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Abstract 

In arid regions, mountain catchments are the major contributor to the total natural water 

yield. Due to generally low groundwater tables, subsurface underflow - referred to as 

mountain-front recharge - is important in distinction to the surface runoff at the mountain 

front. The extent of the groundwater basin is hereby often vague. Approaches to assess 

mountain-front recharge are mostly based on groundwater data and integrate over time and 

space. This, however, cannot provide prognostic and time-dependent estimates of subsur-

face inflow to the adjacent alluvial basin aquifer. Consequently, the proposed strategy 

builds on rainfall based approaches. Temporal and spatial resolution is in this case mostly 

limited by data scarcity regarding hydrological characteristics of the catchment area and 

high-resolution rainfall data. 

The proposed novel strategy combines three approaches to tackle these challenges. A 

newly developed conceptual hydrologic model provides time-dependent estimates based 

on fully distributed monthly rainfall. For distinct response units and seasons, non-linear 

relationships between rainfall and recharge describe the hydrogeologic response. The deri-

vation of the response functions is based on a mass balance and considers the principal 

recharge mechanisms. Parameterisation makes use of available expert knowledge on geo-

morphology and seasonal rainfall characteristics. As an efficient tool to assess uncertain-

ties, fuzzy arithmetic is used for complementary long-term average water balance esti-

mates. This technique allows considering fuzziness in rainfall input, crop water use in 

mountain oases, and best available assumptions on recharge as portion of rainfall. Uncer-

tainty regarding the potential, albeit unknown extent of groundwater basins is portrayed 

based on continuous surfaces which represent the degree of membership to a distinct geo-

graphical entity (termed as fuzzy regions). Distinct subsets of these fuzzy regions represent 

potential groundwater basins for water balance assessment. 

The proposed strategy was applied on the large scale in an arid karst mountain range in 

northern Oman. The two complementary assessment approaches result in similar ranges of 

values. They are in good agreement with inversely computed inflow to a steady state 

groundwater model for the adjacent basin aquifer. The results of the conceptual hydrologic 

model are confirmed by the plausibility of average recharge rates for distinct response 

units and seasons. This shows that less intense winter rainfall contributes mainly to 

groundwater recharge. Uncertainties due to the vague extent of the groundwater basin are 

about 30 % of the total mean annual value. An option to mitigate this uncertainty is the 

complementary consideration of adjacent aquifer systems in future studies. Hydrogeologic 

survey and observation of groundwater levels in the alluvial basin aquifer in near distance 

to the mountains is a way to underpin these findings in future studies. This recommend-

dation applies not only to the discussed study area, but also to mountain block systems in 

general. 



 

Kurzfassung 

In ariden Gebieten haben Gebirgseinzugsgebiete einen wesentlichen Anteil am gesamten 
natürlichen Wasserdargebot. Aufgrund i. Allg. tief liegender Grundwasserspiegel ist – in 
Abgrenzung zum Oberflächenabfluss am Gebirgsrand – auch der unterirdische Abstrom 
(mountain-front recharge) von besonderer Bedeutung. Die Ausdehnung des unterirdischen 
Einzugsgebiets ist dabei oft vage. Ansätze zur Abschätzung des mountain-front recharge 
basieren meist auf Grundwasserdaten und integrieren in Zeit und Raum. Damit können 
allerdings keine prognostischen oder zeitabhängigen Schätzungen für den Zustrom zur 
benachbarten alluvialen Aquifer gemacht werden. Daher wird im folgenden ein nieder-
schlagsbasierter Ansatz vorgeschlagen. 

Das vorgeschlagene neue Konzept kombiniert drei Ansätze, um den genannten Heraus-
forderungen zu begegnen. Mit einem neu entwickelten konzeptionellen hydrologischen 
Modell auf Basis verteilter Niederschläge werden monatliche Werte für die Grundwasser-
neubildung bereitgestellt. Es basiert auf nicht-linearen Beziehungen zwischen Nieders-
chlag und Grundwasserneubildung für definierte hydrologisch homogene Einheiten und 
Jahreszeiten. Deren Ableitung basiert auf einer Massenbilanz und berücksichtigt die we-
sentlichen Neubildungsmechanismen. Die Parametrisierung basiert auf Expertenwissen zu 
Geomorphologie und Niederschlagscharakteristika. Fuzzy Arithmetik wird zur Berück-
sichtigung von Unsicherheiten in einer ergänzenden mittleren jährlichen Wasserbilanz 
verwendet. Damit können Unschärfen im Niederschlagsinput, beim Pflanzenwasserbedarf 
in Gebirgsoasen und best verfügbaren Schätzungen der Neubildung als Bruchteil des Nie-
derschlags effizient berücksichtigt werden. Mittels kontinuierlicher Oberflächen, die den 
Grad der Zugehörigkeit zu einer bestimmten geographischen Entität anzeigen (fuzzy regi-
ons) werden Unsicherheiten in der räumlichen Ausdehnung der unterirdischen Einzugsge-
biete beschrieben. Definierte Teilmengen dieser fuzzy regions werden dann bei den Was-
serhaushaltsbetrachtungen als potentielle Grundwassereinzugsgebiete verwendet. 

Der vorgeschlagene Ansatz wurde in einer ariden, teils verkarsteten Gebirgsregion im 
Norden des Sultanats Oman angewendet. Die beiden sich ergänzenden Ansätze zur Ab-
schätzung der Grundwasserneubildung ergaben im langjährigen Mittel vergleichbare Wer-
te. Diese stimmten auch gut mit den Ergebnissen einer inversen Grundwassermodellierung 
überein. Die Plausibilität der Neubildungsraten für bestimmte hydrologisch homogene 
Einheiten und Jahreszeiten spricht für die Verlässlichkeit der Ergebnisse des konzeptionel-
len hydrologischen Modells. Offensichtlich tragen insbesondere die weniger intensiven 
Winterniederschläge wesentlich zur Grundwasserneubildung bei. Die Unsicherheiten be-
züglich der Ausdehnung des Grundwassereinzugsgebiets belaufen sich auf ca. 30 % des 
mittleren jährlichen Dargebots. Die komplementäre Betrachtung benachbarter Grundwas-
sereinzugsgebiete ist ein denkbarer Weg, diese Unsicherheit in Zukunft zu reduzieren. Ein 
wesentlicher Beitrag um die Ergebnisse dieser Studie zukünftig weiter zu untermauern 
wären hydrogeologische Erkundung und Beobachtung von Grundwasserständen im alluvi-
alen Aquifer, insbesondere nahe dem Gebirgsrand. Diese Empfehlung gilt über dieses 
Fallbeispiel hinaus für vergleichbare Systeme, in denen ein Gebirgseinzugsgebiet den 
Aquifer in der angrenzende Ebene speist. 

 



 

   

 

 

“The real voyage of discovery 
consists not in seeking new landscapes, 

but in having new eyes.” 
 

(Marcel Proust) 

„You will never miss the water, 
until your falaj runs dry.” 

 
   (Dr. Slim Zekri) 
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1 Mountains – ‘water towers’ for water resources systems in arid re-

gions 

“Mountains of the world, water towers for humanity” is the heading of a paper, which fo-

cuses on the global importance of mountain catchments as freshwater resources (Viviroli et 

al., 2007). Higher precipitation due to orographic effects, lower potential evapotranspi-

ration (ETP) and relatively high recharge rates in relation to precipitation due to shallow or 

even absent soils and fractured bedrock are the main reasons, why mountain catchments 

generally yield more water than the adjacent basin plain. In arid regions, a limited natural 

water yield due to generally scarce rainfall meet with a continuously increasing water de-

mand for agriculture, industries, and urban water supply. Thus, the yield of mountain 

catchments is often crucial for water resources management. 

The total yield can be subdivided into surface and subsurface shares. Their relative pro-

portions depend on the characteristics of the study area. Besides, these water balance vari-

ables differ regarding relevant time scale (single events or (long-term) water balance con-

siderations) and process dynamics. Depending on the study area, surface drainage basins 

and underground catchment areas can differ as well. Thus, with respect to their assessment, 

a clear distinction is reasonable. 

The subsurface runoff components at the mountain front are often referred to as mountain-

front recharge (MFR). According to Wilson and Guan (2004), it is an important, if not pre-

dominant source of recharge to the adjacent basins in arid and semiarid climates. Simul-

taneously, it is the least well quantified. The quantification of its current rate is a prerequi-

site for an efficient and sustainable groundwater management. Hence, reliable assessment 

approaches are urgently needed. 

Varying groundwater use implies the need for transient groundwater management. Conse-

quently, time dependent inflow boundary conditions are required. Moreover, prognostic 

rainfall-recharge relationships are desirable to assess the impacts of climate change. These 

two aspects indicate the use of rainfall based assessment approaches. However, the avail-

ability of respective studies is very limited. Research in this field is challenged by the size, 

complexity and accessibility of mountain systems. Additionally, the availability of data in 

an appropriate temporal or spatial resolution is a limiting factor. 

The determination of the relevant catchment area is the starting point of any hydrological 

analysis. Especially in arid regions with recharge controlled water tables, regional ground-

water flow across surface drainage divides is common (Gleeson and Manning, 2008). 

Hence, groundwater basins are often subject to considerable uncertainties. As a conse-

quence, this issue has to be addressed in assessing MFR. 
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Against this background, the focus of this thesis is the rainfall based assessment of moun-

tain-front recharge in the context of integrated water resources management (IWRM). 

Though, the calibration or validation of respective approaches has to consider the water 

resources system as a whole, including the groundwater surface in the adjacent alluvial 

basin aquifer. 
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2 Mountain hydrology and water resources assessment 

2.1 Mountain hydrology and mountain-front recharge 

Figure 2.1 illustrates a so called mountain block system consisting of the mountain block 

and an adjacent alluvial plain. Herein, the mountain block is defined as all the mass com-

posing the mountains, including vegetation, soil, bedrock (exposed and unexposed), and 

water. The mountain front zone is the not exactly defined transition zone between the 

mountain block and the basin plain (Wilson and Guan, 2004). 

 
Figure 2.1: Schematic diagram showing hydrologically distinctive units of the landscape in map view (a) and 

in cross-section (b). The cross section also shows various groundwater flow paths in the mountain block 

(Wilson and Guan, 2004). 

The total of the subsurface and near-surface water fluxes entering the basin aquifer in the 

mountain block or in the mountain front zone is often termed mountain-front recharge 

(MFR). The main components are illustrated in Figure 2.2. The near-surface component is 

the water flowing in alluvial channels or fans while subsurface flow comprises the ground-

water in the mountain aquifer after (deep) percolation. In the context of groundwater mod-

elling, MFR can also be seen as inter aquifer flow from the mountain aquifer to the alluvial 

basin aquifer. 

Precipitation is the most important control on MFR. It is related to elevation, relief and 

orientation of the mountain. Winter precipitation is primarily responsible for MFR. Perme-

ability of soils and bedrock in the mountains affects the way in which MFR occurs, as well 

as the rate and volume of recharge. The proportions of near-surface or subsurface inflow 

depend on the topography of the mountain. Finally, the stratigraphy of the mountain front 

deposit controls the distribution of recharge in space (Lerner et al., 1990). 
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Figure 2.2: Schematic diagram illustrating MFR components. FS = focused near-surface recharge, 

DS = diffuse near-surface recharge, FR = focused subsurface recharge, DR = diffuse subsurface recharge 

(Wilson and Guan, 2004) 

Evapotranspiration (ET), i.e. the moisture transfer from bare soil surface (evaporation) and 

from vegetated surface (transpiration) is an important aspect. In water resources assess-

ment, the actually removed amount of water is of main interest. However, data about this is 

usually not available. Its measurement at site, for example based on the eddy covariance 

method carried out by Canton et al. (2010), is complex, uncertain and costly. Conse-

quently, assessment of actual evapotranspiration (ETactual) is a main issue in water balance 

assessment at any scale. An important basis therefore is the potential evapotranspiration 

(ETP). This represents the atmosphere’s ability to remove water from a saturated surface. 

To date, the quantification of MFR is mostly limited to long-term average considerations 

avoiding the complexity of the interacting hydrologic processes within the catchment area. 

With regard to an improved understanding of the interacting processes, but also to quantify 

the link between precipitation and recharge to basins bounding the mountain front, Wilson 

and Guan (2004) propose a comprehensive integrated approach which is summarized un-

der the term mountain block hydrology. An important challenge in this regard is the link 

between plot or hill slope scale and the entire mountain block in time (see section 2.2.1) 

and space (representatively of site-specific experimental data on the catchment or regional 

scale). Amongst other things, this complex approach aims at predicting the impact of water 

use, land use change, or climate variability on MFR rates. 

The definition of MFR excludes surface runoff at the mountain front, which is likewise 

generated in the mountain catchment. Its proportional infiltration during runoff on the ba-

sin plain is another important mechanism regarding recharge to the alluvial basin aquifer. 

In the context of hydrological modelling, the infiltration of surface runoff during runoff 

routing is termed as transmission loss (Wheater and Al-Weshah, 2002). From the view-
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point of groundwater management, it can be seen as potential indirect recharge (de Vries 

and Simmers, 2002; Lerner, 1997). As illustrated in Figure 2.3, it occurs both in the moun-

tain block and on the basin plain. The ratio of MFR and surface runoff at the mountain 

front can differ considerably, depending on the hydrological setting of the respective study 

area. 

The links between those two water balance variables are runoff generation (division of 

rainfall into initial losses, infiltration and effective precipitation Peff) and transmission 

losses (division of Peff into potential indirect recharge and surface runoff). In Figure 2.3, 

the first aspect is illustrated by the first branching of ‘precipitation reaching the surface’. 

Transmission losses are represented by infiltration after a lateral movement, which is la-

belled as ‘Runoff and Interflow’. 
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Figure 2.3: Subdivision of precipitation based recharge (modified after Lerner, 1997) 

A main difference in the subsequent routing is the temporal dynamic. MFR and indirect 

recharge subsequent to surface runoff at the mountain front show different response times 

from rainfall to entry into the saturated zone of the adjacent alluvial aquifer. While the time 

scale of flash flood runoff is minutes or hours, percolation, retention in the mountain aqui-

fer and subsurface flow rather extends over days, months, or even years. Moreover, MFR 

is a lateral inflow from the mountain front zone to the basin aquifer, while surface runoff 

induces a lateral movement. Subsequent transmission losses (or potential indirect recharge) 

often occur only far downstream to the mountain front zone. Thus, the groundwater surface 

in the basin aquifer is the integral result of different processes and mechanisms over differ-

ent temporal and spatial scales. 
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Table 2.1: Characteristics of the two main water balance variables related to the mountain front 

variable reference area 
empirical 

reference 
relevant 
time scales 

promoted by 
adequate tempo-
spatial resolution 

QWadi 
(surface) drain-
age basin 

stream gauging event 
low infiltration rates, 
high rainfall intensity 

necessarily     
very high      
(minutes, hours) 

MFR 
groundwater 
basin 

GW surface in 
alluvial basin 
aquifer 

event, 
season, 
years 

high infiltration rates, 
low to med. rainfall 
intensity 

days, months, 
years 

 

Table 2.1 summarizes the characteristics of surface runoff discussed above at the mountain 

front and MFR. On this basis, it is reasonable to assess these variables separately. In sec-

tion 2.3, various approaches to assess groundwater recharge are discussed. It includes more 

or less process oriented integrated approaches which allow assessing both variables sepa-

rately and also approaches which integrate in time or in space. 

2.2 Essential aspects to advance mountain hydrology 

2.2.1 Rainfall characteristics and options for data acquisition 

Rainfall distribution in time and space is the most important driver of hydrological proc-

esses. In arid regions, it is generally characterised by a rare, erratic occurrence. If rainfall 

occurs, it results in a very high variability in space (Lange et al., 1999; Warner, 2004; 

Wheater and Al-Weshah, 2002). Therefore, the analysis of rainfall-runoff processes de-

pends on the availability of monitoring data in an appropriate spatio-temporal resolution. 

Observed rainfall without observed runoff in the major wadis can be explained by trans-

mission losses after local rainstorms in minor wadis (Lerner et al., 1990). Observed runoff 

without observed rainfall is often the case due to the limited spatial resolution of the rain-

fall monitoring network (see section 5.7).  

The effects of spotty rainfall, which cover only a fraction of the drainage area in the con-

text of hydrologic modelling, were investigated in various studies. They outline the in-

crease of errors with decreasing density of the monitoring network (Michaud and So-

rooshian, 1994; Osborn and Lane, 1972; Wheater and Al-Weshah, 2002). According to the 

last-named authors, the typical density of flash flood warning systems is 1 station per 20 

km². On average, this results in errors of simulated peak runoff of more than 50 %.  

So far, an area wide ground-based recording or of short duration rain storms in a spatio-

temporal resolution corresponding to the process dynamic is limited to experimental 

catchments like, for example, Walnut Gulch in Arizona/USA. Rainfall radar is a useful 

supplement to ground based rainfall monitoring. In various studies, it has been applied in 

mountain catchments in both humid and arid regions (Germann et al., 2006; Morin and 
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Gabella, 2007; Peleg and Morin, 2012). Morin and Gabella (2007) investigated radar 

measurements under dry climatic conditions in Israel. Within certain limitations, for exam-

ple distance to the radar station, they found that the applied methods provided useful rain 

depth estimates. More recently, cellular networks were investigated as an advancing alter-

native (Chwala et al., 2012; Kraemer et al., 2012; Messer et al., 2012; Rayitsfeld et al., 

2011). 

An option for remote or poorly gauged regions are the satellite-based PERSIANN rainfall 

estimates (Sorooshian et al., 2008). Since 2000, time series in a temporal resolution of 6 

hours are globally available. However, the spatial resolution is only 0.25°. Additionally, a 

higher spatio-temporal resolution (∆x = 0.04° and ∆t = 3 h) is available for selected areas 

since 2006.  

With regard to water resources assessment, the inter-linkage of temporal and spatial scales 

is an important issue. Single, local events appear rather randomly within a time window of 

a few years. On the long-term, they often result in typical cyclic patterns which are of vital 

importance in water resources management (Brook and Sheen, 2000). Consequently, con-

clusions based on a narrow time window can be misleading with regard to mid- or long-

term conditions. 

The geochemistry and isotopy of groundwater resources provides information on moisture 

sources or rainfall mechanisms, which are predominantly responsible for groundwater re-

charge (Stanger, 1986; Weyhenmeyer et al., 2002). Thus, monitoring and analysis rainfall 

chemistry and isotopy is an important issue besides its quantity in time and space. 

2.2.2 Groundwater-surface water interactions and availability of reference values 

The effects of topographic and hydrogeologic controls on groundwater flow in mountain-

ous terrain was investigated by Gleeson and Manning (2008) based on three-dimensional 

simulations of idealized multi-basin systems. The main conclusions are shortly summa-

rized in Table 2.2. According to this, shallow or so called topography controlled ground-

water tables are promoted by high rates of groundwater recharge, low hydraulic conductiv-

ity and a low relief. In contrast, low recharge, highly permeable aquifers and a rough to-

pography lead to deep water tables. Local flow implies that the yield of a drainage basin 

discharges at the outlet of this watershed in contrast to regional flow, where groundwater 

flows from one surface watershed to another. 
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Table 2.2: Hydrologic controls and groundwater flow in mountainous terrain following Gleeson and Man-

ning (2008) 

hydrologic controls promoted groundwater flow regime 

water table 
climate 

ground-
water 

recharge 

hydraulic 
conduc-

tivity 
relief 

type depth 

flow 
range 

hydraulic 
conditions 

streamflow 
character-

istics 

humid high low low 
topography 
controlled 

shallow 
local 
flow 

effluence  
('gaining 
stream') 

perennial 

arid low high rough 
recharge 

controlled 
deep 

regional 
flow 

influence 
('losing 
stream) 

ephemeral 

 

The terms influence and effluence describe the relation between the water level of surface 

water courses and groundwater surface next to it. If the groundwater table lies above sur-

face water level, effluent conditions prevail. The opposite direction is termed as influence 

or influent conditions. Figure 2.4 (left graphs) illustrates these distinct conditions. They 

decide on the drainage direction from the groundwater to the surface water course (gaining 

stream) or vice versa (losing stream). 

In humid zones with predominantly effluent conditions, the gauged hydrograph of a (gain-

ing) stream represents the integral hydrologic response of its catchment area. Many hydro-

logic approaches are based on the assumption of a gaining stream. They are reaching from 

hydrograph separation approaches, e.g. DIFGA (Schwarze et al., 1999), to conceptual hy-

drologic models, e.g. the HBV model (Bergström, 1995). In this perception, groundwater 

recharge in the sense of water entering the saturated zone, can be derived from the slower 

flow components of the hydrograph. Water that does not contribute to actual evapotranspi-

ration does, in either case, contribute to the hydrograph at the catchments outlet. For this 

reason, the measuring cross section in the Wernersbach experimental catchment, 25 km 

southwest to the city of Dresden/Germany, was equipped with an underflow barrier to 

really ensure effluent conditions. 

In arid zones, generally deep lying groundwater tables prevail. Consequently, influent con-

ditions are predominant (see Figure 2.4). Thus, the response of a mountain catchment is 

divided into (subsurface or near-surface) mountain-front recharge and surface runoff in a 

(losing) wadi channel. Further downstream, these components either contribute to indirect 

recharge or they discharge to its recipient. As a result, in contrast to effluent conditions, not 

only the surface runoff hydrograph reflects the interacting hydrological processes in the 

respective catchment, but especially the groundwater table in the alluvial basin aquifer 

does so. Stated more generally, under influent conditions, a surface runoff hydrograph 

alone is an appropriate reference for rainfall-runoff-modelling in a narrow sense, aiming at 

surface runoff at the catchment’s outlet. Calibration or validation of water balance ap-
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proaches concluding on effective infiltration and actual evapotranspiration, however, re-

quires basically information on the actual groundwater response. 

Mostly, these references are limited to long-term averages (see section 2.3). An empirical 

database to evaluate the time dependent recharge estimates is, eventually, only the ob-

served groundwater surface within or in an adequate distance to the mountain front zone. 

As Figure 2.5 shows, the empirical data base is a set of observed groundwater levels. In 

contrast, the output of a rainfall-recharge-relationship is a flux of water. Consequently, the 

observed changes in groundwater levels have to be transferred to fluxes by the use of ap-

propriate models. The latter in turn require hydrogeologic survey. 

Ground surface

Baseflow
stage

Stream

 

Figure 2.4: Left: Groundwater - surface water interactions (Fetter, 2001); A: Cross section of a gaining 

stream, which is typical of humid regions, where ground water recharges streams. B: Cross section of a los-

ing stream, which is typical of arid regions, where streams can recharge ground water. Right: Infiltration, 

deep percolation and recharge - modified after Lerner (1997) 

Thus, the calibration or validation of time-dependent approaches to assess MFR requires 

adequate hydrogeologic investigations, including observations of groundwater levels in an 

appropriate distance to the mountain front zone. Its availability is a crucial point for the 

interconnection between mountain catchment and basin aquifer. 

The usual lack of appropriate groundwater observations is a general issue in arid zone hy-

drology. With regard to the Walnut Gulch experimental catchment, Wheater et al. (1997) 

outline this as follows: “It is interesting to note that despite the very high quality of surface hy-

drology data at Walnut Gulch, subsurface information is limited, and there is a major international 

need for arid zone research basins to include integrated monitoring of both surface and subsurface 

processes.”  
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Rainfall P [L³/T] MFR = f(P) [L³/T]

observed change in 
groundwater levels ∆h [L]

hydrological processes
in the mountain block

aquifer characteristics

model-based rainfall-recharge-relationship

empirical reference

MFR = f(∆h) [L³/T]

comparison

 

Figure 2.5: Interlink between mountain-front recharge and observed groundwater surface 

2.3 Approaches to the assessment of mountain-front recharge 

2.3.1 Options to assess groundwater recharge 

A “Global synthesis of groundwater recharge in semiarid and arid regions” (Scanlon et 

al., 2006) compiles the findings of about 140 studies in arid and semiarid regions. It covers 

different settings in terms of physical geography and spatial extent of the study area, the 

purpose of the study, and applied approaches. However, it contains hardly any study which 

focuses especially on mountain-front recharge. The study reported on a study of Ander-

holm (2001) using the Chloride Mass Balance approach (CMB) for the Middle Rio Grande 

Basin in New Mexico (7900 km²). Manning and Solomon (2003) were using noble gases in 

the salt lake valley in Utah. In a study about the Yucca Mountains (Flint et al., 2002) how-

ever, several methods were applied (see below). Additionally, Scanlon (pers. comm., Janu-

ary 25, 2012) stated: “I think mountain front/block recharge is extremely important. I don't 

think there is a lot of information about this topic [...]”. 

