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Abstract

In the last decade, some researches on the star problem in trace monoids (is the iteration
of a recognizable language also recognizable?) has pointed out the interest of the finite power
property to achieve partial solutions of this problem. We prove that the star problem is decidable
in some trace monoid if and only if in the same monoid, it is decidable whether a recognizable
language has the finite power property. Intermediary results allow us to give a shorter proof for
the decidability of the two previous problems in every trace monoid without C4-submonoid.
We also deal with some earlier ideas, conjectures, and questions which have been raised in
the research on the star problem and the finite power property, e.g., we show the decidability
of these problems for recognizable languages which contain at most one non-connected trace.

*This article is published as Technical Report both at the Department of Computer Science at Dresden University
of Technology and at the Laboratoire de Recherche en Informatique d’Amiens (LaRIA).
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1 Introduction

Free partially commutative monoids, also called trace monoids, were introduced by P. Cartier and
D. Foata in 1969 [2]. In 1977, A. Mazurkiewicz proposed these monoids as a potential model for
concurrent processes [19]. This marks the beginning of a systematic study of trace monoids by
mathematicians and theoretical computer scientists, see e.g., the recent surveys [6, 7]. A part of
the research in trace theory deals with examinations of well-known classic results for free monoids
in the framework of traces.

One main stream in trace theory is the study of recognizable trace languages, which can be
considered as an extension of the well studied concept of regular languages in free monoids. A major
step in this research is E. Ochmanski’s PhD thesis from 1984 [24]. Some of the results concerning
regular languages in free monoids can be generalized to recognizable languages in trace monoids.
However, there is one major difference: The iteration of a recognizable trace language does not
necessarily yield a recognizable language. This fact raises the so called star problem: Given a
recognizable trace language T, is T recognizable?

In general, it is not known whether the star problem is decidable. Sufficient conditions assuring
the recognizability of the iteration of a language have been found (e.g. [3, 5, 10, 16, 20]). In the
case of finite languages necessary conditions have been given [21, 22]. The decidability of the star
problem is also known in the extremal cases of free monoids and free commutative monoids [12, 13].
In 1992, J. Sakarovitch proved the decidability in trace monoids without P3.

In 1990, E. Ochmanski introduced the finite power property (for short FPP) to study the star
problem [26]: A language T has the finite power property if there exists an integer n > 0 such
that 7* = T° U...U T". In free monoids, the decidability of the FPP for regular languages was
already known due to I. Simon and K. Hashiguchi [30, 15]. Motivated by [26], one asked for the
decidability of the FPP for recognizable trace languages.

In 1992, using the decidability of the FPP in free monoids, P. Gastin, E. Ochmaiiski, A. Petit,
and B. Rozoy showed the decidability of the star problem in trace monoids of the form A* x b* [11].
In 1994, Y. Métivier and G. Richomme showed the decidability of the FPP for a special class of
recognizable trace languages [21, 22]. In the same year, G. Richomme used this decidable case and
generalized the proofs of P. Gastin, E. Ochmanski, A. Petit, and B. Rozoy. Thereby, he obtained the
decidability of the star problem and the FPP in any trace monoid without C4 [29]. The decidability
of the star problem and the FPP in any other trace monoid remains open.

Although these works show connections between the star problem and the FPP, the exact
correlation was not clear. Here, we show that the star problem is decidable in some trace monoid
if and only if the FPP is decidable in the same trace monoid. A crucial role in the proof of
this equivalence is played by a new connection between the star problem and the FPP which we
show in Section 4: For a particular class of recognizable trace languages the iteration of some
language is recognizable if and only if the language has the FPP. In Section 5, we work out several
induction steps on independence alphabets. These induction steps allow to give short proofs for
the decidability equivalence (Part 5.3), the decidability in trace monoids without C4 (Part 5.4),
and a general connection between the star problem and the FPP (Part 5.5).

In Section 6, we work on some conjectures and questions which were discussed in the research on
the star problem and the FPP. In Part 6.1, we generalize a result by E. Ochmariski [26] by showing
that both problems are decidable for languages which contain at most one connected trace. In
Part 6.2 to 6.4, we deal with conjectures by E. Ochmariski and M. Latteux. In Section 2, we recall
notions on semigroups, trace monoids, and recognizability. In Section 3, we present our results in
a more precise way. The rest of the paper is devoted to the proofs.



2 Preliminaries

2.1 Generalities

By an integer, we mean an element of {0,1,2,...}. We denote by K C L (resp. K C L) the fact
that K is a subset of L (resp. strict subset of L). If p is an element of some set L, we denote the
singleton set which consists of p by p instead of {p}. For instance, for any p € L and K C L, we
use notations as K Up and K \ p in a natural way. We denote by |L| the cardinal of a finite set L,
i.e., the number of elements of L.

A semigroup (S5,-s) is an algebraic structure consisting of a set S and a binary associative
relation -g called operation or product. When no confusion arises, this product is denoted by - or
just by juxtaposition. A semigroup (5, -g) is said finite if S is a finite set. A monoid is a semigroup
equipped with an identity, which is denoted by Ag or A.

The product can be extended to subsets K, L C .5: KL is the set of elements kl for any k € K
and [ € L. Moreover, for any p € §, K C S, and n > 1, p" and K" are defined by p' = p,
pttl = pip, K' = K, and K"t! = K" K. If S is a monoid, we define £° = X and K° = {)\}.

For every subset K C 5 and for any integers 1 < n < m, we denote by K™ ™ the union
K" U K™™' U...UK™. Moreover, we denote by K™* the union K™ U K"t! U ... As usual,
we denote by Kt the non-empty iteration of K, ie., Kt = K> Of course, if S is a monoid,
we extend the notation K™ to 0 < n < m, and we denote the iteration of K by K* = K%,

A homomorphism is a function h from a semigroup 5 to a semigroup S’ such that for every
k.l e S, Mk)-s h(l) = h(k -s1). Moreover, if S and 5’ are monoids, h is a called a monoid
homomorphism if h(Ag) = Ag. For a subset ' C S, h(K) is the set of elements h(p) for any
p € K. The inverse of i is denoted by h=1. For a subset L C 5/, h=!(L) is the set of elements p € S
such that h(p) € L. The homomorphism h is called surjective (resp. injective) if for any p € 57,
the set A=1(p) is non-empty (resp. |h~1(p)| < 1). Tt is called an isomorphism if it is both surjective
and injective. Two semigroups S and S’ are isomorphic if there exists a bijective homomorphism
from S to 5’.

