

of implications on a set M such that S Ď CnM(L). A base of L with background knowledge
S is a set K of implications on M such that

CnM(KY S) = CnM(L).

The notions of irredundancy and minimality of bases with background knowledge are defined

analogously to Definition 2.4.1: K is an irredundant base of L with background knowledge

S if and only if no proper subset of K is a base of L with background knowledge S . K is a

minimal base of L with background knowledge S if and only if K has minimal cardinality

among all bases of L with background knowledge S . ♦

The canonical base, which we shall introduce shortly, can be defined such that it also allows

for background knowledge. This background knowledge then will play the role of the set

S in the definition of an S-pseudo-intent. Moreover, it can be shown that the canonical

base is a minimal base with the given background knowledge.

2.4.5 Definition (Canonical Base) Let K = (G, M, I) be a formal context and let S Ď
Imp(M). Then the canonical base Can(K,S) of K with background knowledge S is defined

as

Can(K,S) := t P Ñ P2 | P is an S-pseudo-intent of K u.

If S = H, then we just write Can(K) for Can(K,S). ♦

The classical result about the canonical base can now be stated as follows.
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2.4.6 Theorem Let K be a finite formal context and let S Ď Th(K). Then Can(K,S) is a
minimal base of K with background knowledge S .

This formulation assumes that the background knowledge S is sound for K. However, this

is not only not necessary, but we shall also later encounter situations where our background

knowledge is not valid, but where the corresponding canonical base has still a meaningful

application. We therefore slightly generalize Theorem 2.4.6 to yield the following theorem.

2.4.7 Theorem Let K = (G, M, I) be a formal context and let S Ď Imp(M). Then Can(K,S)
is a set of valid implications of K such that Can(K,S)YS is complete for K. Moreover, Can(K,S)
has minimal cardinality among all sets of valid implications satisfying this property.

The proof about the minimal cardinality of Can(K,S) is a straight-forward adaption of

the proof of [41, Theorem 3.8].

Proof We need to show the following three statements:

i. Can(K,S) is sound for K;

ii. Can(K,S)Y S is complete for K and

iii. Can(K,S) has minimal cardinality among all sets P Ď Th(K) of implications such

that P Y S is complete for K.

For i we just note that Can(K,S) only consists of implications which are of the form

P Ñ P2, which are of course valid in K.

For the completeness as claimed in ii we shall make use of Lemma 2.4.2 by showing

that every closed set of Can(K,S)Y S is already an intent of K. For readability, let us set

L := Can(K,S)Y S .

So let U Ď M be such that L(U) = U. If then V Ĺ U is an S-pseudo-intent of K,

then V2 Ď U, since (V Ñ V2) P L. Furthermore, S(U) = U because S Ď L. Hence,

if we assume by contradiction that U ‰ U2, then U would be an S-pseudo-intent of K,

i. e. (U Ñ U2) P Can(K,S) Ď L. But then U2 Ď L(U) = U, i. e. U = U2 contradicting

U ‰ U2. Therefore, U = U2 and since U was chosen arbitrarily, L is complete by

Lemma 2.4.2.

For the last claim iii let P be another set of valid implications of K such that P Y S is

complete for K. Without loss of generality we may assume thatP only contains implications

of the form U Ñ U2 for suitable U Ď M.

To prove iii we shall now show that for each S-pseudo-intent P of K there exists a set

UP Ď M such that (UP Ñ U2
P) P P , and that in addition the mapping P Ñ UP is injective.

From this it immediately follows that |P| ě |Can(K,S)|.
So let P be an S-pseudo-intent of K. Then P ‰ P2. As P Y S is complete for K and

S(P) = P, there exists an implication (X Ñ X2) P P such that X Ď P and X2 Ę P. Set

UP := X.
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To see that the resulting map P Ñ UP is indeed injective, let P and Q be two S-pseudo-

intents of K, and assume that UP = UQ =: U. Then U Ď P and U Ď Q by definition of

UP and UQ. Hence U Ď PXQ, and therefore U2 Ď (PXQ)2.

Then the fact that U2 = U2
P Ę P and U2 Ď (P X Q)2 implies that (P X Q)2 Ę P.

Therefore, (PXQ)2 Ę PXQ, and in particular

(PXQ)2 ‰ PXQ. (2.12)

Recall that S(P) = P and S(Q) = Q. This implies that S(PXQ) = PXQ, since the

intersection of closed sets is again closed. But then, by Equation (2.12) and the fact that

Can(K,S)Y S is complete for K, there must exist an implication (R Ñ R2) P Can(K,S)
such that

R Ď PXQ and R2 Ę PXQ.

Without loss of generality we assume that R2 Ę Q. But then R Ď Q is an S-pseudo-intent

of K, so if R Ĺ Q, it must be that R2 Ď Q, which is not the case. Therefore, R = Q. Since

R Ď PXQ, we obtain Q Ď PXQ, i. e. Q = PXQ and therefore

Q Ď P (2.13)

Since (PXQ)2 Ę P, Equation (2.13) implies that Q2 Ę P. Since Q Ď P, the S-pseudo-

intents Q and P cannot be different, so we obtain P = Q.

Therefore, the mapping P ÞÑ UP is injective and we have proven iii. ˝

Theorem 2.4.6 is now an immediate consequence of Theorem 2.4.7.

The minimality properties of the canonical base makes it particularly interesting for

practical applications. Indeed, besides these minimality properties discussed above, the

canonical base also allows for a comparably simple computation. On the other hand, the

minimality of the canonical base does not save us from exponentially big bases.

2.4.8 Example The following example is taken from [66]. Let n P N and let us consider the

formal context Kn as shown in Figure 2.2. The object set G = G1 YG2 of K is defined as

G1 = t g1, . . . , gn u

G2 = t g1, . . . , g2n u,

where all gi, gi are distinct, and the attribute set M = M1 YM2 Y tm0 u is given by

M1 = tm1, . . . , mn u,

M2 = tm1, . . . , mn u,

where again all mi, mi are distinct.
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Kn m0 m1 . . . mn m1, . . . mn

g1
... I1 I2

gn

g1 ˆ
... ˆ I3

g2n ˆ

Figure 2.2.: A Formal Context with Exponentially Many Pseudo-Intents

The relations I1, I2, I3 are essentially ‰, more precisely

(gi, mj) P I1 :ðñ i ‰ j

(gi, mj) P I2 :ðñ i ‰ j

(gi, mj) P I3 :ðñ i ‰ j

(gi, mj) P I3 :ðñ i ‰ j + n

Then the claim is that the number of pseudo-intents of Kn is at least 2n. To see this we first

observe that the set tm1, . . . , mn u is a pseudo-intent of Kn. This is because if

B = tmj1 , . . . , mjk u Ď tm1, . . . , mn u,

then

B1 = (G1zt gj1 , . . . , gjk u)Y (G2zt gj1
, . . . , gjk

u)

and then B = B2. On the other hand, the set tm1, . . . , mn u is not closed, since

tm1, . . . , mn u
2 = t gn+1, . . . , g2n u

1 = tm0, m1, . . . , mn u.

Therefore, as all subsets of tm1, . . . , mn u are closed and the set itself is not, it is a pseudo-

intent of Kn by definition.

Now, if we replace an attribute mi with mi, the resulting set tm1, . . . , mi´1, mi, mi+1, . . . , mn u
is still a pseudo-intent of Kn, using a similar argument: the set tm1, . . . , mi, . . . , mn u is

not closed, since

tm1, . . . , mi, . . . , mn u
2 = tm0, m1, . . . , mi, . . . , mn u,

and every subset C Ď tm1, . . . , mi, . . . , mn u is closed, by the same arguments as we used

for B.
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Therefore, Kn has at least 2n pseudo-intents and thus

|Can(Kn)| ě 2n. ♦

In spite of this rather disappointing result it may still pay off in practical applications to

compute the canonical base, as its size may still be considerably smaller then the size of the

base from (2.10). In the following, we shall discuss a standard algorithm that computes the

canonical base of a formal context.

The first, rather technical definition we need to consider is the one of the lectic order on

the powerset P(M) of a linearly ordered set (M,ďM), i. e. an ordered set (M,ďM) where

for any two elements x, y P M it is true that x ďM y or y ďM x.

2.4.9 Definition (Lectic Order) Let (M,ďM) be a linearly ordered set, and let i P M. Then

for two sets A, B Ď M, A is called lectically smaller than B at position i, written A ăi B, if

A ăi B :ðñ i = minďM
(A△ B) and i P B,

where

A△ B := (AzB)Y (BzA)

is the symmetric difference of A and B.

Then the lectic order on P(M) induced by ďM is the relation ĺ defined as

A ĺ B :ðñ A = B or A ăi B for some i P M. ♦

The fact that A ăi B can be understood as the statement that the smallest element (with

respect to ďM) in which A and B differ belongs to B.

2.4.10 Example Let M = t 0, 1, 2 u and let ďM be given by 2 ďM 1 ďM 0. Then

t 0 u ăi t 1 u.

Moreover, all subsets of M are ordered by ĺ as follows

H ĺ t 0 u ĺ t 1 u ĺ t 0, 1 u ĺ t 2 u ĺ t 0, 2 u ĺ t 0, 1, 2 u.

If we encode a subset of M as a binary number like we did in Example 2.1.2, so for example

t 0, 2 uwould be 101 and t 0 uwould be 001, then the above lectic order can also be written

as

000 ĺ 001 ĺ 010 ĺ 011 ĺ 100 ĺ 101 ĺ 111

which resembles the usual linear order on binary numbers. ♦
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It is not hard to see (but technical to prove) that every lectic order is indeed a linear order on

P(M), i. e. the ordered set (P(M), ĺ) is a linearly ordered set. Moreover the lectic order

extends the usual subset-order on P(M), in the sense that for all A, B Ď M it is true that

A Ď B ùñ A ĺ B,

irrespective of the linear order ďM used to define ĺ.

Let now c be a closure operator on the linearly ordered set (M,ďM). In the following

we shall introduce the Next-Closure algorithm [46, 48] that allows us to compute all closed

sets of c ordered by the lectic order on P(M) induced by ďM. Moreover, this algorithm

has the advantage of usually being much faster than just applying the closure operator c to

all subsets of M and collecting the results.

However, before we shall discuss the algorithm, let us first introduce an abbreviation.

For a set A Ď M and an element i P M, let us write

A‘c i := c(t a P A | a ďM i u Y t i u).

Then the following theorem holds, which is [48, Theorem 5].

2.4.11 Theorem Let (M,ďM) be a linearly ordered set, and let ĺ be the lectic order on P(M)
induced by ďM. Furthermore, let c be a closure operator on (M,ďM) and let A Ď M. Then, if
there exists a set B such that A ň B and B is closed under c, then

minĺ t A ň B | B = c(B) u = A‘c i,

where i is ďM-maximal among all elements j P M satisfying A ăj A‘c j, i. e.

i = maxďM
t j P M | A ăj A‘c j u.

The proof of this theorem is rather technical, and we shall not repeat it here.

The main advantage of this theorem is now that it immediately gives rise to an effective

algorithm to compute the lectically next closed set after a given one. Algorithm 1 shows an

example implementation, which returns nil if no lectically next closed set exists.

The Next-Closure algorithm can in particular be used to compute all intents (and thus all

formal concepts) of a formal context, because intents are just those subsets of the attribute

sets which are closed under (¨)2. The following example illustrates this.

2.4.12 Example Let us again consider our Star Trek context KTNG. Clearly,H = H2 is true

in that context. For computing more intents using Next-Closure, let us order the attributes

of this context as follows

Human ă Honorable ă Artificial ă StarFleet.
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Algorithm 1 (Next-Closure)

0 define next-closure(M, ďM, A, c)

1 C := t i P M | A ăi A‘c i u
2 if C =H
3 return nil

4 else

5 return A‘c maxďM
(C)

6 end

7 end

We now want to compute the lectically next closed set of (¨)2 afterH, i. e. the next intent of

KTNG afterH. For this, we compute

H‘(¨)2 StarFleet = t StarFleet u2 = tHonorable, StarFleet u,

but it is not true that

H ăStarFleet tHonorable, StarFleet u.

So we continue with Artificial and obtain

H‘(¨)2 Artificial = tArtificial u2 = Artificial

and indeed H ăArtificial tArtificial u, so this set is the lectically next intent of K after H.

The corresponding formal concept is

(tArtificial u1, tArtificial u) = (tData,BorgQueen u, tArtificial u).

Continuing this process, we can successively compute all intents of KTNG this way, and

thus also all formal concepts of KTNG as shown in Example 2.1.17. ♦

Based on the Next-Closure algorithm we can now discuss an algorithm that allows us to

compute the canonical base of a formal context K with arbitrary background knowledge.

Algorithm 2 gives an implementation of such an algorithm. We shall discuss the details of

this algorithm when proving its correctness. Note that Algorithm 2 also contains the two

auxiliary functions next-closed-non-intent and first-closed-non-intent, which are

discussed below.

The correctness of canonical-base can now be stated as follows.
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Algorithm 2 (Computing the Canonical Base with Background Knowledge)

0 define next-closed-non-intent (K = (G, M, I),ďM, A, c)

1 ;; compute the lectically next non-intent of K after A that is closed under c
2 P := next-closure(M, ďM, A, c)

3 if P = nil then

4 return nil

5 else if P ‰ P2 then

6 return P
7 else

8 return next-closed-non-intent(K, ďM, P, c)

9 end

10 end

11

12 define first-closed-non-intent(K = (G, M, I), ďM, c)

13 ;; compute the lectically first non-intent of K that is closed under c
14 ifH ‰ H2 and c(H) = H then

15 returnH
16 else

17 return next-closed-non-intent(K, ďM,H, c)

18 end

19 end

20

21 define canonical-base(K = (G, M, I), ďM, S Ď Imp(M))
22 ;; compute the canonical base of K with background knowledge S
23 ;; in the lectic order induced by ďM.
24

25 i := 0,

26 Pi := first-closed-non-intent(K, ďM, S),

27 Li :=H
28

29 while Pi ‰ nil do

30 Li+1 := Li Y t Pi Ñ P2
i u,

31 Pi+1 := next-closed-non-intent(K, ďM, Pi, Li+1 Y S),

32 i := i + 1
33 end

34

35 return Li

36 end
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2.4.13 Theorem Let K = (G, M, I) be a finite formal context, i. e. both |G| and |M| are fi-
nite. Furthermore, let K Ď Imp(M) and let ďM be a linear order on M. Then the call to
canonical-base terminates and it is then true that

Can(K,K) = canonical-base(K,ďM,K).

Before we are proving this theorem, we first consider the auxiliary functions also shown in

Algorithm 2, and show that they yield what their names suggest.

2.4.14 Proposition Let K = (G, M, I) be a finite formal context, ďM a linear order on M and
c a closure operator on (M,ďM). Denote with ĺ the lectic order on P(M) induced by ďM.

i. Let A Ď M and define S := next-closed-non-intent(K,ďM, A, c). Then

S = minĺ t B Ď M | A ň B, B = c(B), B ‰ B2 u

if this minimum exists, and S = nil otherwise.

ii. Define T := first-closed-non-intent(K,ďM, c). Then

T = minĺ t B Ď M | B = c(B), B ‰ B2 u

if this minimum exists, and T = nil otherwise.

Proof For the first statement observe that the algorithm considers in lectic order all sets

C Ď M where A ň C that are closed under c. Now, if a lectically smallest set C Ď M with

A ň C exists such that C ‰ C2, then it is finally found by the algorithm and returned as

the resulting value.

On the other hand, if no such set exists, then the variable P in the algorithm will eventually

obtain the value M, and the subsequent iteration will return nil, since

next-closure(M,ďM, M, c) = nil.

For the second statement let us first assume thatH ‰ H2 and c(H) = H. Then clearly

minĺ t B Ď M | B = c(B), B ‰ B2 u = H = first-closed-non-intent(K,ďM, c).

IfH = H2 or c(H) ‰ H2, then

H ň minĺ t B Ď M | B = c(B), B ‰ B2 u.

Hence

minĺ t B Ď M | B = c(B), B ‰ B2 u = minĺ t B Ď M,H ň B, B = c(B), B ‰ B2 u

= next-closed-non-intent(K,ďM,H, c)

= first-closed-non-intent(K,ďM, c)

as required. ˝
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We shall now prove 2.4.13. Note that the proof itself is well-known, but we shall give

it here nevertheless for the sake of completeness, and to convey some intuition why the

implementation of canonical-base indeed computes the canonical base.

The main line of argumentation of the proof is as follows: using induction, we shall prove

that in a call of canonical-base(K,ďM,S) for each i the following is true: if there exists

an S-pseudo-intent that is not within the list P0, . . . , Pi´1, then Pi ‰ nil and P0, . . . , Pi are

the lectically first S-pseudo-intents of K. Thus, if the algorithm finishes in iteration n, say,

then Ln = Can(K,S), which is the value returned by the function.

Proof (Theorem 2.4.13) As before, denote with ĺ the lectic order on P(M) induced by ďM.

As already mentioned, we shall prove by induction over the number i of iterations that if

K has more than i S-pseudo-intents, that then Pi ‰ nil and the sets

P0, . . . , Pi

are the first i + 1 S-pseudo-intents of K with respect to ĺ.

Let i = 0 and suppose that K has S-pseudo-intents. If P0 is then the lectically first

S-pseudo-intent of K, it is true that P0 is closed under S but not an intent of K. Therefore,

P0 ĺ P0.

On the other hand, P0 is already an S-pseudo-intent of K, because P0 ‰ P2
0 ,S(P0) = P0

and if Q Ĺ P0 such that S(Q) = Q, then Q = Q2 already holds, i. e. there are no S-

pseudo-intents strictly contained in P0. Thus, P0 ĺ P0 and therefore P0 = P0, i. e. P0 is the

lectically first S-pseudo-intent of K. In particular, P0 ‰ nil.

Now suppose i ą 0 and suppose that K has more than i S-pseudo-intents. By induction

hypothesis, the list

P0, . . . , Pi´1

consists of the lectically first i S-pseudo-intents. Let P be the lectically next S-pseudo-intent

after Pi´1. Then P is closed under S and not an intent of K. In particular, Pi ĺ P, and

Pi ‰ nil.

Furthermore, Pi is an S-pseudo-intent of K. To see this we first observe that S(Pi) = Pi

and Pi ‰ P2
i , so it suffices to show that for each S-pseudo-intent Q Ĺ Pi it is true that

Q2 Ď Pi. To this end let Q Ĺ Pi be an S-pseudo-intent of K. Then Q ň Pi ĺ P, and by

definition of P, it is true that Q = Pj for some j P t 0, . . . , i´ 1 u. Therefore, (Q Ñ Q2) P Li.

Since Li(Pi) = Pi and Q Ď Pi, it must therefore be true that Q2 Ď Pi.

We have thus shown that Pi is the lectically next S-pseudo-intent after Pi´1. Therefore,

P0, . . . , Pi+1

are the lectically first i + 2 S-pseudo-intents of K and the claim is shown.
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From the above claim we can now infer the validity of the theorem. First of all we observe

that K can only have finitely many S-pseudo-intents, since K itself is finite. Therefore, if

K has n such S-pseudo-intents, then these must be P0, . . . , Pn´1 and Pn = nil. But then

Ln = t Pj Ñ P2
j | j = 0, . . . , n´ 1 u = Can(K,S).

Since Pn is nil, the valueLn is returned from canonical-base and thus the claim is shown.˝

We have to note, however, that the computation as shown in Algorithm 2 may still take

time exponential in the size of the input context K to compute the next S-pseudo-intent.

This is mainly because while computing all S-pseudo-intents of K, we also compute all

intents of K as well. It is rather easy to see that the number of intents of a formal context

can be exponential in the number of its pseudo-intents, and therefore our implementation

may need an exponential delay between the computation of two successive pseudo-intents.

Indeed, it is not known if this exponential delay can be avoided altogether. There is a

different approach of computing the canonical base [75], which however also computes

all intents of K during the run. There are also some complexity results with respect to

computing the canonical base: enumerating pseudo-intents in lectic order is coNP-hard [40],

so an algorithm that computes the canonical base in some sort of lectic order cannot avoid

exponential delays, unless P = NP. See also [33] for a practical scenario where, in a certain

sense, this phenomenon can be observed. Finally, we note that already recognizing pseudo-

intents of a formal context is coNP-hard [19].

On the other hand, it is possible in polynomial time to decide if a base of a formal context

is indeed the canonical base. For this, one can use a minimization procedure as discussed

in [83], which transforms every base into its corresponding canonical base. The result

of this minimization agrees with the original base if and only if the original base is its

corresponding canonical base. As this reduction can be done in quadratic time in the size

of the original base, this yields a polynomial time method to test if a base is the canonical

base.

All in all, it is not clear yet whether computing the canonical base is difficult or not, and

it remains an open research problem.

2.5. Attribute Exploration

While we have considered valid implications of our example context KTNG we have en-

countered the implication

tHuman u Ñ tHonorable u.

While neither exact definitions for “human” nor for “honorable” are given, this implication

is rather doubtful (even in the context of Star Trek). But still, this implication is a valid im-

plication of KTNG. On the other hand, one could discuss that this context is not “complete”
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in the sense that it lacks relevant counterexamples, and certainly one would find such a

counterexample for the above implication in the Star Trek series.

To remedy this incompleteness of KTNG one could go and add all characters which have

ever occurred in Star Trek The Next Generation to KTNG. While this is doable, it is certainly

not practical, especially since it may not be necessary to include all characters into KTNG to

invalidate certain implications.

The illustrated problem may very well occur in practical situations, where one is inter-

ested in the valid implications of a certain domain which is represented by a collection of

individuals (Star Trek characters in the above example) with certain attributes (those listed

in KTNG). This collection of individuals cannot be listed completely, or at least it is not

feasible to do so. However, one can search for single individuals with certain properties.

Let us make this more clear: we assume that our domain is representable by a formal

context, which we shall call the background context Kback = (Gback, M, Iback). The objects

of this formal context are the individuals of our domain of interest. The attributes in the

background context are the attributes of the individuals we are interested in, in the sense

that we want to find implications between those attributes which are valid in the domain.

Finally, the incidence of the background context encodes if an individual has a certain

attribute in our domain or not.

The task is now to find the implicational theory of the background context. Although we

cannot access this context completely, we certainly need a way to access this data. For this,

we shall make the following assumption: we are given an expert which can answer questions
of the following type:

Does the implication A Ñ B hold in the background context?

The expert may then either agree to this questions, or, if not, she2 has to provide a coun-

terexample, i. e. a new object g such that g P A1 but g R B1. Note that this is much more

realistic than enumerating all objects of the background context, as we only have to find one

object that invalidates the given implication, if it does not hold in the background context.

Within the setting just described, the attribute exploration algorithm from formal concept

analysis can help [46, 48]. For this algorithm we assume that we have given a working context
K = (G, M, I) which is a subcontext of Kback, i. e. G Ď Gback and I = Iback X Gˆ M.3

Moreover, we also assume that we have given a set S Ď Imp(M) of known implications
which are valid in Kback.

The task now, namely to compute a base of Kback with background knowledge S , is

achieved by the attribute exploration algorithm as follows: the algorithm successively

computes implications (A Ñ B) P Imp(M) such that

i. A Ñ B is valid in K, and

2We assume experts to be female unless known otherwise.
3Actually, the names of the objects are not relevant here. Indeed, it is sufficient if we can rename the objects of

K in a reversible manner such that these conditions hold.
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ii. A Ñ B is not entailed by S .

Intuitively, those implications are undecided: they are not invalidated by the objects in K,

i. e. by the objects we already know from our domain of interest. On the other hand, A Ñ B
also cannot be inferred from the implications we already know, i. e. from S .

Therefore, we have to ask the expert about the implication A Ñ B. If she decides to

accept this implication, A Ñ B is added to our set of known implications. If she decides

to reject the implication, and to provide a counterexample for it, we add it to the formal

context. Then, a new implication A Ñ B is computed which is valid in the working context

but does not follow from the known implications.

This algorithm proceeds until no more implications A Ñ B can be computed. If this is

the case, then all valid implications in the working context already follow from the known

implications. But this means that the known implications are a base of the background

context with background knowledge S : if X Ñ Y is a valid implication in the background

context, then X Ñ Y is also valid in the working context, and thus it is entailed by the

known implications.

Of course, the description of attribute exploration as given above lacks a crucial detail,

namely how to compute the implications A Ñ B. Indeed, it turns out that this can be

done in a way very similar to how we compute the canonical base of formal context. We

shall not discuss this in detail here, as we are going to look into attribute exploration in

much more detail in Sections 6 and 7. Instead, we just show an example implementation of

attribute exploration in Algorithm 3. There we use the notation K + (g, g1) to denote the

formal context which arises from K = (G, M, I) by adding the object g with attributes g1,

assuming that g R G. In other words,

K + (g, g1) := (GY t g u, M, I Y t (g, m) | m P g1 u).

Note that attribute exploration makes use of the Next-Closure algorithm, so we have to

provide a linear order ďM on the attribute set M for a call to explore-attributes.

The correctness of the attribute exploration algorithm is stated in the following theorem.

However, this theorem states even more, namely a certain kind of optimality: the resulting

set of implications is not only any base of the background context, but indeed the canonical

base of the background context with background knowledge S . Thus, the number of

implications confirmed by the expert is as small as possible.

2.5.1 Theorem Let K = (G, M, I) be a formal context, ďM a linear order on M, and let S Ď
Imp(M) be such that the expert confirms all implications in S . Then explore-attributes

called with arguments K, ďM and S terminates in a finite number of steps. If Kback denotes the
background context of the exploration, then

canonical-base(K,ďM,S) = Can(Kback,S).
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Algorithm 3 (Attribute Exploration with Background Knowledge)

0 define explore-attributes(K = (G, M, I), ďM, S Ď Imp(M))
1 ;; conducts attribute exploration with working context K and
2 ;; background knowledge S .
3

4 i := 0,

5 Ki := K

6 Pi := first-closed-non-intent(Ki, ďM, S),

7 Li :=H
8

9 while Pi ‰ nil do

10

11 if expert confirms Pi Ñ P2
i then

12 Li+1 := Li Y t Pi Ñ P2
i u

13 Ki+1 := Ki

14 else

15 Li+1 := Li

16 Ki+1 := Ki + (g, g1) ;; g counterexample provided by the expert
17 end

18

19 if Pi ‰ P2
i then ;; derivation in Ki+1

20 Pi+1 := Pi

21 else

22 Pi+1 := next-closed-non-intent(Ki+1, ďM, Pi, Li+1 Y S)
23 end

24 i := i + 1
25

26 end

27

28 return Li

29 end
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We shall not prove this theorem here, but instead refer the reader to standard literature for

a proof [41, 45, 48, 92]. Moreover, we shall discuss in Section 6 generalizations of this result,

and their proofs then also apply to this theorem.

Note that explore-attributes is a generalization of canonical-base, and as such inher-

its all disadvantageous properties of it. In particular, because enumerating pseudo-intents

in lectic order cannot be done in polynomial time unless P = NP, it may happen that the

time between two questions to the expert may grow exponentially.
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Description Logics

In this section, we shall introduce some basic notions of description logics [12] as they are

needed for the purpose of this work. This shall include a discussion of some of the basic

syntax and semantics of description logics (Section 3.1), as well as a discussion of knowledge
bases and standard reasoning tasks (Section 3.2). This presentation mostly follows the one

from [41].

Our focus in this work will be upon the light-weight description logic ELK, which shall

be the target logic for the knowledge we want to extract from data. However, at a later

point in this work we shall see that the expressivity of ELK is not sufficient for our needs,

and that we need to consider an extension of ELK instead. This extension shall be the logic

ELK
gfp, an extension of ELK by greatest fixpoint semantics. We shall therefore also include

an introduction to the syntax and semantics of ELK
gfp in this chapter. This will be done in

Section 3.3.

3.1. Syntax and Semantics of the Description Logic ELK

We start our introduction to description logics by defining the syntax of the description

logic ELK, one of the simplest and least-expressive description logics under consideration.

To this end, we choose two disjoint sets NC and NR, called the sets of concept names and role
names, respectively. Based upon this choice, we introduce ELK concept descriptions over NC

and NR as follows.

3.1.1 Definition (ELK Concept Description) Let NC and NR be two disjoint sets. An EL
concept description C (over NC and NR) is of the form

• C = A for some A P NC, or

• C = C1 [ C2 for C1, C2 two EL concept descriptions, or

• C = Dr.D for an EL concept description D and r P NR, or
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• C = J.

The constructors are called conjunction ([), existential restriction (D) and the top concept (J),

respectively.

An ELK concept description C (over NC and NR) is then either an EL concept description

or C is of the form C = K. ♦

We shall occasionally denote the set of all EL concept descriptions over NC and NR by

EL(NC, NR), and the set of all ELK concept descriptions over NC and NR by ELK(NC, NR).
The same is true for other description logics which we shall introduce at a later point. We

shall also often talk just about “concept descriptions” without explicitly mentioning the

description logic we are using. If this is the case, then any description logic introduced in

this work can be used there.

The sets NC and NR of concept and role names are also called the signature of the logic. In

the following we shall always assume that those sets are finite. Sometimes this signature is

extended by another set NI called the set of individual names. Such individual names allow

a logic to directly refer to individual elements of a domain. However, this expressiveness is

not available in the description logics EL and ELK, but we shall nevertheless include them

in our further discussion as they are needed to define the semantics of assertional axioms.

See also Section 3.2.

3.1.2 Example Let NC := tCat,Mouse u and let NR := t hunts u. Then examples of ELK

concept descriptions would be

Cat, Dhunts.Mouse, Cat[Mouse, K.

One can think of these concept descriptions as “describing” things in a certain domain

(we shall make this much more precise shortly). For example, the concept description

Cat describes everything which is a cat. The concept description Dhunts.Mouse describes

everything which hunts a mouse (alternatively: a thing that hunts something which is a

mouse). The concept description Cat[Mouse describes things that are both a cat and a

mouse. Finally, the concept description K just describes nothing. ♦

The intuition of a concept description to “describe things” conveyed in the previous ex-

ample is very vague, and we shall make it more precise by introducing the notion of an

interpretation.

3.1.3 Definition (Interpretation) Let NC and NR be two disjoint sets. Let NI be another set,

disjoint to both NC and NR, called the set of individual names. An interpretation I = (∆I , ¨I )
(over NC, NR and NI) consists of a nonempty set ∆

I of elements, and an interpretation function
¨I such that

i. AI Ď ∆
I for all A P NC,



3.1. Syntax and Semantics of the Description Logic ELK 51

ii. rI Ď ∆
I ˆ ∆

I for all r P NR, and

iii. aI P ∆
I for all a P NI .

We furthermore make the unique name assumption: if a, b P NI and a ‰ b, then aI ‰ bI .

We say that I is finite if ∆
I is finite. ♦

If the set NI in the definition of an interpretation is not important for the current con-

sideration, then we shall set NI = H and just speak of an interpretation over NC and

NR.

3.1.4 Example Let us consider an example interpretation IMGM for our signature NC =
tCat,Mouse u and NR = t hunts u. For this we set

IMGM := (t tom, jerry u, ¨IMGM)

where

CatIMGM = t tom u,

MouseIMGM = t jerry u,

huntsIMGM = t (tom, jerry), (jerry, tom) u.

The interpretation IMGM can naturally be represented as a graph, where we consider the

elements of ∆
IMGM as vertices and the pairs in huntsIMGM as directed edges:

tom

Cat

jerry

Mousehunts

hunts ♦

The interpretation function of a given interpretation can now be naturally extended to the

set of EL and ELK concept descriptions.

3.1.5 Definition (Extensions) Let I = (∆I , ¨I ) be an interpretation. Then the extension
of ¨I to all ELK concept descriptions is inductively defined as follows: let C1, C2, C P
ELK(NC, NR) and r P NR. Then

i. JI = ∆
I ,

ii. KI = H,

iii. (C1 [ C2)I := CI
1 X CI

2 , and

iv. (Dr.C)I := t x P ∆
I | Dy P ∆

I : (x, y) P rI ^ y P CI u.
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We shall call the set CI the extension of C in I . ♦

The notion of an extension of an ELK concept description in an interpretation now formal-

izes our previous intuitive understanding that concept descriptions “describe things:” an

element x P ∆
I is described by an ELK concept description C in I if and only if x P CI .

3.1.6 Example Let us consider the example interpretation IMGM from Example 3.1.4 again,

and let us compute for the example ELK concept descriptions from Example 3.1.2 their

extensions. We obtain

(Dhunts.Mouse)IMGM = t x P ∆
IMGM | Dy P ∆

IMGM : (x, y) P huntsIMGM ^ y P MouseIMGM u

= t tom u = CatIMGM ,

Cat[MouseIMGM = H = KIMGM . ♦

For some ELK concept descriptions C, D it may be the case that for all interpretations I it

is true that

CI Ď DI .

In this case, we say that C is subsumed by D, and write C Ď D. If C is subsumed by D and,

in addition, D is subsumed by C, then for all interpretations I it is true that CI = DI . In

this case we say that C and D are equivalent. In this case, we shall write C ” D.

The definitions we have given so far only apply to the description logics EL and ELK,

which are of course not the only ones. Another notable description logic is ALC , a descrip-

tion logic that provides for conjunction, disjunction, negation, J, K as well as existential

and value restrictions. The definition of the syntax of ALC is analogous to the one for EL.

The semantics of ALC is again based on interpretations, and the corresponding extension

of the interpretation function to all ALC concept descriptions is given in Table 3.1.

ALC usually serves as a touchstone for the expressivity of a description logic: a de-

scription logic is usually called inexpressive if it does not provide (directly or indirectly)

all constructors of ALC. A description logic which provides all constructors of ALC is

usually called expressive.
Additionally, ALC played a crucial role in the development of description logics by

uncovering a close connection to modal logics [17, 26]: in [85] it was shown that ALC can be

considered as a syntactic variant of the multimodal logic K(m).

3.2. Knowledge Bases and Reasoning

Having defined a description logic, one can use it to state axioms. These axioms can be

of different nature: they can either state facts about individuals, or they can state facts

about concept descriptions in general. In the former case, axioms are called assertional
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Constructor Name Syntax Semantics

top concept J ∆
I

bottom concept K H

conjunction C1 [ C2 CI
1 X CI

2

disjunction C1 \ C2 CI
1 Y CI

2

existential restriction Dr.C t x P ∆
I | Dy P ∆

I : (x, y) P rI ^ y P CI u

value restriction @r.C t x P ∆
I | @y P ∆

I : (x, y) P rI ùñ y P CI u

negation  C ∆
IzCI

Table 3.1.: Syntax Constructors of ALC

axioms, in the latter case they are called terminological axioms. A knowledge base (or ontology)

K = (T ,A) then consists of those axioms, where the assertional axioms are collected into

an ABox A, and where the terminological axioms are collected into a TBox T .

If then one has given such a knowledge base K, one can conduct reasoning with it.

Essentially, reasoning is the extraction of knowledge which is entailed by the knowledge base

K. Of course, for this to make sense we need to define a semantics for the knowledge base

K. Standard reasoning tasks are then subsumption, instance checking, consistency checking
and satisfiability.

Let us start by formally introducing the notions of assertional axioms and ABoxes.

3.2.1 Definition (Assertional Axiom, ABox) Let NC, NR and NI be three pairwise disjoint

sets. An assertional axiom (over NC, NR and NI) is an expression of the form

C(a) or r(a, b)

where a, b P NI , r P NR and C P ELK(NC, NR) is an ELK concept description. An

assertional axiom C(a) and r(a, b) holds in an interpretation I , written as I |ù C(a) and

I |ù r(a, b), if and only if

aI P CI and (aI , bI ) P rI ,

respectively. An ABox A is then just a set of assertional axioms (over NC, NR and NI). An

interpretation I is a model of an ABox A, written I |ù A if and only if every assertional

axiom in A holds in I . ♦

3.2.2 Example Let us consider Example 3.1.2 again, and let us consider some assertional

axioms over NC, NR and NI . For example we can state that tom is a Cat, jerry is a Mouse,

that tom hunts jerry and that jerry hunts tom. This can be achieved (in that order) with the

following ABox:

AMGM = tCat(tom),Mouse(jerry), hunts(tom, jerry), hunts(jerry, tom) u.
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The interpretation IMGM from Example 3.1.4 is a model of AMGM, i. e. IMGM |ù AMGM.♦

Complementary to assertional axioms are terminological axioms, which state connections

between concept descriptions. As already stated, they are collected into TBoxes. However,

in contrast to ABoxes, there are a lot of different kinds of TBoxes. We shall restrict our

attention to two of these, namely cyclic TBoxes and general TBoxes. For the latter, we

shall also introduce the notion of general concept inclusions, which is crucial for our further

considerations.

3.2.3 Definition (Concept Definitions, Cyclic TBoxes) Let NC and NR be two disjoint sets,

and let ND be another set disjoint to both NC and NR. A concept definition (over NC, NR

and ND) is an expression of the form

B ” D

where B P ND and D is a concept description over NC Y ND and NR. The element B is

called the left-hand side and the concept description D is called the right-hand side of the

concept definition, respectively.

A cyclic TBox T (over NC, NR and ND) is a set consisting of concept definitions over NC,

NR and ND which additionally satisfies the condition that for every B P ND there exists

exactly one concept definition in T with B on the left-hand side. The set ND is called the

set of defined concept names of T , and is also denoted by ND(T ).
A concept definition B ” D is said to hold in an interpretation I over NC Y ND and NR,

written I |ù (B ” D), if and only if

BI = DI

is true. The interpretation I is a model for a cyclic TBox T , written I |ù T , if and only if

every concept definition in T holds in I . ♦

A concept definition B ” D is true in some interpretation I if and only if BI = DI .

However, in some cases it may not be possible to exactly define a concept name B in

terms of another concept description D. In such cases one can make use of general concept
inclusions: instead of requiring BI = DI one can equivalently state that

BI Ď DI and BI Ě DI .

If B cannot be defined exactly, at least one of these inclusions may be true. The way to

express this is to use general concept inclusion.

3.2.4 Definition (General Concept Inclusion, General TBox) Let NC and NR be two dis-

joint sets. A general concept inclusion (GCI) C Ď D (over NC and NR) consists of two concept
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descriptions C, D over NC and NR. A GCI C Ď D is said to hold in an interpretation I if

and only if CI Ď DI .1

A collection T of general concept inclusions is called a general TBox. An interpretation

I is said to be a model of the general TBox T , written I |ù T , if and only if every GCI

(C Ď D) P T holds in I . In this case we shall also say that C Ď D is valid in I , or holds in

I . ♦

In the sense discussed above, concept definitions can be expressed in terms of general

concept inclusions. Because of this representation, we can regard cyclic TBoxes as special

cases of general TBoxes. Therefore, if we talk about TBoxes in the following we mean either

of these notions.

Knowledge bases are now just pairs consisting of an ABox and a TBox.

3.2.5 Definition (Knowledge Base) Let NC, NR and NI be pairwise disjoint sets. Let A be

an ABox over NC, NR and NI , and let T be a TBox over NC and NR. Then the pair

K = (T ,A)

is called a knowledge base (or ontology) (over NC and NR). An interpretation is a model of K
if and only if it is a model of both T and A. ♦

Knowledge bases are the core method of description logics to represent knowledge. In the

following, we shall consider some of the standard reasoning tasks which can be conducted

as soon as a knowledge base is available. As already mentioned, reasoning can be seen as

the process to extract knowledge from a knowledge base which may be represented only

implicitly. The following definitions shall make clear what we mean when we talk about

implicitly represented knowledge.

3.2.6 Definition (Consistency Checking) Let K be a knowledge base. The consistency
checking problem for K is to decide whether K has a model. ♦

3.2.7 Definition (Satisfiability Checking) Let K be a knowledge base, and let C be an

concept description. The satisfiability checking problem for K and C is to decide whether C is

satisfiable with respect to K, i. e. whether there exists a model I of K such that CI ‰ H.♦

Both checking for consistency and checking satisfiability of certain concept descriptions

may be helpful to detect errors in the knowledge base.

