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1.2 Supporting University: TU Dresden, Institute for Algebra

Research at the Dresden Institute of Algebra emphasizes on the foundations and, in equal measure, the ap-
plications of algebra. At the same time it includes the theory of ordered sets and graph theory.

In particular we see fields of application of algebra in the formal description of data and knowledge being a
foundation e.g. for data analysis and knowledge processing. General algebra for data modelling, geomet-
ric algebra for data security, and lattice theory for conceptual knowledge processing have proven especially
valuable as methodological foundations.

Figure 1.1: Willersbau at TU Dresden, with Institute of Algebra

The "classical" fields of activity in algebra are more intensively studied elsewhere. Here we primarily focus
on general algebra and the theory of order and lattices. A major emphasis is on function and relation systems




1 Introduction

and formal concept analysis. Both areas, the study of foundations and applications, are closely intertwined.
The institute maintains contacts with leading researchers worldwide.

Research groups focus on topics from algebraic structure theory, discrete structures, methods of applied al-
gebra, and universal algebra. As a special (however little) research highlight we would like to accentuate the
field of "mathematical theory of music". There particularly the experimental micro-tonal musical instrument
"MUTABOR" is being tested and developed.

Our research work is open to students. They benefit from this as they become familiar with the present work
techniques in general and applied algebra, conceptual knowledge processing and graph theory. (TUD)

1.3 Supporting Corporation: SAP AG, Research Center Dresden

The Dresden region, also referred to as "Silicon Saxony," is located in the eastern part of Germany, close to
the German-Polish and German-Czech borders. SAP Research aims to capitalize on this fact by turning SAP
Research Dresden into the company’s hub for research collaborations with companies and academics from
Eastern Germany and the EU member states of Eastern Europe. The location is in close proximity to the
campus of the Technische Universitdt Dresden (TU Dresden).

Figure 1.2: SAP Research Center Dresden in the Falkenbrunnen

SAP Research Dresden contributes significantly to three SAP Research topics: mobile computing and user
experience, business intelligence, and software engineering and tools. SAP Research Dresden also manages
the Future Factory Initiative living lab.

Research Environment — Working with World-Class Researchers

SAP Research Dresden finds itself in a prospering environment perfectly suited for a research location of its
kind. The Dresden metro area is the home of production facilities and research labs of major semiconductor
engineering, multimedia, and information management companies. Global players, as well as a consider-
able network of small and midsize high-tech businesses, constitute excellent cooperation opportunities for
SAP Research. In addition, TU Dresden has been a longstanding loyal, beneficial, and faithful partner of
SAP Research. Together with TU Dresden, the research location in Dresden offers a Ph.D. program to highly-
qualified students. Covered research topics are as follows:

e Business Intelligence

o Internet Applications & Services

e Mobile Computing & User Experience
o Software Engineering & Tools

(SAP)




1.4 Research Project: CUBIST

1.4 Research Project: CUBIST

Constantly growing amounts of data, complicated and rapidly changing economic interactions, and an
emerging trend of incorporating unstructured data into analytics, is bringing new challenges to Business
Intelligence (BI). Contemporary solutions involve Bl users dealing with increasingly complex analyses. Ac-
cording to a 2008 study by Information Week, the complexity of BI tools and their interfaces is becoming
the biggest barrier to success for these systems. Moreover, classical Bl solutions have, so far, neglected the
meaning of data, which can limit the completeness of analysis and make it difficult, for example, to remove
redundant data from federated sources.

Business value Administration
Diss./Exploit./ | [ use case 1 || use case 2 || use case 3 ||| |Project
Stand. (HWU) (SAS) (Inno) Management

FCA-based Visual Analytics

CUBIST Information Warehouse

Bl enabled Triple Store
o

General architecture

“semantic ETL"

—EReE

community documents Structured data

File Web Office E-

Share 20 Files | | Mails =

Figure 1.3: Structure of CUBIST project

Semantic Technologies, however, focus on the meaning of data and are capable of dealing with both unstruc-
tured and structured data. Having the meaning of data and a sound reasoning mechanism in place, a user
can be better guided during an analysis. For example, a piece of information can be semantically explained or
anew relevant fact can brought to the user’s attention. In particular, we foresee a well known semantic tech-
nique called Formal Concept Analysis (FCA) to be a key element of new hybrid Bl system. FCA can be used
to guide a user in discovering new facts, which are not explicitly modelled in the data warehouse schema.
Semantic analysis could also improve classical methods in B, such as data reduction and duplicate detection.
However, semantic technologies have traditionally operated on data sets a magnitude smaller than classical
Bl'solutions. They also lack standard BI functionalities such as Online Analytical Processing (OLAP) queries,
making it difficult to perform analysis over semantic data. The CUBIST project develops methodologies
and a platform that combines essential features of Semantic Technologies and Business Intelligence. With
CUBIST, we envision a system with the following core features:

e Support for the federation of data from a variety of unstructured and structured sources.

e A data persistency layer in the form of a semantic Data Warehouse; a hybrid approach based a Bl
enabled triple store.

e Semantic information used to improve Bl best practices in, for example, data reduction and prepro-
cessing; CUBIST enables a user to perform Bl operations over semantic data.

e A semantic data warehouse that realizes the advanced mining techniques of Formal Concept Analysis
(FCA).

e FCA guides the user in performing Bl and helps the user discover facts not expressed explicitly by the
warehouse model.

e Novel ways of applying visual analytics in which meaningful diagrammatic representations will be
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used for depicting the data, navigating through the data and for visually querying the data.

CUBIST demonstrates the resulting technology stack in the fields of market intelligence, computational biol-
ogy and the field of control centre operations.

CUBIST is funded by the European Commission under the 7th Framework Programme of ICT, topic 4.3:
Intelligent Information Management. (Cub)

1.5 Task Description und Structure of the Diploma Thesis

My task was to investigate and implement methods for visualizing conceptual data. This thesis is subdivided
into two parts: a mathematical part and an implementational part. Some fundamentals of formal concept
analysis and methods for drawing them are presented in the next chapter. The third chapter contains the
main theoretical part, where an algorithm for updating labeled additive concept diagram upon insertion or
removal of a single attribute column in the base context is presented and proven. The fourth chapter gives
some techniques for interaction with concept diagrams. The second parts starts with a requirement analysis
for visualizing graphs and lattices, and interacting with them. Then in the next section some details of the
implementation are given. Within the framework of this thesis a Java program has been written.




Part 1

Mathematical Details
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This initial chapter gives some fundamental definitions and theorems needed for formal concept analysis.
The first section contains basic properties of formal concept lattices. Please see (GW99) for further details.
The second section introduces diagrams for concept lattice visualization and the the third section gives some
statements on context appositions.

2.1 Concepts and Concept Lattice

Definitio: Formal Context

A FORMAL CONTEXT Kisatriple (G, M, I) such that Gand M aresetsand I C G x Misabinary relation
between them. Elements of G are called OBJECTS and those from M are ATTRIBUTES. I is the INCIDENCE
and for (g,m) € I one also writes gIm and says that g HAS m.

There are various views of a context. In data mining a context is also called BOOLEAN DATABASE or TRANS-
ACTION DATABASE. The objects are also called TRANSACTIONS or ROWS. Analogously, attributes are ITEMS,
PROPERTIES or COLUMNS. Such boolean databases can also be defined as a multiset of subsets of a given set
of items. A multiset is just a bag, i.e. a set that can contain multiple copies of the same element, and could be
modelled as a mapping M: M — IN that maps each element m of the underlying set M to the number M (m)
of copies of m within M.




2 Fundamentals of Formal Concept Analysis

—| Theorema: Contexts & Galois Connections i

Each context K = (G, M, I) introduces a galois connection (¢k, ¥k ) between G and M. The mappings
are given as follows:

p(G) = p(M) (M) = p(G)

Px: and Y ;
I =
gZ’Ag m} B— B {gEG‘mZBglm}

AHAI::{mGM

In the opposite direction every galois connection (¢, 1) between sets X and Y introduces a context
K((P,IP) 0= (X, Y, 1(47,1/1)) with

gy ={(xy) € XxY|x e p({y})} = {(x,y) € X x Y|y € o({x})}

Both operations are inverse to each other, i.e. (¢x o) Vo) ) = (¢, ) holds for every galois connection

(¢, %) and K4, y,) = Kholds for all contexts K respectively.

As well known from the theory of galois connections, the mappings ¢k and i are order-reversing, i.e.

V Acc=Aloc!
A,CCG

and V BCD= B'D>D.
B,DCM

Furthermore, the compositions Pk o ¢k and ¢k o Pk are closure operators on G and M respectively, i.e. they
are extensive and idempotent, i.e.

V AC Alland AT = AT
ACG

and V B C Bland B! = B!,
BCM

Furthermore the closures of are always of the form A’ for an object set A C G, and B! for an attribute set
M C M respectivelly. An equivalent characterization of galois connections yields

V ACBl< AlDBe AxBCIe V VY glm
SCQA% gcAmeB

Definitio: Biset, Preconcept, Concept

LetK = (G, M, I) be a context. A pair (A, B) is called

BISET iff AC Gand B C M,
PRECONCEPT or RECTANGLEiff A x BC I,
CONCEPT iff Al = Baswellas A = BI.

For a concept (A, B) the object set A is called EXTENT and the attribute set B is called INTENT. The set of
all concepts is denoted by B (K), the set of all extents is Ext(K) as well as Int(K) is the set of all intents.

One can easily see that each conceptis a preconcept and every preconcept is a biset. Each concept has a closed
object set as its extent and a closed attribute set as its intent. Furthermore each concept has the form (A!!, A)
for a suitable object set A C G and also (B 1 ) for a suitable attribute set B C M.




2.1 Concepts and Concept Lattice

For each family of object sets { At },. and analogously for each family of attribute sets { B; },. it holds
that

N Al = (U At>1 and () Bf = (U Bt>1.

teT teT teT teT

It follows that every extent is an intersection of object extents and dually each intent is an intersection of
attribute intents, i.e.

I_ I I_ I
AZ/GA = ﬂganngVMB = m".
geA meB

—| Theorema: Concept Lattice i

The concepts of a context K = (G, M, I) can be ordered: A concept (A, B) isa SUBCONCEPT of a concept
(C,D), and dually (C, D) is a SUPERCONCEPT of (A, B), iff A C C holds for the extents or dually iff B D
D holds for the intents. This is symbolized by (A, B) < (C, D). The set of all concepts B(K) together
with the subconcept relation < introduces a complete lattice B(K) := (B(K), <) and the supremum
(join) and the infimum (meet) respectively for a family of concepts { (A, Bt) },. 1 are given as follows:

11 11
/\ (At, Bt) = (m At, (U Bt> ) and \/ (At,Bt) = ((U At> 7 ﬂ Bt)
teT teT teT teT teT teT

The concept y(g) := ({g}", {g}") is called OBJECT CONCEPT of g € G, and pu(m) := ({m}', {m}') is called
ATTRIBUTE CONCEPT of m € M. Why do we need these special concepts? This is due to the possibility of
displaying an arbitrary concept by a number of object concepts, or attribute concepts respectively.

— Corollarium |

The set of object concepts is \/-dense and the set of attribute concepts is A-dense in the concept lattice
B (K). Each formal concept is the supremum of object concepts below, and dually is the infimum of the
attribute concepts above, i.e.

V (".8") =V 1(A) = (A,B) = Au(B) = N (m',m").

geEA meB

Hence, each \/-irreducible concept is an object concept and dually each A-irreducible concept is an
attribute concept.

In many cases not the whole formal context is necessary to fully describe the structure of a concept lattice.
A subcontext (H,N,I N H x N) is called DENSE in (G, M, I) iff y(H) is \/-dense and p(N) is A-dense in
B(G, M, I). Each concept lattice of a dense subcontext is isomorphic to the concept lattice of the whole con-
text.




2 Fundamentals of Formal Concept Analysis

A subcontext (H,N,I N H x N) isdense in (G, M, I), iff

Al = (AnH) and B = (BN N)!

holds for every object set A C G and attribute set B C M.

2.2 Visualizations of Concept Lattices

2.2.1 Transitive Closure and Transitive Reduction

Let R be a binary relation on a set M. A TRANSITIVE CLOSURE of R is a minimal transitive superrelation,
symbolized by RT. As the intersection of transitive relations is again transitive, a transitive closure must be
uniquely determined by

R = (] s

SOR

S transitive
Overthis the transitive closure can be computed directly: Let R! := R and R"” := R"~1;R for all natural
numbers n > 1, then
R" = JR"
n>1

holds. By construction |J,,~.; R" is a transitive superrelation of R. To inductivelly proof its minimality let S
be another transitive superrelation of R. The base case: S contains R = R!. The inductive step: Whenever S
contains R" it must also contain R"; R = R"t1 since S is transitive. The relation S thus contains all powers R"
and is a superrelation of | J,,~.1 R".

There is a natural isomorphism between binary relations and binary square matrices. R can be displayed by a
square matrix whose rows and columns are labeled with the elements of the base set M and whose entries are
either 1iff the appropriate row and column label are in relation or 0 otherwise. This permits the computation
of relation compositions like for the transitive closure by means of matrix multiplication. Furthermore there
is also a canonical isomorphism between binary relations and directed graphs. R can be seen as a graph with
the elements from M as nodes and there is an edge from x to y iff x R y. Thereby the transitive closure can also
be determined using graph algorithms like the FLOYD-WARSHALL algorithm. However both naive matrix
multiplication and FLOYD-WARSHALL algorithm have time complexity O(n%) where 1 is the cardinality of
M. There are various algorithms with lower time complexity but higher constant factor. So they are only
faster for huge input sets.

A TRANSITIVE REDUCTION of R is a minimal subrelation R~ C R such that the transitive closure of R~ equals
the transitive closure of R. For an acyclic relation R the transitive reduction is unique. Especially all (strict)
order relations are acyclic. It then can be computed by means of the transitive closure and is given by

R™ =R\ (R;R™).

For further information please have a look on (AGU72). In summary the transitive reduction of a relation is
obtained by removing all transitively redundant pairs.

2.2.2 Neighborhood Relation

Let (P, <) be an ordered set and p,q € P. Then p is COVERED BY q iff p < g and there is no element x € P
withp < x < g,ie. iff (p,q) € <\ <% One then also say that g COVERS p, or p and g are NEIGHBORING, and
write p < gorq > p. Thereby a binary relation < on P is obtained that is called NEIGHBORHOOD or COVER
relation. In the finite case the order relation < and the cover relation < determine each other in a unique way.
One can show that the neighborhood < is the (unique) transitive reduction of the corresponding strict order
< and dually the strict order < is the transitive closure of the neighborhood <. This is due to the fact that
p < qhold iff there is a finite sequence p < xg < x1 < - -+ < xx < gin P, i.e. iff p < gistrue. Indeed, < is the
smallest subrelation whose transitive closure equals <, since p < g alwaysimplies (p,q) ¢ (< \{(p.9)})".

10



2.2 Visualizations of Concept Lattices

2.2.3 Line Diagram

Every finite ordered set (P, <) can be visualized in the real plane (or more generally in the real space) by a
LINE DIAGRAM. A line diagram is an arrangement of circles (nodes) and interconnecting lines (edges). First
of alla PLACEMENT FUNCTION

pos: P — R?,

is required, that assigns a position pos(p) = (pos,(p), pos,(p)) in the real plane to each element p of P. The
placement must be injective to ensure distinguishability for different nodes in the drawn diagram. The ele-
ments of p are then depicted by circles at their position pos(p) in the plane, and each circle is labeled with its
appropriate element p. Next, two circles at pos(p) and pos(q) are joined by a straight line segment, denoted
by pos(p, q), iff p and g are neighboring in (P, <). To omit arrowheads, the diagram is drawed upwards,
i.e. the vertical coordinate pos, (p) is smaller than pos, (7) whenever p is smaller than g. No node at pos(p)
intersect any edge pos(g, ) if p # gand p # r. This ensures no node being on any edge except the start and
end node, otherwise it would not be clear where the edge starts and ends.

A generalisation are line diagrams with continuous curves as edges: For an ordered set (P, <) a LINE DIA-
GRAM WITH CURVES is defined as a mapping

pos: PU < — R?U p(R?)

such that pos|p is a line diagram, and pos|<: < — p (R?) assigns to each neighborhood p < ¢ a one-
dimensional set pos(p,q) of points in the real plane R?, such that pos(p,q) = Ypq(0,1] is the image of a
plane curve 7,,: [0,1] — R? starting at ,,(0) = pos(p) and ending at 4 (1) = pos(q).

The question arises whether a line diagram must be completely defined by assigning a position to each el-
ement of the underlying ordered set, or if it suffices to give position for certain elements and compute the
remaining position by means of them. This leads to the additive line diagrams. For example, when (P,<)is
a finite complete lattice, then the A-irreducibles form a A-dense set and each element p can thus be displayed
as an infimum of all A-irreducibles smaller than p.

An order-preserving mapping rep: (P, <) — (p(S), C)is called SET REPRESENTATION of (P, <)in S. A SEED
VECTOR MAPisamapseed: S — R? withseed(s) = (seed.(s), seed(s)) for each element s of the representing
set S. Then the mapping

P — R?

POS: pis ) seed(x)
xerep(p)

is a line diagram and is called ADDITIVE LINE DIAGRAM of (P, <) w.r.t. rep and seed. To ensure the upward
drawing convention the seed vectors must be chosen with positive vertical coordinates. It is also possible to
choose a order-reversing set representation and seed vectors with negative vertical coordinates. Both pos-
sibilities yield the same diagrams for bounded ordered sets (especially lattices), as an order-preserving set
representation rep with upward seed vectors seed can be transformed in an order-reversing set representation
rep’: p — rep(T) \ rep(p) with downward seed vectors seed’ = —seed such that pos’(p) = pos(p) — pos(T)
hold. Indeed:

pos(p) —pos(T) = ) seed(x)— )  seed(x)

xerep(p) xerep(T)

= — Y seed(x)— ) seed(x)

xerep(T) xerep(p)
=— Y seed(x)
xerep(T)\rep(p)
= ) seed'(x)
xerep/(p)
= pos'(p).

2.2.4 Concept Diagram

For concept lattices there a three canonical ways to define such additive line diagrams. It is well known that
the attribute concepts make up a A-dense set and dually the object concepts form a \/-dense setin B(G, M, I).

11



2 Fundamentals of Formal Concept Analysis

(I) An ATTRIBUTE ADDITIVE line diagram of B (G, M, I) is given by the intent projection as set representa-
tionrep: (A, B) — Band downward seed vectors. One should further restrict to the irreducible attributes to
gain a clearer diagram. It is not possible to omit an irreducible attribute, as then some concept nodes would
coincide.

(11) Dually an OBJECT ADDITIVE line diagram of B8(G, M, I) can be obtained by means of the extent pro-
jection as set reprentation rep: (A, B) — A and upward seed vectors. Again it is better to only choose seed
vectors for irreducible attributes.

(111) One can also combine these two approaches to gain HYBRID ADDITIVE line diagrams. The intent projec-
tion is order-reversing while the extent projection is order-preserving. So to gain a suitable set representation
combining both approaches, one of the projections must be reversed as described above. The reversed ex-
tent projection is (A, B) + rep(T) \ rep(4,B) = G\ A = (A and dually the reversed intent projection is
(A,B) — rep(L)\ rep(A, B) = M\ B = CB. Thereby both set representations rep: (A, B) — A UCB together
with upward seeds and rep: (A, B) — CA U B with downward seeds provide suitable hybrid additive line
diagrams, and yield the same diagrams.

When dealing with a formal context and its concept lattice, a line diagram is hardly readable when each
node is fully labeled with the corresponding formal concept. As the object concepts construct all concepts by
means of suprema, one can just label each object concept vg with ¢ and then read off the objects in a concept
extent by collecting all objects that label the node itself or a node being connected by a descending path. This
due to the fact, that a concept (A, B) contains an object g in its extent iff the object concept g = (g'!, ') is
smaller than (A, B).! Dually the attribute concepts are a infimum base, and one can thus label each attribute
concept ym with m. The attributes contained in a concept intent can then be read off by collecting all attributes
labeling the node itself or a concept node being connected by an ascending path. This is true, since m € B
hold for a formal concept (A, B) if and only if ym > (A, B).

Definitio: Labeled Additive Concept Diagram

A LABELED ADDITIVE CONCEPT DIAGRAM for a formal context K = (G, M, I is defined as a triple

D (K) := (MN(K), <, seed).

Thereby M(K) is the set of CONCEPT NODES. Each concept (A, B) € B(K) has an appropriate concept
node (A, B, A), By) with its OBJECT LABELS A, and ATTRIBUTE LABELS B, respectivelly, that are given
by the conventions

Avi=18€G|1(g) = (AB)} = {geA|g' =B}
andBA::{meM\y(m):(A,B)}:{mEB‘mI:A}.

The concept nodes inherit the neighborhood relation from the concepts via
(A, B, A, B/\) < (C, D, C,, DA) = (A, B) < (C, D)

Furthermore, seed is a seed vector map, such that for every object g there is an OBJECT SEED VECTOR
seed(¢) € R? and for every attribute m there is an ATTRIBUTE SEED VECTOR seed(m) € R2. The POSI-
TION of a concept node is then defined by a hybrid representation rep: (A, B) — CAUB

pos: (A,B) — Y seed(g)+ ) _ seed(m).
gelA meB

A labeled additive concept diagram is called ATTRIBUTE ADDITIVE, iff all object seed vectors equal the
null vector, and analogously it is called OBJECT ADDITIVE, iff all attribute seed vectors are null vectors.
In all other cases itis called HYBRID ADDITIVE.

Due to the chosen hybrid representation, the seed vectors must point downwards to ensure the upward draw-
ing convention. A context diagram can be transformed in its coordinates by applying a TRANSFORMATION

From g € A it follows g/T C Al = A and this means 7g < (A, B). In the opposite direction g < (A, B) implies g € A as surely
11
g € ¢ hold.

12



2.2 Visualizations of Concept Lattices

FUNCTION 0: R? — R? on the seeds. The TRANSFORMED diagram is then given as
Dg(K) := (M(K), <, 0 o seed).

A toy example is given in figure 2.1.

@)

(')\ / %l\ 7

O |
TTEE o & o o 3 é/ g\é
2o XX XX 1<

3 1
- 3\&/1 3\ o /1 3\%/1

O 2 ©

O

Figure 2.1: Concept diagram and transformations for the three-dimensional boolean scale context. The
transformation functions for the second diagram s 6;: (x,y) — (x,y + 3x?) and the one for the

third diagramis 6: (x,y) — (x,y — §x%).

2.2.5 Vertical Hybridization

For distributive concept lattices, the attribute additive approach gives the best additive line diagrams. How-
ever, in the non-distributive case the problem of a distended base can occur. This can be seen on the attribute
additive line diagram for the concept lattice of a nominal scale with at least three elements.

Figure 2.2: A formal context of the three-dimensional nominal scale N3, an attribute additive line diagram,
an hybridized additive line diagram and an vertical adjusted hybridized line diagram of the
concept lattice B(N3).

The seed vectors for the attributes can directly be read off the diagram: They are just the vector from the upper
neighbor to the appropriate attribute concept. In the line diagram 2.2 above there are three seed vectors. The
attribute 1 has the seed vector (—1, —1), attribute 2 has (0, —1) and attribute 3 has (1, —1). However, the seed
vector can only be read off the line diagram in the attribute additive or in the object additive case. This is not
possible for hybrid additive diagrams.

