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1  EXPERIMENTAL CHARGE DENSITY:                   

BIRTH, EVOLUTION AND CHALLENGES 

Designing of new materials has been of crucial importance for the mankind since it has 

directly influenced its destiny throughout the history. The race of experimenting with new 

materials resulted in opening new eras both during antiquity and our period. The remark-

able difference between modern and ancient ages is that the former is much more time 

compressed. A shortening of this development process can be traced back to a better under-

standing of the relation between structure and chemical or physical properties of the 

materials.  

The first speculations about material structure and the existence of atoms were recorded 

by Greek philosophers during ancient times.[1] But the beginning of the modern atomic 

model has found its roots by the hypothesis of Dalton and was later developed by Thom-

son, Rutherford and Bohr. In 1808 Dalton resurrected the Greek idea of atoms as he 

claimed that elements are composed of discrete atoms linked by bonds. At that time crys-

tallographers were using optical methods for crystal identification but they had no means 

by which to measure the atom positions. The real break-

through was achieved in 1895 with the discovery of X-rays 

by Wilhelm Röntgen which was set as the beginning of the 

modern crystallography. In 1912  Laue et al.[2] proved that X-

rays have electromagnetic nature and are diffracted by the 

crystal lattice due to their wavelength comparable to the atom 

size. One year later Bragg’s equation[3] was derived by W. H. 

Bragg and his son W. L. Bragg which enables the absolute 

determination of lattice parameters. And soon, it was realized 

that the electron density (ED) distributions in crystals can be 

obtained from the intensities of the scattered X-rays. Already in 1915, P. J. W. Debye[4] 

stated:                                                                           

‘It seems to me that the experimental study of scattered radiation in particular from 

light atoms, should get more attention, since along this way it should be possible to deter-

mine the arrangement of the electrons in the atoms.’    

Figure 1. 1 Peter J. W. De-
bye Nobel Prize in 
Chemistry (1936) 
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The accessibility of the ED distribution in crystals with the use of  X-ray diffraction is 

of particular importance as also emphasized by L. Pauling[5] in 1932: 

‘The properties of a compound depend on two main factors, the nature of the bonds be-

tween the atoms, and the nature of the atomic arrangement’    

Nevertheless, it took a quite long time for X-ray charge density analysis to become a 

true analytical technique for extracting information about chemical bonding. Several ear-

lier charge density studies clearly indicated the necessity of precise measurements of all 

reflections to high order in a reasonable period of time. This was hampered primarily due 

to lack of high intensity X-ray sources and low-temperature measurement techniques. Not 

until 1960s much better cryogenic techniques and development of high-flux X-ray beam; 

e.g. by using synchrotron radiation, gave rise to increase of the scattering power and im-

provement of the resolution of the ED maps since the effect of thermal motion and thermal 

diffuse scattering (TDS) was vastly reduced.[6] More recently, area detectors were intro-

duced after extensive use of scintillation counters. This revolutionary development reduced 

the data collection time from several weeks to one or couple of days as the data-collection 

rate is increased by one to two orders of magnitude.[7] 

The delay of achieving a remarkable progress in the experimental analysis of chemical 

bonding can not only be traced back to the experimental deficiencies but also to the suc-

cess of the spherical atom model for the interpretation of X-ray determined charge 

densities. In most cases, for a routine crystal structure determination the so-called inde-

pendent atom model (IAM) was used which supposes that scattering occurs by means of 

spherically averaged ground-state atoms. This conventional structure analysis is sufficient 

to obtain atomic positions and some information about their static and/or dynamic dis-

placement. Doubtlessly, the success of the spherical atom approximation should not be 

underestimated since it is still exclusively used worldwide for several tens of thousands of 

structure determination per year. However, as atoms in a crystal are in a nonspherical envi-

ronment, meaning that the ED is in fact deviating from spherical shape due to interactions, 

this assumption indicates some shortcomings in particular when trying to model aspheric-

ities. For a more accurate description of the ED, the atomic asphericity should be taken 

into account which necessitates the use of atom-centered multipolar functions. Starting 

from the beginning of 1960s this was most successfully accomplished in models by 

DeMarco and Weiss[8], Dawson[9], Kurki-Suonio.[10] Following these studies, Stewart[11], 
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Hirshfeld[12] Hansen & Coppens[13] introduced a generalized scattering formalism, based 

on spherical harmonic density functions centered on each of the atomic nuclei. While all 

three models have been applied extensively in charge density studies the multipole model 

by Hansen & Coppens came forward and became a mature technique in charge density re-

finement.[14]  In this thesis, all the experimental electron densities are reconstructed using 

this type of multipole model. More insight on the formalism can be found in Chapter 2.  

Hohenberg & Kohn stated that  the charge density is a fundamental observable which 

fully defines the ground-state properties of the system if known at infinite resolution.[15] On 

base of the assumption that all demanded information is inherent in the ED itself, Bader 

examined the ED closer using the ED gradient ∇ρ(r), ED Laplacian ∇2ρ(r) and local cur-

vatures of the total ED ρ(r) for the qualitative and quantitative description of bonding in 

molecular crystals.[16] This topological analysis gave birth to the quantum theory of atoms 

in molecules (QTAIM) and consequently to the opening of a new route in charge density 

analysis[17]. In the present thesis all kinds of atomic interactions are mainly studied within 

the framework of Bader’s QTAIM. Therefore, an extensive insight will be outlined in 

Chapter 2. 

In spite of the technical developments in the field it has been noticed by Coppens that 

the experimental charge density analysis is still far from a routine technique due to several 

problems which can not be completely circumvented.[18] In the following some of these 

issues are discussed. 

Apart from being subject to experimental errors, the experimental ED is also only 

known to limited resolution. Some information represented by higher Bragg angles is lost. 

Consequently, the multipole model is formed by an extrapolation to infinite resolution 

from a finite set of experimental data. The effect of the omission of terms of the Fourier 

series with higher diffraction angles on the ED is called the series termination effect. These 

shortcomings are especially well reflected in DD maps where some detailed features near 

the atomic nuclei disappear when comparing experiment with theory.[19]  

Another limitation is that the experimental ED is time averaged over both internal and 

external vibrations. To compare it with theoretical ED a proper deconvolution of the ther-

mal motion from the experimental ED is required. Since diffraction intensities are reduced 

at larger scattering angles as a result of destructive interference, much higher accuracy be-
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comes crucial for high order reflections. This necessitates the use of low temperature ex-

periments in order to properly separate thermal effects from deformations due to chemical 

bonding. 

Discrepancies in the diffraction data can bias the scale factor which is included into the 

refinement procedure. The over or underestimation of the scale factor can cause significant 

misinterpretations in charge density maps. 

In principle, for heavy elements the electrons in the inner shells remain essentially un-

perturbed within the resolution of the X-ray experiment in comparison to those of light 

atoms. Correspondingly, the frozen-core approximation is routinely used, which assumes 

that the core ED remains undistorted and mostly asphericities in the outermost shell are 

accounted for. Recently, it has been shown that already the refinement of individual core 

expansion/contraction parameters of second row elements leads to a considerable reduction 

of the residual densities in the L (core) shell.[20] Additional problem is the estimation of 

electrons belonging to valence or core part. For intermetallic compounds, in particular, 

much less is known about the bonding situation. 

Another challenging issue is synthesis of suitable single crystals for a charge density 

analysis. Crystals of very small sizes along with the use of the hard radiation is essential in 

order to minimize absorption and extinction effects.  

According to reasons just mentioned above experimental investigations of the ED de-

rived from X-ray diffraction data in contrary to quantum chemical calculations are very 

limited for intermetallic compounds, in particular. These publications usually cover the 

charge density evaluations especially on chemical compounds with high application poten-

tial like β’-NiAl, γ-TiAl, SrTiO3, CoSb3, V3Si, MgB2, MgZn2 and MgCu2.
[21] In fact, 

systematical experimental investigations on intermetallic compounds are lacking. One of 

the main tasks of the present thesis is aimed at filling this gap by comparing several bor-

ides of one particular transition metal on one hand side, but also isostructural borides of 

various metals at the other side. In this respect, similarities and differences between the 

electron density features in TiB2, VB2, VB and V3B4 derived from X-ray diffraction data, 

are analysed in terms of QTAIM and compared with those obtained from quantumchemical 

calculations. Ultimate target is a transferable model based on typical building blocks for 

practical applications. More insight on the transferability concept is given in Chapter 2. 
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In the following, some features of binary vanadium borides and 3d transition metal di-

borides is outlined which are of particular interest in course of a systematic charge density 

analysis. In Chapter 2, principles of X-ray diffraction are briefly summarized followed by 

the experimental methodology of extracting information from a charge density analysis. In 

Chapter 3, experimental techniques used for the synthesis of vanadium borides are ex-

plained. A detailed analysis of crystal structures of vanadium borides are given on base of 

IAM refinement of high resolution X-ray diffraction data. In the following four chapters, 

the topological analysis of the experimentally reconstructed ED in VB2, TiB2, VB and 

V3B4 is presented in terms of a multipole model. The results are compared with DFT calcu-

lations carried out by Baranov.[22a] Finally, in the last Chapter, a comparison between the 

electronic structures of the respective compounds is given. 

1.1 The study of intermetallic borides 

Boron is one of the most interesting elements of periodic table. It forms great variety of 

electronic configurations of different stability originating from its ‘deficient’ electron con-

centration, four valence orbitals and three electrons (2s2 2p1) leading to an extraordinary 

bonding versatility. Consequently, boron forms with transition metals compounds with 

properties varying from high conductivity metals to wide band gap insulators and super-

conductors, from thermal insulators to thermal conductors and refractory materials, etc.[23] 

Notwithstanding the great variety of the respective crystal structures and bonding inter-

actions, the nature of chemical bonding in intermetallic borides is not well understood. 

Particularly, a distinct classification of B−B, B−M and M−M interactions are lacking. The 

most successful concept of chemical bonding is the Zintl-Klemm model based on a charge 

transfer from the cationic part of the structure to the anionic one. These electrons are used 

in the anionic part to form 2c-2e bonds (octet rule). The Zintl-Klemm model allows deriv-

ing electron counting rules for a large group of chemical compounds called Zintl phases, 

especially for compounds with main group elements. For intermetallic borides this descrip-

tion does not work optimally in most cases.[24]  

In earlier studies, interpretations of the electronic structure were targeted at extending a 

particular model to all types of borides which mainly resulted in discrepancies in conclu-

sions. There was a considerable debate over the direction of charge transfer. Until late 

1960s two main model concepts has been postulated. Some authors advocated the model in 
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which boron atoms act as donors of electrons to the d-band of the metal.[25] On the other 

hand, another group proposed that boron atoms are acceptors of electrons from the metal 

for the formation of B–B bonds.[26] Samsonov et al.[27] and Goryachev et al.[28] investigated 

systematically boron compounds of the same structure type with different metals. They 

calculated the electronic energy spectrum for the diborides of Ti, Zr, Hf, V, Nb, Ta, Cr and 

Mo. The calculations reveal excess electrons in the electrons states of boron supporting an 

electron transfer from metal to boron.  

Studies concerning the electronic structure of lower borides (B/M < 1) are relatively less 

in the literature. The lower borides are formed primarily from d-transition metals which 

have a strong tendency to retain their lattices. Upon the formation of lower transition met-

als borides, borons are ‘dissolved’ in the interstices of the crystal lattice of the metal; 

however, they are not able to induce a significant structural change in it. In general, the 

boron atoms donate electrons to the d-bands of the transition metals in these compounds as 

reported in the literature.[29] 

For tetra- and hexaborides an electron transfer from metal to boron is proposed whereas 

no certain agreement could be reached for the direction of the charge transfer for dode-

caborides.[30]  

1.1.1 The interest in vanadium-boron system  

Binary vanadium borides are very suitable model systems for a systematic analysis of 

transferability concept in intermetallic compounds due to similarities and slight differences 

according to the respective idealized crystal structures. In Figure 1.2 projections along 

[100] direction for VB and V3B4 and along [001] direction for VB2 are shown. For the sub-

lattice formed by boron atoms, zig-zag chains are discussed in VB, hexagonal network in 

VB2, but an intermediate situation in V3B4. The crystal structure of the latter compound 

provides several features which are of particular interest in course of the charge density 

analysis. For example, there are two inequivalent boron atoms: one (labelled as red) is sim-

ilar to that in VB, the other one (labelled as blue) resembles that in VB2 considering the 

number of neighbouring boron atoms. These similarities and/or small but significant dif-

ferences should be well reflected in the charge density analysis. 
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V3B4   VB2 VB  

 

 
              
 
 
 
 
 
 

                                   Figure 1.2: Crystal structures of vanadium borides.       
 

In general, complete crystal structure determinations of binary vanadium borides are 

missing except for V2B3 and V3B2.
[31] The most common approach is assigning the struc-

ture type and the refining the unit cell parameters which may lead to unrealistic interatomic 

distances. For example, one of the published B–B interatomic distances in V3B4 is extraor-

dinarily short (1.480 Å), although no crystal chemical reason is obvious.[32] In principle, 

characteristic bond lengths of ca. 1.7-1.8 Å in the boron substructure are expected account-

ing for the similar environment of atoms.  

1.1.2   The interest in 3d transition metal diborides 

 Diborides of 3d transition metals with AlB2 structure type has many special mechani-

cal, chemical and physical properties including very high melting temperature, high elastic 

modulus, high chemical stability and good electrical conductivity.[33] Due to the unex-

pected discovery of superconductivity in MgB2 with the temperature of critical transition 

Tc ~ 39 K[34] the electronic structure of diborides has been subject of interest from both the 

theoretical and experimental point of view.[35] According to the accepted theoretical con-

cept for the electronic structure, metal atoms donate a part of their valence electrons to 

boron atoms and these electrons are used to form a hexagonal network.[35c, 36] The stability 

of transition metal diborides rapidly decreases when electrons are used to fill the antibond-

ing d bands rather than to be transferred to the boron layer resulting in the reduction of 

intra-layer interactions.[37] 

In the AlB2 crystal structure type, the metal atoms form a simple hexagonal lattice hav-

ing an axial ratio c/a slightly greater than unity. At first glance, the boron sublattice seems 
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b a 

1.818 (Å) 
1.737(Å) 

2.498(Å) 2.307(Å) 

to be similar to the graphite structure. However, the chemistry of transition metal diborides 

proves this statement wrong. The most noticeable property of this class of materials is that 

they are extremely hard.  

One of the important questions concerning the electronic structure is the role of transi-

tion metal bonding. General crystallographic models suggest that the exchange of metal 

affects primarily B–M distance but also causes a slight change in B–B distance. As an ex-

ample, the B−B and B−M distances of diborides of 3d transition metal atoms with the 

lowest (ScB2) and highest atomic number (MnB2) are highlighted in Figure 1.3.[38]  

 

 

 

  

                                                                                                                                                                                                    

                                         Figure 1.3: B−B and B−M distances in ScB2 and MnB2. 
    

The cell parameters, interatomic distances and the axial ratios of diborides of Sc[38b], Ti, V, 

Cr[39] and Mn[38a, 39] are shown in Figure 1.4. For CrB2 and MnB2 the crystal structures 

were not completely determined, but only the structure type was assigned and unit cell pa-

rameters were refined. The variation of the axial ratio vs. the atomic number of transition 

metal atoms is not completely linear. Both cell parameters decrease as the valence in-

creases until VB2 where they almost level off. The variation of cell parameter c is much 

larger than in cell parameter a, but it shows a slight maximum to CrB2. The behaviour of 

a 

c 
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the corresponding axial ratio is similar. Obviously, all these parameters are correlated with 

the 3d metal but the degree of correlation is presumably varying as the valence increases. 

This is evidenced e.g. by a closer inspection of the respective cell parameter c and B–M 

distance which are showing different trends in CrB2. These peculiarities can not be ex-

plained straightforwardly by a conventional structure analysis, the ''simplicity'' of the 

crystal structures notwithstanding.  

                                                           

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: a) Unit cell and cell parameters of the diborides of 3d transition metals. b) The axial 
ratio of the cell parameters c/a. c) B−B distances in boron network plane. d) B−M distances. The 
values for TiB2 are obtained in this work. All other data are taken from the references [38-40]. 

 

Transition metal diborides show variations in terms of the naturally occurring crystal 

defects, e.g. vacancy formation. Up to now, it is a well established fact that non-

stoichiometry for the diborides of s, p and d metals is usually due to the cation deficiency. 

Significant deviations were detected for Mg1-xB2 (x ~ 0.04-0.05) [41], Al1-xB2 (x ~ 0.1-0.11) 
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[42] and especially for diborides of group V metals Nb1-xB2 and Ta1-xB2 (x = 0.01-0.5).[43]  

Vacancies can also appear in the boron position upon doping the boron sublattice with car-

bon (Mg1-x(B1-yCy)2; x ≤ 0.1).[44] The published experimental data about Mo-B phase 

equilibria are quite contradictory.[45] Depending on the synthetic route, three different com-

pounds are reported in the composition region near the 'molybdenum diboride'. These are 

the hexagonal MoB2, the metal deficient Mo1-xB2 or Mo2-xB5 and the boron-deficient 

MoB2-x or Mo2B5-x. Other diborides of transition metals exist for the stoichiometric compo-

sition or the reported width of homogeneity ranges are quite narrow.[33]    

 Studies dealing with the electronic structure and the nature of interatomic interactions 

for many non-stoichiometric metal diborides are relatively rare. In papers of Shveikin & 

Ivanovsky [46], Oguchi [37e] and Ivanovskii et al. [37a, 47] the stability of several non-

stoichiometric metal diborides are studied by examination of the electronic band structure. 

But for a long time, the influence of the non-stoichiometry on the structural, chemical and 

physical properties is mostly ignored. The reason is that XRD, electron beam and conven-

tional chemical analysis techniques for studying possible vacancy ordering effects can not 

simply be exploited in a routine manner for those materials. Problems are typically induced 

by extreme hardness of materials giving rise to severe problems during shaping of crystals 

or grinding of powders for sample preparation. Furthermore, precise boron quantification 

is mostly hampered by the lack of a boron compound of a well defined composition for 

being used as a standard. Another important limitation is that the accuracy to which the bo-

ron atoms can be located in presence of heavy elements by X-ray diffraction methods is 

restricted.  
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2 EXPERIMENTAL ELECTRON DENSITY ANALYSIS 

FROM X-RAY DIFFRACTION - THE BASICS  

The ED can be reconstructed from diffraction experiments using X-rays, and more re-

cently γ-ray, synchrotron radiation and electron scattering. The aim of this Chapter is to 

provide an overview about the principles of X-ray diffraction and a background for interpre-

tation of the results. In this respect, an insight into Bader's Quantum theory of atoms in 

molecules (QTAIM) will be given. Finally, procedures of the quantumchemical calculations 

which are carried out for a comparison reason are briefly described. 

2.1 Principles of X-ray diffraction 

X-ray diffraction studies constitute most of our present knowledge of the crystal struc-

tures. Basically, a routine crystal structure analysis means the determination of the unit cell 

(the smallest repeating volume of the lattice) dimensions and the atomic arrangement in the 

crystal. The crystal structure determination is the resultant of the interaction of X-rays with 

crystalline matter. X-rays (λ = 0.5-3 Å) are scattered by electrons of atoms and ions with an 

interatomic distance in the region of 1-3 Å without changing its wavelength. This process is 

called elastic scattering. The elastically scattered X-rays interfere destructively or construc-

tively depending on the path-difference between neighboring waves. If the difference in the 

paths traveled by these waves is an integral multiple of the wavelength then they are in 

phase and interfere constructively. Accordingly, crystals give sharp characteristic interfer-

ence or diffraction pattern only in allowed positions. The diffraction condition is expressed 

by Bragg's law which considers the diffracted X-ray beams behaved as if they were reflected 

from planes passing through points of the crystal lattice (Figure 2.1). A reflection is ob-

served only at certain angles of scattering θ where the path difference 2d sin θ is an integral 

multiple of the wavelength:   

                                                    

                                             2 d sin θ = n λ (n = 1, 2, 3...)                                      (Eq. 2-1) 

 

In this equation, λ is the wavelength of the radiation used, n is called the order of diffrac-

tion and is an integer, d is perpendicular spacing between the diffracting lattice planes and θ 

is complement of the scattering angle. The limit of number of the observed reflections de-
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pends on both the wavelength used and the unit cell of the crystal. In principle, the larger the 

unit cell the larger the number of accessible reflections. 

 

 

 

 

 

 

 

 

                                         

                                         Figure 2.1 Derivation of Bragg equation. 

 

Another point of view for describing the diffraction phenomenon is the conversion of the 

coherent X-ray beam, by the three dimensional periodic array of ED in the crystal into the 

individual structure factors by Fourier transformation. The structure factor F(hkl) expresses 

the combined scattering of X-rays for all atoms in the unit cell compared to that for a single 

electron. Since there is a phase shift between the waves scattered by different atoms with 

respect to each other a suitable way to express the structure factor is exponentially with an 

imaginary exponent:  

                                                       i ( )( ) ( ) hklF hkl F hkl e α=                                (Eq. 2.2) 

, where F  or ( )F hkl  is the amplitude of the scattered wave and α(hkl) is its phase relative 

to the chosen origin of the unit cell. Another way to represent the structure factor is making 

use of the Euler formalism as the sum of cosine term (the real part, A) and a sine term (the 

imaginary part, B) as an ordinary complex number: 

                   
[ ]( ) cos 2 ( ) sin 2 ( )

( ) ( )

i i i i i i i
i

F hkl f hx ky lz i hx ky lz

A hkl iB hkl

π π= + + + + +

= +

∑
            (Eq. 2.3) 

Here, fi is the atom form factor and is a measure of the scattering power of an atom for X-

rays relative to a single electron under the same conditions (Chapter 2.3). These values are 

obtained by quantum mechanical calculations and tabulated for every atom and ion both ex-
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plicitly as well as in polynomial form in International Tables for Crystallography Volume C 

(Tab. 6.1.1.1-5). Figure 2.2 and Equations 2.4 and 2.5 show the relationship between the 

scattering amplitude and its phase in the complex plane: 

 

 

 

 

Figure 2.2 The structure factor F (hkl) in complex plane; α is the phase angle and the amplitude  F  

is represented by the length of OC. 
 

                                                          2 2F A B= +                                                         (Eq. 2.4)    

                                                          arctan B
A

α =                                                             (Eq. 2.5) 

Accordingly, in order to calculate the structure factor, the values of x, y and z of each at-

om; h, k, l indices, the respective sin θ/λ and the scattering factor fi for each atom at the 

corresponding sin θ/λ has to be known. However, the measured intensities in a diffraction 

experiment only give the amplitudes of the structure factors, not the phase angles. The struc-

ture amplitudes without the phase information only allow the calculation of unit cell 

parameters and the crystal space group. In order to determine the atomic positions the phase 

of the structure factor has to be determined. The problem of getting estimates of the phase 

angle is the so-called "Phase problem" of X-ray structure analysis. All the methods for solv-

ing the phase problem deal with a development of a structural model, which in turn permits 

calculation of theoretical structure factors and comparison with experimentally observed 

ones. The structure is refined to give a better agreement between the observed and calculated 

structure factors. Once the amplitudes of structure factors ( )F hkl  and their relative phases 

( )hklα  are known the ED can be reconstructed XYZρ  for every point xyz in the unit cell of 

the volume V through a Fourier synthesis: 

2 ( )1 ( ) e i hX kY lZ
XYZ F hkl

V
πρ − + += ∑                                  (Eq. 2.6) 
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2.2 Intensity corrections 

According to the kinematic theory of scattering by Born[48] the intensity of the scattered 

radiation is proportional to the square of the structure factor amplitude: 

                                                             2( )I F hkl∼                     (Eq. 2-7) 

Although it is actually the energy of the diffracted beam which is measured, the term "in-

tensity" is usually used. In reality, the measured X-ray diffraction intensity does not only 

include the coherent Bragg intensity which is the elastic part of the total scattering but also 

other contributions. The proportionality of intensity and structure factors depends on a num-

ber of factors for which appropriate corrections are required to be applied to the raw data in 

order to have a best agreement between the observed and calculated structure factors: 

                                                [ ]2 2( ) / (1 )F hkl k yI LPA α−= +                                      (Eq. 2-8)                               

  

In these equations, k is the scale factor, which transfers the intensity values into an abso-

lute scale; The extinction factor 0 < y < 1 corrects for dynamical scattering effects that are 

responsible from the deviation from the kinematical approximation; A is the absorption fac-

tor, The Lorentz factor (L = 1/sin2θ) accounts for the correction based on the fact that for a 

constant angular velocity of rotation of the crystal, different reciprocal lattice points pass 

through the sphere of reflection at different rates, thus they have different times-of -

reflections opportunity. The Polarization factor P depends on the degree of monochromator 

perfection. The thermal diffuse scattering term α > 0 corrects for the inelastic scattering 

caused by atomic thermal movements that is not removed by the background subtraction.  

2.2.1 Absorption 

When an X-ray passes through a crystal it experiences intensity losses by photoelectric 

absorption as well as elastic Rayleigh and inelastic Compton scattering of the incident and 

reflected beam. These effects increase roughly with the fourth power of the atomic number 

of a scattering atom and with the third power of the wavelength of the radiation. This effect 

can be summarized as: 

                                                      x
oI I e μ−=        (Eq. 2-9) 
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 Here, I is the diffracted beam intensity, Io is the incident beam intensity, μ is the linear 

absorption coefficient and x is the length of the path which the beam travels within the crys-

tal. If the shape and size of the crystal is known accurately, it is possible to correct for 

absorption  

                                                    [ ]1
0 1exp ( ) d

V
A V t t Vμ−= − +∫                                         (Eq. 2-10) 

, where t0 and t1 are the path lengths of the incident and reflected beams through the crystal 

and the integration is the over the volume of the crystal.[49]  

The absorption corrections are of crucial importance for very anisotropic crystals, in par-

ticular. If the X-ray data is not corrected for absorption, thermal parameters will compensate 

by adjusting to values different than the true values. In order to avoid these errors different 

absorption correction strategies are developed.[50] The International Union of Crystallogra-

phy (IUCr) suggests using the type of correction depending on the value of μx.  

2.2.2 Extinction  

When the X-ray beam travels through a real crystal it experiences an additional attenua-

tion according to the deviations from the "ideally imperfect mosaic crystal structure". The 

consequence of this effect, called extinction, is that the intensities of strong, mainly low 

scattering angle reflections are systematically lower than expected (|Fobs| < |Fcalc|).There are 

two diffraction theories for the treatment of extinction. According to the kinematical theory 

of diffraction the interaction between radiation and matter is small enough for incident beam 

not to be perturbed in the crystal meaning that there is no attenuation of the incident beam 

and also not any multiple scattering when it passes through the crystal. In fact, the transla-

tional symmetry of a crystal does impose constraints on the structure of the X-ray beam, 

thus leads to its attenuation when traveling inside the crystal. This fact is considered by the 

dynamical theory which takes the interaction of the incident and scattered beams into ac-

count. In this case the intensity of the reflection is reduced until: 

              hkl hklI F∼                      (Eq. 2-11) 
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The dynamical theory leads to the kinematical theory in case of X-ray diffraction of ide-

ally perfect crystals and electron diffraction where the dynamical effects become important. 

This is the case when the effective thickness of the perfect crystal domains t in a crystal un-

der certain diffraction condition exceeds the so-called extinction length or the coherence 

length Λ,    

                                                              
1

( ) hkl

Vt
aP F λ

> Λ =                (Eq. 2-12)  

, V is the volume of the unit cell, λ being the wavelength of the X-ray beam, a is the classical 

radius of the electron (e2/mc2), P is the polarization factor and |Fhkl| is the structure ampli-

tude. As is evident from equation 2-12 the extinction length is smallest for strong reflections 

and large wavelengths. For the condition t < Λ  the diffraction inside a given domain follows 

the kinematical theory.[51] 

In principle, the integrated intensities can be calculated by both dynamical and kinemati-

cal theories. In fact; real crystals usually do not show a high degree of perfection except 

some which are highly pure and free of defects. Most crystals possess domain sizes such that 

   n
hkl hklI F∼      (Eq. 2-13) 

where 1 < n < 2 but usually much closer to 2. Therefore, the kinematical theory is almost 

exclusively used for crystals synthesized in a chemical laboratory. However, in order to 

make kinematical theory valid extinction has to be corrected 

 Darwin proposed a model where he presented a real crystal which consist of slightly 

misaligned mosaic blocks.[52] This imperfection is highly desirable since the mosaic struc-

ture causes the diffracted beam to have a higher divergence and a lower coherence than the 

incident beam; hence an additional diffraction of the incident beam is prevented as occurs in 

perfect crystals. The mosaic crystal is said to be ideally imperfect if extinctions are negligi-

bly small for all reflections. Using the mosaic block representation Darwin distinguished 

two extinction processes, which he named primary and secondary extinction. 

When X-ray beam passes through a single block of a perfect crystal part the scattered 

beam may be rescattered from bottom sides of the planes back into the incident beam and so 

on for multiple times (Figure 2.3a).  Every reflection corresponds to a phase change of / 2π . 
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X-rays reflected n times differ in phase by π  from those reflected n-2 times. As a conse-

quence, they interfere destructively and cause a reduction of the intensity of the reflected 

beam. This is due primary extinction and its treatment necessitates the use of dynamical dif-

fraction theory. 

 

 

 

 

 

  a)                                                                        b) 

Figure 2.3 a) Schematic representation of primary extinction within a single domain of a perfect 
crystal b) Secondary extinction in a mosaic block of an ideally imperfect crystal.  

Secondary extinction occurs, when part of the incident beam is diffracted by one mosaic 

block, hence planes in the following block experiences a reduced primary beam (Figure 

2.3b). As a result of this, the intensity contribution of the latter block to the diffracted beam 

is less than the former one. Extinction of this kind depends on the size of the crystal and 

alignment of the mosaic blocks with respect to each other which is termed mosaicity. Crys-

tals of smaller size and with less aligned mosaic blocks will have negligible secondary 

extinction since fewer planes are in position for diffraction condition at a given instant. 

