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Summary 

The general aim of my dissertation was to investigate the role of plant interactions in 

driving population dynamics. Both theoretical and empirical approaches were employed. 

All my studies were conducted on the basis of metabolic scaling theory (MST), because 

the complex, spatially and temporally varying structures and dynamics of ecological 

systems are considered to be largely consequences of biological metabolism. However, 

MST did not consider the important role of plant interactions and was found to be invalid 

in some environmental conditions. Integrating the effects of plant interactions and 

environmental conditions into MST may be essential for reconciling MST with observed 

variations in nature. Such integration will improve the development of theory, and will 

help us to understand the relationship between individual level process and system level 

dynamics. 

As a first step, I derived a general ontogenetic growth model for plants which is 

based on energy conservation and physiological processes of individual plant. Taking the 

mechanistic growth model as basis, I developed three individual-based models (IBMs) to 

investigate different topics related to plant population dynamics:  

1. I investigated the role of different modes of competition in altering the prediction 

of MST on plant self-thinning trajectories. A spatially-explicit individual-based 

zone-of-influence (ZOI) model was developed to investigate the hypothesis that MST 

may be compatible with the observed variation in plant self-thinning trajectories if 

different modes of competition and different resource availabilities are considered. The 

simulation results supported my hypothesis that (i) symmetric competition (e.g. 

belowground competition) will lead to significantly shallower self-thinning trajectories 

than asymmetric competition as predicted by MST; and (ii) individual-level metabolic 

processes can predict population-level patterns when surviving plants are barely affected 

by local competition, which is more likely to be in the case of asymmetric competition. 

2. Recent studies implied that not only plant interactions but also the plastic biomass 

allocation to roots or shoots of plants may affect mass-density relationship. To investigate 

the relative roles of competition and plastic biomass allocation in altering the 

mass-density relationship of plant population, a two-layer ZOI model was used which 
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considers allometric biomass allocation to shoots or roots and represents both above- and 

belowground competition simultaneously via independent ZOIs. In addition, I also 

performed greenhouse experiment to evaluate the model predictions. Both theoretical 

model and experiment demonstrated that: plants are able to adjust their biomass 

allocation in response to environmental factors, and such adaptive behaviours of 

individual plants, however, can alter the relative importance of above- or belowground 

competition, thereby affecting plant mass-density relationships at the population level. 

Invalid predictions of MST are likely to occur where competition occurs belowground 

(symmetric) rather than aboveground (asymmetric). 

3. I introduced the new concept of modes of facilitation, i.e. symmetric versus 

asymmetric facilitation, and developed an individual-based model to explore how the 

interplay between different modes of competition and facilitation changes spatial pattern 

formation in plant populations. The study shows that facilitation by itself can play an 

important role in promoting plant aggregation independent of other ecological factors (e.g. 

seed dispersal, recruitment, and environmental heterogeneity). 

In the last part of my study, I went from population level to community level and 

explored the possibility of combining MST and unified neutral theory of biodiversity 

(UNT). The analysis of extensive data confirms that most plant populations examined are 

nearly neutral in the sense of demographic trade-offs, which can mostly be explained by a 

simple allometric scaling rule based on MST. This demographic equivalence regarding 

birth-death trade-offs between different species and functional groups is consistent with 

the assumptions of neutral theory but allows functional differences between species. My 

initial study reconciles the debate about whether niche or neutral mechanisms structure 

natural communities: the real question should be when and why one of these factors 

dominates. 

A synthesis of existing theories will strengthen future ecology in theory and 

application. All the studies presented in my dissertation showed that the approaches of 

individual-based and pattern-oriented modelling are promising to achieve the synthesis. 
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Zusammenfassung 

Das primäre Ziel meiner Dissertation umfasste die Erforschung der Rolle von 

Wechselwirkungen zwischen Pflanzen für die Populationsdynamik. Dazu wurden sowohl 

theoretische als auch empirische Ansätze angewendet. Alle meine Untersuchungen 

wurden auf Basis der Metabolic Scaling Theory (MST) durchgeführt, da angenommen 

wird, dass die komplexen räumlich und zeitlich variierenden Strukturen ökologischer 

Systeme weitgehend die Konsequenzen von biologischem Metabolismus sind. Allerdings 

berücksichtigt die MST nicht die wichtige Rolle der Wechselwirkungen zwischen 

Pflanzen und wurde für einige Umweltbedingungen als unzutreffend befunden. Die 

Integration dieser Wechselwirkungen und Umweltbedingungen in die MST hingegen ist 

essenziell, um die MST mit den beobachteten Abweichungen in der Natur abzustimmen. 

Diese Integration wird die Entwicklung von Theorien verbessern und trägt zum 

Verständnis der Zusammenhänge zwischen Prozessen auf Individual- und Systemebene 

bei. 

In einem ersten Schritt leitete ich ein generelles ontogenetisches Wachstumsmodell für 

Pflanzen ab, welches auf Energieersparnis und physiologischen Prozessen der 

individuellen Pflanzen basiert. Auf dieser Grundlage entwickelte ich drei 

individuenbasierte Modelle (IBM), um verschiedene Fragestellungen in Bezug auf die 

Populationsdynamik der Pflanzen zu analysieren. 

In Kapitel 2 untersuchte ich den Einfluss verschiedener Arten von Konkurrenz auf die  

Prognosen der MST in Bezug auf Trajektorien der Selbstausdünnung. Ein räumlich 

explizites, individuenbasiertes zone-of-influence (ZOI) Modell wurde entwickelt, um die 

Hypothese zu eruieren, dass die MST kompatibel zu den Abweichungen in 

Selbstausdünungstrajektorien ist, wenn verschiedene Arten der Konkurrenz und 

unterschiedliche Ressourcenverfügbarkeiten in Betracht gezogen werden. Die Ergebnisse 

der Simulationen bestätigen meine Hypothese, dass (i) symmetrische Konkurrenz (z.B.: 

unterirdisch – Wurzeln) zu signifikant flacheren Selbstausdünnungstrajektorien führt als 

bei asymmetrischer Konkurrenz durch die MST vorhergesagt wird; und (ii) metabolische 

Prozesse auf Individualebene Muster auf Systemebene vorhersagen können, wenn die 

überlebenden Pflanzen kaum durch lokale Konkurrenz beeinflusst werden, was bei 

asymmetrischer Konkurrenz meist der Fall ist. 

Aktuelle Studien unterstellen, dass nicht nur die Interaktion zwischen Pflanzen, sondern 

auch die Biomasseallokation zu Wurzeln oder Trieben der Pflanzen das Masse-Dichte 

Verhältnis beeinflussen kann. In Kapitel 3 untersuchte ich die Rolle der Konkurrenz und 

Biomasseallokation im Hinblick auf Veränderung des Masse-Dichte Verhältnisses der 

Pflanzenpopulation. Dazu wurde ein ZOI Modell mit zwei Ebenen entwickelt, welches 

die allometrische Biomasseallokation zu Wurzeln oder Trieben berücksichtigt und sowohl 
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die unter- wie überirdische Konkurrenz durch zwei unabhängige ZOI simultan darstellt. 

Zusätzlich führte ich ein Gewächshausexperiment durch, um die Modellprognosen zu 

evaluieren. Sowohl das theoretische Modell und das Experiment zeigen, dass Pflanzen in 

der Lage sind, ihre Biomasseallokation je nach Umweltfaktoren anzupassen. Diese 

individuellen Anpassungsstrategien jedoch verändern die relative Bedeutung der ober- 

wie unterirdischen Konkurrenz und damit das Masse-Dichte Verhältnis auf 

Populationsebene. Falsche Vorhersagen der MST treten mit höherer Wahrscheinlichkeit 

auf, wenn unterirdische Konkurrenz (symmetrisch) vorliegt. 

In Kapitel 4 führte ich ein neues Konzept verschiedener Arten der Förderung ein, z.B.: 

symmetrische versus asymmetrische Förderung und entwickelte ein individuenbasiertes 

Modell um zu ergründen, wie das Zusammenspiel zwischen verschiedenen Arten der 

Konkurrenz und Förderung die räumlichen Muster in Pflanzenpopulationen verändert. 

Diese Studie zeigt, dass die Förderung allein die Aggregation von Pflanzen maßgeblich 

begünstigen kann, unabhängig von anderen ökologischen Faktoren (z.B.: 

Samenausbreitung, Mortalität, Heterogenität). 

In Kapitel 5 betrachte ich die Ebene der Pflanzengesellschaften und prüfe die 

Möglichkeit, die MST mit der Unified Neutral Theory of Biodiversity (UNT) zu 

kombinieren. Die Analyse umfangreicher Daten bestätigt, dass die meisten untersuchten 

Pflanzenpopulationen nahezu neutral im Sinne des demographischen Trade-off 

(Geburt/Sterberate) sind, was durch eine simple Skalierung basierend auf der MST erklärt 

werden kann. Dieses demographische Gleichgewicht von Geburt und Mortalität zwischen 

verschiedenen Arten und funktionalen Gruppen steht im Einklang mit der Annahme der 

Neutral Theory, gestattet jedoch funktionale Abweichungen für manche Arten. Meine 

Untersuchung bringt die Debatte darüber, ob Nischen oder neutrale Mechanismen 

natürliche Pflanzengesellschaften strukturieren, in Einklang: die eigentlich Frage sollte 

lauten, wann und warum einer dieser Faktoren dominiert. 

Das abschließende Kapitel 6 beinhaltet eine generelle Diskussion meiner 

Untersuchungen und Fragestellungen. Die Synthese bestehender Theorien wird die 

Ökologie in Theorie und Anwendung zukünftig stärken. Alle in meiner Dissertation 

durchgeführten Untersuchungen zeigten, dass der Ansatz der individuenbasierten und 

musterorientierten Modellierung vielversprechend scheint, diese Synthese zu erreichen.  



 

Chapter 1 

General introduction  

 

 

 

 

 

 

In the mid-19th century, the word ‘ecology’ (Ökologie) was first coined by Ernst 

Haeckel in Morphology of Organisms (1866), and was originally defined as the 

study of the relationship of organisms with their environment. The environment 

of an organism is comprised of all the external factors that could influence it, 

including physical and chemical factors (abiotic) or/and other organisms 

(biotic). Despite how precise ecology is defined to date (Table 1.1), it is no 

doubt that the interactions with those abiotic and biotic factors are fundamental 

on the elaboration of ecological theories.  

However, some new ecological theories such as the metabolic scaling 

theory (MST) attempts at scaling up from the individuals to the ecosystem, 

which is based on simple physical rules but overlooks (consciously or 

unconsciously) the important role of such interactions. Although claimed to be 

a ‘universal’ theory, the validity and universality of MST are still under debate 

because some empirical observations in plant populations and communities 

are inconsistent with the predictions of MST. 

The major goal of my dissertation is to investigate the effects of different 

modes of interactions in driving plant population dynamics. All my studies are 

under a context of MST, because I am attempted to integrate the effects of 

plant interactions and environmental conditions into metabolic scaling theory, 
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in order to reconcile metabolic scaling theory with observed variations in 

nature. 

In the following, I will first introduce the field of plant interactions and 

then to the overall approach chosen in this thesis, individual-based and 

pattern-oriented modelling. Third, I will discuss two ‘unifying’ theories for which 

plant interactions play a key role: the Metabolic Scaling Theory and the Unified 

Neutral Theory. Finally, I will outline the structure and content of my thesis. 

 

Table 1.1 Textbook definitions of Ecology (after Scheiner and Willig 2008) 

Definition Source 

The study of the structure and function of nature Odum (1971) 

The scientific study of the relationships between organisms 

and their environments 

McNaughton and 

Wolf (1973) 

The study of the natural environment, particularly the 

interrelationships between organisms and their surroundings  

Ricklefs (1979) 

The study of animals and plants in relation to their habits and 

habitats 

Colinvaux (1986) 

The study of the relationship between organisms and their 

physical and biological environments 

Ehrlich and 

Roughgarden (1987) 

The study of interactions between organisms and between 

organisms and their environments 

Stiling (1992) 

The study of the relationships, distribution, and abundance of 

organisms, or groups of organisms, in an environment 

Dodson et al. (1998) 

The scientific study of the interactions that determine the 

distribution and abundance of organisms 

Krebs (2001) 

The scientific study of the interactions between organisms 

and their environment 

Begon et al. (2006) 

The study of the relationships between living organisms and 

their environments, the interactions of organisms with one 

another, and the patterns and causes of the abundance and 

distribution of organisms in nature 

Gurevitch et al. 

(2006) 
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1.1 Ecology and interactions 

1.1.1 Plant competition 

In natural situations, the limitation of resources is the crucial issue that links 

organisms with their environment. Resource limitation can be caused by both 

abiotic and biotic factors. Competition, which per definition is about limiting 

resources, is considered perhaps the most important but not the only form of 

biotic interactions, which occurs naturally among living organisms that coexist 

in same environment. The importance of crop-weed competition was expound 

in the ancient Chinese encyclopedia of agriculture The Valuable Techniques 

for The Welfare of People (齊民要術, Qí Mín Yào Shù), which had been 

completed between A.D. 533 and 544. Although farmers (and agronomists) 

were already aware of the importance of competition in managing their 

agro-ecosystems long before, the first academic report about competition was 

published in the 14th century (Grace and Tilman 1990). Since Darwin (1859), 

competition has been established as the conceptual basis for his concept of 

‘struggle for life’. Henceforth, most evolutionary biologists view competition as 

the main driving force of ‘natural selection’ and, in turn, of evolution. In plant 

ecology, the competition is one of the most important topics: it is believed to be 

the main force in driving plant phenotype plasticity, life history evolution, 

population dynamics, and community assembly (Tilman 1988, Grace and 

Tilman 1990). 

However, as Grace and Tilman (1990) emphasized in Perspectives on 

Plant Competition, although a great deal of research was focused on the topics 

of competition for a long time, it is still not well understood. Even the definition 

of competition is not consistent. Many ecologists attempted to give an accurate 

and unified definition of competition (Milne 1961, Harper 1977, Grime 1979, 

Tilman 1988, Begon et al. 2005), but so far, none of them has been generally 

accepted. This terminological confusion indicates the complexity of 

competition. Begon et al. (2005) defined competition in a very precise way: 
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“competition is an interaction between individuals, brought about by a shared 

requirement for a resource, and leading to a reduction in the survivorship, 

growth and/or reproduction of at least some of the competing individuals 

concerned”. I advocate using this definition because it gives both the cause 

and the consequence of competition, especially when applying in plant 

population ecology. 

In plant ecology, competition is usually categorized as asymmetric- or 

symmetric competition according to the competitive effects (Weiner 1990, 

Schwinning and Weiner 1998, Freckleton and Watkinson 2001, Berger et al. 

2008). Asymmetric competition is an unequal or disproportional division of 

resources amongst competing plants which can be either inter- or intraspecific. 

Therefore, competition may be asymmetric in the sense that some species or 

individuals have a competitive advantage over others in taking a 

disproportionately large amount of resource. The mechanisms determining the 

degree of inter- and intraspecific asymmetry are similar: they are 

size-dependent and, related to the nature of the limiting resources (Schwinning 

and Weiner 1998, Freckleton and Watkinson 2001). For example, taller plants 

will have a disproportionate advantage over smaller individuals when 

competing for light, because the limiting resource, light, is ‘pre-emptable’. This 

can leads to a growth depression of the latter, which has also been referred to 

as ‘dominance and suppression’ and ‘one-sided competition’ (Weiner 1990, 

Schwinning and Weiner 1998, Stoll et al. 2002, Berger et al. 2008). In contrast, 

when the limiting resources are not ‘pre-emptable’ such as water and nutrient, 

plants will share resources equally or proportionally to their size (Schwinning 

and Weiner 1998, Berger et al. 2008). It is therefore assumed that competition 

for light (aboveground competition) is more size asymmetric whereas 

competition for water and nutrient (belowground competition) is more size 

symmetric (Schwinning and Weiner 1998, Stoll et al. 2002, Berger et al. 2008).  

The particular mode of interactions seems to vary depending on 

environmental conditions, and whether the interactions occur above- or 
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belowground. The latter strongly depends on the type of the shared resources 

and their availability. However, due to logistic and technical difficulties, so far 

only few studies exist where belowground competition was explored (Morris 

2003, Deng et al. 2006, Berger et al. 2008). Most of the empirical experiments 

as well as theoretical models only consider light competition as the crucial 

process (but see Casper et al. 2003, May et al. 2009, Schiffers et al. 2011). In 

heterogeneous or stressful environments, including intra- and interspecific 

competition, the relative effect and importance of above- versus belowground 

interactions and how they control the structure and function of populations and 

communities are still poorly understood (Berger et al. 2008). 

In view of its complexity, ecologists have intensely debated the 

relevance of different aspects of competition to particular theories. There is 

one debate on the prevalence and importance of competition along 

environmental gradient which is commonly mentioned as two opposite theories 

of competition, and is usually associated with two of its main protagonists, 

Grime and Tilman (for a summary, see e.g. Goldberg et al. 1999, Brooker et al. 

2005). One view point suggested that plant competition is more dominant 

within plant systems in productive and mild environments, but the role of 

competition played within plant systems will decreases when productivity 

decreases and environmental gradient increases (Grime 1979, Huston 1979, 

Keddy 1989). The opposite view point is that competition is predominant within 

plant systems irrespective of system productivity or environmental stress, 

while the mechanisms by which plants compete can vary, namely, plants 

compete strongly for light or space in productive and mild environments, while 

in unproductive and harsh environments plants compete mainly for water or 

soil nutrients (Newman 1973, Tilman 1982, 1987, 1988, Grubb 1985). Both 

points of view have been supported by empirical evidences, and were 

considered to be irreconcilable at their fundamental assumptions. 

Grace (1991) pointed out that this debate was primarily aggravated by a 

failure of distinguishing between two components of competition, the 
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‘importance’ and ‘intensity’ of competition. The differences between those two 

concepts are explicitly (Welden and Slauson 1986): The intensity of 

competition is the absolute impact, which relates directly to the physiological 

aspects of individuals, but indirectly and conditionally to their fitness, as well as 

the dynamics of populations and the structure of communities. The importance 

of competition is also not necessarily correlated with the intensities of other 

ecological processes. In contrast, the importance of competition is its impact 

relative to the environmental factors that influence individual success, which 

relates indirectly to their physiological aspects but directly to the ecology and 

fitness of individuals. The importance of competition is necessarily relative to 

the importance of other ecological processes. Furthermore, intensity refers to 

the impact of present competition on individuals, whereas importance refers to 

the products and consequences of past competition on individuals and 

possibly the systems.  

Although it has been argued that Tilman’s theory concerns intensity 

whereas Grime’s theory more emphasize importance (see e.g. Grace 1991), 

the concept of importance is still frequently neglected. Such widespread 

confusion between intensity and importance also arise within studies of plant 

positive interactions (Brooker et al. 2005, Brooker and Kikvidze 2008), and 

becomes a barrier to our understandings about the role of interactions may 

play in plant populations and communities. 

 

1.1.2 Plant facilitation 

Over the last decade or so, the role of plant positive interactions has received 

increasing attention and is now widely recognized in both empirical and 

theoretical ecology (Bertness and Callaway 1994, Brooker et al. 2008, 

Bronstein 2009, Maestre et al. 2009). In plant ecology, positive interactions are 

usually referred to as facilitation, which I define here as: the interaction 

between individual plants via moderation of biotic and abiotic stress, 
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enrichment of resource or increased access to resource, which leads to an 

increase in the survivorship, growth and/or reproduction of at least some of the 

interacting individuals involved. This definition of facilitation is complementary 

to the definition of competition given by Begon et al. (2005; see above).  

Facilitation seems to be particularly important under harsh 

environmental conditions, i.e. abiotic stress. The ‘stress gradient hypothesis’ 

(SGH) proposes that competition and facilitation may act simultaneously, but 

the relative importance of facilitation and competition will vary inversely along 

gradients of physical stress. Under high stress conditions, facilitation should be 

dominant over competition in shaping of community structures (Bertness and 

Callaway 1994, Brooker et al. 2008, Maestre et al. 2009). The SGH has been 

supported by many studies: the interplay between facilitation and competition 

can drive population dynamics (Chu et al. 2008, 2009, 2010, McIntire and 

Fajardo 2011), community structure (Gross 2008, Xiao et al. 2009), community 

diversity (Cavieres and Badano 2009), ecosystem functions (Callaway et al. 

2002, Kikvidze et al. 2005), and evolutionary consequences (Bronstein 2009, 

McIntire and Fajardo 2011). However, there are also studies which do not 

support SGH predictions, as facilitative effects have not been detected in some 

extreme stress situations (Tielbörger and Kadmon 2000, Maestre et al. 2005, 

2009). The mechanistic explanations for SGH as well as facilitation are not 

well presented. This indicates that the conceptual framework underlying the 

SGH might need further refinement (Maestre et al. 2009). And in fact, whereas 

numerous studies exist that explore the consequences of different modes of 

competition, i.e. symmetric versus asymmetric competition (Schwinning and 

Weiner 1998, Weiner et al. 2001, Stoll and Bergius 2005, Berger et al. 2008), 

so far different modes of facilitation have not been well explored. Inconsistent 

definitions of facilitation and the lack of differentiation between the impacts of 

plant-plant interactions on beneficiary and benefactor individuals have recently 

been identified as important gaps in current research (Brooker et al. 2008, 

Bronstein 2009, Brooker and Callaway 2009, Pakeman et al. 2009). Refining 
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and clarifying the concept of facilitation is crucial for understanding how 

facilitation arises, persists and evolves.  

 

1.1.3 The interplay between negative and positive interactions 

Theoretically, there are three fundamental forms of interaction between 

two individuals (species): neutral (0), positive (+) and negative (−). According 

to different definitions, modes of facilitation can be mutualistic (+/+), 

commensal (+/0) or even antagonistic (+/−) among plants (Brooker et al. 2008, 

Bronstein 2009). If competition and facilitation occur at the same time, there 

are six possible combinations: −/−, 0/0, +/+, −/0, +/0 and −/+. Considering the 

facts that when individuals are together or apart show different modes of 

interaction, the possible combinations could increase to 10 (Table 1.2). 

However, an approach which incorporates the existing definitions of both 

competition and facilitation as special cases might be more useful. Thus, it is 

efficient to completely transfer, albeit conversely, the concept of modes of 

competition to the new concept of modes of facilitation (Table 1.2). This new 

conceptual model has three advantages: first, it is analogous, and therefore 

directly comparable to the widely used and important concept of symmetric 

and asymmetric interaction (Schwinning and Weiner 1998, Weiner et al. 2001, 

Stoll and Bergius 2005, Berger et al. 2008); second, it offers a quantitative and 

operational means of evaluating both competitive and facilitative impacts; and 

last, it can help us to integrate the facilitation with competition theories 

(Callaway et al. 2002, Berger et al. 2008, Brooker et al. 2008, Bronstein 2009, 

Maestre et al. 2009). 
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Table 1.2 Modes of interactions among two individuals (or species) (A and B). 

Defined according to the effect of this interaction for each organism (positive +, 

negative −, or no effect 0). A: asymmetric; S: symmetric; C: competition; F: facilitation. 

Forms of interaction 
Together Apart Possible combinations of 

the modes of interaction A B A B 

Neutralism 0 0 0 0 Neutrality or SC + SF 

Competition − − 0 0 SC 

Amensalism 0 − 0 0 AC 

Parasitism + − − 0 AC + AF 

Commensalism + 0 − 0 AF 

Mutualism + + − − SF 

Unnamed + + 0 − SF or AF 

Proto-cooperation + + 0 0 SF 

Unnamed + − 0 0 AC + AF 

Unnamed + 0 0 0 AF 
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1.2 Ecology, individual-based models and pattern-oriented 

modelling 

A main goal of ecology as a science is to understand the interactions of 

organisms among themselves and their environment. Individual-based models 

(IBMs, or also known as agent-based models ABMs in social science) are thus 

a natural tool for ecology because IBMs are capable of taking into account 

local interactions, individual variability, adaptive behaviour, environmental 

heterogeneous, abiotic stress, disturbance and other ecological factors 

(DeAngelis and Gross 1992, Grimm 1999, Grimm and Railsback 2005, Grimm 

et al. 2005, Berger et al. 2008). 

A model is a simplified version of the real world only dealing with a 

limited number of factors which are considered most relevant. Ecological 

models attempt to capture the essences of ecological system for addressing 

specific questions about the given system (Grimm and Railsback 2005). The 

systems of interest in ecology are usually made up of myriad interacting 

organisms. Organisms are so different from each other, interacting with others 

and physical environment in their unique ways. Grimm and Railsback (2005) 

argued that ecology and biology are still lacking in strong mathematical tools to 

understand and predict such individual-based complex systems.  

With the development of computer science, bottom-up simulation 

modelling approaches have been developed a lot in ecology. Using bottom-up 

approaches, ecologists compile relevant information at a lower level of the 

system, formulate and implement rules about individual’s behaviour in a 

computer simulation, and then observe and understand the emergence of 

properties related to particular questions at a higher level of integration (Grimm 

et al. 2005). In particular, individual-based modelling follows the bottom-up 

framework and helped in understanding emergent properties of complex 

systems such as population dynamics or community assembly out of the 

ecological traits, behaviours and interactions of individual organisms 
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(DeAngelis and Gross 1992, Breckling et al. 2005, Grimm and Railsback 

2005). 

In plant ecology, individual-based approaches are widely used for 

modelling plant interactions (Czárán 1997, Berger et al. 2008). In a recent 

review, Berger et al. (2008) comprehensively compared different approaches. 

Based on Berger et al.’s classification, there are three important approaches 

which I think are most advisable: cellular automaton (CA, or the so called 

grid-based models), zone-of-influence (ZOI), and field-of-neighbourhood (FON) 

(Berger and Hildenbrandt 2000, 2003, Berger et al. 2004). These approaches, 

from simple to more sophisticated, have their advantages and limitations and 

should be applied to different research questions accordingly (see Berger et al. 

2008 for details). However, existing modelling approaches for investigating 

plant interactions show three major gaps. New approaches are needed that: (i) 

help understanding the mechanisms of plants’ development and response to 

their local environment, (ii) consider plants’ adaptations to changing 

environmental conditions, and (iii) simultaneously consider positive and 

negative interactions among neighbouring plants as well as above- and 

belowground interactions. 

Modelers greatly rely on the principle of parsimony in developing 

models, known as the ‘Occam’s razor’. However, the Occam‘s razor should be 

use appropriately in individual-based modelling, because the relationship 

between a model’s complexity and payoff is no longer monotonically negative 

(as assumed for classical models), but really a hump-shape (Fig 1.1). John 

Holland (1995) had formulated this as “Model building is the art of selecting 

those aspects of a process that are relevant to the question being asked”. His 

interpretation not only highlights the principle of parsimony, but also highlights 

that the question being asked is the element of the scientific problem that 

should be referenced to determine the components of a model. 
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Fig. 1.1 A model’s payoff (in terms of how much we can learn from it) versus its 

complexity (after Grimm and Railsback 2005). In contrast to analytical models of 

classical theoretical ecology (dashed line), where payoff is high only for very simple 

models and then declines continuously with complexity, IBMs and other bottom-up 

simulation models (humped curve) have a “Medawar zone” at intermediate complexity 

where payoff is maximized. 