13



2 Fundamentals of Formal Concept Analysis

To gain more symmetry in the vertical axis, one can compute a VERTICAL HYBRIDIZATION of an attribute
additive line diagram. This is done by introducing vertical seed vectors for the irreducible objects, whose
vertical coordinates seed, (g) are computed by means of a heuristic, e.g. conflict distance or symmetry met-
ric etc. , or defined by means of the existing attribute seeds (seed(11)),epm. A good choice is seed,(g) =

f (Zg Im Seedy (m)) for a suitable function f: R — R. Here the vectors (0, —1) can be chosen for each object 1,

2 and 3. Then the vertical seed coordinates get adjusted to gain more symmetry and a more compact diagram.
Finally these vectors are added to the seeds and the positions are recomputed.

| ©)

O\o O
o/o/cg\o //

/ ) 3 O _0O _0O
O~ OT 0o Y,
| LN
o/ \c‘)//o ’
O
\O
O
[ 5

Figure 2.4: Attribute additive and hybridized line diagrams of the concept lattice of a formal context about
cognac

2.2.6 Omitting the top and bottom concept node

For each formal context K = (G, M, I) the top concept node is given by
T=(c6{g¢ G‘g’:GI},{meM‘mI:G})

14
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/N O
o/ O\ O/ O\O O/ \O
O/\O/\o/\/\ /\/\/\

Figure 2.5: Attribute additive and hybridized line diagrams for the interordinal scale I

/<>\/ /<>\
N/

Figure 2.6: Attribute additive and hybridized line diagrams of an artificial formal context

Figure 2.7: Attribute additive and hybridized line diagrams for the N5 lattice

15



2 Fundamentals of Formal Concept Analysis

In certain cases it does not provide any information about K in the concept diagram © (K). This happens
when neither any attribute label nor any object label in the top concept node exists. When there is no attribute
that is shared by all object, the intent and thus also the set of attribute labels of the top concept node is empty.
Furthermore, when the top concept is no object concept, then the set of object labels of the top concept node
is empty. In summary, the top concept node can be omitted, if there is no full attribute column in K and also
no object ¢ with G = ¢!l exists. Clearly the maximal elements of the subset B(K) \ { T} must then be the
coatoms of the concept lattice B (K).

Figure 2.8: Attribute additive and hybridized line diagrams of the concept lattice of the dichotomic scale D3,
with omitted top and bottom concept node

Dually the bottom concept node
L= (MM {ge G‘gI:M},{mEM‘mI:MI})
can be left out in the concept diagram, if there is no full object row and furthermore no attribute m with

M = m!! exists. Obviously the minimal elements of 53(K) \ { L} are then the atoms of B (K).

2.2.7 Actions on Concept Diagrams
When interacting with concept diagrams, one may want to adjust certain seeds. This is modelled with the

map moveg.eq that is defined as follows: For a seed element o € G U M and an adjustment vector § € R? let

bound,(seed(c) +6) ifx =0

movegeed ((M(K), <, seed), 0, 8) := (N(K), <, seed’) and seed’ (x) := { 4(x) |
seed (x else

To ensure the upward drawing convention the movement is bound on the y-coordinate by

boundg(x,y) — {(x,y) ify <e

(x,€) else

for a chosen boundary parameter ¢ € R_. Especially in the hybrid additive concept diagrams the seed
vectors cannot be read off the diagram easily, and a direct modification of them is difficult. Thus, one should
introduce a mechanism for moving nodes, that preserves the additivity of the concept diagram. This is done
with the map move,og4e defined as follows: For a conceptnode N € 9(K) and an adjustment vector § € R? let

move,ode ((N(K), <, seed), N, ) := movegeeq (- - - Movegeeq (M(K), <, seed), x1,6’) ... ), x¢,0)
withrep(N) = {x1,...,x¢} and ¢’ := % - 6. In summary, this can be displayed as
movenode ((N(K), <, seed), N, 6) = (N(K), <, seed”)

bound, (seed(x) + W;W -8) ifx € rep(N)

with seed” (s) :=
seed(x) else

2.2.8 Metrics on Concept Diagrams

A METRIC on a concept diagram is a mapping metric, that assigns a non-negative real number to each concept
diagram. A metric measures the subjective quality of concept diagrams under different points of view. One

16



2.2 Visualizations of Concept Lattices

can for example take the conflict distance (or conflict avoidance parameter when moving seed or nodes, that
involves the diagram growth and is thus bounded) from (Gan) defined by

conflictdistance(M(K), <, seed) := /\ {distance(pos(oc, B),pos(7y)) o i’nz E ;)ét(rngnadng z:;; v } .

Also the number of crossing edges yield a suitable quality metric given by

. n a,B,7v,6 € N(K)anda # yand  # 0
edgecrossings(91(K), <, seed) := H{(«x,‘B), (7,0)} ‘ and & < Band 7 < 5anda pos(zx,ﬁ)aﬂ pos(7,0) # @ H .

Furthermore for measuring the readability of a concept diagram one may consider the number of distinct
directions of edges with

pos(pB) — pos(«)
[pos(B) — pos(a) |

and also the minimal angle between edges can be of interest, that yields a metric by

%67 € N(K)and p # 7
and (« < Bpanda < y)or (B <aand v < «a)

a, B € N(K)and a <ﬁ} ,

directioncount(N(K), <, seed) := H

minimalangle(M(K), <, seed) := /\ {angle(pos(w,ﬁ), pos(a,y)) ‘

2.2.9 Heatmaps for Concept Diagrams

conflict distance

Figure 2.9: Heatmap for the context in figure 4.4 in (GW99) on movement of the left coatom

For a visual assisted adjustment of seeds, a HEATMAP w.r.t. to an arbitrary concept diagram metric metric is
given as follows. For a seed element ¢ a heatmap is a function from the real plane (or for practical purposes,
a finite subset of the real plane) that assigns to each adjustment vector § € R? the value of metric for the
appropriate seed adjustment, i.e.

R> - R
heatmapgeeq (D (K), 0, metric) : PN {metric(moveseed (D(K),0,0)) ifdy < seedy(0)

0 else

Furthermore, heatmaps can also be defined for moving concept nodes. A benefit is then the possibility to
draw the heatmap in the background of the concept diagram to give advices where to place the chosen con-
cept node. Let N € ©(K) be the moving concept node with its original position 71 := pos(N) before the

17
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2 Fundamentals of Formal Concept Analysis

movement, then the heatmap is defined as
R> > R

heatmapyode (D (K), N, metric) : S {metric(movenode(i@(K),N,(S)) if &y < AN, >N POs, (N1) — pos, (N)
0 else

Heatmaps on concept lattice diagrams were abstractly introduced in (Gan) by means of conflict charts w.r.t. node
edge distances (conflict distance). Three examples for heatmaps are shown in figures 2.9, 2.10 and 2.11. The
pictures were produced with a multi-threaded toy prototype, written as an Eclipse plugin.

Figure 2.10: Heatmap for a context about airlines on movement of the encircled node

Figure 2.11: Heatmap for a context about lattices on movement of the encircled left coatom

2.2.10 Biplots of Concept Diagrams

In a paper from (GG12) the technique of an ordinal factorization of a formal context is introduced.

18



2.2 Visualizations of Concept Lattices

A FACTORISATION of a formal context (G, M, I) consists of two FACTORISATION CONTEXTS (G, F, Igr) and
(F, M, Irp) such that an object g has an attribute m in (G, M, I) iff there is a FACTOR f € F with ¢ Igr f
and f Ipp m. We then write (G,M,I) = (G,F,Igf) o (F, M, Ipp). For a subset E C F the subcontext
(G,E, I N (G X E)) is called a (MANY-VALUED) FACTOR of (G, M, I). A factor (G,F, Igp) of (G, M,I) is
called an S-FACTOR, if it has a surjective full S-measure. If S is an elementary ordinal scale, one also speaks
of an ORDINAL factor. Moreover, one says that (G, M, I) has an ORDINAL FACTORISATION if it has a first
factorising context that can be written as an apposition of ordinal factors.

A proposition in (GG12) states that a formal context is an ordinal factor of (G, M, I), iff its attribute extents
are a linearly ordered family of concept extents of (G, M, I).

Each context has a trivial factorisation (G, M, I) = (G, M,I) o (M, M, —) with factors in M. Choosing the
irreducible attributes Mj; C M gives the ATTRIBUTE FACTORISATION

(G/ M, I) = (G/ M, IN (G X Mirr)) o (Mirr/ M, — m(]wirr X M))

By computing a chain decomposition My, . .., My of the attribute order (M;,, —) an ordinal factorization can
be obtained. Indeed, each factor (G, M;, I N (G x M;)) is then ordinal, and obviously (G, M, I') can be written
as an apposition of the ordinal factors (G, M;, I N (G x M;)). Also (GG12) introduce the BIPLOT visualization
of the conceptual data obtained from a formal context by chosing two ordinal factors as axes of an ordinary
x-y-chart and projecting the formal concepts onto these factors to gain the coordinates. When choosing or-
dinal factors computed from an attribute chain decomposition, one can label the axis with the appropriate
attributes. Furthermore, nodes are drawn at the coordinates of the projected concepts and labeling them with
the corresponding object labels. It remains to investigate, whether the projected concepts should be drawn
upon or beneath each other. All edges between concepts are omitted for a clearer structure.

6]‘ ifmGM]‘

biplot((M(K), <, seed), My, Mp) := (N(K), D, seed”’) and seed”’ (m) := {0 |
else

Finally one could use remaining ordinal factors in other chart dimensions, e.g. node size, node color, node
shape etc. Also nominal factors can be displayed. One should for the sake of readability provide legends
beneath the chart for such additional dimensions.

2.2.11 Seeds Selection

Seed vectors can be chosen in many different ways.

Context Rearrangement

Suppose two enumerations enumg: G <» {0,1,...,|G| — 1} and enump;: M < {0,1,...,|M| — 1} for the
object set G and the attrribute set M is given. One can consider simply the position of the objects and the
attributes in the corresponding cross table. Then the CENTER of an object row if given

! ZenumM

CenterG = |8’7I &

and dually the CENTER of an attribute column is defined as
1
centerM = — Z enumG
ml|

The contexts rows are rearranged by ascending centers, then dually the columns are rearranged by ascending
centers. This procedure is repeated until no further changes occur, or a cycle is entered. In the end one can
choose the seed vectors according to the attribute enumeration. This technique ensures thatin many cases the
horizontal coordinates of incident objects and attributes do not differ too much, and can reduce the number
of edge crosses. It can also be easily implemented.

Spectral Decomposition

For a formal context K transform its concept lattice B(K) = (B(K), <) into an undirected graph (V,E) =
(B(K), < U >) and compute its laplacian matrix L := D — A € R"*Y by means of the adjacency matrix
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2 Fundamentals of Formal Concept Analysis

A € RV*V and degree matrix D € RY*V that are given by

1 if{o, Eand .
A= t{o,w} € Eand v 7 w and D := diag(deg(v))yev-

0 else

v,weV

The laplacian matrix is symmetric and has thus exactly |V| real eigenvalues and corresponding real eigen-
vectors. Then two eigenvectors are chosen, one for the horizontal coordinates and the other for the vertical
coordinates. In figure 2.12 a toy example of a boolean cube Bs is shown that was drawn with this technique.
However, more sophisticated details remains for future research. See (GR04) or (Ros04) for further details.

Figure 2.12: Concept diagram of the five-dimensional cube with its appropriate boolean context Bs

Chain Decomposition

Another possibility is given by means of a chain decomposition of the attribute order (M, —) where
m%n:@ymgynémlgnl.

Let (P, <) be an arbitrary ordered set. A CHAIN DECOMPOSITION {Ct} 1 of (P, <) is a partition of P, such
that every partition class C; forms a chain in (P, <).

\V/tﬁétz ChyNGC, =0
Uter Gt = P

VieT Vp,,pec, P1 < p20rp2 < p1

A MINIMAL chain decomposition is a chain decomposition with k chains, such that there is no chain decom-
position with less than k chains. The cardinality of a minimal chain decomposition is also called the CHAIN
COVERING NUMBER of the poset (P, <). DILWORTH's theorem states that the width, i.e. the cardinality of a
maximal antichain, of each ordered set equals its chain covering number.

For a context K = (G, M, I) an ATTRIBUTE CHAIN DECOMPOSITION is a chain decomposition { M} },. 1 of the
attribute order (Mjyr, —). From an attribute chain decomposition a seed function can be obtained by choos-
ing a suitable chain seed function seed’: T — IR?. This yields a seed function seed for a concept diagram with
seed(m) := seed’(t) with m € M;. Good practical results can be achieved by putting the longest chain in the
middle, i.e. with null horizontal coordinate, and sort the other chains sideways, descending by size.
Furthermore, when moving a concept node within a concept diagram with chain seeds, one can decide to
move just like in the ordinary case, or to move the whole chain as well to not break the chain visualization.
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Subdirect Decomposition

According to (GW99) the subdirectirreducible factors can be computed by means of the context B (G, M, .X).
In a doubly founded context a subcontext (H, N) is compatible iff it is arrow closed iff (CH, N) is a con-
cept of B(G, M, ). Furthermore the subdirect decompositions of (G, M, I) are in a one-to-one correspon-
dence to the families {(G;, Mt) },. of arrow-closed subcontexts covering the context, i.e. G = ;e Gt and
M = Uter M.

When computing a diagram of a subdirect irreducible factor, the seeds can be used to obtain a diagram of the
whole context. As the diagram is smaller it is easier to compute a good diagram. This leads to a divide and
conquer technique for producing concept diagrams. However, it has to be ensured when mixing seed maps
from different factors, that the obtained diagram is good as well.

A small subdirectirreducible decomposition can be produced by looking at the attribute order of B(G, M, ).
First, it holds

U m¥¥ = M and N m¥ = M¥ = @
meM meM

since (G, M) is trivially arrow closed in (G, M, I), thus (G \ G, M) = (&, M) must be the smallest concept of
(G, M, £X). Hence, choose a minimal subset N C M such that

N m¥ = @,

meN

then { (G \ n¥, nidd) } N is a subdirect decomposition into subdirect irreducible factors. The simplest way
ne

is to choose N as the set of the minimal elements in the attribute order (M, — /) of B(G, M, ). Then, con-
cept diagrams for these subcontext are computed and merged into a concept diagram of the whole concept
diagram of K.

2.3 Apposition of Contexts

Definitio: Apposition

Let (G, M,I) and (G,N, ]) be two contexts with disjoint attribute sets, ie. MN N = @. Then their
APPOSITION is defined as

(G,M,D)|(G,N,]) := (G,MUN,IU]J).

—| Lemma: Rows and Columns in Apposition Context i

Let (G,M,I) and (G, N, ]) be two contexts with disjoint attribute sets. Then we have the following
equations for objects g € G and attributesm € Mandn € N:

(1) g(IUJ)m < glmand g(IU )n < gJn
() g™ =g'Ug

(111) m!Y = m! and n!Y =4/

APPROBATIO (1) This is obvious, since by construction of an apposition we have (IU]) N (G x M) = 1
and dually (IU])N (G x N) =].

(11) For an objectg € G we have
¢ ={me MUN|g(IU)ym} ={me MUN |gImV gJm} = {me M| glm}U{me N|gjm} =g Ug/

(111) This follows from (i).
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—| Lemma: Common Rows and Common Columns in Apposition Context |

Let (G,M,I) and (G, N, ]) be two contexts with disjoint attribute sets. Then we have the following
equations for object sets A C G and attributesets BC MUN,D C Mand F C N:

(1) A AM= A!
and AV AN = A/
and AV = ATy AJ
(1) DIYI = pl
and F“:J] =
and BV = (BN M) n(BNN)/

() A9 = (AT A M) = Al

and AJUY)) = (AN A N)] = ATl

and ATUNUY]) — Al A ATl

(1v) DIV = pity pl

and FJUY)) — FIT oy FIT

and BUYDUY) = (BN M) n(BNNHY U ((BNM) n(BNN))/

AIU[
A <]
.......
Al

Figure 2.13: schema for closure of object sets

>3

BIU]{ : . (BN

Figure 2.14: schema for closure of attribute sets

APPROBATIO  (I) Let A C Gbean object set. Then it holds that

ATnM=NgY'nM=N(ugd)nMm= g =A.
gEA g€EA gEA

Dually we have A!Y/ NN = A/. Furthermore we conclude

A = (AT A M) (AYT nN) = ATu A
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Figure 2.13 shows what happens in the context when deriving an object set A.

(11) Letnow D C M be an attribute set. Then

DIL'J]: m mIU]: ﬂ mI:DI
meD meD

and dually F'YJ = FI. Furthermore for an attribute set B C M U N we have
BY = (BAM)U(BNAN)Y = BAM)Y ' n(BAN)Y = BAM) n(BAN).

(111) For a set of objects A C G itholds

A — (Aln M) n(ATNN) = ANl = AN G = Al
and dually A/UY) = Al Also we have

(AD A = ((Alu Ay nm)! = AlL

and (AUY) N N)/ = AJ] dually. It then follows that

AUONUID — (Al g ANYUIOD = A9 3 ATUYT) = AT AT,
(1v) Wehave D!UY) = DIy plJ by (1). Dually it follows that F/UYD) = FILG FI. As a conclusion we get

BUNUYD — (Bn M) n(BNN)Y)YIUD = (BnM) n(BNN)Y) U (BNnM) n(BNN)).

We recall the definition of a dense subcontext in this special case: (G, M, I) is dense in (G, M, I)|(G, N, J) iff
M is \-dense in the concept lattice of (G, M, I)|(G, N, J). Trivially 4G is \/-dense. By Lemma 2.7 (G, M, I)
is dense iff BUY) = (BN M)(Y) (= (BN M)') holds for all attribute sets B C M UN. Again, AUV =
(AN G)IY)) trivially holds for A C G. The context (G, N, J) is called REDUNDANT in (G, M, I)|(G, N, J) iff
(G,M,I)isdensein (G, M, I)|(G,N,]).

—| Theorema: Embedding into Apposition Lattice i

Let (G, M, I) and (G, N, ]) be two contexts with disjoint attribute sets. Then every extent of (G, M, I) is
also an extentof (G, M, I)|(G, N, ]) and

B(G,M, 1) — B(G,M,I)|(G,N,])

#: (A,B) = (A, A1) = (A,BUAT)

is a /\-preserving order-embedding. Furthermore, if (G, M, I) is dense in (G, M, I)|(G, N, ]), then vice
versa every extent of (G, M, I)|(G, N, ]) is an extent of (G, M, I) as well and ¢ is an isomorphism. The
inverse mapping is then given by

¢ ': (A B)— (A, BN M).

APPROBATIO Each extent of (G, M, I) has the form B! for some attribute set B C M. By Lemma: Common
Rows and Common Columns in Apposition Context2.11 BUY) = Bl then always hold and so B! mustalso be
an extent of (G, M, I)|(G, N, J). Thus ¢ is well-defined in the sense that each ¢-image of a (G, M, I)-concept
isa (G, M, I)|(G, N, J)-concept. Again by the preceding Lemma: Common Rows and Common Columns in
Apposition Context2.11, AU = ATy A] = BU Al hold for the intents. As ¢ does not change the extent, it
clearly must be an order-embedding. By Theorema: Concept Lattice 2.5 every infimum can be found by just
intersecting extents, thereby ¢ is A\-preserving.

Finally let (G, M, I) be dense in (G, M, I)|(G, N, ]), ie. BUY) = (BN M)! holds for every B C MUN as
above. Clearly each extent BUY)) of (G, M, 1)|(G,N,]) must then be an extent of (G, M, I) as well. Fur-
thermore ¢ is a surjection: Let (4, B) € B(G, M, I)|(G ,]), then (A, BN M) is a concept of (G, M, I) as
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Al = AU AM = BnMand (BNM)! = BUY) = A, and ¢(A, BN M) = (A, AUY)) = (A, B) holds. In
summary ¢ is a surjective order-embedding, i.e. an order-isomorphism and a lattice-isomorphism. Moreover
(A,B) — (A, BN M) is indeed the inverse of ¢ as

¢ 1p(A,B)=¢ (A, BUA) = (A, (BUAYNM) = (A,B)
and

¢p 1 (A,B) = p(A,BNM) = (A, (BAM)UA) = (A,B)

e — |
=(AU9DnMyuAT
=Alual
—AUY)

B hold by Lemma: Common Rows and Common Columns in Apposition Context 2.11.
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—| Theorema: Nested Concept Lattice i

The concept lattice of a context apposition can be embedded in the direct product of the single concept
lattices. Formal: For two contexts (G, M, I) and (G, N, J) the mapping

B(G,M, I)|(G,N,]) = B(G,M,I)KB(G,N,])
v (A, B) — (AT, AD, (AT, AN)) = (BN M), BAM), ((BNN)/,BNN))
with B(G, M, ) ®B(G, N, ]) C B(G,M,I) x B(G,N,]) and

((A,B),(C,D)) € B(G,M,I)KB(G,N,]): <= (ANC,BUD) € B(G,M,I)|(G,N,])
is an isomorphism. The inverse mapping of ¢ is given by

v~ ': ((A,B),(C,D)) — (ANC,BUD).

The set B(G, M, I) KB(G, N, ]) together with the inherited coordinate-wise order is a complete lattice
and is called NESTED CONCEPT LATTICE of (G, M, I) and (G, N, J).

APPROBATIO The order of B(G, M, I) KB (G, N, J) is the inherited coordinate-wise order from the cartesian
product B(G, M, I) x B(G,N,]). The supremum equals the coordinate-wise supremum in the cartesian
product, as can be seen on the intents: ((;c1 Bt) U (Nser Dt) = Nier (Bt U Dy) always hold for attribute sets
B € Mand Dy C N forallt € T. So the supremum in B(G, M, I) X B(G, N, ]) exist for all subsets of
B(G,M,I) KB(G,N,]) and itis indeed a complete lattice.

Now let (A, B) be a concept of the apposition (G, M, I)|(G,N,]), then Al n AJl = AUUNUY]) = A and
AU Al = AUYD = Bhold by Lemma: Common Rows and Common Columns in Apposition Context 2.11
and thereby (A, B) is an element of the nested product B(G, M, I) K B(G, N, J). So ¢ is well-defined. For
each concept (A, B) € B(G, M, I)|(G, N, ]) it follows by the same arguments as above

(A, B) =y (AT, AN, (AT, AT)) = (ATTn AT, AT AT) = (A, B).
Now let ((A,B), (C,D)) € B(G,M,I) XB(G, N, J), then it holds that
P9~ ((A,B),(C,D)) = ¢(ANC,BUD) = (ANC)",(AnC)"), ((AnC), (AnC))).
By Lemma: Common Rows and Common Columns in Apposition Context 2.11 (ANC)! = (AN C)IY) n
M = (BUD)NM = Band thus (ANC)!! = B! = A as well. Analogously for (C,D) in (G,N,]). In
summary 1 is a bijection.
i is order-preserving as A C C always implies A' O C'and A/ O C/ and thus (A, B) < ¢(C, D) hold for
all concepts (A, B) < (C, D). Overthis ¢ is order-reversing since A’ O C'and A/ D C/ implies
B=AU =Alual >cluc =cl) = p.

So 1 is an order-isomorphism and a lattice-isomorphism.
When using ¥ just as an embedding into the cartesian product B(G, M, I) x B(G, N, ]), then ¢ is only an
order-embedding and overthis \/-preserving as can be seen on the intents.
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3.1 Insertion & Removal of a single Attribute Column

When visualizing a concept lattice by a line diagram, some interaction techniques are needed. In this section
an algorithm for the insertion and removal of single attributes is constructed and proven.

Throughout the whole section let K = (G, M, I) be an arbitrary finite formal context. Let furtherbe n ¢ M
any new attribute with its attribute extent ”/ C G orincidence ] C G x {n} respectivelly,ie. C = (G, {n},])
is also a context, called COLUMN. Their apposition is symbolized as

K|C = (G,M,D[(G,{n},]) = (GMU{n},1U])

The context neither has to be clarified nor reduced. The initial point of view is the Insertion of a single at-
tribute, thus K is called the old context and K|C the new context.

The update process of the line diagram is split up in four parts: concepts, neighborhood, labels and seeds.