Large secondary extinction effects can be decreased by submitting the crystals to thermal or 

mechanical shock for example by dipping the crystal in liquid nitrogen or by grinding their 

surfaces. 

For the treatment of extinction Zachariasen developed a general theory based on Darwin 

transfer equations, which considers the energy exchange between the incident and reflected 

rays within the crystal.[53] Although the theory was said to be valid for the entire range of 

crystals from perfect to the ideally mosaic, it had its critics, the most important limitation is 

due to the theory being of kinematical nature.[54] It has only been applied for secondary ex-

tinction and the method does not work optimally for larger crystals and in cases of severe 

primary extinction.[55] 
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 A comprehensive treatment of extinction in the quasi-kinematical approximation has 

been provided by Becker and Coppens who have revised and improved Zachariasen's theory 

for both primary and secondary extinction.[56]  The extinction correction is expressed as a 

function of scattering angle, block size, crystal size and degree of mosaic block disorienta-

tion. This formalism was extended to include crystals of non-spherical shape and anisotropy 

of mosaic spread and particle size.[57] In various structure-refinement programs an extinction 

coefficient, the mosaic spread and a mean block size are determined from the measured in-

tensity according to the primary or secondary extinction models. Uncorrected extinction, 

like uncorrected absorption can distort the scale factor and/or bias the mean-square dis-

placements towards negative values. 

For an X-ray diffraction experiment it is of crucial importance to get accurate structure 

factors removed from extinction effects in order to reconstruct reliable electron densities. 

Crystals used for this aim are usually of smaller size and unknown defect structure. A fun-

damental problem to be solved is how to describe the diffraction process in these cases. In 

principle, the block size and disorientation characteristics in a crystal can be determined by 

synchrotron radiation rocking curves.[58] Due to the small angular divergence (FWHM ~ 20'' 

of arc) topographic studies of synchrotron radiation allow one to specify and localize the 

changes in orientation and spacing of crystal lattice planes which give rise to local differ-

ences in either diffracted beam direction or intensity.[59] Recently, high-resolution electron 

microscopy (HREM) is also extensively used for the determination of structures of perfect 

crystal regions, crystals defects with atomic resolution.[60]  

2.2.3 Thermal diffuse scattering 

In general, diffuse scattering arises from a deviation from the regular periodic character 

of crystal lattice. The inelastic thermal diffuse scattering (TDS), on the other hand, is another 

kind of contribution to the total scattering originated by long range lattice vibrations which 

are temperature dependent.  The thermal vibrations in a crystal cause the elastic Bragg scat-

tering intensity to fall off due to destructive interference and the inelastic TDS intensity to 

build up according to energy exchanges between the scattered beams and the lattice vibra-

tion modes. As a result, a variable diffuse background forms over the entire reciprocal lattice 

in addition with a sharp maxima in the region of the Bragg reflections, the TDS intensity 

being proportional to the Bragg intensity: 
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                                    meas Bragg TDS Bragg (1 ), I I I I α= + = + TDS / BraggI Iα =                                       (Eq. 2-15)                 

It is possible to approximate α  through the equation 

                                                     ( ) 2 2T sin / svα θ λ −⎡ ⎤⎣ ⎦∼                (Eq. 2-15) 

where T is the absolute temperature and sv  is the mean velocity of the sound in the crystal, 

which is related to the "hardness" of the crystal and can be calculated if the elastic constants 

of the crystal are known.[61] Elastic constants can not be measured easily. Therefore, these 

values are available for only relatively few crystals. Blessing estimated α  values empiri-

cally without using the elastic constants  by fitting TDS peak by triangle, exponential, 

Gaussian or Lorentzian functions.[62]  

 

 

 

 

a)                                                                                 b) 

Figure 2.4: Intensity profiles without (a) and with (b) TDS contribution. 

As shown in Figure 2.4 the inelastic TDS process give rise to a broader intensity profile 

than the Bragg reflection since it includes both absorption and emission interactions with the 

Bragg scattering and increases the wavelength spread of the scattered beam. First order scat-

tering is a one-phonon scattering due to acoustic modes and is quite strongly peaked at 

reciprocal lattice points. The TDS due to optic modes is less important. Higher order TDS is 

also relatively less peaked. It is part of the background formed by inelastic Compton scatter-

ing, fluorescence and contributions from air scattering which intensity vary very slowly in 

reciprocal space. The subtraction of background from the peak intensity removes the broad 

part of the TDS but not the maximum below the Bragg peak. The TDS is relatively weak at 

great distances from the reciprocal lattice points. In general, it is anisotropically distributed 

because all crystals, even those of cubic symmetry have anisotropic mechanical elasticity.  
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In order to determine the temperature factors and ED distributions accurately, the contri-

bution of TDS should be determined and separated from elastic scattering, particularly in 

cases, where the TDS contribution to the total intensity is pronounced. This is experimen-

tally carried out by γ-ray Mössbauer spectroscopy which has a much smaller width of the 

resonance emission line (~10-8 eV) than the intrinsic energy spread of X-ray line, (1-5 

eV).[63] Accordingly, inelastic scattering of energy transfer (~0.1 eV) which is larger than the 

resonant width of Mössbauer lines is not absorbed, thus separated from the elastic scattering.  

Nilsson studied the effect of neglecting a TDS correction on a structure investigation and 

concluded that the temperature factors of soft materials such as molecular crystals calculated 

in this manner become smaller.[64] 

2.3 Structure refinement 

Structure refinement is the process where it is aimed to get the best possible agreement 

between the observed and calculated structure factors by systematic variation of parameters 

according to a given model. The most commonly used algorithm for this purpose is the 

method of least squares. According to this method; variables for the assumed model are op-

timized by minimizing the sum of the squares of the deviations between the observed and 

calculated structure factors: 

      2 2 2( ) mino c
hkl

w F F− =∑                                        (Eq. 2-16) 

Since not all the data is measured with the same accuracy a weight w is assigned to each 

measurement. In many cases, it is sufficient to define a weight of the form: 

                                                                       21/w σ=                                                       (Eq. 2-17) 

In this equation σ is the error estimate based on the counting statistics of the diffractome-

ter measurement. In general, it is larger for weak reflections than for strong ones.  

A measure of the disagreement between observed and calculated structure amplitudes is 

given by the R(F)-value: 

          

2 2 2

(F) 2 2

( )

( )

o c
hkl

o
hkl

w F F
R

w F

−
=
∑
∑

   (Eq. 2-18) 
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After each minimization of the discrepancy a scale factor is determined in order to com-

pare observed and calculated amplitudes directly. 

      
2

2
o

c

F
k

F
= ∑
∑

     (Eq. 2-19) 

2.4 The independent atom model (IAM) 

The simplest approximation for the derivation of structure factor relies on the superposi-

tion of isolated spherical atomic densities. This is the independent atom model (IAM) where 

core electron distribution can be fairly well described by spherical scattering amplitudes. 

The Fourier transformation of the spherical atomic density at
jρ  in the unit cell gives the atom-

ic form factors, fj (hkl):   

                                            2 ( )( ) ( ) e
j

at i hX kY lZ
j j j

V

f hkl xyz dVπρ + += ⋅∫    (Eq. 2-20)    

The atomic form factor or the atomic scattering factor depends upon the nature of the at-

om, the direction of scattering, the wavelength of X-rays and the thermal vibrations of the 

atom. Figure 2.5 shows the atomic form factors of vanadium and boron as a function of sin 

θ/λ. They are normalized for the number of electrons. 

 

 

 

 

                                      

 
 
 
 
 
 Figure 2.5 Atomic form factors for vanadium and boron as a function of sin θ/λ. 
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There is a great fall-off of atomic form factors at higher angles due to both interference 

effects originating from path differences of the scattered radiation and thermal vibrations of 

the respective atoms. For light atoms it is almost not necessary to measure data at higher an-

gle whereas important information can still be extracted for heavier elements from high 

order reflections. In general, it is difficult to locate light elements by means of heavier ones.  

The IAM is very good approach especially for heavy elements where it is only intended 

to determine the atomic positions. On the other hand, it is a poor approximation for light el-

ements for which the contribution of the valence electrons to the total scattering is more 

pronounced. The reason is that IAM does not account for deviations from sphericity due to 

chemical bonding. The scattering of valence electrons are concentrated in low sin θ/λ values, 

while core electrons scatter in the high order region of reciprocal space. Therefore, in some 

cases, positional and thermal parameters together with the scale factor are refined using high 

order reflections in order to reduce bias in the structural parameters due to insufficient ap-

proximation of the ED.[11a]  

2.5 The multipole density formalism 

Hansen & Coppens described a formalism of density representations with pseudoatoms 

which is based on an algorithm to account for the density deformations due to chemical 

bonding.[13] This formalism expresses the static ED in the crystal by a superposition of as-

pherical pseudoatoms as 

                                                                                                                                   

               
max

3 3
spher,valence

0 0
( ) ( ) ( ) + ( r) ( / )at c core v

l l

l lm lm
l m

r P r P r R P yρ ρ κ ρ κ κ κ θ ϕ± ±
= =

′ ′= + ∑ ∑  (Eq. 2-21)    

 

In this expression, both coreρ and spher,valenceρ  were used to describe the spherical core and 

valence densities and calculated from atomic wave functions and normalized to one elec-

tron. The core population Pc is usually kept fixed at the filled-shell value. Due to the 

variation in the electronegativity, the parameter Pv will be different than that of the neutral 

tom. Since the crystal as a whole is neutral the total charge has to be kept constant. Ac-

cordingly, it is possible to observe the charge transfer by application of an electroneutrality 

constraint. The change in the atomic electron population effects the electron-electron re-
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pulsion, thus the radial dependence of the charge density on the atom. Correspondingly, the 

valence function is allowed to expand ( 1)κ <  or contract ( 1)κ > by the adjustment of the 

variable radial parameter κ .[65] In order to take asphericity into account, a third term has 

been introduced. Here the valence ED of each atom is decomposed into convergent La-

place series over the real spherical harmonic angular functions lmy ±  centered at the nuclear 

positions satisfying the symmetry of the local atomic environment. The terms in the series 

are called multipoles and l is the order of multipole expansion. The radial dependence of 

the atomic electron distribution is given by normalized Slater-type radial functions in the 

form 

                                    
3

3( ) ( ) exp( )
( 2)!

l
l

n
n

l
lR r r r

n
ζκ κ κ ζ

+

′ ′ ′−
+

                                (Eq. 2-22)    

where r is the radial coordinate, ζ is the single Slater exponent, which starting values can 

be modified by κ′ , such thatζ κ ζ′ ′=  and the values of ln  has to obey Poisson's equation  

(nl ≥ l).[66] Finally, the electron populations Pv, Plm, both with κ and κ′ are refinable pa-

rameters in course of multipole refinement where the values for parameters ln and ζ can 

be chosen according to rules provided by Hansen & Coppens.[13]  

Table 2.1 summarizes all parameters which are subject to a refinement in course of a rou-

tine structure and charge density analysis. As a rule of thumb, for a reasonable classical 

structure refinement, the reflection-parameter ratio has to exceed at least ten. Therefore, X-

ray data up to high resolution is of crucial importance to allow confidence in the results.[6e]  

 
Table 2.1 Refined parameters in the conventional IAM and multipole model. 

Conventional Parameters Charge Density Parameters 

Scale factor k Valence-shell parameters: 

Positional parameters x, y, z Population parameter, Pv 

Harmonic and anharmonic thermal parameters Expansion-contraction parameters, κ  

Isotropic and anisotropic extinction parameters Deformation parameters: 

Occupancy parameters Population parameters, Plm 

 Expansion-contraction parameters, 'κ  
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The refined parameters in the multipole formalism provide a description of the static 

density which can be biased in case of inadequate deconvolution of the thermal motion. A 

concise model should result from an independent analysis of static and dynamic parameters 

since they are both capable of representing asphericities. 

An important problem with the multipole model is that the number of refined parame-

ters is considerably larger as compared for an IAM refinement. Furthermore, these have to 

be fitted to only a few percent of diffracted intensity, thus a stable solution might not be 

existed. In those cases, either relation between the multipole parameters are employed 

which go beyond symmetry (chemical constraints) or physically most insignificant pa-

rameters are excluded. As a result, the multipole model might exhibit artefacts due to these 

restrictions. 

As an alternative to the multipole formalism the maximum entropy method (MEM) is 

introduced by Collins into crystallography.[67] MEM is in principle a model-independent 

approach unlike the multipole model, and reconstructs the ED on a three-dimensional grid 

using the observed structure factors as a constraint in the maximization of the entropy.[68] A 

problem with MEM is that this model-free approach does not allow the deconvolution of 

the ED from the thermal motion unlike the Hansen & Coppens multipole model.[69]  

2.6 Residual density 

The success of the model used for the refinement process can be tested by the residual 

ED which is the Fourier summation of differences of structure factors from observations 

calculated with model phases and those from the refinement model (Fobs - Fcalc). The fea-

tures of this so-called residual or difference density map represent the shortcomings of the 

least-squares minimization. Accordingly, a flat and featureless residual map is indicative of 

the adequacy of the model. Here, the term 'featureless' means at least 'randomly distributed' 

residual density which can be assigned to experimental noise. In general, IAM refinement 

yields residuals especially in the bonding region which vanishes or gets smaller after intro-

ducing a multipole model. Strong residuals in the vicinity of the core or in the bonding 

region are generally a sign of unadequate model while experimental errors mostly yield 

residuals in larger distances to atom positions.  
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2.7 Deformation density (DD)  

 In principle, the total density is dominated by core electrons and the density value of 

bonding regions is by far smaller. Therefore, analysis of the total density generally does not 

provide much information about the chemical bonding. To illustrate bonding effects or ac-

cumulation of density in the lone pairs, the most widely used function is the deformation 

density which is simply the difference between the total density and spherically averaged 

hypothetical reference state:  

(r) (r) (r)pρ ρ ρΔ = −                                (Eq. 2-23)                  

In this equation (r)pρ  is the promolecule which represents the molecule before the bond 

formation. Accordingly; the adequacy of a DD map depends on the accuracy of the struc-

tural parameters of this promolecule. Most accurately, such parameters can be obtained by 

neutron diffraction. However, the use of different data set for a single refinement lead to 

scaling problems since the atomic displacement parameters obtained from X-ray and neutron 

diffraction show differences.  

Another strategy for developing deformation densities is the refinement of high-order da-

ta which includes information about the core-region electrons. When difference Fourier 

synthesis is carried out using all diffraction data, the valence part of the ED is emphasized:  

                         obs, calc,  high order
1( ) ( ) exp( 2 H r)X X

deformation X X
H

r F F i
V

ρ π−Δ = − − ⋅∑         (Eq. 2-24)                 

 Since valence electrons scatter mainly in the low order region of the data set this proce-

dure yields parameters less biased by bonding effects.[70] The drawback of this method is the 

lack of knowledge for a proper cut-off limit of the high-order refinement for different sys-

tems. In this thesis, the deformation ED is obtained by the difference between the static ED 

fitted to the multipole model and the promolecule density fitted only to the spherical part of 

the multipole model. 

The early work in ED studies was almost exclusively based on the analysis of the de-

formation density. With the advent of high flux neutron beams it was possible to obtain 

directly information on the nuclear positions without being influenced by the electron dis-
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tribution since neutrons interact with rather atomic nuclei. The combination of this tech-

nique with X-ray diffraction is effectively used in order to separate effects of thermal 

vibrations from the effects of chemical bonding. However, treatment of data obtained from 

different experimental conditions can be problematic; inappropriate treatment of thermal 

diffuse scattering (TDS) extinction and absorption effects may lead to discrepancies be-

tween X-ray and neutron displacement parameters.[71]     

Despite the fact that DD maps allows a great diagnostic potential and confirms long-used 

chemical concepts special care needs to be taken when extracting information about bond-

ing. Incorrect assumption of spherical atoms in the promolecule might lead to negative or 

very small densities.[6c, 72] A weakness of DD is that  most of the uncertainty in the deforma-

tion densities is directly associated with the uncertainty in the value of the scale factor.[12] 

For elements with more than half-filled valence shells, bonding features in the DD maps 

may absent, because the reference atoms may contain excess electrons in the orbitals which 

participates in bond formations.[73] Furthermore, in regions of very diffuse density, the abso-

lute values of the deformation density peaks and troughs are not considered as reliable, but it 

still allows a qualitative comparison.  

2.8 The quantum theory of atoms in molecules (QTAIM) 

Bader[17] designed a topological analysis based on a physical observable, the ED distribu-

tion ρ(r) unlike the quantum wave function in the Schrödinger equation which is used in 

most theoretical calculations and is not observable.[74] Important aspects of Bader's theory 

are that it provides a procedure to partition a molecular structure into submolecular frag-

ments and also allows proper definitions to long used concepts, which are essential to the 

description of a chemical system. This is achieved by giving a qualitative and quantitative 

description for atoms as well as different type of interactions by making use of the first and 

second partial derivatives of the ED function ρ(r) which leads to the ED gradient vector field 

∇ρ(r) and the Laplacian ∇2ρ(r). 

2.8.1 QTAIM atoms 

The topology of ρ(r) can be well characterized in terms of its derived vector field 

∇ρ(r).[75] The gradient vector field of the charge density in the Cartesian coordinate system 

with the unit vectors i, j and k is defined as 
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(r) (r) (r)(r) i j +k
x y z

ρ ρ ρρ ∂ ∂ ∂
∇ = +

∂ ∂ ∂
                              (Eq. 2-24) 

It is represented through a display of the gradient vectors also called the trajectories fol-

lowing the direction of the largest increase in ρ(r), being perpendicular to lines of constant 

density. Every trajectory must originate or terminate at a point where ∇ρ(r) vanishes. The 

areas around nuclear positions are separated by the unique surfaces S(r) that is not crossed 

by any gradient lines of the ED ρ(r): 

(r) (r) 0nρ∇ ⋅ =                                                   (Eq. 2-25) 

In this equation n(r) represents a unit vector perpendicular to the surface at r. Since it has 

a vanishing scalar product this boundary is also called the zero-(ED-gradient) flux surface. 

This set of surfaces partition a molecule or extended solid into chemically identifiable atom-

ic-like fragments which are called atomic basin. Integration of the model ED over the atomic 

basins allows the atomic electron populations to be estimated. Within this context an atom is 

defined as a union of a single attractor, e.g. the atomic nucleus and the region containing all 

gradient paths terminating at the corresponding attractor, the electronic basin. This partition-

ing provides a comparison between topological properties of different fragments in a system. 

The sum of contributions of any property from these fragments may be equal to the corre-

sponding property of the total system. 

 

 

 

 

 

 

a)                                                                             b) 

Figure 2.6 a) A superposition of trajectories associated with the bond paths on a contour map of a 
charge density in the plane of the ethylene molecule. b) The corresponding gradient vector field in 
the same plane as shown in a). 
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It is evident from Figure 2.6 that some gradient paths are connecting certain pairs of nu-

clei. These are termed bond paths and their presence is considered as a sufficient condition 

for two nuclei to be bonded. However, they do not represent a bond. As will be demonstrated 

in the next section, the interactions between the atoms can be characterized in terms of ED 

properties at the so-called bond critical point. 

2.8.2 Critical points and their classification 

QTAIM not only provides a new definition of an atom but also allows the concept of the 

chemical bonding to be deduced from the ED topology. The charge density ρ(r) is a physical 

quantity which has a definite value at each point of the three-dimensional direct space. It is a 

scalar field and its topological properties can be determined using the number and kind of its 

critical points (cp).  

In general, ρ(r) exhibits local maxima only at nuclear positions according to the observa-

tions based on experimental results obtained from X-ray diffraction studies on crystals and 

theoretical calculations. These are the points where a gradient path ∇ρ(r) terminates. Gradi-

ent paths originate and terminate in an isolated molecule at points where the first derivatives 

of ρ(r) vanish. These locations of extrema are associated with a point in space called a criti-

cal point which describes and quantifies important interactions between atoms. Critical 

points are distinguished according to the nature of the extremum (maxima, minima or sad-

dles). In order to analyse these extrema the curvature of ρ(r) at the corresponding point has 

to be determined which necessitates the analysis of nine second-order derivatives of ρ(r) in 

three dimensional form. This is the so-called 3×3 array Hessian matrix of the charge density: 

 

 

                                                                                                                                    (Eq. 2-26) 

                                                

 

Since it is real and symmetric H(r) can be diagonalized. The diagonalized form of H(r) is 

denoted by the matrix  
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                                                                                                                                    (Eq. 2-27) 

                                                                                                                                     

 

In diagonalized form, the Hessian matrix provides three eigenvalues λ1, λ2 and λ3 which 

characterize the ED curvature. The classification of the critical points is than carried out ac-

cording to their rank w and signature σ. The rank is the number of non-zero eigenvalues of 

the ED curvature whereas the signature is the sum of the algebraic signs of the eigenvalues. 

A critical point with w < 3 and with at least one zero curvature is said to be degenerate. 

Degenerate critical points can vanish or to bifurcate into a number of non-degenerate or sta-

ble (w = 3) critical points due to small changes in the charge density. The existence of 

degenerate critical points indicates the onset of structural changes in a molecule.  

There are four possible types of critical points in a three dimensional scalar distribution 

of rank three which are listed in Table 2.2. At a critical point where all curvatures are nega-

tive (w = 3, σ = –3) ρ(r) exhibits a local maximum. This typically occurs at nuclear positions.  

                  
            Table 2.2 Classification of critical points according to their rank and signature. 

w, σ λi Type 

(3, -3) all  λi  <  0 nuclear position 

(3, -1) two λi  <  0 

one λ i >  0 

bond critical point (bcp) 

(3, +1) two λi  <  0 

one λi  >  0 

ring critical point (bcp) 

(3, +3) all  λi  >  0 cage critical point (ccp) 

 

    The interaction between two atoms result in formation of the bond critical point (3, -1) cp 

when at rc ρ(r) is a maximum in the plane defined by the axes corresponding to the negative 

curvatures λ1 and λ2; ρ(r) is a minimum at rc along the third axis of the positive curvature λ3 

which is perpendicular to this plane. The existence of the (3, -1) cp between two atoms is a 
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necessary condition for the chemical bond to be present. Gradient paths which originate at 

the bond critical point and terminate at each of the two nuclei define the bond path. The 

formation of a bond path indicates the accumulation of ED, thus it is the line of maximum 

density between linking two atoms. The bond path is not necessarily a straight line, it can be 

bent. Bent bonds indicates that there is strain in the bond.[76] The distance between the line 

connecting two atoms and the bond critical point is a measure of degree of bond-bending.   

The cp type of (3, +1) or ring critical point (rcp) is present at the center of a ring of bond-

ed atoms and arises when two curvatures are positive and at rc ρ(r) is a minimum in the 

plane defined by the axes corresponding to the positive curvatures; ρ(r) is a maximum at rc 

along the third axis which perpendicular to this plane. 

Finally, the (3, +3) cp or cage critical point (ccp); where all curvatures are positive and 

ρ(r) is a local minimum at rc, is found at the centre of the cage structure which is bounded by 

ring surfaces. 

In an isolated molecule, or cluster of atoms for a number of different types of critical 

points m(w, σ), the Poincarè-Hopf relationship[77, 78] holds 

                                  (3, 3) (3, 1) (3, 1) (3, 3) 1m m m m− − − + + − + =                (Eq. 2-27) 

While QTAIM was initially developed for the analysis of theoretical densities, it has been 

shown also to be a powerful tool for classification of chemical bonding based on experimen-

tal ED. It allows a comparison between theory and experiment, hence a bridge between two 

methods. ED distribution differences can be classified as quantitative and qualitative.[79] If 

the number and type of the critical points is the same for two models but only the values dif-

fer, the difference is regarded to be only quantitative. If there are not equal numbers of 

saddle points, maxima and minima, this case corresponds to a qualitative difference. How-

ever, for structures involving transition metals the magnitudes of the eigenvalues might be 

too small leading to uncertainties in estimation of the true cp type since EDs is very flat in 

interatomic regions. In those cases, two models might differ quantitatively only slightly, dis-

crepancies due to different type of cps notwithstanding. 
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2.8.3 Laplacian 

An important function of the ED is its Laplacian, which is the sum of the diagonal ele-

ments of the Hessian matrix and defined as 

                          
2 2 2

2
1 2 32 2 2

(r) (r) (r)(r) +
x y z
ρ ρ ρρ λ λ λ∂ ∂ ∂

∇ = + = + +
∂ ∂ ∂

                       (Eq. 2-28) 

The sign of the ∇2ρ(r) can be related to the character of the atomic interactions, i.e., the 

character of the chemical bond. It depends on the relation between the principal curvatures 

of the ED and characterizes the concentration or depletion of electrons at each point, r. At 

the bcp, negative λ1 and λ2 values indicate that there is a contraction of ED toward the bcp, 

perpendicular to the bond path and the positive λ3 value measures the degree of ED contrac-

tion toward each of the neighboring nuclei. The formation of a chemical bond is a result of a 

competition between perpendicular contractions of ρ(r) leading to a concentration of ED 

along the bond path and the expansion of ρ(r) leading to concentration of ED in the basins of 

neighbouring atoms. The sign of the Laplacian at r depends on which of the two competing 

effects dominates. If the positive curvature dominates, thus ∇2ρ(r) is positive at the bcp, the 

ED is depleted in the interaction surfaces and concentrated in each of atomic basins sepa-

rately which is typical of closed shell interactions (i.e., ionic and van der Waals interactions). 

This picture is characterized by a relatively low value of ρ(r). Small values for ρ(r) in closed 

shell interactions are not necessarily an implication of weak interactions. For highly ionic 

interactions these values may be small. Nevertheless, the transfer of charge from one atomic 

basin to the other may result in a strong interaction. In cases, where negative curvatures 

dominate (∇2ρ(rb) < 0) the ED is locally concentrated at the bcp. This is the case when 

shared interactions (covalent bonds) are present. The deviation of the bcp from the midpoint 

of the bond path is an indication of polarity of the bond. 

The ED distribution of an isolated atom has a single maximum corresponding to the nu-

cleus position and decays exponentially with distance from the atom. On the other hand, 

Laplacian distribution in the outer shell of an atom is characterized by alternating shells 

where the ED is locally concentrated (∇2ρ(r) < 0) and depleted (∇2ρ(r) > 0). The portion of 

the outermost shell over which the Laplacian has a negative sign, is termed as the valence 

shell charge concentration (VSCC). Charge concentrations in the Laplacian distribution 

should not be mixed with the localized electron pairs.[16d] In general, formation of a chemi-
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cal bond leads to structurization of ED Laplacian distribution.[80] For 3d transition metals, 

asphericity of the Laplacian distribution generally indicates the participation of 3d orbitals in 

transition metal bonding. 

Positive Laplacian, though associated with charge depletion, cannot be considered as a 

clear-cut sign of closed-shell interaction for transition metals.[81] The reason is that the one-

to-one correspondence of ∇2ρ (r) distribution with the shell structure is lost and as a result, 

the bcps fall almost without exception in a zone of charge depletion due to the lack a distinct 

charge concentration in the outermost shell.[82] 

2.8.4 The ellipticity 

An important property of ρ(r) at the bcp is the ratio of its negative curvatures along axes 

perpendicular to the bond path which corresponds to the quantitative measure of preferential 

concentration of electrons in a plane perpendicular to the bond path.  

                                                        1 2( / ) 1ε λ λ= −                                               (Eq. 2-29) 

 In this equation ε is called the bond ellipticity. It gives a quantitative generalization of the 

concept of σ and π character of a bond. For a cylindrically symmetric bond the axes associ-

ated with λ1 and λ2 are symmetrically equivalent which result in λ1 / λ2 = 1 and ε = 0. 

Ellipticity values differ from zero e.g. for double bonds which have a π contribution as an 

indication of deviation from cylindrical symmetry of the bond. Such deviations can be ob-

served in DD maps. However, a precise quantification is not possible in those cases. 

2.8.5 The ratio |λ1|/ λ3 

Another topological quantity used particularly for homoatomic interactions is the ratio 

between the magnitude of the largest perpendicular contraction of ED |λ1| at the (3, -1) criti-

cal point and the parallel contraction of ED λ3 towards the nuclei. The ratio |λ1|/ λ3 increases 

with bond strength for shared-type interactions.  

2.8.6 The electronic energy density 

Further information about the bonding type can be extracted from the local electron en-

ergy densities [G(r) = kinetic energy density, V(r) = potential energy density]. The local 
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energy density is calculated from the Laplacian function using the approximation for G(r) 

proposed by Kirzhnits[83] in combination with the local virial theorem from which V(r) is 

estimated:[84] 

22 (r) (r) ( / 4 ) (r)G V m ρ+ = ∇                                    (Eq. 2-30) 

Here, m is the electron mass, G(r) and V(r) describe the local contributions to the electronic 

kinetic and potential energies; G(r) > 0 and V(r) < 0 everywhere in the equilibrium sys-

tem.[85] Cremer and Kraka used energetic considerations for the characterization of the 

chemical bond.[86] The local energy densities G(r) and V(r) can be compared in the bonding 

region through the equation: 

        (r) (r) (r)= +H G V                (Eq. 2-31) 

The sign of the total electronic energy density H(r) gives a straightforward criterion for 

the recognition of the atomic interaction type.  Since V(r) is always negative and G(r) always 

negative, the sign of the energy density H(r) reveals whether V(r) or G(r) dominates in the 

bonding region. In shared type atomic interactions V(r) dominates and H(r) is negative. In 

closed-shell type interactions the local kinetic energy outweighs the potential energy and 

H(r) is positive. 

