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1.1 Acknowledgements

Zuallererst möchte ich mich bei meinen Eltern Carmen und Hans-Jürgen Kriegel für ihre tatkräftige und im-
merwährende Unterstützung in allen Lebenslagen bedanken. Sie haben meine Interessen und Fähigkeiten
stets bestmöglich gefördert.
Also I gratefully thank my both supervisors Prof. Dr. Bernhard Ganter (TU Dresden) and Dr. Frithjof Dau
(SAP) for their support and the many interesting and fruitful discussions.
Especially I also want to thank Prof. Dr. Ulrike Baumann a lot. First, for her great support when applying at
SAP, and second, for always encouraging me to give student tutorials.
Last but not least thanks to Dipl.-Math. Ilse Ilsche, one of the good souls at the Institute for Algebra.
Furthermore, thanks to Matthias Lange and Jonas Stolle.
Finally also many thanks to my friends for being there and supporting me.
Sincere thanks are given to all forgotten people.

1.2 Supporting University: TU Dresden, Institute for Algebra

Research at the Dresden Institute of Algebra emphasizes on the foundations and, in equal measure, the ap-
plications of algebra. At the same time it includes the theory of ordered sets and graph theory.
In particular we see fields of application of algebra in the formal description of data and knowledge being a
foundation e.g. for data analysis and knowledge processing. General algebra for data modelling, geomet-
ric algebra for data security, and lattice theory for conceptual knowledge processing have proven especially
valuable as methodological foundations.

Figure 1.1: Willersbau at TU Dresden, with Institute of Algebra

The "classical" fields of activity in algebra are more intensively studied elsewhere. Here we primarily focus
on general algebra and the theory of order and lattices. A major emphasis is on function and relation systems
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1 Introduction

and formal concept analysis. Both areas, the study of foundations and applications, are closely intertwined.
The institute maintains contacts with leading researchers worldwide.
Research groups focus on topics from algebraic structure theory, discrete structures, methods of applied al-
gebra, and universal algebra. As a special (however little) research highlight we would like to accentuate the
field of "mathematical theory of music". There particularly the experimental micro-tonal musical instrument
"MUTABOR" is being tested and developed.
Our research work is open to students. They benefit from this as they become familiar with the present work
techniques in general and applied algebra, conceptual knowledge processing and graph theory. (TUD)

1.3 Supporting Corporation: SAP AG, Research Center Dresden

The Dresden region, also referred to as "Silicon Saxony," is located in the eastern part of Germany, close to
the German-Polish and German-Czech borders. SAP Research aims to capitalize on this fact by turning SAP
Research Dresden into the company’s hub for research collaborations with companies and academics from
Eastern Germany and the EU member states of Eastern Europe. The location is in close proximity to the
campus of the Technische Universität Dresden (TU Dresden).

Figure 1.2: SAP Research Center Dresden in the Falkenbrunnen

SAP Research Dresden contributes significantly to three SAP Research topics: mobile computing and user
experience, business intelligence, and software engineering and tools. SAP Research Dresden also manages
the Future Factory Initiative living lab.

Research Environment – Working with World-Class Researchers

SAP Research Dresden finds itself in a prospering environment perfectly suited for a research location of its
kind. The Dresden metro area is the home of production facilities and research labs of major semiconductor
engineering, multimedia, and information management companies. Global players, as well as a consider-
able network of small and midsize high-tech businesses, constitute excellent cooperation opportunities for
SAP Research. In addition, TU Dresden has been a longstanding loyal, beneficial, and faithful partner of
SAP Research. Together with TU Dresden, the research location in Dresden offers a Ph.D. program to highly-
qualified students. Covered research topics are as follows:

• Business Intelligence

• Internet Applications & Services

• Mobile Computing & User Experience

• Software Engineering & Tools

(SAP)

2



1.4 Research Project: CUBIST

1.4 Research Project: CUBIST

Constantly growing amounts of data, complicated and rapidly changing economic interactions, and an
emerging trend of incorporating unstructured data into analytics, is bringing new challenges to Business
Intelligence (BI). Contemporary solutions involve BI users dealing with increasingly complex analyses. Ac-
cording to a 2008 study by Information Week, the complexity of BI tools and their interfaces is becoming
the biggest barrier to success for these systems. Moreover, classical BI solutions have, so far, neglected the
meaning of data, which can limit the completeness of analysis and make it difficult, for example, to remove
redundant data from federated sources.

Figure 1.3: Structure of CUBIST project

Semantic Technologies, however, focus on the meaning of data and are capable of dealing with both unstruc-
tured and structured data. Having the meaning of data and a sound reasoning mechanism in place, a user
can be better guided during an analysis. For example, a piece of information can be semantically explained or
a new relevant fact can brought to the user’s attention. In particular, we foresee a well known semantic tech-
nique called Formal Concept Analysis (FCA) to be a key element of new hybrid BI system. FCA can be used
to guide a user in discovering new facts, which are not explicitly modelled in the data warehouse schema.
Semantic analysis could also improve classical methods in BI, such as data reduction and duplicate detection.
However, semantic technologies have traditionally operated on data sets a magnitude smaller than classical
BI solutions. They also lack standard BI functionalities such as Online Analytical Processing (OLAP) queries,
making it difficult to perform analysis over semantic data. The CUBIST project develops methodologies
and a platform that combines essential features of Semantic Technologies and Business Intelligence. With
CUBIST, we envision a system with the following core features:

• Support for the federation of data from a variety of unstructured and structured sources.

• A data persistency layer in the form of a semantic Data Warehouse; a hybrid approach based a BI
enabled triple store.

• Semantic information used to improve BI best practices in, for example, data reduction and prepro-
cessing; CUBIST enables a user to perform BI operations over semantic data.

• A semantic data warehouse that realizes the advanced mining techniques of Formal Concept Analysis
(FCA).

• FCA guides the user in performing BI and helps the user discover facts not expressed explicitly by the
warehouse model.

• Novel ways of applying visual analytics in which meaningful diagrammatic representations will be

3



1 Introduction

used for depicting the data, navigating through the data and for visually querying the data.

CUBIST demonstrates the resulting technology stack in the fields of market intelligence, computational biol-
ogy and the field of control centre operations.
CUBIST is funded by the European Commission under the 7th Framework Programme of ICT, topic 4.3:
Intelligent Information Management. (Cub)

1.5 Task Description und Structure of the Diploma Thesis

My task was to investigate and implement methods for visualizing conceptual data. This thesis is subdivided
into two parts: a mathematical part and an implementational part. Some fundamentals of formal concept
analysis and methods for drawing them are presented in the next chapter. The third chapter contains the
main theoretical part, where an algorithm for updating labeled additive concept diagram upon insertion or
removal of a single attribute column in the base context is presented and proven. The fourth chapter gives
some techniques for interaction with concept diagrams. The second parts starts with a requirement analysis
for visualizing graphs and lattices, and interacting with them. Then in the next section some details of the
implementation are given. Within the framework of this thesis a Java program has been written.

4
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2 Fundamentals of Formal Concept Analysis
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2.2.9 Heatmaps for Concept Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.10 Biplots of Concept Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.11 Seeds Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Context Rearrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Spectral Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chain Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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2.3 Apposition of Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

This initial chapter gives some fundamental definitions and theorems needed for formal concept analysis.
The first section contains basic properties of formal concept lattices. Please see (GW99) for further details.
The second section introduces diagrams for concept lattice visualization and the the third section gives some
statements on context appositions.

2.1 Concepts and Concept Lattice

A FORMAL CONTEXT K is a triple (G, M, I) such that G and M are sets and I ⊆ G×M is a binary relation
between them. Elements of G are called OBJECTS and those from M are ATTRIBUTES. I is the INCIDENCE
and for (g, m) ∈ I one also writes gIm and says that g HAS m.

2.1Definitio: Formal Context

There are various views of a context. In data mining a context is also called BOOLEAN DATABASE or TRANS-
ACTION DATABASE. The objects are also called TRANSACTIONS or ROWS. Analogously, attributes are ITEMS,
PROPERTIES or COLUMNS. Such boolean databases can also be defined as a multiset of subsets of a given set
of items. A multiset is just a bag, i.e. a set that can contain multiple copies of the same element, and could be
modelled as a mappingM : M→ N that maps each element m of the underlying set M to the numberM(m)
of copies of m withinM.
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2 Fundamentals of Formal Concept Analysis

Each context K = (G, M, I) introduces a galois connection (φK, ψK) between G and M. The mappings
are given as follows:

φK :
℘(G)→ ℘(M)

A 7→ AI :=
{

m ∈ M
∣∣∣∣ ∀g∈A

gIm
} and ψK :

℘(M)→ ℘(G)

B 7→ BI :=
{

g ∈ G
∣∣∣∣ ∀m∈B

gIm
}

In the opposite direction every galois connection (φ, ψ) between sets X and Y introduces a context
K(φ,ψ) := (X, Y, I(φ,ψ)) with

I(φ,ψ) := {(x, y) ∈ X×Y | x ∈ ψ({y})} = {(x, y) ∈ X×Y | y ∈ φ({x})}

Both operations are inverse to each other, i.e. (φK(φ,ψ)
, ψK(φ,ψ)

) = (φ, ψ) holds for every galois connection
(φ, ψ) and K(φK ,ψK) = K holds for all contexts K respectively.

2.2 Theorema: Contexts & Galois Connections

As well known from the theory of galois connections, the mappings φK and ψK are order-reversing, i.e.

∀
A,C⊆G

A ⊆ C ⇒ AI ⊇ CI

and ∀
B,D⊆M

B ⊆ D ⇒ BI ⊇ DI .

Furthermore, the compositions ψK ◦ φK and φK ◦ ψK are closure operators on G and M respectively, i.e. they
are extensive and idempotent, i.e.

∀
A⊆G

A ⊆ AI I and AI = AI I I

and ∀
B⊆M

B ⊆ BI I and BI = BI I I .

Furthermore the closures of are always of the form AI for an object set A ⊆ G, and BI for an attribute set
M ⊆ M respectivelly. An equivalent characterization of galois connections yields

∀
A⊆G
B⊆M

A ⊆ BI ⇔ AI ⊇ B⇔ A× B ⊆ I ⇔ ∀
g∈A
∀

m∈B
gIm.

Let K = (G, M, I) be a context. A pair (A, B) is called

BISET iff A ⊆ G and B ⊆ M,

PRECONCEPT or RECTANGLE iff A× B ⊆ I,

CONCEPT iff AI = B as well as A = BI .

For a concept (A, B) the object set A is called EXTENT and the attribute set B is called INTENT. The set of
all concepts is denoted by B(K), the set of all extents is Ext(K) as well as Int(K) is the set of all intents.

2.3 Definitio: Biset, Preconcept, Concept

One can easily see that each concept is a preconcept and every preconcept is a biset. Each concept has a closed
object set as its extent and a closed attribute set as its intent. Furthermore each concept has the form (AI I , AI)
for a suitable object set A ⊆ G and also (BI , BI I) for a suitable attribute set B ⊆ M.
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2.1 Concepts and Concept Lattice

For each family of object sets {At}t∈T and analogously for each family of attribute sets {Bt}t∈T it holds
that

⋂
t∈T

AI
t =

(⋃
t∈T

At

)I

and
⋂
t∈T

BI
t =

(⋃
t∈T

Bt

)I

.

2.4Lemma

It follows that every extent is an intersection of object extents and dually each intent is an intersection of
attribute intents, i.e.

∀
A⊆G

AI =
⋂

g∈A
gI and ∀

B⊆M
BI =

⋂
m∈B

mI .

The concepts of a context K = (G, M, I) can be ordered: A concept (A, B) is a SUBCONCEPT of a concept
(C, D), and dually (C, D) is a SUPERCONCEPT of (A, B), iff A ⊆ C holds for the extents or dually iff B ⊇
D holds for the intents. This is symbolized by (A, B) ≤ (C, D). The set of all concepts B(K) together
with the subconcept relation ≤ introduces a complete lattice B(K) := (B(K),≤) and the supremum
(join) and the infimum (meet) respectively for a family of concepts {(At, Bt)}t∈T are given as follows:

∧
t∈T

(At, Bt) =

⋂
t∈T

At,

(⋃
t∈T

Bt

)I I
 and

∨
t∈T

(At, Bt) =

(⋃
t∈T

At

)I I

,
⋂
t∈T

Bt



2.5Theorema: Concept Lattice

The concept γ(g) := ({g}I I , {g}I) is called OBJECT CONCEPT of g ∈ G, and µ(m) := ({m}I , {m}I I) is called
ATTRIBUTE CONCEPT of m ∈ M. Why do we need these special concepts? This is due to the possibility of
displaying an arbitrary concept by a number of object concepts, or attribute concepts respectively.

The set of object concepts is
∨

-dense and the set of attribute concepts is
∧

-dense in the concept lattice
B(K). Each formal concept is the supremum of object concepts below, and dually is the infimum of the
attribute concepts above, i.e.∨

g∈A
(gI I , gI) =

∨
γ(A) = (A, B) =

∧
µ(B) =

∧
m∈B

(mI , mI I).

Hence, each
∨

-irreducible concept is an object concept and dually each
∧

-irreducible concept is an
attribute concept.

2.6Corollarium

In many cases not the whole formal context is necessary to fully describe the structure of a concept lattice.
A subcontext (H, N, I ∩ H × N) is called DENSE in (G, M, I) iff γ(H) is

∨
-dense and µ(N) is

∧
-dense in

B(G, M, I). Each concept lattice of a dense subcontext is isomorphic to the concept lattice of the whole con-
text.
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2 Fundamentals of Formal Concept Analysis

A subcontext (H, N, I ∩ H × N) is dense in (G, M, I), iff

AI = (A ∩ H)I and BI = (B ∩ N)I

holds for every object set A ⊆ G and attribute set B ⊆ M.

2.7 Lemma

2.2 Visualizations of Concept Lattices

2.2.1 Transitive Closure and Transitive Reduction

Let R be a binary relation on a set M. A TRANSITIVE CLOSURE of R is a minimal transitive superrelation,
symbolized by R+. As the intersection of transitive relations is again transitive, a transitive closure must be
uniquely determined by

R+ =
⋂

S⊇R
S transitive

S.

Overthis the transitive closure can be computed directly: Let R1 := R and Rn := Rn−1; R for all natural
numbers n > 1, then

R+ =
⋃

n>1

Rn

holds. By construction
⋃

n>1 Rn is a transitive superrelation of R. To inductivelly proof its minimality let S
be another transitive superrelation of R. The base case: S contains R = R1. The inductive step: Whenever S
contains Rn it must also contain Rn; R = Rn+1 since S is transitive. The relation S thus contains all powers Rn

and is a superrelation of
⋃

n>1 Rn.
There is a natural isomorphism between binary relations and binary square matrices. R can be displayed by a
square matrix whose rows and columns are labeled with the elements of the base set M and whose entries are
either 1 iff the appropriate row and column label are in relation or 0 otherwise. This permits the computation
of relation compositions like for the transitive closure by means of matrix multiplication. Furthermore there
is also a canonical isomorphism between binary relations and directed graphs. R can be seen as a graph with
the elements from M as nodes and there is an edge from x to y iff x R y. Thereby the transitive closure can also
be determined using graph algorithms like the FLOYD-WARSHALL algorithm. However both naïve matrix
multiplication and FLOYD-WARSHALL algorithm have time complexity O(n3) where n is the cardinality of
M. There are various algorithms with lower time complexity but higher constant factor. So they are only
faster for huge input sets.
A TRANSITIVE REDUCTION of R is a minimal subrelation R− ⊆ R such that the transitive closure of R− equals
the transitive closure of R. For an acyclic relation R the transitive reduction is unique. Especially all (strict)
order relations are acyclic. It then can be computed by means of the transitive closure and is given by

R− = R \ (R; R+).

For further information please have a look on (AGU72). In summary the transitive reduction of a relation is
obtained by removing all transitively redundant pairs.

2.2.2 Neighborhood Relation

Let (P,≤) be an ordered set and p, q ∈ P. Then p is COVERED BY q iff p < q and there is no element x ∈ P
with p < x < q, i.e. iff (p, q) ∈ < \<2. One then also say that q COVERS p, or p and q are NEIGHBORING, and
write p ≺ q or q � p. Thereby a binary relation≺ on P is obtained that is called NEIGHBORHOOD or COVER
relation. In the finite case the order relation≤ and the cover relation≺ determine each other in a unique way.
One can show that the neighborhood≺ is the (unique) transitive reduction of the corresponding strict order
< and dually the strict order < is the transitive closure of the neighborhood ≺. This is due to the fact that
p < q hold iff there is a finite sequence p ≺ x0 ≺ x1 ≺ · · · ≺ xk ≺ q in P, i.e. iff p ≺+ q is true. Indeed,≺ is the
smallest subrelation whose transitive closure equals <, since p ≺ q always implies (p, q) /∈ (≺ \ {(p, q)})+.
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2.2 Visualizations of Concept Lattices

2.2.3 Line Diagram

Every finite ordered set (P,≤) can be visualized in the real plane (or more generally in the real space) by a
LINE DIAGRAM. A line diagram is an arrangement of circles (nodes) and interconnecting lines (edges). First
of all a PLACEMENT FUNCTION

pos : P→ R2,

is required, that assigns a position pos(p) = (posx(p), posy(p)) in the real plane to each element p of P. The
placement must be injective to ensure distinguishability for different nodes in the drawn diagram. The ele-
ments of p are then depicted by circles at their position pos(p) in the plane, and each circle is labeled with its
appropriate element p. Next, two circles at pos(p) and pos(q) are joined by a straight line segment, denoted
by pos(p, q), iff p and q are neighboring in (P,≤). To omit arrowheads, the diagram is drawed upwards,
i.e. the vertical coordinate posy(p) is smaller than posy(q) whenever p is smaller than q. No node at pos(p)
intersect any edge pos(q, r) if p 6= q and p 6= r. This ensures no node being on any edge except the start and
end node, otherwise it would not be clear where the edge starts and ends.
A generalisation are line diagrams with continuous curves as edges: For an ordered set (P,≤) a LINE DIA-
GRAM WITH CURVES is defined as a mapping

pos : P ∪≺ → R2 ∪ ℘(R2)

such that pos|P is a line diagram, and pos|≺ : ≺ → ℘
(
R2) assigns to each neighborhood p ≺ q a one-

dimensional set pos(p, q) of points in the real plane R2, such that pos(p, q) = γpq[0, 1] is the image of a
plane curve γpq : [0, 1]→ R2 starting at γpq(0) = pos(p) and ending at γpq(1) = pos(q).
The question arises whether a line diagram must be completely defined by assigning a position to each el-
ement of the underlying ordered set, or if it suffices to give position for certain elements and compute the
remaining position by means of them. This leads to the additive line diagrams. For example, when (P,≤) is
a finite complete lattice, then the

∧
-irreducibles form a

∧
-dense set and each element p can thus be displayed

as an infimum of all
∧

-irreducibles smaller than p.
An order-preserving mapping rep : (P,≤)→ (℘(S),⊆) is called SET REPRESENTATION of (P,≤) in S. A SEED
VECTOR MAP is a map seed : S→ R2 with seed(s) = (seedx(s), seedy(s)) for each element s of the representing
set S. Then the mapping

pos :
P→ R2

p 7→ ∑
x∈rep(p)

seed(x)

is a line diagram and is called ADDITIVE LINE DIAGRAM of (P,≤) w.r.t. rep and seed. To ensure the upward
drawing convention the seed vectors must be chosen with positive vertical coordinates. It is also possible to
choose a order-reversing set representation and seed vectors with negative vertical coordinates. Both pos-
sibilities yield the same diagrams for bounded ordered sets (especially lattices), as an order-preserving set
representation rep with upward seed vectors seed can be transformed in an order-reversing set representation
rep′ : p 7→ rep(>) \ rep(p) with downward seed vectors seed′ = −seed such that pos′(p) = pos(p)− pos(>)
hold. Indeed:

pos(p)− pos(>) = ∑
x∈rep(p)

seed(x)− ∑
x∈rep(>)

seed(x)

= −

 ∑
x∈rep(>)

seed(x)− ∑
x∈rep(p)

seed(x)


= − ∑

x∈rep(>)\rep(p)
seed(x)

= ∑
x∈rep′(p)

seed′(x)

= pos′(p).

2.2.4 Concept Diagram
For concept lattices there a three canonical ways to define such additive line diagrams. It is well known that
the attribute concepts make up a

∧
-dense set and dually the object concepts form a

∨
-dense set inB(G, M, I).
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2 Fundamentals of Formal Concept Analysis

(I) An ATTRIBUTE ADDITIVE line diagram of B(G, M, I) is given by the intent projection as set representa-
tion rep : (A, B) 7→ B and downward seed vectors. One should further restrict to the irreducible attributes to
gain a clearer diagram. It is not possible to omit an irreducible attribute, as then some concept nodes would
coincide.

(II) Dually an OBJECT ADDITIVE line diagram of B(G, M, I) can be obtained by means of the extent pro-
jection as set reprentation rep : (A, B) 7→ A and upward seed vectors. Again it is better to only choose seed
vectors for irreducible attributes.

(III) One can also combine these two approaches to gain HYBRID ADDITIVE line diagrams. The intent projec-
tion is order-reversing while the extent projection is order-preserving. So to gain a suitable set representation
combining both approaches, one of the projections must be reversed as described above. The reversed ex-
tent projection is (A, B) 7→ rep(>) \ rep(A, B) = G \ A = {A and dually the reversed intent projection is
(A, B) 7→ rep(⊥) \ rep(A, B) = M \ B = {B. Thereby both set representations rep : (A, B) 7→ A∪ {B together
with upward seeds and rep : (A, B) 7→ {A ∪ B with downward seeds provide suitable hybrid additive line
diagrams, and yield the same diagrams.

When dealing with a formal context and its concept lattice, a line diagram is hardly readable when each
node is fully labeled with the corresponding formal concept. As the object concepts construct all concepts by
means of suprema, one can just label each object concept γg with g and then read off the objects in a concept
extent by collecting all objects that label the node itself or a node being connected by a descending path. This
due to the fact, that a concept (A, B) contains an object g in its extent iff the object concept γg = (gI I , gI) is
smaller than (A, B).1 Dually the attribute concepts are a infimum base, and one can thus label each attribute
concept µm with m. The attributes contained in a concept intent can then be read off by collecting all attributes
labeling the node itself or a concept node being connected by an ascending path. This is true, since m ∈ B
hold for a formal concept (A, B) if and only if µm ≥ (A, B).

A LABELED ADDITIVE CONCEPT DIAGRAM for a formal context K = (G, M, I) is defined as a triple

D(K) := (N(K),≺, seed).

Thereby N(K) is the set of CONCEPT NODES. Each concept (A, B) ∈ B(K) has an appropriate concept
node (A, B, Aλ, Bλ) with its OBJECT LABELS Aλ and ATTRIBUTE LABELS Bλ respectivelly, that are given
by the conventions

Aλ := {g ∈ G | γ(g) = (A, B)} =
{

g ∈ A
∣∣∣ gI = B

}
and Bλ := {m ∈ M | µ(m) = (A, B)} =

{
m ∈ B

∣∣∣mI = A
}

.

The concept nodes inherit the neighborhood relation from the concepts via

(A, B, Aλ, Bλ) ≺ (C, D, Cλ, Dλ) :⇔ (A, B) ≺ (C, D).

Furthermore, seed is a seed vector map, such that for every object g there is an OBJECT SEED VECTOR
seed(g) ∈ R2 and for every attribute m there is an ATTRIBUTE SEED VECTOR seed(m) ∈ R2. The POSI-
TION of a concept node is then defined by a hybrid representation rep : (A, B) 7→ {A ∪ B

pos : (A, B) 7→ ∑
g∈{A

seed(g) + ∑
m∈B

seed(m).

A labeled additive concept diagram is called ATTRIBUTE ADDITIVE, iff all object seed vectors equal the
null vector, and analogously it is called OBJECT ADDITIVE, iff all attribute seed vectors are null vectors.
In all other cases it is called HYBRID ADDITIVE.

2.8 Definitio: Labeled Additive Concept Diagram

Due to the chosen hybrid representation, the seed vectors must point downwards to ensure the upward draw-
ing convention. A context diagram can be transformed in its coordinates by applying a TRANSFORMATION

1From g ∈ A it follows gI I ⊆ AI I = A and this means γg ≤ (A, B). In the opposite direction γg ≤ (A, B) implies g ∈ A as surely
g ∈ gI I hold.
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FUNCTION θ : R2 → R2 on the seeds. The TRANSFORMED diagram is then given as

Dθ(K) := (N(K),≺, θ ◦ seed).

A toy example is given in figure 2.1.

1 2 3
1 ↗↙ × ×
2 × ↗↙ ×
3 × × ↗↙

1 2 3

3 2 1

1

2

3

3

2

1

1
2

3

3
2

1

Figure 2.1: Concept diagram and transformations for the three-dimensional boolean scale context. The
transformation functions for the second diagram is θ1 : (x, y) 7→ (x, y + 1

2 x2) and the one for the
third diagram is θ2 : (x, y) 7→ (x, y− 1

4 x2).

2.2.5 Vertical Hybridization

For distributive concept lattices, the attribute additive approach gives the best additive line diagrams. How-
ever, in the non-distributive case the problem of a distended base can occur. This can be seen on the attribute
additive line diagram for the concept lattice of a nominal scale with at least three elements.

1 2 3

1 ×
2 ×
3 ×

−→
1

1

2

2

3

3

−→
1

1

2

2

3

3
−→

1

1

2

2

3

3

Figure 2.2: A formal context of the three-dimensional nominal scale N3, an attribute additive line diagram,
an hybridized additive line diagram and an vertical adjusted hybridized line diagram of the
concept lattice B(N3).