3.2.8 Definition (Subsumption Checking) Let K be a knowledge base, and let C, D be

two concept descriptions. Then the subsumption checking problem for K, C, D is to decide

whether C is subsumed by D with respect to K, written C ĎK D, which means to decide

whether CI Ď DI is true for all models I of K. ♦

1Notice that there is a possibility for confusion here: recall that we write C Ď D if C is subsumed by D. So

the fact that C Ď D could potentially be confused with the general concept inclusion C Ď D. However, the

former is a statement, while the latter is an expression, so confusing those two is rather unlikely.
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Checking subsumption between concept descriptions helps to extract dependencies between

concept descriptions in all models of the knowledge base, even if those are not represented

explicitly. A related reasoning task is classification.

3.2.9 Definition (Classification) Let K be a knowledge base over NC and NR. Then to

classify K means to compute the set of all general concept inclusions A Ď B such that

A ĎK B, where A, B P NC. ♦

Classification and subsumption checking only treat the TBox of the knowledge base. A

reasoning task which also involves the ABox is instance checking, which may be utilized to

find errors in the knowledge base that are related to individuals.

3.2.10 Definition (Instance Checking) Let K be a knowledge base, let C be a concept de-

scription, and let a be an individual name. Then the instance checking problem for K, C, a is

to decide if a is an instance of C with respect to K, i. e. whether in all models I of K it is

true that aI P CI . ♦

The complexity of deciding the above decision problems of consistency, satisfiability, sub-

sumption and instance checking is usually used to measure the reasoning complexity of a

description logic. For expressive description logics it is easy to see that all problems can be

reduced to instance checking. To this end, let K = (T ,A) be a knowledge base. Then

i. K is consistent if and only if a is not an instance ofK for an arbitrarily chosen individual

name a;

ii. C is satisfiable with respect to K if and only if (T ,A Y tC(a) u) is consistent, for

some individual name a which does not appear in A;

iii. C is subsumed by D with respect to K if and only if C[ D is not satisfiable with

respect to K.

For logics like ALC it is therefore sufficient to know the complexity of the instance checking

problem to know the complexity of the other problems. The instance problem is ExpTime-

complete for ALC [12], and if the TBox of the knowledge base is empty, the complexity of

instance checking is PSpace-complete.

For ELK the above reductions do not work anymore, as negation is not available there,

and the complexity of the above reasoning problems has more or less to be established

separately. It has been shown in [9, 10, 36] that all the above mentioned reasoning problems

are tractable, i. e. in PTime.

It is worth noting that ALC , as a variant of the multimodal logic K(m), has the so-called

finite model property: if K, C is an instance of the satisfiability checking problem, then C
is satisfiable with respect to K if and only if there exists a finite model I of K such that

CI ‰ H. This also implies that the subsumption problem can be decided over finite models
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only: if CI Ď DI holds for all finite models I of K, then C[ D is not satisfiable over

some finite model of K. Because of the finite model property of ALC, this implies that

C[ D is not satisfiable over any model of K, and thus C is subsumed by D with respect

to K. Observe that since ELK is a sub-logic of ALC , it also has the finite model property.

Apart from the standard reasoning tasks, there are many other reasoning problems con-

nected to knowledge bases, like axiom pinpointing [74] and modularization [50]. A task that

is interesting also for our considerations is the computation of least common subsumers [16,

100].

3.2.11 Definition (Least Common Subsumer) Let C1, . . . , Cn be concept descriptions, and

let D be another concept description such that

i. Ci Ď D for i = 1, . . . , n and

ii. for every concept description E such that Ci Ď E is true for all i = 1, . . . , n, it is also

true that D Ď E.

Then D is called the least common subsumer of C1, . . . , Cn. ♦

If least common subsumers exist they are unique up to equivalence: if D1 and D2 are least

common subsumers of C1, . . . , Cn, then by the second condition of the Definition 3.2.11

it is true that D1 Ď D2 and D2 Ď D1, i. e. D1 ” D2. We shall denote the least common

subsumer of C1, . . . , Cn by lcs(tC1, . . . , Cn u).
Least common subsumers always exist in EL and ELK, i. e. if all concept descriptions men-

tioned in Definition 3.2.11 are either EL concept descriptions or ELK concept descriptions,

then the least common subsumer always exists [16].

3.3. The Description Logic ELKgfp

For our considerations on extracting general concept inclusions from finite interpretations

we shall soon see that the expressivity of ELK is not sufficient anymore. In particular,

we shall see that in ELK model-based most-specific concept descriptions do not necessarily

exist. These are concept descriptions C which are most specific in describing a certain set of

individuals X in an interpretation I , i. e. it is true that

i. X Ď CI and

ii. for all concept descriptions D such that X Ď DI it is true that C Ď D.

We shall discuss model-based most-specific concept descriptions in much more detail in

Section 4.2. Here we just show by means of an example that they do not necessarily need to

exist in ELK.
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3.3.1 Example Let us consider NC = H, NR = t r u and the interpretation I = (t a u, ¨I )
over NC and NR, which is given by rI = t (a, a) u. When depicted as a graph, this inter-

pretation is just a single node graph with a loop:

a

r

Let X = t a u. Then we can find that all EL concept descriptions which can be formed

over the vocabulary NC and NR describe X. More specifically, all EL concept descriptions

which can be formed over NC and NR are of the form

Drn.J := Dr.Dr. . . . Dr
looooomooooon

n times

.J

for n P N0. But then for m ă n it is true that

Drn.J Ď Drm.J,

Drm.J Ę Drn.J.

Because of this, a most-specific concept description for X does not exist. ♦

To remedy this deficit we shall consider an extension of ELK which does guarantee the

existence of model-based most-specific concept descriptions, namely the logic ELK
gfp which

extends ELK by cyclic concept descriptions and greatest fixpoint semantics [9, 73].

We shall start by introducing greatest fixpoint models for cyclic TBoxes. When we intro-

duced cyclic TBoxes T in Definition 3.2.3, we have defined that an interpretation I is a

model of T if and only if every concept definition in T holds in I . This form of semantics

for cyclic TBoxes is called descriptive semantics. However, it is possible to further restrict

the notion of a model of T , and such a restriction is to use greatest fixpoint models instead.

To introduce this semantics we need some auxiliary definitions first.

3.3.2 Definition (Primitive Interpretation, Extensions) Let T be a cyclic TBox over NC,

NR and ND. We say that an interpretation I = (∆I , ¨I ) is a primitive interpretation for T if

it is an interpretation over NC and NR, i. e. ¨I assigns values to the concept names from NC

but not to the defined concept names in ND. Another interpretation J = (∆J , ¨J ) over

NC Y ND and NR is said to extend I if and only if I and J have the same set of elements

and coincide on NC and NR, i. e.

i. ∆
I = ∆

J ,

ii. AI = AJ is true for all A P NC, and

iii. rI = rJ is true for all r P NR. ♦
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Based on this definition we can now give a characterization of models of cyclic TBoxes in

terms of fixpoints of certain functions.

Let T be a cyclic TBox over NC, NR and ND, and let I be a primitive interpretation. Let

us denote with Ext(I) all interpretations over NC Y ND and NR that extend I . Then we

can naturally define an order relation ĺ on Ext(I) as follows: let J1,J2 P Ext(I). We

define

J1 ĺ J2 :ðñ AJ1 Ď AJ2 for all A P ND.

It can be seen quite easily that with this order relation the ordered set (Ext(I), ĺ) becomes

a complete lattice: if tJi | i P I u Ď Ext(I), then sup tJi | i P I u = J P Ext(I), where

AJ :=
ď

iPI

AJi

for all A P ND. On this complete lattice we can now define an order-preserving map

fI : Ext(I) Ñ Ext(I) by means of the TBox T . Let J P Ext(I). We define fI (J ) =
(∆I , ¨ fI (J )) P Ext(I) by

A fI (J ) := CJ

for all (A ” C) P T . Note that since there exists for each A P ND exactly one concept

definition A ” C in T , the function fI is well-defined.

Recall that J P Ext(I) is a model of T if and only if

AJ = CJ

holds for all (A ” C) P T . We can rephrase this condition in terms of fixpoints of fI : since

A fI (J ) = CJ , the interpretation J is a model of T if and only if J is a fixpoint of fI , i. e.

f (J ) = J .

As these fixpoints are elements of Ext(I), they are ordered by ĺ. Therefore, intuitively,

greatest fixpoint models of T are just greatest fixpoints of fI with respect to ĺ. To ensure

their existence, we need to invoke the fixpoint theorem by Tarski [98].

3.3.3 Theorem Let (L,ď) be a complete lattice and let f : L Ñ L be an order-preserving map,
i. e.

x ď y ùñ f (x) ď f (y)

is true for all x, y P L. Then the fixpoints form a complete sublattice of (L,ď), i. e. the ordered set
(t x P L | f (x) = x u,ď) is a complete lattice. In particular, t x P L | f (x) = x u is not empty
and has greatest and smallest elements with respect to ď.
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3.3.4 Definition (Greatest Fixpoint Models) Let T be a cyclic TBox over NC, NR and ND.

Let I be a primitive interpretation of T . An interpretation J over NC Y ND and NR is the

greatest fixpoint model of T extending I if and only ifJ is the greatest fixpoint of the mapping

fI defined as before. An interpretation J over NC Y ND and NR is a greatest fixpoint model
of T if it is a greatest fixpoint model of T extending some primitive interpretation I of

T . ♦

We continue our introduction of ELK
gfp by discussing its semantics. For this we introduce

the notion of a normalized cyclic TBox.

3.3.5 Definition (Normalized Cyclic TBox) Let T be a cyclic TBox over NC, NR and ND.

Then T is called normalized if and only if for every concept definition (A ” C) P T , the

concept description C is of the form

C = P1 [ ¨ ¨ ¨ [ Pn [ Dr1.A1 [ ¨ ¨ ¨ [ Drm.Am

for n, m P N0, P1, . . . , Pn P NC, r1, . . . , rm P NR and A1, . . . , Am P ND. ♦

We finally have all notions available to define the syntax and semantics of ELK
gfp.

3.3.6 Definition (ELK
gfp Concept Descriptions, ELK

gfp Semantics) Let NC and NR be two

disjoint sets. An ELgfp concept description is an expression of the form C = (A, T ), where T
is a normalized cyclic TBox over NC, NR and ND, for some set ND disjoint to both NC and

NR, T only contains EL concept descriptions, and A P ND. An ELK
gfp concept description is

either of the form K or is an ELgfp concept description.

Let I be an interpretation over NC and NR, and let C = (A, T ) be an ELK
gfp concept

description. Then

CI := AJ ,

where J is the greatest fixpoint model of T extending I . ♦

The crucial feature of ELK
gfp is that model-based most-specific concept descriptions always

exist. We shall discuss this in more detail in Section 4.2. What we shall do now is to show

how the model-based most-specific concept description looks like in Example 3.3.1.

3.3.7 Example Consider the interpretation I from Example 3.3.1 again. For the set X =
t a u we have found that the concept descriptions

Cn := Drn.J

for n P N0 satisfy CI
n = X, and that therefore the model-based most-specific concept

description for X does not exist in ELK. However, we can find a model-based most-specific

concept description for X in ELK
gfp, namely

C := (A, t A ” Dr.A u).
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Intuitively, one can think of C is an “infinite chain” of existential restrictions, and the

possibility to have cyclic concept descriptions in ELK
gfp allows us to express this infinite

chain with a finite expression.

The greatest fixpoint model J for the TBox t A ” Dr.A u extending I is just given by

AJ = ∆
I = t a u

and therefore a P CI . It can also be shown that C Ď Cn is true for all n P N0, and that

all ELK
gfp concept descriptions D satisfying DI = X are equivalent to either C or some Cn.

Therefore, C is a model-based most-specific concept description for X. ♦

It may not be apparent in how far the logic ELgfp is an extension of EL. To see this, let us

define for an EL concept description C the ELgfp concept description

CELgfp
:= (AC, t AC ” C u).

Then CI = CI
ELgfp

is true for every interpretation I . Moreover, let us define for two ELgfp

concept descriptions D1 = (A1, T1), D2 = (A2, T2) and r P NR

D1 [D2 := (AD1[D2
, T1 Y T2 Y t AD1[D2

” A1 [ A2 u)

Dr.D1 := (ADr.D1
, T1 Y t ADr.D1

” Dr.D1 u).

Then indeed

(D1 [D2)
I = DI

1 XDI
2

(Dr.D1)
I = t x P ∆

I | Dy P ∆
I : (x, y) P rI ^ y P DI

1 u.

Therefore, the mapping C ÞÑ CELgfp
maps EL(NC, NR) into a subset of ELgfp(NC, NR)

that behaves like EL with respect to conjunction and existential restriction, i. e. for every

C, D P EL(NC, NR) and r P NR it is true that

(C[D)ELgfp
” CELgfp

[DELgfp
,

(Dr.C)ELgfp
” Dr.CELgfp

.

We can therefore regard ELgfp as an extension of EL. This of course also means that ELK
gfp

can be seen as an extension of ELK.

A noteworthy property of ELK
gfp is that least common subsumers always exist, and that

they can be computed effectively [7, 8]. In other words, if C1, . . . , Cn are ELK
gfp concept

descriptions, then there exists an ELK
gfp concept description lcs(tC1, . . . , Cn u) that is the

least common subsumer of C1, . . . , Cn in ELK
gfp. The existence of lcs(tC1, . . . , Cn u) can

be shown in a constructive way, giving rise to an effective method to compute the least

common subsumer. The construction involves EL description graphs and products of these

graphs. We shall not go into details here, and refer the interested reader to the literature.



62 3. Description Logics

3.4. Unravelling ELKgfp Concept Descriptions

ELK
gfp has a disadvantage over ELK which impairs its practical use: due to the cyclic nature

of ELK
gfp concept descriptions their meaning is often hard to grasp, and, particularly, for

non-experts in logics, ELK
gfp concept descriptions are mostly incomprehensible. Despite that,

we need to consider ELK
gfp concept descriptions to guarantee the existence of model-based

most-specific concept descriptions. Therefore, we cannot dispense with ELK
gfp completely.

Instead, we discuss a method which allows us to transform ELK
gfp concept descriptions

into ELK concept descriptions in a way suitable for our considerations. This transformation

is based on unravelling ELK
gfp concept descriptions up to a certain depth. Concept descriptions

obtained by this will always be ELK concept descriptions, which are usually much easier

to read and understand.

Recall that ELK
gfp concept descriptions C are either of the form C = K or C = (A, T ) for

some cyclic TBox T and A P ND(T ). Intuitively, unravelling ELK
gfp concept descriptions

up to a certain depth means that we “unfold” a potentially cyclic ELK
gfp concept description

into ELK concept descriptions with a certain quantifier depth. Of course, K is already an

ELK concept description, so it suffices to discuss unravelling of ELgfp concept descriptions

only.

Let us consider an example before we introduce the method in detail.

3.4.1 Example Recall the example concept description from Example 3.3.7

C := (A, t A ” Dr.A u).

We had argued intuitively that this concept description could be viewed as some kind of

“infinite” ELK concept description of the form

C ” Dr.Dr.Dr. . . .

Let d P N. Then an unravelling of C up to depth d would yield a concept description Cd

that stems from C by “cutting” the infinite chain of quantifiers after d steps, i. e.

Cd = Dr.Dr. . . . Dr.
looooomooooon

d times

J.

The role-depth of Cd is then d, because the largest chain of nested existential quantifiers in

Cd has depth d. ♦

Let us make the previous argumentation formally precise. To this end, we shall start by

introducing the notion of role depth of ELK concept descriptions.

3.4.2 Definition (Role Depth of ELK Concept Descriptions) Let NC and NR be two dis-

joint sets. Then the role-depth d(C) of a concept description C P ELK(NC, NR) is inductively

defined as follows.
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i. d(K) = 0 and d(A) = 0 for A P NC.

ii. d(C[D) = max t d(C), d(D) u for C, D P ELK(NC, NR),

iii. d(Dr.C) = 1 + d(C) for C P ELK(NC, NR). ♦

The general argumentation for formalizing the notion of unravelling up to a certain depth

will be achieved in two steps. Firstly, we shall convert a given ELgfp concept description C
into its EL description graph [9], a notion which we have already encountered before and

which we shall now discuss in detail. Those graphs will then be unraveled into rooted trees,
which in general are infinite. To then obtain the unravelling of C up to a certain depth d P N,

we shall consider only the part of this tree that can be reached from the root in d steps. This

subgraph of the EL description graph of C then gives rise to a concept description Cd, the

unravelling of C up to depth d.

3.4.3 Definition (EL Description Graph) Let NC and NR be two disjoint sets, and let C =
(A, T ) be an ELgfp concept description. Then the EL description graph GC = (V, E, L) of

C is defined as follows: recall that for every concept definition (B ” D) P T , the concept

description D has the form

D = P1 [ ¨ ¨ ¨ [ Pn [ Dr1.B1 [ Drm.Bm

for m, n P N0, P1, . . . , Pn P NC, r1, . . . , rm P NR and B1, . . . , Bm P ND(T ). We then define

names(B) := t P1, . . . , Pn u,

succr(B) := t Bi | 1 ď i ď m, ri = r u

for every r P NR. To define GC = (V, E, L) we set

i. V := ND(T ),

ii. E := t (B1, r, B2) | B1, B2 P ND(T ), B2 P succr(B1) u,

iii. L(B) := names(B) for each B P ND(T ).

We shall call V the vertices, E the edges and L the labeling function of the description graph

GC. ♦

It is easy to see that every EL description graph can be converted into a corresponding

concept description by just reverting the process described in the above definition. Moreover,

if a concept description is converted into an EL description graph, and then back into a

concept description, then the resulting concept description is equivalent to the original one.

To now define the notion of an unravelling of a given EL description graph GC =
(V, E, L) we shall follow the definitions as in [41] and introduce the notion of a directed path
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in GC. Such a directed path is a word w = A1r1A2r2 . . . rn An+1 for some n P N0 such that

A1, . . . , An+1 P V and for all 1 ď i ď n it is true that (Ai, ri, Ai+1) P E. We shall then say

that the directed path w starts at A1 and ends at An+1, and shall also write δ(w) := An+1

and call δ(w) the destination of w. The length len(w) of w is defined to be n.

3.4.4 Definition (Unravelling of EL Description Graphs and of EL Concept Descriptions)

Let NC and NR be two disjoint sets, let C P ELgfp(NC, NR), and let GC = (V, E, L)
the EL description graph of C. Then the unravelling of GC is defined to be the graph

G8 = (V8, E8, L8) where

i. V8 is the set of all directed paths in GC,

ii. E8 := t (w, r, wrB) | w, wrB P V8 u,

iii. L8(w) := L(δ(w)) for w P V8.

Let d P N0. Then the unravelling of GC up to depth d is defined as Gd := (Vd, Ed, Ld) where

i. Vd := tw P V8 | len(w) ď d u,

ii. Ed := t (A, r, B) P E8 | A, B P Vd u,

iii. Ld(w) := L8(w) for w P Vd.

Finally, the unravelling of C up to depth d is defined as the EL concept description Cd that

corresponds to the unravelling of GC up to depth d. In addition, we set Kd := K for each

d P N0. ♦

A crucial result about unravellings Cd of concept descriptions C is the following lemma.

3.4.5 Lemma (Lemma 5.3 of [41]) Let C be an ELK
gfp concept description. Then for all d P N0

it is true that C Ď Cd.

To finish this chapter, let us consider an example which illustrates the process of unravelling.

3.4.6 Example Let us revisit Example 3.4.1 again and let us compute unravellings of the EL
concept description C = (A, t A ” Dr.A u) formally now. Its EL description graph is then

GC = (t A u, t (A, r, A) u, A ÞÑ H),

and can be depicted as follows

A

r
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The unravelling of GC is then the graph G8 which corresponds to the following picture

A

ArA

ArArA

r

r

r

where the path to which every node corresponds is depicted right of the node. Then, for

d = 3, the unravelling of GC up to depth 3 would just be the graph

A

ArA

ArArA

r

r

and the corresponding ELK concept description is

C3 = Dr.Dr.Dr.J. ♦
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C h a p t e r 4

Axiomatizing Valid General Concept Inclusions of

Finite Interpretations

Our considerations about extracting general concept inclusions from erroneous data will be

based on previous results obtained by Baader and Distel [41] on extracting all valid general

concept inclusions from a given finite interpretation. In this section, we shall therefore

review the notions and results from this work that are necessary for our own.

The problem of extracting all valid general concept inclusions from a finite interpretation

can be made more precise as follows. Let I = (∆I , ¨I ) be a finite interpretation over NC

and NR, i. e. ∆
I is a finite set. The task then is to find the set of all general concept inclusions

C Ď D with C, D P ELK(NC, NR) which are valid in I .

Of course, the set of all valid general concept inclusions is infinite in general. This is

because if C Ď D holds in I , and r P NR, then Dr.C Ď Dr.D holds in I as well. Such

an infinite set is hardly usable to represent knowledge suitable for machine consumption.

Therefore, the considerations in [41] concentrate on finding finite bases of I , i. e. sets of valid

general concept inclusions of I that are also complete. We shall introduce these notions

briefly in Section 4.1.

One of the main results of [41] then is that finite bases for finite interpretations I always

exist, and we shall discuss them in Section 4.3. These results have been obtained by exploit-

ing a close connection between description logics and formal concept analysis. It is therefore

crucial that we introduce this connection first, and we shall do so in Section 4.2. In particular,

we shall talk about induced contexts and model-based most-specific concept descriptions.

4.1. Bases of General Concept Inclusions

General concept inclusions have a model-based semantics, i. e. their semantics is defined

in terms of being valid in some interpretation. We can therefore introduce the notions

of entailment and completeness as follows. Also notice the similarity of this definition to

Definition 2.4.1.
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4.1.1 Definition Let LY tC Ď D u be a set of general concept inclusions over NC and NR.

We shall say that L entails C Ď D, written L |ù (C Ď D) if and only if for all interpretations

over NC and NR it is true that if I |ù L, then I |ù tC Ď D u as well.

Let K be another set of general concept inclusions over NC and NR. Then K is said to be

sound for L if and only if all general concept inclusions in K are entailed by L. K is said to

be complete for L if and only if all general concept inclusions in L are entailed by K. K is

said to be a base for L if and only if K is sound and complete for L. ♦

Let I be a finite interpretation over NC and NR, and let us denote with Th(I) the set of all

ELK
gfp general concept inclusions over NC and NR which are valid in I , i. e.

Th(I) := tC Ď D | C, D P ELK
gfp(NC, NR), CI Ď DI u.

Let K be a set of general concept inclusions over NC and NR. If K is a base of Th(I), we

shall simply say that K is a base of I . If K consists of ELK general concept inclusions only,

we shall say that K is an ELK base of I . Otherwise, we shall occasionally say that K is an

ELK
gfp base of I .

Notice that in the case that K is a base of I , all general concept inclusions in K have

to hold in I : the set Th(I) is closed under entailment in the sense that every ELK
gfp general

concept inclusion over NC and NR which is entailed by Th(I) is already contained in this

set. Therefore, if K is sound for Th(I), it must be contained in this set and thus K is a

set of general concept inclusions which are valid in I . Moreover, since K is complete for

Th(I), every ELK
gfp general concept inclusion over NC and NR that holds in I is entailed

by K.

4.2. Linking Formal Concept Analysis and Description Logics

Description logics and formal concept analysis are connected by a number of similar notions.

As an example, let us consider a formal context K = (G, M, I) and a set A Ď M. The set A1

then is the set of all objects of K which have all the attributes in A. We can view this fact from

another perspective: if A = tm1, . . . , mn u, then we can think of the attributes m1, . . . , mn

as propositions, and the fact that (g, m) P I as saying that g satisfies the proposition m. Then

g P A1 means that g satisfies the conjunction of all propositions in A.

Let us reformulate this using description logics. To this end, let us define NC := M and

NR = H. Then we can think of K as an interpretation IK = (G, ¨IK) where

mIK := t g P G | (g, m) P I u = tm u1. (4.1)

Then we have A1 = (m1 [ ¨ ¨ ¨ [mn)IK for all finite A = tm1, . . . , mn u Ď M. Indeed, if

we would consider a description logic that only allows for conjunction[, then we can view

finite formal contexts, derivation of sets of attributes and even implications as special cases

of finite interpretations, extensions of concept descriptions and general concept inclusions.
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Thus the derivation operator (¨)1 : P(M) Ñ P(G) naturally corresponds to computing

the extension of concept descriptions in interpretations. However, the other derivation

operator (¨)1 : P(G)Ñ P(M) does not have such a correspondence in description logics.

This gap shall be filled by considering model-based most-specific concept descriptions, which

we introduce in Section 4.2.1.

The connection between description logics and formal concept analysis expressed in (4.1)

only works in one direction: it allows to represent basic notions of formal concept analysis

in terms of description logics, but not vice versa. Even if we restrict our attention to the

rather light-weight description logic ELK, it is not clear how to represent an interpretation

by means of notions from formal concept analysis.

To approach this issue, we shall introduce induced contexts in Section 4.2.2. Such contexts

allow to express tight connections between the notions of formal concept analysis and

description logics, and, since induced contexts are just formal contexts, still allow the

application of standard methods from formal concept analysis, such as the extraction of

bases. This fact will be exploited when we discuss the computation of finite bases in

Section 4.3.

4.2.1. Model-Based Most-Specific Concept Descriptions

Let K = (G, M, I), and let us try to motivate how to find a natural correspondence of the

derivation operator (¨)1 : P(G)Ñ P(M) within description logics. Let B Ď G be a set of

objects of K. Then the set A := B1 can be thought of as the most-specific set of attributes

that describe B, i. e.

i. B Ď A1, i. e. A describes B, and

ii. for all sets C Ď M that satisfy B Ď C1 (that describe B) it is true that C Ď A, (A
contains more attributes than C, i. e. is more specific).

The last point is true because if B Ď C1, then by Lemma 2.1.9 it is true that C Ď B1 = A.

Notice that the description of A as a most-specific description of B is also a characterization,

i. e. if A is the most-specific description of B in the above sense, then A = B1.

To mimic this most-specific description in description logics, Baader and Distel introduce

the notion of most-specific concept descriptions.

4.2.1 Definition (Model-Based Most-Specific Concept Description) Let I = (∆I , ¨I ) be

an interpretation, and let X Ď ∆
I . A model-based most-specific concept description of X in I

is a concept description C such that

i. X Ď CI , and

ii. for each concept description D satisfying X Ď DI it is true that C Ď D, i. e. C is

subsumed by D. ♦



70 4. Axiomatizing Valid General Concept Inclusions of Finite Interpretations

If a model-based most-specific concept description C for X in I exists, it is unique up to

equivalence: if D is another such model-based most-specific concept description, then

C Ď D and D Ď C, by the last condition of the definition. Therefore, C ” D. Because

of this, we can talk about the model-based most-specific concept description of X in I ,

and shall denote it with XI , to stress the similarity to the derivation operator from formal

concept analysis. We shall also write XII instead of (XI )I and CII instead of (CI )I for

syntactic convenience.

The existence of model-based most-specific concept descriptions, however, is not clear per

se, and the choice of the description logic in which we seek for model-based most-specific

concept descriptions is crucial here: if we only consider ELK concept descriptions, then

model-based most-specific concept descriptions do not necessarily exist, as is shown in

Example 3.3.1. However, if we allow all concept descriptions in Definition 4.2.1 to be ELgfp

or ELK
gfp concept descriptions, then the existence of model-based most-specific concept

descriptions can be guaranteed.

4.2.2 Theorem (Theorem 4.7 of [41]) Model-based most-specific concept descriptions exist in
ELgfp and ELK

gfp for all finite interpretations I = (∆I , ¨I ) and sets X Ď ∆
I , and they can be

computed effectively.

The computation of model-based most-specific concept descriptions can be achieved using

EL description graphs, least common subsumers and simulations [9, 41]. See [41, Section

4.1.2] for details on this.

We have motivated model-based most-specific concept descriptions by most-specific

descriptions in formal contexts, and for this we have made use of the fact that the derivation

operators form a Galois connection. It is therefore only natural to expect that model-based

most-specific concept descriptions are part of a Galois connection, too. However, we have

to notice that we cannot expect to obtain a Galois connection in the sense of Section 2.2,

simply because the relation Ď is not antisymmetric, and thus not an order relation: it may

be the case that C Ď D and D Ď C, but D ‰ C. We can remedy this fact by considering

concept descriptions only up to equivalence: instead of a single concept description C, we

always consider the set [C] of all concept descriptions which are equivalent to C. Then

[C] Ď [D] is well-defined for all concept descriptions C and D, and Ď indeed yields an

order relation this way. This is only a technical detail, however, and we shall not make it

explicit in our following considerations.

4.2.3 Lemma (Lemma 4.1 of [41]) Let I = (∆I , ¨I ) be an interpretation over NC and NR,
X Ď ∆

I and C an ELK
gfp concept description over NC and NR. Then

X Ď CI ðñ XI Ď C. (4.2)

In particular, for X, Y Ď ∆
I and for ELK

gfp concept descriptions C, D over NC and NR, it is true
that
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i. X Ď Y ùñ XI Ď YI ,

ii. C Ď D ùñ CI Ď DI ,

iii. X Ď XII ,

iv. CII Ď C,

v. XI ” XIII ,

vi. CI = CIII .

Proof We only show (4.2), the other claims follow from Lemma 2.2.3 and the above-made

considerations. If X Ď CI , then XI Ď C because XI is by definition the most-specific

concept description that contains X in its extension. Conversely, if XI Ď C, then by

definition XII Ď CI . But since XI is the model-based most-specific concept description of

X in I , it contains X in its extension, i. e. X Ď XII . Therefore, X Ď CI . ˝

Another useful property is the following, rather technical proposition.

4.2.4 Proposition (Lemma 4.2 of [41]) Let I be an interpretation over NC and NR, and let C, D
be ELK

gfp concept descriptions over NC and NR and let r P NR. Then

i. (C[D)I = (CII [D)I , and

ii. (Dr.C)I = (Dr.CII )I .

Proof For the first claim we use Lemma 4.2.3 and obtain

(C[D)I = CI XDI = CIII XDI = (CII [D)I .

For the second one we observe that

(Dr.CII )I = t x P ∆
I | Dy P ∆

I : (x, y) P rI ^ y P CIII u

= t x P ∆
I | Dy P ∆

I : (x, y) P rI ^ y P CI u

= (Dr.C)I ,

again because of CI = CIII from Lemma 4.2.3. ˝

4.2.2. Induced Contexts

We already have seen how formal contexts can be represented as interpretations. In this

section we shall introduce the approach of Baader and Distel of induced contexts, which

provides the inverse direction, i. e. which allows to represent interpretations as formal

contexts. The notion of induced contexts also was used implicitly by works of Prediger [77]

in her study on terminological attribute logic.
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4.2.5 Definition (Induced Context) Let I = (∆I , ¨I ) be a finite interpretation over NC

and NR, and let M be a set of concept descriptions over NC and NR. The induced context of

I and M is the formal context KI ,M = (∆I , M,∇), where for x P ∆
I and C P M

(x, C) P ∇ :ðñ x P CI . ♦

Induced formal contexts do not necessarily represent the interpretation I completely;

indeed, what is represented of I heavily depends on the choice of the set M of concept

descriptions. We later shall see that we can choose this set M to obtain a close connection

between bases of KI ,M and bases of I .

We start our considerations about induced contexts by introducing some auxiliary notions

first. For a finite set U Ď M we define the set

l
U :=

#

J if U = H,
d

VPU V otherwise.

We call
d

U the concept description defined by U. Furthermore, for a concept description C
we define the projection of C onto M as

prM(C) := tD P M | C Ď D u.

Concept descriptions defined by subsets of M together with projections capture some

kind of notion of upper approximation in terms of M: if C is a concept description, then the

most-specific concept description D satisfying C Ď D that can be defined by a subset of M
is given by

D =
l

prM(C).

This looks familiar to our introductory motivation for model-based most-specific concept

descriptions, and indeed there are similarities. One of them is that the mappings U ÞÑ
d

U
and C ÞÑ prM(C) satisfy the main condition of an antitone Galois connection.

4.2.6 Lemma Let M be a finite set of concept descriptions over NC and NR. Then for each U Ď M
and each concept description C over NC and NR it is true that

C Ď
l

U ðñ U Ď prM(C).

In particular, the following statements holds for all U, V Ď M and all concept descriptions C, D
over NC and NR.

i. C Ď D ùñ prM(D) Ď prM(C),

ii. U Ď V ùñ
d

V Ď
d

U,
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iii. C Ď
d

prM(C),

iv. U Ď prM(
d

U).

Proof Assume C Ď
d

U. Then prM(
d

U) Ď prM(C), since every concept description

D P M satisfying
d

U Ď D also satisfies C Ď D. Furthermore, U Ď prM(
d

U), since for

each F P U it is true that
d

U Ď F. Thus

U Ď prM(
l

U) Ď prM(C).

For the converse direction, assume that U Ď prM(C). Then
d

prM(C) Ď
d

U. Since for

each D P prM(C) it is true that C Ď D, we also have C Ď
d

prM(C). In sum, we obtain

C Ď
l

prM(C) Ď
l

U. ˝

For certain concept descriptions C, the upper approximation provided by
d

prM(C) coin-

cides with C. Those concept descriptions are exactly those which are expressible in terms of
M, i. e. there exists a subset N Ď M such that C ”

d
N.

4.2.7 Lemma ([41]) Let MY tC u be a set of concept descriptions over NC and NR. Then C is
expressible in terms of M if and only if

C ”
l

prM(C).

Proof Clearly, if C ”
d

prM(C), then C is expressible in terms of M. Conversely, if C is

expressible in terms of M, then C ”
d

N for some N Ď M. Then C Ď D for all D P N,

and therefore N Ď prM(C). By Lemma 4.2.6, it is thus true that

C Ď
l

prM(C) Ď
l

N ” C

and therefore C ”
d

prM(C). ˝

We can now state some connections between the derivation operators of an induced context

on one side, and computing the extension of a concept description as well as model-based

most-specific concept descriptions on the other. These results are rather technical but

necessary for our further considerations. We include the proofs of these statements here,

as they are rather simple and may help to better understand the corresponding claims.

4.2.8 Proposition (Lemma 4.11 and 4.12 of [41]) Let I be a finite interpretation and M be a
finite set of concept descriptions. Then for every concept description expressible in terms of M it is
true that

CI = (prM(C))1,
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and for O Ď ∆
I it is true that

O1 = prM(OI ),

where the derivation is conducted in KI ,M.

Proof Since C is expressible in terms of M, Lemma 4.2.7 yields C ”
d

prM(C). Thus

x P CI ðñ x P (
l

prM(C))I

ðñ @D P prM(C) : x P DI

ðñ x P (prM(C))1,

since (prM(C))1 = t x P ∆
I | @D P prM(C) : x P DI u.

If O Ď ∆
I , then

D P O1 ðñ @g P O : g P DI

ðñ O Ď DI

ðñ OI Ď D

ðñ D P prM(OI ),

where O Ď DI ðñ OI Ď D holds due to Lemma 4.2.3. ˝

4.2.9 Proposition (Lemma 4.10 and 4.11 of [41]) Let I be a finite interpretation and let M be
a finite set of concept descriptions. Then each B Ď M satisfies

B1 = (
l

B)I ,

and if A Ď ∆
I is such that AI is expressible in terms of M, then

l
A1 ” AI ,

where all derivations are conducted in KI ,M = (∆I , M,∇).

Proof Observe that x P B1 if and only if x P CI for all C P B. Therefore

x P B1 ðñ @C P B : x P CI ðñ x P
č

CPB

CI = (
l

B)I ,

and therefore B1 = (
d

B)I .

If A Ď ∆
I is such that AI is expressible in terms of M, then by Lemma 4.2.7 it is true

that

AI ”
l

prM(AI ).

By Proposition 4.2.8, prM(AI ) = A1, and thus AI ”
d

A1 as required. ˝
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4.2.10 Proposition Let I = (∆I , ¨I ) be a finite interpretation and let M be a set of concept
descriptions. Let A Ď ∆

I such that AI is expressible in terms of M. Then AII = A2, where the
derivations are conducted in KI ,M.

Proof Again, by Lemma 4.2.7 we have AI ”
d

prM(AI ) and thus

AII =
(

l
prM(AI )

)I

= prM(AI )1

= A2

by Proposition 4.2.8 and Proposition 4.2.9. ˝

We can rephrase some of the above results as follows. Let I be a finite interpretation and

let us call a concept description C a model-based most-specific concept description of I if it is

the model-based most-specific concept description of some subset of ∆
I . Note that C is a

model-based most-specific concept description of I if and only if C ” CII .

Let M be a set of concept descriptions such that all model-based most-specific concept

descriptions are expressible in terms of M. If we then identify equivalent model-based

most-specific concept descriptions and order them by Ď, then the resulting ordered set is

dually isomorphic to the lattice of intents of KI ,M. Note that with Int(KI ,M) we denote

the set of intents of KI ,M.

4.2.11 Corollary (contains Corollary 4.13 of [41]) Let I be a finite interpretation and let M
be a set of concept descriptions such that model-based most-specific concept descriptions of I are
expressible in terms of M. Denote with M the set of all model-based most-specific concept descrip-
tions considered up to equivalence. Then the mapping

ϕ : Int(KI ,M) Ñ M
U ÞÑ

d
U

is an order-isomorphism between (Int(KI ,M),Ď) and (M, Ě), where

ϕ´1(C) = prM(C) (C PM).

In particular this means

i.
d

U PM for all U P Int(KI ,M),

ii. prM(C) P Int(KI ,M) for all C PM,

iii. U Ď V implies
d

U Ě
d

V for all U, V Ď M,

iv. C Ď D implies prM(C) Ě prM(D) for all C, D PM,
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v. prM(
d

U) = U for all U P Int(KI ,M),

vi.
d

prM(C) ” C for each C PM.

Additionally,

U2 = prM((
l

U)II ),

CII =
l

(prM(C))2
(4.3)

is true for all U Ď M and all concept descriptions C expressible in terms of M, and where the
derivations are done in KI ,M.

Proof Claims (iii) and (iv) are already contained in Lemma 4.2.6, and (vi) is just Lemma 4.2.7

again. We show the other claims step by step.

For (i) let U P Int(KI ,M). Then U = U2, and thus

l
U =

l
U2 ” (U1)I = (

l
U)II

by Proposition 4.2.9. Thus U PM up to equivalence.

For (ii) let C P M. Then C ” CII and C is expressible in terms of M. From Proposi-

tion 4.2.8 it follows

prM(C) = prM(CII )

= (CI )1

= prM(C)2

and thus prM(C) P Int(KI ,M).
For (v) let again U P Int(KI ,M). We first observe that U Ď prM(

d
U) by Lemma 4.2.6.

Furthermore, for each concept description D it is true that

D P prM(
l

U) ðñ
l

U Ď D

ùñ (
l

U)I Ď DI

ðñ U1 Ď tD u1

ðñ U2 Ě tD u2 Q D

ðñ D P U2 = U,

using Proposition 4.2.9 for (
d

U)I = U1, and the definition of KI ,M to obtain DI = tD u1.

Thus, prM(
d

U) Ď U and equality follows.

For the equations given in (4.3) we observe

prM((
l

U)II ) = prM((U1)I )
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= U2

by Proposition 4.2.9 and Proposition 4.2.8, and

l
(prM(C))2 ” (prM(C)1)I

= CII ,

again because of Proposition 4.2.9 and Proposition 4.2.8, for every U Ď M and every

concept description C expressible in terms of M. ˝

The equivalence
d
(prM(C))2 ” CII does not hold in general for concept descriptions C,

as the following trivial example shows.

4.2.12 Example Let NC = H and NR = t r u, and let I = (∆I , ¨I ) be an interpretation

over NC and NR with ∆
I = t x u and rI = H. Then the model-based most-specific concept

descriptions of I are, up to equivalence, just J and K. Let M = tK u. Then clearly all

model-based most-specific concept descriptions of I are expressible in terms of M. Then

KI ,M =
K

x .