2.8.7 The transferability concept 

Bader states in his theory that two resembling molecular fragments in different envi-

ronments enclosed by a zero-flux surface can be substituted when there is negligible 

changes in their electron-density properties.[17] This concept is the so-called transferability 

of submolecular fragments. Taking the advantage of the transferability, larger functional 

groups can be built from a limited number of known pseudoatomic densities keeping the 

multipole populations the same for the resembling pseudoatoms. In cases, where the trans-

ferred functional groups undergo minor changes, the ED properties of these new groups 

can be predicted. One important question is to what extent these transferred functional 

groups can be preserved in different resembling chemical environments since every trans-

fer causes small perturbations in the density and hence in its properties.  
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As a consequence of experimental verification of transferability, 'deformation density 

databanks' are established with averaged multipole populations for each chemically unique 

and transferable pseudoatom.[69, 87] The experimental examination of transferability of 

atomic densities utilizing high resolution X-ray diffraction method was first carried out for 

molecular crystals[87j] These compounds are more suitable for an experimental ED analysis 

as compared to extended solids for various reasons.[88] First of all, non-stoichiometry of the 

compositions and the related defect structure are quite debatable in extended solids[47] Fur-

thermore, studies of compounds including heavier elements demand a much higher 

accuracy of the diffraction data since the scattering contribution from valence electrons 

form a smaller part of the diffraction intensity relative to the dominating core contribu-

tion.[89] Additional problems are typically induced by high-symmetry space groups along 

with symmetry-restrictions for the atomic sites involved. Structures with small unit cells 

yield very few low-order reflections which can be biased by systematic errors like extinc-

tion and/or absorption.  

 Transferability of the pseudoatomic atomic densities offers important advantages from 

experimental point of view. First of all, it is possible to determine accurate ED in a reason-

able time from ‘normal resolution’ data as experimentally inaccessible multipole parameters 

are kept at theoretically predicted values. The decrease in the number of variables used also 

reduces the correlations between the parameters refined.  

2.8.8 The electrical field gradient 

The electric-field gradient (EFG) at nuclear positions is an important characteristic which 

arise from the non-spherical charge distribution due to the interaction of the nuclear charge 

density moments with the multipole moments of the ED relative to the nuclei. Experimen-

tally, the EFG can be detected for crystals containing nuclei with nuclear spin I >1/2 via its 

interaction with the quadrupolar moment of the nucleus. For this, the quadrupolar frequency 

is measured with techniques such as nuclear magnetic resonance (NMR) or Mössbauer spec-

troscopy. The quadrupolar frequency of a nucleus vαα is related to the EFG aaE∇  through the 

equation 

2 62 (2 1)[ / ] 10 [ ]
3aa

h I IE V m v MHz
eQ αα

−
∇ = ×                        (Eq. 2-32) 
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where h is the Planck constant (6.626075×10-34J s), e = 1.60210-19 C is the elementary 

charge, vαα is the nuclear quadrupolar moment in Barn (1b=10-28 m2), which is well known 

for all nuclei and I is the nuclear spin. The sign of EFG is often understood to be the sign of 

the largest component zzE∇ . 

It is possible to determine the EFG from the multipole model using a simple approxima-

tion of the electronic contribution to the EFG in the form[90] 

                                 1/2 3
0 2 2 2 20( / 4 )[6 3 / 5 ( 1)( 2)]zzE e n n n Pπε α∇ = − × + +             (Eq. 2-33) 

In this equation, P20 is the electron population of the quadrupole density term, and n2 is 

the power index in the quadrupole component of the pseudoatom ED radial part and α is a 

model parameter determined by least squares in units of m-1. 

The contributions to the EFG originate mainly from the atomic valence-shell asphericity 

and peripheral (lattice) contributions due to the surrounding atoms. The latter is important 

when short interatomic distances are present in the crystal. On the other hand, for transition 

metal atoms, the contribution of the valence shell to the EFG is more pronounced. In gen-

eral, the EFG is particularly sensitive at distances close to the nucleus and is difficult to 

extract from the X-ray experiment due to the resolution limit of the data. Since the thermal 

motion is deconvoluted from the ED density, the EFG value obtained from the multipole pa-

rameters accounts for the static crystal. On the other hand, the spectroscopic data is affected 

by vibrations. Therefore, there may be a systematic difference between the two set of values. 

 

2.9 Quantumchemical calculations 

In this thesis, the experimentally reconstructed ED, in case of all structures investigated, 

is compared with DFT calculations which are carried out by Baranov.[22a] The scalar-

relativistic all-electron full-potential DFT calculations employing (L)APW+lo+LO basis 

set are done using LDA Perdew-Wang[22b] exchange-correlation functional with the Elk 

program.[22c] The R × G kmax parameter is set to 10 and the MT-sphere radii are 2.0 a.u. for 

Ti and V and 1.45 a.u. for B. The planewave expansion cut-off for potential and density is 

Gmax = 26 a.u.-1 and the multipole expansion cut-off for potential, density and wave func-

tion is set to lmax = 12. APW radial functions with l = 2 for metal atoms and for all l for B 

atoms are linearized to the first order to achieve acceptable smoothness of the electron den-
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sity Laplacian. Meshes of 80, 80, 92 and 480 irreducible k points are used for TiB2, VB2, 

V3B4 and VB, respectively. The calculation, topological analysis and evaluation of critical 

points of electron density is done with the program DGrid[22d] on a discrete grid with the 

mesh size of ≈ 0.05 a.u. 
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3 SYNTHESIS, CHARACTERIZATION AND CRYSTAL 

STRUCTURE OF VANADIUM BORIDES    

For the very hard materials such as vanadium borides, single crystals have to be ob-

tained directly from the synthetic experiments as severe problems arise from any kind of 

crystal shaping in order to reduce the crystal size. In this section, the efforts for obtaining 

suitable vanadium boride single crystals for a charge density analysis are presented. The 

homogeneity range and the microstructure of the compounds are examined by X-ray pow-

der diffraction and Wavelength dispersive X-ray spectroscopy analyses (WDXS), 

respectively. Crystal structures of VB2, VB, V3B4 and VB2 based on single crystal X-ray 

diffraction data are described in detail. 

3.1 Synthesis 

It is, in general, a challenging task to prepare homogeneous, single phase transition 

metal borides due to their unusual high melting point. Figure 3.1 shows the most recently 

published V–B phase diagram[91] which is based on the the optimization of the thermo-

chemical and experimental data.[92] In the vanadium-boron system the binary phases V3B2, 

VB, V5B6, V2B3, V3B4, and VB2 have been reported so far.  

 

 

 

 

 

 

 

 

 

           

                                             Figure 3.1 V-B phase diagram.[91]  
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It is apparent from the phase diagram that all binary vanadium borides form above 2500 

°C except V3B2 and V5B6. VB2 has the highest melting temperature (2747 °C) compared to 

other phases. Besides, it is a congruent melting phase. The reaction types for all phases in 

V–B system is are summarized in Table 3.1. On the vanadium-rich side where VB appears, 

there are contradictory results about its formation. Rostoker et al.[93] reported that VB 

forms by a peritectic reaction between the liquid and VB2 whereas Rudy et al.[92b] claimed 

that there is a peritectic reaction between the liquid and V3B4. Blumenthal et al.[94] and 

most recently de Lima et al.[95] suggested a congruent formation for this phase. The phases 

V3B4 and V2B3 as well as the V3B2 at the very vanadium rich part of the phases diagram 

form from the liquid through the peritectic reactions. 

 

Table 3.1 Reactions of the V–B system and compositions of the liquid phase (at. % B) based on 
different studies. 

 

It is evident from the phase diagram that the respective formation temperatures of the in-

termediate phases V3B4 and V2B3, in particular, are too close to each other.[100] The 

proximity of the formation temperatures together with the incongruent decomposition 

  (at. % B) Reaction type Reference 

eutectic De Lima[95],   2L VB B+  

 2L VB  

                95 

                67 congruent Rudy[92b], de Lima[95], Nor-
ton[96], Kieffer[97], Post[98] 

 2 2 3VB L V B+  57, 58 peritectic De Lima[95], Spear[92a] 

 2 3 3 4V B L V B+  54, 56 peritectic Spear[92a], De Lima[95] 

peritectic Nunes[99] 3 4 5 6 V B L V B+  

3 4 5 6 V B VB V B+  
52-56 

─ peritectoid Spear[92a] 

47 peritectic Rudy[92b] 

            ─ peritectic Rostoker[93] 
3 4 V B L VB+  

2 VB L VB+  
 L VB             50 congruent Blumenthal[94], De Lima[95] 

peritectic De Lima[95], Rudy[92b] 
congruent Nowotny[92c] 

 3 2VB L V B+  
 L 3 2V B  
 3 2L V V B+  

19, 26 
40 
12 eutectic De Lima[95] 
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complicates the preparation of homogenenous single crystals of the respective phases using 

conventional synthesis methods.   

There are also contradictory results on the formation reaction of V5B6. According to the 

phase diagram shown in Figure 3.1 a solid-state formation (peritectoid reaction) is pro-

posed. However, careful studies by de Nunes et al. showed that V5B6 phase is formed from 

the liquid through the peritectic reaction.[99]  

For large scale production generally metal borides are prepared by carbothermal reduc-

tion of metal oxides at temperatures above 1400 ºC according to the reaction:[101] 

                      2MeO2 (s) + B4C (s) + 3C (s) →  2MeB2(s) + 4CO(g)                      Eq. 4-1            

Depending on the desired reaction product carbon, metal carbide or boron are included 

in the starting materials of the reaction given above.[102] However, the reaction product in-

cludes often carbon and oxygen as an impurity; therefore high temperature purification is 

necessary.[33]  

There are several methods for the preparation of vanadium borides on laboratory scale. 

One of the major phase studies in the system was performed by direct synthesis by arc-

melting experiments just by mixing stoichiometric amounts of the respective elements at 

high temperatures.[92, 95, 103] In principle, at high temperatures generally thermodynamically 

the most stable compound is formed as there is little room for kinetic control. On the other 

hand, the synthesis of single-phase intermediate compounds showing slight differences in 

their formation temperatures is mostly hampered due to lack of temperature control. Fur-

thermore, fast cooling does not provide a favourable environment for crystal growth.  

Another method of obtaining vanadium boride single crystals is the vapour deposition 

method. This method is applied for the synthesis of VB2 where boron trichloride-hydrogen 

mixture and vanadium sulfides or chlorides were used as the educts.[104] The purity of the 

products synthesized depends primarily upon the purity of the starting materials in particu-

lar of H2. Campbell et al. synthesized vanadium borides according to a similar reaction also 

with the use of vapour-phase deposition:[105]
 

                     VCl4 (g) + 2BCl3 (g) + 5H2 (g) →  VB2(s) + 10HCl(g)                      Eq. 4-1            
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Further methods for the synthesis of vanadium borides are the borothermic reaction of 

vanadium oxide (V2O3)[101] and solid state reaction between vanadium chloride and MgB2, 

NaBH4 or LiBH4.[106] 

In principle, high temperatures enhance the diffusion of reactants. In cases where high 

temperatures are not enough to overcome the activation energy barrier for the formation of 

desired products, starting materials are ground to powders to expose fresh surfaces. Unfor-

tunately, grinding of reactants introduces contaminants, in particular for very hard 

materials. The development of a method which allows the reactions to be carried out at 

lower temperatures would be a highly desirable achievement since along this way prob-

lems like the need of a construction of a high temperature apparatus or grinding of very 

hard starting materials can be circumvented. The so-called “flux method” or “auxiliary 

metal bath technique provides high diffusion rates of reactants achieved by simply allow-

ing starting materials to react in a solvent. Consequently; for a reaction to take place 

activation barriers can be overcome at lower temperatures and new compounds can be syn-

thesized. Recently, there are an increasing number of studies where single crystals of 

vanadium borides are synthesized from solution. In this method, the starting materials react 

in a metal solvent from which the crystals can subsequently be extracted.[107] 

Both the quality as well as the size of the crystal is an important consideration for 

charge density experiments. In cases of strong absorption and extinction effects, very small 

crystals (below around 100 μm) with well defined faces are highly desirable. An important 

advantage of the metal-flux method is that slow cooling of the saturated solution provides a 

favourable environment for crystal growth.  

Kieffer was the first who mentioned in his papers about several key requirements to be 

fulfilled by the solvent metal.[108] First of all, the metal should have a reasonable low melt-

ing point and low vapour pressure at the temperature of the synthesis so that conventional 

heating equipment and containers can be used. It should be able to dissolve the starting 

components at the synthesis temperature to some extent at least. However, it should not 

react with starting components in order to form compounds more stable than the desired 

product. Finally, it should be possible to separate the metal from the reaction products ei-

ther by chemical dissolution, distilling it in vacuum or by mechanical removal.  
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   Aluminium metal has been shown a useful flux in the synthesis of vanadium borides 

since it meets these characteristics which are mentioned above.[31a, 45a, 109] It melts at 660 °C 

and dissolves both vanadium and boron at elevated temperatures according to the respec-

tive phase diagrams.[110] Furthermore, it can be easily removed by a nonoxidizing acid in 

which borides are characterized by a general inertness.[111] In general, for transition metal 

borides resistance against hydrochloric acid (HCl) and sulphuric acid (H2SO4) increases 

with increasing atomic number in any group or period. On the other hand, all borides dis-

solve in oxidising acid mixtures, e.g. aqua regia, HNO3-H2SO4, HNO3-H2O2, etc. Hot 

concentrated sulphuric acid attacks all borides yielding sulphur dioxide.[112] Similarly, hy-

drofluoric acid and nitric acid dissolves transition metal borides.   

The formation of Al1-xB2 as an impurity by Al flux-synthesis of intermetallic borides is 

investigated. Thermodynamic analyses carried out at a temperature range between 675 °C 

to 900 °C indicate that formation of ZrB2, TiB2 and VB2 in Al solution is more favored in 

comparison to that of Al1-xB2.[113] Higashi et al.[45a] studied the solubility of aluminium in 

various metal borides including TiB2, ZrB2, HfB2, VB, V3B4, NbB2, TaB and W2B5 by a 

synthesis from the aluminium melt at elevated temperatures. The solubility of Al in these 

borides is reported 0.1 wt. % maximum. Accordingly, Al1-xB2 do not form mixed crystals 

with the respective borides.  

3.1.1 Preparation of vanadium boride crystals by Al flux method 

  In the present work, the ''LORA'' model high temperature furnace produced by HTM 

Reetz GmbH is used for the preparation of vanadium borides via aluminium flux method 

as shown in Figure 3.2. The corund crucible which includes mixture of starting materials is 

placed in a tube which is the essential part of the furnace. This tube made of sintered alu-

minium oxide enables operation in inert atmospheres up to 1800 °C. The diameter and the 

length of the tube are 32 mm and 600mm, respectively. The molybdenum heating conduc-

tor is directly wound on this tube. To protect the heating conductor from oxidation, it is 

enclosed in stainless steel housing and the chamber is purged with nitrogen. The tempera-

ture is measured directly at the sample with a type-C (W5% Re / W26% Re) thermocouple 

which capability of measuring temperatures are varying in the range of 0 °C - 2319 °C.  
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Figure 3.2 The corund crucible (left) and high temperature furnace for Al flux experiments (right). 

The starting materials used for the reactions are vanadium powder, crystalline boron 

powder and aluminium metal chips (purity grades: V ─ 99.99 %; cryst. B ─ 99.995 %; Al 

─ 99.995 %). They are weighted various amounts and placed in corund crucible in an ar-

gon-filled glove box. For the synthesis, the amounts of aluminium and vanadium are kept 

constant at 3.71 g and 250 mg, respectively (Al/V=28.1), whereas the boron content is var-

ied according to desired composition. The samples are transferred from the glove box to 

the furnace in a sealed metal container in order to prevent the formation of oxide layers on 

the surfaces. In a typical procedure the mixtures are tempered in the furnace under argon 

atmosphere at 1500 °C. The melt is cooled during 6h from 1500 °C to 660 °C. Excess alu-

minium is dissolved in diluted hydrochloric acid within 4-5 days. The reaction product 

consists of metallic shining, well-shaped crystals besides which transparent impurities are 

detected (Figure 3.3).  

 

 

 

  

 

 

 

                                            

                                        Figure 3.3: VB 2 crystals synthesized by Al flux. 
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Attempts for the synthesis of V3B4, V2B3 and V5B6 do not yield the desirable reaction 

products using the reaction route described above. For the synthesis of V3B4 and V2B3 

samples are maintained 12 h at 1500 °C, cooled at a rate of 5 K/min to 1100 °C. After sec-

ond soaking of 24 h at this temperature, the melt is slowly cooled during 10 h from 1100 

°C to 660 °C. For the synthesis of V5B6 the samples are heated for 6 h at 1500 °C, the melt 

is cooled at a rate of 5 K/min down to 1100 °C, maintained for 12 h at 1100 °C and finally 

cooled at a rate of 1 K/min down to 660 °C.  

3.1.2 Preparation of vanadium borides by arc-melting 

   The starting materials are vanadium powder, amorphous boron powder (purity grades: 

V─99.99 %; amorph. B─95 %, Mg max. 0.8 %). For the synthesis, the amount of vana-

dium is kept constant at 150 mg while the boron content is varied with desired 

composition. The components are thoroughly mixed and pressed into pellets which are 

melted on a copper hearth with a tungsten electrode. The sample pellets of about 1 cm in 

diameter and 0.3 mm in height are small enough to ensure that the entire sample is in the 

liquid state during arc-melting. The pellets are inverted and remelted to homogenize 

through whole sample. As will be discussed in the following section some samples contain 

mixtures of several phases. These are placed in evacuated and sealed Ta ampoules and an-

nealed for one week at 1500 °C after the arc-melting preparation in the same furnace as 

used for the Al flux synthesis.  

3.2 Characterization 

3.2.1 X-ray powder diffraction 

     For X-ray powder diffraction (XRPD) experiments the samples are finely ground in 

WC mortar which is damaged due to the extreme hardness of the materials. Phase analysis 

is performed on Guinier powder data (Huber G670 Image Plate Camera, CuKα1 radiation, 

λ = 1.54060 Å, graphite monochromator, 5° ≤  2θ ≤ 100°, Δ2θ = 0.005). Using WinCSD 

program package[114], the unit cell parameters are calculated from a least-square refinement 

where Si is used as internal standard (a = 5.430825(11) for λ = 1.54060 Å at 298.1 K).[115]  

Figure 3.4 shows the X-ray diffraction powder patterns of binary vanadium borides pre-

pared using both Al flux method as well as by arc-melting together with the calculated 

positions of the diffraction lines from the single-crystal refinements carried out in the pre-
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sent work except for that of V3B2 which is taken from Riabov et al.[31b] Tungsten carbide 

(WC) observed in the powder pattern of each compound, points to the extreme hardness of 

the materials.          

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Observed X-ray powder diffraction data and calculated diffraction peak's positions 
lines from single crystal refinement (red) for binary vanadium borides. In case of VB2 and VB, dif-
fractograms in the upper part and lower part show diffraction data of samples prepared using Al 
melt and by arc-melting, respectively. 
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    Sufficient non-overlapping powder diffraction lines are identified for the unit cell re-

finement for all six binary vanadium borides. A pseudo-Voigt function is chosen to 

describe the line shape of the diffraction peaks. Peak positions are corrected for peak 

asymmetry. The calculated lattice parameters and estimated standard deviations were aver-

aged on different samples. Table 3.2 summarizes the space group and the lattice 

parameters of all known binary vanadium borides according to X-ray powder diffraction 

results. The unit cell dimensions are generally in good agreement with previously pub-

lished data. The lattice parameters of VB, V3B4, V2B3 and VB2 obtained from powder X-

ray diffraction experiments are used for the respective single crystal refinements.  

Table 3.2: Lattice parameters of vanadium borides. 
 

Lattice parameters (Å) Compound Space 
group    This work References 

 

VB2 P6/mmm a = 2.9977(2) 
c = 3.0560(3) 

a = 2.998(1) 
c = 3.056(1) Spear et. al. [92a] 

V2B3 Cmcm 
a = 3.0660(3) 
b = 18.428(1) 
c = 2.9843(2) 

a = 3.0599(4) 
b = 18.429(2) 
c = 2.9839(4) 

Yu et. al.[31a] 

V3B4 Immm 
a = 2.9821(2) 
b = 3.0601(2) 
c = 13.2251(5) 

a = 2.981(1) 
b = 3.058(1) 
c = 13.220(4) 

Spear et. al. [92a] 

V5B6 Cmmm 
a = 2.9860(2) 
b = 21.260(4) 
c = 3.0645(6) 

a = 2.9773(2) 
b = 21.242(2) 
c = 3.0613(2) 

Bolmgren et. al.[116] 

VB Cmcm 
a = 3.0616(2) 
b = 8.0495(3) 
c = 2.9733(2) 

a = 3.060(3) 
b = 8.048(3) 
c = 2.972(1) 

Spear et. al. [92a] 

V3B2 P4/mbm a = 5.7437(6) 
c = 3.0324(5) 

a = 5.755(2) 
c = 3.038(2) Riabov et. al.[31b] 

 

Table 3.3 shows the variation of the reaction products synthesized using Al flux with re-

spect to the nominal composition in at. % based upon the XRPD analysis. VB2 crystals are 

isolated from the melt when atomic ratios B/V = 1.86-2.6 are used. It is possible to obtain 

single phase of V2B3 for the starting ratio B/V = 1.62 while V3B4 is observed in the reac-

tion product together with a small amount of VB when the starting ratios between B/V = 

1.1-1.18 are used.  
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Table 3.3: Strength of relative intensities of X-ray diffraction patters of vanadium borides synthe-
sized via Al flux: w = weak; m = medium; s = strong.  

Phases present  Nominal  
composition 

at.% B VB V5B6 V3B4 V2B3 VB2 

            40** s w    
            45 m  m   
            45.45* w w m   
            46* w w m   
            47 w  m   
            48 w  m   
            49 w  m   
            50 m  m   
            51 w  m w  

   52.38** w  s   
   52.83** w  s   
   53.27** w  s   

            53.70** w  s   
            54   m m  

       54.13**     s   
       54.55     m m  
       56    m w 
       57    m w 
       58.33    m  
       58.46**     w s  
       59    m m 
       60    w m 
       61.04**    s w 
       61.90**    s  
       62    w m 
       63         w s 
       65     s 
       66     s 
       66.67     s 
       68.75     s 
       69.70     s 
       70.59     s 
       71.43     s 
       72.22     s 

Reaction protocol for the samples: * 30 K/min up to 1500 °C, 6 h at 1500 °C, 5 K/min down to 
1100 °C, 12 h at 1100 °C, 1 K/min down to 660 °C; ** 30 K/min up to 1500 °C, 12 h at 1500 °C, 
5K/min down to 660 °C,  for all  other reactions:  30 K/min up to 1500 °C, 6 h at 1500°C, 10 
K/min down to 660 °C. 

The efforts for the synthesis of VB, V3B2 and V5B6 end up with a number of by-products 

belonging to the Al-V system. The diffraction lines for V3B2 do not appear in any end 
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products. Furthermore, V5B6 is detected only in few cases but only together with VB 

and/or V3B4. Possible explanation for the unobserved diffraction lines of V5B6 is the weak-

ness of the respective reflection intensities which have gone unnoticed as a result of peak 

overlapping.V3B2 phase is not observed in the samples synthesized by Al flux. The X-ray 

diffractograms indicate also the presence of AlV, AlV3, Al45V7 and Al4V23 in some sam-

ples together with a small amount of Al2O3, AlN. In general, the amount of these by-

products varies according to composition of the starting materials.  

Table 3.4 summarizes the experimental results based upon the XRPD analysis for sam-

ples synthesized by arc-melting. V3B2 phase is also detected in the reaction product 

together with VB.  

Table 3.4: Strength of relative intensities of phases present in the X-ray powder diffraction dia-
grams of samples synthesized by arc-melting: w = weak; m = medium; s = strong. 

Phases present Nominal 
composition 

at.% B V3B2 VB V5B6 V3B4 V2B3 VB2 

40 s m     
45 s m     
48 m m  s  s 
49  s  w   
50  s     
51  s     
52 w m m    
53 w m m    

54.55 w m m    
56 w m m    

57.14  w m m   
59  w w s  w 
60  w w m  w 
61    m w m 
62  m m m  s 
63  w w m  s 
64  w  w m s 
65  w  w m s 
66    w w s 

66.67     w s 
68      s 
69      s 

70.5      s 
71      s 

72.5      s 
73   s 

73.5   s 
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Only VB and VB2 can be obtained in nearly pure form using arc-melting. For all other 

cases additional vanadium borides are identified in the powder patterns. In those cases the 

powder lines are mostly overlapping, which complicates the identification of the phases.  

3.2.1.1 Homogeneity ranges 

Special attention is paid in the examination of the homogeneity ranges of vanadium bor-

ides since the reported investigations reveal that they supposed to be quite small if there 

exist any. Rudy et al. and Spear et al. observed only minor changes in sample compositi-

on.[92a, 92b] Figure 3.5 shows the lattice parameters of several VB2 samples with respect to 

the variation of B/V atomic ratios. The samples are synthesized by Al flux or arc-melting 

using crystalline or amorphous boron.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5: Cell volumes (Ǻ) and cell parameters (Ǻ) of VB 2 samples vs. B/V molar ratio. The er-
ror bars for e.s.ds for the cell volume are smaller than the square-shaped data points. 

 

Obviously, there are slight changes between the cell parameters of VB2 samples de-

pending on which synthesis method or starting material is used. Taking the anisotropic 
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nature of the crystal structure into account, as will be discussed later, different tendencies 

are expected when changes in both cell parameters a and c are compared. However, the 

small variations observed in the present case do not indicate such a clear trend, thus any 

significant variation of composition. 

A possible explanation for the slight changes between the cell parameters would be that 

the samples are not in equilibrium neither by arc-melting, nor by Al-flux preparation giving 

rise to small variations of the peak shapes of the respective reflections. Additional reasons 

can be the difficulty of reproducing samples with comparable crystallinity and / or struc-

tural changes like defects which are probably introduced during excessive grinding of very 

hard powders. It is worth to mention that X-ray single crystal refinement of VB2 structure 

also do indicate not any significant deviation from the ideal stoichiometry as will be re-

ported in subsection 3.4.1 

The investigation of the homogeneity range for VB does not reveal any significant 

change in cell parameters with respect to variation of the B/V atomic ratios (Figure 3.6). 

 

 

 

 

 

 

 

 

 

 

 

 
                     

Figure 3.6: Unit cell volumes (Ǻ3) and cell parameters (Ǻ) of VB samples vs. B/V atomic ratio. 
The error bars for e.s.ds for the cell volume are smaller than the square-shaped data points. 
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The homogeneity range examination of cell parameters for V2B3 and V3B4 is mostly 

hampered by the overlapping powder lines especially for the arc-melted samples. After the 

exclusion of these peaks there is not many left to draw any reliable conclusion. Therefore, 

cell parameters of these compounds are calculated considering the samples synthesized by 

Al flux method. Variation of nominal composition does not indicate any considerable 

change in the cell volume (Figure 3.7). 

 

 

 

 

 

 

 
 
 
 
Figure 3.7: Cell volumes (Ǻ) of V3B4 (left) and V2B3 (right) samples vs. B/V molar ratio. The error 
bars for e.s.ds for the cell volume are smaller than the square-shaped data points. 

 

Due to severe overlapping problems in case of arc-melted samples, several powder lines 

remained unresolved in the indexing process of V3B2 and V5B6. Unfortunately, the prod-

ucts precipitated from aluminium solution in the respective composition range end up with 

a number of by-products belonging to the Al-V system. These factors give rise to uncer-

tainties in estimation of accurate lattice parameters of V3B2 and V5B6.  

3.2.2 Microstructure analysis 

For metallographic investigations vanadium boride samples are mounted in conductive 

resin (PolyFast, Struers) suitable for analyses on a scanning electron microscope. Micro-

structure have been prepared by conventional, multi-step grinding and polishing processes 

with final polishing using 0.25 µm diamond powder and water based lubricant. Light opti-

cal microscopy (Axioplan2, Zeiss) as well as scanning electron microscopy (Philips XL30 

with LaB6 cathode, FEI) confirm the homogeneity of the microstructure. Wavelength dis-

persive X-ray spectroscopy analyses (WDXS) are performed with a Cameca SX100 

electron microprobe with tungsten cathode.  
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     Table 3.5 Atomic compositions of V-B alloys. 

Compound Nominal composition 
 

Composition detected by 
WDXS  

 at.% V at.% B at.% V at.% B 

V1.00(1)B0.99(1) 49 51 50.17 ±0.25       49.83 ±0.25 

V1.00(1)B0.99(1) 48 52 50.14 ±0.20       49.86 ±0.20 

V4.80(1)B6.05(1) 45.45 54.55 44.25 ± 0.16      55.75 ±0.16 

V2.96(1)B4.03(1) 44 56 42.36 ±0.17       57.64 ±0.17 

V1.94(1)B3.06(1) 40 60 38.74 ±0.29       61.26 ±0.29 

V0.98(1)B2.01(1) 33.33 66.66 32.54 ±0.11       67.46 ±0.12 

V0.98(1)B2.02(1) 31 69 32.50 ±0.25       67.50 ±0.25 

           

Investigations reveal not any significant deviation from the ideal stoichiometry for VB 

and VB2 whereas slight deviations are observed for V3B4 and V2B3 (Table 3.5). The largest 

deviation from ideal stoichiometry is observed for V5B6. The compositions of VB and VB2 

samples prepared both with excess boron as well as with excess vanadium are identical 

within the standard deviations. Thus, they do not indicate any significant homogeneity 

range. This is in line with the results obtained from XRPD. No additional elements besides 

vanadium and boron are found. Figure 3.8 shows SEM images of VB, V3B4, V2B3 and VB2 

crystals synthesized by Al flux method. The dimensions of the crystals are mostly below 

100 μm. In few cases, it is possible to grow larger crystals with ca. 1mm in length. 