The seed vectors for the attributes can directly be read off the diagram: They are just the vector from the upper
neighbor to the appropriate attribute concept. In the line diagram 2.2 above there are three seed vectors. The
attribute 1 has the seed vector (−1,−1), attribute 2 has (0,−1) and attribute 3 has (1,−1). However, the seed
vector can only be read off the line diagram in the attribute additive or in the object additive case. This is not
possible for hybrid additive diagrams.
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2 Fundamentals of Formal Concept Analysis

To gain more symmetry in the vertical axis, one can compute a VERTICAL HYBRIDIZATION of an attribute
additive line diagram. This is done by introducing vertical seed vectors for the irreducible objects, whose
vertical coordinates seedy(g) are computed by means of a heuristic, e.g. conflict distance or symmetry met-
ric etc. , or defined by means of the existing attribute seeds (seed(m))m∈M. A good choice is seedy(g) =

f
(

∑gIm seedy(m)
)

for a suitable function f : R→ R. Here the vectors (0,−1) can be chosen for each object 1,
2 and 3. Then the vertical seed coordinates get adjusted to gain more symmetry and a more compact diagram.
Finally these vectors are added to the seeds and the positions are recomputed.

Figure 2.3: Attribute additive and hybridized line diagrams of the concept lattice of the dichotomic scale D3

Figure 2.4: Attribute additive and hybridized line diagrams of the concept lattice of a formal context about
cognac

2.2.6 Omitting the top and bottom concept node

For each formal context K = (G, M, I) the top concept node is given by

> =
(

G, GI ,
{

g ∈ G
∣∣∣ gI = GI

}
,
{

m ∈ M
∣∣∣mI = G

})
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Figure 2.5: Attribute additive and hybridized line diagrams for the interordinal scale I5

Figure 2.6: Attribute additive and hybridized line diagrams of an artificial formal context

Figure 2.7: Attribute additive and hybridized line diagrams for the N5 lattice
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2 Fundamentals of Formal Concept Analysis

In certain cases it does not provide any information about K in the concept diagram D(K). This happens
when neither any attribute label nor any object label in the top concept node exists. When there is no attribute
that is shared by all object, the intent and thus also the set of attribute labels of the top concept node is empty.
Furthermore, when the top concept is no object concept, then the set of object labels of the top concept node
is empty. In summary, the top concept node can be omitted, if there is no full attribute column in K and also
no object g with G = gI I exists. Clearly the maximal elements of the subset B(K) \ {>} must then be the
coatoms of the concept lattice B(K).

Figure 2.8: Attribute additive and hybridized line diagrams of the concept lattice of the dichotomic scale D3,
with omitted top and bottom concept node

Dually the bottom concept node

⊥ =
(

MI , M,
{

g ∈ G
∣∣∣ gI = M

}
,
{

m ∈ M
∣∣∣mI = MI

})
can be left out in the concept diagram, if there is no full object row and furthermore no attribute m with
M = mI I exists. Obviously the minimal elements of B(K) \ {⊥} are then the atoms of B(K).

2.2.7 Actions on Concept Diagrams
When interacting with concept diagrams, one may want to adjust certain seeds. This is modelled with the
map moveseed that is defined as follows: For a seed element σ ∈ G ∪̇M and an adjustment vector δ ∈ R2 let

moveseed((N(K),≺, seed), σ, δ) := (N(K),≺, seed′) and seed′(x) :=

{
boundε(seed(σ) + δ) if x = σ

seed(x) else
.

To ensure the upward drawing convention the movement is bound on the y-coordinate by

boundε(x, y) :=

{
(x, y) if y < ε

(x, ε) else

for a chosen boundary parameter ε ∈ R−. Especially in the hybrid additive concept diagrams the seed
vectors cannot be read off the diagram easily, and a direct modification of them is difficult. Thus, one should
introduce a mechanism for moving nodes, that preserves the additivity of the concept diagram. This is done
with the map movenode defined as follows: For a concept node N ∈ N(K) and an adjustment vector δ ∈ R2 let

movenode((N(K),≺, seed), N, δ) := moveseed(. . . moveseed((N(K),≺, seed), x1, δ′) . . . ), xk, δ′)

with rep(N) = {x1, . . . , xk} and δ′ := 1
k · δ. In summary, this can be displayed as

movenode((N(K),≺, seed), N, δ) = (N(K),≺, seed′′)

with seed′′(s) :=

{
boundε(seed(x) + 1

|rep(N)| · δ) if x ∈ rep(N)

seed(x) else
.

2.2.8 Metrics on Concept Diagrams
A METRIC on a concept diagram is a mapping metric, that assigns a non-negative real number to each concept
diagram. A metric measures the subjective quality of concept diagrams under different points of view. One
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can for example take the conflict distance (or conflict avoidance parameter when moving seed or nodes, that
involves the diagram growth and is thus bounded) from (Gan) defined by

conflictdistance(N(K),≺, seed) :=
∧{

distance(pos(α, β), pos(γ))

∣∣∣∣ α, β, γ ∈ N(K) and α 6= γ
and β 6= γ and α ≺ β

}
.

Also the number of crossing edges yield a suitable quality metric given by

edgecrossings(N(K),≺, seed) :=
∣∣∣∣{{(α, β), (γ, δ)}

∣∣∣∣ α, β, γ, δ ∈ N(K) and α 6= γ and β 6= δ
and α ≺ β and γ ≺ δ and pos(α, β) ∩ pos(γ, δ) 6= ∅

}∣∣∣∣ .

Furthermore for measuring the readability of a concept diagram one may consider the number of distinct
directions of edges with

directioncount(N(K),≺, seed) :=
∣∣∣∣{ pos(β)− pos(α)

‖pos(β)− pos(α)‖

∣∣∣∣ α, β ∈ N(K) and α ≺ β

}∣∣∣∣ ,

and also the minimal angle between edges can be of interest, that yields a metric by

minimalangle(N(K),≺, seed) :=
∧{

angle(pos(α, β), pos(α, γ))

∣∣∣∣ α, β, γ ∈ N(K) and β 6= γ
and (α ≺ β and α ≺ γ) or (β ≺ α and γ ≺ α)

}

2.2.9 Heatmaps for Concept Diagrams

Figure 2.9: Heatmap for the context in figure 4.4 in (GW99) on movement of the left coatom

For a visual assisted adjustment of seeds, a HEATMAP w.r.t. to an arbitrary concept diagram metric metric is
given as follows. For a seed element σ a heatmap is a function from the real plane (or for practical purposes,
a finite subset of the real plane) that assigns to each adjustment vector δ ∈ R2 the value of metric for the
appropriate seed adjustment, i.e.

heatmapseed(D(K), σ, metric) :

R2 → R

δ 7→
{

metric(moveseed(D(K), σ, δ)) if δy < seedy(σ)

0 else

Furthermore, heatmaps can also be defined for moving concept nodes. A benefit is then the possibility to
draw the heatmap in the background of the concept diagram to give advices where to place the chosen con-
cept node. Let N ∈ D(K) be the moving concept node with its original position π := pos(N) before the
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movement, then the heatmap is defined as

heatmapnode(D(K), N, metric) :

R2 → R

π + δ 7→
{

metric(movenode(D(K), N, δ)) if δy <
∧

N1>N posy(N1)− posy(N)

0 else

Heatmaps on concept lattice diagrams were abstractly introduced in (Gan) by means of conflict charts w.r.t. node
edge distances (conflict distance). Three examples for heatmaps are shown in figures 2.9, 2.10 and 2.11. The
pictures were produced with a multi-threaded toy prototype, written as an Eclipse plugin.

Figure 2.10: Heatmap for a context about airlines on movement of the encircled node

Figure 2.11: Heatmap for a context about lattices on movement of the encircled left coatom

2.2.10 Biplots of Concept Diagrams
In a paper from (GG12) the technique of an ordinal factorization of a formal context is introduced.
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2.2 Visualizations of Concept Lattices

A FACTORISATION of a formal context (G, M, I) consists of two FACTORISATION CONTEXTS (G, F, IGF) and
(F, M, IFM) such that an object g has an attribute m in (G, M, I) iff there is a FACTOR f ∈ F with g IGF f
and f IFM m. We then write (G, M, I) = (G, F, IGF) ◦ (F, M, IFM). For a subset E ⊆ F the subcontext
(G, E, IGF ∩ (G × E)) is called a (MANY-VALUED) FACTOR of (G, M, I). A factor (G, F, IGF) of (G, M, I) is
called an S-FACTOR, if it has a surjective full S-measure. If S is an elementary ordinal scale, one also speaks
of an ORDINAL factor. Moreover, one says that (G, M, I) has an ORDINAL FACTORISATION if it has a first
factorising context that can be written as an apposition of ordinal factors.
A proposition in (GG12) states that a formal context is an ordinal factor of (G, M, I), iff its attribute extents
are a linearly ordered family of concept extents of (G, M, I).
Each context has a trivial factorisation (G, M, I) = (G, M, I) ◦ (M, M,→) with factors in M. Choosing the
irreducible attributes Mirr ⊆ M gives the ATTRIBUTE FACTORISATION

(G, M, I) = (G, Mirr, I ∩ (G×Mirr)) ◦ (Mirr, M,→ ∩(Mirr ×M)).

By computing a chain decomposition M1, . . . , Mk of the attribute order (Mirr,→) an ordinal factorization can
be obtained. Indeed, each factor (G, Mj, I ∩ (G×Mj)) is then ordinal, and obviously (G, M, I) can be written
as an apposition of the ordinal factors (G, Mj, I ∩ (G×Mj)). Also (GG12) introduce the BIPLOT visualization
of the conceptual data obtained from a formal context by chosing two ordinal factors as axes of an ordinary
x-y-chart and projecting the formal concepts onto these factors to gain the coordinates. When choosing or-
dinal factors computed from an attribute chain decomposition, one can label the axis with the appropriate
attributes. Furthermore, nodes are drawn at the coordinates of the projected concepts and labeling them with
the corresponding object labels. It remains to investigate, whether the projected concepts should be drawn
upon or beneath each other. All edges between concepts are omitted for a clearer structure.

biplot((N(K),≺, seed), M1, M2) := (N(K), ∅, seed′′′) and seed′′′(m) :=

{
ej if m ∈ Mj

0 else

Finally one could use remaining ordinal factors in other chart dimensions, e.g. node size, node color, node
shape etc. Also nominal factors can be displayed. One should for the sake of readability provide legends
beneath the chart for such additional dimensions.

2.2.11 Seeds Selection
Seed vectors can be chosen in many different ways.

Context Rearrangement

Suppose two enumerations enumG : G ↪→→ {0, 1, . . . , |G| − 1} and enumM : M ↪→→ {0, 1, . . . , |M| − 1} for the
object set G and the attrribute set M is given. One can consider simply the position of the objects and the
attributes in the corresponding cross table. Then the CENTER of an object row if given

centerG(g) :=
1
|gI | · ∑gIm

enumM(m)

and dually the CENTER of an attribute column is defined as

centerM(m) :=
1
|mI | · ∑gIm

enumG(g).

The contexts rows are rearranged by ascending centers, then dually the columns are rearranged by ascending
centers. This procedure is repeated until no further changes occur, or a cycle is entered. In the end one can
choose the seed vectors according to the attribute enumeration. This technique ensures that in many cases the
horizontal coordinates of incident objects and attributes do not differ too much, and can reduce the number
of edge crosses. It can also be easily implemented.

Spectral Decomposition

For a formal context K transform its concept lattice B(K) = (B(K),≤) into an undirected graph (V, E) =
(B(K),≤ ∪ ≥) and compute its laplacian matrix L := D − A ∈ RV×V by means of the adjacency matrix
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A ∈ RV×V and degree matrix D ∈ RV×V that are given by

A :=

({
1 if {v, w} ∈ E and v 6= w
0 else

)
v,w∈V

and D := diag(deg(v))v∈V .

The laplacian matrix is symmetric and has thus exactly |V| real eigenvalues and corresponding real eigen-
vectors. Then two eigenvectors are chosen, one for the horizontal coordinates and the other for the vertical
coordinates. In figure 2.12 a toy example of a boolean cube B5 is shown that was drawn with this technique.
However, more sophisticated details remains for future research. See (GR04) or (Ros04) for further details.

Figure 2.12: Concept diagram of the five-dimensional cube with its appropriate boolean context B5

Chain Decomposition

Another possibility is given by means of a chain decomposition of the attribute order (M,→) where

m→ n :⇔ µm ≤ µn⇔ mI ⊆ nI .

Let (P,≤) be an arbitrary ordered set. A CHAIN DECOMPOSITION {Ct}t∈T of (P,≤) is a partition of P, such
that every partition class Ct forms a chain in (P,≤).

∀t1 6=t2 Ct1 ∩ Ct2 = ∅⋃
t∈T Ct = P

∀t∈T ∀p1,p2∈Ct p1 ≤ p2 or p2 ≤ p1

A MINIMAL chain decomposition is a chain decomposition with k chains, such that there is no chain decom-
position with less than k chains. The cardinality of a minimal chain decomposition is also called the CHAIN
COVERING NUMBER of the poset (P,≤). DILWORTH’s theorem states that the width, i.e. the cardinality of a
maximal antichain, of each ordered set equals its chain covering number.
For a context K = (G, M, I) an ATTRIBUTE CHAIN DECOMPOSITION is a chain decomposition {Mt}t∈T of the
attribute order (Mirr,→). From an attribute chain decomposition a seed function can be obtained by choos-
ing a suitable chain seed function seed′ : T → R2. This yields a seed function seed for a concept diagram with
seed(m) := seed′(t) with m ∈ Mt. Good practical results can be achieved by putting the longest chain in the
middle, i.e. with null horizontal coordinate, and sort the other chains sideways, descending by size.
Furthermore, when moving a concept node within a concept diagram with chain seeds, one can decide to
move just like in the ordinary case, or to move the whole chain as well to not break the chain visualization.
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Subdirect Decomposition

According to (GW99) the subdirect irreducible factors can be computed by means of the contextB(G, M,↙↙\ ).
In a doubly founded context a subcontext (H, N) is compatible iff it is arrow closed iff ({H, N) is a con-
cept of B(G, M,↙↙\ ). Furthermore the subdirect decompositions of (G, M, I) are in a one-to-one correspon-
dence to the families {(Gt, Mt)}t∈T of arrow-closed subcontexts covering the context, i.e. G =

⋃
t∈T Gt and

M =
⋃

t∈T Mt.
When computing a diagram of a subdirect irreducible factor, the seeds can be used to obtain a diagram of the
whole context. As the diagram is smaller it is easier to compute a good diagram. This leads to a divide and
conquer technique for producing concept diagrams. However, it has to be ensured when mixing seed maps
from different factors, that the obtained diagram is good as well.
A small subdirect irreducible decomposition can be produced by looking at the attribute order ofB(G, M,↙↙\ ).
First, it holds ⋃

m∈M
m↙↙\ ↙↙\ = M and

⋂
m∈M

m↙↙\ = M↙↙\ = ∅

since (G, M) is trivially arrow closed in (G, M, I), thus (G \ G, M) = (∅, M) must be the smallest concept of
(G, M,↙↙\ ). Hence, choose a minimal subset N ⊆ M such that⋂

m∈N
m↙↙\ = ∅,

then
{
(G \ n↙↙\ , n↙↙\ ↙↙\ )

}
n∈N

is a subdirect decomposition into subdirect irreducible factors. The simplest way

is to choose N as the set of the minimal elements in the attribute order (M,→↙↙\ ) of B(G, M,↙↙\ ). Then, con-
cept diagrams for these subcontext are computed and merged into a concept diagram of the whole concept
diagram of K.

2.3 Apposition of Contexts

Let (G, M, I) and (G, N, J) be two contexts with disjoint attribute sets, i.e. M ∩ N = ∅. Then their
APPOSITION is defined as

(G, M, I)|(G, N, J) := (G, M ∪̇ N, I ∪̇ J).

2.9Definitio: Apposition

Let (G, M, I) and (G, N, J) be two contexts with disjoint attribute sets. Then we have the following
equations for objects g ∈ G and attributes m ∈ M and n ∈ N:

(I) g(I ∪̇ J)m⇔ gIm and g(I ∪̇ J)n⇔ gJn

(II) gI∪̇J = gI ∪̇ gJ

(III) mI∪̇J = mI and nI∪̇J = nJ

2.10Lemma: Rows and Columns in Apposition Context

APPROBATIO (I) This is obvious, since by construction of an apposition we have (I ∪̇ J) ∩ (G ×M) = I
and dually (I ∪̇ J) ∩ (G× N) = J.

(II) For an object g ∈ G we have

gI∪̇J = {m ∈ M ∪̇ N | g(I ∪̇ J)m} = {m ∈ M ∪̇ N | gIm ∨̇ gJm} = {m ∈ M | gIm} ∪̇ {m ∈ N | gJm} = gI ∪̇ gJ

(III) This follows from (i). �
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Let (G, M, I) and (G, N, J) be two contexts with disjoint attribute sets. Then we have the following
equations for object sets A ⊆ G and attribute sets B ⊆ M ∪̇ N, D ⊆ M and F ⊆ N:

(I) AI∪̇J ∩M = AI

and AI∪̇J ∩ N = AJ

and AI∪̇J = AI ∪̇ AJ

(II) DI∪̇J = DI

and FI∪̇J = F J

and BI∪̇J = (B ∩M)I ∩ (B ∩ N)J

(III) AI(I∪̇J) = (AI∪̇J ∩M)I = AI I

and AJ(I∪̇J) = (AI∪̇J ∩ N)J = AJ J

and A(I∪̇J)(I∪̇J) = AI I ∩ AJ J

(IV) DI(I∪̇J) = DI I ∪̇ DI J

and F J(I∪̇J) = F J I ∪̇ F J J

and B(I∪̇J)(I∪̇J) = ((B ∩M)I ∩ (B ∩ N)J)I ∪̇ ((B ∩M)I ∩ (B ∩ N)J)J

2.11 Lemma: Common Rows and Common Columns in Apposition Context

A

AI∪̇J

AI

AJ

Figure 2.13: schema for closure of object sets

BI∪̇J
(B ∩M)I

(B ∩ N)J

B

B ∩M

B ∩ N

Figure 2.14: schema for closure of attribute sets

APPROBATIO (I) Let A ⊆ G be an object set. Then it holds that

AI∪̇J ∩M =
⋂

g∈A
gI∪̇J ∩M =

⋂
g∈A

(gI ∪̇ gJ) ∩M =
⋂

g∈A
gI = AI .

Dually we have AI∪̇J ∩ N = AJ . Furthermore we conclude

AI∪̇J = (AI∪̇J ∩M) ∪̇ (AI∪̇J ∩ N) = AI ∪̇ AJ .
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Figure 2.13 shows what happens in the context when deriving an object set A.

(II) Let now D ⊆ M be an attribute set. Then

DI∪̇J =
⋂

m∈D
mI∪̇J =

⋂
m∈D

mI = DI

and dually FI∪̇J = FI . Furthermore for an attribute set B ⊆ M ∪̇ N we have

BI∪̇J = ((B ∩M) ∪̇ (B ∩ N))I∪̇J = (B ∩M)I∪̇J ∩ (B ∩ N)I∪̇J = (B ∩M)I ∩ (B ∩ N)J .

(III) For a set of objects A ⊆ G it holds

AI(I∪̇J) = (AI ∩M)I ∩ (AI ∩ N)J = AI I ∩∅J = AI I ∩ G = AI I

and dually AJ(I∪̇J) = AJ J . Also we have

(A(I∪̇J) ∩M)I = ((AI ∪̇ AJ) ∩M)I = AI I .

and (A(I∪̇J) ∩ N)J = AJ J dually. It then follows that

A(I∪̇J)(I∪̇J) = (AI ∪̇ AJ)(I∪̇J) = AI(I∪̇J) ∩ AJ(I∪̇J) = AI I ∩ AJ J .

(IV) We have DI(I∪̇J) = DI I ∪̇ DI J by (I). Dually it follows that F J(I∪̇J) = F J I ∪̇ F J J . As a conclusion we get

B(I∪̇J)(I∪̇J) = ((B ∩M)I ∩ (B ∩ N)J)(I∪̇J) = ((B ∩M)I ∩ (B ∩ N)J)I ∪̇ ((B ∩M)I ∩ (B ∩ N)J)J .

�

We recall the definition of a dense subcontext in this special case: (G, M, I) is dense in (G, M, I)|(G, N, J) iff
µM is

∧
-dense in the concept lattice of (G, M, I)|(G, N, J). Trivially γG is

∨
-dense. By Lemma 2.7 (G, M, I)

is dense iff B(I∪̇J) = (B ∩ M)(I∪̇J)(= (B ∩ M)I) holds for all attribute sets B ⊆ M ∪̇ N. Again, A(I∪̇J) =

(A ∩ G)(I∪̇J) trivially holds for A ⊆ G. The context (G, N, J) is called REDUNDANT in (G, M, I)|(G, N, J) iff
(G, M, I) is dense in (G, M, I)|(G, N, J).

Let (G, M, I) and (G, N, J) be two contexts with disjoint attribute sets. Then every extent of (G, M, I) is
also an extent of (G, M, I)|(G, N, J) and

φ :
B(G, M, I) ↪→ B(G, M, I)|(G, N, J)

(A, B) 7→ (A, A(I∪̇J)) = (A, B ∪̇ AJ)

is a
∧

-preserving order-embedding. Furthermore, if (G, M, I) is dense in (G, M, I)|(G, N, J), then vice
versa every extent of (G, M, I)|(G, N, J) is an extent of (G, M, I) as well and φ is an isomorphism. The
inverse mapping is then given by

φ−1 : (A, B) 7→ (A, B ∩M).

2.12Theorema: Embedding into Apposition Lattice

APPROBATIO Each extent of (G, M, I) has the form BI for some attribute set B ⊆ M. By Lemma: Common
Rows and Common Columns in Apposition Context 2.11 B(I∪̇J) = BI then always hold and so BI must also be
an extent of (G, M, I)|(G, N, J). Thus φ is well-defined in the sense that each φ-image of a (G, M, I)-concept
is a (G, M, I)|(G, N, J)-concept. Again by the preceding Lemma: Common Rows and Common Columns in
Apposition Context 2.11, A(I∪̇J) = AI ∪̇ AJ = B ∪̇ AJ hold for the intents. As φ does not change the extent, it
clearly must be an order-embedding. By Theorema: Concept Lattice 2.5 every infimum can be found by just
intersecting extents, thereby φ is

∧
-preserving.

Finally let (G, M, I) be dense in (G, M, I)|(G, N, J), i.e. B(I∪̇J) = (B ∩ M)I holds for every B ⊆ M ∪̇ N as
above. Clearly each extent B(I∪̇J) of (G, M, I)|(G, N, J) must then be an extent of (G, M, I) as well. Fur-
thermore φ is a surjection: Let (A, B) ∈ B(G, M, I)|(G, N, J), then (A, B ∩ M) is a concept of (G, M, I) as
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AI = A(I∪̇J) ∩M = B ∩M and (B ∩M)I = B(I∪̇J) = A, and φ(A, B ∩M) = (A, A(I∪̇J)) = (A, B) holds. In
summary φ is a surjective order-embedding, i.e. an order-isomorphism and a lattice-isomorphism. Moreover
(A, B) 7→ (A, B ∩M) is indeed the inverse of φ as

φ−1φ(A, B) = φ−1(A, B ∪̇ AJ) = (A, (B ∪̇ AJ) ∩M) = (A, B)

and

φφ−1(A, B) = φ(A, B ∩M) = (A, (B ∩M) ∪̇ AJ

=(A(I∪̇J)∩M)∪̇AJ

=AI ∪̇AJ

=A(I∪̇J)
=B

) = (A, B)

hold by Lemma: Common Rows and Common Columns in Apposition Context 2.11.�
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2.3 Apposition of Contexts

The concept lattice of a context apposition can be embedded in the direct product of the single concept
lattices. Formal: For two contexts (G, M, I) and (G, N, J) the mapping

ψ :
B(G, M, I)|(G, N, J) ↪→→ B(G, M, I)�B(G, N, J)

(A, B) 7→ ((AI I , AI), (AJ J , AJ)) = (((B ∩M)I , B ∩M), ((B ∩ N)J , B ∩ N))

with B(G, M, I)�B(G, N, J) ⊆ B(G, M, I)×B(G, N, J) and

((A, B), (C, D)) ∈ B(G, M, I)�B(G, N, J) :⇔ (A ∩ C, B ∪̇ D) ∈ B(G, M, I)|(G, N, J)

is an isomorphism. The inverse mapping of ψ is given by

ψ−1 : ((A, B), (C, D)) 7→ (A ∩ C, B ∪̇ D).

The set B(G, M, I)�B(G, N, J) together with the inherited coordinate-wise order is a complete lattice
and is called NESTED CONCEPT LATTICE of (G, M, I) and (G, N, J).

2.13Theorema: Nested Concept Lattice

APPROBATIO The order ofB(G, M, I)�B(G, N, J) is the inherited coordinate-wise order from the cartesian
product B(G, M, I) ×B(G, N, J). The supremum equals the coordinate-wise supremum in the cartesian
product, as can be seen on the intents: (

⋂
t∈T Bt) ∪̇ (

⋂
t∈T Dt) =

⋂
t∈T(Bt ∪̇ Dt) always hold for attribute sets

Bt ⊆ M and Dt ⊆ N for all t ∈ T. So the supremum in B(G, M, I) �B(G, N, J) exist for all subsets of
B(G, M, I)�B(G, N, J) and it is indeed a complete lattice.
Now let (A, B) be a concept of the apposition (G, M, I)|(G, N, J), then AI I ∩ AJ J = A(I∪̇J)(I∪̇J) = A and
AI ∪̇ AJ = A(I∪̇J) = B hold by Lemma: Common Rows and Common Columns in Apposition Context 2.11
and thereby ψ(A, B) is an element of the nested product B(G, M, I)�B(G, N, J). So ψ is well-defined. For
each concept (A, B) ∈ B(G, M, I)|(G, N, J) it follows by the same arguments as above

ψ−1ψ(A, B) = ψ−1((AI I , AI), (AJ J , AJ)) = (AI I ∩ AJ J , AI ∪̇ AJ) = (A, B).