Now consider C = Dr.J. Then on the one hand,

CII = HI = K,

but on the other hand

l
prM(C)2 =

l
H2 =

l
H = J,

so CII ‰
d

prM(C)2. ♦

A useful consequence of Corollary 4.2.11 is the following result.

4.2.13 Lemma Let I be a finite interpretation, and let U Ď MI . Then

(
l

U)II =
l

U2,

where the derivations are done in KI .

Proof Clearly
d

U is expressible in terms of MI . Thus Corollary 4.2.11 yields

(
l

U)II =
l

(prMI
(
l

U))2.
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By Proposition 4.2.8 it is true that prMI
(
d

U)1 = (
d

U)I , thus

(
l

U)II =
l

((
l

U)I )1

=
l

U2

where (
d

U)I = U1 is true due to Proposition 4.2.9. ˝

4.3. Computing Bases of Valid GCIs of a Finite Interpretation

Using the notions of model-based most-specific concept descriptions and induced contexts,

we are finally prepared to introduce some of the main results of [41] on computing bases

of finite interpretations. The main idea behind these results is to use ideas and methods

from formal concept analysis, either by simulating them in a description logic setting, or by

transforming the initially given interpretation into formal contexts and applying standard

methods from formal concept analysis to it.

Recall that for a (finite) formal context K = (G, M, I) the set

t A Ñ A2 | A Ď M u

is always a base of K. This is because every valid implication (A Ñ B) P Th(K) already

follows from A Ñ A2, because if K |ù (A Ñ B), then A1 Ď B1, i. e. B Ď A2 and

thus t A Ñ A2 u |ù (A Ñ B). Having introduced model-based most-specific concept

descriptions, we are able to simulate this result in terms of description logics as follows.

4.3.1 Lemma (Lemma 4.3 of [41]) Let I = (∆I , ¨I ) be an interpretation, and let C Ď D be a
general concept inclusion that is valid in I . Then C Ď CII is valid in I as well, and C Ď D
follows from C Ď CII .

The following statement is then a simple corollary.

4.3.2 Corollary Let I = (∆I , ¨I ) be an interpretation over NC and NR. Then

B0 := tC Ď CII | C P ELK
gfp(NC, NR), C ‰ Ku (4.4)

is a base of I .

Of course, this base is not finite in general, i. e. if NR ‰ H. However, based on this result,

Baader and Distel investigate subsets of B0 and finally arrive at a finite base. The first step

into this direction is to show that considering only ELK concept descriptions is enough, as

described in the next theorem. The main advantage of this result is that we can now use

induction over the premises of general concept inclusions.
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4.3.3 Theorem (Theorem 5.7 of [41]) Let I = (∆I , ¨I ) be an interpretation over NC and NR.
Then

B1 := tC Ď CII | C P ELK(NC, NR), C ‰ Ku (4.5)

is a base of I .

The proof of this theorem is quite involved, and again makes use of EL description graphs

and simulations between them. We shall not go into details here, and refer the reader to [41,

Section 5.1.1].

The base B1 still is not finite in general. To achieve finiteness, we consider a particular

finite set MI of concept descriptions which turns out to be enough, in the sense that we only

need to consider general concept inclusions C Ď CII where C =
d

U for some U Ď MI .

Since MI is finite, the resulting set of general concept inclusions is finite and therefore

yields a finite base of I .

4.3.4 Definition (MI ) Let I = (∆I , ¨I ) be a finite interpretation over NC and NR. Then

MI := NC Y tKuY t Dr.XI | r P NR, X Ď ∆
I , X ‰ Hu. ♦

The definition of MI seems to be incomprehensible at first. However, since this set will play

a major role for our further considerations, we shall give some intuition why it is suitable

for our purpose the way it is defined.

Note that MI is finite since I is finite, and thus there are only finitely many subsets

of ∆
I . Furthermore notice that MI can be computed using the Next-Closure algorithm

from Theorem 2.4.11. More precisely, we can compute all concept descriptions XI by

noticing that XI ” XIII , and we can compute the sets XII using Next-Closure because

the mapping X ÞÑ XII is a closure operator on P(MI ).
Before we show how the set MI helps in finding finite bases, we note an important

property of it.

4.3.5 Lemma (Lemma 5.9 of [41]) Let I be a finite interpretation and let C be a model-based
most-specific concept description of I . Then C is expressible in terms of MI .

Let us define

B2 := t
l

U Ď (
l

U)II | U Ď MI u. (4.6)

Then clearly B2 |ù (C Ď CII ) for C P NC or C = K. For C = D[ E, and assuming by

induction that B2 |ù (D Ď DII ) and B2 |ù (E Ď EII ), we can find that

B2 |ù (D[ E Ď DII [ EII ).
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But then DII [ EII is expressible in terms of MI (as a conjunction of model-based most-

specific concept descriptions, using Lemma 4.3.5), so

B2 |ù ((DII [ EII ) Ď (DII [ EII )II ).

Using Proposition 4.2.4 we obtain (DII [ EII )II ” (D[ E)II , so all in all

B2 |ù (D[ E Ď (D[ E)II ).

Notice that the main arguments here are Proposition 4.2.4 and that all model-based most-

specific concept descriptions are expressible in terms of MI .

If C = Dr.D, and assuming that B2 |ù (D Ď DII ), we first obtain

B2 |ù (Dr.C Ď Dr.CII ). (4.7)

But then (Dr.CII ) P MI up to equivalence, so

B2 |ù (Dr.CII Ď (Dr.CII )II ).

Using Proposition 4.2.4 again we obtain (Dr.CII )II ” (Dr.C)II , so

B2 |ù (Dr.C Ď (Dr.C)II ).

Notice that the crucial property in that argumentation is that MI contains concept descrip-

tions of the form Dr.CII , and that Proposition 4.2.4 has been used again.

The preceding argument then shows the following claim.

4.3.6 Theorem (Theorem 5.10 of [41]) Let I be a finite interpretation. Then B2 as defined in
Equation (4.6) is a finite base of I .

A practical disadvantage of the finite base B2 is its size, which may be exponential in |MI |,
which itself may be exponential in the size of ∆

I . To remedy this, we use methods from

formal concept analysis to extract bases from formal contexts. In particular, recall that the

canonical base of a formal context is minimal in size among all bases of a formal context, and

that it can be computed effectively. Having this in mind, we further observe that if we con-

sider the induced formal context KI := KI ,MI
, then the set L := t A Ñ A2 | A Ď MI u

is a base of KI , and that

B2 =
l

L := t
l

A Ď
l

A2 | (A Ñ A2) P L u.

Recall that
d

A2 ” (
d

A)II by Corollary 4.2.11.

We can generalize this observation as follows: if L Ď Th(KI ) is a base of KI which

only contains implications of the form U Ñ U2, then the set
d
L defined as

l
L := t

l
U Ď (

l
U)II | (U Ñ U2) P L u
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is a base of KI . Note that then
d
L is always a subset of B2, but

d
L may be much smaller

than B2, for example if L is irredundant or even minimal.

However, there is a redundancy in L which cannot be removed this way: if C, D P MI

such that C is subsumed by D, then the implication tC u Ñ tD u will always be true in

KI . But this means that this implication has to be contained implicitly or explicitly in any

base of KI . On the other hand, the resulting GCI C Ď D is trivial, and thus dispensable.

We can alleviate this situation by making use of bases with background knowledge. The

background knowledge we are interested in would be

SI := t tC u Ñ tD u | C, D P MI , C Ď D u. (4.8)

A base of KI with background knowledge SI now does not have to contain the information

about the implications in SI anymore, and may thus may be smaller than a base without

this background knowledge.

4.3.7 Theorem (Theorem 5.12 of [41]) Let I = (∆I , ¨I ) be a finite interpretation, and let L
be a base of KI with background knowledge SI . Assume that L only contains implications of the
form U Ñ U2 for some U Ď MI . Then

d
L is a finite base of I .

We can extend this connection between bases of KI and bases of I even more: if L is the

canonical base of KI with background knowledge SI , then
d
L is a minimal base of I .

4.3.8 Theorem (Theorem 5.18 of [41]) Let I = (∆I , ¨I ) be a finite interpretation, and define

B :=
l
t A Ñ A2 | (A Ñ A2) P Can(KI ,SI ) u.

Then B is a minimal base of I .

So far, all bases we have obtained were ELK
gfp-bases, i. e. the GCIs contained in these bases

where allowed to contain proper ELK
gfp concept descriptions. From a logical point of view

this is not a problem. However, ELK
gfp concept descriptions are inherently harder to read,

since they allow for “local recursion” within concept descriptions. This may be undesired,

as those concept descriptions may have to be inspected by domain experts for their validity,

and those experts may not necessarily be experts in logic as well.

On the other hand, ELK concept descriptions are much easier to read, and thus obtaining

ELK bases instead of ELK
gfp bases may be much more desirable. For this, Baader and Distel

discuss a way to obtain such ELK bases from arbitrary ELK
gfp bases by unravelling.

The crucial observation towards obtaining ELK bases from ELK
gfp bases is that given a

finite interpretation I and a concept description C it is true for d P N0 “large enough” that

CI = CI
d . Recall that Cd denotes the unravelling of C up to depth d.

4.3.9 Lemma (Lemma 5.5 of [41]) Let I = (∆I , ¨I ) be a finite interpretation, and let C =
(A, T ) be an ELgfp concept description. Then for d = |ND(T )| ¨ |∆I |+ 1 it is true that CI =
CI

d .
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Secondly, unravelling up to depth d respects the structure of ELK concept descriptions, as

formulated in the following lemma.

4.3.10 Lemma (Lemma 5.19 of [41]) Let C, D be two ELgfp concept descriptions. Then

i. (Dr.C)d ” Dr.Cd´1,

ii. (C[D)d ” Cd [Dd.

To now unravel an ELK
gfp base B of I the idea is to just unravel every GCI (C Ď D) P B

“deep enough”, i. e. replacing these GCIs by Cd Ď Dd, where d is chosen as in Lemma 4.3.9.

This, however, may not be enough, as we may not be able anymore to entail GCIs of the

form (XI )d Ď XI for X Ď ∆
I from the base thus obtained. To remedy this, some extra

GCIs need to be added.

4.3.11 Theorem (Theorem 5.21 of [41]) Let I be a finite interpretation and let B be a finite
ELK

gfp base of I . Then

Bu := tCd Ď (CII )d | (C Ď D) P B u Y t (XI )d Ď (XI )d+1 | X Ď ∆
I , X ‰ Hu

is a finite ELK base of I , where d P N0 is defined as in Lemma 4.3.9.

We shall only give some intuition why this theorem is correct, as we shall discuss its proof

when we generalize it to bases of confident GCIs in Section 5.2.6. An important observation

is that the set

X := t (XI )d Ď (XI )d+1 | X Ď ∆
I , X ‰ Hu

satisfies for all X Ď ∆
I

i. X |ù ((XI )k Ď (XI )k+1) for all k P N0, k ě d, and

ii. X |ù ((XI )d Ď XI ).

The first property can be shown by induction over k, and for the second property we observe

that if J is a finite interpretation such that J |ù X , then by the first property

((XI )d)
J Ď ((XI )d+1)

J Ď ((XI )d+2)
J Ď . . .

Since J is finite, for k large enough it is true that ((XI )k)
J = ((XI )k+1)

J and thus

((XI )k)
J = (XI )J .

Thus, J |ù ((XI )d Ď XI ) and therefore X |ù ((XI )d Ď XI ), because ELK has the finite

model property.

But then if (C Ď D) P B, then Bu |ù ((CII )d Ď CII ) by the argument just shown, and

Bu |ù (Cd Ď (CII )d), because this GCI is contained in Bu. Thus

Bu |ù (C Ď Cd Ď (CII )d Ď CII ),

and Lemma 4.3.1 yields Bu |ù (C Ď D). Thus, Bd entails all GCIs in B, and since B is

complete for I , Bu is complete for I as well.
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Axiomatizing General Concept Inclusions

with High Confidence

The results obtained by Baader and Distel about computing finite bases of finite interpreta-

tions are not only interesting from a theoretical point of view. Although we have skipped

most of the details, all the relevant results are effective in the sense that the obtained bases

can in principle be computed by computers. Thus, these results may also be interesting for

practical applications.

A possible application of the results of Baader and Distel is to compute bases from Linked
Open Data [24], a format for representing data as used by the semantic web [22, 43, 59]. This

data format consists of RDF triples, and can thus be thought of as an edge-labeled graph.

As such, it is very similar to interpretations, and thus we can use the results by Baader and

Distel here.

As a first contribution of this thesis we have implemented the major results on computing

finite bases as described previously, and applied them to a particular data set of the Linked
Open Data Cloud, namely to a subset of the DBpedia data set [25]. In Section 5.1 we describe

this experiment in detail and show what Distel’s results yield when applied to this data set.

This experiment has also been discussed previously [28, 33].

One conclusion from this experiment is that the results by Baader and Distel are very

sensitive to errors in the data. This is actually not surprising: bases of finite interpretations

only contain general concept inclusions which are valid in the data, and if there is as little

as a single counterexample to a given general concept inclusion in the data, it will not be

contained in any base.

If those counterexamples are erroneous, however, then this can cause problems. Not

only that otherwise valid general concept inclusions are not obtained by Distel’s approach

anymore. Sporadic erroneous counterexamples may also cause GCIs found during the

computation of bases to be rather complicated, because those GCIs have to avoid those

erroneous counterexamples using complicated concept descriptions.

To remedy or at least to alleviate this effect of erroneous counterexamples we shall
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consider an extension of Baader and Distel’s results. This extension tries to find bases of

GCIs which are not necessarily valid in the given interpretation, but instead enjoy a high
confidence therein. The notion of confidence is borrowed from data-mining [1], more precisely

from the theory of association rules, and allows to measure how much an association rule is

allowed to ignore counterexamples. We shall transfer the notion of confidence to general

concept inclusions, and shall then try to find bases for those GCIs with high confidence.
For this we shall make use of results obtained by Luxenburger from his work on partial

implications [68, 69], and extensions thereof [97]. Partial implications can be thought of as

implications considered together with their confidence in some particular formal context.

We shall discuss in Section 5.2.2 how these results allow us to obtain bases of all implications

which have high confidence in some given formal context.

In Section 5.2.3 then we show how these ideas can be simulated in ELK
gfp to find bases

for GCIs with high confidence. Moreover, we shall show in Section 5.2.4 how bases of

implications with high confidence yield bases of GCIs with high confidence. We shall also

discuss a way to complete sets of GCIs, i. e. how to obtain a set of valid GCIs that makes

a given set of GCIs complete. This result is quite similar to Theorem 4.3.7, and we shall

discuss it in Section 5.2.5. Finally, we shall see how to obtain ELK bases from ELK
gfp bases for

GCIs with high confidence, using the technique of unravelling ELK
gfp concept descriptions

as discussed in Section 3.4.

The results thus obtained are again all effective, and we shall discuss some experiments in

Section 5.3 that use the same data-set as the one used in Section 5.1. This allows us to directly

compare the approaches of computing bases of valid GCIs on the one hand, and bases of

GCIs with high confidence on the other. Moreover, we shall also discuss shortcomings of

the approach of considering GCIs with high confidence, which will eventually lead us to

considering extensions of the attribute exploration algorithm. These will be discussed in

Chapter 6 and Chapter 7.

5.1. Computing Bases from DBpedia

We want to evaluate the practicability of the results of Baader and Distel by applying them

to linked data extracted from the Linked Open Data Cloud. In other words, given some

linked data, we want to extract a complete set of general concept inclusions that is valid

within this data set. The goal of this experiment is to see in how far Baader and Distel’s

approach is practical in learning terminological knowledge about some domain, that is

represented by linked data.

Of course, before we can do so we first have to discuss how we can obtain an interpretation

from a given linked data set, and one which sufficiently reflects the logical structure of the

initial data set.

Recall that a finite interpretation I = (∆I , ¨I ) over NC and NR consists of a set ∆
I and

a mapping ¨I that maps every A P NC to a set AI Ď ∆
I , and every r P NR to a set of pairs
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rI Ď ∆
I ˆ ∆

I . We have also already seen some examples of depicting interpretations as

graphs, more precisely as directed edge- and vertex-labeled graphs. Indeed, interpretations are

essentially nothing else than those graphs, where the set of vertex labels is NC and the set

of edge labels is NR.

Linked data is quite similar to labeled graphs. More precisely, linked data is just an

edge-labeled graph, represented by so-called RDF-Triples (where RDF stands for Resource
Description Framework). Every triple consists of a subject, a predicate, and an object (in that

order), each of them being an uniform resource identifier (URI). The idea is that RDF-Triples

encode the information that the subject is connected to the object by means of the predicate.

Two examples of RDF-Triples, taken from the DBpedia data set [25], are1

<http://dbpedia.org/resource/Aristotle>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Philosopher> .

<http://dbpedia.org/resource/Aristotle>

<http://dbpedia.org/ontology/influenced>

<http://dbpedia.org/resource/Western_philosophy> .

Intuitively, these triples encode the facts that Aristotle is (was) a philosopher and that Aristotle
influenced Western Philosophy.

Since RDF-Triples constitute edge-labeled graphs, we can take them as they are and regard

them as interpretations over NC = H and NR, where NR is just the set of all predicates

which appear in RDF-Triples in the data set. This approach would work, but it would only

yield GCIs where no concept names are present. Such terminological knowledge may not

be very interesting.

To alleviate this problem we make use of the special RDF predicate

http://www.w3.org/1999/02/22-rdf-syntax-ns#type (5.1)

which expresses that a subject is an instance of a certain class.2 If we consider triples with

this predicates not as edges in the linked graph, but instead as the information that the

subject is an instance of the object, then we indeed consider linked data as a vertex- and

edge-labeled graph with vertex labels NC and edge-labels NR, where NC is in general not

empty.

This view on linked data now allows us to consider it as an interpretation over some sets

NC and NR, and to apply Baader and Distel’s results to such data sets. For our experiments,

we have chosen a subset of the DBpedia data set as of March 2010 (Version 3.5)3. The linked

data contained in the DBpedia data set has been extracted automatically from Wikipedia

1Indeed, these are serializations of RDF-Triples, in this case in the so-called N-Triples format
2http://www.w3.org/1999/02/22-rdf-syntax-ns
3http://wiki.dbpedia.org/Downloads35?v=pb8

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://wiki.dbpedia.org/Downloads35?v=pb8
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Figure 5.1.: Wikipedia Article about Abraham Lincoln with Infobox on its Right

Infoboxes, which mean to represent facts about the topic of the current page in a compact

way. An example of such an Infobox is shown in Figure 5.1.

The subset of the DBpedia data set we use for our experiments arises by restricting our

attention to the relation

http://dbpedia.org/ontology/child.

From this subset, we constructed an interpretation IDBpedia = (∆IDBpedia , ¨IDBpedia). To make

the considerations easier to read, we shall drop the prefix http://dbpedia.org/ontology

in the following, and just write child instead of http://dbpedia.org/ontology/child, for

example.

To construct IDBpedia we first compute all triples Tchild from the DBpedia data set whose

predicate is child. The subjects and objects of these triples are collected into ∆
IDBpedia . We

then define

childIDBpedia := t (s, o) P ∆
IDBpedia ˆ ∆

IDBpedia | (s, child, o) P Tchild u.

Examples for triples contained in Tchild are

<Abraham_Lincoln> <child> <Robert_Todd_Lincoln> .

<Abraham_Lincoln> <child> <Edward_Baker_Lincoln> .

Therefore,

(Abraham_Lincoln,Robert_Todd_Lincoln) P childIDBpedia ,

(Abraham_Lincoln,Edward_Baker_Lincoln) P childIDBpedia .

Then we consider all triples Ttype whose predicate is the special type predicate of Equa-

tion (5.1) and whose subject is contained in ∆
IDBpedia . The objects of those triples are collected
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into a set NC, i. e. they constitute the concept names of IDBpedia.4 Then, for an A P NC, we

define AIDBpedia to be the set of all subjects that appear in a triple in Ttype, i. e.

AIDBpedia := t s P ∆
IDBpedia | (s, t, A) P Ttype u

where t stands for the special RDF type predicate of Equation (5.1). Example triples from

Ttype concerning Abraham_Lincoln are

<Abraham_Lincoln>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<Person> .

<Abraham_Lincoln>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<OfficeHolder> .

and therefore

Abraham_Lincoln P PersonIDBpedia ,

Abraham_Lincoln P OfficeHolderIDBpedia .

The interpretation IDBpedia then contains 5624 elements and 60 concept names, i. e. |NC| =
60. By construction, there is only one role name in IDBpedia, namely child. To compute

now bases of IDBpedia means to extract all knowledge about the child-relation present in

DBpedia and expressible in ELK. Note that elements from DBpedia are only present in

IDBpedia if they have children, or are children of someone else. Moreover, as DBpedia

extracts its information from Wikipedia, all elements in IDBpedia correspond to articles in

Wikipedia; in particular, if such elements correspond to persons, then those persons have

to be “sufficiently famous” in the sense that they deserve a Wikipedia article. Therefore,

IDBpedia represent DBpedia’s knowledge about famous persons and their famous children.

We have to note, however, that the child-relation in DBpedia contains some false infor-

mation, mostly due to the way this information is extracted from Wikipedia Infoboxes.

More precisely, our interpretation IDBpedia not only contains elements which correspond to

humans, but also contains elements which are instances of Work, Organisation or Populated-

Place, among others. However, those artifacts are comparably rare, and it is still reasonable

to use IDBpedia for our experiments.

We have implemented the algorithms devised by Baader and Distel to compute bases

of finite interpretations5 on top of conexp-clj6, a general purpose tool for formal concept

4We omit http://www.w3.org/2002/07/owl#Thing in NC , as it does not introduce any meaningful informa-

tion.
5http://github.com/exot/EL-exploration
6http://github.com/exot/conexp-clj

http://github.com/exot/EL-exploration
http://github.com/exot/conexp-clj
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analysis. When computing a minimal base of IDBpedia as described in Theorem 4.3.8, we

obtain a base BIDBpedia
containing 1252 general concept inclusions. In the following we

want to examine the GCIs contained in this base, describe some observations we made,

and discuss the usefulness of these GCIs. Of course, we cannot do this formally, and shall

therefore only argue intuitively.

Firstly, some of the GCIs contained in BIDBpedia
constitute knowledge about the relation-

ships among the concept names occurring in IDBpedia only, for example

Politician Ď Person

MemberOfParliament Ď Person[ Politician

Criminal[ Politician Ď K

This knowledge can indeed be useful to learn the hierarchy of concept names (taxonomy) of

IDBpedia. On the other hand, this does not yet show whether computing bases of IDBpedia is

useful, as the GCIs shown above could have easily been obtained by methods from formal

concept analysis alone.

The last GCI states that there are no elements in IDBpedia that are both criminal and

politicians. GCIs of this form are called disjointness constraints, and they can be useful in

applications. The disjointness constraints mentioned above contain only concept names.

However, the approach by Baader and Distel enables us to find more disjointness constraints

than just those between concept names. For example, BIDBpedia
contains the GCI

Philosopher[ Dchild.J Ď K

expressing that philosophers don’t have children (or at least not children famous enough

to occur in Wikipedia). Indeed, since BIDBpedia
is complete for IDBpedia, all disjointness

constraints valid in IDBpedia can either be found in this base or are entailed by it. Such

information can be of practical relevance.

There are other GCIs contained in BIDBpedia
which are not disjointness constraints or only

express knowledge about concept names. Two of them for which we could argue that they

can be useful are

Dchild.Person Ď Person,

FictionalCharacter[ Dchild.Person Ď Dchild.FictionalCharacter

where the second GCI can be seen as a certain kind of ELK approximation of the fact that

fictional characters can only have fictional characters as their children. These GCIs can

indeed be seen as useful terminological knowledge for the domain represented by IDBpedia.

Those GCIs, where one could say that they represent meaningful knowledge, are quite

rare in BIDBpedia
. On the other hand, BIDBpedia

contains many GCIs whose usefulness is

highly doubtful, either because they combine otherwise unrelated concepts, or they are too

specific.
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An example for the first case is

Person[ Dchild.Book Ď FictionalCharacter

which does not really represent any meaningful knowledge. On the other hand, this

GCI indicates that DBpedia finds books as children only on Wikipedia pages on fictional

characters. Thus, such GCIs may help to find errors in the way DBpedia extracts information,

but are not helpful as knowledge themselves. Similar examples are

Dchild.Newspaper[ Person Ď Writer,

Dchild.MilitaryUnit Ď Judge,

Dchild.Settlement[ Politician Ď Congressman.

GCIs that can be considered as being too specific are the most common case among all

GCIs in BIDBpedia
, examples of them being

Dchild.Ambassador[OfficeHolder

Ď Dchild.(Ambassador[ Dchild.Person)[

Dchild.(OfficeHolder[ Dchild.Congressman[ Dchild.Actor[ DchildOfficeHolder).

Indeed, this GCI only applies to the individual Joseph_P._Kennedy%2C_Sr., and thus it

states information only about this very individual and its children. We can handle such

situations in principle by using model exploration, which allows for expert interaction in a

similar way as attribute exploration does: if during model exploration the expert would

encounter such a GCI as shown above, she would reject it as being too specific, and would

provide counterexamples for it. We shall discuss this algorithm in more detail in Chapter 7.

Another approach to eliminating those over-specific GCIs could be to demand that the

extracted GCIs apply to at least a certain number of different individuals. See Chapter 8 for

more details on this.

Finally, among the GCIs contained in BIDBpedia
there exist some which convey the impres-

sion of being redundant, like

Dchild.Dchild.J Ď Dchild.(Person[ Dchild.J),

because it should be quite clear from the construction of IDBpedia that only persons can

have children, i. e. the following GCI

Dchild.J Ď Person (5.2)

should hold in IDBpedia. The reason for that is that only Wikipedia articles of human beings

should contain a child-entry within their Infobox. Thus, even with all the errors in IDBpedia

concerning non-persons that we have discussed before, the GCI in Equation (5.2) should

hold in IDBpedia.
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However, this is not the case, since there are four counterexamples to this GCI in IDBpedia,

i. e. elements x P ∆
IDBpedia satisfying x P (Dchild.J)IDBpediazPersonIDBpedia . These are7

Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

However, these elements represent human beings, so they should actually be instances

of Person. In other words, these counterexamples are all erroneous counterexamples, but

since they are present in IDBpedia, the approach developed by Baader and Distel will not

ignore them. This not only inhibits finding the GCI Dchild.J Ď Person, but also causes

incomprehensible GCIs to be found, which are special cases of this GCI but somehow try

to “circumvent” the erroneous counterexamples. An example for this is

Person[ Dchild.(Person[ Dchild.(Person[ Dchild.(Person[

Dchild.Dchild.(Person[ Dchild.J))))

Ď Dchild.(Person[ Dchild.(Person[ Dchild.(Person[ Dchild.(Person[

Dchild.Dchild.Person)))).

5.2. GCIs with High Confidence in Finite Interpretations

It would certainly increase the applicability of Baader and Distel’s approach if we could

ignore erroneous counterexamples in our data, as then we could extract simpler and more

general GCIs from this data. However, we cannot expect to have an automatic procedure

which achieves this goal, i. e. we cannot expect an algorithm that automatically ignores

erroneous counterexamples. The reason for that is that the algorithm would need to know

how to distinguish errors in the current domain of interest, and for this the algorithm

would need to possess knowledge about this domain, which however we are just about to

learn.

On the other hand, we can assume is our initially given interpretation I contains only

few errors, as otherwise learning GCIs from it would be futile. Based on this assumption

we can approach the problem of erroneous counterexamples as follows: in the case that

I contains much more positive examples for a GCI C Ď D than negative ones, we assume

that the negative counterexamples are “probably erroneous.” Here, a positive example for

C Ď D would be an element x P ∆
I satisfying x P CI X DI , and a negative example for

C Ď D would be an element y P ∆
I such that y P CIzDI . We can consider a GCI to be

“almost valid” in I if the number of positive examples is much higher than the number of

negative ones. The approach to ignore erroneous counterexamples would then consider

these “almost valid” GCIs in addition to the valid ones, and try to find finite bases for both

of them.

7Coincidentally, all these are artists from Hong Kong.
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This actually works quite well for our example interpretation IDBpedia, as Dchild.J Ď Person

has much more positive than negative examples: there are 2551 elements x P ∆
IDBpedia

to which Dchild.J Ď Person applies, i. e. they satisfy x P (Dchild.J)IDBpedia , but only 4

of those (the ones mentioned above) fail to also satisfy x P PersonIDBpedia . Therefore,

Dchild.J Ď Person has 2547 positive examples, but only 4 negative ones. By our approach,

we can consider these negative examples as errors and ignore them. Thus, Dchild.J Ď Person

would be extracted from IDBpedia.

Of course, this approach is highly heuristic: if valid counterexamples for a GCI C Ď D
are just rare in I , then the above sketched approach would treat them as errors, which is

incorrect. On the other hand, it may be much more desirable to extract GCIs which are

wrong in some application domain, than to miss GCIs which are correct, as long as not too

many wrong GCIs are being extracted. This is because identifying wrong GCIs can be

considered much easier than finding correct GCIs that are just invalidated by errors in the

data.

It is the purpose of this section to give a formalization of the notion of a GCI to be

“almost valid” in some finite interpretation. We shall base this formalization on the notion

of confidence as it is used in data-mining [1]. Our goal is then to find finite bases of all GCIs

which enjoy a high confidence in the initially given interpretation.

5.2.1. Confidence of GCIs and Confident Bases

We argued intuitively that the number of positive examples should be “much higher” than

the number of negative examples. To formalize this notion, we define the confidence of

C Ď D in I as follows.

5.2.1 Definition (Confidence of GCIs) Let I = (∆I , ¨I ) be a finite interpretation over NC

and NR, and let C, D P ELK
gfp(NC, NR). Then the confidence of C Ď D in I , written as

confI (C Ď D), is defined as

confI (C Ď D) =

#

1 CI = H
|(C[D)I |

|CI |
otherwise.

♦

Note that (C[D)I is just the number of positive examples for C Ď D in I , and that |CI | is

just the number of all elements to which C Ď D applies, i. e. the number of all positive and

negative examples. Therefore, confI (C Ď D) measures the amount of positive examples

against the number of all elements to which C Ď D applies: the higher the confidence

of C Ď D in I , the more the number of positive examples is higher than the number of

negative ones.

5.2.2 Example Recall that Dchild.J Ď Person has 2547 positive and 4 negative examples in

IDBpedia, thus

confIDBpedia
(Dchild.J Ď Person) =

2547

2551
« 0.998. ♦
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To use the confidence of GCIs in finite interpretations to formalize the notion of being

“almost true” we need to choose a threshold above which we can say that the number of

positive examples is “much higher” than the number of negative ones.

5.2.3 Definition (Confidence-Based Theory of Finite Interpretations) Let I be a finite in-

terpretation over NC and NR, and let c P [0, 1]. Then the confidence-based theory Thc(I) of

I with threshold c is defined as

Thc(I) := tC Ď D | C, D P ELK
gfp(NC, NR), confI (C Ď D) ě c u.

We say that GCIs in Thc(I) have high confidence (with respect to the threshold c). Sometimes,

we may call the elements of Thc(I) just confident GCIs. ♦

Note that in general the set Thc(I) is not closed under entailment.

Note that C Ď D has confidence 1 in I if and only if C Ď D holds in I . Therefore,

Th(I) Ď Thc(I), and thus the set Thc(I) is also infinite in general (i. e. when NR ‰ H).

Thus, again we want to find finite bases, this time of the set Thc(I). Recall that a set B of

general concept inclusions is a base of Thc(I) if it is sound and complete for Thc(I), i. e. if

all GCIs in B are entailed by Thc(I) and vice versa.

Notice, however, that since Thc(I) is not closed under entailment it may happen that

B Ę Thc(I). On the other hand, it may be desirable to have bases B of Thc(I) where the

GCIs contained in this base have high confidence as well, i. e. they satisfy B Ď Thc(I). We

shall call such bases confident bases of Thc(I).

5.2.2. Luxenburger’s Base

Before we consider finite bases and finite confident bases of Thc(I), let us first consider the

analogous problem in formal concept analysis, which is to find small bases of implications
with high confidence in a given formal context. The relevant results of this discussion mainly

go back to results by Luxenburger on partial implications [68, 69], and extensions thereof [97].

We shall first discuss these results, however not in their original form, but instead in a way

suitable for our considerations.

We have already defined the notion of confidence of a GCI in some given finite interpre-

tation. The analogous notion in formal concept analysis is the confidence of an implication

in a formal context.

5.2.4 Definition (Confidence of Implications) Let K = (G, M, I) be a finite formal con-

text, and let (A Ñ B) P Imp(M). Then the confidence of A Ñ B in K is defined as

confK(A Ñ B) :=

#

1 A1 = H
|(AYB)1|

|A1| otherwise.
♦

We can now consider an implication to have high confidence in a formal context if and only

if it is above a certain threshold c P [0, 1].
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5.2.5 Definition (Confidence-Based Theory of Finite Formal Contexts) Let K = (G, M, I)
be a finite formal context, and let c P [0, 1]. The confidence-based theory of K with threshold c
is defined as

Thc(K) := t (A Ñ B) P Imp(M) | confK(A Ñ B) ě c u.

An implication (A Ñ B) P Imp(M) is said to have high confidence in K if and only if

(A Ñ B) P Thc(K). Sometimes, those implications are also called confident implications.♦

We now want to find small bases of Thc(K) for finite formal contexts K = (G, M, I) and

c P [0, 1]. Of course, the term “small” is rather subjective here, but recall that the main

purpose of this discussion is to obtain a finite base of Thc(K) which, when transferred

to the side of description logics, stays finite. The main idea in that direction is that, if an

interpretation I is finite, then it only has finitely many model-based most-specific concept

descriptions (up to equivalence). Since model-based most-specific concept descriptions are

in a one-to-one correspondence to the intents of the induced context KI of I , finding a

base of Thc(K) which only contains intents of K is likely suitable for our purpose.

To compute such a base of Thc(K) we first observe that, as in the case of GCIs, an

implication (A Ñ B) holds in K if and only if its confidence in K is 1. Therefore, Th(K) Ď
Thc(K) is true for all c P [0, 1]. Furthermore, we already know how to compute bases of

Th(K). Thus, if L is a base of Th(K), to find a base of Thc(K) it is enough to compute

bases of Thc(K) with background knowledge L.

The first crucial observation now is the well-known fact that

confK(A Ñ B) = confK(A2 Ñ B2)

is always true for (A Ñ B) P Imp(M), because A3 = A1 and

(AY B)1 = A1 X B1

= A3 X B3

= (A2 Y B2)1.

But then t A2 Ñ B2 u |ù (A Ñ B), so it is enough to consider only implications where

both premise and conclusion are intents of K. The following lemma makes use of this

observation.

5.2.6 Lemma Let K = (G, M, I) be a formal context, let c P [0, 1] and let L be a base of K.
Then the set

Conf(K, c) := t A2 Ñ B2 | A Ď B Ď M, 1 ą confK(A2 Ñ B2) ě c u

is a confident base of Thc(K) with background knowledge L.
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Proof We first observe that for A, B Ď M it is true that

t A2 Ñ (AY B)2 u |ù (A2 Ñ B2),

because B2 Ď (AY B)2. Then if (X Ñ Y) P Thc(K), then

L |ù (X Ñ X2),

and thus

LY tX2 Ñ (XYY)2 u |ù (X Ñ Y).

Furthermore,

confK(X2 Ñ (XYY)2) = confK(X Ñ Y) ě c,

therefore (X2 Ñ (XYY)2) P Conf(K, c). Thus

LYConf(K, c) |ù (X Ñ Y)

and therefore Conf(K, c) is a base of Thc(K) with background knowledge L. ˝

The set Conf(K, c) can be further reduced by the following, well-known observation.

5.2.7 Lemma Let K = (G, M, I) be a finite formal context, and let A Ď B Ď C Ď M. Then

confK(A Ñ C) = confK(A Ñ B) ¨ confK(B Ñ C). (5.3)

Proof If A1 = H, then B1 = C1 = H, and both sides of the equation are 1. If A1 ‰ H but

B1 = H, then C1 = H and both sides of the equation are 0. In both cases, equality holds.

Now let A1 ‰ H ‰ B1. Then we can easily compute

confK(A Ñ C) =
|(AY C)1|

|A1|

=
|(AY B)1|

|A1|
¨
|(AY C)1|

|(AY B)1|

and since A Ď B Ď C it is true that AY B = B and AY C = C = BY C, thus we can

continue

confK(A Ñ C) =
|(AY B)1|

|A1|
¨
|(BY C)1|

|B1|

= confK(A Ñ B) ¨ confK(B Ñ C)

and the claim is proven. ˝
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A simple consequence of this lemma is that if A2 Ĺ B2 Ĺ C2 and (A2 Ñ C2) P Conf(K, c),
then (A2 Ñ B2), (B2 Ñ C2) P Conf(K, c) and since

t A2 Ñ B2, B2 Ñ C2 u |ù (A2 Ñ C2)

the implication A2 Ñ C2 is dispensable in Conf(K, c), and can thus be removed without

any harm.

5.2.8 Theorem Let K = (G, M, I) be a finite formal context, and let c P [0, 1]. Let L be a base
of K. Then

Lux(K, c) := t (A2 Ñ C2) | A Ď C Ď M, 1 ą confK(A2 Ñ C2) ě c,

EB Ď M : A2 Ĺ B2 Ĺ C2 u

is a confident base of Thc(K) with background knowledge L.

The proof of this theorem is inspired by a similar proof from [97].

Proof Let (A2 Ñ C2) P Conf(K, c). Then it is enough to show that

Lux(K, c) |ù (A2 Ñ C2).

Because (A2 Ñ C2) P Conf(K, c) it is true that A2 Ĺ C2. Since K is finite, the lattice of all

intents of K is finite, as well. Therefore, there exists a chain of intents

B0 = A2 Ĺ B1 Ĺ B2 Ĺ ¨ ¨ ¨ Ĺ Bn´1 Ĺ Bn = C2

such that for all i P t 0, . . . , n´ 1 u there is no intent D satisfying Bi Ĺ D Ĺ Bi+1. Then, by

induction, Lemma 5.2.7 yields

confK(A2 Ñ C2) =
n´1
ź

i=0

confK(Bi Ñ Bi+1).

Since confK(Bi Ñ Bi+1) P [0, 1], this yields

confK(Bi Ñ Bi+1) ě confK(A2 Ñ C2) ě c

and therefore (Bi Ñ Bi+1) P Lux(K, c) for i P t 0, . . . , n´ 1 u. Thus,

Lux(K, c) |ù (A2 Ñ C2)

as required. ˝
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Clearly we can weaken the prerequisites of this theorem as follows: instead of considering

the whole set Lux(K, c), a subset B Ď Lux(K, c) that is complete for Lux(K, c) is just

sufficient. Moreover, it is not necessary to consider only bases L of K. Instead, it is sufficient

to take a set L Ď Th(K) such that LY B is complete for K.

5.2.9 Corollary Let K = (G, M, I) be a finite formal context, and let c P [0, 1]. If B Ď Thc(K)
is complete for Lux(K, c), and if L Ď Th(K) satisfies that LY B is complete for Th(K), then
B is a confident base of Thc(K) with background knowledge L.

5.2.3. A Luxenburger-Style Base of all GCIs with High Confidence

We can now use the results about confident bases of implications with high confidence to

obtain confident bases of GCIs with high confidence. For this, we simply adapt the results

of the previous section and prove them again in the setting of description logics. Notice

that because of this, the following section is very similar to the previous one.

We start with the observation that the confidence of GCIs does not change if we switch

to model-based most-specific concept descriptions.

5.2.10 Lemma Let I = (∆I , ¨I ) be a finite interpretation over NC and NR, and let C and D be
ELK

gfp concept descriptions over NC and NR. Then

confI (C Ď D) = confI (C
II Ď DII ).

Proof The idea is the same as in the case of confidence of implications, just with a different

notation.