Assume three semigroups 57, 53, S3 and two homomorphisms g : 51 — 55 and h : 53 — 55.
We denote by hog: 57 — S5 the homomorphism obtained by the composition of g and h.

Given two sets S and S, we denote by S x S’ their cartesian product. If both S and S’ are
semigroups (resp. monoids), then S x S’ with the operations -g and -/ applied componentwise is a
semigroup (resp. monoid). To visualize the componentwise operation, we often denote the elements
cartesian products by (5) Accordingly, we denote the cartesian product of two subsets K and L

of semigroups S and ', resp., by (%)

2.2 Trace Monoids

We recall notions on trace monoids (see e.g. [6, 7] for more information).

An alphabet A is a finite set of symbols called letters. A word over A is a finite sequence of
letters of A. Formally, the set A* of words over A with the concatenation operation is the free
monoid over A. Its identity is the empty word A.

A binary symmetric and irreflexive relation I over an alphabet A is called an independence
relation over A. The pair (A, 1) is called an independence alphabet. Two letters a,b € A are called
independent if alb. Otherwise, they are called dependent.

Let ~; be the equivalence relation over A* such that for two words wy,ws € A*, we have
wy ~g wy if we can transform w; into wy by finitely many exchanges of independent adjacent
letters. An equivalence class of words is called a trace. Clearly, ~j is a congruence (wy ~j ws



and w] ~y wh implies wyw] ~; wow}). The factorization of the free monoid A* under ~7 is called
the trace monoid over A and I and denoted by IM(A, I). Its subsets are called trace languages or
shortly languages, or sometimes just sets. For any trace monoid IM(A, I'), we denote by IM(A, I)*"
the semigroup IM(A, 1)\ A.

By [];1 or shortly [], we denote the homomorphism from A* to IM(A, ) which assigns every
word its congruence class. By []7!, we denote its inverse.

Two equivalent words differ only in the order of their letters. Given some trace ¢, alph(t)
denotes the set of letters occurring in ¢ and |¢| is the length of ¢ that is the number of letters of ¢.
Further, for any letter a, [t|, denotes the number of occurrences of the letter a in ¢. For instance,
alph([aabb]) = {a,b}, |[aabb]| = 4, and |[aabb]|, = |[aabb]|, = 2.

Free monoids are the trace monoids for which the independence relation is empty. If the
independence relation is the largest irreflexive relation over A, i.e., any two different letters a,b € A
are independent, then the trace monoid is a free commutative monoid over A.

The cartesian product of two trace monoids can be considered as a trace monoid. Indeed, given
two disjoint independence alphabets (Ay,11) and (Ag,I5), the monoid IM(Aq, [;) X IM(Ag, I5) is
naturally isomorphic to the trace monoid over A = AjU Ay and I =11 U b, U A1 xAy U Ayx Aq,
ie.,in (A, 1), two letters a,b € A are independent if and only if either they do not belong to the
same alphabet or are independent in (Aq, 1) orin (Ag, I2).

In particular, given four different letters a, b, ¢, d, we will denote respectively by P3 and C4 any
monoids isomorphic to {a,c}* x {b}* and {a, c}* x {b,d}*, respectively.

Let IM(A, I) be a trace monoid and B a subset of A, we denote by IM(B, I) the trace monoid
M(B,INn(BxB)). We say that IM(A,I)is without P3 (resp. C4) if whatever are the letters a,b, ¢
(resp. a,b,c,d), then M({a,b,c},I) # {a,c}*x{b}* (resp. M({a,b,c,d},I) # {a,c}*x{b,d}*).

The notion of connected traces plays a central role in recognizability problems. Some trace
t € M(A,I) is said connected if for every non-empty traces t1,t2 with ¢ = t1t, there is a letter
a € alph(t1) and a letter b € alph(tz) such that ¢ and b are dependent: equivalently the graph
consisting of the letters in alph(t) as vertices and edges between dependent letters is connected.
In particular, some trace (:j) in P3 or C4 is connected if and only if « or v is the empty word A.
A trace language T is said connected if and only if every trace in T is connected. For some trace
language 7T', we denote by Conn(7") (resp. NConn(7')) the language consisting of the connected
(resp. non-connected) traces of 7.

We also call a trace monoid IM(A,I) connected if the graph which consists of the letters in A
as vertices and edges between dependent letters is connected. This does not imply that every trace
in IM(A, I) is connected. But, the traces ¢t € IM(A, I) with alph(t) = A are connected if IM(A, 1) is
a connected trace monoid.

2.3 Recognizable Languages

We recall the notion of recognizability. We follow [1, 9]. Given a monoid IM, an IM-automaton, or
simply automaton, is a triple A = [@, h, F], where @ is a finite monoid, h is a homomorphism from
M to @ and F is a subset of ). The set h=1(F) is called the language (or set) of the automaton
and denoted by L(A). A subset L of IM is recognizable over IM if there exists an IM-automaton
[Q,h, F] such that L = L(A).

Below, some of the algebraic proofs are simpler if & is a surjection from IM to ¢. If i is not a
surjection, then we can transform [Q, h, F'] into the automaton [A(IM), h, F' N h(IM)] which defines
the same language as [@, h, F]. Consequently, we can assume that h is a surjection.

It is well-known that for any monoid IM, the family of recognizable sets over IM contains the



empty set, IM itself, and is closed under union, intersection, complement, and inverse homomor-
phisms (see e.g. [1, 9]). Moreover, for trace monoids, finite languages are recognizable, and the
concatenation of two recognizable languages yields a recognizable language [5, 10, 23]. The follow-
ing result is widely known as Mezei’s Theorem (cf. [1, 9].)

Theorem 2.1 (Mezei’s Theorem) Assume two monoids M and IM'. A set L is recognizable in
M x M’ if and only if there are an integer n, recognizable sets Ly, ..., L, C IM and recognizable
sets Ly, ..., LI, CIM’, such that L = LyxL{ U ... U L,x L.