In certain cases there is no big change in the line diagram, viz. when the set of extents of the updated con-
text K|C equals the set of extents of the preceding context K. Then the column C and the attribute n are
called REDUNDANT in K|C. Two other strongly related definitions are recalled: Two attributes of a context
are called EQUIVALENT, iff they have the same attribute extents. An attribute is called REDUCIBLE, iff the
appropriate attribute concept is A-reducible in the concept lattice. More formally: m € M is reducible in K,
iff um = (m!, m') is \-reducible in B (K), so, iff

pum=(um)*= N\ (AB)= J\ un
(A,B)eB(K) neM
um<(A,B) pm<pn

and thus, iff m! = N ,cp n!. The following lemma shows that a redundant attribute is either equivalent

to another attribute or is reducible by some other attributes, and vice versa each equivalent or reducible
attribute is redundant.
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3 Incremental Updates for Concept Diagrams

—| Lemma: Characterization of Attribute Redundancy i

The following statements are equivalent:

(1) nisredundantin K|C
(11) n/ is an extent of K
(111) nhas an equivalent attribute or is reducible in K|C

(1v) Kisdensein K|C

APPROBATIO  (I)=-(11) When 7 is redundant in K|C, then both contexts K|C and K have the same set of
extents. Thus n(!Y)) = n/ must clearly be an extent of K.

(1)<=(11) Letn/ beanextentof K, i.e. n/ = D! forasuitable D C M. Each extent of K is obviously an extent
of K|C,as B! = BUY)) holds forall B C M by Lemma: Common Rows and Common Columns in Apposition
Context 2.11. Now let A be an extent of K|C, i.e. there is an attribute set B C M U {n} with A = BUY)), In
casen ¢ Bit clearly follows that BUY)) = B, Otherwise BUY)) = (B\ {n})! nn/ = BInD! = (BUD)!. In
both cases A is already an extent of K. In summary both contexts have exactly the same set of extents.

(11)=>(111) If the new attribute extent 1/ is already an extent of K, then there is an attribute set B C M with

meB meB
Either anattribute m € Bexistssuch thatn!Y) = ;) je. nand m are equivalentin K|C, or n1Y)) #* mY))
holds for all attributes m € B,andasm € B = Al & nV) =pnl = A C ml = mY)
nUv)) — m mI9)) — ﬂ m(IUI),

meB meM
n9D cpy (197)

i.e. nis reducible (by B) in K|C.

(11)<=(111) If n has an equivalent attribute m € M, then n/ = nI%) = m(IY]) = ! hold, so n/ is obviously
anextent of K. Otherwise 1 is reducible in K| C, i.e. the appropriate attribute concept un = (n!°1), n(IW)(10]))
is A-reducible in the concept lattice B(K|C), i.e. it is the infimum of all proper super concepts of K|C. As all
attribute concepts of K|C make up a /\-dense set in B (K|C) it holds that

pun= N\ pm.
meM
un<pm
By Lemma: Rows and Columns in Apposition Context 2.10 this attribute concept pn has the form (n/, n/(19]))

and each attribute concept ym has the form (!, m!(I1)) for all other attributes m € M. Thus by looking on
the extents

I

= m=( {m})lz{meM’n]le}.
meM meM
n cm! ncm!

So 1/ is an extent of K.

(1r)=-(1v) If n has an equivalent attribute or is reducible in K|C, then there is an attribute m € M with
un = pm or there is a set of attributes B C M with un = A uB. So M must be dense in K|C.

(1)<=(1v) Thisis Theorema: Embedding into Apposition Lattice 2.12 with N = {n}.
Now the concepts of K|C are constructed from those of K by Theorema: Embedding into Apposition Lattice
2.12 and Theorema: Nested Concept Lattice 2.13. If n is redundant, then both concept lattices are isomorphic
by the mapping
B(K) —» B(K|C)

P (A B) s (A,BUA)).
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3.1 Insertion & Removal of a single Attribute Column

Lemma 3.3 states, that A/ = {n},iff A C nl,and AJ = @ otherwise. Thereby

A,B (AZnl
¢(A B) = ( ) ])
(A, BU{n}) (Acn)

holds. A further refinement is given in Corollarium: Concept Transition from K to K|C and vice versa 3.8 in
the next subsection. If the new attribute # is not redundant, then both concept lattices are not isomorphic and
9B (K) can only be embedded in B (K|C). To be able to construct all concepts of the apposition K|C, consider
the bijective mapping

_1. B(K)XB(C) —» B(K|C)

" ((A,B),(C,D)) — (ANC,BUD)

from Theorema: Nested Concept Lattice 2.13. With a closer look on the concept lattice B (C) it is clear that it

can have at most two concepts. The bottom conceptis L = (@/,@/) = ({n}),{n}) and the top concept is
T = (@/,2))) = (G,G/). Both concepts are equal, if ”/ = G, i.e. when ] = G x {n} and the context is full of
crosses. If n is not redundant then it cannot be reducible and thus in this case the context cannot be full and
both concepts T and L are distinct. Thereby it can be concluded that the following equations hold:

v Y(A,B), T)=(ANG,BU®) = (A,B)
and

(A,BU{n}) (ACnl)

¢ ((A4B), L) = (Ann!,BU{n}) = {(Amnf,Bo{n}) (Agn).

When looking at definition of the nested concept lattice one must check that each pair ((4,B), T) is in
B(K) K B(C).

((A,B), T) € B(K)XB(C)
&(ANG,BUQ) = (A,B) € B(K|C)
= AU — Band BUYD = A

| I— | EE—|
=Alpal =BI=A
=BUuA/l
I — |

SAl=0

ongAl

SAZnl

SA g

Analogously it has to be ensured that each pair ((A, B), L) is an element of the nested concept lattice B (K) X
B(C) as well.

((A,B), L) € B(K) X B(C)
s(Ann!,BU{n}) € B(K|C)

& (AnnHUY) =BUu{n} and (BU{n})ID) = Ann/
| E— e — |
=(Ann))IU(ANn])] =BInn/
L ] =Ann/
(AN =B ana (Ann)) ={n}
[
ene(Annl)]
s Ann/ Cnl

sACnor (AgZnand (Ann)! = B)

In summary the following equation hold for the mapping llJ_l.

((A,B), T) — (A,B) (Agn))
yoh (ABU{n})  (ACH])
((A'B)'J_)'_){(Aﬂn],BU{n}) (A Znland (ANn/)l = B)

The concept (A, B) is always one of K and so this gives a strong advice how the concepts in K|C can be com-
puted from those of K that are already known. Please note the high similarity to the equation for ¢ in the
redundant case. For more details please have a look at the following subsection, especially at Corollarium:
Concept Transition from K to K|C and vice versa 3.8.
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3 Incremental Updates for Concept Diagrams

—| Corollarium: Structural Changes for Apposition Lattice i

If n is redundant, then the old lattice and the new lattice are isomorphic
B(K|C) = B(K),
else the new lattice can be embedded into a doubling of the old lattice

B(K|C) < B(K) x 2.

3.1.1 Updating the Concepts

This following lemma gives some first observations for K|C.

(1) For all objectsets A C G itholds

ACn e A ={n}andA¢n A =0
(11) Fora concept (A, B) of K|C it holds

neBe ACn.

APPROBATIO (1) For each object set A C G always A/ C {n} hold, and so n € A/ is also equivalent to
Al = {n}. The second equivalence follows by contraposition, and A/ # {n} is equivalent to A/ = @ as
Al C {n} always hold.

(11) Let (A, B) be a concept of K|C, i.e.
A=B"Y =B\ {n)InBn{n}) andB= A" = ATy A/

hold by Lemma: Common Rows and Common Columns in Apposition Context 2.11, thereby the intent B is
a disjoint union of the subset A! of M and the set A/ either containing  or not. Thus n € B, iff n € AJ. With
one of the galois properties this is equivalent to A C n/.

Concept Transition from K to K|C

The bijective mapping ¢! from Theorema: Nested Concept Lattice 2.13 state that there are three special
kinds of concepts in K and thus also in K|C. First, the so called OLD concepts of K w.r.t. C whose extent is no
subset of the new attribute extent n/. The set of all these old concepts is denoted by

BS,(K) := {(A,B) € B(K) ‘ Ag nf}
and the old concepts are mapped to concepts of K|C via

B54(K) <= B(K|C)
(A,B) =y '((A,B), T) = (A,B)

Second, the so called VARYING concepts with an extent contained in the new attribute extent n/. All these
varying concepts make up the set

%\(/:ar(K) = {(A/ B) € B(K) ’ A C n]}
and are mapped to concepts of K|C by means of the mapping

B (K) — B(K|C)
(A,B) =y '((A,B), L) = (A,BU{n})

varc:
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3.1 Insertion & Removal of a single Attribute Column

Third, the so called GENERATING concepts (A, B) from K w.r.t. C whose extent is not contained in n and
furthermore fulfill the constraint (A N n/)! = B. The set of all these generating concepts is denoted by
Ben(K) : = {(4,B) € B(K) ‘ Agnand(Ann) =B}
- {(A,B) e 85, (K) \ (Annl)l = B},
and are used to construct some concepts of K|C via

Ben (K) = B(K|C)

newc: 1 )
(A,B) — ¢ Y((A,B), L) = (Ann),BU{n}).

As ¢! is bijective, the three above defined maps are also injective. Furthermore a partition of B (K|C) is

obtained by the three images

Boia (K|C) =y (BG4(K) x {T}) = oldc (BG4 (K))
Buar (K|C) = ¢! (B (K) x {L}) = varc (B0 (K))
Brew(K|C) 1= " (BEn (K) x {L}) = newe (B (K))

and the three above mentioned maps oldc, varc and newc are then surjections onto these disjoint subsets of
B (K|C). The elements of B4 (K|C) are called OLD concepts of K|C w.r.t. C, these of Byar(K|C) VARIED and
these of Bnew (K|C) NEW concepts of K|C w.r.t. C.

For a redundant attribute n the old concept lattice B (K) and the new concept lattice B (K|C) are isomorphic
via the mapping ¢ from Theorema: Embedding into Apposition Lattice 2.12, so the concepts of K|C must be
fully determined by the old and varying concepts in K. In other words: The set of generating concepts of K
must be empty, and no new concepts exist in K|C.

—| Corollarium: Concept Update i

The formal concepts of K|C can be computed from those of K by means of the three bijections old¢, varc
and newc. If the new attribute 7 is redundant, then there are no generating concepts in K and no new
concepts in K|C.

Concept Transition from K|C to K

For an inversion of the concept transition, i.e. when removing the attribute n from K|C, explicit descriptions
of the sets B4 (K|C), Byar(K|C) and Brew (K|C) as well as the inversions of the maps oldc, varc and newc
are required. The inverse maps can be determined by means of the inverse of ¥~! from Theorema: Nested
Concept Lattice 2.13, viz.

B(K|C) —» B(K) BB(C)
(4,B) (A, A1), (A7, 40)) = (BAM)!, BN M), (BAN), BAN)),

and as only the first coordinate in B8(K) is of interest, they must be given by (4, B) ~ (A!l, Al) = ((Bn

M)!,BAM) = ((B\ {n})", B\ {n}).
First, the old concepts are analyzed. Let (A, B) be an old concept of K w.r.t. C. Then the extent A is no subset
of n/, and surely (A, B) = oldc(A4, B) does not contain 7 in its intent.

A concept (A, B) of K|C with n ¢ Bis always a concept of K as well, and A ¢ n/ holds.

APPROBATIO From n ¢ B it follows A Q nand AJ = @. SoB = Al U® = Al Fromn ¢ B we further
deduce BN {n} = @and B\ {n} = B, and it follows A = B'N @/ = B'N G = B!. Thus (A4, B) is a concept
of K too.

The preceding lemma states that oldc is surjective onto { (4, B) € B(K|C) | n ¢ B}, and thus

Boid(K|C) = {(A,B) € B(K|C) | n & B}
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hold. The inverse map is clearly given by

oy Boid (K|C) = BG4(K)
¢ (A,B) — (A, A1y = (A, B).

Second, the varying concepts are investigated. Let (A, B) be any varying concept of K w.r.t. C, then A C
n/ hold. The corresponding concept in K|C is given by varc(A,B) = (A,BU {n}). Obviously it con-
tains the new attribute 7 in its intent, and ((B U {n}) \ {n})! = B! = A hold. This yields By.r(K|C) C
{(A,B) € B(K|C) | n € Band (B\ {n})! = A} as a first explicit description.

For a concept (A, B) of K|Cwithn € Band (B \ {n})! = A, the biset

(C,D) := (A, B\ {n})
is always a concept of K with C C #/, such that (A, B) = varc(C, D).

APPROBATIO The biset (C, D) is indeed a concept of K|Cas C! = Al = AUYD A M = B\ {n} = Dand
D! = (B\ {n})! = A = Chold by Lemma: Common Rows and Common Columns in Apposition Context
2.11and Lemma 3.3. Alson € Bimplies C = A C n/ as desired.

As a corollary varc is surjective onto {(A,B) € B(K|C) } n € Band (B\ {n})l = A},and this yields
Byar (K|C) = {(A,B) € B(K|C) ‘ neBand (B\ {n}) = A}.
The inverse map is obviously determined by
varElz Byar(K|C) = B, (K) 1
(A, B) = ((B\{n})", B\ {n}) = (A, B\ {n}).

Third, the generating and new concepts are examined. Let (A, B) be a generating concept of K w.r.t. C,
ie. A ¢ nl and (ANn/)! = Bhold. Then (A, B) is embedded in the concept set of the new context K|C
by newc (A, B) = (ANn/,BU{n}). Obviously n is an element of BU {n},and ((BU {n})\ {n})! = B! =
A # Annl hold since A ¢ n/. Thus for the set of new concepts of K|C the inclusion Bpew(K|C) C
{(A,B) € B(K|C) | n € Band (B\ {n})! # A} hold.

For a concept (A, B) of K|Cwithn € Band (B \ {n})! # A, the biset

(C,D) = ((B\ {n})', B\ {n})
is always a concept of K with C Z n/ and (CNn/)! = D, such that (A, B) = newc(C, D).
APPROBATIO Trivially D! = (B\ {n})! = Cholds. Also

cl =B\ {nH" =AW AMmT = AT = AT = AU AM =B\ {n} =D
is true, so (C, D) is indeed a formal concept of K. Furthermore
cnn =B\ {n}) nuw =B = A £ (B\{n}) =C
hold, which implies C ¢ n/, and furthermore (C N 1n/)! = AT = AUY) A M = B\ {n} = Dis true.
As a conclusion newc is a surjection onto { (A, B) € B(K|C) |n € Band (B\ {n})! # A} and so
Bew(K|C) = {(A,B) € B(K|C) ‘ neBand (B\ {n}) # A} .
The inverse map is given by
Brew (K|C) = Bgen (K)
(A,B) = ((B\{n})!, B\ {n}).

- -1,
genc 1= newg :
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3.1 Insertion & Removal of a single Attribute Column

—| Corollarium: Concept Transition from K to K|C and vice versa i

The concepts of K|C can be computed from those of K and vice versa:

(1) Each old concept of K w.r.t. C is an old concept of K|C as well, and conversely every old concept
of K|Cis an old concept of K w.r.t. C, by the bijection

BGiq(K) = Boa(K|C)
oldc:  (A,B) — (A, B)
(A,B) + (A, B)

with BG,(K) = {(A,B) € B(K) | A £ n/} and B,4(K|C) = {(A, B) € B(K|C) |n ¢ B}.

(11) Every varying concept of K w.r.t. C is mapped to a varied concept of K|C by adding the new at-
tribute 7 to the intent, and reversely each varied concept of K|C become a varying concept of K w.r.t. C
be removing n from its intent. This is due to the bijection

Blar(K) = Buar(K|C)
varc: (A,B) — (A,BU{n})
(A,B\ {n}) « (A,B)

withits domain B, (K) = {(4, B) € B(K) | A C n/ } anditsrange Byar(K|C) = {(A, B) € B(K|C) |n ¢ Band (B\ {n}

(111) Each new concept of K|C can be constructed from a unique generating concept of K w.r.t. C by in-
tersecting the extent with the new attribute extent n/ and adding the new attribute 7 to the intent. Con-
versely the generator in Kw.r.t. C for anew concept in K|C can be computed by removing the attribute n
from its intent and choosing the corresponding extent by means of the old incidence I. For the transition
from K|C to K these new concepts will rather be removed than determining their generators. The map

%gen(K) — Bnew (K|C)
newc: (A,B) — (Ann/,BU{n})
((B\{n})!,B\{n}) < (A, B)

is a bijection, with its domain Bg.,(K) = {(A,B) € B(K)|A € n/ and (Ann/)! = B} and range
Brew(K|C) = {(A,B) € BK|C) [n € Band (B\ {n})! # A}.
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3.1.2 Structural Remarks

—| Theorema: Structure of Old Concepts and Varying Concepts i

(1) Theset BS,(K) of old concepts is a V-closed order-filter in B (K).

(11) The set BE,, (K) of varying concepts is a A-closed order-ideal in B (K).

APPROBATIO (B, (K) ORDER-FILTER) Let (A, B) be an old concept of K w.r.t. the new attribute n and
(C, D) a concept of K that is greater than (A, B). Thismeansn/ 2 A C Cand thus n/ 2 Cholds, i.e. (C,D) is
also an old concept.

(BE,(K) \V/-CLOSED) Let (A, B) and (C, D) be two old concepts of K w.r.t. the new attribute n. Then it
holds A ¢ n/ and C ¢ n/, thus the union A U C cannot be a subset of the extent n/, and so (AU C)!I ¢ n/.
Eventually (A, B) V (C,D) = ((AuUC)!l, BN D) is also an old concept.

(S, (K) ORDER-IDEAL) Let (4, B) be a varying concept of K w.r.t. the new attribute n and (C, D) a con-

cept of K that is smaller than (A, B). This means n/ D A D Candthusn/ D Cholds, ie. (C,D) is also a
varying concept.

(B8, (K) A-CcLOSED) Let (A, B) and (C, D) be two varying concepts of K w.r.t. the new attribute n. Then it
holds A C n/ and C C n/, thus the intersection A N C is a subset of the extent n/. Eventually (4, B) A (C,D) =

(ANC,(BUD)!)isalsoan varying concept.

In the ongoing section there are some concept lattices drawn. Their nodes and edges can have special forms:
Each generator node is highlighted with a pentagon@ , each new node is marked with a star @ and each

varying or varied node is tagged with a cloud@ .

Exemplum: Counterexamples

(BE4(K) NOT \-CLOSED) The set B, (K) of all old concepts of a context K = K w.r.t. a new attribute  is
in general not closed under arbitrary infima. To understand this, please have a look at the following min-
imal example: The concept lattice is a diamond with four elements, i.e. a lattice generated by two distinct
uncomparable elements. The new attribute 3 with its extent 3/ = @ encounters the context. As a preresult
the bottom element is a varying node because its concept is (&, {1,2}) and its extent @ is a subset of the
attribute extent 3/. All remaining nodes are old nodes as their concepts contains at least one object and thus
their extents cannot be a subset of @. Eventually none of the old nodes is a generator node, since none of
them is able to fulfill the condition B = (A N 3/)! from Corollarium: Concept Transition from K to K|C and
vice versa 3.8. Thisis dueto A N3/ = @ and @' = {1,2}, and none of the old concepts has this intent {1,2}.

| —[o] ] [ ~o]e]

X | = X

GEN

g ?& 3g a\3/?
o A o

(BE,,(K) NOT \/-CLOSED) ThesetBS,, (K) of all varying nodes of K = K w.r.t. anew attribute 1 is generally
not \/-closed. A similar example to the preceding example is chosen, but is modified to have the top node as
a generator and the other nodes as varying nodes. The two maximal varying nodes do not have a varying

node as their supremum.
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—| Theorema: Structure of Generator Concepts i

The set %gen (K) of generator concepts is VV-closed in B(K).

APPROBATIO Let (A1,B1) and (A, By) be two generator concepts of K and their supremum is ((A; U
As)!, B1 N By). As each generator is also an old concept and the set of old concepts is closed under suprema,
the supremum ((A; U A,)!!, B; N By) must be an old concept. It remains to show, that By N By = ((A; U
ANl

(C) Assume By N By is no subset of ((A; U Ay)!! nn/)!. Then a attribute m € M must exist, such that
m € ByNByandm & ((A; U A2)! nn/). From the second condition we get

m ¢ ((A1 UAz)H ﬂi’l])l D) (Al UAQ)HI un/! D) (A1 UAz)IH = (Al UA2)I = A{ ﬂAé =BiNBy

in contradiction to the first condition. Thus By N B, must be subset of ((A; U A)! nn/)L.
(D) As(A1,By)and (Aj, B,) are generators, wehave By = (A;Nn/) and B, = (A, Nn/)!. Furtheritholds
BiNBy = (Ainn)) n(A;na))!

= (A nn)u (A nnl))!

= (AU Ay) )
—]
C(AUA)H

D (A UA) T nnl)l.

—| Corollarium: Largest Generator Concept i

(1) ‘Bgen (K) U {L}isa \/-subsemilattice of B (K).
(11) If the new attribute # is not redundant, there is always a largest generator concept

Tgen := V Bgen(K) = (", /"),

(111) The new generated concept newc (Tgen) then equals the attribute concept y(n) of K|C and has the
attribute label n.

APPROBATIO  (I) A \/-subsemilattice is a subset U of a complete lattice, such that for each subset X C U
the supremum \/ X is in U as well. In case of a finite lattice (like here) each big supremum \/ can be expressed
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by means of the small supremum V via
VAx . oxt=x1V V(- V(1 Vi) ...).

Thus only the empty supremum \/ @ = L is missing in %gen (K) to form a \/-subsemilattice.

(11),(111) When 7 is non-redundant, the new attribute extent 7/ is no extent of K. Hence no old or varying
concept with 7/ as its extent exists. Thus, the set of generators cannot be empty, as there must be a generator
concept of the new attribute concept y(1) in K|C. Then by the preceding Theorema: Structure of Generator
Concepts 3.11 there must be a largest generator concept, namely Tgen =V ‘Bgen (K). By Lemma: Common
Rows and Common Columns in Apposition Context 2.11 the new attribute concept can be displayed as

u(n) = (n(IUI),n(IUJ)(IUI)) _ (nI,nI(IUJ)) _ (n’,n” U{n}) € Brew(K|C)

Thus a generator concept (A, B) € %gen(K) exist such that un = newc(A,B) = (ANn/,BU{n}). So
n = Ann/and W/ U {n} = BU {n} musthold. Thus, it follows that n/ C Aand n/! = B,and

(A,B) = (W, 01,

If there were any other concept (C,D) € B, (K) withn/ C C, then Cnn/ = n/ = Ann/ and thus
newc(A, B) = newc(C, D) would hold. This yields (A, B) = (C, D), contradiction! Furthermore, if (C, D)
were a generator superconcept of (A, B), then n/ C A C C holds. Thereby n/ C C yields a contradiction!
Thus (A, B) is uniquelly determined by n/ C A and n/! = B, and furthermore (A, B) is a maximal generator.
As %gen (K) is V-closed, (A, B) must be the greatest generator and thus equal \/ %gen (K).

In the ongoing section some further counterexamples on the generator set are given; ‘Bgen (K) neither has to
be A-closed, nor an order ideal in B, (K), nor convex.