Since CI = CIII , we have that CI = H if and only if CIII = H. In this case, both

sides of the equation are 1 and equality holds.

Let CI ‰ H. Then CIII ‰ H, and we can compute

confI (C Ď D) =
|(C[D)I |

|CI |

=
|CI XDI |

|CI |

=
|CIII XDIII |

|CIII |

= confI (C
II Ď DII )

as required. ˝

From this fact we can now derive the analog of Lemma 5.2.7.
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5.2.11 Theorem Let I = (∆I , ¨I ) be a finite interpretation over NC and NR, and let B be a finite
base of I . Let c P [0, 1] and define

Conf(I , c) := tXI Ď YI | Y Ď X Ď ∆
I , 1 ą confI (XI Ď YI ) ě c u.

Then the set Conf(I , c)Y B is a finite confident base of Thc(I).

In the definition of Conf(I , c) we consider of course all GCIs only up to equivalence: if

(XI Ď YI ), (X
I

Ď Y
I
) P Conf(I , c) are such that XI ” X

I
, YI ” Y

I
, we only keep one

of these GCIs in Conf(I , c), and discard the other one.

Proof Clearly, Conf(I , c) Y B Ď Thc(I). Furthermore, since ∆
I is finite, Conf(I , c) is

finite as well. Thus, it remains to show that Conf(I , c)Y B is complete for Thc(I).
Let (C Ď D) P Thc(I). If C Ď D is valid in I , then it is entailed by B, and nothing

remains to be shown.

Therefore, let C Ď D be not valid in I . Then observe that C Ď D is entailed by C Ď C[D.

Furthermore, B entails C Ď CII , and thus

confI (C Ď D) = confI (C Ď C[D) = confI (C
II Ď (C[D)II )

by Lemma 5.2.10, and since (C Ď D) P Thc(I) we obtain

(CII Ď (C[D)II ) P Conf(I , c)

by choosing X = CI and Y = (C[D)I . But then

Conf(I , c)Y B |ù (C Ď CII ), (CII Ď (C[D)II )

and since (C[D)II Ď DII Ď D, it follows that

Conf(I , c)Y B |ù (C Ď D)

as required. ˝

It is also possible to establish the analog to Lemma 5.2.7.

5.2.12 Lemma Let I = (∆I , ¨I ) be a finite interpretation, and let Z Ď Y Ď X. Then

confI (XI Ď ZI ) = confI (XI Ď YI ) ¨ confI (Y
I Ď ZI ).

Proof If XII = H, then because of Z Ď Y Ď X we obtain ZII Ď YII Ď XII and thus

ZII = YII = H. In this case, both sides of the equation are 1.

If XII ‰ H but YII = H, then ZII = H and both sides of the equation are 0. In both

cases, equality holds.
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Let XII ‰ H ‰ YII . As in the case of Lemma 5.2.7 we can compute

confI (XI Ď ZI ) =
|(XI [ ZI )I |

|XII |

=
|(XI [YI )I |

|XII |
¨
|(XI [ ZI )I |

|(XI [YI )I |

=
|(XI [YI )I |

|XII |
¨
|(YI [ ZI )I |

|YII |

= confI (XI Ď YI ) ¨ confI (Y
I Ď ZI )

because ZI Ď YI Ď XI . ˝

5.2.13 Theorem Let I = (∆I , ¨I ) be a finite interpretation, and let c P [0, 1]. Let B be a base of
I . Define

Lux(I , c) := tXI Ď YI | Y Ď X Ď ∆
I ,

1 ą confI (XI Ď YI ) ě c, EZ Ď ∆
I : YI Ĺ ZI Ĺ XI u.

Then Lux(I , c)Y B is a finite confident base of Thc(I).

Proof The proof is again analogous to the one of the corresponding Theorem 5.2.8. To show

the claim it is sufficient to just show that all GCIs in Conf(I , c) are entailed by Lux(I , c).
To this end, let (XI Ď YI ) P Conf(I , c). Then Y Ď X Ď ∆

I , i. e. YI Ď XI . Since ∆
I is

finite, there exist sets ∆
I Ě Z0 Ě Z1 Ě ¨ ¨ ¨ Ě Zn satisfying

YI = ZI
n Ĺ ZI

n´1 Ĺ ¨ ¨ ¨ Ĺ ZI
1 Ĺ ZI

0 = XI

such that there do not exist sets W Ď ∆
I with

ZI
i Ĺ WI Ĺ ZI

i´1 (5.4)

for any i P t 1, . . . , n u. Then by Lemma 5.2.12 it is true that

confI (XI Ď YI ) =
n´1
ź

i=0

confI (ZI
i Ď ZI

i+1).

Since the confidence is always an element of [0, 1], we obtain from this equality that

confI (ZI
i Ď ZI

i+1) ě confI (XI Ď YI ) ě c

and because of Equation (5.4) we obtain (ZI
i Ď ZI

i+1) P Lux(I , c) for all i P t 0, . . . , n´ 1 u.
Since tZI

i Ď ZI
i+1 | i P t 0, . . . , n´ 1 u u entails XI Ď YI we obtain

Lux(I , c) |ù (XI Ď YI )

as required. ˝
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And finally, the analog of Corollary 5.2.9 of course holds as well.

5.2.14 Corollary Let I = (∆I , ¨I ) be a finite interpretation, and let c P [0, 1]. If B Ď Thc(I)
is complete for Lux(K, c), and if L Ď Th(I) is such that B Y L is complete for Th(I), then
B YL is a confident base of Thc(I).

To compute the sets Conf(I , c) and Lux(I , c) we can just compute all model-based most-

specific concept descriptions, and compute for each two XI , YI , Y Ď X Ď ∆
I whether

confI (XI Ď YI ) ě c.

However, we can transfer the computation of these sets into a computation which can solely

be done in the induced formal context KI . This may be desirable because the computations

in KI may be easier to conduct, since we only have to work with subsets of MI , and not

with complex concept descriptions.

The actual transformation is quite simple: it is true that

Conf(I , c) =
l

Conf(KI , c)

Lux(I , c) =
l

Lux(KI , c)
(5.5)

where the equality is meant up to equivalence, i. e. every GCI in the set on the left-hand

side is equivalent to one in the right-hand side, and vice versa.

Establishing these equations is also not difficult. We start with a simple connection

between the confidence of GCIs in I and the confidence of implications in KI .

5.2.15 Proposition Let I = (∆I , ¨I ) be a finite interpretation, and let X, Y Ď ∆
I . Then

confI (XI Ď YI ) = confKI
(X1 Ñ Y1).

Proof By Proposition 4.2.10 it is true that XII = X2. Thus, if XII = H, then X2 = H and

confI (XI Ď YI ) = 1 = confKI
(X1 Ñ Y1).

If XII ‰ H, then X2 ‰ H and we can compute

confI (XI Ď YI ) =
|(XI [YI )I |

|XII |

=
|XII XYII |

|XII |

=
|X2 XY2|

|X2|

=
|(X1 YY1)1|

|X2|

= confKI
(X1 Ñ Y1). ˝

This already allows us to establish the first of Equation (5.5).
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5.2.16 Corollary Let I be a finite interpretation, and let c P [0, 1]. Then

Conf(I , c) =
l

Conf(KI , c)

up to equivalence.

Proof Let (XI Ď YI ) P Conf(I , c). Then Y Ď X Ď ∆
I and 1 ą confI (XI Ď YI ) ě c.

Thus, by Proposition 5.2.15, 1 ą confKI
(X1 Ñ Y1) ě c. Since X1 = X3, Y1 = Y3 and

X1 Ď Y1 we obtain that (X1 Ñ Y1) P Conf(KI , c). By Proposition 4.2.9,
d

X1 ” XI andd
Y1 ” YI , thus (XI Ď YI ) P

d
Conf(KI , c) up to equivalence.

Now let (
d

A2 Ď
d

B2) P
d

Conf(KI , c). Then A Ď B Ď MI and 1 ą confKI
(A2 Ñ

B2) ě c. Define X := A1 and Y := B1. Then 1 ą confKI
(X1 Ñ Y1) ě c, and thus

1 ą confI (XI Ď YI ) ě c. Furthermore, Y Ď X, since A Ď B implies Y = B1 Ď A1 = X.

Again by Proposition 4.2.9 we have
d

A2 =
d

X1 ” XI and
d

B2 =
d

Y1 ” YI , and thus

(XI Ď YI ) P Conf(I , c) as required.

Let A, A Ď MI . Then
l

A2 ”
l

A
2
ùñ (

l
A2)I = (

l
A

2
)I

ùñ (A1)II = (A
1
)II

ùñ A3 = A
3

ùñ A2 = A
2
,

using Proposition 4.2.9 and Proposition 4.2.10. Therefore, no two GCIs in
d

Conf(KI , c)
are equivalent, and the claim follows. ˝

To show the second equation of Equation (5.5) we proceed with another technical result.

5.2.17 Proposition Let I = (∆I , ¨I ) be a finite interpretation, and let X, Y Ď ∆
I . Then

i. XI Ĺ YI implies prMI
(XI ) Ľ prMI

(YI ), and

ii. X1 Ľ Y1 implies
d

X1 Ĺ
d

Y1

where the derivations are done in KI .

Proof We already know from Corollary 4.2.11 that XI Ĺ YI implies prMI
(XI ) Ě prMI

(YI )
and that X1 Ľ Y1 implies

d
X1 Ď

d
Y1.

Let us assume that prMI
(XI ) = prMI

(YI ). Then by Lemma 4.3.5 and Lemma 4.2.7

XI ”
l

prMI
(XI ) =

l
prMI

(YI ) ” YI .

Conversely, if
d

X1 ”
d

Y1, then using Corollary 4.2.11 we obtain

X1 = prMI
(
l

X1) = prMI
(
l

Y1) = Y1

as required. ˝
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5.2.18 Corollary Let I be a finite interpretation, and let c P [0, 1]. Then

Lux(I , c) =
l

Lux(KI , c)

up to equivalence.

Proof Using the same argumentation as in the proof of Corollary 5.2.16 it suffices to show

that for Y Ď Z Ď X Ď ∆
I it is true that

YI ı ZI ı XI ðñ Y1 ‰ Z1 ‰ X1. (5.6)

Suppose first that YI ı ZI ı XI . Then YI Ĺ ZI Ĺ XI , and from Proposition 5.2.17 we

obtain prMI
(YI ) Ľ prMI

(ZI ) Ľ prMI
(XI ). Proposition 4.2.8 then yields Y1 Ľ Z1 Ľ X1

as required.

Conversely, suppose Y1 Ľ Z1 Ľ X1. Then using Proposition 5.2.17 we obtain
d

Y1 Ĺd
Z1 Ĺ

d
X1, i. e. YI Ĺ ZI Ĺ XI by Proposition 4.2.9. ˝

5.2.4. Bases of Confident GCIs from Bases of Confident Implications

In the previous section we have obtained some first finite confident bases of Thc(I) by

mimicking the argumentation of Luxenburger’s results in the setting of description logics. In

this section we want to take another approach to obtain finite bases and finite confident bases,

by directly transferring such bases of implications with high confidence to corresponding

bases of GCIs with high confidence. More precisely, given a finite interpretation I and

c P [0, 1], we consider the induced formal context KI of I , compute a base L of Thc(KI )
and transfer this base into a base for Thc(K) by defining

l
L := t

l
X Ď

l
Y | (X Ñ Y) P L u.

This approach has a particular advantage over computing finite bases of Thc(I) the way we

described it in the previous section. This advantage lies in the very close connection between

formal concept analysis and data-mining, which extends to the level that formal concept

analysis can be used as a framework for the logical foundations of the theory of association
rules [105]. Although we have not introduced association rules formally here, they can be

thought of as a generalization of implications with high confidence. Association rules are a

well investigated topic in data-mining, and there is extensive literature on algorithms that

mine association rules from data, see [58] for an overview over some of them. Because of

the close connection of formal concept analysis to data-mining, these algorithms can be

adapted quite easily to the problem of finding bases of implications with high confidence.

If we now establish another link between bases of implications with high confidence on

the one hand, and bases of GCIs with high confidence on the other, then we can exploit the

algorithms from data-mining for extracting association rules from data to find bases for

GCIs with high confidence in finite interpretations. This link may be of particular interest
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since these algorithms are usually tailored towards practical applications. We shall not go

into details here, see Chapter 8.

The results presented in this section have been published before in [32].

We start with an observation that connects entailment between implications and entail-

ment between GCIs.

5.2.19 Lemma Let M be a set of concept descriptions over NC and NR, and let L Ď Imp(M).
Then for all (X Ñ Y) P Imp(M) it is true that if L |ù (X Ñ Y), then

d
L |ù (

d
X Ď

d
Y).

Proof Let J = (∆J , ¨J ) be an interpretation over NC and NR such that J |ù
d
L. Recall

that we denote with KJ ,M the induced context of J and M.

We shall first show that KJ ,M |ù L. To this end, let (E Ñ F) P L. Then (
d

E)J Ď

(
d

F)J , because J |ù
d
L. By Proposition 4.2.9, (

d
E)J = E1 and (

d
F)J = F1, where

the derivations are done in KJ ,M. Thus E1 Ď F1, and KJ ,M |ù (E Ñ F). Hence, KJ ,M |ù
L.

Since L |ù (X Ñ Y), KJ ,M |ù (X Ñ Y), i. e. X1 Ď Y1. By the same argument as before

we obtain (
d

X)J Ď (
d

Y)J , and therefore J |ù (
d

X Ď
d

Y).
Since J was chosen arbitrarily, we obtain

d
L |ù (

d
X Ď

d
Y) as required. ˝

Note that we cannot expect the converse direction to hold in general as well. The reason

for this is that entailment between implications does not “look inside” the attributes in the

implications, but entailment between GCIs is allowed to consider the structure of concept

descriptions. This is illustrated by the following example.

5.2.20 Example Let NC := tA,B u, NR := t r u and M := tA,B, Dr.A, Dr.B u. Consider

L := t tA u Ñ tB u u,

X := t Dr.A u,

Y := t Dr.B u.

Then clearly L |ù (X Ñ Y), but
d
L |ù (

d
X Ď

d
Y). ♦

The following proposition connects the notions of confidence of implications in finite formal

contexts and confidence of GCIs in finite interpretations.

5.2.21 Proposition Let I be a finite interpretation over NC and NR, let M be a set of concept
descriptions over NC and NR and let (X Ñ Y) P Imp(M). Then

confKI
(X Ñ Y) = confI (

l
X Ď

l
Y).

Proof In the following, all derivations are done in KI .

By Proposition 4.2.9 we know that X1 = (
d

X)I , thus if X1 = H, then

confKI
(X Ñ Y) = 1 = confI (

l
X Ď

l
Y).
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Now suppose that X1 ‰ H. Then (
d

X)I ‰ H, and we can compute

confKI
(X Ñ Y) =

|(XYY)1|

|X1|

=
|X1 XY1|

|X1|

=
|(

d
X)I X (

d
Y)I |

|(
d

X)I |

=
|(

d
X[

d
Y)I |

|(
d

X)I |

= confI (
l

X Ď
l

Y)

again using Proposition 4.2.9. ˝

The main result of this section is now the following theorem.

5.2.22 Theorem Let I be a finite interpretation over NC and NR, and let c P [0, 1]. Let L be a
confident base of Thc(KI ). Then

d
L is a confident base of Thc(I).

Proof We need to show that
d
L Ď Thc(I) and that

d
L is complete for Thc(I).

To see that
d
L is sound for Thc(I) let (

d
X Ď

d
Y) P

d
L. Then (X Ñ Y) P L, and

thus

confI (
l

X Ď
l

Y) = confKI
(X Ñ Y) ě c

by Proposition 5.2.21. Thus (
d

X Ď
d

Y) P Thc(I) and hence
d
L Ď Thc(I) as required.

For the completeness of
d
L for Thc(I) we show two subclaims, namely

i.
d
L |ù (

d
U Ď (

d
U)II ) for all U Ď MI , and

ii.
d
L |ù (XI Ď YI ) for each (XI Ď YI ) P Conf(I , c).

The first claim then ensures that
d
L entails all GCIs from the set

t
l

U Ď (
l

U)II | U Ď MI u

which by Theorem 4.3.6 is a base of I . Showing (i) entails that
d
L is complete for Th(I).

The claim (ii) states that
d
L is complete for Conf(I , c). Using Corollary 5.2.14 and the

fact that
d
L is sound for Thc(I) then shows that

d
L is a confident base of Thc(I).

We show (i). Let U Ď MI . Since L is a confident base for Thc(KI ) it is complete for KI .

Thus

L |ù (U Ñ U2).
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Then Lemma 5.2.19 yields

l
L |ù (

l
U Ď

l
(U2)),

and by Lemma 4.2.13 we obtain

l
L |ù (

l
U Ď (

l
U)II )

as required.

For (ii) let (XI Ď YI ) P Conf(I , c). Then X, Y Ď ∆
I and 1 ą confI (XI Ď YI ) ě

c. Since XI and YI are expressible in terms of MI by Lemma 4.3.5, we obtain from

Proposition 4.2.9 that XI ”
d

X1 and YI ”
d

Y1. Thus,

l
L |ù (XI Ď YI ) ðñ

l
L |ù (

l
X1 Ď

l
Y1). (5.7)

By Proposition 5.2.21

confKI
(X1 Ñ Y1) = confI (

l
X1 Ď

l
Y1) ě c.

Since L is a base of Thc(KI ) we obtain L |ù (X1 Ñ Y1), thus by Lemma 5.2.19

l
L |ù (

l
X1 Ď

l
Y1)

which together with Equation (5.7) yields the claim. ˝

Since Thc(KI ) is a confident base of itself, the theorem immediately yields that
d

Thc(KI )
is a finite confident base of Thc(I).

Theorem 5.2.22 has the drawback that
d
L still contains trivial knowledge in the sense

that whenever C, D P MI are such that C Ď D, then L has to entail tC u Ñ tD u,
although the corresponding GCI C Ď D is trivially true. We can remedy this redundancy

by considering an appropriate background knowledge. Recall that in Equation (4.8) we

defined the set

SI := t tC u Ñ tD u | C, D P MI , C Ď D u.

5.2.23 Corollary Let I be a finite interpretation over NC and NR, let c P [0, 1] and L Ď
Thc(KI ) be such that L Y SI is a confident base of Thc(KI ). Then

d
L is a finite confident

base of Thc(I).

Proof By Theorem 5.2.22 the set
d
LY

d
SI is a finite confident base of Thc(I). Sinced

SI is valid in every interpretation, it is entailed by
d
L, and thus the set

d
L is already

complete for Thc(I). Thus,
d
L is a finite confident base of Thc(I). ˝
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1

A

2

A

3

B

4

A,B

5

A,B

6

A,B

7

A,B

Figure 5.2.: Example interpretation I for Example 5.2.24.

We can use Lemma 5.2.19 to further remove redundancies from bases obtained as in

Theorem 5.2.22. More precisely, if L is a base of Thc(KI ), and if (X Ñ Y) P L is such that

LztX Ñ Y u |ù (X Ñ Y),

then Lemma 5.2.19 yields that

l
Lzt

l
X Ď

l
Y u |ù (

l
X Ď

l
Y).

Thus, redundancies in bases of Thc(KI ) always result in redundancies in bases of Thc(I).
Thus, removing these redundancies is a good starting point to obtain smaller bases of

Thc(I).
In particular, we can consider irredundant bases L of Thc(KI ). However, even if L is

irredundant,
d
L may contain redundancies, as the following example shows.

5.2.24 Example We are looking for a finite interpretation I , a c P [0, 1], and a non-redundant

set L such that LY SI is a confident base of Thc(KI ), but
d
L contains redundancies.

For this we employ a similar idea as we did in Example 5.2.20. More precisely, we want

to construct an interpretation I such that for two concept names A,B P NC and r P NR,

both implications tA u Ñ tB u and t Dr.A u Ñ t Dr.(A[B) u have confidence at least c in

KI . Then by Proposition 5.2.21, A Ď B and Dr.A Ď Dr.(A[B) have confidence at least c
in I . If we can include these two implications in an irredundant base L of Thc(KI ) with

background knowledge SI , then
d
L contains redundancies, as desired.

So let NC := tA,B u and NR := t r u. Consider the interpretation I as given in Figure 5.2,

where every edge is labeled with r. Then

confI (A Ď B) =
2

3
confI (Dr.A Ď Dr.B) = 1,
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KI K A B Dr
.(A
[
Dr

.(A
[
B
))

Dr
.(B
[
Dr

.(A
[
B
))

Dr
.(A
[
B
)

Dr
.Dr

.(A
[
B
)

Dr.A Dr.B Dr.J
1 ˆ ˆ ˆ ˆ ˆ
2 ˆ ˆ ˆ ˆ ˆ
3 ˆ ˆ ˆ ˆ ˆ
4 ˆ ˆ
5 ˆ ˆ
6 ˆ ˆ
7 ˆ ˆ

Figure 5.3.: Induced formal context of I as in Example 5.2.24.

thus following our argumentation from above we can choose c = 1
2 , say. Then we want to

find a irredundant set L of implications such that LY SI is a confident base of Thc(KI )
and L contains both tA u Ñ tB u and t Dr.A u Ñ t Dr.(A[B) u. We find

MI = tK,A,B, Dr.(A[ Dr.(A[B)),

Dr.(B[ Dr.(A[B)), Dr.(A[B), Dr.Dr.(A[B), Dr.A, Dr.B, Dr.Ju,

and KI is as shown in Figure 5.3.

By Theorem 5.2.11 the set Can(KI )Y Conf(I , c) is a finite confident base of Thc(KI ).
An irredundant subset L of this base which is still a base of Thc(KI ) with background

knowledge SI is given by the following list of implications:

HÑ tA u,

tA u Ñ tB u,

t Dr.A u Ñ t Dr.(A[B) u,

t Dr.B u Ñ t Dr.(A[B) u,

t Dr.Ju Ñ tDr.(A[B) u,

tA,B, Dr.(A[B) u Ñ tK u,

t Dr.Dr.(A[B) u Ñ tK u,

t Dr.(B[ Dr.(A[B)) u Ñ tK u,

t Dr.(A[ Dr.(A[B)) u Ñ tK u.

Then L is irredundant and by Corollary 5.2.23 the set
d
L is a base of Thc(I). But

d
L

contains the GCIs A Ď B and Dr.A Ď Dr.(A[B), and thus
d
L is not irredundant. ♦
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Instead of only considering irredundant bases of Thc(KI ), we can go even a step further and

consider minimal bases of Thc(KI ). For this we recall that ifL is a base of Thc(KI ), then the

canonical base Can(L) of L is a minimal base of Thc(KI ).
8 Since Cn(L) = Cn(Can(L)),

we know that Can(L) is also a base of Thc(KI ). In particular, if L = Thc(KI ) we can

consider Can(Thc(KI )) as a minimal base of Thc(KI ).
9 In this case we also obtain thatd

Can(Thc(KI )) is a finite base of Thc(I), as the following argumentation shows.

5.2.25 Corollary Let I be a finite interpretation, let c P [0, 1] and let K Ď Imp(MI ) be a base
of Thc(KI ). Then

d
K is a base of Thc(I).

Proof By Theorem 5.2.22 we know that
d

Thc(KI ) is a finite confident base of Thc(I).
As K is a base of Thc(KI ) we can infer from Lemma 5.2.19 that

d
K is also complete ford

Thc(KI ). We thus obtain that
d
K is complete for Thc(I).

On the other hand, since K is a base of Thc(KI ), it is also true that Thc(KI ) is a base of

K. But then all implications in K are entailed by Thc(KI ), and Lemma 5.2.19 yields that

all GCIs in
d
K are entailed by

d
Thc(KI ) Ď Thc(I). Thus,

d
K is also sound for Thc(I),

and in sum we obtain that
d
K is a finite base of Thc(I). ˝

The approach of considering the canonical base of Thc(K) has the potential drawback,

however, that we cannot guarantee anymore that the base itself is a confident base, i. e. it

can happen that
d

Can(Thc(K)) Ď Thc(I) does not hold.

5.2.5. Completing Sets of GCIs

The bases we have obtained in Corollary 5.2.14 consisted of two parts, namely a complete

subset B of Lux(I , c) and a set L of valid GCIs such that LY B is complete for I . In this

section we are going to show that we can, given the set B, compute the set L in such a way

that LY B is complete for Th(I).
The results of this section have previously been published in [28].

The idea we want to exploit for this is borrowed from formal concept analysis: if B is

a set of implications, then we can find a set L of implications valid in a formal context K

such that L has minimal cardinality. More precisely, the set

L := Can(K,B)

has this property by Theorem 2.4.7. What we want to do in this section is to lift this result

to the level of general concept inclusions.

8Note that we have only introduced the canonical base for formal contexts, but by Proposition 2.3.7 we

can represent every set L as a base of a formal context KL. Then Can(L) := Can(KL). Note that this

definition is independent from the context KL we use.
9Also note that Can(L) = Can(Thc(KI )) for all bases L of Thc(KI ).
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To this end, we need to transform sets of general concept inclusions into sets of impli-

cations. For this, we make use of projections prM as introduced in Section 4.2.2. More

precisely, if M is a set of concept descriptions and B is a set of GCIs, then we define

prM(B) := tprM(C)Ñ prM(D) | (C Ď D) P B u.

For M = MI , we can take the set prMI
(B) and compute Can(KI , prMI

(B)). It is then

true that

B Y t
l

U Ď (
l

U)II | (U Ñ U2) P Can(KI , prMI
(B)) u

is complete for I , provided that the concept descriptions in B are all expressible in terms

of MI .

This result already appeared in [41, Theorem 5.12], however only for the case that B is

empty. We shall generalize this result to also cover the case that B contains arbitrary GCIs.

The proof of this generalization is similar to the one of [41, Theorem 5.12].

5.2.26 Theorem Let I be a finite interpretation over NC and NR, and let B be a set of GCIs over
NC and NR, where all concept descriptions appearing in B are expressible in terms of MI . Let
L Ď Th(KI ) such that

i. LY prMI
(B) is complete for KI , and

ii. L only contains implications of the form A Ñ A2 with A Ď MI .

Then
d
LY B is complete for I .

Proof We show that for each U Ď MI it is true that

l
LY B |ù (

l
U Ď (

l
U)II ).

If we establish this fact, then Theorem 4.3.6 immediately yields that
d
LY B is complete

for Th(I).
Let J be a finite interpretation such that J |ù (

d
L Y B). Let us write ¨1I for the

derivation operators in KI ,MI
, and ¨1J for the derivation operators in KJ ,MI

. We shall then

show the following claims

i. KJ ,MI
|ù (LY prMI

(B)),

ii. KJ ,MI
|ù (U Ñ U1I 1I ) for all U Ď MI , and finally

iii. J |ù (
d

U Ď (
d

U)II ) for all U Ď MI .
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To show the first claim we start with some preparations. Let U Ď MI . Then by Proposi-

tion 4.2.9 it is true that

(
l

U)J = U1J . (5.8)

Furthermore, the concept description (
d

U)II is expressible in terms of MI by Lemma 4.3.5.

From this we can infer with Lemma 4.2.7 that

(
l

U)II ”
l

prMI
((

l
U)II ).

Then Corollary 4.2.11 yields

((
l

U)II )J = (
l

prMI
((

l
U)II ))J

= (prMI
((

l
U)II ))1J

= U1I 1I 1J .

(5.9)

Now let (U Ñ U1I 1I ) P L. Then J |ù (
d

U Ď (
d

U)II ), and therefore

(
l

U)J Ď ((
l

U)II )J ,

and Equation (5.8) and Equation (5.9) yield

U1J Ď U1I 1I 1J ,

i. e. KJ ,MI
|ù (U Ñ U1I 1I ). Thus, KJ ,MI

|ù L.

Let (C Ď D) P B. It remains to show that prMI
(C) Ñ prMI

(D) holds in KJ ,MI
. It is

true that J |ù (C Ď D), i. e. CJ Ď DJ . Since both C, D are expressible in terms of MI ,

Lemma 4.2.7 yields

(
l

prMI
(C))J Ď (

l
prMI

(D))J

and thus, using Equation (5.8) again,

prMI
(C)1J Ď prMI

(D)1J ,

i. e. KJ ,MI
|ù (prMI

(C)Ñ prMI
(D)). Thus we have shown that KJ ,MI

|ù B. This proves

the first claim.

Now let U Ď MI . Then KI |ù (U Ñ U1I 1I ). Since LY prMI
(B) is complete for KI , we

obtain

LY prMI
(B) |ù (U Ñ U1I 1I ).
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Since KJ ,MI
|ù LY prMI

(B), it is true that

KJ ,MI
|ù (U Ñ U1I 1I ),

i. e. U1J Ď U1I 1I 1J . Using Equation (5.8) and Equation (5.9) again yields

(
l

U)J Ď ((
l

U)II )J ,

i. e. J |ù (
d

U Ď (
d

U)II ). Since U Ď MI was chosen arbitrarily, we have thus shown

that
d
LY B is complete for I . ˝

We can apply this theorem to our setting of computing finite confident bases as follows. Let

C Ď Lux(I , c) be complete for Lux(I , c). If we compute L := Can(KI , prMI
(B)), then L

is as required by the above theorem, and thus
d
LYB is complete for I . By Corollary 5.2.14

the set
d
LY C is a finite confident base of Thc(I).

Of course, we can also include the implications in SI as background knowledge when

computing L. To see this we observe that the proof of Theorem 5.2.26 still works if we

include SI in the computation of L. Part(i) of the proof would then be extended to also

claim that KJ ,MI
|ù SI , which is true for all induced contexts with attribute set MI .

5.2.27 Corollary Let I be a finite interpretation over NC and NR, and let C Ď Lux(I , c) be
complete for Lux(I , c). Define

L := Can(KI , prMI
(C)Y SI ).

Then
d
LY C is a finite confident base of Thc(I).

For c = 0 we obtain Lux(I , c) = H, and thus we are back in the case of valid GCIs. For

this we know from Theorem 4.3.8 that the set
d
L in the previous corollary is minimal with

respect to being a base of I . A natural question is now to ask whether we can also expect

such a minimality result to be true in the case of GCIs with high confidence, i. e. whetherd
L is minimal with respect to

d
LY B being a finite confident base of Thc(I). The next

example shows that this is not the case.

5.2.28 Example Let NC = tA,B u and NR = t r u and consider the finite interpretation

I = (∆I , ¨I ) as given in Figure 5.4.

If X Ď ∆
I is such that 5 P X, then XI = A. If 5 R X but 1 P X or 4 P X, then XI = A[B.

Otherwise, XI = A[B[ Dr.(A[B). Thus the set of model-based most-specific concept

descriptions of I is (up to equivalence)

tK,A,A[B,A[B[ Dr.(A[B) u

and thus we obtain

MI := tK,A,B, Dr.A, Dr.(A[B), Dr.(A[B[ Dr.(A[B)) u.
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1

A,B

2

A,B

3

A,B

4

A,B

5

A

r

r

Figure 5.4.: Interpretation for Example 5.2.28

K A B Dr.A Dr.(A[B) Dr.(A[B[ Dr.(A[B))

1 ˆ ˆ
2 ˆ ˆ ˆ ˆ
3 ˆ ˆ ˆ ˆ
4 ˆ ˆ
5 ˆ

Figure 5.5.: Induced Context of Figure 5.4

The induced context is shown in Figure 5.5.

Let c = 4
5 . Then Conf(KI , c) = t tA u Ñ tA,B u u, thus

Conf(I , c) = tA Ď A[B u.

Set B := Conf(I , c). Then prMI
(B) = Conf(KI , c). Let

U := t Dr.A,A,B u.

Then U is closed under SI . Furthermore, U is a prMI
(B)-pseudo-intent of KI : H is a

prMI
(B)-pseudo-intent of KI , andH2 = tA u Ď U. The set tA u is an intent of KI , and

the sets tB u and t Dr.A u are not supersets ofH2 = tA u. The set tA,B u is again an intent

of KI , t Dr.A,A u is not closed under prMI
(B) and t Dr.A,B u does not contain A. Thus, the

only prMI
(B)-pseudo-intent of KI contained in U isH, and its closure is again contained

in U. Thus, U is a prMI
(B)-pseudo-intent of KI .

Therefore, (U Ñ U2) P Can(KI , prMI
(B)Y SI ), i. e.

(t Dr.A,A,B u Ñ t Dr.(A[B) u) P Can(KI , prMI
(B)Y SI ).

This yields that

(Dr.A[A[B Ď Dr.(A[B)) P
l

Can(KI , prMI
(B)Y SI ).

But this GCI is entailed by B, so the set
d

Can(KI , prMI
(B)Y SI )YB is not irredundant.

In particular,
d

Can(KI , prMI
(B)Y SI ) is not minimal with respect to the property that

it forms together with B a confident base of Thc(I). ♦
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The main reason why the minimality statement fails is that entailment between GCIs

can happen “behind the quantifier”: if B = tA Ď B u, then B entails Dr.A Ď Dr.B. This

entailment process can usually not be simulated by implications, as they are not allowed to

consider the structure of the attributes in a formal context.

It is possible to find a special case where entailment behind the quantifier cannot happen:

if B is a set of valid GCIs of I , and if C =
d

U for U Ď MI and U ‰ H. In this case, C can

be written as

C =
l

V [
l

(r,Z)PΠ

Dr.ZI

for some V Ď NC and some Π Ď NR ˆP(∆I ). Then one can argue that the concept

descriptions ZI behind the quantifier are already “closed under entailment” with respect

to B, because they are model-based most-specific concept descriptions and all GCIs in B
are valid in I . Thus, if a GCI C Ď D is entailed by B, it must happen on the top-level of

the concept descriptions, and this entailment can then be simulated by implications.

A formal argumentation requires the notions of simulations between EL description

graphs, which have not been introduced in this work. For more details on this we refer to

Lemma 5.16 and the proof of Theorem 5.18 in [41].

5.2.6. Unravelling ELK

gfp Bases into ELK Bases

So far we have only considered finite bases of Thc(I) which may contain proper ELK
gfp

concept descriptions. As we had argued before, those concept descriptions may actually be

hard to read, even for those trained in logics. Therefore, it would be desirable to obtain

bases which contain ELK concept descriptions only, as these are potentially much easier

to understand. To show that this is indeed possible is the purpose of this section. The

argumentation we want to employ is again similar to the one used by [41]; see Section 4.3.

As a first step, as already discussed in Section 4.3, we define an auxiliary set XI that

only contains ELK concept descriptions but “captures” entailment between ELK
gfp concept

descriptions. For this, recall that Lemma 4.3.9 states that for a finite interpretation I and

all ELK
gfp concept descriptions C = (A, T ) it is true that

CI = (Cd)
I ,

where d = |∆I | ¨ |ND(T )|+ 1. Note that the constant d depends on the concept description

C. To emphasize this dependency, we shall write dC instead of just d.

The set XI is now defined as

XI := t (XI )dI Ď (XI )dI+1 | X Ď ∆
I , X ‰ Hu,

where

dI := max
YĎ∆I

dYI .
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Note that XI is a set of valid GCIs of I , because for each X Ď ∆
I , X ‰ H it is true that

((XI )dI )
I = XII = ((XI )dI+1)

I .

As already sketched in Section 4.3 the following claims hold.

5.2.29 Lemma Let I be a finite interpretation. Then for each Y Ď ∆
I

i. XI |ù ((YI )k Ď (YI )k+1) is true for all k ě dI , and

ii. XI |ù ((YI )k Ď YI ) for all k ě dI .

Proof For the first claim we observe that if Y = H, then YI = K and nothing remains to

be shown. Therefore, let Y ‰ H. We shall show the claim by induction over k.

For k = dI the claim is trivial, as ((YI )dI Ď (YI )dI+1) P XI . For the step-case k ą dI
assume that

XI |ù ((ZI )k´1 Ď (ZI )k) (5.10)

is true for all Z Ď ∆
I . Since YI is expressible in terms of MI , and Y ‰ H, there exist

U Ď NC and Π Ď NR ˆP(∆I ) such that

YI ”
l

U [
l

(r,Z)PΠ

Dr.ZI .

From Lemma 4.3.10 we obtain

(YI )k ”
l

U [
l

(r,Z)PΠ

Dr.(ZI )k´1.

By the induction hypothesis (5.10) we obtain

(YI )k Ď
l

U [
l

(r,Z)PΠ

Dr.(ZI )k

” (
l

U [
l

(r,Z)PΠ

Dr.ZI )k+1

” (YI )k+1

again using Lemma 4.3.10. This completes the induction step and the first claim is shown.

Let k ě dI . We now show the second claim, namely

XI |ù ((YI )k Ď YI )
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for Y Ď ∆
I . The case Y = H is again trivial, so let Y ‰ H. Let J be a finite interpretation

such that J |ù XI . Then the first claim yields

((YI )k)
J Ď ((YI )k+1)

J Ď ((YI )k+2)
J Ď . . . (5.11)

From Lemma 4.3.9 we obtain the existence of some ℓ P N0 such that ((YI )ℓ)
J = (YI )J

is true. In particular, ((YI )k+ℓ)
J = (YI )J , therefore ((YI )k)

J Ď (YI )J , and thus J |ù
((YI )k Ď YI ). Since ELK has the finite-model property, we obtain XI |ù ((YI )k Ď YI ) as

required. ˝

Note that Equation (5.11) can be sated more precisely as

((YI )k)
J = ((YI )k+1)

J = ((YI )k+2)
J = . . .

because (YI )k+i+1 Ď (YI )k+i for all i P Ną0.

Now let D be a confident base of Thc(I). We then can partition D = B Y C such that

B Ď Th(I) and C X Th(I) = H, i. e. B contains all valid GCIs of D, and C contains

everything else. Without loss of generality we can assume that B contains only GCIs of the

form E Ď EII . To construct an ELK base out of D we can now proceed as described in the

following theorem.

5.2.30 Theorem Let I be a finite interpretation, let c P [0, 1] and let D = B Y C be a finite
confident base of Thc(I), such that B Ď Th(I), C X Th(I) = H, and B contains only GCIs of
the form E Ď EII . Define

d := max t dI , max t dE | (E Ď F) P D u u,

and

B1 := t Ed Ď (EII )d | (E Ď EII ) P B u Y tCd Ď (CII )d | (C Ď D) P C u,

C 1 := t (CII )d Ď (DII )d | (C Ď D) P C u.

Then the following statements hold:

i. B1 YXI Ď Th(I), C 1 Ď Thc(I) and B1 Y C 1 YXI |ù C .

ii. B1 Y C 1 YXI |ù B.

In particular, B1 Y C 1 YXI is a finite confident ELK base of Thc(I).

Proof Clearly, B1 YXI is a set of valid GCIs. To see that C 1 only contains GCIs with high

confidence, let (C Ď D) P C with |CI | ‰ H. Then

confI (C Ď D) = confI (C
II Ď DII )
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=
|(CII [DII )I |

|CIII |

=
|((CII )d [ (DII )d)

I |
|((CII )d)I |

= confI ((C
II )d Ď (DII )d).

Clearly, if CI = H, then ((CII )d)
I = H and thus

confI (C Ď D) = 1 = confI ((C
II )d Ď (DII )d).

Since C Ď Thc(I), we therefore obtain C 1 Ď Thc(I) as required.

We now show that B1 Y C 1 YXI |ù C . For this let (C Ď D) P C . Then we have

H |ù (C Ď Cd)

B1 |ù (Cd Ď (CII )d)

C 1 |ù ((CII )d Ď (DII )d)

XI |ù ((DII )d Ď DII )

H |ù (DII Ď D)

using Lemma 5.2.29 for the second to last statement. Therefore B1 Y C 1 YXI |ù (C Ď D)
as required.