Of course, for i € {1,...,n}, we can assume L; # () and L. # 0.

As soon as a trace monoid IM contains two independent letters, the family of recognizable sets
of IM is not closed under iteration: If alb, then {ab} is recognizable, but {ab}* is not recognizable.

The class of rational sets of a monoid IM is the smallest class which contains the empty set and
every singleton subset of IM, and is closed under union, monoid product, and iteration. Kleene’s
classic result states that in free monoids the recognizable sets and the rational sets coincide. By the
non-closureship of recognizable trace languages under iteration, there are rational trace languages
which are not recognizable as the previous example shows. However, due to a more general result
by J. McKnight [1, 9], every recognizable trace language is rational.

Two decision problems arise: The star problem, which means to decide whether the iteration
of a recognizable language is recognizable and the recognizability problem, which means to decide
whether a rational language is recognizable. We say that the star problem (resp. the finite power
property, below) is decidable in some trace monoid IM(A,I) if it is decidable for recognizable
languages over IM(A, I).

In the extremal cases of free monoids and free commutative monoids, the decidability of the
star problem is classically known: In the free monoid it is trivial by Kleene’s Theorem and in free
commutative monoids its decidability was shown by S. Ginsburg and E. Spanier [12, 13] in 1966.

During the eighties, E. Ochmariski [24], M. Clerbout and M. Latteux [3], and Y. Métivier [20]
independently proved a special case for the recognizability of the iteration:

Proposition 2.2 Let IM be a trace monoid and T a recognizable subset of IM such that every trace
in T is connected. The iteration T™* is recognizable.

A related closure property originates from C. Duboc [8, 23]. If A : IM; — M3 is a connected homo-
morphism between two trace monoids (namely a morphism such that the images of connected traces
are connected), then for every recognizable language 7" C My, the language h(T') is recognizable.
On the other hand, if & is not connected, then there are recognizable languages " C IM; such that
h(T') is not recognizable [8, 23].

In 1990, E. Ochmanski examined connections between the star problem and the finite power
property [26]. A trace language T has the finite power property (for short FPP) if and only if
there is some integer n such that 7% = T°UT' U ...UT". An obvious connection between the
star problem and the FPP is that if some recognizable trace language T has the FPP, then T~ is
recognizable by closure properties of recognizable trace languages.

The question whether the finite power property is decidable for recognizable languages in free
monoids was already raised by J.A. Brzozowski in 1966, and it took more that 10 years till I. Simon
and K. Hashiguchi independently showed its decidability [30, 15]. In 1990, E. Ochmanski used this
result to show decidability of the star problem for recognizable languages in trace monoids of the
form A* x B* which contain at most one non-connected trace [26]. This marks the beginning of
the examination of connections between the star problem and the FPP.



In 1992, J. Sakarovitch solved the recognizability problem: given a trace monoid M, it is
decidable whether a rational subset of IM is recognizable if and only if IM is without P3. As a
conclusion, the star problem is decidable in trace monoids without P3. One conjectured that this
characterization can be extended to the star problem. However, just in the same year, P. Gastin,
E. Ochmanski, A. Petit, and B. Rozoy proved the decidability of the star problem in P3 [11].
The decidability of the FPP in free monoids played a crucial role in their proof.

In 1993, G. Pighizzini proved that for some recognizable trace language 7" the iteration 7™ is
recognizable if and only if NConn(7™) is recognizable [27].

In 1994, Y. Métivier and G. Richomme showed a decidable case of the FPP [22].

Proposition 2.3 In any trace monoid, it is decidable whether some connected, recognizable trace
language has the finite power property.

Y. Métivier and G. Richomme showed some connections between the star problem and the FPP:
If the star problem is decidable in some trace monoid of the form IM( A, I) x b for some (A, ) and
some b ¢ A, then the F'PP is decidable in IM(A, I'). Consequently, if the star problem is decidable
in any trace monoid, then so is the FPP [22].

G. Richomme generalized the results from P. Gastin, E. Ochmanski, A. Petit, and B. Rozoy [11].
In combination with the decidability of the FPP for connected recognizable trace languages, he
proved that both the star problem and the finite power problem are decidable in trace monoids
without C4 [29].

Recently, D. Kirsten and J. Marcinkowski examined some problems which are related to the
star problem [18]: It is decidable whether the intersection K N L* is recognizable for recognizable
languages K and L in some trace monoid IM if and only if IM is without P3. If we consider the
same problem restricted to finite languages L, then the recognizability of K N L* is decidable in P3
but undecidable in C4.

2.4 Projections and Restrictions

Now, we consider two different ways to transform trace languages: Projections and restrictions.
We examine consequences of these constructions on recognizability and the FPP.

Let IM(A, I) be a trace monoid and B be a subset of A. The projection Ilg : IM(A,I) — IM(B, )
is the morphism such that for every trace ¢, llg(?) is the trace obtained by erasing the letters of ¢
which do not belong to B. More precisely, the projection Il g is defined by the image of the letters:
llp(a)=aif a € B, and llg(a) = Aif a € B.

Consider a language 7' C IM(A,I), a subset B C A and an integer ¢ > 0. Observe that
Hp(T") = Ig(T)" and Hp(T™) = 1Ig(T)*.

In general, projections do not preserve recognizability. However, if we consider a trace monoid
IM(Aq,1h) x IM(Ag, I3), then both the projection 114, and Il 4, are connected homomorphisms and
preserve recognizability by Duboc’s Theorem.

The notion of restrictions was introduced by G. Pighizzini [27, 28] and also used in [29]. Assume
a trace monoid IM(A, I), any subset B C A, and some recognizable language 7" C IM(A, ). Let
T—p (resp. Tcp and Tcp) denote the subset of traces ¢t € T with alph(t) = B (resp. alph(t) C B
and alph(t) C B). B

G. Pighizzini proved that restrictions preserve recognizability. This can easily be verified using
the closure properties of the family of recognizable trace languages. Since Tcp = T N IM(B, 1),
Tcp is recognizable. From Tcp = UccpTce and T—p = Tcp\Tcp and the closure properties of
the family of recognizable trace languages,_it follows that TC_B and T_p are recognizable.