 

 

 

 

 

 

 

 

Figure 3.8 SEM images of vanadium boride crystals synthesized by aluminium flux method. First 
row: VB (left) and V3B4 (right). Second row: V2B3 (left) and VB2 (right). 
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3.3 High resolution single crystal X-ray diffraction  

X-ray single crystal diffraction measurements up to high resolution are carried out for 

VB2, V2B3, V3B4 and VB crystals as depicted in Figure 3.9. The size of the V3B4 and VB 

crystals depicted are around 50 μm in length, while for VB2 and V2B3 even smaller crystals 

are used. For comparison also a larger crystal of VB2 is examined. The crystal structure 

investigations are performed at room temperature on a microfocus rotating anode diffrac-

tomer (100 μm), Ag Kα radiation λ = 0.56087 Ǻ, mirror optics and image plate detector in 

Weissenberg-type arrangement.  

Figure 3.9 Small VB2 crystal depicted in a). For comparison larger VB2 crystal shown in b) was 

investigated. A typical crystal of V2B3, V3B4 and VB is depicted in c), d) and e). 

 Severe absorption effects are remarkably reduced by the use of hard radiation. Quite 

high diffraction limits are achieved (Figure 3.10). The data sets are measured up to sin θ / λ 

= 1.72 Å-1 for VB2, V3B4 and V2B3.  

 

 

 

 

 

     

 

 

 

Figure 3.10 A typical diffraction image from small VB2 crystal depicted in Figure 3.9 a). 

a) c) b) d) e) 
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The data collection and evaluation information is given in Table 3.6. The overall com-

pleteness based on Laue symmetry is more than 97% for VB2, V3B4 and V2B3. A quite fair 

number of reflections are collected, high symmetry of the compounds notwithstanding. In 

general, R(int) which reflects the data quality increases with the amount of reflections along 

with the series VB2-VB-V3B4 and V2B3. The R(int) for the data set of the larger VB2 crystal 

is higher than that of the smaller VB2 crystal.  

Table 3.6 X-ray single crystal measurement data. 

* Also a larger crystal of VB2 (~50 μm) is measured. R(int) is simply the R-factor between the ampli-

tudes of Friedel pairs. 

3.4 Conventional IAM refinement  

In this section, the focus will be on data analysis and strategies of spherical refinement. 

Refinement steps are presented in order to get the best agreement between the observed 

and calculated structure factors prior to the introduction of a multipole model. A thermal 

diffuse scattering (TDS) correction is not carried out for the respective data sets. The rea-

son is that for the very hard materials such as vanadium borides the contribution of 

inelastic TDS to the total intensity is expected to be negligible.  

All conventional structure refinements are performed with the WinCSD software pro-

gram.[114] Least-squares refinements are performed by minimizing the difference between 

the observed (Fobs) and the calculated structure factors (Fcalc) since it gives a slightly better 

refinement results than if the model is refined against intensity (F2). Complete data set is 

used. The observations are weighted according to their counting statistical variances as 

 VB2 VB2* VB V3B4 V2B3 

Measured range -7 ≤ h ≤ 6; 

-9 ≤ k ≤ 8;  

-10 ≤ l ≤ 10 

-6 ≤ h ≤ 9;  

-8 ≤ k ≤ 10;  

-5 ≤ l ≤ 9 

-9 ≤ h ≤ 10; 

-26 ≤ k ≤ 25;  

-9 ≤ l ≤ 8 

-9 ≤ h ≤ 8; 

-9 ≤ k ≤ 8; 

-44 ≤ 1 ≤ 43 

-9 ≤ h ≤ 10; 

-59 ≤ k ≤ 61; 

-10 ≤ l ≤ 10 

2 θmax(°)  /  

(sin θmax) / λ (Å-1) 

149.37 /  
1.72 

149.37 / 
1.720 

138.22 /  
1.67 

153.44 / 
1.735 

150.75 /  
1.725 

No. of measured /  
unique reflections 

2109 / 246 1769 / 242 3270 / 774 5786 / 1343 11644 / 2049 

R(int) 0.0165 0.0221 0.0199 0.0194 0.0208 

Completeness (%) 98.8 97,6 94.6 98.2 97.1 
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given in equation 2.17 in Chapter 2. In case of all refinements, anisotropic extinction mod-

el reduces the R(F) value more than the isotropic approximation of extinction. In order to 

treat extinction anisotropically each reflection needs to be processed with its individual 

path length in the calculation. Accordingly, the unmerged data is used during conventional 

refinement. The scale factor is kept free throughout the refinement until the convergence is 

achieved. Table 3.7 gives the number of unique reflections and the refined parameters. As 

a rule of thumb, the reflection-to-parameter ratio should be at least ten. This condition is by 

far satisfied for all data sets. 

Table 3.7 IAM refinement details. 
       

 

 

 
  
 
               
    

       

3.4.1 Refinement of crystal structure VB2  

The refined parameters for VB2 are the scale factor, the displacement parameters of both 

atoms and finally two width parameters of a gaussian mosaic distribution for anisotropic 

extinction according to the Becker-Coppens formalism.[57] The refinement with isotropic 

description of the atomic displacement gives the R(F) value of 1.90% without accounting 

for extinction. Application of the anisotropic extinction model already reduces the R(F) to 

1.38%. At this stage the refinement of the occupancies of both atom positions indicates that 

there is not any deviation from the exact stoichiometry. On account of this, the occupancies 

are kept at unity throughout the refinement. From this step on, extinction and ADPs are 

refined separately. Introducing the anisotropic approximation of atomic displacement leads 

to a small reduction of the reliability factor (R(F) value droppes to 1.35%). The final 

achievement for the unmerged data is obtained applying the anharmonic description of the 

Compound No. of measured /  
unique reflections 

No. of refined  
Parameters 

VB2 (~20 μm) 2109 / 246 14 

VB2 (~50 μm) 1769 / 242 14 

VB 3270 / 774 24 

V3B4 5786/ 1343 31 

V2B3 11644 / 2049 35 
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atomic displacement for V and B up to the fourth tensor: R(F) droppes to 1.11%. Finally, at 

the last stage the data is merged (R(F) = 0.97%). 

A fundamental limitation on the accuracy of the measured intensities is that they are 

weaker at higher diffraction angles but possess information of equal importance as lower 

resolution. This explains why special care needs to be taken for the precision of these ob-

servables. Data analysis on the basis of the conventional spherical refinement after merging 

revealed that at the very high resolution the difference between the observed and calculated 

structure factors becomes pronounced. As shown in Figure 3.11 some observed structure 

factors are considerably smaller than the calculated ones at very high sin θ / λ. 

 

 

 

 

 

 

 

 

  

                                                                          a)             
 

 

 

 

 

 

 

                 

                                                                           b)                  

Figure 3.11 Fobs / F(calc) vs. sin θ / λ for unmerged (a) and merged (b) data according to IAM re-
finement. 
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As reflected in reliability factors R(F) values the difference between the observed and 

calculated structure factors arises suddenly at very high resolution (Figure 3.12). Since the 

scattering power is a function of the crystal volume the accuracy of weak reflections can be 

improved by using a larger crystal. However, the use of a larger crystal does not provide 

any significant improvement.  

 

 

 

    

 

 

 

 
Figure 3.12 Analysis of variance of R(F) for reflections employed in the spherical refinement of 
VB2.          

For weak reflections the uncertainty in the background correction contributes signifi-

cantly to the uncertainty of the final intensity. To increase the precision of the data 

measurement it is of great importance to spend the same time as well for measuring the 

background. In the particular case, however, increase of the measuring time does not have 

any reducing effect on R(F) values (Figure 3.12).  

The final attempt to reduce the deviation at very high diffraction angles is to vary the in-

tegration box size. The interval of integration depends on the primary beam divergence and 

its wave dispersion, on crystal mosaic block disorientation and on the scattering angle. Re-

flection integration limits are obtained by an analysis of the anisotropic variation and 

scattering angle dependence of peak widths based on principles of the convolution synthe-

sis of peak profiles.[117] Figure 3.13 shows the variation of R(F) values to different 

integration box size in the data range of sin θ / λ = 1.66 - 1.72 Å-1. It provides only minor 

improvement. Extinction correction does not provide any improvement since the corre-
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sponding resolution is certainly outside of the limit where extinction effects may be pro-

nounced. 

 

 

 

 

 

 

 

                                      

                               
                                          Figure 3.13 R(F)(%) vs. integration box size.          

A possible explanation for the sudden rise of R(F) at higher diffraction angles might be a 

systematical error caused by the sharp increase of reflection width due to the spatial inten-

sity distribution or angular divergence of the incident X-ray at high angles as analysed by 

Blessing.[118] Choosing the correct weights for those observations in the least square proce-

dure deserves serious consideration.[119] 

3.4.2 Refinement of crystal structures VB, V3B4 and V2B3 

 For the refinement of VB, V3B4 and V2B3 structures a similar refinement strategy is ap-

plied such as for VB2. The reliability factors R(F) which are obtained at different stages and 

the final convergence are summarized in Table 3.8. The R(F) values of the final convergence 

increase along with VB, V3B4 and V2B3. The final refinement is carried out on full occu-

pancy of all atomic positions since there is not any occupational disorder observed for any 

of the atom positions. These results are supported by XRPD experiments where no indica-

tion of any homogeneity range is found. Anisotropic extinction correction is applied after 

the introduction of isotropic description of ADPs and refined again separately from the 

ADPs during the following steps until the final convergence is achieved.  
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Table 3.8 R(F) (%) values at several steps of the refinement of VB, V3B4 and V2B3 structures. The 
final R(F) value is obtained after data merging. 

 

The influence of anharmonic contributions to R(F) has been investigated. The corre-

sponding anharmonicity values for each data set will be given in the subsection 3.6 

together with the crystal structure descriptions. The third-order anharmonic contribution 

yield values close to zero which is also well reflected in R(F) values where not any discern-

able change is present (Table 3.8). Accordingly, they are kept unrefined in order to reduce 

the number of refined parameters. The use of fourth-order model for metal leads to a con-

siderable reduction in R(F) whereas no substantial improvement is achieved for boron. Of 

course; the physical significance of the anharmonic approximation is certainly doubtful 

due to extreme hardness of the materials. It has to be emphasized that in presence of a few 

numbers of refineable positional parameters the systematic errors may rather choose to 

contribute to the ADPs. Furthermore, due to similar dependence of basis functions on scat-

tering vector components the anharmonic description of thermal motion is remarkably 

successful in representing bonding effects in valence charge density.[120] Reliable informa-

tion about anharmonicity has to be obtained from temperature dependent diffraction 

experiments and complemented with results from independent analysis by IR and Raman 

spectroscopy or ab-initio calculations of vibrational properties.[121] In harmonic models the 

mean-square amplitudes measured at high temperatures are extrapolated to zero at 0 K. 

Deviations from zero mean-square amplitudes at zero K is an indication of anharmonicity. 

As also observed by VB2 discrepancy between the observed and calculated structure 

factors at high diffraction angles becomes pronounced. The number of such reflections in-

creased along the series VB-V3B4-V2B3 and extended to lower resolutions (Figure 3.14). 

 

Compound Isotropic 
description 
of ADPs 

Anis. 
 extinction 
correction 

Anis.  
description 
of ADPs 

Anharm. 
description 
of ADPs 
(3rd rank) 

Anharm. 
description 
of ADPs  
(4th rank) 

Final R(F) 
 

VB 2.30 1.56 1.50 1.50 1.34 1.23 

V3B4 2.51 2.33 2.07 2.07 1.90 1.86 

V2B3 2.80 2.25 2.22 2.22 1.85 1.76 



                                                                                                                                                                                     

3   Synthesis, Characterization and Crystal Structure of Vanadium Borides 

 

 59

 

 

 

 

                                  
 
 
                    
                                                                         a)                               

 

                   
              
 
 
 
 
 
 

 
 
                                                                         b) 
                 
             
               
 
 
 
 
 
 
 
 
         
              
                                                                               c) 
                Figure 3.14 Fobs / F(calc) vs. sin θ / λ for VB in a), for V3B4 in b) and for V2B3 in c). 

The number of most rejected outlier reflections (Fobs / Fcalc < 0.5 or Fobs / Fcalc > 1.50) are 

16, 47, and 70 for VB, V3B4 and V2B3. These are detected in the range of sin θ / λ = 0.8-

1.72. The final convergence by the refinement of V3B4 and V2B3 is achieved by excluding 

the respective outliers. 
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3.5 Crystal structures of vanadium borides 

In this section, a detailed description for the structural models of vanadium borides are 

given obtained by the spherical refinement of the single crystal X-ray diffraction data. 

3.5.1 Crystal structure of VB2 

In the VB2 structure the fundamental units are trigonal prism of the metal atoms with a 

boron atom at the center as shown in Figure 3.15. VB2 is like all other AlB2-type structures 

the ultimate structure obtainable where all metal atoms form trigonal prisms. The prisms 

extend parallel to the [001] axis and are packed together so as to share the faces. The trian-

gular faces of the prisms are parallel to the (001) planes. The structure can be described 

from another point of view as following: Both metal and boron atoms form layers which 

have hexagonal close-packed arrangement. In that respect, each metal atom has six equi-

distant neighbours in the (001) plane and two neighbours located above and below (001) 

plane at slightly larger distance. Accordingly, the space to accommodate vanadium atoms 

above and below the hexagonal network is larger. Vanadium atoms form a simple hexago-

nal lattice having an axial ratio deviating slightly from unity. The boron atoms which are 

located in between metal sheets have three close neighbours in the plane. The trigonal 

prisms of vanadium atoms are arranged in such a way that the boron atoms form hexagonal 

nets. Accordingly, VB2 is the first type among known binary vanadium borides where a 

discernible extended boron lattice occurs.  

 

 

 

 

 
  
 

a)                                                                            b) 
 
 Figure 3.15 Interatomic distances (Å) in VB2. a) The view is perpendicular to the B-atom plane. 
(b) The view is perpendicular to the B-atom plane.  
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 The ADPs of VB2 indicates that the movement of the metal atoms are more restricted 

in all three directions compared to boron atoms as shown in Table 3.9. Detailed investiga-

tions on the isostructural phases TiB2
[122]

 and MgB2
[21f] reveal that the displacement 

parameters for the metal position is smaller than that for the boron position while for 

AlB2
130 it is the other way around. It is clear from Figure 3.15 that the space for the ac-

commodation of vanadium atom along the [001] direction is slightly larger than in other 

directions, which in turn provides more freedom of movement for vanadium atoms along 

that direction compared to in plane. Similarly, boron atoms also vibrate more easily along 

the [001] direction. However, the corresponding difference between B11 and B33 is signifi-

cantly larger than that between vanadium atoms indicating that existing forces between 

boron atoms in B-plane is presumably stronger. 

 

Table 3.9 Atomic positions and anisotropic ADPs in the crystal structure of VB2. 

     Atom x/a y/b z/c B(eq)*  B11 B22 B33 B12 

V 0 0 0 0.152(2) 0.115(3) B11 0.155(4) ½ B11 
 B 1/3 2/3 ½ 0.261(7) 0.185(8) B11 0.320(8) ½ B11 

  *B(eq) = 1/3[B11 a*2 a2 + … 2 B23 b* c* b c cos α] 

     As already described by the refinement procedure, introduction of the anharmonic de-

scription of the fourth tensor to the ADPs leads to a considerable reduction of the R(F). 

Owing to the symmetry restrictions third order anharmonic parameters of only boron dif-

fers from zero. However, the R(F) does not change at all after refining these parameters 

since their absolute values are insignificantly small. Accordingly, they are kept fixed 

throughout the refinement. Introducing the anharmonic description of the fourth order 

yields reasonable values for vanadium atoms while the corresponding standard deviations 

of boron atoms turns out to be relatively larger; therefore B atom is refined only anisot-

ropically (Table 3.10). 

 
Table 3.10 Anharmonic ADPs (Å4) in the crystal structure of VB2. 

Atom D1111 D3333 D1133 

V -3.9(2) -1.6(1) -0.76(6) 
 

B kept fixed 
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3.5.2 Crystal structure of VB 

The VB is a representative of TlI structure type. For other metal monoboride representa-

tives of this structure type, the crystal structures are mostly not determined, but only the 

structure type is assigned and unit cell parameters are refined except for CrB.[123] The crys-

tal structure is based on double metal layers containing BV6 prisms. These metal layers are 

stacked with the triangular prism faces in common and are shifted one half of the prism 

axis. The rectangular face of this trigonal prism is also the base of a pyramid. The apex of 

the pyramide is a part of neighbouring trigonal prism. The BV6 prisms form columns by 

sharing rectangular faces and extend along the [001] direction. Each BV6 prism includes 

one boron atom. They form zig-zag chains also extending along the [001] direction as 

shown in Figure 3.16.  

 

 

 

 

                                                                            

                                                                          a) 

  
 
 
 
 
 
 
 
 
 
 
 
 

b)                                                                               c) 
      
Figure 3.16 Interatomic distances (Å) in the crystal structure of VB. a) V–V distances. The view is 
parallel to the B–B zig-zag chain. b) B–V distances. The view is the same as in a). c) B–B dis-
tances. The view is perpendicular to the B–B zig-zag chain. 
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 The trigonal prisms formed by vanadium atoms are distorted. There are two different 

V–V distances in (100) metal plane; one is drawn in gray, the other one in red (Figure 

3.16). The vanadium atoms connected by the gray line have a shorter distance (~2.24 Å) to 

the boron atom sitting in the trigonal prism compared to the other B–V distance (~2.28 Å) 

drawn in blue. In other words, the position of the boron atom is shifted from the center of 

the trigonal prism near to the base of rectangular pyramide. Consequently, the boron atom 

is not placed exactly at the center of the trigonal prism. Accordingly, the bond angle of the 

B–B chain is reduced as compared to that in boron network in VB2. 

Table 3.11   Atomic positions and anisotropic ADPs (Å2) of VB.  

Atom x/a y/b z/c B(eq) * B11 B22 B33 

V 0 0.14749(1) 0.25 0.134(2) 0.140(4) 0.122(4) 0.139(4)
 

B 0 0.43767(6) 0.25 0.2785(5) 0.301(8) 0.292(9) 0.262(8)

   *B(eq) = 1/3[B11 a*2 a2 + … 2 B23 b* c* b c cos α] 

The ADPs of VB indicate that the movement of the metal is more restricted in all three 

directions in comparison to boron as also observed by VB2 (Table 3.11). However, the ani-

sotropy is less pronounced. As shown in Figure 3.16 vanadium atoms have closer distances 

in rectangular pyramids along [010] direction which is also reflected in the relatively 

smaller ADP in the same direction. The displacement of boron atoms along the B−B zig-

zag chain is smaller than in other directions. Similar situation is observed by borons in VB2 

which displacement in B-network is also considerably smaller. This is presumably due to 

the strong forces existing between boron atoms in planes or along chains, which in turn 

restrict their movement in the corresponding directions.  

 Third-order anharmonic parameters for both atoms positions are close to zero. There-

fore, only fourth order parameters are refined within the anharmonic description (Table 

3.12). The fourth-order ADPs for the boron positions are smaller than their error estimates. 

Therefore, the displacement of boron is described only in harmonic motion.  

Table 3.12 Anharmonic ADPs (Å4) of in the crystal structure of VB. 

Atom D1111 D2222 D3333 D1122 D1133 D2233 

V -1.6(1) – -1.5(1) – -0.46(4) –– 
 

B kept fixed 
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3.5.3 Crystal structure of V3B4 

The V3B4 is a representative of Ta3B4 structure type. The crystal structure can be de-

scribed as a combination of trigonal prism units and rectangular pyramids built by 

vanadium atoms similar to VB. In this structure type, the boron atoms of different chains 

are closer to each other, thus forming a double chain (Figure 3.17). There are two inequiva-

lent boron positions. B2 atom is more responsible for the formation of the zig-zag chain, 

whereas B1 is linking both chains. Also two inequivalent positions exist for vanadium at-

oms: V1 is located below and above the boron double chain; V2 is sitting at the corner of 

the rectangular base of the rectangular pyramids.  

 

 

 

                                                   
                                                          a) 

 

 

 

                                                          b) 
 

 

 

                                       
                    
                                                                          
                                                                            c) 
 
  Figure 3.17: Interatomic distances (Å) in the crystal structure of V3B4. a) V–V distances. The 
view is parallel to the B–B zig-zag double chain. b) B–V distances. The view is the same as in a). 
c) B–B distances. The view is perpendicular to the B–B zig-zag double chain. 
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The shortest V−V interatomic distance which is drawn in dark green is ~2.70 Å (Figure 

3.17). The respective interatomic line connects the metal layers which are shifted along 

[100] direction. The trigonal prisms are distorted. The boron atoms which are sitting inside 

are located closer to the vanadium atoms which form the base of the rectangular pyramids. 

As a result, the boron double chains are slightly compressed along [010] axis as observed 

by the boron zig-zag chain of VB. The bond angle is smaller than 120º. 

 Kiessling claimed that the B1−B1 distances in isostructural Ta3B4, Cb3B4, Mn3B4 and 

Cr3B4 compounds are shorter (1.45-1.55 Å) than the characteristic bond lengths (1.73-1.8 

Å).[25b, 124] These values are considerably shorter than any B−B distance previously re-

ported. He concluded that these short distances are indication of B−B double bonds since 

the double bond radius for boron is 0.76 Å according to Pauling.[125] It has been asserted by 

several authors that this short B−B distance is also present in V3B4. In all these studies, the 

structure determination is based only on assigning the structure type and the refining unit 

cell parameters.[32, 126] In contrary, Elfstrom claimed that in Cr3B4 no such abnormally short 

B−B distances exist.[127] The complete structure determination in the present work reveal 

that the corresponding distances in V3B4 are not remarkably shorter; they are similar to the 

characteristic B−B bond length. 

 
 
 Table 3.13 Atomic positions and anisotropic ADPs (Å2) in the crystal structure of V3B4. 

  *B(eq) = 1/3[B11 a*2 a2 + … 2 B23 b* c* b c cos α] 

 

Table 3.13 summarizes the atomic positions and the ADPs in V3B4. In general, the dis-

placement of both vanadium atoms is more restricted along [100] axis in contrary to those 

observed in VB and VB2. V1 atom which is located in the middle of the double chain has 

less displacement than V2 atoms forming the rectangular pyramids along the [010] axis. 

The displacement of B atoms is closer to each other in all directions. There is not any con-

       Atom x/a y/b z/c B(eq)  B11 B22 B33 

V(1) 0 0 0 0.123(3) 0.096(5) 0.136(4) 0.137(4) 

V(2) 1/2 0 0.31250(1) 0.130(2) 0.094(3) 0.163(3) 0.133(3) 

B(1) 0 0 0.43441(4) 0.270(7) 0.26(1) 0.28(1) 0.27(1) 
 

B(2) 1/2 0 0.13641(4) 0.296(7) 0.29(1) 0.29(1) 0.31(1) 
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siderable reduction of displacement in the (100) boron layer in neither [010], nor [001] di-

rection in contrary to the ADPs of borons in VB and VB2 which show variations in 

different directions. 

Only fourth-order parameters are refined within the anharmonic description of the ADPs 

since third order anharmonic parameters for both atoms positions are close to zero (Table 

3.14).  The D3333 for both V atoms is also not refined according to the same reason. The 

fourth order ADPs for both boron positions are ignored due to high standard deviations.  

Table 3.14   Anharmonic ADPs (Å4) in the crystal structure of V3B4. 
 

 

 

 

3.5.4 Crystal structure of V2B3 

Similar to other vanadium borides previously described, the V2B3 structure consists of 

trigonal prism units and rectangular pyramids formed by vanadium atoms (Figure 3.18). 

The atom distances are in agreement with previously published data.[31a] Boron atoms are 

sitting in trigonal prisms formed by vanadium atoms and form the triple chains which are 

extending along the [001] axis. The boron layers are shifted along [100] with respect to 

each other. There are three inequivalent boron atom positions; B3 is responsible for the 

formation of the zig-zag chain more analogous to VB, a second one B1 analogous to VB2. 

The third boron atom is linking two different motifs. There are two vanadium positions: 

first one V1 is situated below and above the boron double triple chain; second one V2 is 

located at the base corners of the rectangular pyramid. There are two types of trigonal 

prisms: one is formed only by V1 atoms; second one consists of both types of vanadium 

atoms. Both trigonal prism types are distorted whereas the volume of the trigonal prism 

unit formed only by V1 atoms is larger. B2 and B3 atoms are shifted from the center of the 

trigonal prisms near to the base of the rectangular pyramide. As a result, the boron triple 

chain is compressed along the [001] axis, as also observed by VB and V3B4. B(1) is also 

Atom D1111 D2222 D1122 D1133 D2233 

  V1 -2.1(4) -2.0(3) -0.7(1) – – 
   V2 -2.0(3) 1.0(2) -0.5(1) – – 

 B1-B2 kept fixed 
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not sitting exact at the center of the trigonal prism formed by V1 and V2 atoms. However, 

the position away from the middle point of the prism is relatively less in comparison to 

other borons.  

 

 

 

 

 

                                                               a) 

 

 

 
                                                 

                                                                

                                                               b) 

 

 

 

 

 
 
 
 

 
 
                                                                     c) 
 
Figure 3.18 Interatomic distances (Å) in the crystal structure of V2B3. a) V-V distances. The view 
is parallel to the B-B zig-zag triple chain). b) The B-V distances. The view is parallel to the plane 
as shown in a). c) The B-B distances. The view is perpendicular to the B-B zig-zag triple chain. 
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Table 3.15 summarizes the atomic positions and the ADPs of V2B3. Obviously, V1 dis-

places more easily in the (100) metal plane in contrary to the vanadium atom in VB2 which 

movement is relatively more restricted in corresponding directions. For V2 the displace-

ment along [010] is relatively smaller indicating the restriction of motion in the respective 

direction for those vanadium atoms forming the rectangular pyramide as also observed by 

VB. The displacement of B1 and B2 are relatively more restricted along [010] and [001] 

axis whereas for B3 the most noticeable reduction in the vibration is along [001] direction.  

 

 Table 3.15   Atomic positions and anisotropic ADPs (Å2) in the crystal structure of V2B3. 
 

 
 
 
 
 
 
 
 
 
 

  *B(eq) = 1/3[B11 a*2 a2 + … 2 B23 b* c* b c cos α] 

 

 Refining the third order anharmonic ADPs yields values near zero. Hence, only fourth 

order parameters are refined within the anharmonic description (Table 3.16). The D2222 for 

both V atoms is also not refined according to the same reason. The fourth order ADPs for 

both boron positions yield very high standard deviations. Accordingly, they are also not 

included in the model. 

 Table 3.16   Anharmonic ADPs (Å4) in the crystal structure of V2B3. 

 
 
 
 

 Atom x/a y/b z/c B(eq) * B11 B22 B33 

   V(1) 0 0.42934(1) ¼ 0.135(2) 0.126(3) 0.133(3) 0.148(3) 

   V(2) 0 0.70499(1) ¼ 0.126(2) 0.126(3) 0.111(3) 0.141(3) 

   B(1) 0 0.02356(2) ¼ 0.255(5) 0.306(9) 0.220(9) 0.239(8) 

   B(2) 0 0.11769(2) ¼ 0.257(5) 0.307(9) 0.216(9) 0.248(8) 

   B(3) 0 0.83125(2) ¼ 0.281(5) 0.297(9) 0.296(9) 0.248(8) 

Atom D1111 D3333 D1122 D1133 D2233 

         V1 -2.5(1) -1.9(1) – -0.9(1) – 

          V2 -1.9(1) 1.7(1) – -0.7(1) – 

  B1-B2-B3 kept fixed 
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3.6 Similarities between the crystal structures of vanadium borides  

The structural analysis of the vanadium borides based on IAM refinement verifies that 

there are slight variations in the resembling atomic arrangements of different vanadium 

borides. As also stated in previous sections the boron atoms in VB, V3B4 and V2B3 are 

shifted from the centers of the trigonal prisms which induces slight differences in B−B an-

gles and distances.  

 
Table 3.17 Geometric parameters in vanadium borides. d(B–B) is the B–B interatomic distance 
whereas α is the angle formed by boron atoms along the respective zig-zag chains. The bond angle 
of the central zig-zag chain is denoted by an asterisk. The volumes (V) of vanadium-trigonal prism 
units are also given for a comparison reason.  

 

 

 

 

 

 

A comparison between B−B distances and angles in VB2, V3B4, V2B3 and VB structures 

is given in Table 3.17. In general, B−B distances tend to decrease with increasing boron 

content. Conversely, the B−B bond angles tend to decrease with decreasing boron content. 

The volume of the vanadium-trigonal prism units increases towards higher borides. The 

shortest B−B distance is found in V2B3 which seems to be very close to that in VB2. V3B4 

has two B−B distances: The larger one is very similar to that in VB whereas the shorter 

one is close to the B−B distances both in VB2 and in the central zig-zag chain of V2B3.  

 

 

 d(B–B) (Å) α (°) V (Å3) 

VB2 1.7307(2) 120.00 11.891 

V2B3 

    1.7278(8) 

1.7371(7) 

1.7657(4) 

            119.73(3) * 

115.50(3) 

 

11.917 

11.344 

V3B4 
    1.7341(6) 

1.7942(3) 

117.04(2) 

 
11.315 

VB 1.7939(4) 111.99(3) 10.807 
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3.7 Summary 

Single crystals of vanadium boride are synthesized by both Al flux method and arc-

melting. According to X-ray powder diffraction results, VB2 and V2B3 phases can be ob-

tained nearly in pure from the Al melt whereas arc melting synthesis allows preparation of 

VB and VB2 crystals as single phase. The efforts for the synthesis of other vanadium bor-

ides end up mostly with a number of by-products belonging to the Al-V system and / or 

additional vanadium borides. In those cases, the powder lines are mostly overlapping 

which in turn complicates the identification of the respective phases. Careful investigations 

about the homogeneity range using X-ray powder diffraction in accordance with WDXS 

ensure that there is not any clear indication of a deviation from ideal stoichiometry for VB2 

and VB which is also supported by the single crystal refinement. On the other hand, the 

homogeneity range examination of other vanadium borides is mostly hampered due to the 

overlapping X-ray powder diffraction lines.  