Exemplum: Counterexamples

(%gen (K) NOT A-CLOSED) The set EBgen (K) consisting of all generator concepts of K w.r.t. a new attribute
n is not closed under arbitrary infima. Again a minimal example is chosen: A concept lattice with four ele-
ments (as seen on the left) and a new attribute 3 with its extent 3/ = {a, b} (in the middle). As preresults in
the left old concept lattice B (K) the bottom concept (@, {1,2}) is varying since the empty set is enclosed in
every set. The other three concepts are generators, as their extents are no subset of the new attribute extent
3/ and thus must be old nodes, and furthermore fulfill the generator condition B = (A N 3/)! from 2?2 22.22:
The top conceptis ({a,b,c,d}, @) and

({a,b,c,d} N3N = ({a,b,c,d} N {a,b}) = {a,b}! =@
holds, the left conceptis ({a,c}, {1}) and

({a,cy N3N = ({a,c} n{a,b}) = {a} = {1}
holds and finally the right conceptis ({b,d}, {2}) and fulfills the generator condition

({b,d}n3))' = ({b,d}y N {a,b})" = {b}' = {2}.
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(%gen (K) NO ORDER IDEAL IN BS,(K)) The set %gen (K) of generators generally does not form an order
ideal within the set %gl 4(K) of old concepts. A minimal counterexample can again be obtained from the
“diamond concept lattice” as already seen in previous examples. The appropriate context is changed in a
way to have the top node as a generator, the bottom node as a varying concept and the left and right con-
cept as old ones. This is of course done w.r.t. the new attribute 3 with its attribute extent 3/ = {c}. In the
modified concept lattice on the right an edge between a new node and a varied one must be added while the
corresponding generator was not neighboring the varying node.
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(%gen (K) NOT CONVEX) The set EBgen (K) of generators is not convex in general. A counterexample is the
three-element chain concept lattice on the left and the new attribute 3 with extent 3/ = {c}. Applying Corol-
larium: Concept Transition from K to K|C and vice versa 3.8 and Corollarium: Concept Transition from K
to K|C and vice versa 3.8 yields the top and bottom concept as generators and the inner concept as an old
non-generating concept. The resulting concept lattice on the right is isomorphic to N5. Again we enconter
a special case for the new neighborhood: Both new concepts are neighboring even though their generators

are not. But these generators do not have any other generators between them, thus there cannot be any other

new concept between the two new concepts. A more sophisticated answer gives Theorema: Neighborhood
Transition from K to K|C 3.17.
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We have seen that a infimum of generators is not always a generator too. But a slightly weaker characteriza-
tion of a generator infimum can be given:

—| Lemma: Infima of Generator Concepts i

The infimum, i.e. the greatest common subconcept, of a set of generators is always a generator too or a
varying concept.

APPROBATIO Consider two uncomparable generator concepts (A1, B1) and (A, By), such that their infi-

mum (Aq, By) A (Az, By) = (A1 N Ay, (By U By)!!) is an old concept, but not a generating concept. At first
this implies that the infimum cannot be one of the two generator concepts.

(A1 N A,, (Bl U BZ)H)

(A1,Bq) (A2, B2)

((A1U A7), By N By)

Now a new irreducible attribute 7 is added and the diagram changes to the following structure:

((A1U A2, By N By)

(A1, By) (A2, Bz)

(Alﬂi’l],BlU{n}) (Azﬂ?’l],BzU{n})

(Al N Ay, (Bl U Bz)H)

As you can see, the resulting diagram does not form a lattice, since the new concepts (A; Nn/, B; U {n}) and
(A; N1/, By U{n}) donothave any infimum. To see this consider the three possible cases for their infimum:

(Aynnd,Byu{n}) A (Asninl,Byu{n}) = (AyNn/, By U {n})) This case condition is logically equiv-
alent to the condition (A; Nn/,By U {n}) < (A Nnl,By U {n}). Then the intents are comparable and
By U{n} O By U {n} holds - but this implies By 2 B; in contradiction to the precondition that the gener-
ators (A1, B1) and (Ay, By) are not comparable. So this case cannot occur.
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((Aynn!, Byu{n}) A(Aynind, By u{n}) = (Aynn/, B, U{n})) analog to the first case.

((Aynnd, Byu{n}) A (Aynnl,Bou{n}) = (A1 N Ay, (B UB,)!T)) The case condition implies the equal-
ity of the extents (A; Nn/) N (A, Nnl) = AN AyNn/ and A; N A;. This means the extent A; N Ay
must be a subset of the attribute extent #/, but this is a conflict to the premise that the generator infimum
(A1,B1) A (A, By) = (A1 N Az, (B1 UBy)!) isan old concept, i.e. Ay N Ay € 1/ holds. Eventually this case
is also impossible.

None of these cases can occur, so the preconditions cannot occur. As a consegence every infimum of generator
concepts must also be a generating concept or a varying concept.

3.1.3 Updating the Order
Bo-g(K|C) denote the set of all old concepts of K|C that are no generator, i.e. Bo—g(K|C) := B 4(K|C) \

Bgen (K|C). Furthermore Bgen (K|C) is simply the image of all generators B, (K) underoldc, i.e. Bgen (K|C) :

oldc(BEen (K)). As the map oldc does not change anything in the extent and intent, one does not have to dis-
tinct between old concepts of K w.r.t. C and old concepts of K|C. So they are simply called old concepts. The
same hold for the generator concepts.

—l Theorema: Order Transition from K to K|C i

The order relation of B8 (K|C) is divided into eight parts:

%old (K|C) %neW(K|C) %var(lqc)

Boa(KIC)[ (1) | (1r)
Boew(KIC)| (1) | (V) )
Buar(KIC)|  (v) | (vi) (V1)

Then the following statements characterize the order relation completely.
(1) Two old concepts are comparable in B (K|C), iff they are comparable in B (K):

% oldc(A,B) < oldc(C,D) < (A, B) < (C,D)
(A,B),(C,D)eB, (K)

In other words, oldc is order-preserving and order-reflecting.
(1) No old concept is smaller than any new or varied concept.

(111) A new concept is smaller than an old concept, iff its generator concept is smaller than or equals
the old concept:

v newc(A, B) < oldc(C,D) & (A,B) < (C,D)
(A,B)eBE, (K)
(C,D)eBS,(K)

(1v) Two new concepts are comparable, iff their generator concepts are comparable:

\4 newc(A, B) < newc(C,D) < (A,B) < (C,D)
(AB),(CD)eBE, (K)

In other words, new preserves and reflects order.

(V) A new concept is smaller than a varied concept, iff the generator is smaller than the varying con-
cept:

v newc(A, B) < varc(C,D) < (A,B) < (C,D)
(A,B)EBE, (K)
(C.D)eBY, (K)
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(V1) A varied concept is smaller than an old concept, iff its corresponding varying concept is smaller
than the old concept:

v varc(A, B) < oldc(C,D) < (A,B) < (C,D)
(AB)eBY, (K)
(C,D)eBS,(K)

(viI) A varied concept is smaller than a new concept, iff the varying concept is smaller than the gener-
ator:

v varc(A, B) < newc(C,D) < (A,B) < (C,D)
(A,B)eBE, (K)
(CD)EBgeq (K)
(vir) Two varied concepts are comparable, iff the appropriate varying concepts are comparable:

varc(A, B) < varc(C,D) < (A,B) < (C,D)
(AB),(C,D)eBG, (K)

In other words, varc preserves and reflects order.

APPROBATIO  (I),(VI),(VIII) Asoldc and varc do not change the extent of any concept and the concept or-
der is defined by means of extent inclusion, they must obviously be order-preserving and order-reflecting.
This also implies (VI).

(11) If an old concept (A, B) would be smaller than any new or varied concept (C, D), it would hold that
B O D > nand this is a contradiction, since no old concept has the attribute # in its intent. Hence no old
concept can be smaller than any new or modified concept.

(111) Let (A, B) be a generator concept and (C, D) an old concept. Thenn ¢ D yields
newc (A, B) < olde(C,D) < BU{n} DD« B2 D < (A,B) < (C,D).

(1v),(v),(vir) Let (A, B) and (C, D) be two generator concepts, or a varying concept and a generator con-
cept. Asn ¢ B, D, it then holds that
newc(A, B) < newc(C,D)
ornewc(A,B) <varc(C,D) p & BU{n} >DDU{n} < B>DD <« (A B) < (CD,).
orvarc(A, B) < newc(C, D)

As both maps old¢ and newc are order-isomorphisms, as proven above, one can easily gain the order of K
from those of K|C.

—| Corollarium: Order Transition from K|C to K i

The order relation of B8 (K|C) is divided into eight parts:

B, (K) B, (K)
BSL(K) () (11)
B (K)| () | (1)

Then the following statements characterize the order relation completely.
(1) Two old concepts are comparable in B (K|C), iff they are comparable in B (K):

v (A,B) < (C,D) < oldc(A, B) < oldc(C, D)
(AB),(C,D)eBE,(K)

(11) No old concept is smaller than any varying concept.
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(1) A varying concept is smaller than an old concept, iff its corresponding varied concept is smaller
than the old concept:

v (A,B) < (C,D) < varc(A,B) < oldc(C, D)
(AB)eB, (K)
(C,D)eBS,(K)

(1v) Two varying concepts are comparable, iff the appropriate varyied concepts are comparable:

\% (A,B) < (C,D) < varc(A, B) < varc(C, D)
(AB),(C,D)eBE (K)

3.1.4 Updating the Neighborhood

Afirst clue onhow to update the neighborhood is given by the cover relation on a cartesian product w.r.t. coordinate-
wise order. It is well known (? ), that (p1,41) < (p2,42) hold in a cartesian product of two ordered sets, iff
either p; < ppand q; = g2, 0r p1 = prand q; < g2 hold.

As the nested concept lattice B(K) X B(C) from Theorema: Nested Concept Lattice 2.13 has the inherited
coordinate-wise order from the cartesian product B(K) x B(C), some fragments of the cover relation in

the nested product can already be read off the neighborhood within the cartesian product. To be more spe-

cific, whenever (&, B) covers (1, ) in B(K) x B(C), then («, B) covers (v, ) in B(K) K B(C) as well. First,
((A,B), L) < ((A,B), T) holds for all suitable concepts (A, B) of K. Recall the partition of B(K|C), or of
B(K) X B(C) respectivelly, that was constructed in Concept Transition from K to K|C3.3.1.1

Boia (K|C) =y (BG4(K) x {T}) = oldc (BG4 (K))
Buar (K|C) 1= " (B (K) x {1}) = vare (B5,(K))
Brew(K|C) 1= 971 (BEen(K) x {L}) = newc (B (K))

The only concepts of K, which can occur both with T and L in the nested lattice, are the generator concepts.
Via the isomorphism ¥ from Theorema: Nested Concept Lattice 2.13, this yields

v genc(A, B) < oldc (A, B).
(AB)eBE, (K)

Also ((A,B),X) < ((C,D), X) hold for all suitable concepts (A, B) < (C,D)of Kand X € {L, T} = B(C).
Thereby the following statements can be infered:

W4 (A,B) < (C,D) = oldc(A, B) < oldc(C, D)
(A,B),(C,D)eBS,(K)

\4 (A,B) < (C,D) = varc(A,B) < varc(C,D)
(AB),(CD)eBG, (K)

v (A,B) < (C,D) = newc(A, B) < newc(C, D)
(A,B),(C,D)EBG, (K)

v (A,B) < (C,D) = varc(A, B) < newc(C, D)
(AB)EBY (K)
(C.D)EBE(K)

Nevertheless these observations do not fully determine the neighborhood of B (K|C) by means of B (K). A
more sophisticated and complete characterization is given in the next theorem.
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—| Theorema: Neighborhood Transition from K to K|C i

The neighborhood relation of B (K|C) is divided into ten parts:

Bo-g(K|C) Bgen(K|C) Bnew (K|C) Buar(K|C)

Bo-g (K|C)

B (KIC) (1 (1)
Brew(K|C) () [ () ) )
B (KO (VD | (Vi) | () )

Then the following statements characterize the neighborhood relation completely.
(1) Two old concepts are neighboring in %8 (K|C), iff they are neighboring in B (K):

\ oldc(A,B) < oldc(C,D) < (A,B) < (C,D)
(A,B),(C,D)eBG(K)

In other words, old¢ is neighborhood-preserving and neighborhood-reflecting.
(11) No old concept is a lower neighbor of any new or varied concept.
(111) No new concept is a lower neighbor of any old non-generator concept.
(1v) Each new concept is a lower neighbor of its appropriate generator concept and moreover has no

other generator concepts as upper neighbors:

W A,B) < oldc(A, B
(Aﬁ)e%gen(mnewd ) < clde(4,B)

(V) Two new concepts are neighboring, iff their appropriate generator concepts are comparable and
no other generator concept lies between them:

(A,B) < (C,D) and
Y newc(A, B) < newc(C,D) & A B) < (X,Y) < (C,D
(A,B),(C,D)€BG (K) c(4,B) < (X,Y)ei . (K)( ) <(X,Y) <(C,D)

In other words, new preserves neighborhood.
(V1) Nonew concept is a lower neighbor of any varied concept.

(viI) Avaried conceptisalowerneighbor of a old non-generator concept, iff the corresponding varying
concept and the old non-generator concept are neighboring:

v varc(A, B) < oldc(C,D) < (A,B) < (C,D)
(AB)EBG, (K)
(C,D)eBS ,(K)

o—g

(viir) No varied concept is a lower neighbor of any generator concept.

(IX) A varied concept is a lower neighbor of a new concept, iff the corresponding varying concept
and the generator concept are comparable and furthermore no other varying or generator concept is
between them:

(A,B) < (C,D)and
v varc(A, B) < newc(C,D) < 2 (A,B) < (X,Y) < (C,D)
(A,B)eBG, (K) (XY)E€B & (K)UBG (K)
(C,D)EBgen (K)
(X) Two varied concepts are neighboring, iff the appropriate varying concepts are neighboring:

varc(A, B) < varc(C,D) < (A,B) < (C,D)
(A,B),(C.D)eBG, (K)

In other words, varc preserves and reflects neighborhood.
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APPROBATIO (1) Let (A, B) and (C, D) be two old concepts of K w.r.t. C. Then their corresponding con-
cepts of K|Careoldc (A, B) = (A, B) and oldc(C, D) = (C, D) according to Corollarium: Concept Transition
from K to K|C and vice versa 3.8.

Let (A, B) be a lower neighbor of (C, D) in B(K). At first this yields (A, B) < (C,D) or rather A C C, and
thereby oldc (A, B) is a subconcept of oldc (C, D) in B(K|C). Ifoldc (A, B) 4 oldc(C, D) in B(K|C), i.e. there
were a concept (X, Y) € B(K|C) being between oldc (A, B) and oldc(C, D), then B D Y D D would hold for
the intents. As n cannot be an element of B, also n ¢ Y must hold, thus (X, Y) would surely be an old con-
cept. It follows that old' (X, Y) = (X, Y) were also a concept of K, which were between (A, B) and (C, D).
This is a contradiction to (A, B) < (C, D). The embedded concepts oldc (A, B) and old¢(C, D) must thus be
neighboring in B(K|C).

Conversely, let oldc(A,B) < old¢(C, D) in B(K|C), i.e. no other concept of K|C lies between them. Then
their corresponding concepts (A, B) and (C, D) from K must be comparable, as oldc (A, B) < oldc(C, D) and
thus A C C hold. If there were any other concept (X, Y) of K between (A, B) and (C, D), this must be an old
concept as its extent cannot be a subset of the new attribute extent n/, since A € X € Cand A ¢ n/ hold.
This leads to a contradiction as well, as then old¢ (X, Y) would be between oldc (A, B) and oldc(C, D). Finally
(C, D) covers (A, B) in the concept lattice of K.

(11) If an old concept (A, B) would be smaller than any new or varied concept (C, D) of K|C, it would hold
that B O D > n and this is a contradiction, since no old concept has the attribute 7 in its intent. Hence no old
concept can be a lower neighbor of any new or varied concept of K|C.

(111) Let (A, B) be a new concept of K|C, i.e. there is a generator concept (U, V). Let furthermore (C,D)
be an old concept, that is no generator, and (A, B) is a lower neighbor of (C, D). Then we have (A, B) =
(Unn/,vU{n}) < (C,D)and thus VU {n} D D # n. Thisleadsto VU {n} D V 2 D, so we would
have (A,B) = (UNn/,VU{n}) < (U,V) < (C,D). The generator concept (U, V) cannot equal the non-
generator concept (C, D), hence (A, B) < (U, V) < (C, D). This is a contradiction to (4, B) < (C, D). Sono
new concept of K|C can be covered by an old non-generator concept.

(1v) Let (A, B) be a new concept of K|C with its generator concept (U, V), and (C, D) a generator concept
that covers (A, B). Thenitholds (A, B) < (U, V) < (C, D) by the same arguments as in (111). When looking
attheintents B = V U {n} and V, itis obvious that there cannot be any other intent in between, thus the new
concept (A, B) mustbe alower neighbor of its generator concept (C, D). Furthermore the generator concepts
(U, V) and (C, D) must then be equal, since (A, B) < (C, D).

(V) Let(A,B)and (C, D) be two new concepts of K|C with their generating concepts (S, T) and (U, V), i.e.
(A, B) = newc(S,T) = (SNn/, TU{n})
(C,D) = newc(U, V) = (Unn,VU{n}).

First, let (A, B) < (C, D). We then know that each of these new concepts is a lower neighbor of their appro-
priate generators, i.e. (A,B) < (S,T)and (C,D) < (U,V). Hence B=TU{n} D VU {n} = D, or equally
T D V,or (S, T) < (U,V) respectivelly. If there were any other generator concept (X, Y) between (S, T) and
(U, V), then the corresponding new concept newc (X, Y) would be between (A, B) and (C,D)asT DY D V
yields B D YU {n} D D. Contradiction! These two generators (S, T) and (U, V) must thus be neighboring
within the set of generators.

The other way around: Let the two generator concepts (S, T) and (U, V) be neighboring in the set of all gen-
erators. Then T O V hold for the intents and there is no other generator-intent between T and V. This surely
implies B O D by adding # and no other generator-intent Y exist such that B > Y U {n} D D hold. Thisleads
to (A, B) < (C, D), and no other new concepts lies between them. Parts (111) to (V1) state that only generator
concepts or new concepts can cover a new concept, and part (1) state that no generator concept can be a lower
neighbor of a new concept, hence only new concepts can be between two new concepts. The concepts (A, B)
and (C, D) are thus neighboring.

(vi) Let (A, B) be anew concept of K|C with its generator (S, T), and let (C, D) be a varied concept of K|C
with its corresponding varying concept (U, V) of K w.r.t. C, such that (A,B) < (C,D) hold. From these
preconditions it follows that B=T U {n} D VU {n} = D,orequally T D Vandso (S,T) < (U, V), but this
implies S C U C n/ as U is varying. Clearly this leads to a contradiction, since S Z n/ hold, because (S, T) is
old. So no new concept of K|C can be covered by a varied concept of K|C.

(vir) Let (A, B) be a varying concept of K w.r.t. C, i.e. varc(A,B) = (A,BU {n}), and (C, D) an old non-
generator concept, i.e. oldc(C,D) = (C, D).
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First, varc(A, B) < oldc(C, D) yields A C C and thereby (A, B) is a subconcept of (C, D). If there were any
other concept (X,Y) € B(K) such that (4, B) < (X,Y) < (C,D), then in case of an old concept oldc(X, Y)
would bebetweenvarc (A, B) and oldc(C, D), and in case of a varying concept respectivelly varc (X, Y) would
be between them. Both cases contradict varc (A, B) < oldc(C, D). So (C, D) covers (A, B).

Conversely, let (A, B) be a lower neighbor of (C, D). Then clearly varc (A, B) is a subconcept of old¢(C, D).
When a concept (X,Y) € B(K|C) exists that is between varc(A, B) and old¢(C, D), then obviously A C
X C C holds for the extents. In case of an old or varied concept this leads to a contradiction since the
concept oIdEl(X, Y) or varal(X, Y) respectivelly would be between (A, B) and (C,D). In case of a new
concept there is a generator concept (U, V) such that (X,Y) = newc(U,V) = (UNn/,VU{n}). Then
BU{n} > VU{n} =Y DD #nimpliesB DV D Dandthus (A4,B) < (U,V) < (C,D).By(A,B) < (C,D)
it follows that (U, V) equals (C, D), but this is a contradiction since no generator concept can equal any non-
generator concept. In summary varc (A, B) is a lower neighbor of oldc(C, D).

(viir) Whenever a generator (C, D) covers a varied concept (4, B) of K|C, the intent B contains the intent D.
Thenn € B D D % nyields B2 DU {n} D D. Hence (A, B) < newc(C,D) = (Cnn/,DU{n}) < (C,D),
and by (A, B) < (C, D) the varied concept (A, B) must equal the new concept newc(C, D). Clearly this is a
contradiction. No varied concept can thus have a generator concept as an upper neighbor.

(1X) Supposea varying concept (A, B) of Kw.r.t. Cand a generator concept (C, D) are given. Thenvarc(A, B)
(A,BU{n})and newc(C,D) = (CNn/, DU {n}) hold.
At first let varc (A, B) < newc(C, D), then A C CNn/ C Chold for the extents, hence (A, B) is a subcon-
cept of (C,D). Suppose there is a generator concept (X, Y) between them, then A C X C C and thereby
A= Ann/ € XNn/ C Cnn/ holds. This means varc(A, B) < newc(X,Y) < newc(C,D) and the new
concepts newc(X,Y) and newc(C, D) must thus be equal. As newc is a bijection, this implies the equal-
ity of (X,Y) and (C,D). Obviously this contradicts X C C. Now let (X,Y) be a varying concept of K
w.r.t. C between them, then A ¢ X C Cholds aswell. Hence A = Ann/ ¢ X = Xnn C Cnwuor
rather varc(A, B) < varc(X,Y) < newc(C, D) holds. As newc(C, D) covers varc (A, B), the varied concept
varc(X,Y) must equal the new concept newc(C, D). Contradiction! In summary, (A, B) < (C, D) and there
is no generator concept or varying concept between them.
Conversely, let (A, B) be a proper subconcept of (C, D), such that no generator concept or varying concept
exist between them. Then A C C holds for the extents and intersecting with the new attribute extent n/
yields A = Ann/ C CNnl. Hence varc(A, B) < newc(C, D) holds. Suppose they would not be neighbor-
ing, i.e. there is any concept of K|C between them. When varc(A4, B) < oldc(X,Y) < newc(C, D) holds
for an old concept (X,Y) € B (K), then BU{n} D Y O DU {n} holds for the intents. This leads
to a contradiction as n ¢ Y. When varc(A,B) < varc(X,Y) < newc(C, D) holds for a varying concept
(X,Y) € BE,(K), then BU{n} D YU {n} D DU {n} holds for the intents, and thus also B O Y D D,
ie. (A,B) < (X,Y) < (C,D). This is a contradiction. When varc(A, B) < newc(X,Y) < newc(C, D) holds
for a generator concept (X, Y) € ‘Bgen (K), thenanalogously (A, B) < (X,Y) < (C, D) yields a contradiction.
In summary, varc (A, B) must be a lower neighbor of newc(C, D).

(X) Let (A, B),(C,D) € BE,(K) be two varying concepts with (A, B) < (C, D). Then surely varc(A, B) <

varc(C, D) holds, as can be seen on the unchanging extents. If there were a concept (X, Y) of K|C such that
varc(A,B) < (X,Y) < varc(C,D), then BU {n} D Y D DU{n} holds,ie.n € Y and (X,Y) must thus
be a new or varied concept. If it were a varied concept, then (A, B) < varEl(X, Y) < (C, D) yields a con-
tradiction. If it were a new concept, then analogously (A, B) < newEl(X, Y) < (C,D) is a contradiction.
Eventually (X, Y) cannot be new or varied, and thereby such a concept cannot exist. This means varc (A, B)
and varc(C, D) are neighboring.
For the other way around, let (A,B) < (C,D) be varying concepts of K|C. Then B O D holds and so
B\ {n} D D\ {n}, which means var;'(4, B) < varc'(C, D). If a concept (X, Y) of K would exist such that
varEl(A, B) < (X)Y) < varEl(C, D), then A D X D C holds. This implies X C n/as X ¢ C C n/. So
(X,Y) must be a varying concept too, and (A, B) < varc(X,Y) < (C,D) would hold, in contradiction to
(A,B) < (C,D).