 

IBMs should be neither too simple nor too complex if they are to be 

useful (Grimm and Railsback 2005). To make the bottom-up modelling and 

individual-based modelling more rigorous and comprehensive, a strategy 

named pattern oriented modelling (POM) was developed (Grimm et al. 1996, 

2005, Wiegand et al. 2003, Grimm and Railsback 2005). Because patterns are 

the observations of any kind showing specialized, sustained, repeated and 

nonrandom characteristics of the system, which contain information on the 

mechanisms how they emerge from lower level and the essential structures 

and processes, therefore could be used to guide model design (Grimm et al. 

1996, 2005, Wiegand et al. 2003, Grimm and Railsback 2005).  

The protocol of POM includes four steps (Wiegand et al. 2003, Grimm 

and Railsback 2005, Piou 2007): (1) “aggregation of individual based biological 

information” for model construction, (2) “determination of parameter values”, (3) 
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“systematic comparison between the observed pattern and the simulated 

pattern produced by the model” for model evaluation, and (4) “secondary 

predictions”. The steps (1) and (2) ensure that properties or patterns at higher 

levels emerge from lower-level information incorporated in IBMs. The steps (3) 

and (4) leading to the increase in reliability of the IBMs. In this sense, POM is 

useful not just for individual-based modelling, but for any kind of modelling. In 

addition, POM can also be used to test and refine theory, and can help to 

advance a synthesis of diverse theories across scales (Fig 1.2). 

 

 

Fig. 1.2 Synthesis of theories based on pattern oriented modelling approach. 
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1.3 Are there universal laws or unified theories in ecology? 

More than a decade ago, John Lawton (1999) wrote that, “Parts of science, 

areas of physics for instance, have deep universal laws, and ecology is deeply 

envious because it does not”. This kind of discontent is perhaps driven by a 

fact that use of the laws and models in ecology are usually very local and 

highly contingent, and the system studied in ecology are too complex and 

contingent to apply the general laws and models.  

However, this pessimism regarding a theoretical foundation of ecology 

represents a misplaced ‘physical envy’ (Cohen 1971). It is misplaced on at 

least two aspects: first, in ecology, the building blocks of systems are living 

organisms not particles (Grimm and Railsback 2005). Open a bottle of perfume 

in a closed room, the liquid of perfume will become a smelly cloud and fills up 

the room eventually, which is state by the second law of thermodynamics. 

However, organisms try their best to avoid this smelly cloud of equilibrium, 

they can reproduce, interacting with others and environment, seeking fitness, 

acquiring resources to maintain internal order and build complexity by 

exporting entropy. Erwin Schrödinger (1944) also pondered these questions 

and described the negative entropy among organisms: “The essential thing in 

metabolism is that the organism succeeds in freeing itself from all the entropy it 

cannot help producing while alive”. It is metabolism that makes living 

organisms to be unique creatures. Second, the laws of physics are all ‘ceteris 

paribus’ laws assumed in ideal vacuums, but the actual governance of, for 

instance, particle movement is much more complicated than these general 

laws would imply (Cartwright 1983, Simberloff 2004). Therefore, ecology 

cannot and should not just try and copy physics. 

Over the last decade, several new theories emerged which address the 

core principles of ecology, such as Metabolic scaling theory (Brown et al. 

2004), Neutral theory in ecology (Hubbell 2001), Ecological stoichiometry 

(Sterner and Elser 2002), Maximum entropy of ecology (Harte 2011), Dynamic 
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energy budget theory (Kooijman 2009), etc., all having their advantages and 

shortages but claiming to be the ‘general’, ‘universal’ or ‘unified’ theory. There 

are two striking theories (Gaston and Chown 2005), which attract me most 

among all those theories. The first one is Metabolic Scaling Theory (MST) 

(also named as Metabolic theory of ecology, Brown et al. 2004), which is an 

attempt to link physiological processes of individual organisms with 

macroecology. Based on a fractal model of circulatory networks, such as the 

vascular system in animals and plants, MST predicts how metabolic rate 

increases with body size and temperature following a quarter-power scaling 

law. This simple scaling law has been observed from intracellular levels to 

individual levels of mammals, covering 27 orders of magnitude (West and 

Brown 2005), this even more than the span between earth and whole galaxy 

(18 orders of magnitude). Consequently, a large numbers of studies have 

explored the ecological consequences of scaling relationships between 

organism body size and developmental time, reproduction, population energy 

use, abundance, population demographic rate, community structure and 

species diversity. Many of these studies were published in high-profile journals 

which reflect the promise and potential significance of such a general theory. 

However, like any other claim for a ‘universal’ theory, MST has also 

generated controversy. For instance, MST predicts a ‘-4/3 universal scaling 

law’ for plant mean mass-density relationships (Enquist et al. 1998), but 

empirical observations are more variable. Empirical evidences from harsh 

areas or from plantation experiments with low resource levels often deviate 

from these predictions and show significantly less negative exponents, i.e. 

shallower slopes of the self-thinning trajectory or log mass-log density 

relationship, respectively (Morris 2003, Deng et al. 2006, Liu et al. 2006). 

Consequently, both the validity and universality of scaling exponents and MST 

are still unclear and require further analyses of the underlying mechanisms 

(Coomes 2006, Deng et al. 2006, Coomes et al. 2011).  
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A core assumption of MST is that the processes internal to individuals 

determine mass-density relationships, whereas interactions among individuals 

are largely ignored. Therefore, population dynamic and community assembly 

in MST are just a spatial packing process (Reynolds and Ford 2005). An 

alternative view is that internal mechanism may play an important role and set 

limits on mass-density relationships, but that ecological interactions can be 

more important in determining the relationships in the field. Thus, variation in 

the ecological conditions and the interactions among individuals can explain 

the observed variation in scaling exponents. Specifically, it has been argued 

that competition among plants will change mass-density relationships from 

those predicted by MST (Coomes et al. 2011).  

The second significant theory recently development in ecology is the 

Unified Neutral Theory of biodiversity and biogeography (UNT) (Hubbell 2001). 

UNT is based on a seemingly unrealistic assumption of ecological equivalence, 

that all individuals are functionally equivalent on a per capita basis, i.e. with 

respect to their birth, death, dispersal and speciation. Even so, it successfully 

explains many patterns about the relative species abundance across different 

communities (Hubbell 2001, Chave 2004, Gaston and Chown 2005). UNT 

emphasizes ecological drift, dispersal and speciation as the main drivers of 

community assembly, thus the abundance of individuals of all species should 

be a ‘martingale’ in communities. It severely bucks the basis of ecology by 

leaving niche differences and, hence, selection out.  

Not surprisingly, criticism in this theory has been predominantly directed 

at the fundamental assumption of neutrality. Hubbell (Hubbell 2001, 2005, 

2006, 2008) argue that even though the equivalence assumption is not 

apposite, the neutral model heavily relies on the principle of parsimony and 

predicts real patterns in nature, therefore should not be misjudged. However, 

in a POM view, the neutral model is located apparently on left side of the 

‘Medawar zone’. It is too simple hence fails in reality and justification that 

species are apparently different in varied aspects, and some details on the 
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assumption are needed. Indeed, the neutral model stimulated ecologists to 

revise the equivalence assumption. Some researchers relaxed the strict 

neutrality assumption by considering fitness equivalence via ecological 

trade-offs (K. Lin et al. 2009). Their modified neutral models clearly showed 

that birth-death trade-offs can lead to a similar result as strict neutral model did. 

However, the mechanisms underlying this demographic trade-off are still 

unknown.  

As Simon Levin (2000) laid out, “the most important challenge for 

ecologists remains to understand the linkages between what is going on at the 

level of the physiology and behaviour of individual organisms and emergent 

properties such as the productivity and resiliency of ecosystems”. Both MST 

and UNT or similar theories that are based on simple physical rules attempt to 

scale up from the individual to the system. Predictions made by those theories 

sometimes become invalid in nature because macroscopic features of the 

system can emerge from the large numbers of interacting individual organisms. 

Individual-based ecology, with IBM and POM (Grimm and Railsback 2005, 

Grimm et al. 2005), I believe, can help us to ultimately achieve a synthesis of 

theories in ecology which focus on different processes, organization levels, or 

scales. 
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1.4 Objectives and content of the dissertation 

My major goal in this dissertation is to investigate the effects of different modes 

of interactions in driving plant population dynamics. Specifically, I explored the 

relative role of asymmetric- versus symmetric competition, above- versus 

belowground competition, and negative versus positive interactions in shaping 

plant population along the environmental gradients by using spatially-explicit 

individual-based models. The pattern-oriented modelling approach is applied 

in my individual-based modelling studies. Some of the model predictions are 

tested with greenhouse experiments and field studies. Although my studies in 

this dissertation are mostly on mono-population dynamics, the models and 

theories presented are general, so that in principle they can be extended to 

communities. All my studies are under a context of metabolic scaling theory 

(MST), because I am attempted to integrate the effects of plant interactions 

and environmental conditions into metabolic scaling theory, in order to 

reconcile metabolic scaling theory with observed variations in nature.  

First of all, I derived a general ontogenetic growth model for vascular 

plants which is based on energy conservation and physiological process of 

individual plant (see Appendix A in Chapter 2). This new mechanistic model is 

thus different from the phenomenological growth models which are generally 

used in individual-based models of plant interactions. Some extensions and 

predictions based on the new growth model are tested by empirical data. My 

individual-based simulation models are developed on the basis of this general 

growth model. 

In Chapter 2, I present a generic spatially-explicit individual-based 

model, which I named as pi (plant interaction) model. The pi model implements 

different modes of competition (from completely asymmetric to completely 

symmetric) among individual plants via their overlapping zone-of-influence 

(ZOI). I used the ZOI approach because it is easy to implement and to 

combine with metabolic scaling theory. The pi model was used here to 
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investigate the hypothesis that MST may be compatible with the observed 

variation in plant self-thinning trajectories if different modes of competition and 

different resource availabilities are considered. Specifically, two hypotheses 

were investigated by using a one-layer ZOI model: (1) if surviving plants are 

not highly affected by local interactions, then individual-level metabolic 

processes can predict population-level mass-density relationships; and (2) 

size-symmetric competition (e.g. belowground competition) will lead to 

shallower self-thinning trajectories. 

Recent studies on plant competition and MST imply that not only plant 

interactions (Coomes et al. 2011, Rüger and Condit 2012) but also the plastic 

biomass allocation to roots or shoots of plant can affect mass-density 

relationship (Morris 2003, Deng et al. 2006, Zhang et al. 2011). However, the 

relative roles of those two factors, competition and plastic biomass allocation, 

are still unknown. In Chapter 3, both a theoretical model and an experiment 

are used to answer this question. Since the one-layer pi model is too simple, 

though, to explore the relative role of plasticity of biomass allocation and 

below- versus aboveground competition, I developed a new two-layer model 

which represents both above- and belowground competition simultaneously 

via independent ZOIs. In the tow-layer pi model, plant growth and biomass 

allocation are represented by the growth function based on MST (Enquist 2002, 

Niklas 2005, Lin et al. 2012), which tries to mechanistically capture the plastic 

responses of plants to changing environmental conditions. In addition, a 

greenhouse experiment with tree seedlings is employed to evaluate the 

behaviour of the simulated plants related to the allocation patterns and to 

validate our model predictions regarding the mass-density relationship. 

Specifically, I focus on the following research questions: (1) how does plant 

phenotype plasticity (root/shoot biomass allocation in heterogeneous 

environments) affect emergent patterns observed at the system level (e.g., 

variation of plant mass-density relationship)? (2) What are the resulting effects 
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of above- and belowground competition modified by plants’ morphological 

adaptations to environmental severity on population dynamics? 

In Chapter 4, the effects of both negative and positive plant interactions 

on population spatial dynamics are investigated. I introduce a new concept of 

symmetric vs. asymmetric facilitation and present the modified pi model. This 

new model is able to simultaneously implements different modes of both 

facilitation and competition among individual plants. Because different modes 

of facilitation are considered as a continuum related to the environment, I 

explored this concept within the context of the stress gradient hypothesis 

(Bertness and Callaway 1994, Brooker et al. 2008). Specifically, I address the 

following questions at both the plant population and individual levels: (1) How 

does the interplay of different modes of competition and facilitation change 

spatial pattern formation during self-thinning in conspecific cohorts that initially 

have a random or aggregated distribution; and (2) How do combinations of 

modes of competition and facilitation alter the intensity of local plant 

interactions along a stress gradient? 

In Chapter 5, I attempt to combine neutral theory and metabolic scaling 

theory. Demographic equivalence regarding birth-death trade-offs between 

different species is consistent with the assumption of neutral theory but allows 

differences between species as suggested by niche theory (Lin et al. 2009). 

Based on MST, I deduced an allometric scaling rule which can explain 

observed demographic trade-offs. In this preliminary study, I tested the validity 

of deduced demographic trade-off by a broad array of plant species. The 

ultimately aim of my study is the synthesis of existing theories to strengthen 

future ecology in theory and application.  

The concluding Chapter 6 offers the general discussion and outlook 

related to my study topics. An opinionated review about the development of 

theories in ecology is also presented. 
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Plant competition and metabolic scaling theory * 

 

 

Abstract 

Metabolic scaling theory (MST) is an attempt to link physiological processes of 

individual organisms with macroecology. It predicts a power law relationship 

with an exponent of -4/3 between mean individual biomass and density during 

density-dependent mortality (self-thinning). Empirical tests have produced 

variable results, and the validity of MST is intensely debated. MST focuses on 

organisms' internal physiological mechanisms but we hypothesize that 

ecological interactions may be more important in determining plant 

mass-density relationships induced by density. We employ an individual-based 

model of plant stand development that includes three elements: a model of 

individual plant growth based on MST, different modes of local competition 

(size-symmetric vs. -asymmetric), and different resource levels. Our model is 

consistent with the observed variation in the slopes of self-thinning trajectories. 

Slopes were significantly shallower than -4/3 if competition was 

size-symmetric. We conclude that when the size of survivors is influenced by 

strong ecological interactions, these can override predictions of MST, whereas 

                                                            

* A slightly revised version of this chapter has been submitted to PLoS ONE (status: 

minor revision) as Yue Lin
1, 2

, Uta Berger
1
, Volker Grimm

2, 3
, Franka Huth

4
, and Jacob 

Weiner
5
: Plant interactions alter the predictions of metabolic scaling theory 

 
1
 Institute of Forest Growth and Computer Science, Dresden University of Technology, 

P.O. 1117, 01735 Tharandt, Germany; 
2
 Helmholtz Centre for Environmental Research – 

UFZ, Department of Ecological Modelling, 04318 Leipzig, Germany; 
3
 Institute for 

Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469 Potsdam, 

Germany; 
4
 Institute of Silviculture and Forest Protection, Dresden University of 

Technology, 01735 Tharandt, Germany; 
5
 Department of Plant and Environmental 

Sciences, University of Copenhagen, DK-1958 Frederiksberg, Denmark 



 Chapter 2  - 27 - 

when surviving plants are less affected by interactions, individual-level 

metabolic processes can scale up to the population level. MST, like 

thermodynamics or biomechanics, sets limits within which organisms can live 

and function, but there may be stronger limits determined by ecological 

interactions. In such cases MST will not be predictive. 

 

Keywords: mass-density relationships, plant competition, self-thinning, 

size-symmetric competition, zone-of-Influence model 

 

2.1 Introduction 

Metabolic Scaling Theory (MST) offers a quantitative framework for linking 

physiological processes of individual organisms with higher-level dynamics of 

populations and communities. It predicts that an individual’s metabolic rate, B, 

scales with body mass, m, as m3/4 (West et al. 1999). For plants, it is assumed 

that B is proportional to their rate of resource use, Q, and increases with body 

mass, m, as BQm3/4 (Enquist et al. 1998). When the rate of resource supply, 

R, per unit area is held constant, the relationship between maximum 

population density, N, and mean body mass is predicted to be mN-4/3. Thus, if 

mass-density relationships during self-thinning reflect MST, the relation 

between m and N is predicted to be a power law with a mass–density scaling 

exponent of –4/3.  

 While some empirical observations seem to be consistent with this 

prediction (Enquist et al. 1998, Enquist 2002), data from self-thinning 

populations are more variable (Morris 2003, Deng et al. 2006, Dai et al. 2009, 

Zhang et al. 2011). Especially the data from arid regions or areas with low 

resource levels often deviate from the predictions of MST and show 

significantly shallower trajectories, i.e. less negative exponents (Morris 2003, 

Deng et al. 2006). While some researchers assume that the mass–density 

scaling exponent is universal but disagree about the correct value, others 

argue that there is real biological variation in the exponent, thus questioning 

the generality of MST (Deng et al. 2006, Coomes and Allen 2007, Coomes et 

al. 2011, Rüger and Condit 2012).  
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 A core assumption of MST is that processes internal to individuals 

determine mass-density relationships. An alternative view is that internal 

mechanism may play an important role and set limits on mass-density 

relationships, but that ecological interactions can be more important in 

determining the relationships in the field. Thus, variation in the ecological 

conditions can explain the observed variation in scaling exponents. 

Specifically, it has been argued that competition among plants will change 

mass-density relationships from those predicted by MST (Morris 2003, 

Coomes et al. 2011). The well-documented plasticity of plant form in response 

to competition (Weiner and Thomas 1992, Dai et al. 2009) suggests that 

competitive interactions could affect mass-density relationships.  

 Many empirical studies on plant mass-density relationships have based on 

data where competition for light dominates (Enquist et al. 1998, Enquist and 

Niklas 2001, Deng et al. 2006), but in areas where belowground resources 

such as nutrients and water are more limiting canopies can remain unclosed. 

In such areas belowground competition may affect growth and mortality much 

more than aboveground competition (Morris 2003, Deng et al. 2006, Allen et al. 

2008).  

 Below- and aboveground competition are qualitatively different. 

Aboveground, the limiting resource, light, is directional and therefore 

“pre-emptable”, i.e. taller plants will have a disproportionate advantage over 

smaller individuals when competing for light, which has also been referred to 

as "size-asymmetric competition", “dominance and suppression” or “one-sided 

competition” (Schwinning and Weiner 1998, Stoll et al. 2002, Berger et al. 

2008). In contrast, belowground resources such as water and nutrients are not 

generally pre-emptable so that competing plants tend to share belowground 

resources in proportion to their sizes. There is much evidence that 

aboveground competition tends to be size-asymmetric, while belowground 

competition is more size-symmetric (Schwinning and Weiner 1998, Stoll et al. 

2002, Berger et al. 2008). This could influence mass-density relationships. 

 There is evidence to support this claim. For example, for the desert shrub 

Larrea tridentata, the individuals’ allometric growth and root-shoot biomass 

allocation patterns are consistent with MST, but the log mass - log density 

relationship is shallower than predicted by MST with a substantial variation 
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(Allen et al. 2008). This suggests that belowground competition, which is more 

size-symmetric, may leads to shallower self-thinning trajectories. Results from 

an individual-based Zone-of-Influence plant population model indicate that the 

size-symmetry or asymmetry of competition will affect self-thinning trajectories 

(Stoll et al. 2002, Chu et al. 2010). These studies used a phenomenological 

model for individual plant growth (Weiner et al. 2001) that does not 

accommodate the physical and biological principles of MST. And indeed, the 

range of slopes produced by Chu et al.'s model (Chu et al. 2010), from -0.820 

to 1.609, is larger than the range observed in the field. For example, in 1266 

plots within six biomes and 17 forest types across China, the estimated log 

mass - log density slopes ranged from -1.103 to -1.441 (Li et al. 2006).  

 We hypothesize that MST may be compatible with the observed variation in 

self-thinning trajectories if different modes of competition and different 

resource availabilities are considered. We investigate two hypotheses: 1, 

size-symmetric competition (e.g. belowground competition) will lead to 

shallower self-thinning trajectories. 2, Individual-level metabolic processes can 

predict population-level mass-density relationships if surviving plants are not 

highly affected by local interactions. 

 To investigate our hypothesis, we modify a widely used individual-based 

Zone-of-Influence model of individual growth and competition, in which 

competition can be size-symmetric or -asymmetric (Weiner et al. 2001). To 

make our model compatible with the assumptions of MST, we use an 

individual growth model and allometric relationships derived from MST 

(Appendix A, Lin et al. 2012).  

 

2.2 Methods 

2.2.1 The model 

The individual plant growth model used here is consistent with MST (see 

Appendix A for details, Lin et al. 2012), which was based on an energy 

conservation equation (Enquist and Niklas 2001, West et al. 2001, Hou et al. 

2008). It takes into consideration three basic processes that require energy: 

maintenance of biomass, ion transport and biosynthesis (Lambers et al. 2008). 
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Using empirical measurements and theoretical assumptions, MST predicts 

quantitative relationships among these processes (Enquist 2002, Enquist et al. 

2009), and we use these as the basis of our individual growth model for plants: 

dm/dt = am3/4 – bm = am3/4 [1 – ( m / M0 )
1/4]   (2-1) 

where m is the plant's total biomass and a and b species-specific constants 

(Appendix A). Our derivation of this model is similar to the derivation of growth 

models for animals (West et al. 2001, Hou et al. 2008). The value of M0 = (a/b)4 

is the asymptotic maximum body mass of plant (calculated for dm/dt = 0), 

which depends on species-specific traits and is determined by the systematic 

variation of the in vivo metabolic rate within different taxa (West et al. 2001). 

The gain term (am3/4) in equation (2-1) dominates early in plant growth, and 

has some empirical support (Brown et al. 2004, Enquist et al. 2009). Equation 

(2-1) is similar to the “von Bertalanffy growth model”, but its derivation here is 

based on physical and biological principles of MST (West et al. 2001, Hou et al. 

2008). 

 In our spatially explicit, individual-based model [17], plants are modelled as 

circles growing in 2-dimensional space (Weiner et al. 2001). The area of the 

circle, A, represents the resources available to the plant, and this area is 

allometrically related to the plant’s body mass, m, as m3/4 = c0A (Enquist and 

Niklas 2001), where c0 is a normalization constant. Plants compete for 

resources in areas in which they overlap, and the mode of competition is 

reflected in the rules for dividing up the overlapping areas. Resource 

competition is incorporated by using a dimensionless competition index, fp, 

which value is determined by the overlap with neighbors (can be reduced from 

1 to 0). With these assumptions, equation (2-1) becomes: 

dm/dt = fp fr am3/4 – bm = fp fr cA[1 – ( m / M )1/4]   (2-2) 

where M = (fpfr)
4M0 represents maximum achievable biomass under resource 

limitation and competition, and where c = ac0 is the initial growth rates in units 

of mass per area and time interval. We represent resource limitation with a 

dimensionless efficiency factor, fr, as different levels of resource availability. 

For simplicity, we use a linear form here, i.e. fr = 1 – RL, where RL indicates 

the level of resource limitation, and ranges from 0 (no resource limitation) to 1 
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(maximum resource limitation; Table A1). The mode of resource-mediated 

competition among plants can be defined anywhere along a continuum from 

completely size-asymmetric competition (all the contested resources are 

obtained by largest plants) to completely symmetric competition (resources in 

areas of overlap are divided equally among all overlapping individuals, 

independent of their relative sizes) (Schwinning and Weiner 1998). To 

represent the different modes of competition explicitly, we define the effect of 

competition, fp, as 


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This index refers to the fraction of resources available in the ZOI which the 

plant i could obtain after a loss of potential resources due to areas overlapped 

by nj individuals of sizes mj (Schwinning and Weiner 1998). Ano is the area not 

overlapping with any neighbors, and Ao,k indicates the area overlapped by 

neighbors. Parameter p determines the mode of competition, ranging from 

complete symmetry (p = 0) to complete asymmetry (p = ∞). 

 In MST, individuals’ mortality rate is assumed to be proportional to their 

mass-specific metabolism (Brown et al. 2004). Based on this, we assume that 

individuals die if their actual growth rate (realistic metabolic rate) falls below a 

threshold fraction of their basal metabolic rate (scaled by current biomass, i.e. 

2% of m3/4). Therefore, individual plants may die due to metabolic inactivation 

driven by resource limitation, competition, senescence (when m approaches M) 

or combinations thereof. The model follows ODD protocol (Overview, Design 

concepts, Details) for describing individual- and agent-based models (Grimm 

et al. 2006, 2010) (Appendix A) and implemented in NetLogo 3.1.4 (Wilensky 

1999).  

2.2.2 Simulations and Analysis 

In our simulations, we investigated 4 resource limitation levels (RL equal to 0, 

0.1, 0.5 and 0.9), 4 modes of competition (p=∞: completely asymmetric; p=10: 

highly size-asymmetric; p=1: perfectly size-symmetric; p=0: completely 

symmetric) and one initial density (8100 individuals per total area). We also 

investigated other initial densities and the results were very similar to those 
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presented below. Simulations for the resulting 16 scenarios were repeated five 

times using different random initializations. 

 We used the relative interaction index RII (Armas et al. 2004) to evaluate 

the effects of local competition on shaping plant mass-density relationship: 

RII = (mx-mnc) / (mx+mnc)   (2-4) 

where mx and mnc are the performance (mean biomass) of surviving plants at 

the same resource level with and without local competition (i.e., isolated 

plants), respectively. Values of RII from -1 to 1 indicate the intensity of 

interactions as competition (from -1 to 0), neutral interaction (equal to 0) and 

facilitation (from 0 to 1). To estimate mnc, we use the growth equation (2-2) 

without the competitive factor fp. 

 For linear fits of the self-thinning trajectories obtained with our model, we 

selected data points on the basis of mortality (Westoby 1984): After 

density-dependent mortality starts, data points with surviving plants no less 

than 10% of the initial density (not less than 800 surviving plants here) and 

with the relative mortality larger than a threshold (the mean value of relative 

mortality at each time step through self-thinning process) were selected to fit 

the self-thinning trajectories. The thinning trajectories (log-log transformed 

data of mean biomass vs. density of survivors) were fitted by reduced major 

axis (type II model) regression, which assumes error in both variables and is 

widely used to investigate mass-density relationships. All statistical analyses 

were conducted using R 2.11.1. 

 

2.3 Results 

Variation in the mode of competition, the level of resource limitation and their 

interaction produced significant variation in the self-thinning trajectory (Fig. 2.1, 

Table S1). The mode of competition had a greater effect on the slope of 

self-thinning trajectories than did the level of resource limitation. For given 

resource limitation, RL, symmetric competition made self-thinning trajectories 

significantly shallower (ninety-five percent confidence intervals for the four 
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modes of competition did not overlap), but within same mode of competition 

the level of resource limitation did not change slopes much (Fig. 2.2).  