High resolution X-ray single crystal diffraction measurements are carried out for VB2, 

V2B3, V3B4 and VB crystals. The IAM refinements yield quite small reliability factors R(F). 

Data analysis after the conventional refinement reveals that the difference between the ob-

served and calculated structure factors arises suddenly at very high resolution. Varying of 

the integration box size does not provide any improvement. Accordingly, the most dis-

agreeable reflections in data sets of V3B4 and V2B3 are excluded in the refinement.  

Crystal structures of the respective vanadium borides are discussed in light of the IAM   

refinement. Several fragments of different vanadium boride structures exhibit correlations 

in their geometric parameters. These are well reflected in B−B distances and angles, in par-

ticular. A closer inspection of the respective electronic structures via charge density 

analysis is expected to reflect these structural features.  
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4 ELECTRON DENSITY IN VB2 

In this section, first a procedure for the multipole refinement of VB2 structure is out-

lined. A topological analysis of the reconstructed ED is carried out based on Bader's 

QTAIM. Investigations are focused on the B−B and B−V interactions, in particular. Fur-

thermore, a comparison between experiment and theory is given. All the multipole 

refinements carried out in this thesis are performed with WinCSD program package.[114] 

The ED is reconstructed with WinXPRO program.[128] For testing the results residual densi-

ties were calculated using XD2006 program package.[129] 

4.1 Multipole refinement 

The results of the Independent atom model (IAM) refinement suggest that VB2 is a rela-

tively good candidate for a charge density analysis compared to other vanadium borides 

according to the lower residual factor R(F) obtained. This structure also offers another ad-

vantage in terms of the relatively low number of the multipole parameters to be refined due 

to its higher symmetry. In addition to the conventional IAM parameters, two valence, five 

multipole and four expansion and contraction (two for each atom) parameters have to be 

refined in the framework of the multipole formalism.  

The V and B atoms have site symmetry 6/mmm and 6 2m , respectively. Therefore, the 

multipole expansion is terminated at the hexadecapole level for each atom. The contribut-

ing multipoles for V atoms are Pv, P20 and P40. For B atoms, Pv, P20 P33- and P40 are 

allowed by symmetry. The core and valence EDs are constructed by the Hartree-Fock 

wavefunctions taken from Clementi and Roetti.[130] The respective radial-function parame-

ters n2 = 2, n4 = 4 and Vζ = 4.4 for V and n2 = 2, n3 = 3, n4 = 4 and Bζ = 2.53 for B have been 

used. 

Prior to the multipole refinement all parameters used in the spherical model are fixed. In 

the multipole model 4s2, 3d3 and 2s2, 2p1 scattering contributions are included in the va-

lence functions for V and B, respectively. This gives electron populations Pv of 5 e- for V 

and 3 e- for B as starting values. First, only displacement parameters and the scale factor 

are refined using all data keeping Pv parameters fixed (R(F) = 0.94%). After this, the Pv pa-

rameters are refined for both atom positions using low order data up to (sin θ / λ) ≤ 0.8 Å-1 
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keeping κ , κ′  and all multipole parameters fixed. The same statistical weighting scheme 

(w = 1 / σ2F) is used as in the IAM refinement. The electron populations for both atoms 

indicate that there is charge transfer from vanadium to boron. The electroneutrality condi-

tion is imposed for the unit cell. The Plm± parameters together with κ and κ′  are refined 

using (sin θ / λ) ≤ 0.8 Å-1. Subsequently, they are fixed and the Pv parameters and the ther-

mal parameters are refined step by step using the same part of the data set as before. Such a 

procedure is repeated several times until the final convergence is achieved. The R(F) value 

for the whole data set droppes to 0.74%. The multipole refinement at this stage gives the 

final model which is used for reconstruction of the ED. The multipole, expansion and con-

traction parameters are summarized in Table 4.1. 

                         Table 4.1 Multipole, expansion and contraction parameters of VB2. 

 V (in 6/mmm) B (in 6 2m ) 

Pv 4.706 3.147 

P20 0.024(2) 0.002(2) 

P33- ─ 0.229(2) 

P40 -0.015(2) -0.093(2) 

κ  0.984(2) 0.986(2) 

κ′  1.258(2) 0.808(2) 

The use of multipole model instead of spherical treatment of atoms reduce the R(F) value 

from 0.47% to 0.36% for the first 35 low order reflections up to (sin θ / λ)  ≤ 0.8 Å-1. Fig-

ure 4.1 demonstrates this improvement in the fit by the ratio of observed and calculated 

structure factors Fobs / F(calc) as a function of (sin θ / λ). 

 

 

 

 

 

 

  

            
            Figure 4.1 Fobs / Fcalc vs. sin θ / λ after conventional (red) and multipole (blue) refinement. 
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Figure 4.2 shows density residuals with the max. and min. values of 0.643 / -0.114 in 

the vicinity of boron atom and in the B−B internuclear region after the IAM refinement. 

The use of multipole model instead provides a featureless residual density map with the 

max. and min. values of 0.067 / -0.058. 

 

 

 

 

 

 

 
 
Figure 4.2 Residual density distribution in B-atom plane after IAM (left) and multipole (right) 
refinement; data cut-off at sin θ/λ=0.9 Å-1; contour level step width: 0.05 eÅ-3. Solid red and 
dashed blue lines correspond to positive and negative values, respectively, whereas solid black 
line is the zero contour. 

The use of the multipole model instead of simple spherical atoms induced some changes 

in the ADPs of both vanadium and boron atoms. The harmonic room-temperature ampli-

tude of the V-atom displacement along [001] and in the (001) plane is reduced whereas 

those of the boron atoms in the same directions are increased (Table 4.2).   

 
 
Table 4.2 The harmonic (Å2) and anharmonic (Å4) ADPs due to IAM and multipole refinement. 

  B(eq) * B11 B33 D1111 D3333 D1133 

V 0.152(2) 0.115(3) 0.155(4) -3.9(2) -1.6(1) -0.8(1) IAM 

Refinement 
B 0.261(4) 0.185(4) 0.320(8)                            kept fixed 

V 0.129(2) 0.095(3) 0.125(4) -4.2(2) -2.1(1) -0.9(1) Multipole  
Refinement B 0.271(4) 0.193(4) 0.332(8)                            kept fixed 

* B(eq) = 1/3[B11 a*2 a2 + … 2 B23 b* c* b c cos α] 

 



                                                                                                                                                                                     

4   Electron Density in VB2 

 

 74

B

B

B

B

B

B

B

B

V

B B

B B

V

V

VV

V

B B

B

B

V

V

V

V

4.2 Topological analysis of the electron density in VB2 

Figure 4.3 shows the total ED for VB2 in some selected planes reconstructed from ex-

periment as well as from theoretical calculations for a comparison reason.  

 

                                                               Ι                                        ΙΙ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 4.3 The total ED maps for VB2 in planes as shown: (Ι) reconstructed from the X-ray data, 
(ΙΙ) calculated by DFT method. The isoline interval is 0.05 e Å-3. 
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The topological features of the reconstructed total ED are in markedly good agreement 

with the results of the quantum chemical calculations (Figure 4.3). However, it should be 

considered that the total ED values are dominated, particularly, from those in the core re-

gion so that the values in the bonding regions are much smaller. This underlines the 

necessity of a close inspection of the density based properties like the Laplacian, bond 

paths, critical points (cp) and also deformation densities in order to have better understand-

ing of the chemical bond.  

Table 4.3 indicates that all of the cp types are present in the ED of VB2. Some of their 

positions are restricted by the space group symmetry.  The number of the different cp types 

fulfills the Poincare-Hopf condition.[131] No non-nuclear attractors were found.  

 
Table 4.3 Topological characteristics of the critical points determined from reconstructed experi-
mental data and theoretical calculations. Theoretical values are denoted by an asterisk. 

 

Comparison of the ED at cps both from experiment and theory reveal that the same 

number and type of critical points are obtained. There are only minor quantitative differ-

ences in ED values at critical points. Experimental topological descriptors agree with the 

values of theory by ±0.08 e Å-3 for ρ(rcp) and ±1.4 e Å-5 for ∇2ρ(rcp). 

Wyckoff notation and  
position of cp 

-3
cp(r )(e Å )ρ 2 5

cp(r )(e Å )−∇ ρ

 

5
1(e Å )λ −

 

5
2 (e Å )λ −

 

5
3 (e Å )λ −

 

Type 
of cp 

3g (0.5,0.5,0.5) 0.812 -3.098 -3.285 -1.897 2.082 3, -1 

3g (0.5,0.5,0.5)* 0.831         -4.480 -3.12 -2.757 1.395 3, -1 

12o (0.823, 0.177, 0.240) 0.364 2.953 -1.029 -0.101 4.085 3, -1 

12o (0.832, 0.168, 0.261)* 0.393 2.299 -1.072 -0.195 3.567 3, -1 

12n (0, 0.692, 0.243) 0.364 2.744 -0.964 0.118 3.591 3, +1 

12n (0,0.712.0.268)* 0.384 2.430 -1.027 0.183 3.273 3, +1 

3f (0, 0.5, 0) 0.232 1.050 -0.130 0.552 0.629 3, +1 

3f (0, 0.5, 0)* 0.220 1.048 -0.065 0.523 0.593 3, +1 

2c (0.333, 0.667, 0) 0.213 1.168  0.150 0.150 0.870 3, +3 

2c (0.333, 0.667, 0)* 0.211 0.954  0.072 0.072 0.809 3, +3 

1b (0,0,0.5) 0.124 1.732  0.465 0.465 0.802 3, +3 

1b (0,0,0.5)* 0.206 1.424  0.547 0.547 0.330 3, +3 
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4.2.1 The B−B interaction 

The examination of the principle curvatures of ED at critical points provides valuable in-

formation about atomic interactions. Topological analysis of ED indicates a bcp between 

boron atoms in VB2 (Figure 4.4). At the bond critical point (bcp) the principal curvature 

along the bond path λ3 is positive and reaches its minimum. The axis of this single positive 

curvature is perpendicular to the plane defined by the respective axes of the remaining two 

negative curvatures λ1 and λ2. The ED is a maximum at bcp in this plane. The sum of the 

principle curvatures of ED at this bcp is negative, clearly indicating the concentration of 

the ED in the boron internuclear region (Table 4.4). Such a situation is typical for covalent 

bonds.  

Figure 4.4 shows the deformation ED and the gradient field ∇ρ(r) of ED in the boron 

network plane together with the B–B bond paths. The bond paths are coincident with the 

interatomic lines due to the high local symmetry of atomic position. The DD map on the 

same plane reveals that the ED is predominantly accumulated in the B–B interatomic re-

gion. 

 

 

 

 

 
 
 
                                    a)                                                                         b) 
Figure 4.4 a) The ∇ρ(r) field of the ED in the B–atom plane in VB2. The B–B bond paths are 
drawn in red. The bond critical points are denoted by circles. b) The deformation ED map (left) in 
the same plane. The isoline interval is 0.02 e a.u.-3.  

 Some other selected properties of B–B bond are given in Table 4.4. An important quan-

tity which is in relation with the principle curvatures of the ED is the ratio of largest 

perpendicular contraction at the bcp λ1 and the parallel contraction towards the nuclei λ3. 

|λ1| / λ3 ratio is a measure for the bond strength for homoatomic interactions. If λ1 domi-
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nates, the ED is locally concentrated in the region of the bond critical point. If the positive 

curvature (λ3) dominates, ED is concentrated separately in each atomic basin. In the pre-

sent case, both the theoretical and experimental |λ1| / λ3 ratio is larger than unity indicating 

a strong B−B interaction in the boron network. 

Table 4.4 Topological properties of B−B bond critical point in VB2 determined from the recon-

structed experimental (first row) and theoretically calculated (second row) ED. 
 
 
 
 
 
 
 

 
 

A commonly used topological index of a bcp is the ellipticity which is the ratio of its 

negative curvatures along the axes perpendicular to the bond path (ε = λ1/λ2 – 1). Values 

above zero indicate deviations from cylindrical symmetry of the bond. Experimentally de-

termined ellipticity value at B–B bcp is significantly larger than the theoretical one. The 

elliptical nature of the B–B bonds may indicate relevant π-density contributions to the 

bond. The topology of DD in Figure 4.5 explicitly confirms the deviation from the cylin-

drical symmetry of B–B bond. The isolines of ED are elongated along the [001] direction.  

 

 

 

 

 

 

 

 

                                          a)                                                                              b) 
Figure 4.5 a) Deformation electron densities in VB2 a) in (110)  plane; (b) in (100) plane. The iso-
line interval is 0.02 e a.u.-3 

 ρ (rb) 
(e Å-3)

2ρ (rb) 
   (e Å-5) 

λ1 

(e Å-5)
λ2 

(e Å-5)
λ3 

(e Å-5)
ε(rb) |λ1| / λ3 

Exp. 0.812 -3.098 -3.285 -1.897 2.082 0.731 1.58 

Theory 0.823   -3.856 -2.91 -2.554 1.591 0.140 1.83 
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 The distribution of ED Laplacian 2ρ∇ (r), as a second derivative function, is capable of 

analysing fine details in the topology of ED. According to both theory and experiment 

there are two minimas along B–B bond path as shown in Figure 4.6. These are originating 

from two valence shell charge concentrations in the B–B interatomic region. Experimental   

results indicate that the curve is more contracted in the valence region in comparison to 

theory indicating that the valence shell is more pronounced. 

 

   

 

 

 

 

 

 

 
Figure 4.6 Laplacian distribution L(r) = –∇2ρ(r) along B–B bond path. The bcp is located at a 
distance of 0.875 Å from both B-atoms (at 0 Å and 1.7499 Å, respectively) exactly in the middle of 
the bond path. The non-continuous behaviour of the theoretical values is an artefact originating 
from the APW basis set used for the theoretical calculation. 
  
 

4.2.2 The B−V interaction 

In the topological analysis of both experimentally and theoretically derived ED, a sec-

ond bcp (at the 12o position) is found in B−V interatomic region. The magnitude of ED at 

the bcp is less than half compared to that found at the B−B bcp. The sign of the ∇2ρ at the 

B−V bcp is positive but its magnitude is considerably smaller in comparison to those 

found in strong ionic interactions. It has to be stressed that, one of the principal curvatures 

of the ED, λ2, is definitively smaller than the other two curvatures (Table 4.5). There is also 

a ring critical point (rcp) located at the 12n position on the three membered ring surface 

that result from the formation of B−B and B−V bond paths. Similarly, one of the principle 

curvatures λ2 of the ED at this rcp is considerable smaller than the other two (Table 4.3).  
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Table 4.5 Experimentally and theoretically determined topological properties of the B–V bond in 
VB2. d(bcp) is the distance between the B–V bcp and the B–V interatomic line. 

 
 

 

 

 

Since the sign of the Laplacian is not informative for the interpretation of atomic interac-

tions in case of transiton metal bonding the local energy density H(r) is mostly used for a 

qualitative description of bonding. In a stable system, negative H(r) at the bcp is an addi-

tional requirement for the existence of a covalent bond. At the bcp along the B–V bond 

path the potential energy V(r) is dominating leading to H(r) = -0.013 a.u. Accordingly, en-

ergetic considerations indicate that B–V bond is of covalent nature. This result is also 

supported by the magnitude of the ED Laplacian at the respective bcp which is considera-

bly small as generally observed by strong ionic interactions. 

As a result of the large difference between the principle curvatures of ED very high 

bond ellipticity at the B–V bcp is obtained which does not provide any meaningful infor-

mation about the π character of the bond.  

The experimental DD map on the (110) plane indicates some ED accumulation in the 

B−V internuclear region which is smaller to that observed in B–B interatomic region (Fig-

ure 4.7a). Besides, the ED is depleted in regions between the metal atoms along the [001] 

axis. For the investigation of the transition metal bonding the density Laplacian is advanta-

geous over deformation ED since it indicates charge concentrations without requiring a 

reference state, and allows –unlike DD maps– not only to analyse the internuclear space 

but also the vicinity of nuclei. The contour plot of the density Laplacian in the (110)  plane 

indicates a structurization in the penultimate shell of vanadium atom as shown in Figure 

4.7(c and d). The theoretical calculations correlate well with experiment; according to both 

methods charge concentrations around the metal atom are directed towards the borons 

where they face a charge concentration which in turn supports an interaction between the 

boron and vanadium atoms (Figure 4.7b).  

 

 d(bcp) 
(Å) 

ρ (rb) 
(e Å-3) 

2ρ (rb) 
   (e Å-5)

λ1 

(e Å-5)
λ2 

(e Å-5)
λ3 

(e Å-5)
ε(rb) 

Exp. 0.059 0.364 2.953 -1.029 -0.101 4.085 9.188

Theory 0.063 0.393 2.299 -1.072 -0.195 3.567 4.497
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Figure 4.7 a) The experimental deformation ED of VB2 in (110)  plane. The isoline interval is 0.02 
e a.u.-3. b) The experimental ED Laplacian of VB2 in the same plane of (I). c) An enlarged view of 
the vanadium atom shown in b). d) The ED Laplacian calculated within DFT in the same plane of 
c). Solid and broken lines represent negative and positive Laplacian values, respectively. Isoline 
intervals for b) are ±2 × 10n, ±4 × 10n, ±8 × 10n e Å-5 where n = 0, 4, 3, 2, 1. Additional isolines are   
-1, -0.75, -0.5 and -0.25 e Å-5 for b) and -250, -275 and -288 e Å-5 for c) and d).  

Figure 4.8 shows the gradient field of the ED in (110)  plane. The B–V bond path is 

slightly curved. The distance of the B–V bcp from the respective internuclear line is 0.059 

Å. The bcp is shifted along the bond path towards the boron atom which indicates the po-

larity of the B–V bond. The bond path length from bcp to the V nucleus is 1.174 Å 

whereas it is 1.139 Å between bcp and the B nucleus. Accordingly, the boundary surface 

between two atoms is closer to the boron atom.  
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I  II 

 

 

 

 

 

 

 

Figure 4.8 Gradient field of the ED in VB2 in the (110 ) plane. The red lines are the bond paths 
whereas the interatomic surface is drawn in green. The B–V bcp at 12o position and the ccp at 1b 
position are denoted by red and blue circles, respectively. 

A cage critical point is located in the middle of six-membered boron ring as shown in 

Figure 4.8. The ED at this ccp is characterized with small positive Laplacian and consid-

erably small ED value. The presence of this critical point indicates the distribution ED over 

a wide cage surfaces formed by vanadium and boron atoms. 

 The 3D representation of the density Laplacian indicates that the penultimate shell of 

vanadium is distorted and there are two charge concentrations located above and below the 

(001) plane (Figure 4.9). The structurization in the penultimate shell supports the participa-

tion of 3d orbitals in B−V bonding.  

 

 

 

 

Figure 4.9 Experimental (I) and theoretical (II) 3D representation of the 2ρ∇  distribution in the 
penultimate shell of the V atom in VB2. The isosurface Laplacian value is -295 e Å-5. 
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4.2.3 Atomic electron populations 

Atomic electron populations can be determined by the integration of the ED over an 

atomic basin bounded by the zero-flux surface of the ED gradient. The deviations from the 

neutral atomic electron populations originate from charge transfer between the atoms. Ac-

cording to the experimental and theoretical results a charge transfer from vanadium of ca. 

0.5 e and 0.6 e takes place per boron atom, respectively. The experimental e-counts ob-

tained from the integration are remarkably in agreement with the total number of electrons 

in the unit cell. The integrated charges are given in Table 4.6. 

 
Table 4.6 Atomic volumes (V) and electron populations ( N ) in VB2.   

4.3 The electric field gradient 

Owing to the symmetry, the EFG at the B nuclei is determined by only one independent 

component. Table 4.7 shows the principal component ∇ zzE  of the boron EFG tensor ob-

tained by NMR experiment and from the multipole model using the equation 2-34. It has 

to be noted that the asymmetry parameter η = (|∇ zzE |–|∇ zzE |) / |∇ zzE | which describes 

the symmetry of the EFG is equal to zero for the B position in the AlB2-type structures. 

 

Table 4.7 Experimental boron EFGs ∇ zzE  (in ×1021V/m2) in VB2. 

∇ zzE (X-ray) ∇ zzE  (NMR) ∇ zzE (theory)  

0.39 0.41 0.39 

 

A good agreement is obtained between the EFG value deduced from the 11B NMR ex-

periment and the theoretical value. According to the multipole model the calculated value 

of the electron contributions to the boron EFG ∇ zzE el is 0.01 × 1021 V/m2 which is quite 

small compared to the lattice EFG contribution (∇ zzE lat = 0.38 ×1021V/m2).[132] However, 

 V(M) 
(Å3) 

V(B) 
(Å3) 

N  (M) N  (B) N  in the 
unit cell 

Exp. 8.72 7.52 21.97 5.51 33.00 

Theory 8.56 7.60 21.85 5.57 32.99 
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when taking the lattice EFG contribution into account which is in general larger for the d-

diborides than the s and p-diborides, a perfect agreement is obtained with the theoretical 

value since the variation of EFG for diborides covers two orders of magnitude despite their 

similar crystal structure. This result confirms indirectly the accuracy of the reconstructed 

ED.  
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4.4 Summary on VB2 

    The ED in VB2 is successfully reconstructed from high-resolution X-ray data. Reso-

lution limit achieved up to sin θ / λ = 1.72 by single crystal X-ray diffraction experiment 

allows to recover the fine details in ED. Both theoretical and experimental results indicate 

the same number and type of critical points. In general, there are some minor differences in 

the ED at critical points ρ(rcp) between two methods. This kind of agreement is not very 

surprising since the charge density is based on the model ED that is reconstructed with the 

multipole parameters and density functions which are smoothly varying in the algorithm 

used. This is advantageous over the ED obtained simply by Fourier transform of the struc-

ture factors of the experimental data. The latter method creates artefacts such as local 

maxima and minima, i.e. critical points arising from the experimental noise and series 

truncation errors owing to the finite resolution. Those artefacts can dominate the topology 

unlike in case of the model density used in the present thesis which does not suffer from 

these drawbacks and provides a more suitable basis for the topological analysis.   

The B–B bcp clearly indicates a shared type interaction between boron atoms with a sig-

nificant bond ellipticity in [001] direction. Taking the energetic characteristics of ED at the 

B–V bcp into account along with the displacement of the B–V bcp toward the boron atom, 

the boron vanadium interaction can be described as polar covalent. Both experiment and 

theory indicate the deformation in the penultimate shell which is presumably an indication 

of participation of 3d electrons in the B−V bonding. Not any sign of localised V−V bond 

is observed. 
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5 SYNTHESIS, CHARACTERIZATION AND 

RECONSTRUCTED ELECTRON DENSITY IN TiB2 

In this Chapter first the preparation of the TiB2 single crystals will be explained. This is 

followed by a description of conventional and multipole refinements of the TiB2 structure 

using high resolution X-ray single-crystal diffraction data. Finally, the ED features will be 

analysed in terms of QTAIM. The results obtained from the reconstruction of the experi-

mental ED will be compared with quantum chemical calculations.  

5.1 Synthesis 

Diborides of group-IV metals are reported to be the most stable among the AlB2-type 

transition metal diborides according to their thermodynamic and thermomechanical proper-

ties also supported by cohesive energy and formation energy calculations.[37e, 133] This is 

also well reflected in the melting points of these compounds which are larger than dibor-

ides of other groups. According to the most recent compilation on the Ti–B system 

published by Murray et al. TiB2 is the only congruent melting phase with the reaction tem-

perature of 3225 ±25 ºC.[134] Correspondingly, high temperature synthesis methods are 

usually exploited for its production using the following experimental conditions:  

1) TiB2 powders are synthesized by a borothermic reduction of titania at temperatures 

above 1000 ºC where additional carbon is generally used in order to reduce the oxygen 

content of the titanium diboride.[135] 

                                        TiO2(s) + 4B(s)  →   TiB2(s) + 2B2O2(g)                        Eq. 5-1            

2) Another technique is the self-spreading high temperature (SHS) method according to 

which the material is produced by thermal energy generated during the chemical reaction 

of aluminothermic or magnesiothermic reduction of mixtures of metal oxide and boron ox-

ide:[136]                          

                  3TiO2(s) + 3B2O3(s) + 10Al(s) →   3TiB2(s) + 5Al2O3(s)                     Eq. 5-2 

3) Gas-phase-combustion synthesis of TiB2 is reported according to the following flame 

reaction[137] 

                         TiCl4(g) + 2BCl3(g) + 10Na(s) →    TiB2(s) + 10NaCl(s)                 Eq. 5-3 
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4) Carbothermic reduction of metal oxide yields TiB2: [138] 

                               TiO2(s) + 4B2O3(s) + 5C(s)  →   TiB2(s) + 5CO(g)                       Eq. 5-4            

Other synthesis techniques for TiB2 powders are fused-salt electrolysis,[139] solution 

processing,[140] mechanochemical synthesis[141] or chemical vapor deposition.[105, 142]  

In this study TiB2 crystals are prepared both using high-temperature solution method as 

well as by arc-melting. The starting materials are titanium powder, crystalline (for Al flux 

experiments) and amorphous (for arc-melting experiments) boron powder, aluminium met-

al chips (Purity grades: Ti─99.99 %; crystalline B─99.995 %; amorphous B─95 %, Mg 

max. 0.8%). For the recrystallization from the melt, aluminium (Purity grade: 99.995 %) is 

used as flux material. The same experimental procedure has been applied as for the synthe-

sis of VB2 described in Chapter 3. TiB2 crystals are isolated from the melt when atomic 

ratios B/V=1.3-2.7 were used. The crystals grown in the Al melt exhibit generally a shiny 

metallic surface with well-defined faces. The size of the crystals is mostly below 100 μm. 

5.2 Characterization 

    The samples are analysed by X-ray powder diffraction. The X-ray diffractograms indi-

cate the presence of Al2O3, AlN as by-products in samples obtained from the Al melt 

(Figure 5.1). In addition, WC is detected in all samples ground in WC mortar which points 

to the extreme hardness of the material. 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.1 Observed X-ray powder diffraction data and calculated diffraction peak's positions lines 
from single crystal refinement (red) for TiB2. Upper part: sample recrystallized from Al melt; lower 
part: arc-melted sample.  
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Unit cell parameters are obtained by least squares fitting of Bragg's equation to the posi-

tions of the diffraction lines. The unit cell dimensions a = 3.0309(2) and c = 3.2298(2) are 

in good agreement with previously published data.[96, 122a] According to the reported phase 

diagram the homogeneity range of TiB2 is quite narrow.[134, 143] Rudy and Windisch[144] 

claim that it extends between 65.2 and 67 at. % B,  while Fenish[145] and Thebault et al.[146] 

reported 65.5–67 at. % B and 65.5–67.6 at. % B, respectively. The respective results are 

derived from ternary systems in these studies. Accordingly, small variation in the stoichi-

ometry may originate from contamination effects. In the present study, TiB2 samples with 

different nominal compositions do not reveal any significant change in their unit cell pa-

rameters (Figure 5.2). Similar to vanadium borides, the unit cell parameters of TiB2 show 

small changes with respect to the B/Ti ratio. But a clear trend is not present. Slight varia-

tions in the unit cell parameters may originate from the nonequilibrium state of the 

samples. According to WDXS analysis, the composition of diboride is Ti1.00(1)B2.02(1). 

 

 

 

 

 

                                                                             

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2: Cell volumes and cell parameters vs. B/Ti molar ratio in TiB2 samples. Data obtained 
from samples synthesized by Al flux and arc-melting are denoted as red and black squares, respec-
tively. The error bars are smaller than the square-shaped data points of the of the unit cell volumes. 
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5.3 High-resolution single-crystal X-ray diffraction experiment  

X-ray single-crystal diffraction measurements are carried out at room temperature using 

micro-focus (100μm) rotating anode generator, Ag Kα radiation (λ = 0.56087 Ǻ), mirror 

optics and image-plate detector in Weissenberg-type arrangement. The data set extends to 

sin θmax / λ = 1.724 (Å-1). The data collection and evaluation information is given in Table 

5.1. The unit cell parameters used in the single crystal refinement are obtained from the X-

ray powder diffraction data. 

 
Table 5.1 Crystallographic data of TiB2. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

*R(int) is simply the R-factor between the amplitudes of Friedel pairs. 

 

5.4 Conventional IAM refinement  

The refined parameters for TiB2 are the scale factor of the observed intensities, the vi-

bration mean square amplitudes of both titanium and boron atoms and finally two width 

parameters of a Gaussian mosaic distribution for anisotropic extinction according to the 

Becker-Coppens formalism. The same conventional refinement procedure is applied as de-

scribed in Chapter 3.4 for vanadium borides. Table 5.2 summarizes the reliability factors 

R(F) obtained at different stages of the refinement. The isotropic description of atomic dis-

placement already leads to a reduction of the reliability factor R(F) to 1.36%. An important 

remark is that the extinction correction does not have a reducing effect on R(F) which can 

be attributed to the crystal size which is small enough to avoid extinction effects. A small 

achievement is obtained applying the anharmonic description of atomic displacement pa-

Space group P6/mmm 

Unit cell parameters (Ǻ) 
(powder diffraction data) 

a = 3.0309(2), c = 3.2298(2) 

Unit cell volume (Ǻ3) 25.695(5) 

No. of formula units,  Z 1 

No. of measured/unique reflections 3199 / 269 

Measured range -9 ≤ h ≤ 10; -7 ≤ h ≤ 6; -11 ≤ h ≤ 11 

2 θmax(°)  / (sin θmax / λ) (Å-1) 149.38 / 1.724 

R(int) 0.015 

Completeness (%) 99,6 
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rameters up to fourth tensor. The occupancy of both atoms does not indicate any deviation 

from the ideal stoichiometry. The data is merged prior to the multipole refinement of the 

structure.  

Table 5.2 R(F)(%) values at different refinement steps of TiB2 structure. The final R(F) value is ob-
tained after data merging. 