As an easy corollary we are now also able to describe the neighborhood of 8 (K) by means of the neighbor-
hood of B(K|C). This is summarized as follows.
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—| Corollarium: Neighborhood Transition from K|C to K i

The neighborhood relation of B (K) is divided into five parts:

BS_z(K) BE,(K) B, (K)
(1) (11)
BE(K)[ ) [ (v) (V)

Then the following statements characterize the neighborhood relation completely.
(1) Two old concepts are neighboring in 9B (K), iff they are neighboring in % (K|C):

4 (A,B) < (C,D) < oldc(A, B) < oldc(C, D)
(A,B),(C,D)eBS,(K)

(11) No old concept is a lower neighbor of any varying concept.

(111) A varying concept is a lower neighbor of an old non-generator concept, iff their corresponding
concepts of K|C are neighboring:

4 (A,B) < (C,D) < varc(A,B) < oldc(C, D)
(AB)eB, (K)
(C.D)eBS ¢(K)

(1v) Avarying conceptis alowerneighbor of a generator concept, iff the corresponding varied concept
and new concept are neighboring and furthermore no other old non-generator concept is between the
varied concept and the generator concept:

varc(A, B) < newc(C, D) and
\4 (A,B) < (C,D) & 2 varc(A, B) < oldc(X,Y) < olde(C, D)
(AB)EBG, (K) (X,Y)eBE  (K)
(CD)EB g, (K)

(v) Two varying concepts are neighboring, iff the appropriate varied concepts are neighboring:

(A,B) < (C,D) < varc(A, B) < varc(C,D)
(A,B),(C,D)eBG, (K)

Now we are able to completely describe the neighborhood relation of K|C by means of the cover relation of
K and vice versa. Especially when thinking of cover relations as binary relations encoded by matrices via the
isomorphism

P(X X Y) e 250Y
XXY—2

the cover relations can be determined from each other by simply copying some parts, deleting some parts,
and . For this purpose the cover relation of B (K) and also the cover relation of 8 (K|C)
are split up in components
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Bo-g(K|C) Bgen(K|C) Bnew (K|C) Buar(K|C)

(A,B)€Bar (K|C)

BG-g(K) Bgen(K) B (K)
c Bo-g(K|C) o
%oﬁg( ) =old
<old @ S Bgen(K|C)
Bgen (K)
gen X
Bnew (K|C) @ X @
%\(/:ar(K) =<v:o <var
%var(lqc) =v:o @) <var
and the can be computed via
(A,B) <y (C,D) and
\4 varc' (A, B) genc(C,D) A (A,B) < (X,Y) < oldcgenc(C, D)

(C,D)eBnew(K|C)

(X,Y)eBo-g(K|C)

(A,B) < (C,D)and
newc (A, B) newc(C,D) < A,B) < (X,Y) < (C,D
(A,B),(C,D)eB &, (K) (X,Y)€e igen(K)( ) <X Y) < )
(A,B) < (C,D) and
v varc(A, B) newc(C,D) & A (A,B) < (X,Y) < (C,D)
(A,B)eBG, (K) (X,Y) B, (K)UBG, (K)
(CD)eBgn(K)

3.1.5 Updating the Concept Labels

In this section the connection between attribute and object concepts of K and those of K|C are investigated.
At first, these special concepts of K|C can be expressed by means of the next lemma.

—| Lemma: Object Concepts and Attribute Concepts of K|C i

The attribute concepts of K|C can be described via
(!, mIT)

.uK|C(m) = {(ml, m[] U

Hk|c (n) =
The object concepts of K|C are given by

(g8
7K|C(g) = {(811 N n][g[

(!, WU {n}).

if m ¢ nl
{n}) ifmlcnl
ifgnl
U{n}) ifgenl

APPROBATIO Some simple manipulations by means of Lemma: Common Rows and Common Columns in

Apposition Context 2.11 yields

VK\C = (m IU] m19)) IUI)) _ (mI,mI(IU])) _ (mI,mH Um”)
(ml,m!) = ux(m) ifn&mifEm! ¢ n
(m! m” U {n}) ifnemliftm' cnl
pkic(n) = (n9D, 010Dy = (), W] IODY = (], 0] U {n})
ric(g) = (NI, g9y = ((g" ugh WD, gt gl) = (1 ngll, ' Ug)
(g",¢") =x(g) ifnggliffgfniffgdnl

_J"nadlgh =
@, gl u{n})

If vk (g) is a varying concept, i.e. gI I'C w, then clearly ¢
When g € n/, then Tk|c(8) =

ifnegliffgIniffgen’

€ n/ holds. Hence, Yk|c(g) = varc(rk(g)) holds.

(g nnl, gt U {n}) mustbe a new or varied concept since its intent contains
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n. Furthermore, when 7k (g) is then an old concept, i.e. g!! ¢ n/, then ((¢' U {n}) \ {n})! = ¢!l # ¢''nn/
holds, hence it must be a new concept with its generator genc(7k|c(g)) = ( ¢, ¢l = qyk(g). Thus g X nis

always true when 7k (g) is an old non-generator concept. In summary the following corollary is gained.

—| Corollarium: Transition of Object Concepts and Attribute Concepts i

The object and attribute concepts of K|C can be determined from those of K by the following equations:

\V/ (m) _ O|dc(“uK(m)) if yK(m) c %old(K)
mem ! KIC varc(ui (m)) if pxc(m) € BG,(K)
oldch( ) ifx(g) € 93& (K) or (7k(g) € BEn(K) and g & 0
YV melg) =  newel(1x(s)) i rk(g) € B (K)and g €
VarC(’YK g)) if ’YK(g) S %var(K)

When 7 is not redundant, then by Corollarium: Largest Generator Concept 3.12 it follows that

.MK|C(n) = neWC<Tgen>/

otherwise pigc(n) = varc(pk (m)) holds when m! = nJ, or more generally

VK\C(”) = Varc(”Ir ”H)

Conversely, due to the bijectivity of the maps oldc, varc and newc, the object and attribute concepts of
K can be computed from those of K|C by the following equations:

V ok (m) = {O|d (yK‘C

(
meM varc (pxjc(m))  if pc
oldc’ (ke (8))  if rkic(8) € Boa(K|C)
ggG x(8) = genc(vK\c(g)) if Yk|c(8) € Bnew(K|C)
varc! (1x1c(8))  if rkic(8) € Buar (K|C)

m))  if pxjc(m) € Boia (K[C)
(m) € Buar(K|C)

Now we are able to update the concept labels for the transition from K to K|C and vice versa.

If n is redundant, then add # to the attribute labels of the concept node whose extent equals the attribute
extent /. The object labels and all other attribute labels does not change.

Otherwise when # is not redundant, then add # to the attribute labels of the new concept node that is gen-
erated by the greatest generator concept node Tgcen. No other attribute labels change. The object labels of
a generating concept node are distributed between the embedded old generator concept node and the gen-
erated new concept node. The object labels contained in the new attribute extent n/ are precisely the object
labels of the new concept node, and the remaining object labels are precisely the object labels of the old
generator concept node.

According to Corollarium: Concept Transition from K to K\ C and vice versa 3.8 the concept node sets 91(K)
and N(K|C) are subdivided into the old concept nodes NS, (K) and M4 (K|C), the varying concept nodes
NS, (K) and the varied concept nodes My,r(K|C), and finally the generator concept nodes ‘ﬂgen (K) and the
new concept nodes NMpew (K|C).

Summing up, the following isomorphism are given for the concept node transitions from K to K|C and vice
versa, by extending the bijections old¢, varc and newc from Corollarium: Concept Transition from K to K|C
and vice versa 3.8.

NG (K) = Noia (K|C)

(A/ B, A/\/ BA) if ( ) g %gen (K)

A,B,A),B),) —
( A Ba) {(A,B,AA\n],B/\) if (A, B) € B, (K)

Eﬁ B; ¢ %gengxig fi (A,B, Ay, B,) ( |
B) € Bgen(K . . < (A,B,A,,B
and (C, D) = newc(oldz1(4,B)) (4B AU CLB) v
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Noar(K) < Nyar(K|C)
varc: (A,B,A/\,B/\) — (A,BU{H},AA,BA)

(A,B\{n}, Ay By) <+ (A B, Ay By)

mgen (K) — mneW(K|C)

(Annl,BU{n}, Aynnl,B))  ifnl ¢ Aiff (A,B) # TG
(n),BU{n}, Axnin,ByU{n}) ifn) C Aiff (A, B) =T,

newc:

(A/ B/ A/\/ B)\) = {

Although not needed for practical purposes, also the generator concept nodes can be computed from the new
concept nodes as follows.

Mnew (K|C) < NG, (K)

(C,D) = genc(A, B)

andn/ ¢ C (iff (C,D) # TS.,)
(C,D) = genc(A, B)

andn/ C C (iff (C,D) = Tgen)

genc: ((B\{n})!, B\ {n}, Ay UCy, By) if
© (A,B,A\,By) —

(B\{n})!,B\{n}, AxUCy,By\ {n})

3.1.6 Updating the Reducibility

When 7 is redundant, then there is no change in the set of the irreducible attributes. Possibly a previously
irreducible attribute m in K can become reducible in K|C. This can only happen for attributes m € M, whose
attribute extent m! is a superset of /. A (previously irreducible) attribute m € M is reducible in K|C, iff

m! :n]ﬂ ﬂ o!
0eM

olom!

hold. A more sophisticated answer gives the next theorem. Also the irreducible attributes can be detected
in the concept lattice. An attribute m is K-irreducible, iff its attribute concept ik (1) has exactly one upper
neighbor (yx (m))*. Then it holds that

) = A AB=| N A= 0o
(A,B)eB(K) A€Ext(K) nIeMI
p (m)<(A,B) mlcA mlcn

— ({remfmt et} ) = (i foem|ul = }) ),

sincem! C n! & n e m!land n! £ m!.

—| Theorema: Attribute Reducibility Update i 3.21

(1) Each K-reducible attribute is also K|C-reducible. A K-irreducible attribute m is K|C-reducible, iff
ux(m) € BE,(K) and (ux(m))* € %Sﬁg(K), and furthermore at least one superconcept of (px (m))*
is a generator concept.

(11) Each K|C-irreducible attribute from K is also K-irreducible. A K|C-reducible attribute m € M is
K-irreducible, iff jig|c(m) € Bvar(K|C) has exactly one old upper neighbor w and overthis only new
upper neighbors, whose generators are superconcepts of w.

APPROBATIO (1) First, if m is a K-reducible attribute, then the attribute extent m! can be obtained by an
intersection of attribute extents (,,c5 m! with m ¢ B. Obviously then also

w19 =l = () m! = () m1)
meB meB

holds, hence m is K|C-reducible. Second, let m be a K-irreducible attribute.
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(=) Suppose m is K|C-reducible. If ux (1) were an old concept, then pgc(m) = oldc(pk (m)) and the set
of upper neighbors does not change according to Theorema: Neighborhood Transition from K to K|C 3.17.
Thus, the irreducibility of m in K implies the irreducibility of m in K|C. Contradiction! Hence, the attribute
concept jix (m) must be varying. By Corollarium: Concept Transition from K to K|C and vice versa 3.8, there
areno other old or varied upper neighbors of ik (m). If (ux (1)) * would be a varying or generating concept,
then

varc((ux(m))*)  if (pxc(m))* € B (K)
newe ((pxc(m))*)  if (uc(m))* € B, (K)

holds. Let (A, B) € BE.,(K) with (A, B) # (ux(m))*, such that newc(A, B) covers pk|c(m), then py (m)
must be a lower neighbor of (A, B) and there is no varying or generating concept between them. So g (m) <
(ux(m))* < (A, B) must hold, but this is a contradiction. In summary, varc ((pux (m))*) or newc ((puk(m))*)
respectivelly must be the unique upper neighbor of j (), and m would be K|C-irreducible. Contradic-
tion! Hence (uk(m))* must be an old non-generator concept. Finally if there were no generating super-
concept above (pk(m))*, then oldc((uxk (m))*) were the only upper neighbor of pg|c(m), i.e. m would be
K|C-irreducible. Contradiction!

pk|c(m) = varc(pux (m)) < {

(<=) Suppose the attribute concept yk () is a varying concept and its unique upper neighbor (ux (m))* is
an old non-generator concept that has at least one generator superconcept. Denote the minimal ones of these
generator superconcepts by ¢1, o, ..., Cx. Then the following structure on the left side can be found within
the concept lattice of K. Neighboring concept nodes are connected by straight line segments and comparable
concepts are connected by zig zag line segments.

TC olde(TS,)

gen

gen

O|dc((:1)‘ neWC(Tgen) oldc(Gk)

newc (1) 0|dc((ﬂf<(m))*) newc (k)

.”K|C(m)

©

px (m) varc (pk (m))

Then according to Theorema: Neighborhood Transition from K to K|C 3.17 (1X) the new concepts newc({1),
..., newc(¢x) must cover the varied attribute concept varc(pk (m)). This is due to the fact, that no varying
concept can be greater than an old concept, and the generators {y, . . ., {x are minimal. Furthermore (ug (m))*
is the unique upper neighbor of yk (), hence there cannot be any varying or generating concept between
pk (m) and each ¢;. In summary, the transition from K to K|C changes the concept lattice structure as dis-
played in the right diagram. Obviously p|c(m) = varc(px (m)) has more than one upper neighbor, hence
m is K| C-reducible.

(11) Letfirstm € Mbe a K|C-irreducible attribute. Then m must also be K-irreducible, as otherwise m were
K|C-irreducible by (1). Second, let m € M be K|C-reducible attribute.

(=) SupposemisK-irreducible. Then pg|c () mustbe a varied concept. Otherwise yx (m) = oIdE1 (nk|c(m))
were an old concept and this is a contradiction to (1). If yK‘C(m) had more than one old (and thus non-
generating) upper neighbor in B8 (K|C), then the according old concepts in B (K) would cover u (). This is
a contradiction to the K-irreducibility of m. So g (m) has exactly one old upper neighbor w € B,4(K|C),
all other upper neighbors must be varied or new concepts. If a varied concept covers pig|c (1), thenits appro-
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priate varying concept covers ik (1) as well. Again, thisis a contradiction to the K-irreducibility. So all other
upper neighbors must be new concepts. If there were any new concept v € Bpew (K|C) whose generator ¢

is not a superconcept of w, then juk (1) would be covered by old"(¢). Then px (m) had at least two upper
neighbors and this contradicts the K-irreducibility.

(«=) Suppose pig|c(m) varies and has exactly one upper neighbor w and overthis only new upper neigh-
bors v1, ..., v, whose generators are greater than w. Then choose ¢; := genc(v]-) and the same structure
as in the right diagram above occurs, and by Corollarium: Neighborhood Transition from K|C to K 5.18
old Y(w) = (ux (m))* must be the unique upper neighbor of i (). This means m is K-irreducible.

Updating the reducibility of the objects is not as easy as for the attributes. For both directions of transition,
previously reducible objects can become irreducible, and also previously irreducible objects can become re-
ducible.

—| Theorema: Object Reducibility Update from K to K|C i

(1) Let g be K-reducible. Then g is K|C-irreducible, iff one of the following statements hold:

(A) 7k(g) is a generator concept with ¢ & n/, and all lower neighbors are varying concepts.

(B) vk (g) is a generator concept with ¢ € 1/, and exactly one lower neighbor is a varying or gener-
ator concept.

(11) Let g be K-irreducible. Then g is K|C-irreducible too, iff one of the following statements hold:

(A) vk(g)is an old non-generator concept.

(4) 1k(8)1

(B) vk(g)isa varying concept.

(C) vk (g) is a generator concept, and its unique lower neighbor is a varying concept.
)i

vk (g) is a generator concept, and its unique lower neighbor is an old concept, and g € 7/, and
there 1s elther exactly one varying concept 8, such that

B < 7k(g) and A B<a<k(g),
EBG,, (K)UBG, (K)

or exactly one generator concept v, such that

v < yk(g) and A v<a<qk(9).
aEBE, (K)

APPROBATIO (1) Let g be K-reducible, i.e. Yk (g) has as least two lower neighbors, denoted by ¢, . . ., G-

1x(8)

¢1 Ck

If vk (g) is a varying or an old non-generator concept, then according to Theorema: Neighborhood Transition
from K to K|C3.17 no structural changes in the set of lower neighbors occur, and thus g must also be reducible
in K|C. (Please remind, that then g |c(g) equals varc(vx (g)) or oldc(7x (g)), respectivelly.)

Now let 7k(g) € Bgen(K). First, suppose ¢ & n/. Then Corollarium: Transition of Object Concepts and
Attribute Concepts 3.20 yields yg|c(g) = oldc(7k(g))- If&; € B, (K), thenoldc (&) < Tk|c(8)- Otherwise,
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if §; € BE, (K), then

varc(&;) < newc(7k(g)) < Ykc(8)-

Thus, if all §; are varying, then newc (7K (g)) is the unique lower neighbor of g |c(g), i.e. g is irreducible in
K|C. Obviously 7k|c(g) must have more than one lower neighbor in all other cases (when at least one ¢; is
old), i.e. g is then K|C-reducible as well.

Second, suppose 1k (§) € Bgen(K) and ¢ € n/. Then Corollarium: Transition of Object Concepts and At-
tribute Concepts 3.20 yields yk|c(g) = newc(7k(g))- Furthermore, g c(g) has exactly one lower neighbor
(hence g is K|C-irreducible), if exactly one ¢; is varying or a generator.

oldc(7k(g)) oldc(7k(8))

newc(7k(8))
or
&1 Tk|c(8) Ck &1 TK|c(8) G Ck
G newc(;)

Clearly ¢ must be reducible in K|C in all other cases.

(11) Let gbe K-irreducible. Then vk (g) has exactly one lower neighbor ¢ := (yk(g))*. If yk(g) isa varying
or an old non-generator concept, then again no structural changes occur in the set of lower neighbors. Hence
g isalsoirreducible in K|C then.

Solet vk (g) € SBgen (K). First, suppose ¢ is varying. The local changes in neighborhood structure are de-
picted below.

oldc(7x(8))

©

”) Tee()ifg & n
|
newc (YK (8))
—

Txic(g)ifg e n
®
¢

varc(§)

Clearly, when g ¢ n/, then Yk|c(8) has exactly one lower neighbor newc(7x(g)), i.e. g is K|C-irreducible.
Otherwise, if ¢ € n/, the object concept of g in K|Cis newc (7K (g))- Then the varied concept varc (&) must be
the unique lower neighbor of the new object concept, since:

e There cannot be any generator under a varying concept, thus 7k (g) must be a minimal generator.
Hence, no new lower neighbors of g |c(g) exist.

e If there were any other varied concept &1 below vk c(g), i-e. &1 < 7Tk|c(g), then varE1 (&1) < rk(9)

and there is no generator or varying concept between them. Also this implies varc' (&) < & < 7k (g) since &
is the only lower neighbor, but this is a contradiction as ¢ is varying.

In summary, g is K|C-irreducible too, when vk (g) is a generator concept and its unique lower neighbor is
varying.
Second, suppose ¢ is old, then the neighborhood changes locally as shown below.
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1k () oldc(7k(8))

Q

Yk|c(8)if §°¢ ”]
— \

neWC( 7x(8))

4 OIdC(é ,YK\C Ifg enl

Obviously, g is K|C-reducible for g ¢ n/. Otherwise, when g € n/, one has to look on the lower neighbors of

the new concept i c(g) = newc(7k(g)). Atfirstit can only exist new or varied lower neighbors of g c(g)

and according to Theorema: Neighborhood Transition from K to K|C 3.17 it holds

newc(v) < 1kc(g) @ v<7k(gland A v<a<k(Q)
B, (K)

and varc(B) < 1k|c(g) € B < 1k(g) and A B<a<yk(g)
R EB G (K)UBG, (K)

So, when speaking graphically, we gather the following situations depicted below.
7x(8) 7x (%) oldc(7k(8))

© ©

neWC('r (£))
‘ z or ‘ g :>
oldc (& 'YK\C

A 7 / \
‘J‘e%gen (K)U%\(/:ar(K) ‘Xe%gen (K)

B v varc(B newc (v

g is K|C-irreducible, iff the new object concept yk|c(g) has exactly one lower nelghbor, ie. iff there is only

one B or v as above. In all other cases ¢ must be reducible in K|C.

—| Theorema: Object Reducibility Update from K|C to K i

(1) Let g be K|C-reducible. Then g is K-irreducible, iff one of the following statements hold:
(A) 7vk|c(8) is a generator concept, and 7| (g) has exactly one old lower neighbor B, and further-
more for each varying lower neighbor ¢ of newc (K (g)) it holds that § < B.

(B) vk|c(g) is a new concept, and the appropriate generator above 7k c(g) has exactly one old
lower neighbor B, and furthermore for each varying lower neighbor ¢ of yk|c(g) it holds that & < g

(©) 7x|c(g) isanew concept, and the appropriate generator above 7k c(g) has no old lower neigh-
bor, and furthermore there is exactly one varying lower neighbor of yx|c(g)-

(11) Let ¢ be K|C-irreducible. Then g is also K-irreducible, iff one of the following statements hold:

is a varying concept.

is a generator concept, and its unique lower neighbor has exactly one lower neighbor.

)
)
)
)

g) is anew concept, and its generator has no old lower neighbor.
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3 Incremental Updates for Concept Diagrams

(E) vk|c(g) is a new concept, and its generator has exactly one old lower neighbor f, such that the
unique lower neighbor « < 7k |c(g) is a subconcept of .

APPROBATIO (1) Let g be K|C-reducible. The statements (A) and (B) hold, since there are no structural
changes in the set of lower neighbors of each old non-generator or varied concept. Now let g c(g) be a
generator concept. Then vk (g) = old ! (7kic(g))and g ¢ n/ hold. 7k|c(g) must have at least one old lower
neighbor besides newc(7k(g)). Obviously then g is K-irreducible, when 7k c(g) has exactly one old lower
neighbor B, and furthermore for each varying lower neighbor ¢ of newc (yk (g)) there is an old non-generator
concept &, such that § < a < 7g|c(g), ie. ¢ < & < Band thus ¢ < B, holds. This can be seen with the
following picture.

’YK\C(g)

Finally suppose 7k|c(g) is anew concept. Then vk (g) = genc(7k|c(g)) and g € n/ hold. By the same argu-
ments, we conclude that vk (g) can only have exactly one lower neighbor, when the appropriate generator
above yk|c(g) has exactly one old lower neighbor B, and furthermore for each varying lower neighbor ¢ of
Yk|c(g) itholds that§ < B, or when the appropriate generator above y|c (g) has no old lower neighbor, and
furthermore there is exactly one varying lower neighbor ¢ of 7k (g)-

(11) Let ¢ be K|C-irreducible. The statements (A) and (B) hold, since there are no structural changes in the
set of lower neighbors of each old non-generator or varied concept.
When 7| (g) isa generator concept, then it can only have newc (7K (g)) asits unique lower neighbor. Clearly
then g is K-irreducible, when newc (yk (g)) has exactly one (varying) lower neighbor.
Last but not least, suppose Yk|c(g) is a new concept with its unique lower neighbor a. If its generator
oldc(genc(7k|c(8))) has more than one old lower neighbor in the concept lattice of K|C, then also 7k (g) =
genc(7k|c(g)) would have more than one lower neighbor and ¢ would thus be K-reducible. So suppose that
there is no old lower neighbor, then ¢ must be K-irreducible, as then varg !(a) is the unique lower neighbor
of 7k (g). If there is exactly one old lower neighbor B, then g is K-irreducible, if « is a subconcept of B.