Now let ((A, B), (C, D)) ∈ B(G, M, I)�B(G, N, J), then it holds that

ψψ−1((A, B), (C, D)) = ψ(A ∩ C, B ∪̇ D) = (((A ∩ C)I I , (A ∩ C)I), ((A ∩ C)J J , (A ∩ C)J)).

By Lemma: Common Rows and Common Columns in Apposition Context 2.11 (A ∩ C)I = (A ∩ C)(I∪̇J) ∩
M = (B ∪̇ D) ∩ M = B and thus (A ∩ C)I I = BI = A as well. Analogously for (C, D) in (G, N, J). In
summary ψ is a bijection.
ψ is order-preserving as A ⊆ C always implies AI ⊇ CI and AJ ⊇ C J and thus ψ(A, B) ≤ ψ(C, D) hold for
all concepts (A, B) ≤ (C, D). Overthis ψ is order-reversing since AI ⊇ CI and AJ ⊇ C J implies

B = A(I∪̇J) = AI ∪̇ AJ ⊇ CI ∪̇ C J = C(I∪̇J) = D.

So ψ is an order-isomorphism and a lattice-isomorphism.
When using ψ just as an embedding into the cartesian product B(G, M, I) ×B(G, N, J), then ψ is only an
order-embedding and overthis

∨
-preserving as can be seen on the intents. �
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3.1 Insertion & Removal of a single Attribute Column

When visualizing a concept lattice by a line diagram, some interaction techniques are needed. In this section
an algorithm for the insertion and removal of single attributes is constructed and proven.
Throughout the whole section let K = (G, M, I) be an arbitrary finite formal context. Let further be n 6∈ M
any new attribute with its attribute extent nJ ⊆ G or incidence J ⊆ G× {n} respectivelly, i.e. C = (G, {n} , J)
is also a context, called COLUMN. Their apposition is symbolized as

K|C = (G, M, I)|(G, {n} , J) = (G, M ∪̇ {n} , I ∪̇ J)

The context neither has to be clarified nor reduced. The initial point of view is the Insertion of a single at-
tribute, thus K is called the old context and K|C the new context.
The update process of the line diagram is split up in four parts: concepts, neighborhood, labels and seeds.
In certain cases there is no big change in the line diagram, viz. when the set of extents of the updated con-
text K|C equals the set of extents of the preceding context K. Then the column C and the attribute n are
called REDUNDANT in K|C. Two other strongly related definitions are recalled: Two attributes of a context
are called EQUIVALENT, iff they have the same attribute extents. An attribute is called REDUCIBLE, iff the
appropriate attribute concept is

∧
-reducible in the concept lattice. More formally: m ∈ M is reducible in K,

iff µm = (mI , mI I) is
∧

-reducible in B(K), so, iff

µm = (µm)∗ =
∧

(A,B)∈B(K)
µm<(A,B)

(A, B) =
∧

n∈M
µm<µn

µn

and thus, iff mI =
⋂

n∈M
mI⊂nI

nI . The following lemma shows that a redundant attribute is either equivalent

to another attribute or is reducible by some other attributes, and vice versa each equivalent or reducible
attribute is redundant.

27



3 Incremental Updates for Concept Diagrams

The following statements are equivalent:

(I) n is redundant in K|C

(II) nJ is an extent of K

(III) n has an equivalent attribute or is reducible in K|C

(IV) K is dense in K|C

3.1 Lemma: Characterization of Attribute Redundancy

APPROBATIO (I)⇒(II) When n is redundant in K|C, then both contexts K|C and K have the same set of
extents. Thus n(I∪̇J) = nJ must clearly be an extent of K.

(I)⇐(II) Let nJ be an extent of K, i.e. nJ = DI for a suitable D ⊆ M. Each extent of K is obviously an extent
of K|C, as BI = B(I∪̇J) holds for all B ⊆ M by Lemma: Common Rows and Common Columns in Apposition
Context 2.11. Now let A be an extent of K|C, i.e. there is an attribute set B ⊆ M ∪̇ {n} with A = B(I∪̇J). In
case n /∈ B it clearly follows that B(I∪̇J) = BI . Otherwise B(I∪̇J) = (B \ {n})I ∩ nJ = BI ∩ DI = (B ∪ D)I . In
both cases A is already an extent of K. In summary both contexts have exactly the same set of extents.

(II)⇒(III) If the new attribute extent nJ is already an extent of K, then there is an attribute set B ⊆ M with

n(I∪̇J) = nJ = BI =
⋂

m∈B
mI =

⋂
m∈B

m(I∪̇J).

Either an attribute m ∈ B exists such that n(I∪̇J) = m(I∪̇J), i.e. n and m are equivalent in K|C, or n(I∪̇J) 6= m(I∪̇J)

holds for all attributes m ∈ B, and as m ∈ B = AI ⇔ n(I∪̇J) = nJ = A ⊆ mI = m(I∪̇J)

n(I∪̇J) =
⋂

m∈B
m(I∪̇J) =

⋂
m∈M

n(I∪̇J)⊂m(I∪̇J)

m(I∪̇J),

i.e. n is reducible (by B) in K|C.

(II)⇐(III) If n has an equivalent attribute m ∈ M, then nJ = n(I∪̇J) = m(I∪̇J) = mI hold, so nJ is obviously
an extent of K. Otherwise n is reducible in K|C, i.e. the appropriate attribute concept µn = (n(I∪̇J), n(I∪̇J)(I∪̇J))
is
∧

-reducible in the concept lattice B(K|C), i.e. it is the infimum of all proper super concepts of K|C. As all
attribute concepts of K|C make up a

∧
-dense set in B(K|C) it holds that

µn =
∧

m∈M
µn<µm

µm.

By Lemma: Rows and Columns in Apposition Context 2.10 this attribute concept µn has the form (nJ , nJ(I∪̇J))

and each attribute concept µm has the form (mI , mI(I∪̇J)) for all other attributes m ∈ M. Thus by looking on
the extents

nJ =
⋂

m∈M
nJ⊂mI

mI = (
⋃

m∈M
nJ⊂mI

{m})I =
{

m ∈ M
∣∣∣ nJ ⊂ mI

}I
.

So nJ is an extent of K.

(III)⇒(IV) If n has an equivalent attribute or is reducible in K|C, then there is an attribute m ∈ M with
µn = µm or there is a set of attributes B ⊆ M with µn =

∧
µB. So µM must be dense in K|C.

(I)⇐(IV) This is Theorema: Embedding into Apposition Lattice 2.12 with N = {n}.�

Now the concepts of K|C are constructed from those of K by Theorema: Embedding into Apposition Lattice
2.12 and Theorema: Nested Concept Lattice 2.13. If n is redundant, then both concept lattices are isomorphic
by the mapping

φ :
B(K) ↪→→ B(K|C)

(A, B) 7→ (A, B ∪̇ AJ).
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Lemma 3.3 states, that AJ = {n}, iff A ⊆ nJ , and AJ = ∅ otherwise. Thereby

φ(A, B) =

{
(A, B) (A 6⊆ nJ)

(A, B ∪̇ {n}) (A ⊆ nJ)

holds. A further refinement is given in Corollarium: Concept Transition from K to K|C and vice versa 3.8 in
the next subsection. If the new attribute n is not redundant, then both concept lattices are not isomorphic and
B(K) can only be embedded in B(K|C). To be able to construct all concepts of the apposition K|C, consider
the bijective mapping

ψ−1 :
B(K)�B(C) ↪→→ B(K|C)

((A, B), (C, D)) 7→ (A ∩ C, B ∪̇ D)

from Theorema: Nested Concept Lattice 2.13. With a closer look on the concept lattice B(C) it is clear that it
can have at most two concepts. The bottom concept is ⊥ = (∅J J , ∅J) = ({n}J , {n}) and the top concept is
> = (∅J , ∅J J) = (G, G J). Both concepts are equal, if nJ = G, i.e. when J = G× {n} and the context is full of
crosses. If n is not redundant then it cannot be reducible and thus in this case the context cannot be full and
both concepts> and⊥ are distinct. Thereby it can be concluded that the following equations hold:

ψ−1((A, B),>) = (A ∩ G, B ∪̇∅) = (A, B)

and

ψ−1((A, B),⊥) = (A ∩ nJ , B ∪̇ {n}) =
{
(A, B ∪̇ {n}) (A ⊆ nJ)

(A ∩ nJ , B ∪̇ {n}) (A 6⊆ nJ).

When looking at definition of the nested concept lattice one must check that each pair ((A, B),>) is in
B(K)�B(C).

((A, B),>) ∈ B(K)�B(C)

⇔(A ∩ G, B ∪̇∅) = (A, B) ∈ B(K|C)

⇔ A(I∪̇J)

=AI ∪̇AJ

=B∪̇AJ

= B

⇔AJ=∅
⇔n 6∈AJ

⇔A 6⊆nJ

and B(I∪̇J)

=BI=A

= A

⇔A 6⊆ nJ

Analogously it has to be ensured that each pair ((A, B),⊥) is an element of the nested concept latticeB(K)�
B(C) as well.

((A, B),⊥) ∈ B(K)�B(C)

⇔(A ∩ nJ , B ∪̇ {n}) ∈ B(K|C)

⇔ (A ∩ nJ)(I∪̇J)

=(A∩nJ)I ∪̇(A∩nJ)J

= B ∪̇ {n}

⇔(A∩nJ)I=B and (A∩nJ)J={n}

⇔n∈(A∩nJ)J

⇔A∩nJ⊆nJ

and (B ∪̇ {n})(I∪̇J)

=BI∩nJ

=A∩nJ

= A ∩ nJ

⇔A ⊆ nJ or (A 6⊆ nJ and (A ∩ nJ)I = B)

In summary the following equation hold for the mapping ψ−1.

ψ−1 :

((A, B),>) 7→ (A, B) (A 6⊆ nJ)

((A, B),⊥) 7→
{
(A, B ∪̇ {n}) (A ⊆ nJ)

(A ∩ nJ , B ∪̇ {n}) (A 6⊆ nJ and (A ∩ nJ)I = B)

The concept (A, B) is always one of K and so this gives a strong advice how the concepts in K|C can be com-
puted from those of K that are already known. Please note the high similarity to the equation for φ in the
redundant case. For more details please have a look at the following subsection, especially at Corollarium:
Concept Transition from K to K|C and vice versa 3.8.
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3 Incremental Updates for Concept Diagrams

If n is redundant, then the old lattice and the new lattice are isomorphic

B(K|C) ∼= B(K),

else the new lattice can be embedded into a doubling of the old lattice

B(K|C)
∼≤ B(K)× 2.

3.2 Corollarium: Structural Changes for Apposition Lattice

3.1.1 Updating the Concepts

This following lemma gives some first observations for K|C.

(I) For all object sets A ⊆ G it holds

A ⊆ nJ ⇔ AJ = {n} and A * nJ ⇔ AJ = ∅.

(II) For a concept (A, B) of K|C it holds

n ∈ B⇔ A ⊆ nJ .

3.3 Lemma

APPROBATIO (I) For each object set A ⊆ G always AJ ⊆ {n} hold, and so n ∈ AJ is also equivalent to
AJ = {n}. The second equivalence follows by contraposition, and AJ 6= {n} is equivalent to AJ = ∅ as
AJ ⊆ {n} always hold.

(II) Let (A, B) be a concept of K|C, i.e.

A = BI∪̇J = (B \ {n})I ∩ (B ∩ {n})J and B = AI∪̇J = AI ∪̇ AJ

hold by Lemma: Common Rows and Common Columns in Apposition Context 2.11, thereby the intent B is
a disjoint union of the subset AI of M and the set AJ either containing n or not. Thus n ∈ B, iff n ∈ AJ . With
one of the galois properties this is equivalent to A ⊆ nJ .�

Concept Transition from K to K|C

The bijective mapping ψ−1 from Theorema: Nested Concept Lattice 2.13 state that there are three special
kinds of concepts in K and thus also in K|C. First, the so called OLD concepts of K w.r.t. C whose extent is no
subset of the new attribute extent nJ . The set of all these old concepts is denoted by

BC
old(K) :=

{
(A, B) ∈ B(K)

∣∣∣ A 6⊆ nJ
}

and the old concepts are mapped to concepts of K|C via

oldC :
BC

old(K) ↪→ B(K|C)

(A, B) 7→ ψ−1((A, B),>) = (A, B)

Second, the so called VARYING concepts with an extent contained in the new attribute extent nJ . All these
varying concepts make up the set

BC
var(K) :=

{
(A, B) ∈ B(K)

∣∣∣ A ⊆ nJ
}

and are mapped to concepts of K|C by means of the mapping

varC :
BC

var(K) ↪→ B(K|C)

(A, B) 7→ ψ−1((A, B),⊥) = (A, B ∪̇ {n})
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3.1 Insertion & Removal of a single Attribute Column

Third, the so called GENERATING concepts (A, B) from K w.r.t. C whose extent is not contained in nJ and
furthermore fulfill the constraint (A ∩ nJ)I = B. The set of all these generating concepts is denoted by

BC
gen(K) : =

{
(A, B) ∈ B(K)

∣∣∣ A 6⊆ nJ and (A ∩ nJ)I = B
}

=
{
(A, B) ∈ BC

old(K)
∣∣∣ (A ∩ nJ)I = B

}
,

and are used to construct some concepts of K|C via

newC :
BC

gen(K) ↪→ B(K|C)

(A, B) 7→ ψ−1((A, B),⊥) = (A ∩ nJ , B ∪̇ {n}).

As ψ−1 is bijective, the three above defined maps are also injective. Furthermore a partition of B(K|C) is
obtained by the three images

Bold(K|C) := ψ−1
(
BC

old(K)× {>}
)
= oldC

(
BC

old(K)
)

Bvar(K|C) := ψ−1
(
BC

var(K)× {⊥}
)
= varC

(
BC

var(K)
)

Bnew(K|C) := ψ−1
(
BC

gen(K)× {⊥}
)
= newC

(
BC

gen(K)
)

and the three above mentioned maps oldC, varC and newC are then surjections onto these disjoint subsets of
B(K|C). The elements of Bold(K|C) are called OLD concepts of K|C w.r.t. C, these of Bvar(K|C) VARIED and
these of Bnew(K|C) NEW concepts of K|C w.r.t. C.
For a redundant attribute n the old concept lattice B(K) and the new concept lattice B(K|C) are isomorphic
via the mapping φ from Theorema: Embedding into Apposition Lattice 2.12, so the concepts of K|C must be
fully determined by the old and varying concepts in K. In other words: The set of generating concepts of K
must be empty, and no new concepts exist in K|C.

The formal concepts of K|C can be computed from those of K by means of the three bijections oldC, varC
and newC. If the new attribute n is redundant, then there are no generating concepts in K and no new
concepts in K|C.

3.4Corollarium: Concept Update

Concept Transition from K|C to K

For an inversion of the concept transition, i.e. when removing the attribute n from K|C, explicit descriptions
of the sets Bold(K|C), Bvar(K|C) and Bnew(K|C) as well as the inversions of the maps oldC, varC and newC
are required. The inverse maps can be determined by means of the inverse of ψ−1 from Theorema: Nested
Concept Lattice 2.13, viz.

ψ :
B(K|C) ↪→→ B(K)�B(C)

(A, B) 7→ ((AI I , AI), (AJ J , AJ)) = (((B ∩M)I , B ∩M), ((B ∩ N)J , B ∩ N)),

and as only the first coordinate in B(K) is of interest, they must be given by (A, B) 7→ (AI I , AI) = ((B ∩
M)I , B ∩M) = ((B \ {n})I , B \ {n}).
First, the old concepts are analyzed. Let (A, B) be an old concept of K w.r.t. C. Then the extent A is no subset
of nJ , and surely (A, B) = oldC(A, B) does not contain n in its intent.

A concept (A, B) of K|C with n /∈ B is always a concept of K as well, and A 6⊆ nJ holds.

3.5Lemma

APPROBATIO From n /∈ B it follows A * nJ and AJ = ∅. So B = AI ∪̇ ∅ = AI . From n /∈ B we further
deduce B ∩ {n} = ∅ and B \ {n} = B, and it follows A = BI ∩ ∅J = BI ∩ G = BI . Thus (A, B) is a concept
of K too. �

The preceding lemma states that oldC is surjective onto {(A, B) ∈ B(K|C) | n /∈ B}, and thus

Bold(K|C) = {(A, B) ∈ B(K|C) | n /∈ B}
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hold. The inverse map is clearly given by

old−1
C :

Bold(K|C) ↪→→ BC
old(K)

(A, B) 7→ (AI I , AI) = (A, B).

Second, the varying concepts are investigated. Let (A, B) be any varying concept of K w.r.t. C, then A ⊆
nJ hold. The corresponding concept in K|C is given by varC(A, B) = (A, B ∪̇ {n}). Obviously it con-
tains the new attribute n in its intent, and ((B ∪̇ {n}) \ {n})I = BI = A hold. This yields Bvar(K|C) ⊆{
(A, B) ∈ B(K|C)

∣∣ n ∈ B and (B \ {n})I = A
}

as a first explicit description.

For a concept (A, B) of K|C with n ∈ B and (B \ {n})I = A, the biset

(C, D) := (A, B \ {n})

is always a concept of K with C ⊆ nJ , such that (A, B) = varC(C, D).

3.6 Lemma

APPROBATIO The biset (C, D) is indeed a concept of K|C as CI = AI = A(I∪̇J) ∩ M = B \ {n} = D and
DI = (B \ {n})I = A = C hold by Lemma: Common Rows and Common Columns in Apposition Context
2.11 and Lemma 3.3. Also n ∈ B implies C = A ⊆ nJ as desired.�

As a corollary varC is surjective onto
{
(A, B) ∈ B(K|C)

∣∣ n ∈ B and (B \ {n})I = A
}

, and this yields

Bvar(K|C) =
{
(A, B) ∈ B(K|C)

∣∣∣ n ∈ B and (B \ {n})I = A
}

.

The inverse map is obviously determined by

var−1
C :

Bvar(K|C) ↪→→ BC
var(K)

(A, B) 7→ ((B \ {n})I , B \ {n}) = (A, B \ {n}).

Third, the generating and new concepts are examined. Let (A, B) be a generating concept of K w.r.t. C,
i.e. A 6⊆ nJ and (A ∩ nJ)I = B hold. Then (A, B) is embedded in the concept set of the new context K|C
by newC(A, B) = (A ∩ nJ , B ∪̇ {n}). Obviously n is an element of B ∪̇ {n}, and ((B ∪̇ {n}) \ {n})I = BI =
A 6= A ∩ nJ hold since A 6⊆ nJ . Thus for the set of new concepts of K|C the inclusion Bnew(K|C) ⊆{
(A, B) ∈ B(K|C)

∣∣ n ∈ B and (B \ {n})I 6= A
}

hold.

For a concept (A, B) of K|C with n ∈ B and (B \ {n})I 6= A, the biset

(C, D) := ((B \ {n})I , B \ {n})

is always a concept of K with C 6⊆ nJ and (C ∩ nJ)I = D, such that (A, B) = newC(C, D).

3.7 Lemma

APPROBATIO Trivially DI = (B \ {n})I = C holds. Also

CI = (B \ {n})I I = (A(I∪̇J) ∩M)I I = AI I I = AI = A(I∪̇J) ∩M = B \ {n} = D

is true, so (C, D) is indeed a formal concept of K. Furthermore

C ∩ nJ = (B \ {n})I ∩ nJ = B(I∪̇J) = A 6= (B \ {n})I = C

hold, which implies C 6⊆ nJ , and furthermore (C ∩ nJ)I = AI = A(I∪̇J) ∩M = B \ {n} = D is true.�

As a conclusion newC is a surjection onto
{
(A, B) ∈ B(K|C)

∣∣ n ∈ B and (B \ {n})I 6= A
}

and so

Bnew(K|C) =
{
(A, B) ∈ B(K|C)

∣∣∣ n ∈ B and (B \ {n})I 6= A
}

.

The inverse map is given by

genC := new−1
C :

Bnew(K|C) ↪→→ BC
gen(K)

(A, B) 7→ ((B \ {n})I , B \ {n}).
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The concepts of K|C can be computed from those of K and vice versa:

(I) Each old concept of K w.r.t. C is an old concept of K|C as well, and conversely every old concept
of K|C is an old concept of K w.r.t. C, by the bijection

oldC :
BC

old(K) ↪→→ Bold(K|C)

(A, B) 7→ (A, B)
(A, B)← [ (A, B)

with BC
old(K) =

{
(A, B) ∈ B(K)

∣∣ A 6⊆ nJ} and Bold(K|C) = {(A, B) ∈ B(K|C) | n /∈ B}.

(II) Every varying concept of K w.r.t. C is mapped to a varied concept of K|C by adding the new at-
tribute n to the intent, and reversely each varied concept of K|C become a varying concept of K w.r.t. C
be removing n from its intent. This is due to the bijection

varC :
BC

var(K) ↪→→ Bvar(K|C)

(A, B) 7→ (A, B ∪̇ {n})
(A, B \ {n})← [ (A, B)

with its domainBC
var(K) =

{
(A, B) ∈ B(K)

∣∣ A ⊆ nJ} and its rangeBvar(K|C) =
{
(A, B) ∈ B(K|C)

∣∣ n ∈ B and (B \ {n})I = A
}

.

(III) Each new concept of K|C can be constructed from a unique generating concept of K w.r.t. C by in-
tersecting the extent with the new attribute extent nJ and adding the new attribute n to the intent. Con-
versely the generator in K w.r.t. C for a new concept in K|C can be computed by removing the attribute n
from its intent and choosing the corresponding extent by means of the old incidence I. For the transition
from K|C to K these new concepts will rather be removed than determining their generators. The map

newC :

BC
gen(K) ↪→→ Bnew(K|C)

(A, B) 7→ (A ∩ nJ , B ∪̇ {n})
((B \ {n})I , B \ {n})← [ (A, B)

is a bijection, with its domain BC
gen(K) =

{
(A, B) ∈ B(K)

∣∣ A 6⊆ nJ and (A ∩ nJ)I = B
}

and range
Bnew(K|C) =

{
(A, B) ∈ B(K|C)

∣∣ n ∈ B and (B \ {n})I 6= A
}

.

3.8Corollarium: Concept Transition from K to K|C and vice versa

33



3 Incremental Updates for Concept Diagrams

3.1.2 Structural Remarks

(I) The set BC
old(K) of old concepts is a ∨-closed order-filter in B(K).

(II) The set BC
var(K) of varying concepts is a ∧-closed order-ideal in B(K).

3.9 Theorema: Structure of Old Concepts and Varying Concepts

APPROBATIO (BC
old(K) ORDER-FILTER) Let (A, B) be an old concept of K w.r.t. the new attribute n and

(C, D) a concept of K that is greater than (A, B). This means nJ + A ⊆ C and thus nJ + C holds, i.e. (C, D) is
also an old concept.

(BC
old(K)

∨
-CLOSED) Let (A, B) and (C, D) be two old concepts of K w.r.t. the new attribute n. Then it

holds A * nJ and C * nJ , thus the union A ∪ C cannot be a subset of the extent nJ , and so (A ∪ C)I I * nJ .
Eventually (A, B) ∨ (C, D) = ((A ∪ C)I I , B ∩ D) is also an old concept.

(BC
var(K) ORDER-IDEAL) Let (A, B) be a varying concept of K w.r.t. the new attribute n and (C, D) a con-

cept of K that is smaller than (A, B). This means nJ ⊇ A ⊇ C and thus nJ ⊇ C holds, i.e. (C, D) is also a
varying concept.

(BC
var(K)

∧
-CLOSED) Let (A, B) and (C, D) be two varying concepts of K w.r.t. the new attribute n. Then it

holds A ⊆ nJ and C ⊆ nJ , thus the intersection A∩C is a subset of the extent nJ . Eventually (A, B)∧ (C, D) =
(A ∩ C, (B ∪ D)I I) is also an varying concept.�

In the ongoing section there are some concept lattices drawn. Their nodes and edges can have special forms:
Each generator node is highlighted with a pentagon , each new node is marked with a star and each

varying or varied node is tagged with a cloud .

(BC
old(K) NOT

∧
-CLOSED) The set BC

old(K) of all old concepts of a context K = K w.r.t. a new attribute n is
in general not closed under arbitrary infima. To understand this, please have a look at the following min-
imal example: The concept lattice is a diamond with four elements, i.e. a lattice generated by two distinct
uncomparable elements. The new attribute 3 with its extent 3J = ∅ encounters the context. As a preresult
the bottom element is a varying node because its concept is (∅, {1, 2}) and its extent ∅ is a subset of the
attribute extent 3J . All remaining nodes are old nodes as their concepts contains at least one object and thus
their extents cannot be a subset of ∅. Eventually none of the old nodes is a generator node, since none of
them is able to fulfill the condition B = (A ∩ 3J)I from Corollarium: Concept Transition from K to K|C and
vice versa 3.8. This is due to A ∩ 3J = ∅ and ∅I = {1, 2}, and none of the old concepts has this intent {1, 2}.