Observe that for every integer ¢ > 0, (Ti)gB = (TgB)i. Consequently, the restriction Tcp
preserves the FPP. Further, (T*)cp = (Icp)*. We denote the languages (T")cp = (Icp)' and
(T*)cB = (Tcp)* by Tég and T¢ g, respectively.

These facts cannot be generalized to T—p or Tcp: In the free monoid {a,b}*, the language
T = (bta®)* Ua* Ub* Uab satisfies T* = T° = {a,b}*, but the restrictions T_r, ,; = (bTa™)* U ab
and T,y = @ Ub™ do not have the FPP.

3 Main Results, Conclusions, and Future Steps

In this section, we state the main results of this paper. We present also the plan of the rest of the
paper which is completely devoted to the proofs.

3.1 Decidability Equivalence and Decidable Cases

Our main result claims the decidability equivalence between the star problem and the FPP:

Theorem 3.1 Let IM(A, ) be a trace monoid. The star problem is decidable in IM(A,I) if and
only if the finite power problem is decidable in IM(A,T).

To prove this theorem, we proceed in several steps. At first, we show a close connection between
the star problem and the FPP for a special class of languages.

Proposition 3.2 Let IM( Ay, 1) and M(Az, I3) be two disjoint trace monoids. Assume a recog-
nizable language T C (IM( A1, [1)\A) x (IM( Az, I2)\A). Then, T* is recognizable if and only if T' has
the finite power property.

This proposition was already announced in [17]. Its proof is done in Section 4 using the notions of
ideals and left ideals of semigroups which are recalled in Part 4.1. In Section 5, we achieve several
results by inductions on independence alphabets. In Part 5.1, we perform an induction step for
non-connected trace monoids:

Proposition 3.3 Let IM(Ay,11) and IM(Ag, I3) be two disjoint trace monoids. Assume both the
star problem and the finite power problem are decidable in both M (A1, I1) and M(Az, I3). Then,
the following four assertions are equivalent:

1. The star problem is decidable in IM( Ay, 1) x IM(Aq, I3).
2. The star problem is decidable for recognizable subsets of (IM( Ay, 1)\ A) x (IM( Az, I3)\A).
3. The finite power problem is decidable for recognizable subsets of (IM( Ay, I1 \A) X (IM(Ag, I3)\N).
4. The finite power problem is decidable in IM( A1, I1) x IM( A3, I3).
We give a stronger result in the case that one of the monoids is a free monoid over a singleton.

Proposition 3.4 Let IM(A, 1) be a trace monoid with a decidable star problem and a decidable
finite power problem. Assume a letter b ¢ A. Then, both the star problem and the finite power
problem are decidable in IM(A, ) x b*.

Besides other results, this proposition was already stated in [29] and its presented proof used
techniques and results from P. Gastin, E. Ochmaiiski, A. Petit, and B. Rozoy [11]. However, we
can shorten its proof by applying Proposition 3.2. In Part 5.2, we give an induction step for
connected monoids.



Proposition 3.5 Let IM(A, ) be a connected trace monoid.

1. The star problem is decidable in M (A, I) if and only if for every strict subset B C A, the star
problem is decidable in M(B,I).

2. The finite power problem is decidable in (A, I') if and only if for every strict subset B C A,
the finite power problem is decidable in IM(B,I).

Of course, this result is related to Proposition 2.2 and 2.3. In Part 5.3, we use Proposition 3.3
and 3.5 to prove Theorem 3.1. In Part 5.4, we use Proposition 3.4 and 3.5 to prove the following
theorem, which was already announced in [29].

Theorem 3.6 The star problem and the finite power property problem are decidable in any trace
monoid without CJ.

3.2 A General Characterization

In [11], P. Gastin, E. Ochmarski, A. Petit, and B. Rozoy showed that for some recognizable trace
language 1" in any trace monoid the iteration 7™ is recognizable if the set Conn(7')*UNConn(7') has
the finite power property. They implicitly used the fact that this sufficient condition is necessary in
trace monoids A* x b*. They asked whether this condition is necessary in any trace monoid. In [22],
Y. Métivier and G. Richomme showed that this condition is not necessary in the trace monoid over
A={a,b,c}and I ={(a,c),(c,a)}. In Part 5.5, we give a similar condition which is sufficient and
necessary:

Proposition 3.7 Let T be a recognizable set of traces. The set T* is recognizable if and only if
Conn(T™) U NConn(T") has the finite power property, i.e., every trace of T* can be decomposed in
a bounded (the bound depends on T') concatenation of connected traces of T and non-connected
traces of T.

This condition generalizes Proposition 3.2. Let remark that in his PhD Thesis, G. Pighizzini had
given another general characterization: for recognizable trace languages T, the iteration T™ is
recognizable if and only if NConn(7™) is recognizable [27].

3.3 On Some Ideas to Solve the Star Problem

Within the researches on the star problem and the FPP, many restricted cases and conjectures
have been discussed, in particular in [26]. We give some answers using materials from Section 5.

At first, we give an improvement of a result by E. Ochmaiiski: In [26], he proved that the star
problem is decidable for recognizable languages in A* x B* which contain at most one non-connected
trace. In Section 6.1, we show:

Proposition 3.8 In any trace monoid, both the star problem and the finite power property are
decidable for recognizable languages containing at most one non-connected trace.

In [21, 22], Y. Métivier and G. Richomme proved that the star problem is decidable for finite sets
containing at most two connected traces. This result combined with the previous proposition allows
to see that the star problem is decidable for languages containing at most four traces (result also
in [21, 22]): Such a language contains at most two connected traces or at most one connected trace.

In [26], E. Ochmaiiski also announced two conjectures. The first one says: Given a non-empty,
finite language T in any trace monoid, if T* is recognizable, then there exists a trace t € T such
that (T'\t)* is recognizable. We show the following proposition in Part 6.2:



Proposition 3.9 Assume some trace monoid M. The following assertion is true if and only if
M does not contain a P3: If for some non-empty, finite language T C MM the iteration T* is
recognizable, then there exists some t € T' such that (T'\t)"* is recognizable.