Wilson and Guan (2004) compiled 12 studies featuring different hydrological settings re-

garding geology, mean annual precipitation, estimated mean recharge rate, and assessment 

approaches. Half of these studies comprised methods based on groundwater data (CMB, 

numerical modelling, Darcy’s law, i.e. estimating flow through a cross section). Further-

more, empirical relationships and water balance approaches based on estimations of 

evapotranspiration were applied. 
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Two conclusions can be drawn from this short overview: 

• The data base for inter-site comparisons as a preliminary approach to a study area is 

extremely limited. Likewise, reference data for derivation or validation of assessment 

approaches is hardly available. 

• The approaches applied are generally in accordance with established literature on 

groundwater recharge as provided by (de Vries and Simmers, 2002; Healy and Scan-

lon, 2010; Lerner, 1997; Scanlon and Cook, 2002; Scanlon et al., 2002). 

There is a wide range of methods for quantifying recharge in the wider sense of water 

forming an addition to the groundwater reservoir from any direction (Scanlon et al., 2002). 

In summary, these are physical techniques, tracer techniques and modelling techniques. It 

is distinguished between surface water, unsaturated zone and saturated zone studies. 

The water balance approach is a superior principle which is, implicitly or explicitly, con-

nected to a number of these approaches. Its accuracy generally depends on the accuracy of 

the various components or parameters. Often, the sought groundwater recharge and the 

uncertainty range of other water balance variables are in a similar order of magnitude. Es-

pecially the assessment of actual evapotranspiration is subject to a considerable uncer-

tainty. 

The choice and success of each approach depends on the aim of the study and the spatial 

and temporal scale. While vulnerability assessment is focused on site-specific information, 

water resources assessment (WRA) rather has to deal with the integral response of a dis-

tinct catchment area. In addition to the larger spatial scales, a time scale of decades is con-

sidered in the context of WRA. 

Studies based on groundwater data are a common way for large scale assessment of water 

resources. The most widely used approach for estimating recharge is the chloride mass 

balance technique (CMB) (Scanlon et al., 2006). However, (Weyhenmeyer et al., 2002) 

point out, that this method is limited by the availability of detailed long-term records of 

precipitation and chloride deposition. Another option is the inverse estimate of recharge 

based on numerical groundwater modelling. These ‘basin centred’ methods provide results 

for the whole catchment of the aquifer. However, they are integrating over space and 

(mostly) over time (Wilson and Guan, 2004). 

In contrast, spatially distributed water balance modelling is an option for both, time de-

pendent, and prognostic assessment. However, the data requirements are demanding and 

subject to the above mentioned limitations of the water balance approach regarding the 

accuracy. In more detail, this is discussed in section 2.3.2. 

(Semi-) empirical approaches are mainly restricted to long term mean annual considera-

tions. However, it can be highly misleading to describe mean annual recharge or recharge 

as a proportion of mean annual precipitation, if recharge results from only infrequent large 
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events, which is often the case in arid regions (de Vries and Simmers, 2002). Nonetheless, 

it is common, not least due to a lack of alternatives. Additionally, it is an option to estimate 

recharge with manageable data requirements as a complementary approach to any other 

available method. An example for catchment wide estimates is the simple linear rainfall-

recharge relationship for catchments in South Africa provided by Bredenkamp (1990). 

Flint et al. (2002) cited a spatially distributed method by Maxey and Eakin (1950) which is 

based on distinct recharge rates as percentage of annual precipitation for different zones. 

This approach was adopted by other authors and adjusted or recalibrated for the respective 

study area. 

Andreo et al. (2008) used data of several well investigated semi-arid catchments in south-

ern Spain to derive a spatially distributed regionalisation approach named APLIS to esti-

mate the annual recharge in carbonate aquifers based on geomorphologic variables.  

A time dependent approach was provided by Kessler (1967) for the yield of a karstic 

spring in Hungary. Although not for a semi-arid region, it is interesting because it is based 

on the finding, that the hydrologic response depends, besides the rainfall input in the re-

spective month, on antecedent rainfall or, more generally, on the seasonality. This is in 

accordance with one of the main controls mentioned in section 2.1 regarding MFR in arid 

regions. 

Various authors point out, that recharge assessment is an iterative process. It starts with the 

review of previous studies and analysis of available data. On this basis, a conceptual model 

can be outlined. The choice of appropriate methods and the necessary data collection pro-

vides the basis for numerical models. Within a number of loops, data base, con-

ceptualisation and models can be refined. Different independent complementary ap-

proaches, as allowed by available data, are highly desirable, because every approach is 

subject to certain limitations and considerable uncertainties (de Vries and Simmers, 2002; 

Healy and Scanlon, 2010; Scanlon et al., 2002). The discussion in section 2.2.2 where vali-

dation of rainfall based approaches relies on groundwater data, but the fact that numerical 

groundwater modelling relies on reliable inflow boundary conditions, supports that. 

A unique example for such an iterative process using complementary approaches is the 

investigation of recharge mechanisms in the Yucca Mountains with regard to nuclear waste 

disposal. Flint et al. (2002) provided a comprehensive overview on applied approaches, 

their scales, parameters, strengths and limitations. They state: “All of these methods pro-

duce estimates that are highly approximate, but complementary rather then redundant be-

cause they are based on vastly different assumptions.”  

2.3.2 Arid zone water balance modelling – options and limitations 

Wilson and Guan (2004) promoted a comprehensive mountain block hydrology. The main 

motivation for that is the need for a time dependent and prognostic assessment. Nonethe-
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less, the state of the art relies rather on inverse or (semi-)empirical approaches (see above). 

In the following, different water balance modelling approaches are reviewed and discussed 

with regard to their advantages and limitations. On this basis, the question about these 

processes and mechanisms, which are essential to assess mountain-front recharge is raised. 

The cited studies do not necessarily focus on MFR. However, the challenges and limita-

tions are comparable because they eventually deal with the same basic processes and 

mechanisms. 

Various authors (e.g. Al-Qurashi et al., 2008; Wheater et al., 1997) focus explicitly on rain-

fall-runoff-processes, i.e. the assessment of stream runoff at the catchments outlet. This 

approach provides an upper boundary for the assessment of indirect recharge due to trans-

mission losses downstream to the considered reference cross section. With regard to an 

overall water balance assessment including direct recharge over the catchment area, it is 

only one part of the problem. 

A further developed version of the lumped conceptual HBV light (Seibert, 2002) was used 

by Love et al. (2011) for meso-scale catchments in semi-arid environments. They con-

cluded, that the model is unreliable for more ephemeral and drier catchments. It is stated 

that “without more reliable and longer rainfall and runoff data, regionalisation in semi-

arid ephemeral catchments will remain highly challenging.” 

Likewise, a conceptual hydrologic modelling approach was presented by Sheffer et al. 

(2010). However, regarding 6 non-physical parameters, the applicability highly depends on 

available reference data. In this case, they could meet this challenge using a 3 stage cali-

bration approach based on a 16 year calibration period, and another 5 observed years for 

validation based on the link of the water balance model to a groundwater model. 

A distributed water balance approach for a mountain catchment in Iran, featuring a flow 

equation for the subsurface flow processes in valley alluvium and recharge from the beds 

of ephemeral rivers, was provided by Khazaei et al. (2003). Direct recharge in the highland 

area is explicitly out of consideration. This simplification can be acceptable in this special 

case. However, in the case of very permeable surfaces, direct recharge is supposed to be a 

main portion of groundwater recharge. Infiltration in the alluvium is described as a func-

tion of actual and maximal storage, and in addition, 2 non-physical parameters. The au-

thors used a daily time step because of insufficient data to justify a smaller time step. 

The work of Gunkel and Lange (2011) combined the fully distributed event based rainfall-

runoff model ZIN (Lange et al., 1999) in a 5-7 minutes resolution with the continuous 

daily water balance model TRAIN (Menzel, 1997), applied in the lower Jordan River ba-

sin. This approach is a possible solution for a largely process based assessment of ground-

water recharge. It gives insights to the spatial and temporal dynamics of the considered 

system. However, its application is demanding in terms of required input data (e.g. rainfall 

data in adequately high spatio-temporal resolution) and field data on catchment morphol-
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ogy (e.g. infiltration characteristics, geometry and hydraulic properties of alluvial channels 

etc.). For example, Gunkel and Lange (2011) point out that radar data was only available 

for about 2 years. Consequently, they discussed the distinct conditions for a single rather 

wet and a single drier year, but they did not conclude on mid- or long-term conditions. 

Hughes et al. (2008) argue, that distributed watershed modelling is preferable to assess 

groundwater recharge in a structurally complex upland karst limestone aquifer in the West 

Bank. As one reason, they point out that the empirical approaches, applied in earlier re-

charge studies in this study area, defy the complexity of the partly karst, fractured aquifer 

and ignore the nature of a semi-arid climate with regard to variability in time. Additionally, 

it is mentioned that spring discharge can be subject to anthropogenic influences which has 

an impact on empirical relationships for the respective study area. Thus, they present a 

distributed water balance model on a daily time step. The assessment of groundwater re-

charge is carried out either by a soil moisture deficit (SMD) approach (Penman, 1948) or 

wetting thresholds (WT) according to Lange et al. (2003). The latter reference is, actually, 

the documentation of a 2 day sprinkling experiment on a large plot (18 x 10 m²) of a steep 

hill slope with a variety of different terrain elements. Hughes et al. (2008) documented the 

assumed wetting thresholds, but they do not reveal if it is just a threshold value above 

which recharge is equal to rainfall input, or if it is a more sophisticated modelling concept. 

The approach results in a spatially distributed picture. The authors point out that the com-

plexity of the methods can be enlarged as understanding of the processes increases. 

The following crucial points are summarised: 

Availability of reference data: 

Only in the study of Sheffer et al. (2010), a reference was available in the form of an inter-

linked groundwater model. In all the other cited studies, no reference data was available 

which really reflects the integral groundwater response to rainfall over the catchment as a 

whole. This general problem is one reason for the request for complementary approaches 

(seeFlint et al., 2002; cited in section 2.3.1) and it is a considerable source of uncertainty 

with regard to the calibration of non-physical model parameters. Consequently, concepts 

which rely on more or less physical parameters or at least proxy values for key processes 

are generally preferable compared to largely conceptual approaches. Furthermore, the en-

hancement of monitoring in the frame of an iterative approach should pay at least the same 

attention to reference data as to input data and catchment characteristics. 

In the case of Wadi Kafrein (Jordan) both, a largely process based water balance model 

(Alkhoury, 2011) and a groundwater model (Wu et al., 2011) were set up recently. There-

fore, an optimal setup for an iterative approach as outlined in section 2.3.1 is available. 
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Modelling concepts versus availability of input data and model parameters: 

The approach of Gunkel and Lange (2011) relies on high resolution input data which is 

generally not available for time periods which are necessary for reliable water balance con-

siderations. This is beneficial regarding process understanding. However, it does hardly 

support water resources assessment in an actual application. For this reason, Hughes et al. 

(2008) and Khazaei et al. (2003) chose a daily time step. In this case, considerable simpli-

fications in process conceptualisation are unavoidable. For example the infiltration process 

is highly instationary. 

Stochastic simulation is an option to deal with this issue. For example, Wheater et al. 

(1991) provided a model for stochastic rainfall simulation on the Arabian peninsula. 

Analogously, Fleckenstein and Fogg (2008) used geostatistical models to upscale hydraulic 

characteristics. However, in the given context it has to be considered, to what extent these 

models provide input data or model parameters which really represent a real-world case. 

Consequently, a differentiation in the purpose is necessary between process understanding, 

which can be supported by stochastically generated high resolution data, and an actual ap-

plication in a data scarce region for a recent time period. The latter must necessarily go 

along with a reduced complexity according to data availability. 

With this in mind, Blöschl (2006) favours the synthesis of available approaches. He argues 

that complex system models clearly have their role in hydrology, but alternative models 

and alternative model uses are equally valuable in hydrologic synthesis across processes, 

places, and scales. In ‘Searching for Simplicity in Hydrology’, Dooge (1997) argued in the 

same direction. He distinguished between rather micro-scale phenomena which can be 

tackled with deterministic approaches and, on the other hand, macro-scale processes with a 

very high degree of randomness. The problems faced in hydrology fall in the intermediate 

region. As a result, in his strategy for synthesis ”a systematic search for simple models, 

involving as few assumptions as possible and a small number of parameters, together with 

a sound knowledge of the conditions under which the models fail to give and adequate rep-

resentation of the data” is an important aspect. 

2.3.3 Key components for assessing mountain-front recharge 

The flowchart showing the subdivision of precipitation based recharge including vertical 

and lateral movement of water (Figure 2.3) is supposed to be a valuable outline to derive 

an appropriate approach in order to assess mountain-front recharge in regions with scarce 

data. 

Runoff generation and soil moisture budget can be considered one-dimensional vertically. 

Surface runoff routing and transmission losses range over the whole flow distance, and are 

therefore subject to all the uncertainties in physical properties along that flow distance. 

Infiltration characteristics and antecedent moisture conditions decide on the portion of sur-
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face runoff or indirect recharge in proportion to infiltration or direct recharge. Infiltration is 

considered to be a key issue: Its sensitivity should be considered whenever possible. 

Which portion of the infiltrated water amount will enter the saturated zone and which por-

tion will get lost by evapotranspiration? A site specific answer is a challenge for above 

discussed modelling approaches and for experimental approaches. In the context of water 

resources assessment on the meso- or large scale, the primary aim is a good agreement 

with reference data representing the whole catchment area on the mid- or long-term. The 

actual soil moisture status at a certain site and for a certain date is subordinated at this 

point. Nonetheless, a best possible consideration of the soil storage characteristics is an 

important aspect. 

Variability of rainfall input in space is an important issue. Subdivision of rainfall into re-

charge, evapotranspiration and surface runoff depends highly on site-specific rainfall char-

acteristics. Spatially averaged characteristics can be misleading. Therefore, a distributed 

approach is highly desirable. There is a conflict between desirable process orientation and 

temporal resolution of available rainfall data, however (see above). Regionalisation of rain-

fall is a necessary step in the pre-processing of input data. Additionally, regionalisation of 

the temporal variability is a critical point, where uncertainty is supposed to increase with 

increasing temporal resolution. Thus, an alignment of tempo-spatial resolution of available 

data and modelling concept is necessary. 

To summarise, the following issues should, implicitly or explicitly, be considered regard-

ing rainfall based assessment of mountain-front recharge: 

• spatial distribution of rainfall and (seasonal) rainfall characteristics like occurrence, 

intensity and duration 

• infiltration characteristics 

• soil water balance as a function of soil storage characteristics, climate conditions and 

vegetation cover. 

Furthermore, spatial and temporal resolution should correspond to available data. 

Flint et al. (2002) emphasized, that every approach is to a certain degree approximate. 

Thus, analysis and portrayal of vagueness or uncertainties is important. For this reason, 

uncertainty analysis based on likelihoods is common in the context of hydrologic model-

ling. A distinction is made between input, parameter and model structural uncertainty 

(Beven, 1993; Grundmann, 2010). The last-named author combined several statistical and 

numerical methods to analyze both, the uncertainty of single model components and the 

global uncertainty. A comprehensive hydrogeological decision analysis framework in 

which geological uncertainty and parameter uncertainty is included was provided by 

Freeze et al. (1990). Alternative approaches to handle uncertainties based on fuzzy set the-

ory will be discussed in section 3. 
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2.4 Linear reservoir models to describe base flow recession 

In addition to runoff generation, concentration and channel routing, subsurface routing is 

an important aspect in water balance modelling. Reservoir models based on a single linear 

reservoir (SLR) or combinations of two or more linear reservoirs are widely used for this 

task. Dewandel et al. (2005) compared different conceptual methods for baseflow reces-

sion in porous media and concluded that only the equation by Boussinesq (1903) is an ex-

act approximation of the respective flow equations for flow in porous media. Schwarze et 

al. (1999) show, that the linear combination of two storages with defined proportions of 

reservoir constants and input result in a sufficient approximation for the analytical solution 

of the underlying geohydraulic model. They are using this setup to describe the ‘low’ base 

flow components in the frame of conceptual water balance modelling. Their 

SLOWCOMP-approach includes another parallel storage for fast base flow components. 

Recharge QRh to this high permeable storage is limited by a constant number. 

For karst aquifers, the explicit consideration of the conduits and the so called duality of 

recharge are essential. Király (2002) presents a conceptual two-reservoir model for karst 

aquifers. In this model, the low permeability storage Sl is representing the fissured matrix 

block. The highly permeable storage Sh, however, represents the conduit system.  

Table 2.3 presents a comparison of the essential points. As a summary, the serial approach 

of Király (2002) is a recommendable option especially for karst aquifers (Geyer et al., 

2008). The work of Schwarze et al. (1999) provide a proficient approximation of the ana-

lytical solution and parameters for different lithological classes. With regard to the distri-

bution between low and high conducting storage, the approach of Király (2002) is more 

adaptable. 
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Table 2.3: reservoir models for hard rock or karst aquifers with lowly permeable (‘slow’) component Sl and 

highly permeably (‘fast’) component Sh 

lithological class hard rock (in general) karst aquifers 

approach 
SlowComp (Schwarze et al., 
1999) 

two-reservoir model 
(Király, 2002) 

order of storages parallel 
serial; release Ql flows into 
highly permeable storage Sh 

distribution of input QR 
limited capacity Vl_max of 
highly permeable storage Sh 

proportion Rl/Rh of inflow to 
lowly and highly permeable 
storages 

miscellaneous 

slow component Sl: split-up into 
two storages Sl1 and Sl2 with 
reservoir constant 
Kl2 =°1/9*Kl1 and distribution 
of inflow Rl1/Rl2 = 8/9/1/9 

 

physical interpretation | 
interpretation in the 
context of conceptual 
modelling 

slow and fast baseflow compo-
nents 

slow component : 
Porous or fissured matrix 
Fast Component: 
Karst conduit system 

reservoir constant of low permeability storage Kl 
see (Schwarze et al., 1999); 
carbonates (incl. different de-
grees of karstification): 
120 d – 180 d – 210 d 

(Geyer et al., 2008): 
100 d 

reservoir constant of highly permeable storage Kh 

reference values of res-
ervoir constants K (as 
reciprocal of re-cession 
coefficient α) for car-
bonate aquifers 
 

see (Schwarze, 2004); range for 
limestone (incl. different de-
grees of karstification): 
6 d – 10 d - 13 d 

(Geyer et al., 2008): 
2 d – 4 d 

availablitity of reference 
values for non-
carbonatic hard rock 

available; see Schwarze et al. 
(1999), Schwarze (2004): 

none 

reference values for dis-
tribution of inflow 

Schwarze (2004): 
empirical values as function of 
annual P and lithology for an-
nual P > 500 mm; thus, transfer-
ability limited 

Geyer et al. (2008): 
Rl = 50 % - 95 % 

benefits 

• commendable approxi-
mation of analytical solution 
for the slow component 

• reference values for differ-
ent lithological classes be-
yond karst 

commendable conceptual ap-
proach for karst aquifers 

limitations 

distribution between slow and 
fast component: the higher the 
input, the lower the relative 
portion of the fast component 

applicability for other lithologi-
cal classes? 
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3 Approaches to deal with uncertainty with a special focus on fuzzy sets 

3.1 Probability based uncertainty assessment versus fuzzy reasoning 

Hydrological analyses or models are subject to vagueness or uncertainty. Reasons are, for 

example, inaccurate or even lacking data, limited validity of site-specific measurements on 

a larger scale, or necessary simplifications in process conceptualisation. Their considera-

tion is an important aspect in hydrology or water resources management. A major motiva-

tion for this is the equifinality of hydrologic models. This means, that different combina-

tions of parameter values or input variables can result in the same output or goodness of fit, 

respectively (Beven, 1993; Grundmann, 2010). 

Uncertainty analyses based on probabilities are widely used in hydrologic modelling. Pa-

rameters and variables of a hydrologic model are herein treated as random variables with 

distinct probability distributions. The necessary mathematical methods have been well 

founded for a long time. Consequently, their practical application is well established. 

Probabilities are based on classical (binary) logic (CL). This means that a proposition is 

either (absolutely) true or (absolutely) false. In fuzzy logic (FL), however, it is a matter of 

degree. As illustrated in Figure 3.1, rainfall intensity is rather high or rather low in the 

fuzzy representation (right graph) instead of either high or low (left graph). The term crisp 

is often used in the context of fuzzy reasoning as an opposite to the term fuzzy. 
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Figure 3.1: Crisp and fuzzy representation of rainfall intensities 

In many respects, this approximate reasoning is much closer to reality. Hence, Şen (2010) 

states: “It is better to start with FL principles and arrive at a set of fuzzy conclusions than 

to conclude with classical logic (CL) (two-valued logic) a mathematical approach with 

only one crisp result, which may never appear in real life.”  

In the practical application, stochastic approaches rely on computationally demanding 

Monte-Carlo procedures. In this regard, fuzzy logic approaches can be an efficient alterna-
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tive for consideration of uncertainty and are an integral part of model application. Addi-

tionally, fuzzy approaches are able to incorporate qualitative and heuristic information. 

Fuzzy principles are able to use linguistic rather than quantitative variables to represent 

imprecise concepts. Linguistic variables (e.g. rainfall intensity) describe universal sets. 

They can be broken down into so called fuzzy words (e.g. high, medium, low) which imply 

numerical values. Therefore, fuzzy reasoning is very close to the nature of human lan-

guage. Consequently, real world problems can be, in the first instance, described intui-

tively. This can be a common basis in problem solving for experts of different scientific or 

professional background (Sen, 2010). 

However, fuzzy logic is not widely known or understood. Besides that, traditional stochas-

tic methods are often preferred because of the inability to convert fuzzy predictions into 

probability distribution functions (Eder et al., 2005). 

3.2 Fuzzy sets and related methods 

In the following chapter, essential basics of fuzzy set theory are presented. Unless other-

wise indicated, it is based on Dubois and Prade (1992) and Şen (2010). Ranges of applica-

tion in water resources assessment are discussed in section 3.3. The flowchart in Figure 3.2 

gives an overview on selected aspects which are relevant for this thesis. The upper part of 

the flow chart focuses on basic concepts, while the highlighted bottom line mentions po-

tential applications in the fields of water resources management. 
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Figure 3.2: Fuzzy sets – related concepts and application range 
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Fuzzy sets 

In classical (crisp) sets a membership degree (MD) of 1 is assigned, if an item belongs to a 

set. Otherwise, an MD of 0 is assigned. Symbolically, this can be shown as: 





∉
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In contrast, fuzzy sets can have MDs in the defined interval [0,1]. In other words, a point x 

of a fuzzy subset A can have a partial membership to a universe X (see Equ. 3.2). In the 

following, a fuzzy subset is referred to as fuzzy set. 
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If µA(x) = 0, then point x does not belong to the fuzzy set A. µA(x) is the so called mem-

bership function (MF) of the fuzzy subset A. It represents the MD of x in A. Therefore, the 

fuzzy set A is a set of n ordered pairs which can be expressed as follows: 
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The support of a fuzzy set A includes all elements x with µA(x) > 0. 

{ }0)(;)(supp >∈= xµXxA A         (3.4)  

If the support of a fuzzy set A is only a single element, it is denoted as a fuzzy singleton. 

Its MD is µA ≤ 1. An ordinary number is likewise a subset with a single element. In con-

trast to the singletons, its MD is always unity (µA = 1). 

The most common shapes of membership functions are the triangular (Equ. 3.5) and the 

trapezoidal MF (Equ. 3.6). They are illustrated in Figure 2.1 
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Trapezoidal MF: 
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Figure 3.3: Triangular and trapezoidal membership functions 

 

Normality and Convexity 

A fuzzy set A is called normal, if at least one point of A has an MD µA(x) equal to 1. It is 

convex, if the MF consists of an increasing and a decreasing part. This means, that the MF 

does not include local minima. With Xxx ∈21,  and ]1,0[∈λ , the respective criterion can be 

written as follows: 

))(),(min())1(( 2121 xµxµxxµ AAA ≥−+ λλ      (3.7)  

An α-cut is the crisp subset with MD µA(x) ≥ α. If the MF is convex, then it is an interval 

which can be represented as 

)](),([)( 21 ααα xxA =         (3.8)  

with A(α) fuzzy set at α-cut level α 

 x1(α) lower bound of the α-cut 

 x2(α) upper bound of the α-cut 
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Operations on fuzzy sets 

In the context of fuzzy-rule based systems (see below), logical operations are applied to 

fuzzy sets. On the basis of two fuzzy sets A and B of the universe X and the respective 

membership functions µA(x) and µB(x), there are three Boolean operations described in the 

following. The names in brackets are alternative terms used by Şen (2010). 