We consider the second claim, namely that B1 Y C 1 Y XI |ù B. To this end, let (E Ď

EII ) P B. Then

H |ù (E Ď Ed)

B1 |ù (Ed Ď (EII )d)

XI |ù ((EII )d Ď EII )

using Lemma 5.2.29 for the last statement. Therefore,

B1 Y C 1 YXI |ù (E Ď EII )

as required. ˝

A drawback of this construction is that the set XI can be exponentially large in the size of

∆
I , and so can be the ELK base as described above. Therefore, even if the original base D

was small, the described unravelling can transfer it into a much larger base. It is not known

to the author whether this blowup is intrinsic to the task of transferring ELK
gfp bases into

ELK bases, or whether it can be avoided by a different approach.
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5.3. GCIs with High Confidence from DBpedia

We have started this chapter by evaluating the results by Baader and Distel in a practical

scenario. During this evaluation we have found that the presence of errors in the data can

impair the usefulness of this approach, and from this we have motivated our study of GCIs

with high confidence. In this section, we want to apply our findings about finite confident

bases of Thc(I) to the interpretation IDBpedia we used before, and we want to see in how

far the problem of errors in IDBpedia can be alleviated by using GCIs with high confidence.

Let us assume that an ontology engineer wants to use the approach of considering GCIs

with high confidence to extract GCIs from some finite interpretation I . Then what she has

to do is to consider GCIs in Lux(I , c) for a suitable choice of c and to decide whether these

GCIs should be added to the knowledge base or not. To make this a practical approach,

the set Lux(I , c) should not be too large, and the GCIs contained in there should not be

incomprehensible.

We want to examine how this approach performs for our data set IDBpedia. To this end,

we want to conduct several experiments, namely

i. We want to examine the set Lux(IDBpedia, 0.95) in detail, i. e. we want to show how

large this set is and which GCIs are contained in it. Moreover, we shall discuss how

the ontology engineer proceeds in deciding whether the GCIs contained in this set

are true or not.

ii. We want to compare the sizes of the sets Conf(IDBpedia, c) and Lux(IDBpedia, c) to see

in how far we can remove redundancies from Conf(IDBpedia, c) by using Lux(IDBpedia, c)
instead. To this end, we shall compute for all c P t 0.0, 0.01, . . . , 0.99 u the size of the

sets Conf(IDBpedia, c) and Lux(IDBpedia, c) to see how the cardinalities of these sets

depends on the choice of the parameter c.

iii. Finally, we want to consider the size of the canonical base of Thc(KIDBpedia
) for c P

t 0.0, 0.01, . . . , 0.99 u to see how large this set can be. Recall that
d

Can(Thc(KIDBpedia
))

is a finite base of Thc(I), and the number of GCIs in this base can be considered as a

“small” upper limit of how many GCIs are needed to represent Thc(I). Intuitively, if

we decrease the value for c, we would expect that the number of GCIs contained in

the canonical base decreases as well. We shall see how far this is true for IDBpedia.

The experimental results presented in this section have been published previously in

[32].

5.3.1. Computing Confident Bases of Thc(IDBpedia) for c = 0.95

Recall that we had constructed IDBpedia from the DBpedia data set by extracting all indi-

viduals that are in a child-relationship in DBpedia, either as a parent or as a child. Recall

that since Wikipedia (from which DBpedia extracts its data) only contains articles about
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“famous” persons, we can consider IDBpedia as an interpretation that contains all properties

about the child-relations between famous persons. In particular, if an element of IDBpedia

does not have a child-successor in IDBpedia (and this is not an error), then this does not

necessarily mean that the corresponding person does or did not have children – it only

means that the children were not famous enough to deserve their own Wikipedia articles.

In the following we want to examine which GCIs we have to consider in addition to the

base BIDBpedia
of IDBpedia we had computed in Section 5.1, if we want to consider GCIs which

have a confidence in IDBpedia of at least 0.95. Thus, let c = 0.95. We then can compute

Conf(IDBpedia, c) to be

t Dchild.J Ď Person,

Place Ď PopulatedPlace,

Dchild.Dchild.J[ Dchild.OfficeHolder

Ď Dchild.(OfficeHolder[ Dchild.J) u

Note that the actual GCIs computed are much more complex, since all concept descriptions

contained in Conf(IDBpedia, c) actually have to be model-based most-specific concept de-

scriptions. For readability, we have removed parts of the concept descriptions which are

already entailed by the base BIDBpedia
, so that the GCIs thus obtained are still equivalent to

the original ones. Also notice that Lux(IDBpedia, c) = Conf(IDBpedia, c).
The first observation is that Lux(IDBpedia, c) is small compared to the size of BIDBpedia

,

which has 1252 elements. Thus, our potential ontology engineer only has to consider three

more GCIs. Moreover, as we shall see later, accepting some of the above GCIs may even lead

to other GCIs in BIDBpedia
to become dispensable, and thus she does not have to consider

those separately.

Let us now consider these three GCIs in detail. The first one we had already seen in

Section 5.1, and there we had argued that this is actually true, since the 4 counterexamples

contained in IDBpedia were only due to errors.

The GCI Place Ď PopulatedPlace also sounds convincing: note that places appear in

IDBpedia only due to the fact that they are collected from Wikipedia Infoboxes of articles

which contain an entry for children, i. e. which are persons. Since these places occur in

the child-entries of infoboxes, they likely name the places of birth of the corresponding

children, and those places are usually populated. Indeed, the only counterexamples for

Place Ď PopulatedPlace is Greenwich_Village, representing the corresponding district of

Manhattan, New York, which is certainly populated. Thus also this counterexample is

erroneous and we accept the GCI as being true (in the domain represented by IDBpedia).

On the other hand, the last GCI

Dchild.Dchild.J[ Dchild.OfficeHolder Ď Dchild.(OfficeHolder[ Dchild.J)

looks too specific. The only counterexample contained in IDBpedia is the element



118 5. Axiomatizing General Concept Inclusions with High Confidence

Pierre_Samuel_du_Pont_de_Nemours

representing the french government official Pierre Samuel du Pont de Nemours. He had

two sons, namely Victor Marie du Pont and Eleuthère Irénée du Pont. The former became

a french diplomat and is therefore listed as OfficeHolder in IDBpedia. Although he had four

children, none of them were famous enough to receive their own Wikipedia articles. On

the other hand, Eleuthère Irénée du Pont became a famous american industrial (founder of

the DuPont company) and had several famous children which are listed in IDBpedia. Thus,

given our understanding of the child-relation in IDBpedia we can accept this counterexample

as being valid, and we therefore reject this GCI.

We have accepted the GCIs

B := t Dchild.J Ď Person,Place Ď PopulatedPlace u

as being valid although IDBpedia contains counterexamples for them. It would now be

interesting to know what happened if we would include those two GCIs in a computation

of a base of IDBpedia. For this, note that

prMIDBpedia
(B) = t t Dchild.Ju Ñ tPerson u, tPlace u Ñ tPopulatedPlace u u.

If we now compute

L := Can(KIDBpedia
, prMIDBpedia

(B)Y SIDBpedia
)

then we obtain by Theorem 5.2.26 that
d
LY B is complete for

Th(IDBpedia)Y t Dchild.J Ď Person,Place Ď PopulatedPlace u,

and is thus a base of it. The set L now contains 1245 GCIs, and thus
d
LYB contains 1247

GCIs. Comparing this to the 1252 GCIs we can see that some of the GCIs in BIDBpedia
indeed

became dispensable, although it were not that many.

5.3.2. Sizes of Finite Bases of Thc(IDBpedia)

We have seen that Conf(IDBpedia, 0.95) only contains three GCIs. This suggests that the

overhead caused by the approach of considering GCIs with high confidence is rather

negligible. Moreover, we have also seen that we can reduce the size of bases of IDBpedia

if we include GCIs from Conf(IDBpedia, 0.95) as background knowledge, thus effectively

reducing the number of GCIs our ontology engineer has to consider.

In this section we examine these observations on a larger scale. For this we shall in-

vestigate the sizes of the sets Conf(IDBpedia, c) and Lux(IDBpedia, c) for varying values of

c. From this we shall see how the overhead of considering GCIs with high confidence

depends on the choice of the parameter c, and how much we can save by considering

Lux(IDBpedia, c) over Conf(IDBpedia, c).
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Figure 5.6.: Size of Conf(IDBpedia, c) and Lux(IDBpedia, c) for all c P V

The Sizes of Conf(IDBpedia, c) and Lux(IDBpedia, c)

We computed |Conf(IDBpedia, c)| and |Lux(IDBpedia, c)| for all c P t 0.0, 0.01, . . . , 0.99 u.
To achieve this, we use

|Conf(IDBpedia, c)| = |Conf(KIDBpedia
, c)|,

|Lux(IDBpedia, c)| = |Lux(KIDBpedia
, c)|.

and can thus conduct the computations directly in KIDBpedia
. The results of these computa-

tions are shown in Figure 5.6. Note that the y-axis is scaled logarithmically.

From this picture we can see that for high values of c the amount of GCIs which have to be

considered in Conf(IDBpedia, c) and Lux(IDBpedia, c) is negligible. Even for c = 0.86 the set

Conf(IDBpedia, c) contains only 15 GCIs. Of course, this observation is per se only valid for

IDBpedia. Since it originates from real-world data one could assume that the same behavior

of |Conf(IDBpedia, c)| and |Lux(IDBpedia, c)| can be expected for other non-artificial data-

sets.

What we also observe is that for values c ě 0.73, Conf(IDBpedia, c) and Lux(IDBpedia, c)
are actually the same sets, i. e. the optimization provided by Lux(IDBpedia, c) does not take

effect for such values of c. Since one usually considers only large values of c the use of

Lux(IDBpedia, c) over Conf(IDBpedia, c) seems questionable.

The Size of Can(Thc(KI ))

Instead of computing confident bases of Thc(IDBpedia) by independently computing bases

of IDBpedia and conjoining them to Conf(IDBpedia, c) or Lux(IDBpedia, c), we can also utilize
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Theorem 5.2.22. In this theorem, we compute confident bases L of Thc(KIDBpedia
), and

then
d
L is a finite confident base of Thc(IDBpedia). An advantage of this approach is

that bases of Thc(KIDBpedia
) can be smaller then bases B of Th(IDBpedia) together with

Conf(IDBpedia, c), because in the latter case GCIs from B could already be entailed by GCIs

from Conf(IDBpedia, c). Some of these redundancies could already exist on the level of

implications, and those could be removed if one computes bases of Thc(KI ).

In particular, if we compute the canonical base of Thc(KI ), then all those redundancies

are removed. Of course, other dependencies may remain, but the size of the canonical base

of Thc(KI ) may serve as an upper bound on the number of GCIs one needs to represent

Thc(KI ). On the other hand, considering the canonical base of Thc(KI ) may result in

bases which are not confident anymore, i. e. they contain GCIs whose confidence is not

above c.

Let us now see how the size of the canonical base changes for all c P t 0, 0.01, . . . , 0.99 u.
The results are shown in Figure 5.7.

A first observation is that with decreasing values of c, the size of Can(Thc(KIDBpedia
))

seems to decrease as well. This is indeed true, except for the case |Can(Th0.95(KIDBpedia
))| =

1241 and |Can(Th0.94(KIDBpedia
))| = 1242. Thus we can observe that with decreasing c,

the sets Thc(KIDBpedia
) get “simpler” in the sense that fewer implications are necessary to

represent them. If the same is true for bases of Thc(IDBpedia) is not clear, though, as it is

not quite clear how to compute finite bases of sets of GCIs.

Clearly, the farther away c is from 1, the more the set Thc(IDBpedia) departs from

Th(IDBpedia). There are three values for c where this becomes especially apparent: for

c P t 0.18, 0.54, 0.66 u the curve depicted in Figure 5.7 shows a rather steep decline. Indeed,
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these values of c are not arbitrary, since we can associate some special observations with

them:

i. For c ď 0.18 the implicationHÑ MIDBpedia
is entailed by Thc(KIDBpedia

), resulting in

a singleton canonical base.

ii. For 0.18 ă c ď 0.54 the implication t Dchild.Ju Ñ tDchild.Person u is contained in

Thc(KIDBpedia
), eliminating a large number of special cases.

iii. For 0.54 ă c ď 0.66 the implication H Ñ tPerson u is contained in Thc(KIDBpedia
),

also making a number of other GCIs dispensable.

One can observe that the implications found in the last two cases also account for a

rather drastic decline of the size of the canonical base on their own: the canonical base of

Th(KIDBpedia
) contains 1252 elements, but the canonical base of

Th(KIDBpedia
)Y tH Ñ tPerson u u

contains only 1210 implications. If we also add the implication

t Dchild.Ju Ñ tDchild.Person u

then the size of the canonical base drops to 1163.

Notice that this is actually not very surprising: the implications

t Dchild.J Ñ tDchild.Person u u, HÑ tPerson u

can be considered rather general, because they are applicable to a lot of elements in IDBpedia.

Because of this generality they can make a lot of other implications redundant, causing the

size of the canonical base to be reduced noticeably.

Indeed, we could argue that whenever the size of the canonical base of Thc(KIDBpedia
) is

reduced drastically, then it is very likely that a general GCI has been found, in the sense

that the confidence threshold is now so low that it is accepted. To this end recall that we

had already noticed that the size of the canonical base of Thc(KIDBpedia
) can be seen as

some kind of indication how complex this set is: the less implications are contained in the

canonical base, the less implications are necessary to represent Thc(KIDBpedia
) and thus the

simpler this set is, from a logical point of view. Therefore, if we can observe for c1 ą c2 a

steep decline in the size of the canonical base of Thc2(KIDBpedia
) compared to the size of the

canonical base of Thc1
(KIDBpedia

), it is legitimate to assume that then Thc2(KIDBpedia
) contains

new implications which make a lot of implications in the canonical base of Thc1
(KIDBpedia

)
dispensable. Those implications then can considered to be very general, since they need

to account for the entailment, which in Thc1
(KIDBpedia

) has only been achieved by a larger

number of implications.
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Therefore, the way the size of Can(Thc(KI )) depends on the choice of c can indicate

which kinds of GCIs have been accepted with the current confidence threshold c. This

can especially be interesting when looking for general patterns in the interpretation I , or

when it is not yet clear which value for the confidence threshold to choose. On the other

hand, it is also quite obvious that the preceding argumentation is not formal, and that this

approach should be seen as a heuristics.
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Exploration by Confidence

Recall that we have introduced GCIs with high confidence as an approach to extract termi-

nological knowledge from erroneous data. For this approach we have seen in Section 5.3.1

that the thus obtained GCIs require an additional validation step, i. e. an expert has to

verify whether the extracted GCIs, whose confidence in the data I is above a pre-chosen

threshold c P [0, 1], are indeed valid in the domain of interest.

This additional validation step can be very costly, and thus it should be avoided as much

as possible. On the other hand, we have also seen in Section 5.3.1 that as soon as some GCI

has been confirmed, others may be entailed by it, and a manual validation is no longer

necessary. This observation may indeed save a lot of work.

Even more, utilizing this observation may save computation time as well: if during the

computation of bases of Thc(I) an expert already rejects a GCI and confirms that some

counterexamples contained in I are indeed correct, then all GCIs which are falsified by

these counterexamples can also be rejected, irrespective of whether their confidence in I
is above c, or not. It is thus desirable to allow expert interaction already during the time

of the computation of bases of Thc(I), and not only at the end of the computation, as a

separate validation step.

There is also another issue that requires expert interaction, and which has already been

addressed by Distel [41]: the data I may not only contain errors, but it may also be incomplete
in the sense that it lacks certain counterexamples, meaning that some GCIs are valid in I ,

even so they are not valid in the domain of interest. If I contains errors, it may additionally

happen that some invalid GCIs C Ď D are only falsified in I by erroneous counterexamples,

and that correct counterexamples are not present in I . In such a case, the GCI C Ď D would

be accepted (since all counterexamples are erroneous) although it is not valid. Here an

expert could, as soon as C Ď D would be computed as an element of a base, provide correct

counterexamples, inhibiting this GCI from being included in a base. Such counterexamples

would also affect the following computation, as all GCIs invalidated by it would also be

rejected.

The approach followed by Distel to solve this problem is to adapt attribute exploration
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from its original setting of implications and formal contexts to the setting of GCIs and finite

interpretations. Recall that the attribute exploration algorithm, which we had discussed

previously in Section 2.5, solves a problem which is very similar to the one sketched

above: given a finite formal context K, we want to compute a base of the domain which

is represented by K. However, it may be the case that K does not completely represent

the domain we are interested in, i. e. some implications which are not valid in our domain

actually hold in K. Then attribute exploration provides an interactive base computation

procedure which, as soon as an implication is computed, presents it to the expert and asks

for validation. If the expert confirms this implication, then the implication is added to the

base. If the expert does not confirm this implication, she has to provide a counterexample,

which is then included in K. At the end, the attribute exploration algorithm yields a base

of the domain we are interested in, and not only one for the formal context K.

Distel’s generalizations of attribute exploration to the setting of GCIs and finite inter-

pretation are called model exploration and ABox exploration. Their abstract behavior is very

similar to the one of attribute exploration: during the computation of a base of I , GCIs

C Ď D are asked to the expert. If confirmed, they are added to the base. If rejected, the

expert has to provide a counterexample which is being added to I . Upon termination, the

algorithm yields a base of the domain which is represented by the expert.

Model exploration and ABox exploration differ in the way counterexamples are provided.

In model exploration, counterexamples are directly added to the interpretation I , whereas

in ABox exploration the counterexamples are being added to a separate ABox. The latter

variant is much more user-friendly from the point of view of how to specify counterex-

amples, but the resulting exploration algorithm is much more technical and complicated.

Therefore, we shall concentrate in this work on model exploration only.

In the following two chapters we want to generalize model exploration to our setting of

extracting GCIs with high confidence from finite interpretations. More precisely, what we

want to obtain is an algorithm that computes bases of Thc(I), and, as soon as a GCI for the

base is computed, asks the expert for validation. As above, the expert may confirm or reject

this GCI, where in the latter case she has to provide a counterexample. Upon termination,

the algorithm should yield a base of the domain that is represented by the expert, to the

extent in which this domain is contained in Thc(I). We shall make this more precise in

Chapter 7.

The purpose of this chapter is to prepare this generalization of model exploration to

GCIs with high confidence by first discussing the analogous problem in the world of formal

concept analysis. For this, we want to develop an algorithm for exploration by confidence,
which not only asks implications that are valid in the current working context, but may just

have a high confidence in the original data set.

To this end, we shall first consider in Section 6.1.1 classical attribute exploration from

a more abstract point of view. In this consideration, we shall see that we can consider

attribute exploration of a formal context K as an algorithm that “explores” the set Th(K),
in the sense that attribute exploration tries to find out which implications in Th(K) are
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confirmed by an expert and which not. To make this more precise, we shall also introduce

a formalization of the up to now only informally treated notion of an expert.
Based on the observation that attribute exploration is an algorithm to explore Th(K),

we shall introduce in Section 6.1.2 a generalization of attribute exploration that allows

to explore arbitrary sets L of implications. The main idea is that this exploration of sets of
implications works in the same way as attribute exploration, namely by asking implications

from L to the expert to try to find out which of the implications in L are accepted by the

expert and which not. However, the algorithm we are going to present in Section 6.1.2

will not completely achieve this goal, but instead will provide us with an approximative
exploration of L, a notion which we shall make clear then. Intuitively, this means that also

implications which are not elements of L, but of Cn(L), can be asked to the expert, and

thus may appear in the output. Still, we shall see in Section 6.2 that this approximative

exploration is sufficient to allow us to obtain an algorithm for exploration by confidence.

The main idea for this is to use the set L = Thc(K) as the set we want to explore. In

this case we shall also see how the approximative exploration provided by the general

algorithm can be turned into a proper exploration, i. e. we can ensure in the special case of

L = Thc(K) that all implications asked to the expert indeed have high confidence in the

original data set.

The results presented in this section have partially been published previously in [30].

6.1. Exploring Sets of Implications

Let M be a finite set and L Ď Imp(M). In this section we want to discuss how we can

turn attribute exploration into an algorithm for exploring L. To this end, we shall first

give another perspective on the attribute exploration algorithm that we have already met

in Section 2.5. Based upon this, we shall introduce in Section 6.1.2 a generalized attribute
exploration that allows us to explore L. This generalization is however only approximative,

in a sense that we shall make clear then.

6.1.1. An Abstract View on Attribute Exploration

Recall that in attribute exploration as introduced in Section 2.5 we assumed that the domain

of interest can be represented by a formal context Kback, which we call the background
context of the exploration. The goal of attribute exploration is then to find a base of Kback,

without having direct access to Kback. For this we start with a subcontext K = (G, M, I)
of Kback, the working context of the exploration, and a set K Ď Imp(M) of implications

which are valid in Kback, called the set of known implications. Then we successively compute

implications of the form

P Ñ P2
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where P is a K-pseudo intent of K, and in particular is closed under the set of currently

known implications, but is not an intent of the current working context. Those implications

are presented to the expert, who either confirms or rejects them.

We can view this procedure from a more general perspective:1 given the formal context

K, we know that all implications in Imp(M)zTh(K) are not valid in Kback, and thus are

not valid in our domain. On the other hand, all implications in Th(K) could be valid in

Kback, depending on whether counterexamples contained in Kback invalidate implications

being valid in K or not. However, what we are certain of is that all implications in K are
valid in our domain, and thus all implications in Cn(K) are.

Hence, we have the situation that we have three sets of implications, namely the set of all
implications Imp(M), the set Th(K) of possibly valid implications, and the set of certainly
valid implications Cn(K). These sets are related by

Imp(M) Ě Th(K) Ě Cn(K),

since K is supposed to be sound for K. Now the set

Th(K)zCn(K)

can be seen as the set of undecided implications, i. e. the set of those implications which are

possibly valid in Kback, but from which we do not know yet whether they indeed are valid

in Kback or not (since we do not have direct access to Kback). Then attribute exploration

can be viewed as a systematic search through the set Th(K)zCn(K), in the sense that the

crucial feature for attribute exploration to work is to be able to compute implications

(P Ñ P2) P Th(K)zCn(K), (6.1)

provided that Th(K)zCn(K) ‰ H. We shall argue now why this is indeed enough.

Let (P Ñ P2) P Th(K)zCn(K). Then the implication P Ñ P2 is proposed to the expert.

If she accepts P Ñ P2, then we add this implication to K, and we obtain the following

situation:

Imp(M) Ě Th(K) Ě Cn(KY t P Ñ P2 u) Ľ Cn(K).

If the expert rejects P Ñ P2, she has to provide a counterexample, i. e. a set C Ď M such

that P Ď C and P2 Ę C. Denote with K + C the formal context which arises from K by

adding a new object gC to K which has exactly the attributes which are contained in C, i. e.

(gC)
1 := C

where the derivation is done in K + C. Then the situation from above evolves into

Imp(M) Ě Th(K) Ľ Th(K + C) Ě Cn(K).

1This idea is similar to the one of considering the process of attribute exploration as a decreasing sequence of

intervals in the lattice of closure systems over M, see [47, pp. 143–145] for more details.
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If Th(K)zCn(K) = H, then the algorithm terminates. (Note that this indeed has to

happen since the base set M is finite.) When this happens, the situation can be described

as follows2:

Imp(M) Ě Th(K) Ľ Th(K + C1) Ľ ¨ ¨ ¨ Ľ Th(K + C1 + ¨ ¨ ¨+ Cm)

= Cn(KY t P1 Ñ P2
1 , . . . , Pn Ñ P2

n u) Ľ ¨ ¨ ¨ Ľ Cn(K)

where m, n P Ně0, C1, . . . , Cm, P1, . . . , Pn Ď M, and where all derivations are done in

K + C1 + ¨ ¨ ¨+ Cm. It is then true that

Th(K + C1 + ¨ ¨ ¨+ Cm) = Th(Kback) = Cn(KY t P1 Ñ P2
1 , . . . , Pn Ñ P2

n u)

just because

Th(K + C1 + ¨ ¨ ¨+ Ci) Ě Th(Kback) Ě Cn(KY t P1 Ñ P2
1 , . . . , Pj Ñ P2

j u)

for all 1 ď i ď m and 1 ď j ď n. In particular, the set

t P1 Ñ P2
1 , . . . , Pn Ñ P2

n u

is a base of Kback with background knowledge K, as required.

Note that we did not require that the set P from Equation (6.1) is a K-pseudo intent of

K. The only necessary requirement is that P ‰ P2 and that P Ñ P2 does not follow from

K. Both these properties are guaranteed by P being a K-pseudo intent of K, but this is not

necessary.

On the other hand, if we want to compute the canonical base of Kback with background

knowledge K, then P obviously needs to be a K-pseudo intent of K. However, since in

our perception attribute exploration should compute some base of Kback, we can see the

computation of Can(Kback,K) as an optimization, and not as a crucial requirement.

6.1.2. A Generalized Attribute Exploration

The foregone considerations suggest that we can view attribute exploration as an algorithm

that allows us to “explore” the set Th(K)zCn(K) of undecided implications. In this section

we want to generalize this view to the setting where the set of undecided implications has

a more general form.

To make this more precise, let M be a finite set, L Ď Imp(M) and let K Ď Cn(L). As

we have viewed the set Th(K) as the set of possibly valid implications, we can now view

the set L as the set of possibly valid implications. Then the set of undecided implications

takes the form

LzCn(K)

2We read K + C1 + ¨ ¨ ¨ + Cm as (. . . (K + C1) + . . . ) + Cm and nothing else.
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and we want to obtain an algorithm that guides an expert in finding all valid implications

in LzCn(K). More precisely, we want to compute a base of all implications valid in L,

using K as background knowledge. As before, we assume that we do not have direct access

to the background context Kback, the formal context that is represented by the expert.

At first sight, one may be tempted to say that exploring L can be achieved (at least in

theory) by considering the formal context

KL = (tL(X) | X Ď M u, M, Q)

which already appeared in Proposition 2.3.7. This proposition tells us that Th(KL) =
Cn(L), and thus one could propose that for exploring L it would just be sufficient to

explore KL. However, besides the fact that computing KL (or a subcontext of it which still

has Cn(L) as its theory) is far from practical, this approach also does not solve our initial

problem, because in general L = Cn(L) does not hold. This is illustrated by the following

example.

6.1.1 Example Let M = t a, b, c u,K = H,L = t t a u Ñ t b u u and suppose that our

domain can be represented by the formal context

Kback a b c

g ˆ

Then clearly Th(Kback)XL = H, and thus all bases of this set contain trivial implications

(i. e. implications of the form P Ñ P for P Ď M). On the other hand,

(t a, c u Ñ t b u) P Cn(L)X Th(Kback),

and therefore bases of Th(Kback)XCn(L) contain non-trivial implications.

Thus, exploring L and exploring Cn(L), using the aforementioned expert and K as

background knowledge, are different tasks. ♦

Intuitively, an algorithm for exploring L should work as attribute exploration does: if

the implication P Ñ Q is accepted by the expert, then it is added to K. If it is rejected

by the expert, then a counterexample C has to be provided by the expert. In this case,

all implications from L for which C is a counterexample are removed. The algorithm

terminates if LzCn(K) = H (in which case also Cn(L)zCn(K) = H holds).

In what follows, we want to make this idea more precise. To this end, we shall first start

with a formalization of the notion of an expert that we heretofore have used only intuitively.

6.1.2 Definition (Domain Expert) Let M be a set. A domain expert on M is a function

p : Imp(M)Ñ tJuYP(M),

where J R P(M), and which satisfies the following conditions
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i. if (X Ñ Y) P Imp(M) such that p(X Ñ Y) = C ‰ J, then X Ď C and Y Ę C, (p
gives counterexamples for false implications)

ii. if (U Ñ V), (X Ñ Y) P Imp(M) such that p(U Ñ V) = J, p(X Ñ Y) = C ‰ J,

then C is not a counterexample for U Ñ V, i. e. either U Ę C or V Ď C. (counterex-
amples from p do not invalidate confirmed implications)

We say that p confirms (X Ñ Y) P Imp(M) if and only if p(X Ñ Y) = J. Otherwise, we

say that p rejects X Ñ Y and provides C = p(X Ñ Y) as a counterexample. Finally, the theory
Th(p) of p is the set of all implications over M which are confirmed by p. ♦

We have not specified the notion of a domain formally, but instead required that every

domain is representable by a formal context. With our formalization of an expert we can

now show that experts provide an equally good approach to formalize the notion of a

domain as formal contexts do.

6.1.3 Proposition Let K = (G, M, I) be a formal context. For each (A Ñ B) P Imp(M)zTh(K)
let gAÑB P G such that A Ď g1

AÑB and B Ę g1
AÑB. Then the mapping pK : Imp(M) Ñ

tJuYP(M) defined by

pK(X Ñ Y) :=

#

gXÑY (X Ñ Y) R Th(K)

J otherwise

is a domain expert on M, and Th(K) = Th(pK).

Proof Clearly, if (X Ñ Y) R Th(K), then pK(X Ñ Y) = gXÑY is a counterexample for

X Ñ Y. If (X Ñ Y) P Th(K), then for all g P G it is true that either X Ę g1 or Y Ď g1.

Thus, no counterexample provided by pK is a counterexample for X Ñ Y. Therefore,

counterexamples provided by p do not invalidate confirmed implications. The equality

Th(K) = Th(pK) is clear from the definition of pK. ˝

Note that the actual definition of pK depends on the particular choice of the objects gAÑB,

and thus K can give rise to more than one domain expert.

If we have given a domain expert, we can easily construct a formal context from it that

has the same theory.

6.1.4 Proposition Let p be domain expert on a set M. Then the formal context Kp = (G, M, Q),
where

G := t p(X Ñ Y) | (X Ñ Y) P Imp(M)zTh(p) u

satisfies Th(p) = Th(Kp).
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Proof If (A Ñ B) P Th(p), then no counterexample provided by p invalidates A Ñ B.

Since the rows of Kp consist of the counterexamples provided by p, Kp does not contain a

counterexample for A Ñ B and thus (A Ñ B) P Th(Kp).
If p(A Ñ B) R Th(p), then p(A Ñ B) Ď M is a counterexample for A Ñ B and

therefore (A Ñ B) R Th(Kp). ˝

In particular, for every domain expert p on M and every formal context K = (G, M, I) it

is true that

Th(p) = Th(pKp),

Th(K) = Th(KpK
).

In other words, the representation of domains as formal contexts and in terms of domain

experts is, from a logical point of view, interchangeable.

With the formal notion of an expert we can reformulate our goal of exploring sets of

implications.

6.1.5 Definition (Exploring Sets of Implications) Let M be a finite set, p a domain expert

on M, L Ď Imp(M) and K Ď Th(p)XCn(L). Then to explore L with expert p and back-
ground knowledge K means to compute a base of

LX Th(p)

with background knowledge K. ♦

As an approach to find an algorithm that allows us to explore L, we want to suitably adapt

the classical attribute exploration algorithm. To this end, we shall first consider a slight

reformulation of the attribute exploration algorithm as given in Algorithm 3, and then try

to adapt it to our setting of exploring L.

Recall that in Algorithm 3 we have used two special functions, namely for computing the

lectically first closed set that is not an intent of a given formal context, and for computing

the lectically next closed set of a given closure operator that is not an intent of the current

working context. However, a closer inspection of the way these functions are used reveals

that attribute exploration can be reformulated using only a function that computes for a

given set A Ď M the lectically smallest set lectically greater or equal to A that is not an

intent of the current working context but is closed under a given closure operator. An

implementation of this function, called next-closed-non-closed, is given in Algorithm 4.

This function suffices to implement attribute exploration, and the corresponding listing is

also shown in Algorithm 4.

We want to use this reformulation as a starting point to discuss an algorithm for exploring

L. To this end, recall how we have considered attribute exploration in Section 6.1.1 as an
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Algorithm 4 (Another Implementation of Attribute Exploration)

0 define next-closed-non-closed(M, ďM, A, K Ď Imp(M), L Ď Imp(M))
1 ;; computes the lectically smallest element greater or equal to A that is closed
2 ;; under K and not closed under L
3

4 if A = nil then

5 return nil

6 else if A = K(A) and A ‰ L(A) then

7 return A
8 else

9 return next-closed-non-closed(M, ďM, next-closure(M, ďM, A, K), K, L)

10 end

11 end

12

13 define explore-attributes(M, ďM, p, K = (G, M, I), K Ď Th(p))
14 i := 0, Ki := K, Ki := K, Pi :=H
15

16 forever do

17 Pi+1 := next-closed-non-closed(M, ďM, Pi, Ki, (.)
2
Ki

)

18 if Pi+1 = nil exit

19

20 if p(Pi+1 Ñ (Pi+1)
2
Ki
) = J then

21 Ki+1 := Ki Y t Pi+1 Ñ (Pi+1)
2
Ki
u

22 Ki+1 := Ki

23 else

24 Ki+1 := Ki

25 C := p(Pi+1 Ñ (Pi+1)
2
Ki
)

26 Ki+1 := Ki + C
27 end

28

29 i := i + 1
30 end

31

32 return Ki

33 end
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algorithm for exploring Th(K). Then in iteration i of the attribute exploration algorithm,

the set of possibly valid implications is given by Th(Ki), where

Ki = K + C1 + ¨ ¨ ¨+ Cki

for some ki P N, C1, . . . , Cki
Ď M. The idea is now that in Algorithm 4 we replace every

reference to Th(Ki) by a reference to a set Li of implications. For this we observe that if a

counterexample C Ď M is given by the expert in iteration i, then

Th(Ki+1) = Th(Ki + C)

= t (A Ñ B) P Th(Ki) | A Ę C or B Ď C u.

Correspondingly, we obtain

Li+1 = t (A Ñ B) P Li | A Ę C or B Ď C u.

The result of this simple replacement is shown in Algorithm 5.

However, Algorithm 5 does not exactly yield an algorithm to explore L, using p as

domain expert and K as background knowledge. Indeed, it may be the case that the set

Kn of implications returned by Algorithm 5 contains too many implications, i. e. it may

happen that

Cn(Kn)zCn(Th(p)XL) ‰ H.

This is illustrated by the following example3

6.1.6 Example Let M = t a, b, c u, a ďM b ďM c, and define an expert p on M by Th(p) =
Cn(t c u Ñ t a, b u). Define furthermore L = t t a u Ñ t b u, t c u Ñ t a u u. Then the

implication

t c u Ñ t a, b u,

is proposed to the expert p, who confirms it. Thus, this implication is an element of Kn,

but is not contained in Th(p)XL. ♦

However, we shall show that Algorithm 5 approximately explores L, in the sense that the set

Kn satisfies

Cn(L)X Th(p) Ě Cn(Kn) Ě Cn(Th(p)XL). (6.2)

In other words, the resulting set of confirmed implications will at least be complete for

Cn(Th(p)XL), and the implications which are not entailed by Th(p)XL are at least en-

tailed by Cn(L)XTh(p). It will turn out that this is indeed sufficient for our considerations

of finding an algorithm for exploration by confidence, as we shall see in Section 6.2.2.

3This example has been provided by an anonymous reviewer, who also pointed our an error in the original

argumentation (as given in [30]).
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Algorithm 5 (Exploration of Sets of Implications)

0 define explore-implications(M, ďM, p, L Ď Imp(M), K Ď Th(p))
1 i := 0, Li := L, Ki := K, Pi :=H
2

3 forever do

4 Pi+1 := next-closed-non-closed(M, ďM, Pi, Ki, Li)

5 if Pi+1 = nil exit

6

7 if p(Pi+1 Ñ Li(Pi+1)) = J then

8 Ki+1 := Ki Y t Pi+1 Ñ Li(Pi+1) u
9 Li+1 := Li

10 else

11 Ki+1 := Ki

12 C := p(Pi+1 Ñ Li(Pi+1))
13 Li+1 := t (A Ñ B) P Li | A Ę C or B Ď C u
14 end

15

16 i := i + 1
17 end

18

19 return Ki

20 end
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It is the purpose of the following argumentation to show that Algorithm 5 approximately

explores L as described above. For this we need to argue that the algorithm always

terminates and, upon termination, Equation (6.2) is satisfied.

6.1.7 Proposition Let M be a finite set, p a domain expert on M, L Ď Imp(M) and K Ď
Th(p). Then for iteration i of the run of explore-implications with this input, it is true that
Ki Ď Ki+1 and Li Ě Li+1, and exactly one of these inclusions is strict.

Proof Suppose that we are in iteration i. Then clearly Ki Ď Ki+1 and Li Ě Li+1 from the

very definition of these sets. Then, if p confirms Pi+1 Ñ Li(Pi+1), then Ki Ĺ Ki+1 and

Li = Li+1. If p rejects Pi+1 Ñ Li(Pi+1), and C = p(Pi+1 Ñ Li(Pi+1)), then there must

exist at least one implication (A Ñ B) P Li such that A Ď C and B Ę C, for otherwise C
cannot be a counterexample for Pi+1 Ñ Li(Pi+1). Therefore, Li Ľ Li+1, and Ki = Ki+1

holds by definition. ˝

6.1.8 Theorem Let M be a finite set,ďM a linear order on M, and let p be a domain expert on M.
Let L Ď Imp(M) and K Ď Th(p). Then explore-implications applied to these arguments
terminates after finitely many steps.

Proof Note that explore-implications has to terminate if Cn(Li)zCn(Ki) = H. By

Proposition 6.1.7 we know that Ki Ď Ki+1 or Li Ě Li+1, and exactly one of these inclusions

is strict. The latter fact entails

Cn(Li+1)zCn(Ki+1) Ĺ Cn(Li)zCn(Ki). (6.3)

This is because if Ki ‰ Ki+1 then the implication Pi+1 Ñ Li(Pi+1) added to Ki does not

follow from Ki, because Pi+1 = Ki(Pi+1). Thus, Cn(Ki) Ĺ Cn(Ki+1). On the other hand,

if Li ‰ Li+1, then

(Pi+1 Ñ Li(Pi+1)) P Cn(Li)zCn(Li+1)

and Cn(Li) Ľ Cn(Li+1).
If the algorithm would run forever, it would thus yield an infinite descending chain

Cn(L0)zCn(K0) Ľ Cn(L1)zCn(K1) Ľ . . .

Since M is finite, P(Imp(M)) is finite as well, and therefore this cannot happen. Thus the

algorithm has to terminate. ˝

We now consider the correctness of Algorithm 5.

6.1.9 Proposition Let M be a finite set, p a domain expert on M, andďM a linear order on M. Let
L Ď Imp(M) and K Ď Th(p). Denote with ĺ the lectic order on P(M) induced byďM. Then
in every iteration i of the run of explore-implications with this input such that Pi+1 ‰ nil, it
is true that for A ă Pi+1, if A is Ki-closed, then A is Li-closed as well.
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Proof We show the claim by induction on i. For the base case i = 0 the claim is vacuously

true, since P1, if not nil, is the lectically smallest set which is K0-closed but not Li-closed.

For the step case we assume that Pi+2 ‰ nil. We then need to show that for all A ă Pi+2,

if A is Ki+1-closed, then A is also Li+1-closed.

Thus let A ă Pi+2 and A be Ki+1-closed. Let us first consider the case A ă Pi+1. Since

Ki Ď Ki+1, A is also Ki-closed. By induction hypothesis, A is also Li-closed, and since

Li+1 Ď Li, we obtain that A is Li+1-closed.

If Pi+1 = Pi+2, nothing remains to be shown. Therefore assume that Pi+1 ‰ Pi+2 and let

Pi+1 ĺ A ă Pi+2. By construction, all sets strictly between Pi+1 and Pi+2 are Li+1-closed if

Ki+2-closed, by definition of Pi+2.

Therefore, only the case A = Pi+1 ‰ Pi+2 remains to be considered. But then since

A is Ki+2-closed and Pi+1 ‰ Pi+2 we know that Pi+1 is not Li+1-closed, as otherwise

Pi+1 = Pi+2. Therefore, A = Pi+1 is Li+1-closed as required. ˝

6.1.10 Corollary Let M,ďM, p, L, K as before, and denote with n the number of iterations of the
algorithm explore-implications when applied to this input. Then

Cn(Kn) Ě Cn(Ln YK).

Proof By the previous Proposition 6.1.9 we know that all Kn-closed subsets of M are also

Ln-closed. Let (X Ñ Y) P Cn(Ln). Then Y Ď Ln(X) Ď Ln(Kn(X)). Clearly, Kn(X) is

Kn-closed, so Proposition 6.1.9 yields that Kn(X) is also Ln-closed, i. e.