Isotropic 
description   
of ADPs 

Anis. 
 extinction 
correction 

Anis. 
 description 

of ADPs 

Anharm. 
 description of 
ADP (3rd rank) 

Anharm.  
description of 
ADP (4th rank) 

Final R(F) 
 

1.36 1.37 1.31 1.31 1.31 1.26 

 

Figure 5.3 shows the ratio of observed and calculated structure factors according to IAM 

refinement of TiB2 structure with respect to the variation of sin θ / λ. The discrepancy be-

tween the observed and calculated structure factors at very high resolution data is 

considerably smaller than that observed for vanadium borides (Chapter 3.4). Accordingly, 

all reflections are taken into account for the for the model calculations of TiB2. 

         

 

 

 

 

 

 

 

 

             

    Figure 5.3 Fobs / F(calc) vs. sin θ / λ according to IAM refinement of TiB2 structure. 

5.5 Crystal structure of TiB2 

The fundamental units in TiB2 are triangular prisms formed by metal atoms like all other 

AlB2-type structure. The boron atom is located at the center of this trigonal prism unit. A 

comparison between the crystal structures of diborides of titanium and vanadium which 

differ only by one electron in the valence region, reveal that the interatomic distances of 
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TiB2 is larger. The most considerable difference is due to the interatomic distance between 

the respective metal atoms along the [001] axis. On the other hand, the difference between 

the respective B−B and M−M distances in the (001) plane is relatively small (Figure 5.4). 

 

  

 

 

 

 
a)                                                                          b) 

 Figure 5.4 The interatomic distances (Å) in TiB2. The views are parallel (a) and perpendicular (b) 
to the B-atom plane.  

 

In general, the ADP values of TiB2 are relatively large as compared to those in VB2. 

However, they follow the same trend. In general, the movement of the metal atoms is more 

restricted than that of the boron atoms which vibrate more easily along the [001] axis in 

comparison to other directions (Table 5.3). Owing to the symmetry restrictions there is no 

third-order anharmonic contribution for the metal position. Introducing the anharmonic de-

scription up to the fourth order reduces the R(F) value only for titanium atom whereas no 

substantial improvement is achieved for boron beyond harmonic approximation. Similar to 

VB2, the use of multipole model decreases the harmonic ADPs of the metal atom whereas 

those of boron atoms are increased slightly. 

  
Table 5.3 The harmonic (Å2) and anharmonic (Å4) ADPs of TiB2

 according to IAM and multipole 
model refinement.  

*  B(eq) = 1/3[B11 a*2 a2 + … 2 B23 b* c* b c cos α] 

  B(eq)* B11 B33 D1111 D3333 D1133 

Ti 0.210(2) 0.169(3) 0.223(6) -0.5(3) -0.2(2) – Spherical  
refinement B 0.314(4) 0.233(7) 0.37(1) kept fixed 

Ti 0.186(3) 0.147(3) 0.196(4) -1.0(2) -0.1(1) -0.1(1) 
Multipole  
refinement B 0.321(5) 0.239(6) 0.380(8) kept fixed 
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5.6 Multipole refinement 

The Ti and B atoms have site symmetry 6/mmm and 6 2m , respectively. Therefore, the 

multipole refinement is performed up to hexadecapoles for each atom. The contributing 

multipoles for Ti atoms are Pv, P20 and P40, whereas for B atoms Pv, P20 P33- and P40 multi-

poles are allowed by symmetry. Both core and valence EDs are obtained from the Hartree-

Fock wavefunctions taken from Clementi and Roetti.[130] The valence functions are con-

structed using the scattering contributions of 4s2, 3d2 and 2s2, 2p1 states for Ti and B, 

respectively, which gives electron populations (Pv) of 4e- for Ti and 3 e- for B as starting 

values. The radial-function parameters are chosen to n2 = 4, n4 = 4 and Vζ = 2.71 for Ti and 

n2 = 2, n3 = 3, n4 = 4 and Bζ = 2.53 for B.  

 First, thermal parameters and the scale factor are refined for both atoms using the 

whole data set (R(F) = 0.99%). After this, the Pv parameters are refined for both atom posi-

tions using low order data (sin θ/λ ≤ 0.8 Å-1) keeping κ , κ′  and all multipole parameters 

fixed. The electron populations for both atoms indicate that there is charge transfer from 

titanium to boron. The Plm± parameters together with κ and κ′  are refined using sin θ/λ ≤ 

0.8 Å-1. Subsequently, multipole parameters are fixed followed by refining again the Pv and 

the atomic displacement parameters. This procedure is repeated until the final convergence 

is achieved (R(F) = 0.85%). The multipole, expansion and contraction parameters are sum-

marized in Table 5.4.  

                 

 

 

 

 

 

                       

                         Table 5.4 Multipole, expansion and contraction parameters of TiB2. 

The use of multipole model instead of spherical treatment of atoms reduces the R(F) for 

the reflections up to sin θ/λ = 0.8 Å-1 from 1.09% to 0.75%. Data analysis after the multi-

pole refinement reveals that most pronounced improvement in fitting Fobs to Fcalc is 

achieved for the few strongest low order reflections (Figure 5.5).  

 Ti (in 6/mmm) B (in 6 2m ) 

Pv 3.532 3.234 
P20          -0.122(2) -0.025(2) 
P33- ─ 0.166(2) 
P40 -0.030(2) -0.019(2) 

κ  0.990(2) 0.968(2) 

κ′  0.939(2) 1.052(2) 
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 Figure 5.5 Fobs / Fcalc vs. sin θ / λ. Values according to spherical and multipole refinement of the 
crystal structure of TiB2 are denoted as blue and red dots, respectively. 

 

IAM refinement of TiB2 structure is not sufficient to account for some features particu-

larly in the vicinity of borons as well as B−B internuclear regions (Figure 5.6). These 

residuals almost disappear with the use multipole model. The minimum and maximum 

values of the residual densities in the B−B network plane are -0.140 / 0.481 and -0.045 / 

0.054 after the use of IAM and multipole model, respectively.  

 

 

 

 

 

 
 

 

Figure 5.6 Residual density distributions in boron network plane in TiB2 after IAM (left) and 
multipole (right) refinement; data cut-off at sin θ/λ = 0.9; contour level step width of 0.05 eÅ-3. 
Solid red and dashed blue lines correspond to positive and negative values, respectively, whereas 
solid black line is the zero contour. 
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5.7 Topological analysis of the electron density 

 For a comparison reason, experimentally reconstructed total ED patterns and those ob-

tained from theoretical calculations are shown in Figure 5.7. The ED values for the B−B, 

B−Ti and Ti−Ti contacts in the relevant planes both from theory and experiment are very 

close to each other.  

                                                     I                                           II 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 5.7 Total ED maps in structurally relevant planes in TiB2: (Ι) reconstructed from the X-ray 

data, (ΙΙ) calculated within DFT method. The isoline interval is 0.05 e Å-3. 
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All types of cps are observed in both experimental and theoretical ED. The number of 

different cps obeys Poincare-Hopf condition. Some of their positions are restricted by the 

space group symmetry. No non-nuclear attractors are found. There are some discrepancies 

due to cps found between experiment and theory which can be attributed to the flatness of 

the ED. Experimental calculations indicate at the 2c position a ccp instead of a bcp found 

in theory (Table 5.5). The ED at this bcp is very small and two principle curvatures are 

close to zero. Furthermore, experimentally found rcp at the 3f position is replaced by ccp 

according to theory. Moreover, theoretically obtained rcp at the 6l position is not repro-

duced in experiment. Experimental topological descriptors agree with the values of theory 

by ±0.03 e Å-3 for ρ(rcp) and ±0.21 e Å-5 for ∇2ρ(rcp). The most considerable quantitative 

disagreement for ρ(rcp) is observed in B−B interatomic region reflected by relatively larger 

ED value at the bcp on the B−B bond path (3g position) according to the experiment in 

comparison to theory. 

 

Table 5.5 Topological characteristics of the critical points in ED for TiB2 determined from recon-
structed experimental data and theoretical calculations. Theoretical values are denoted by an 
asterisk. 

Wyckoff notation and  
position of cp 

-3
cp(r )(e Å )ρ

 

2 5
cp(r )(e Å )−∇ ρ

 

5
1(e Å )λ −

 

5
2 (e Å )λ −

 

5
3 (e Å )λ −

 
  cp 
 type 

3g (0, 0.5, 0.5) 0.847 -4.196 -3.810 -2.506 2.121 3, -1 

3g (0, 0.5, 0.5)* 0.817 -4.405 -3.152 -2.728 1.475 3, -1 

12o (0.175, 0.350, 0.241) 0.323 2.672 -0.771 -0.058 3.502 3, -1 

12o (0.167, 0.334, 0.250)* 0.334 2.487 -0.798 -0.141 3.429 3, -1 

2c (0.333, 0.666, 0)* 0.197 0.641 -0.003 -0.003 0.647 3, -1 

6l (0.330, 0.660, 0)*  0.197 0.641 -0.007 0.002 0.645 3, +1 

12n (0, 0.698, 0.245) 0.320 2.589 -0.764 0.070 3.282 3, +1 

12n (0, 0.715. 0.257)* 0.328 2.533 -0.790  0.140 3.183 3, +1 

     3f (0, 0.5, 0) 0.204 0.903 -0.058 0.410 0.551 3, +1 

3f (0, 0.5, 0)* 0.194 0.954 0.024 0.441 0.489 3, +3 

2c (0.333, 0.667, 0)      0.195        0.762   0.084   0.084    0.593 3, +3 

1b (0, 0, 0.5) 0.149 1.087 0.188 0.448 0.448 3, +3 

1b (0, 0, 0.5)* 0.175 1.239 0.128 0.554 0.554 3, +3 
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5.7.1 The B−B interaction 

The topology of the deformation ED reveals a single maximum picture in the region 

between the boron atoms in (001) plane (Figure 5.8). The covalency of B−B interaction 

is approved by the sign of the Laplacian ∇2ρ(rb) < 0 at the bcp which is found between 

the boron atoms in the relevant plane, indicating typically a shared-type interaction. Simi-

lar to VB2 the bond path in TiB2 is not curved due to symmetry restriction. The B−B bcp 

is located at a distance of 0.875 Å from both boron atoms. The ED Laplacian distribution 

∇2ρ(r) along the B−B bond path reveals some differences between experiment and theory 

as also observed in VB2. In general, theoretically derived curve is less contracted in com-

parison to experiment indicating a more homogeneous distribution of ED in the 

internuclear region of boron atoms. On the other hand, experimentally derived Laplacian 

distribution indicates a more pronounced valence shell. 

 

  

 

 

 

 
                           

a)                                                                         b) 
 
Figure 5.8 (a) The deformation ED map of TiB2 in the B-atom plane (the isoline interval is 0.02 e 
a.u.-3). (b) Experimentally (black) and theoretically (red) calculated ∇2ρ (r) distribution along the 
B-B bond path. The bcp is located at a distance of 0.875 Å from both B-atoms (at 0 Å and 1.7499 
Å, respectively) exactly in the middle of the bond path. The non-continuous behaviour of the theo-
retical values in the same region is an artefact originating from the APW basis set used for the 
theoretical calculation.   
 

Some selected topological properties of the B−B bond in TiB2 are given in Table 5.6. 

There are some discrepancies in the bond critical point properties between experiment and 

theory concerning the higher derivatives of ED. The most significant deviation is due to 
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the ellipticity value. Experimentally observed ellipticity value is relatively higher in com-

parison to the theoretical one as also observed in VB2.  

Table 5.6 Topological properties of the B–B bonds in TiB2. 
 

 

 

 

 

Both experimentally and theoretically derived values of the first principal curvature of the 

ED λ1 is explicitly dominating λ3 suggesting that the perpendicular contraction at the bcp is 

more pronounced than the parallel concentration along the bond path towards the nuclei 

which is typical for shared type interactions (|λ1| / λ3 ratio > 1). In spite of the large varia-

tion between experiment and theory ellipticitiy value above zero points to a deviation from 

the cylindrical symmetry. It points presumably toward the relevant π-density contribution 

to the B–B bond. The deviation from the spherical symmetry of the B–B bond in TiB2 is 

illustrated in deformation ED maps of (110)  plane. The ED is elongated along the [001] 

direction. As a result, it is spread between the boron layers as shown in Figure 5.9.  

 

 

 

 

 

 

 

 

a)                                                                             b) 

Figure 5.9 The deformation ED of TiB2 structure a) in (110) plane; b) in (100) plane. The isoline 
interval is 0.02 e a.u.-3 

 b
-3

(r )
(e Å )
ρ  2

b
5

(r )
(e Å )−
∇ ρ

1
5(e Å )−λ  2

5(e Å )−λ 3
5(e Å )−λ ε(rb) |λ1|/λ3

Exp. 0.847 -4.196 -3.810 -2.506 2.121 0.519 1.80 

Theory 0.817 -4.405 -3.152 -2.728 1.475 0.155 2.14 
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5.7.2 The B−Ti interaction 

Topological analysis of ED in TiB2 structure indicates a bcp in the B−Ti interatomic re-

gion at the 12o position (Figure 5.10). The bcp is slightly shifted along the bond path 

towards boron indicating the polarity of the B–Ti bond. The distances from the B–Ti bcp to 

Ti and B nuclei are 1.204 Å and 1.180 Å, respectively. The bond path is slightly curved. 

  

 

 

 

 

 
 
 
 
Figure 5.10 The ρ∇  field of the ED in TiB2. The section shown belongs to (110) plane. The red 
line is the B–Ti bond path whereas the interatomic surface path is drawn in green. The B–V bcp at 
12o position is denoted by red circle. The ccp at 1b and 2c positions are denoted by blue circles. 

 

The topological properties of the B−Ti bond are summarized in Table 5.7. The positive 

curvature at the bcp dominates other two negative principal curvatures.  One of the princi-

pal negative curvatures is close to zero as also observed at the B−V bcp which leads to 

very high ellipticity values. 

 
Table 5.7 Topological properties of B-Ti the bond in TiB2 according to experiment and theory. 
d(bcp) is the distance between the B–Ti bcp and the B–Ti interatomic line. 

 

 

 

 

 

 

Further information about the B−Ti bonding is extracted from the energetic considera-

tions of the ED. Experimental calculations suggest small negative value for the local 

  d(bcp) 
(Å)  

b
-3

(r )
(e Å )
ρ  2

b
5

(r )
(e Å )−
∇ ρ  

5
1(e Å )λ −

 

5
2 (e Å )λ −

 

5
3 (e Å )λ −

 
ε(rb) 

Exp.  0.053 0.323 2.672 -0.771 -0.058 3.502 12.293 

Theory  0 0.334 2.487 -0.798 -0.141 3.429 4.660 



                                                                                                                                                                                     

5   Synthesis, Characterization and Reconstructed Electron Density in TiB2 

                                              

 98

Ti

BB

B B -0.2

-0.16

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

0.16

0.2

Ti Ti

energy density H(r) = -0.009 a.u at the B−Ti bcp. This result indicates that B−Ti bonding 

is of covalent nature similar to B–V interaction in VB2. 

 Both experimental and theoretical representation of the ED Laplacian distribution in the 

vicinity of the titanium atom does not indicate any structurization in the penultimate shell 

(Figure. 5.11). This is in contradiction with presence of a deviation from sphericity of the 

metal in TiB2 as detected by Hegenscheidt on base of the deformation ED.5 

 

 

 

 

 

 

 

 

a)                                                                           b) 

 

 
 
 
 
 
 
 
 
 
 
                                   c)                                                                               d) 

Figure 5.11 The ED Laplacian of Ti atom in TiB2 in (110)  plane reconstructed from experiment in 
a); calculated by DFT in b). Solid and broken lines represent negative and positive values, respec-
tively. The Isoline intervals are ±2 × 10n, 4 × 10n, 8 × 10n e Å-5 where n = 0, 4, 3, 2, 1. Additional 
isolines are -140 and 185 e Å-5 c) The deformation ED map in the same plane as in a) and b). The 
isoline interval is 0.01 e a.u. -3. d) The 3D ED Laplacian distribution of the Ti atom. The isosurface 
value for the Laplacian is -200 e Å-5. 
 

The flatness of the ED in the B−Ti nuclear region is well reflected in deformation ED 

map in (110)  plane. It is evident that the ED is depleted in the Ti−Ti internuclear region 
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along the [001] axis. Both experimental as well as theoretical results do not indicate any 

bcp in Ti−Ti interatomic region. 

5.7.3 Atomic electron populations 

Both the atomic volumes as well as the number of electrons in Ti and B basins are given 

in Table 5.8. The Integration of the ED over the atomic basins yields a charge transfer from 

Ti to B of 0.56 e and 0.68 e per boron atom based on experiment and theory, respectively.  

 
Table 5.8 Atomic volumes (V) and electron populations ( N ) in TiB2. 

 

5.8 The electric field gradient 

The EFG value deduced from X-ray diffraction, 11B NMR and theoretical calculations 

are summarized in Table 5.9. The multipole model yields for the B nuclei the EFG value 

(∇ zzE el) = -0.40 × 1021 V/m2 When taking into account the lattice EFG contribution 

(∇ zzE lat = 0.31 ×1021V/m2) [132], the total value becomes (∇ zzE ) = -0.09 × 1021 V/m2. 

 Table 5.9 Boron EFGs, Vzz (in ×1021V/m2) for TiB2. 

∇ zzE (X-ray) |∇ zzE |(NMR)   |∇ zzE |(theory) 

-0.09 0.35 0.38 

 

 

 

 

 

 V(Ti) 
(Å3) 

V(B) 
(Å3) 

N  (Ti) N  (B) N  in the 
unit cell 

9.27 8.21 20.88 5.56 32.00 Exp. 

Theory 8.81 8.42 20.63 5.68 31.99 
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5.9 Summary on TiB2 

 Suitable single crystals are synthesized for a charge density analysis of the TiB2 struc-

ture. The use of Ag radiation along with very small crystals prevents severe extinction 

effects as also reflected by the minor improvement in reliability factor R(F) due to extinc-

tion correction. X-ray powder diffraction analysis does not indicate any homogeneity range 

for TiB2. Furthermore, both the WDXS as well as the refinement of the structure on base of 

single crystal X-ray diffraction data confirm that there is not any deviation from ideal stoi-

chiometry.  

    The use of the multipole refinement provides a very good agreement between the calcu-

lated and observed structure factors as evidenced by close to featureless residuals. The 

topological aspects of the total ED from both theory and experiment are generally in a 

good agreement with respect to ρ (rcp) values. However, discrepancies due to some rcp and 

ccp are observed. In addition, a theoretically found bcp between the boron layers is not re-

produced by experiment which can be attributed to the flatness of ED in corresponding 

interatomic region. Topological analysis does not yield any Ti−Ti bcp. The bcp found be-

tween the boron atoms in the B−network indicate typically a shared type interaction with 

significant ellipticity. On the other hand, the B–Ti bcp properties reveal an interaction 

which is of polar covalent nature. However, the participation of 3d electrons in B−Ti bond-

ing is uncertain due to the non-structurized penultimate shell of the metal according to the 

ED Laplacian. In addition, a charge transfer is obtained from titanium to boron.  These re-

sults support that the B–Ti interaction points to a bonding situation which is intermediate 

between shared and closed-shell type. 
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6 ELECTRON DENSITY IN VB 

     This Chapter describes the topological aspects of experimental electron density (ED) in 

vanadiummonoboride reconstructed on base of the multipole parameters obtained from 

high-resolution single-crystal X-ray diffraction data. Besides, the reconstructed ED is 

compared with quantum chemical calculations. 

6.1 Multipole refinement 

The ED in VB is reconstructed using a multipole model in which both vanadium and 

boron atoms are refined up to hexadecapoles. Both atoms have the site symmetry m2m. 

Accordingly, the same multipoles (Pv, P20, P22, P31, P33-, P40, P42 and P44) are contributing to 

ED. The core as well as valence EDs are obtained from the Hartree-Fock wavefunctions 

taken from Clementi and Roetti.[130] The respective radial functions used are n2 = 4, n3 = 4, 

n4 = 4 and Vζ = 4.4 for V; n2 = 2, n3 = 3, n4 = 4 and Bζ = 2.53 for B.  

    In the multipole model atomic orbital scattering contributions of 4s2, 3d3 and 2s2, 2p1 

states are used for V and B, respectively. These give electron populations (Pv) of 5e- for V 

and 3 e- for B as starting values. First, the displacement parameters and the scale factor are 

refined for both atoms using the whole data set. The R(F) value droppes to 1.21%. The Pv 

parameters are refined for both atom positions using low order data (sin θ/λ ≤ 0.8 Å-1) 

keeping κ , κ′  and all multipole parameters fixed. The Plm± parameters together with 

κ and κ′  are refined using sin θ/λ ≤ 0.8 Å-1. Subsequently, first Pv parameters and then the 

thermal parameters are refined again. This procedure is repeated until the final conver-

gence is achieved. The final reliability factor R(F) referring to all observations droppes to 

1.16%. The electroneutrality condition is imposed for the unit cell. The electron popula-

tions for both atoms indicated that there is charge transfer from vanadium to boron. The 

observations are weighted according to their counting statistical variances (w = 1/σ2 Fobs).  

The multipole, expansion and contraction parameters are summarized in Table 6.1.  
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                       Table 6.1 Multipole, expansion and contraction parameters of VB. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The use of multipole model instead of IAM reduces the R(F) value calculated for the 

strongest 100 low order reflections (sin θ/λ ≤ 0.8 Å-1) from 0.54% to 0.40% (Figure 6.1). 

 

 

 

 

 

 

 

 

 
Figure 6.1 Fobs / Fcalc vs. sin θ / λ in VB. The values according to the spherical (blue) and multipole 
(red) refinement are denoted as blue and red circles, respectively. 

 The residuals of the ED in the B−B interatomic region which cannot be accounted for 

by the IAM refinement get considerably smaller but not completely disappear as illustrated 

in Figure 6.2. Other residual features are randomly distributed and can be mainly assigned 

to experimental noise. The minimum and maximum values of the residuals are -0.210 / 

0.258 and -0.127 / 0.125 e Å -3 after the IAM and multipole refinement, respectively.  

 V (in m2m) B (in m2m) 

             Pv 4.638(2) 3.362(8) 
 P11- -0.3809(4) -0.0339(4) 
P20 0.0(2)  0.0116(2) 
P22 -0.0030(4) -0.0035(4) 
P31 -0.1969(4) 0.0923(4) 
 P33-  0.1303(4)  0.0172(4) 
P40 -0.0049(4) -0.0019(4) 
P42  0.0043(4) 0.0048(4) 
P44 -0.0139(4) 0.0175(4) 
κ  1.0000(4) 0.9961(4) 
κ′  0.9232(4) 0.8201(4) 
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Figure 6.2 Residual density maps for VB after the IAM (left) and multipole (right) refinement in 

plane as shown; data cut-off at sin θ/λ=0.9; contour level step width of 0.05 e Å-3. Solid red and 

dashed blue lines correspond to positive and negative values, respectively, whereas solid black line 

shows the zero contour. 

    

     Table 6.2 summarizes the ADPs according to a conventional spherical and the multipole 

refinement. The use of multipole model decreases the harmonic ADPs of V position and 

whereas those of B atoms are slightly increased. 

 
Table 6.2 The harmonic (Å2) and anharmonic (Å4) ADPs of VB according to spherical and multi-
pole refinements. 

*  B(eq) = 1/3[B11 a*2 a2 + … 2 B23 b* c* b c cos α] 
 

ADP Spherical refinement Multipole refinement 

 V B V B 

B(eq)* 0.134(2) 0.285(5) 0.114(2) 0.299(5) 

B11 0.140(4) 0.301(8) 0.121(3) 0.317(8) 

B22 0.122(4) 0.292(9) 0.103(3) 0.305(8) 

B33 0.139(4) 0.261(8) 0.117(3) 0.274(7) 

D1111 -1.6(1) -1.8(1) 

D2222 – – 
D3333 1.5(1) -1.8(1) 
D1122 – – 

D1133 -0.46(4) -0.55(4) 

D2233 – 

 
 

kept fixed 

– 

 
 

kept fixed 
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6.2 Topological analysis of the electron density 

The total ED features obtained from experiment and theory are shown in Figure 6.3. 

Obviously, The ED in the vicinity of the core is more distorted according to the experiment 

whereas it has rather a spherical shape according to theory.  

                                                 I                                           II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3 Total electron density maps of VB structure in planes as shown: (Ι) reconstructed from 
the X-ray data, (ΙΙ) calculated by DFT method. The isoline interval is 0.05 e Å-3. 
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All of the critical point (cp) types are observed according to both experiment and theory 

(Table 6.3). The number of different cp types fulfills the Poincare-Hopf condition. No non-

nuclear attractors are found. Experimental topological descriptors agree with the values of 

theory by ±0.08 e Å-3 for ρ(rcp) and ±1.4 e Å-5 for ∇2ρ(rcp). Both number and positions of 

bcps are in a good agreement according to both methods. Furthermore, ρ(rb) at the respec-

tive bcps are generally very close to each other except for one ρ(rb) value found at 4c 

position. It has to be noted that discrepancies due ρ(r) values at rcps are larger than at bcps 

mostly. An experimentally observed rcp at the 4c position is replaced with a ccp according 

to theory. Additionally, experimentally found ccp at the 8f position is not reproduced by 

theory. 

Table 6.3 Topological characteristics of the critical points in VB determined from reconstructed 
experimental data and theoretical calculations. Theoretical values are denoted by an asterisk. 

 

Wyckoff notation and  
position of cp 

-3
cp(r )(e Å )ρ

 

2 5
cp(r )(e Å )−∇ ρ

 

5
1(e Å )λ −

 

5
2 (e Å )λ −

 

5
3 (e Å )λ −

 
Type 
of cp 

4b (0.5, 0.0, 0.5) 0.748 -1.341 -2.224 -1.935 2.820 3, -1 

4b (0.5, 0.0, 0.5)* 0.740 -2.750 -2.364 -2.010 1.622 3, -1 

16h (0.243, -0.085,0.489) 0.431 2.855 -0.978 -0.680 4.511 3, -1 

16h (0.242, -0.01,0.499)* 0.433 2.133 -1.162 -0.622 3.916 3, -1 

8g (0.243, 0.03, 0.250) 0.405 3.417 -0.783    -0.137   4.335 3, -1 

8g (0.257, -0.04, 0.250)* 0.408 2.497 -0.952 -0.193 3.641 3, -1 

4c (0, -0.285, 0.75) 0.303 3.430 -0.935 -0.320 4.687 3, -1 

4c (0, -0.209, 0.75)* 0.378 2.289 -0.581 -0.651 3.521 3, -1 

 16h (0.256, -0.04,0.635)       0.401         3.088    3.627   -0.776    0.239 3, +1 

 16h (0.267, -0.05,0.641)* 0.404 2.627 3.294 -0.928 0.260 3, +1 

     8d (0.25, -0.25, 0.50) 0.197 1.050 -0.333 1.174 0.209 3, +1 

     8d (0.25, -0.25, 0.50)* 0.276 1.203 -0.361 1.545 0.019 3, +1 

           4a (0, 0, 0.5) 0.304 2.048 0.075 2.270 -0.296 3, +1 

           4a (0, 0, 0.5)* 0.265 1.268 0.434 0.937 -0.104 3, +1 

4c (0.5, -0.263, 0.75) 0.163 0.314 -0.101 0.174 0.243 3, +1 

     4c (0.5, -0.286, 0.75)* 0.213 0.516 0.260 0.055 0.200 3, +3 

       8f (0,0.239,0.585) 0.155 1.319 0.275 0.287 0.757 3, +3 
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6.2.1 The B−B interaction 

The most prominent structural feature of the VB structure, namely the B−B zig-zag 

chain is well reflected in the topology of the deformation ED map. The sign of the Lapla-

cian function (∇2ρ(rcp) < 0) at the bcp found between the boron atoms of the zig-zag 

chain points to a shared-type interaction. Figure 6.4 shows the ED Laplacian according to 

theory and experiment in the plane which includes the boron-zig-zag chain. The Lapla-

cian distribution ∇2ρ(r) along the B−B bond path in the same plane is also shown. The 

theoretically determined curve is relative less contracted in comparison to experimental 

one. This result indicates that the valence shell is more pronounced according to experi-

ment.  

 

 

 

 

 
                         
                               a)                                                                            b) 

 

 

 
 
 
 
 
 

c)                                                                             d) 
Figure 6.4 The ED Laplacian in VB according to a) experiment and b) theory in (100) plane. Solid 
and broken lines represent negative and positive Laplacian values, respectively. The isoline values 
are ±2 × 10n, ±4 × 10n, ±8 × 10n e Å-5 where n = 0, 4, 3, 2, 1. c) The deformation ED map of VB in 
the same plane as shown in a) und b). The isoline interval is 0.02 e a.u -3. d) The ED Laplacian dis-
tribution (e A-5) along the B−B bond path. Experimental and theoretical results are given by black 
and red curves, respectively. The non-continuous behaviour of the theoretical values is an artefact 
originating from the APW basis set used for the calculation.   



                                                                                                                                                                               

 6   Electron Density in VB 

 

 107

-0.3

-0.22

-0.14

-0.06

0.02

0.1

0.18

0.26

VV

V V

ab

V

-0.3

-0.22

-0.14

-0.06

0.02

0.1

0.18

B B

 Some topological properties of the B−B bond are given in Table 6.4. According to the 

experiment, the parallel concentration along the bond path towards the nuclei which is 

measured by λ3, dominates the first principal curvature λ1 as reflected in the |λ1| / λ3 ratio. In 

contrary, theoretical calculations suggest that the perpendicular contraction at the bcp is 

more pronounced. The corresponding bond path is not bent due to symmetry restriction 

applied to boron atom. The bcp is located at a distance of 0.897 Å from both boron atoms. 

Table 6.4 Topological properties of the ED at B−B bcp in VB according to experiment and theory. 

 

 

 

 

Ellipticity values obtained both from theory and experiment are in agreement. Figure 

6.5 shows deformation ED in plane perpendicular to the boron layer including the B−B 

bond axis. The DD in plane perpendicular to the former one and spanned by the metal at-

oms is also shown. Deviation from the cylindrical symmetry of the B−B bond in VB is less 

pronounced as compared to that observed for the B−B bond in both VB2 and TiB2. This 

indicates that the relevant π-density contribution to the B–B bond is presumably less than 

those for diborides. 