3.1.7 Updating the Arrows

—l Lemma: Up Arrows in K and K|C i

For an object ¢ € G and an attribute m € M the following statement hold:

g 'xkm if ml ¢ nl
-
8 /e m {g/‘K mandgenl ifm! Ccnl

APPROBATIO This follows easily from

§ /xjcm < g ¢ mand S’M(mlc;alége;?l) and (m! c n/ = g en).
P

g/ xm
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3.1 Insertion & Removal of a single Attribute Column

We conclude, that up arrows do not change in columns m! which are no subset of the new column n/.

—| Theorema: Up Arrow Transition i

Letg € Gand m € Msuchthatm! C n/.
(1) For the arrow transition from K to K|C it holds:
g/‘mcm@g/‘KmandgenI.

(11) For the arrow transition from K|C to K it holds:
Ifg € n/, then

g/‘Km(:)g/‘lqcm.
If g ¢ n/,theng ' mholds, iff one of the following statements hold:

(A) misK|C-reducible, and pg|c (1) € Byar(K|C) has exactly one old upper neighbor w and over-
this only new upper neighbors, whose generators are superconcepts of w, and furthermore v (g) isa
subconcept of w.

(B) m is K|C-irreducible, ((pg|c (1)) € Bnew(K[C) and 7k |c(g) € Boia(K|C) is a subconcept of
the generator oldc (genc ((pk|c(m))"))-

APPROBATIO  (I) by the previouslemma.

(11) In case ¢ € 1/ this follows from the preceding lemma as well. Suppose ¢ ¢ n/. Then Corollarium:
Transition of Object Concepts and Attribute Concepts 3.20 yields

Tc(8) = {oldcm(g)) 7(g) € B (K)
ME = arcne(e)) iF () € B0

(A) Let m be K|C-reducible. g g m can only hold, when m is irreducible in K, i.e. when pyc(m) €
Byar (K|C) has exactly one old upper neighbor w and overthis only new upper neighbors, whose generators
are superconcepts of w, according to Theorema: Attribute Reducibility Update 3.21. Then oldél(w) is the
unique upper neighbor of yik (). Furthermore, yk|c(g) < w holds, iff Yk (g) < (ux(m))*,ie. iffg g m.

(B) When m is K|C-irreducible, then m is also K-irreducible by Theorema: Attribute Reducibility Update
5.21. Furthermore, ¢ ¢ n/ implies ¢ Xk|c ™M, i.e. vk|c(8) isno subconcept of (pg c(m))*.
If (ng|c(m))* is an old concept, then oIdEl ((nx|c(m))*) is the unique upper neighbor of

rc(m) = {o'dclwxc(m)) f igc(m) € Baig (KIC)
Var61<yK|C(m)) if .uKlC(m) € ngar(K|C)

Then 7k (g) is a subconcept of (ux (m))*, iff 7k c(g) is a subconcept of (pig|c(m))*. As this cannot occur ac-
cording to the preconditions, g X m must hold. If (y|c(m))* is a varied concept, then varc 1 ((nxjc(m))*)
is the unique upper neighbor of jx (m) = varE1 (Mk|c(m)). Then vk (g) is smaller than (ux (m))*, iff vk c(g)
is a subconcept of (uk|c(m))*. Thus, g X m as well in this case.

(mxjc(m))* (hx (m))*

O O

7K|C(8) — 1k (8)

VK\C(m) px (m)
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3 Incremental Updates for Concept Diagrams

If the unique upper neighbor (g c(11))" is a new concept, then according to Corollarium: Neighborhood

Transition from K|C to K 3.18 genc ((pk|c (m))*) mustbe the unique upper neighbor of p (1) = varg! (nk|c(m)).
Furthermore vk (g) can only be a subconcept of (uk (m))*, if itis an old concept and a subconcept of the gen-
erator. (If vk (g) would be varying and smaller than the generator, yk|c(g) must be smaller than the new
generated concept as well, in contradiction to the preconditions.)

oldc(genc((ux (m))*))
O
(px(m))*
(nxic(m))* O

©

)

’YK\C(g)

7x(8) px(m)
©
HK|C (m)
In summary, g "'k m holds in this case, iff 7g|c(g) is an old concept and smaller than the generator of the
upper neighbor of pig|c(m).

Due to a lack of time, the arrow transition from /" to /" and vice versa remains an open problem in this
document.

3.1.8 Updating the Seed Vectors
Diagram Transition from K to K|C

If the new attribute 7 is not redundant in K|C, a new seed vector for # has to be chosen. Before this, check
if some of the old attributes of K become reducible in the updated context K|C by means of Theorema: At-
tribute Reducibility Update 3.21 and set the appropriate seed vectors to the null vector. Then choose a new
seed vector o for n. This can be done by applying a quality metric, calculating an appropriate heatmap for
the new attribute concept vk c () and selecting a best position. In the end, calculate the positions of the new
concepts by shifting the generator positions by ¢ and modify the positions of the varied concepts by shifting
their positions by o

Diagram Transformation from K|C to K

When the removed attribute n was not redundant in K|C, its appropriate seed vector has to be removed from
the seed map. Also, some of the remaining previously reducible attributes in M can become irreducible in K
by Theorema: Attribute Reducibility Update 3.21, and a new seed vector has to be introduced for them.

3.1.9 Complete IFOX Algorithm

The following pseudocode algorithm describes the update process for attribute additive labeled concept
diagrams. The algorithm is called TFOX.

Adding a new column C to a context K

For a formal context K and a new column C the addition of C to K can be done in several steps: Firstly,
determine the partition of the set of all formal concepts into the old concepts, varying concepts and genera-
tor concepts. Then update the formal concepts according to the mapping oldc, newc and varc as defined in
Corollarium: Concept Transition from K to K|C and vice versa 3.8 or Corollarium: Concept Transition from
K to K|C and vice versa 3.8 respectivelly. Also, the labels of the formal concepts are updated. This again is
no expensive operation, as only one concept node can get a new attribute label (namely the supremum of all
generators, if there are any), and object labels are pushed downwards at the border between generating and
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3.1 Insertion & Removal of a single Attribute Column

non-generating formal concept nodes.
Input: N(K), C

for (N = (A,B, A, By) € M(K))
if (A ¢ nl)
if (Ann/)l =B)
Neen (K) + U{N}
else
NS¢ (K) < U{N}
end if
else
NG (K) + U{N}
end if
end for

for (N = (A, B, Ay, By) € NS, (K))
N(K|C) + U{(A,B,Ay\n/,B,))}
if (n/ c A)
N(K|C) + U{(n/,BU{n}, Axnnl,ByU{n})}
else
N(KIC) « U{(Ann/,BU{n}, Ayxnn/,B,)}
end if
end for

for (N € ‘ﬁgﬁg(K))
N(K|C) + U{N}
end for

for (N = (A, B, A),By) € NG, (K))
N(K|C) + U{(A,BU{n}, A, B,)}
end for

Output: N(K|C)

The first for loop is the complexest part. The for loop runs |B(K)| times. The evaluation of the condition in
the first if statement needs at most |G| operations. Finally, the evaluation of the condition in the second if
statement needs at most |G| - | M| operations for the computation of (A N n/)! and at most 2 - |[M| operations
for the equality check. In summary at most |B(K)| - (|G| + (|G| - [M| + 2 - |M|)) operations are necessary,
hence the worst case time complexity is

O(IBK)[- (|G| + (|G| - [M[ +2- [M]))) = O(|B(K)] - |G| - [M]).

In the second step update the neighborhood relation for the updated set of formal concepts, as described in
Theorema: Neighborhood Transition from K to K|C 3.17. There are subrelations (or better said: “blocks” in
the binary matrix describing the neighborhood relation) that does not change, some subrelation blocks can
be copied onto a new subrelation, and other not very difficult and cost-intensive operations. In the last step
the positions of the formal concepts are updated by introducing a new seed vector for the new attribute n,
if it is irreducible w.r.t. M, and furthermore for an layout optimization also seed vectors are removed whose
attributes are reducible w.r.t. n.

Removing a column C from a context K|C

The update process is done in a similar way as for adding C. First, determine the partition of the concept
node set of K|C into the old, varied and new ones. By means of them then calculate the concept node set of
K.

Input: (K|C)
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for (N = (A, B, Aj,By) € N(K|Q))
if (n & B)
| Noia (K|C) < U{N}
(B {n})! = A)
Mvar(K|C) «+ U{N}
else
Mnew (K|C) + U{N}
end if
end if
end for

for (N1 € Dnew (K|C))
for (N = Ny)
if (N2 € Mg (K[C))
Ngen (K|C) <~ U{Nz}
newc(Nz) < Np
end if

end for
end for
No-g(K|C) < Noig (K|C) \ Ngen (K[C)

for (N € 9My-g(K|C))
N(K) « U{N}
end for

for (N = (A, B, Ay, B)) € Ngen(K|C))
(C, D, C,, D)\) — newC(N)
‘ﬁ(K) —u {(A, B,A/\ U C)u B/\)}
end for

for (N = (A, B, A), B)) € Myar(K|C))
; f‘ﬁ(K) —U{(A B\ {n}, A\ B))}

Output: N(K)

By similar arguments as above, the worst case time complexity for the first for is O(|B(K)| - |G| - |[M|). The
second for loop for the determination of the generator concepts cycles at most |B(K)| - |B(K)| times, so in
summary, the worst case time complexity is

O(IBXK)[ - (IB(K)[+ G| - [M])).

Second, update the neighborhood matrix by removing all columns for new concepts and update one block,
viz. determine which generators cover varying concept nodes. Finally update the seed map, if C was not re-
dundant. Possibly then some remaining attributes become irreducible, see Theorema: Attribute Reducibility
Update 3.21 for details. For these newly irreducible attributes add an appropriate seed vector, that can be
found by a search for a best point within a heatmap w.r.t. some chosen quality metric.

3.1.10 An Example: Stepwise Construction of FCD(3)

Consider the context of the free distributive lattice FCD(3) with three generators x, y, z:
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3.1 Insertion & Removal of a single Attribute Column

N

>

SRR

> > (> >

RIR|IR|> w |
XAYNZ|| X[ X]|X|X X | X
YNz X | X | X | X X | X
XNz XX |X|X|[X X
XAy X | X | X | X|X|X
z X X | % X
y X | X X X
X X | X | X X
-

With the preceding algorithm its concept lattice is constructed stepwise. At first we add all objects to an
initially empty context. (As we do not have an update algorithm for new objects at the moment. This is a
future task and can be derived from the update algorithm for new attributes due to the duality of objects and
attributes in concept lattices.) The resulting context diagram only has one node:

O

XAYANZ,XNY,xNz,yN\Nz,x,Y,2, T

In the ongoing text the attributes are added to the context one after another. Please remark that generating
nodes are always tagged by a pentagon @ , modified nodes are marked with a cloud @ , new nodes are

highlighted with a star @ and old non-generator nodes are not tagged O . Furthermore objects which
change their positions are colored in red and analogously new or moved attributes are hued with blue.

Now the first attribute x VV y V z is added to the context. Its extent consists of the objects x Ay Az, x Ay, x A
z,¥ A z,x,y and z. As the single node contains all objects, and the new attribute extent not, it must be an old
node. Furthermore as actually there are no attributes in the context the intent is empty, so the closure of the
intersection of its extent and the new attribute extent must also be empty. This means they are equal and so
the single node is a generator.

©

© xVy vz MVAIV
XANYNZ,XANY, XNz, yNz,x,Y,2, T — @

Next, the attribute x \V y is added.

—QO

Q x

1
xVyVz

©

XANYNZYNZ,XANZ,XNY,Z,Y,X

<
<
<
N

Iz
©

<IN

<

@
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|
xVyVz

=
<
<O
N
_|

@
IT<

=
<WI
<

©)

XANYNZYNZ,XANZ,XNY, Y, X

1
xVyVvz
yVvVz
xV
xVz ¥ =

s

XNYNzZ, YNz, x Nz, x Ny, x

XANYNZ,YNZ, XNz, XNy
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3.1 Insertion & Removal of a single Attribute Column

XNYNz,x Nz, x Ny

XANYNz,x Ny
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3 Incremental Updates for Concept Diagrams

XANYANz

3.2 Setting & Deleting a single cross

Another question that occurs when working with a formal context is how the concept lattice and the corre-
sponding line diagram change when a single cross is added or removed to its incidence. In other words, how
can a line diagram of B(G, M, I U {(g,m)}) be computed from an existing line diagram of B(K)? Anyway,
the intents of (G, M, I U {(g,m)}) are always of the form A’ or A! U {m} for a suitable object set A C G. This
can be seen as follows:

{(gm)} —
A {nEM’hGVAhInorh{(g,m)}n}

= (A\{gh ' n({g} U {m})
=AU ((A\{gh)'n{m})
JATU{m} ifme (A\{g}) andm ¢ Al
) Al ifm g (A\ {g}) orme Al
holds for every object set A C G. Dually each extent of (G, M, I U {(g,m)}) has the form B! or B! U {g} fora
particular attribute set B C M. This is due to

BlU{(gm)} _ B'U{g} ifge (B\{m})andg ¢ B

B! ifg & (B\{m}) orgeB!

for arbitrary attribute sets B C M. In (GW99) there is a first clue on page 128: The number of concepts can
increase or decrease; an estimate by SKORSKY states

3 IBK)| < [B(G,M,TU{(gm)})| <3 |BK).
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3.2 Setting & Deleting a single cross

The concept lattice grows whenneither g /“ mnor g ,/* mhold, as then I is a closed subrelationof I U { (g, m)}
and B(K) is thus a complete sublattice of B(G, M, I U {(g,m)}). So one just must determine the concepts
of (G,M,I1U{(g,m)}) that are not already concepts of K. This can be done by computing all intents of
(G, M, 1U{(g,m)}) which have the form A U {m}.

The concept lattice shrinks when both ¢, m and g ,* m hold. Then g does not have m, but g is contained
in the extent of every proper superconcept of ym and dually m is contained in the intent of every proper
subconcept of vg. In other words, the object concept g is no sub concept of the attribute concept ym and
for all concepts (A, B) € B(K) with um < (A,B) < 7githolds that yg < (A,B) < um. Clearly this is
a contradiction to yg £ um and thereby either ym must be a lower neighbor of vg or yum cannot be a sub-
concept of vg. So either yg covers ym or both concepts are uncomparable. If they are neighboring then they
are simply merged in the transition from B (K) to B(G, M, I U {(g,m)}). This can be seen as follows: From
(m!, m!") < (g'!, ¢") it follows that ¢!’ N m! = m!. Furthermore

L EmY — il (g} = (1 Am!) U {g} = IO{EmDIO{(gm))

and so both the object concept of g and the attribute concept of m equal in (G, M, I U {(g,m)}). No other
concepts are affected.

The other cases remain for future work. For practical applications when visual animated transitions are
desired one can use the complete algorithm from the preceding section to firstly remove the concerning at-
tribute column, secondly modify it and thirdly add it again to the underlying formal context. Also one could
calculate a transition algorithm by means of composing the preceding algorithm.
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The common way of visualizing a formal context is done by computing all formal concepts, constructing the
neighborhood relation of the formal concepts and then layouting the given structures. Unfortunately this
leads to hardly readable diagrams for datasets of at least a medium size (more than 50 formal concepts). Thus
a technique (or better many techniques) for a interactive exploration of a formal concept lattice is neccessary.

4.1 Iceberg Lattices

A simple way to achieve an interactive navigation through a formal concept lattice could be done by display-
ing the top-most formal concept (G, G!) and then enable the user to show the lower neighbors of a formal
concept by clicking on a already displayed formal concept. As a consequence the user firstly sees the largest
formal concept, i.e. the formal concept with all objects from the context and then the user can go down in the
concept lattice to see smaller formal concepts with less objects but more attributes involved. Such a technique
already exists and is called Iceberg-Lattices, please see (Stu02).

4.2 Alphalceberg Lattices

There is a way to generalize these Iceberg-Lattices to have not only a down-oriented view from the top-most
concept and its lower neighbors, but also from intermediate formal concepts that rise from a given classi-
fication of the objects into groups. Initially each group induces a formal concept node in the line diagram
and then the user can go down from these grouped formal concepts. This can be seen as a multiple Iceberg-
view: from each grouped formal concept only some of child formal concepts are displayed, that fulfill certain
criteria. See a formalization in the appendix or in (VS05).

4.3 Partly selections

Another well know technique for a better readable view on a concept lattice of a context (G, M, I) is Nesting.
This is done by partitioning the attribute set into two classes M; and M, the first one contains the attributes
for the outer diagram and the second one holds the attributes for the inner diagram. The two resulting sub-
contexts (G, My,ING x M) and (G, My, I NG x M;) are then used to construct the nested diagram in the
following way: Initially compute and layout the outer concept lattice B(G, My,I N G x M;) and the inner
concept lattice B(G, Mp, I NG x Mjy). Then draw the outer concept lattice as a directed graph and nest the
inner concept lattice in each node of the outer diagram. Some pairs of an outer concept node and an inner
concept nodes then describe formal concepts of the whole context (G, M, I), namely those outer concepts
(A1, B) and inner concepts (Ay, B;) for which (A1 N Ay, By U By) is a formal concept of (G, M, I). Thus the
inner nodes (A, By) within an outer node (A1, By ) are so called realized inner concepts, iff (A1 N Ay, B; U By)
is a formal concept of (G, M, I). As a result the number of edges is reduced and thus can lead to a better
readability of the concept lattice diagram. A disadvantage of the Nesting approach is the fact that the user
can hardly gain comparing information about objects that are in different outer nodes. So why not glue some
interesting inner nodes to the outer nodes?

Suppose a context (G, M, I) is given and the user initially selects some attributes My C M for a first view on
the context data. When the user sees some interesting objects Gy C A; C G thatlabel a conceptnode (Ao, By)
of B(G, My, IN G x M), and he wants to have further information on that objects by involving some of the
remaining attributes M; C M \ M, then he can click on the concept node (Ay, By) that is labeled with the
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interesting objects G; and then the initial concept lattice is expanded below that concept node by glueing
another concept lattice B(Gy1, My, I N G; X M1) below. Please have a look at the next section 4.3.1 for a so-
phisticated example. Then the user can decide to retain the newly attached concept nodes in the diagram or
he can decide to remove these attached nodes if the shown information is not helpful and to hold the diagram
complexity as low as possible. In the ongoing exploration of the concept lattice the user can select other in-
teresting objects G, C G by clicking other nodes and choosing appropriate attributes M, C M \ M. If there
are some other attached nodes in the diagram already for the selections { (G;, M;) }fle he can decide to merge
the attached nodes, if they share selected attributes. This is done by computing the formal concept lattice
of a subincidence of (G, M, I), namely (Ufill Gi, Ui‘ill M;, Ufill (ING; x M;)) and glueing the appropriate
concept lattice on the main concept lattice B(G, My, I N G X M)y).

This technique can be used to search for an unknown object within a context by an iterative exploration of the
concept lattice by expanding nodes with interesting objects with new attributes. Take as an example a formal
context about cars. Various cars are chosen as objects and appropriate attributes describe the cars, e.g. firstly
show the concept lattice for attributes describing the amount of the buying price. Then athe user can select a
node with affordable cars and can further structure the cars in that node by other attributes, e.g. maintainance
costs. If he has found a good selection then he goes to a car dealer and looks for that car. If he could not make
a decision yet, the remaining cars in a node can be further zoomed in by involving additional attributes like
number of doors or size of the trunk etc. This expansion is repeated until a selection of good size is reached.

4.3.1 Example with EMAGE data

From the EMAGE data set a formal context was extracted. Its objects are various EMAP identifiers (acronyms
for tissues of a mouse embryo at specific theiler stages) and its attributes are the BMP genes bmp2, bmp3, bmp4,
bmpb, bmp6, bmp7 and bmp10 (bmp abbreviates bone morphogenetic protein). The resulting (reduced) context and
its (full) concept lattice is shown in figure 4.1. See also (AM11) for details on the EMAGE data. In the nesting

A

emap167
emap234
emap267
emap315
emap1259
emap1685
emap2322
emap2454
emap7503
emap7843
emap8114
emap8226

S| || bmp3
S| || bmp6
e [ || bmp10

XSS XS S S x| x| x || bmp2
SOUXS XS IS X XSS [N | x || bmp4
S XSS S s xS | x| x || bmpS
S e xS [ x x| [ x| bmp7

X XXX ™ [N
NN N N N X XX
SO NN N XN |

Figure 4.1: Formal Concept Lattice describing BMP genes occuring in tissues (EMAP ids)

approach the attribute set is partitioned into two subsets M; and M. We choose M; := {bmp2, bmp3, bmp7 }
and M, := {bmp4, bmp5, bmp6,bmp10}. The resulting outer concept lattice B(G, My, I N G x M) is shown
on the left in figure 4.2 and the appropriate inner concept lattice B(G, My, I N G x M,) is displayed on the
right side in figure 4.2. When some further information about the objects in the outer node labeled with at-
tribute bmp3 is required, the user can zoom into that node and see the inner diagram, that further structures
the objects with the remaining objects from M. There are only four realized concepts within the inner dia-
gram of the attribute concept node for brmp3: the top and bottom node and the attribute nodes for bmp4 and
bmpb5.