Ln(Kn(X)) = Kn(X).

Thus, Y Ď Kn(X) and therefore (X Ñ Y) P Cn(Kn). Clearly, K Ď Cn(Kn), and thus

Cn(Kn) Ě Cn(Ln YK) as required. ˝

6.1.11 Corollary Let M,ďM, p, L, K as before, and let again n be the number of iterations of the
run of explore-implications when applied to this input. Then

Ln = Th(p)XL.

Proof We know that Th(p) X L Ď Ln, since p does not provide counterexamples for

confirmed implications. Since Cn(LnYK) Ď Cn(Kn) by Corollary 6.1.10, we obtain Ln Ď
Cn(Kn). Since all implications in Kn are confirmed by p, it is true that Cn(Kn) Ď Th(p).
Together with Ln Ď L we thus obtain Ln Ď Th(p)XL. ˝

6.1.12 Theorem Let M be a finite set, ďM be a linear order on M, and p a domain expert on M.
LetL Ď Imp(M) andK Ď Th(p)XCn(L). If n is the last iteration of explore-implications
applied to this input, then

Th(p)XCn(L) Ě Cn(Kn) Ě Cn(Th(p)XL).
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Proof Since K Ď Cn(L), it is true that K Ď Cn(Ln) and Corollary 6.1.10 yields Cn(Kn) Ě
Cn(Ln). Thus

Cn(Kn) Ě Cn(Ln) = Cn(Th(p)XL)

by Corollary 6.1.11.

Furthermore, Cn(L) Ě Cn(Kn) holds by the definition of Kn. Since all implications in

K have been confirmed by the expert, Th(p) Ě Cn(Kn) also holds. This yields

Cn(L)X Th(p) Ě Cn(Kn),

as required. ˝

The counterexamples given by the expert p during the run of the algorithm can be collected

into a formal context L. Then this formal context L has the nice property that every

implication in L is either entailed by Kn, or does not hold in L. This fact can be useful on

its own.

6.1.13 Theorem Let M be a finite set, ďM a linear order on M, and let p be a domain ex-
pert on M. Let L Ď Imp(M) and K Ď Th(p) X Cn(L). Let n be the last iteration of
explore-implications applied to this input, and let tC1, . . . , Cm u be the counterexamples
given by p during this run. Denote with L the formal context which arises from these counterex-
amples, i. e.

L = (tC1, . . . , Cm u, M, Q).

Then for each implication (A Ñ B) P L either (A Ñ B) P Cn(Kn) or (A Ñ B) R Th(L), i. e.

Cn(Kn)XL = Th(L)XL.

Proof We first observe that

Ln = Th(L)XL. (6.4)

Then from Corollary 6.1.10 we obtain

Cn(Kn) Ě Cn(Ln) = Cn(Th(L)XL). (6.5)

Suppose that (A Ñ B) R Cn(Kn). Then (A Ñ B) R Cn(Th(L)X L) by Equation (6.5).

Since (A Ñ B) P L, we obtain (A Ñ B) R Th(L) as required.

On the other hand, since p does not provide counterexamples for confirmed implications,

and all implications in Kn have been confirmed by p, we can infer that Cn(Kn) Ď Th(L).˝
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An interesting observation for Algorithm 5 is the following: although it may not hold that

Kn is a base of LXTh(p) with background knowledge K, the set of implications computed

by explore-implications is minimal in the sense that it is the canonical base of itself, i. e.

Can(Kn,K) = KnzK.

This fact is indeed not very surprising, given that we have obtained Algorithm 5 from

Algorithm 4 by simple syntactic substitutions.

Note that we had introduced the canonical base in Section 2.4 only for formal contexts,

but it is not very difficult to generalize the definition (and the corresponding results) to

the level of sets of implications. Indeed, if L,K Ď Imp(M), then the canonical base of L
with background knowledge K can just be defined to be the canonical base of KL with

background knowledge K, where KL is defined as in Proposition 2.3.7. However, we can

also be a bit more specific and generalize the notion of pseudo-intents correspondingly, by

considering the closure operator induced by L to be a generalization of the double-prime

operator (¨)2 of a formal context.

6.1.14 Definition (K-Pseudo-Closed Set of L, Canonical Base) Let M be a finite set and

let L,K Ď Imp(M). Then a set P Ď M is called a K-pseudo-closed set of L if and only if

i. P ‰ L(P),

ii. P = K(P), and

iii. for all Q Ĺ P being a K-pseudo-closed set of L it is true that L(Q) Ď P.

The canonical base of L with background knowledge K is then defined as

Can(L,K) := t P Ñ L(P) | P Ď M a K pseudo-closed set of L u. ♦

The relevant property of the canonical base now carries over to this generalized formulation,

just because

Can(L,K) = Can(KL,K).

Thus, the following corollary follows directly from Theorem 2.4.7.

6.1.15 Corollary Let M be a finite set and let L,K Ď Imp(M). Then Can(L,K) is a set of
valid implications of L such that

Can(L,K)YK

is complete for L, and Can(L,K) has minimal cardinality with this property. In particular, if
K Ď Cn(L), then Can(L,K) is a minimal base of L with background knowledge K.
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We now show that Algorithm 5 computes the canonical base of Th(p)XL with background

knowledge K.

6.1.16 Theorem Let M be a finite set, ďM be a linear order on M, p a domain expert on M,
L Ď Imp(M) and K Ď Th(p)XL. If

Kn = explore-implications(M,ďM, p,L,K),

then

Can(Kn,K) = KnzK.

Proof First note that KnzK is an irredundant base of Kn with background knowledge K,

i. e. no implication in Kn follows from the others and K.

We are going to show that the premises in KnzK are all K-pseudo-closed sets of Kn. For

this, we show the following claim by induction over the number i of iterations:

For every iteration i, the k := |KnzK| lectically first K-pseudo-closed sets of

Kn are precisely the premises of the implications in KnzK. If the (k + 1)st K-

pseudo-closed set Q of Kn exists, then Pi+1 Ď M (i. e. is not nil), and Pi+1 ĺ Q.

For the base case i = 0 we observe that |K0zK| = 0, thus the first part of the claim holds.

If Q is the first K-pseudo-closed set of Kn, then Q is K-closed but not Kn-closed. But then

Q is also not L-closed, because Kn Ď Cn(L). Therefore, by construction, P1 is not nil and

P1 ĺ Q.

For the induction step we assume that the claim holds for iteration i. Let k := |KizK|. If

there is no more K-pseudo-closed set of Kn which is not already a premise of an implication

in KizK, then Ki is a base of Kn with background knowledge K. Since Ki Ď Kn we obtain

Ki = Kn, since Kn is irredundant. Then i = n, or i ă n and |Ki+1zKn| = k and the claim

holds for iteration i + 1 as well.

Now assume that Q is the (k + 1)st K-pseudo-closed set of Kn. By induction hypothesis,

Pi+1 Ď M and Pi+1 ĺ Q. We consider two main cases.

Case Pi+1 = Q: If Li(Pi+1) Ď Kn(Pi+1), then p accepts the implication

Pi+1 Ñ Li(Pi+1),

which is then an element of Ki+1. Thus, the |Ki+1zK| = k + 1 lectically first K-pseudo-

closed sets of Kn are precisely the premises of the implications in Ki+1zK.

If the (k + 2)nd K-pseudo-closed set Q of Kn exists, then in particular Q is closed under

Ki+1, as for each K-pseudo-closed set Pℓ Ď Q it is true tat Kn(Pℓ) Ď Q. Furthermore, Q is

not Kn-closed, and thus also not Li+1-closed. Therefore, by construction Pi+2 Ď M, i. e. is

not nil, and Pi+2 ĺ Q.
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If Li(Pi+1) Ę Kn(Pi+1), then p rejects the implication Pi+1 Ñ Li(Pi+1) and provides a

counterexample. Then Ki+1 = Ki. Since Pi+1 = Q, the set Pi+1 is also not Li+1-closed, as

otherwise it would be Kn-closed. Thus, Pi+2 = Pi+1 and Pi+2 ĺ Q as required.

Case Pbi+1 ň Q: In this case, the set Pi+1 must be Kn-closed, since otherwise it would

be a K-pseudo-closed set of Kn, and Pi+1 ľ Q would hold. To see this, we first observe

that Pi+1 is Ki-closed by definition, and thus also K-closed. Furthermore, if Q Ĺ Pi+1 is a

K-pseudo-closed set of Kn, then by induction hypothesis, the set Q is a premise of Ki and

therefore Kn(Q) Ď Pi+1. Thus, the only possibility for Pi+1 not to be a K-pseudo-closed

set of Kn is that Pi+1 is Kn-closed.

In addition, Pi+1 is not Li-closed by definition. Thus, since Pi+1 is Kn-closed, the expert

rejects the implication Pi+1 Ñ Li(Pi+1). Therefore, Ki+1 = Ki and Pi+2 is the lectically

smallest Ki+1-closed, not Li+1-closed set which is lectically greater or equal to Pi+1. Since

Q is also Ki+1-closed (by induction hypothesis, as it is a K-pseudo-closed set of Kn) but

not Li+1-closed (since Q is not Kn-closed), it is true that Pi+2 ĺ Q by construction.

This finishes the step case and the proof of the above claim. Using this claim, we shall

now show the theorem. Note that for each implication (Pi Ñ Li´1(Pi)) P KnzK it is true

that

Li´1(Pi) = Kn(Pi) (6.6)

because Li(Pi) is already Kn-closed, and (Pi Ñ Li´1(Pi)) P KnzK. If now n denotes

the last iteration of the algorithm, we known that Pn+1 is equal to nil. Therefore, there

cannot exist a K-pseudo-closed set of Kn which is not a premise of an implication in KnzK.

Because of Equation (6.6), we therefore obtain

KnzK = Can(Kn,K)

as required. ˝

Recall that our initial motivation to consider the generalization of attribute exploration

as given in Algorithm 5 was to be able to explore sets of the form Thc(K) for arbitrary

choices of c P [0, 1]. However, for this particular application our algorithm does not seem

very practical, as during a run we would need to compute sets of the form Li(P) for some

Li Ď Thc(K) and P Ď M. For c = 1 this is not a problem, since

Th1(K)(P) = Th(K)(P) = P2.

For c ‰ 1, however, such a simple computation is not known. Although we shall dis-

cuss in Section 6.2.1 some techniques to still achieve the computation of Thc(K)(P), the

computation itself is potentially much more expensive than in the case c = 1.

Also, the fact that Algorithm 5 only provides an approximate exploration of L using

p as an expert is unsatisfactory. Of course, this situation can easily be avoided if the
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implications asked to the expert are elements of L, because then Cn(Kn) Ď LX Th(p)
and thus Theorem 6.1.12 yields that

Cn(Kn) = Cn(LX Th(p)),

i. e. Kn is a base of LX Th(p).
However, it cannot be guaranteed in general that the implications Pi+1 Ñ Li(Pi+1) are

elements of L. To remedy this problem, we shall discuss in the following a relaxation of

Algorithm 5 that allows for more freedom in the choice which implications are asked to

the expert. In this way, it may be easier to ensure that the implications asked are indeed

elements of L, and thus the exploration does not contain too many questions. We shall see

in Section 6.2.2 how this idea can be applied for our case of exploration by confidence.

In this relaxation, instead of asking questions of the form Pi+1 Ñ Li(Pi+1), it will be

sufficient to find some Q Ď M such that Pi+1 Ĺ Q Ď Li(Pi+1), and then ask the implication

P Ñ Q to the expert. Of course, we have to pay for the freedom of choosing the set Q freely

by potentially asking more questions, since the implication

Pi+1 Ñ Li(Pi+1)zQ

still needs to be examined (implicitly or explicitly) by the expert. The hope is that the

freedom of leaving out elements from Li(Pi+1) compensates for this extra amount of

implications the expert has to handle.

Algorithm 6 presents a generalization of Algorithm 5 that uses these ideas. Algorithm 6

is very similar to Algorithm 5, but differs in a crucial aspect: we still compute sets of the

form

P = next-closed-non-closed(M,ďM, Pi,Ki,Li),

but we then do not directly ask P Ñ Li(P) to the expert. Instead, we allow the algorithm

to choose a set Pi+1 such that

Pi ĺ Pi+1 ĺ P

and Pi+1 is not Li-closed. Note that such a set always exists since P is not Li-closed.

Since Pi+1 is not Li-closed, Pi+1 Ĺ Li(Pi+1). We then choose a set Q such that

Pi+1 Ĺ Q Ď Li(Pi+1)

and finally ask the implication P Ñ Q to the expert.

Note that if we always choose Pi+1 = P and Q = Li(Pi+1), then we obtain Algorithm 5

again.

We now argue that Algorithm 6 is indeed an algorithm that allows to approximately

explore L, using p as an expert and K as background knowledge. For this we first observe

that termination can be argued as in the case of Algorithm 5, and therefore the analog of

Theorem 6.1.8 holds.
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Algorithm 6 (Generalized Exploration of Sets of Implications)

0 define explore-implications/weaker-version(M, ďM, p, L Ď Imp(M), K Ď Th(p))
1 i := 0, Li := L, Ki := K, Pi :=H
2

3 forever do

4 P := next-closed-non-closed(M, ďM, Pi, Ki, Li)

5 if P = nil exit

6 choose Pi+1 Ď M such that Pi ĺ Pi+1 ĺ P and Pi+1 not Li-closed

7 choose Q Ď M such that Pi+1 Ĺ Q Ď Li(Pi+1), Q Ę Ki(Pi+1)
8

9 if p(Pi+1 Ñ Q) = J then

10 Ki+1 := Ki Y t Pi+1 Ñ Q u
11 Li+1 := Li

12 else

13 Ki+1 := Ki

14 C := p(Pi+1 Ñ Q)
15 Li+1 := t (A Ñ B) P Li | A Ę C or B Ď C u
16 end

17

18 i := i + 1
19 end

20

21 return Ki

22 end
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6.1.17 Theorem Let M be a finite set, ďM a linear order on M, p be a domain expert on M,
L Ď Imp(M) and K Ď Th(p). Then the call to Algorithm 6 with this input terminates after
finitely many steps.

For the correctness of Algorithm 6 we can argue in practically the same way as we did for

Algorithm 5. The crucial argument there was Proposition 6.1.9, which also holds in this

case, with nearly the same proof. We shall repeat it nevertheless for easier comparison.

6.1.18 Proposition Let M, ďM, p, L, K as before. Then for every iteration i in the run of

explore-implications/weaker-version(M,ďM, p,L,K)

if Pi+1 is not nil, it is true for all A ă Pi+1 that, if A is Ki-closed, then A is also Li-closed.

Proof Again we show the claim by induction over i. For the base case i = 0 we know that

Pi = H, and thus the claim is vacuously true.

For the step case assume the validity of the proposition for iteration i. Then if Pi+2 is not

nil we need to show that for each A ĺ Pi+2, if A is Ki+1-closed, then A is also Li+1-closed.

As before we can reduce this to the case that Pi+1 ĺ A ň Pi+2 and A being Ki+1-closed.

In particular Pi+1 ‰ Pi+2. Then Pi+1 = A is the only interesting case, since all sets strictly

lectically lying between Pi+1 and Pi+2 which are Ki+1-closed are also Li+1-closed, due to

the construction of Pi+2. Since Pi+1 ‰ Pi+2 we know that Pi+1 must also be Li+1-closed, as

otherwise the algorithm would compute Pi+1 = Pi+2. Thus, A = Pi+1 is also Li+1-closed,

as required. ˝

Now most of the properties of Algorithm 5 carry over to Algorithm 6. However, since we

do not necessarily ask implications of the form

Pi+1 Ñ Li(Pi+1) (6.7)

anymore, we can also not expect that the algorithm computes the canonical base of Kn

with background knowledge K. In particular this means that the number of implications

asked to and confirmed by the expert is not necessarily minimal.

6.1.19 Theorem Let M be a finite set, ďM be a linear order on M, and let p be a domain expert
on M. Let L Ď Imp(M) and K Ď Th(p)XCn(L). Denote with n the last iteration of the run
of Algorithm 6 applied to this input. Then

i. Cn(Kn) Ě Cn(Ln),

ii. Ln = Th(p)XL, and

iii. Th(p)XCn(L) Ě Cn(Kn) Ě Cn(Th(p)XL).
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6.2. Exploration by Confidence

As a first step to achieve an algorithm for exploration by confidence we shall instantiate

Algorithm 5 for L = Thc(K). This will be done in Section 6.2.1. While this approach is

conceptually trivial, it entails some technical problems, the most serious of them being able

to compute closures of the form

Thc(K)(P)

for sets P Ď M. We discuss some approaches how to achieve this computation more

efficiently than by iterating through Thc(K), which are, however, still potentially expensive.

Furthermore, in the general case this exploration will only be approximative, which may or

may not be a problem, depending on the current application.

To remedy these problems, we use our weaker formulation of Algorithm 6 and derive

from it in Section 6.2.2 an algorithm for exploration by confidence that avoids computing

closures under Thc(K). In addition, for this algorithm we can ensure that all implications

asked to the expert satisfy the confidence constraint given by c. The price we have to pay

for this is an increase in the number of questions asked to the expert, and the fact that we

do not compute the canonical base anymore.

6.2.1. An Approximative Exploration by Confidence

We obtain our first algorithm for exploration by confidence by instantiating Algorithm 5

with L = Thc(K). The first problem we have to face here is how to implement Line 13 in

the algorithm, i. e.

Li+1 := t (A Ñ B) P Li | A Ę C or B Ď C u.

Naively, ifL = Thc(K), this statement can be implemented by enumerating all implications

in Thc(K), an approach which we want to avoid for obvious reasons. Instead, we collect

all counterexamples in a formal context Li as we did in Theorem 6.1.13, and then use the

fact which we already used in the proof of this statement (Equation (6.4)), which in our

case amounts to

Li = Thc(K)X Th(Li).

The algorithm we thus obtain is shown in Algorithm 7. The following result is an immediate

consequence of the results we have obtained for Algorithm 5.

6.2.1 Corollary Let K = (G, M, I) be a finite formal context,ďM a linear order on M, c P [0, 1],
p a domain expert on M and K Ď Thc(K)XTh(p). Then the call of Algorithm 7 with this input
terminates after finitely many steps. If n is the number of iterations of this call, and if Kn is the
corresponding return value, then

Th(p)XCn(Thc(K)) Ě Cn(Kn) Ě Cn(Th(p)X Thc(K)).
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Algorithm 7 (Exploration by Confidence, Approximative Version)

0 define exploration-by-confidence(K = (G, M, I), ďM, p, c P [0, 1], K Ď Th(p))
1 i := 0, Li = (H, M,H), Ki := K, Pi :=H
2

3 forever do

4 Li := Thc(K)X Th(Li)
5 Pi+1 := next-closed-non-closed(M, ďM, Pi, Ki, Li)

6 if Pi+1 = nil exit

7

8 if p(Pi+1 Ñ Li(Pi+1)) = J then

9 Ki+1 := Ki Y t Pi+1 Ñ Li(Pi+1) u
10 Li+1 := Li

11 else

12 Ki+1 := Ki

13 Li+1 := Li + p(Pi+1 Ñ Li(Pi+1)) ;; add counterexample to Li

14 end

15

16 i := i + 1
17 end

18

19 return Ki

20 end
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Moreover, KnzK is the canonical base of itself.

Recall that when we motivated exploration by confidence we mentioned the need to distin-

guish between different forms of counterexamples: if (A Ñ B) P Imp(M), then the coun-

terexamples for A Ñ B contained in K can possibly be ignored if only confK(A Ñ B) ě c.

On the other hand, if our expert p provides a counterexample for A Ñ B, then this coun-

terexample cannot be ignored, even if the confidence of A Ñ B would still be sufficiently

high.

Our Algorithm 7 solves this problem by just considering two formal contexts, namely K

on the one hand, where we apply the confidence threshold, and Li on the other hand, of

which we only consider valid implications. This distinction is immediate if we consider the

definition of Li, namely

Li = Thc(K)X Th(Li).

Of course this solution is only practical if we can efficiently compute closures under Li. As

already mentioned, we want to avoid enumerating Thc(K) at all costs, as otherwise the

algorithm becomes impractical even from a theoretical point of view.

It is worth noting that an apparently simpler approach to avoid computing closures under

Thc(K) does not work. More precisely, one may be tempted to replace in Algorithm 7 all

implications of the form

Pi+1 Ñ Li(Pi+1) (6.8)

simply by

Pi+1 Ñ tm P (Pi+1)
2
Li
| confK(Pi+1 Ñ tm u) ě c u. (6.9)

However, the resulting algorithm would not be complete, i. e. implications with high

confidence in K may not be asked to the expert. This is illustrated by the following example.

6.2.2 Example Consider the formal context K as given in Figure 6.1, letK = t t a u Ñ t b u u,
and choose c = 1

2 . Suppose that we apply exploration by confidence in the simplified

version as described before, i. e. we ask implications of the form of (6.9) instead of those

in (6.8). Then since all sets Pi+1 are closed under K, the implication t a u Ñ t c u is never

asked to the expert, because t a u is not closed under K. On the other hand,

confK(t a u Ñ t c u) =
4

7
ą

1

2
,

i. e. (t a u Ñ t c u) P Thc(K), and thus should actually be asked to the expert. Furthermore,

the implication t a u Ñ t c u also does not follow form other implications asked to the
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K a b c

1 ˆ ˆ
2 ˆ ˆ
3 ˆ ˆ
4 ˆ ˆ ˆ
5 ˆ ˆ ˆ
6 ˆ ˆ
7 ˆ ˆ
8
9

10

Figure 6.1.: Context which shows that a simple approach to exploration by confidence does

not work

expert, as the implications t b u Ñ t c u, t a, b u Ñ t c u, and H Ñ t c u will also not be

asked to the expert, because

confK(t b u Ñ t c u) =
2

5
ă

1

2

confK(t a, b u Ñ t c u) =
2

5
ă

1

2

confK(HÑ t c u) =
4

10
ă

1

2

Thus, if we assume that the expert p confirms all proposed implications, and if we denote

the set of confirmed implications by Kn, then

Kn(t a u) = t a, b u.

However, Thc(K)X Th(p) = Thc(K), and

Thc(K)(t a u) = t a, b, c u.

Thus, the set Kn is not complete for Thc(K)X Th(p). ♦

On the other hand, it is possible to ask implications as in (6.9) instead of those in (6.8)

and still obtain a correct algorithm for exploration by confidence. However, to ensure

completeness, extra steps are necessary in the algorithm. We shall see in Section 6.2.2 how

this can be done.

In the rest of this section we shall discuss an approach which allows to compute closures

under Thc(K) at least a bit more efficiently. In what follows we shall consider derivation
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in various contexts, namely in K, Li and the subposition of K = (G, M, I) and Li =
(Gi, M, Ii), which is the formal context

K˜Li :=
K

Li
:= (GYGi, M, I Y Ii),

where we assume that G and Gi are disjoint. To avoid confusion we shall denote the

derivation operators by (¨)1
K

, (¨)1
Li

and (¨)1
K˜Li

, respectively. To ease readability, we shall

also write (¨)2
K

instead of ((¨)1
K
)1

K
, and likewise for the other contexts.

To achieve the computation of Li(P) for some P we first recall the definition of Li(P) as

given in Definition 2.3.5. There we had defined

L1(P) := PY
ď

t B | (A Ñ B) P L, A Ď P u,

Lj+1(P) := Lj(L1(P)) (j P Ną0),

L(P) :=
ď

iPNą0

Li(P).

Therefore, if we can find a way to compute L1
i (P) for Li = Thc(K)X Th(Li), then we are

in principle able to compute Li(P). Note that we only have to consider L
j
i(P) for up to

j = |M| at most, because |Li(P)| ď |M|.
As a first observation, to compute L1

i (P) for arbitrary P Ď M we observe that

P2
K˜Li

Ď L1
i (P). (6.10)

The reason for that is that we have P2
K˜Li

Ď P2
K

and thus the implication P Ñ P2
K˜Li

is

valid in K, and in particular (P Ñ P2
K˜Li

) P Thc(K). The same argumentation shows that

P2
K˜Li

Ď P2
Li

, and thus (P Ñ P2
K˜Li

) P Th(Li). Putting these facts together we obtain

(P Ñ P2
K˜Li

) P Thc(K)X Th(Li) = Li

and therefore P2
K˜Li

Ď L1
i (P).

To completely compute L1
i (P) we need to consider all implications (A Ñ B) P Li

such that A Ď P. If A Ñ B is valid in K, then we know that B Ď P2
K˜Li

. Therefore, by

Equation (6.10), the difficult part in computing L1
i (P) is to compute the set

L1
i (P)zP2

K˜Li
.

One way to achieve this is to consider all implications A Ñ B which are not valid in K, but

whose confidence is at least c in K, i. e.

1 ą confK(A Ñ B) ě c.
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Additionally, we can assume without loss of generality that |B| = 1, because

confK(A Ñ t b u) ě confK(A Ñ B)

is true for all b P B. Finally, since Li Ď Th(Li), we also know that

Li(P) Ď P2
Li

.

Thus, to obtain all elements in Li(P)zP2
K˜Li

, we can check for all elements b P P2
Li
zPK˜Li

whether there exists a subset A Ď P such that

1 ą confK(A Ñ t b u) ě c.

Then y P Li(P)zP2
K˜Li

if and only if such a set A exists.

6.2.3 Proposition Let K = (G, M, I) and Li = (Gi, M, I) be two finite formal contexts such
that G and Gi are disjoint. Let c P [0, 1] and define

Li = Thc(K)X Th(Li).

Then for P Ď M it is true that

L1
i (P) = P2

K˜Li
Yt b P P2

Li
| DA Ď P : b P A2

Li
zP2

K˜Li
and confK(A Ñ t b u) ě c u.

Finding sets A as in the previous equation may be quite expensive, as in the worst case

we need to search through all subsets of P. A reduction of the number of sets we have to

consider is thus desirable. For this we can reuse our previous observation that

confK(A Ñ t b u) = confK(A2
K Ñ t b u).

The idea is now that we use this fact to avoid considering all subsets of P, and just consider

only those subsets which are intents of K˜Li. Note that since A Ď A2
K˜Li

Ď A2
K

we also

have that

confK(A Ñ t b u) = confK(A2
K˜Li

Ñ t b u).

To enumerate all intents of K˜Li which are subsets of P we could use the Next Closure

algorithm, as discussed in Section 2.4. However, for this we would need that A ÞÑ A2
K˜Li

is indeed a closure operator on P, i. e. we have to guarantee that P = P2
K˜Li

is true. While

this is not true in general, we can easily remedy this issue by computing L1
i (P2

K˜Li
) instead

of L1
i (P).
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6.2.4 Proposition Let K = (G, M, I) and Li = (G, M, I) be two finite formal contexts such
that G and Gi are disjoint. Let c P [0, 1] and define

Li = Thc(K)X Th(Li).

Define for P Ď M

L1,conf
i (P) := P2

K˜Li
Y t b P P2

Li
| DA Ď P2

K˜Li
: A = A2

K˜Li
, b P A2

Li
zP2

K˜Li

and conf(A Ñ t b u) ě c u.

L
j+1,conf
i (P) := L

j,conf
i (L1,conf

i (P)) (j P Ną0),

Lconf
i (P) :=

ď

jPNą0

L
j,conf
i (P).

Then

L1,conf
i (P) = L1

i (P2
K˜Li

)

is true for all P Ď M. In particular, Lconf
i (P) = Li(P).

Note that the main benefit of Lconf
i (P) over Li(P) is that in the former we are allowed to

only consider intents of K˜Li instead of all subsets of P2
K˜Li

. This can be done using the

Next Closure algorithm as described above.

Proof Let P Ď M, and let b P L1,conf
i (P)zP2

K˜Li
. Then there exists a set A Ď P2

K˜Li
such

that A = A2
K˜Li

, b P ALi
zP2

K˜Li
and conf(A Ñ t b u) ě c. Since (P2

K˜Li
)2

Li
= P2

Li
, the

same set A shows that b P L1
i (P2

K˜Li
)zP2

K˜Li
.

Conversely, let b P L1
i (P2

K˜Li
)zP2

K˜Li
. Then b P (P2

K˜Li
)2

Li
= P2

Li
. Furthermore, there

exists a set A Ď P2
K˜Li

such that b P A2
Li
zP2

K˜Li
and confK(A Ñ t b u) ě c. Then

A := A2
K˜Li

satisfies A = A
2
K˜Li

, b P A
2
Li
zP2

K˜Li
and confK(A Ñ t b u) ě c, thus

b P L1,conf
i (P)zP2

K˜Li
.

Finally, because of L1,conf
i (P) = L1

i (P2
K˜Li

), we know that

L1
i (P) Ď L1,conf

i (P) Ď Li(P),

and therefore Lconf
i (P) = Li(P). ˝

We can further reduce the search space for the sets A by bounding |A| from below. For

this we observe that we are looking for sets A such that

1 ą confK(A Ñ t b u) ě c.
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Since A Ñ t b u does not hold in K, there exists at least one object in A1
K

that is not

contained in A1
K
X t b u1

K
, i. e.

|A1
K| ą |A1

K X t b u1
K
|.

Moreover, the condition confK(A Ñ t b u) ě c entails

|A1
K X t b u1

K
| ě c ¨ |A1

K|.

We can therefore infer that |A1
K
|´ 1 ě c ¨ |A1

K
|, or equivalently

|A1
K| ě

1

1´ c
(6.11)

if c ‰ 1. Then all sets A which are relevant for the computation of L1
i (P) or L1,conf

i (P)
satisfy this cardinality constraint. Note that for enumerating the sets A that satisfy Equa-

tion (6.11), the Next Closure algorithm can be modified accordingly, i. e. the algorithm can

be modified in such a way that it enumerates only intents contained in P2
K˜Li

which satisfy

this cardinality constraint. See [48, Theorem 51] for more details on this.

6.2.2. A Non-Approximative Exploration by Confidence

Algorithm 7 has two main flaws: in general, it only provides an approximative exploration

of Thc(K), and it crucially depends on the computation of closures under Thc(K). The

latter fact may render the algorithm practically useless, because computing closures under

Thc(K) can be quite costly.

To achieve an algorithm that indeed implements exploration by confidence, and at

the same time avoids the computation of closures under Thc(K), we shall make use of

Algorithm 6, our algorithm for exploring sets of implications that allows for some freedom

in the way implications are asked to the expert. To apply this algorithm to our specific

setting, the main problem we have to solve is how to decide whether a given set P Ď M is

closed under Thc(K) or not. Furthermore, we need to define the way the sets Pi+1 and Q
are computed, which eventually will constitute the implication Pi+1 Ñ Q which is asked

to the expert. As it turns out, we can define the set Q in such a way that Pi+1 Ñ Q will

always have at least confidence c in K.

Let us start with some wishful thinking. To decide whether P is closed under Li =
Thc(K)X Th(Li) it would be ideal if we could just check whether no element in P2

Li
is

entailed by P with confidence at least c, i. e.

P = Li(P) ðñ @m P P2
Li
zP : confK(P Ñ tm u) ă c. (6.12)

The main benefit would be that we would not need to consider all subsets of P, and thus

could avoid this expensive search.

Regrettably, Equation (6.12) is not valid in general, but only the direction from left to

right holds. However, we can identify a special case in which this equivalence holds.
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6.2.5 Proposition Let K = (G, M, I) be a finite formal context, and let c P [0, 1]. Let Li =
(Gi, M, I) be another finite formal context such that Gi and G are disjoint, and define Li =
Thc(K) X Th(Li). Let A Ď M be such that for every intent X Ĺ A of K ˜ Li it is true
that

@m P X2
Li

: confK(X Ñ tm u) ě c ùñ m P Ki(X). (6.13)

In addition, let A be Ki-closed. Then it is true that A is Li-closed if and only if

A = A2
K˜Li

and @m P A2
Li
zA : confK(A Ñ tm u) ă c. (6.14)

Proof Let A be Li-closed. Since A Ñ A2
K˜Li

is valid in both K and Li, it is true that

(A Ñ A2
K˜Li

) P Li. Therefore, A = Li(A) Ě A2
K˜Li

Ě A and thus A = A2
K˜Li

holds.

If m P A2
Li

is such that confK(A Ñ tm u) ě c, then (A Ñ tm u) P Li and therefore

m P Li(A) = A as required.

Conversely, suppose that A is not closed under Li and that A = A2
K˜Li

is true. Then

there exists a set X Ď A and an attribute m P A2
Li
zA such that (X Ñ tm u) P Li. Note

that then m P X2
Li

, because X Ñ tm u holds in Li. Since A = A2
K˜Li

, X Ď A implies

X2
K˜Li

Ď A. Assume by contradiction that X2
K˜Li

Ĺ A. Then confK(X2
K˜Li

Ñ tm u) =
confK(X Ñ tm u) ě c and Equation (6.13) implies

m P Ki(X2
K˜Li

) Ď Ki(A) = A,

a contradiction. Therefore, X2
K˜Li

= A and thus m P A2
Li
zA satisfies confK(A Ñ tm u) ě

c as required. ˝

Using the same notation as in Algorithm 6, the idea is now to instantiate this algorithm

such that Equation (6.13) is satisfied whenever we have to test a Ki-closed set A Ď M
for being closed under Li. To achieve this, we shall ask additional questions: in addition

to asking the expert implications Pi+1 Ñ Q where Pi+1 is Ki-closed, we shall also ask

questions X Ñ tm u, where X is an intent of K˜Li, Li is the formal context constituted

of the counterexamples given so far, and m P X2
Li
zKi(X) satisfies confK(X Ñ tm u) ě c.

This idea is realized in Algorithm 8. Instead of computing the set Pi+1 directly, we

compute there two candidates P1
i+1 and P2

i+1. Here, P2
i+1 is the “usual” premise we compute

for exploration. On the other hand, the idea of considering the sets P1
i+1 comes from

Equation (6.13) in Proposition 6.2.5: if we are in iteration i, then all intents X Ĺ Pi of K˜Li

had been considered as sets X = P1
j for some j ă i, since X Ĺ Pi implies X ň Pi. Then for

all m P X2
Li
zKi(X) satisfying confK(X Ñ tm u) ě c, the implication X Ñ tm u has been

asked to the expert. If confirmed, the implication is contained in Ki; if rejected, the context

Li would contain a counterexample, and thus m R (Pi)
2
Li

. In this way, the condition in

Equation (6.13) is ensured.

That this rather informal argumentation indeed holds for Algorithm 8 is shown in the

following proposition.



152 6. Exploration by Confidence

Algorithm 8 (Exploration by Confidence)

0 define exploration-by-confidence*(K = (G, M, I), ďM, p, c P [0, 1], K Ď Th(p)X Thc(K))
1 i := 0, Li = (H, M,H), Ki := K, Pi :=H
2

3 forever do

4 P1
i+1 := lectically smallest intent P of K˜Li such that

5 ´ Pi ĺ P, and

6 ´ there exists m P P2
Li
zKi(P) such that confK(P Ñ tm u) ě c

7 or nil if such a set does not exist

8 Q1
i+1 := P1

i+1 Y tm u ;; m from above
9

10 P2
i+1 := next-closed-non-closed(M, ďM, Pi, Ki, K˜Li)

11 Q2
i+1 := (P2

i+1)
2
K˜Li

12

13 Pi+1 := minĺ(P1
i+1, P2

i+1) ;; nil maximal with respect to ĺ

14 if Pi+1 = nil exit

15

16 if Pi+1 = P1
i+1 then

17 Qi+1 := Q1
i+1

18 else

19 Qi+1 := Q2
i+1

20 end

21

22 if p(Pi+1 Ñ Qi+1) = J then

23 Ki+1 := Ki Y t Pi+1 Ñ Qi+1 u
24 Li+1 := Li

25 else

26 Ki+1 := Ki

27 Li+1 := Li + p(Pi+1 Ñ Qi+1) ;; add counterexample to Li

28 end

29

30 i := i + 1
31 end

32

33 return Ki

34 end
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6.2.6 Proposition Suppose that we are in iteration i of Algorithm 8. Then for all intents X ň Pi

of K˜Li it is true that

@m P X2
Li

: confK(X Ñ tm u) ě c ùñ m P Ki(X). (6.15)

Proof We show the claim by induction over i. For the base case i = 0 the claim is vacuously

true since P0 = H. For the step case assume that Equation (6.15) holds for iteration i, and

assume further that iteration i + 1 exists. Then to show the claim for iteration i + 1 let

X ň Pi+1 be an intent of K ˜Li+1 and m P X2
Li

such that confK(X Ñ tm u) ě c. We

need to show that m P Ki(X) is true. For this, we distinguish two cases.

Case X ň Pi: If Li = Li+1, then X being an intent of K˜Li+1 also trivially means that

X is an intent of K˜Li. By induction hypothesis, we obtain m P Ki(X) Ď Ki+1(X) as

required.

If Li ‰ Li+1, then a counterexample C Ď M has been added to Li to obtain Li+1, i. e.

Li+1 = Li + C.

The set C is a counterexample to the implication Pi+1 Ñ Qi+1, and because of this, Pi+1 Ď C
is true. Thus, X ň Pi+1 ĺ C. Therefore, C Ę X, and it follows that X2

Li+1
= X2

Li
. Since X

is an intent of K˜Li+1, this implies that X is also an intent of K˜Li. Again by induction

hypothesis we obtain that m P Ki(X) = Ki+1(X).
Case Pi ĺ X ň Pi+1 (note that this case may not occur if Pi = Pi+1): As argued before, X

being an intent of K˜Li+1 implies that X is also an intent of K˜Li. Since X ň Pi+1 ĺ

P1
i+1, and P1

i+1 is the lectically smallest intent of K˜Li such that there exists an element

n P (P1
i+1)

2
Li
zKi(P1

i+1) satisfying confK(P1
i+1 Ñ t n u) ě c, it follows that m P Ki(X), as

required. ˝

To show that Algorithm 8 indeed yields an algorithm that implements exploration by

confidence we shall show that it has the form of Algorithm 6. For this we need to show

that in every iteration i, the lectically smallest Ki-closed, not Li-closed set P with Pi ĺ P
satisfies

Pi ĺ Pi+1 ĺ P. (6.16)

Additionally, we need to show that Pi+1 is not Li-closed, and Qi+1 satisfies

Pi+1 Ĺ Q Ď Li(Pi+1), Q Ę Ki(Pi+1). (6.17)

This is enough, as the rest of Algorithm 8 has the same structure as Algorithm 6.

We first show that Equation (6.16) is true. The fact that Pi ĺ Pi+1 is clear, and Pi+1 ĺ P
is shown in the following proposition.

6.2.7 Proposition Suppose that we are in iteration i of Algorithm 8. Let P Ď M be the lectically
smallest Ki-closed set lectically greater or equal to Pi which is not Li-closed. Then Pi+1 ĺ P.
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Proof We first observe that P2
i+1 is Ki-closed by definition, but not Li-closed, since

(P2
i+1)

2
K˜Li

‰ P2
i+1

because of Th(K˜Li) Ď Li. This implies P ĺ P2
i+1, and the claim holds if P = P2

i+1.

It remains to consider the case P ň P2
i+1. In this case, by construction of P2

i+1 and since

P is Ki-closed, the set P must be an intent of K˜Li. Since P is not Li-closed, there must

exist a set P Ď P and an element m P P2
Li
zP such that

confK(P Ñ tm u) ě c,

and P Ñ tm u is valid in Li. In particular, m P P
2
Li
zKi(P).

Since P is an intent of K˜Li we can assume that P is also an intent of K˜Li. If P ň Pi,

then by Proposition 6.2.6 it would be true that m P Ki(P) Ď Ki(P) = P, a contradiction.

Therefore, Pi ĺ P. By definition of P1
i+1 it holds that P1

i+1 ĺ P, and thus P1
i+1 ĺ P ĺ P,

because P Ď P. Thus, Pi+1 ĺ P, as required. ˝

Furthermore, it is easy to see that Pi+1 is not Li-closed: if Pi+1 = P1
i+1, then the element

m found during this computation satisfies m P Li(Pi+1)zPi+1. If Pi+1 = P2
i+1, then P2

i+1 ‰
(P2

i+1)
2
K˜Li

shows that Pi+1 is not Li-closed.