 In scenarios with more symmetric competition, the relative interaction index 

RII is close to -1 and thus the effect of competition on surviving individuals is 

quite strong (Fig. 2.3). In contrast, in scenarios with more asymmetric 

competition, surviving plants are less affected by interactions with other plants 

(RII close to 0). The growth curves of plants also showed same results (Fig. 

2.4). Both resource limitation and asymmetric competition lowered the position 

of self-thinning trajectories: less biomass can be accumulated at a given 

density under resource limitation or with more asymmetric competition (Fig. 

2.1). Resource limitation decreased intercepts within the same mode of 

competition (Fig. 2.2), which means that the maximum biomass of plants is 

smaller in harsh conditions. 

 

Fig. 2.1 Self-thinning trajectories for different levels of resource limitation and modes 

of competition. RL indicates the level of resource limitation (from 0 to 1 indicating no 

limitation to extreme limitation), p indicates the modes of competition (∞: completely 

asymmetric; 10: highly size-asymmetric; 1: perfectly size-symmetric; 0: completely 

symmetric). For comparison, the solid lines in figures have same intercepts and with 

slopes equal to-4/3. 
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Fig. 2.2 Slopes and intercepts of self-thinning trajectories of mean individual biomass 

versus survivor density under different levels of resource limitation and modes of 

competition. RL indicates the level of resource limitation (from 0 to 1 indicating no 

limitation to extreme limitation), p indicates the modes of competition (∞: completely 

asymmetric; 10: highly size-asymmetric; 1: perfectly size-symmetric; 0: completely 

symmetric). Bars indicate 95% confidence intervals. 
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Fig. 2.3 Relationship between relative interaction intensity (RII) and density of 

surviving plants at different levels of resource limitation and modes of competition. RL 

indicates the level of resource limitation (from 0 to 1 indicating no limitation to extreme 

limitation), p indicates the modes of competition (0: completely symmetric; 1: perfectly 

size-symmetric; 10: highly size-asymmetric; ∞: completely asymmetric). Values of RII 

indicate the intensity of interactions as competition (from -1 to 0), neutral interaction 

(equal to 0) and facilitation (from 0 to 1). 

  



- 36 -  Chapter 2  

 

 

Fig. 2.4 Growth curves of surviving plants at different levels of resource limitation and 

modes of competition. RL indicates the level of resource limitation (from 0 to 1 

indicating no limitation to extreme limitation), p indicates the modes of competition (0: 

completely symmetric; 1: perfectly size-symmetric; 10: highly size-asymmetric; ∞: 

completely asymmetric; NC: isolated growth without competition). Values of RII 

indicate the intensity of interactions as competition (from -1 to 0), neutral interaction 

(equal to 0) and facilitation (from 0 to 1). 
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2.4 Discussion 

Our results and those of previous studies (Stoll et al. 2002, Chu et al. 2010) 

are consistent with our first hypothesis that symmetric competition can lead to 

shallower self-thinning trajectories than asymmetric competition. This 

suggests that deviations from the slope predicted by MST are likely to occur 

when competition below ground is stronger than above ground because the 

former is size-symmetric (Weiner et al. 1997, Schwinning and Weiner 1998). 

Indeed, several empirical studies show that slopes of self-thinning trajectories 

are significantly flatter under severe water stress (Deng et al. 2006) and low 

nutrient levels (Morris 2003), conditions in which competition below ground is 

thought to be more important than above ground (Schwinning and Weiner 

1998, Deng et al. 2006, Berger et al. 2008). Furthermore, boreal coniferous 

forests tend to have steeper slopes than deciduous broadleaved forests 

because the canopy of conifers is denser (with lower light transmittance) 

suggesting that asymmetric competition for light is more intense (Westoby 

1984, Stoll et al. 2002, Li et al. 2006). 

 Why does symmetric competition lead to flatter trajectories in our model 

even though it makes surviving plants larger on average at a given density (Fig. 

2.1)? With symmetric competition, the growth of all individuals is significantly 

reduced but the onset of mortality is delayed (Weiner et al. 2001 p. 20). Plants 

can survive and grow even at relatively high densities, meaning that more 

biomass can be maintained at a given density when competition is 

size-symmetric (Stoll et al. 2002).  

 When competition is highly size asymmetric, surviving plants are less 

affected by their neighbors and thus individual-level metabolic processes of 

MST predict plant mass-density relationship at the population level: the slope 

of the self-thinning trajectories are close to -4/3. This is consistent with our 

second hypothesis that MST's predictions of population-level mass-density 

relationships are successful when surviving plants are barely affected by local 

interactions. In stands of Nothofagus solandri (mountain beech), taller trees 

are relatively unhindered by competition for light and show the scaling of 

diameter growth which is consist with prediction of MST, whereas small trees 

affected by asymmetric competition do not follow the growth trajectory of 
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prediction (Coomes and Allen 2007, Coomes et al. 2011). In a tropical 

rainforest, the trees under high-light conditions, i.e. being barely affected by 

neighboring trees, their diameter growth was not significantly different from the 

predictions of MST (Rüger and Condit 2012), which we also find in our model 

(Fig. S1) and support our second hypothesis. 

 In contrast to our findings, Coomes and coworkers concluded that 

deviations from predictions of MST in forests are caused by size-asymmetric 

competition (Coomes and Allen 2007, Coomes et al. 2011). On closer 

inspection, our results are not inconsistent with those of Coomes and 

coworkers’. Coomes's studies focused on diameter growth of individuals, 

including small suppressed individuals that are experiencing size-asymmetric 

competition for light, whereas we focus here on the mass-density relationship 

of populations during self-thinning, i.e. on plants surviving competition. When 

competition is highly size-asymmetric, total biomass is primarily due to the 

largest individuals, which are not highly affected by neighbors. If one looks, 

however, at smaller individuals suffering from asymmetric competition before 

they die, they will be highly affected by their larger neighbors, and this will be 

more important for their growth and density than the internal relationships that 

form the basis for MST. It would be worthwhile to analyze individual-level 

diameter growth in our model to compare the patterns with those from 

empirical studies (Coomes and Allen 2007, Coomes et al. 2011, Rüger and 

Condit 2012) to see if the conclusions are consistent. Nevertheless, we agree 

with Coomes and coworkers on the central point: interactions among 

individuals can overrule the predictions of MST.  

 Both size-asymmetric competition and resource limitation lowered 

self-thinning trajectories (Fig. 2.2). Resource limitation reduces the growth of 

individual plants, leading to smaller individuals. Size-asymmetric competition 

results in faster mortality. The reduction of biomass due to mortality is not 

immediately compensated by the growth of survivors, so there is less total 

biomass at a given density.  

 Using a similar model, Chu et al. (2010) found the same effect of the mode 

of competition (size symmetric vs. asymmetric) on the slope of self-thinning 

trajectories. The most important difference between Chu et al.'s model and 

ours is that we used an individual growth model that is derived from MST, 
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whereas they used the phenomenological growth equation of Weiner et al. 

(2001). Chu et al. (2010) focused on the effects of mode of competition, 

resource levels, and facilitation on self-thinning per se, so they do not refer to 

MST or focus on their choice of their individual growth model. This may be why 

the range of scaling exponent predicted with our model (-1.083 to -1.486) is 

closer to the observed range of exponents (-1.103 to -1.441 for 1266 plots of 

six biomes and 17 forest types across China) (Li et al. 2006) than models 

using phenomenological growth functions (-0.8204 to -1.6095) (Chu et al. 

2010). This suggests that the consideration of both neighborhood interactions 

and constraints provided by MST are necessary to explain the 

biomass-density relationships observed in the field. 

 Our results point to the scope and limits of MST at the population and 

community level. MST applies to individual organisms, not always and 

necessarily to populations or ecosystems. In some cases, for example where 

resources are not limiting and competition is highly size-asymmetric, the 

mass-density scaling exponent predicted by MST matches observations very 

well. This is because individual acquisition of resources and accumulation of 

biomass is driven primarily by what the individual itself does rather than by 

interactions with other individuals (Fig. 2.3). On the other hand, when 

individual behaviour is determined more by interactions with their neighbors 

rather than processes that are the bases of MST, the population-level 

behaviour will deviate from the predictions of MST.  
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Chapter 2 – Appendix A 

A general ontogenetic growth model for plants 

The essential basis for modelling the ontogeny of individual plants starts with 

an energy conservation equation (Enquist and Niklas 2001; West et al. 2001; 

Hou et al. 2008): 

Bp = Br + Bs = Br + Esdm/dt   (2-A1) 

where Bp is defined as total energy intake rate (i.e. gross photosynthetic rate). 

A fraction of this assimilated energy is consumed by respiration, Br, the 

remainder is stored as reserves and Bs is used for synthesizing new tissues 

(and for reproducing) (Figure A1). Es is the metabolic energy stored in one unit 

of biomass and dm/dt is the change in biomass (m) per unit time (t). 

 

 

Figure A1 Assimilated energy partition of plants during ontogenetic growth. 

 

The rate of energy consumed by respiration, Br, depends on three major 

processes that require energy (Figure A1): maintenance of biomass (Bmaint), 

ion transport (Btran) and biosynthesis (Bsyn), which can be summarized as 

(Lambers et al. 2008): 

Br = Bmaint + Btran + Bsyn = ∑Bmmliving + Btran + Ecdm/dt   (2-A2) 
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where Bm denotes average mass-specific maintenance metabolic rate, mliving 

stands for the biomass of living tissues, and Ec designates the energy required 

to synthesize a unit of biomass.  

Typical average biological parameters of plant cells (tissue) are taken as a 

fundamental unit here, and possible differences between tissues are ignored 

(West et al. 2001). Note that the terms Bs=Esdm/dt in Eqn (2-A1) and 

Bsyn=Ecdm/dt in Eqn (2-A2) are quite different: S stands for the rate of 

cumulative energy content of new biomass, whereas Bsyn refers to the 

metabolic energy expended on biosynthesis which is dissipated as heat 

instead of obtained as stored biomass (Hou et al. 2008). Combining Eqns 

(2-A1) and (2-A2), we get 

Bp = Bmaint + Btran + Bsyn + Bs = ∑Bmmliving + Btran + E0dm/dt   (2-A3) 

where E0 = Ec+Es, is constant for a given taxon and stands for the sum of 

energy stored in a unit of biomass plus the energy used to synthesize this 

biomass, i.e. the synthesis costs of a unit of biomass.  

Equation (2-A3) is quite general, but Bmaint may vary between woody and 

non-woody plants, as woody plants contain nonliving tissues (e.g. heartwood 

in stem and root) which do not need energy for their maintenance (Enquist et 

al. 2009). Also large trees with a large amount of heartwood, contain much 

less living tissues (mliving) in comparison to the total biomass (m). We assume 

that during ontogeny, woody plants mainly expend energy for maintaining their 

photosynthetic tissues (leaves), mL, and conducting tissues (standing 

sapwood of stem and root), mC, and suppose 

Bmaint = ∑Bmmliving = BmmL + BmmC = BL + BC   (2-A4) 

for woody plants, where BL and BC specify the metabolic rate for maintaining 

photosynthetic and conducting tissues, respectively (Figure A1). Combining 

Eqns (2-A3) and (2-A4) we can get the energy conservation equation for 

woody plants: 

Bp = BmmL + BmmC + Btran + E0 dm/dt   (2-A5) 

Based on empirical measurements and theoretical assumptions linking 

biomass and metabolism, MST (West et al. 1999; Enquist 2002; Price et al. 

2007; Enquist et al. 2009; West et al. 2009) predicts that whole-plant, or gross, 

photosynthesis rate, Bp, and ion transport metabolic rate Btran allometrically 

scale with the total biomass of a plant, m, as BpBtranmθ, where θ ≡ 1/(2α+β) 

and α and β representing the geometry and biomechanics of the vascular 

network. Their values may vary across different taxa (Price et al. 2007).  

Although the Eqn (2-A5) can be easily recast by using empirical values of 

α and β, we use α = 1/2 and β = 1/3 as common and idealized cases here 

(Price et al. 2007; West et al. 2009), so that θ = 3/4. Models based on these 
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scaling relationships predict that the standing leaf biomass, mL, scales with 

respect to total biomass as mL ∝ m~3/4 across woody plants which was 

confirmed by empirical data (Sack et al. 2002; Niklas 2005).  

The relationship between standing sapwood biomass (mC) and total 

biomass m is largely unknown, therefore here we assume that the tissue- or 

species-specific wood density of conducting tissues, dC, is constant for a given 

plant. Its total volume of conducting tissues, vC, can be formulated as vCASh, 

where AS is the mean cross-sectional area of sapwood and h is the height of 

plant. Because ASm3/4 and hm1/4 (Enquist 2002; Savage et al. 2010), we 

therefore derive the allometric relationship mC=dCvCAShm3/4m1/4
m for 

woody plants. Substituting the allometric relationship on biomass for all related 

terms in Eqn (2-A5) gives 

B0m
3/4 = BmaLm

3/4 + BmaSm + atranm
3/4 + E0 dm/dt   (2-A6) 

where Bp=B0m
3/4 reflects the total energy intake rate (i.e. gross photosynthetic 

rate) under optimal situation, B0 is constant for a given taxon (West et al. 1999), 

aL, aS and atran are normalization constants. Eqn (2-A6) can therefore be 

rewritten as 

dm/dt = a1m
3/4 – b1m

 = a1m
3/4 [ 1 – ( m / M1)

1/4 ]    (2-A7) 

with a1 = (B0 – BmaL– atran)/E0 and b1 = BmaS/E0. The value M1 = (a1/b1)
4 is 

asymptotic maximum body size of the woody plant (calculated for dm/dt = 0), 

which depends on species-specific traits and is determined by the systematic 

variation of the in vivo metabolic rate within different taxa (West et al. 2001). 

The gain term (a1m
3/4) in Eqn (2-A7) dominates while plants grow to a 

moderate size, which has been shown to be a good quantitative description of 

plant growth (Niklas and Enquist 2001; Enquist et al. 2009).  

Across non-woody plants which lack secondary tissues (or juveniles of 

woody plant which have not accumulated much secondary tissue), the total 

biomass of living tissues (as leaves, mL, stem, mS, and roots, mR is 

approximately equal to the whole plant mass, mliving=mL+mS+mR≈m (Enquist et 

al. 2007). Combining Eqn (2-A3) with those scaling relationship leads to 

B0m
3/4 = Bmm + atranm + E0 dm/dt   (2-A8) 

for non-woody plants.  

Taking the parameters in Eqn (2-A8) in the same sense as before, Eqn 

(2-A8) can be re-expressed as 

dm/dt = a2m
3/4 – b2m = a2m

3/4 [ 1 – ( m / M2)
1/4 ]    (2-A9) 

with a2 = B0/E0, b2 = (Bm+atran)/E, and M2 = (a2/b2)
4, which is the asymptotic 

maximum body size of a non-woody plant.  
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Eqns (2-A7) and (2-A9) have same form, and we use a general form of the 

growth function for both woody and non-woody plants: 

dm/dt = am3/4 – bm = am3/4 [ 1 – ( m / M0)
1/4 ]    (2-A10) 

where a is a general constant and M0 is the generally asymptotic maximum 

body size of plant. 

Equation (2-A10) has similar form as the “von Bertalanffy growth function” 

(von Bertalanffy 1941, 1957) and other phenomenological logistic functions 

used for describing plant growth (Hunt 1982; Weiner et al. 2001; Stoll et al. 

2002; Stoll and Bergius 2005; Chu et al. 2008; Chu et al. 2010). However, the 

ontogenetic functions derived here are based on more fundamental principles, 

in which all parameters determining plant growth are directly linked to physical 

and biological processes. 

 

Plant growth under abiotic stress 

Because ‘stress’ is not a precise concept, the characteristics of abiotic stress 

factors are different and can be resource-independent or dependent (Maestre 

et al. 2009). We assume simply that abiotic stress factors act in two ways: 

restricting the energy intake rate or burdening the maintenance of plant or 

even concurrently, this is presumably always true for plants (Lambers et al. 

2008). Since the plant growth rate is negatively and linearly related to the 

degree of abiotic stress (Chu et al. 2008, 2010), incorporating abiotic stress in 

Eqn (2-A10), we have 

dm/dt = am3/4 – bm – Sam3/4 = (1 – S)am3/4 [ 1 – ( m / Ms)
1/4 ]    (2-A11) 

where S is a dimensionless efficiency factor that indicates the level of stress 

ranges from 0 (no stress) to 1 (extreme stress), Sam3/4 is the energy restricted 

or burdened by abiotic stress which is proportional to total energy intake rate 

and increasing with the degree of stress level, and Ms=(1–S)4M0 is the 

maximum achievable biomass of plant under stress. This also implies that a 

plant’s final size is usually smaller than its asymptotic maximum size (optimal 

body size, M0) under the environmental stress and/or resource competition, 

but can increase by the beneficial effects of neighbour plants via the 

amelioration of habitat. 
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Extensions and predictions based on the general growth model of plant 

A general stem diameter growth model of plants 

Sometimes, to get the whole biomass of plants is difficulty, especially when we 

are going to measure trees. It is therefore flexible to use stem diameter (D) 

instead of biomass (m). Since D∝m3/8, which is equivalent to f(D)=dD/dm∝

m-5/8, then dD/dt=f(D)(dm/dt) combine with Eqs. (2-A7), (2-A9) and (2-A10), we 

have 

dD/dt = adD
1/3 – bdD

4/3 = adD
1/3 [ 1 – (D / Dmax) ]     (2-A12) 

where ad and bd are constants, Dmax =ad /bd is the asymptotic maximum stem 

diameter. 

 

The sigmoid growth curve of plants 

A general sigmoid growth model for plants can be obtained from integrating 

Equation (2-A10): 
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where m0 is the initial biomass of the plant (biomass at birth, t=0).  

In the expression related to stem diameter, 
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where D0 is the initial diameter of the plant (t=0). 

Currently, we are not able to combine the data sets that are precise 

enough and also cover a broad plant species to test our model. However, 

based on a recent publishes work (Deng et al. 2012), we tested our model with 

three non-woody plants, the mechanistic model are proved to be reliable 

(Figure A2). How well of our model in capturing the fundamental features of 

growth in woody and non-woody plants are remains to be seen. 
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Figure A2 Growth curves for wheat, flax, and Arabidopsis. The curves are the 

predictions of the general growth model (Equation. 2-E2). Growth data are estimated 

from Deng et al. (2012). 

 

A general model for respiratory metabolism of plant 

Overall, the respiratory metabolism of plant can be generally summarized in 

equation (2-A2). For woody plant, because of the growth rate dm/dt ≈ acm
3/4, 

where ac is a constant, hence the respiration rate of woody plants is: 

Br = BmaLm
3/4 + BmaSm + atranm

3/4 + Ec dm/dt = arm
3/4 + brm   (2-A15) 

where ar= BmaL+atran+ Ecac and br=BmaS.  

Equation (2-A15) indicates a mixed scaling relationship of rate of energy 

consumed by respiration for woody and non-woody plants, i.e. the theoretical 

scaling exponent between whole respiration rate of plant and its whole 

biomass, Br vs. m, can range from 0.75 to 1 which depends on the values of ar 

and br, and is related to the productive biomass partitioning among different 

compartments (e.g. leaf, branch, stem, root, and seed reproduction). However, 

for woody plants with much of secondary tissues, the scaling should approach 

0.75, but for non-woody plants or juveniles of woody plant which haven’t 

accumulated much of secondary tissues, the scaling exponent between 

respiratory metabolism and biomass will approach to 1. These variations were 

perceived in empirical researches (Reich et al. 2006; Enquist et al. 2007;Mori 

et al. 2010; Cheng et al. 2010). 
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Scaling relationship between reproductive biomass and mean body mass of 

seed plants 

Based on MST and equation (2-A10), the plant reproductive biomass should 

proportional to its metabolic rate, and then we predict a simple scaling 

relationship between reproductive biomass (mrep.) and plant body mass (m) as 

mrep.  m 3/4   (2-A16) 

using a broad data set (Niklas and Enquist 2004) of seed plants, we proved the 

validity of this prediction (Figure A3). 

 

 

Figure A3 The scaling relationship between mean plant mass (m) and mean 

reproduction mass (mrep.) across different species of of seed plants. The solid line 

shows the fitted Reduced Major Axis (RMA, type II model) regression of equation (95% 

C.I. of the exponent 0.70–0.77). 
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ODD protocol – model description of one-layer pi model 

The following model description follows the ODD protocol (Overview, Design 

concepts, Details) for describing individual- and agent-based models (Grimm 

et al. 2006; Grimm et al. 2010), 

 

Purpose 

The aim of this model is to evaluate the multiple effects of the mode of 

competition and resource limitation on regulating plant population dynamics, 

specifically on self-thinning trajectories and density-dependent mortality. In 

particular, we investigate whether interactions on individual plant level can 

alter the slope and intercept of the self-thinning line. The model does not 

represent specific species, but generic ones. 

 

Entities, state variables, and scales 

The entities in the model are plants and square habitat units, or patches (Table 

A1). Plants are characterized by the following state variables: initial growth 

rate, initial biomass, maximum biomass (asymptotic biomass), current 

biomass and their position, i.e. coordinates of the stem. Each individual plant 

has its own circular zone-of-influence (ZOI). The ZOI stands for the physical 

space occupied by a plant, and represents the energy and resources 

potentially available to this plant, which is allometrically related to its body 

mass. Neighboring plants only compete for the resources when their ZOIs are 

overlapping. 

In order to make the spatial calculations of resource competition easier, 

ZOIs are projected onto a grid of patches. To avoid edge effects, we use a 

torus world with a size of 200 × 200 patches (Grimm & Railsback 2005). Each 

patch represents 0.25 m2 or 0.25 cm2 for woody- and non-woody plants, 

respectively. The state of each patch is characterized by its resource 

availability. We use a homogeneous environment here as all patches have the 

same, and constant, degree of resource limitation. One time step in the model 

represents approximately one year for woody plants and one day for 

non-woody plants.
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Table A1. State variables and initialization in the individual-based model. Actual 

values are drawn from the given intervals to introduce a certain degree of 

heterogeneity among individuals. 

Variable Description 
Initial Value [unit] 

(woody/non-woody) 

Plants   

c Initial growth rate 1 ± 0.1 [kg m-2 time step-1] / 

[mg cm-2 time step-1] 

m0 Initial body mass 2 ± 0.2 [kg] / [mg] 

M Maximal biomass 2×106 ± 2×105 [kg] / [mg] 

m Current biomass [kg] / [mg] 

A Zone of influence [m-2] / [cm-2] 

Patches   

RL Level of resource limitation [0, 1] 

Initialization   

Mortality Threshold of death 2% of m3/4 

Density Number of plants 8100 ha-1 / m-2 

 

 

Process overview and scheduling 

After initialization, all individual plants with a given density are randomly 

distributed in the world. The processes of resource competition, growth and 

mortality of each plant are fulfilled within each time step. In each step, 

individual plants first sense the resource qualities of patches within their ZOIs, 

the area (radius) of an individual plant’s ZOI is determined by its current 

biomass. When their ZOIs are overlapping, individuals compete within the 

overlapping area. Thus, the overlapping area reflecting resources is divided 

according to the competition mode. Considering the outcome of the 

competition process, all individual plants grow according to the growth function. 

Plants with growth rates falling below a threshold die and are removed 

immediately. The state variables of the plants are synchronously updated 

within the subroutines, i.e. changes to state variables are updated only after all 

individuals have been processed (Grimm and Railsback 2005). 

 

Design concepts 

Basic principles: From “Metabolic Scaling Theory”, we derived a general 

ontogenetic growth model for individual plants. We combine this model, via the 

ZOI approach, with the effects of different modes of competition and resource 

limitation.  

Emergence: All features observed at the population level, e.g. mass-density 

relationship or self-thinning trajectories (i.e. size distribution and spatial 

distribution, respectively), emerge from the interaction of individual plants with 

their neighbors and the resource level of their abiotic environment.  



 Chapter 2  - 51 - 

Interaction: Individual plants interact via competition for resources in the 

overlapping area of their ZOIs.  

Stochasticity: Initial growth rate, initial biomass, maximum biomass and initial 

position of plants are randomly taken from the intervals given in Table 1. This 

introduces a certain level of heterogeneity among individual characteristics to 

take into account that real plants are never exactly identical. 

Observation: Population size, biomass of each plant, and mean biomass of all 

living plants are the main observations.  

 

Initialization 

Initially, individual plants are randomly distributed according to the chosen 

initial density. Resources are spatially and temporally constant. Each plant has 

an initial biomass (m0), maximal biomass (M) and initial growth rate (c1 or c2) 

drawn from truncated normal distributions with average and intervals given in 

Table 1.  

 

Input 

After initialization, the model does not include any external inputs, i.e. the 

abiotic environment is constant. 

 

Submodels 

Plant growth 

In our individual-based model the plant’s ZOI stands for the physical space 

occupied by a plant and represents the energy and resources potentially 

available to this plant. This space is allometrically related to the plant’s body 

mass, m, as c0A=m3/4 (Enquist & Niklas 2001), where c0 is a normalization 

constant. Accordingly, based on equation (2-A1) we have: 

 

dm/dt = cA[ 1 – ( m / M0 )
1/4 ]   (2-M1) 

 

where c = ac0 is initial growth rates in units of mass per area and time interval. 

For simplicity, we choose 1 ± 0.1 in our model. We also simulate the model 

with different c values. As expected, the results from different values were 

qualitatively similar (the slopes didn’t change).  

 

Resource competition and limitation 

Resource limitation and competition usually cause a reduction of resource 

availability for plants. We therefore represent resource limitation via a 

dimensionless efficiency factor or index, fR, for different levels of resource 

availability. Resource competition is incorporated by using a dimensionless 

competition factor or index, fp, leading to  

 

dm/dt = fRfpcA[ 1 – ( m / M )1/4 ]   (2-M2) 
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where M = (fRfp)
4M0, the maximum body size with resource limitation and 

competition. 

The efficiency factor fR, can take different forms depending on the 

characteristics and level of the limiting resource. For simplification, we use a 

linear form here, i.e. fR = 1–RL, where RL indicates the level of resource 

limitation, with its value ranging from 0 (no resource limitation) to 1 (maximum 

resource limitation; Table A1). 

As for competition, the mode of resource-mediated competition among 

plants can be located somewhere along a continuum between completely 

asymmetric competition (largest plants obtain all the contested resources) and 

completely symmetric competition (resource uptake is equal for all plants, 

independent of their relative sizes; Schwinning & Weiner 1998). To represent 

different modes of competition explicitly, we describe the competitive factor fp 

as 
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This factor thus refers to the percentage of realized resource plant i could 

uptake from the amount of resources available (the entire resource that plant 

could potentially occupy) among nj competitors with sizes mj (Schwinning & 

Weiner 1998). Ano is the area not overlapping with neighbors, Ao,k denotes the 

area overlapping with neighbors. Parameter p determines the mode of 

competition, ranging from complete symmetry (p = 0) to complete asymmetry 

(p approaching infinity; for details and examples see Figure A4).  