The readabily is not very high with the nesting approach, especially when trying to compare objects from
different outer nodes.
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ENAP2729
EMAP:1002
EMAP:1001
EMAP:2307
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EMAP:1003
EMAP:233
EwrT0 EMAP:1025 EMAP:1159
ENAP217 EMAP 355 EMAP:1241
EMAP:207 ENAPE145 EMAP-275 EMAP:1233
EMAP270 ENAP.7302 EMAR 121 EMAP:4175
EMAP:283 EMAP:7309 EMAP:1072
ENAP:7335 EMAP:8143 Emg :gﬁg EMAP:2234
EMAP:7283 EMAP:7604 EMAPA251 EMAP 1208
EMAP:8386 EMAP:7T11
e 1259 B 177
ENAP7304 EMAP:7797 EMAP:1317 Evis
ENAP.7204 ENAP-3285 EMAP:1363
EMAP7363 EMAP7271 EMAP 1264 EMAP:4059
EMAP7 364 ENAP:12758 EMAP1270 EMAP:4028
EMAPE279 ENAP:7281 EMAP-1452 EMAP:4381
EMAP:7743 Emnd ENAP:8370 EMAP1071 EMAP:4358
ENAP:8371 ENAP8165 EMAP 175 EMAP:21
EMAP:7200 EMAP:7303 . EMAP-2008 EMAP-14
EMAP:7297 EMAP:7310
Erer AN e B ats| YEWLETSE (0 S i 45
EMAP:1200
EMAP7371 ENAP.7334
Enap. 360 ENAP1 223 Errsi EniAP:7288 EMAP 7302 EMAP:3562
EMAP:275 NP1 003 EMAP:1207 ENAPT782 EMAP172 EMAP'7309 o EMAP:3003
Ewap a2 ENAP'1199 Eapare ENAR 7847 EMAP-541 EMAP 8143 EMAP:3322
ENAP:700 EMAP-169
EMAP:1 241 ENAP7843 EMAP 897 EMAP 7604 EMAP:2006
EMAP:1548 EMAP150 EMAP 726
A 1ear| |EWAP1233 VAP {53 ENAP.7280 EMAP 7711 EMAP:3404
Ewap.1288| | EMAPT299 EMAP:162 ENAP-8060 EmAp 840 EMAP:7707 EMAP:3405
EMAP1317 EMAP:1072 EMAP168 ENMAP:7289 EMAP 720 EMAR-7797 EMAP:2014
Euspiges|  |ENAP223 EWAR170 ENAP 7205 EWAP:217 EMAP 2007
EMAP:8235
EnAP 1264 | | ENAP1208 EMAP-148 ENAP.7700 EMAP315 EMAP7271 EMAP:2385
EMap127g| | EMAPIET EMAP161 ENAP.8171 » EMAP:207 EMAP 7281 EMAP:2349
EMAP:1452 EMAP:89 : EMAP'136 ENAP:8234 EMAP270 EMAP-2382
EMAP1071 EMAP:4059 EWAP 167 EMAP 134 ENAP:7391 EMAP283 EMAP:8370
EMAP4028| | EMAP:1T4 ENAPB1 14 EMAP 6165 EMAP-2354
EMAP: 175 EMAP:119 EMAP 7335 EMAP 2085
EMAP-2008 EMAP:4361 EMAP:117 EMAP115 EMAP:7538 T P EMAP:7303 D
EMAP- 4180 ENAP:4358 EWAP:1068 EMAP-134 ENAP:8274 EMAP:7283 - EMAP-7310 EMAP:2683 .
EMAP-1200 EMAP:21 EMAP:267 EMAP113 ENAP:8348 EMAP:2435 EMAP:8386 |~ EMAP7334 EMAP:2376
ENAP.315 EMAP:1 4 EMAP-2102 ENAP:8339 EMAP 2454 EMAP 8018 EMAP7288 “+ | EMAP:2360
EMAP:4175 EmAPET EMAP:2103 ENAP 8385 EMAP:7304 EMAP-7847 EMAP:2357
EMAPI177 EWAPAS EMAP-2008 EMAP:8050 EMAP:7204 EMAP 7280 EMAP: 1785
EMAP:2349 EMAP:3562 EMAP-2009 ENAP 7295 EMAP:73632 AP 7288 EMAP 2643
EMAP2019| | EWAR003 EMAP:4488 EMAP:7364 EMAP 7295 EMAP2019
EMAP:2013 EMAP-2005 EMAP:4485 EMAP:8279 EMAP 7706 EMAP:2013
EMAP:204 NP 401 ENAP:1825 o EMAP:7743 EMAP:189
EMAP:1212 EMAP:234 EMAP 8171
EMAP:3405 EMAP:8371 EMAP- 181
EMAP:1685 A EMAP:8234 EMAP:2322
ENAP:2014 EMAP:7290 T EMAP 7391 EMAP:204 EMAP:1259
ENAP2007 EMAP:7297 [Euspi57] AP 7538 EMAP188 EMAP1585
ENAP:2385 EMAP:8281 EMAP 8274 EMAP:178
ENAP2352 EMAP:7371 EMAP 8348 EMAP:7831
Emﬁ %ggg EMAP:8145 EMAP 8339 EMAP:7756
EMAP:2993 EMAP12758 EMAP 8385 EMAP:7559
EMAP:2376 EMAP:8168 EMAP'8050 EMAP:7685
EwAp2360 EMAP:7782 EMAP 7296 EMAP:7800
ENAP:2357 EMAP:7843 EMAP-2105 EMAP:7514
EMAP1785 EMAP 234 EMAP1415 EMAP7761
ENAP:2043 EMAP1207 EMAP:7833
EMAP:189 EMAP 375 EMAP:7587
S EMAP174 EMAP:7841
S EMAR 169 EMAP:7380
EMAP:7831 ¥ | EmAP-150 EMAP:8286
EMAP7756 EMAP183 EMAP:7526
AP 7550 EMAP 162 EUAP 7800
ENAP7685 EMAP 168 EMAP:7625
EMAP:7850 EMAP:7856
EMAP:170
EMAPT614 EMAP 148 EMAP:8295
EMAP:136 EMAP:53
Eunr7ad EMAP:117 EMAP:1201
ENAP.7380 EMAP:144 EMAP:1212
EMAP:8286 EMAP115 EMAP!1218
ENAPT520 EMAP115 EMAP:8060
EMAP:7800 EMAP-134 EMAP:B114
EMAP:7625 EMAP:1416
EMAP:113
EMAP:7856 EMAP1068 EMAP:2102
EMAP:8205 EMAP 8226 EMAP2103
Emi 2;"2 EMAP:1828 EMAP:2098
EMAP:1201 EMAP:267 EMAP:2099
At 218 EMAP:4438
EMAP:2435 EMAP 4485
EMAP:2454 EMAP:7503

Figure 4.2: Outer and inner concept lattice for EMAGE context
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4 Iterative Exploration of Concept Lattices

Initially the user selects some attributes for a first view on the context data. For the selected subcontext the
appropriate concept lattice is visualized, see figure 4.3. In the nesting approach this would be the outer con-
cept lattice. To improve readability of the shown concept lattices, the bottom concept is hidden when it does
not contain any information, i.e. it has no objects in its extent and is no attribute concept. Dually the top
concept is hidden, if it has no attributes in its intent and is no object concept.

o
%R(E 55T ,
HHHEHEE eniap 2322
emap1259
emapl67 || x X | X X emap2454°,
emap234 | x X bmp3 j bmp2 mep7
emap267 || x X
emap315 X X d
emap1259 X X emap784> emap234 emap315
emap1685 X XX emap8114 = Z, emap1685
emap2322 X
emap2454 X
emap?7503|| x | X | X
emap7843 X X
emap8114 X | X emap7503 emapl67
emap8226|| x | x emap8226 emap267

Figure 4.3: Initial view on the concept lattice diagram for attribute selection My := {bmp2, bmp3, bmp7}

Whenlooking at this initial view the user can see that the bmp3 was detected in tissues emap7843 and emap8114.
(Of course brmp3 was also detected in emap7503 and 8226.) Now the user is further interested in these two ob-

jects at the bmp3 node and clicks on it(g) . Then the remaining attributes bmp4, bmp5, bmp6 and bmp10 are used

to give further information on these selected objects. This is done by glueing the concept lattice of the selec-
tion ({emap7843, emap8114}, {bmp4, bmp5, bmp6, bmpl0} ) below the selected bmp3 node, as in figure 4.4.

(=}
BaEEHER
4|88 |8|8|5 |8 egapZ322
emap1259
emap;gi X XX X emap2454
emap a X bmp3  bmp2  bmp?7
emap267 || x X g P P
emap315 X X
emap1259 X X emap234 emap315
emap1685 X X | X emap1685
emap2322 X
emap2454 X bmp4 bmp5
emap7503|| x | X | X
emap7843 X X @ O @
emap8114 x| emap8114 emap7503 emap7834 emapl67
emap8226 | x | x emap8226 emap267

Figure 4.4: Expanded view for objects emap7843 and emap8114 for all remaining attributes bmp4, bmp5,
bmp6 and bmp10.

Now the affixed concept lattice could either be removed or retained. The affixed concept lattice is equivalent
to the (realized) inner lattice within a concept of the outer lattice in nested diagrams, but in this approach itis
glued in the outer lattice and not displayed within a node of the outer lattice. So to continue this example, let
the affixed concept lattice retain in the diagram. In the next step the user is interested in the objects emap7503
and emap8226 from the concept below, so the user clicks on the corresponding node (g . This again results in
a further concept lattice that is glued below the selected node, as shown in figure 4.5.

The actual diagram state in figure 4.5 contains the main concept lattice and two affixed concept lattices for
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Figure 4.5: Expanded view for objects emap8226 and emap7503 structured with all remaining attributes
bmp4, bmp5, bmp6 and bmp10. The preceding expansion from figure 4.4 retains.

some objects. The user could now decide to merge the affixed concept lattices, if the shown pieces of infor-
mation are useful for his or her needs. Please have look at the next figure 4.6 to see the results.
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Figure 4.6: Merge of the two preceding expansions from figures 4.4 and 4.5.

Continuing the workflow of clicking, expand and merging, the following diagram states arise. Clicked nodes

are always marked with a han

nodes with a pentagon@ .

, already expanded nodes of the main lattice with a clou@ , and affixed
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4 Iterative Exploration of Concept Lattices
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Figure 4.7: Expansion of the top concept node: objects emapl259, emap2322 and emap2454 are further
structured using all remaining attributes bmp4, bmp5, bmp6 and bmp10. As then the top concept
node is no longer labeled by any objects, it is not drawn.
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Figure 4.8: Merge of all preceding expansions. Top concept node contains no information and is omitted.
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Figure 4.9: Expansion of the bmp7 node with all left attributes from M \ M.
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Figure 4.10: Merge of all preceding expansions.
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4 Iterative Exploration of Concept Lattices

4.4 Overview on Pruning & Interaction Techniques

There are various strategies for pruning a formal concept lattice, to gain a clearer structure of the conceptual
data or to emphasize on interesting parts. The figure 4.11 gives an overview.
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/ Closure Operator on Attributes &

Concept Stability

/ Iceberg Lattice / Alpha Galois Lattice / Pattern Structure Projection &
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Figure 4.11: Overview on various pruning and interaction techniques on formal concept lattices
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5.1 Introduction

In this document we analyze requirements for general graph visualizations. Then we particularize and con-
strain them to lattices as a special form of graphs. The requirements are classified according to different kinds,
e.g. human interaction, visual and technical details.

The second section introduces and describes the visualization requirements for graphs on the user-level and
the third section presents the requirements on the low-level. In the fourth section these user-level and low-
level requirements will be mapped to each other and then analyzed with FCA methods. The last section lists
special requirements on lattices.

First of all, we want to give a quote by E. H. GOMBRICH (Gom?77) which describes the intent of visualization
in an abstract way:
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5 Requirement Analysis

Everything points to the conclusion that the phrase ‘the language of art’ is more than a loose
metaphor, that even to describe the visible world in images we need a developed system of
schemata.

There are two refinements by B. SHNEIDERMAN and D. KEIM for visualizing large amounts of data:

o Visual Information Seeking Mantra (5Shn96)

Overview first, zoom and filter, then details on demand (in a loop)

e Visual Analytics Mantra (Kei05)

Analyse first, show the important, zoom, filter and analyse further, details on demand

In general we can say, that visualizations must not be static, but have to interact dynamically with the user.
This includes that the user must tell the visualization what data or details should be displayed and that the
visualization reacts then. So there are a number of requirements to visualization frameworks for graphs, and
also for lattices as a special kind of graphs.

Within this document an ontology is introduced. Figure 5.1 shows the terminological box with the mod-
elled classes and their connecting relations. The next two sections describe the instances of User-Level-
Requirements and Low-Level-Requirements respectivelly.

|. Graph Element |

suitable for suttable for

User-Level Requirement+- wa TEGUITES == * Low-Level Requirement |- for example .. # Implementation Example
\ \ oo \

*s
. s
.
*»
*a
b .

.

has priority subrequirement of

, 4 _
| Implementation Priority |

Figure 5.1: TBox of Requirements Ontology

5.2 User-Level Requirements for Graphs

From (Daull), (YKSJ07) and (Cui) we get a general overview of human interaction techniques available for
arbitrary visualizations and especially for graphs:

Select: mark something as interesting

Explore: show me something else

Reconfigure: show me a different arrangement

Encode: show me a different representation

Abstract/Elaborate: show me more or less details

Filter: show me something conditionally
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5.2 User-Level Requirements for Graphs

e Connect: show me related items

e Animate: show transitions

In the ongoing section we explain each of the mentioned interaction techniques and in the next section the
necessary low-level requirements to a graph visualization framework get summed up.

5.2.1 Select

A user selects by marking items that he is interested in. So when speaking about graphs, nodes and egdes
should have different colors, shapes, size, transparency. A selection must be possible for a number of items,
e.g. marking three nodes by hand, or marking one node by hand and adjacent nodes and edges automatically.
Please note, that the Select requirement differs from the Filter requirement, as a Select just emphasizes some
graph elements which the user is interested in, and a Filter would just retain some elements of interest while
removing the remaining element.

Select interaction techniques provide users with the ability to mark (a) data item(s) of interest to

keep track of it. When too many data items are presented on a view, or when representations are
changed, it is difficult for users to follow items of interest. By making items of interest visually
distinctive, users can easily keep track of them even in a large data set and/or with changes in
representations. [...] Interestingly, Select interaction techniques seem to work as a preceding
action to subsequent operations. (YKS]J07)

5.2.2 Explore

A user wants to gain insight in the data displayed, so he wants the visualization to show different data that
corresponds in some extent to the actual data displayed. This is called Exploration. So to enable the user to
explore the data some low-level techniques are needed. The user must tell the visualization what he wants to
do next and therefore context menus, popup menus, hovers or simply the ability to click on items of interest
are needed. The exploration can be seen as a sub-technique of selection, or as a compound technique of user
selection and visualization reaction.

When speaking about concept lattices, an Exploration can be realized by clicking on a lattice node (formal
concept) and brushing the principal ideal and filter of this element, i.e. marking all elements above (being
superconcepts or generalizations) and all elements below (being subconcepts or specializations).

Explore interaction techniques enable users to examine a different subset of data cases. When
users view data using an Infovis system, they often can only see a limited number of data items at
atime/... ] Infovis system users typically examine a subset of the data to gain understanding and
insight, and then they move on to view some other data. Explore interactions do not necessar-
ily make complete changes in the data being viewed, however. More frequently, some new data
items enter the view as others are removed. (YKS]07)

5.2.3 Reconfigure

A reconfiguration of a visualization is not a change of the visualization type, but a rearrangement of the items
displayed. In a line diagram users may want to exchange the axes, or in a graph diagram users may wish to
shift nodes for a better view on the graph or to emphasize a particular node.

So when speaking about graphs, it must be possible to shift nodes, to zoom out for a better overview, to zoom
in for more details or to shift the panel to see different areas of the graph (panning).

Reconfigure interaction techniques provide users with different perspectives onto the data set
by changing the spatial arrangement of representations. One of the essential purposes of Info-
vis is to reveal hidden characteristics of data and the relationships between them. A good static
representation often serves this purpose, but a single representation rarely provides sufficient
perspectives. Thus, many Infovis tools incorporate Reconfigure interaction techniques that allow
users to change the way data items are arranged or the alignment of data items in order to provide
different perspectives on the data set. (YKS]07)
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5.2.4 Encode

Encoding enables the user to get insights in the data from different perspectives and is a technique quite sim-
ilar to Reconfiguration, but it does not effect only some items of the visualization but all items by changing
the visualization type. For example, switching from a pie chart to a line diagram, or changing the layout
of a graph. So a visualization framework should have an option to switch the visualization type on the fly,
without changing the presented data.

For graphs different layout algorithms must be available, e.g. force-driven, circular, hyperbolic, or special
tree layouts, e.g. rooted tree, radial layout, balloon layout, treemap, sunburst diagram, cone tree, etc.

For an extension towards lattice visualizations more specific layout algorithms are needed, first of all the
attribute-additive layout which produces a good readability, chain decomposition or also a derived force
driven layout. Combinations of algorithms can also be useful, since all layout algorithms have some partic-
ular weaknesses.

Encode techniques enable users to alter the fundamental visual representation of the data includ-

ing visual appearance (e.g., color, size, and shape) of each data element. [...] Simply changing
how the data is represented (e.g., changing a pie chart to a histogram) is an example of Encode.
By changing a type of representation, users expect to uncover new aspects of relationship. [...]
Another widely used technique of Encode is the set of interaction techniques that alter the color
encoding of a data set. (YKS]J07)

5.2.5 Abstract/Elaborate

Abstraction and Elaboration is a kind of data zooming. The user may want to have some details of shown
data (i.e. go to a deeper level, drill-down), or he may want to get a more generous representation (i.e. go to
a higher level, drill-up). The drill-down can be realized in different ways, like splitting up data items into
components, expanding adjacent nodes of a selected node in a graph, or just zoom in. On the other side, the
drill-up can be summation of data items to a compound item in various ways, going to a common node of
some selected nodes in a graph, or just zoom out.

Abstract/Elaborate interaction techniques provide users with the ability to adjust the level of ab-
straction of a data representation. These types of interactions allow users to alter the representa-
tion from an overview down to details of individual data cases and often many levels in-between.
The user’s intent correspondingly varies between seeking more of a broad, contextual view of the
data to examining the individual attributes of a data case or cases. [. .. ] An exemplary interaction
technique in this category is any technique from the set of details-on-demand operations. For
example, the drill-down operation in a treemap visualization. [...] Another very common but
slightly complex example of Abstract/Elaborate techniques is zooming. (YKS]07)

5.2.6 Filter

Filtering is also closely related to Selection, but they differ in detail. The user want to focus on particular
data items and restrict the visualization to some selected data. The restriction can be told to the framework
by user selection or giving threshold values etc, and then can be displayed by hiding items, applying colors,
transparency effects or resizing. This means that only the selected items remain visible and all others are hid-
den. This enables the user to focus further evaluation on some items of interest and to avoid overcrowding
the visualization.

In the graph use case a user may select several nodes and the graph framework marks them red, let the other
not selected nodes and adjacent edges fade away, or just make them transparent.

Filter interaction techniques enable users to change the set of data items being presented based
on some specific conditions. In this type of interaction, users specify a range or condition, so that
only data items meeting those criteria are presented. Data items outside of the range or not satis-
fying the condition are hidden from the display or shown differently, but the actual data usually
remain unchanged so that whenever users reset the criteria, the hidden or differently shown data
items can be recovered. (YKSJ07)

5.2.7 Connect

The Connect requirement can be seen from at least two different perspectives. Firstly, imagine we have a
graph with a node the user is interested in. For this node additional currently hidden information in form
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of adjacent nodes and edges can be displayed. The node gets connected with more data then. Secondly
we could have two visualizations beneath each other and both visualizations contain information about the
same set of entities (or at least share some entities). The user interaction in the one visualization (e.g. select,
filter, abstract, elaborate, etc.) must be reflected in the other visualization as well. So the user can gain further
information about one entity from two different visual views. This is also called Brushing or Linking.

Connect refers to interaction techniques that are used to (1) highlight associations and relation-
ships between data items that are already represented and (2) show hidden data items that are
relevant to a specified item.

When multiple views are used to show different representations of the same data set |[... | it may
be difficult to identify the corresponding item for a data case in other view(s). To alleviate this
difficulty, the brushing technique is used to highlight the representation of a selected data item in
the other views being displayed. Connect interactions can apply to situations involving a single
view as well. For example, in Vizster, hovering a mouse cursor over a node highlights directly
connected nodes (friends) or neighbors of directly connected nodes (friends of friends).

Connect interaction techniques also reveal related data items which are originally not shown. In
Vizster, double clicking a node causes expansion of the node, so that the related nodes for the
focus node (the person) are added. (YKSJ07)

5.2.8 Animate

Animation is not a real interaction possibility, but a useful technique to visualize the transition between two
states of the visualization when the user interacts with it. With animation the user gains insight about how
the data items are transformed from one situation to another situation. Also, animations generate a new
dimension to display data, namely the time dimension. Since animations consume time, they must not be too
long. On the other hand they should not be too short, as then the user is not able to see it exactly. Animations
should be connected with the other user interactions, like Explore, Reconfigure or Encode.

Animation is an unique advantage of computerized information visualization technique over
other paper-based visualization techniques. It has become a very important feature in helping
users understand the data sets, because it implicitly employs time as an extra dimension to facil-
itate data exploration. [... ]

Animation is not a standalone techniques. In fact, all the techniques described above can be com-
bined with animation to improve their abilities. [... |

Although animation is aesthetically good from a lot of points of view, time probably is the weak-
ness of this technique. Animation consumes time, so there is clearly a tradeoff in how long the
animation should take. Fast animation may confuse users and makes it hard to notice the connec-
tions. On the other hand, if the transition takes too long, the users’ time will be wasted. [...] To
achieve smoothness of movement, 10 frames per second are generally considered the minimum
required frame rate. (Cui)

5.3 Low-Level Requirements for Graphs

In this section I want to give a general overview on requirements to a graph visualization on the low-level,
i.e. from the software implementation point of view.

A graph can be splitted in its components Panel, Node(s), Edge(s), Interface and Algorithm(s). Each of
these components have various requirements, some overlapping each other. For a collapsed overview of
the requirements on the low-level please have a look at figure 5.2. The tree is constructed from the ontology
by putting the graph elements on the first (inner) layer, then putting the low-level requirements without any
super-requirements on the second layer, then their sub-requirements on the next layer and so on until no sub-
requirements are left. Finally the implementation examples are on the last layer. The connections between
the single layers result from the connecting relations (or their triples more exactly). For example the triples

ro:Style ro:suitable-for ro:Node
ro:Shape ro:subrequirement-of ro:Style
ro:Shape ro:for-example ro:n-Polygon

are displayed as path

Node—Style—Shape—n-Polygon
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5 Requirement Analysis

within the tree. The graph elements are displayed as boxed nodes. Low-Level-Requirements are displayed

with regular font. Implementation Examples are drawn as italics.

Graphsin general are not bound in their size or shape. So a continuous zoom is necessary to have an overview
on the one side, and to get detailed views of substructures within the graph. Therefore vectorgraphics (SVG)
is the first choice for a graph visualization framework. To visualize different types of data in a graph it is
necessary to color nodes or edges, to set different line widths, have transparency effects and so on. Such tech-
niques are related to the highlight and filter requirements of human interaction. To provide real interaction
possibilities the user has to tell the graph what he wants to see, so context menus must be available for nodes

» Navigation

» Style C Dynamic Content &

Style

® UI Controls Data Binding &

® Transitions Nesting «

Interface

# Lenses
® View Dynamic Content &
Style =
» Layout Data Binding «
» Subgraph
» Path

Figure 5.2: Collapsed summary of graph requirements

and edges.

Zoom: magnify or shrink a portion of a visualization

Panning: go to currently hidden area

Rotate: change the perspective in three dimensions

Add/Remove/Edit: add/remove/edit nodes and edges

Group/Cluster: group several nodes to one node

Color: color nodes and edges

Size: various sized nodes and edges

Transparency: transparency effects on nodes and edges

Shape: different shapes for nodes and edges

Highlight/Animation: emphasize or brush nodes and edges

Picture: pictures as or in nodes

Displacement: slightly adjusting the edges to curves

Data Binding: binding data to the graph elements, maintaining synchronization of data
Nesting: nest graphs or other visualizations in a node

UI Controls: various user interface components, e.g. buttons, check boxes, text fields etc.

Transitions: have smooth animations when graph state changes

Lenses: tools for enlarging portions of visualizations (movable), e.g. fisheye lense, magnifier

View: 2D or 3D
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5.3 Low-Level Requirements for Graphs

e Layout: various types of layout algorithms
e Dynamic Layout: slightly rearrange items after adding or removing nodes and edges

e Subgraph: various algorithms for subgraph constructions, e.g. spanning trees, concave/convexe
hulls etc.

e Path: various algorithms for path computations, e.g. shortest path, max-flow /min-cut etc.
e Reaction: react on user interactions

In the ongoing section some of the requirements (including implementation examples) on each graph ele-
ment are presented.

5.3.1 Panel

The Panel is the base layer of a graph, i.e. the component the nodes and edges are drawn in. Mostly it would
simply be a rectangle containing the nodes and edges, as computer monitors are rectangular. At this point we
reach the first limitation as huge graphs cannot be appropriately displayed at once - so we need navigational
techniques like zoom and panning to at least enable the user to see parts of the graph in a readable size. Also
for a considerable integration of a graph and lattice visualization to other tools and products some styling
possibilities must be available.

Zoom
Pan |- Navigation
Rotate Panel

Color
Style
Size

Figure 5.3: Summary of panel requirements

5.3.2 Node and Edge

Since nodes and edges are the “substance” of each graph, they need to have possibilities for dynamically
adding, removing, editing and moving them (on the panel). Also nodes and edges should be stylable in
color, size, shape, transparency, etc. Nodes can also be visualized by a picture. Edges should be displace-
ble to gain a more clear arrangement. There are at least three techniques for edge displacement: confluent
drawing (see figure 5.5), edge clustering (see figure 5.6) and edge bundling (see figure 5.7). Some animation
features like enlarge and reduce, fade in and fade out, intertia on movement, or flash, glow and pulse are
strongly needed to give feedback to the user.