The second conjecture announced by E. Ochmaiiski is quite similar to the first one: Given a finite
trace language T with at least two traces, if T is not recognizable, then there exists a trace t € T
such that (T'\ t)* is not recognizable. We do not know whether this conjecture is true or not, but
it is verified in monoids without C4 (see Part 6.3):

Proposition 3.10 Assume some finite language T in a trace monoid without C4. If T contains
at least two traces and if T is not recognizable, then there exists a trace t € T' such that (T'\ t)* is
not recognizable.

In a talk given by G. Richomme at the Laboratoire d’Informatique Fondamentale de Lille (LIFL),
M. Latteux raised the question whether the following conjecture is true: For every trace monoid IM
there is some integer ng > 0 such that a recognizable language T has the FPP if and only if there
exists an integer 0 < n < ng such that [T%"]71 has the FPP. The idea is derived from a closure
property which says that some trace language T is recognizable if and only if [T]~! is recognizable.
Note that the integer ng depends on the monoid IM, but, ng does not depend on T, otherwise the
result is immediate. Because [7%"]71 is a recognizable language in a free monoid, we can decide
whether it has the FPP.

The conjecture is obviously true in free monoids with ng = 1. Unfortunately, it is false in any
other trace monoid. In Part 6.4, we show the following proposition:

Proposition 3.11 Assume some trace monoid IM which is not a free monoid. For every integer
ng > 0, there is some recognizable language T C M such that T has the FPP, but forn € {1,...,n0}
[T97]=1 does not have the FPP.

3.4 Conclusions and Future Steps

From now, the star problem and the finite power problem can be viewed as one and the same
problem. We know that they are decidable in trace monoids without C4. We do not know whether
they are decidable in other trace monoids. If one can show that one of these problems is undecidable
in the trace monoid C4, then in all the remaining trace monoids, both problems are undecidable.

Proposition 3.2 raises a decision problem: Let IM( Ay, 1) and IM( Az, I3) be two disjoint trace
monoids with a decidable star problem and finite power property. Assume some recognizable
language 7' C (IM( Ay, I1)\A) x (IM(Ag, I3)\A). Can we decide whether T is recognizable, i.e., can
we decide whether T has the FPP?

Provided that the answer of this question is “yes”, we can show the decidability of the star
problem and the FPP as follows: We can improve Proposition 3.3 by showing that the four assertions
are true. This is also an improvement of Proposition 3.4. Then, we obtain the decidability of the
star problem and the FPP in any trace monoid by a straightforward adaptation of the proofs of
Theorem 3.1 and 3.6.

Another open question is whether the second conjecture by E. Ochmarski (cf. Proposition 3.10)
is true in trace monoids with C4. Further, one could try to modify M. Latteux’ Conjecture in order
to solve the star problem by solving the FPP.



4 An Important Special Case

In this section, we prove Proposition 3.2: Given two disjoint trace monoids My and My, and given
a recognizable language T C IMi" ><IM§', the iteration T is recognizable if and only if T has the FPP.

All the notions and results presented here are only used within this section. Hence, the reader
can skip this section and still understand the rest of the paper.

As it was already mentioned in Section 2.3, if some recognizable language T has the finite power
property, then T is recognizable. Thus, just the “only if” part of Proposition 3.2 has to be proved.

This section is organized as follows: We recall the notion of generators of a semigroup. Based
on this notion, we state Proposition 4.1 and use it to prove Proposition 3.2. Then, Part 4.1 to 4.5
are exclusively devoted to the proof of Proposition 4.1. In Part 4.1, we recall notions from ideal
theory to give a classification of non-empty, finite semigroups. In Part 4.2, we present product
automata to recognize subsets of a cartesian product of two trace monoids. In Part 4.3, using these
automata and the previous classification, we prove a special case of Proposition 4.1. In Part 4.4,
we prove the remaining cases of Proposition 4.1 by an induction on the ideal structure of the
semigroups in product automata. Finally, in Part 4.5, we summarize the results to complete to
proof of Proposition 4.1.

Within this whole section, we assume two disjoint independence alphabets (Ay, [1) and (A3, I3).
We abbreviate IM( Ay, I1), M( Ay, Iy), IM(Ay, I;)\ A, and IM( Ay, I)\ A by My, My, M, and IMT,
respectively. The traces in IM{ x IMJ are exactly the traces in IM; x IM; which contain at least
one letter in A; and at least one letter in A,.

Some trace language T is called concatenation closed if T? C T. Then, T is a semigroup,
i.e., T = TT. Assume a concatenation closed trace language T with A € T. The set of generators
of T'is defined by Gen(7T) = T\ T?. Of course, Gen(T) C T and Gen(T)* C T. Moreover, it is easy
to prove by an induction on the length of a trace t € T that ¢ can be decomposed into ¢ ...t, with
t; € Gen(T), since if t € T and ¢ ¢ Gen(T), then ¢ = t1t5 with t1,¢2 € T. Thus, TT C Gen(T)*
and more precisely, TT = Gen(T)*. Now, if we consider some trace language L such that Lt =T,
then Gen(T) = LT\ (LYL¥) = Uj»1 L'\ U;»o L' = L\ (LL*) and thus, Gen(T) C L.

For example, consider the concatenation closed, recognizable language T = (ZI) C a*x b*.

Note that A ¢ 7. We have Gen(T) = (,5) U (a;) Observe that 7 = Gen(T') U Gen(T)?. Hence,
for any (not necessarily recognizable) trace language I with L1t = T, we have Gen(T) C L, and
consequently, I has the FPP: L* = {A} U L U L2. In general, we have:

Proposition 4.1 Assume some recognizable, concatenation closed language T C IMi" X IM;' The
set of generators of T has the FPP.

We close this introduction by deriving Proposition 3.2 from Proposition 4.1.
Proof of Proposition 3.2. Assume some recognizable language I C M x MZ. If L has the
FPP, then L* is recognizable because of the closure properties of recognizable trace languages.
Conversely, assume that L* is recognizable. Then, so is Lt = L*\ A. Furthermore, we have
Lt C IMi" X IM;' By Proposition 4.1 applied on LT, there is some integer [ > 1 such that we
have Gen(L*)\! = Gen(LT)* = L*.
Since Gen(Lt) C L, we have Gen(L*)\=! C L1l Thus, Lt C LYl je., LT = Lb-l
Consequently, L* = L% ! i.e., L has the FPP. a



4.1 A Classification of Non-Empty, Finite Semigroups

In this part, we classify non-empty, finite semigroups using ideals and left ideals. This classification
plays a crucial role in the proof of Proposition 4.1.