Complement (‘NOTing’): 

The complement of a fuzzy set A is referred to as A . Its MF is defined by 

(x)µ - 1  (x)µ AA =          (3.9) 

 

Union (‘ORing’): 

The union of two fuzzy sets A and B is BA  C ∪= . Its MF is defined by 

(x))µ(x),µ (max (x)µ BAC =        (3.10) 

Intersect (‘ANDing’): 

The intersection of two fuzzy sets A and B is BA  D ∩= . Its MF is defined by 

(x))µ(x),µ (min (x)µ BAD =        (3.11) 

 

Fuzzy numbers and fuzzy arithmetic 

Fuzzy numbers are a special case of a general fuzzy set. They are normal and convex fuzzy 

subsets of the set of real numbers ℜ : 

{ }]1,0[)(;:))(,( ∈ℜ∈= xµxxµxA AA :      (3.12) 

Any real number can be considered as a fuzzy number with a single point support. It is 

referred to as crisp number. Consequently, fuzzy numbers can be seen as a generalization 

of the usual concept of numbers. 

In contrast to the general fuzzy sets discussed above, arithmetic operations can be applied 

to fuzzy numbers beyond the above mentioned Boolean operations. Additionally, it has to 

be mentioned that union and intersection of fuzzy numbers do not result in fuzzy numbers 

because the normality assumption is not fulfilled any more. 

Equations 3.13 to 3.16 show the four main fuzzy operators: addition, subtraction, multi-

plication and division. In this context, the lower and upper bounds of the α-cuts of the 

fuzzy numbers A and B according to Equ. 3.8 are considered as operands. In the different 

operations, they are combined in such a way, that each operation results in the maximal 

possible interval width for the respective α-cut level. 
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Fuzzy addition: )]()(),()([)())(( 2,2,1,1, αααααα BABA xxxxBA ++=+   (3.13) 

Fuzzy subtraction: )]()(),()([)())(( 1,2,2,1, αααααα BABA xxxxBA −−=−   (3.14) 

Fuzzy multiplication: )]()(),()([)())(( 2,2,1,1, αααααα BABA xxxxBA ∗∗=∗   (3.15) 

Fuzzy division: )](/)(),(/)([)()(/)( 1,2,2,1, αααααα BABA xxxxBA =   (3.16) 

 

Instead of two fuzzy operands, the operations can also be applied to a fuzzy operand A(α) 

and a crisp number. 

The fuzzy arithmetic operators are based on the extension principle (Zadeh, 1965). This 

basically means that every value xA(α) is transformed while its membership degree 

µA(x) = α is kept. In the case of multiple operands different membership degrees are con-

sidered according to defined rules. Ultimately, it allows to generalize any crisp mathemati-

cal concept to the fuzzy set framework. 

 

Fuzzy logic and Fuzzy Inference Systems (FIS) 

Fuzzy Inference Systems (FIS) map different input fuzzy sets to an output using fuzzy 

logical rules. Among other things, it is an efficient way to describe non-linear relation-

ships. 

Figure 3.4 illustrates the general structure of a Mamdani type FIS. Linguistic variables 

represent single or multiple input variables (often referred to as antecedents) and single or 

multiple output variables (also referred to as consequents). Fuzzification means to define 

two or more overlapping membership functions (MFs) for each defined linguistic variable. 

For example, an antecedent ‘rainfall’ or a consequent ‘runoff’ can be represented by the 

MFs ‘low’, ‘medium’ and ‘high’ , each covering a certain support.  

Fuzzy logic rules connect selected MFs of one or more antecedents with corresponding 

MFs of the consequents. During inference, the respective membership degrees (MDs) µ(x) 

of actual values x of the antecedents are evaluated and applied to the conclusion part of the 

rule. This results in a fuzzy subset for each output variable for each rule. Subsequently, the 

results of each rule are combined (‘Composition’), which results in a single fuzzy subset 

for each output variable. At last, the fuzzy output set is converted to a crisp number. This 

step is referred to as defuzzification. Different defuzzification methods can result in differ-

ent crisp numbers for the same fuzzy output. 
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…

If-Then Rule 1

If-Then Rule 2

…

If-Then Rule n

Linguistic Variables Rule Base Composition

Fuzzfication Inference Defuzzification

Input Output

 

Figure 3.4: General structure of a Mamdani type Fuzzy Inference System (FIS) (own representation follow-

ing Sen, 2010) 

 

Due to the linguistic variables, the Mamdani type FIS described above supports a rather 

intuitive modelling approach. In contrast, the likewise widely applied Sugeno FIS or adap-

tive network based FIS (ANFIS) relate sets of crisp in- and output data instead of fuzzy 

sets. 

 

Fuzzy approaches in spatial analysis 

Transferring the basic concepts of fuzzy logic to spatial analysis, a thematic layer (e.g. 

landuse) can be seen as an analogue to a linguistic variable. However, the subsets (e.g. 

cropland or forest) are referred to as fuzzy geographical entities (Lodwick et al., 2008) or 

fuzzy regions (FR) (Morris and Kokhan, 2007). In the subsequent text, they are referred to 

as fuzzy regions. Figure 3.5 shows an example, where the grey tone indicates the degree of 

membership. Accordingly, fuzzy regions are continuous surfaces which represent member-

ship degrees µ(x,y) in relation to certain locations. As shown in the lower sketch in Figure 

3.5, a corresponding membership function can be derived as well. The abscissa hereby 

shows the value (in this context a measure of extension), while the ordinate indicates the 

degree of membership µ(x). The α-cut is the crisp subset with membership degrees µ(x,y) 

of at least α. Hence, the (2D-)α-cut of a fuzzy region is an area with a crisp α-cut bound-

ary referring to a certain α-cut level. 

Fuzzy regions are usually applied in connection with fuzzy inference systems. In the frame 

of this thesis, they are used to portray the actually unknown extent of underground catch-

ment areas as spatial reference for water resources assessment (see section 3.1). 
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Figure 3.5: Representation of a fuzzy region and its fuzzy set membership function (modified after Zhan and 

Lin, 2003) 
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3.3 Ranges of application in hydrology and water resources management 

FIS are supposed to be the most widely used application of fuzzy set theory. Often, they 

are used for decision support (Makropoulos et al., 2008). This means, the most appropriate 

out of several options is chosen according to selected values of the antecedents. Addition-

ally, the classification of data is a typical application. For example, it was used to derive a 

soil map in the context of watershed modelling under data scarcity (Tavares Wahren et al., 

2012). In the water balance approach in section 3.2, it is used to classify carbonates accord-

ing to the expected degree of karstification according to selected input variables. In deci-

sion support as well as classification, the option to consider qualitative knowledge is of 

special benefit. Furthermore, FIS are an option for data driven modelling in the fields of 

hydrology. For example, FIS have been used as an alternative description of hydrological 

processes in conceptual hydrologic modelling (Hundecha et al., 2001). In addition to the 

clear and comprehensible structure, small computation times compared to common models 

are a motivation to use rule-based fuzzy systems. Pakosch (2011) used FIS to set up a flash 

flood forecasting system including uncertainty assessment instead of using a common 

model and respective ensembles of input data. Peters (2011) derived a FIS based on physi-

cally based 1D-SVAT modelling for selected sites to reduce computation time in raster 

based applications over large areas. Consequently, FIS can be an equal alternative to artifi-

cial neural networks (ANN). 

Water balance assessment is a potential application of fuzzy arithmetic in hydrology. 

Fuzzy components of the water balance equation can be computed by using fuzzy arithme-

tic operators. In section 5, a respective approach is presented in combination with fuzzy 

regions to portray uncertainty regarding the extent of the underground catchment area.  

A matter of research with regard to continuous water balance modelling is the increase of 

fuzziness in consecutive time steps (Eder et al., 2005). 
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4 A novel strategy for estimating groundwater recharge in arid moun-

tain regions 

Based on the prior discussions on the assessment of mountain-front recharge (MFR) in 

general and rainfall based approaches in particular, the following research questions arise: 

How is it possible to assess MFR as a fraction of spatially distributed rainfall considering 

limited spatio-temporal resolution of rainfall input and data scarcity regarding catchment 

characteristics (infiltration, soil storage) and reference data for calibration? 

How to deal with uncertainties regarding recharge rates or, more general, the response to 

rainfall input and the actual extent of the groundwater basins? 

Is there a way to derive time dependent estimates of MFR capturing the essence of the pre-

vailing processes and mechanisms but not all the details, complementarily to existing mod-

elling concepts which are either oversimplified or over-parameterised and, thus, likewise 

subject to a considerable uncertainty? 

Fuzzy Recharge Areas
groundwater basins represented as fuzzy regions

assessment of mountain-front recharge
related to a discrete catchment area (α-cut of the Fuzzy Recharge Areas)

conceptual
hydrologic

model

fuzzy arithmetic
water balance
assessment

 

Figure 4.1: Assessment of mountain-front recharge considering limitations of data availability via combina-

tion of three complementary modules 

A novel strategy is proposed as a possible answer, combining three complementary mod-

ules. According to Figure 4.1, the main components are a conceptual hydrologic model 

aiming at time dependent estimates, a fuzzy based tool for long-term average water balance 

assessment and a fuzzy approach to portray uncertainty in the actual extent of groundwater 

basins. Each approach covers certain aspects of the requirements mentioned above. In 

combination, all requirements are adequately considered.  
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The conceptual hydrologic modelling approach is based on fully distributed, monthly rain-

fall data. Recharge rates are herein non-linear functions of actual rainfall at site for distinct 

response units and seasons. The approach is based on the above discussed search for 

minimal necessary complexity – aiming at a model that captures the essence of the issue, 

but not all the details. For retention in the mountain aquifer, a serial two-reservoir model 

following Geyer et al. (2008) is used. The water use in mountain oases is considered. In 

addition to monthly output, long-term averages are computed to compare the outcome with 

complementary approaches. This approach is presented in detail in section 6. 

Fuzzy arithmetic is used for long-term average annual water balance estimates. The single 

water balance variables are herein considered as fuzzy numbers (see section 3.2). Similar 

to the conceptual hydrologic model, it is based on fully distributed rainfall. The assessment 

of the single water balance variables can include available data or assessment approaches. 

It is an efficient tool to assess uncertainties in the water balance. The approach provides 

complementary estimates of mountain-front recharge independent from the hydrologic 

model mentioned above. A detailed description is presented in section 5.2. 

As mentioned in section 1, the actual extent of groundwater basins can be a source of un-

certainty. The concept of the Fuzzy Recharge Areas (Gerner et al., 2012) provides a means 

to consider this issue in the context of water balance modelling. Based on qualitative ex-

pert knowledge on the hydrogeology of the study area, potential extents of the groundwater 

basins are represented as fuzzy regions. Distinct subsets of these fuzzy regions provide the 

discrete catchment areas for water balance assessment. Ultimately, the parameter repre-

senting these distinct spatial extents can be considered as an additional variable in applying 

the two presented assessment approaches. Furthermore, the consideration of adjacent aqui-

fer systems is supported. It is presented in section 5.1 in more detail. 

Based on a detailed description of the hydrological setting (section 7.1), the case study in 

chapter 7 applies the approaches presented above to a pilot study area in the Batinah Re-

gion (Sultanate of Oman). In addition to mountain-front recharge, the role of further 

sources of recharge to the alluvial aquifer on the basin plain, for example (artificial) in-

direct recharge and direct precipitation recharge, is addressed. In this way, a compre-

hensive view upon this water resources system is provided. The focus, however, lies on 

assessing MFR based on the strategy presented above. The results are compared with in-

versely computed inflow to a steady state groundwater model (Walther et al., 2012). In 

section 7.6 the discussion addresses the distinct conditions in that study area (section 7.6.1) 

as well as methodical aspects based on the experiences in the case study application section 

(7.6.2). 

Section 8 summarizes the work and evaluates the findings. Recommendations for future 

work are given in section 9. 
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5 Fuzzy-based tools to portray uncertainties in water balance assess-

ment 

5.1 Fuzzy Recharge Areas: From qualitative data to quantitative conclusions 

5.1.1 The concept of the Fuzzy Recharge Areas 

Every approach for water resources assessment or hydrologic modelling refers to a distinct 

catchment area with a defined spatial extent. However, in some cases, its actual extent is 

not clear. While (surface) drainage divides can be reliably delineated, groundwater divides 

are often vague. Thus, the concept of the Fuzzy Recharge Areas introduces the application 

of fuzzy regions (see section 3.2) to water resources management as a means to describe 

potential, but actually unknown spatial extents of groundwater basins. Unless otherwise 

stated, the following text is based on Gerner et al. (2012). 

Fuzzy Recharge Areas are an approach to transform qualitative expert knowledge referring 

to the hydrogeology of a study area into possible extents of the groundwater basin. These 

are represented as a fuzzy region. Subsequently, quantitative information, namely ground-

water recharge QR(α) related to a certain α-cut level, can be derived (see Figure 5.1). In 

this context, the expression recharge area is set equal with groundwater basin or under-

ground catchment area, respectively. 

 

 
Figure 5.1: The concept of the Fuzzy Recharge Areas (modified after Gerner et al., 2012) 
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Fuzzy Recharge Areas are fuzzy regions (FR), i.e. raster surfaces with membership degrees 

µA1(x,y) between 0 and 1. Raster cells with µA1(x,y) = 1 are certainly draining to the con-

sidered underground catchment A1. However, for raster cells with µA1(x,y) < 1, the subsur-

face drainage to an adjacent basin A2 is possible as well. The concept includes the follow-

ing steps: 

1) Expert knowledge 

• Gathering of information - e. g. geological model of the study area, results of tracer or 

isotope studies, quality and quantity of the spring water, groundwater isoline maps etc. 

• Data analysis and hypothesis generation about recharge areas and flow systems 

2) Fuzzification 

• Definition of outer boundaries (maximum extent of the Fuzzy Recharge Areas) 

• Definition of inner boundaries (assumptions on membership degrees at certain sites) 

• Data processing, i.e. translation of outer and inner boundaries (discrete data) into a con-

tinuous surface, referred to as Fuzzy Recharge Areas 

3) Consideration of adjacent areas 

• Fulfilment of the complementarity constraint in regard to the consideration of adjacent 

areas according to section 5.1.2. 

4) Evaluation 

• Discretisation: Processing of 2D α-cuts by selection of raster cells with degree of 

membership equal or above the considered α-cut levels. As the case may be, adjacent 

areas are considered according to section 5.1.2. 

• Spatial analysis: Hydrological analyses referring to α-cuts of the spatial extent 

The approach results in potential extents of balance areas FR(α) as a fundamental basis for 

water balance assessment. Thus, it provides a quantitative measure of uncertainty with re-

spect to the spatial extent of the considered basin. From the viewpoint of hydrologic mod-

elling, the α-cut level of a certain extent can also be seen as a model parameter. An exem-

plary application is presented in section 7. 

5.1.2 Consideration of adjacent basins 

A thematic layer ‘groundwater basins’ may consist of two adjacent Fuzzy Recharge Areas 

A1 (referred to as first order) and A2 (referred to as neighbour) as subsets. By definition, 

the degree of membership ),( yxµFRA  of the complement FRA  of the fuzzy region FRA 

can be written as ).,(1),( yxµyxµ FRAFRA −=   

Within this context, it has to be considered, that 
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• the neighbour A2 may have membership degrees ),(),( 12 yxµyxµ AA ≤  (e.g. in re-

gions outside of the overlapping part of FRA1 and FRA2) 

• more than two adjacent basins may be considered. Therefore, a subsequent consid-

eration of complements may be necessary. 

For this reason, a slightly different approach than the formal complement seems to be ap-

propriate: 

In the first instance, fuzzy regions for each basin can be processed independently. During 

evaluation, conditional fuzzy regions FRA2(αA1) can be considered as correspondent to the 

α-cut level of the first-order αA1. Thus, the following steps are necessary, exemplarily il-

lustrated in Figure 5.2: 

1) Provision of fuzzy regions for the first-order (A1) and the (first) neighbour (A2) 

(see Figure 5.2-a and c) 

2) Processing of an α-cut A1(αFRA1) for the first-order area (Figure 5.2-b) 

3) Processing of the complement to the first-order α-cut )(1 1AAF α  (Figure 5.2-d) 

4) Intersection of )(1 1AA α  and neighbour A2, resulting in a conditional fuzzy region 

A2(αA1) for the neighbour (Figure 5.2-e) 

5) Processing of conditional α-cuts for the neighbour A2(αA1,αA2) (Figure 5.2-f). 

 

(a) first-order A1 (b) α-cut A1(0.7)

0.8 0.8 0.5 0.2 0.0 1 1 0 0 0

1.0 0.8 0.6 0.3 0.0 1 1 0 0 0

1.0 0.9 0.8 0.5 0.1 1 1 1 0 0

1.0 0.9 0.7 0.4 0.0 1 1 1 0 0

0.9 0.8 0.5 0.1 0.0 1 1 0 0 0

(c) neighbour A2 (d) complement of (e) conditional neighbour (f) conditional α-cut
first-order FA1(0.7) A2(αA1=0.7) A2(αA1=0.7, αA2=0.8)

0.2 0.2 0.5 0.9 1.0 0 0 1 1 1 0.0 0.0 0.5 0.9 1.0 0 0 0 1 1

0.0 0.3 0.4 0.9 1.0 0 0 1 1 1 0.0 0.0 0.4 0.9 1.0 0 0 0 1 1

0.1 0.2 0.5 0.7 1.0 0 0 0 1 1 0.0 0.0 0.0 0.7 1.0 0 0 0 0 1

0.1 0.1 0.3 0.8 1.0 0 0 0 1 1 0.0 0.0 0.0 0.8 1.0 0 0 0 1 1

0.2 0.2 0.5 1.0 1.0 0 0 1 1 1 0.0 0.0 0.5 1.0 1.0 0 0 0 1 1
 

Figure 5.2: Complementary consideration of adjacent fuzzy regions 
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5.2 Water balance assessment based on fuzzy arithmetic 

5.2.1 Outline of the calculation procedure 

The following procedure aims at the water balance assessment based on fuzzy numbers of 

spatially distributed rainfall, recharge as portion of rainfall, water use and additional water 

balance variables. In contrast to crisp considerations, a measure of uncertainty is included 

in the model. Thus, variants based on different parameter sets to describe a confidence 

range are not necessary. 

The considered balance area in an individual case is equal to a selected subset (α-cut) of 

the respective Fuzzy Recharge Area (see section 5.1). Figure 5.3 shows a flowchart of the 

calculation procedure. It includes recharge estimates for each raster cell and the cumulation 

of the yield per raster cell over the respective response unit and, over the whole balance 

area. Finally, the balance of cumulated yield and cumulated water use in the balance area is 

calculated. The schedule represents a single arbitrary time step. In the first instance, the 

approach aims at long-term average considerations. Smaller time steps are principally fea-

sible, as far as reasonable approaches for the prevailing conditions in the respective time 

steps can be provided. 

loop over α-cut-levels

α-cut of the fuzzy recharge area

response unit RU 1

Water demand in
Mountain Oases Q c

Balance Qout(α-cut-level)

cumulated Recharge QR(α-cut-level)

Fuzzy
Subtraction

response unit RU m

Rainfall Input
P(xi,yi)

Recharge Rate
RRU m [% of P]

distributed Recharge QR(xi,yi)

Fuzzy Cumulation over RU m

Fuzzy 
Multiplication

Fuzzy 
Multiplication

Rainfall Input
P(xi,yi)

Recharge Rate
RRU 1 [% of P]

distributed Recharge QR(xi,yi)

Fuzzy Cumulation over RU 1

∑∑∑∑ ====
==== n

1i iiRR )y,(xQ1) (RUQ ∑∑∑∑ ====
==== n

1i iiRR )y,(xQm) (RUQ

 

Figure 5.3: Water balance assessment based on fuzzy arithmetic 
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The calculation procedure requires distributed rainfall input, recharge rates for each de-

fined response unit, as well as water use estimates. In the frame of this approach, a trape-

zoidal or triangular representation of fuzzy numbers is supposed to be reasonable. They 

can be defined by each three or four points as explained in section 3.2. As far as necessary 

or reasonable, other shapes are possible as well. 

Fuzziness in rainfall input is useful, for example to consider measurement errors. The im-

plementation is based on crisp regionalised rainfall and a fuzzy correction factor which can 

be either spatially distributed or related to defined sub-areas. If the considered rainfall is 

the result of a stochastic simulation, fuzzy numbers can follow the shape of the resulting 

probability distributions. 

Fuzzy numbers of recharge rates as portion of rainfall can be provided according to avail-

ability based on any available approach. For example, they can represent rough estimates 

based on expert knowledge or inter-site comparison. As an example for a regionalisation 

approach, the implementation of the APLIS approach (Andreo et al., 2008) is presented in 

section 5.2.3. 

Water use is basically the product of cropped area Ac and crop water use ETc. According to 

the reliability of data on cropped areas, this variable can be considered either as crisp or as 

fuzzy. A fuzzy representation of crop water use is reasonable with regard to the uncertain-

ties in assessing this variable. 

5.2.2 Implementation of the fuzzy arithmetic operators 

The basics of fuzzy arithmetic are presented in section 3.2. The implementation of the 

fuzzy arithmetic operators addition, subtraction, multiplication and division is based on the 

respective MatLab-function fuzarith (MathWorks, 2008). Thus, it refers to a universe X. 

The accuracy of the operations depends on the resolution of the universe X. The domain of 

X is predefined by the orders of magnitude of operands and output values. Large domains 

are demanding in terms of storage and, thus, computation time. Fuzzy cumulation denotes 

the successive execution of the basic operators keeping an interim result– e.g. to cumulate 

the elements of a raster or for each response unit within a balance area. Thus, values of 

different orders of magnitudes have to be dealt with. 

For this reason, an individual fitting of the universe X for each operation, depending on the 

respective operator, was implemented to ensure both a minimal necessary domain and an 

adequate resolution with regard to accurate arithmetic operations. 
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5.2.3 Implementation of the regionalisation approach APLIS 

The APLIS method (Andreo et al., 2008) allows for estimation of recharge in carbonate 

aquifers, expressed as a percentage of annual precipitation using the five variables Alti-

tude (A), Slope (P), Lithology (L), preferential Infiltration landforms (I) and Soil type (S). 

After classifying these variables according to Table 5.1, recharge rates are calculated using 

the following equation: 

9.0/)*2*3( SILPAR ++++=        (5.1) 

Altitude and Slope can clearly be classified based on a digital elevation model (DEM). The 

classification of Lithology and Soils, however, and even more the one of Infiltration land-

forms (which both represent the occurrence of karst features) depends highly on the avail-

able data base. Thus, in the case of data scarcity, a fuzzy representation is highly recom-

mendable. Altitude and Slope are hence included as crisp numbers. The soil class is option-

ally crisp or fuzzy. Lithology and Infiltration landforms are definitely considered to be 

fuzzy variables. However, they can be defined in two ways: 

• user defined fuzzy numbers or 

• derivation of fuzzy numbers using a Fuzzy Inference System (FIS). 

 

Table 5.1: Ratings for the variables: Altitude, Slope, Lithology, Infiltration landforms and Soil type (Andreo 

et al., 2008); the data range is expressed as, for example “(300–600]”, meaning that the value of 300 is not 

included in this class whilst 600 is included 

Rating 
(APLIS) 

A: 
Altitude [m] 

P: 
Slope [%] 

L: 
Lithology 

I: Inf. 
landforms 

S: 
Soil 

10 ≤ 300 ≤ 3 many Leptosols 

9 (300 – 600] (3 – 8] 

Limestones and dolos-
tones karstified  Arenosols and xerosols 

8 (600 – 900] (8 – 16]  
Calcareous regosols  and 

fluvisols 

7 (900 – 1.200] (16 – 21] 

Limestones and dolos-
tones fracturated,                       
slightly karstified  

Euthric regosols              
and solonchaks 

6 (1.200 – 1.500]   Cambisols 

5 (1.500 – 1.800] (21 – 31] 
Limestones and dolos-

tones fissured  Euthric cambisols 

4 (1.800 – 2.100] (31 – 46] Gravels and sands  Histosols and luvisols 

3 (2.100 – 2.400] (46 – 76] Conglomerates  Chromic luvisols 

2 (2.400 – 2.700] (76 – 100] 
Plutonic and              

metamorphic rocks 
 Planosols 

1 > 2.700 > 100 Shales, silts, clays scarce Vertisols 
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The degree of karstification (Lithology) and occurrence of karst features (Infiltration land-

forms) are, among other factors, functions of slope and climatic factors. The latter are, in 

turn, functions of altitude. Qualitatively, a high rating of Lithology and Infiltration land-

forms according to Table 5.1 corresponds to high elevation values (variable Altitude) and 

low slopes (variable Slope). According to section 3.3, this is a typical application of a FIS, 

therefore such systems were included (see Figure 5.4). They estimate the two variables 

Lithology and Infiltration landforms based on the APLIS ratings of altitude and slope. In 

the case of the Infiltration landforms, Lithology is considered as an additional variable. 