To provide live interactable and up-to-date graphs, it must be possible to bind data to nodes and edges. This
permits alive and dynamic data preview by styling nodes and edges according to their inherited or connected
data, for example coloring all nodes representing ontology classes appropriate to their number of ontology
individuals. A second use case: Visualizing the nodes as data points within other visualization types, like line
diagrams, scatterplots, histograms, parallel coordinate plots or other. For example if the data represented by
anode includes two values on ordinal dimensions, these two dimensions are chosen as the axes of a diagram
and the graph’s nodes are taken as the points within the diagram while positioning them to these two chosen
values. When thinking of multi-layered graphs, i.e. each node is itself a graph, a nesting technique must be
available, which means drawing a graph within a node of another graph. A quite similar option is to nest
visualization of other types, e.g. a pie chart or a sunburst diagram, to display data represented by a node or
connected to a node.

5.3.3 Interface

The Interface connects the user and the graph visualization. It should give possibilities for user interaction
with UI controls like menus, triggers, input/output fields etc. Also transitions must be available to enable
the user to see changes of the content; it should under all circumstances be avoided that a minor change in
the displayed data results in a major change of the visual representation. When showing huge graphs it is
hardly possible to show the whole graph in well-arranged way. So to disburden the user and to make a quick
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Add

Remove
Edit

Move

Dynamic Content -

Condense several Nodes to one Metanode

Cluster -
—[ Cleave a Metanode in its Nodes

Color
Size
Transparency
Circle / Ellipse
Square / Rectangle
Shape -
n-Polygon
Star etc.
Style - —
Enlarge & Reduce
w Fade in & Fade out
Inertia on Movement
Animation -
Flash
Glow
Pulse

Picture

Dynamic Data Preview with Data-Style-Mappings

Line Diagrams

Data Binding - Scatterplots

Nodes as Points in other Visualizations -

Histograms

Parallel Coordinate Plots

Graph within a Node

Nesting - Pie Chart
Other Visualization within a Node P
l Sunburst

Figure 5.4: Summary of node requirements

Figure 5.5: Edge displacement by confluent drawing
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Figure 5.6: Edge displacement by clustering

Figure 5.7: Edge displacement by bundling

detail zoom possible, lenses (e.g. fisheye view, simple magnifier) should be implemented. Last but not least
a three-dimensional view of a graph could enlarge its clarity.

5.3.4 Algorithm

Algorithms are the hidden core. At first, layout algorithms are indispensable for graph visualizations. There
are different types for general graphs, tree graphs and lattice graphs.
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Add
Dynamic Content m
Edit
Move
Color
Transparency
Line
Spline

Style

Shape | Bézier Curve

Circular Arc

Orthogonal Zigzag Line
Enlarge & Reduce

Fade in & Fade out

Inertia on Movement
Flash
Glow
Pulse
Confluent Drawing

Animation

Displacement | Clustering

| Bundling

Data Binding - Dynamic Data Preview with Data-Style-Mappings

Radio Buttons |- Triggers

Figure 5.8: Summary of edge requirements

Houvers

TDO“I"PS Menus

Popups

Buttons

Check Boxes

UI Controls

Text Fields
Sliders

Dropdown Lists

Progress Bars

on Layout Switch

on Content Change |- Transitions

on User Interaction

Fisheye
— Lenses
2D

View

Figure 5.9: Summary of interface requirements
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Spring / Force
Layered
Circular
Orthogonal
Spectral | Eigenvector

Balloon

Treemap

Horizontal & Vertical

- Tree

Sunburst
E— - Layout
Hyperbolic —
k-Grid
Attribute Additive ﬁ

Object Additive
Hybrid Additive

Chain Decomposition |- Lattice

Factor Decomposition

Atlas Decomposition

Planar Layout

Concave Hulls

Convexe Hulls |- Subgraph

Spanning Tree / Edge Skeleton

Shortest Path / Dijkstra
- Path
MaxFlow MinCut / Ford Fulkerson ]7

Figure 5.10: Summary of algorithm requirements
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5.4 Mapping of Low-Level Requirements to User-Level Requirements

Now the assertional box of the requirements ontology is populated by the preceding sections. As you can
see in the figures 5.11 and 5.12, you see nothing in the ontology visualizations by common graph layout
algorithms. To overcome this, some formal contexts have been constructed from the ontology by SPARQL
queries. These queries have exactly two bound variables and the first one yields the objects and the second
variable yields the attributes of the formal context. Whenever a pair fits the query, then the incidence cross is
set in the constructed context. Please have a look at figures 5.13, 5.14, 5.15 and 5.16 for expressive examples.

Figure 5.12: ABox of Requirements Ontology (tree layout)
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5.4 Mapping of Low-Level Requirements to User-Level Requirements

PREFIX ro:<http://www.research.sap.com/requirements-ontology#>
SELECT ?7ulr 71lr
WHERE {

?ulr ro:requires 71lr

}
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Figure 5.13: Mapping between Top-Low-Level and User-Level Requirements
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PREFIX ro:<http://www.research.sap.com/requirements-ontology#>
SELECT 7ge 71llr
WHERE {
?ge ro:hasRequirement 711lr
FILTER NOT EXISTS {
?sllr ro:subrequirementOf 711lr

FILTER (?sllr != ?11lr)
}
}
=
o
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Figure 5.14: Mapping between top-low-level requirements and graph elements
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5.4 Mapping of Low-Level Requirements to User-Level Requirements

PREFIX ro:<http://www.research.sap.com/requirements-ontology#>
SELECT 7ip 71lr

WHERE {

?ip ro:prioritizes 71llr

}

-
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Figure 5.15: Mapping between top-low-level requirements and implementation priorities
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Figure 5.16: Mapping between low-level requirements and some graph elements
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5.5 Specific Visualization Requirements for Lattices

5.5 Specific Visualization Requirements for Lattices

In this section, we describe some additional requirements which apply to so-called concept lattices (i.e. lat-
tices gained from formal contexts). This section is an important part of this document as concept lattices are
used as a main visualization means in CUBIST, and might further be used in other contexts as well.

Lattices are a special kind of ordered sets (i.e. sets with a reflexive, antisymmetric and transitive binary re-
lation), which impose additional restrictions. The nodes in concept lattices contain additional information,
which in turn enable specific layout algorithms, see 5.5.6.

Readers who are only interested in graph-visualization as such can safely skip this chapter.

5.5.1 Lattice Zoom/Recursive Lattices/Partly Nested Lattices

A useful requirement for drawing lattices is the ability to split up one node into several nodes, that them-
selves make up a lattice. Then it would be necessary to shift nodes in the filter upwards and nodes in the
ideal downwards to retain the order structure of the lattice.

5.5.2 Planarity

Graph diagrams and lattices as special graphs are much better readable, when the number of intersecting
edges is minimal. Sometimes it is even possible to visualize lattices without any edge crossings, these lattices
are called planar. Please see figure 5.17 for an example. There exist some mathematical research papers and
a dissertation from DR. CHRISTIAN ZSCHALIG regarding this, please see (Zsc05) or (Zsc07). In his work he
invents and presents a way to construct planar diagrams of lattices, if possible. A lattice can be drawn planar,
if and only if its order dimension is at most two, i.e. if it can be embedded in a grid of two chains.

Figure 5.17: Both pictures show the same lattice but with different layouts. The left one is planar while the
right one is not.

5.5.3 Labels

Formal concepts or lattice elements in general should have a name to be identifiable by the user, and an
internal id to be identifiable by the computer.

5.5.4 Selection of Ideals, Filters and Intervalls

As a subrequirement of selection we need the ability to select ideals, filters and intervalls in lattices. Anideal
is simply the set of all elements under a certain lattice element, dually a filter consists of all elements above
a certain element. Intervalls are the intersection of both an ideal and a filter and just represents the set of all
lattice elements between two given elements.

5.5.5 Restricted Moving of Elements

Since the elements of a lattice are ordered, it must be avoided that a lattice element can be moved over any
of its upper neighbors und dually under any of its lower neighbors. This ensures the original order in the
changed diagram. As a possible solution for unlimited moving it is possible to move also the corresponding
ideal and filter when moving an element. This would ensure the original order, too. Both possibilities are
shown in figure 5.18.
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J

Figure 5.18: Left: The red marked node can only be move within the two red lines. Right: The red marked
node can be moved upwards arbitrarily when the corresponding filter (red bounded) is also
moved upwards.

5.5.6 Layout Algorithms

It has to be possible to implement and use different layout algorithms for displaying a lattice. There exists a
number of layout algorithms, e.g. additive layout, force driven layout, chain decomposition layout, hybrid
layouts, etc.

5.5.7 Additional Feature: Three Dimensions and Rotation

An extra feature is the visualization in three dimensions, with the ability to rotate the diagram. Then there
were less edge crossings as in an diagram projected in the plane. It would be possible to extend the planarity
of ZSCHALIG to three-dimensionality.

5.5.8 Additional Feature: Nesting

Nesting enables diagrams to have another visualization in a node. For some cases it could provide a higher
information density, but in other cases it is possibly lowering the readability. So its usage should be well
considered. In figure 5.19 there is a sample for nesting diagrams.

,/,'P

Figure 5.19: A lattice nested with a pie chart in each node.
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6 FCAFOX Framework for Formal Concept Analysis in JAVA

6.1 Architecture

Within the framework of this diploma thesis, a program package for computional formal concept analysis
was written. The used programming languange is Java, and it was developed in Eclipse with Maven build
tool. After a refactoring, there were about 10000 lines of code. The program module is called FCAFOX. Its
features are as follows:

o At first, a set list structure was implemented. It is simply a crossover between a set and a list, i.e. it
implements both the set and the list interfaces. Each element of a set list can be contained at most once, and
furthermore has anindex, i.e. there is an enumeration function that maps each element injectively to a natural
number. See figure 6.1 for a class diagram.

<«=Java Interface=>
& Iterable<T>
javalang
<==Java Interface==|
&# Collection<E>|
java.uti
<=Java Interface=» <<_Igal_\;|:te;fEa>ce» ««lava Interfaces»
& Cloneable avauti 0_ Set<E>
java.lang java.ul
~list =<Java Class»»
(& Seflists
1) —<lava nlerfacess 7 com.sap.research.bi cubist. foa. types. sstiist
9 |Setlist<E>

‘om.sap.research.bi.ubist. foa. types. setlist

@ add(E)boolean
@ add(int,E):void
@ addAll{Collection<? extends E=jboolean
@ addAllint Collection<? extends E=):boolean
@ clear(}:void
@ clone()SetList<E>
@ containg(Object).boolean
@ containgAl(Collection=7=).boolean
@ equals(Object).boolean
@ filter(Predicate=7 super E=).ISetList<E>
@ get(int)
@ getAl(boolean terable<integer=):.Collection<E>
@ getAll(tterable=integer=).Coliection<E>
@ hashCode(}:int
@ indexOf(Object):int
@ indicesOf(boolean, terable<?=):Collection<integer=
@ indicesOf(terable<?=>):Collection<integer>
@ indicesOf(Predicate<? super E=).Collection<integer= e D e
O B iim = @© SetList<E> @ UnmodifiableSetList<E>
@ iterator():terator<E> -setlist om. sap.research. bi.cubist. fca types. setiist] ©om.s3ap.research. bi.oubist. foa. types.setiist
@ lastindexOf(Objectyint
@ listtterator() Listherator<E=
@ listterator(int) Listterator<E=
@ remove(int)
@ remove(Object).boolean
@ removedliterable<integer=).Collection=<E>
@ removeAll{Collection=7=).boolean
@ retainAll(Collection<7>).boolean
@ set(E,E).boolean
@ set(intE)
@ size(yint
@ subList(int,int):ISetList<E= ® ;::;asiii?;»
X I isf
: :;:::::g%hleﬂﬂ ‘2om. sap.research.bi. cubist. foa types satlist

<=]ava Class=>
& ASeiLisi<E>

‘com.sap.research bi.cubist. foa. types.setlist

+EMPTY_SETLIST f..1

Figure 6.1: SetLists class diagram

e Second, an incidence structure was modelled. Each instanciated incidence internally consists of a
boolean matrix and two set lists. The first set lists is used as domain and the other as codomain, and changes
in domain or codomain are reflected in the matrix, e.g. removing a domain element also removes the appro-
priate row from the matrix. Anincidence behaves like a set of pairs, i.e. one can do set like operators on them,
e.. union, intersection, difference, etc. Furthermore, one can grab a row or column from an incidence, which
behaves like a set then and changes are reflected in the matrix as well. Please note, one can only remove or
add an element from or to an row /column, when the element is already contained in the domain/codomain.
See figure 6.2 for a class diagram.

e Formal contexts are modelled as a subtype of incidence, with some additional operations.
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Figure 6.2: Incidences class diagram

® Setlist<E>
types setis

e Itis both possible to work with formal contexts in a set-like fashion directly (with higher operational

costs for index lookups) or to work with indices as long as possible and perform the index lookup in the end.

e Cleaning and reducing of formal contexts are computed by lazy evaluation. Also the arrow contexts

including the double arrows can be computed.

e Aneventsystem has been implemented, see figure 6.3. A component can be registered at an incidence

and is then informed about changes in the incidence, e.g. new elements in domain or codomain, changes in
rows or columns, efc.

e There are different interfaces for so called processors, that can be registered at a formal context. Pos-

sible processor types are concept processors, neighborhood processors, layout processors, importer and ex-
porter. Of course it can be extend if necessary.

o Implemented Processors: my IFOX concept/neighborhood /layout processor, NextClosure concept

processor, experimental fault tolerance concept processors, BorderAlg neighborhood processor, iPred neigh-
borhood processor, additive layout processor (with seeds selection by chain decomposition, subdirect de-
composition, context rearrangement/shaking, spectral decomposition), projective layout processor, SPARQL




6.1 Architecture

<<Java Class=>
@ ARowsEvent<G>

- Java Cassrr
® AllColumnsRemovedEve
sap ressarch bLcubist 1

@ AGolumnsEvent<m>
sap.ressarch.bi.cubist fca types.ind bist foa.types i

‘ <<lava Class>>

~<Java Class> ~<Java Class= <Java Cass>
(® RowsAppendedEvent<G>

om.s3p.researoh bi cubis. fo2 typss.incider

<lava Classr» <<lava Class#»

o

<Java Class>> ‘

o

B
om.s3p.resaaroh bi.oubist foa. types. noidence|

researoh bi.outist foa.types incidencs| ubict. foa types ncidenos|

- “<lava Class>>
© AlEntriesModifiedEvent © EntriesModifiedEvent<G,M>
oam.ssg.reszaroh.bi cubist o5 cypes incidence| e i e e e

Figure 6.3: Events class diagram

importer and exporter (Daul2), Burmeister format importer and export, LaTeX exporter (GANTER's FCA
package, my TiKZ concept lattice package)

e Live heatmap visualization on node movement. A combination of the conflict avoidance parameter
metric (Gan) and edge crossing metric is used.

e The moduleisintegrated into the CUBIST prototype and connected to a SVG graph panel via server/-
client architecture.

o Additional features: scale generators, order interface, equivalence interface, lattice interface, ...
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A.1 Synonym Lexicon

Mathematical Term Data Mining Term

context binary database, transactional database
object transaction, row

attribute item, column

pair of sets bi-set

preconcept rectangle

set of attributes itemset, attribute pattern

set of objects object pattern

implication association rule

A.2 Galois Connections & Galois Lattices

The first section defines a general structure called galois connection and shows a way to obtain a lattice from
an arbitrary galois connection. Furthermore a general possibility to modify a galois connection by arbitrary
kernel operators is introduced. A Galois connection is a special correspondence between two ordered sets.
Galois connections generalize the Galois theory by EVARISTE GALOIS (France, 1811 — 1832), that investigate
correspondences between subgroups and subfields. Galois connections are rather weak compared to dual or-
der isomorphisms, but every Galois connection induces a dual order isomorphism of certain kernel systems

within the involved ordered sets.

Definitio: Galois Connection

A GALOIS CONNECTION between two ordered sets (P, <) and (Q, <) is a pair (¢, ) of mappings
¢: P = Qand ¢: Q — P such that the following conditions hold:

(I) ¢ and p are antimonotonic”
(11) ¢ o $pand ¢ o P are extensive’
The two mappings are called DUALLY ADJOINT to each other and we write

(@)
(P, <) e—e (Q,<).

A GALOIS CONNECTION between two arbitrary sets X and Y is a galois connection (¢, {) between the
two powersets pX and Y canonically ordered by subset inclusion C, i.e.

(6%, C) oa (Y, ).

“i.e. p1 < ppimplies pp; > ¢pp, forall py, p» € P, and analogously for i
bie. p < pgppholdsforall p € P,and analogously for ¢ o ¢

A pair (¢, ) of mappings as above is a galois connection iff

PSyqeq=¢p
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holds forallp € Pand g € Q.
For any galois connection (¢, ¢) itholds thatp o pop = pand popop = .
Galois connections are in a strong correspondence to closure operators. Each closure operator ¢ in an ordered

(¢id)
set (P, <) induces a galois connection (P, <) e—e (P, >). Dually each galois connection (¢, §) between two
ordered sets (P, <) and (Q, <) induces two closure operators ¢ o i and ¢ o ¢.

Exemplum

(1) ForabinaryrelationI C G x M or fora formal context (G, M, I) respectively we geta galois connection
(¢1,91) between (pG, C) and (pM, C) with

oG — pM
¢r: I
A= Ali=meM|V ¢gIm
geA
oM — oG
Yr:

I._
B~ B! := {gEG‘mZBglm}

Please have a look on the Theorema: Contexts & Galois Connections 2.2 for further details.

(11) For a pattern structure (G, (D,M),6) a galois connection (¢, iP5) between (pG, C) and (D, C) is ob-
tained by

G — D
P A AT :=[sA=1]]0g
gEA

D — pG

v dsd”:={gecG|dLC g}

Both mappings are obviously antimonotonic” and their compositions are extensive”

“For object sets A1 C Ay C G we can easily see that AlD =[16A; O[]0A; = Ag], as JA; C 8A; holds. For patterns d; T dy we have
A7 ={g€G|di Cég} 2 {g€G|dyCég} =d5, asd, C Sgalwaysimpliesd; C dg.

bFor each object set A C G it follows that A C {g € G |[]0A C ég},as[]dA C g holds for all objects g € A. For each patternd € D
it trivially holds thatd T [0 {g € G |d C 08} = [lyy, 98-

There are various other examples for galois connections, that occur in many mathematical fields. From each

galois connection an ordered set or even a complete lattice can be found within the cartesian product of the
basic sets.

—| Theorema: Galois Lattice i

Let (¢, ) be a galois connection between two posets (P, <) and (Q, <). Define (G (¢, ), <) with

G, ¢) ={(p.q) € PxQ|¢p=4q,99 = p}

and (p1,q1) < (p2,92) iff p1 < pa. Then (G (¢, ¢), <) isaposet. If further (P, <) and (Q, <) are complete
lattices, then (G (¢, ¥), <) is a complete lattice and the infima and suprema are given by

teT teT teT

A (pear) = (/\ ey \/ qt)




A.2 Galois Connections & Galois Lattices

V (pr.a:) = (W RZEA qt)

teT teT teT

—l Theorema i

For a galois connection (P, <) e
operator (projection) g on (Q, <

(9:9)
—e (Q, <), akernel operator (projection) « on (P, <) and another kernel

) itholds:

) ) (Bog,aop) , ,
(1) A new galois connection («P, <) e—e (BQ, <) is obtained.

(11) Furthermore, there is a order-preserving epimorphism of G (¢, ) on G(B o ¢, a o ) given by

. @) = G(Bog,aoy)
"~ (p,q) > (ap, Boap)

(111) Dually, there is another order-preserving epimorphism of G (¢, ) on G(B o ¢, a o 1) given by

.. 9@ 9) = G(Bogacy)
"~ (p.q) — (apPByg, Ba)

<) e (0,<)

" B

wp, e o <)

APPROBATIO

(1) Letp € aP,ie. ap = p,and q € BQ, i.e. Bg = q. From p < aypqg follows p < pgasais

intensive. Since (¢, ¢) is a galois connection, this implies g4 < ¢p. Further it follows g = Bg < B¢p because B

is monotone. The other way round follows dually.

(11) At first we show that the images of ¢ are really elements of G(B o ¢,a o ). Solet (p,q) € G(¢, ), then

i(p,q) = (ap, Bpap) € G(Bo ¢, a0 ) holds as
apppap = apBpaypq = aypq = ap.
Now we show that : preserves order. For (p1,41), (p2,q2) € G(¢,9) we have

(p1,91) < (p2,92)
=p < p2
=ap; < ap

= (ap1, Bpap1) < (ap2, Bpap2)
=1(p1,q91) < 1(p2,q2)-

For an element (p,q) € G(B o ¢, a o ) we have obviously (¢g, ppq) € G(¢, ) and
(g, pyq) = (apq, ppapq) = (p, fgp) = (p,4),

and thus ¢ is an epimorphism.

(111) analogously.
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Exemplum: Generalized Iceberg Lattices a.k.a. Alpha Galois Lattices
. . . . (o1,91) .
We investigate the galois connection (pG,C) e—e (pM, C) induced by a formal context (G, M, I). Let
C = {Ci}\_y C pp(G) be partition of G. Then form the kernel system K¢ generated by C, i.e. close it under
arbitrary joins:

/cC:<c>U:{UX\xgc}

This leads to a kernel operator

0G — pG
we: A |J K= | Uxr=UC
Keke XCC ceC
KCA UXCA CCA
and we modify it to
oG — pG
aes: AP U Aanco)
CeC
140C1 S 5

IC]
Then the galoislattice B¢ 5 (G, M, I) := G(¢r,acs0r) = {(A,B) € p(G) x p(M) | Al = Band a¢5(B)! = A}

is called ALPHA ICEBERG LATTICE w.r.t. C and . Furthermore then a natural order epimorphism from
B(G, M, I) onto B 5(G, M, I) givenby (A, B) — (ac5(A), acs(A)). See (VS05) for further details.

A.3 Fault Tolerance Extensions to Formal Concept Analysis

A pair (A, B) € p(G) x p(M) is a formal concept of (G, M, I), iff the following conditions hold:

1. Ygen ]gi OA‘ = 0and dually V,,c5 ]ml ﬂB’ =0

2. Vyepa Veea ‘hx N A‘ > 0and dually V,,cp Vines ‘nl N B‘ >0

Definitio: support, frequency, y-frequent

Foranobjectset X C G oranattributeset X C M respectively the SUPPORT and FREQUENCY are defined
as

supp(X) := X! and freq(X) := |supp(B)|.

For B C M and freq(B) > y we say that B is -FREQUENT.

Definitio: association rule, frequency, confidence

A pair (B, D) is called ASSOCIATION RULEiff B,D C M, D # @ and BN D = @. An association rule
(B, D) is usually written as B = D and its FREQUENCY and CONFIDENCE respectively are

freq(B = D) := freq(BUD) and conf(B= D) := %—(:I;D).

Let B = D be an association rule. Then conf(B = D) = 1 holds iff supp(B) C supp(D) (safe rule). Also,
conf(B = D) = 0holdsiff supp(B) Nsupp(D) = @ (impossible rule).
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Definitio: violation, strength, /-strong

For an association rule B = D the VIOLATION and STRENGTH respectively are defined as
viol(B = D) := supp(B) \ supp(D) and stre(B = D) := |viol(B = D)]|.

An association rule B = D is §-STRONG iff stre(B = D) < ¢ holds, i.e. the rule is not violated in more
than & objects. Then we write B =° D.

For an association rule B = D holds

stre(B = D) = freq(B) — freq(BU D).

Definitio: )-free set, 5-closure, /-biset

An attribute set B C M is /-FREE iff there is no J-strong association rule B =9 m such that m ¢ B.
The J-CLOSURE of a d-free set B C M is the maximal superset c1055(B) D Bsuchthat B = misa
J-strong association rule for all attributes m € closs(B) \ B. Each -free set B C M induces a 6-BISET

(supp(B), closs(B)).

A J-biset is always a union of concepts.
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