 

 
 

Figure A4. An example of calculating the competitive index (equation 2-M3) 

with different modes of resource competition in an individual-based model as a 
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way of dividing plants’ ZOI (zone-of-influence). Three plants with sizes m1, m2 

and m3 are competing in this example. For plant 1, its ZOI (A) was divided into 

four parts: Ano, the area not overlapping with the other two plants; Ao,1, the area 

overlapping with plant 2; Ao,2, the area overlapping with plants 2 and 3; Ao,3, 

the area overlapping with plant 3. 

 

Then the actual area that plant 1 can take from Ao,1 is 
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For Ao,2, 
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And for Ao,3, 
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Therefore, the competitive index for plant 1 is: 

   

        
  
 

  
 
   

      
  
 

  
 
   

 
   

      
  
 

  
 
   

 

 
 

Where 3/4

1 0/A m c   

 

In total, equation (2-M2) clearly shows how a plant’s growth rate is jointly 

determined by resource availability, fR, and competition, fp. This also implies 

that a plant’s final size is usually smaller than its asymptotic maximum size (M) 

during resource limitation and local competition. 

 

Mortality 

An individual’s mortality rate is proportional to its mass-specific metabolism 

(Brown et al. 2004). Based on this, we assume that individuals die if their 

actual growth rate (dm/dt) falls below a threshold of their current scaled body 

mass, i.e. 2% of m3/4. Therefore, individual plants may die due to metabolic 

inactivation driven by resource limitation, competition, senescence (when m 

approaches M) or combinations thereof. This provides a more realistic 

representation of relevant ecological process than in previous models (Stoll et 

al. 2002; Chu et al. 2010). 
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Slopes and intercepts of self-thinning trajectories produced by the model 

Table S1. Slope and intercept (log-log transformed) of self-thinning trajectories for 

simulated plants under different levels of resource limitation and modes of 

competition*.  

RL p 

Slope  Intercept 

R2 Mean 95% C.I.  Mean 95% C.I. 

0 ∞ -1.478 -1.525 -1.429  6.258 6.096 6.424 0.994 

0 10 -1.342 -1.361 -1.322  5.848 5.808 5.898 0.999 

0 1 -1.140 -1.156 -1.125  5.714 5.664 5.769 0.997 

0 0 -1.083 -1.085 -1.082  6.208 6.204 6.212 0.999 

0.1 ∞ -1.478 -1.526 -1.427  6.217 6.074 6.377 0.994 

0.1 10 -1.354 -1.374 -1.333  5.848 5.778 5.918 0.998 

0.1 1 -1.144 -1.158 -1.130  5.697 5.650 5.744 0.997 

0.1 0 -1.094 -1.098 -1.091  6.185 6.180 6.190 0.999 

0.5 ∞ -1.480 -1.516 -1.445  6.176 6.060 6.297 0.995 

0.5 10 -1.385 -1.402 -1.365  5.805 5.736 5.875 0.997 

0.5 1 -1.188 -1.198 -1.179  5.554 5.519 5.585 0.998 

0.5 0 -1.124 -1.126 -1.122  5.978 5.972 5.984 0.999 

0.9 ∞ -1.486 -1.499 -1.472  5.918 5.873 5.963 0.996 

0.9 10 -1.395 -1.401 -1.389  5.637 5.619 5.657 0.999 

0.9 1 -1.201 -1.209 -1.194  5.370 5.345 5.395 0.998 

0.9 0 -1.130 -1.139 -1.122  5.474 5.446 5.502 0.997 

*RL indicates the level of resource limitation (0–1), p indicates the modes of 

competition (with 0: completely symmetric; 1: perfectly size-symmetric; 10: highly 

size-asymmetric; ∞: completely asymmetric). C.I. is confidence intervals. 
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Abstract 

Metabolic scaling theory (MST) predicts a ‘universal scaling law’ for plant 

mass-density relationships, but empirical observations are more variable. 

Possible explanations of this deviation include plasticity in biomass allocation 

between the above- and belowground compartment and the mode of 

competition, which can be asymmetric or symmetric. Although complex 

interactions of these factors are reasonable, the majority of modelling and 

empirical studies have been focusing on mono-factorial explanations so far. 

We present a generic individual-based model, which allows exploring MST 

predictions in realistic settings by representing plasticity of biomass allocation 

and different modes of competition in the above- and belowground 

compartment simultaneously. To evaluate the behaviour of the simulated 

plants related to the allocation patterns and to validate model predictions 
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regarding the mass-density relationship, we conducted greenhouse 

experiments with tree seedlings. The simulated model well captured empirical 

patterns both at plant individual and population level. Without belowground 

resource limitation, aboveground processes dominated and the slopes of 

mass-density relationships followed the predictions of MST. In contrast, 

resource limitation resulted to an increased allocation of biomass to 

belowground parts of the plants. The subsequent dominance of symmetric 

belowground competition led to significantly shallower slopes of the 

mass-density relationship. We conclude that changes in biomass allocation 

patterns control the constraints at different levels of biological organization and 

explain the deviations from the mass-density relationship predicted by MST. 

Taking into account the plasticity of biomass allocation and its linkage to the 

visible aboveground competition and the invisible belowground competition is 

critical for fully representing many forests and eco-regions, in particular for 

correctly predicting the response of carbon storage and sequestration to 

changing environmental conditions. 

 

Keywords: plasticity, biomass allocation, optimization theory, symmetric 

competition, asymmetric competition, ontogenetic growth of plant, 

individual-based model, allometric exponent, power law 

 

3.1 Introduction 

The relationship between plant performance and density is one of the central 

topics in plant ecology (Stoll et al. 2002, Deng et al. 2006, Chu et al. 2010, 

Weiner and Freckleton 2010). It is widely accepted that resource competition 

among plants is the main force in determining plant mass-density relationships 

induced by density-dependent mortality. In self-thinning stands of plants, the 

general relationship between density (N) and mean biomass (My) of surviving 

plants can be described by a power function, My=kNγ, where k and γ are 

referred to as the thinning coefficient and exponent, respectively. Based on 

Euclidean geometry, it was proposed that the value of γ is approximately equal 

to -3/2, which is well-known as the “-3/2 power rule” of self-thinning (Yoda et al. 
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1963). More recently, based on a fractal model metabolic scaling theory (MST) 

predicted a ‘universal scaling law’ with γ equal to -4/3 (Enquist et al. 1998, 

West et al. 1999, Enquist and Niklas 2001, Enquist 2002, Brown et al. 2004, 

Savage et al. 2010).  

The exponent predicted by MST is generally confirmed in studies 

addressing aboveground biomass across different types of ecological 

communities in environments without major resource limitation or physical 

stress (Deng et al. 2006). However, findings from arid areas or from plantation 

experiments with low resource levels often deviate from these predictions and 

show significantly less negative exponents, i.e. shallower slopes of the 

self-thinning trajectory or log mass-log density relationship, respectively 

(Morris 2003, Deng et al. 2006, Liu et al. 2006). Consequently, both the validity 

and universality of scaling exponent and MST are still unclear and require 

further analyses of the underlying mechanisms (Coomes 2006, Deng et al. 

2006, Coomes et al. 2011). 

On sites where belowground resources such as nutrients and water are 

limited, plants tend to allocate more biomass to their belowground parts and 

develop extended root systems for acquiring limited resources while canopies 

remain unclosed (Deng et al. 2006). In such situations belowground 

competition is believed to affect plant growth and mortality more than 

aboveground competition (Deng et al. 2006, Berger et al. 2008). Nevertheless, 

only few studies have explored the role of belowground process for plant 

mass-density relationships (Morris 2003, Deng et al. 2006, Berger et al. 2008). 

This is because observations of the root systems are hampered by logistic 

difficulties (Cahill and Casper 2000, Casper et al. 2003, Berger et al. 2008, 

Rewald and Leuschner 2009, Schiffers et al. 2011).  

Deng et al. (2006) found that the mass-density relationship of natural 

vegetation was altered by changing root versus shoot biomass allocation along 

a precipitation gradient. The root:shoot ratio (RSR) of biomass increased with 

aridity but for the belowground compartment the slope of the plant 

mass-density trajectory was still consistent with MST predictions. In contrast, 

the slopes of the aboveground compartment became less negative. This study 

suggested that plant mass-density relationships are altered by the 

well-documented plasticity of biomass allocation in response to resource 
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limitation (McConnaughay and Coleman 1999, Weiner 2004, Deng et al. 2006, 

Berger et al. 2008, May et al. 2009, Schiffers et al. 2011).  

Apart from this, the mode of competition (asymmetry vs. symmetry) has 

also been discussed to affect plant mass-density relationships (Schwinning 

and Weiner 1998, Stoll et al. 2002, Coomes and Allen 2009, Berger et al. 2008, 

Chu et al. 2010, Coomes et al. 2011). Aboveground competition for light is 

considered to be asymmetric, whereas belowground competition is considered 

to be rather symmetric (Schwinning and Weiner 1998). In various studies with 

belowground recourse limitation, belowground competition was shown to alter 

the plant mass-density relationship, i.e. the exponents became less negative 

than predicted by MST (Morris 2003, Deng et al. 2006, Chu et al. 2010, Lin et 

al., in revision). Nevertheless, there also seem to be cases where belowground 

competition can be asymmetric (Fransen et al. 2001, Rajaniemi 2003, Rewald 

and Leuschner 2009).  

Although plant ecologist agree that the biomass allocation patterns and the 

relative importance of above- and belowground competition change along 

environmental gradients (Tilman 1988, Deng et al. 2006, Berger et al. 2008), it 

remains unknown which factor or which combination of them dominates the 

alteration of the mass-density relationship in plant populations and 

communities. 

In a previous one-layer individual-based model (IBM), which uses the zone 

of influence (ZOI) approach (Wyszomirski 1983, Wyszomirski et al. 1999, 

Weiner et al. 2001, May et al. 2009) but does not distinguish the above- and 

belowground compartments, we found that symmetric competition can alter 

the predictions of MST (Lin et al., in revision). This model is too simple, though, 

to explore the role of resource allocation and below- versus aboveground 

competition. Therefore, based on recent modelling studies (May et al. 2009, 

Lin et al., 2012, Lin et al., in revision), we developed a new two-layer IBM 

which represents both above- and belowground competition simultaneously 

via independent ZOIs. In the presented model, plant growth and biomass 

allocation are represented by the growth function based on MST (Enquist 2002, 

Niklas 2005, Lin et al., 2012), which tries to mechanistically capture the plastic 

responses of plants to changing environmental conditions. 

To validate our new model, a greenhouse experiment was also employed. 
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We determined root and shoot biomass allocation and relative mass-density 

relationships of birch seedlings grown under severe root competition at 

different resource levels. The combination of modelling and experiment 

enabled us to identify the relative role of two key factors (above- vs. 

belowground biomass allocation and asymmetric vs. symmetric competition) 

and effects on plant mass-density relationships.  

 

3.2 Methods 

3.2.1. Individual-based model 

To explicitly assess the interplay between biomass allocation patterns and the 

different modes of subsequent shoot competition and root competition, we 

extended an established one-layer zone-of-influence (ZOI) model (Lin et al. 

2012, Lin et al. in revision) to a two-layer model, which describes the above- 

and belowground part of a single plant by separate ZOIs.  

A detailed description of the whole model, which follows the ODD protocol 

(Overview, Design concepts, Details) for describing individual-based models 

(Grimm et al. 2006, 2010), is provided in the supplementary material 

(Appendix A) as well as the model implementation in NetLogo 4.1.3 (Wilensky 

1999). Here, we only describe the core elements of the model.  

The fundamental function representing the ontogenetic growth of an 

individual plant is based on MST and does not differ from the one-layer model 

(Lin et al. 2012):  

∆m/∆t = am3/4 – bm = am3/4[ 1 – ( m / M0)
1/4 ]   (3-1) 

where m is the current biomass of whole plant, a and b the species-specific 

constants, and M0=(a/b)4 refers to the asymptotic maximum body size of a 

plant (calculated for ∆m/∆t =0). 

The general description of the mode of operation of the zone-of-influence 

(ZOI; Weiner et al. 2001) is the same above- and belowground: the particular 

circular ZOI with area A stands for the physical space occupied by a plant, 

which also represents the potential energy and resources that are available to 
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this plant and is proportional to the plant’s metabolic rate (B). Each ZOI is 

allometrically related to the respective biomass, m, as m3/4=c0A (Enquist and 

Niklas 2001), where c0 is a normalization constant. Resource limitation and 

competition usually cause a reduction of resource availability for plants. We 

therefore represent resource limitation via a dimensionless efficiency index, fR, 

for different levels of resource availability. Resource competition is 

incorporated by using a dimensionless competition index, fp. Equation (3-1) 

becomes: 

∆m/∆t = fRfpcA[ 1 – ( m / M)1/4 ]   (3-2) 

where c=ac0, is the initial growth rate and M=(fRfp)
4M0 the maximum body size 

with resource limitation and competition. The efficiency index, fR, can take 

different forms depending on the characteristics and level of the limiting 

resource. For simplification, we use a linear form, fR = 1–RL, where RL 

indicates the level of resource limitation, with its value ranging from 0 (no 

resource limitation) to 1 (maximum resource limitation). As for competition, the 

modes of resource-mediated competition among plants can be located along a 

continuum between completely asymmetric competition (largest plants obtain 

all the contested resources) and completely symmetric competition (resource 

uptake is equal for all plants, independent of their relative sizes; Schwinning 

and Weiner 1998). Different modes of competition are incorporated in our 

model by using a competition index fp as 
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This index represents the fraction of resources available in the ZOI which plant 

i could obtain after the loss of potential resources on the areas overlapped by 

neighbours of sizes mj (Schwinning and Weiner 1998). Ano is the area not 

overlapping with neighbours, Ao,k are the no areas overlapping with nj different 

neighbours. Parameter p adjusts the mode of competition (Schwinning and 

Weiner 1998). Here, we consider two theoretically important p values reflecting 

two modes of competition: allometric asymmetry (p=10, larger individuals get a 

disproportional share of overlapped areas) and size symmetry (p=1, the 
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overlapped areas are divided among all overlapping individuals proportional to 

their sizes; for detail and an example see Figure A2). 

In the one-layer version of our ZOI model (Chapter 2, Lin et al. in revision), 

equation (3-2) lumps above- and belowground competition together. In the 

study presented, equation (3-2) is applied to both ZOIs representing the 

above- and belowground physical space a plant occupies and on which it has 

potential access to the resources light, water and nutrients, respectively 

(Figure A3). Through this modification, we take into account that the relative 

importance of shoot versus root competition and the size of the corresponding 

ZOIs can depend on environmental factors (Casper et al. 2003, Deng et al. 

2006, O’Brien et al. 2007, May et al. 2009).  

We assumed that (i) under optimal conditions without resource limitation 

and competition, the abilities of above- and belowground resource uptake are 

balanced, with relationships between metabolic rate, B, and biomass, m, being 

B=cshootmshoot
3/4=crootmroot

3/4 (Niklas 2005, Cheng and Niklas 2007; see 

Appendix A), where cshoot and croot are normalization constants (to simplify, we 

assume cshoot=croot=1), and “shoot” and “root” refer to the above- and 

belowground compartment, respectively; (ii) the plant’s above- and 

belowground ZOIs are proportional to the plant metabolic rate, B, and 

allometrically related to the plant’s shoot and root biomass (Enquist and Niklas 

2001, May et al. 2009), Aa=camshoot
3/4 and Ab=cbmroot

3/4, where ca and cb are 

normalization constants (to simplify, we use ca=cb=1); (iii) growth of the entire 

plant is limited by the compartment with smaller resource uptake rate (May et 

al. 2009). Thus, equation (3-2) is first independently applied for both the 

above- and belowground compartment, then growth of the entire plant is set to 

that of the more limited compartment, multiplied by two to account for the case 

where below- and aboveground growth are the same (May et a. 2009):  

1/4

, ,

1/4

, ,

2 2 [1 ( / ) ],

2 2 [1 ( / ) ], (3-4)

,

       
 

       
 

    

R a p a a a a

R b p b b b b

AGR f f c A m M AGR BGR

m
BGR f f c A m M AGR BGR

t
AGR BGR AGR BGR

 

where ∆AGR and ∆BGR are above- and belowground growth rate and the 

subscripts a and b indicate the above- and belowground compartment, 
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respectively. Then, allocation of the gained biomass to the two compartments 

is assumed to be plastic (McConnaughay and Coleman 1999, Weiner 2004, 

Berger et al. 2008), with more biomass being allocated to the compartment 

with the smaller, and thus more limiting, growth rate. Adopting optimization 

theory (Johnson 1985, McConnaughay and Coleman 1999, May et al. 2009) 

and metabolic scaling theory (Niklas 2005), we assumed partitioning of 

biomass growth between shoot and root to be: 

3/4

3/4 3/4

3/4

3/4 3/4

(3-5a)

(3-5b)

  
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   

    
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root

m m BGR
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m m AGR
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An allometric form (3/4) of resource allocation was used here as metabolic 

balance; we also tested the original exponent of 1 (Johnson 1985, May et al. 

2009), which did not change our general findings. 

An individual’s mortality rate is proportional to its mass-specific 

metabolism, i.e. current total metabolic rate divided by body mass (Brown et al. 

2004). Based on this, we assume that individuals die if their actual growth rate 

(actual metabolic rate, ∆m/∆t) falls below a threshold fraction of their basal 

metabolic rate (scaled by current body mass, i.e. 3% of m3/4). Therefore, 

individual plants may die due to metabolic inactivation driven by above- or/and 

belowground resource limitation, competition, senescence (when m 

approaches M), or combinations thereof. In total, Equations (3-4), (3-5a) and 

(3-5b) represent how growth, biomass allocation and mortality of a plant are 

jointly determined by above- and belowground resource levels and local 

competition. This provides a mechanistic and quantitative basis for linking the 

energetic metabolism and growth of plants to local interactions and population 

dynamics under different environmental conditions, i.e. to identify the 

compartment which mostly influences the plant growth at individual level and 

mass-density relationship at population level. The design of our model also 

allows us to explicitly ascribe the mortality of individual plants to above- or/and 

belowground processes in simulations. 
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3.2.2. Scenarios  

In our simulation experiments, we tested high initial densities (104 = 10, 000 

individuals per total area), two modes of aboveground (shoot) competition (CAA: 

allometric asymmetry, pa = 10; CSS: size symmetry, pa = 1), and two modes of 

belowground (root) competition (CAA: allometric asymmetry, pb = 10; CSS: size 

symmetry, pb = 1) at three resource-limitation levels for the belowground 

compartment (RLb equal to 0, 0.4 and 0.8 representing no, medium and strong 

limitation of belowground resources respectively). Simulations for the resulting 

nine scenarios were repeated five times, using different random initializations. 

We also tested low initial densities (103.5 ≈ 3,163 individuals per total area) and 

other combinations of competition parameters, which lead to similar 

conclusions as we presented here (Table S1). 

3.2.3. Greenhouse experiment 

To test the predictions of our model, we carried out a greenhouse experiment 

at the research station of Hetzdorf, Dresden University of Technology, 

Germany. A common tree species of central Europe, Betula pendula Roth 

(silver birch), was chosen because it is fast-growing. The germination 

percentage of birch in our controlled pre-test under climate chamber conditions 

was 45% (ISTA 1993). Seeds of B. pendula were sown in the pots at two initial 

densities (calculated as 0.09g and 0.27g per pot), then two initial seedling 

densities with approximately 250 and 750 individuals per pot have been 

established, which correspond to 10000 and 33000 plants m-2. Each pot was 

filled with a natural mixed spruce forest humus substrate. The plastic pot size 

was 20×16.3 cm at top and 17×13.5 cm at bottom with 5 cm in depth. 

Consequently, root competition is expected to be very intensive in such 

shallow pots (Wilson 1988). 

On 11 April 2010, seeds were sown into each pot and covered by a thin 

layer of sand against drought damages. We set two nutrient levels, as fertilized 

and non-fertilized groups. For the fertilized group, sustained-release fertilizer 

was placed uniformly over the ground substance surface in each pot (4.6 g per 

pot). In total, we used 40 pots, for two densities, two nutrient levels and ten 

replicates. All pots were arranged on benches in the greenhouse, and were 
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randomly rearranged once per week to avoid possible effects of environmental 

heterogeneity. On 28 July 2010, we terminated the planting experiment and 

harvested all plants. Self-thinning had largely reduced density of seedlings in 

all harvested pots. In order to avoid edge effects, we set up a 7×7 cm subplot 

in the center of each pot for measurement. Shoot and root dry biomass were 

measured for each individual plant after oven-drying to constant weights at 

60°C. Two pots in the fertilization group were lost (one pot in each initial 

density), thus 38 pots were evaluated.  

3.2.4. Statistical analysis 

The mass-density relationship (log-log transformed data of mean biomass vs. 

live plant density) has the form log My = log k + γ log N, where My (mean 

biomass of either total plants, shoots, or roots) and N (plant density) are the 

variables plotted on the ordinate and abscissa, respectively. The constant log k 

is the intercept and γ the slope of the regression line (the allometric or scaling 

exponent). We used the data of simulated population with high initial density 

(i.e. 10,000 individuals per total area) for analysis (the thinning trajectories of 

low initial densities were identical to high initial density in simulations; Fig. S1). 

Data points were selected a posteriori for linear fits in our simulation 

experiment (Weller 1987, Chu et al. 2010): for each scenario, after 

density-dependent mortality starts, the data points with surviving plants 

between 7,000 and 500 during self-thinning were selected, which excluded the 

data points that may cause a non-linearity effect on linear regression. Data 

points were fitted by standard major axis regression (SMA, type II model), 

which concerns the presence of error in both variables and is widely used to 

investigate mass-density relationships (Warton et al. 2006). All statistical 

analyses were conducted using R 2.11.1 (R Development Core Team, 2010). 

3.3 Results 

3.3.1 Individual-based model 

Plants allocated more biomass to roots for acquiring belowground resources 

(RLb) when these resources became limited. As expected, root : shoot ratio 
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(RSR) was significantly higher with belowground resource limitation (ANOVA, 

F = 11.48, P < 0.001; Fig. 3.1a). Consequently, belowground competition 

among plants became more intense leading to increased mortality (Fig. 3.1b). 

This suggests that the relative importance of above- and belowground 

competition for the population dynamics varies inversely along a gradient of 

belowground resource limitation. 

Also, the plasticity of biomass allocation contributes to variable 

mass-density patterns (Fig. S1; Table S1). When the mode of competition is 

entirely asymmetric (CAA 
AA , for both above and below ground) and without 

resource limitation (RLb=0), the slopes of log mass-log density relationships for 

mean total, above- and belowground biomass are all consistent with the 

prediction of MST (Fig. 3.2, Table S1). With increasing belowground resource 

limitation, the slopes of log mass-log density relationships for belowground 

biomass still supports MST but the slopes for aboveground part are 

significantly shallower (95% CI do not include -4/3; Fig. 3.2, Table S1). 

However, at all resource levels, entirely symmetric competition (CSS 
SS ) results in 

slopes of the log mass-log density relationships significantly shallower than 

predicted by MST (95% CI do not include -4/3; Fig. 3.2, Table S1), for both 

above- and belowground biomass. This result indicates that the mode of 

competition contributed more to altering the mass-density relationship than 

biomass allocation did.   

In the combination CAA 
SS  without resource limitation (RLb=0, Fig. 3.1b), 

aboveground competition had a greater effect on population mortality than 

belowground competition because there was no resource limitation. The 

allometric exponents were very close to those of the combination CAA 
AA (95% CI 

overlapped; Fig. 3.2, Table S1) and also compatible with prediction of MST (95% 

CI include -4/3), but significantly differ from CSS 
SS  (95% CI did not overlap; Fig. 

3.2, Table S1). When belowground resources were limited (RLb=0.4), plant 

allocated more biomass to belowground parts; the aboveground mass-density 

relationship of CAA 
SS  was significantly different from the prediction of MST (95% 

CI did not include -4/3) and CAA 
AA (95% CI did not overlap; Fig. 3.2, Table S1). 

However, exponents of belowground showed little variation and were still 

consistent with MST (also CAA 
AA) reflecting that mortality was mainly induced by 

asymmetric aboveground competition (Fig. 3.1b).  
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With further increased belowground resource limitation (RLb=0.8), the 

mass-density relationships of CAA 
SS  for mean total, above- and belowground 

biomass were very similar to the case of CSS 
SS  (Fig. 3.2, Table S1) and thus 

significantly different from the predictions of MST and CAA 
AA (Fig. 3.2, Table S1). 

In this scenario, symmetric belowground competition was the main factor 

driving mortality (Fig. 3.1b). This result again demonstrated that the 

mass-density relationships are more affected by the mode of competition 

independent of which compartment is dominant in terms of growth limitation.   

 

Fig. 3.1 The (a) root:shoot ratio (mean ± 1 SD) and (b) percentage of mortality 

induced by above- or belowground competition in simulated plant populations at 

different levels of belowground resource limitation, RLb, ranging from 0 (no resource 

limitation) to 1 (maximum resource limitation). C with superscript and subscript 

indicated the mode of competition for above- and belowground part correspondingly 

(AA: allometric asymmetry; SS: size symmetry). Bars in the same group that share 

the same letter do not differ significantly (P > 0.05, Holm-Sidak test). 
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Fig. 3.2 Slopes of mass-density relationships between the mean total, above- and 

belowground biomass and densities in simulated plant populations (log-log 

transformed; as estimated by standard major axis; all regressions were significant at 

P < 0.0001). RLb defined the level of belowground resource limitation, with its value 

ranging from 0 (no resource limitation) to 1 (maximum resource limitation). C with 

superscript and subscript indicated the mode of competition for above- and 

belowground part correspondingly (AA: allometric asymmetry; SS: size symmetry). 

The dotted lines indicate the value of exponent (-4/3) predicted by MST. 

 

3.3.2 Greenhouse experiment 

Our greenhouse experiment confirmed the results of the simulation 

experiments. For non-fertilized plants the mean RSR of biomass was 

significantly higher than for fertilized plants (ANOVA, F = 9.09, P < 0.001; Fig. 

3.3). The mass-density relationship varied between fertilization and 

non-fertilization treatment (Table S2, Fig. 3.4a). As for fertilized plants, the 

slopes of total, above- and belowground log mass-log density relationship 

were not significantly different from the prediction of MST (95% CI included 

-4/3; Table S2). However, the slopes became shallower in the group of 

non-fertilized plants (Fig. 3.4b) and differed significantly from the prediction of 

MST (95% CI do not include -4/3; Table S2). The overall pattern of differences 

in allometric exponents between fertilization and non-fertilization treatment 

(Fig. 3.4b) was similar to the pattern of C AA 
SS  changing along the 

resource-limited gradient explored in the simulation experiments (Fig. 3.2) 
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confirming the dominance change from aboveground (asymmetric) to 

belowground (symmetric) competition. Therefore, the importance of 

belowground competition as driving force in plant population and communities 

is predicted to increase along gradients of decreasing belowground resource 

availability, whereas the importance of aboveground competition is predicted 

to decrease. 