It remains to show that Qi+1 satisfies Equation (6.17), i. e.

Pi+1 Ĺ Qi+1 Ď Li(Pi+1).

To see this, first suppose that Pi+1 = P1
i+1. Then Q contains an attribute m that satisfies

m R Ki(Pi+1) Ě Pi+1. In this case, confK(P1
i+1 Ñ tm u) ě c and m P P2

Li
, thus (Pi+1 Ñ

tm u) P Li and Qi+1 Ď Li(Pi+1). On the other hand, if Pi+1 = P2
i+1, then Pi+1 ‰

(Pi+1)
2
K˜Li

= Qi+1. Since Th(K ˜Li) Ď Li, Qi+1 Ď Li(Pi+1) is true. Finally, Qi+1 Ę
Ki(P2

i+1) is clear since Ki(P2
i+1) = P2

i+1 and Q Ğ P2
i+1.

We have thus shown that Algorithm 8 has the form of Algorithm 6. The following result

is then an immediate consequence of Theorem 6.1.17 and Theorem 6.1.19. Note that our

algorithm only asks implications which are either valid in K, or at least have confidence

at least c in K. Thus, KizK Ď Thc(K) holds in every iteration i. Therefore, in contrast to

Algorithm 7, Algorithm 8 always computes a base of Th(p)X Thc(K).

6.2.8 Corollary Let K = (G, M, I) be a finite formal context, ďM a linear order on M, p a
domain expert on M, c P [0, 1] and K Ď Th(p)X Thc(K). Then Algorithm 8 applied to this
input terminates after finitely many steps. If n is the number of iterations of this run, then KnzK is
a confident base of Th(p)X Thc(K) with background knowledge K, i. e. KnzK Ď Thc(K) and

Cn(Kn) = Cn(Th(p)X Thc(K)).

If L is the formal context that consists of all counterexamples provided by p during the exploration,
then for each (A Ñ B) P Thc(K) it is true that either (A Ñ B) P Cn(Kn) or (A Ñ B) R
Th(L).
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Model Exploration by Confidence

with Completely Specified Counterexamples

We have seen how we can extend attribute exploration to explore implications which enjoy

a high confidence in some given formal context. In this chapter we want to extend this

generalization of attribute exploration even further to be able to explore GCIs with high

confidence in finite interpretations. The basis for this extension will be the model exploration
algorithm from [41], an extension of attribute exploration to explore valid GCIs of finite

interpretations.

Model exploration, similarly to attribute exploration, assumes that a certain domain of

interest is representable by a finite interpretation Iback, which we shall call the background
interpretation of the exploration process. However, we assume that this interpretation is not

directly accessible, but instead an expert is given that allows us to decide whether certain

GCIs are valid in Iback. In addition, if a given GCI C Ď D is not valid in Iback, then the

expert can provide counterexamples for C Ď D in a suitable way.

The principal way how model exploration works is again very akin to attribute explo-

ration. Given a finite connected subinterpretation I of Iback and a set B of valid GCIs of Iback,

the algorithm successively generates valid GCIs C Ď D of I , which do not follow from B,

and presents them to some expert. If the expert confirms C Ď D, then it is added to B. If

the expert rejects C Ď D, then she provides a counterexample in the form of a connected

subinterpretation of Iback, which is added to I . Since I and B play the same role as the

working context and the set of known implications during attribute exploration, we shall

refer to them as the working interpretation and the set of known GCIs, respectively. If no more

GCIs can be generated to be asked to the expert, the algorithm stops. It can be shown that

at this point, the set B is a finite base of Iback.

The foregone description already suggests that there are some difficulties in transferring

attribute exploration to the setting of GCIs and finite interpretations. The most apparent is

that the set of GCIs we potentially have to cover is infinite, as the set of valid GCIs of Iback
is infinite.
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Another problem is that validity of GCIs in interpretations deploys a closed-world se-

mantics: if an element x P ∆
I of a (finite) interpretation I = (∆I , ¨I ) does not have an

r-successor in I for some r P NR, then it is assumed that x does not have r-successors Iback.

Therefore, if we add an element x of Iback as a counterexample for a GCI to our working

interpretation I , then we also have to include all its role successors (and their role succes-

sors, and so on) in Iback, nevertheless they may not be necessary for the counterexample;

otherwise, elements in I may serve as counterexamples to GCIs which are valid in Iback,
because missing information is considered as false information. The approach followed

by Baader and Distel to account for this problem is to let the expert provide connected
subinterpretations of Iback as counterexamples for GCIs.

We shall discuss the details of model exploration in Section 7.1. Based on this discus-

sion, we shall develop a model exploration algorithm that also includes GCIs with high

confidence among those proposed to the expert. This algorithm, which we shall call model
exploration by confidence, will be introduced in Section 7.2, and its construction will mimic

the argumentation used by Baader and Distel for their model exploration algorithm.

The results presented in this section have been published previously in [31].

7.1. Model Exploration with Valid GCIs

In this section we shall review the argumentation used to develop model exploration, as

given in [41, Chapter 6]. In the next section, we shall use this argumentation presented

here and generalize it to the setting of GCIs with high confidence in finite interpretations.

Model exploration is based on the result that bases of finite interpretations I can be

obtained from bases of their corresponding induced formal context KI (Theorem 4.3.7).

Since attribute exploration arises from the computation of the canonical base by adding

suitable expert interaction (see Section 2.5), one could think of obtaining an algorithm for

model exploration by adding suitable expert interaction during the computation of bases

of KI . It shall turn out that this is indeed correct.

However, there is a technical problem which does not arise in attribute exploration: when

we add counterexamples to our current working interpretation I during model exploration,

then the attribute set MI of the corresponding induced context KI may change, since it

depends on the elements of I . Recall that MI was defined as

MI = NC Y tKuY t Dr.XI | r P NR, X Ď ∆
I , X ‰ Hu.

Thus, to allow to use attribute exploration as a basis for model exploration, we need to fix

the attribute set, and the best way for this would be to use MIback . However, since we cannot

access the background interpretation Iback directly, we cannot compute this set completely.

On the other hand, it can be shown that we can compute the set MIback incrementally, using

the fact that the expert confirms certain types of GCIs, and then use the parts of MIback we

already know for the exploration process.
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To explain how this can be done, we shall first discuss in Section 7.1.1 how we can

compute bases of formal contexts where the set of attributes is allowed to grow during the

computation. Thereafter, we shall see in Section 7.1.2 how we can transfer this algorithm to

the setting of computing finite bases of finite interpretations I , thus allowing the set MI

to be computed successively during the computation. Finally, we shall see in Section 7.1.3

how we can add expert interaction to avoid direct access to the underlying interpretation,

thus obtaining the model exploration algorithm.

7.1.1. Growing Sets of Attributes

We want to find an algorithm that allows us to compute bases of formal contexts where the

attribute set is allowed to grow during the computation. We can think of this situation as

follows: we want to compute a base of a formal context, which we cannot access completely,

in the sense that some of the attributes in this formal context are “hidden”. However,

during the computation of the base, hidden attributes are uncovered incrementally. The

goal is then to find an algorithm which allows us to compute bases in such a setting.

Obtaining such an algorithm is actually not that difficult. For this let us consider how

Algorithm 2 computes the canonical base. There, we use the Next-Closure algorithm to

enumerate the premises of the canonical base of a given formal context K = (G, M, I),
using some linear order ďM on M. If M = tm1, . . . , mn u and

mn ďM mn´1 ďM ¨ ¨ ¨ ďM m1,

then the Next Closure algorithm firstly enumerates all premises which are subsets ofH,

then those which are subsets of tm1 u, then those of tm1, m2 u, and so on. In particular,

it will not consider an element mk P M before it has enumerated all premises which are

subsets of tm1, . . . , mk´1 u.
We can exploit this idea for our purpose of computing bases with growing sets of

attributes: if the attribute set in iteration i is Mi, ordered by ďMi
, and we are about to add

some new attributes m1, . . . , mn to Mi to obtain

Mi+1 := Mi Y tm1, . . . , mn u,

then we define the linear order ďMi+1
on Mi+1 by ordering the elements in Mi Ď Mi+1 as

before, i. e.

ďMi
= ďMi+1

XMi ˆMi, (7.1)

and requiring in addition that

mj ďMi+1
x (7.2)

is true for all j P t 1, . . . , n u and x P Mi. In other words, we just put the new elements

before the old elements. In that way, the Next-Closure behaves as if the elements would

have been there from the start, and computes the base as desired.
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Algorithm 9 (Algorithm 8 from [41]) Computing a Base of a Formal Context with Grow-

ing Sets of Attributes and Background Knowledge

0 define base/growing-set-of-attributes(K = (G, M, I), ďM, S Ď Th(K))
1 i := 0

2 Pi :=H
3 Ki :=H
4 Ki := K

5 Mi := M
6 Si := S
7 ďMi

:= ďM

8

9 forever do

10 read Ki+1 = (G, Mi+1, Ii+1) such that Mi Ď Mi+1 and Ii = Ii+1 XMi ˆMi

11 read Si+1 such that Si Ď Si+1 Ď Th(Ki+1)
12 choose ďMi+1

such that (7.1) and (7.2) hold.

13

14 Ki+1 := t Pr Ñ (Pr)2
Ki+1

| Pr ‰ (Pr)2
Ki+1

, r P t 0, . . . , i u u
15

16 Pi+1 := next-closure(Mi+1, ďMi+1
, Pi, Ki+1 Y Si+1)

17 if Pi+1 = nil exit

18

19 i := i + 1
20 end

21

22 return Ki

23 end
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An implementation of this idea is shown in Algorithm 9. There we start with some

initial formal context K0 = K = (G, M, I) and some background knowledge S0 = S Ď
Th(K). Then, in every iteration we allow to extend the current context Ki = (G, Mi, Ii)
by providing a new set Mi+1 Ě Mi of attributes and a new incidence relation Ii+1 Ď
Mi+1 ˆMi+1 which satisfies

Ii = Ii+1 XMi ˆMi.

This corresponds to our perception that at the beginning of the run of the algorithm, some

of the attributes are hidden, and are uncovered during the run.

For this algorithm to make sense, we of course require that at a certain point everything

from the formal context has been uncovered, i. e. that for some ℓ P Ně0 it is true that

Mℓ = Mi for all i ě ℓ. From this point on, Algorithm 9 behaves like Algorithm 2 for

computing the canonical base of a given formal context.

7.1.1 Theorem (Theorems 6.2 and 6.3 from [41]) Let K = (G, M, I) be a finite formal con-
text, ďM a linear order on M, and S Ď Th(K). Then in a run of Algorithm 9, let ℓ P Ně0 be
such that Mℓ = Mi for all i ě ℓ. Then this run terminates. If n is the last iteration of this run,
then Kn is a base of Kn with background knowledge Sn.

A difference to the classical computation of the canonical base as shown in Algorithm 2

is that in the latter we only consider sets P as premises for implications which are closed

under the currently known implications, but are not intents of the given formal context.

In contrast to this, Algorithm 9 considers all sets Pi which are closed under the currently

known implications, no matter whether they are intents of Ki. The reason for this is that

even if Pi is an intent of Ki, it could very well be that Pi is not an intent of Kn (where n is the

number of iterations of the algorithm) because of attributes which have been introduced in

Kn, but were not present in Ki. Since we cannot know whether Pi will be an intent of Kn

or not, when we compute it, we have to consider it as well. Otherwise, we cannot guarantee

that Kn will be a base of Kn.

Unfortunately, the fact that we have to keep all those sets Pi may lead to Kn not being

irredundant anymore. This has been illustrated in [41] by the following example.

7.1.2 Example (Example 6.1 from [41]) We consider the following run of Algorithm 9 with

input K = K0 as shown in Figure 7.1, and S = S0 = H = S1 = . . . = S6:

k Mk+1zMk Lk Pk

0 H H H
1 H H tA u
2 tB u H tB u
3 H H tA,B u
4 tC u t tA u Ñ tA,C u, tA,B u Ñ tA,B,C u u tC u
5 H ttA u Ñ tA,C u, tA,B u Ñ tA,B,C u, tC u Ñ tA,C u u tA,B,C u
6 H ttA u Ñ tA,C u, tA,B u Ñ tA,B,C u, tC u Ñ tA,C u u nil
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K0 = K1 =

A

1 ˆ
2

K2 = K3 =

A B

1 ˆ
2 ˆ

K3 = K4 = K5 =

A B C

1 ˆ ˆ
2 ˆ

Figure 7.1.: Formal Contexts for Example 7.1.2

In iterations 2 and 4, the new attributes B and C are added, as shown in Figure 7.1. The

algorithm terminates in iteration 6 with output L6, which is clearly non-redundant: the

implication tA,B u Ñ tA,B,C u is entailed by tA u Ñ tA,C u. ♦

7.1.2. Computing Bases of Given Finite Interpretations

We now want to use Algorithm 9 to devise an algorithm that allows us to compute bases of

finite interpretations I without computing MI first. Instead, we want that the elements of

the set MI are computed successively during the run of the algorithm. In this way, we can

immediately start with computing valid GCIs of I , and do not have to wait for MI to be

computed completely.

The successive computation of the elements of MI is achieved in Algorithm 9 by defining

the sets Mi as follows. For i = 0, we define

M0 = NC Y tKu.

Then, during the run of the algorithm, we add elements of the form Dr.XI for r P NR and

X Ď ∆
I , X ‰ H. More precisely, whenever we compute a set Pi in Algorithm 9, we define

Mi+1 := Mi Y t Dr.(
l

Pi)
II | r P NR u,

where the union is only up to equivalence, i. e. if for some C := Dr.(
d

Pi)
II there already

exists a D P Mi such that C ” D, then we do not add C in the definition of Mi+1.

We also need to specify how we define the formal contexts Ki and the sets Si of back-

ground knowledge. We set Ki to be the induced formal context of Mi and I , and we

define

Si+1 = t t A u Ñ t B u | A, B P Mi, A Ď B u.

The resulting algorithm is shown in Algorithm 10.

Note that Algorithm 10 has the form of Algorithm 9, and thus we can argue that a run of

Algorithm 10 terminates with finite sets NC, NR and a finite interpretation I as input. In

this case, all concept descriptions which are added to the set of attributes during the run of
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Algorithm 10 (Algorithm 9 from [41]) Computing a Base of a Given Interpretation with

Incremental Computation of MI

0 define base-of-interpretation(I = (∆I , ¨I ) over NC and NR)

1 i := 0

2 Pi :=H
3 Mi := NC Y tKu
4 Ki :=H
5 Si := t tK u Ñ t A u | A P NC u
6 choose ďMi

as a linear order on Mi

7

8 forever do

9 Mi+1 := Mi Y t Dr.(
d

Pi)
II | r P NR u

10 Ki+1 := induced-context(I , Mi+1)

11 Ki+1 := t Pr Ñ (Pr)2
Ki+1

| Pr ‰ (Pr)2
Ki+1

, r P t 0, . . . , i u u
12 Si+1 := t t A u Ñ t B u | A, B P Mi+1, A Ď B u
13 choose ďMi+1

such that (7.1) and (7.2) hold.

14

15 Pi+1 := next-closure(Mi+1, ďMi+1
, Pi, Ki+1 Y Si+1)

16 if Pi+1 = nil exit

17

18 i := i + 1
19 end

20

21 return t
d

P Ď (
d

P)II | (P Ñ P2
Ki+1

) P Ki+1 u
22 end
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the algorithm are, up to equivalence, elements of MI , which is finite. Thus, there exists a

number ℓ P Ně0 such that for all i ě ℓ it is true that Mi = Mℓ. Then, by Theorem 7.1.1,

Algorithm 10 has to terminate.

To see that the definition of Mi will eventually yield all elements of MI , up to equivalence,

we first observe that Mi Ď MI is true up to equivalence for all iterations i of Algorithm 10.

On the other hand, if Dr.XI P MI , then XI ” XIII = (XI )II , and XI is expressible in

terms of MI by Lemma 4.3.5. Therefore, there exists U Ď MI such that

XI ”
l

U.

If n is the number of iterations of the algorithm, and if Kn denotes the induced context of

Mn and I , then we find

(
l

U2
Kn

)I = U3
Kn

= U1
Kn

= (
l

U)I

using Proposition 4.2.9. Then

Dr.XI ” Dr.(XI )II ” Dr.(
l

U2
Kn

)II .

Thus, it suffices to consider only intents of the final context Kn. The following result shows

that these intents are among the sets Pi.

7.1.3 Lemma (Partly Lemma 6.3 from [41]) Consider a terminating run of Algorithm 10 with
n iterations, and let Q Ď Mn. Then if Q = Q2

Kn
, then Q = Pi for some i P t 0, . . . , n u.

Using this lemma we can show that Mn is, up to equivalence, equal to MI . It can then

be shown that a base of the induced context of I and Mn yields a base of I as well [41,

Corollary 5.14]. From this, we immediately obtain the correctness of Algorithm 10.

7.1.4 Theorem (Theorem 6.9 from [41]) Let I be a finite interpretation over NC and NR. Then
the set

K = base-of-interpretation(I)

is a finite base of I .

7.1.3. An Algorithm for Exploring Interpretations

Based on Algorithm 10, we now want to discuss an algorithm for model exploration. For

this, recall that during model exploration we suppose that our domain of interest can be

represented by a finite interpretation Iback, the background interpretation of the exploration.

If we could access Iback directly, then to explore Iback would just mean to compute a base

of it, which we could achieve by using Algorithm 10. However, as already discussed, we

assume that Iback cannot be accessed directly, but instead is represented by an expert.
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To turn Algorithm 10 into an algorithm that allows us to compute a base of Iback using

only the expert as a means to access this interpretation, we want to replace every direct

access to Iback in Algorithm 10 by a suitable expert interaction. For this we observe that

there are two places in Algorithm 10 that directly access the given interpretation:

i. when computing concept descriptions of the form Dr.(
d

Pi)
Iback (line 9 of Algo-

rithm 10),

ii. when computing Ki as induced context of Mi and Iback (line 10 of Algorithm 10).

The computation of Ki we can fix easily if instead of computing the induced context of Mi

and Iback, we just compute the induced context Mi and the current working interpretation

of the exploration process. For computing Dr.(
d

Pi)
Iback , however, we need to use the

expert.

For this, we need to consider another issue first, which we have already talked about in

the introduction, namely the way the experts specifies counterexamples during the explo-

ration. We had argued that if the expert gives an element x P ∆
Iback from the background

interpretation as a counterexample, then she also has to include all corresponding concept

names and role successors x has in Iback. Otherwise, there is the risk that the provided

counterexamples invalidate GCIs which are actually valid in the background interpretation

Iback.

To make this more formal, Distel introduced the notion of a connected subinterpretation.

7.1.5 Definition (Connected Subinterpretations; Definition 6.1 from [41]) Let I = (∆I , ¨I )
be a finite interpretation over NC and NR. Define

namesI (x) := tC P NC | x P CI u,

succI (x, r) := t y P ∆
I | (x, y) P rI u,

for x P ∆
I and r P NR. An interpretation J = (∆J , ¨J ) over NC and NR is called a

subinterpretation of I if and only if

i. ∆
J Ď ∆

I ,

ii. namesI (x) = namesJ (x) for all x P ∆
J , and

iii. succJ (x, r) Ď succI (x, r) for all x P ∆
J , r P NR.

J is called a connected subinterpretation of I if J is a subinterpretation of I , and in addition

it is true that

succJ (x, r) = succI (x, r)

is true for all x P ∆
J , r P NR. In this case we shall say that I extends J . ♦



164 7. Model Exploration by Confidence

If we now ensure that during the exploration process the current working interpretation is a

connected subinterpretation of the background interpretation Iback, then we can guarantee

that counterexamples provided by the expert do not accidentally invalidate valid GCIs.

This can be achieved by adding counterexamples only as connected subinterpretations of

Iback to our current working interpretation.

7.1.6 Lemma (Lemma 6.12 from [41]) Let J = (∆J , ¨J ) be an interpretation over NC and
NR which is a connected subinterpretation of the interpretation I . Then for all ELK

gfp concept
descriptions C over NC and NR it is true that

CJ = CI X ∆
J .

7.1.7 Theorem (Corollary 6.13 from [41]) Let I = (∆I , ¨I ) be a finite interpretation over NC

and NR, and let J = (∆J , ¨J ) be a connected subinterpretation of I . Let C, D be two ELK
gfp

concept descriptions over NC and NR. Then if C Ď D is valid in I , then C Ď D is also valid in
J .

Proof Since C Ď D holds in I , it is true that CI Ď DI . Using Lemma 7.1.6 we thus obtain

CJ = CI X ∆
J Ď DI X ∆

J = DJ ,

i. e. C Ď D holds in J , as it was claimed. ˝

Now that we know how the expert should provide counterexamples to proposed GCIs, let us

reconsider the question of how to compute concept descriptions of the form Dr.(
d

Pi)
IbackIback .

Recall that since we cannot access Iback, we cannot compute this concept description directly.

What we can compute is the concept description Dr.(
d

Pi)
IℓIℓ , where Iℓ is the currently

known interpretation. The good thing is that the expert can ensure that Dr.(
d

Pi)
IbackIback

and Dr.(
d

Pi)
IℓIℓ are equivalent.

7.1.8 Lemma (Lemma 6.14 from [41]) Let I be a finite interpretation over NC and NR, and let
J be a connected subinterpretation of I . Then for all ELK

gfp concept descriptions C over NC and
NR, it is true that if C Ď CJ J is valid in I , then CII ” CJ J .

If we choose I = Iback, J = Iℓ and C =
d

Pi in the previous lemma we see that if the

expert confirms the GCI

l
Pi Ď (

l
Pi)

IℓIℓ ,

then (
d

Pi)
IℓIℓ ” (

d
Pi)

IbackIback , just as we need it.

On the other hand, if the expert rejects
d

Pi Ď (
d

Pi)
IℓIℓ , then she adds counterexamples

to the current working interpretation Iℓ to yield a new working interpretation Iℓ+1. Ifd
Pi Ę (

d
Pi)

Iℓ+1Iℓ+1 , then the GCI

l
Pi Ď (

l
Pi)

Iℓ+1Iℓ+1
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Algorithm 11 (Algorithm 11 from [41]) A Model Exploration Algorithm

0 define model-exploration(I = (∆I , ¨I ) over NC and NR)

1 i := 0

2 Pi :=H
3 Mi := NC Y tKu
4 Ki :=H
5 Si := t tK u Ñ t A u | A P NC u
6 choose ďMi

as a linear order on Mi

7 ℓ := 0

8 Iℓ := I
9

10 forever do

11 ;; expert interaction
12 while expert refutes

d
Pi Ď (

d
Pi)

IℓIℓ do

13 Iℓ+1 := new interpretation such that

14 ´ Iℓ+1 extends Iℓ
15 ´ Iℓ+1 contains counterexamples for

d
Pi Ď (

d
Pi)

IℓIℓ

16 ℓ := ℓ+ 1
17 end

18

19 ;; add new attributes (up to equivalence)
20 Mi+1 := Mi Y t Dr.(

d
Pi)

IℓIℓ | r P NR u
21

22 ;; update Ki+1,Si+1 and Li+1

23 Ki+1 := induced-context(Iℓ, Mi+1)

24 Ki+1 := t Pr Ñ (Pr)2
Ki+1

| Pr ‰ (Pr)2
Ki+1

, r P t 0, . . . , i u u
25 Si+1 := t t A u Ñ t B u | A, B P Mi+1, A Ď B u
26 choose ďMi+1

such that (7.1) and (7.2) hold

27

28 ;; next closed set
29 Pi+1 := next-closure(Mi+1, ďMi+1

, Pi, Ki+1 Y Si+1)

30 if Pi+1 = nil exit

31

32 i := i + 1
33 end

34

35 return t
d

P Ď (
d

P)IℓIℓ | (P Ñ P2
Ki+1

) P Ki+1 u
36 end
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is again proposed to the expert. If
d

Pi Ď (
d

Pi)
Iℓ+1Iℓ+1 , i. e.

d
Pi ” (

d
Pi)

Iℓ+1Iℓ+1 , then

the next set Pi+1 is considered.

We are now able to adapt Algorithm 10 by replacing all references to the background

interpretation by expert interactions. The result is shown in Algorithm 11. From our

previous discussion we now easily obtain the following result.

7.1.9 Theorem (Theorem 6.16 from [41]) Let Iback be a finite interpretation, and let I be a
connected subinterpretation of Iback. Then Algorithm 11 applied to I , using Iback as background
interpretation, terminates after finitely many steps. If n is the number of iterations in this run, and
if Iℓ is the final working interpretation, then the set

t
l

P Ď (
l

P)IℓIℓ | (P Ñ P2
Kn+1

) P Kn+1 u

is a finite base of Iback.

7.2. Model Exploration with Confident GCIs

In the previous section we have seen how we can obtain an algorithm for model exploration

by extending Baader and Distel’s results on computing finite bases of finite interpretations.

In this section we want to generalize this argumentation to the setting of GCIs with high

confidence, i. e. we want to obtain an algorithm for model exploration which not only asks

GCIs which are valid in the current working interpretation, but which is also allowed to

ask GCIs whose confidence in the original data is just high enough. This process we shall

call model exploration by confidence.
The argumentation used for this model exploration algorithm essentially consists of

amending the computation of finite bases of finite interpretations by suitable expert in-

teraction. Consequently, the argumentation we shall develop for model exploration by

confidence will be based on the computation of bases of GCIs with high confidence. How-

ever, the interpretation we consider during the exploration process contains a connected

subinterpretation consisting of the counterexamples given by the expert, and all GCIs

which are not valid within this subinterpretation should not be considered further, even if

they have a confidence above c in the initial working interpretation.

We can thus think of Iℓ as consisting of two parts: the initial working interpretation I ,

which may contain errors and where we apply our confidence heuristics, and a connected

subinterpretation IℓzI , consisting of the counterexamples given by the expert, where we

only consider valid GCIs. We can think of all elements of I as untrusted, and of all elements

of IℓzI as trusted.

To generalize the argumentation for model exploration to GCIs with high confidence,

we shall thus start by devising an algorithm that allows us to compute finite bases of finite

interpretations containing trusted and untrusted elements, i. e. that computes bases of

Thc(I)X Th(IℓzI).
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We shall do this in Section 7.2.1.

Thereafter, we shall follow the argumentation of the previous section. This means that in

Section 7.2.2 we shall discuss an algorithm that computes bases of formal contexts containing

trusted and untrusted objects, and where the attribute set is allowed to grow during the

computation. Thereafter, we shall discuss in Section 7.2.2 how we can adapt this algorithm

to compute bases of finite interpretations that contain trusted and untrusted individuals,

and where the set MI is computed incrementally during the run of the algorithm. Finally,

we shall see in Section 7.2.3 how we can introduce suitable expert interaction to obtain an

algorithm for model exploration by confidence.

7.2.1. Bases of Finite Interpretations with Untrusted Elements

Let J be a finite interpretation over NC and NR, and let I be a subinterpretation of J . As

already discussed, we want to think of I as the interpretation of untrusted elements, and of

the interpretation

J zI := (∆J z∆I , ¨J zI )

as the interpretation of trusted elements (provided by the expert), where we define

AJ zI := AJ X ∆
J z∆I = AJ z∆I ,

rJ zI := rJ X (∆J z∆I )ˆ (∆J z∆I )

for A P NC and r P NR.

The aim of this section is to obtain a method to find finite bases of J with untrusted

elements I . More precisely, let us define for c P [0, 1] the set

Thc(J , I) := tC Ď D | C, D P ELK
gfp(NC, NR),

CJ z∆I Ď DJ z∆I , |(C[D)J X ∆
I | ě c ¨ |CJ X ∆

I | u.

We then want to describe a finite base of Thc(J , I).
The results of this section have been published previously in [29].

Note that we have given the confidence constraint in the form of

|(C Ď D)J X ∆
I | ě c ¨ |CJ X ∆

I |, (7.3)

which is the suitable formulation for our setting of I being a subinterpretation of J . On

the other hand, in our later considerations, both I and J zI will be connected subinter-

pretations of J , and in this case the definition of Thc(J , I) can be simplified as follows:

recall that in the case that I is a connected subinterpretation of J , Lemma 7.1.6 yields that

for all C, D P ELK
gfp(NC, NR)

CJ X ∆
I = CI ,
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(C[D)J X ∆
I = (C[D)I .

Thus, Equation (7.3) simplifies to

|(C[D)I | ě c ¨ |CI |,

which is equivalent to confI (C Ď D) ě c. Furthermore, since J zI is a connected subin-

terpretation of J , we obtain again by Lemma 7.1.6 that

CJ zI = CJ X (∆J z∆I ) = CJ z∆I

for all C P ELK
gfp(NC, NR). Therefore, CJ z∆I Ď DJ z∆I is equivalent to CJ zI Ď DJ zI ,

i. e. (C Ď D) P Th(J zI). Thus, the definition of Thc(J , I) can be rewritten as

Thc(J , I) = tC Ď D | C, D P ELK
gfp(NC, NR), CJ z∆I Ď DJ z∆I , confI (C Ď D) ě c u

= t (C Ď D) P Th(J zI) | confI (C Ď D) ě c u

= Th(J zI)X Thc(I),

which corresponds to our intention of finding a finite base of all GCIs which are valid in

J zI and have high confidence in I .

Let us return to the general case that I is just a subinterpretation of J . To find a base for

the set Thc(J zI), we make use of the ideas we have already used to find finite confident

bases of Thc(I). More precisely, we first observe that

Th(J ) Ď Thc(J , I).

Since we can find bases of Th(J ) using the results of Baader and Distel, we again concen-

trate on finding bases of the set Thc(J , I)zTh(J ). In other words, if B is a base of Th(J ),
then we seek a set C Ď Thc(J , I)zTh(J ) which is complete for Thc(J , I)zTh(J ). In

this case, B Y C is a base of Thc(J , I).
To find such a set C we first observe that

(C Ď D) P Thc(J , I) ðñ (CJ J Ď DJ J ) P Thc(J , I).

This is because

CJ = CJ J J ,

(C[D)J = (C[D)J J J

is true, thus

CJ z∆I Ď DJ z∆I ðñ CJ J J z∆I Ď DJ J J z∆I ,
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and Equation (7.3) is true if and only if

|(C Ď D)J J J X ∆
I | ě c ¨ |CJ J J X ∆

I |.

If now B is a base of Th(J ), then it is true that

B Y tCJ J Ď DJ J u |ù (C Ď D).

This is because B |ù (C Ď CJ J ), since C Ď CJ J is valid in J . Furthermore, DJ J Ď D,

and thus

B Y tCJ J Ď DJ J u |ù (C Ď CJ J Ď DJ J Ď D).

Having these two considerations in mind we define

Conf(J , c, I) := tXJ Ď YJ | Y Ď X Ď ∆
J , (XJ Ď YJ ) P Thc(J , I) u.

Since J is a finite interpretation, ∆
J is finite. We therefore obtain the following result.

7.2.1 Theorem Let J be a finite interpretation, let I be a subinterpretation of J , and let c P
[0, 1]. Then if B is a finite base of J , then the set

B YConf(J , c, I)

is a finite base of Thc(J , I).

This result already solves our initial problem of finding a finite base of Thc(J zI). In

the following, we want to extend this result in the direction of computing finite bases of

Thc(J , I) by computing suitable bases in the corresponding induced contexts. This will

be helpful later when we develop our algorithm for model exploration by confidence.

To this end, we first need to introduce some extra notation. Let X Ď ∆
J . Then we shall

denote with KJ æX the formal context whose set of objects is restricted to X, i. e.

KJ æX := (X, MJ ,∇),

where (x, C) P ∇ ðñ x P CJ for x P X, C P MJ as before.

We can now formulate a result that allows to find bases of interpretations with untrusted

elements from bases of corresponding induced contexts.

7.2.2 Theorem Let J be a finite interpretation over NC and NR, and let I be a subinterpretation
of J . Let c P [0, 1], and define

T := Thc(KJ æ∆I )X Th(KJ æ∆J z∆I ).

Let L Ď T be complete for T . Then
d
L Ď Thc(J , I) and

d
L is complete for Thc(J , I).
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Proof We first show
d
L Ď Thc(J , I). For this we need to show that for each (

d
X Ďd

Y) P
d
L it is true that

i. |(
d

X[
d

Y)J X ∆
I | ě c ¨ |(

d
X)J X ∆

I |, and

ii. (
d

X)J z∆I Ď (
d

Y)J z∆I .

For the first subclaim we observe that confKJ æ
∆I
(X Ñ Y) ě c, i. e.

|(XYY)1 X ∆
I | ě c ¨ |X1 X ∆

I |.

Since X1 = (
d

X)J and Y1 = (
d

Y)J by Proposition 4.2.9, we obtain

|(
l

(XYY))J X ∆
I | ě c ¨ |(

l
X)J X ∆

I |,

and since
d
(XYY) =

d
X[

d
Y we finally get

|(
l

X[
l

Y)J X ∆
I | ě c ¨ |(

l
X)J X ∆

I |,

as required.

For the second subclaim we observe that X1z∆I Ď Y1z∆I , because X Ñ Y is valid in

KJ æ∆J z∆I . Since X1 = (
d

X)J and Y1 = (
d

Y)J , we obtain

(
l

X)J z∆I Ď (
l

Y)J z∆I ,

as required.

We have thus shown that
d
L Ď Thc(J , I). We shall now consider the completeness ofd

L for Thc(J , I).
To this end, we shall show the following two subclaims

i.
d
L |ù (

d
U Ď (

d
U)J J ) for all U Ď MJ , and

ii.
d
L |ù Conf(J , c, I).

Since

t
l

U Ď (
l

U)J J | U Ď MJ u

is a base of J , the completeness of
d
L for Thc(J , I) then follows immediately from

Theorem 7.2.1.

For the first subclaim let U Ď MJ . Because

Th(KJ ) Ď Thc(KJ æ∆I )X Th(KJ æ∆J z∆I )
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it follows that L is complete for KJ . Therefore,

L |ù (U Ñ U2).

By Lemma 5.2.19 we obtain
l

L |ù (
l

U Ď
l

U2),

and since
d

U2 ” (
d

U)J J , we obtain
l

L |ù (
l

U Ď (
l

U)J J )

as required.

For the second subclaim let (XJ Ď YJ ) P Conf(J , c, I). Then by Proposition 4.2.9 it is

true that

XJ ”
l

X1, YJ ”
l

Y1.

Therefore,
l

L |ù (XJ Ď YJ ) ðñ
l

L |ù (
l

X1 Ď
l

Y1). (7.4)

Therefore, to show
d
L |ù (XJ Ď YJ ) it suffices to show L |ù (X1 Ñ Y1).

Recall that since (XJ Ď YJ ) P Conf(J , c, I), it is true that

|(XJ [YJ )J X ∆
I | ě c ¨ |XJ J X ∆

I |.

This implies

|(
l

(X1 YY1))J X ∆
I | ě c ¨ |(

l
X1)J X ∆

I |.

and thus

|((X1 YY1)1 X ∆
I | ě c ¨ |X2 X ∆

I |,

i. e. (X1 Ñ Y1) P Thc(KJ æ∆I ).
Furthermore, it is true that

XJ J z∆I Ď YJ J z∆I ,

and by Proposition 4.2.9 we have XJ J = X2, YJ J = Y2, thus

X2z∆I Ď Y2z∆I ,

i. e. (X1 Ñ Y1) P Th(KJ æ∆J z∆I ).
Since L is complete for T , we thus obtain that

L |ù (X1 Ñ Y1),

and thus
d
L |ù (

d
X1 Ď

d
Y1) by Lemma 5.2.19, and

d
L |ù (XJ Ď YJ ) by Equa-

tion (7.4). ˝
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7.2.2. Computing Bases of Formal Contexts with Growing Sets of Attributes

We have seen how we can obtain finite bases of interpretations containing untrusted el-

ements. In the following two sections we want to devise an algorithm that allows us to

compute this base in a manner which is suitable for being adapted towards model explo-

ration by confidence. In particular, we shall see in this section how we can compute bases

of

Thc(KJ æ∆I )X Th(KJ æ∆J z∆I ), (7.5)

where we compute the set MJ incrementally during the run of the algorithm. Then, in

the next section we shall see how we can use this algorithm and Theorem 7.2.2 to compute

finite bases of interpretations that contain untrusted elements.

Let us consider the problem of finding an algorithm that allows us to compute bases of

the set given in Equation (7.5) from a more abstract point of view. More precisely, let us

consider two formal contexts K1 and K2 with the same attribute set M. Then we want to

find an algorithm that computes a base of

Thc(K1)X Th(K2), (7.6)

and which allows us to incrementally supply the elements of M as the computation pro-

ceeds.

As a special case of Equation (7.6) we first consider the case that K2 = (H, M,H), i. e. we

want to devise the algorithm such that it computes a base of Thc(K1). As in Section 7.1.1,

we want to obtain such an algorithm by adapting the classical algorithm for computing the

canonical base of a formal context. Indeed, we could simply obtain such an algorithm if we

would replace in Algorithm 9 every occurrence of (¨)2
Ki+1

by a call to the closure operator

induced by Thc(Ki+1). However, as we had already argued in Section 6.2.1, computing

closures under Thc(Ki+1) may be infeasible.

To avoid this, we shall make use of the ideas we have developed in Section 6.2.2, when

we devised an algorithm for exploration by confidence that avoids computing closures

under Thc(K). Indeed, we can just take Algorithm 8, and instantiate it with an expert that

confirms all implications.

Recall that in this algorithm there were two cases of implications asked to the expert:

implications were either of the form Pi+1 Ñ tm u, where confK(Pi+1 Ñ tm u) ě c and

c R Ki(Pi+1), or Pi+1 Ñ (Pi+1)
2
K˜Li

. We can simplify these two cases into one case by

defining for P Ď M and c P [0, 1]

PK,c := tm P M | confK(P Ñ tm u) ě c u.

Then we only ask implications of the form

Pi+1 Ñ (Pi+1)
K,c,
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Algorithm 12 Axiomatize Confident Implications with Growing Sets of Attributes

0 define confident-base(K = (G, M, I), c P [0, 1])
1 i := 0
2 Mi := M
3 Ii := I
4 Si := Pi := Ki :=H
5 choose ďMi

as a linear order on Mi

6

7 forever do

8 read Ki+1 = (G, Mi+1, Ii+1) such that Mi Ď Mi+1 and Ii = (GˆMi)X Ii+1

9 read Si+1 such that Si Ď Si+1 Ď Thc(Ki+1)
10 choose ďMi+1

such that (7.1) and (7.2) hold

11

12 Ki+1 := t Pk Ñ P
Ki+1,c
k | k P t 0, . . . , i u, Pk ‰ P

Ki+1,c
k u

13

14 P1
i+1 := next-closure(Mi+1, ďMi+1

, Pi, Ki+1)

15 P2
i+1 := next-closure(Mi+1, ďMi+1

, Pi, Si+1 YKi+1)

16

17 Pi+1 := minĺ(P1
i+1, P2

i+1).
18 if Pi+1 = nil exit

19

20 i := i + 1
21 end

22

23 return Ki+1

24 end

and this then covers both cases.

To make this algorithm into an algorithm that allows the set of attributes to grow during

the computation, we use the ideas of Section 7.1.1: whenever there are new elements to

be added to the current set of attributes, we add them as the smallest elements. In this

way, the underlying Next Closure algorithm behaves as if those elements would have been

present right from the start of the run, and thus behaves as desired.

The algorithm that we obtain from these considerations is shown in Algorithm 12. Note

that as in the case of Algorithm 9, we cannot discard sets Pi which are closed under (¨)Ki+1,c,

i. e. which satisfy Pi = P
Ki+1,c
i , as Pi may not be closed under (¨)Kj,c for some later iteration

j.