1 2

a ×
b ×

|

3

a
b

=

1 2 3

a ×
b ×

a

1

b

2
�

3

a,b ∼=
3a

1

b

2

(BC
var(K) NOT

∨
-CLOSED) The setBC

var(K) of all varying nodes of K = K w.r.t. a new attribute n is generally
not

∨
-closed. A similar example to the preceding example is chosen, but is modified to have the top node as

a generator and the other nodes as varying nodes. The two maximal varying nodes do not have a varying
node as their supremum.

3.10 Exemplum: Counterexamples
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1 2

a ×
b ×
c

|

3

a ×
b ×
c

=

1 2 3

a × ×
b × ×
c

a

1

b

2c
�

a,b

3

c

∼=

a

1

b

2

3

c

The set BC
gen(K) of generator concepts is ∨-closed in B(K).

3.11Theorema: Structure of Generator Concepts

APPROBATIO Let (A1, B1) and (A2, B2) be two generator concepts of K and their supremum is ((A1 ∪
A2)

I I , B1 ∩ B2). As each generator is also an old concept and the set of old concepts is closed under suprema,
the supremum ((A1 ∪ A2)

I I , B1 ∩ B2) must be an old concept. It remains to show, that B1 ∩ B2 = ((A1 ∪
A2)

I I ∩ nJ)I .

(⊆) Assume B1 ∩ B2 is no subset of ((A1 ∪ A2)
I I ∩ nJ)I . Then a attribute m ∈ M must exist, such that

m ∈ B1 ∩ B2 and m 6∈ ((A1 ∪ A2)
I I ∩ nJ)I . From the second condition we get

m 6∈ ((A1 ∪ A2)
I I ∩ nJ)I ⊇ (A1 ∪ A2)

I I I ∪ nJ I ⊇ (A1 ∪ A2)
I I I = (A1 ∪ A2)

I = AI
1 ∩ AI

2 = B1 ∩ B2

in contradiction to the first condition. Thus B1 ∩ B2 must be subset of ((A1 ∪ A2)
I I ∩ nJ)I .

(⊇) As (A1, B1) and (A2, B2) are generators, we have B1 = (A1∩nJ)I and B2 = (A2∩nJ)I . Further it holds

B1 ∩ B2 = (A1 ∩ nJ)I ∩ (A2 ∩ nJ)I

= ((A1 ∩ nJ) ∪ (A2 ∩ nJ))I

= ((A1 ∪ A2)

⊆(A1∪A2)I I

∩nJ)I

⊇ ((A1 ∪ A2)
I I ∩ nJ)I .

�

(I) BC
gen(K) ∪ {⊥} is a

∨
-subsemilattice of B(K).

(II) If the new attribute n is not redundant, there is always a largest generator concept

>C
gen :=

∨
BC

gen(K) = (nJ I I , nJ I).

(III) The new generated concept newC(>C
gen) then equals the attribute concept µ(n) of K|C and has the

attribute label n.

3.12Corollarium: Largest Generator Concept

APPROBATIO (I) A
∨

-subsemilattice is a subset U of a complete lattice, such that for each subset X ⊆ U
the supremum

∨
X is in U as well. In case of a finite lattice (like here) each big supremum

∨
can be expressed
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by means of the small supremum ∨ via∨
{x1, . . . , xn} = x1 ∨ (x2 ∨ (· · · ∨ (xn−1 ∨ xn)) . . . ).

Thus only the empty supremum
∨

∅ = ⊥ is missing in BC
gen(K) to form a

∨
-subsemilattice.

(II),(III) When n is non-redundant, the new attribute extent nJ is no extent of K. Hence no old or varying
concept with nJ as its extent exists. Thus, the set of generators cannot be empty, as there must be a generator
concept of the new attribute concept µ(n) in K|C. Then by the preceding Theorema: Structure of Generator
Concepts 3.11 there must be a largest generator concept, namely>C

gen :=
∨
BC

gen(K). By Lemma: Common
Rows and Common Columns in Apposition Context 2.11 the new attribute concept can be displayed as

µ(n) = (n(I∪̇J), n(I∪̇J)(I∪̇J)) = (nJ , nJ(I∪̇J)) = (nJ , nJ I ∪̇ {n}) ∈ Bnew(K|C)

Thus a generator concept (A, B) ∈ BC
gen(K) exist such that µn = newC(A, B) = (A ∩ nJ , B ∪̇ {n}). So

nJ = A ∩ nJ and nJ I ∪̇ {n} = B ∪̇ {n}must hold. Thus, it follows that nJ ⊂ A and nJ I = B, and

(A, B) = (nJ I I , nJ I).

If there were any other concept (C, D) ∈ BC
gen(K) with nJ ⊂ C, then C ∩ nJ = nJ = A ∩ nJ and thus

newC(A, B) = newC(C, D) would hold. This yields (A, B) = (C, D), contradiction! Furthermore, if (C, D)
were a generator superconcept of (A, B), then nJ ⊂ A ⊂ C holds. Thereby nJ ⊂ C yields a contradiction!
Thus (A, B) is uniquelly determined by nJ ⊂ A and nJ I = B, and furthermore (A, B) is a maximal generator.
As BC

gen(K) is ∨-closed, (A, B) must be the greatest generator and thus equal
∨
BC

gen(K).�

In the ongoing section some further counterexamples on the generator set are given; BC
gen(K) neither has to

be
∧

-closed, nor an order ideal in BC
old(K), nor convex.

(BC
gen(K) NOT

∧
-CLOSED) The set BC

gen(K) consisting of all generator concepts of K w.r.t. a new attribute
n is not closed under arbitrary infima. Again a minimal example is chosen: A concept lattice with four ele-
ments (as seen on the left) and a new attribute 3 with its extent 3J = {a, b} (in the middle). As preresults in
the left old concept lattice B(K) the bottom concept (∅, {1, 2}) is varying since the empty set is enclosed in
every set. The other three concepts are generators, as their extents are no subset of the new attribute extent
3J and thus must be old nodes, and furthermore fulfill the generator condition B = (A ∩ 3J)I from ?? ??.??:
The top concept is ({a, b, c, d}, ∅) and

({a, b, c, d} ∩ 3J)I = ({a, b, c, d} ∩ {a, b})I = {a, b}I = ∅

holds, the left concept is ({a, c}, {1}) and

({a, c} ∩ 3J)I = ({a, c} ∩ {a, b})I = {a}I = {1}

holds and finally the right concept is ({b, d}, {2}) and fulfills the generator condition

({b, d} ∩ 3J)I = ({b, d} ∩ {a, b})I = {b}I = {2}.

3.13 Exemplum: Counterexamples
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3.1 Insertion & Removal of a single Attribute Column

1 2

a ×
b ×
c ×
d ×

|

3

a ×
b ×
c
d

=

1 2 3

a × ×
b × ×
c ×
d ×

a,c

1

b,d

2
�

a,b

3

c,d

∼=

a b

3c

1

d

2

(BC
gen(K) NO ORDER IDEAL IN BC

old(K)) The set BC
gen(K) of generators generally does not form an order

ideal within the set BC
old(K) of old concepts. A minimal counterexample can again be obtained from the

“diamond concept lattice” as already seen in previous examples. The appropriate context is changed in a
way to have the top node as a generator, the bottom node as a varying concept and the left and right con-
cept as old ones. This is of course done w.r.t. the new attribute 3 with its attribute extent 3J = {c}. In the
modified concept lattice on the right an edge between a new node and a varied one must be added while the
corresponding generator was not neighboring the varying node.

1 2

a ×
b ×
c

|

3

a
b
c ×

=

1 2 3
a ×
b ×
c ×

a

1

b

2c
�

c

3

a,b
∼=

a

1

b

2

c

3

(BC
gen(K) NOT CONVEX) The set BC

gen(K) of generators is not convex in general. A counterexample is the
three-element chain concept lattice on the left and the new attribute 3 with extent 3J = {c}. Applying Corol-
larium: Concept Transition from K to K|C and vice versa 3.8 and Corollarium: Concept Transition from K
to K|C and vice versa 3.8 yields the top and bottom concept as generators and the inner concept as an old
non-generating concept. The resulting concept lattice on the right is isomorphic to N5. Again we enconter
a special case for the new neighborhood: Both new concepts are neighboring even though their generators
are not. But these generators do not have any other generators between them, thus there cannot be any other
new concept between the two new concepts. A more sophisticated answer gives Theorema: Neighborhood
Transition from K to K|C 3.17.
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1 2

a × ×
b ×
c

|

3

a
b
c ×

=

1 2 3

a × ×
b ×
c ×

c

b

1

a

2

�

c

3

a,b
∼= b

1

a

2

c

3

We have seen that a infimum of generators is not always a generator too. But a slightly weaker characteriza-
tion of a generator infimum can be given:

The infimum, i.e. the greatest common subconcept, of a set of generators is always a generator too or a
varying concept.

3.14 Lemma: Infima of Generator Concepts

APPROBATIO Consider two uncomparable generator concepts (A1, B1) and (A2, B2), such that their infi-
mum (A1, B1) ∧ (A2, B2) = (A1 ∩ A2, (B1 ∪ B2)

I I) is an old concept, but not a generating concept. At first
this implies that the infimum cannot be one of the two generator concepts.

((A1 ∪ A2)
I I , B1 ∩ B2)

(A1, B1) (A2, B2)

(A1 ∩ A2, (B1 ∪ B2)
I I)

Now a new irreducible attribute n is added and the diagram changes to the following structure:

(A1 ∩ A2, (B1 ∪ B2)
I I)

(A1, B1) (A2, B2)

((A1 ∪ A2)
I I , B1 ∩ B2)

((A1 ∪ A2)
I I ∩ nJ , (B1 ∩ B2) ∪ {n})

(A1 ∩ nJ , B1 ∪ {n}) (A2 ∩ nJ , B2 ∪ {n})

As you can see, the resulting diagram does not form a lattice, since the new concepts (A1 ∩ nJ , B1 ∪ {n}) and
(A2 ∩ nJ , B2 ∪ {n}) do not have any infimum. To see this consider the three possible cases for their infimum:

((A1 ∩ nJ , B1 ∪ {n}) ∧ (A2 ∩ nJ , B2 ∪ {n}) = (A1 ∩ nJ , B1 ∪ {n})) This case condition is logically equiv-
alent to the condition (A1 ∩ nJ , B1 ∪ {n}) ≤ (A2 ∩ nJ , B2 ∪ {n}). Then the intents are comparable and
B1 ∪̇ {n} ⊇ B2 ∪̇ {n} holds - but this implies B1 ⊇ B2 in contradiction to the precondition that the gener-
ators (A1, B1) and (A2, B2) are not comparable. So this case cannot occur.
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3.1 Insertion & Removal of a single Attribute Column

((A1 ∩ nJ , B1 ∪ {n}) ∧ (A2 ∩ nJ , B2 ∪ {n}) = (A2 ∩ nJ , B2 ∪ {n})) analog to the first case.

((A1 ∩ nJ , B1 ∪ {n})∧ (A2 ∩ nJ , B2 ∪ {n}) = (A1 ∩ A2, (B1 ∪ B2)
I I)) The case condition implies the equal-

ity of the extents (A1 ∩ nJ) ∩ (A2 ∩ nJ) = A1 ∩ A2 ∩ nJ and A1 ∩ A2. This means the extent A1 ∩ A2
must be a subset of the attribute extent nJ , but this is a conflict to the premise that the generator infimum
(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, (B1 ∪ B2)

I I) is an old concept, i.e. A1 ∩ A2 * nJ holds. Eventually this case
is also impossible.

None of these cases can occur, so the preconditions cannot occur. As a conseqence every infimum of generator
concepts must also be a generating concept or a varying concept. �

3.1.3 Updating the Order

Bo¬g(K|C) denote the set of all old concepts of K|C that are no generator, i.e. Bo¬g(K|C) := Bold(K|C) \
Bgen(K|C). FurthermoreBgen(K|C) is simply the image of all generatorsBC

gen(K)under oldC, i.e. Bgen(K|C) :=
oldC(B

C
gen(K)). As the map oldC does not change anything in the extent and intent, one does not have to dis-

tinct between old concepts of K w.r.t. C and old concepts of K|C. So they are simply called old concepts. The
same hold for the generator concepts.

The order relation of B(K|C) is divided into eight parts:

Bold(K|C) Bnew(K|C) Bvar(K|C)

Bold(K|C) (I) (II)
Bnew(K|C) (III) (IV) (V)
Bvar(K|C) (VI) (VII) (VIII)

Then the following statements characterize the order relation completely.

(I) Two old concepts are comparable in B(K|C), iff they are comparable in B(K):

∀
(A,B),(C,D)∈BC

old(K)
oldC(A, B) < oldC(C, D)⇔ (A, B) < (C, D)

In other words, oldC is order-preserving and order-reflecting.

(II) No old concept is smaller than any new or varied concept.

(III) A new concept is smaller than an old concept, iff its generator concept is smaller than or equals
the old concept:

∀
(A,B)∈BC

gen(K)

(C,D)∈BC
old(K)

newC(A, B) < oldC(C, D)⇔ (A, B) ≤ (C, D)

(IV) Two new concepts are comparable, iff their generator concepts are comparable:

∀
(A,B),(C,D)∈BC

gen(K)
newC(A, B) < newC(C, D)⇔ (A, B) < (C, D)

In other words, newC preserves and reflects order.

(V) A new concept is smaller than a varied concept, iff the generator is smaller than the varying con-
cept:

∀
(A,B)∈BC

gen(K)

(C,D)∈BC
var(K)

newC(A, B) < varC(C, D)⇔ (A, B) < (C, D)

3.15Theorema: Order Transition from K to K|C
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(VI) A varied concept is smaller than an old concept, iff its corresponding varying concept is smaller
than the old concept:

∀
(A,B)∈BC

var(K)
(C,D)∈BC

old(K)

varC(A, B) < oldC(C, D)⇔ (A, B) < (C, D)

(VII) A varied concept is smaller than a new concept, iff the varying concept is smaller than the gener-
ator:

∀
(A,B)∈BC

var(K)
(C,D)∈BC

gen(K)

varC(A, B) < newC(C, D)⇔ (A, B) < (C, D)

(VIII) Two varied concepts are comparable, iff the appropriate varying concepts are comparable:

∀
(A,B),(C,D)∈BC

var(K)
varC(A, B) < varC(C, D)⇔ (A, B) < (C, D)

In other words, varC preserves and reflects order.

APPROBATIO (I),(VI),(VIII) As oldC and varC do not change the extent of any concept and the concept or-
der is defined by means of extent inclusion, they must obviously be order-preserving and order-reflecting.
This also implies (VI).

(II) If an old concept (A, B) would be smaller than any new or varied concept (C, D), it would hold that
B ⊃ D 3 n and this is a contradiction, since no old concept has the attribute n in its intent. Hence no old
concept can be smaller than any new or modified concept.

(III) Let (A, B) be a generator concept and (C, D) an old concept. Then n 6∈ D yields

newC(A, B) < oldC(C, D)⇔ B ∪̇ {n} ⊃ D ⇔ B ⊇ D ⇔ (A, B) ≤ (C, D).

(IV),(V),(VII) Let (A, B) and (C, D) be two generator concepts, or a varying concept and a generator con-
cept. As n /∈ B, D, it then holds that

newC(A, B) < newC(C, D)

or newC(A, B) < varC(C, D)

or varC(A, B) < newC(C, D)

⇔ B ∪̇ {n} ⊃ D ∪̇ {n} ⇔ B ⊃ D ⇔ (A, B) < (C, D).

�

As both maps oldC and newC are order-isomorphisms, as proven above, one can easily gain the order of K
from those of K|C.

The order relation of B(K|C) is divided into eight parts:

BC
old(K) BC

var(K)

BC
old(K) (I) (II)

BC
var(K) (III) (IV)

Then the following statements characterize the order relation completely.

(I) Two old concepts are comparable in B(K|C), iff they are comparable in B(K):

∀
(A,B),(C,D)∈BC

old(K)
(A, B) < (C, D)⇔ oldC(A, B) < oldC(C, D)

(II) No old concept is smaller than any varying concept.

3.16 Corollarium: Order Transition from K|C to K
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3.1 Insertion & Removal of a single Attribute Column

(III) A varying concept is smaller than an old concept, iff its corresponding varied concept is smaller
than the old concept:

∀
(A,B)∈BC

var(K)
(C,D)∈BC

old(K)

(A, B) < (C, D)⇔ varC(A, B) < oldC(C, D)

(IV) Two varying concepts are comparable, iff the appropriate varyied concepts are comparable:

∀
(A,B),(C,D)∈BC

var(K)
(A, B) < (C, D)⇔ varC(A, B) < varC(C, D)

3.1.4 Updating the Neighborhood

A first clue on how to update the neighborhood is given by the cover relation on a cartesian product w.r.t. coordinate-
wise order. It is well known (? ), that (p1, q1) ≺ (p2, q2) hold in a cartesian product of two ordered sets, iff
either p1 ≺ p2 and q1 = q2, or p1 = p2 and q1 ≺ q2 hold.
As the nested concept lattice B(K)�B(C) from Theorema: Nested Concept Lattice 2.13 has the inherited
coordinate-wise order from the cartesian product B(K) ×B(C), some fragments of the cover relation in
the nested product can already be read off the neighborhood within the cartesian product. To be more spe-
cific, whenever (α, β) covers (γ, δ) in B(K)×B(C), then (α, β) covers (γ, δ) in B(K)�B(C) as well. First,
((A, B),⊥) ≺ ((A, B),>) holds for all suitable concepts (A, B) of K. Recall the partition of B(K|C), or of
B(K)�B(C) respectivelly, that was constructed in Concept Transition from K to K|C 3.3.1.1

Bold(K|C) := ψ−1
(
BC

old(K)× {>}
)
= oldC

(
BC

old(K)
)

Bvar(K|C) := ψ−1
(
BC

var(K)× {⊥}
)
= varC

(
BC

var(K)
)

Bnew(K|C) := ψ−1
(
BC

gen(K)× {⊥}
)
= newC

(
BC

gen(K)
)

The only concepts of K, which can occur both with> and⊥ in the nested lattice, are the generator concepts.
Via the isomorphism ψ from Theorema: Nested Concept Lattice 2.13, this yields

∀
(A,B)∈BC

gen(K)
genC(A, B) ≺ oldC(A, B).

Also ((A, B), X) ≺ ((C, D), X) hold for all suitable concepts (A, B) ≺ (C, D) of K and X ∈ {⊥,>} = B(C).
Thereby the following statements can be infered:

∀
(A,B),(C,D)∈BC

old(K)
(A, B) ≺ (C, D)⇒ oldC(A, B) ≺ oldC(C, D)

∀
(A,B),(C,D)∈BC

var(K)
(A, B) ≺ (C, D)⇒ varC(A, B) ≺ varC(C, D)

∀
(A,B),(C,D)∈BC

gen(K)
(A, B) ≺ (C, D)⇒ newC(A, B) ≺ newC(C, D)

∀
(A,B)∈BC

var(K)
(C,D)∈BC

gen(K)

(A, B) ≺ (C, D)⇒ varC(A, B) ≺ newC(C, D)

Nevertheless these observations do not fully determine the neighborhood of B(K|C) by means of B(K). A
more sophisticated and complete characterization is given in the next theorem.
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3.1 Insertion & Removal of a single Attribute Column

The neighborhood relation of B(K|C) is divided into ten parts:

Bo¬g(K|C) Bgen(K|C) Bnew(K|C) Bvar(K|C)

Bo¬g(K|C)
(I) (II)

Bgen(K|C)

Bnew(K|C) (III) (IV) (V) (VI)
Bvar(K|C) (VII) (VIII) (IX) (X)

Then the following statements characterize the neighborhood relation completely.

(I) Two old concepts are neighboring in B(K|C), iff they are neighboring in B(K):

∀
(A,B),(C,D)∈BC

old(K)
oldC(A, B) ≺ oldC(C, D)⇔ (A, B) ≺ (C, D)

In other words, oldC is neighborhood-preserving and neighborhood-reflecting.

(II) No old concept is a lower neighbor of any new or varied concept.

(III) No new concept is a lower neighbor of any old non-generator concept.

(IV) Each new concept is a lower neighbor of its appropriate generator concept and moreover has no
other generator concepts as upper neighbors:

∀
(A,B)∈BC

gen(K)
newC(A, B) ≺ oldC(A, B)

(V) Two new concepts are neighboring, iff their appropriate generator concepts are comparable and
no other generator concept lies between them:

∀
(A,B),(C,D)∈BC

gen(K)
newC(A, B) ≺ newC(C, D)⇔

 (A, B) < (C, D) and
6 ∃

(X,Y)∈BC
gen(K)

(A, B) < (X, Y) < (C, D)

In other words, newC preserves neighborhood.

(VI) No new concept is a lower neighbor of any varied concept.

(VII) A varied concept is a lower neighbor of a old non-generator concept, iff the corresponding varying
concept and the old non-generator concept are neighboring:

∀
(A,B)∈BC

var(K)
(C,D)∈BC

o¬g(K)

varC(A, B) ≺ oldC(C, D)⇔ (A, B) ≺ (C, D)

(VIII) No varied concept is a lower neighbor of any generator concept.

(IX) A varied concept is a lower neighbor of a new concept, iff the corresponding varying concept
and the generator concept are comparable and furthermore no other varying or generator concept is
between them:

∀
(A,B)∈BC

var(K)
(C,D)∈BC

gen(K)

varC(A, B) ≺ newC(C, D)⇔

 (A, B) < (C, D) and
6 ∃

(X,Y)∈BC
gen(K)∪̇BC

var(K)

(A, B) < (X, Y) < (C, D)

(X) Two varied concepts are neighboring, iff the appropriate varying concepts are neighboring:

∀
(A,B),(C,D)∈BC

var(K)
varC(A, B) ≺ varC(C, D)⇔ (A, B) ≺ (C, D)

In other words, varC preserves and reflects neighborhood.

3.17Theorema: Neighborhood Transition from K to K|C
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APPROBATIO (I) Let (A, B) and (C, D) be two old concepts of K w.r.t. C. Then their corresponding con-
cepts of K|C are oldC(A, B) = (A, B) and oldC(C, D) = (C, D) according to Corollarium: Concept Transition
from K to K|C and vice versa 3.8.
Let (A, B) be a lower neighbor of (C, D) in B(K). At first this yields (A, B) < (C, D) or rather A ⊂ C, and
thereby oldC(A, B) is a subconcept of oldC(C, D) in B(K|C). If oldC(A, B) 6≺ oldC(C, D) in B(K|C), i.e. there
were a concept (X, Y) ∈ B(K|C) being between oldC(A, B) and oldC(C, D), then B ⊃ Y ⊃ D would hold for
the intents. As n cannot be an element of B, also n /∈ Y must hold, thus (X, Y) would surely be an old con-
cept. It follows that old−1

C (X, Y) = (X, Y) were also a concept of K, which were between (A, B) and (C, D).
This is a contradiction to (A, B) ≺ (C, D). The embedded concepts oldC(A, B) and oldC(C, D) must thus be
neighboring in B(K|C).
Conversely, let oldC(A, B) ≺ oldC(C, D) in B(K|C), i.e. no other concept of K|C lies between them. Then
their corresponding concepts (A, B) and (C, D) from K must be comparable, as oldC(A, B) < oldC(C, D) and
thus A ⊂ C hold. If there were any other concept (X, Y) of K between (A, B) and (C, D), this must be an old
concept as its extent cannot be a subset of the new attribute extent nJ , since A ⊂ X ⊂ C and A 6⊆ nJ hold.
This leads to a contradiction as well, as then oldC(X, Y)would be between oldC(A, B) and oldC(C, D). Finally
(C, D) covers (A, B) in the concept lattice of K.

(II) If an old concept (A, B) would be smaller than any new or varied concept (C, D) of K|C, it would hold
that B ⊃ D 3 n and this is a contradiction, since no old concept has the attribute n in its intent. Hence no old
concept can be a lower neighbor of any new or varied concept of K|C.

(III) Let (A, B) be a new concept of K|C, i.e. there is a generator concept (U, V). Let furthermore (C, D)
be an old concept, that is no generator, and (A, B) is a lower neighbor of (C, D). Then we have (A, B) =
(U ∩ nJ , V ∪̇ {n}) ≺ (C, D) and thus V ∪̇ {n} ⊃ D 63 n. This leads to V ∪̇ {n} ⊃ V ⊇ D, so we would
have (A, B) = (U ∩ nJ , V ∪̇ {n}) < (U, V) ≤ (C, D). The generator concept (U, V) cannot equal the non-
generator concept (C, D), hence (A, B) < (U, V) < (C, D). This is a contradiction to (A, B) ≺ (C, D). So no
new concept of K|C can be covered by an old non-generator concept.

(IV) Let (A, B) be a new concept of K|C with its generator concept (U, V), and (C, D) a generator concept
that covers (A, B). Then it holds (A, B) < (U, V) ≤ (C, D) by the same arguments as in (III). When looking
at the intents B = V ∪̇ {n} and V, it is obvious that there cannot be any other intent in between, thus the new
concept (A, B)must be a lower neighbor of its generator concept (C, D). Furthermore the generator concepts
(U, V) and (C, D) must then be equal, since (A, B) ≺ (C, D).

(V) Let (A, B) and (C, D) be two new concepts of K|C with their generating concepts (S, T) and (U, V), i.e.

(A, B) = newC(S, T) = (S ∩ nJ , T ∪̇ {n})
(C, D) = newC(U, V) = (U ∩ nJ , V ∪̇ {n}).