 

 

Fig. 3.3 The root:shoot ratio (mean ± 1 SE) of Betula pendula seedlings in 

greenhouse experiment with different nutrient treatments and initial densities (L: low 

density, H: high density, L+H: combined data). Bars that share the same letter do not 

differ significantly (P > 0.05, Holm-Sidak test). 

 

  



 Chapter 3 - 71 - 

 

Fig. 3.4 The mass-density relationships of Betula pendula seedlings in greenhouse 

experiment with different nutrient treatments. (a) Relationships between mean total, 

above- and belowground biomass and densities (log-log transformed). (b) Slopes of 

mass-density relationships between the mean total, above- and belowground 

biomass and densities (log-log transformed, as estimated by standard major axis; all 

regressions were significant at P < 0.001, 95% CI of the slopes indicated that the 

exponents of non-fertilization treatment were statistically different from −4/3). 

 

3.4 Discussion 

We presented a two-layer individual-based model that is rooted in metabolic 

scaling theory (MST). The purpose of the model was to test whether a generic 

model that explicitly represents biomass allocation and different modes of 
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competition for both above- and belowground compartments would be able to 

capture observed variations and patterns in plant mass-density relationships. 

In addition to simulation experiments, we conducted a greenhouse experiment 

to verify the model’s predictions.  

The main finding was that changes in the allometry of plants, induced by 

their plasticity of biomass allocation in response to environmental factors, can 

alter the relative importance of above- or belowground competition on driving 

density-dependent mortality, which affects plant mass-density relationships. 

Root competition, which is assumed to be more symmetric, can have a strong 

effect on altering the allometric exponent, i.e. flattening plant log mass-log 

density relationships (also self-thinning trajectories). Deviations from the 

mass-density scaling exponent predicted by MST are thus likely to occur if 

competition occurs belowground (symmetric) rather than aboveground 

(asymmetric). Consequently, models or theories explaining mass-density 

relationships and self-thinning which are solely based on aboveground parts 

are unlikely to be appropriate for the cases where belowground processes 

predominate (Deng et al. 2006, Berger et al. 2008).  

3.4.1. The advantages of using a new mechanistic growth model 

It was important that we used a mechanistic growth model derived from MST 

rather than a phenomenological growth model, as usually has been done so 

far for analyzing biomass-density relationships (e.g., Weiner et al. 2001, Stoll 

et al. 2002, Chu et al. 2010). First, our generic growth model is based on the 

energy budget of the individuals during growth. It thus captures the salient 

features of energy acquisition and allocation to maintain and replace the 

existing tissue and the production of new tissue, and relates ontogenetic 

growth to metabolic energy at the cellular level (West et al. 2001). This 

certainly is an advantage by itself because models driven by “first principles” 

are more flexible and usually capture more adaptive responses of individuals 

to their environment than phenomenological models, which are statistically 

fitted to existing data (Grimm and Railsback 2005, Martin et al. 2012). Second, 

in contrast to previous models (Wyszomirski et al. 1999, Weiner et al. 2001, 

Stoll et al. 2002, Chu et al. 2010), our model is able to simultaneously explain 
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the observed variation in both root-shoot allocation patterns and mass-density 

relationships.  

It is worth noting that an association of the scaling exponents with root : 

shoot ratios (RSR) predicted by our model matched the observed values of 

natural vegetations along a precipitation gradient in China very well. Deng et al. 

(2006) found that with drought severity increasing, the mean RSR of plant dry 

biomass increased approximately from 1 to 2 (RSR±SD: 0.92±0.31, 1.92±1.42 

and 2.18±1.61) and the scaling exponent of plant total biomass-density 

relationship changed from -1.33 to -1.27 correspondingly (-1.33, -1.28 and 

-1.27). In our model, we found very similar associations between RSR and 

scaling exponent (Table S1; e.g., C AA 
SS : RLb=0, RSR±SD=1.09±0.03, 

Slope=-1.36; RLb=0.4, RSR±SD=1.66±0.16, Slope=-1.29), which are 

statistically identical to the empirical results (P > 0.05, Holm-Sidak test). 

3.4.2. Above- and belowground competition 

Why do the predictions of MST on plant mass-density relationship often turn 

out to be correct? The principal assumption of energy equivalence in MST 

implies that light is the limiting factor and competition is a canopy-packing 

process among plants (Enquist et al. 1998, Reynolds and Ford 2005, Deng et 

al. 2006). If then in benign environments only aboveground biomass is 

measured, as in most empirical studies, it is to be expected that we obtain the 

slope of -4/3 (scaling exponent) as shown in our model.  

Our results imply the importance of adaptive behaviours of plants for 

system-level properties like biomass-density relationship (Grimm and 

Railsback 2005, Grimm et al. 2005). With “adaptive behaviour” we refer to 

morphological and physiological plasticity that allows plants to adapt to 

changing biotic and abiotic environmental conditions (Weiner 2004, Berger et 

al. 2008, Schiffers et al. 2011). It is recognized that features of vegetation can 

change in drought or oligotrophic environments (Deng et al. 2006). Based on 

optimization theory, plants compete primarily for limited belowground 

resources in those environments, which can cause an increase of RSR as well 

as root space, but a decrease in cover where plant canopies are not closed 

(Deng et al. 2006). In analogy to Liebig’s law of limiting factors, belowground 
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competition can overtake aboveground competition and becomes dominant in 

these situations. Consequently, adaptive behaviour not only alters the way 

plants grow but also their mode of competition.  

Empirical experiments show that slopes of log mass-log density 

relationship are manifestly shallower under severe water stress (Deng et al. 

2006, Liu et al. 2006) and low nutrient levels (reviewed in Morris 2003). Our 

model and greenhouse experiments confirm these results. As demonstrated, 

the mode of competition played a more important role for the plant 

mass-density relationship. 

3.4.3. Asymmetric vs. symmetric competition  

With symmetric competition, resource acquisition is more evenly distributed 

among interacting plants, so that competitive suppression and the 

corresponding onset of mortality are delayed (Stoll et al. 2002). Consequently, 

even at high densities plants can still survive and grow (Hautier et al. 2009, 

Lamb et al. 2009). This leads to the shallower self-thinning lines as has been 

proven in several studies (Chu et al. 2010, Lin et al. in revision). 

Accordingly, one should also expect that slopes become shallower if 

aboveground competition is less asymmetric. This was indeed observed for 

low light conditions (Lonsdale and Watkinson 1982, Westoby 1984, Dunn and 

Sharitz 1990), where plants often show flexible shoot morphology and grow 

taller instead of wider, and competition was considered more symmetric 

(Schwinning and Weiner 1998, Stoll et al. 2002).  

However, some researchers proposed that size-asymmetric (light) 

competition is more important for explaining the deviations predicted by MST 

in forests (Coomes and Allen 2009; Coomes et al. 2011). At first glance, this 

seems to be in contrast to our findings here, but this is not the case because 

those studies focused on individual’s diameter growth. Asymmetric competition 

from larger neighbours can highly affect the growth of smaller individuals 

before they die. Thus, for these individuals, asymmetric competition is more 

important than the relationships predicted by MST. In contrast, we here 

focused on the biomass and density of surviving plants. 

It is noteworthy to mention that it also has been surmised that 
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belowground competition might be rather asymmetric in heterogeneous 

resource conditions (Schwinning and Weiner 1998, Fransen et al. 2001, 

Rajaniemi 2003, Rewald and Leuschner 2009), though the experimental 

evidence for asymmetric belowground competition is scarce (Rajaniemi 2003, 

von Wettberg and Weiner 2003, Rewald and Leuschner 2009). Our model and 

greenhouse experiment, nevertheless, confirm the majority of empirical 

experiments which suggest that belowground competition is more symmetric. 

We conclude that an appropriate evaluation of the mode of competition should 

not only consider environmental heterogeneity and species-specific ecological 

traits of plants (Schwinning and Weiner 1998, Rajaniemi 2003, Pretzsch 2006, 

Rewald and Leuschner 2009), but also the interaction between above- and 

belowground competition (Cahill 2002).  

Conclusion 

It seems that Liebig’s law even applies, in a generalized sense, to the debate 

about whether or not MST is a universally valid and relevant theory. Deviation 

in observed plant mass-density relationships indicates that MST is less general 

than originally thought. Our findings confirm that MST by itself applies to 

individual organisms, but not necessarily to populations or ecosystems (Lin et 

al. in revision). System-level features of ecological systems may be 

constrained by individual metabolism, which is taken into account in MST, or 

by ecological factors beyond the individual, i.e. the type of limiting resource 

and the mode of competition among con-specifics. The overall claim that MST 

provides a universal and mechanistic basis for quantitatively linking the 

energetic metabolism of individuals to ecological community dynamics is thus 

neither completely right nor wrong: the real question is when and which factors 

dominate in a given situation.  

In addition to previous studies, which do not address the linkage between 

aboveground and belowground competition explicitly, the most important 

conclusion of our study is that changes in biomass allocation patterns can 

modify ecological mechanisms and subsequently the constraints which MST 

sets. The observed variation in mass-density relationships represents changes 

in the dominance of the most limiting factor in a given ecological context. This 
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has important implications, e.g., for using allometry-based simulation models 

to predict carbon storage and sequestration in plant systems. Taking into 

account not only the visible aboveground competition, but also the invisible 

belowground competition, is thus critical for many forests and eco-regions. 
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Chapter 3 – Appendix A    

ODD protocol – model description of two-layer pi model 

The following model description follows the ODD protocol (Overview, Design 

concepts, Details) for describing individual- and agent-based models (Grimm 

et al. 2006; Grimm et al. 2010), 

 

1. Purpose 

The aim of this model is to evaluate the multiple effects of the mode of 

competition (above- and belowground part) and resource limitation on 

regulating plant population dynamics, specifically on mass-density 

relationships (self-thinning trajectories) and density-dependent mortality. In 

particular, we test whether interactions on individual plant level can alter the 

slope and intercept of the log mass-log density relationship under different 

environmental conditions. The model does not represent specific species, but 

generic ones. 

 

2. Entities, state variables, and scales 

The entities in the model are plants and square habitat units, or patches (Table 

A1). Plants are characterized by the following state variables: initial growth rate, 

initial biomass, maximum biomass (asymptotic biomass), current biomass 

(both shoot and root) and their position, i.e. coordinates of the stem. Each 

individual plant has its own circular zone-of-influence (ZOI) for both above- and 

belowground compartment. The pair of ZOIs stand for the physical space 

occupied by a plant’s shoot and root respectively, and represents the energy 

and resources potentially available to this plant for above- and belowground 

part, which ZOIs are allometrically related to its shoot and root mass separately. 

Neighbouring plants only compete for the resources when their above- or 

belowground ZOIs are overlapping.  

In order to make the spatial calculations of resource competition easier, 

ZOIs are projected onto a grid of patches. To avoid edge effects, we use a 

torus world with a size of 200 × 200 patches (Grimm & Railsback 2005), and 

each patch represents 0.25 cm2 in reality. The state of each patch is 

characterized by its resource availability. We use a homogeneous environment 

here as all patches have the same, and constant, degree of resource limitation 

for both above- and belowground part. One time step in the model represents 

approximately one week for simulated plants. 
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Table A1. State variables and initialization in the individual-based model. Actual 

values are drawn from the given intervals to introduce a certain degree of 

heterogeneity among individuals. 

 

Variable Description Initial Value [unit] 

Plants   

C Initial growth rate 1 ± 0.1 [mg cm-2 time step-1] 

m0 Initial total body mass 2 ± 0.2 [mg] 

m0, shoot Initial shoot mass 50% of m0 [mg] 

m0, root Initial root mass 50% of m0 [mg] 

M0 Maximal biomass 2×106 ± 2×105 [mg] 

M Current total body mass [mg] 

mshoot Current shoot mass [mg] 

mroot Current root mass [mg] 

Aa Aboveground zone of influence [cm-2] 

Ab Belowground zone of influence [cm-2] 

Patches   

RLa Aboveground resource limitation 0, RLa ∈ [0, 1) 

RLb Belowground resource limitation 0, 0.4, 0.8, RLb ∈ [0, 1) 

Initialization   

Mortality Threshold of death 3% of m3/4 

Density Number of plants 3163 and 10000 / total area 

Random seed Generation of random number 1, 2, 3, 4, 5 

 

3. Process overview and scheduling 

After initialization, all individual plants with a given density are randomly 

distributed in the world. The processes of above- and belowground resource 

competition, growth and mortality of each plant are fulfilled within each time 

step. In each step, individual plants first sense the above- and belowground 

resource qualities of environment (levels of resource limitation of patches) 

within their shoot and root ZOIs, the areas (radius) of an individual plant’s ZOIs 

are determined from its current shoot and root biomass correspondingly. When 

the above- or belowground ZOIs of neighbouring plants are overlapping, plants 

compete only within the overlapping area. Thus, the overlapping area is 

divided according to the competition mode which reflecting the way of resource 

division. The growth rate of plant is determined by the outcome of above- and 

belowground process, which is restricted by the compartment with minimum 
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resource uptake rate according to growth function. The synthesized biomass is 

allocated to shoot and root optimally which follows the rule of functional 

balanced growth (Niklas 2005; May et al. 2009). Plants with growth rates 

falling below a threshold die and are removed immediately. The state variables 

of the plants are synchronously updated within the subroutines, i.e. changes to 

state variables are updated only after all individuals have been processed 

(Grimm & Railsback 2005). 

 

4. Design concepts 

Basic principles: From “Metabolic Scaling Theory”, we derived a general 

ontogenetic growth model for individual plants. We combine this model, via the 

ZOI approach, with the effects of different modes of competition for both 

above- and belowground compartment and resource limitation.  

Emergence: All features observed at the population level, e.g. mass-density 

relationship or self-thinning trajectories, size distribution and spatial distribution, 

emerge from the interaction of individual plants with their neighbours and the 

resource level of their abiotic environment.  

Interaction: Individual plants interact via shoot and root competition for 

resources in the overlapping area of their ZOIs.  

Stochasticity: Initial growth rate, initial biomass (for shoot and root 

respectively), maximum biomass and initial position of plants are randomly 

taken from the intervals given in Table 1. This introduces a certain level of 

heterogeneity among individual characteristics to take into account that real 

plants are never exactly identical. 

Observation: Population size, shoot and root biomass of each plant, and mean 

biomass of all living plants are the main observations.  

 

5. Initialization 

Initially, individual plants are randomly distributed according to the chosen 

initial density. Resources are spatially and temporally constant. Each plant has 

an initial biomass (m0), initial shoot and root biomass (m0, shoot and m0, root), 

maximal biomass (M) and initial growth rate (c) drawn from truncated normal 

distributions with average and intervals given in Table 1.  

 

6. Input 

After initialization, the model does not include any external inputs, i.e. the 

abiotic environment is constant. 

 

7. Submodels 

One layer model – Plant growth, resource limitation and competition 

In our individual-based model the plant’s ZOI, A, stands for the physical space 

occupied by the plant and represents the energy and resources potentially 

available to this plant. This space is allometrically related to the plant’s body 

mass, m, as c0A=m3/4 (Enquist & Niklas 2001), where c0 is a normalization 
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constant. Since plant growth in our simulation is discrete, therefore equation 

(3-1) can be rewritten as 

 

∆m/∆t = cA[ 1 – ( m / M0)
1/4 ]   (A1) 

 

where c=ac0, is the initial growth rates in units of mass per area and time 

interval. For simplicity, we choose 1 ± 0.1 in our model. 

Resource limitation and competition usually cause a reduction of resource 

availability for plants. We therefore represent resource limitation via a 

dimensionless efficiency factor or index, fR, for different levels of resource 

availability. Resource competition is incorporated by using a dimensionless 

competition factor or index, fp, leading to  

 

∆m/∆t = fRfpcA[ 1 – ( m / M)1/4 ]   (A2) 

 

where M=(fRfp)
4M0 is the maximum body size with resource limitation and 

competition. 

The efficiency factor fR, can take different forms depending on the 

characteristics and level of the limiting resource. For simplification, we use a 

linear form here, i.e. fR = 1–RL, where RL indicates the level of resource 

limitation, with its value ranging from 0 (no resource limitation) to 1 (maximum 

resource limitation). 

As for competition, the modes of resource-mediated competition among 

plants can be located somewhere along a continuum between completely 

asymmetric competition (largest plants obtain all the contested resources) and 

completely symmetric competition (resource uptake is equal for all plants, 

independent of their relative sizes; Schwinning & Weiner 1998). To represent 

different modes of competition explicitly, we describe the competitive index fp 

as 
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jj
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   (A3) 

 

This factor thus refers to the fraction of resources available in the area 

which plant i could obtain after a loss of potential resources due to areas 

overlapped by neighbours of sizes mj (Schwinning and Weiner 1998). Ano is 

the area not overlapping with neighbours, Ao,k denotes the no areas 

overlapping with nj different neighbours. Parameter p determines the mode of 

competition, ranging from complete symmetry (p = 0) to complete asymmetry 

(p approaching infinity; for details and examples see Figure A2).  
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Figure A2. An example of calculating the interactive indexes (Eqns A3) with 

different modes of competition and facilitation in an individual-based model as 

a way of dividing plants’ ZOI (zone-of-influence). Three plants with sizes m1, 

m2 and m3 are interacting in this example. For plant 1, its ZOI (A) was divided 

into four parts: Ano, the area not overlapping with the other two plants; Ao,1, the 

area overlapping with plant 2; Ao,2, the area overlapping with plants 2 and 3; 

Ao,3, the area overlapping with plant 3. Then the actual area that plant 1 can 

take from Ao,1 is 
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For Ao,2, 
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And for Ao,3, 
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Therefore, the competitive index for plant 1 is: 

   

        
  
 

  
 
   

      
  
 

  
 
   

 
   

      
  
 

  
 
   

 

 
 

Where 3/4

1 0/A m c  

 

Two layer model – Shoot versus root competition, biomass allocation and 

mortality 

Because competition among plants can occurs at both above- and 

belowground simultaneously, the relative importance of shoot versus root 

competition and their ZOI can varies depending on the environmental factors 

(Deng et al. 2006, May et al. 2009). Therefore, the one layer model however 

cannot properly represent this property. We developed the two layer 
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individual-based model to represent the plant’s shoot and root competition. In 

our two layer model, a plant has two ZOIs stand for the above- and 

belowground physical space occupied by the plant, which ZOIs represent the 

corresponding levels of energy and resources (e.g. light, water and nutrient) 

potentially available to this plant.  

We assume that (i) under optimal conditions without resource limitation 

and competition, the abilities of above- and belowground resource uptake are 

balanced, with relationships between metabolic rate, B, and biomass, m, being 

B=cshootmshoot
3/4=crootmroot

3/4 (Niklas 2005, Cheng and Niklas 2007), where cshoot 

and croot are normalization constants (to simplify, we assume cshoot=croot=1), 

and “shoot” and “root” refer to the above- and belowground compartment, 

respectively; (ii) the plant’s above- and belowground ZOIs are proportional to 

the plant metabolic rate, B, and then allometrically related to the plant’s shoot 

and root biomass (Enquist and Niklas 2001, May et al. 2009), Aa=camshoot
3/4 

and Ab=cbmroot
3/4, where ca and cb are normalization constants (to simplify, we 

use ca=cb=1); (iii) growth of the entire plant is limited by the compartment with 

smaller resource uptake rate (May et al. 2009). In a view of comparability with 

one-layer model, the real growth rate of whole plant in two-layer model has 

been doubled. Accordingly, equation (A2) can be applied to above- and 

belowground compartment, and then we get the whole plant growth rate as 
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where ∆AGR and ∆BGR are above- and belowground determined growth rate. 

The factor of resource availability (fR), competitive index (fp) and ZOI (A) were 

applied to both two layers independently, with the corresponding subscript a 

and b indicate the above- and belowground compartment respectively (see 

Figure A3). 

Adjustability of root/shoot allocation as the morphological plasticity allows 

plants to adapt to changing biotic and abiotic environmental conditions (Berger 

et al. 2008). We adopt the optimal allocation theory, functional balance growth 

hypothesis and metabolic scaling theory to quantify the partition of growth 

between the shoots and roots (Weiner 2004; Niklas 2005; May et al. 2009): 
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which means plant allocates more biomass to the compartment that is most 
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limiting growth for increasing its uptake of resource. An allometric form (3/4) of 
resources allocation was used here as metabolic balance, we also tested the 
original allocation of linearity which only lead to a small difference on 
root/shoot ratio but do not change our general findings. 

An individual’s mortality rate is proportional to its mass-specific 

metabolism (as current total metabolic rate divide by body mass; Brown et al. 

2004). Based on this, we assume that individuals die if their actual growth rate 

(∆m/∆t, represent actual metabolic rate) falls below a threshold of their basal 

metabolic rate (allometrically scaled with body mass), i.e. 3% of m3/4. 

Therefore, individual plants may die due to metabolic inactivation driven by 

above- or/and belowground resource limitation, competition, senescence 

(when m approaches M) or combinations thereof. This provides a more 

realistic representation of relevant ecological process than in previous models 

(Stoll et al. 2002; Chu et al. 2009, 2010). In addition, we are able to ascribe the 

mortality of individual plants to above- or belowground process explicitly.  

In total, equations (A4), (A5a) and (A5b) clearly showed how a plant’s 

growth, biomass allocation and mortality are jointly determined by above- and 

belowground resource level and local competition.  

 

 

 
Figure A3. A visual illustration of the two-layer zone-of-influence (ZOI) approach 

including both above- and belowground competition. The above- and belowground 

ZOIs (green: aboveground, gray: belowground) are allometrically related to the plant 

shoot and root biomass, respectively. Plants only compete for the resources in 

overlapped areas with their neighbours which can occur independently at above- and 

belowground compartment (arrows indicate the overlapped area of aboveground 

competition). 
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Fig. S1. Mass-density relationships between the mean total, above- and belowground 

biomass in simulated plant populations (log-log transformed). The gray dotted lines 

have a slope of -4/3. RLb defined the level of below-ground resource limitation, with 

its value ranging from 0 (no resource limitation) to 1 (maximum resource limitation). 

C with superscript and subscript indicated the mode of competition for above- and 

below-ground part correspondingly (AA: allometric asymmetry, p = 10; SS: size 

symmetry, p = 1). 
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Table S1. Slopes and intercepts of mass-density relationships between the mean total, 

above- and belowground biomass in simulated plant populations (log-log transformed; 

as estimated by standard major axis regression). RLb defined the level of belowground 

resource limitation, with its value ranging from 0 (no resource limitation) to 1 

(maximum resource limitation). CA: complete asymmetry, p = ∞; AA: allometric 

asymmetry, p = 10; SS: size symmetry, p = 1; CS: complete symmetry, p = 0.  