We can argue termination of Algorithm 12 as we did before for Algorithm 9: if at a
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certain iteration ℓ it is true for all iterations k ě ℓ that Mk = Mℓ, then Algorithm 12 must

terminate. This is in particular the case if we want to compute a base of Thc(K) where K

is a finite formal context, and where the attributes of K are supplied incrementally during

the run of the algorithm.

To show that upon termination, the set Kn of implications, where n is the number of

iterations of Algorithm 12, is indeed a base of Thc(Kn), we adapt the argumentation

of Section 7.1.1 and Section 7.1.2 accordingly. The following result and its proof are a

generalization of [41, Lemma 6.3].

7.2.3 Proposition Consider a terminating run of Algorithm 12, and let n be the number of itera-
tions of this run. Let Q Ď Mn. Then the following statements hold.

i. If Q ‰ Q2
Kn

, then Q is not (Sn YKn)-closed.

ii. If Q = Q2
Kn

, then Q = Pk for some k P t 0, . . . , n u.

Proof The case Q = H = P0 can be handled quite easily: if Q ‰ Q2
Kn

, then Q ‰ QKn,c,

since Q2
Kn
Ď QKn,c. Therefore, (Q Ñ QKn,c) P Kn and thus Q is not (Sn YKn)-closed. If

on the other hand Q = Q2
Kn

, then Q = P0 shows the claim.

Now suppose that Q ‰ H. Then there exists k P t 0, . . . , n u such that

Pk´1 ň Q ĺ Pk.

We first argue that Q Ď Mk. To this end, suppose by contradiction that this is not the case,

and let m P QzMk. Since m R Mk, it is smaller than every element of Mk, by construction

of the linear order ďMn on Mn. Thus, Mk ň tm u, and since tm u Ď Q, we obtain

Mk ň tm u ĺ Q,

contradicting the fact that Q ĺ Pk ĺ Mk. Therefore, Q Ď Mk.

Let us first consider the case Q ‰ Q2
Kn

, and assume by contradiction that Q is (SnYKn)-
closed. Then by construction

P2
k ĺ Q ĺ Pk ĺ P2

k ,

and thus Q = Pk. Then Q ‰ Q2
Kn

means Pk ‰ (Pk)
2
Kn

, thus Pk ‰ PKn,c
k , and therefore

(Pk Ñ PKn,c
k ) P Kn.

But Q is not (Sn YKn)-closed, a contradiction. Therefore, Q is not (Sn YKn)-closed, as it

was claimed.

Let us now consider the case that Q = Q2
Kn

, and we have to show that Q = Pℓ for

ℓ P t 0, . . . , n u. Since Q = Q2
Kn

, it is also true that Q = Q2
Kk

, since

Ik = (GˆMk)X In.

But then P1
k ĺ Q ĺ Pk, and thus Q = Pk, as required. ˝
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7.2.4 Theorem Let K be a finite formal context, c P [0, 1], and suppose that Algorithm 12 applied
to K and c terminates after n iterations. ThenKn is a base for Thc(Kn)with background knowledge
Sn.

Proof The fact that Kn Y Sn Ď Cn(Thc(Kn)) is clear from the definition of Kn and Sn,

and we thus only need to show that Sn YKn is complete for Thc(Kn). For this we shall

use Lemma 2.4.2 and show that every set Q Ď Mn which is (Sn Y Kn)-closed is also

Thc(Kn)-closed.

To this end, let us assume by contradiction that Q is (Sn YKn)-closed, but not Thc(Kn)-
closed. Then there exists an implication (P Ñ tm u) P Thc(Kn) such that P Ď Q and

m R Q. Furthermore, since Q is (Sn YKn)-closed, it follows from Proposition 7.2.3 that

Q = Q2
Kn

. Then since

confKn(P Ñ tm u) = confKn(P2
Kn
Ñ tm u),

we can assume that P = P2
Kn

. But then, using Proposition 7.2.3 again, we obtain that P = Pk

for some k P t 0, . . . , n u, and thus

(P Ñ PKn,c) = (Pk Ñ PKn,c
k ) P Kn,

because Pk ‰ PKn,c
k , since m R Pk Ď Q, but m P PKn,c

k . Now since Q is Kn-closed, Pk Ď Q

implies PKn,c
k Ď Q, and since m P PKn,c

k , we obtain m P Q, a contradiction.

Therefore, every set Q that is (SnYKn)-closed is also Thc(Kn)-closed, and thus SnYKn

is complete for Thc(Kn), as it was claimed. ˝

In this theorem, the set Kn does not necessarily contain implications whose confidence

is at least c, i. e. Kn Ď Thc(K) is not necessarily true. However, a simple modification of

Algorithm 12 achieves that the computed base is indeed a confident base of Thc(K). For

this we define the return value of Algorithm 12 as

K̂ := t P Ñ tm u | (P Ñ PK,c) P Kn, m P PK,c u.

Then, by definition of PK,c, it is true that K̂ Ď Thc(K). Of course, instead of choosing m in

PK,c, it also suffices to consider only m P PK,czSn(P).
With Algorithm 12 we have now obtained an algorithm that allows us to compute bases

of Thc(K), where the attribute set can be added incrementally during the computation.

Based on this algorithm, we now want to turn back to our initial problem of finding bases

of Thc(K1)X Th(K2), where both formal contexts K1 and K2 have the same attribute set

M.

The main idea to adapt Algorithm 12 to this setting is to divide the working context into

two formal contexts Ki+1 and Li+1, such that in Ki+1 (the untrusted part) we apply the usual
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confidence heuristics, and in Li+1 (the trusted part) we consider only valid implications.

Then instead of computing the sets PKi+1,c, we consider

PKi+1,c X P2
Li+1

= tm P P2
Li+1

| confKi+1
(P Ñ tm u) ě c u.

The division of the working context into Ki+1 and Li+1 can be represented by using the

subposition Ki+1 ˜Li+1 as the working context. Then clearly

P2
Ki+1˜Li+1

= P2
Ki+1

X P2
Li+1

Ď PKi+1,c X P2
Li+1

. (7.7)

The resulting algorithm is shown in Algorithm 13.

Because of Equation (7.7) the proofs of Proposition 7.2.3 and Theorem 7.2.4 can be carried

over to Algorithm 13 almost literally, essentially by replacing every occurrence of (¨)2
Ki

by

(¨)2
Ki˜Li

, and by replacing every expression of the form PKi ,c by PKi ,c X P2
Li

. From this we

obtain the validity of the following results.

7.2.5 Proposition Consider a terminating run of Algorithm 13, and let n be the number of itera-
tions of this run. Let Q Ď Mn. Then the following statements hold.

i. If Q ‰ Q2
Kn˜Ln

, then Q is not (Sn YKn)-closed.

ii. If Q = Q2
Kn˜Ln

, then Q = Pk for some k P t 0, . . . , n u.

7.2.6 Theorem Let K, L be two finite formal contexts with attribute set M and disjoint sets of ob-
jects, c P [0, 1], and suppose that Algorithm 13 applied to K, L and c terminates after n iterations.
Then Kn is a base for Thc(Kn)X Th(Ln) with background knowledge Sn.

7.2.3. Computing Bases of Finite Interpretations with Untrusted Elements

We shall now use the results of the previous section to devise an algorithm that allows us

to compute bases of interpretations with untrusted elements. More precisely, let J be a

finite interpretation over NC and NR, and let I be a finite, connected subinterpretation

of J , such that J zI is also a connected subinterpretation of J . We then want to adapt

Algorithm 13 to compute a finite base of Thc(J , I).
To this end, we consider as input for Algorithm 13 the induced formal context KJ ,

represented as the subposition of KJ æ∆I and KJ æ∆J z∆I , where the common attribute set

MI is computed incrementally as in Algorithm 10. The result is shown in Algorithm 14.

Note that in this algorithm we again utilize the idea of using

Si+1 = t tC u Ñ tD u | C, D P Mi+1, C Ď D u

as background knowledge, because the resulting set
d
Si+1 of GCIs is trivial, but the set

Si+1 of implications is not.
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Algorithm 13 Axiomatize Confident Implications with Trusted Objects

0 define confident-base/trusted-objects(K = (G1, M, I), L = (G2, M, J), c P [0, 1])
1 i := 0
2 Mi := M
3 Ii := I
4 Ji := J
5 Si := Pi := Ki :=H
6 choose ďMi

as a linear order on Mi

7

8 forever do

9 read Mi+1 such that Mi Ď Mi+1

10 read Ii+1 such that Ii = (G1 ˆMi)X Ii+1

11 read Ji+1 such that Ji = (G2 ˆMi)X Ji+1

12 Ki+1 := (G1, Mi+1, Ii+1)
13 Li+1 := (G2, Mi+1, Ji+1)
14 read Si+1 such that Si Ď Si+1 Ď Thc(Ki+1)X Th(Li+1)
15 choose ďMi+1

such that (7.1) and (7.2) hold

16

17 Ki+1 := t Pk Ñ P
Ki+1,c
k X P2

Li+1
| k P t 0, . . . , i u, Pk ‰ P

Ki+1,c
k X P2

Li+1
u

18

19 P1
i+1 := next-closure(Mi+1, ďMi+1

, Pi, Ki+1 ˜Li+1)

20 P2
i+1 := next-closure(Mi+1, ďMi+1

, Pi, Si+1 YKi+1)

21

22 Pi+1 := minĺ(P1
i+1, P2

i+1).
23 if Pi+1 = nil exit

24

25 i := i + 1
26 end

27

28 return Ki+1

29 end
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Algorithm 14 Axiomatize Confident GCIs in the Presence of Trusted Elements

0 define confident-base-gcis/trusted-elements(J , I , c P [0, 1])
1 i := 0
2 Mi := NC Y tKu
3 Si := t tK u Ñ t A u | A P NC u
4 Pi := Ki :=H
5 choose ďMi

as a linear order on Mi

6

7 forever do

8 Mi+1 := Mi Y t Dr.(
d

Pi)
J J | r P NR u ;; union up to equivalence

9 Ki+1 := induced-context(I , Mi+1)

10 Li+1 := induced-context(J zI , Mi+1)

11 Si+1 := t tC u Ñ tD u | C, D P Mi+1, C Ď D u.
12 choose ďMi+1

such that (7.1) and (7.2) hold

13

14 Ki+1 := t Pk Ñ P
Ki+1,c
k X P2

Li+1
| k P t 0, . . . , i u, Pk ‰ P

Ki+1,c
k X P2

Li+1
u

15

16 P1
i+1 := next-closure(Mi+1, ďMi+1

, Pi, Ki+1 ˜Li+1)

17 P2
i+1 := next-closure(Mi+1, ďMi+1

, Pi, Si+1 YKi+1)

18

19 Pi+1 := minĺ(P1
i+1, P2

i+1).
20 if Pi+1 = nil exit

21

22 i := i + 1
23 end

24

25 return Ki+1

26 end
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To see that Algorithm 14 indeed computes a base of Thc(J , I), we shall first argue that

it is of the form of Algorithm 13. Thereafter, we shall show that when Algorithm 14 is

applied to J , I , and c P [0, 1], and terminates after n iterations, then Mn = MJ up to

equivalence. Thus, by Theorem 7.2.6, the algorithm computes a base Kn of Thc(KJ æ∆I )X
Th(KJ æ∆J z∆I ), and then Theorem 7.2.2 yields that

d
Kn is a base of Thc(J , I).

To argue that Algorithm 14 is of the form of Algorithm 13 we need to show that the

variables Mi+1, Ki+1, Li+1,Si+1 computed in Algorithm 14 satisfy the constraints given in

Algorithm 13. However, this is quite clear from the definition of these variables: it is obvious

that Mi Ď Mi+1, and that the incidence relations of Ki+1 and Li+1 restricted to Mi are the

incidence relations of Ki and Li, respectively. Furthermore, Si+1 Ď Thc(Ki+1)XTh(Li+1),
because Si+1 is even valid in Ki+1 ˜Li+1.

Note that since J is a finite interpretation, the set MJ is finite. Since Mi Ď MJ holds

for all iterations i, up to equivalence, it is true that from a certain iteration ℓ on, Mℓ = Mk

is true for all k ě ℓ. Thus, Algorithm 14 terminates on input J , I , and c.

To show that upon termination of Algorithm 14, Mn = MJ is true up to equivalence,

we start with the following result, which is an adaption of [41, Lemma 6.7].

7.2.7 Proposition Consider a terminating run of Algorithm 14, and let n be the number of itera-
tions. Then for every U Ď Mn and r P NR it is true that

Dr.(
l

U)J J P Mn

up to equivalence.

Proof Note that because both I andJ zI are connected subinterpretations ofJ , Lemma 7.1.6

shows that Kn ˜Ln is indeed the induced context of J and Mn. Thus, we obtain from

Proposition 4.2.9 that

(
l

U2
Kn˜Ln

)J = U3
Kn˜Ln

= U1
Kn˜Ln

= (
l

U)J .

Therefore, it is true that

Dr.(
l

U2
Kn˜Ln

)J J ” Dr.(
l

U)J J .

Since Algorithm 14 is a special case of Algorithm 13, Proposition 7.2.3 is also applicable

to Algorithm 14, and we thus obtain a k P t 0, . . . , n u such that U2
Kn˜Ln

= Pk. Since

Dr.(
d

Pk)
J J P Mk+1 Ď Mn, we obtain

Dr.(
l

U)J J ” Dr.(
l

U2
Kn˜Ln

)J J ” Dr.(
l

Pk)
J J P Mn,

as desired. ˝

Using this proposition, we shall now show the correctness of Algorithm 14.
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7.2.8 Theorem Let J be a finite interpretation over NC and NR, and let I be a connected subin-
terpretation of J such that J zI is also a connected subinterpretation of J . Let c P [0, 1], and let
n be the number of iterations of Algorithm 14 when applied to J , I , and c P [0, 1]. Then

d
Kn is

a base of Thc(J , I).

The proof of this theorem, which is an adaption of the proofs of [41, Lemma 6.8, The-

orem 6.9], uses induction over the role depth of concept descriptions. Since
d
Kn may

contain proper ELK
gfp concept descriptions, it may not be immediately obvious how this

can be done, and we need an extra result that allows us to use this argumentation.

7.2.9 Lemma (Lemma 5.6 from [41]) Let I be a finite interpretation over NC and NR, and let
C be an ELK

gfp concept description over NC and NR. Then there exists an ELK concept description
over NC and NR such that

CI = DI and C Ď D.

We now prove Theorem 7.2.8.

Proof (Theorem 7.2.8) We first show that Mn = MJ is true up to equivalence, i. e. every

element of Mn is equivalent to some element in MJ and vice versa. Since Mn Ď MJ up to

equivalence by definition of Mn, it suffices to show that every element of MJ is equivalent

to some element in Mn.

To show that MJ Ď Mn holds up to equivalence, we shall show that for each r P NR

and X Ď ∆
J there exists C P Mn such that C ” Dr.XJ . To this end, we observe that by

Lemma 7.2.9 there exists an ELK concept description D over NC and NR such that

DJ = XJ J .

Since DJ J = XJ J J = XJ , it is sufficient to show that for each ELK concept description

D and each r P NR it is true that

Dr.DJ J P Mn

up to equivalence. We shall show this claim by induction over the role-depth of D.

The base case is D = K, or D being a conjunction of concept names from NC. The case

D = K is trivial, as Dr.KJ J ” K P Mn for all r P NR. If D =
d

S for some S Ď NC, then

since S Ď Mn, Proposition 7.2.7 implies for all r P NR that

Dr.DJ J = Dr.(
l

S)J J P Mn

up to equivalence.

For the step case let D be an ELK concept description with role-depth d ą 0, and let

r P NR. Assume by induction for all ELK concept descriptions E over NC and NR with role

depth smaller than d that

Ds.EJ J P Mn (7.8)
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is true up to equivalence for all s P NR.

Since D is an ELK concept description, there exist U Ď NC, r1, . . . , rk P NR and

E1, . . . , Ek P EL
K(NC, NR) such that

D ”
l

U [
kl

i=1

Dri.Ei.

Then by Proposition 4.2.4

DJ J ”
(

l
U [

kl

i=1

Dri.Ei

)J J

”
(

l
U [

kl

i=1

Dri.E
J J
i

)J J
.

By induction hypothesis Equation (7.8), Dri.E
J J
i P Mn up to equivalence, for all i = 1, . . . , k.

But then

V := U Y t Dri.E
J J
i | i = 1, . . . , k u Ď Mn,

and Proposition 7.2.7 implies that

Dr.DJ J ” Dr.(
l

V)J J P Mn

up to equivalence. This completes the induction step and shows that MJ = Mn holds up

to equivalence.

By Theorem 7.2.6 we know that Kn is a base of

Thc(Kn)X Th(Ln)

with background knowledge Sn = t tC u Ñ tD u | C, D P Mn, C Ď D u. Since Mn = MJ

up to equivalence, Kn is, up to equivalence, also a base of

Thc(KJ æ∆I )X Th(KJ æ∆J z∆I )

with background knowledge Sn. By Theorem 7.2.2,
d
(Kn Y Sn) is a base of Thc(J , I),

and since
d
(Kn Y Sn) is element-wise equivalent to

d
Kn, we obtain that

d
Kn is a base

of Thc(J , I), as required. ˝

7.2.4. Exploring Confident GCIs with Expert Interaction

We are now prepared to devise an algorithm for model exploration by confidence. We shall

achieve this by replacing in Algorithm 14 every explicit access to the interpretation J by

suitable expert interaction. Recall that we want to do this because we now consider J as

the background interpretation of the exploration process, which we cannot access directly.

To conduct this adaption of Algorithm 14, we observe that there are two lines in this

algorithm where J is accessed directly, namely
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i. in the computation of Mi+1 (line 8), more precisely in the computation of the concept

description Dr.(
d

Pi)
J J , and

ii. in the computation of the formal context Li+1 (line 10) as the induced context of J zI
and Mi+1.

For (i) we can argue as in Section 7.1.3, using Lemma 7.1.8: if Iℓ denotes the current work-

ing interpretation, which is a connected subinterpretation of the background interpretation

J , then if the expert confirms the GCI

l
Pi Ď (

l
Pi)

IℓIℓ ,

then (
d

Pi)
IℓIℓ ” (

d
Pi)

J J is true.

Handling (ii) is a bit more problematic, though. A first approach would be to compute

Li+1 as the induced context of IℓzI and Mi+1, where Iℓ is the current working interpreta-

tion. This approach, however, does not work completely: the formal context Li+1 is used

for the computation of the next candidate set P1
i+1. As such, we need to ensure that all

objects from Li+1 which are “relevant” for this computation are contained in Li+1. The

problem is that those objects are not necessarily counterexamples to GCIs proposed to the

expert so far, and thus they may not be contained in Iℓ. Thus, we may need to query the

expert again to provide those missing objects.

Let us consider this in more detail: we observe that the computation of P1
i+1 in our

hypothetical adaption of Algorithm 14 would not be correct if the lectically next intent

after Pi of the current working context Ki+1 ˜Li+1 in Algorithm 14 is not an intent of the

working context of Ki+1 ˜Li+1. In other words

P1
i+1 = (P1

i+1)
2
Ki+1˜Li+1

P1
i+1 ‰ (P1

i+1)
2
Ki+1˜Li+1

.

If S i+1 denotes the currently known implications and Ki+1 the currently confirmed impli-

cations in our hypothetical adaption, then we know that S i+1 YKi+1 is valid in Li+1, and

from this we obtain

(Si+1 YKi+1)(P1
i+1) = (Si+1 YKi+1)(P1

i+1)
2
Li+1

(Si+1 YKi+1)(P1
i+1) ‰ (Si+1 YKi+1)(P1

i+1)
2
Li+1

.

Therefore, the implication

(Si+1 YKi+1)(P1
i+1)Ñ (Si+1 YKi+1)(P1

i+1)
2
Li+1

must be rejected by the expert, because it does not hold in Li+1, and upon rejection all

necessary counterexamples are added to Li+1. Thus, if we ask all implications, or their



Algorithm 15 Model Exploration by Confidence

0 define model-exploration-by-confidence(I , c)

1 i := ℓ := 0
2 Iℓ := I
3 Pi := Ki :=H
4 Mi := NC Y tKu
5 S i := t tK u Ñ t A u | A P NC u
6 choose ďMi

as a linear order on Mi

7

8 forever do

9 while expert rejects
d

Pi Ď (
d

Pi)
IℓIℓ do

10 Iℓ+1 := expert-defined extension of Iℓ
11 ℓ := ℓ + 1

12 end

13

14 Mi+1 := Mi Y t Dr.(
d

Pi)
IℓIℓ | r P NR u ;; union up to equivalence

15 choose ďMi+1
such that (7.1) and (7.2) hold

16

17 ;; ensure relevant counterexamples for already known GCIs

18 while expert rejects
d

Pk Ď
d
(P

KI ,Mi+1
,c

k X (Pk)
2K

I
ℓ

zI ,Mi+1 ) for some k P t 0, . . . , n u do

19 Iℓ+1 := expert-defined extension of Iℓ
20 ℓ := ℓ + 1

21 end

22

23 Ki+1 := induced-context(I , Mi+1)

24 Li+1 := induced-context(IℓzI , Mi+1)

25 S i+1 := t tC u Ñ tD u | C, D P Mi+1, C Ď D u
26

27 Ki+1 := t Pk Ñ P
Ki+1,c
k X (Pk)

2
Li+1 | k P t 0, . . . , i u, Pk ‰ P

Ki+1,c
k X (Pk)

2
Li+1 u

28

29 ;; additional expert interaction
30 forall Q ľ P being (Ki+1 Y S i+1)-closed do

31 while expert rejects
d

Q Ď
d

Q
2

Li+1 do

32 Iℓ+1 := expert-defined extension of Iℓ
33 ℓ := ℓ + 1

34 Li+1 := induced-context(IℓzI , Mi+1)

35 end

36 end

37

38 P
1
i+1 := next-closure(Mi+1, ďMi+1

, Pi, Ki+1 ˜Li+1)

39 P
2
i+1 := next-closure(Mi+1, ďMi+1

, Pi, S i+1 YKi+1)

40

41 Pi+1 := minĺ(P1
i+1, P2

i+1).
42 if Pi+1 = nil exit

43

44 i := i + 1
45 end

46

47 return
d
Ki+1

48 end
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corresponding GCIs, we can ensure that the computation of the set P1
i+1 is done as required

in Algorithm 14.

Let us make this argumentation more concrete, and consider Algorithm 15 as an adaption

of Algorithm 14 to provide an algorithm for model exploration by confidence. Observe that

in Algorithm 15, as in Algorithm 11, counterexamples collected into the current working

interpretation Iℓ are supposed to be connected subinterpretations of the background

interpretation. Furthermore, since required by Theorem 7.2.8, we also need to ensure

that IℓzI is a connected subinterpretation of Iℓ, i. e. the expert is not allowed to add role-

successors from elements of IℓzI to elements of I when adding counterexamples. These

constraints are supposed to be satisfied in every line of the form

Iℓ+1 := expert-defined extension of Iℓ.

To prove that Algorithm 15 indeed provides an algorithm for model exploration, we shall

show that this algorithm computes, when applied to I and using an expert that represents

a background interpretation Iback, up to equivalence the same intermediate values as

Algorithm 14 when directly applied to I and Iback. Then, since Algorithm 14 terminates,

Algorithm 15 will also terminate and returns a base of Thc(Iback, I).

7.2.10 Theorem Let Iback be a finite interpretation over NC and NR, and let I be a connected
subinterpretation of Iback such that IbackzI is also a connected subinterpretation of Iback. Let
c P [0, 1].

Then Algorithm 15 applied to I , c and using an expert that represents IbackzI terminates. If
n is the number of iterations of this run, then

d
Kn is a base of Thc(Iback, I) = Thc(I) X

Th(IbackzI).

Proof We show that Algorithm 15 with the input Iback, I and c has the same output as

Algorithm 14. Then the claim follows from Theorem 7.2.8.

To this end, we shall show that for all i P t 0, . . . , n u it is true that Pi = Pi, Mi =
Mi,Ki = K and S i = Si is true up to equivalence. In other words, we shall show that

every element of Pi is equivalent to some element in Pi, and vice versa; likewise for Mi and

Mi. Furthermore, we shall show that for each implication (A Ñ B) P Ki there exists an

implication (A Ñ B) P Ki such that A = A and B = B is true up to equivalence, and vice

versa; likewise for S i and Si.

We shall show these claims by induction over i.
In the following argumentation, we shall not mention the linear orders we choose on

the sets Mi+1 and Mi+1 explicitly. However, we shall choose the linear orders ďMi+1
and

ďMi+1
on Mi+1 and Mi+1 such that

C ďMi+1
D ðñ C ďMi+1

D

for C, D P Mi+1, C, D P Mi+1 and C ” C, D ” D.
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Base Case: For i = 0, it is true that Pi = H = Pi, Mi = NC YtKu = Mi, Ki = H = Ki

and S i = t tK u Ñ t A u | A P NC u = Si. Thus, the claim holds for i = 0.

Step Case: Let us assume that 0 ă i ă n and that the claim holds for all m ď i.
Denote with Il the current working interpretation when the algorithm has reached

line 14. The algorithm can only reach this line if the expert has confirmed
d

Pi Ď (
d

Pi)
IlIl .

Since Il is a connected subinterpretation of Iback, Lemma 7.1.8 implies that (
d

Pi)
IlIl =

(
d

Pi)
IbackIback . Since Mi = Mi holds up to equivalence by induction hypothesis, it is true

that Mi+1 = Mi+1 up to equivalence. This also implies S i = Si up to equivalence, since

the definition of these sets only depends on Mi+1 and Mi, respectively.

To show Ki = K, it is sufficient to verify that

P
Ki+1,c
k X (Pk)

2
Li+1

= P
Ki+1,c
k X (Pk)

2
Li+1

(7.9)

is true up to equivalence for all k P t 0, . . . , i u. To this end, we first observe that Ki+1 is

the induced context of I and Mi+1, and Ki+1 is the induced context of I and Mi+1. In

particular, since Mi+1 = Mi+1 and Pk = Pk up to equivalence for all 0 ď k ď i, we obtain

P
Ki+1,c
k = P

Ki+1,c
k

up to equivalence for all k P t 0, . . . , i u.
Let Im be the current working interpretation in iteration i when line 23 is reached. Recall

that Li+1 is the induced context of ImzI and Mi+1, and that Li+1 is the induced context of

IbackzI and Mi+1. Since ImzI is a connected subinterpretation of IbackzI , we can consider

Li+1 as a subcontext of Li+1, and thus obtain

(Pk)
2
Li+1

Ě (Pk)
2
Li+1

up to equivalence for all k P t 0, . . . , i u.
Assume now by contradiction that

P
Ki+1,c
k X (Pk)

2
Li+1

‰ P
Ki+1,c
k X (Pk)

2
Li+1

is true for some k P t 0, . . . , i u. By the above considerations, this means that there exists a

concept description C P P
Ki+1,c
k X (Pk)

2
Li+1

that is not equivalent to any element in P
Ki+1,c
k X

(Pk)
2
Li+1

. Then

i. the expert has confirmed the implication

l
Pk Ď

l
P

Ki+1,c
k X (Pk)

2
Li+1

since it was proposed to her in line 18. In particular, the GCI
d

Pk Ď C is valid in

IbackzI .
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ii. The GCI
d

Pk Ď C is not confirmed by the expert. To see this, observe that since C P
Mi+1, there exists C P Mi+1 such that C ” C. Then if

d
Pk Ď C were confirmed by the

expert, it would be true that C P (Pk)
2
Li+1

. Furthermore, it is true that conf
Ki+1

(Pk Ñ

tC u) = confKi+1
(Pk Ñ tC u) because of Pk = Pk, Mi+1 = Mi+1 up to equivalence,

and C ” C. Since C P P
Ki+1,c
k , it is true that conf

Ki+1
(Pk Ñ tC u) ě c, and thus

confKi+1
(Pk Ñ tC u) ě c, and hence C P P

Ki+1,c
k . Thus, we obtain

C ” C and C P P
Ki+1,c
k X (Pk)

2
Li+1

,

contradicting our choice of C. Therefore,
d

Pk Ď C is not confirmed by the expert,

and in particular is not valid in IbackzI .

However, since Pk = Pk up to equivalence, the fact that
d

Pk Ď C is valid in IbackzI
but

d
Pk Ď C is not, yields the desired contradiction. Therefore, we have established the

validity of Equation (7.9), and thus can infer that Kk = Kk is true up to equivalence.

It remains to be shown that

Pi+1 = Pi+1 (7.10)

is true up to equivalence. To this end, we observe that P
2
i+1 = P2

i+1 is true up to equivalence,

since Pi = Pi and Ki+1 Y S i+1 = Ki+1 Y Si+1 up to equivalence, and the linear orders on

Mi+1 and Mi are chosen suitably. Thus, to show Equation (7.10) it suffices to verify that

P
1
i+1 = P1

i+1. (7.11)

For this recall that the formal contexts Ki+1 and Ki+1 can be considered the same, because

Mi+1 = Mi+1 up to equivalence. Also recall that we can consider Li+1 as a subcontext of

Li+1, again up to equivalence. Therefore, we obtain P
1
i+1 ľ P1

i+1 up to equivalence.

Suppose by contradiction that P
1
i+1 ŋ P1

i+1. Then P1
i+1, viewed as a subset of Mi+1, is not

an intent of Ki+1 ˜Li+1, as otherwise P
1
i+1 ĺ P1

i+1. Since P1
i+1 is an intent of Ki+1 ˜Li+1,

we can thus infer that

(P1
i+1)

2
Li+1
z(P1

i+1)
2
Li+1

‰ H.

Let D P (P1
i+1)

2
Li+1
z(P1

i+1)
2
Li+1

. Since Ki+1 Y S i+1 is sound for Li+1 up to equivalence, we

obtain that

((Ki+1 Y S i+1)(P1
i+1))

2
Li+1

= (P1
i+1)

2
Li+1

and thus

D R ((Ki+1 Y S i+1)(P1
i+1))

2
Li+1

.
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Therefore, the corresponding implication

(Ki+1 Y S i+1)(P1
i+1)Ñ ((Ki+1 Y S i+1)(P1

i+1))
2
Li+1

does not hold in Li+1, because

((Ki+1 Y S i+1)(P1
i+1))

2
Li+1

Ę ((Ki+1 Y S i+1)(P1
i+1))

2
Li+1

.

Therefore, the corresponding GCI

l
(Ki+1 Y S i+1)(P1

i+1) Ď
l

((Ki+1 Y S i+1)(P1
i+1))

2
Li+1

(7.12)

will be rejected by the expert, since Li+1 is the induced context of IbackzI .

However, when computing P1
i+1, we have passed the lines 30 up to 36, and the expert

has confirmed the GCI given in Equation (7.12). Therefore, our initial assumption that

P
1
i+1 ŋ P1

i+1 is not true, and thus we obtain P
1
i+1 = P1

i+1 up to equivalence. This finishes

the proof. ˝
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C h a p t e r 8

Conclusions and Outlook

This work is concerned with axiomatizing all GCIs expressible in the description logic ELK

that enjoy a certain minimal confidence in a given finite interpretation. The motivation for

this research stemmed from the observation that the results from Baader and Distel [41] on

finding finite bases of finite interpretations are very sensitive towards sporadic errors in

the given interpretation, and thus may not perform well on real-world data, which can be

assumed to always contain errors.

The way errors affect the computation of bases of finite interpretations has been assessed

in detail in Section 5.1, where we have argued how linked data can be seen as a variant of

finite interpretations, and where we have computed finite bases of the finite interpretation

IDBpedia that has been obtained from the DBpedia data set. Computing finite bases of the

interpretation IDBpedia turned out to be not very insightful, mainly because the concept

names contained in IDBpedia consisted mostly of job descriptions, and it cannot be expected

that the job of a parent affects the jobs of their children, or vice versa, in a way expressible

as a GCI. Furthermore, the interpretation IDBpedia turned out to be erroneous to the extent

that it contained things that are usually not associated with the child role, like places, books

or bands.

Despite the deficits of IDBpedia, we have argued that one still can expect certain GCIs to

be valid in IDBpedia, most notably

Dchild.J Ď Person.

However, this GCI turned out to be not valid in IDBpedia. The reason for this was that

among the 2551 elements to which this GCI is applicable, four of them were erroneously

not an instance of Person. In other words, the GCI Dchild.J Ď Person will not be collected

because it is erroneously invalidated by a comparably small number of counterexamples.

This observation motivated us to extend the results on axiomatizing valid GCIs into the

direction of axiomatizing GCIs with high confidence in the given data. This extension has

been discussed in Section 5.2, where we had adapted results obtained by Luxenburger [69]

on partial implications in finite contexts to the setting of GCIs in finite interpretations I .
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From this adaption we have obtained finite confident bases of finite interpretations (Theo-

rem 5.2.11, Theorem 5.2.13), and a way to compute finite confident bases of GCIs from finite

confident bases of implications (Theorem 5.2.22). We have also seen how we can make use

of the canonical base of the induced context KI of I to complete bases of Thc(I)zTh(I) to

confident bases of Thc(I). Finally, in Section 5.2.6 we have discussed a way to obtain finite

confident ELK bases from finite confident ELK
gfp bases, using the technique of unravelling

ELK
gfp concept descriptions.

The results we had obtained about computing finite confident bases of I were then

in return applied to our example interpretation IDBpedia, to examine how the approach

of computing finite confident bases performs on this data set. As expected, we could

recover the GCI Dchild.J Ď Person, as well as another GCI. In particular, we have observed

that for relatively large values of the confidence threshold c, the number of additional

GCIs to be examined by the expert is relatively small. Thus, one could argue that the

approach of considering GCIs with high confidence does not add much overhead for

practical applications, but promises to deliver more robust results.

However, the approach of considering GCIs with high confidence is still a heuristic

approach, and the GCIs thus obtained need to be validated by an external source of in-

formation, like a human expert. Indeed, the same is true for valid GCIs of the input

interpretation I , as it may be the case that I misses some crucial counterexamples for the

domain of interest. For this purpose, model exploration has been developed to interactively

consult an expert during the computation of a finite base of I to provide missing coun-

terexamples as needed. We have argued that providing such an exploration algorithm for

the computation of finite confident bases may also be helpful for practical applications.

To this end, we have first discussed in Chapter 6 an approach to obtain an exploration

algorithm for implications with high confidence in some given formal context K, called explo-
ration by confidence. For this, we have introduced in Section 6.1 an abstraction of the classical

attribute exploration algorithm as an algorithm to explore the set Th(K) of implications.

Then in Section 6.2.1, we have argued how this abstraction can be transferred to the set

Thc(K), automatically yielding an algorithm that explores the set Thc(K). This algorithm

has the practical disadvantages that it requires the computation of closures under Thc(K),
which may not be feasible in certain applications, and that it is only approximative. To

remedy this, we have introduced in Section 6.2.2 an exploration algorithm that avoids these

shortcomings, but may ask more questions to the expert.

The purpose of the then following Chapter 7 was to extend the algorithm for exploration

by confidence to provide an algorithm for model exploration by confidence. Such an algorithm

was obtained in Section 7.2.4. As a byproduct of the argumentation used, we also obtained

more practical algorithms for computing confident bases of formal contexts (Section 7.2.2)

and of finite interpretations (Section 7.2.3). Those algorithms compute the set MI incre-

mentally, and not completely as a first step, thus avoiding the delay of the latter when

computing implications and GCIs, respectively.

The work presented so far is not complete, and a lot remains to be done to turn the
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Figure 8.1.: Support can be counter-intuitive

results of this thesis into practically relevant techniques. As a first step one could extend

the results of this thesis to also incorporate the notion of support of GCIs, an idea which

is again borrowed from standard data mining approaches [1]. More precisely, one could

define for a GCI C Ď D its support suppI (C Ď D) in I to be

suppI (C Ď D) :=
|(C[D)I |

|∆I |
.

Then one can consider only those GCIs whose support is above a given threshold s P [0, 1].
The idea behind this approach is that if the support of C Ď D is not high enough in I , then

the data set does not contain enough information about this GCI to decide whether C Ď D
is true in the domain of discourse or not. In latter case, the GCI C Ď D should be ignored.

An adaption of the results presented in this thesis to include the support measure should

not be very difficult, and indeed results from formal concept analysis could again be used

here [96, 97]. However, one could also step back and ask whether the notions of support and

confidence are really suitable for our description logic setting: it has been argued in [33] that

the support (and also the confidence) of a GCI as defined above may be counter-intuitive, at

least as measures of trustworthiness. To see this, let us consider the example as given in [33],

which consists of an interpretation that contains an element for the Louvre in Paris, all

pieces of art that are kept there, and an element to represent the city of Paris. The complete

example interpretation is sketched in Figure 8.1.

In this example interpretation, the GCI

Museum Ď Dlocated-in.French-City

has very low support, because there is only one museum in the data set. Therefore, one

could argue that this GCI is not very trustworthy. Based on this, one could argue that the

GCI

Downed-by.Museum Ď Downed-by.Dlocated-in.French-City

is not trustworthy either. However, this GCI has very high support in the example inter-

pretation, because there are thousands of exhibits in the Louvre. Therefore, the support
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measure would assign this GCI a very high trustworthiness, although we would intuitively

assign it a rather low one. Finding a more intuitive approach to measure trustworthiness

and relevance of GCIs in a given data set remains an open problem.

But even if one accepts the way we have defined the confidence of an GCI, more work

remains to be done to make our approach more practically relevant. For example, in

Theorem 5.2.22 we have shown a way how finite confident bases of finite interpretations

can be gained from bases of implications with high confidence in the corresponding in-

duced formal context. What we did not talk about was a way to compute such bases of

implications with high confidence. To compute these, it may prove fruitful to exploit the

close connection of formal concept analysis to data mining [105], and try to adapt known

algorithms from data mining for computing association rules to the setting of computing

bases of implications with high confidence. In this way, one could hope to obtain much

faster implementations as those we have used for our experiments [33], and thus increase

the practicability of our approach to construct knowledge bases from large amounts of

data.

Another usability issue concerns the way we have constructed our algorithm for model

exploration by confidence, as presented in Section 7.2.4. There, the number of GCIs asked

to the expert may be quite high, probably much higher then in the model exploration

algorithm as proposed by Baader and Distel. Moreover, if the GCIs are presented to a

human expert, extra care is needed. More precisely, the GCIs

l
Pi Ď (

l
Pi)

IℓIℓ

we ask to the expert may contain proper ELK
gfp concept descriptions, and the size of the

premises Pi may be too large, both being issues that may inhibit human comprehension.

The former problem can be attacked by considering only those GCIs where the role-depth

is not larger than an a-priori chosen maximal role-depth k P N. More precisely, we can

define

Thk
c(I) := t (C Ď D) P Thc(I) | d(C), d(D) ď k u,

and can then try to find small bases B Ď Thk
c(I) of Thk

c(I) (note that now Thk
c(I) is finite,

up to equivalence). In the case c = 1, where we only consider valid GCIs of I , all results

obtained by Baader and Distel can be carried over, as sketched in [39]. Indeed, limiting

the role-depth of the concept descriptions involved eliminates the need for the description

logic ELK
gfp, and thus simplifies the underlying theory considerably. Transferring these

results to the setting of GCIs with high confidence seems practically relevant.

To address the fact that Pi may be too large to be understandable for human experts, one

could restrict oneself to only find bases of GCIs C Ď D where C has at most ℓ conjuncts,

for some a-priori chosen value ℓ P N. To solve the problem of finding bases for this set of

GCIs, one could first try to solve the simpler problem of finding a base of the set of valid
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implications in a formal context K = (G, M, I) where the premise has size of at most ℓ.

Note that such a base would be

t A Ñ A2 | A Ď M, |A| ď ℓ u.

However, this base has size (|M|
ℓ
), which, although polynomial in |M|, may be too large

for practical applications, and thus finding a smaller base is necessary. It would also be

desirable to have an exploration algorithm that only asks implications where the premise

does not have more than ℓ elements. As soon as those problems are solved for implications,

one should try to transfer them to the setting of GCIs, probably again with an a-priori

chosen maximal role-depth for the concept descriptions to be considered.
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