In fact, the authors of the APLIS approach point out, that the resulting rates should not be 

considered as exact values. They therefore classify the result into intervals of ∆R = 20 %. 

However, for an application within the presented framework, spatially distributed fuzzy 

numbers aside from these predefined intervals appear more reasonable than up to 5 clusters 

with uniform intervals of recharge rates. 

The crisp result of a FIS is the outcome of a defined defuzzification method. To include a 

certain degree of fuzziness, different defuzzification methods were applied. In detail, it was 

the centroid of area, bisector of area, mean value of maximum, smallest and largest (abso-

lute) value of maximum. Subsequently, minimum, median and maximum of the 5 defuzzi-

fication methods mentioned above were considered as basis for fuzzy operands for the cal-

culation of the APLIS-recharge rates. 

 

Figure 5.4: Fuzzy Inference System to classify Lithology as a function of Slope and Altitude with regard to 

the application of the APLIS approach 
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6 A conceptual hydrologic model to assess mountain-front recharge 

6.1 Basic idea 

According to section 2.3, water balance assessment in arid mountain catchments is subject 

to limitations, either due to an inadequate process representation or due to a lack of an ade-

quate data base for largely process based approaches. Consequently, process knowledge is 

necessary to provide time dependent rainfall based approaches. However, a minimal neces-

sary model complexity is worthwhile with regard to limited data availability.  

In the following concept, groundwater recharge is a non-linear function of actual spatially 

distributed monthly rainfall. The derivation of the response function (see section 6.4.1) 

considers the key processes according to the subdivision of precipitation based recharge as 

illustrated in Figure 2.3. Thereby, the following simplifications are made: 

• In deriving the response functions, initial losses and maximum infiltration per time step 

as well as the soil moisture deficit are represented by integral variables instead of sub-

modules with a more or less detailed process description. 

• The amount of indirect recharge induced by site specific rainfall is assessed in a con-

ceptual way. The approach does not consider the actual location where indirect re-

charge takes place. It rather aims at the cumulative volume over the considered area for 

the respective time step. 

6.2 Model structure 

The model structure (see Figure 6.1) is distributed with regard to rainfall input. The con-

sidered catchment area in an individual case is equal to a selected subset (α-cut) of the re-

spective Fuzzy Recharge Area (see section 3.1). Optionally, it is subdivided into distinct 

hydrogeologic response units (HGRUs). These represent an area with uniform response 

characteristics to site-specific rainfall according to the respective geomorphology and cli-

mate conditions. Consequently, they are an analogue to hydrologic response units (HRU) 

in hydrologic modelling, but aiming at subsurface flow components rather than at the best 

possible description of surface runoff. 

For every case, i.e. a combination of season and HGRU, a non-linear relationship between 

rainfall input and recharge rate as percentage of rainfall per time step has to be defined. In 

this context, a season represents a defined series of calendar months. Analogue to the em-

pirical linear approach of (Bredenkamp, 1990) there is no response up to a certain rainfall 

threshold (in the following termed sill). Above that sill, however, there are non-linear rela-

tionships which result in different relative responses for different rainfall depths per con-

sidered time step. These represent varying portions of direct and indirect recharge accord-
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ing to the hydrologic characteristics of the respective response unit. Therefore, the ap-

proach provides a sort of unit or long-term mean response to a certain rainfall input for a 

considered season and response unit. It covers the variability in time (actual monthly rain-

fall input and seasonality of the response function representing mean seasonal antecedent 

moisture) and space (regionalised rainfall input and optional distinction of response units). 

For each time step, the response of the single raster cells is cumulated over the respective 

response unit. This cumulated recharge volume is routed via two-reservoir aquifer storage 

models (see section 6.5). The balance of cumulated outflow from available aquifer models 

and cumulated water use is equal to mountain-front recharge for the respective time step. 
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Figure 6.1: A conceptual hydrologic model for time dependent estimates of mountain-front recharge 
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6.3 Calculation procedure using histograms of rainfall depths 

In the first instance, the calculations are performed on a monthly basis. As a second step, 

these values are aggregated to long-term average annual values (LTAs), each separately for 

every case and over the total of all cases. While the monthly results provide the sought 

output, the LTAs provide reference values for cross comparison with available reference 

data to calibrate or validate the rainfall-recharge relationships. 
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Figure 6.2: Histogram based calculation of recharge as portion of rainfall 
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The calculation is based on rainfall histograms for the considered spatial and temporal unit. 

Figure 6.2 shows the histogram based approach for a single case in an exemplary way. The 

top diagram shows the histogram, i.e. the decreasing counts of each rainfall depth within 

the respective season and response unit. The following cumulated depth, i.e. the product of 

rainfall depth and according counts shows, that a lower number of time steps with median 

rainfall depths (e.g. 50 mm) result, over the whole period, in a similar yield than a huge 

number of very low rainfall depths per time step. The product of cumulated yield (counts * 

P) and response function R(P) results, finally, in the estimated amount of recharge per rain-

fall depth class. 

6.4 Non-linear seasonal rainfall-recharge relationships 

6.4.1 Derivation of the rainfall-recharge relationships 

Provided the availability of reference values for the model output, rainfall-recharge rela-

tionships can, in principle, be derived empirically. For this purpose, an analytical descrip-

tion of the relationship is necessary. Basically, there are three important components: 

sill:  a rainfall value Psill below which there is no response at all (Rsill = 0) 

rising limb: the section of the function where the ordinate is rising from Rsill(Psill) = 0 to 

a break-point (Pbreak, Rbreak), where, in general, the sharp rise turns into a 

more moderate course. 

tailing: the further course of the relationship which can be, in principle, a level off, a 

further rise or a tailing off. 

According to section 2.3, an appropriate data base for this approach is rather an exception. 

Thus, the relationships are derived based on water balance considerations according to the 

subdivision of precipitation based recharge in Figure 2.3, resulting in the following water 

balance equation 6.1. In contrast to Figure 2.3, this water balance equation does not distin-

guish between localised recharge (during runoff concentration) and indirect recharge (dur-

ing channel routing). 

wadiindirect R,alluviumdirect R,surface Q  Q  SMR  Q  SMR ET  P +++++=    (6.1) 

where  P  = rainfall      [mm/∆t] 
  ETsurface = surface wetting loss     [mm/∆t] 
  SMR  = soil moisture replenishment   [mm/∆t] 
  QR, direct = direct recharge     [mm/∆t] 
  SMRalluvium = soil moisture replenishment in alluvial valleys [mm/∆t] 
  QR, indirect = indirect and localized recharge   [mm/∆t] 
  Qwadi  = surface runoff at catchments outlet   [mm/∆t] 
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Table 6.1 gives information on the physical interpretation of the single balance variables 

and names approaches for assessment of their potential, i.e. maximal values. The actual 

values are the result of a water balance accounting scheme according to the respective rain-

fall input. 

Table 6.1: Assessment of water balance components for derivation of non-linear seasonal rainfall-recharge 

relationships according to Equation 6.1 

Water Balance 
Component 

Physical interpretation Assessment 

ETsurface surface wetting losses • potential value initial lossmax: 
The surface wetting loss depends especially on surface 
characteristics; thus, assessment may be based on a 
literature review on initial losses. Besides, the mean 
number of events per time step can be considered. 
• actual value: 
Min (P(∆t), initial lossmax) 

auxiliarily : 
Infiltration 

water entering the un-
saturated zone  

• potential value Infmax: 
integral variable based on infiltration rates [mm/h] and 
rainfall characteristics like (cumulated) event duration 
and rainfall intensities; infiltration rates can be based 
on literature review; rainfall characteristics can be es-
timated based on literature or evaluated based on avail-
able data 
• actual value: 
min(P(∆t)-ETsurface(∆t), Infmax(∆t)) 

SMR soil moisture replenish-
ment  

• potential value SMD (soil moisture deficit): 
SMD ≤ field capacity FC; SMD is primarily a function 
of antecedent rainfall and evapotranspiration. Addi-
tional factors are soil storage characteristics and vege-
tation cover 
• actual value: 
min(Infiltration(∆t); SMD(∆t)) 

QR, direct direct recharge (or ef-
fective infiltration) 

Balance: Infiltration(∆t) – SMD(∆t) 

auxiliarily : 
Peff 

effective rainfall Balance: P(∆t) – ETsurface(∆t) – QR,direct(∆t) 

auxiliarily : 
transm. losses 

transmission losses or 
potential indirect re-
charge, respectively 

n-th root of effective rainfall Peff(∆t) 

SMRalluvium soil moisture replenish-
ment in alluvial valleys 

n-th root of transmission loss 

QR,indirect actual indirect recharge  Balance: transm. losses – SMRalluvium 
Qwadi surface runoff Remainder of the balance equation 

 

Potential values for initial losses (initial lossmax) and infiltration (Infmax) per time step as 

well as the soil moisture deficit (SMD) are integral variables representing the long-term 

average conditions regarding the actual processes in a considered season and response unit. 

SMD is a surrogate for the actual soil moisture status (antecedent rainfall and evapotrans-

piration) under given soil characteristics and vegetation cover. Initial losses and infiltration 
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do not only represent morphological characteristics, but also rainfall characteristics like 

average occurrence, duration and intensity in the respective time step.  

This wide-ranging simplification compared to the actual processes is due to the lack of data 

which would allow the expectation of a gain in accuracy in applying more complex model-

ling concepts.  

In a way, these integral variables are comparable to, for example, the Manning coefficient. 

In channel hydraulics, this value is often used to cover both, channel roughness and also 

local head losses between different stations. Eventually, it is an empirical value. In addi-

tion, it depends on the actual discharge level. Analogously, the variables mentioned above 

are related to distinct rainfall characteristics and climatic conditions. 

After the estimation of the parameters mentioned in Figure 6.3, a balance for every value 

of rainfall depth P per time step can be calculated resulting in the total response 

QR = QR, direct + QR, indirect       (6.2) 

The recharge rate as function of rainfall R(P) [% of P] equals to QR(P)/P. 

The components which are related to runoff generation (initial lossmax, Infmax and SMD) 

can be, to a certain degree, substantiated by literature values and evaluation of available 

rainfall and climate data. 

The absolute values of transmission losses are increasing with increasing rainfall. The rela-

tive fraction, however, decreases from close to 100 % to low amounts of effective rainfall 

to rather low portions for erratic high rainfall events. Thus, transmission losses are as-

sumed to be the n-th root of effective rainfall. In the following, this n-value is termed as 

ntransm loss. Analogously, soil moisture replenishment of alluvial storages is expressed as 

n-th root of transmission losses. In distinction to ntransm loss, this n-value is termed as 

nSMR alluvium. 

The water balance considerations are limited to the actual time step. It should not be con-

fused with a continuous soil moisture accounting scheme. An extension to a continuous 

soil moisture accounting would require an adequate soil moisture module and hence a cor-

responding number of additional model parameters. This goes beyond the basic idea of this 

approach, which aims at a minimal number of calibration parameters. 

Per default, a time step ∆t = 1 mon is used. Figure 6.3 shows an example of a non-linear 

rainfall-recharge-relationship based on a set of parameters (initial lossmax, Infmax, SMD, 

ntransm loss, nSMR alluvium). 
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Figure 6.3: Non-linear rainfall-recharge relationship based on water balance considerations (ntloss = ntransm loss; 

nSMR = nSMR alluvium) 

 

6.4.2 Sensitivity analysis 

With regard to the sensitivity of each variable in this water balance approach, a sensitivity 

analysis was conducted. It was based on a default value for each variable, resulting in a 

median response based on the rainfall sample used in the case study application in section 

7. Table 6.2 gives an overview on requested variables, their default values and the range of 

values considered in the frame of the sensitivity analysis. 

For evaluation or comparison of the resulting response functions, the following criteria 

were considered: 

• rainfall threshold Psill [mm]: maximum rainfall depth with zero response – indicates 

impact of low rainfall 

• break point: end of the rising limb 

o rainfall depth of break-point Pbreak [mm] 

o response at break-point Rbreak [-] - mostly identical with maximal response 

• response of maximal considered rainfall depth R(Pmax) [-] – indicating the response for 

extreme rainfall events 

• integral of response function over P ∑ = −max
0

])[(
P

P
PR  - for (non-weighted) comparison 

of response functions 



 46 

• long-term average recharge RLTA [% of P], i.e. response to an actual rainfall sample, 

weighted according to the histogram of the rainfall sample 

o RLTA(whole sample) without consideration of seasons 

o RLTA(winter)  winter season 

o RLTA(summer)  summer season 

 

Table 6.2: Parameters for calculation of the response function – default values and considered ranges of val-

ues 

parameter unit note default Range 

init lossmax mm/∆t 

under consideration of litera-
ture values on initial losses 
per event and mean number 
of rainy days per ∆t 

7 2 ≤  x ≤ 12 

Infmax mm/∆t 

under consideration of (final) 
infiltration rates                   
(5 ≤  x ≤  50 mm/h), esti-
mated cumulated event dura-
tion per ∆t and median rain-
fall intensities 

30 

 

(variation 
of SMD: 

both 30 
and 60) 

5 ≤  x ≤  115 

SMD mm 
estimates for scattered vege-
tation on bare rock or shal-
low soils, respectively  

10 0 ≤  x ≤ 30 

ntransm loss [-]  1.3 1.05 ≤  x ≤  1.75 

nSMR alluvium [-]  1.5 1.00 ≤  x ≤  2.25 

 

Appendix A shows different response functions and selected evaluation criteria under 

variation of the different model parameters. An evaluation in tabular form is part of Table 

6.3. Therein, the gradients of the evaluation criteria from lowest to highest value of the 

actually varied variable were classified according to a statistical evaluation of the 6 gradi-

ents for 5 considered parameters. The classes ‘constant’, ‘below median’ and ‘median’ (i.e. 

arithmetic mean  ≤  criterion ≤  median or reversely) indicate a minor impact of the vari-

able on the respective criterion. The classes ‘above median’ and ‘maximum’, however, 

show a relatively weighty impact. The red colour in Table 6.3 indicates a decrease of the 

criterion from lowest to highest value for each considered variable. 
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Table 6.3: Gradients of different evaluation criteria – based on variation of different variables 

∆criterion = criterion(max of parameter) - criterion(min of parameter) 

SMD 
criterion 

initial loss infiltration 
inf. 30 mm inf. 60 mm 

transm. 
losses 

SMRalluvium 

Psill median < median maximum > median 

Pbreak > median maximum constant 

Rbreak < median > median maximum > median 

Constant 

R(Pmax) constant > median < median maximum > median 

integral  
response 

< median > median median < median maximum < median 

RLTA  < median > median maximum > median < median < median 

 

Among all considered criteria, the long-term average response RLTA is considered to be the 

most important indicator. The variation of SMD results in the widest range of values for 

RLTA. The sensitivity of infiltration is similar to that of SMD. In contrast, it has an impact 

on the sill value and therefore on the contribution of low rainfall. Infiltration is the one 

parameter which features a considerable seasonality. RLTA for the winter period is consid-

erably higher than in the summer period due to the different rainfall characteristics. Thus, 

the model reflects the main drivers of mountain-front recharge (MFR) as mentioned in 

section 2.1. 

The initial losses show a considerably lower impact on RLTA. The impact of transmission 

losses and, last but not least, the storage replenishment in alluvial valleys is even smaller. 

Their relatively low impact on RLTA is due to the fact, that months with cumulated rainfall 

above 100 mm are relatively rare in the considered rainfall sample. Thus, the impact of 

erratic high rainfall events (with often limited spatial extent) on the long-term water bal-

ance as a whole is considerably lower compared to prevalent low or median rainfall.  

The evaluation criteria show, that transmission losses and SMRalluvium do only influence the 

tailing of the response function and, consequently, the integral of the response R over rain-

fall P. Initial losses, infiltration and SMD, however, influence the sill value and the break 

point. Finally, they influence the shape of the rising limb and consequently the sensitivity 

to low and median rainfall events. This approach for derivation of the response functions is 

hence considered to be physically reasonable. 

6.4.3 Response functions based on extreme parameter sets 

With regard to the robustness or plausibility of the water balance approach for derivation 

of response functions, worst cases were derived based on rather extreme parameter values. 

Table 6.4 gives an overview of the investigated assumptions. For clarification, the low sen-
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sitive parameter nSMR alluvium for soil moisture replenishment in alluvial valleys was set to 

the default value 1.5. 

Table 6.4: Assumptions for Response functions based on extreme parameter sets 

extremely low extremely high 
Parameter 

assumption value assumption value 

init lossmax 
low value per event |  

1 event per month 
3 

high value per event |  

> 1 events per month 
15 

Infmax 
low infiltration rates | 

short duration events 
10 

high infiltration rates |  

rather long-lasting than 
short duration events 

100 

SMD 

low storage capacity |  

high antecedent moisture | 

hardly any vegetation 

5 
higher storage capacity |  

low antecedent moisture | 
vegetation perceptible 

50 

ntransm loss 
low (i.e. transmission losses 
relatively high) 

1.10 
high (i.e. transmission losses 
relatively low) 

1.75 

nSMR alluvium low sensitivity, therefore out of consideration; default value 1.5 

 

The resulting response functions are shown in Figure 6.4. Values for each resulting long-

term average response RLTA for the considered rainfall sample are given in the legends. 

The upper Figure 6.4 (graph a, functions 1 – 4) is based on a parameterisation, where 

evaporation losses and infiltration are very low. This is a reasonable scenario for solid, 

non-fissured rocks or cemented soils. Direct recharge is very low in this case. Thus, sur-

face runoff is high and total recharge highly depends on indirect recharge and, conse-

quently, on hydraulic properties of the alluvial valleys. Even for high relative transmission 

losses and extremely low soil moisture deficit (SMD), the long-term average response 

RLTA is below 40 %. 

Functions 5 and 6 (graph b) show a low SMD, but very high potential infiltration. This 

results in high values for RLTA for the rainfall threshold, where P(sill) is very low and the 

response is very high even to low or median rainfall. It is a reasonable scenario for karst 

regions or other highly permeable surfaces during the winter season. In this case, the im-

pact of indirect recharge during high rainfall events is secondary compared to high direct 

recharge based on frequent low or median rainfall. Functions 7 and 8 are based on ex-

tremely high infiltration rates and, coincidently, extremely high SMD. This combination 

can be considered for selected, more developed soils and is therefore outside of the scope 

of the present study. 

The graphs c and d show a very high rainfall threshold P(sill) due to very high initial 

losses. Consequently, there is hardly any direct recharge based on low rainfall. In the case 

of low infiltration (graph c), RLTA is below 25 %. Similar to graph a, transmission losses 
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show a high sensitivity. If infiltration is high and SMD is low (functions 13 and 14), there 

is a considerable response to median rainfall values resulting in RLTA of more than 40 %. It 

is concluded, that this value is a reasonable lower limit for highly fractured or karstified 

terrain with less developed or even absent soils. 

Similar to functions 7 and 8, the functions 15 and 16 show high infiltration and high soil 

moisture deficit. Thus, they are outside of the scope of this approach. 
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(a) initial loss very low (3 mm/dt) & infiltration very low (10 mm/dt))
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(b) initial loss very low (3 mm/dt) & infiltration very high (100 mm/dt))
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(c) initial loss very high (15 mm/dt) & infiltration very low (10 mm/dt))
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(d) initial loss very high (15 mm/dt) & infiltration very high (100 mm/dt))
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Figure 6.4: Response function based on extreme parameter sets 

 

Table 6.5 summarizes the findings discussed. It may serve as a rough guideline for the 

practical application of this approach. In general, the water balance approach for derivation 

of the response functions provides physically plausible results, even for extreme cases. The 

combination of high infiltration and high soil storage is beyond the scope of this approach. 

In this case, an appropriate continuous soil moisture accounting is indicated. 
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Table 6.5: Parametrisation of response functions for distinct conditions based on evaluation of extreme pa-

rameter sets 

Hydrogeological setting Parameters 

Geo-
morphology  

rainfall initial loss infiltration 
soil moisture 
deficit SMD 

transmission 
losses 

short   
duration 

default solid rock or 
cemented allu-
vium lasting increased 

very low secondary 

according to 
actual character-
istics and ante-
cedent condi-
tions 

short  
duration 

default high infiltration 

 

(karst, highly 
fractured rock) lasting increased 

increasing 
with rainfall 
duration 

 

low to median, 
according to soil 
storage character-
istics and antece-
dent moisture 
conditions 

secondary 

well-developed 
soils (out of 
consideration) 

secondary secondary high high secondary 
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6.5 Subsurface routing based on linear reservoir models 

Based on the approaches discussed in section 2.4, the following models were implemented: 

• the serial karst aquifer model according to Király (2002) (see Figure 6.5, right), 

• a parallel two-reservoir model, likewise with storages Sl and Sh as well as the distribu-

tion factor Rl 

• a parallel 2+1 reservoir model similar to Schwarze et al. (1999) with a split-up of the 

low permeability storage Sl into two parallel storages Sl1 and Sl2. In contrast to 

Schwarze et al. (1999), distribution of recharge is defined by the factor Rl instead of a 

constant maximum recharge (see Figure 6.5, left). 

Recharge QR

low permeable 
reservoir Sl

high permeable 
reservoir Sh

QSl

QSh

QRh = QR * (1-Rl)QRl = QR * Rl

Recharge QR

high permeable 
reservoir Sh

low permeable 
reservoir Sl

reservoir Sl1

reservoir Sl2

Kl2 = 1/9 * Kl1

QSl

QSh

QRh = QR * (1-Rl)

QRl2 = 1/9 * QR * Rl

QRl1 = 8/9 * QR * Rl

 

Figure 6.5: Reservoir models for hard rock or karst aquifers; left figure: 2+1 reservoir model similar to 

Schwarze et al. (1999); right figure: two-reservoir model for karst aquifers acc. to Király (2002) 

 

With regard to the behaviour of the three different approaches or the sensitivity of its pa-

rameters, respectively, a sensitivity analysis was conducted based on a synthetical percola-

tion time series. To summarise, it can be stated that for meso scale water balance assess-

ment and a monthly time step, the reservoir constant Kl of the low permeable storage is 

supposed to be the most important parameter. Although originally proposed especially for 

karst aquifers, the model of Király (2002) is considered to be a reasonable conceptual 

model for subsurface routing in karst and other hard rock aquifers in the given context. 

Consequently, this approach was included in the conceptual hydrologic model as a whole. 

For the application to lithology classes besides karst, the parameterisation can be based on 

reference values of Schwarze et al. (1999) or Schwarze (2004). 
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7 Case Study: Groundwater recharge assessment for the Barka Region 

(Oman) 

The eastern Batinah coastal plain is the most densely populated, cultivated and industria-

lized area in the Sultanate of Oman. Agriculture plays an important role in this region. 

Most of the farms are located near the coastline and take their water from groundwater 

resources, such as numerous decentralized and often uncontrolled wells. Thus, high water 

demands of agriculture require more than 90% of the water resources (Al-Hattaly and Al-

Kindy, 2008). 

The transition to pumped wells in the 70’s and the agricultural expansion since the 70’s 

resulted in a wide-spread salinization due to groundwater depletion along the Batinah 

coast. This led to landward migration of agricultural zones and accompanying social prob-

lems. Consequently, there is an urgent need for a long term perspective in conservation and 

water management. Weyhenmeyer et al. (2002) point out, that those water management 

studies conducted in the 80’s and 90’s did not direct their attention to the interconnection 

between the groundwater recharge areas in the adjacent mountains and the groundwater 

abstraction sites in the coastal zone. Only in the end of the 90’s, extensive investigations 

based on geochemistry and isotopy gave a detailed qualitative picture of recharge mecha-

nisms in this system (see section 7.1.5). Moreover, the actually available groundwater re-

sources on the Batinah plain are to a considerable part fossil water which has precipitated 

during the Pleistocene (Weyhenmeyer et al., 2000). 

Although these isotope studies provided detailed qualitative knowledge on recharge source 

areas and flow paths, even in 2004 an (unpublished) ‘Integrated Catchment Management 

Project’ was conducted, where groundwater recharge was linked to the rainfall monitoring 

stations within the groundwater model domain, i.e. on the coastal plain, far downstream to 

the source areas of the main portion of recharge to the alluvial aquifer. Consequently, the 

pressing need for a really Integrated Water Resources Management (IWRM) considering 

the system in all its complexity is, more than ever, topical. Consequently, a respective ap-

proach was proposed by Grundmann et al. (2012). It comprises water resources assessment 

(WRA), assessment and optimisation of agricultural water use and, finally, an optimal 

management of the coupled groundwater-agriculture system including consideration of 

climate change scenarios. 