Ideal theory originates from J.A. Green and other pioneers in semigroup theory. We recall some
notions in a way that the reader does not require previous knowledge in semigroup theory (see e.g.
[4, 14] for more information).

As already said, a semigroup is a set together with a binary associative operation. A subset H
of a semigroup S is a subsemigroup of S if and only if H? C H. We call a subset U C S a left
ideal of S if and only if SU C U. We call a subset J C 5 an ideal of S if and only if JS C J and
SJ C J. Every semigroup has itself and the empty set as ideals. Every ideal is a left ideal and
every left ideal is a subsemigroup. We call a left ideal U C 5 (ideal J C S) proper if and only if
U (resp. J) is non-empty and different from S. The intersection and the union of two left ideals
(resp. ideals) yield left ideals (resp. ideals).

Now, we introduce a notion and a lemma which will help us to prove the completeness of the
classification. Assume some non-empty, finite semigroup ¢). Assume some ideal J C @ with J # Q.
We call a left ideal U C @ J-minimal if and only if we have J C U and there is not any left ideal U’
with J C U’ C U. The intersection of two different J-minimal left ideals U and V' contains J. If .J
is properly contained in the left ideal U NV, then, one of the left ideals U or V' is not J-minimal,
because J C (UNV)C U or J C(UNV) C V. Consequently, UNV = J. If J =, we shortly say

minimal instead of ) -minimal.

Lemma 4.2 Assume a non-emply, finite semigroup Q and an ideal J # (). Then, the union of all
J-minimal left ideals yields an ideal of Q).

Proof. There is at least one left ideal properly containing J, namely @ itself. Hence, there is also
some smallest left ideal which contains J properly.

Let J' be the union of all J-minimal left ideals. Then, J’ is a left ideal with J C .J’. We have
to show J'Q C J'. Tt is sufficient to prove that for every J-minimal left ideal I, and for every
element ¢ € @, the set J U Lg yields J or some J-minimal left ideal (and thus, J U Lg C J').
Just assume J C (JULg).

Because L is a left ideal, we have QL C L. Thus, we have () Lg C Lg. Therefore, Lg and JU Lg
are left ideals of Q.

Now, we show by a contradiction that J U Lg is J-minimal. Just assume a left ideal K such
that we have J C K C (JULg). We define a set K’ by K' := {& € L|xzq € K}. We show the
proper inclusions J C K/ C L.

We have J C L and Jg C J C K. Hence, we have J C K'. We show that the inclusion J C K’
is strict: There is some p € K \ J. Then, p € Lq. Hence, there is some p’ € L with p = p'q.
We have p’ € J, because J is an ideal and p = p'q ¢ J. However, p' € K'.

The inclusion K’ C L is obvious. There is some r € (J U Lg) \ K. Then, we have r € Lq\ J.
Thus, there is some 1’ € L with ¢ = r. Then, v’ ¢ K', i.e., we have K’/ C L.

We show that K’ is a left ideal. Just assume some x € K’ and some y € (). We have yx € L,
because z belongs to L which is a left ideal. Further, we have yzq € K, because z¢q belongs to the
left ideal K. Thus, we have yz € K'.

Hence, the set K is aleft ideal with J C K’ C L, i.e., L is not J-minimal. This is a contradiction,
such that the assumed left ideal K does not exist. Thus, J U Lg is a J-minimal left ideal. a

Now, we can give the classification of finite semigroups:



Proposition 4.3 FEvery non-empty, finite semigroup () satisfies one of the following assertions:
(A) @ has not any proper left ideal.

(B) @ has two proper left ideals U, V such that UUV =@ and U NV is an ideal of Q.

(C) Q has an ideal J such that Q\J yields a singleton {r} with r* € J.

(D) Q has a proper ideal J and a subsemigroup H such that JNH =@ and JU H = Q.

Proof. Assume that () does not have any proper ideal. If () does not have a proper left ideal, it
satisfies assertion (A). If @ has a proper left ideal, we apply Lemma 4.2 with J = (). The union of
all minimal left ideals of @) yields an ideal of (). Because () does not have proper ideals, the union
of all minimal left ideals of @) yields @) itself. Now, assume that () has exactly one minimal left
ideal. Then, this minimal left ideal is ¢) itself. Thus, the semigroup ¢} does not have proper left
ideals, which is a contradiction. Hence, ¢) has at least two minimal left ideals. Let U be a minimal
left ideal and let V' be the union of all other minimal left ideals of ¢). Then, U and V are two
disjoint left ideals and their union yields €. Thus, @ satisfies assertion (B), because the empty set
is an ideal.

Now, assume () has a proper ideal. Let J be a proper ideal of ¢} such that there is not any ideal
J' with J C J' C €. Such an ideal exists because @ is finite and @ has at least one proper ideal.
We show that @ and J satisfy assertion (B), provided that they contradict assertion (C) and (D).

Since J is proper, there is some r € Q\J. Then, @\J = {r} implies assertion (C) or (D),
depending on whether 72 € J or 72 = r. Hence, Q\.J contains at least two elements.

Because @\ J is not a subsemigroup of @, there are p,q € Q\J such that pg € J. We have

JUQq=7U(JU{p}uQ\I\{p})g =7 UJqU {pg} U (Q\J\{p})g. The sets Jq and {pq}
are contained in J such that we have JU Q¢ = J U (Q WA {p})q.

Now, we have [JUQq| = |7 u(@\J\{pha| < |J|+]@\7\ {1 < |I]+]@\7\ (03]
We have p € @\ J, and thus, J‘—I—‘Q\J\{p}‘ < ‘J‘—I—‘Q\J‘ = ‘Q‘ Hence, we have ‘JUQ(]‘<‘Q‘.

Therefore, we have the proper inclusion J U Qq C Q.