 

 

 

 

 

 

 

 

 

Figure 6.5 Deformation electron density maps in VB structure in planes as shown. The isoline 
interval is 0.02 e a.u.-3 

 b
-3

(r )
(e Å )
ρ  2

b
5

(r )
(e Å )−
∇ ρ 5

1(e Å )λ − 5
2 (e Å )λ − 5

3 (e Å )λ − ε(rb) |λ1| / λ3

Exp. 0.748 -1.341 -2.224 -1.935 2.820 0.149 0.789 

Theory 0.740 -2.750 -2.364 -2.010 1.622 0.176 1.457 
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6.2.2 The B−V interaction 

As stated previously in Chapter 3, vanadiummonoboride structure can be well described 

by double metal layers containing the BV6 prisms. Taking the similar metal boron dis-

tances both in the same and neighbouring trigonal prim units into account additional boron 

metal interaction is expected arising from neighbouring trigonal prims. This is evidenced 

by the bcp (at the 4(c) position) found on the bond path between boron and vanadium at-

oms each belonging to two different neighbouring BV6 prisms in addition to two bond 

critical points located in the same BV6 prisms (at the 16(h) and 8(g) positions, respec-

tively) as shown in Figure 6.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)                                                         b) 

Figure 6.6 a) The ∇ρ (r) field of the ED in VB structure in planes as shown. The bond path and 
the interatomic surface path are drawn in red and green, respectively. b) The deformation ED in VB 
structure in the same planes as shown in a). The isoline interval is 0.02 e a.u.-3 
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The bond paths which are placed in the same BV6 prism are slightly curved. On the oth-

er hand, the bond path between neighbouring trigonal prim units is not curved and the 

corresponding bcp is shifted towards the vanadium atom in contrary to other B–V bcps 

which are shifted to the nearest boron atoms. These results indicate the polarity of the re-

spective B–V interactions.   

The charge asphericities of the vanadium atom can be manifested by the deformation ED 

maps. As evidenced in Figure 6.6 the ED is highly deformed in the vicinity of the metal 

atom. The boron atoms are placed not directly to the charge concentrations around the va-

nadium core. 

Some selected topological properties of the B−V bonds are summarized in Table 6.5. 

The properties of ED at the B−V bcp are perfectly fitting to the unique set of characteris-

tics observed by those in VB2 and TiB2. These are small ρ(rb), small positive ∇2ρ(rb) and 

small negative H(r). Accordingly, some degree of covalency is evidenced by B−V interac-

tions due the energetic considerations.  

Table 6.5 Topological properties of ED at the B−V cp in VB. The ED  b(r )ρ , the density Lapla-
cian  b(r )ρ , G(r) kinetic energy density and H(r) local energy densities are given in atomic units. 
d(bcp) is the distance between the B–V bcp and the B–V interatomic line. 

 
 

 

 

 

 

 

The 3D representation of both experimental as well as theoretical ED Laplacian shows 

that the penultimate shell of the metal atom is distorted (Figure 6.7).  However, both meth-

ods indicate some discrepancies in the number and location of the charge concentrations. 

Experimentally and theoretically derived ∇2ρ(r) distribution revealed four and eight sig-

nificant charge concentrations in the penultimate shell, respectively. They are presumably 

related to the participation of 3d orbitals of the metal atom at the B−V interaction both in 

the same as well as between the neighbouring trigonal prism units. 

 

Wyckoff notation 
and position of cp 

d(bcp) 
(Å)  

b(r )ρ 2
b(r )ρ∇ G(r) 

 
H(r) 

16h (0.243, -0.085,0.489) 0.155 0.064 0.118 0.049 -0.019 

8g (0.243, 0.03, 0.250) 0.063 0.060 0.142 0.050 -0.015 

4c (0, -0.285, 0.75) 0 0.045 0.142 0.040 -0.004 
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                                                                             I                                      II 
 

 

 

 

 

Figure 6.7 Experimental (I) and theoretical (II) 3D representation of the 2 r( )ρ∇  distribution in the 

penultimate shell of the metal atom in VB. The isosurface value is 2 r( )ρ∇ = -295 e Å-5. 

6.2.3 Atomic electron populations 

Transferred number of electrons from V to B atom is calculated by integration of the 

ED over the respective QTAIM basins (Table 6.6). According to the experiment a charge 

transfer of 0.8 e from a basin volume assigned to vanadium [9.76 Å3] to the zig-zag boron 

chain [V = 8.55 Å3 / atom] takes place. Theoretical calculations yield a charge transfer of 

0.9 e. 

 
     Table 6.6 Atomic volumes (V) and electron populations ( N ) in VB. 

 

 

 

 

 

 

 V(M) 
(Å3) 

V(B) 
(Å3) 

N  (M) N  (B) N  in the 
unit cell 

Exp. 9.76 8.55 22.20 5.79 111.98 

Theory 9.52 8.80 22.08 5.92 112.00 
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6.3 Summary on VB 

The ED in VB is successfully reconstructed from high-resolution single crystal X-ray data 

applying a multipole model. A good agreement between the observed and calculated struc-

ture factors is achieved. According to the topological analysis of the ED, all theoretically 

obtained bcps are reproduced. However, disagreements are observed due to positions of 

some ring- and cage critical points.  Four bond critical points are found, one corresponds to 

the B−B interaction in the zig-zag chain and the remaining three are related to the B−V in-

teraction. The ED properties of the B−B bcp reveal that the B−B interaction has a covalent 

character. Moreover, the respective ellipticity value is found to be less in comparison to 

those observed in diborides. The B−V bcp properties reveal that the B−V bonding is of po-

lar covalent nature similar to that observed in diborides. This result is supported by the 

significant structurization in the vicinity of metal atom according to both deformation ED 

and the Laplacian despite some discrepancies between theory and experiment. Further-

more, vanadium atom is not only interacting with borons in the same trigonal prism unit 

but also with those in the neighbouring ones according to a B−V bcp found. Finally, the 

analysis of the QTAIM population in the atomic basins reveals a charge transfer from va-

nadium to the boron zig-zag chain. 
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7 ELECTRON DENSITY IN V3B4 

In this Chapter the topological analysis of the experimentally reconstructed ED in V3B4 

is given in the light of QTAIM. The results are compared with the quantum chemical cal-

culations.  

7.1 Multipole refinement 

The number of multipole parameters in V3B4 to be refined is considerably higher than 

those in VB2 and VB, since there are four atom positions; one with the site symmetry mmm 

and the other three mm2. The multipole expansion is terminated at the hexadecapole level 

for each atom. That gives 29 contributing multipole coefficients in addition with two va-

lence and two expansion as well as contraction parameters per each atom to be refined 

against 169 low-order reflections (sin θ/λ ≤ 0.8 Å-1). Core and valence functions used for 

the reconstruction of the ED are obtained from the Hartree-Fock wavefunctions taken from 

Clementi and Roetti.[130] The respective radial-function parameters used are n2 = 4, n4 = 4 

and Vζ = 4.4 for V1; n2 = 4, n3 = 4, n4 = 4 and Vζ = 4.4 for V2; n2 = 2, n3 = 3, n4 = 4 

and Bζ = 2.53 for B1 and B2. 

The procedure used for the multipole refinement of V3B4 is similar to that applied for 

other structures refined in this thesis. The valence electron populations Pv of 5 e- for V and 

3 e- for B are used as starting values. First only displacement parameters and the scale fac-

tor are refined using all data. After this, the Pv for each atom is refined together with κ  

using low order data (sin θ/λ ≤ 0.8 Å-1) keeping κ′  and all multipole parameters fixed. The 

valence electron populations indicate that there is charge transfer from vanadium to boron. 

The Plm± parameters are refined using sin θ/λ ≤ 0.8 Å-1 whereas Pv andκ are kept fixed. The 

R(F) value droppes to 1.76%. To keep the number of refined coefficients as low as possible 

a more rigid multipole model is used by which κ′ is not refined. Furthermore, some multi-

pole coefficients are close to zero, thus they are insignificant to be included in the final 

model for reconstruction of the ED. Refined multipole parameters and atomic coordinates 

are given in Table 7.1.  
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Table 7.1 Multipole, expansion and contraction parameters together with the atomic coordinates in 

V3B4. 

 

Table 7.2 shows harmonic and anharmonic ADPs due to conventional and multipole re-

finement. The use of multipole model slightly decreases the ADPs. The changes are 

smaller than those observed for other vanadium borides.  

 
Table 7.2 Harmonical (Å2) and anharmonic ADPs (Å4) due to spherical and multipole refinement 
for the crystal structure of V3B4. 

*  B(eq) = 1/3[ B11 a*2 a2 + … 2 B23 b* c* b c cos α] 

 V1 (in mmm) V2 (in mm2) B1 (in mm2)  B2 (in mm2) 

x/a 0 ½ 0 ½ 

y/b 0 0 0 0 

z/c 0 0.31249(1) 0.43443(3) 0.13641(3) 

Pv 4.556(6) 4.256(6) 3.631(6) 3.334(6) 
P10 - -0.0558(4) 0.0186(4) 0.0558(4) 
P20 0.0 0.0 0.0186(4) 0.0 
P22 -0.0186 -0.0186(4) 0.0 0.0 
P30 - -0.0186(4) -0.0744(4) 0.0744(4) 
P32 - 0.1116(4) -0.0372(4) -0.0372(4) 
P33- - - - - 
P40 0.0 0.0 0.0186(4) 0.0140(4) 
P42 0.0 0.0 0.0 0.0372(4) 
P44 0.0186 0.0 0.0186(4) 0.0163(4) 

κ  0.9144(4) 0.9144(4) 1.0156(4) 1.0156(4) 

ADP Spherical refinement  Multipole refinement 

 V1 V2 B1 B2 V1 V2 B1 B2 

B(eq)* 0.123(3) 0.130(2) 0.270(7) 0.296(7) 0.120(2) 0.122(2) 0.268(6) 0.290(6) 
B11 0.096(5) 0.094(43) 0.26(1) 0.29(1) 0.096(4) 0.090(4) 0.26(1) 0.28(1) 
B22 0.136(4) 0.163(3) 0.28(1) 0.29(1) 0.132(4) 0.153(3) 0.28(1) 0.29(1) 
B33 0.137(4) 0.133(3) 0.27(1) 0.31(1) 0.132(4) 0.125(3) 0.257(9) 0.304(9) 

D1111 -2.0(4) -2.1(3) -1.7(1) -2.1(2) 
D2222 -2.4(3) -1.2(2) -2.4(2) -1.4(2) 

D1122 -0.8(1) -0.5(1) -0.7(1) -0.6(1) 

D1133 – – – – 

D2233 – – 

      kept fixed 
 

– – 

 
 
      kept fixed 
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     Figure 7.1 shows the ratio of the observed and calculated structure factors according to 

the spherical and the multipole refinement of V3B4 referring to low order data up to sin θ / λ 

= 0.8. In general, the improvement achieved in the fitting of observed structure factors to 

the calculated ones with the use of the multipole model instead of simple spherical atom 

model is less compared to other vanadium borides.  

 

 

 

 

 

 

 

 

 

 

              
Figure 7.1 Fobs / Fcalc vs. sin θ / λ according to spherical (blue) and multipole (red) refinement of 
V3B4 structure. 

 

Table 7.3 summarizes the variation in R(F) values in V3B4, VB and VB2 according to both 

IAM and multipole refinement taking into account only low-order reflections (sin θ/λ ≤ 0.8 

Å-1). In general, the R(F) values increase with the increase of reflection number.   

 

Table 7.3 R(F) values after IAM and multipole refinement. N  is the number of reflections.   

 N  IAM 
 Refinement 

Multipole        
refinement 

VB2 35 0.46 0.38 

VB 100 0.54 0.49 

V3B4 169 0.88 0.84 

  Figure 7.2 shows the residual density maps of V3B4 according to spherical and multipole 

refinement. Obviously, the density is not completely flat and featureless with the use of 

multipole model. Unlike other compounds examined, in case of V3B4 some features cannot 
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be described by the multipole model located in the B1–B2 internuclear region, in particu-

lar. The maximum and minimum values of the residuals are -0.412 / 0.451 and -0.337 / 

0.229 e Å -3 due the IAM and multipole model, respectively. All following results should 

be considered solely as a first attempt of the reconstruction of ED from the diffraction data 

for V3B4. 

 

 

 

 

                                                                                                 a) 

 

 

 
 
 
 
 

                                                                                                b) 
Figure 7.2 Residual density maps in V3B4 structure according to the IAM in a) and multipole re-
finement in b). The data cut-off at sin θ / λ = 0.9; contour level step width: 0.05 e Å-3. Solid red and 
dashed blue lines correspond to positive and negative values, respectively, whereas solid black line 
is the zero contour. 
                                                                        

7.2   Topological analysis of the electron density 

 Experimentally reconstructed total ED maps for V3B4 in some selected planes are pre-

sented in Figure 7.3. Theoretical ED maps are also given for the sake of comparison. All of 

cp types are present in the ED of V3B4. No nonnuclear attractors are found. The Poincare-

Hopf condition is fulfilled according to both theoretical and experimental analysis of ED. 

All the theoretically found bcps are reproduced by experiment (Table 7.4). 

 

 



                                                                                                                                                                               

 7   Electron Density in V3B4 

 

 117

B1B1

B1B1

V2

V2

V2

B2

B2 B2

B2

B2 B2

B1

B1

B1

B1

V2 B2

B2B2

B2

B2

B2V2

V2

B1

V1

B1

B1 B1

B1 B1

B1 B1

V1

B2 B2

B2B2

V1

B2

B2 B2

B2

V1

V1

B1 B2

V2

V1 V2V2

V2V1

V1

B2B1

                                                          Ι                                              ΙΙ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

Figure 7.3 Total electron density in V3B4 structure in planes as shown. (Ι) ED reconstructed from 
the X-ray diffraction data, (ΙΙ) calculated by APW method. The isoline interval is 0.05 e Å-3. 
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Table 7.4 Topological characteristics of the critical points determined from reconstructed experi-
mental ED and theoretical calculations. Theoretical values are denoted by an asterisk. 

 

    Theoretically obtained ring and cage critical point at the 4l positions are not reproduced 

by experiment. Variation of ED values at cp between theory and experiment are in the 

range of ±0.09 e Å-3 for ρ(rcp) and ±2.8 e Å-5 for ∇2ρ(rcp), respectively.  

Wyckoff notation and  
position of cp 

-3
cp(r )(e Å )ρ

 

2 5
cp(r )(e Å )−∇ ρ

 

5
1(e Å )λ −

 

5
2 (e Å )λ −

 

5
3 (e Å )λ −

 

 Type   
 of cp 

2c (0.5, 0.5, 0) 0.904 -3.000 -3.316 -2.930 3.249 3, -1 
2c (0.5, 0.5, 0)* 0.814 -4.118 -2.918 -2.658 1.458 3, -1 
8l (0.5, 0.245, 0.106) 0.752        -0.691 -2.162 -1.940 3.410 3, -1 
8l (0.5, 0.249, 0.103)* 0.785 -3.535 -2.718 -2.340 1.521 3, -1 
8m (0.250, 0, 0.375) 0.436 4.423 -0.918 -0.523 5.863 3, -1 
8m (0.237, 0, 0.375)* 0.447 2.487 -1.306 -0.386 4.176 3, -1 
16o (0.266, 0.290, 0.149) 0.402 3.605 -0.815 -0.077 4.497 3, -1 
16o (0.264, 0.260, 0.155)* 0.437 2.265 -1.275 -0.424 3.964 3, -1 
16o (0.255, 0.253, 0.031) 0.376 3.558 -0.708 -0.255 4.523 3, -1 
16o (0.258, 0.256, 0.032)* 0.391 2.248 -0.998 -0.229 3.545 3, -1 
4j  (0.5, 0, 0.226) 0.363 2.878 -0.969 -0.774 4.617 3, -1 
4j  (0.5, 0, 0.225)* 0.382 2.273 -0.713 -0.581 3.567 3, -1 
8m (0.249, 0, 0.068) 0.381 2.925 -0.803 -0.419 4.145 3, -1 
8m (0.256, 0, 0.068)* 0.363 2.234 -0.795 -0.046 3.077 3, -1 
16o (0.272, 0.307, 0.145) 0.402 3.602 -0.807 0.075 4.335 3, +1 
16o (0.275, 0.343, 0.138)* 0.429 2.716 -1.200 0.159 3.615 3, +1 
8n (0.267, 0.281, 0) 0.367 3.435 -0.704 0.231 3.909 3, +1 
8n (0.272, 0.283, 0)* 0.381 2.509 -0.993 0.229 3.270 3, +1 
16o (0.271, 0.147, 0.057) 0.361 2.939 -0.681 0.378 3.244 3, +1 
16o (0.259, 0.063, 0.067)* 0.362 2.280 -0.793 0.080 2.993 3, +1 
8k (0.25, 0.25, 0.25) 0.215 1.420 -0.253 0.118 1.557 3, +1 
8k (0.25, 0.25, 0.25)* 0.276 1.203 -0.378 0.036 1.545 3, +1 
8l (0.5, 0.138, 0.430) 0.239 1.171  -0.072 0.496 0.747 3, +1 
8l (0.5,0.213,0.328)* 0.242 1.125  -0.084  0.547 0.665 3, +1 
4l (0.5, 0.5, 0.328)* 0.236 0.974    -0.058 0.361  0.678 3, +1 
4l (0.5, 0.5, 0.379)* 0.213 0.971  0.043 0.142 0.786 3, +3 
2d (0, 0.5, 0) 0.230 1.137  0.089 0.458 0.588 3, +3 
2d (0, 0.5, 0)* 0.218 1.104  0.063 0.472 0.569 3, +3 
2b (0.5, 0, 0) 0.228 1.281  0.313 0.369 0.598 3, +3 
2b (0.5, 0, 0)* 0.210 1.309  0.357 0.388 0.564 3, +3 
4l (0.5, 0.5, 0.253) 0.169 0.461  0.113 0.142 0.207 3, +3 
4l (0.5, 0.5, 0.224)* 0.209 0.583  0.074 0.227 0.280 3, +3 
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7.2.1 The B−B interaction 

The topology of the DD map indicates ED accumulation located both in B1−B2 internu-

clear region as well as in B1−B1 internuclear region. The B1−B1 atoms are responsible for 

linking both B1−B2 zig-zag chains. However, no single maxima are observed in regions of 

density accumulation, instead two maximas are separated and each one is located close to 

the other nucleus (Figure 7.4). The boron atoms are completely enveloped by the negative 

region of ∇2ρ(r). The negative values for ∇2ρ(rb) both at the B1−B1 and B1−B2 bcp indi-

cate a shared-type interaction.  

 

 

 

 

 

 
                                 a)                                                                          b) 

 

 

 
 
 
 
 
                              

                                    c)                                                                                 d) 

 
Figure 7.4 a) The deformation ED in V3B4 in plane of B-B double zig-zag chain. The isoline inter-
val is 0.02 e a.u.-3 b) The ED Laplacian in V3B4 in the same plane as in a). The isoline intervals are 
±2 × 10n, ±4 × 10n, ±8 × 10n e Å-5 where n = 0, 4, 3, 2, 1. c) Experimentally (black) and theoreti-
cally (red) calculated ∇2ρ(r) (e Å-5) distribution along the B1−B1 bond path. d) Experimentally 
(black) and theoretically (red) calculated ∇2ρ(r) (e Å-5) distribution along the B1−B2 bond path. 
The non-continuous behaviour of the theoretical values is an artefact originating from the APW 
basis set used for the calculation.   
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In general, experimentally determined ED Laplacian ∇2ρ(r) along both B−B bond paths 

reveals a double minima picture with a significant ''contraction'' indicating a quite pro-

nounced charge concentration comparable to C−C bonds in a phenyl ring.[147]  This result 

differs from the theoretically predicted shape of Laplacian distribution between the boron 

atoms which is supposed to have a less pronounced valence shell (Figure 7.4). According 

to experiment, the bcp at the 2c position is exactly in the middle of the interatomic line due 

to symmetry restrictions applied to B1 atom whereas the bcp at the 8l position is located 

near to B2.  

Some other topological properties of B1−B1 and B1−B2 bcps are summarized in Table 

7.5. Experimental and theoretical ρ(rb) value at the B1−B2 bcp at 8l position is less than 

that of the B1−B1 bcp at 2c position. The variation between theoretically and experimen-

tally derived ρ(rb) values is larger for the latter bcp. The ellipticity values varying in the 

range of 0.098–0.161 may be indication of π-density contribution to the bond. A compari-

son of |λ1| / λ3 ratios at both B1−B1 as well as B1−B2 bcp between experiment and theory 

reveal that the parallel concentration along the bond path toward both nuclei is more pro-

nounced according to experiment.   

Table 7.5 Experimentally and theoretically determined properties of B−B bonds in V3B4. Theoreti-
cal values are denoted with an asterisk. d(B–B) is the B–B interatomic distance whereas d(B−bcp) 
is the distance between the respective boron atoms and the bcp. 

 

7.2.2 The B−V interaction 

Topological analysis of ED according to both theory and experiment reveals that there 

are five bcps in B−V interatomic regions. Some selected topological properties of B−V 

bonds are summarized in Table 7.6. The slight shifts of the bcps away from the midpoint of 

the bond paths indicate the polarity of the B−V bonds. It has to be noted that the topologi-

cal properties of the ED at different B−V bond critical points are quite close to each other. 

Wyckoff notation  
of the bcp 

  d(B−B) 
      (Å) 

d(B−bcp) 
(Å) 

b
-3

(r )
(e Å )
ρ  2

b
5

(r )
(e Å )−
∇ ρ  ε(rb) |λ1| / λ3 

B1-B2 in V3B4, 8l 0.752    -0.691 0.114 0.634 

B1-B2 in V3B4, 8l* 

1.7942(3) 0.941, 0.858 

0.785 -3.535 0.162 1.788 

B1-B1 in V3B4, 2c 0.904 -3.000 0.132 1.021 

B1-B1 in V3B4, 2c* 

1.7341(6) 0.867, 0.867 

0.814 -4.118 0.098 2.001 
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These properties are generally relatively low value of ρ(rb), small positive ∇2ρ(rb) value 

and small negative value for local energy density H(r); thus coincides generally with those 

observed in VB2, TiB2 and VB. These bcp indices point to covalent nature of the B−V in-

teractions in V3B4. 

Table 7.6 Topological properties of ED at B−V bcp in atomic units. d(B−bcp) is the distance be-
tween the respective boron atom and the B–V bcp whereas d(V−bcp) is the distance between the 
respective metal atom and the B–V bcp. 

Wyckoff notation 
and position of cp 

d(B−bcp) 
(Å) 

d(V−bcp) 
(Å) 

b(r )ρ  2
 b(r )∇ ρ

 
G(r) 

 

H(r) 

 

B1–V2, 8m (0.250, 0, 0.375) 1.088 1.109 0.065 0.184 0.060 -0.015 

B2–V2, 16o (0.266, 0.290, 0.149) 1.180 1.150 0.060 0.150 0.051 -0.014 

B1–V1, 16o (0.255, 0.253, 0.031) 1.147 1.160 0.056 0.148 0.048 -0.011 

B2–V2, 4j (0.5, 0, 0.226) 1.185 1.143 0.054 0.119 0.042 -0.012 

B2–V1, 8m (0.249, 0, 0.068) 1.173 1.170 0.056 0.121 0.044 -0.014 
 

The charge asphericities in the vicinity of V1 and V2 atoms can be detected by defor-

mation electron density maps as shown in Figure 7.5. In general, the ED around V1 is less 

distorted and more homogenously distributed in comparison to V2. The charge accumula-

tions around V2 are located opposite to B1 atoms. 

 

 

 

 

 

 

 

Figure 7.5 Deformation densities in V3B4 in planes as shown. The isoline interval is 0.02 e a.u.-3. 
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    The gradient field of the ED ∇ρ(r), inclusive the B–V bond paths in the relevant planes 

are shown in Figure 7.6. The bcp found at 4j position confirms that the B−V interaction 

exists not only in the same trigonal prism unit but also between neighbouring trigonal 

prism units. Consequently, B2 atoms are shifted from the center of the trigonal prism to-

wards to V2 in the neighbouring sheet.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.6 The gradient field ∇ρ(r) of the ED in the planes as shown in V3B4. The bond path and 
the interatomic surface path are drawn in red and green, respectively. The bond critical points are 
denoted by red circles. 
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The 3D representation of the experimentally derived topology of the Laplacian ∇2ρ(r) 

around the V atom is not in agreement with the theory (Figure 7.7). Both methods confirm 

the structurization of the penultimate shell away from a spherical shape. However, there 

are differences in the position of charge concentrations. 

                                                        Ι                                 ΙΙ 

 

 

 

 

 

 

 
 
 
Figure 7.7 Experimental (I) and theoretical (II) 3D representation of the ED Laplacian for the met-
al atoms in V3B4. The isosurface 2ρ∇  values are -300 e Å-5 (I) and -288 e Å-5 (II).  
 
 

7.2.3 Atomic Electron Populations 

The atomic electron populations are estimated by integration of the model ED over the 

atomic basins (Table 7.7). Experimental calculations yield a charge transfer of ca. 3.72 e 

from V3 to B4, i.e., [V3]3.7+ [B4]3.7- whereas theoretical calculations reveal a transfer of ca. 

3.11 e. The agreement of AIM charges and the atomic volume within the given atom types 

are ±0.43 e and ±0.27 Å3, respectively. 

 
Table 7.7 Atomic volumes (V) and electron populations in atomic basins ( N ). 

 

                  V (Å3) N   

V1 V2 B1  B2 V1 V2 B1 B2 
N (unit cell) 

Exp. 8.36 9.60 7.97 8.41 21.72 21.78 6.10 5.75 177.96 

Theory 8.57 9.50 7.70 8.69 21.85 22.08 5.67 5.82 178.00 
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Experimentally obtained charge transfer to B1 in V3B4 (~1.1 e) is found to be consid-

erably higher than the theoretical value (~0.7 e) as well as electrons transferred to B2 (~0.8 

e). The location of B1–B2 bcp away from the midpoint of the B1–B2 bond path supports 

the transfer of electrons to B1 not only from the metal but also presumably to a smaller ex-

tent from B2. Large amount of charge transfer to B1 in V3B4 is also reflected by the ED 

value at B1−B1 bcp which is found to be higher in comparison to that at the B1–B2 bcp.  
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7.3 Summary on V3B4 

A detailed description of the ED features in V3B4 is derived in terms of a multipol mod-

el using high resolution X-ray diffraction data. Residual density maps indicate some 

features in B–B interatomic region which cannot be properly described by the multipole 

model. Nevertheless, all theoretically obtained critical points are experimentally repro-

duced except for a ring and a cage critical point. No sign of directed V−V bonding is 

found. Discrepancies are observed especially by comparison of some bcp descriptors con-

cerning the higher derivatives of ED. Theoretically determined ED Laplacian distributions 

along the B−B bond paths indicate that the boron valence shell is less pronounced in com-

parison that found according to the experiment. The ED properties at the B−V bcp indicate 

a polar covalent interaction between vanadium and boron. This result is supported by the 

participation of 3d orbitals at B−V bonding evidenced by the structurized penultimate shell 

of both vanadium atoms according the ED Laplacian. It has been approved that the metal 

interacts with borons not only in the same but also from neighbouring trigonal prism units. 

Finally, topological analysis indicates a charge transfer from vanadium atoms to borons. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                                     

 7   Electron Density in V3B4 

 

 126

 



                                                                                                                                                                               

    8   On Similarities and Differences between the Electronic Structures of TiB2, VB2, VB and V3B4 

 

 127

8 ON SIMILARITIES AND DIFFERENCES BETWEEN 

THE ELECTRONIC STRUCTURES OF TiB2, VB2, VB 

AND V3B4 

In this Chapter, the electron density properties of the resembling fragments in TiB2, VB2, 

VB and V3B4 are compared. For the identification of the resembling fragments, the B−B 

and the B−M interactions in addition to net charges of the atomic basins are analysed. 

8.1 The B–B interaction 

The ED Laplacian indicates a significant charge concentration in the B–B interatomic 

regions which is typical for covalent bonds as shown in the structurally relevant planes of 

TiB2, VB2, VB and V3B4 (Figure 8.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8.1 Contour maps of experimentally reconstructed ED Laplacian together with the bond 
paths in structurally relevant B-atom planes of TiB2 (a), VB (b) VB2 (c) and V3B4 (d). Negative 
contour levels are drawn at -1, -2, -4 e Å-5; positive levels at 1, 2×10n, 4×10n, 8×10n e Å-5, where n = 

3, 2, 1, 0. Positive and negative values are marked by solid and dashed lines, respectively. The 
bond critical points are denoted by closed circles. 
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As discussed in Chapter 3 there are two distinct B–B distances in V3B4 structure. The 

first one (B1−B2) which is a part of the zig-zag chain and extends along [100], is similar to 

that in VB; the other one (B2−B2) which links both chains resembles that in VB2. A closer 

inspection of the associated B–B interactions via charge density analysis reveals that the 

ED values at the B−B bcps reflect these variations (Table 8.1). In general, the magnitudes 

of ρ(rb) and ∇2ρ(rb) at B–B bcps are increasing with the decrease of B−B distances. Ac-

cordingly, in V3B4 structure, both experimental and theoretical ρ(rb) between B1−B2 at the 

8(l) position (resembling more that in VB) is less than ρ(rb) between B1−B1 at the 2(c) po-

sition (resembling more that in VB2). The most considerable disagreement between 

experiment and theory is due to ρ(rb) of the latter bcp in V3B4 for which experiment sug-

gests a higher value than theory. Taking into account that the B1−B1 distance of ca.1.734 

Å) in V3B4 is slightly larger as compared to the B−B distance of ca.1.731 Å in VB2, ex-

perimetal ρ(rb) at the B1−B1 bcp is presumably overestimated.  