For groundwater management in the coastal zone, a 3D density-dependent model for this 

task was recently set up by Walther et al. (2012), featuring a relatively high spatial resolu-

tion. The assessment of inflow boundary conditions, however, extends over an area of 

roughly about 1500 km² (see section 5.1). The recharge inducing rainfall-runoff-processes 

display a fast response to rainfall events, while groundwater recharge in the mountain 

catchment is subject to storage in the mountain aquifer. Observed spring hydrographs, for 
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example, generally show a response time to rainfall events of about 3 to 6 months. Precipi-

tation, in turn, is subject to cycles with several periods of up to 17-20 years (see section 

7.1.4). Thus, water resources assessment has to consider different temporal and spatial 

scales. 

As a basis for water resources assessment within this setting, Figure 7.1 shows a conceptu-

alisation of the water resources system as a whole. In the following, the focus lies on the 

assessment of mountain-front recharge. Indirect and artificial recharge as well as direct 

recharge due to precipitation on the plain is addressed in section 7.1. 
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Figure 7.1: Conceptualisation of the water resources system in the study area 
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Based on the introduction to the study area in section 7.1 and the discussion above, the 

following conclusions can be drawn with regard to water resources assessment in this set-

ting: 

• Portrayal of salinization in the coastal area under temporally varying groundwater ab-

straction implies the need for transient groundwater management. Groundwater re-

charge including its temporal and spatial distribution is an important boundary condi-

tion. 

• Assessment of groundwater recharge has to consider a variety of interacting hydro-

logical processes on different temporal and spatial scales. 

• Consideration of climate change scenarios requires prognostic tools to assess ground-

water recharge for varying input. Thus, in addition to approaches based on groundwater 

data which integrate over time and space, reliable, rainfall based estimates are desir-

able. 

Additionally, the study area features data scarcity regarding 

• a limited spatial and temporal resolution of available rainfall data compared to the 

tempo-spatial variability of rainfall-runoff-processes, 

• field survey in the mountain catchment (e. g. infiltration characteristics, degree of kar-

stification, storage capacity of the unsaturated zone etc.)  

• hydrogeologic survey in the mountain front zone and further downstream towards the 

groundwater model domain on a flow distance of about 5 km. 
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7.1 Study area 

7.1.1 Topography 

The case study area is situated in the north of the Sultanate of Oman in the Al-Batinah re-

gion. Al-Batinah is a densely populated, roughly 30 km broad coastal plain which extends 

over 250 km along the coast of the gulf of Oman north-westward of the capital Muscat. 

The Hajar mountain range (also termed as Oman Mountains) borders to Al-Batinah from 

the south with peaks up to a height of 3000 m a.s.l. 

 

Figure 7.2: The study area 

The Barka region itself is located in the south-eastern part of Al-Batinah. Its centre, the 

city of Barka, is situated approximately 80 km to the west of Muscat. From east to west, it 

covers the three Wadi catchments Wadi Taww, Wadi Maawil and Wadi Bani Kharus. 

Their drainage basins (see Figure 7.2) comprise an area of about 2640 km². This area di-

vides up into the plain (about 1500 km²) and the mountainous part. The latter is a part of 

the Jebel Akhdar mountain chain, which in turn belongs to the central Hajar Mountains. 

With regard to the assessment of mountain front recharge, the groundwater basin in the 

mountainous part is the most relevant entity. Its easternmost limit is clearly defined by a 

change of the major geological units. The delimitation to the westerly Wadi Farah, how-

ever, is not clearly defined. An extended area covering the whole east-west extent of the 
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Jebel Akhdar area includes in addition the headwaters of Wadi Farah and the most western 

Wadi Bani Ghafir. Its further division is a matter of investigation. Additionally, the areas 

south to the drainage divide have to be considered (see section 7.1.5). Thus, as a first ap-

proximation, the relevant basin in the mountainous part covers an area of about 1500 km². 

In the following, it is termed as the core area (see Figure 7.2). 

7.1.2 Climate 

A subtropical desert climate is prevalent throughout the Sultanate of Oman. It is classified 

as arid or, in parts, extremely arid (MWR, 1995). Despite the general aridity, greater rain-

fall in cooler, high altitudes of the study area results in numerous springs and occasional 

surface water at lower altitudes. Both, natural and irrigated vegetation is present at several 

locations. Therefore, the mountain chain is termed as Jebel Akhdar, the ‘Green Mountain’. 

Following the classification of MEIGS, Warner (2004) classifies the Hajar mountains as 

semi-arid. 

The Hajar Mountains and the Batinah are encircled in the inter-tropical convergence zone 

(ITCZ) and the subtropical anticyclonic belt. Both of them cross the northern Oman with 

seasonal periodicity. As a consequence ‚the ‘normal’ climatic features are clear, bright 

skies, light winds, pleasantly warm dry winters and oppressively hot dry summers’ 

(Stanger, 1986). On the other hand, these circulation patterns result in distinct seasons with 

regard to prevalent weather systems in different parts of Oman. The up-welling of cold 

coastal water and cyclones are additional influences to the climate in Oman. 

According to MWR (1995), the winter season covers the period from November to April. 

It is characterised by the seif rainfall in the northern part of Oman. This is based on east-

ward-moving depressions originating over the North Atlantic or the Mediterranean Sea. 

Additionally, advection of a deep layer of cold air from central Asia to Oman across the 

Persian Gulf can also bring rainfall in winter, spring and autumn. Often, this is particularly 

heavy rainfall. 

At any time of the year, rainfall can occur as a result of convective rainstorms. Maximum 

amounts are observed in July and August. Finally, tropical cyclones moving from the Ara-

bian Sea can bring heavy rainfall, especially to the southern and eastern coasts. They have 

been observed in all months from May to December. At Muscat, this occurs once in ten 

years on average (MWR, 1995). Recent examples were the extreme events Gonu in June 

2007 and Phet in June 2010. 

In the study area, the mean annual rainfall varies from 50 – 100 mm in the coastal zone to 

over 300 mm in the Northern Oman Mountains with wide year-on-year variations. Sus-

tained periods of above-average and below-average rainfall are observed. Consequently, 

persistence of dry years is considered to be one of the major challenges for effective water 
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resources management (Brook and Sheen, 2000). A further discussion of rainfall character-

istics in the study area based on available monitoring data is following in section 7.1.4. 
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Figure 7.3: Mean monthly temperatures of selected stations in the study area according to Stanger (1986); in 

brackets: length of observation period and altitude of the station 

Mean annual temperatures in the lowlands are typically between 26 °C and 29 °C. The 

mean diurnal range is between 12 and 15 °C (Stanger, 1986). Figure 7.3 shows mean 

monthly temperatures for three stations in the study area and the station Seeb about 80 km 

west to the study area. The length of the observation period and altitude are given in brack-

ets. Despite the difference in altitude, the values of Rustaq (350 m a.s.l.) and the two sta-

tions at the coast are similar, which may be due to the higher humidity at the coast. In con-

trast, the station at Saiq (1950 m a.s.l.) shows a temperature gradient of around 10 °C com-

pared to Rumais. There, a minimum temperature of -3,6 °C was recorded (MAF, 1990). On 

the Jebel Shams (above 3000 m a.s.l.), snow sometimes occur in winter months (MWR, 

1995). Maximum air temperature seldom exceeds 45 °C in the shade. Nevertheless, rock 

surface temperatures regularly exceed 50 °C during the summer months (Stanger, 1986). 

Average relative humidity (R.H.) is about 60 % in the north of Oman with 50 – 90 % in 

coastal areas (MAF, 1990; MWR, 1995). R.H. is a highly variable climatic parameter with 

large diurnal variations (Stanger, 1986). 

7.1.3 Evapotranspiration 

According to MWR (1995), 2100 mm/a is a fist value for the potential evapotranspiration 

(ETP) in the Al Batinah region with reduced values at the coast due to higher humidity. In 

the interior region, ETP is supposed to reach values of 3000 mm/a (MWR, 1995). Stanger 

(1986) addresses the large range of potential values for pan evaporation according to the 

geographical site and, not least, to the exposure (see Figure 7.4). 
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Figure 7.4: Comparative open pan evaporation from different environments in Oman after Stanger (1986); 

A:   high exposure (foothills, coastal and interior plains); B: less exposed low altitude mountain and coastal 

areas; C: foothill cultivated areas of low exposure and high altitude mountains (above 2000 m a.s.l.) 

 

Siebert et al. (2007) collected climate data over a period of 2 years in the Mountain Oases 

at Balad Seet (996 m a.s.l.). Based on the Penman-Monteith approach, they estimated the 

reference evapotranspiration ET0 as a basis to assess crop water use. Table 7.1 provides a 

compilation of values for different locations in the study area. Apparently, the values at 

Balad Seet are below those of Saiq, although the oasis lies around 800 m lower than Saiq. 

This can be due to the different influences in addition to air temperature as a function of 

altitude like insolation, wind, humidity etc. In order to check the plausibility of the values 

in Table 7.1, they were compared with the pan evaporation given in Figure 7.4, which was 

multiplied by the pan coefficient KP. The latter depends on pan site and environment as 

well as the levels of mean relative humidity and wind speed (Allen et al., 1998). Accord-

ingly, the annual sum for Balad Seet is corresponding to a cropped site in a less exposed 

altitude area (class B). The higher value for Saiq indicates a higher exposure (between 

class A and B) which can be due to the unshielded location on a plateau. Rustaq, located at 

the foothills, can be classified into class A (high exposure) assuming a medium humidity. 

In summary, the values in Table 7.1 give reasonable estimates for potential evapotranspira-

tion in the mountainous part of the study area. 
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Table 7.1: Reference evapotranspiration ET0 at different sites in the study area 

calendar month 
Saiq (1950 m a.s.l) 

(MWR, 1996) 

Balad Seet (996 m a.s.l) 

(Siebert et al., 2007)  

Rustaq (340 m a.s.l) 

(MWR, 1996) 
Jan 86 88 108 
Feb 95 101 123 
Mrz 142 137 195 
Apr 194 170 231 
Mai 222 202 274 
Jun 217 208 271 
Jul 221 200 262 
Aug 220 189 270 
Sep 193 157 266 
Okt 161 141 192 
Nov 106 99 149 
Dez 90 84 126 

Mean annual sum 1947 1776 2466 
 

7.1.4 Rainfall characteristics 

Rainfall observations in Oman started in 1884 at Muscat (Kwarteng et al., 2009). In the 

South Batinah, records are available since 1974 (station at Rustaq). From this time on-

wards, the monitoring network has been extended successively (see Figure 7.5). The mean 

density in the core area is currently around 1 station per 60 km². The monitoring stations 

are designed according to the World Meteorological Organization (WMO) standards for an 

arid region. Over time, standard daily gauges were replaced by automatic recorders. 

The maintenance of the monitoring network in the mountainous terrain is challenging. For 

example, between 2001 and 2007, three stations at altitudes around 2000 m a.s.l. where 

mostly out of service due to a lack of maintenance. So, both the network and the records of 

available stations exhibit considerable gaps in the mountainous part of the study area.  

Additionally, there is a lack of stations in the altitude range 1000 to 2000 m a.s.l. and 2200 

to 3000 m a.s.l. This affects especially the slopes of the mountain range and the considera-

tion of physiographic factors of rainfall occurrence like gradient, aspect, exposure and, 

above all, position relative to upwind higher relief ("barrier effect"). 

The significance of often used altitude-rainfall relationships is limited for this reason. 

Stanger (1986) assumed, that they are not necessarily linear, but that there is a maximum 

on summer dominated rainfall data at about 1500 m a.s.l. and one which is based on winter 

dominated rainfall data at ca. 2000 to 2200 m a.s.l. In order to check this assumption, the 

correlation between altitude and recharge was investigated again in the frame of this work, 

based on a meanwhile extended data base. For this purpose, 53 stations over the whole 

Jebel Akhdar mountain range including available stations in the high altitudes south to the 

drainage divide were considered in the period from 1984 to 2007. With regard to different 
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rainfall mechanisms in distinct seasons, it was distinguished between annual and seasonal 

values in deriving altitude-rainfall relationships (see Figure 7.6). 

 

 

Figure 7.5: Rainfall monitoring network – classified according to start of operation 
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Figure 7.6: Altitude-rainfall relationships based on available monitoring data (period 1984 –2007); left side: 

mean annual rainfall; right side: mean seasonal rainfall; upper row: rainfall values; lower row: coefficient of 

variation 
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The winter season covers the seif rain season from December to April, while the summer 

season is limited to July and August. The consideration of the periods outside of the sum-

mer and winter season is an attempt to investigate, in how far the tropical cyclones find ex-

pression in the altitude-rainfall-relationship. In the following, this period is termed in-

between season. Though, tropical cyclones can also occur in the winter or summer season. 

The station at Jabal Nakhl (1560 m a.s.l.) appears to be an outlier. This is obvious in the 

annual data (upper left graph) and even more clear in the data for the summer season (up-

per right diagram). Indeed, the available time series features zero values in periods, where 

considerable rainfall was observed at adjacent stations. A similar case is the winter season 

for the station at Jebel Shams (2820 m a.s.l.). In this case, the time series features a zero 

value for an extreme event in March 1997 with more than 300 mm at adjacent stations. 

Obviously, the altitude-rainfall relationships of summer and in-between season feature a 

more or less similar shape. The plot for the winter season, however, differs considerably. 

While a significant rise of average rainfall with altitude can be observed for the summer 

season, originating in very low amounts at sea level, the relationship in the winter season is 

more equable. Between 500 and 1500 m.a.s.l, there is a more or less constant long-term 

average value of around 80 mm. Only in altitudes of 2000 to 2250 m a.s.l., there are con-

siderably higher values at a number of stations. While the latter confirms the maximum of 

winter rainfall described by Stanger (1986), the assumption of a summer dominated rain-

fall at about 1500 m a.s.l. cannot be confirmed based on the presented data. 

Similar to the rainfall amounts, the coefficient of variation is low for the winter season. 

Thus, winter rainfall is relatively stable both in occurrence and amounts. Summer rainfall, 

however, shows a high variability, especially in the low altitudes. Here, no or very low 

rainfall is the normal case. Only occasionally, tropical cyclones cause severe rainfall. In the 

mid and high altitudes, the coefficient of variation is lower due to more frequent convec-

tive rainstorms. 

Long-term mean annual rainfall in the core area is about 162 mm/a (period from 1984 to 

2007). Saiq (1950 m a.s.l.) shows a maximum value of 330 mm/a. The maximum observed 

annual value at this station was 871 mm in 1997. 386 mm were recorded in March alone. 

The yearly average of the station Barka (near Barka), is only around 54 mm (in 1984-

2004). 

Table 7.2 shows the number of rainy days and their seasonal distribution for 53 stations 

mentioned above in the extended study area. With regard to the assessment approach pre-

sented in section 4, not only the whole period was evaluated, but also subsets under exclu-

sion of months without any observed rainfall. Here, the number of rainy days per month is 

roughly twice of the whole period of time. It is concluded, that the mean number of rainy 

days over the whole area is similar in the winter and summer season. Though, the variabil-

ity among the different stations is 2 to 3 times higher in summer than in winter. The station 
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at Jebel Shams (2820 m a.s.l.), for example, shows a maximum value of 5 rainy days on 

average during July and August compared to a mean value of 1.6 (July) or 1.8 (August). In 

March, there are 3 rainy days compared to an overall mean of stations of 1.6 days. More-

over, the relationship between altitude and mean number of rainy days (Figure 7.7) shows 

the same characteristics as the relationship between altitude and rainfall amounts and their 

coefficient of variation (Figure 7.6). Thus, in winter, independent of altitude a number of 

rainy days between one and two days (or 2 to 4 days in months where rainfall occurs actu-

ally) is a suitable assumption over the whole study area. In summer, however, this number 

is increasing considerably with altitude. 

Table 7.2: Number of rainy days based on 53 rainfall stations in the extended study area (period 1984 - 2007) 

calendar month 1 2 3 4 5 6 7 8 9 10 11 12 

mean value 1.0 1.5 1.6 1.2 0.7 1.0 1.8 1.6 1.0 0.7 0.6 1.0 

standard dev. 0.4 0.5 0.5 0.6 0.6 0.8 1.4 1.6 1.0 0.5 0.3 0.4 whole period 

Maximum 1.9 2.6 3.0 2.7 2.2 3.0 5.0 5.2 3.0 1.9 1.3 2.4 

mean value 2.4 3.0 2.7 2.2 1.5 1.8 2.8 2.5 1.6 2.1 2.0 2.1 

standard dev. 0.7 0.7 0.7 0.6 0.9 0.9 1.3 1.6 1.1 0.8 0.7 0.4 
months with 
observed rain-
fall only 

Maximum 4.3 5.0 5.1 3.7 3.5 3.3 5.3 6.0 3.8 4.0 3.8 3.0 
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Figure 7.7: Relationships between altitude and number of rainy days (February-March compared to July-

August) 

Duration and temporal distribution of rainstorms in the study area was investigated by Al-

Rawas and Valeo (2009) based on 2042 rainstorms at different stations. It has to be men-

tioned, that stations above an altitude of 1800 m a.s.l. were not included. Table 7.3 shows 

rainfall duration classes and their relative proportion of the total number of events. In gen-

eral, all storm events showed a very high intensity at the beginning of the storm. Moun-
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tainous region and plain did not show differences in duration or temporal distribution of 

rainstorms. 

Table 7.3: Typical duration of rainstorms according to Al-Rawas and Valeo (2009) 

duration ≤ 2 h 2 to 6 h 6 to 24 h 24 – 48 h 

relative proportion of          
total number of events 

30 % 19 % 25 %  26 % 

rainfall mechanism 
predominantly                convec-
tive rainstorms 

various 

 

Figure 7.8 shows mean monthly rainfall amounts for the core area. They correspond to 

80 mm for the winter months (November to April) and 81.7 mm for the summer months 

(May to October). Histograms based on a 1 x 1 km raster for winter and summer half years 

are presented in Figure 7.9. They are based on regionalised monthly data. External drift 

kriging (EDK) according to Bárdossy (1997) has been used to regionalise station data. In 

winter and summer, 75 % of the rainfall yield is based on rainfall depths up to 75 mm per 

month. Extremely high rainfall occasionally occurred in March (in 1997), in the month of 

June (e.g. tropical cyclone Gonu in 2007) and in July. 
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Figure 7.8: Mean monthly rainfall for the core area (1984 –2007) derived from regionalised data 
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Figure 7.9: Histograms of regionalised monthly rainfall (cell size 1 x 1 km) for the core 

area (period 1984 - 2007) 

Based on the isotopy of rainfall samples collected between 1995 and 1998, Weyhenmeyer 

et al. (2002) derived two local meteoric water lines. The northern/northwestern vapour 

source (LMWL-N) represents Mediterranean frontal systems and orographic rainfall. The 

southern/southeastern source (LMWL-S) indicates Indian Ocean cyclones and tropical 

depressions. The latter is similar to the global meteoric water line (GMWL), while the first 

is similar to those which were derived for Bahrain and Southwest of Israel. Compared to 

the GMWL, they feature a reduced slope which is typical for arid zones. 

Brook and Sheen (2000) investigated cyclicity of rainfall. For the station at Muscat (1895-

1995), they detected a 5-year cycle which explains 15.6 % of the variance, a 17.7 year cy-

cle (12.2 %), a 6.3 year cycle(6.7 %) and a 10.2 year cycle (3.1 %). The 17.7 year and the 

6.3 year cycles are correlated with the Southern Oscillation (SO). Accordingly, Figure 7.10 

shows annual values for the mountainous part of the study area as well as an analytical 

approximation based on harmonic analysis. The analytical function is based on 

unsmoothed annual values from 1974 to 2009. For gap filling before 1984, a linear regres-

sion between the average of little available station data and areal precipitation based on 

regionalised data for the core area has been used. The analytical function is based on the 

following equation: 
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Approximated periods were c1 = 5 a, c2 = 7.3 a, c3 = 9.7 a and c4 = 18.7 a (with 

R² = 0.658 and a RMSE of 69.1). An approximation of monthly values (moving average 

over 23 months) resulted in similar characteristics (c1 = 2.5 a, c2 = 7.4 a, c3 = 9.6 a and 

c4 = 18.9 a with R² = 0.752 and a RMSE of 3.34). In this case, however, the fit of the 

monthly data includes not a 5 year cycle but a 2.5 year cycle instead. 
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Figure 7.10: Annual rainfall in the core area based on regionalised data and analytical approximation based 

on harmonic analysis 

The area wide assessment of rainfall measurement errors is limited by availability of nec-

essary climate data and detailed information on exposure or surrounding of monitoring 

stations. Based on selected climate stations and sensitivity analyses, Gebremichael (2010) 

concluded that bias adjustment increased the gauge-measured rainfall in the study area as a 

whole by less than 10%. The gauge measured annual rainfall increased 3.5 - 14% of the gauge 

measured yearly totals. 

 

7.1.5 Geology and Hydrogeology 

The geology of the Hajar Mountains was extensively investigated by Glennie (1974). Ad-

ditional information can be found in (MWR, 1996; Stanger, 1986; Weyhenmeyer et al., 

2000). Figure 7.11 shows the prevalent geological units in the study area. They can be also 

regarded as hydrostratigraphic units.  
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Figure 7.11: Prevalent geological units based on the Geological Map 1:250.000 (sheet NF4003-Seeb) 

 

The extent of the Jebel Akhdar is more or less equal to the spreading of the Hajar Unit. It 

consists of a large anticline rising up to 3000 m. Its eastern extremity is termed as the Jebel 

Nakhl, according to the nearby town of the same name. The highest peak, the Jebel Shams, 

lies within Wadi Bani Ghafir in the western part of the mountain chain. A schematic sec-

tion of the anticline is provided in Figure 7.12. 
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Figure 7.12: Spring lines of the Jebel Akhdar, modified after MWR (1995) (not to scale) 
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The core of the anticline consists mainly of highly fractured and faulted pre-Permian silt-

stone and limestone formations (phyllite, shales, calcite and dolomite) and thin sandstone 

layers. It is exposed around several topographically low bowls or tectonic windows. To 

some extent, alluvial deposits cover the pre-Permian formations. An example is the Gubrah 

Bowl (Wadi Mistal), between the cities of Saiq and Nakhal. According to Stanger (1986), 

the occurrence of springs along the contact between the pre-Permian unit and the overlying 

Hajar unit and the absence of springs with significant discharge within the per-Permian 

unit indicate a lower permeability and restricted aquifer capabilities of these rocks. 

The Hajar Unit, which forms the limb of the anticline, is dominated by limestone and 

dolomite. These carbonates are highly fractured and karst features are found throughout 

most sequences. Numerous springs indicate significant, well constraint groundwater circu-

lation (Weyhenmeyer et al., 2000). Figure 7.12 shows the major spring lines in the study 

area. The piedmont springs (in Figure 7.12 indicated as hot springs) occur at relatively low 

altitude but at a high stratigraphic horizon. They are sparsely distributed, often thermal and 

yield generally in large, stable discharges. Examples are Rustaq Hammam (82 ± 20 l/s) or 

Nakhl Thowara (40 l/s). The high level springs, however, show a low stratigraphic level, 

invariably cold water temperatures of about 25 °C, and low discharges. Spring discharges 

exceed values of 10 l/s only for short periods after rainfall (Stanger, 1986). 

Weyhenmeyer (2000) refers to the large regional differences in the groundwater table of 

several hundred meters, suggesting that the productive fracture zones are not effectively 

hydraulically connected. The heterogeneity of the aquifer is also mentioned by 

MWR (1996). Stanger (1986) points out the widespread immature karstic development, 

which results, for example, in the locally impervious nature of the more massive beds. 

Weyhenmeyer et al. (2002), however, state that wells and springs along the piedmont to-

wards the northern Batinah plain show tritium activities close to rainwater values which 

suggest rapid infiltration and groundwater circulation through the karstified pre-Permian 

and Mesozoic limestone and dolomite formations to the base of the Jebel Akhdar moun-

tain. 

North to the Hajar unit, between Rustaq in the west and Afi in the east, the so called Fron-

tal Mountains stretch out. This low-lying mountain range is composed of the Samail Nappe 

Ophiolites, a sequence of mid-Cretaceous ophiolitic rocks. According to Glennie (1974), 

these rocks are one of the world’s largest and best exposed examples of an oceanic crustal 

and upper mantle sequence. Until recent years, the Ophiolite was assumed to be an aqui-

tard and groundwater flow was believed to be confined to the thin (< 30 m) alluvial depos-

its overlying the ophilite (Stanger, 1986). Based on strontium isotope ratios, Weyhenmeyer 

(2000) concluded that groundwater circulation takes place in the magnesite and calcite 

lined fractures found throughout the Samail Ophiolite.  
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Besides the adjacent alluvial aquifer on the Batinah plain, quarternary alluvium appears in 

often narrow valley floors, for example in Wadi Bani Kharus upstream to the city of Al 

Awabi. Moreover, more widespread alluvial deposits crop out within the spreading of the 

pre-Permian formations (see above) and in Wadi Maawil easterly to the ophiolitic Frontal 

Mountains, around the cities of Nakhl and Afi. According to Stanger (1986), erosion prod-

ucts from the Hajar Super Group massifs make a major contribution to the mostly coarse 

grained piedmont wadi systems. 