First, let (A, B) ≺ (C, D). We then know that each of these new concepts is a lower neighbor of their appro-
priate generators, i.e. (A, B) ≺ (S, T) and (C, D) ≺ (U, V). Hence B = T ∪̇ {n} ⊃ V ∪̇ {n} = D, or equally
T ⊃ V, or (S, T) < (U, V) respectivelly. If there were any other generator concept (X, Y) between (S, T) and
(U, V), then the corresponding new concept newC(X, Y) would be between (A, B) and (C, D) as T ⊃ Y ⊃ V
yields B ⊃ Y ∪̇ {n} ⊃ D. Contradiction! These two generators (S, T) and (U, V) must thus be neighboring
within the set of generators.
The other way around: Let the two generator concepts (S, T) and (U, V) be neighboring in the set of all gen-
erators. Then T ⊃ V hold for the intents and there is no other generator-intent between T and V. This surely
implies B ⊃ D by adding n and no other generator-intent Y exist such that B ⊃ Y ∪̇ {n} ⊃ D hold. This leads
to (A, B) < (C, D), and no other new concepts lies between them. Parts (III) to (VI) state that only generator
concepts or new concepts can cover a new concept, and part (II) state that no generator concept can be a lower
neighbor of a new concept, hence only new concepts can be between two new concepts. The concepts (A, B)
and (C, D) are thus neighboring.

(VI) Let (A, B) be a new concept of K|C with its generator (S, T), and let (C, D) be a varied concept of K|C
with its corresponding varying concept (U, V) of K w.r.t. C, such that (A, B) ≺ (C, D) hold. From these
preconditions it follows that B = T ∪̇ {n} ⊃ V ∪̇ {n} = D, or equally T ⊃ V and so (S, T) < (U, V), but this
implies S ⊂ U ⊆ nJ as U is varying. Clearly this leads to a contradiction, since S 6⊆ nJ hold, because (S, T) is
old. So no new concept of K|C can be covered by a varied concept of K|C.

(VII) Let (A, B) be a varying concept of K w.r.t. C, i.e. varC(A, B) = (A, B ∪̇ {n}), and (C, D) an old non-
generator concept, i.e. oldC(C, D) = (C, D).
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First, varC(A, B) ≺ oldC(C, D) yields A ⊂ C and thereby (A, B) is a subconcept of (C, D). If there were any
other concept (X, Y) ∈ B(K) such that (A, B) < (X, Y) < (C, D), then in case of an old concept oldC(X, Y)
would be between varC(A, B) and oldC(C, D), and in case of a varying concept respectivelly varC(X, Y)would
be between them. Both cases contradict varC(A, B) ≺ oldC(C, D). So (C, D) covers (A, B).
Conversely, let (A, B) be a lower neighbor of (C, D). Then clearly varC(A, B) is a subconcept of oldC(C, D).
When a concept (X, Y) ∈ B(K|C) exists that is between varC(A, B) and oldC(C, D), then obviously A ⊂
X ⊂ C holds for the extents. In case of an old or varied concept this leads to a contradiction since the
concept old−1

C (X, Y) or var−1
C (X, Y) respectivelly would be between (A, B) and (C, D). In case of a new

concept there is a generator concept (U, V) such that (X, Y) = newC(U, V) = (U ∩ nJ , V ∪̇ {n}). Then
B ∪̇ {n} ⊃ V ∪̇ {n} = Y ⊃ D 63 n implies B ⊃ V ⊇ D and thus (A, B) < (U, V) ≤ (C, D). By (A, B) ≺ (C, D)
it follows that (U, V) equals (C, D), but this is a contradiction since no generator concept can equal any non-
generator concept. In summary varC(A, B) is a lower neighbor of oldC(C, D).

(VIII) Whenever a generator (C, D) covers a varied concept (A, B) of K|C, the intent B contains the intent D.
Then n ∈ B ⊃ D 63 n yields B ⊇ D ∪̇ {n} ⊃ D. Hence (A, B) ≤ newC(C, D) = (C ∩ nJ , D ∪̇ {n}) < (C, D),
and by (A, B) ≺ (C, D) the varied concept (A, B) must equal the new concept newC(C, D). Clearly this is a
contradiction. No varied concept can thus have a generator concept as an upper neighbor.

(IX) Suppose a varying concept (A, B)of K w.r.t. C and a generator concept (C, D) are given. Then varC(A, B) =
(A, B ∪̇ {n}) and newC(C, D) = (C ∩ nJ , D ∪̇ {n}) hold.
At first let varC(A, B) ≺ newC(C, D), then A ⊂ C ∩ nJ ⊂ C hold for the extents, hence (A, B) is a subcon-
cept of (C, D). Suppose there is a generator concept (X, Y) between them, then A ⊂ X ⊂ C and thereby
A = A ∩ nJ ⊆ X ∩ nJ ⊆ C ∩ nJ holds. This means varC(A, B) ≤ newC(X, Y) ≤ newC(C, D) and the new
concepts newC(X, Y) and newC(C, D) must thus be equal. As newC is a bijection, this implies the equal-
ity of (X, Y) and (C, D). Obviously this contradicts X ⊂ C. Now let (X, Y) be a varying concept of K
w.r.t. C between them, then A ⊂ X ⊂ C holds as well. Hence A = A ∩ nJ ⊂ X = X ∩ nJ ⊆ C ∩ nJ or
rather varC(A, B) < varC(X, Y) ≤ newC(C, D) holds. As newC(C, D) covers varC(A, B), the varied concept
varC(X, Y) must equal the new concept newC(C, D). Contradiction! In summary, (A, B) < (C, D) and there
is no generator concept or varying concept between them.
Conversely, let (A, B) be a proper subconcept of (C, D), such that no generator concept or varying concept
exist between them. Then A ⊂ C holds for the extents and intersecting with the new attribute extent nJ

yields A = A ∩ nJ ⊆ C ∩ nJ . Hence varC(A, B) < newC(C, D) holds. Suppose they would not be neighbor-
ing, i.e. there is any concept of K|C between them. When varC(A, B) < oldC(X, Y) < newC(C, D) holds
for an old concept (X, Y) ∈ BC

old(K), then B ∪̇ {n} ⊃ Y ⊃ D ∪̇ {n} holds for the intents. This leads
to a contradiction as n /∈ Y. When varC(A, B) < varC(X, Y) < newC(C, D) holds for a varying concept
(X, Y) ∈ BC

var(K), then B ∪̇ {n} ⊃ Y ∪̇ {n} ⊃ D ∪̇ {n} holds for the intents, and thus also B ⊃ Y ⊃ D,
i.e. (A, B) < (X, Y) < (C, D). This is a contradiction. When varC(A, B) < newC(X, Y) < newC(C, D) holds
for a generator concept (X, Y) ∈ BC

gen(K), then analogously (A, B) < (X, Y) < (C, D) yields a contradiction.
In summary, varC(A, B) must be a lower neighbor of newC(C, D).

(X) Let (A, B), (C, D) ∈ BC
var(K) be two varying concepts with (A, B) ≺ (C, D). Then surely varC(A, B) <

varC(C, D) holds, as can be seen on the unchanging extents. If there were a concept (X, Y) of K|C such that
varC(A, B) < (X, Y) < varC(C, D), then B ∪̇ {n} ⊃ Y ⊃ D ∪̇ {n} holds, i.e. n ∈ Y and (X, Y) must thus
be a new or varied concept. If it were a varied concept, then (A, B) < var−1

C (X, Y) < (C, D) yields a con-
tradiction. If it were a new concept, then analogously (A, B) < new−1

C (X, Y) < (C, D) is a contradiction.
Eventually (X, Y) cannot be new or varied, and thereby such a concept cannot exist. This means varC(A, B)
and varC(C, D) are neighboring.
For the other way around, let (A, B) ≺ (C, D) be varying concepts of K|C. Then B ⊃ D holds and so
B \ {n} ⊃ D \ {n}, which means var−1

C (A, B) < var−1
C (C, D). If a concept (X, Y) of K would exist such that

var−1
C (A, B) < (X, Y) < var−1

C (C, D), then A ⊃ X ⊃ C holds. This implies X ⊆ nJ as X ⊂ C ⊆ nJ . So
(X, Y) must be a varying concept too, and (A, B) < varC(X, Y) < (C, D) would hold, in contradiction to
(A, B) ≺ (C, D). �

As an easy corollary we are now also able to describe the neighborhood of B(K) by means of the neighbor-
hood of B(K|C). This is summarized as follows.
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The neighborhood relation of B(K) is divided into five parts:

BC
o¬g(K) BC

gen(K) BC
var(K)

BC
o¬g(K)

(I) (II)
BC

gen(K)

BC
var(K) (III) (IV) (V)

Then the following statements characterize the neighborhood relation completely.

(I) Two old concepts are neighboring in B(K), iff they are neighboring in B(K|C):

∀
(A,B),(C,D)∈BC

old(K)
(A, B) ≺ (C, D)⇔ oldC(A, B) ≺ oldC(C, D)

(II) No old concept is a lower neighbor of any varying concept.

(III) A varying concept is a lower neighbor of an old non-generator concept, iff their corresponding
concepts of K|C are neighboring:

∀
(A,B)∈BC

var(K)
(C,D)∈BC

o¬g(K)

(A, B) ≺ (C, D)⇔ varC(A, B) ≺ oldC(C, D)

(IV) A varying concept is a lower neighbor of a generator concept, iff the corresponding varied concept
and new concept are neighboring and furthermore no other old non-generator concept is between the
varied concept and the generator concept:

∀
(A,B)∈BC

var(K)
(C,D)∈BC

gen(K)

(A, B) ≺ (C, D)⇔

 varC(A, B) ≺ newC(C, D) and
6 ∃

(X,Y)∈BC
o¬g(K)

varC(A, B) < oldC(X, Y) < oldC(C, D)

(V) Two varying concepts are neighboring, iff the appropriate varied concepts are neighboring:

∀
(A,B),(C,D)∈BC

var(K)
(A, B) ≺ (C, D)⇔ varC(A, B) ≺ varC(C, D)

3.18 Corollarium: Neighborhood Transition from K|C to K

Now we are able to completely describe the neighborhood relation of K|C by means of the cover relation of
K and vice versa. Especially when thinking of cover relations as binary relations encoded by matrices via the
isomorphism

χ :

℘(X×Y) ↪→→ 2X×Y

R 7→ χR :

X×Y → 2

(x, y) 7→
{

1 if x R y
0 if x 6R y

f−1(1)← [ f ,

the cover relations can be determined from each other by simply copying some parts, deleting some parts,
and computing few parts. For this purpose the cover relation of B(K) and also the cover relation of B(K|C)
are split up in components
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BC
o¬g(K) BC

gen(K) BC
var(K)

BC
o¬g(K)

≺old ∅
BC

gen(K)

BC
var(K) ≺v:o ≺v:g ≺var

�

Bo¬g(K|C) Bgen(K|C) Bnew(K|C) Bvar(K|C)

Bo¬g(K|C)
≺old ∅

Bgen(K|C)

Bnew(K|C) ∅
××××× ≺new ∅

Bvar(K|C) ≺v:o ∅ ≺v:n ≺var

and the unknown parts can be computed via

∀
(A,B)∈Bvar(K|C)
(C,D)∈Bnew(K|C)

var−1
C (A, B) ≺v:g genC(C, D)⇔

 (A, B) ≺v:n (C, D) and
6 ∃

(X,Y)∈Bo¬g(K|C)
(A, B) < (X, Y) < oldCgenC(C, D)

∀
(A,B),(C,D)∈BC

gen(K)
newC(A, B) ≺new newC(C, D)⇔

 (A, B) < (C, D) and
6 ∃

(X,Y)∈BC
gen(K)

(A, B) < (X, Y) < (C, D)

∀
(A,B)∈BC

var(K)
(C,D)∈BC

gen(K)

varC(A, B) ≺v:n newC(C, D)⇔

 (A, B) < (C, D) and
6 ∃

(X,Y)∈BC
gen(K)∪̇BC

var(K)

(A, B) < (X, Y) < (C, D)

3.1.5 Updating the Concept Labels

In this section the connection between attribute and object concepts of K and those of K|C are investigated.
At first, these special concepts of K|C can be expressed by means of the next lemma.

The attribute concepts of K|C can be described via

µK|C(m) =

{
(mI , mI I) if mI 6⊂ nJ

(mI , mI I ∪̇ {n}) if mI ⊂ nJ

µK|C(n) = (nJ , nJ I ∪̇ {n}).

The object concepts of K|C are given by

γK|C(g) =

{
(gI I , gI) if g 6∈ nJ

(gI I ∩ nJ , gI ∪̇ {n}) if g ∈ nJ .

3.19Lemma: Object Concepts and Attribute Concepts of K|C

APPROBATIO Some simple manipulations by means of Lemma: Common Rows and Common Columns in
Apposition Context 2.11 yields

µK|C(m) = (m(I∪̇J), m(I∪̇J)(I∪̇J)) = (mI , mI(I∪̇J)) = (mI , mI I ∪̇mI J)

=

{
(mI , mI I) = µK(m) if n 6∈ mI J iff mI 6⊂ nJ

(mI , mI I ∪̇ {n}) if n ∈ mI J iff mI ⊂ nJ

µK|C(n) = (n(I∪̇J), n(I∪̇J)) = (nJ , nJ(I∪̇J)) = (nJ , nJ I ∪̇ {n})

γK|C(g) = (g(I∪̇J)(I∪̇J), g(I∪̇J)) = ((gI ∪̇ gJ)(I∪̇J), gI ∪̇ gJ) = (gI I ∩ gJ J , gI ∪̇ gJ)

=

{
(gI I ∩∅J , gI) = (gI I , gI) = γK(g) if n 6∈ gJ iff g J\ n iff g 6∈ nJ

(gI I ∩ nJ , gI ∪̇ {n}) if n ∈ gJ iff g J n iff g ∈ nJ �

If γK(g) is a varying concept, i.e. gI I ⊆ nJ , then clearly g ∈ nJ holds. Hence, γK|C(g) = varC(γK(g)) holds.
When g ∈ nJ , then γK|C(g) = (gI I ∩ nJ , gI ∪̇ {n}) must be a new or varied concept since its intent contains
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n. Furthermore, when γK(g) is then an old concept, i.e. gI I 6⊆ nJ , then ((gI ∪̇ {n}) \ {n})I = gI I 6= gI I ∩ nJ

holds, hence it must be a new concept with its generator genC(γK|C(g)) = (gI I , gI) = γK(g). Thus g J\ n is
always true when γK(g) is an old non-generator concept. In summary the following corollary is gained.

The object and attribute concepts of K|C can be determined from those of K by the following equations:

∀
m∈M

µK|C(m) =

{
oldC(µK(m)) if µK(m) ∈ BC

old(K)

varC(µK(m)) if µK(m) ∈ BC
var(K)

∀
g∈G

γK|C(g) =


oldC(γK(g)) if γK(g) ∈ BC

o¬g(K) or (γK(g) ∈ BC
gen(K) and g 6∈ nJ

newC(γK(g)) if γK(g) ∈ BC
gen(K) and g ∈ nJ

varC(γK(g)) if γK(g) ∈ BC
var(K)

When n is not redundant, then by Corollarium: Largest Generator Concept 3.12 it follows that

µK|C(n) = newC(>C
gen),

otherwise µK|C(n) = varC(µK(m)) holds when mI = nJ , or more generally

µK|C(n) = varC(nJ , nJ I)

Conversely, due to the bijectivity of the maps oldC, varC and newC, the object and attribute concepts of
K can be computed from those of K|C by the following equations:

∀
m∈M

µK(m) =

{
old−1

C (µK|C(m)) if µK|C(m) ∈ Bold(K|C)

var−1
C (µK|C(m)) if µK|C(m) ∈ Bvar(K|C)

∀
g∈G

γK(g) =


old−1

C (γK|C(g)) if γK|C(g) ∈ Bold(K|C)

genC(γK|C(g)) if γK|C(g) ∈ Bnew(K|C)

var−1
C (γK|C(g)) if γK|C(g) ∈ Bvar(K|C)

3.20 Corollarium: Transition of Object Concepts and Attribute Concepts

Now we are able to update the concept labels for the transition from K to K|C and vice versa.
If n is redundant, then add n to the attribute labels of the concept node whose extent equals the attribute
extent nJ . The object labels and all other attribute labels does not change.
Otherwise when n is not redundant, then add n to the attribute labels of the new concept node that is gen-
erated by the greatest generator concept node >C

gen. No other attribute labels change. The object labels of
a generating concept node are distributed between the embedded old generator concept node and the gen-
erated new concept node. The object labels contained in the new attribute extent nJ are precisely the object
labels of the new concept node, and the remaining object labels are precisely the object labels of the old
generator concept node.
According to Corollarium: Concept Transition from K to K|C and vice versa 3.8 the concept node sets N(K)
and N(K|C) are subdivided into the old concept nodes NC

old(K) and Nold(K|C), the varying concept nodes
NC

var(K) and the varied concept nodes Nvar(K|C), and finally the generator concept nodes NC
gen(K) and the

new concept nodes Nnew(K|C).
Summing up, the following isomorphism are given for the concept node transitions from K to K|C and vice
versa, by extending the bijections oldC, varC and newC from Corollarium: Concept Transition from K to K|C
and vice versa 3.8.

oldC :

NC
old(K) ↪→→ Nold(K|C)

(A, B, Aλ, Bλ) 7→
{
(A, B, Aλ, Bλ) if (A, B) 6∈ BC

gen(K)

(A, B, Aλ \ nJ , Bλ) if (A, B) ∈ BC
gen(K)

(A, B) 6∈ Bgen(K|C) fi (A, B, Aλ, Bλ)
(A, B) ∈ Bgen(K|C)

and (C, D) = newC(old−1
C (A, B))

fi (A, B, Aλ ∪̇ Cλ, Bλ)

← [ (A, B, Aλ, Bλ)
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varC :
NC

var(K) ↪→→ Nvar(K|C)

(A, B, Aλ, Bλ) 7→ (A, B ∪̇ {n} , Aλ, Bλ)

(A, B \ {n} , Aλ, Bλ)← [ (A, B, Aλ, Bλ)

newC :

NC
gen(K) ↪→→ Nnew(K|C)

(A, B, Aλ, Bλ) 7→
{
(A ∩ nJ , B ∪̇ {n} , Aλ ∩ nJ , Bλ) if nJ 6⊂ A iff (A, B) 6= >C

gen

(nJ , B ∪̇ {n} , Aλ ∩ nJ , Bλ ∪̇ {n}) if nJ ⊂ A iff (A, B) = >C
gen

Although not needed for practical purposes, also the generator concept nodes can be computed from the new
concept nodes as follows.

genC :

Nnew(K|C) ↪→→ NC
gen(K)

(A, B, Aλ, Bλ) 7→


((B \ {n})I , B \ {n} , Aλ ∪̇ Cλ, Bλ) if

(C, D) = genC(A, B)
and nJ 6⊂ C (iff (C, D) 6= >C

gen)

((B \ {n})I , B \ {n} , Aλ ∪̇ Cλ, Bλ \ {n}) if
(C, D) = genC(A, B)
and nJ ⊂ C (iff (C, D) = >C

gen)

3.1.6 Updating the Reducibility
When n is redundant, then there is no change in the set of the irreducible attributes. Possibly a previously
irreducible attribute m in K can become reducible in K|C. This can only happen for attributes m ∈ M, whose
attribute extent mI is a superset of nJ . A (previously irreducible) attribute m ∈ M is reducible in K|C, iff

mI = nJ ∩
⋂

o∈M
oI⊃mI

oI

hold. A more sophisticated answer gives the next theorem. Also the irreducible attributes can be detected
in the concept lattice. An attribute m is K-irreducible, iff its attribute concept µK(m) has exactly one upper
neighbor (µK(m))∗. Then it holds that

(µK(m))∗ =
∧

(A,B)∈B(K)
µK(m)<(A,B)

(A, B) =

 ⋂
A∈Ext(K)

mI⊂A

A, . . .

 =

 ⋂
n∈M

mI⊂nI

nI , . . .


=

({
n ∈ M

∣∣∣mI ⊂ nI
}I

, . . .
)
=

((
mI I \

{
n ∈ M

∣∣∣ nI = mI
})I

, . . .
)

,

since mI ⊂ nI ⇔ n ∈ mI I and nI 6= mI .

(I) Each K-reducible attribute is also K|C-reducible. A K-irreducible attribute m is K|C-reducible, iff
µK(m) ∈ BC

var(K) and (µK(m))∗ ∈ BC
o¬g(K), and furthermore at least one superconcept of (µK(m))∗

is a generator concept.

(II) Each K|C-irreducible attribute from K is also K-irreducible. A K|C-reducible attribute m ∈ M is
K-irreducible, iff µK|C(m) ∈ Bvar(K|C) has exactly one old upper neighbor ω and overthis only new
upper neighbors, whose generators are superconcepts of ω.

3.21Theorema: Attribute Reducibility Update

APPROBATIO (I) First, if m is a K-reducible attribute, then the attribute extent mI can be obtained by an
intersection of attribute extents

⋂
m∈B mI with m 6∈ B. Obviously then also

m(I∪̇J) = mI =
⋂

m∈B
mI =

⋂
m∈B

m(I∪̇J)

holds, hence m is K|C-reducible. Second, let m be a K-irreducible attribute.
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(⇒) Suppose m is K|C-reducible. If µK(m) were an old concept, then µK|C(m) = oldC(µK(m)) and the set
of upper neighbors does not change according to Theorema: Neighborhood Transition from K to K|C 3.17.
Thus, the irreducibility of m in K implies the irreducibility of m in K|C. Contradiction! Hence, the attribute
concept µK(m) must be varying. By Corollarium: Concept Transition from K to K|C and vice versa 3.8, there
are no other old or varied upper neighbors of µK|C(m). If (µK(m))∗would be a varying or generating concept,
then

µK|C(m) = varC(µK(m)) ≺
{

varC((µK(m))∗) if (µK(m))∗ ∈ BC
var(K)

newC((µK(m))∗) if (µK(m))∗ ∈ BC
gen(K)

holds. Let (A, B) ∈ BC
gen(K) with (A, B) 6= (µK(m))∗, such that newC(A, B) covers µK|C(m), then µK(m)

must be a lower neighbor of (A, B) and there is no varying or generating concept between them. So µK(m) ≺
(µK(m))∗ < (A, B) must hold, but this is a contradiction. In summary, varC((µK(m))∗) or newC((µK(m))∗)
respectivelly must be the unique upper neighbor of µK|C(m), and m would be K|C-irreducible. Contradic-
tion! Hence (µK(m))∗ must be an old non-generator concept. Finally if there were no generating super-
concept above (µK(m))∗, then oldC((µK(m))∗) were the only upper neighbor of µK|C(m), i.e. m would be
K|C-irreducible. Contradiction!

(⇐) Suppose the attribute concept µK(m) is a varying concept and its unique upper neighbor (µK(m))∗ is
an old non-generator concept that has at least one generator superconcept. Denote the minimal ones of these
generator superconcepts by ξ1, ξ2, . . . , ξk. Then the following structure on the left side can be found within
the concept lattice of K. Neighboring concept nodes are connected by straight line segments and comparable
concepts are connected by zig zag line segments.

µK(m)

(µK(m))∗

ξ1

. . .

ξk

>C
gen

�

varC(µK(m))

µK|C(m)

oldC((µK(m))∗)newC(ξ1)

. . . . . .

newC(ξk)

oldC(ξ1)

. . . . . .
oldC(ξk)

µK|C(n)

newC(>C
gen)

oldC(>C
gen)

Then according to Theorema: Neighborhood Transition from K to K|C 3.17 (IX) the new concepts newC(ξ1),
. . . , newC(ξk) must cover the varied attribute concept varC(µK(m)). This is due to the fact, that no varying
concept can be greater than an old concept, and the generators ξ1, . . . , ξk are minimal. Furthermore (µK(m))∗

is the unique upper neighbor of µK(m), hence there cannot be any varying or generating concept between
µK(m) and each ξ j. In summary, the transition from K to K|C changes the concept lattice structure as dis-
played in the right diagram. Obviously µK|C(m) = varC(µK(m)) has more than one upper neighbor, hence
m is K|C-reducible.

(II) Let first m ∈ M be a K|C-irreducible attribute. Then m must also be K-irreducible, as otherwise m were
K|C-irreducible by (I). Second, let m ∈ M be K|C-reducible attribute.

(⇒) Suppose m is K-irreducible. Then µK|C(m)must be a varied concept. Otherwise µK(m) = old−1
C (µK|C(m))

were an old concept and this is a contradiction to (I). If µK|C(m) had more than one old (and thus non-
generating) upper neighbor inB(K|C), then the according old concepts inB(K)would cover µK(m). This is
a contradiction to the K-irreducibility of m. So µK|C(m) has exactly one old upper neighbor ω ∈ Bold(K|C),
all other upper neighbors must be varied or new concepts. If a varied concept covers µK|C(m), then its appro-
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3.1 Insertion & Removal of a single Attribute Column

priate varying concept covers µK(m) as well. Again, this is a contradiction to the K-irreducibility. So all other
upper neighbors must be new concepts. If there were any new concept ν ∈ Bnew(K|C) whose generator ξ

is not a superconcept of ω, then µK(m) would be covered by old−1
C (ξ). Then µK(m) had at least two upper

neighbors and this contradicts the K-irreducibility.

(⇐) Suppose µK|C(m) varies and has exactly one upper neighbor ω and overthis only new upper neigh-
bors ν1, . . . , νk, whose generators are greater than ω. Then choose ξ j := genC(νj) and the same structure
as in the right diagram above occurs, and by Corollarium: Neighborhood Transition from K|C to K 3.18
old−1

C (ω) = (µK(m))∗must be the unique upper neighbor of µK(m). This means m is K-irreducible. �

Updating the reducibility of the objects is not as easy as for the attributes. For both directions of transition,
previously reducible objects can become irreducible, and also previously irreducible objects can become re-
ducible.

(I) Let g be K-reducible. Then g is K|C-irreducible, iff one of the following statements hold:

(A) γK(g) is a generator concept with g 6∈ nJ , and all lower neighbors are varying concepts.