We show the existence of some left ideal U’ of @ with J C U’ C ). Assume that Q¢ is not a
subset of J. Then, the union J U Qq yields the desired left ideal U/'. Assume that Q¢ C .J. Then,
the set JU{q} is the desired left ideal U’. The inclusion (JU{q}) C @ is proper since ) \ J contains
at least two different elements.

Now, we can apply Lemma 4.2. The union of all J-minimal left ideals of @) yields an ideal. This
ideal properly contains J. The only ideal properly containing J is ) itself. Hence, the union of all
J-minimal left ideals yields @) itself.

Assume there is exactly one J-minimal left ideal. Then, this J-minimal left ideal is ) itself.
However, () cannot be a J-minimal left ideal, because we have shown that there is some left ideal
U’ with J C U’ C Q. Therefore, there are at least two different J-minimal left ideals.

Now, let U be a J-minimal left ideal and let V' be the union of all other J-minimal left ideals.
Then, U and V' are the desired left ideals in assertion (B). 0

Every proper ideal is also a proper left ideal. Thus, if some non-empty, finite semigroup ¢) satisfies
one of the assertions (B), (C), or (D), then it cannot satisfy assertion (A). However, the assertions
(B), (C), and (D) are not exclusive.



4.2 Product Automata

In this part, we deal with a special kind of automata. We adapt the notion of IM-automata from
Part 2.3. We use ideas from the proof of Mezei’s Theorem (cf. [1, 9]).

Assume four semigroups 5y, 55,.57, and S5. Assume two homomorphisms g : §; — 57 and
h: S, — 55. We define a homomorphism (f) from §; x 5y to 5] x S componentwise: For every

<§) €5 x5, (9) <§) yields (fbgg) The homomorphism (Y) is a surjection from S; x 5y to S x S
if and only if both g and h are surjective homomorphisms from 5, to S] and 5, to 5%, respectively.
Whenever we deal with a cartesian product of two semigroups 57 and 53, we denote the canonical
projections by II; : 51 X 89 — 57 and 15 : 57 X S5 — 55. As an exercise, one can verify that the
homomorphisms koIl and Iy o () from §; X 5, to S5 are identical.

We still assume the trace monoids My and My from the beginning of Section 4. Note that the
projection Il (resp. II3) from My X My to IMy (resp. IMy) is 114, (resp. 1l4,).

A product automaton A over IMy x M3 is a quintuple [P, R, g, h, F|, where

e P and R are non-empty, finite semigroups,
e g and h are surjective homomorphisms g : My — P, h:IM; — R,
e [7is a subset of P X R.

We can regard every product automaton [P, R, g, h, F| as an IMy X IMj-automaton [P X R, ({), F].

A product automaton A defines a recognizable language by L(A) = (%)_I(F). This means that

a trace t € IMy x IMy belongs to L(A) if and only if we obtain a pair in /' when we apply ¢ and
h on the first and second compound of ¢, respectively. Let us assume that L(.A) is closed under
concatenation. Then, because (fb) is a surjective homomorphism, F' is a subsemigroup of P x R.
Similarly, II;(F") and 1l3(#') are subsemigroups of P and R, respectively.

We are going to use product automata to prove assertions on recognizable languages in IM; x M.
Therefore, we have to show that every recognizable language T' C IM; x M4 is the language of some

product automaton.
Lemma 4.4 Assume a recognizable language T C My X M. There is a product automaton for T .

Proof. By Mezei’s Theorem, there is some integer n and recognizable languages T1,...,7T, C My
and Ty, ...,T) C My such that

T Thn

T = (Ti/)U---U (T,g)

Fori e {1,...,n},let [P, g;, F}] (vesp. [R;, hi, F]]) be an automaton for T; (resp. T7). We can freely

assume P; = Pj, g; = g;, R; = R;, and h; = hj for any 1 <4 < j < n. Further, we can assume that

g1 and hy are surjective homomorphisms from IM; to P, and M3 to Ry, respectively. Then, T is

the language of the product automaton [Py, Ry, g1, hy, F] with F = (?1,) U...u (?}) ]
1 n

We examine connections between product automata and ideal theory. Assume a recognizable
language T" C My x IM3 which is closed under concatenation. Assume further a product automaton
A =[P, R,g,h,F]for T. Let us denote Il3(#) by Q. Then, @ is a subsemigroup of R. We can
verify that Q = hoIly(T) = T 0 (§)(T'). Assume some subset W C Q. We define a language Ty by

We obviously have Ty, C T. Some trace ¢ € IM; x IMy belongs to Ty if and only if we have
(”Z)(t) eFn(Pxw).



Proposition 4.5 Assume a non-empty, concatenation closed language T C MMy x My, Assume
a product automaton A = [P,R,g,h, F] for T'. Let Q) denote 1l3(F). For every subset W C Q,
the product automaton Aw = [P, R,q,h, F'0 (P x W)] defines Tw. If W is a non-empty subset
(resp. subsemigroup, left ideal, ideal) of Q, then the language Tw is a non-empty subset (resp.
subsemigroup, left ideal, ideal) of T'.

Proof. The quintuple Aw is a product automaton. For every ¢t € Ty, we have <%) (t) € F and
(7)(t) € P x W. Thus, we have ({)(t) € F N (P x W). Hence, Ty C L(Aw).

Conversely, let t € L(Aw). Then, we have ({)(t) € F and (§)(t) € (P x W). Hence, t € T and
holly(t) € W, ie., t € Tyw. Thus, L(Aw) C Tw.

Let f: T — () be the restriction of h oIl to T. Then, f is a surjection from T to ) and
Tw = f~HW). If W is a non-empty subset (resp. subsemigroup, left ideal, ideal) of @, so is its
preimage Ty, under f. a

4.3 A Special Case of Proposition 4.1

In the following three parts, we prove Proposition 4.1: Assume some concatenation closed, recog-
nizable language T C IMi" X IM;' The set of generators of T has the FPP.