Resource limitation Mode of Competition Mean total biomass 

RLb Aboveground Belowground Slope 95% CI Intercept 95% CI R
2
 

0 CA CA -1.450 -1.509 -1.399 6.423 6.243 6.616 0.990 

0 CA AA -1.475 -1.537 -1.416 6.502 6.290 6.707 0.988 

0 CA SS -1.417 -1.461 -1.377 6.333 6.196 6.479 0.993 

0 CA CS -1.439 -1.482 -1.401 6.420 6.289 6.563 0.993 

0 AA CA -1.475 -1.538 -1.413 6.502 6.288 6.710 0.988 

0 AA AA -1.351 -1.391 -1.316 6.109 5.987 6.242 0.996 

0 AA SS -1.359 -1.394 -1.329 6.174 6.068 6.286 0.996 

0 AA CS -1.401 -1.426 -1.379 6.348 6.273 6.430 0.998 

0 SS CA -1.417 -1.462 -1.376 6.333 6.195 6.480 0.993 

0 SS AA -1.359 -1.394 -1.329 6.174 6.068 6.286 0.996 

0 SS SS -1.100 -1.110 -1.092 5.647 5.618 5.678 0.999 

0 SS CS -1.351 -1.365 -1.342 6.764 6.728 6.805 0.994 

0 CS CA -1.439 -1.482 -1.401 6.420 6.289 6.563 0.993 

0 CS AA -1.401 -1.425 -1.380 6.348 6.273 6.429 0.998 

0 CS SS -1.351 -1.363 -1.340 6.764 6.727 6.803 0.994 

0 CS CS -1.060 -1.060 -1.059 5.868 5.866 5.870 1.000 

0.4 CA CA -1.319 -1.344 -1.298 5.845 5.776 5.921 0.997 

0.4 CA AA -1.319 -1.345 -1.294 5.849 5.771 5.929 0.996 

0.4 CA SS -1.391 -1.421 -1.363 6.261 6.170 6.352 0.992 

0.4 CA CS -1.425 -1.448 -1.403 6.405 6.337 6.474 0.994 

0.4 AA CA -1.315 -1.340 -1.293 5.834 5.762 5.911 0.997 

0.4 AA AA -1.288 -1.309 -1.269 5.758 5.697 5.822 0.998 

0.4 AA SS -1.292 -1.313 -1.273 5.980 5.921 6.044 0.996 

0.4 AA CS -1.311 -1.345 -1.279 6.286 6.190 6.387 0.957 

0.4 SS CA -1.325 -1.352 -1.301 5.884 5.810 5.970 0.996 

0.4 SS AA -1.281 -1.298 -1.267 5.754 5.707 5.805 0.999 

0.4 SS SS -1.096 -1.101 -1.093 5.428 5.416 5.441 1.000 

0.4 SS CS -1.017 -1.017 -1.016 5.391 5.390 5.393 1.000 

0.4 CS CA -1.333 -1.361 -1.308 5.919 5.841 6.005 0.996 

0.4 CS AA -1.285 -1.303 -1.268 5.775 5.722 5.831 0.998 

0.4 CS SS -1.102 -1.108 -1.097 5.483 5.466 5.501 0.999 

0.4 CS CS -1.021 -1.021 -1.020 5.398 5.397 5.400 1.000 

0.8 CA CA -1.286 -1.303 -1.271 5.436 5.387 5.489 0.996 

0.8 CA AA -1.263 -1.274 -1.251 5.373 5.336 5.409 0.998 

0.8 CA SS -1.143 -1.151 -1.135 5.155 5.131 5.179 0.999 

0.8 CA CS -1.038 -1.041 -1.035 4.889 4.880 4.898 1.000 

0.8 AA CA -1.285 -1.301 -1.270 5.433 5.387 5.484 0.996 
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0.8 AA AA -1.256 -1.267 -1.244 5.350 5.318 5.387 0.998 

0.8 AA SS -1.132 -1.137 -1.127 5.118 5.102 5.134 0.999 

0.8 AA CS -1.034 -1.035 -1.032 4.874 4.870 4.878 1.000 

0.8 SS CA -1.284 -1.301 -1.269 5.434 5.385 5.482 0.996 

0.8 SS AA -1.257 -1.258 -1.237 5.329 5.297 5.361 0.998 

0.8 SS SS -1.127 -1.132 -1.123 5.106 5.092 5.121 0.999 

0.8 SS CS -1.033 -1.034 -1.032 4.870 4.867 4.873 1.000 

0.8 CS CA -1.285 -1.302 -1.269 5.436 5.387 5.487 0.996 

0.8 CS AA -1.248 -1.259 -1.238 5.331 5.300 5.365 0.998 

0.8 CS SS -1.122 -1.127 -1.118 5.092 5.079 5.106 0.999 

0.8 CS CS -1.033 -1.034 -1.032 4.871 4.867 4.874 1.000 

Resource limitation Mode of Competition Mean aboveground biomass 

RLb Aboveground Belowground Slope 95% CI Intercept 95% CI R
2
 

0 CA CA -1.450 -1.507 -1.396 6.122 5.932 6.310 0.990 

0 CA AA -1.477 -1.543 -1.417 6.204 5.991 6.423 0.988 

0 CA SS -1.387 -1.432 -1.348 5.907 5.775 6.054 0.993 

0 CA CS -1.392 -1.432 -1.353 5.922 5.790 6.056 0.993 

0 AA CA -1.474 -1.533 -1.414 6.198 5.989 6.395 0.988 

0 AA AA -1.351 -1.392 -1.315 5.807 5.685 5.943 0.996 

0 AA SS -1.333 -1.367 -1.303 5.758 5.658 5.870 0.996 

0 AA CS -1.359 -1.382 -1.338 5.869 5.800 5.944 0.997 

0 SS CA -1.443 -1.491 -1.401 6.145 5.999 6.299 0.993 

0 SS AA -1.384 -1.420 -1.350 5.977 5.861 6.091 0.996 

0 SS SS -1.100 -1.110 -1.109 5.346 5.315 5.377 0.999 

0 SS CS -1.308 -1.321 -1.299 6.282 6.244 6.321 0.995 

0 CS CA -1.471 -1.516 -1.430 6.293 6.154 6.436 0.993 

0 CS AA -1.438 -1.464 -1.414 6.203 6.124 6.290 0.997 

0 CS SS -1.390 -1.404 -1.378 6.623 6.583 6.667 0.993 

0 CS CS -1.060 -1.060 -1.059 5.567 5.565 5.569 1.000 

0.4 CA CA -1.300 -1.324 -1.280 5.414 5.349 5.486 0.997 

0.4 CA AA -1.299 -1.322 -1.278 5.409 5.343 5.478 0.997 

0.4 CA SS -1.314 -1.340 -1.290 5.586 5.510 5.667 0.994 

0.4 CA CS -1.318 -1.339 -1.298 5.616 5.557 5.681 0.995 

0.4 AA CA -1.294 -1.316 -1.274 5.396 5.333 5.462 0.998 

0.4 AA AA -1.271 -1.289 -1.253 5.327 5.273 5.383 0.999 

0.4 AA SS -1.227 -1.242 -1.212 5.340 5.292 5.389 0.997 

0.4 AA CS -1.138 -1.170 -1.107 5.232 5.137 5.330 0.950 

0.4 SS CA -1.313 -1.338 -1.291 5.496 5.423 5.573 0.997 

0.4 SS AA -1.272 -1.287 -1.258 5.368 5.325 5.416 0.999 

0.4 SS SS -1.070 -1.073 -1.067 4.929 4.920 4.938 1.000 

0.4 SS CS -0.888 -0.889 -0.886 4.434 4.431 4.438 1.000 

0.4 CS CA -1.333 -1.359 -1.309 5.583 5.506 5.665 0.996 

0.4 CS AA -1.286 -1.303 -1.270 5.436 5.385 5.488 0.998 

0.4 CS SS -1.100 -1.105 -1.095 5.089 5.073 5.107 1.000 

0.4 CS CS -0.899 -0.900 -0.897 4.450 4.444 4.456 0.999 

0.8 CA CA -1.152 -1.155 -1.149 4.477 4.467 4.488 1.000 

0.8 CA AA -1.138 -1.114 -1.136 4.438 4.432 4.444 1.000 

0.8 CA SS -1.020 -1.022 -1.018 4.138 4.132 4.144 1.000 
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0.8 CA CS -0.911 -0.917 -0.905 3.792 3.773 3.811 0.996 

0.8 AA CA -1.149 -1.152 -1.146 4.469 4.459 4.479 1.000 

0.8 AA AA -1.134 -1.136 -1.133 4.428 4.422 4.434 1.000 

0.8 AA SS -1.021 -1.024 -1.018 4.144 4.135 4.152 1.000 

0.8 AA CS -0.921 -0.927 -0.915 3.821 3.802 3.840 0.996 

0.8 SS CA -1.147 -1.151 -1.143 4.469 4.457 4.481 1.000 

0.8 SS AA -1.129 -1.131 -1.128 4.418 4.413 4.424 1.000 

0.8 SS SS -1.013 -1.015 -1.010 4.125 4.116 4.133 1.000 

0.8 SS CS -0.917 -0.923 -0.911 3.808 3.788 3.828 0.996 

0.8 CS CA -1.147 -1.152 -1.143 4.473 4.461 4.487 1.000 

0.8 CS AA -1.129 -1.131 -1.127 4.420 4.414 4.426 1.000 

0.8 CS SS -1.011 -1.013 -1.009 4.121 4.114 4.129 1.000 

0.8 CS CS -0.918 -0.924 -0.911 3.808 3.789 3.830 0.996 

Resource limitation Mode of Competition Mean belowground biomass 

RLb Aboveground Belowground Slope 95% CI Intercept 95% CI R
2
 

0 CA CA -1.450 -1.508 -1.395 6.122 5.933 6.317 0.990 

0 CA AA -1.474 -1.534 -1.415 6.198 5.986 6.399 0.988 

0 CA SS -1.443 -1.491 -1.401 6.145 5.999 6.299 0.993 

0 CA CS -1.471 -1.514 -1.429 6.293 6.154 6.436 0.993 

0 AA CA -1.477 -1.541 -1.419 6.204 5.999 6.421 0.988 

0 AA AA -1.351 -1.389 -1.314 5.807 5.681 5.936 0.996 

0 AA SS -1.384 -1.419 -1.350 5.977 5.862 6.092 0.996 

0 AA CS -1.438 -1.464 -1.414 6.203 6.124 6.289 0.997 

0 SS CA -1.387 -1.432 -1.348 5.907 5.775 6.054 0.993 

0 SS AA -1.333 -1.367 -1.303 5.758 5.658 5.870 0.996 

0 SS SS -1.100 -1.109 -1.092 5.346 5.316 5.375 0.999 

0 SS CS -1.390 -1.405 -1.378 6.623 6.581 6.666 0.993 

0 CS CA -1.392 -1.432 -1.352 5.922 5.791 6.058 0.993 

0 CS AA -1.359 -1.380 -1.339 5.869 5.790 5.945 0.997 

0 CS SS -1.308 -1.319 -1.297 6.282 6.246 6.320 0.995 

0 CS CS -1.060 -1.060 -1.059 5.567 5.565 5.569 1.000 

0.4 CA CA -1.333 -1.361 -1.308 5.650 5.571 5.737 0.996 

0.4 CA AA -1.334 -1.364 -1.308 5.660 5.576 5.752 0.996 

0.4 CA SS -1.440 -1.473 -1.407 6.213 6.110 6.315 0.992 

0.4 CA CS -1.487 -1.514 -1.462 6.411 6.334 6.494 0.993 

0.4 AA CA -1.331 -1.359 -1.306 5.643 5.564 5.728 0.996 

0.4 AA AA -1.312 -1.335 -1.289 5.563 5.489 5.633 0.998 

0.4 AA SS -1.332 -1.355 -1.312 5.908 5.840 5.978 0.995 

0.4 AA CS -1.395 -1.430 -1.364 6.387 6.291 6.491 0.958 

0.4 SS CA -1.334 -1.361 -1.309 5.657 5.575 5.470 0.996 

0.4 SS AA -1.289 -1.307 -1.274 5.525 5.478 5.579 0.998 

0.4 SS SS -1.114 -1.119 -1.108 5.271 5.255 5.288 1.000 

0.4 SS CS -1.072 -1.072 -1.071 5.418 5.415 5.421 1.000 

0.4 CS CA -1.332 -1.360 -1.308 5.650 5.572 5.735 0.996 

0.4 CS AA -1.284 -1.302 -1.269 5.510 5.462 5.563 0.998 

0.4 CS SS -1.104 -1.110 -1.099 5.258 5.242 5.277 0.999 

0.4 CS CS -1.070 -1.071 -1.069 5.414 5.411 5.417 1.000 

0.8 CA CA -1.340 -1.365 -1.320 5.485 5.416 5.559 0.993 
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Table S2. Slopes and intercepts of mass-density relationships between the mean total, 

above- and belowground biomass of Betula pendula seedlings in greenhouse 

experiment with different nutrient treatments (log-log transformed; as estimated by 

standard major axis regression). F: fertilization, NF: non-fertilization. 

  

0.8 CA AA -1.320 -1.341 -1.301 5.404 5.352 5.463 0.995 

0.8 CA SS -1.185 -1.197 -1.174 5.171 5.137 5.207 0.997 

0.8 CA CS -1.075 -1.080 -1.070 4.905 4.889 4.920 0.999 

0.8 AA CA -1.350 -1.373 -1.328 5.486 5.417 5.558 0.993 

0.8 AA AA -1.319 -1.337 -1.303 5.374 5.323 5.430 0.996 

0.8 AA SS -1.169 -1.177 -1.161 5.118 5.094 5.144 0.998 

0.8 AA CS -1.065 -1.068 -1.062 4.876 4.867 4.884 1.000 

0.8 SS CA -1.341 -1.365 -1.318 5.491 5.420 5.565 0.993 

0.8 SS AA -1.321 -1.337 -1.298 5.347 5.299 5.398 0.997 

0.8 SS SS -1.167 -1.175 -1.159 5.111 5.088 5.136 0.999 

0.8 SS CS -1.065 -1.067 -1.062 4.874 4.867 4.882 1.000 

0.8 CS CA -1.351 -1.375 -1.329 5.492 5.422 5.565 0.993 

0.8 CS AA -1.301 -1.317 -1.285 5.350 5.301 5.400 0.997 

0.8 CS SS -1.161 -1.168 -1.154 5.093 5.072 5.116 0.999 

0.8 CS CS -1.065 -1.067 -1.062 4.874 4.866 4.882 1.000 

Treatment Biomass Slope 95% CI Intercept 95% CI R
2
 

F Total -1.031 -1.428 to -0.745 5.967 5.145 to 7.288 0.609 

 Above -1.047 -1.450 to -0.756 5.943 5.168 to 7.327 0.609 

 Below -1.066 -1.489 to -0.738 5.330 4.447 to 6.685 0.498 

NF Total -0.901 -1.146 to -0.709 5.081 4.389 to 5.771 0.760 

 Above -0.895 -1.145 to -0.701 4.961 4.255 to 5.617 0.748 

 Below -0.954 -1.209 to -0.753 4.575 3.882 to 5.338 0.767 



 

Chapter 4 

Exploring the interplay between modes of positive 

and negative plant interactions * 

 

 

 

Abstract 

Facilitation (positive interaction) has received increasing attention in plant 

ecology over the last decade. Just as for competition, distinguishing different 

modes of facilitation (mutualistic, commensal or even antagonistic) may be 

crucial. We therefore introduce the new concept of symmetric vs. asymmetric 

facilitation and present a generic individual-based zone-of-influence model. 

The model simultaneously implements different modes of both facilitation and 

competition among individual plants via their overlapping zone of influence. 

Because we consider facilitation modes as a continuum related to 

environmental context, we integrated this concept with the stress gradient 

hypothesis (SGH) by exploring differences in spatial pattern formation in 

self-thinning plants along a stress gradient in our model. The interplay among 
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modes of interaction creates distinctly varied spatial patterns along stress 

gradients. When competition was symmetric, symmetric facilitation (mutualism) 

consistently led to plant aggregation along stress gradients. However, 

asymmetric facilitation (commensalism) produces plant aggregation only under 

more benign conditions but tends to intensify local competition and spatial 

segregation when conditions are harsh. When competition was completely 

asymmetric, different modes of facilitation contributed little to spatial 

aggregation. Symmetric facilitation significantly increased survival at the 

severe end of the stress gradient, which supports the claim of the SGH that 

facilitation should have generally positive net effects on plants under high 

stress levels. Asymmetric facilitation, however, was found to increase survival 

only under intermediate stress conditions, which contradicts the current 

predictions of the SGH. Our modelling study demonstrates that the interplay 

between modes of facilitation and competition affects different aspects of plant 

populations and communities, implying context-dependent outcomes and 

consequences. The explicit consideration of the modes and mechanisms of 

interactions (both facilitation and competition) and the nature of stress factors 

will help to extend the framework of the SGH and foster research on facilitation 

in plant ecology. 

 

Keywords: asymmetry, competition, metabolic scaling theory, plant-plant 

interaction, plant population and community dynamics, self-thinning, spatial 

pattern, stress gradient hypothesis, symmetry 
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4.1 Introduction 

The role of positive interactions in driving population and community dynamics 

has received significant attention and is now widely recognized in both 

empirical and theoretical ecology (Bertness & Callaway 1994; Brooker et al. 

2008; Bronstein 2009; Maestre et al. 2009; Fajardo & McIntire 2011; McIntire & 

Fajardo 2011). In plant ecology, positive interactions are usually referred to as 

facilitation, which has been defined as the beneficial effects of neighbours via 

the amelioration of habitat (Bertness & Callaway 1994; Bronstein 2009); e.g. 

via moderation of stress, enrichment of nutrients, or increased access to 

nutrients. Facilitation has been shown particularly important when considering 

the performance of plants under stressful environmental conditions. ‘Stress’ is 

not a precise concept (Maestre et al. 2009), and can be biotic and abiotic 

(Bronstein 2009). The best-understood examples of plant facilitation were 

mostly carried out under abiotic stress conditions (Bronstein 2009). Moreover, 

the characteristics of abiotic stress factors are also different and can be 

resource-independent (e.g. wind, frost and salinity) or resource-dependent 

(e.g. water, nutrient and light; Maestre et al. 2009). 

The “stress gradient hypothesis” (SGH) proposes that competition and 

facilitation may act simultaneously, but the relative importance of facilitation 

and competition will vary inversely along gradients of abiotic stress (Bertness 

& Callaway 1994). Under high stress conditions, facilitation should be 

dominant over competition in affecting community structures (Bertness & 

Callaway 1994; Brooker et al. 2008; Maestre et al. 2009). The SGH was 

originally formulated at the interspecific level, but recent studies revealed that 

SGH is also valid at the intraspecific level (Chu et al. 2008, 2009; Eränen & 

Kozlov 2008; McIntire & Fajardo 2011). The interplay between facilitation and 

competition can thus drive intraspecific population dynamics (Chu et al. 2008, 

2009, 2010; Jia et al. 2011; McIntire & Fajardo 2011), community structure 
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(Gross 2008; Xiao et al. 2009), community diversity (Cavieres & Badano 2009), 

and ecosystem functions (Callaway et al. 2002; Kikvidze et al. 2005); and can 

even have evolutionary consequences (Bronstein 2009; McIntire & Fajardo 

2011).  

However, there are also studies which do not support SGH predictions, as 

facilitative effects have not been detected under some extreme stress 

conditions (Tielbörger & Kadmon 2000; Maestre et al. 2005, 2009). This 

indicates that the conceptual framework underlying the SGH might need 

further refinement (Maestre et al. 2009). Moreover, whereas numerous studies 

have explored the consequences of different modes of competition, i.e. 

symmetric versus asymmetric competition (Schwinning & Weiner 1998; 

Weiner et al. 2001; Stoll & Bergius 2005; Berger et al. 2008), different modes 

of facilitation have not yet been explored. Inconsistent definitions of facilitation 

and the lack of differentiation between the impacts of plant-plant interactions 

on beneficiary and benefactor individuals have recently been identified as 

important gaps in current research (Brooker et al. 2008; Bronstein 2009; 

Brooker & Callaway 2009; Pakeman et al. 2009). Refining and clarifying the 

concept of facilitation is crucial for understanding how facilitation arises, 

persists and evolves, and then could help extend the general SGH framework 

and improve plant ecology research in general (Brooker et al. 2008; Bronstein 

2009; Maestre et al. 2009).  

According to different definitions, modes of facilitation can be mutualistic 

(+/+) or commensal (+/0) amongst plants (Brooker et al. 2008; Bronstein 2009). 

However, a more continuous approach to facilitative interactions might be 

more accurate and useful, as has been the case for the corresponding 

continuous approach to exploring competitive interactions (Schwinning & 

Weiner 1998). We therefore suggest using a new concept of modes of 

facilitation: any facilitation among plants, no matter whether inter- or 

intra-specific, can be placed along a continuum ranging from completely 

symmetric facilitation (interacting plants receive the same amount of benefit 
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from each other, irrespective of their species or sizes) to completely 

asymmetric facilitation (Vellend 2008; the beneficiary plant receives all benefits 

but there are no positive effects on the benefactor; Table 4.1). Thus, 

mutualistic cases are expected to be at the symmetric end of the facilitation 

continuum, and commensal cases at the asymmetric end (Fig. S1).  

 

Table 4.1 Definition and description of facilitation modes. The index q determines the 

mode of facilitation among plants (see equation 5-5 and Appendix A).  

Mode of 

facilitation 
Effect and definition 

Index 

value 

Expected prevalent 

nature of stress factor 

Complete 

symmetry 

All plants receive the same 

amount of benefit from each 

other, irrespective of their 

species or sizes 

q = 0 

Symmetry: 

temperature, moisture, 

nutrient, salinity, 

pollution, wind 

desiccation, altitude etc. 

Partial 

symmetry 

Benefit increases with 

benefactor’s size, but less 

than proportionally 

0 < q < 1 

Proportional 

symmetry 

Benefit is proportional to 

benefactor’s size (equal gain 

per unit size) 

q = 1 

Partial 

asymmetry 

Benefit increases with 

benefactor’s size 

super-linearly 

q > 1 
Asymmetry: 

light, UV-radiation, 

transpiration, tide, water, 

nutrient fixation, 

pollution, wind, 

herbivory, etc. 

Complete 

asymmetry 

The beneficiary plant 

receives all benefits, with no 

advantage to the benefactor 

plants 

q = ∞ 

 

This new conceptual model (with its terminology) has two main advantages: 

it is analogous, and therefore directly comparable to the widely used and 

important concept of symmetric and asymmetric competition (Schwinning & 
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Weiner 1998; Weiner et al. 2001; Stoll & Bergius 2005; Berger et al. 2008); it 

also offers a quantitative and operational means of evaluating facilitative 

impacts.  

The analogy between different modes of competition and facilitation is 

evident. In reality, competition and facilitation often interact: clusters of cohorts 

facilitate each other against cold or wind desiccation (symmetric facilitation), 

but they may also compete for nutrients and water (symmetric competition; 

Fajardo & McIntire 2011). Adult nurse plants facilitate the growth and survival 

of small plants of their own or other species (asymmetric facilitation), which 

may lead to asymmetric light competition if the crown of an adult plant is very 

dense or the small plants are not “stress-tolerant” (Reinhart et al. 2006; 

Maestre et al. 2009). In general, modes of interaction depend on both the 

ecological traits of the interacting plants and the nature of the stress factors 

themselves (Maestre et al. 2009).  

Competition usually leads to the spatial segregation of plants, implying that 

distributions are more regular than aggregated (Stoll & Bergius 2005; Perry et 

al. 2006). However, spatial aggregation is ubiquitous amongst varied plant 

systems, especially in harsh environments (Bertness & Callaway 1994; Haase 

2001; Perry et al. 2006). Because SGH predicts that facilitation should 

dominate in such harsh environments, facilitation is believed to be an 

important factor explaining plant aggregation in addition to other ecological 

factors (e.g. topography, resource availability and dispersal) (Bertness & 

Callaway 1994; Haase 2001; Perry et al. 2006). It has indeed been shown that 

facilitation tends to maintain the aggregation of seedling cohorts and 

established plants (Bertness & Callaway 1994; Fajardo & McIntire 2011; Jia et 

al. 2011; McIntire & Fajardo 2011), but we do not yet know whether this is 

generally true for different modes of facilitation and at different stress levels.  

Consequently, we do not know how different modes of competition modify 

the effects of facilitation on plants and structure their populations and 

communities in different environmental contexts (Brooker et al. 2008). To 



 Chapter 4  - 99 - 

address this issue, we implemented different modes of facilitation and 

competition in a generic individual-based model based on the 

zone-of-influence (ZOI) approach of Weiner et al. (2001). Plant growth and 

density-dependent mortality are described according to a growth model as 

deriving from “metabolic scaling theory” (MST; Brown et al. 2004; Savage et al. 

2010) to provide mechanistic representation of plant response to stress. To 

simplify, we restrict ourselves to intraspecific plant interactions. Specifically, 

we addressed the following questions at both the plant population and 

individual levels: (1) How does the interplay of different modes of competition 

and facilitation change spatial pattern formation during self-thinning in 

conspecific cohorts that initially have a random or aggregated distribution; and 

(2) How do combinations of modes of competition and facilitation alter the 

intensity of local plant interactions along a stress gradient? 

 

4.2 Methods 

4.2.1 The model 

Metabolic scaling theory (MST) predicts quantitative relationships amongst 

metabolic processes using empirical measurements and theoretical 

assumptions (West et al. 2001; Enquist 2002; Enquist et al. 2009; Savage et al. 

2010). We adopted these relationships as the basis of our individual growth 

model for plants (see Chapter 2). The model is derived from an energy 

conservation equation (Enquist & Niklas 2001; West et al. 2001; Hou et al. 

2008) and takes into account respiration and three basic energy-demanding 

processes: biomass maintenance, ion transport and biosynthesis (Lambers et 

al. 2008). It provides a mechanistic and quantitative basis for linking the 

energy used in metabolism of plants under abiotic stress to local interactions 

and population dynamics. The growth model is: 
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dm/dt = am3/4 – bm = am3/4 [ 1 – ( m / M0)
1/4 ]     (4-1) 

where m is total plant biomass, a and b are species-specific constants 

(Chapter 2) determined by systematic variation of the in vivo metabolic rate of 

different taxa (West et al. 2001), and M0 = (a/b)4 is the asymptotic maximum 

size of a plant (calculated for dm/dt = 0). The term am3/4 in equation (4-1) 

dominates during early plant growth and provides a good quantitative 

description of plant growth (Enquist et al. 2009).  

Because stress can be resource-independent or resource-dependent 

(Maestre et al. 2009), we assume abiotic stress factors act in one or both of 

two ways: by restricting the energy intake rate and burdening biomass 

maintenance. This assumption provides a mechanistic basis for representing 

the effects of stress on plant performance (Lambers et al. 2008). Accordingly, 

the growth model with stress is: 

dm/dt = (1 – S) am3/4 [ 1 – ( m / Ms)
1/4 ]      (4-2) 

where S is a dimensionless efficiency factor that indicates the level of stress, 

ranging from 0 (no stress) to 1 (extreme stress). Ms = (1–S)4M0 is the 

maximum plant biomass achievable under stress.  

Our individual-based model (IBM; Grimm & Railsback 2005) is described in 

detail in the Supporting Information, following the ODD protocol (Overview, 

Design concepts, Details) for describing individual-based models (Grimm et al. 

2006; Grimm et al. 2010). In the following, we describe the model’s main 

elements. In our IBM, a plant’s circular ZOI (Weiner et al. 2001), A, is the 

physical space in which a plant acquires resources and represents the energy 

and resources potentially available to the plant. This space is allometrically 

related to plant biomass, m, as c0A = m3/4 (Enquist & Niklas 2001), where c0 is 

a normalization constant. We represent plant interaction by calculating the 

overlapping areas among the plants’ ZOIs (Weiner et al. 2001; Chu et al. 2008, 

2009, 2010). Competition and facilitation under abiotic stress are incorporated 
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by using dimensionless factors or indexes, fp and fq, respectively. With these 

assumptions, equation (4-2) becomes: 

dm/dt = fpfqcA[ 1 – ( m / M)1/4 ]     (4-3) 

where fp is the index of competition, fq refers to the abiotic stress (S) modified 

by facilitation (see below), c = ac0 is the initial growth rate in units of biomass 

per area and time, and M = (fpfq)
4M0 is the maximum biomass achievable 

under stress in the presence of competition and facilitation. Modes of 

competition among plants can be defined along a continuum from completely 

asymmetric competition (largest plants obtain all contested resources) to 

completely symmetric competition (resources in areas of overlap are divided 

equally among all overlapping individuals, irrespective of their relative sizes; 

Schwinning & Weiner 1998). To represent the different modes of competition, 

we define the index of competition, fp, as 
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      (4-4) 

This index refers to the fraction of resources available in a given area to a plant 

i after the loss of potential resources from areas overlapping neighbours with 

biomass mj (Schwinning & Weiner 1998). Ano is the area with no overlap from 

neighbours, and Ao,k denotes the no areas overlapping nj different neighbours. 

The number of overlapping areas, no, can vary due to the position and number 

of neighbours (see Appendix A). Parameter p indicates the mode of 

competition, ranging from complete symmetry (p = 0) to complete asymmetry 

(p approaching infinity). In this article we restrict ourselves to intraspecific 

competition and facilitation, and assume, therefore, that the species-specific 

weighting constants of competition vi and vj equal 1. 

Similarly, we define the index of facilitation modifying abiotic stress, fq, as 
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      (4-5) 

This term is based on SGH, which reflects the facilitative effect of relieving 

stress, and is consistent with earlier models (Chu et al. 2008, 2009, 2010). Our 

definition includes earlier indices of facilitation as a special case, all of which 

only represent symmetric facilitation (Brooker et al. 2008; Chu et al. 2008, 

2009, 2010; Jia et al. 2011; see Appendix A). Here, Af indicates the benefits 

gained by a plant from all interactive neighbours under abiotic stress (S), which 

is calculated as the sum of the areas overlapping ZOIs of neighbour plants. 

Index q determines the mode of facilitation among plants, ranging from 

complete symmetry (q = 0, algorithmic equivalent to the form used in Chu et al. 

2008, 2009) to complete asymmetry (q approaching infinity; Table 1). When 

there is no facilitation (Af = 0), equation (4-5) becomes 1–S, which reflects the 

effect of abiotic stress. As for competition, the species-specific weighting 

constants of facilitation, wi and wj, equal 1 when considering intraspecific 

interactions, as we do here. 