 
Table 8.1 Experimentally and theoretically determined B−B bcp properties in VB2, VB and V3B4. 
Wyckoff notations and the positions of the B–B bcps are also given. d(B–B) is the B–B interatomic 
distance whereas d(B−bcp) is the distance between the respective boron atoms and the bcp. The 
ellipticity of the bonds is given by ε = λ1 / λ2 −1 where λ1 and λ2 are the negative principle curvatures 
of the ED at bcp. |λ1| / λ3 is the ratio of the magnitude of the smallest negative principle curvature 
and the positive principle curvature at bond critical point. Note that a bcp at 2(c) position in TiB2 is 
not reproduced by experiment. 
 
Bond  d(B−B)  

(Å) 
d(B-bcp) 

(Å) 
ρ(rcp) 
(e Å-3)

2ρ (rcp) 
(e Å-5) 

ε (rcp) |λ1| / λ3 

B−B in VB,  exp. 0.897, 0.897 0.748 -1.341 0.149 0.789 

4b, (0.5, 0.0, 0.5) theory 

1.7933(6) 

 0.740 -2.750 0.176 1.457 

B1−B2 in V3B4,  exp. 0.926, 0.839 0.752 -0.691 0.114 0.634 

8l, (0.5, 0.25, 0.11) theory 

1.7942(3) 

 0.785 -3.535 0.162 1.788 

B1−B1 in V3B4,  exp. 0.869. 0.869 0.904 -3.000 0.132 1.021 

2c,  (0.5, 0.5, 0) theory 

1.7341(6) 

 0.814 -4.118 0.098 2.001 

B−B in VB2,  exp. 0.865, 0.865 0.812 -3.098 0.731 1.578 

3g, (0.5, 0.5, 0.5) theory 

1.7307(2) 

 0.831  -4.48 0.131 2.237 

B−B in TiB2,  exp. 1.7499(2) 0.875. 0.875 0.847 -4.196 0.519 1.796 

3g,  (0.5, 0.5, 0.5) theory   0.817 -4.405 0.155 2.137 

B−B in TiB2,  theory 3.0309(2) 1.515, 1.515 0.197  0.641    0    0 

2c, (0.33, 0.66, 0)        
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Experimental ρ(rb) for B–B at 3g position in TiB2 is slightly larger than the correspond-

ing ρ(rb) in VB2 whereas the opposite situation is valid for theory. The ED values at the 

B−B bcp in VB2 and TiB2 are very close to that reported for Mg1-xB2 (~0.8 e Å-3).[21f] 

These compounds show very slight changes in the B–B interatomic distances similar to 

those observed between VB2, VB and V3B4. In order to distinguish between the topological 

properties of the respective B–B interactions, examination of higher derivatives of ED is 

necessary, the accuracy of which depends both on the data quality as well as the flexibility 

of deformation radial density functions used in the multipole model. 

The variation between theoretically and experimentally derived bonding descriptors 

based on higher derivatives of the ED is larger. Nevertheless, some trends can still be ob-

served. For example, experimentally calculated |λ1| / λ3 ratios which are generally smaller 

than the theoretical ones, reveal that the concentration of the ED along the bond path to-

wards borons is more pronounced for B1–B2 than for B1–B1 in V3B4 (|λ1| / λ3 for B1–B2 is 

smaller than for B1–B1).  A comparison between the same bcp descriptors for the resem-

bling B–B interactions in VB and VB2 reveal a similar trend (|λ1| / λ3 for B–B in VB is 

smaller than that of VB2). Ellipticity values in VB and V3B4 cannot be distinguished clear-

ly due to very small variation (0.098-0.176). In case of VB2 and TiB2, experimentally 

obtained ellipticity values are considerably higher in comparison to theory. The experimen-

tal ellipticity value for B–B bcp in VB2 (ε = 0.73) is larger than that in TiB2 (ε = 0.52) 

whereas the opposite situation is valid for theory. 

Both experimental as well as theoretical ED values of the B−B bcps obtained in the pre-

sent work are considerably larger than those reported by Will[122b] and Hegenscheidt[148] in 

TiB2 (~0.2 e Å-3). It has to be noted that in those works the quantitative analysis is based 

not on the ED itself but the deformation ED the interpretation of which depend crucially on 

the reference state. Both authors confirmed a significant concentration of the ED in B−B 

bond and concluded that boron atoms have a covalent interaction within the boron net-

work. 

The magnitudes of ρ(rb) for B–B bcps found in this work are close to that reported for 

some two-center intracluster B–B bcps (0.78-0.95 e Å-3) in α-boron as well as in the more 

recently discovered high pressure γ-B28 modification of boron.[149] For the latter the ED at 

the respective bcp is significantly smaller than those at other two-center B–B bonds which 

are varying between 1.13-1.19 e Å-3. The authors concluded that the former has to be a 1e-



                                                                                                                                                                                     

    8   On Similarities and Differences between the Electronic Structures of TiB2, VB2, VB and V3B4 

 

 130

2c bond in order to balance the electrons according to Wade's rule. Simple electron count-

ing rules allow distinguishing between 1e-2c, 2e-2c and 2e-3c bonds in boron 

modifications since they are predominantly covalent in nature which is evidenced by the 

negative sign of ∇2ρ(rcp). Such a comparison cannot be carried out for intermetallic bor-

ides straightforwardly since there are substantial differences between the topological 

properties of B–B bcps and other cps in these compounds. In general, the ring and cage 

critical points are characterized with small positive Laplacian and considerably small ED 

values. Furthermore, the ED is distributed over a wide ring and cage surfaces. Additional 

topological property of these ring and cage critical points is negative H(r), besides the ratio 

G(rb) / ρ(rb) is  less than unity as also observed by B–V bcp. 

8.2 Transition metal-boron interactions 

Topological analysis indicated that the B−V bcps in VB and VB2 are reproduced in the 

analogous interatomic regions of V3B4 (Figure 8.2). Additional B–V bcps found in the re-

sembling B–V interatomic regions of VB and V3B4 confirm that transition metals form 

bonds with boron not only within the same trigonal prism unit but also between neighbour-

ing trigonal prism formations. Consequently, boron atoms are shifted from the center of the 

trigonal prism towards to vanadium atoms in the neighbouring layer. This explains smaller 

B−B angles in VB and V3B4 with respect to VB2 as discussed in Chapter 3. 

 

 

 

 

 

 
Figure 8.2 VB, V3B4 and VB2 structures. The thick green and blue lines are symbolizing B−V in-
teractions according to bcp analysis whereas the trigonal prim units are drawn in pink.    
 

The DD maps in Figure 8.3 show coincident features of V3B4 and VB structures in the 

metal environment. A similar comparison of the analogous regions between V3B4 and VB2 

reveal that the density in the vicinity of the core is almost featureless.  
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Figure 8.3 Deformation electron densities in V3B4, VB2 and VB in the structurally relevant planes. 
The isoline interval is 0.02 a.u-3. 

      All transition metal-boron (B–M) bcps in TiB2, VB2, VB and V3B4 are characterized by 

low value for ρ(rb) and small positive value for ∇2ρ(rb) as shown in Table 8.2. The sign of 

the Laplacian is not informative about the bonding situation of transition metals. The B−V 

bonds can be assumed to have some degree of covalent nature evidenced by the magni-

tudes of ∇2ρ(rb) which are considerably smaller in comparison to those of strong ionic 

bonds (∇2ρ (rb) ≫ 0). Furthermore, the bcps are slightly shifted to the respective boron at-



                                                                                                                                                                                     

    8   On Similarities and Differences between the Electronic Structures of TiB2, VB2, VB and V3B4 

 

 132

oms. The position of the bcp away from the midpoint of the respective bond paths may in-

dicate the polarity of the bond.  

      Additional properties of the B−M bcps in TiB2, VB2, VB and V3B4 derived from the 

experimental ED are small negative value for local energy density H(rb), besides the G(rb) / 

ρ(rb) is less than unity. These topological indexes also support that the B–M interaction is 

of covalent nature. Similar bond critical point properties are observed for carbon metal in-

teractions in cyclopentadienyl complexes of Ge, Al+ and Fe by Bader et al. for which the 

ED is distributed over a wide range between the metal atom and five membered carbon 

atom rings.[150] 

Table 8.2 Some selected topological properties of B–V interactions in VB2, VB and V3B4. d(B–V) 
is the B–V interatomic distance whereas d(bcp) is the distance between the B–V bcp and the B–V 
interatomic line. Wyckoff notation and the position of the B–V bcp are also given. 

Bond         d(bcp) 
(Å) 

ρ(rb) 
(e Å-3) 

∇2ρ (rb) 
(e Å-5) 

 

d(B–M) 
(Å) 

 exp. theory exp. theory exp. theory 
TiB2        
B–Ti, 12o 2.3812(2) 0.052 0 0.323 0.334 2.672 2.487 
(0.18, 0.35, 0.24)        
VB2        
B–V, 12o 2.3087(2) 0.059 0.063 0.364 0.393 2.953 2.299 
(0.82, 0.18, 0.24)        
VB        
B–V, 16h 2.2413(2) 0.155 0.130 0.431 0.433 2.855 2.133 
(0.24, -0.09, 0.49)        
B–V, 8g 2.2795(4) 0.063 0.049 0.405 0.408 3.417 2.497 
(0.24, -0.03, 0.25)        
B–V, 4c 2.3358(5) 0 0 0.303 0.378 3.430 2.289 
(0, -0.29, 0.75)        
V3B4        
B2–V2, 8m 2.1964(4) 0 0 0.436 0.447 4.423 2.487 
(0.26, 0, 0.37)        
B1–V2, 16o 2.2407(3) 0.244 0.195 0.402 0.437 3.605 2.265 
(0.27, 0.29, 0.15)        
B1–V1 in V3B4, 16o 2.3057(3) 0.025 0.056 0.376 0.391 3.558 2.248 
(0.25, 0.25, 0.03)        
B2–V2 in V3B4 ,4j 2.3286(5) 0 0 0.363 0.382 2.878 2.273 
(0.5, 0, 0.23)        
B2–V1 in V3B4, 8m 2.3406(4) 0 0 0.381 0.363 2.925 2.234 
0.25, 0, 0.07        

 

The properties of B−M bcp reveal that in case of the examined compounds, for the den-

sity itself the theory predicts larger values whereas experimentally obtained Laplacian 
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values are larger in comparison to theory. For polar bonds of main group elements, in par-

ticular, similar systematic deviations in the topological properties of ED at the bcp are 

reported between theory and experiment.[19, 151] This effect can be attributed to insufficient 

flexibility of the radial functions used in the multipole model which cannot account for fine 

details of ED. For all multipoles of a given l, the same set of Slater-type radial functions 

are used which maxima is controlled by both the parameter nl and the single slater expo-

nent ζl. The starting values of these parameters are modified by a single optimized κ′  

parameter. The increase in the number of variables used for the radial functions would 

doubtlessly provide a more flexible model but also increase the correlations between the 

parameters refined.  

A comparison between theory and experiment indicates that the deviations of the B–M 

bcp values in TiB2, VB2, VB and V3B4 are varying in the range of ±0.075 e Å-3 for ρ (rb) 

and ±1.936 e Å-5 for ∇2ρ (rb), respectively. This kind of spread would normally indicate a 

high degree of transferability for the respective bond-topological properties of light atom 

molecules but not for the present case. The reason is that light-atom molecules are gener-

ally characterized by high and clearly distinguished ED values at bond critical points as 

well as other bonding descriptors with a very broad spectrum. On the other hand, B–M 

bonds exhibit very similar bcp properties indicated by ρ(rb) and ∇2ρ (rb) values, in spite of 

being in different environments, as generally observed for transition metal bonding.[80] 

Therefore, additional criteria are necessary in order to distinguish between different B–M 

bonds. 

As is evident from Figure 8.4, all of the B–V bond paths in the structurally relevant 

planes of VB2, VB and V3B4 are inwardly curved with respect to the interatomic lines 

forming the three-membered ring except for the bond path in VB2 which is outwardly 

curved. Table 8.2 shows the shifts of the bond critical point from the B–V interatomic line 

for quantification of bond bending. The so-called strained bonds usually cause the internu-

clear distances to appear shorter than normal. Obviously, such a correlation exists for B–V 

bonds in VB but not explicitly in V3B4 according to both experiment and theory. A close 

inspection of B–V bond path topology in VB2, VB and V3B4 reveals that the bcp shifts al-

low a differentiation between several B–V interactions which can hardly be distinguished 

due to very similar ρ(rb). For example, as also observed by the B–B distances, V3B4 have 

two distinct B–V distances (2.241 Å and 2.307 Å, respectively) resembling either that in 
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VB (2.241 Å) or that in VB2 (2.309 Å). An analogous situation can be found for the asso-

ciated bcp shifts. The distance between the B–V interatomic line and the respective bcp at 

16h position in VB (d(bcp) = 0.155 Å) is comparable to the distance between the B2–V2 

interatomic line and the B2–V2 bcp at 16o position in V3B4 (d(bcp) = 0.244 Å). A similar 

situation can be found for the B–V bcp shifts in the structurally relevant planes of VB2 and 

V3B4 in which the bending of the respective B–V bond paths are relatively less pro-

nounced. It has to be also mentioned that these bond paths are curved in opposite 

directions. Nevertheless, for all other B–V interactions, it is not possible to find such a 

good agreement together for the interatomic distances, bcp shifts and ρ(rb). As a result, 

topological analysis of ED allows identification of two different types of B–V interactions 

in V3B4: one resembles more that in VB; the other one more that inVB2 despite some slight 

qualitative as well as quantitative differences in the associated topological properties of 

ED.  

In case of TiB2, experimental results, unlike the theory, indicate that the B–Ti bond is 

slightly bent as evidenced by the distance between the B–Ti bcp and the B–Ti interatomic 

line (0.052 Å). However, both methods are in agreement in terms of ED value at B–Ti bcp 

which is smaller in comparison to that found in VB2. This result correlates with the respec-

tive B–M interatomic distances d(B–M) in these compounds (Table 8.2). There is an 

inverse relationship between d(B–M) and ρ(rb) at B–M bcp. 

In VB2, VB and V3B4, there are some ring critical points (rcp) located on the three- 

membered ring surfaces that result from the formation of B–B and B–V bond paths (Figure 

8.4). The quantitative differences between these associated bcps and rcps are generally 

small considering the ED value as reported in the previous Chapters. Furthermore, one of 

the principle curvatures of the ED λ2, is of relatively smaller magnitude for both cp types. 

Similarities between the topological properties of ED at these bond and ring critical points 

suggest that the density is smeared over a wide range of the ring surface. These bonding 

situation presumably differs from that exists in the ring surfaces of electron-deficient bo-

ranes which are characterized by comparable ED values at rcp and bcp together with 

negative∇2ρ(r) at rcp.[152] The reason is that for vanadium borides the Laplacian is only 

negative at the B–B bcp. Accordingly, the ED is predominantly accumulated in the B–B 

interatomic region.  
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Figure 8.4 Gradient field of the experimentally reconstructed ED of VB (a), VB2 (b) and V3B4 (c) 
and (d) in structurally relevant planes containing the three-membered ring surfaces. Black circles 
and red triangles are attributed to bcps and rcps, respectively whereas the black solid lines are the 
bond paths. The B–V bond path in VB and the B1–V2 bond path in V3B4 are relatively more 
curved. Note the proximity of the rcp at 16o position to the strongly curved B1-V2 bond path (c). 
The rcp at 16h position in VB is shifted to the bond path curved to a lesser extent. The rcps (b) and 
(d) are located at equal distances to the B–V bond paths due to symmetry restrictions for the atomic 
sites involved. 

 

Topological analysis of the structurally relevant ring surfaces in VB2, VB and V3B4, re-

veals slight differences in the morphology of the charge distribution (Figure 8.4). In VB, 
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the rcp is shifted slightly to the bond path curved to a lesser extent whereas in V3B4, the 

rcp at 16(o) position is located relatively close to the strongly curved bond path. As shown 

in the structurally relevant planes of VB2 and V3B4, the rcp has equal distances to the B–V 

bond paths due to the symmetry restrictions for the atomic sites involved. Owing to the 

strongly curved B1–V2 bond path in V3B4, bond and ring critical point are located in im-

mediate proximity to each other. Similar situation is observed for the B–M bond path in 

Mg1-xB2 for which the bcp shift from boron-metal interatomic line is found to be d(bcp) = 

0.21 Å.[21f] It is worth to mention that in Mg1-xB2 the magnitude of the smallest principle 

curvature of the ED, |λ2|, is 0.01 e Å-5 at the respective bcp and rcp. On the other hand, ac-

cording to both experiment and theory, |λ2| is relatively large for the relevant critical points 

in VB2, VB and V3B4 varying in the range of 0.1–0.2 e Å-5, 0.1–0.3 e Å-5 and 0.1–0.3 e Å-5, 

respectively. In general, for nuclear motions that result in migration of a critical point 

along an axis associated with relatively small curvatures of the ED, less energy is suffi-

cient.[17] In a ring structure, such a motion leads to coalescence of the bond and ring critical 

point thereby first breaking of the respective bond and opening the ring structure. Topo-

logical properties of the associated ring and bond critical points indicate that more energy 

is required in order to open the respective ring structure in VB2 as compared to that for 

Mg1-xB2. This result is in line with the respective cohesive energies, Ecoh which is a meas-

ure of the stability of a system relative to that of noninteracting atoms. The maximum Ecoh 

values were reported for group IV and Vd-metal diborides i.e. for VB2 and TiB2 while the 

minimum Ecoh was obtained for Mg1-xB2.[47]  

The ED Laplacian unravels the most remarkable difference between TiB2 and VB2 struc-

tures. The penultimate shell of vanadium is distorted into a non-spherical shape in contrary 

to titanium which is non-structurized (Figure 8.5). Both theoretically as well as experimen-

tally derived topologies of ∇2ρ(r) in VB, V3B4 and VB2 reveal distortion in the penultimate 

shell of vanadium atoms. Both methods show a very good agreement for VB2 and TiB2 

whereas discrepancies are observed in VB and V3B4 due to the location of charge concen-

trations. Notwithstanding these differences, both experimental and theoretical calculations 

reveal that the topology of the penultimate shell of V in VB and V2 in V3B4 are coincident. 

On the other hand, a similar comparison between the penultimate shell of V in VB2 and V1 

in V3B4 indicated differences according to both methods.  
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Figure 8.5 Experimental (I) and theoretical (II) 3D representation of ∇2ρ(r) of the penultimate 
shell for transition metal atoms in the descending order in TiB2, VB2, VB and V3B4. The isosurface 
values in the same order: -200, -290, -288, -290 and -300 e Å-5, respectively. 

 

Additional properties of the B−M bcps in TiB2, VB2, VB and V3B4 derived from the 

experimental ED are small negative values for local energy density H(rb), besides the G(rb) 

/ ρ(rb) is less than unity. These topological indexes indicate that B–M interaction is of cova-

lent nature. Similar bcp properties are also observed for carbon metal interactions in 

cyclopentadienyl complexes of Ge, Al+ and Fe by Bader et al. for which the ED is distrib-

uted over a wide range between the metal atom and five membered carbon atom rings.[150] 
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8.3 Atomic electron populations 

The electron populations are determined by the integration of the model ED over the 

atomic basins defined by the zero-flux surfaces as shown in Figure 8.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 Atomic basins in the electron density distribution in TiB2, VB, VB2 and V3B4 as deter-
mined from X-ray diffraction data. The B–B and B–V bond paths are also given. The bond critical 
points are denoted by small orange spheres. 

 

The electrons transferred from metal to B-network in TiB2 are found slightly higher than 

that obtained in VB2 according to both theory and experiment (Table 8.3). Both the atomic 

volume and the electron population of the metal in VB2 are slightly less than in VB. The 

same trend is observed for the resembling metal atoms in V3B4. Theoretical calculations re-

veal that the electron populations of the boron atom in VB2 and the resembling B1 atom in 

V3B4 are less than those of the boron atom in VB and the resembling B2 in V3B4. This result 

is not reproduced by experiment according to which the electron population of B1 in V3B4 is 

overestimated. For all other boron atoms experimentally obtained electron populations are 

less in comparison to those from theory. This necessitates a further examination of the mul-

tipole model on the charges in QTAIM.  
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       Table 8.3 Atomic volumes (Å3) and electron populations ( N ) in TiB2, VB2, VB and V3B4.  

 V(M) 
(Å3) 

V(B) 
(Å3) 

N  (M) N  (B) N  in the 
unit cell 

exp. 9.27 8.21 20.88 5.56 32.00 TiB2 

theory 8.81 8.42 20.64 5.68 32.00 

VB2 exp. 8.72 7.52 21.97 5.52 33.00 

 theory 8.56 7.60 21.85 5.57 32.99 

VB exp. 9.76 8.55 22.20 5.79 111.98 

 theory 9.52 8.80 22.08 5.92 112.00 

V3B4 exp. 
8.36(V1) 

9.60(V2)

7.97(B1) 

8.41(B2) 

21.72(V1) 

21.78(V2)

6.10(B1)  

5.75(B2) 
177.96 

 theory 
8.57(V1) 

9.50(V2)

7.70(B1) 

8.69(B2) 

21.85(V1) 

22.08(V2)

5.67(B1)  

5.82(B2) 
178.00 
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8.4 Summary 

      The electronic structure in TiB2, VB, VB2 and V3B4 can be characterized by a charge 

transfer from the metal to boron together with two predominant atomic interactions. These 

are the typical shared type B–B and the polar covalent B–V interactions. Topological 

analysis yields not any significant interaction between the metal atoms. The basic assump-

tion of the Zintl-Klemm concept which is the fulfilling of the octet rule by a full formal 

transfer of the valence electrons from the electropositive to the electronegative component 

is not valid for TiB2, VB, VB2 and V3B4 due to the covalency of the B–V bond.  

The participation of 3d orbitals in B–V bonding is evidenced by the structurized penul-

timate shell of the metal according to ED Laplacian despite some discrepancies observed 

between experiment and theory which needs further investigation. The density Laplacian 

unraveled the most remarkable difference between VB2 and TiB2 structures where for the 

latter the penultimate shell of the metal is not distorted. Considering the physical properties 

of these materials such as extreme hardness aprreciable directed bonding is expected not 

only between the boron atoms but also for the transiton metal boron interaction for all 

compounds investigated. The topological properties of the B–M interactions in the present 

work, on the other hand, do not clearly indicate such a bonding situation. Obviously, the 

topological analysis is successful for the characterization of homoatomic boron interactions 

but not sufficient to explain existing forces originating from the interaction with the transi-

tion metal bonding.      

Topological properties of ED concerning the B–B and B–V interactions are compared 

for TiB2, VB, VB2 and V3B4 structures using both experimentally reconstructed ED and 

theoretical calculations. In general, the magnitudes of the B−B ρ(rb) and ∇ρ(rb) have an 

inverse relationship with the B−B distances. The small spread of ED values at B–M bcp 

complicates the differentiation between several fragments. Nevertheless, slight differences 

in B–M interactions left traces in the respective bond paths exhibiting different degree of 

bending. These slight differences may originate from a change in the electronic structure of 

the neighbouring atoms but also from experimental error.  As a result, the resembling bond 

properties of the examined compounds cannot be treated as equivalent. Accordingly, they 

are not transferable in terms of multipole populations. 
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CONCLUSIONS AND OUTLOOK 

In this thesis, the electron density in TiB2, VB2, VB and V3B4 is successfully recon-

structed from single crystal X-ray diffraction intensities applying Hansen & Coppens 

multipole model. The topological aspects of the experimental ED features are analysed in 

terms of Bader’s Quantum Theory of Atoms in Molecules (QTAIM)[17] and compared with 

those obtained from quantum chemical calculations. 

The crystals being subject to a charge density analysis are synthesized using both Al 

flux technique as well as arc-melting. In case of TiB2, VB2 and VB, X-ray powder diffrac-

tion experiments ensure that there is not any significant change of lattice parameters, thus 

any significant variation of composition also supported by WDXS. On the other hand, 

WDXS indicates small variations from the ideal stoichiometry for other vanadium borides 

which are increased along the series V3B4-V2B3-V5B6. The determination of the respective 

accurate lattice parameters are mostly hampered by the overlapping X-ray powder diffrac-

tion lines of both additional vanadium borides as well as some other by-products. 

     The diffraction limits of the crystals investigated are varying in the range of (sin θ / λ) = 

1.67-1.72. The reliability factors R(F), in case of IAM refinements of the examined struc-

tures, generally increase with the number of reflections collected but never exceed 2%. A 

reliability factor smaller than 1% is achieved for VB2 referring to all observations. At the 

very high resolution of the data set the disagreement between the observed and calculated 

structure factors becomes pronounced in case of all vanadium borides investigated. The 

use of both very small single crystals (20-50 μm) as well as Ag radiation for the X-ray dif-

fraction measurement remarkably reduces extinction or absorption effects. The reflections 

of TiB2 crystal are almost not extinction-affected.  

The crystal structures of TiB2, VB2, VB, V2B3 and V3B4 are reinvestigated and com-

pared on base of spherical refinement. The similarities and differences between the atomic 

arrangements of different vanadium borides are well reflected in B−B distances and an-

gles. The crystallographic analyses reveal that B−B distances decrease slightly with 

increasing boron content in the structure.  

The use of multipole model provides a better agreement between the observed and cal-

culated structure factors which is well reflected in the residual densities for all structures 
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investigated. Close to featureless residuals are obtained particularly in the B−B interatomic 

region for TiB2 and VB2 whereas the maximum value of residuals increases along with VB 

and V3B4.  

Anharmonic description of the ADPs up to the fourth tensor droppes the R(F) value for 

only metal atom for all compounds investigated. An important fact which renders the phys-

ical significance of the anharmonic motion doubtful is the very small anisotropic ADPs. 

Furthermore, for the model refinements of all structures which include only anisotropic 

description of atomic displacement, the respective residual densities does not reveal any 

characteristic sign reflecting the absence of anharmonic motion in the vicinity of the metal 

core. Accordingly, the improvement in the fit can be explained with the flexibility of the 

current model provided by the anharmonic displacement parameters which is able to repre-

sent systematic errors of the experimental data.  

A comparison between theory and experiment reveal that the same number and type of 

critical points are obtained for VB2 but only minor quantitative differences in the ED at 

critical points ρ(rcp) are observed. A similar comparison indicates some disagreements in 

TiB2, VB and V3B4, by positions of ring and cage critical points, in particular but all theo-

retically obtained bond critical points are reproduced in experiment except for one found 

between the boron layers (at 2c position) in TiB2. In case of all compounds examined, the 

variations of the experimentally and theoretically found ED values at the critical points are 

in the range of ±0.08 e Å-3 for ρ(rb),  and ±2.1 e Å-5 for ∇2ρ(r), respectively. Further confi-

dence in the results comes from the comparison between the EFG values at the boron 

nucleus derived from single crystal X-ray diffraction experiment, 11B NMR experiment 

and theoretical calculations for TiB2 and VB2. 

A close inspection of the density Laplacian distribution along B–B bond path indicates 

systematic differences between experiment and theory for all compounds studied. Further-

more, B−M bcp properties reveal that for the density itself the theory predicts larger values 

whereas experimental ∇2ρ(r) is larger in comparison to theory. Similar discrepancies are 

observed by the investigation of the atomic electron populations. These systematic devia-

tions can be traced back on the inadequacy of the multipole model which is mostly 

criticized because of the inflexibility of the deformation radial density functions.    
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 Both experimental and theoretical calculations confirm a model containing both B−B as 

well as B−M bonding interactions for TiB2, VB2, VB and V3B4. The corresponding bcp 

properties reveal that the former interaction is typical shared-type with significant π-

density contribution whereas the B–M interactions are of polar covalent nature. In general, 

the topological analysis of ED according to QTAIM is more successful for the characteri-

zation of homoatomic boron interactions than the bonding situation where the transition 

metal is involved. Integration of the ED over the atomic basins reveals that there is a 

charge transfer from metal to boron for all compounds studied.  

In general, the resembling features in the crystal structures of TiB2, VB, VB2 and V3B4 

structures show correlations in their ED properties. Similarities between the boron sublat-

tices of different vanadium borides are well reflected by the ED values at the respective 

bond critical points. The differentiation between several fragments containing the transition 

metal bonding is mostly difficult due to the small spread of ED values at B–M bcp. Never-

theless, these features provide some correlations in their bond paths exhibiting different 

degree of bending. In general, a good agreement is achieved between experimentally re-

constructed ED and theoretical calculations but the variation is still comparable to the 

small spread of different atomic and bond properties of vanadium borides examined. Ac-

cordingly, the pseudoatomic density of the resembling features can not be treated as 

equivalent for a transferable model within the accuracy of the experiment 

Based on the present results a charge density analysis for V2B3 will be of crucial impor-

tance since this compound contains also independent metal and boron sites as V3B4, thus it 

offers additional features for detailed comparison. The density study shall explain if V2B3 

possesses similar building blocks with respect to VB, V3B4 and VB2.  

The most remarkable difference between B−M interaction in VB2 and TiB2 is that the 

penultimate shell of the Ti atom is not structurized in contrary to V atom. Taking into ac-

count the extreme hardness of both materials this result indicates that the density Laplacian 

is not sufficient for the characterization of the transtion metal bonding. For unravelling the 

differences with respect to transition metal bonding other tools are necessary. For a devel-

opment of a more general bonding model for intermetallic compounds with the crystal 

structure of AlB2 charge density analyses along the series ScB2-TiB2-VB2-CrB2-MnB2 have 

to be completed. The topological analysis of the ED is expected to indicate similarities or 

differences with respect to charge transfer from metal to the boron network. Furthermore, 
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the non-stoichiometry effect on the electronic structure for this class of compounds can be 

investigated by a charge density analysis of diborides of heavier group V d metals Nb1-xB2 

and Ta1-xB2 (x = 0.01-0.5).[153] 
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