Relatively little substantial information is available on the properties of these alluvial de-

posits. The Ministry of Water Resources and Rural Municipalities (MRMWR) provided 

data on the thickness of the alluvium at around 10 available scattered boreholes. In some 

cases (e.g. south to Al Awabi), relatively thick deposits (> 45 m below surface), which are 

partly close to rather shallow ones (< 27 m.b.s.) make it difficult to derive reliable and rep-

resentative conclusions. The occurrence of base flow over several months at the gauge near 

Afi after wet periods, implies a considerable local groundwater storage capacity in this 

area. 

Shifting channels due to sporadic changes in the balance between erosion and deposition 

and other morphological processes resulted in an unusual configuration in which surface 

flow from Wadi Mistal breaks to the ophiolites merging with the main Wadi Bani Kharus, 

while subsurface flow appears to drain through the former alluvial fan into the Wadi 

Maawil (Stanger, 1986). 

The Batinah plain is by far the most important aquifer of the region (Macumber, 2003; 

Stanger, 1985; Stanger, 1986). It consists of adjacent, but differentiable alluvial fans. Due 

to the coalescence of tributaries, the lateral catchment divides are indistinct. Wadi Al Farah 

and Wadi Maawil are the two major wadis draining the Jebel Akhdar.  

(Macumber, 2003; Weyhenmeyer et al., 2002) pointed out, that groundwater recharged in 

the Jebel Akhdar is diverted by the less permeable Frontal Mountains. In fact, it follows 

two major flow paths passing through gaps in the Ophiolites near Nakhl (eastern ‘Maawil 

plume’) and Rustaq (western ‘Farah plume’) and is then stretching across the coastal plain 

to the sea. With a thickness of the alluvial channel of more than 70 m, the western flow-

path is more deeply incised than the piedmont area of Wadi Maawil with relatively shallow 

alluvium (max. thickness < 40 m). Following this line, the quaternary alluvial aquifer in-

creases in its vertical extent and has the largest thickness within the so called ‘‘Maawil 

trough’’. Subsequently, it thins out northwards (Macumber, 2003). Grain sizes decrease 

continuously from the mountainous region towards the coast. 

Isotope studies (Macumber, 1998; Weyhenmeyer et al., 2002) revealed, that around 80 to 

90% of the groundwater resources of the coastal plain within the range of the Maawil-

plume are based on precipitation in high altitudes. Based on the altitude effect, Weyhen-
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meyer et al. (2002) deduced an average recharge altitude of approximately 1700 m a.s.l. 

Similar findings were stated related to the Farah plume. 

Based on the analysis of tritium from observation wells on the Batinah plain, it was con-

cluded that the portion of recent recharge in the area of the Maawil and Farah ‘plumes’ is 

secondary. In contrast, the area between those two plumes, shielded by the Frontal Moun-

tains, displays a higher proportion of recent recharge. 

In an isotope cross plot, δ2H and δ18O values of all the samples within the catchment of the 

Maawil plume lie between the above mentioned local meteoric water lines (LMWL-N and 

LMWL-S) – but more or less parallel to the LMWL-N. It was suggested, that this is due to 

a mixture of northern/north-western and southern/south-eastern vapour sources. The con-

tribution of the southern source was assessed at about 50 %. Though of lower frequency, 

this south-eastern source shows high intense events of long duration. According to Wey-

henmeyer et al. (2002), a more detailed quantitative assessment of the relative contribution 

of the two vapour sources to modern day groundwater recharge requires a continuous long-

term isotope database for precipitation and rainfall chemistry. Similarly, considerations of 

a long-term evaporation rate for the whole area based on chloride and sodium measure-

ments in rainfall samples resulted in an upper limit of 80 %. Due to the lack of data on dry 

chloride deposition, it was emphasized that this number can possibly be significantly 

lower. 

Although the results of the mentioned isotopic and geochemical studies provided well-

founded qualitative information on groundwater flow paths, uncertainties remain with re-

gard to the actual extent of the groundwater basins of the two groundwater plumes men-

tioned above. For example, there is evidence that groundwater flow from the Wadi Mistal 

does not follow the (surface) drainage divides, but is discharging to the ‘Maawil plume’. 

Macumber (2003) concluded that there must be a subsurface inflow from recharge areas 

lying to the south of the east-west divide including the Saiq plateau. 

Available groundwater hydrographs of selected groundwater stations in the alluvial aquifer 

on the Batinah plain reflect the hydrological processes in the corresponding basin. Unfor-

tunately, the availability of observation wells is limited to the central and coastal part of the 

plain and, thus, at least about 5 km downstream to the mountain front zone. The hydro-

graphs with the lowest distance to the piedmont zone reflect the mid-term cycles which are 

apparent in rainfall (see section 7.1.4). Further downstream towards the coast, the influence 

of the upper boundary decreases. In the coastal zone, the hydrographs feature seasonal 

fluctuations due to extractions for irrigated agriculture. In addition, long-term negative 

trends indicate the continuously increasing water demand in the recent decades. 
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7.1.6 Soils 

The soil map in Figure 7.13 shows the predominant soil classes, focusing on the soils 

which appear in the mountainous part and the mountain front zone, including the alluvial 

valley in Wadi Maawil as transition to the northern plain. Table 7.4 provides further details 

for these soil classes. 

 

Figure 7.13: Soil map (MAF, 1990) 
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Table 7.4: Prevalent soil classes (MAF, 1990) 

ID soil class grain size depth slope note 

1 Calciorthids 
loamy to     
loamy-skeletal 

deep to mode-
rately deep 

0-5%  

11 
Calciorthids-
Torrifluvents-
Torriorthents 

loamy sand & 
sandy skeletal 

deep 0-3% moderately flooded 

19 Gypsiorthids 
loamy,          
loamy-skeletal & 
sandy-skeletal 

deep to mode-
rately deep 

0-15% 

saline soils with gypsum pan 
on slightly to strongly dis-
sected alluvial terraces & 
fans 

37 
Torrifluvents-
Torriorthents 

sandy & loamy deep 0-3% 
slightly to moderately 
flooded 

46 
Torriorthents & 
Calciorthids-
Rock outcrop 

loamy &     
loamy-skeletal 

shallow & 
moderately 
deep 

0-15% soils & rock outcrop 

R 
Rock outcrop-
Torriorthents 

loamy-skeletal to 
sandy-skeletal 

shallow 
0-
100% 

mountains & strongly dis-
sected rocky plateaus 

 

In the mountains, the shallow Rock outcrop-Torriorthents (class R) are prevalent. This map 

unit is about 70 % rock outcrop, 20 % Torriorthents and 10 % minor soils. Mountains and 

hills are dominated by rock outcrops. The Torriorthents, however, cover Piedmont slopes, 

footslopes and channels. Very gravelly, loamy to sandy and shallow to deep soils are pre-

sent, with high vertical hydraulic conductivity. The soil atlas does not contain further in-

formation on characteristics of these rock outcrops. 

Apart from the Torrifluvent-Torriorthents on agricultural land close to Rustaq, Afi and 

Nakhl, only the Gubrah Bowl (southeast of Wadi Bani Kharus) and the alluvial valley in 

Wadi Maawil contain different soils. 

The low sloped areas in the Gubrah Bowl are characterised by deep to moderately deep 

Calciorthids (class 1). In the gently sloping areas the shallow to moderately deep Torri-

orthents & Calciorthids-Rock outcrop (class 46) are prevalent. According to MAF (1990), 

both soils feature a moderate vertical hydraulic conductivity. 

Gypsiorthids (class 19) are predominant in the alluvial valley of Wadi Maawil. In contrast 

to the Calciorthids they are saline soils. Vertical hydraulic conductivity is moderate and 

water retention is low. Typically, a layer cemented by crystalline gypsum is underlying. 
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7.1.7 Runoff characteristics 

Figure 7.14 shows the four gauged catchments in the study area. The drainage basins dis-

play considerable differences in their characteristics (see Table 7.5). The catchment of the 

gauge Al Awabi shows the highest slope and the lowest portion of alluvium which implies 

a high predisposition to flash flood runoff generation. In contrast, the catchment of the 

gauge Sabt shows a lower slope and a rather high proportion of quaternary deposits. Con-

taining the two catchments mentioned above, the catchment of the gauge at Al Abyadh 

(Wadi Bani Kharus) is by far the largest one (763 km²). The Wadi Maawil (gauge near Afi) 

comprises an area of 313 km². The morphologic variables are, on average, similar to in the 

drainage basin of gauge Al Abyadh. 

 

Figure 7.14: Gauged drainage basins in the study area 

Table 7.5: Morphological characteristics of the four gauged surface catchments (modified after Giese (2011)) 

variable unit gauge 

  Sabt Al Awabi Al Abyadh Afi 

area km² 202 254 763 313 

gauge height m a.s.l. 420 600 200 225 

mean slope % 33,7 46,0 35,4 35,3 

proportion of quarternary deposits 

(alluvium, slope colluvium) 
% 60 21 31 36 
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Based on available monitoring data, Giese (2011) investigated rainfall-runoff processes in 

above mentioned basins. Daily data on gauged runoff for the four gauges is available since 

1984. The relative number of days with observed discharge in proportion to the total num-

ber of observed days is shown in Table 7.6. With a value of 15 %, the gauge at Afi shows 

by far the highest portion of days with observed surface runoff. An explanation therefore is 

the intermittent occurrence of baseflow (see below). Based on the daily data, events, i.e. 

consecutive days with observed surface runoff, were selected. The headwaters Sabt and Al 

Awabi show generally short event durations with a mean value of 2.5 days (Al Awabi) or 

below (Sabt). At Al Abaydh, longer events occur from time to time with a maximum dura-

tion of 44 days in the summer of 1997. Only at gauge Afi, baseflow over several months is 

observed occasionally, which is fed by the local alluvial aquifer. 

Only at Al Awabi summer events predominate, while Afi shows the highest number of 

winter events. A possible explanation could be the differences in altitude-rainfall relation-

ships between the summer and winter season (see section 7.1.4), where summer rainfall is 

supposed to be less important in the lower elevated catchment of the gauge at Afi. 

Table 7.6: Overview on observed runoff events after Giese (2011) 

gauge 
 unit 

Sabt Al Awabi Al Abyadh Afi 

days with observed Q 

in proportion to obs. period 
% 3 5 4 15 

proportion of occurrence 

summer / winter 
% 46/54 56/44 39/61 30/70 

rainfall-runoff events selected for 

further evaluation (basis: daily data)  
counts 70 80 59 70 

availability of events in high temporal 

resolution (rainfall & runoff ) 
counts 9 7 5 8 

 

The available hydrographs of Al Awabi show sharp rising peaks, which are typical for 

flash floods in arid zones. At the other gauges, recession is less steep. Hydrographs at 

Al Abyadh and Afi often show a tailing over several days or weeks as well as consecutive 

peaks within one or two days. In this regard, the available data reflects the differences in 

geomorphology regarding slope and geology between the different catchments. 

The availability of rainfall-runoff events in high temporal resolution was limited (see Table 

7.6). So, rainfall-runoff events were selected and analyzed based on daily data as a step 

towards prognostic rainfall-runoff relationships – aware that daily data is a substitute with 

limited force of expression in this context due to the temporal dynamic of rainfall-runoff-
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events. Table 7.6 shows the number of runoff events based on daily data which were se-

lected for further evaluation. 

Apparently, a major limitation in evaluation of rainfall-runoff processes in the study area is 

the limited density of the rainfall monitoring network of one station per 60 km² on average. 

Gaps in the network were already mentioned in section 7.1.4. According to this, a large 

range of altitudes is not represented in the rainfall monitoring network. In rainfall-runoff 

analysis, this becomes apparent through implausibly high runoff coefficients if areal pre-

cipitation is underestimated. Consequently, events with implausible runoff coefficients 

were sorted out.  

In addition, the use of daily data results in a systematic overestimation of areal precipi-

tation related to events, for the runoff inducing short duration rainfall event is often fol-

lowed by another event on the same day. Therefore, the considerable scattering of the re-

sulting empirical rainfall-runoff relationships is, among other factors, due to the uncertain-

ties in assessing the correspondent areal precipitation to an observed runoff. This is in ac-

cordance with the scientific literature as for example discussed in section 2.2.1. 

The mean annual runoff at the gauge Afi is 3.14 mio m³/a and 3.8 mio m³/a at Al Abyadh 

for the period from 1984 to 2007. These average values are strongly influenced by the ex-

treme values in 2007, 1997 and 1995. Within that period, the highest peaks at both gauges 

were observed during the Gonu event in June 2007 with 881 m³/s at Afi and 777 m³/s at Al 

Abyadh. 

7.1.8 Vegetation and irrigated agriculture in mountain oases 

The mountainous terrain is mainly characterised by bare rocks with little or no vegetation. 

In cooler high altitudes with more rainfall, scattered vegetation is prospering. In some 

places, trees grow in alluvial channels indicating perennial subsurface flow.  

Irrigated agriculture occurs in mountain oases. The cultures comprise perennial crops (pre-

dominantly date palms) and various seasonal crops (fruits, vegetables, grains). It is based 

on the so called falaj systems (plural: aflaj). These are surface or underground channels 

which distribute available water from alluvial channels, springs or mountain aquifers 

which are tapped by dug channels similar to the qanat systems in Iran. According to Stan-

ger (1986), the term falaj is derived from an ancient semitic root meaning “to divide” and 

refers to the system of water allocation. The traditional agriculture has evolved to cope 

with fluctuating groundwater supply.  

The National Aflaj Inventory Project (MRMWR, 2001) provides an extensive data base on 

cropped areas, water quality and, to a certain extent, water quantities of aflaj systems. An 

evaluation of cropped areas and water use estimates is presented in section 6.3.3. 
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7.2 Recharge mechanisms in the study area 

Based on section 7.1, recharge mechanisms and influencing variables are summarized in 

the following. For this purpose, selected features are illustrated in Figure 7.15 and Figure 

7.16. 

 

Figure 7.15: Recharge mechanisms (I): Topography, mean annual rainfall and isotopy; isolines of δ18O ac-

cording to Weyhenmeyer et al. (2002) 

 
Figure 7.16: Recharge mechanisms (II): Slope and spreading of alluvium in the mountain region 
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Rainfall: 

Mean annual rainfall is increasing with altitude (see Figure 7.15). Summer and winter sea-

sons show about the same amounts of rainfall. However, rainfall occurrence is more vari-

able in summer. Additionally, the amount and occurrence of rainfall are increasing signifi-

cantly with altitude in summer. In winter, it is more equable up to altitudes of 2000 m a.s.l. 

The altitudes between 2000 and 2200 m a.s.l. (Saiq plateau) show a rainfall maximum, 

both in summer and winter. (Rather advective) winter rainfall is supposed to be less intense 

and more wide-spread than summer rainfall. Thus, winter rainfall is supposed to induce 

proportionally more direct recharge and less indirect recharge compared to summer rain-

fall. 

Tropical cyclones have been observed in every month from May to December. They occur 

on average about once in ten years. If they do occur, they bring heavy rainfall, which in-

duces a large proportion of surface runoff and, not least, discharge to the sea. 

 

Potential Evapotranspiration: 

According to the hypsometry of the study area, there is a temperature difference in the 

study area of about 10 °C from the Batinah plain to the high altitudes of the Jebel Akhdar. 

In addition to temperature, the potential evapotranspiration (ETP) is also a function of ex-

posure. Thus, a distinction of ETP only according to altitude is not useful. 

 

Geology and Soils: 

In a simplified way, one may differentiate between more or less fractured and karstified 

carbonates outcropping at the slopes and in the high altitudes and alluvial material in the 

valleys in the lower altitude zones with low to median slope. A transition zone is present in 

the area covered by slope colluvium. It corresponds with medium to steep, sometimes even 

very steep, slopes. Outside cultivated areas, soils are in general less developed. A large 

portion of the area consists of rock outcrops. 

 

Slope: 

Considerable areas with low or maximally medium slope appear in the high altitudes (Saiq 

plateau) as well as in the Gubrah bowl and in the alluvial valley of Wadi Maawil (see 

Figure 7.16). Therefore, direct recharge at the site is more promoted than surface runoff 

and indirect recharge. The slopes of the mountain range, however, show steep to very steep 

gradients. These areas are prone to flash flood runoff generation, and subsequent indirect 

recharge in alluvial valleys. In these areas, direct or localized recharge depends on the oc-

currence of fractures or karst features. 
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Isotopy: 

Wells in the high altitudes of the study area but also the in the so called Maawil ‘plume’ on 

the Batinah plain show δ18O-values below -3.0 ‰ (Figure 7.15). Macumber (2003) even 

includes a -3.5 ‰ isoline within the Maawil ‘plume’. This indicates that the groundwater 

resources in the Maawil ‘plume’ have precipitated mainly in the high altitudes. It has to be 

mentioned that the wells in the westerly Farah ‘plume’ feature only δ18O-values above 

-3.0 ‰. Accordingly, in the study of Matter et al. (2005) for the area south to the study 

area, no δ18O-values below -3.1 ‰ were detected in the mid and low altitudes. Water 

which has recharged in the highest parts of the study area is supposed to drain rather to the 

Maawil ‘plume’ than to the westerly Farah ‘plume’ or to the southern limb of the Jebel 

Akhdar. 

 

Flow paths under consideration of principal recharge mechanisms 

The three principal recharge mechanisms direct, localized and indirect recharge also corre-

spond to distinct flow paths (see Table 7.7). Accordingly, a main distinction can be made 

between direct recharge and routing in the mountain aquifer after (deep) percolation and 

indirect recharge and routing in alluvial valleys. The table outlines general conclusions 

about areas, which may contribute preferably to the respective recharge mechanisms.  

In the low sloped areas of the high altitudes, the portion of direct and localized recharge 

subsequent to low or medium rainfall is supposed to be more important than indirect re-

charge after heavy rainstorms. Consequently, drainage via the mountain aquifer is sup-

posed to be the primary flow path. 

Due to the geomorphology of the study area, the downstream flow of indirect recharge via 

alluvial valleys is not necessarily identical to the surface drainage direction (see Figure 

7.16). For example, the surface runoff generated in Wadi Mistal, the south-eastern tributary 

to Wadi Bani Kharus, flows northeast of Al Awabi into the Wadi Bani Kharus towards Al 

Abyadh. The subsurface or near-surface flow in the valley alluvium, however, is supposed 

to follow the sub-recent alluvium towards the easterly Wadi Maawil (Stanger, 1986). Con-

sidering the geology, a similar situation occurs at Al Awabi. The surface runoff component 

is routed in the channel of Wadi Bani Kharus towards Al Abyadh. The sub- or near-surface 

component, however, is supposed to follow rather the sub-recent alluvium to the west than 

the narrow recent channel towards Al Abyadh. 

Basically, the total subsurface flow in the headwaters of Wadi Bani Kharus is diverted by 

the ophiolitic Frontal Mountains into the eastern Maawil ‘plume’ and the western Farah 

‘plume’. The actual route of the east-west divide is considered to be a source of uncertainty 

in water resources assessment. Accordingly, the groundwater divide between the Batinah 

Region in the north and the adjacent catchment in the south is subject to uncertainties. 
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Table 7.7: Principal recharge mechanisms and corresponding flow paths 

drainage to alluvial basin aquifer 

Recharge mechanism via fissures, fractures, karst 
features (after deep percolation) 

via alluvial val-
leys 

catchment area 

direct recharge primarily 
cannot be      
ruled out 

according to hydro-
stratigraphic and hydro-
structural features 

localised recharge 
(during runoff concen-
tration) 

according to local hydraulic 
conditions 

according to 
local hydraulic 
conditions 

 

indirect recharge 

(during channel rout-
ing after runoff con-
centration) 

cannot be ruled out primarily 

headwaters: according to 
surface catchment divides 

downstream: according to 
spreading of alluvial val-
leys (can diverge from 
surface drainage direc-
tion) 

inter-aquifer flow / 
interface mountain 
block – alluvial basin 

not necessarily lateral along 
alluvial valleys only; upward 
flow from carbonatic footwall 
north to the mountain front pos-
sible (see Figure 7.17) 

lateral inflow at 
the mountain 
front 

 

 

Temporal dynamics: 

Surface runoff shows an immediate response to rainfall events. Accordingly, indirect and 

artificial recharge on the Batinah plain takes place within hours, days or weeks after rain-

fall. Aflaj hydrographs within the Jebel Akhdar or in the piedmont zone indicate a response 

time to rainfall events of 3 to 6 months. 

A visual interpretation of available groundwater hydrographs compared to rainfall time 

series imply, that there is a time lag between rainfall events in the mountains and ground-

water response (changes in groundwater levels) at observed locations of at least 2.5 years 

at JT-12. This station lies around 5 km downstream to the mountain front (see Figure 7.15). 

Due to hysteresis, this value cannot be considered as constant, but as a lower limit. Based 

on Walther et al. (2012), the mean flow velocity in the aquifer around the groundwater 

station mentioned above is supposed to be between 1*10-5 and 3*10-5 m/s which is equal to 

a flow distance of about 1 to 2.5 km in 2.5 years. Thus, a causal relation between rainfall 

and observed changes in groundwater levels seems to be plausible, assuming that there is 

an inter-aquifer flow from the tertiary limestone aquifer to the alluvial aquifer on the Bati-

nah plain besides an upstream inflow to the basin aquifer along the mountain front. Figure 

7.17 implies that such a connection between mountain aquifer and alluvial basin aquifer 

exists. 
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Figure 7.17: Occurrence and flow of isotopically depleted groundwater along the Maawil trough (Macumber, 

2003) 

 

Indirect and artificial recharge on the plain: 

The upstream boundary to assess indirect recharge on the Batinah plain is the surface run-

off at the mountain front. Respective runoff characteristics in the study area were ad-

dressed in section 5.7. Sophisticated tools to assess indirect recharge and artificial recharge 

downstream to the recharge dams were recently set up by Philipp and Grundmann (2013). 

This work contains appropriate hydrodynamic models to describe flash flood routing in 

ephemeral rivers including consideration of transmission losses. In addition, a dam module 

assesses the retention in recharge dams. 

Presuming the operation of recharge dams, transmission losses or potential indirect re-

charge downstream to the respective wadi runoff gauges near Afi (Wadi Maawil) and Al 

Abyadh (Wadi Bani Kharus) range from some ten percent for occasional extreme events 

(e.g. Gonu in June 2007) with considerable discharge to the sea up to more than 90 % for 

more frequent runoff events with low or median magnitude. Since recharge dams have 

been in operation, runoff to the sea has not been observed any more in the latter case 

(Philipp, pers. comm., January 17, 2013). 
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Mountain-front recharge vs. indirect recharge: zones of influence and temporal dynamics 

The ‘plume’ area is recharged via subsurface inflow from upstream. According to the loca-

tion of the recharge dams on the Batinah plain (see Figure 7.15), the recent course of the 

wadi channels is outside of the ‘plume’. Weyhenmeyer et al. (2002) point out, that there is 

evidence of tritium occurrence in these areas. Thus, the zones along the wadi courses re-

ceive water, which has infiltrated through the channel alluvium. While the subsurface in-

flow underlies a considerable attenuation during routing from recharge areas to the alluvial 

basin aquifer, indirect recharge shows a short term response to rainfall events in the moun-

tains. In general, recharge dams are empty within 10 days after onset of the flash flood 

events. 

 

Direct recharge on the plain: 

Considering high potential evapotranspiration and relatively low rainfall amounts on the 

Batinah plain (section 5), it is assumed, that direct recharge due to precipitation on the 

plain is rather low, compared to balance components in the considered study area men-

tioned above. Exceptions can be the occasional tropical cyclones, which are accompanied 

with severe rainfall. Grundmann (pers. comm., January 17, 2013) reported soil moisture 

observations in the frame of irrigation experiments at the agricultural research station near 

Barka. Accordingly, hardly any change in soil moisture was observed after a rainfall event 

of 23 mm. In contrast, intense watering with a high water amount (above 100 mm) to leach 

the soil, resulted in a change in soil moisture, even in greater depths. It is concluded that 

rare, extreme rainfall events contribute to (direct) groundwater recharge while the frequent 

low or medium events can be neglected.  
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7.3 Assessment of mountain-front recharge - Methodology 

In the following, the flux comprising mountain-front recharge is denoted as QMFR . The 

reference cross section for assessment of MFR is the (assumed) mountain front line. The 

spatial references or balance areas for its assessment are defined α-cuts of the Fuzzy Re-

charge Areas for the Maawil ‘plume’ (see section 7.3.1). Especially for the application of 

the conceptual hydrologic model (see 7.3.5), but also for the long-term average approach, 

response units with distinct parameterisation have to be determined (see section 7.3.2). In 

addition to the actual recharge in the mountain catchment, water use in mountain oases has 

to be considered (see section 7.3.3). 