Equation (4-3) describes how plants grow under local competition, abiotic 

stress and facilitation. Equations (4-1), (4-2) and (4-3) are similar to the von 

Bertalanffy growth function and other phenomenological growth functions 

(Weiner et al. 2001; Chu et al. 2008, 2009, 2010; Jia et al. 2011). However, 

these equations are derived from first principles and their parameters and are 

directly linked to physical and biological processes. 

Because individual plant mortality is proportional to mass-specific metabolic 

rate (Brown et al. 2004), we assume that individuals die if their actual growth 

rate (realistic metabolic rate) falls below a threshold fraction of their basal 

metabolic rate (scaled by current biomass, i.e. 5% of m3/4). Therefore, 

individual plants may die due to metabolic inactivation caused by 

environmental stress, local competition, senescence (when m approaches M) 



 Chapter 4  - 103 - 

or combinations thereof. 

Our model was implemented in NetLogo 4.1.3 (Wilensky 1999). The source 

code is available in the online supporting information of the publication 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2745.2012.02019.x/suppinfo). 

4.2.2 Scenarios and analysis 

We investigated 2 modes of facilitation (q = 0: completely symmetric and q = ∞: 

completely asymmetric) and 2 modes of competition (p = 0: completely 

symmetric and p = ∞: completely asymmetric), at 3 stress levels (S = 0.1, 0.5 

and 0.9). Two initial conditions were used: 300 initial plants distributed over 

space either with aggregation or randomly (Fig. 4.1). For both aggregated and 

random initial location scenarios, all simulations (42 scenarios in total) began 

with exactly the same plant locations (i.e. using the same random number 

seed), so that differences in results can be ascribed entirely to the interplay 

among modes of competition and facilitation at different stress levels. (In 

simulations not reported here, we used other initial densities, initial locations, 

and interaction combinations to confirm that our general conclusions were not 

artefacts of initial conditions.)  

Ripley’s K function is widely used to analyse the spatial point pattern of 

plants (Ripley 1981; Stoll & Bergius 2005; Perry et al. 2006). Here, we 

employed the variance-stabilizing K function, the so-called Ripley’s L function, 

to evaluate spatial pattern dynamics. The L function, L(r), characterizes the 

point pattern at certain scales (r), with an expected value of zero under the null 

hypothesis of complete spatial randomness (CSR). We carried out 499 Monte 

Carlo simulations for each scenario to determine the 95% confidence 

envelopes of the L function for CSR. Observed L(r) values out of the envelopes 

indicate significant aggregation or regularity. Spatial point pattern data were 

collected at 6 densities (300, 250, 200, 150, 100 and 50 plants) during the 

self-thinning process. All statistical analyses were accomplished using R 

2.11.1 (R Development Core Team, 2010). 
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Fig. 4.1 Initial spatial pattern (left) and corresponding spatial point analysis (Ripley's L 

function, right) of simulated populations. The relative position of observed value of L(r) 

in relation to 95% confidence envelopes indicates the spatial pattern at certain scales 

(r): above the bounds indicates aggregation, between the bounds indicates 

randomness, and below them indicates regularity. 

 

To evaluate the net outcome of local interactions (interplay between 

competition and facilitation) on the performance of individual plants, we used 

the relative interaction index RII (Armas et al. 2004): 

RII = (m1-m0) / (m1+m0)     (4-6) 

where m1 and m0 are the performance (mean biomass) of surviving plants at 

the same resource level with and without local interactions (i.e. isolated plants), 
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respectively. Values of RII from -1 to 1 indicate the net outcome of interactions 

as negative (from -1 to 0), neutral (equal to 0) and positive (from 0 to 1). To 

estimate m0, we using equation (4-2) for plant growth in all scenarios. 

 

4.3 Results 

The interplay between competition and facilitation strongly influenced spatial 

pattern formation in the plant population along the stress gradient. Different 

modes of competition and facilitation also led to distinct spatial patterns. With 

aggregated initial locations (Fig. 4.1), facilitation was vital for maintaining 

aggregated patterns if competition was completely symmetric (CCS, p = 0) (Fig. 

4.2). Without facilitation (NF), aggregation was maintained only until the 

number of surviving plants decreased to 200 (Fig. 4.2a−c). With symmetric 

facilitation (FCS, q = 0), plant aggregation patterns can be maintained (Fig. 

4.2d−f) even at quite low density (100 plants), depending on the level of stress. 

Aggregated patterns are particularly robust at high stress levels, which is 

consistent with the predictions of SGH.  

 In contrast, with asymmetric facilitation (FCA, q = ∞), aggregating (Figs 4.2g 

and 4.2h) can be maintained only at mild or intermediate stress levels (S = 0.1 

and 0.5). Under harsh conditions (S = 0.9), aggregation disappears early in the 

self-thinning process (Fig. 4.2i), a result that deviates from predictions of SGH. 

However, modes of facilitation had little effect on maintaining aggregation 

when competition was completely asymmetric (CCA, p = ∞; Fig. S2). 

The importance of facilitation for creating aggregation became more obvious 

when the initial pattern was random (Fig. 4.3). Under completely symmetric 

competition without facilitation and under benign condition, there was some 

slight spatial aggregation (values of L(r) were very close to the upper boundary 

of the 95% confidence envelopes defining lack of aggregation) at very small 

scales (Fig. 4.3a), but this aggregation instantly disappeared when stress 
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increased (Fig 4.3b and 4.3c). In contrast, more pronounced aggregation 

patterns emerged in the presence of facilitation: symmetric facilitation 

consistently forced aggregation under harsh conditions (Fig. 4.3d−f); 

asymmetric facilitation led to aggregation only when stress was milder (Fig. 

4.3g−i). Nevertheless, asymmetric competition can largely override the effects 

of facilitation on spatial pattern formation at all stress levels, leading to 

non-aggregative (even regular) spatial distributions (Fig. S3). This is in 

agreement with empirical findings (Stoll & Bergius 2005). 

 

 

Fig. 4.2 Spatial dynamics (black, aggregation; grey, randomness; white, regularity) 

during self-thinning, with aggregated initial locations and completely symmetric 

competition (CCS, p = 0) in the absence (NF) or presence of facilitation (FCS, 

completely symmetric facilitation, q = 0; FCA, completely asymmetric facilitation, q = ∞) 

at different levels of abiotic stress (S).  
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Fig. 4.3 Spatial dynamics during self-thinning with random initial locations. Symbols 

and abbreviations are the same as in Fig. 4.2. 

 

The relationship between net outcome of local plant interactions (as 

evaluated with the RII index) and spatial pattern formation also depended on 

the modes of interaction and the level of abiotic stress (Fig. 4.4). In the case of 

symmetric competition, the net outcome of local interactions was significantly 

negative (RII close to -1) under mild and intermediate stress conditions 

independent of the mode of facilitation. RII increased with stress levels and 

had clearly positive values (RII close to 1) at high stress levels in the presence 

of symmetric facilitation. In the case of asymmetric competition, the net 

outcome of local interactions was slightly negative under mild conditions. RII 

increased monotonically with increasing abiotic stress under symmetric 

facilitation, but first increased then decreased with increasing abiotic stress 

under asymmetric facilitation.  
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Fig. 4.4 Relative interaction intensity (RII) during self-thinning under different modes 

of competition (CCS, completely symmetric competition, p = 0; CCA, completely 

asymmetric competition, p = ∞) in the absence (NF) or presence of facilitation (FCS, 

completely symmetric facilitation, q = 0; FCA, completely asymmetric facilitation, q = ∞) 

at different levels of abiotic stress (S), and with aggregated initial locations. 

 

Facilitation sometimes resulted in spatial aggregation (Figs 4.2 and 4.3) 

even though the net outcome (RII) of local interaction was negative. This 

spatial patterning also depended on the mode of competition. Such results 

indicate that even though facilitation was responsible for resulting plant 

aggregation, the net outcome of local interaction was not always positive under 

harsh conditions. In other words, modes of interaction can have different 

effects on different population characteristics, i.e. here individual growth (RII) 

and spatial pattern.  
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Symmetric facilitation not only mitigated abiotic stress but also delayed the 

onset of mortality in the case of symmetric competition, at all stress levels 

(Duncan’s test, P < 0.05). Symmetric facilitation delayed the self-thinning 

process, as indicated by the increased survival over time (Fig. 4.5). 

Asymmetric facilitation had the same effect only at intermediate stress levels, 

not at harsh conditions (Duncan’s test, P > 0.05). However, in the case of 

asymmetric competition, the effects of facilitation were relatively weak. 

 

 

Fig. 4.5 Temporal dynamics of density-dependent mortality under different modes of 

competition (CCS, complete symmetric competition, p = 0; CCA, complete asymmetric 

competition, p = ∞) in the absence (NF) or presence of facilitation (FCS, completely 

symmetric facilitation, q = 0; FCA, completely asymmetric facilitation, q = ∞) at different 

levels of abiotic stress (S), and for both initial location scenarios. 
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4.4 Discussion 

We have introduced the new concept of modes of facilitation, i.e. symmetric 

versus asymmetric facilitation, and have used an individual-based model to 

explore how these facilitation modes affect plant populations differently. 

Specifically, we explored how the interplay between different modes of 

competition and facilitation changes spatial pattern formation during 

self-thinning in populations that start with either random or aggregated 

distributions, and how combinations of competition and facilitation modes alter 

the intensity of local plant interactions along a stress gradient. 

Our main finding was that the spatial aggregation of plants can be attributed 

to different modes of facilitation if competition is symmetric rather than 

asymmetric, whereas non-aggregative (regular) patterns indicate strong 

asymmetric competition driving density-dependent mortality (Stoll & Bergius 

2005). Facilitation by itself can play an important role in promoting plant 

aggregation independent of other ecological factors ignored in our scenarios 

(e.g. seed dispersal, recruitment, and environmental heterogeneity); moreover, 

different modes of facilitation led to different spatial and temporal patterns. 

In our simulations of harsh conditions, plants had highest biomass 

accumulation and survival under the combination of symmetric competition 

and facilitation. This result emerged from growing in association with 

neighbours due to facilitation and the increased importance of facilitation at 

higher stress levels as predicted by SGH. McIntire & Fajardo (2011) found that 

spatial aggregation and symmetric interactions in Nothofagus pumilio are 

essential for the species’ success under harsh conditions. Seedlings growing 

in clustered cohorts facilitate each other and have higher survival rates than 

isolated individuals under stress of wind desiccation. With seedlings growing in 

clusters, natural grafts (physiological and physical merging of stem, branch or 

root) occur in later growth stages, and multi–stemmed trees survive better than 

single-stemmed trees. The mode of facilitation and competition among grafted 
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plants is considered to be symmetric because the transport of resources and 

assimilates is bidirectional (Silvertown & Charlesworth 2001; Lambers et al. 

2008). The combination of symmetric facilitation and competition in these tree 

clusters decreases the impact of stress and the onset of competition among 

them (Fajardo & McIntire 2010; Tarroux & DesRochers 2011). Therefore, 

mortality is lower within clusters and leads to aggregation, an outcome we also 

found in our model. 

Because we based our model of facilitation on SGH, a monotonic increase 

in the importance of facilitation with increasing stress should be expected due 

to the assumptions underlying equation (4-5). Surprisingly, this effect was 

outweighed by asymmetric facilitation. Our study indicated that with symmetric 

competition, asymmetric facilitation first promotes plant aggregation under mild 

and intermediate stress conditions, but then brings about spatial 

disaggregation at the more stressful end of the gradient (Fig. 4.2g−i). 

Moreover, asymmetric facilitation was found to delay the self-thinning process 

(indicated by increased survival over time) only under intermediate stress 

conditions (Fig. 4.5). This is because under very stressful conditions, plants 

are very sensitive to physical stress and local competition. Competition will 

thus aggravate the mortality of those individuals that were disadvantaged by 

asymmetric facilitation. Asymmetric facilitation can thus promote plant survival 

and aggregation only if the environment is less harsh, as we observed in our 

model.  

Our results regarding asymmetric facilitation are consistent with recent 

empirical findings that the SGH is not fully supported by observations (Maestre 

et al. 2009). Reduced positive effects on plant survival have been observed in 

arid areas at high stress levels (Tielbörger & Kadmon 2000; Maestre et al. 

2005; Maestre et al. 2009). A switch from negative to positive and back to 

negative effects on plant survival was found in a semi-arid steppe along a 

gradient of decreasing rainfall (Maestre & Cortina 2004). Similarly, Tielbörger & 

Kadmon (2000) found that the effect of desert shrubs on abundance and 
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reproductive success of understory annuals shifted from positive to neutral and 

to negative with decreasing annual rainfall.  

Our findings suggest a mechanism explaining such exceptions to the SGH’s 

prediction of monotonic increasing net positive effect with stress: the nature of 

abiotic stress factors is also important (Maestre et al. 2009). Abiotic stress 

factors not only alter the mode of competition (Schwinning & Weiner 1998; 

Berger et al. 2008), but also the mode of facilitation (Maestre et al. 2009). It is 

therefore important to ask how symmetric and asymmetric facilitation are 

interrelated with different kinds of stress factors. In the light of the new concept 

presented here, it should be expected that if the effect of stress is 

symmetrically mitigated by other individuals, symmetric facilitation should 

usually be prevalent (detected via plant aggregation or positive RII in our 

simulation). Using an individual-based model, Chu et al. (2009) found that 

symmetric facilitation (mutualism) among plants can increase plant biomass 

and size inequality in conspecific populations. Their results are consistent with 

empirical findings for an annual species (Elymus nutans) in alpine meadows 

(although they worked with clonal ramets, which probably confounded 

physiological integration with positive interactions among individuals; Fajardo 

& McIntire 2011). The mode of facilitation in their experiment was probably 

symmetric because frost is the most important stress factor in their research 

area (Chu et al. 2009): all individuals endure the same degree of low 

temperature stress, which is not asymmetrically mitigated by other individuals. 

In contrast, when the stress factor is “pre-mitigable” and/or directional (e.g. 

higher ultraviolet radiation due to ozonosphere depletion or direct damage 

caused by wind), facilitation should be more asymmetric (Fig. S1). For 

example, in a conspecific plant population under strong ultraviolet radiation, 

taller plants (benefactor) will suffer most from radiation stress but their crowns 

can reduce stress in the understory microenvironment. As a result, smaller 

plants (beneficiary) can receive disproportionately more benefit from their 

neighbouring taller plants for maintenance and growth, and therefore survive 
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longer. Asymmetric facilitation should thus reduce size inequality in plant 

populations, which is in contrast to symmetric facilitation that can increase size 

inequality (Chu et al. 2009). This effect of asymmetric facilitation is observed in 

our model and consistent with empirical studies (Zhang et al. 2012). To the 

best of our knowledge, effects of different modes of facilitation have not been 

addressed systematically in empirical experiments yet, so we suggest this 

topic for future research. 

To answer our second research question about the effect of different 

combinations of competition and facilitation on local interactions, we employed 

the index RII to measure the direction and magnitude of local interactions 

along a stress gradient. We found a monotonically increasing strength of 

facilitation relative to competition for symmetric facilitation but not for 

asymmetric facilitation. Negative interaction was dominant under mild and less 

harsh conditions.  

Our results indicate that even though facilitation can lead to plant 

aggregation at the population level, the net outcome and intensity of local 

interactions at the individual plant level is not necessarily positive. In particular, 

we found that for some scenarios (e.g. CCS, FCA, S = 0.5), competition is the 

dominant process when assessing plant growth (the net outcome is negative 

as indicated by RII; Fig. 4.4), whereas the corresponding spatial aggregation 

and greater survival probability indicate a dominance of facilitation (Figs 4.2, 

4.3 and 4.5). In other words, the intensity of interaction (as the net outcome 

between competition and facilitation) is insufficient to express the relative 

importance of competition and facilitation on structuring plant systems 

(Brooker et al. 2005). Furthermore, our findings imply that facilitation may be 

more common than generally believed, but its important role in structuring 

populations and communities can be hidden simply because it is hard to detect. 

Thus, establishing whether competition or facilitation is the dominant process 

in plant populations or communities can be difficult, because competition and 

facilitation act simultaneously (Callaway 2007) but can affect different aspects 
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of plant populations or communities. 

Nevertheless, the importance of facilitation has been clearly detected in arid, 

alpine and arctic habitats, which are assumed highly sensitive to global change 

(Callaway et al. 2002; Brooker et al. 2008). It is therefore crucial to better 

understand both the mode of facilitation and nature of stress factors, because 

the facilitative effect from key species is essential for system diversity and 

stability in such conditions (Brooker et al. 2008; Vellend 2008). Although we 

focused here on intraspecific interactions, our approach can easily be used to 

analyse communities. Our conclusions may thus also be relevant for plant 

communities. 

To conclude, our study is the first to quantitatively define different modes of 

facilitation, and it is also the first attempt to integrate different modes of 

facilitation with different modes of competition into the SGH. We showed that 

facilitation can have an important influence on population structure. Moreover, 

different modes of facilitation and competition can affect different aspects of 

plant populations and communities, implying context-dependent outcomes and 

consequences. Explicit consideration of modes and mechanisms of interaction 

(both facilitation and competition) and the nature of stress factors may help us 

extend the SGH framework and foster research on facilitation in ecology 

(Brooker et al. 2008; Maestre et al. 2009). 
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Chapter 4 – Appendix A 

ODD protocol – model description of pi model with competition 

and facilitation 

The following model description follows the ODD protocol (Overview, Design 

concepts, Details) for describing individual- and agent-based models (Grimm 

et al. 2006; Grimm et al. 2010), 

 

Purpose 

The aim of this model is to evaluate the multiple effects of the modes of 

competition and facilitation under abiotic stress on regulating plant population 

dynamics, specifically on spatial pattern formation induced by 

density-dependent mortality. In particular, we test whether different modes of 

facilitations at individual plant level can result in the spatial aggregation of the 

population. The model does not represent specific species, but generic ones. 

 

Entities, state variables, and scales 

The entities in the model are plants and square habitat units, or patches (Table 

A1). Plants are characterized by the following state variables: initial growth rate, 

initial biomass, maximum biomass (asymptotic biomass), current biomass and 

their position, i.e. coordinates of the stem. Each individual plant has its own 

circular zone-of-influence (ZOI). The ZOI stands for the physical space 

occupied by a plant, and represents the energy and resources potentially 

available to this plant, which is allometrically related to its body mass. 

Neighbouring plants only compete for the resources when their ZOIs are 

overlapping. 

In order to make the spatial calculations of resource competition easier, 

ZOIs are projected onto a grid of patches. To avoid edge effects, we use a 

torus world with a size of 200 × 200 patches (Grimm & Railsback 2005). Each 

patch represents 1 m2 or 1 cm2 for woody- and non-woody plants, respectively. 

The state of each patch is characterized by its resource availability. We use a 

homogeneous environment here as all patches have the same, and constant, 

degree of abiotic stress. One time step in the model represents approximately 

one year for woody plants and one day for non-woody plants. 
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Table A1. State variables and initialization in the individual-based model. Actual 

values are drawn from the given intervals to introduce a certain degree of 

heterogeneity among individuals. 

Variable Description 
Initial Value [unit] 

(woody/non-woody) 

Plants   

c Initial growth rate 1 ± 0.1 [kg m-2 time step-1] / 

[mg cm-2 time step-1] 

m0 Initial body mass 2 ± 0.2 [kg] / [mg] 

M0 Maximal biomass 2×106 ± 2×105 [kg] / [mg] 

m Current biomass [kg] / [mg] 

A Zone of influence [m-2] / [cm-2] 

Patches   

S Abiotic stress level [0, 1] 

Initialization   

Mortality Threshold of death 5% of m3/4 

Density Number of plants 300  [ha-1] / [m-2] 

Random seed To generate random number 123456789 

(Aggregation) Number of cohort 6 (50 individuals / cohort) 

(Aggregation) Cluster scale (diameter) 50% of the world size 

 

Process overview and scheduling 

After initialization, all individual plants with a given density are randomly 

distributed in the world. The processes of local competition, facilitation, growth 

and mortality of each plant are fulfilled within each time step. In each step, 

individual plants first sense the environment qualities of patches within their 

ZOIs, the area (radius) of an individual plant’s ZOI is determined by its current 

biomass. When their ZOIs are overlapping, individuals compete and facilitate 

within the overlapping area. Thus, the overlapping area reflecting resources is 

divided according to the mode of competition. At the same time, under abiotic 

stress in the presence of facilitation, the overlapping area reflecting the 

ameliorated habitat by neighbours is also divided according to the mode of 

facilitation. Considering the outcome of the interaction process, all individual 

plants grow according to the growth function. Plants with growth rates falling 

below a threshold die and are removed immediately. The state variables of the 
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plants are synchronously updated within the subroutines, i.e. changes to state 

variables are updated only after all individuals have been processed (Grimm & 

Railsback 2005). 

 

Design concepts 

Basic principles: From “Metabolic Scaling Theory”, we derived a general 

ontogenetic growth model for individual plants. We combine this model, via the 

ZOI approach, with the effects of different modes of competition and facilitation 

under abiotic stress.  

Emergence: All features observed at the population level, e.g. mass-density 

relationship or self-thinning trajectories (i.e. size distribution and spatial 

distribution, respectively), population size inequality and spatial pattern, are 

emerged from local interactions among plants under abiotic stress of their 

environment.  

Interaction: Individual plants interact via competition for resources and 

facilitation from neighbours in the overlapping area of their ZOIs.  

Stochasticity: Initial growth rate, initial biomass, maximum biomass and 

initial position of plants are randomly taken from the intervals given in Table 1. 

This introduces a certain level of heterogeneity among individual 

characteristics to take into account that real plants are never exactly identical. 

Observation: Spatial point patterns of plants, population size, biomass of 

each plant, and mean biomass of all living plants are the main observations.  

 

Initialization 

If the initial spatial pattern is aggregation, we randomly choose several patches 

(determined by the number of cohorts) as centers and to transplant groups of 

individual plants (initial density / number of cohorts) among the centers within a 

certain cluster diameter. In the case of randomness, individual plants are 

randomly distributed according to the chosen initial density. Resources and 

abiotic stress are spatially and temporally constant. Each plant has an initial 

biomass (m0), maximal biomass (M0) and initial growth rate (c) drawn from 

truncated normal distributions with average and intervals given in Table A1.  

 

Input 

After initialization, the model does not include any external inputs, i.e. the 

abiotic environment is constant. 

 

Submodels 

Plant growth 
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In our individual-based model the plant’s ZOI stands for the physical space 

occupied by a plant and represents the energy and resources potentially 

available to this plant. This space is allometrically related to the plant’s body 

mass, m, as c0A=m3/4 (Enquist & Niklas 2001), where c0 is a normalization 

constant. Accordingly, Eqn (4-1) can be rewritten as 

dm/dt = cA [ 1 – ( m / M0)
1/4 ]    (A1) 

and with abiotic stress, it becomes 

dm/dt = (1 – S) cA [ 1 – ( m / Ms)
1/4 ]    (A2) 

where c = ac0, is the initial growth rates in units of mass per area and time 

interval. For simplicity, we choose c = 1 ± 0.1 in our model. In addition, we 

simulate the model with different c values. As expected, the results from 

different values were qualitatively similar (consist with our findings).  

 

Competition and facilitation under abiotic stress 

Competition and facilitation are incorporated by using dimensionless factors or 

indexes, fp and fq respectively. With the above assumptions, equation (A2) 

becomes: 

dm/dt = fpfqcA[ 1 – ( m / M)1/4 ]    (A3) 

where M = (fpfq)
4M0 is the maximum achievable biomass under stress with 

competition and facilitation. 

As for competition, the modes of resource-mediated competition among 

plants can be located somewhere along a continuum between completely 

asymmetric competition (largest plants obtain all the contested resources) and 

completely symmetric competition (resource uptake is equal for all plants, 

independent of their relative sizes; Schwinning & Weiner 1998). To represent 

different modes of competition explicitly, we describe the competitive index fp 

as 
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   (A4) 

This factor thus refers to the fraction of resources available in the area 

which plant i could obtain after a loss of potential resources due to areas 

overlapped by neighbours of sizes mj (Schwinning and Weiner 1998). Ano is 

the area not overlapping with neighbours, Ao,k denotes the no areas 

overlapping with nj different neighbours. Parameter p determines the mode of 
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competition, ranging from complete symmetry (p=0) to complete asymmetry (p 

approaching infinity; for details and examples see Figure A2). In this research, 

we restrict ourselves to intraspecific facilitation and competition, and assume 

therefore the species-specific weighting constant of competition vi and vj equal 

1 here, as conspecific case. 

Simultaneously, assuming the effect of facilitation is additive (Molofsky 

2001; Molofsky & Bever 2002; Chu et al. 2008, 2009), we define the effect of 

different modes of facilitation, fq, as 
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   (A5) 

This factor is based on SGH, which reflects the facilitative effect of 

relieving stress and is consist with other model (Chu et al. 2008, 2009, 2010; 

Jia et al. 2011; for details and examples see Figure A2). To keep things simple, 

we follow the assumption of Chu et al. (2008, 2009) that the ZOI, A, is the 

same for competition and facilitation (they could be different). Where Af refers 

to the benefit gained by plant from all interactive neighbours, and is calculated 

as the sum of the areas (ZOIs) overlapped with neighbour plants. The index q 

determines the mode of facilitation among plants, ranging from complete 

symmetry (q = 0, algorithmic equivalent to the form used in Chu et al. 2008; 

2009) to complete asymmetry (q approaching infinity; see Table 1 for the 

complete form and definitions). Since we investigate the monopopulation here, 

to simplify, we assume the species-specific weighting constant w equals 1 here 

as the conspecific case, so the facilitation is size dependent. When there is no 

facilitation (Af =0), equation (A5) becomes 1–S, which reflects the effect of 

abiotic stress.  

 

Figure A2. An example of calculating the interactive indexes (equations A4 

and A5) with different modes of competition and facilitation by dividing plants’ 
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ZOI (zone-of-influence). Three plants with sizes m1, m2 and m3 are interacting 

in this example. For plant 1, its ZOI (A) was divided into four parts: Ano, the 

area not overlapping with the other two plants; Ao,1, the area overlapping with 

plant 2; Ao,2, the area overlapping with plants 2 and 3; Ao,3, the area 

overlapping with plant 3. 

Then the actual area that plant 1 can take from Ao,1 is 
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For Ao,2, 
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And for Ao,3, 
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therefore, the competitive index for plant 1 is: 

   

        
  
 

  
 
   

      
  
 

  
 
   

 
   

      
  
 

  
 
   

 

 
 

where 3/4

1 0/A m c . For plant 1, the benefit received from neighbours is 

       
  
 

  
 
   

      
  
 
   

 

  
 
   

 
   

      
  
 

  
 
   

  

and the facilitative index for plant 1 under abiotic stress is: 

     
 

    
   

 

    
  
 

  
 
   

      
  
 
   

 

  
 
   

 
   

      
  
 

  
 
   

   

 

In total, equation (A3) clearly shows how a plant’s growth rate is jointly 

determined by abiotic stress, S, competition, fp, and facilitation fq. This also 

implies that a plant’s final size is usually smaller than its asymptotic maximum 

size (M0) during environmental stress and local competition, but can increase 

by the beneficial effects of neighbour plants via the amelioration of habitat. 