(B) γK(g) is a generator concept with g ∈ nJ , and exactly one lower neighbor is a varying or gener-
ator concept.

(II) Let g be K-irreducible. Then g is K|C-irreducible too, iff one of the following statements hold:

(A) γK(g) is an old non-generator concept.

(B) γK(g) is a varying concept.

(C) γK(g) is a generator concept, and its unique lower neighbor is a varying concept.

(D) γK(g) is a generator concept, and its unique lower neighbor is an old concept, and g ∈ nJ , and
there is either exactly one varying concept β, such that

β < γK(g) and 6 ∃
α∈BC

gen(K)∪̇BC
var(K)

β < α < γK(g),

or exactly one generator concept ν, such that

ν < γK(g) and 6 ∃
α∈BC

gen(K)

ν < α < γK(g).

3.22Theorema: Object Reducibility Update from K to K|C

APPROBATIO (I) Let g be K-reducible, i.e. γK(g) has as least two lower neighbors, denoted by ξ1, . . . , ξk.

γK(g)

ξ1

. . .

ξk

If γK(g) is a varying or an old non-generator concept, then according to Theorema: Neighborhood Transition
from K to K|C 3.17 no structural changes in the set of lower neighbors occur, and thus g must also be reducible
in K|C. (Please remind, that then γK|C(g) equals varC(γK(g)) or oldC(γK(g)), respectivelly.)
Now let γK(g) ∈ BC

gen(K). First, suppose g 6∈ nJ . Then Corollarium: Transition of Object Concepts and
Attribute Concepts 3.20 yields γK|C(g) = oldC(γK(g)). If ξ j ∈ BC

old(K), then oldC(ξ j) ≺ γK|C(g). Otherwise,
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if ξ j ∈ BC
var(K), then

varC(ξ j) ≺ newC(γK(g)) ≺ γK|C(g).

Thus, if all ξ j are varying, then newC(γK(g)) is the unique lower neighbor of γK|C(g), i.e. g is irreducible in
K|C. Obviously γK|C(g) must have more than one lower neighbor in all other cases (when at least one ξ j is
old), i.e. g is then K|C-reducible as well.
Second, suppose γK(g) ∈ BC

gen(K) and g ∈ nJ . Then Corollarium: Transition of Object Concepts and At-
tribute Concepts 3.20 yields γK|C(g) = newC(γK(g)). Furthermore, γK|C(g) has exactly one lower neighbor
(hence g is K|C-irreducible), if exactly one ξ j is varying or a generator.

oldC(γK(g))

γK|C(g)

newC(γK(g))

ξ1 ξk

ξ j

or

oldC(γK(g))

γK|C(g)

newC(γK(g))

ξ1 ξkξ j

newC(ξ j)

Clearly g must be reducible in K|C in all other cases.

(II) Let g be K-irreducible. Then γK(g) has exactly one lower neighbor ξ := (γK(g))∗. If γK(g) is a varying
or an old non-generator concept, then again no structural changes occur in the set of lower neighbors. Hence
g is also irreducible in K|C then.
So let γK(g) ∈ BC

gen(K). First, suppose ξ is varying. The local changes in neighborhood structure are de-
picted below.

γK(g)

ξ

�

γK|C(g) if g 6∈ nJ

oldC(γK(g))

γK|C(g) if g ∈ nJ

newC(γK(g))

varC(ξ)

Clearly, when g 6∈ nJ , then γK|C(g) has exactly one lower neighbor newC(γK(g)), i.e. g is K|C-irreducible.
Otherwise, if g ∈ nJ , the object concept of g in K|C is newC(γK(g)). Then the varied concept varC(ξ) must be
the unique lower neighbor of the new object concept, since:

• There cannot be any generator under a varying concept, thus γK(g) must be a minimal generator.
Hence, no new lower neighbors of γK|C(g) exist.

• If there were any other varied concept ξ1 below γK|C(g), i.e. ξ1 ≺ γK|C(g), then var−1
C (ξ1) < γK(g)

and there is no generator or varying concept between them. Also this implies var−1
C (ξ1) < ξ ≺ γK(g) since ξ

is the only lower neighbor, but this is a contradiction as ξ is varying.

In summary, g is K|C-irreducible too, when γK(g) is a generator concept and its unique lower neighbor is
varying.
Second, suppose ξ is old, then the neighborhood changes locally as shown below.
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3.1 Insertion & Removal of a single Attribute Column

γK(g)

ξ

�
γK|C(g) if g 6∈ nJ

oldC(γK(g))

γK|C(g) if g ∈ nJ

newC(γK(g))

oldC(ξ)

Obviously, g is K|C-reducible for g 6∈ nJ . Otherwise, when g ∈ nJ , one has to look on the lower neighbors of
the new concept γK|C(g) = newC(γK(g)). At first it can only exist new or varied lower neighbors of γK|C(g)
and according to Theorema: Neighborhood Transition from K to K|C 3.17 it holds

newC(ν) ≺ γK|C(g)⇔ ν < γK(g) and 6 ∃
α∈BC

gen(K)

ν < α < γK(g)

and varC(β) ≺ γK|C(g)⇔ β < γK(g) and 6 ∃
α∈BC

gen(K)∪̇BC
var(K)

β < α < γK(g).

So, when speaking graphically, we gather the following situations depicted below.

γK(g)

ξ

β

6 ∃
α∈BC

gen(K)∪̇BC
var(K)

or

γK(g)

ξ

ν

6 ∃
α∈BC

gen(K)

�

oldC(γK(g))

γK|C(g)

newC(γK(g))

oldC(ξ)

newC(ν)

or

varC(β)

g is K|C-irreducible, iff the new object concept γK|C(g) has exactly one lower neighbor, i.e. iff there is only
one β or ν as above. In all other cases g must be reducible in K|C. �

(I) Let g be K|C-reducible. Then g is K-irreducible, iff one of the following statements hold:

(A) γK|C(g) is a generator concept, and γK|C(g) has exactly one old lower neighbor β, and further-
more for each varying lower neighbor ξ of newC(γK(g)) it holds that ξ < β.

(B) γK|C(g) is a new concept, and the appropriate generator above γK|C(g) has exactly one old
lower neighbor β, and furthermore for each varying lower neighbor ξ of γK|C(g) it holds that ξ < β

(C) γK|C(g) is a new concept, and the appropriate generator above γK|C(g) has no old lower neigh-
bor, and furthermore there is exactly one varying lower neighbor of γK|C(g).

(II) Let g be K|C-irreducible. Then g is also K-irreducible, iff one of the following statements hold:

(A) γK|C(g) is an old non-generator concept.

(B) γK|C(g) is a varying concept.

(C) γK|C(g) is a generator concept, and its unique lower neighbor has exactly one lower neighbor.

(D) γK|C(g) is a new concept, and its generator has no old lower neighbor.

3.23Theorema: Object Reducibility Update from K|C to K
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(E) γK|C(g) is a new concept, and its generator has exactly one old lower neighbor β, such that the
unique lower neighbor α ≺ γK|C(g) is a subconcept of β.

APPROBATIO (I) Let g be K|C-reducible. The statements (A) and (B) hold, since there are no structural
changes in the set of lower neighbors of each old non-generator or varied concept. Now let γK|C(g) be a
generator concept. Then γK(g) = old−1

C (γK|C(g)) and g 6∈ nJ hold. γK|C(g) must have at least one old lower
neighbor besides newC(γK(g)). Obviously then g is K-irreducible, when γK|C(g) has exactly one old lower
neighbor β, and furthermore for each varying lower neighbor ξ of newC(γK(g)) there is an old non-generator
concept α, such that ξ < α < γK|C(g), i.e. ξ < α ≤ β and thus ξ < β, holds. This can be seen with the
following picture.

γK|C(g)

newC(γK(g))

β

α

ξ

�

γK(g)

β

ξ

Finally suppose γK|C(g) is a new concept. Then γK(g) = genC(γK|C(g)) and g ∈ nJ hold. By the same argu-
ments, we conclude that γK|C(g) can only have exactly one lower neighbor, when the appropriate generator
above γK|C(g) has exactly one old lower neighbor β, and furthermore for each varying lower neighbor ξ of
γK|C(g) it holds that ξ < β, or when the appropriate generator above γK|C(g) has no old lower neighbor, and
furthermore there is exactly one varying lower neighbor ξ of γK|C(g).

(II) Let g be K|C-irreducible. The statements (A) and (B) hold, since there are no structural changes in the
set of lower neighbors of each old non-generator or varied concept.
When γK|C(g) is a generator concept, then it can only have newC(γK(g)) as its unique lower neighbor. Clearly
then g is K-irreducible, when newC(γK(g)) has exactly one (varying) lower neighbor.
Last but not least, suppose γK|C(g) is a new concept with its unique lower neighbor α. If its generator
oldC(genC(γK|C(g))) has more than one old lower neighbor in the concept lattice of K|C, then also γK(g) =
genC(γK|C(g)) would have more than one lower neighbor and g would thus be K-reducible. So suppose that
there is no old lower neighbor, then g must be K-irreducible, as then var−1

C (α) is the unique lower neighbor
of γK(g). If there is exactly one old lower neighbor β, then g is K-irreducible, if α is a subconcept of β.�

3.1.7 Updating the Arrows

For an object g ∈ G and an attribute m ∈ M the following statement hold:

g↗K|C m⇔
{

g↗K m if mI 6⊂ nJ

g↗K m and g ∈ nJ if mI ⊂ nJ

3.24 Lemma: Up Arrows in K and K|C

APPROBATIO This follows easily from

g↗K|C m⇔ g 6∈ mI and ∀
p∈M

(mI ⊂ pI ⇒ g ∈ pI)

⇔g↗Km

and (mI ⊂ nJ ⇒ g ∈ nJ).�
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3.1 Insertion & Removal of a single Attribute Column

We conclude, that up arrows do not change in columns mI which are no subset of the new column nJ .

Let g ∈ G and m ∈ M such that mI ⊂ nJ .

(I) For the arrow transition from K to K|C it holds:

g↗K|C m⇔ g↗K m and g ∈ nJ .

(II) For the arrow transition from K|C to K it holds:
If g ∈ nJ , then

g↗K m⇔ g↗K|C m.

If g 6∈ nJ , then g↗K m holds, iff one of the following statements hold:

(A) m is K|C-reducible, and µK|C(m) ∈ Bvar(K|C) has exactly one old upper neighbor ω and over-
this only new upper neighbors, whose generators are superconcepts of ω, and furthermore γK|C(g) is a
subconcept of ω.

(B) m is K|C-irreducible, ((µK|C(m))∗ ∈ Bnew(K|C) and γK|C(g) ∈ Bold(K|C) is a subconcept of
the generator oldC(genC((µK|C(m))∗)).

3.25Theorema: Up Arrow Transition

APPROBATIO (I) by the previous lemma.

(II) In case g ∈ nJ this follows from the preceding lemma as well. Suppose g 6∈ nJ . Then Corollarium:
Transition of Object Concepts and Attribute Concepts 3.20 yields

γK|C(g) =

{
oldC(γK(g)) if γK(g) ∈ BC

old(K)

varC(γK(g)) if γK(g) ∈ BC
var(K)

.

(A) Let m be K|C-reducible. g ↗K m can only hold, when m is irreducible in K, i.e. when µK|C(m) ∈
Bvar(K|C) has exactly one old upper neighbor ω and overthis only new upper neighbors, whose generators
are superconcepts of ω, according to Theorema: Attribute Reducibility Update 3.21. Then old−1

C (ω) is the
unique upper neighbor of µK(m). Furthermore, γK|C(g) ≤ ω holds, iff γK(g) ≤ (µK(m))∗, i.e. iff g↗K m.

(B) When m is K|C-irreducible, then m is also K-irreducible by Theorema: Attribute Reducibility Update
3.21. Furthermore, g 6∈ nJ implies g↗\K|C m, i.e. γK|C(g) is no subconcept of (µK|C(m))∗.
If (µK|C(m))∗ is an old concept, then old−1

C ((µK|C(m))∗) is the unique upper neighbor of

µK(m) =

{
old−1

C (µK|C(m)) if µK|C(m) ∈ Bold(K|C)

var−1
C (µK|C(m)) if µK|C(m) ∈ Bvar(K|C)

.

Then γK(g) is a subconcept of (µK(m))∗, iff γK|C(g) is a subconcept of (µK|C(m))∗. As this cannot occur ac-
cording to the preconditions, g ↗\K m must hold. If (µK|C(m))∗ is a varied concept, then var−1

C ((µK|C(m))∗)

is the unique upper neighbor of µK(m) = var−1
C (µK|C(m)). Then γK(g) is smaller than (µK(m))∗, iff γK|C(g)

is a subconcept of (µK|C(m))∗. Thus, g↗\K m as well in this case.

µK|C(m)

(µK|C(m))∗

γK|C(g)
�

µK(m)

(µK(m))∗

γK(g)
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If the unique upper neighbor (µK|C(m))∗ is a new concept, then according to Corollarium: Neighborhood
Transition from K|C to K 3.18 genC((µK|C(m))∗)must be the unique upper neighbor of µK(m) = var−1

C (µK|C(m)).
Furthermore γK(g) can only be a subconcept of (µK(m))∗, if it is an old concept and a subconcept of the gen-
erator. (If γK(g) would be varying and smaller than the generator, γK|C(g) must be smaller than the new
generated concept as well, in contradiction to the preconditions.)

µK|C(m)

(µK|C(m))∗

oldC(genC((µK(m))∗))

γK|C(g)

�

µK(m)

(µK(m))∗

γK(g)

In summary, g ↗K m holds in this case, iff γK|C(g) is an old concept and smaller than the generator of the
upper neighbor of µK|C(m).�

Due to a lack of time, the arrow transition from↙K to↙K|C and vice versa remains an open problem in this
document.

3.1.8 Updating the Seed Vectors

Diagram Transition from K to K|C

If the new attribute n is not redundant in K|C, a new seed vector for n has to be chosen. Before this, check
if some of the old attributes of K become reducible in the updated context K|C by means of Theorema: At-
tribute Reducibility Update 3.21 and set the appropriate seed vectors to the null vector. Then choose a new
seed vector σ for n. This can be done by applying a quality metric, calculating an appropriate heatmap for
the new attribute concept γK|C(n) and selecting a best position. In the end, calculate the positions of the new
concepts by shifting the generator positions by σ and modify the positions of the varied concepts by shifting
their positions by σ.

Diagram Transformation from K|C to K

When the removed attribute n was not redundant in K|C, its appropriate seed vector has to be removed from
the seed map. Also, some of the remaining previously reducible attributes in M can become irreducible in K
by Theorema: Attribute Reducibility Update 3.21, and a new seed vector has to be introduced for them.

3.1.9 Complete IFOX Algorithm

The following pseudocode algorithm describes the update process for attribute additive labeled concept
diagrams. The algorithm is called IFOX.

Adding a new column C to a context K

For a formal context K and a new column C the addition of C to K can be done in several steps: Firstly,
determine the partition of the set of all formal concepts into the old concepts, varying concepts and genera-
tor concepts. Then update the formal concepts according to the mapping oldC, newC and varC as defined in
Corollarium: Concept Transition from K to K|C and vice versa 3.8 or Corollarium: Concept Transition from
K to K|C and vice versa 3.8 respectivelly. Also, the labels of the formal concepts are updated. This again is
no expensive operation, as only one concept node can get a new attribute label (namely the supremum of all
generators, if there are any), and object labels are pushed downwards at the border between generating and
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non-generating formal concept nodes.

Input: N(K), C

for (N = (A, B, Aλ, Bλ) ∈ N(K))
if (A 6⊆ nJ)

if ((A ∩ nJ)I = B)
NC

gen(K)← ∪{N}
else

NC
o¬g(K)← ∪{N}

end if
else

NC
var(K)← ∪{N}

end if
end for

for (N = (A, B, Aλ, Bλ) ∈ NC
gen(K))

N(K|C)← ∪
{
(A, B, Aλ \ nJ , Bλ)

}
if (nJ ⊂ A)

N(K|C)← ∪
{
(nJ , B ∪̇ {n} , Aλ ∩ nJ , Bλ ∪̇ {n})

}
else

N(K|C)← ∪
{
(A ∩ nJ , B ∪̇ {n} , Aλ ∩ nJ , Bλ)

}
end if

end for

for (N ∈ NC
o¬g(K))

N(K|C)← ∪{N}
end for

for (N = (A, B, Aλ, Bλ) ∈ NC
var(K))

N(K|C)← ∪{(A, B ∪̇ {n} , Aλ, Bλ)}
end for

Output: N(K|C)

The first for loop is the complexest part. The for loop runs |B(K)| times. The evaluation of the condition in
the first if statement needs at most |G| operations. Finally, the evaluation of the condition in the second if
statement needs at most |G| · |M| operations for the computation of (A ∩ nJ)I and at most 2 · |M| operations
for the equality check. In summary at most |B(K)| · (|G|+ (|G| · |M|+ 2 · |M|)) operations are necessary,
hence the worst case time complexity is

O(|B(K)| · (|G|+ (|G| · |M|+ 2 · |M|))) = O(|B(K)| · |G| · |M|).

In the second step update the neighborhood relation for the updated set of formal concepts, as described in
Theorema: Neighborhood Transition from K to K|C 3.17. There are subrelations (or better said: “blocks” in
the binary matrix describing the neighborhood relation) that does not change, some subrelation blocks can
be copied onto a new subrelation, and other not very difficult and cost-intensive operations. In the last step
the positions of the formal concepts are updated by introducing a new seed vector for the new attribute n,
if it is irreducible w.r.t. M, and furthermore for an layout optimization also seed vectors are removed whose
attributes are reducible w.r.t. n.

Removing a column C from a context K|C

The update process is done in a similar way as for adding C. First, determine the partition of the concept
node set of K|C into the old, varied and new ones. By means of them then calculate the concept node set of
K.

Input: N(K|C)
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for (N = (A, B, Aλ, Bλ) ∈ N(K|C))
if (n 6∈ B)

Nold(K|C)← ∪{N}
else

if ((B \ {n})I = A)
Nvar(K|C)← ∪{N}

else
Nnew(K|C)← ∪{N}

end if
end if

end for

for (N1 ∈ Nnew(K|C))
for (N2 � N1)

if (N2 ∈ Nold(K|C))
Ngen(K|C)← ∪{N2}
newC(N2)← N1

end if

end for

end for

No¬g(K|C)← Nold(K|C) \Ngen(K|C)

for (N ∈ No¬g(K|C))
N(K)← ∪{N}

end for

for (N = (A, B, Aλ, Bλ) ∈ Ngen(K|C))
(C, D, Cλ, Dλ)← newC(N)
N(K)← ∪{(A, B, Aλ ∪̇ Cλ, Bλ)}

end for

for (N = (A, B, Aλ, Bλ) ∈ Nvar(K|C))
N(K)← ∪{(A, B \ {n} , Aλ, Bλ)}

end for

Output: N(K)

By similar arguments as above, the worst case time complexity for the first for isO(|B(K)| · |G| · |M|). The
second for loop for the determination of the generator concepts cycles at most |B(K)| · |B(K)| times, so in
summary, the worst case time complexity is

O(|B(K)| · (|B(K)|+ |G| · |M|)).

Second, update the neighborhood matrix by removing all columns for new concepts and update one block,
viz. determine which generators cover varying concept nodes. Finally update the seed map, if C was not re-
dundant. Possibly then some remaining attributes become irreducible, see Theorema: Attribute Reducibility
Update 3.21 for details. For these newly irreducible attributes add an appropriate seed vector, that can be
found by a search for a best point within a heatmap w.r.t. some chosen quality metric.

3.1.10 An Example: Stepwise Construction of FCD(3)

Consider the context of the free distributive lattice FCD(3) with three generators x, y, z:
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x
∨

y
∨

z
x
∨

y
x
∨

z
y
∨

z
x y z ⊥

x ∧ y ∧ z × × × × × × ×
y ∧ z × × × × × ×
x ∧ z × × × × × ×
x ∧ y × × × × × ×
z × × × ×
y × × × ×
x × × × ×
>

With the preceding algorithm its concept lattice is constructed stepwise. At first we add all objects to an
initially empty context. (As we do not have an update algorithm for new objects at the moment. This is a
future task and can be derived from the update algorithm for new attributes due to the duality of objects and
attributes in concept lattices.) The resulting context diagram only has one node:

x ∧ y ∧ z, x ∧ y, x ∧ z, y ∧ z, x, y, z,>

In the ongoing text the attributes are added to the context one after another. Please remark that generating
nodes are always tagged by a pentagon , modified nodes are marked with a cloud , new nodes are

highlighted with a star and old non-generator nodes are not tagged . Furthermore objects which
change their positions are colored in red and analogously new or moved attributes are hued with blue.

Now the first attribute x ∨ y ∨ z is added to the context. Its extent consists of the objects x ∧ y ∧ z, x ∧ y, x ∧
z, y ∧ z, x, y and z. As the single node contains all objects, and the new attribute extent not, it must be an old
node. Furthermore as actually there are no attributes in the context the intent is empty, so the closure of the
intersection of its extent and the new attribute extent must also be empty. This means they are equal and so
the single node is a generator.

x ∧ y ∧ z, x ∧ y, x ∧ z, y ∧ z, x, y, z,>
x ∨ y ∨ z
�

>

x ∧ y ∧ z, y ∧ z, x ∧ z, x ∧ y, z, y, x

x ∨ y ∨ z

Next, the attribute x ∨ y is added.

>

x ∧ y ∧ z, y ∧ z, x ∧ z, x ∧ y, z, y, x

x ∨ y ∨ z x ∨ y
�

>

z

x ∨ y ∨ z

x ∧ y ∧ z, y ∧ z, x ∧ z, x ∧ y, y, x

x ∨ y
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>

z

x ∨ y ∨ z

x ∧ y ∧ z, y ∧ z, x ∧ z, x ∧ y, y, x

x ∨ y

x ∨ z
�

>
x ∨ y ∨ z

y

x ∨ y

z

x ∨ z

x ∧ y ∧ z, y ∧ z, x ∧ z, x ∧ y, x

>
x ∨ y ∨ z

y

x ∨ y

z

x ∨ z

x ∧ y ∧ z, y ∧ z, x ∧ z, x ∧ y, x

y ∨ z
�

>
x ∨ y ∨ z

x ∨ yx ∨ z

x

y ∨ z

yz

x ∧ y ∧ z, y ∧ z, x ∧ z, x ∧ y

>
x ∨ y ∨ z

x ∨ yx ∨ z

x

y ∨ z

yz

x ∧ y ∧ z, y ∧ z, x ∧ z, x ∧ y

x
�

>
x ∨ y ∨ z

x ∨ yx ∨ z y ∨ z

yz

y ∧ zx

x

x ∧ y ∧ z, x ∧ z, x ∧ y
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>
x ∨ y ∨ z

x ∨ yx ∨ z y ∨ z

yz

y ∧ zx

x

x ∧ y ∧ z, x ∧ z, x ∧ y

y
�

>
x ∨ y ∨ z

x ∨ yx ∨ z y ∨ z

z

x

x

x ∧ z

y

y

y ∧ z

x ∧ y ∧ z, x ∧ y

>
x ∨ y ∨ z

x ∨ yx ∨ z y ∨ z

z

x

x

x ∧ z

y

y

y ∧ z

x ∧ y ∧ z, x ∧ y

z
�

>
x ∨ y ∨ z

x ∨ yx ∨ z y ∨ z

x

x

y

y

x ∧ y

z

z

x ∧ z y ∧ z

x ∧ y ∧ z
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>
x ∨ y ∨ z

x ∨ yx ∨ z y ∨ z

x

x

y

y

x ∧ y

z

z

x ∧ z y ∧ z

x ∧ y ∧ z

⊥
�

>
x ∨ y ∨ z

x ∨ yx ∨ z y ∨ z

x

x

y

y

x ∧ y

z

z

x ∧ z y ∧ z

x ∧ y ∧ z

⊥

3.2 Setting & Deleting a single cross

Another question that occurs when working with a formal context is how the concept lattice and the corre-
sponding line diagram change when a single cross is added or removed to its incidence. In other words, how
can a line diagram of B(G, M, I ∪̇ {(g, m)}) be computed from an existing line diagram of B(K)? Anyway,
the intents of (G, M, I ∪̇ {(g, m)}) are always of the form AI or AI ∪̇ {m} for a suitable object set A ⊆ G. This
can be seen as follows:

AI∪̇{(g,m)} =

{
n ∈ M

∣∣∣∣ ∀h∈A
hIn or h {(g, m)} n

}
= (A \ {g})I ∩ ({g}I ∪ {m})

= AI ∪ ((A \ {g})I ∩ {m})

=

{
AI ∪̇ {m} if m ∈ (A \ {g})I and m 6∈ AI

AI if m 6∈ (A \ {g})I or m ∈ AI

holds for every object set A ⊆ G. Dually each extent of (G, M, I ∪̇ {(g, m)}) has the form BI or BI ∪̇ {g} for a
particular attribute set B ⊆ M. This is due to

BI∪̇{(g,m)} =

{
BI ∪̇ {g} if g ∈ (B \ {m})I and g 6∈ BI

BI if g 6∈ (B \ {m})I or g ∈ BI

for arbitrary attribute sets B ⊆ M. In (GW99) there is a first clue on page 128: The number of concepts can
increase or decrease; an estimate by SKORSKY states

1
2 · |B(K)| ≤ |B(G, M, I ∪ {(g, m)})| ≤ 3

2 · |B(K)|.
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The concept lattice grows when neither g↙ m nor g↗ m hold, as then I is a closed subrelation of I ∪{(g, m)}
and B(K) is thus a complete sublattice of B(G, M, I ∪ {(g, m)}). So one just must determine the concepts
of (G, M, I ∪̇ {(g, m)}) that are not already concepts of K. This can be done by computing all intents of
(G, M, I ∪̇ {(g, m)}) which have the form AI ∪̇ {m}.
The concept lattice shrinks when both g ↙ m and g ↗ m hold. Then g does not have m, but g is contained
in the extent of every proper superconcept of µm and dually m is contained in the intent of every proper
subconcept of γg. In other words, the object concept γg is no sub concept of the attribute concept µm and
for all concepts (A, B) ∈ B(K) with µm < (A, B) < γg it holds that γg ≤ (A, B) ≤ µm.