Based on steady state groundwater modelling, an upstream inflow to the groundwater 

model domain on the Batinah plain QGWM of 68 mio m³/a was computed (Walther et al., 

2012). This can be considered as a reference value for long-term average QMFR. 

7.3.1 Data Processing of Fuzzy Recharge Areas 

In the following, the procedure to derive Fuzzy Recharge Areas as outlined in section 5.1 

is applied to the potential groundwater basin of the Maawil ‘plume’. Based on the discus-

sion of recharge mechanisms in section 7.1, Figure 7.18 shows the data base to derive the 

Fuzzy Recharge Areas for the Maawil ‘plume’. 

The outer boundary shows the assumed maximum extent of the underground catchments, 

both for the eastern Maawil ‘plume’, and the western Farah ‘plume’. Together, they repre-

sent that part of the Jebel Akhdar of which the subsurface water potentially drains north-

ward to the Batinah plain. In the north, this area is either limited by an assumed mountain 

front line or outcrops of the Samail Nappe ophiolites, which are supposed to be secondary 

in this context. To the east and south, the area is limited by the border of the Hajar Unit. In 

general, a degree of membership of µ(x,y) = 0 is assumed for the outer boundary. A value 

of µ(x,y) = 1 was only assigned to the mountain front line in the alluvial valley around Afi, 

the opening towards the alluvial basin aquifer. 

The portions of the (surface) drainage basins of Wadi Taww and Wadi Maawil outside of 

the ophiolites are assumed to drain completely to the Maawil ‘plume’ (µ(x,y) = 1), while 

the drainage basin of Wadi Farah is assumed not to contribute at all (µ(x,y) = 0). 
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Figure 7.18: Outer and inner boundaries for derivation of Fuzzy Recharge Areas 

 

The northern end of the presumed east-west divide (with µ(x,y) = 0.5) south to the Frontal 

Mountains lies between the two areas, covered with sub-recent alluvium, which spreads 

either further to the west or to the east. To the south, it follows in first instance the (local) 

drainage divides. Finally, its southern end reaches into the Saiq plateau. Here, it is as-

sumed, that direct recharge and subsurface drainage to the Maawil ‘plume’ predominate 

compared to drainage according to the surface drainage network. Although they follow to 

some degree the topography, the supporting lines for ‘increased’ or ‘decreased drainage 

toward Maawil’ are quite subjectively which has to be considered in evaluation of the re-

sulting water yields. This corresponds to the statement of Jacobs (2007), whereupon fuzzi-

fication is quantification at the same time. On the Saiq plateau, the inner boundaries are 

assumed to follow distinct isolines to describe the potential extent of the groundwater ba-

sin, which is related to certain α-cuts. Based on isotopic evidence, the contribution of the 

areas above 2200 m a.s.l. to the Maawil ‘plume’ is quite solid. The 1800-isoline (‘pre-

sumed divide’ with µ(x,y) = 0.5’) is completely within the low sloped plateau area, which 

shows the highest δ18O-values. Thus, it is assumed, that this area contributes mainly to the 

Maawil ‘plume’. Beyond that line, however, the steep southern slopes are starting – where 

surface runoff and, thus, indirect recharge is supposed to dominate and subsurface drainage 

to the north is more and more unlikely. 
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Based on these outer and inner boundaries, a Triangulated Irregular Network (TIN) was 

interpolated. Finally, this TIN was converted to an ascii raster file with a spatial resolution 

of 1 x 1 km². It is illustrated in Figure 7.19. With regard to water balance assessment for 

different α-cuts, the location of oases were included.  

 

Figure 7.19: Fuzzy Recharge Areas of the Maawil ‘plume’  

 

7.3.2 Determining response units 

The raster based framework (section 2) allows defining hydrogeologic response units 

(HGRU) to distinguish zones with distinct response functions (for the conceptual hydro-

logic model) or assumptions on recharge rates (for the long-term average considerations). 

Especially with regard to the conceptual hydrologic model, the primary goal is to delineate 

zones with distinct characteristics regarding recharge mechanisms and recharge flow paths. 

The degree of distinction depends on available data or expert knowledge of the catchment 

characteristics and reference data for calibration. An increasing number of response units 

are beneficial as long as they are accompanied by an increase of reliable information. In 

this case study, detailed field surveys, like, for example, carried out extensively by Lange 

(1999) in a similar context are lacking. Observed hydrographs of aflaj do not represent the 

total catchment area, but only unknown sub-catchments. Available reference data is limited 

to a single long-term average value (see above). Thus, a low number of 3 response units 

was defined. In addition to their names, Table 7.8 shows criteria for their delineation based 

on available geo data. The highlighted criteria were finally used for data processing.  

In the case of the alluvial valleys, the spreading of (recent and sub-recent) alluvium corre-

sponds well with slopes ≤ 15 %. Slope colluvium is corresponding with higher slopes, but 

the hydrologic characteristics are more similar to the alluvial valleys than to the steep 
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slopes with outcrop of rocks (see section 7.3.5 including Table 7.13). Thus, the prevalent 

geology is finally used as a classification criterion instead of the slope. The ‘slopes’ are the 

remainder, i.e. those raster cells, which do not belong to the other classes with clear selec-

tion criteria. 

Table 7.8: Definition of response units 

ID Name slope  altitude prevalent geology 

1 quaternary low to mean (≤ 15 %) < 1800 m a.s.l. 

Quaternary (sub-
recent and recent 
alluvium or slope 
colluvium) 

2 slopes steep to very steep (> 30 %) arbitrary 

3 high altitudes low to steep (≤ 30 %) ≥ 1800 m.a.s.l 

limestone and dolos-
tone 

 

Considering an α-cut FRA0.50 of the Fuzzy Recharge Areas, ‘quaternary’ covers 31 % of 

the total basin. The ‘slopes’ represent 53 % and the relative portion of the high altitudes 

amounts to 16 %. 

7.3.3 Water use in mountain oases 

Crop evapotranspiration ETc is the product of reference evapotranspiration ET0 and the 

crop coefficient kc. Integrated over the total cropped area within the considered balance 

area, it results in the total crop water demand Qc. For the actual crop water use depends on 

the actual water availability, Qc is a potential value which may not be used up completely 

in selected periods. 

Thus, cropped areas of mountain oases according to MRMWR (2001) were used to assess 

water use according to the respective extent of the balance area. In addition to the standard 

extent, MRMWR (2001) contains also the so called ‘uncropped area’, which can be op-

tionally used for farming, e.g. in particularly wet periods. Uniformly, the latter is a third of 

the value for the ‘cropped area’. 

The crop coefficient kc depends on the culture as well as on the growing stage. According 

to Allen et al. (1998), kc is mostly below 1 in the initial state and between 0.40 and 1.25 in 

the mid state, depending on the crop. For date palms, the most important perennial culture 

in the study area, kc is between 0.90 and 0.95. Cropping patterns, i.e. a distinction of dif-

ferent crops within the cropped area, are not available. Thus, a unit value kc ~ 1 over the 

whole year is assumed. Consequently, crop water requirement corresponds to the assumed 

value of ET0. 

Table 7.1 shows average monthly values of ET0 at different sites of the study area. For the 

oases actually covering different altitudes and exposures, the median values in this table 

with an annual sum of 1946 mm at Saiq (MWR, 1996) is considered to be a reasonable es-
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timate. The other two other stations (1776 mm/a and 2466 mm/a) can be regarded as upper 

and lower limit. In the National Aflaj Inventory (MRMWR, 2001), a unit reference value 

of 2700 mm/a was assumed. This can be considered appropriate for the coastal zone. For 

the mountainous part of the study area, this value is considered to be too high. Table 7.9 

shows cropped areas and mean annual values of the crop water demand Qc.  

Table 7.9: Estimates of mean annual crop water demand Qc 

cropped area cumulated crop water demand Qc [mio m³/a] 

Ac [m²] ETc min ETc median ETc max 

9.79 * 106 17.39 19.06 24.14 

 

7.3.4 Long-term average considerations based on fuzzy arithmetic 

The following considerations are based on the approach outlined in section 5.2. Response 

units are defined according to section 7.3.2. 

An option to estimate spatially distributed recharge to carbonate aquifers as fraction of 

mean annual rainfall is the APLIS regionalisation approach (Andreo et al., 2008). Its im-

plementation is discussed in section 5.2.3. Alternatively, usually used, crude estimates for 

hard rock in northern Oman are 15 % ≤  R ≤  35 % and 5 % ≤  R ≤  20 % for soft rock (Al 

Shaqsi, 2004). It is assumed that the APLIS approach is appropriate for the ‘slopes’ and for 

the ‘high altitudes’. For the ‘quaternary’, where relatively high evaporation losses due to 

soil moisture storage are supposed, the crude estimates for soft rock are applied instead. 

Table 7.10 shows the different assumptions on recharge rates for the respective response 

units. Fuzzy numbers are written as set of ordered pairs. In deriving the fuzzy numbers, a 

slight transition was assumed around the crisp interval limits. 

Table 7.10: Assumptions on recharge rates R [% of mean annual precipitation] for distinct response units 

response unit quaternary slopes high altitudes 

approach / 
assumption 

crude estimates: 







=

22

0
,

18

1
,

7

1
,

3

0
R  APLIS APLIS 

 

According to section 5.2, rainfall is the product of the regionalised value P(x,y) and an 

optional correction factor Pcorr to consider measurement errors or uncertainties in regionali-

sation,  for example. Similarly, for the cropped areas the standard value can be considered 

but also an extended area which is cropped in selected years only. Likewise, ET0 can be 

considered as crisp value, or minimum and maximum values can be included. With regard 

to the comparison of the total outcomes of fuzzy arithmetic approach, conceptual model 

and the reference value based on groundwater modelling, two variants are distinguished:  
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In variant A, recharge rates and the spatial extent of the basin are the only considered 

sources of uncertainty. This is the basis for a comparison with available reference values in 

section 7.4.1. In variant B, rainfall correction factor Pcorr, Acrop and ET0 are considered as 

fuzzy numbers. The confidence ranges of Acrop and ET0 were discussed in section 7.3.3. 

Rainfall measurement errors were addressed in section 7.1.4. The correspondent fuzzy 

numbers are shown in Table 7.11. 

Table 7.11: Assumptions on fuzziness in rainfall, cropped areas and reference evapotranspiration 

 rainfall P(x,y) Ac(α-cut level) ET0 

variant A crisp (regionalisation) crisp (standard value) 
Crisp 

(ET0 median = 1946 mm/a) 

variant B 
P(x,y)*Pcorr 
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7.3.5 Time-dependent assessment using the conceptual hydrologic model 

According to section 4, the main steps for the setup of this water balance model are 

• determination of response units (see section 7.3.2), 

• determination of seasons,  

• parameterisation and calculation of the seasonal response functions 

• parameterisation of the aquifer models for each response unit. 

Determining Seasons: 

The primary concern regarding the seasons is the option to consider average seasonal cli-

mate characteristics in derivation of the response functions. Comparable to the response 

units, it is worthwhile to aim for an appropriate number of seasons. 

Rainfall mechanisms play an important role in this context. The most important ones are 

the seif rain in winter (December to April with focus on February and March) and the 

summer rain season in July and August. The tropical cyclones occur occasionally in all 

months from May to December. They are supposed to show different process dynamics 

with regard to groundwater recharge generation due to high intensities over a longer dura-

tion than usual convective storms. Additionally, they have a considerable impact on mean 

values due to their magnitudes. As far as they occur within the calendar months of winter 

and summer rain seasons, they cannot be distinguished in this modelling approach. A dis-

tinct ‘in between season’ (May to June and September to November) is an attempt to as-

sess the long-term average yield of these events at least to a certain degree. 
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According to Table 7.1, potential evapotranspiration (ETP) is considerably higher in 

March and, even more, in April compared to January and February. However, a sensitivity 

analysis regarding this problem revealed, that a distinction of the winter season according 

to ETP does hardly influence the long-term average result. Consequently, a winter rain 

season (December to April), a summer rain season (July and August) and an ‘in between 

season’ (May to June and September to November) is considered. 

 

Definition of response functions for each case: 

According to section 6.2, a case denotes the combination of a distinct response unit and 

season. For each case, a parameter set has to be defined and a correspondent response 

function is calculated. The parameters depend on catchment characteristics like infiltration 

characteristics or soil storage capacity on the one hand, and rainfall characteristics like 

occurrence, duration, and intensity on the other hand. Thus, available information is com-

piled in the following section. Table 7.12 shows rainfall characteristics according to re-

sponse units based on section 7.1.4. It is an indication for estimating cumulated initial 

losses or infiltration. In the tailing phase of the temporal distribution of rainfall events, 

intensity is assumed to be considerably lower than potential infiltration rates. 

Table 7.12: Rainfall characteristics according to response units and seasons 

HGRU 1 – quaternary 2 – slopes 3 – high altitudes 

 rainfall occurrence1) [d/month] 

summer  2.0 3.5 4.5 

in between 2.0 3.5 4.5 

winter2)  2.5 3.0 3.5 

 expected rainfall duration [h/event] 

summer ≤  2 ≤  2 ≤  2 

in between 2.0 3.5 4.5 

winter2)  > 2 (up to 48) > 2 (up to 48) > 2 (up to 48) 
1) Occurrence per month refers to months in which rainfall actually occurred. 
2) Winter rainfall is supposed to be less intense but of longer duration. 

 

Table 7.13 shows available literature values on initial losses and infiltration rates. Accord-

ingly, even on steep slopes considerable infiltration can occur, as far as they are covered by 

colluvium. On steep slopes with outcrops of rocks, which are represented by the response 

unit ‘slopes’ in this study, initial losses and infiltration is assumed to be similarly low than 

in the limestone plateaus in Table 7.13. 
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Table 7.13: Literature values on relevant catchment characteristics according to Lange et al. (1999) 

terrain types initial loss [mm/event]1) final infiltration rate [mm/h] 

range over all types in the 
respective study 

4.5 to 11 5 to 50 

limestone plateau; (non-
diss.; dissected) 

4.5; 7 5; 15 

steep active slope (collu-
vium) 

10 30 

sandy plain (crusted) 9 15 

sandy plain (vegetated) 11 50 

 

The model approach is based on a monthly time step. Thus, the number of rainy days has 

to be considered in assessing the maximum initial loss. However, as the histograms in 

Figure 7.9 show, rainfall amounts below the minimal possible initial losses do occur. Simi-

larly, the estimation of the maximum infiltration has to integrate potential infiltration rates 

at site and rainfall characteristics. 

In hard rock terrain, soil storage available for evapotranspiration by plants ranges from 30 

to 150 mm (Ahmed et al., 2008). The major part of storage is in the weathered zone (poros-

ity). Additionally, there is some storage in the weathered-fractured zone. The parameter 

SMD, which represents the soil moisture deficit in the presented approach, is a fraction of 

above mentioned maximum values. It can be assumed, that soil storage capacity and, thus, 

the parameter SMD, is very limited in the ‘high altitudes’ and within the ‘slopes’. In com-

parison, the response unit ‘quaternary’ is assumed to show a higher storage capacity. Thus, 

higher values of SMD are possible in this response unit. At last, SMD has to be considered 

as a calibration parameter. 

Table 6.3 summarizes the sensitivity analysis in section 6.4.2. The most important conclu-

sion with regard to model application is the fact, that Infmax and SMD are the most 

influential parameters. Additionally, they are interdependent. 

Considering all expert knowledge, parameter sets for the relevant cases were compiled. To 

cover the potential range parameter values, a low yielding parameter set (aiming at a po-

tential lower bound of results), a median and a high yielding parameter set (aiming a poten-

tial upper bound) were considered. For Infmax and SMD, additional steps in between were 

included. The results are shown in Table 7.14. Although the lithology within the ‘quater-

nary’ features the highest infiltration rates, the parameter Infmax is mostly higher in the 

other two response units, especially outside of the summer season. This reflects the differ-

ences in rainfall occurrence as function of altitude. 
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Table 7.14: Basic parameter sets aiming at minimum, median and maximum 

HGRU 1 – quaternary 2 - slopes 3 – high altitudes 
  pot. yield low   med   high low   med   high low   med   high 

summer 11   10   9.0 10   8.0   6.0 13.0   10   7.0 
in between 11   10   9.0 10   8.0   6.0 13.0   10   7.0 

init lossmax 

[mm/∆t] 
winter 14   13   11 8.0   7.0   5.0 10.0   8.0   6.0 

summer 8.0 15 20 30 35 4.0 13 17 26 30 8.0 25 32 45 50 
in between 15 35 40 50 120 13 40 47 60 105 24.0 60 90 150 203 

Infmax 

[mm/∆t] 
winter 28 35 40 50 150 11 35 40 50 90 18.0 50 78 130 158 

summer 33 25 23 18 15 12 10 8.5 6.0 5.0 12.0 10 8.5 6.0 6.0 
in between 30 22 20 15 12 10 8.0 7.0 5.0 4.0 10.0 8.0 7.0 5.0 5.0 

SMD 

[mm/∆t] 
winter 27 20 18 13 10 8.0 6.0 5.0 4.0 3.0 8.0 6.0 5.0 4.0 4.0 

summer 1.75   1.30   1.10 1.75   1.30   1.10 1.75   1.30   1.10 
in between 1.75   1.30   1.10 1.75   1.30   1.10 1.75   1.30   1.10 ntransm_loss 

winter 1.75   1.30   1.10 1.75   1.30   1.10 1.75   1.30   1.10 
summer 1.10   1.50   1.75 1.10   1.50   1.75 1.10   1.50   1.75 

in between 1.10   1.50   1.75 1.10   1.50   1.75 1.10   1.50   1.75 nSMR_channel 

winter 1.10   1.50   1.75 1.10   1.50   1.75 1.10   1.50   1.75 

 

According to section 6.4, the conceptual hydrologic model is able to capture the distinct 

characteristics of different environments. Though, due to its conceptual character and the 

scarce data base for parameterisation and calibration, the actual model application is neces-

sarily subject to considerable uncertainties. In order to assess the reliability of the model 

outcome, not only the basic variants were considered, but a variety of combinations. For 

this purpose, the 3 basic variants for the less sensitive parameters were permuted with all 5 

variants of both, Infmax and SMD. So, 75 parameter sets were considered to support the 

identification of the most suitable ones. 

 

Parameters (recession constants) for subsurface routing in the mountain aquifer: 

The bucket-type aquifer models (see section 4.5) represent the retention during subsurface 

drainage to the reference cross section, namely the mountain front. In addition, the transla-

tion has to be considered. Available aflaj hydrographs show a time lag of about 3 to 6 

months. 

As mentioned above, there is a lack of hydrogeologic survey and groundwater observations 

in the alluvial basin aquifer in close distance to the mountain front, as well as on the flow 

distance up to 5 km downstream to the mountain front. Consequently, neither the time-

dependent results at the mountain front can be calibrated, nor a reasonable transfer function 

between mountain front and groundwater model domain can be established until further 

notice. Thus, the parameters in Table 7.15 are an initial estimate. It represents an aquifer 

which is slightly lower permeable than a limestone aquifer. 
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Table 7.15: Parameterisation of subsurface routing 

Kl (low permeable storage) [d] 250 
Kh (high permeable storage) [d] 15 
Distribution factor Rl [%] 95 % 
Time lag [mon] 3 

 

7.4 Assessment of mountain-front recharge – Results 

As reference for presentation and discussion of the results, Table 7.16 shows the consid-

ered α-cut levels of the Fuzzy Recharge Areas and related values of spatial extent, long-

term mean annual rainfall and cropped area.  

Table 7.16: α-cuts of the Fuzzy Recharge Areas and related variables 

α-cut level spatial extent long-term mean rainfall 
α [-] A [km²] P [mm/a] 

0.40 1386 163.2 
0.45 1334 162.2 
0.50 1291 161.6 
0.55 1160 155.5 
0.60 1089 152.6 

 

The averaged rainfall over the whole balance area is rising considerably from α-cut level 

α = 0.55 to α = 0.50. This is due to comparatively very high values in the high altitudes. 

Their proportion is rising continuously from α-cut level α = 0.60 to α = 0.40. 

 

7.4.1 Long-term average considerations 

Conceptual Hydrologic model 

For each considered spatial extent of the catchment (α-cut) and each parameter set, the 

model returns a long-term mean annual subsurface outflow at the mountain front QMFR. It 

is the balance of cumulated groundwater recharge QR and water demand of mountain oases 

Qc. Exemplarily for all α-cuts of the Fuzzy Recharge Areas, Figure 7.20 (left graph) shows 

a histogram of the results of all 75 parameter sets for α-cut level 0.5. The right graph 

shows a selection of results where long-term mean recharge rates in the different response 

units are within a reasonable range. The thresholds used for selection are shown in Table 

7.17. They ensure that extreme results are included in further evaluation, but model runs 

with implausibly high or low recharge rates are excluded. Obviously, the model approach 
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results in a left skewed distribution of QMFR with a peak around of around 60 mio m³/a. 

The correspondent histograms for all 5 considered α-cuts are shown in Appendix A. 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

mountain−front recharge Q
MFR

 [mio m³/a]

nu
m

be
r 

of
 p

ar
am

et
er

 s
et

s 
(n

 =
 7

5)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

mountain−front recharge Q
MFR

 [mio m³/a]

nu
m

be
r 

of
 p

ar
am

et
er

 s
et

s 
(n

 =
 5

6)
 

Figure 7.20: Histograms of calculated subsurface outflow at the mountain front QMFR based on the conceptual 

hydrologic model (α-cut level 0.5); left: whole sample (n = 75); right: selected samples considering assumed 

thresholds of long-term mean recharge rate per response unit (n = 56) 

 

Table 7.17: Thresholds for long-term mean recharge rates in distinct response units as plausibility check for 

parameter sets of the conceptual hydrologic model 

Response unit lower threshold Rmin [%] upper threshold Rmax [%] 
1 – quaternary 5 40 
2 – slopes 15 50 
3 – high altitudes 20 60 
 

To provide an overview on all considered α-cuts, Figure 7.21 shows empirical cumulated 

distribution functions of the model results based on model runs for the different considered 

α-cuts FRAα. The abscissa shows the probability of non-exceedence while the ordinate 

shows the outcome QMFR. Obviously, there is a considerable gap between the values for 

α = 0.50 and α = 0.55. Considering the differences in spatial extent of the catchments and 

high precipitation in the considered transition zone, this is plausible. The maximum value 

of the empirical distribution for the largest considered extent (α = 0.40) is 83.3 mio m³/a. 

As a basis to check the plausibility of the model and to compare it with complementary 

approaches to assess rainfall-recharge relationships, Table 7.18 shows long-term mean 

recharge rates in proportion to mean seasonal rainfall in the respective response units. It is 

based on 3 model runs and the α-cut FRA0.50. The selected runs show a similar total long-

term mean outcome QMFR between 66 and 70 mio m³/a. In addition, rainfall P(season) 

shows the portion of rainfall in the respective season compared to the total rainfall in the 

considered response unit. 
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Figure 7.21: Empirical cumulated distribution functions for the model results of the different parameter sets 

and referred to different considered α-cuts FRAα 

 

Table 7.18: Long-term mean rainfall P, recharge rates R and cumulated yield QR according to response unit 

and season for selected model runs or parameter sets (α-cut FRA0.5) 

parameter set ID: 20 47 66 20 47 66 20 47 66 

response unit: 
season 

rainfall P(season) 

[% of P(HGRU)] 
groundwater recharge 
R [% of P(season)] 

cum. yield QR(season) 
[% of QR(HGRU)] 

summer 22 22 22 15 11 12 13 11 17 

in between 24 24 24 18 20 13 18 22 19 quaternary 

winter 54 54 54 32 27 19 69 66 64 

summer 26 26 26 31 33 39 19 19 22 

in between 27 27 27 35 37 35 22 22 21 slopes 

winter 47 47 47 53 57 54 59 59 57 

summer 33 33 33 43 46 50 28 29 31 

in between 28 28 28 42 42 44 24 23 23 high altitudes 

winter 39 39 39 61 63 64 48 48 47 

 

Obviously, the winter season shows always the highest portion of rainfall. Summer and in-

between season show similar orders of magnitude. It has to be mentioned, that summer 

comprises only the months of July and August while the in-between season represents 5 

calendar months. The relative portion of winter rainfall is decreasing with increasing alti-

tude. In contrast, the relative amount of summer rainfall is increasing with altitude. 