 

Mortality 

An individual’s mortality rate is proportional to its mass-specific metabolism (as 

current total metabolic rate divide by body mass; Brown et al. 2004). Based on 
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this, we assume that individuals die if their actual growth rate (dm/dt, realistic 

metabolic rate) falls below a threshold fraction of their basal metabolic rate 

(allometrically scaled with body mass), i.e. 5% of m3/4. Therefore, individual 

plants may die due to metabolic inactivation driven by abiotic stress, 

competition, senescence (when m approaches M) or combinations thereof. 

This provides a more realistic representation of relevant ecological process 

than in previous models (Stoll et al. 2002; Chu et al. 2009, 2010; Jia et al. 

2011). 
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Fig. S1. Conceptual model of the occurrence of mutualism versus commensalism in a 

continuum of symmetric versus asymmetric facilitation. 

 

 

Fig. S2. Spatial dynamics (black, aggregation; grey, randomness; white, regularity) 

during self-thinning with aggregated initial locations and completely asymmetric 

competition (CCA, p = ∞) in the absence (NF) or presence of facilitation (FCS, 

completely symmetric facilitation, q = 0; FCA, completely asymmetric facilitation, q = ∞) 

at different levels of abiotic stress (S). 
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Fig. S3. Spatial dynamics during self-thinning with random initial locations. 

Symbols and abbreviations are the same as in Fig. S2. 

 



 

Chapter 5 

Metabolic scaling theory predicts near ecological 

equivalence in plants * 

 

 

 

Abstract 

Both niche and neutral theory aim to explain biodiversity patterns but seem 

incompatible: whilst niche theory is based on the differences between species, 

neutral models assume there are no such differences. Ecological equivalence 

mediated by trade-offs however, is consistent with neutral theory whilst 

allowing for ecological differences as suggested by niche theory. Here we show 

with data from 375 plant species that metabolic scaling theory predicts such 

trade-offs and thus supports ecological equivalence, at least as a near 

approximation. This highlights a potentially important role for metabolic scaling 

and points the way to a possible reconciliation between niche and neutral 

theory. 

 

Keywords: allometric scaling, neutral theory, ecological equivalence, 

functional equivalence, demography, trade-offs, birth rate, death rate 
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5.1 Introduction 

Ecological difference among species (niche difference) is the conceptual basis 

has been established since Darwin for explaining species coexistence and 

diversity. By contrast, neutral theory (Hubbell 2001) provides models that 

assume all species are ecologically identical. The idea received enormous 

attention due to its accurate predictions despite its surprising simplicity, and 

controversial assumption of ecological equivalence (Chave 2004; Rosindell et 

al. 2012) which seems to be violated by many observable species-specific 

characteristics.  

One important aspect of neutral theory, however, has not yet been 

sufficiently appreciated: ecological differences do not necessarily lead to 

differences in net fitness (Chave 2004; Allouche & Kadmon 2009; Lin, Zhang, 

& He 2009). Ecological equivalence regarding trade-offs between birth and 

death rates among different species is still consistent with the neutral 

assumption but allows for functional differences as suggested by niche theory 

(Hubbell 2001; Chave 2004; Allouche & Kadmon 2009; Lin et al. 2009). It has 

been shown in the simulation models that these birth-death trade-offs can be 

incorporated into neutral theory without impairing its ability to predict 

biodiversity patterns (Chave 2004; Lin et al. 2009; Rosindell et al. 2012). 

Although predictions of neutral model have been tested extensively 

(Hubbell 2001, 2005, 2006, 2008; Chave 2004; Allouche & Kadmon 2009; Lin 

et al. 2009; Rosindell, Hubbell, & Etienne 2011), the cornerstone of neutral 

theory which is the hypothesis of ecological equivalence has rarely been tested 

(Hubbell 2008). Such ecological equivalence amongst individuals (species), 

namely the demographic trade-offs, can be attributed to the intrinsic 

explanations as neutral assumption assumed and/or the extrinsic explanations 

as niche differences suggested. The intrinsic explanations are determined 

essentially by the metabolism of organisms, whereas the extrinsic 
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explanations are mainly related to external factors of environment such as 

competition, resource, disease, predation or disaster (McCoy & Gillooly 2008). 

In this study, we attempt to give a mechanistic, generic explanation for 

these observed birth-death trade-offs, and thus provide a new and compelling 

explanation for the success of neutral theory in a non-neutral world. To test our 

predictions, we compiled data of demographic rates of 375 plant species which 

include different functional groups and cover 11 orders of magnitude in plant 

size ranging from mosses to trees.  

The explanation we seek is provided by building on a base given by the 

metabolic scaling theory (MST). This theory of ecology predicts quantitative 

relationships between various functional traits of organisms and their body size 

based on their metabolic rates (Brown et al. 2004; Price et al. 2010). 

Extensions of MST yield that birth and death rates, b and d, are strongly 

governed by the mass-specific metabolic rate (B), and thus should show the 

body size (M) and temperature dependence (Brown et al. 2004; McCoy & 

Gillooly 2008; Price et al. 2010) as: 

b ∝ d ∝ B ∝ M -1/4e-E/kT       (5-1) 

where e-E/kT is the Boltzmann-Arrhenius factor which describes the exponential 

increase in biochemical reaction rates with body temperature (Brown et al. 

2004; Marbà et al. 2007; McCoy & Gillooly 2008; Price et al. 2010), E the 

average activation energy of rate-limiting biochemical metabolic reactions (≈ 

0.32 eV for plants), k the Boltzmann’s constant (= 8.62×10－5 eV K－1), and T 

the absolute temperature (Kelvin).  

Although such scaling relationships have partly been statistically validated 

before (Brown et al. 2004; Marbà, Duarte, & Agustí 2007; Price et al. 2010), so 

far they were not linked to neutral theory. A reasonable estimation of overall 

fitness (R0) can be measured as the ratio of birth rate over death rate which 
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gives the lifetime reproductive success or intrinsic rate of increase (Hubbell 

2001; Chave 2004; Niklas 2007; Allouche & Kadmon 2009) leading to 

R0 = b / d ∝ M -1/4 e-E/kT / M -1/4 e-E/kT ∝ M 0       (5-2) 

Thus, fitness is predicted to be invariant with respect to body size, temperature, 

as well as the metabolic rate across different functional groups of plant species. 

It is almost self-explanatory that birth-death trade-offs is strongly governed by 

the metabolic constrains of organisms, in other words, the intrinsic 

mechanisms are expected to be the primary explanations. If this is true, the 

overall fitness should be a constant among individuals and species, and the 

ecological equivalence is to be expected as R0 = 1, which is also the parameter 

setting of neutral models (Hubbell 2001; Chave 2004; Allouche & Kadmon 

2009).  

 

5.2 Materials and Methods  

Temperature dependence of metabolism. Coexisting plant species in a 

community can be assumed to experience the same temperature, so the 

Boltzmann-Arrhenius factor can be omitted among species that coexisting in a 

certain community. Moreover, the data set of birth and death rates analyzed in 

this study also shows temperature independence (Student’s t-test, P = 0.43 and 

P = 0.50 respectively), which is consistent with previous studies suggesting that 

metabolic rates of plant are less temperature dependent than those of animals 

(Marbà et al. 2007; Niklas 2007; Allouche & Kadmon 2009). Such findings 

might also due to either statistical ‘‘noise’’ or the narrow band of temperature in 

the data set (Marbà et al. 2007; Niklas 2007). 

Data Compilation. Because the predictions of MST are base on a fractal-like 

architecture of transporting network, so we compiled data on individual 

average body masses, natural birth and death rates from a broad array of 

higher plant species (excluding phytoplankton, algae, and macro-algae which 
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do not have fractal-like architectures). Our data set includes mosses, 

seaweeds, ferns, grasses, herbs, succulents, shrubs, lianas, mangroves as 

well as other tree species. Each taxonomic group is represented by a diversity 

of species and with plant body sizes span a very broad range (7.0×10-3 to 

1.1×107g). All these data were primarily compiled from published data sets and 

some are gathered from large census plots. 

Measure of birth rate. We calculated the birth rates (b, in year -1) from initial 

number of individuals (N0) and the number of new-born individuals (Nb) during 

the time past between census interval (t, in year) as:  

0 0ln ( ) ln ( )bN N N
b

t

 
        (5-3) 

Measure of death rate. The death rates (d, in year -1) are calculated as:  

0ln ( ) ln ( )N S
d

t


        (5-4) 

where S indicates the number of survivors in the later census. 

Estimate of tree mass. Tree mass (M, dry biomass in grams) that cannot 

directly get was estimated from DBH (diameter at breast height in centimeters) 

by using an allometric equation: 

M = 78·DBH 2.5       (5-5) 

this equation was fitted for a compilation of independent data set which 

enclosing a very broad range of size for tree flora (Marbà et al. 2007). 

Data Analysis. Because we are intend to answer different biological questions, 

both Model I and II regressions are applied in our work by following the 

suggestions about model selection (Smith 2009). To test the relationship 

between body size (M) and the birth rates, death rates, and overall fitness (R0), 

the allometric equations are fitted to log-transformed data by using ordinary 

least squares regression (OLS, Model I regression). This is because we are 

interested about how demographic rates change with plant body size. We use 
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the reduced major axis regression (RMA, Model II regression) for 

log-transformed data fitting between birth and death rates. Because we 

attempt to ascertain the actuality of ecological equivalence (b = d), meaning 

that the bivariate relationship is symmetric and regardless of which variable is 

dependent and which is independent. 

 

5.3 Results and Discussion 

Our analysis of data confirms that most plant populations examined here 

are ecologically equivalent. Death rate, d, is proportional to the birth rate, b, as 

d = 1.104 b 1.001 (Fig. 5.1 A). This does not differ statistically from the 

equivalence in vital rates (b = d) assumed by neutral model. Furthermore, 

observed distribution of the intrinsic rate of increase (R0 = b / d) is unimodal 

with a mean of 1 (Fig. 5.1 B), implying a validity of nearly ecological 

equivalence (Hubbell 2008). 

In agreement with theoretical predictions, the data shows that species 

balance high birth rates with high death rates according to mass-specific 

metabolic rates and scale as -1/4 power of body mass (Fig. 5.2, A and B). The 

overall fitness, R0, scales as M 0.006, and does not differ statistically from the 

predicted mass invariance (M 0) (Fig. 5.2 C). Such results imply that ecological 

equivalence as demographic trade-offs among different plant species are 

largely constrained by intrinsic mechanisms of individual metabolic rate, 

despite the fact that ecologically extrinsic factors exist in nature. 

Nevertheless, the results also point to substantial variation (Fig. 5.1A) that 

cannot be explained by metabolic constraints alone. Such variation might be 

viewed as an indicator of non-neutral process among species from particular 

communities, suggesting that both intrinsic and extrinsic constraints may 

contribute to population and community dynamics. Therefore, it is more 

relevant to test the relative contributions of intrinsic and extrinsic factors in 

different populations and communities. 
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Fig. 5.1 (A) The relationship between birth rates and death rates of plants (375 

species). Red line shows the fitted reduced major axis regression (P < 0.0001, 95% 

confidence intervals, exponent: 0.950 to 1.056, constant: 0.966 to 1.271). (B) 

Distribution of the intrinsic rate of increase (overall fitness, calculated as the ratio 

between birth rate and mortality rate, R0 = b / d) of plant species.  
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Fig. 5.2 (A) The relationship between plant body size and birth rates. Black 

line shows the fitted ordinary least squares regression (OLS, Model I 

regression; P < 0.0001, 95% confidence intervals, exponent: -0.315 to -0.232, 

constant: 0.237 to 0.372). (B) The relationship between plant body size and 
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death rates. Black line shows the fitted OLS regression (P < 0.0001, 95% 

confidence intervals, exponent: -0.273 to -0.241, constant: 0.408 to 0.545). (C) 

The relationship between plant body size and overall fitness (intrinsic rate of 

increase, calculated as the ratio between birth rate and death rate, R0 = b / d). 

Black line shows the fitted OLS regression (P < 0.707, 95% confidence 

intervals, exponent: -0. 024 to 0.036, constant: 0.697 to 0.964).  

 

Overall, our study indicates that neutrality as assumed by neutral theory 

might be the consequence of scaling relationships which emerges from 

constraints, trade-offs, and evolved characteristics of metabolism and 

physiology. Meanwhile, MST also predicts different functional traits across 

different functional groups of species (Brown et al. 2004; Price et al. 2010). 

Thus, niches and neutrality are not excluding each other but might in fact have 

the same mechanistic root. The current debate about whether niche or neutral 

mechanisms structure natural communities might miss the point. The real 

question should be when and why one of these factors dominates. Our 

initiative work may provide some insights regarding the relative importance of 

niche vs. neutral based process on community assembly and species 

diversity. 
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Chapter 6  

General discussion 
 

 

The general aim of my dissertation was to investigate the role of plant 

interactions in driving population dynamics. Both theoretical and empirical 

approaches were employed, such as individual-based models (IBMs) and 

greenhouse experiment. All my studies are conducted on the basis of 

metabolic scaling theory (MST, Brown et al. 2004, Price et al. 2010), because 

the complex, spatially and temporally varying structures and dynamics of 

ecological systems are considered to be largely consequences of biological 

metabolism (Brown et al. 2004). On the other hand, MST didn’t consider the 

important role of plant interactions and was found to be invalid in some 

environmental conditions. Integrating the effects of plant interactions and 

environmental conditions into MST may be essential for reconciling MST with 

observed variations in nature. Such integration will improve the development 

of theory, and will help us to understand the relationship between individual 

level process and system level dynamics. 

In the following, I will discuss what we in general learned from the work 

presented in this thesis. First, I will discuss the pros and cons of mechanistic 

and phenomenological models, in particular whether it paid to develop and use 

an ontogenetic growth model. Then I will turn to plant competition and how 

modelling it can be integrated with MST. Next, facilitation in combination with 

competition will be discussed as a framework for exploring interactions of 

plants with each other and their abiotic environment. The final two sections will 

be devoted to synthesis: first, of plant competition, MST, and Neutral Theory, 

and finally of the approach to addressing ecological questions used in this 

thesis, Individual-Based Ecology. 
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Mechanistic models versus Phenomenological models 

In the beginning of this dissertation, we deduced a mechanistic growth model 

for plant. It is important that we use a mechanistic growth model derived from 

MST rather than a phenomenological growth model, as usually has been done 

so far in other plant IBMs (e.g., Weiner et al. 2001, Stoll et al. 2002, Stoll and 

Bergius 2005, Chu et al. 2008, 2009, 2010, May et al. 2009). First, our 

mechanistic growth model is based on the energy budget of the individuals 

during growth which captures the key features of metabolic process of 

organisms (West et al. 2001, Hou et al. 2008). Such mechanistic models 

driven by ‘first principles’ are more flexible and are capable of capturing 

adaptive responses of individuals to their environment than phenomenological 

models, which are statistically fitted to existing data and forego any attempt in 

explaining the underlying mechanisms (Hilborn and Mangel 1997, Grimm and 

Railsback 2005, Martin et al. 2012). Second, the mechanistic models can be 

easily extended to predict further patterns by deduction (e.g., the reproduction 

biomass of individual plant, in Appendix of Chapter 1), whereas 

phenomenological models are usually induced by patterns that were observed. 

Mechanistic models are more likely to work correctly when extrapolating 

beyond the current states than empirical models. Third, ecological or 

mathematical artifacts are easier to be prevented if using mechanistic models 

deduced from physical or physiological rules. For instance, in many IBMs plant 

growth is assumed to be negatively and linearly related to resource 

competition and environmental stress (Weiner et al. 2001, Stoll et al. 2002, 

Stoll and Bergius 2005, Chu et al. 2008, 2009, 2010, May et al. 2009, Jia et al. 

2011), with maximum body size kept constant. This phenomenological 

assumption is both mathematical and ecological incorrect, because it implies 

that plants can reach their optimal size regardless environmental conditions. 

Fourth, in contrast to previous models used in plant IBMs (Wyszomirski 1983, 

Wyszomirski et al. 1999, Weiner et al. 2001, May et al. 2009), our model is not 
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only able to explain the observed variation in both root-shoot allocation 

patterns, but also simultaneously describe the mass-density relationships (in 

Chapter 3).  

Yet, the merits of phenomenological/statistical models should not be 

underestimated, especially when the aim is only to describe (or predict) rather 

than to understand the mechanisms. Both the mechanistic models and 

phenomenological models are useful, it is more relevant to ask how to choose 

a model properly, in particular in IBMs. The POMIC (pattern-oriented modeling 

information criterion, Piou et al. 2009) offers a rigorous statistical approach of 

model selection which is in a context of POM (pattern-oriented modeling) and 

is more efficient and specialized for IBMs. Nevertheless, in IBMs, with all other 

things being equal, mechanistic models are arguably more powerful because 

they can explain underlying processes driving observed patterns. Meanwhile, 

the phenomenological models can also be used to stimulate and improve our 

understandings on the mechanisms underlying observed patterns. A case in 

point is how the ‘Kleiber’s law’ urge MST to come out (Brown et al. 2004). 

Plant competition 

In Chapter 2, we investigated the role of different modes of competition in 

altering the prediction of MST on plant self-thinning trajectories. Our 

spatially-explicit individual-based zone-of-influence (ZOI) model was 

developed to investigate the hypothesis that MST may be compatible with the 

observed variation in plant self-thinning trajectories if different modes of 

competition and different resource availabilities are considered. Our one-layer 

ZOI model supported our hypothesis that (i) size-symmetric competition (e.g. 

belowground competition) will lead to significantly shallower self-thinning 

trajectories than size-asymmetric competition as predicted by MST; and (ii) 

individual-level metabolic processes can predict population-level patterns 

when surviving plants are barely affected by local competition, which is more 

likely to be in the case of asymmetric competition. In contrast to our findings, 
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some researchers proposed that asymmetric competition is more important to 

explain the deviations predicted by MST (Coomes and Allen 2009, Coomes et 

al. 2011). However, this debate again is due to a failure of distinguishing 

between the ‘importance’ and ‘intensity’ of competition (Welden and Slauson 

1986): we respect to the competitive effect on population level (mass-density 

relationship) which is about the importance of competition, whereas they focus 

on competitive response of single tree (individual tree growth) which is more 

related to the intensity of competition. 

In Chapter 3, we go further and add a bit more complexity by considering 

the phenotypic plasticity and adaptive behaviour of plants in changing 

environments. A two-layer ZOI model was developed which considers 

allometric biomass allocation to shoots or roots and represents both above- 

and belowground competition simultaneously via independent ZOIs. In 

addition, we also performed greenhouse experiment to evaluate the model 

predictions. Both our theoretical model and experiment demonstrated that: 

plants are able to adjust their biomass allocation in response to environmental 

factors, and such adaptive behaviours of individual plants, however, can alter 

the relative importance of above- or belowground competition, thereby 

affecting plant mass-density relationships at population level. Root competition, 

which is assumed to be more symmetric, can strongly affect the growth of 

surviving plants therefore alter the mass-density relationships. Invalid 

predictions of MST are likely to occur where competition occurs belowground 

(symmetric) rather than aboveground (asymmetric). Consequently, models or 

theories which only consider aboveground part are not appropriate for the 

cases where belowground processes predominate (Deng et al. 2006, Berger 

et al. 2008). In addition to previous studies which do not consider the linkage 

between above- and belowground competition, our study implies that adaptive 

behaviours of plants such as allometry can modify ecological mechanisms and 

subsequently the constraints set by MST. This has important implications for 

many forests and eco-regions, e.g., for using allometry-based models to 
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predict carbon storage and sequestration.  

Plant competitions and metabolic scaling theory 

Chapter 2 and 3 jointly showed that, MST, like principles from energetics and 

biomechanics, sets limits on the behaviour of individuals and therefore of 

populations and communities. In some ecological situations these limits will 

dominate, and MST will predict higher-level behaviour. In many cases however, 

other constraints will determine the patterns observed. Our most important 

conclusion is that the behaviour of populations and communities may be 

dominated by internal physiological mechanisms addressed by MST or by 

ecological factors beyond the individual level, such as the type of resource 

limitation and the mechanisms of competition among individuals. In the latter 

cases MST will not be predictive, although nor will it be violated. The claim that 

MST provides a ‘universal law’ for quantitatively linking the energetic 

metabolism of individuals to ecological system dynamics is thus neither 

completely right nor wrong: the real question is when and which factors 

dominate in a given situation. However, our studies show that cross-level tests 

are needed to explore and develop individual-level theories. Martin et al. 

(2012), who used an individual-based population model of Daphnia based on 

Dynamic Energy Budget theory (Kooijman 2009), arrived at the same 

conclusion. Without doubts, the consideration of plant interactions is critical for 

understanding variation in observed patterns.  

Plant competition and facilitation 

In Chapter 4, we introduced the new concept of modes of facilitation, i.e. 

symmetric versus asymmetric facilitation, and developed an individual-based 

model to explore how the interplay between different modes of competition and 

facilitation changes spatial pattern formation in plant populations, and how 

combinations of competition and facilitation modes alter the intensity of local 
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plant interactions along a stress gradient. Our study shows that facilitation by 

itself can play an important role in promoting plant aggregation independent of 

other ecological factors (e.g. seed dispersal, recruitment, and environmental 

heterogeneity). Such finding identifies the origin of an important mechanism 

underlying self-organization: the process of local facilitation among plants that 

set against the background of overall control by environmental constrains. 

Our results also indicate that the indices widely used to estimate intensity 

of local interactions is too limited to represent the relative importance of 

different modes of interactions in structuring plant system dynamics. Different 

modes of facilitation and competition can affect different aspects of plant 

populations and communities, leading to variously spatial and temporal 

patterns, and implying context-dependent outcomes and consequences. For 

instance, we find that the net outcome of local interactions among plants can 

show a dominance of competition when using the index of relative interaction 

intensity, in spite of the fact that local facilitation plays an important role in 

structuring spatial aggregation. Although the intensity of interaction as the net 

outcome is measurable, but the relative importance of competition and 

facilitation in structuring system dynamics is much more complicated. To clarify 

some debates in current ecological researches, it is necessary to distinguish 

the differences between intensity and importance of different modes of 

competition and facilitation, and to develop a comprehensive approach rather 

than only use some indices. Moreover, a moderate mixture of positive and 

negative interactions is demonstrated to stabilize population dynamics (Mougi 

and Kondoh 2012). The diversity of species and interaction types may be the 

essential element of biodiversity that maintains ecological communities, and 

may hold the key to understanding population and community dynamics 

(Grimm and Railsback 2005, Mougi and Kondoh 2012). 

Towards a synthesis of metabolic scaling, niche, and neutral theory 

In Chapter 5, we went from population level to community level and explored 
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the possibility of combining the MST and unified neutral theory of biodiversity 

(UNT, Hubbell 2001). Studies addressing UNT have largely focused on testing 

the predictions of neutral models, whereas the fundamental assumption of 

ecological equivalence has rarely been tested with empirical studies. Our 

analysis of extensive data confirms that most plant populations examined are 

nearly neutral in a sense of demographic trade-offs, which can mostly be 

explained by a simple allometric scaling rule that based on MST. This 

demographic equivalence regarding birth-death trade-offs between different 

species and functional groups is consistent with the assumption of neutral 

theory but allows functional differences between species (K. Lin et al. 2009). 

Both niche and neutral mechanisms may be essential processes in community 

assembly. In agreement with this, a new theoretical framework proposed four 

basic processes in a community: natural selection (niche mechanisms), 

ecological drift (neutral mechanisms), dispersal limitation and speciation. But 

the relative importance of these four processes varies among communities 

(Vellend 2008).  

Current debate about whether niche or neutral mechanisms structure 

natural communities apparently missing the point. Our initial study provides 

some insights into this debate: the real question should be when and why one 

of these factors dominates. Because UNT emphasizes neutral mechanisms 

(ecological drift) as the main drivers of community assembly, for this reason 

the demographic dynamics of all species in a certain community should be a 

martingale. However, our results also show the variation of demographic 

trade-offs that cannot be explained by metabolic constraints alone. Such 

variation may be viewed as an indicator of non-neutral mechanisms (e.g., 

interactions and natural selection) among species in the communities, and the 

goodness of fit (the coefficient of determination) may be viewed as the 

contribution of neutral mechanisms. The empirical tests about the relative 

importance of different mechanisms in natural communities are urgently 

needed. 



- 146 -  Chapter 6  

MST or similar bio-energetic theories (e.g., Dynamic energy budget 

theory, Kooijman 2009) have the potential to unify existing biodiversity theories, 

which are focused on abundances and species number, and link them to 

questions regarding ecosystem functioning, e.g. productivity, plasticity, stability, 

respiration, carbon flux etc. Such a synthesis of bio-energetic and 

demographic theories is needed to better understand the relationship between 

diversity and function of ecosystems and to unify future research in biodiversity 

theory and management. 

The Individual-Based Ecology 

Ecology as a developing science is full of fresh ideas, but most of the 

influential ideas still have not been mathematically well developed (Lawton 

1999, Ghilarov 2003, Simberloff 2004, Grimm and Railsback 2005, Scheiner 

and Willig 2008, 2011, Odenbaugh 2011a). Elaborate theories of ecology 

which reflect ‘physics envy’ often omit the differences among organisms and 

their traits, which I so-called ‘the assumption of spherical trees in a vacuum’. 

However, since organisms are not just atoms such ‘physics envy’ theories are 

of little use if we are going to understand the emergent properties of complex 

systems such as population dynamics or community assembly out of 

ecological traits, behaviours and interactions of individual organisms 

(DeAngelis and Gross 1992, Breckling et al. 2005, Grimm and Railsback 2005). 

The legendary ecologist MacArthur claimed “the best ecologists had blurry 

vision so they could see the big patterns without being overly distracted by the 

contradictory details” (Odenbaugh 2010, 2011b). Yet, an approach that can 

‘zoom in and zoom out’ would be more appropriate if we are going to 

understand the ecologically complex systems from individual levels (Grimm 

and Railsback 2005). Accounting for omitted details often leads to more 

refined theories. For instance, the van der Waals equation was derived as a 

more precise version of the ideal gas law by incorporating the facts that 

molecules have a nonzero volume and that they’re attracted to each other, for 

http://en.wikipedia.org/wiki/Van_der_Waals_equation
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which Johannes van der Waals received the Nobel Prize for Physics in 1910 

(Fox 2011). As in all such quests, it is important to keep in mind Einstein’s 

dictum ‘seek simplicity, and distrust it’. Nevertheless, the main challenge in 

ecology is to understand complexity and how it emerges from the adaptive 

traits of individuals (Levin 2000, Grimm and Railsback 2005) which is the 

major goal of individual-based ecology. The approaches of individual-based 

and pattern-oriented modelling are promising to achieve the synthesis. 
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