γh

(γg)∗

γg µm

(µm)∗

µn
Clearly this is

a contradiction to γg 6≤ µm and thereby either µm must be a lower neighbor of γg or µm cannot be a sub-
concept of γg. So either γg covers µm or both concepts are uncomparable. If they are neighboring then they
are simply merged in the transition from B(K) to B(G, M, I ∪̇ {(g, m)}). This can be seen as follows: From
(mI , mI I) ≺ (gI I , gI) it follows that gI I ∩mI = mI . Furthermore

mI∪̇{(g,m)} = mI ∪̇ {g} = (gI I ∩mI) ∪̇ {g} = g(I∪̇{(g,m)})(I∪̇{(g,m)})

and so both the object concept of g and the attribute concept of m equal in (G, M, I ∪̇ {(g, m)}). No other
concepts are affected.
The other cases remain for future work. For practical applications when visual animated transitions are
desired one can use the complete algorithm from the preceding section to firstly remove the concerning at-
tribute column, secondly modify it and thirdly add it again to the underlying formal context. Also one could
calculate a transition algorithm by means of composing the preceding algorithm.
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The common way of visualizing a formal context is done by computing all formal concepts, constructing the
neighborhood relation of the formal concepts and then layouting the given structures. Unfortunately this
leads to hardly readable diagrams for datasets of at least a medium size (more than 50 formal concepts). Thus
a technique (or better many techniques) for a interactive exploration of a formal concept lattice is neccessary.

4.1 Iceberg Lattices

A simple way to achieve an interactive navigation through a formal concept lattice could be done by display-
ing the top-most formal concept (G, GI) and then enable the user to show the lower neighbors of a formal
concept by clicking on a already displayed formal concept. As a consequence the user firstly sees the largest
formal concept, i.e. the formal concept with all objects from the context and then the user can go down in the
concept lattice to see smaller formal concepts with less objects but more attributes involved. Such a technique
already exists and is called Iceberg-Lattices, please see (Stu02).

4.2 Alpha Iceberg Lattices

There is a way to generalize these Iceberg-Lattices to have not only a down-oriented view from the top-most
concept and its lower neighbors, but also from intermediate formal concepts that rise from a given classi-
fication of the objects into groups. Initially each group induces a formal concept node in the line diagram
and then the user can go down from these grouped formal concepts. This can be seen as a multiple Iceberg-
view: from each grouped formal concept only some of child formal concepts are displayed, that fulfill certain
criteria. See a formalization in the appendix or in (VS05).

4.3 Partly selections

Another well know technique for a better readable view on a concept lattice of a context (G, M, I) is Nesting.
This is done by partitioning the attribute set into two classes M1 and M2, the first one contains the attributes
for the outer diagram and the second one holds the attributes for the inner diagram. The two resulting sub-
contexts (G, M1, I ∩ G ×M1) and (G, M2, I ∩ G ×M2) are then used to construct the nested diagram in the
following way: Initially compute and layout the outer concept lattice B(G, M1, I ∩ G × M1) and the inner
concept lattice B(G, M2, I ∩ G ×M2). Then draw the outer concept lattice as a directed graph and nest the
inner concept lattice in each node of the outer diagram. Some pairs of an outer concept node and an inner
concept nodes then describe formal concepts of the whole context (G, M, I), namely those outer concepts
(A1, B1) and inner concepts (A2, B2) for which (A1 ∩ A2, B1 ∪ B2) is a formal concept of (G, M, I). Thus the
inner nodes (A2, B2) within an outer node (A1, B1) are so called realized inner concepts, iff (A1 ∩ A2, B1 ∪ B2)
is a formal concept of (G, M, I). As a result the number of edges is reduced and thus can lead to a better
readability of the concept lattice diagram. A disadvantage of the Nesting approach is the fact that the user
can hardly gain comparing information about objects that are in different outer nodes. So why not glue some
interesting inner nodes to the outer nodes?
Suppose a context (G, M, I) is given and the user initially selects some attributes M0 ⊆ M for a first view on
the context data. When the user sees some interesting objects G1 ⊆ A1 ⊆ G that label a concept node (A0, B0)
of B(G, M0, I ∩ G×M0), and he wants to have further information on that objects by involving some of the
remaining attributes M1 ⊆ M \ M0, then he can click on the concept node (A0, B0) that is labeled with the
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interesting objects G1 and then the initial concept lattice is expanded below that concept node by glueing
another concept lattice B(G1, M1, I ∩ G1 × M1) below. Please have a look at the next section 4.3.1 for a so-
phisticated example. Then the user can decide to retain the newly attached concept nodes in the diagram or
he can decide to remove these attached nodes if the shown information is not helpful and to hold the diagram
complexity as low as possible. In the ongoing exploration of the concept lattice the user can select other in-
teresting objects G2 ⊆ G by clicking other nodes and choosing appropriate attributes M2 ⊆ M \M0. If there
are some other attached nodes in the diagram already for the selections {(Gi, Mi)}k

i=1 he can decide to merge
the attached nodes, if they share selected attributes. This is done by computing the formal concept lattice
of a subincidence of (G, M, I), namely (

⋃k+1
i=1 Gi,

⋃k+1
i=1 Mi,

⋃k+1
i=1 (I ∩ Gi × Mi)) and glueing the appropriate

concept lattice on the main concept lattice B(G, M0, I ∩ G×M0).
This technique can be used to search for an unknown object within a context by an iterative exploration of the
concept lattice by expanding nodes with interesting objects with new attributes. Take as an example a formal
context about cars. Various cars are chosen as objects and appropriate attributes describe the cars, e.g. firstly
show the concept lattice for attributes describing the amount of the buying price. Then athe user can select a
node with affordable cars and can further structure the cars in that node by other attributes, e.g. maintainance
costs. If he has found a good selection then he goes to a car dealer and looks for that car. If he could not make
a decision yet, the remaining cars in a node can be further zoomed in by involving additional attributes like
number of doors or size of the trunk etc. This expansion is repeated until a selection of good size is reached.

4.3.1 Example with EMAGE data
From the EMAGE data set a formal context was extracted. Its objects are various EMAP identifiers (acronyms
for tissues of a mouse embryo at specific theiler stages) and its attributes are the BMP genes bmp2, bmp3, bmp4,
bmp5, bmp6, bmp7 and bmp10 (bmp abbreviates bone morphogenetic protein). The resulting (reduced) context and
its (full) concept lattice is shown in figure 4.1. See also (AM11) for details on the EMAGE data. In the nesting

bm
p2

bm
p3

bm
p4

bm
p5

bm
p6

bm
p7

bm
p1

0

emap167 × ↗↙ × × ↗↙ × ↗↙

emap234 × ↗ ↗↙ × ↗ ↗↙ ↗

emap267 × ↗ ↗↙ ↗↙ ↗ × ↗

emap315 ↗↙ ↗ ↗↙ × ↗ × ↗

emap1259 ↗ ↗ × ↗ × ↗↙ ↗

emap1685 ↗↙ ↗↙ × ↗↙ × × ↗↙

emap2322 ↗ ↗ ↗↙ ↗ × ↗ ↗

emap2454 ↗↙ ↗↙ ↗↙ ↗↙ ↗↙ ↗↙ ×
emap7503 × × × ↗↙ ↗↙ ↗↙ ↗↙

emap7843 ↗↙ × ↗↙ × ↗↙ ↗↙ ↗↙

emap8114 ↗↙ × × ↗ ↗ ↗ ↗

emap8226 × × ↗↙ ↗ ↗ ↗ ↗

Figure 4.1: Formal Concept Lattice describing BMP genes occuring in tissues (EMAP ids)

approach the attribute set is partitioned into two subsets M1 and M2. We choose M1 := {bmp2, bmp3, bmp7}
and M2 := {bmp4, bmp5, bmp6, bmp10}. The resulting outer concept lattice B(G, M1, I ∩ G×M1) is shown
on the left in figure 4.2 and the appropriate inner concept lattice B(G, M2, I ∩ G × M2) is displayed on the
right side in figure 4.2. When some further information about the objects in the outer node labeled with at-
tribute bmp3 is required, the user can zoom into that node and see the inner diagram, that further structures
the objects with the remaining objects from M2. There are only four realized concepts within the inner dia-
gram of the attribute concept node for bmp3: the top and bottom node and the attribute nodes for bmp4 and
bmp5.
The readabily is not very high with the nesting approach, especially when trying to compare objects from
different outer nodes.
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4.3 Partly selections

Figure 4.2: Outer and inner concept lattice for EMAGE context
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Initially the user selects some attributes for a first view on the context data. For the selected subcontext the
appropriate concept lattice is visualized, see figure 4.3. In the nesting approach this would be the outer con-
cept lattice. To improve readability of the shown concept lattices, the bottom concept is hidden when it does
not contain any information, i.e. it has no objects in its extent and is no attribute concept. Dually the top
concept is hidden, if it has no attributes in its intent and is no object concept.

bm
p2

bm
p3

bm
p4

bm
p5

bm
p6

bm
p7

bm
p1

0

emap167 × × × ×
emap234 × ×
emap267 × ×
emap315 × ×
emap1259 × ×
emap1685 × × ×
emap2322 ×
emap2454 ×
emap7503 × × ×
emap7843 × ×
emap8114 × ×
emap8226 × ×

emap2322
emap1259
emap2454

emap7843
emap8114

bmp3

emap234

bmp2

emap315
emap1685

bmp7

emap7503
emap8226

emap167
emap267

Figure 4.3: Initial view on the concept lattice diagram for attribute selection M0 := {bmp2, bmp3, bmp7}

When looking at this initial view the user can see that the bmp3 was detected in tissues emap7843 and emap8114.
(Of course bmp3 was also detected in emap7503 and 8226.) Now the user is further interested in these two ob-
jects at the bmp3 node and clicks on it . Then the remaining attributes bmp4, bmp5, bmp6 and bmp10 are used
to give further information on these selected objects. This is done by glueing the concept lattice of the selec-
tion ({emap7843, emap8114}, {bmp4, bmp5, bmp6, bmp10}) below the selected bmp3 node, as in figure 4.4.

bm
p2
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p3
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p4

bm
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bm
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bm
p7

bm
p1

0

emap167 × × × ×
emap234 × ×
emap267 × ×
emap315 × ×
emap1259 × ×
emap1685 × × ×
emap2322 ×
emap2454 ×
emap7503 × × ×
emap7843 × ×
emap8114 × ×
emap8226 × ×

emap2322
emap1259
emap2454

bmp3

emap234

bmp2

emap315
emap1685

bmp7

emap7503
emap8226

emap167
emap267

emap8114

bmp4

emap7834

bmp5

Figure 4.4: Expanded view for objects emap7843 and emap8114 for all remaining attributes bmp4, bmp5,
bmp6 and bmp10.

Now the affixed concept lattice could either be removed or retained. The affixed concept lattice is equivalent
to the (realized) inner lattice within a concept of the outer lattice in nested diagrams, but in this approach it is
glued in the outer lattice and not displayed within a node of the outer lattice. So to continue this example, let
the affixed concept lattice retain in the diagram. In the next step the user is interested in the objects emap7503
and emap8226 from the concept below, so the user clicks on the corresponding node . This again results in
a further concept lattice that is glued below the selected node, as shown in figure 4.5.
The actual diagram state in figure 4.5 contains the main concept lattice and two affixed concept lattices for
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emap167 × × × ×
emap234 × ×
emap267 × ×
emap315 × ×
emap1259 × ×
emap1685 × × ×
emap2322 ×
emap2454 ×
emap7503 × × ×
emap7843 × ×
emap8114 × ×
emap8226 × ×

emap2322
emap1259
emap2454

bmp3

emap234

bmp2

emap315
emap1685

bmp7

emap8226 emap167
emap267

emap8114

bmp4

emap7834

bmp5

emap7503

bmp4

Figure 4.5: Expanded view for objects emap8226 and emap7503 structured with all remaining attributes
bmp4, bmp5, bmp6 and bmp10. The preceding expansion from figure 4.4 retains.

some objects. The user could now decide to merge the affixed concept lattices, if the shown pieces of infor-
mation are useful for his or her needs. Please have look at the next figure 4.6 to see the results.
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emap167 × × × ×
emap234 × ×
emap267 × ×
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emap1685 × × ×
emap2322 ×
emap2454 ×
emap7503 × × ×
emap7843 × ×
emap8114 × ×
emap8226 × ×
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emap2454

bmp3

emap234

bmp2

emap315
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emap8226 emap167
emap267
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emap7834

bmp5
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Figure 4.6: Merge of the two preceding expansions from figures 4.4 and 4.5.

Continuing the workflow of clicking, expand and merging, the following diagram states arise. Clicked nodes

are always marked with a hand , already expanded nodes of the main lattice with a cloud , and affixed

nodes with a pentagon .
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emap1685 × × ×
emap2322 ×
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Figure 4.7: Expansion of the top concept node: objects emap1259, emap2322 and emap2454 are further
structured using all remaining attributes bmp4, bmp5, bmp6 and bmp10. As then the top concept
node is no longer labeled by any objects, it is not drawn.
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Figure 4.8: Merge of all preceding expansions. Top concept node contains no information and is omitted.
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Figure 4.9: Expansion of the bmp7 node with all left attributes from M \M0.
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Figure 4.10: Merge of all preceding expansions.
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4.4 Overview on Pruning & Interaction Techniques

There are various strategies for pruning a formal concept lattice, to gain a clearer structure of the conceptual
data or to emphasize on interesting parts. The figure 4.11 gives an overview.

Figure 4.11: Overview on various pruning and interaction techniques on formal concept lattices
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5.1 Introduction

In this document we analyze requirements for general graph visualizations. Then we particularize and con-
strain them to lattices as a special form of graphs. The requirements are classified according to different kinds,
e.g. human interaction, visual and technical details.
The second section introduces and describes the visualization requirements for graphs on the user-level and
the third section presents the requirements on the low-level. In the fourth section these user-level and low-
level requirements will be mapped to each other and then analyzed with FCA methods. The last section lists
special requirements on lattices.
First of all, we want to give a quote by E. H. GOMBRICH (Gom77) which describes the intent of visualization
in an abstract way:
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Everything points to the conclusion that the phrase ‘the language of art’ is more than a loose
metaphor, that even to describe the visible world in images we need a developed system of
schemata.

There are two refinements by B. SHNEIDERMAN and D. KEIM for visualizing large amounts of data:

• Visual Information Seeking Mantra (Shn96)

Overview first, zoom and filter, then details on demand (in a loop)

• Visual Analytics Mantra (Kei05)

Analyse first, show the important, zoom, filter and analyse further, details on demand

In general we can say, that visualizations must not be static, but have to interact dynamically with the user.
This includes that the user must tell the visualization what data or details should be displayed and that the
visualization reacts then. So there are a number of requirements to visualization frameworks for graphs, and
also for lattices as a special kind of graphs.
Within this document an ontology is introduced. Figure 5.1 shows the terminological box with the mod-
elled classes and their connecting relations. The next two sections describe the instances of User-Level-
Requirements and Low-Level-Requirements respectivelly.

Figure 5.1: TBox of Requirements Ontology

5.2 User-Level Requirements for Graphs

From (Dau11), (YKSJ07) and (Cui) we get a general overview of human interaction techniques available for
arbitrary visualizations and especially for graphs:

• Select: mark something as interesting

• Explore: show me something else

• Reconfigure: show me a different arrangement

• Encode: show me a different representation

• Abstract/Elaborate: show me more or less details

• Filter: show me something conditionally
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• Connect: show me related items

• Animate: show transitions

In the ongoing section we explain each of the mentioned interaction techniques and in the next section the
necessary low-level requirements to a graph visualization framework get summed up.

5.2.1 Select

A user selects by marking items that he is interested in. So when speaking about graphs, nodes and egdes
should have different colors, shapes, size, transparency. A selection must be possible for a number of items,
e.g. marking three nodes by hand, or marking one node by hand and adjacent nodes and edges automatically.
Please note, that the Select requirement differs from the Filter requirement, as a Select just emphasizes some
graph elements which the user is interested in, and a Filter would just retain some elements of interest while
removing the remaining element.

Select interaction techniques provide users with the ability to mark (a) data item(s) of interest to
keep track of it. When too many data items are presented on a view, or when representations are
changed, it is difficult for users to follow items of interest. By making items of interest visually
distinctive, users can easily keep track of them even in a large data set and/or with changes in
representations. [. . . ] Interestingly, Select interaction techniques seem to work as a preceding
action to subsequent operations. (YKSJ07)

5.2.2 Explore

A user wants to gain insight in the data displayed, so he wants the visualization to show different data that
corresponds in some extent to the actual data displayed. This is called Exploration. So to enable the user to
explore the data some low-level techniques are needed. The user must tell the visualization what he wants to
do next and therefore context menus, popup menus, hovers or simply the ability to click on items of interest
are needed. The exploration can be seen as a sub-technique of selection, or as a compound technique of user
selection and visualization reaction.
When speaking about concept lattices, an Exploration can be realized by clicking on a lattice node (formal
concept) and brushing the principal ideal and filter of this element, i.e. marking all elements above (being
superconcepts or generalizations) and all elements below (being subconcepts or specializations).

Explore interaction techniques enable users to examine a different subset of data cases. When
users view data using an Infovis system, they often can only see a limited number of data items at
a time [. . . ] Infovis system users typically examine a subset of the data to gain understanding and
insight, and then they move on to view some other data. Explore interactions do not necessar-
ily make complete changes in the data being viewed, however. More frequently, some new data
items enter the view as others are removed. (YKSJ07)

5.2.3 Reconfigure

A reconfiguration of a visualization is not a change of the visualization type, but a rearrangement of the items
displayed. In a line diagram users may want to exchange the axes, or in a graph diagram users may wish to
shift nodes for a better view on the graph or to emphasize a particular node.
So when speaking about graphs, it must be possible to shift nodes, to zoom out for a better overview, to zoom
in for more details or to shift the panel to see different areas of the graph (panning).

Reconfigure interaction techniques provide users with different perspectives onto the data set
by changing the spatial arrangement of representations. One of the essential purposes of Info-
vis is to reveal hidden characteristics of data and the relationships between them. A good static
representation often serves this purpose, but a single representation rarely provides sufficient
perspectives. Thus, many Infovis tools incorporate Reconfigure interaction techniques that allow
users to change the way data items are arranged or the alignment of data items in order to provide
different perspectives on the data set. (YKSJ07)
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5.2.4 Encode
Encoding enables the user to get insights in the data from different perspectives and is a technique quite sim-
ilar to Reconfiguration, but it does not effect only some items of the visualization but all items by changing
the visualization type. For example, switching from a pie chart to a line diagram, or changing the layout
of a graph. So a visualization framework should have an option to switch the visualization type on the fly,
without changing the presented data.
For graphs different layout algorithms must be available, e.g. force-driven, circular, hyperbolic, or special
tree layouts, e.g. rooted tree, radial layout, balloon layout, treemap, sunburst diagram, cone tree, etc.
For an extension towards lattice visualizations more specific layout algorithms are needed, first of all the
attribute-additive layout which produces a good readability, chain decomposition or also a derived force
driven layout. Combinations of algorithms can also be useful, since all layout algorithms have some partic-
ular weaknesses.

Encode techniques enable users to alter the fundamental visual representation of the data includ-
ing visual appearance (e.g., color, size, and shape) of each data element. [. . . ] Simply changing
how the data is represented (e.g., changing a pie chart to a histogram) is an example of Encode.
By changing a type of representation, users expect to uncover new aspects of relationship. [. . . ]
Another widely used technique of Encode is the set of interaction techniques that alter the color
encoding of a data set. (YKSJ07)

5.2.5 Abstract/Elaborate
Abstraction and Elaboration is a kind of data zooming. The user may want to have some details of shown
data (i.e. go to a deeper level, drill-down), or he may want to get a more generous representation (i.e. go to
a higher level, drill-up). The drill-down can be realized in different ways, like splitting up data items into
components, expanding adjacent nodes of a selected node in a graph, or just zoom in. On the other side, the
drill-up can be summation of data items to a compound item in various ways, going to a common node of
some selected nodes in a graph, or just zoom out.

Abstract/Elaborate interaction techniques provide users with the ability to adjust the level of ab-
straction of a data representation. These types of interactions allow users to alter the representa-
tion from an overview down to details of individual data cases and often many levels in-between.
The user’s intent correspondingly varies between seeking more of a broad, contextual view of the
data to examining the individual attributes of a data case or cases. [. . . ] An exemplary interaction
technique in this category is any technique from the set of details-on-demand operations. For
example, the drill-down operation in a treemap visualization. [. . . ] Another very common but
slightly complex example of Abstract/Elaborate techniques is zooming. (YKSJ07)

5.2.6 Filter
Filtering is also closely related to Selection, but they differ in detail. The user want to focus on particular
data items and restrict the visualization to some selected data. The restriction can be told to the framework
by user selection or giving threshold values etc, and then can be displayed by hiding items, applying colors,
transparency effects or resizing. This means that only the selected items remain visible and all others are hid-
den. This enables the user to focus further evaluation on some items of interest and to avoid overcrowding
the visualization.
In the graph use case a user may select several nodes and the graph framework marks them red, let the other
not selected nodes and adjacent edges fade away, or just make them transparent.

Filter interaction techniques enable users to change the set of data items being presented based
on some specific conditions. In this type of interaction, users specify a range or condition, so that
only data items meeting those criteria are presented. Data items outside of the range or not satis-
fying the condition are hidden from the display or shown differently, but the actual data usually
remain unchanged so that whenever users reset the criteria, the hidden or differently shown data
items can be recovered. (YKSJ07)

5.2.7 Connect
The Connect requirement can be seen from at least two different perspectives. Firstly, imagine we have a
graph with a node the user is interested in. For this node additional currently hidden information in form
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of adjacent nodes and edges can be displayed. The node gets connected with more data then. Secondly
we could have two visualizations beneath each other and both visualizations contain information about the
same set of entities (or at least share some entities). The user interaction in the one visualization (e.g. select,
filter, abstract, elaborate, etc.) must be reflected in the other visualization as well. So the user can gain further
information about one entity from two different visual views. This is also called Brushing or Linking.

Connect refers to interaction techniques that are used to (1) highlight associations and relation-
ships between data items that are already represented and (2) show hidden data items that are
relevant to a specified item.
When multiple views are used to show different representations of the same data set [. . . ] it may
be difficult to identify the corresponding item for a data case in other view(s). To alleviate this
difficulty, the brushing technique is used to highlight the representation of a selected data item in
the other views being displayed. Connect interactions can apply to situations involving a single
view as well. For example, in Vizster, hovering a mouse cursor over a node highlights directly
connected nodes (friends) or neighbors of directly connected nodes (friends of friends).
Connect interaction techniques also reveal related data items which are originally not shown. In
Vizster, double clicking a node causes expansion of the node, so that the related nodes for the
focus node (the person) are added. (YKSJ07)

5.2.8 Animate
Animation is not a real interaction possibility, but a useful technique to visualize the transition between two
states of the visualization when the user interacts with it. With animation the user gains insight about how
the data items are transformed from one situation to another situation. Also, animations generate a new
dimension to display data, namely the time dimension. Since animations consume time, they must not be too
long. On the other hand they should not be too short, as then the user is not able to see it exactly. Animations
should be connected with the other user interactions, like Explore, Reconfigure or Encode.

Animation is an unique advantage of computerized information visualization technique over
other paper-based visualization techniques. It has become a very important feature in helping
users understand the data sets, because it implicitly employs time as an extra dimension to facil-
itate data exploration. [. . . ]
Animation is not a standalone techniques. In fact, all the techniques described above can be com-
bined with animation to improve their abilities. [. . . ]
Although animation is aesthetically good from a lot of points of view, time probably is the weak-
ness of this technique. Animation consumes time, so there is clearly a tradeoff in how long the
animation should take. Fast animation may confuse users and makes it hard to notice the connec-
tions. On the other hand, if the transition takes too long, the users’ time will be wasted. [. . . ] To
achieve smoothness of movement, 10 frames per second are generally considered the minimum
required frame rate. (Cui)

5.3 Low-Level Requirements for Graphs

In this section I want to give a general overview on requirements to a graph visualization on the low-level,
i.e. from the software implementation point of view.
A graph can be splitted in its components Panel, Node(s), Edge(s), Interface and Algorithm(s). Each of
these components have various requirements, some overlapping each other. For a collapsed overview of
the requirements on the low-level please have a look at figure 5.2. The tree is constructed from the ontology
by putting the graph elements on the first (inner) layer, then putting the low-level requirements without any
super-requirements on the second layer, then their sub-requirements on the next layer and so on until no sub-
requirements are left. Finally the implementation examples are on the last layer. The connections between
the single layers result from the connecting relations (or their triples more exactly). For example the triples

ro:Style ro:suitable-for ro:Node
ro:Shape ro:subrequirement-of ro:Style
ro:Shape ro:for-example ro:n-Polygon

are displayed as path

Node→Style→Shape→n-Polygon
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within the tree. The graph elements are displayed as boxed nodes. Low-Level-Requirements are displayed
with regular font. Implementation Examples are drawn as italics.