The recharge rates show a general increase from the (lower lying) ‘quaternary’ unit over 

the ‘slopes’ to the ‘high altitudes’. The winter season shows always the highest rates with a 

considerable difference to the other seasons. In summer, recharge rates are generally lower 
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in the response unit ‘quaternary’. The ‘in between season’ shows lower rates than the 

summer season in the ‘high altitudes’. 

The cumulated recharge QR shows an amplification of rainfall characteristics by similar 

patterns in long-term average recharge rates. In the ‘high altitudes’, the contribution of 

winter rainfall to the total yield is slightly lower than 50 %. Here, the portion of yield in the 

summer season is significantly higher (around 30 %) than in the response units ‘slopes’ 

(around 20 %) or quaternary (up to 17 % only). In comparison thereto, recharge induced by 

winter rainfall is around 60 % (‘slopes’) or even above (‘quaternary’). 

 

Table 7.19: Proportions of cumulated yield QR per response unit compared to the yield of the total area for 

selected model runs or parameter sets (α-cut FRA0.5) 

QR (HGRU) [% of total yield] 
HGRU 

area (HGRU)  
[% of total area] Set ID = 20 Set ID = 47 Set ID = 66 

quaternary 31 15 % 13 % 10 % 
slopes 53 55 % 57 % 58 % 
high altitudes 16 30 % 30 % 32 % 

 

Table 7.19 shows the relative contributions of single response units to the total yield of the 

considered balance area.  According to Table 7.18, it is based on the model runs 20, 47 and 

66 and the α-cut FRA0.50. For comparison, the area of each response unit relative to the 

total area is included. Accordingly, the ‘slopes’ represent 53 % of the balance area. With 

55 to 58 %, their contribution to the total yield is slightly higher, but in the same order of 

magnitude. The ‘quaternary’ unit comprises 31 % of the total area but yields only up to 

15 % of the total cumulated recharge QR. Reversely, 16 % of the total area in the ‘high 

altitudes’ contribute around 30 % to the cumulated yield. In addition to the rainfall distri-

bution, these numbers reflect the high yield in the higher carbonatic units, or the higher 

losses from soil storage in the quaternary, respectively. 

 

Fuzzy arithmetic approach 

Figure 7.22 shows the balance of cumulated recharge QR and crop water demand Qc which 

results in mountain front recharge QMFR for variant B and the α-cut FRA0.50 of the Fuzzy 

Recharge Areas. In contrast to the ‘A-variant’ with crisp input, rainfall and crop water de-

mand are considered as fuzzy numbers. The abscissa shows the values of the water balance 

variables. The membership degrees are plotted on the ordinate axis. 
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Figure 7.22: Results of the fuzzy arithmetic approach: Water balance for variant 1B (α-cut FRA0.5) 

 

Figure 7.23 shows the outcome QMFR for different α-cuts FRAα but each for the same vari-

ant A. The cores of the results for α-cuts FRA0.40, FRA0.45 and FRA0.50 are overlapping as 

well as for FRA0.40 and FRA0.45.  Similar to the results of the conceptual hydrologic model, 

there is a considerable gap between the results for α = 0.55 and α = 0.50 due to the differ-

ences in spatial extent of the catchments and rainfall amounts in the transition zone.  
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Figure 7.23: Results of the fuzzy arithmetic approach: QMFR (variant A) for different α-cuts of the 

Fuzzy Recharge Areas FRAα 
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Synopsis 

In the following, the results of the two rainfall based approaches and the reference value 

based on steady state groundwater modelling are compared to each other. The results of the 

rainfall based approaches are compiled in Table 7.20. For the conceptual hydrologic 

model, the quartiles of the empirical CDF are shown. In the case of the fuzzy arithmetic 

approach, the supporting points of the trapezoidal fuzzy number are displayed. With regard 

to comparability, they refer to the ‘A-variant’ with crisp input. The 75 % - quartiles (Q3) 

are approximately the centre of the core of the fuzzy numbers. At the same time, they are 

similar to the modal values of the histograms in Figure 7.21 or Appendix B, respectively. 

The maximal values of the empirical distribution are slightly higher than the upper bound 

of the corresponding fuzzy numbers. The median values of the CDF (Q2) correspond to the 

lower bound of the fuzzy numbers. 

The reference value based on groundwater modelling QGWM = 68 mio m³/a is similar to the 

75 % - quartiles values for α-cut levels α = 0.40 (maximal considered extent) and 

α = 0.45. As mentioned above, these quartiles correspond to the modal values of the re-

spective CDFs. 

Table 7.20: Compilation of long-term average estimates QMFR [mio m³/a] for selected α-cuts FRAα based on 

the conceptual hydrologic model and fuzzy arithmetic (A-variant – crisp input) 

conceptual hydrologic model 
(quartiles of empirical CDF) 

fuzzy arithmetic 

variant A (crisp input) 
α 

Q1 
( 25.0
~x ) 

Q2 

( 50.0
~x ) 

Q3 

( 75.0
~x ) 

max. 

00.1
~x  

a  
(µ=0) 

b  
(µ=1) 

c  
(µ=1) 

d  
(µ=0) 

0.40 46.6 59.9 70.6 83.3 60.9 63.7 75.3 78.5 

0.45 44.0 56.7 66.8 79.0 57.8 60.5 71.5 74.6 

0.50 41.8 54.0 63.7 75.5 55.1 57.8 68.4 71.4 

0.55 31.6 42.3 50.6 61.0 42.7 45.4 54.8 57.6 

0.60 26.7 36.5 44.3 54.0 36.6 39.0 47.7 50.3 
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7.4.2 Time-dependent estimates 

Exemplarily for all considered parameterisations of the conceptual hydrologic model, 

Figure 7.24 shows the amount of groundwater recharge per month (cumulated over the 

whole balance area) and subsurface outflow from the mountain aquifer QMFR. It is based on 

an aquifer model as outlined in section 7.3.5. Obviously, the mountain aquifer can attenu-

ate the high temporal variability of infiltration-recharge processes considerably. Conse-

quently, the aquifer generally yields even in dry periods. It has to be mentioned, that trans-

lation, i.e. the consideration of time lags between rainfall event and peak of the groundwa-

ter response, is not yet included in this approach. Moreover, according to availability of 

reference data, a distinction of parameterisations for different response units may be rea-

sonable. To date, the database to consider these issues is limited to selected aflaj hydro-

graphs showing a time lag of 3 to 6 months (see section 7.3.5). Groundwater observations 

in the alluvial basin aquifer next to the mountain front are not available for the time being. 
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Figure 7.24: Total yield and subsurface outflow under consideration of retention in the mountain aquifer 

(parameter set 47, α-cut FRA0.5) 
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7.5 Consideration of uncertainties 

Parameter uncertainties, i.e. the uncertainties in recharge rates as percentage of rainfall, 

were already considered. In the case of the conceptual hydrologic model, this was done 

based on different parameter sets covering a wide range of values for each parameter and 

different possible combinations.  

In the fuzzy arithmetic approach, parameter uncertainty it is implicitly included due to 

fuzzy numbers of recharge rates or parameters of the APLIS-approach, respectively. In the 

following, input uncertainties are considered based on variant B of the fuzzy arithmetic 

approach which was presented in section 7.3.4. Exemplarily, Figure 7.25 shows the total 

mountain front recharge QMFR for both variants A and B. The result of the ‘B-variant’ 

(fuzzy numbers for rainfall and crop water use) is obviously fuzzier than the outcome of 

the A-variant. With decreasing membership degrees, the confidence ranges of the corre-

spondent α-cuts are increasing considerably. This covers the possible combinations of in-

creased or reduced rainfall, cropped area and crop water use per area. 
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Figure 7.25: Results of both fuzzy arithmetic approaches A and B for α-cut FRA0.5 

 

Figure 7.26 shows the results of the B-variant for all 5 considered α-cut levels. Together, 

they give a picture of the range of possible values for the mean annual mountain-front re-

charge QMFR. Accordingly, the core values for the different spatial extents range from 

about 40 to 80 mio m³/a. The highest overall value is 94 mio m³/a (for α = 0.40), while the 

lowest for α = 0.60 amounts to 27 mio m³/a. 
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Figure 7.26: Results of the fuzzy arithmetic approach (Variant B) for all considered a-cut levels 

 

The consideration of input uncertainties is limited to long-term average considerations so 

far. Though, uncertainties in (seasonal) crop water use or (event-specific) rainfall input are 

subject to temporal variations. Consequently, uncertainty assessment in a higher temporal 

resolution seems to be indicated to consider above mentioned issues. This, in turn, requires 

adequate climate data in a relatively high spatial resolution. In addition, crop water use 

depends strongly on cropping patterns which are mostly not available for the considered 

study area. Hence, a more sophisticated uncertainty analysis has necessarily to be based on 

various assumptions. In how far this is useful or necessary depends on the context in which 

assessment of mountain-front recharge is being done. In the frame of an integrated water 

resources management, it may be reasonable to compare the uncertainties of different wa-

ter balance variables and their influencing parameters to decide on the each necessary de-

gree of resolution. 

It is therefore concluded, that the proposed fuzzy arithmetic approach is an efficient option 

to consider uncertainties which is suitable for large scale water balance assessment on the 

long-term. If a more sophisticated analysis is indicated, then the fuzzy arithmetic tool 

should be applied on a monthly time step including time-varying input. Alternatively, a 

probability based uncertainty assessment based on the conceptual hydrologic model is pos-

sible. For this purpose, appropriate stochastic input parameter sets are necessary. 
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7.6 Discussion & Conclusions 

7.6.1 Water resources assessment in the study area 

Consideration of rainfall characteristics: 

Compared to former water balance studies in the study area, this study considers the con-

tribution of areas outside of the (surface) drainage divide of Wadi Maawil to the ground-

water basin of the Maawil ‘plume’. For the first time, available rainfall stations in the high 

altitudes above 1800 m a.s.l. were considered in water balance computations. They show 

significantly higher rainfall amounts, than considered so far in stations of lower altitudes. 

The detailed analysis of seasonal rainfall characteristics in distinct altitude zones including 

stations above 1000 m a.s.l. supports the conceptual modelling approach. 

Water balance assessment: 

The conceptual model is based on monthly values. Time-dependent reference values to 

calibrate mountain-front recharge are lacking. Consequently, plausibility checks are based 

on long-term average considerations. A total of 75 parameter sets was considered, covering 

reasonable ranges of the single parameters. Sets resulting in implausible recharge rates 

were sorted out. For the remaining 56 runs, the recharge rates reflect the expected differ-

ences according to the different response units and seasons. They amplify the seasonal dis-

tribution of rainfall. They hence confirm the statement of Lerner et al. (1990), that winter 

rainfall is a main driver of mountain front recharge (MFR). The orders of magnitude of 

long-term average recharge rates in distinct response units and seasons are conclusive and 

also plausibly compared to available literature on karst environments in arid and semi-arid 

regions (Andreo et al., 2008; Hoetzl, 1995). Hence, the approach is able to provide reliable 

spatially distributed estimates of groundwater recharge. 

The 56 model runs mentioned above result in a left skewed empirical distribution of long-

term average subsurface outflow at the mountain front. The upper bound of the interquar-

tile range is in good agreement with a reference value based on steady state groundwater 

modelling of 68 mio m³/a (Walther et al., 2012) and the complementary water balance ap-

proach using fuzzy arithmetic (variant 1). The latter is mainly based on the regionalisation 

approach APLIS (Andreo et al., 2008). Only for the response unit ‘quaternary’ (alluvium 

and slope colluvium), recharge was roughly estimated at values up to 15 %. In comparison, 

the conceptual modelling approach results in up to 17 % recharge in the summer season 

and up to around 30 % in winter. In the response unit ‘high altitudes’, the conceptual 

model shows slightly lower recharge rates than the APLIS-approach. In the response unit 

‘slopes’, APLIS and the conceptual model result on average in similar recharge rates. 

The fuzzy arithmetic approach was applied with crisp numbers of rainfall and crop water 

demand (variant A), but also with fuzzy numbers (variant B). Consequently, higher rainfall 
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input due to the consideration of assumed measurement errors was considered. Addition-

ally, higher crop water use due to a potentially extended cropped area, and a higher confi-

dence range of crop water demand per area was considered. In summary, these opposed 

influences resulted in a higher overall fuzziness (regarding the resulting fuzzy number) or 

confidence interval (regarding a distinct α-cut level). This covers the possible combina-

tions of increased or reduced rainfall, cropped area and crop water use per area. Overall, 

the fuzzy arithmetic tool is an efficient option to consider uncertainties – provided, that the 

underlying assumptions are plausible. This aspect is guaranteed by the good agreement 

with the alternative approaches mentioned above.  

The proportion of high altitude recharge compared to the total yield: 

The relative contribution of the high altitudes to the total groundwater recharge is not as 

predominant as assumed based on the conclusions of Weyhenmeyer et al. (2002) or 

Macumber (2003). It is however possible that mountain oases rely on the recharge of the 

response units ‘slopes’ and ‘quaternary’, while high altitude recharge is flowing mainly to 

the alluvial basin aquifer via deep percolation and drainage in the mountain aquifer via 

fracture systems. Hence, the main portion of rainfall recharged in the high altitudes would 

recharge the alluvial basin aquifer. An option for further investigation is to analyse the 

aflaj in terms of water geochemistry and isotopy. This could result in conclusions on dis-

tinct source areas of aflaj water yield within the mountain catchment. 

Fuzzy Recharge Areas: 

The choice of the α-cut levels presented above represents a range of potential spatial ex-

tents of the groundwater basin which is most reasonable considering the available expert 

knowledge on the study area. In the first instance, an α-cut FRA0.5 is assumed to be a real-

istic assessment. 

α-cuts FRAα with 0.45 ≤  α ≤   0.55 are assumed to be reasonable confidence ranges for 

water resources assessment in the study area. It has to be mentioned, that the variation in 

total yield from α = 0.50 to α = 0.55 is considerable. Due to maximum values of rainfall 

amounts and recharge rates in the resulting transition zone, the vague spatial extent results 

in a confidence interval of about 30 % of the total subsurface outflow at the mountain 

front. 

From the viewpoint of water resources assessment it is recommended to consider an ex-

tended study area including the western Farah ‘plume’ as well as the groundwater basins 

south to the Jebel Akhdar for future work to substantiate this issue in the frame of a large 

scale assessment. The consideration of adjacent groundwater basins is supported by the 

concept of the Fuzzy Recharge Areas (see section 3.2). Consequently, the approaches pre-

sented above can easily be extended to adjacent groundwater basins.  
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Time-dependent estimates and (inverse) groundwater modelling: 

Groundwater monitoring data in the alluvial basin aquifer is only available about 5 km 

downstream to the mountain front zone. Hence, at the time being, there is no observed ref-

erence data available to check time-dependent assessment of MFR. A reliable transfer be-

tween time-dependent subsurface outflow at the mountain front and (transient) upstream 

inflow to the groundwater model domain is lacking. Consequently, supplementary 

groundwater stations and additional bore profiles in close distance to the mountain front as 

well as between mountain front and actually available bores on the Batinah plain are desir-

able. This would allow a more direct link of the mountain catchment, which mainly re-

charges the alluvial basin aquifer and the groundwater model domain. 

If one takes this thought further, even a best possible assessment of agricultural water use 

in the coastal zone is a contribution to the assessment of natural water yield in the moun-

tain catchment. Its accuracy influences the reliability of the groundwater model, which is, 

in turn, an important means to cross-check time-dependent assessment of mountain front 

recharge. In other words, groundwater management and assessment of sink and source 

terms are interlinked. An increased reliability of one component supports the assessment of 

the other ones. 

7.6.2 Modelling approaches 

Based on the sensitivity analysis in section 6.4.2 and on the results of the case study appli-

cation it is concluded, that the proposed non-linear seasonal rainfall relationships based on 

water balance considerations are a reasonable approach for reliable water balance estimates 

in data scarce arid mountain regions. Compared to the assessment approaches discussed in 

section 2.3, the conceptual hydrologic model is most comparable to the approach of 

Hughes et al. (2008). Both approaches are spatially distributed. However, in comparison to 

Hughes et al., the presented model incorporates more process knowledge for it considers 

the main recharge mechanisms in deriving the response functions. 

The conceptual hydrologic model is based on a monthly time step. This integration over 

time is one of the main simplifications of this approach. This concerns especially the esti-

mation of the maximum (cumulated) infiltration, which does not only include the number 

of rainy days per month, but also the temporal distribution of rainfall intensity within an 

event. According to Al-Rawas and Valeo (2009), this is highly variable. Consequently, the 

infiltration parameter has definitely to be considered as a calibration parameter. Its physi-

cal meaning is limited to reasonable proportions between the response units (promotion of 

infiltration) or seasons (proportion of hours with significant rainfall). A way to substantiate 

its estimate would be to consider the temporal distributions of long duration events (> 6 h), 

which were not considered yet. All in all, only a sub-daily resolution is able to describe this 
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aspect more adequately. A daily time step would be once again a compromise in this re-

gard. 

The applied approach for derivation of the non-linear rainfall-recharge relationships shows 

a high sensitivity to changes in the assumed mean seasonal soil moisture deficit (SMD). 

The deeper the soil profile, the higher the potential SMD and, thus, the uncertainties re-

lated to its estimates. Analogously, vegetation cover is challenging for this simple consid-

eration of soil moisture status. It is concluded, that the approach is reliable for rock out-

crops, raw and shallow soils with only scattered vegetation. This is in accordance with the 

envisaged application, namely the assessment of mountain front recharge in arid environ-

ments. 

In the case of a considerable vegetation cover, the suitability of the model approach has to 

be proved. At least, a supplementary assessment of mean seasonal crop water use is useful 

to estimate the seasonal SMD. This can result in a revision or refinement of the seasons. 

The application of the approach in similar settings is highly desirable to corroborate the 

approach, but also to gather experiences regarding appropriate response functions or pa-

rameters for their derivation in different hydrogeologic conditions. This could be a way 

towards a more widespread application by analogy with the SCS Curve Number methodol-

ogy (SCS-CN) (SCS, 1956) which is used to estimate effective rainfall. This approach was 

derived based on empirical observations in various catchments of the USA. Actually, it is 

applied all over the world including the Arabian peninsula, for example by Wheater et al. 

(1995). 

As outlined in Table 2.1, drainage from the actual location of recharge to the mountain 

front can follow either the alluvial valleys (predominantly indirect recharge), or the moun-

tain aquifer after deep percolation (predominantly direct recharge from high altitudes). The 

conceptual hydrologic model is, in principle, adaptable so that distinct response functions 

for direct, localised and indirect recharge and even for surface runoff could be defined. 

Accordingly, the layer ‘Fuzzy Recharge Areas’ could be subdivided into different layers 

representing the recharge mechanisms mentioned above. In another words, parameterisa-

tion and drainage paths could be treated separately. This would allow including the ob-

served surface runoff as an additional objective in model calibration besides subsurface 

flow components. 

Moreover, the fundamental structure would allow to overcome the usual restriction of sur-

face drainage direction and to implement drainage patterns which are, so far, reserved to 

physically based 3D numerical models or to highly conceptual watershed models. Thus, in 

a technically easy way, the model structure would allow considering available expert 

knowledge or, alternatively, assumptions on surface and subsurface drainage patterns, in 

combination with a robust approach to estimate the magnitudes of the respective fluxes. 
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8 Summary 

Reliable estimates of mountain-front recharge are urgently needed in the context of inte-

grated water resources management in arid regions. Time dependent estimates are highly 

desirable as boundary condition for prognostic transient groundwater management. To 

date, this is not yet state-of-the-art. The scarce and uncertain database implies the need for 

new approaches with reduced complexity but exploiting all the qualitative and quantitative 

information contained in available data. To achieve this goal, a novel strategy for rainfall 

based estimates of mountain-front recharge was developed. 

An innovative conceptual hydrologic modelling approach based on non-linear seasonal 

rainfall-recharge relationships is considered to be the best possible solution for monthly 

estimates of mountain-front recharge under data scarcity. The algorithm to derive the re-

sponse functions is based on a mass balance equation which includes, among other vari-

ables, direct recharge at site and indirect recharge during lateral movement of water. Their 

assessment is a function of parameters representing initial losses, infiltration, long-term 

mean seasonal soil moisture deficit, and transmission losses. Retention in the mountain 

aquifer is considered via serial two-reservoir models. The analysis of seasonality in rela-

tionships between altitude, rainfall amounts and occurrence is an important contribution to 

the parameterisation of the model. Moreover, it is a step forward in the analysis of arid 

zone rainfall characteristics in general. 

A complementary approach, which is likewise based on spatially distributed rainfall, pro-

vides estimates of long-term mean annual groundwater recharge. It uses fuzzy arithmetic to 

assess the uncertainties of recharge estimates and crop water use in mountain oases. 

Fuzzy regions are used to portray uncertainties with respect to the actually unknown extent 

of groundwater basins in specific geological settings. Selected subsets (α-cuts) are the dis-

crete spatial reference in applying the two assessment approaches mentioned above. Avail-

able expert knowledge on groundwater recharge areas and flow paths based on isotopy, 

geochemistry, or 3D geological modelling can be included. Furthermore, the use of fuzzy 

regions supports the complementary consideration of adjacent basins. This enhances large 

scale water resources assessment in multi-basin systems, where regional groundwater flow 

crosses surface drainage divides. 

The proposed strategy was tested in a large-scale arid mountain area. The adequacy of the 

new approach was confirmed by comparing the outcome of the proposed models with the 

inversely computed inflow to a steady state groundwater model for the adjacent basin aqui-

fer. The recharge rates, which result from the conceptual hydrologic model for distinct 

terrain types and seasons, are in accordance with scientific literature. This is an argument 

in favour of the hypothesis, that an approach which incorporates process knowledge, 

though with reduced complexity, is able to provide reliable results on the large scale. In 
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contrast to available empirical approaches, it models variability both in time and space. In 

addition, it is regionally transferable because it incorporates process knowledge. Its appli-

cation is not limited by the availability of high resolution rainfall data. Thus, it is compara-

tively easy to provide input time series which are long enough to represent wet and dry 

periods or periodical cycles in rainfall, as observed in the pilot study area. 

The transition zone between the different aquifer systems in the investigated study area is 

located in the high-altitude region, where high rainfall amounts coincide with relatively 

high recharge rates. As a consequence, the uncertainty in the actually unknown extent of 

the groundwater basins is quantitatively important for the considered water resources sys-

tem. It is therefore concluded that the use of the fuzzy regions to assess this source of un-

certainties is an essential contribution to water resources management under uncertainty in 

similar settings. 

As a summary, the proposed strategy provides more reliable estimates of mountain-front 

recharge in the face of scarce and uncertain data. 



 

   107 

9 Prospects for future work 

Hydrogeologic survey and groundwater monitoring in the alluvial basin aquifer near to the 

mountain front zone is the most promising option to enhance water resources assessment in 

the discussed study area. This would allow the extension of the groundwater modelling 

domain towards the mountains, which mainly recharge the alluvial basin aquifer. On this 

basis, the calibration of the conceptual hydrologic model could be improved. Moreover, 

the routing of mountain-front recharge towards the coastal zone could be improved. 

Beyond this study, the request for data acquisition in the mountain front zone mentioned 

above can be understood as a general recommendation for mountain block systems in gen-

eral and, first and foremost, for selected, well investigated experimental catchments. This 

would contribute to understand the complex surface-groundwater interactions at the inter-

face between mountain blocks and alluvial basin aquifers. 

The application of the new conceptual hydrologic modelling approach in similar settings is 

desirable. The comparison of the each suitable parameter sets or response functions would 

be a step towards urgently needed options for inter-site comparisons, or even regionali-

sation in arid mountain environments. 
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A: Sensitivity of the response function to variations of the different model parameters 
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A.2: Sensitivity of the response function to variations of (potential) initial losses 
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A.3: Sensitivity of the response function to variations of soil moisture deficit SMD (potential infiltration = 30 mm/dt) 
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A.4: Sensitivity of the response function to variations of soil moisture deficit SMD (potential infiltration = 60 mm/dt) 
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A.5: Sensitivity of the response function to variations of transmission losses 
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A.6: Sensitivity of the response function to variations of soil moisture replenishment in alluvial channels SMRalluvium 
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B: Histograms of subsurface outflow at the mountain front QMFR based on dif-

ferent parameterisations of the conceptual hydrologic model 
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B: Histograms of subsurface outflow at the mountain front QMFR based on different 

parameterisations of the conceptual hydrologic model 
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