Figure 5.2: Collapsed summary of graph requirements

Graphs in general are not bound in their size or shape. So a continuous zoom is necessary to have an overview
on the one side, and to get detailed views of substructures within the graph. Therefore vectorgraphics (SVG)
is the first choice for a graph visualization framework. To visualize different types of data in a graph it is
necessary to color nodes or edges, to set different line widths, have transparency effects and so on. Such tech-
niques are related to the highlight and filter requirements of human interaction. To provide real interaction
possibilities the user has to tell the graph what he wants to see, so context menus must be available for nodes
and edges.

• Zoom: magnify or shrink a portion of a visualization

• Panning: go to currently hidden area

• Rotate: change the perspective in three dimensions

• Add/Remove/Edit: add/remove/edit nodes and edges

• Group/Cluster: group several nodes to one node

• Color: color nodes and edges

• Size: various sized nodes and edges

• Transparency: transparency effects on nodes and edges

• Shape: different shapes for nodes and edges

• Highlight/Animation: emphasize or brush nodes and edges

• Picture: pictures as or in nodes

• Displacement: slightly adjusting the edges to curves

• Data Binding: binding data to the graph elements, maintaining synchronization of data

• Nesting: nest graphs or other visualizations in a node

• UI Controls: various user interface components, e.g. buttons, check boxes, text fields etc.

• Transitions: have smooth animations when graph state changes

• Lenses: tools for enlarging portions of visualizations (movable), e.g. fisheye lense, magnifier

• View: 2D or 3D
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• Layout: various types of layout algorithms

• Dynamic Layout: slightly rearrange items after adding or removing nodes and edges

• Subgraph: various algorithms for subgraph constructions, e.g. spanning trees, concave/convexe
hulls etc.

• Path: various algorithms for path computations, e.g. shortest path, max-flow/min-cut etc.

• Reaction: react on user interactions

In the ongoing section some of the requirements (including implementation examples) on each graph ele-
ment are presented.

5.3.1 Panel
The Panel is the base layer of a graph, i.e. the component the nodes and edges are drawn in. Mostly it would
simply be a rectangle containing the nodes and edges, as computer monitors are rectangular. At this point we
reach the first limitation as huge graphs cannot be appropriately displayed at once - so we need navigational
techniques like zoom and panning to at least enable the user to see parts of the graph in a readable size. Also
for a considerable integration of a graph and lattice visualization to other tools and products some styling
possibilities must be available.

Figure 5.3: Summary of panel requirements

5.3.2 Node and Edge
Since nodes and edges are the “substance” of each graph, they need to have possibilities for dynamically
adding, removing, editing and moving them (on the panel). Also nodes and edges should be stylable in
color, size, shape, transparency, etc. Nodes can also be visualized by a picture. Edges should be displace-
ble to gain a more clear arrangement. There are at least three techniques for edge displacement: confluent
drawing (see figure 5.5), edge clustering (see figure 5.6) and edge bundling (see figure 5.7). Some animation
features like enlarge and reduce, fade in and fade out, intertia on movement, or flash, glow and pulse are
strongly needed to give feedback to the user.
To provide live interactable and up-to-date graphs, it must be possible to bind data to nodes and edges. This
permits a live and dynamic data preview by styling nodes and edges according to their inherited or connected
data, for example coloring all nodes representing ontology classes appropriate to their number of ontology
individuals. A second use case: Visualizing the nodes as data points within other visualization types, like line
diagrams, scatterplots, histograms, parallel coordinate plots or other. For example if the data represented by
a node includes two values on ordinal dimensions, these two dimensions are chosen as the axes of a diagram
and the graph’s nodes are taken as the points within the diagram while positioning them to these two chosen
values. When thinking of multi-layered graphs, i.e. each node is itself a graph, a nesting technique must be
available, which means drawing a graph within a node of another graph. A quite similar option is to nest
visualization of other types, e.g. a pie chart or a sunburst diagram, to display data represented by a node or
connected to a node.

5.3.3 Interface
The Interface connects the user and the graph visualization. It should give possibilities for user interaction
with UI controls like menus, triggers, input/output fields etc. Also transitions must be available to enable
the user to see changes of the content; it should under all circumstances be avoided that a minor change in
the displayed data results in a major change of the visual representation. When showing huge graphs it is
hardly possible to show the whole graph in well-arranged way. So to disburden the user and to make a quick
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Figure 5.4: Summary of node requirements

Figure 5.5: Edge displacement by confluent drawing
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Figure 5.6: Edge displacement by clustering

Figure 5.7: Edge displacement by bundling

detail zoom possible, lenses (e.g. fisheye view, simple magnifier) should be implemented. Last but not least
a three-dimensional view of a graph could enlarge its clarity.

5.3.4 Algorithm
Algorithms are the hidden core. At first, layout algorithms are indispensable for graph visualizations. There
are different types for general graphs, tree graphs and lattice graphs.
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Figure 5.8: Summary of edge requirements

Figure 5.9: Summary of interface requirements
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Figure 5.10: Summary of algorithm requirements
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5.4 Mapping of Low-Level Requirements to User-Level Requirements

Now the assertional box of the requirements ontology is populated by the preceding sections. As you can
see in the figures 5.11 and 5.12, you see nothing in the ontology visualizations by common graph layout
algorithms. To overcome this, some formal contexts have been constructed from the ontology by SPARQL
queries. These queries have exactly two bound variables and the first one yields the objects and the second
variable yields the attributes of the formal context. Whenever a pair fits the query, then the incidence cross is
set in the constructed context. Please have a look at figures 5.13, 5.14, 5.15 and 5.16 for expressive examples.

Figure 5.11: ABox of Requirements Ontology (spring layout)

Figure 5.12: ABox of Requirements Ontology (tree layout)
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1 PREFIX ro:<http://www.research.sap.com/requirements -ontology#>
2 SELECT ?ulr ?llr
3 WHERE {
4 ?ulr ro:requires ?llr .
5 }
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reconfigure × ↗ × × × × × × ↗

filter × × × × × × × × × ↗↙

abstract-elaborate × ↗↙ × × × × × × ×
encode × ↗ × × × × × × ↗

explore ↗↙ × × × × × × × × ×
animate × ↗ × ↗↙ × × × × ↗

select × ↙ ↙ × ↙ ↙ × × ×

Figure 5.13: Mapping between Top-Low-Level and User-Level Requirements
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1 PREFIX ro:<http://www.research.sap.com/requirements -ontology#>
2 SELECT ?ge ?llr
3 WHERE {
4 ?ge ro:hasRequirement ?llr .
5 FILTER NOT EXISTS {
6 ?sllr ro:subrequirementOf ?llr
7 FILTER (?sllr != ?llr)
8 }
9 }

dy
na

m
ic

-c
on

te
nt

st
yl

e
da

ta
-b

in
di

ng
ne

st
in

g
na

vi
ga

ti
on

pa
th

la
yo

ut
su

bg
ra

ph
vi

ew
le

ns
es

tr
an

si
ti

on
s

ui
-c

on
tr

ol
s

pi
ct

ur
e

node × × × × ↗↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙ ×
panel ↙ × ↙ ↙ × ↙ ↙ ↙ ↙ ↙ ↙ ↙ ↙
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algorithm ↙ ↗↙ ↙ ↙ ↙ × × × ↙ ↙ ↙ ↙ ↙

interface ↙ ↗↙ ↙ ↙ ↙ ↙ ↙ ↙ × × × × ↙

Figure 5.14: Mapping between top-low-level requirements and graph elements
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1 PREFIX ro:<http://www.research.sap.com/requirements -ontology#>
2 SELECT ?ip ?llr
3 WHERE {
4 ?ip ro:prioritizes ?llr .
5 }
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Figure 5.15: Mapping between top-low-level requirements and implementation priorities
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1 PREFIX ro:<http://www.research.sap.com/requirements -ontology#>
2 SELECT ?ge ?llr
3 WHERE {
4 ?ge ro:hasRequirement ?llr .
5 FILTER (
6 ?ge != ro:algorithm
7 && ?ge != ro:interface
8 )
9 }
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Figure 5.16: Mapping between low-level requirements and some graph elements
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5.5 Specific Visualization Requirements for Lattices

In this section, we describe some additional requirements which apply to so-called concept lattices (i.e. lat-
tices gained from formal contexts). This section is an important part of this document as concept lattices are
used as a main visualization means in CUBIST, and might further be used in other contexts as well.
Lattices are a special kind of ordered sets (i.e. sets with a reflexive, antisymmetric and transitive binary re-
lation), which impose additional restrictions. The nodes in concept lattices contain additional information,
which in turn enable specific layout algorithms, see 5.5.6.
Readers who are only interested in graph-visualization as such can safely skip this chapter.

5.5.1 Lattice Zoom/Recursive Lattices/Partly Nested Lattices
A useful requirement for drawing lattices is the ability to split up one node into several nodes, that them-
selves make up a lattice. Then it would be necessary to shift nodes in the filter upwards and nodes in the
ideal downwards to retain the order structure of the lattice.

5.5.2 Planarity
Graph diagrams and lattices as special graphs are much better readable, when the number of intersecting
edges is minimal. Sometimes it is even possible to visualize lattices without any edge crossings, these lattices
are called planar. Please see figure 5.17 for an example. There exist some mathematical research papers and
a dissertation from DR. CHRISTIAN ZSCHALIG regarding this, please see (Zsc05) or (Zsc07). In his work he
invents and presents a way to construct planar diagrams of lattices, if possible. A lattice can be drawn planar,
if and only if its order dimension is at most two, i.e. if it can be embedded in a grid of two chains.

Figure 5.17: Both pictures show the same lattice but with different layouts. The left one is planar while the
right one is not.

5.5.3 Labels
Formal concepts or lattice elements in general should have a name to be identifiable by the user, and an
internal id to be identifiable by the computer.

5.5.4 Selection of Ideals, Filters and Intervalls
As a subrequirement of selection we need the ability to select ideals, filters and intervalls in lattices. An ideal
is simply the set of all elements under a certain lattice element, dually a filter consists of all elements above
a certain element. Intervalls are the intersection of both an ideal and a filter and just represents the set of all
lattice elements between two given elements.

5.5.5 Restricted Moving of Elements
Since the elements of a lattice are ordered, it must be avoided that a lattice element can be moved over any
of its upper neighbors und dually under any of its lower neighbors. This ensures the original order in the
changed diagram. As a possible solution for unlimited moving it is possible to move also the corresponding
ideal and filter when moving an element. This would ensure the original order, too. Both possibilities are
shown in figure 5.18.
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5 Requirement Analysis

Figure 5.18: Left: The red marked node can only be move within the two red lines. Right: The red marked
node can be moved upwards arbitrarily when the corresponding filter (red bounded) is also
moved upwards.

5.5.6 Layout Algorithms
It has to be possible to implement and use different layout algorithms for displaying a lattice. There exists a
number of layout algorithms, e.g. additive layout, force driven layout, chain decomposition layout, hybrid
layouts, etc.

5.5.7 Additional Feature: Three Dimensions and Rotation
An extra feature is the visualization in three dimensions, with the ability to rotate the diagram. Then there
were less edge crossings as in an diagram projected in the plane. It would be possible to extend the planarity
of ZSCHALIG to three-dimensionality.

5.5.8 Additional Feature: Nesting
Nesting enables diagrams to have another visualization in a node. For some cases it could provide a higher
information density, but in other cases it is possibly lowering the readability. So its usage should be well
considered. In figure 5.19 there is a sample for nesting diagrams.

Figure 5.19: A lattice nested with a pie chart in each node.
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6 FCAFOX Framework for Formal Concept Analysis in JAVA

6.1 Architecture

Within the framework of this diploma thesis, a program package for computional formal concept analysis
was written. The used programming languange is Java, and it was developed in Eclipse with Maven build
tool. After a refactoring, there were about 10000 lines of code. The program module is called FCAFOX. Its
features are as follows:

• At first, a set list structure was implemented. It is simply a crossover between a set and a list, i.e. it
implements both the set and the list interfaces. Each element of a set list can be contained at most once, and
furthermore has an index, i.e. there is an enumeration function that maps each element injectively to a natural
number. See figure 6.1 for a class diagram.

Figure 6.1: SetLists class diagram

• Second, an incidence structure was modelled. Each instanciated incidence internally consists of a
boolean matrix and two set lists. The first set lists is used as domain and the other as codomain, and changes
in domain or codomain are reflected in the matrix, e.g. removing a domain element also removes the appro-
priate row from the matrix. An incidence behaves like a set of pairs, i.e. one can do set like operators on them,
e.g. union, intersection, difference, etc. Furthermore, one can grab a row or column from an incidence, which
behaves like a set then and changes are reflected in the matrix as well. Please note, one can only remove or
add an element from or to an row/column, when the element is already contained in the domain/codomain.
See figure 6.2 for a class diagram.

• Formal contexts are modelled as a subtype of incidence, with some additional operations.
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6 FCAFOX Framework for Formal Concept Analysis in JAVA

Figure 6.2: Incidences class diagram

• It is both possible to work with formal contexts in a set-like fashion directly (with higher operational
costs for index lookups) or to work with indices as long as possible and perform the index lookup in the end.

• Cleaning and reducing of formal contexts are computed by lazy evaluation. Also the arrow contexts
including the double arrows can be computed.

• An event system has been implemented, see figure 6.3. A component can be registered at an incidence
and is then informed about changes in the incidence, e.g. new elements in domain or codomain, changes in
rows or columns, etc.

• There are different interfaces for so called processors, that can be registered at a formal context. Pos-
sible processor types are concept processors, neighborhood processors, layout processors, importer and ex-
porter. Of course it can be extend if necessary.

• Implemented Processors: my IFOX concept/neighborhood/layout processor, NextClosure concept
processor, experimental fault tolerance concept processors, BorderAlg neighborhood processor, iPred neigh-
borhood processor, additive layout processor (with seeds selection by chain decomposition, subdirect de-
composition, context rearrangement/shaking, spectral decomposition), projective layout processor, SPARQL
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6.1 Architecture

Figure 6.3: Events class diagram

importer and exporter (Dau12), Burmeister format importer and export, LaTeX exporter (GANTER’s FCA
package, my TiKZ concept lattice package)

• Live heatmap visualization on node movement. A combination of the conflict avoidance parameter
metric (Gan) and edge crossing metric is used.

• The module is integrated into the CUBIST prototype and connected to a SVG graph panel via server/-
client architecture.

• Additional features: scale generators, order interface, equivalence interface, lattice interface, . . .
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A.1 Synonym Lexicon

Mathematical Term Data Mining Term
context binary database, transactional database
object transaction, row
attribute item, column
pair of sets bi-set
preconcept rectangle
set of attributes itemset, attribute pattern
set of objects object pattern
implication association rule

A.2 Galois Connections & Galois Lattices

The first section defines a general structure called galois connection and shows a way to obtain a lattice from
an arbitrary galois connection. Furthermore a general possibility to modify a galois connection by arbitrary
kernel operators is introduced. A Galois connection is a special correspondence between two ordered sets.
Galois connections generalize the Galois theory by ÉVARISTE GALOIS (France, 1811 – 1832), that investigate
correspondences between subgroups and subfields. Galois connections are rather weak compared to dual or-
der isomorphisms, but every Galois connection induces a dual order isomorphism of certain kernel systems
within the involved ordered sets.

A GALOIS CONNECTION between two ordered sets (P,≤) and (Q,≤) is a pair (φ, ψ) of mappings
φ : P→ Q and ψ : Q→ P such that the following conditions hold:

(I) φ and ψ are antimonotonica

(II) ψ ◦ φ and φ ◦ ψ are extensiveb

The two mappings are called DUALLY ADJOINT to each other and we write

(P,≤)
(φ,ψ)
•−−• (Q,≤).

A GALOIS CONNECTION between two arbitrary sets X and Y is a galois connection (φ, ψ) between the
two powersets ℘X and ℘Y canonically ordered by subset inclusion⊆, i.e.

(℘X,⊆)
(φ,ψ)
•−−• (℘Y,⊆).

ai.e. p1 ≤ p2 implies φp1 ≥ φp2 for all p1, p2 ∈ P, and analogously for ψ
bi.e. p ≤ ψφp holds for all p ∈ P, and analogously for φ ◦ ψ

A.1Definitio: Galois Connection

A pair (φ, ψ) of mappings as above is a galois connection iff

p ≤ ψq⇔ q ≤ φp
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A Appendix

holds for all p ∈ P and q ∈ Q.
For any galois connection (φ, ψ) it holds that φ ◦ ψ ◦ φ = φ and ψ ◦ φ ◦ ψ = ψ.
Galois connections are in a strong correspondence to closure operators. Each closure operator φ in an ordered

set (P,≤) induces a galois connection (P,≤)
(φ,id)
•−−• (P,≥). Dually each galois connection (φ, ψ) between two

ordered sets (P,≤) and (Q,≤) induces two closure operators ψ ◦ ψ and φ ◦ ψ.

(I) For a binary relation I ⊆ G×M or for a formal context (G, M, I) respectively we get a galois connection
(φI , ψI) between (℘G,⊆) and (℘M,⊆) with

φI :
℘G → ℘M

A 7→ AI :=
{

m ∈ M
∣∣∣∣ ∀g∈A

gIm
}

ψI :
℘M→ ℘G

B 7→ BI :=
{

g ∈ G
∣∣∣∣ ∀m∈B

gIm
}

Please have a look on the Theorema: Contexts & Galois Connections 2.2 for further details.

(II) For a pattern structure (G, (D,u), δ) a galois connection (φδ, ψδ) between (℘G,⊆) and (D,v) is ob-
tained by

φδ :
℘G → D

A 7→ A� :=
l

δA =
l

g∈A

δg

ψδ :
D → ℘G

d 7→ d� := {g ∈ G | d v δg}

Both mappings are obviously antimonotonica and their compositions are extensiveb.

aFor object sets A1 ⊆ A2 ⊆ G we can easily see that A�1 =
d

δA1 w
d

δA2 = A�2 , as δA1 ⊆ δA2 holds. For patterns d1 v d2 we have
d�1 = {g ∈ G | d1 v δg} ⊇ {g ∈ G | d2 v δg} = d�2 , as d2 v δg always implies d1 v δg.

bFor each object set A ⊆ G it follows that A ⊆ {g ∈ G |
d

δA v δg}, as
d

δA v δg holds for all objects g ∈ A. For each pattern d ∈ D
it trivially holds that d v

d
δ {g ∈ G | d v δg} =

d
dvδg δg.

A.2 Exemplum

There are various other examples for galois connections, that occur in many mathematical fields. From each
galois connection an ordered set or even a complete lattice can be found within the cartesian product of the
basic sets.

Let (φ, ψ) be a galois connection between two posets (P,≤) and (Q,≤). Define (G(φ, ψ),≤) with

G(φ, ψ) = {(p, q) ∈ P×Q | φp = q, ψq = p}

and (p1, q1) ≤ (p2, q2) iff p1 ≤ p2. Then (G(φ, ψ),≤) is a poset. If further (P,≤) and (Q,≤) are complete
lattices, then (G(φ, ψ),≤) is a complete lattice and the infima and suprema are given by

∧
t∈T

(pt, qt) =

(∧
t∈T

pt, φψ
∨
t∈T

qt

)

A.3 Theorema: Galois Lattice
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A.2 Galois Connections & Galois Lattices

∨
t∈T

(pt, qt) =

(
ψφ

∨
t∈T

pt,
∧
t∈T

qt

)

For a galois connection (P,≤)
(φ,ψ)
•−−• (Q,≤), a kernel operator (projection) α on (P,≤) and another kernel

operator (projection) β on (Q,≤) it holds:

(I) A new galois connection (αP,≤)
(β◦φ,α◦ψ)
•−−• (βQ,≤) is obtained.

(II) Furthermore, there is a order-preserving epimorphism of G(φ, ψ) on G(β ◦ φ, α ◦ ψ) given by

ι :
G(φ, ψ)→→ G(β ◦ φ, α ◦ ψ)

(p, q) 7→ (αp, βφαp)

(III) Dually, there is another order-preserving epimorphism of G(φ, ψ) on G(β ◦ φ, α ◦ ψ) given by

κ :
G(φ, ψ)→→ G(β ◦ φ, α ◦ ψ)

(p, q) 7→ (αψβq, βq)

A.4Theorema

(P,≤) (Q,≤)

(αP,≤) (βQ,≤)

(φ, ψ)

α β

(β ◦ φ, α ◦ ψ)

APPROBATIO (I) Let p ∈ αP, i.e. αp = p, and q ∈ βQ, i.e. βq = q. From p ≤ αψq follows p ≤ ψq as α is
intensive. Since (φ, ψ) is a galois connection, this implies q ≤ φp. Further it follows q = βq ≤ βφp because β
is monotone. The other way round follows dually.

(II) At first we show that the images of ι are really elements of G(β ◦ φ, α ◦ ψ). So let (p, q) ∈ G(φ, ψ), then
ι(p, q) = (αp, βφαp) ∈ G(β ◦ φ, α ◦ ψ) holds as

αψβφαp = αψβφαψq = αψq = αp.

Now we show that ι preserves order. For (p1, q1), (p2, q2) ∈ G(φ, ψ) we have

(p1, q1) ≤ (p2, q2)

⇒p1 ≤ p2

⇒αp1 ≤ αp2

⇒(αp1, βφαp1) ≤ (αp2, βφαp2)

⇒ι(p1, q1) ≤ ι(p2, q2).

For an element (p, q) ∈ G(β ◦ φ, α ◦ ψ) we have obviously (ψq, φψq) ∈ G(φ, ψ) and

ι(ψq, φψq) = (αψq, βφαψq) = (p, βφp) = (p, q),

and thus ι is an epimorphism.

(III) analogously. �
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We investigate the galois connection (℘G,⊆)
(φI ,ψI)
•−−• (℘M,⊆) induced by a formal context (G, M, I). Let

C = {Ci}n
i=0 ⊆ ℘℘(G) be partition of G. Then form the kernel systemKC generated by C, i.e. close it under

arbitrary joins:

KC = 〈C〉⋃ =
{⋃
X
∣∣∣X ⊆ C}

This leads to a kernel operator

αC :

℘G → ℘G

A 7→
⋃

K∈KC
K⊆A

K =
⋃
X⊆C⋃X⊆A

⋃
X =

⋃
C∈C
C⊆A

C

and we modify it to

αC,δ :

℘G → ℘G

A 7→
⋃

C∈C
|A∩C|
|C| ≥δ

(A ∩ C)

Then the galois latticeBC,δ(G, M, I) := G(φI , αC,δ ◦ψI) =
{
(A, B) ∈ ℘(G)× ℘(M)

∣∣ AI = B and αC,δ(B)I = A
}

is called ALPHA ICEBERG LATTICE w.r.t. C and δ. Furthermore then a natural order epimorphism from
B(G, M, I) onto BC,δ(G, M, I) given by (A, B) 7→ (αC,δ(A), αC,δ(A)I). See (VS05) for further details.

A.5 Exemplum: Generalized Iceberg Lattices a.k.a. Alpha Galois Lattices

A.3 Fault Tolerance Extensions to Formal Concept Analysis

A pair (A, B) ∈ ℘(G)× ℘(M) is a formal concept of (G, M, I), iff the following conditions hold:

1. ∀g∈A

∣∣∣gI\ ∩ A
∣∣∣ = 0 and dually ∀m∈B

∣∣∣mI\ ∩ B
∣∣∣ = 0

2. ∀h∈{A ∀g∈A

∣∣∣hI\ ∩ A
∣∣∣ > 0 and dually ∀n∈{B ∀m∈B

∣∣∣nI\ ∩ B
∣∣∣ > 0

For an object set X ⊆ G or an attribute set X ⊆ M respectively the SUPPORT and FREQUENCY are defined
as

supp(X) := X I and freq(X) := |supp(B)|.

For B ⊆ M and freq(B) ≥ γ we say that B is γ-FREQUENT.

A.6 Definitio: support, frequency, γ-frequent

A pair (B, D) is called ASSOCIATION RULE iff B, D ⊆ M, D 6= ∅ and B ∩ D = ∅. An association rule
(B, D) is usually written as B⇒ D and its FREQUENCY and CONFIDENCE respectively are

freq(B⇒ D) := freq(B ∪ D) and conf(B⇒ D) :=
freq(B⇒ D)

freq(B)
.

A.7 Definitio: association rule, frequency, confidence

Let B ⇒ D be an association rule. Then conf(B ⇒ D) = 1 holds iff supp(B) ⊆ supp(D) (safe rule). Also,
conf(B⇒ D) = 0 holds iff supp(B) ∩ supp(D) = ∅ (impossible rule).
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A.3 Fault Tolerance Extensions to Formal Concept Analysis

For an association rule B⇒ D the VIOLATION and STRENGTH respectively are defined as

viol(B⇒ D) := supp(B) \ supp(D) and stre(B⇒ D) := |viol(B⇒ D)|.

An association rule B ⇒ D is δ-STRONG iff stre(B ⇒ D) ≤ δ holds, i.e. the rule is not violated in more
than δ objects. Then we write B⇒δ D.

A.8Definitio: violation, strength, δ-strong

For an association rule B⇒ D holds

stre(B⇒ D) = freq(B)− freq(B ∪ D).

An attribute set B ⊆ M is δ-FREE iff there is no δ-strong association rule B ⇒δ m such that m /∈ B.
The δ-CLOSURE of a δ-free set B ⊆ M is the maximal superset closδ(B) ⊇ B such that B ⇒ m is a
δ-strong association rule for all attributes m ∈ closδ(B) \ B. Each δ-free set B ⊆ M induces a δ-BISET
(supp(B), closδ(B)).

A.9Definitio: δ-free set, δ-closure, δ-biset

A δ-biset is always a union of concepts.
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