Proposition 4.1 is obviously true if the language T is empty. Thus, we just need to prove it for
non-empty languages T'. The general structure of the proof is the following: By Lemma 4.4, there
is a product automaton A = [P, R, ¢, h, F] for T. We denote 1I3(F') by Q. Because T' is non-empty,
() is non-empty. We apply Proposition 4.3 on ). Therefore, the proof of Proposition 4.1 consists
of four cases. In this part, we deal with the case that ) does not have proper left ideals. After
that, in Part 4.4, we deal with the cases that @ fulfills one of the assertions (B), (C), or (D) in
Proposition 4.3. We will do this by an induction on the number of elements of ¢). In Part 4.5, we
summarize the results to prove Proposition 4.1. Now, we consider case (A):

Proposition 4.6 Assume a non-empty, concatenation closed language T C IMi" X IM;' which is
recognized by a product automaton [P, R,q,h, F|, such that the semigroup 1l3(F) does not have
proper left ideals. Then, Gen(T') has the FPP. Moreover, we have T = Gen(T )b+,

At first, we need a technical result on finite semigroups without proper left ideals:

Lemma 4.7 Assume a non-empty, finite semigroup ) which has not any proper left ideal. Then,
for every elements p,p',q € Q, the equality pq = p'q implies p = p’.

Proof. Just assume p,p’,q € () such that pg = p’q and p # p’. We have QQ C ), and thus,
Q) Qq C Qq such that Qg is a left ideal. Further, Q¢ yields a proper left ideal of (), because the
result of the product pg “occurs twice”, such that at least one element of () cannot occur in ¢J¢. O

Now, we introduce the notion of the most oblique cut. We assume alanguage T as in Proposition 4.6.
Assume some traces t,11,s1 € T. We call the pair (#1,s1) a most oblique cut of t if and only if
t = ty1s1 and for every traces #], s} € T with t = ¢{ s} we have either

o [IL(#1)] > [y(t1)] or
o [IL(#)] = [Ma(t1)] and  [Hz(#))] < [Ta(ty)].

Intuitively, we can understand the definition as follows. We try to factorize ¢ € T into two traces
t1,s7 € T. We try to do this in a way that the first compound of ¢; is small, but, the second
compound of #; is big. A most oblique cut of some trace t € T exists if and only if ¢ & Gen(T).



Lemma 4.8 Assume t,t1,51 € T such that (t1,s1) is a most oblique cut of t. Then, t; € Gen(T).

Proof. Just assume that ¢4 ¢ Gen(7"). Then, there are two traces t14,%15 € T such that ¢t = t1,11s.
We can factorize ¢ into #1, and #1;51. We have t14, t1p51 € T'. Further, 1I1(¢1,) contains properly
less letters than Il;(¢1), since II;(#15) # A. This contradicts that (#1,s1) is a most oblique cut. O

We can factorize every trace t € T into generators by successive most oblique cuts. We factorize
t into a generator ¢ and a trace sy in 7. Then, we factorize s; by a most oblique cut and so on,
until a most oblique cut yields two generators. This iterative factorization terminates, because “the
remaining part of t” becomes properly shorter in every most oblique cut.
Proof of Proposition 4.6. Assume some trace ¢ € 1. We denote by () the semigroup II3(F).
We show that a factorization of ¢ by successive most oblique cuts yields a factorization of ¢ into at
most |@Q| + 1 generators of T'.

We factorize ¢ into generators of T' by successive most oblique cuts. We obtain an integer
n > 0 and generators ty,...,t, of T such that ¢, ...t, = t. For every ¢ € {1,...,n — 1}, the pair
(tiytig1 .. .1,) is a most oblique cut of ¢;...%,.

We introduce two notations. For every ¢ € {1,...,n}, we define u; = II1(¢;) and v; = 1l2(;),
i.e., we have t; = CfZ) For every i € {1,...,n}, we have h(v;) € Q, because ty,...,t, € T.

We show by a contradiction that n < |@Q|+ 1. Assume n > |@Q] + 1.

By h(vig1...v,) = h(vig1) ... h(v,) € Q for 1 < i< nand n—1 > |Q], we get the existence of
1 <4< j<nsuch that A(vigr...v) = h(vj41 ... 05).

Then, h(v;) - Mg ... vn) = M. ..v) = h(v; ... v5) -g h(vj41 ... vy). Since @ does not have
proper left ideals, we can apply Lemma 4.7 and get h(v;) = h(v;...v;).

By t; € T', we have (7) @Z) € F. Because of h(v;) = h(v; ...v;), we get (7) (UZuZU]) € F, and thus,

(,.¢ ) € T. Similarly, t;1q...t, € T implies (7) (Ziﬂjj‘ﬁ) € F. By h(vig1...v) = h(vjq1...0,),

UZU]

we have ({)(i+1-"") ¢ '/ and hence, (z;jlju”) eT.

vj+1...vn . Un

Therefore, (" ) and (2211122) are a factorization of ¢;...¢, into two traces from 7. Since
iV i1
(tiytig1 .. .1,) is a most oblique cut of ¢ and 1I4 (U,“ivl) = II1(¢;), we obtain |H2(U,“ivl)| < |2(t)].
iV it
Hence, |v;...v;| < |v;]. Because v; is a prefix of v;...v;, we have |v;...v;| = |v;]. Consequently,
vi41 . ..v; = A. This is a contradiction, because every trace in 7" contains at least one letter from As.
Finally, our assumption n > |@] + 1 lead us to a contradiction. Hence, we have n < |Q|+ 1. O

The method of most oblique cuts is a very suitable method to prove Proposition 4.1 in the case that
the semigroup ¢ does not have proper left ideals. Let us consider an example where this method
fails: Let T = (3) U { (g;i) |n>2,m>2} C a* xb*. The language T satisfies all presumptions of
Proposition 4.1. However, we cannot prove that Gen(7') has the FPP by factorizations with most
oblique cuts. For every n > 1, the application of successive most oblique cuts factorizes the trace
(Z:) € T into (3)...(}), i.e., we obtain n generators. Hence, the number of generators which we

b
obtain by successive most oblique cuts is unlimited.

4.4 The Remaining Cases of Proposition 4.1

We prove the remaining cases of Proposition 4.1 by an induction on the number of elements in ).
In the case that @ is a singleton, we already know by Proposition 4.6 that Proposition 4.1 is true
for T', because the singleton semigroup does not have proper left ideals. We show:



Proposition 4.9 Letn>1. Assume that Proposition 4.1 holds for every non-empty, concatenation
closed language T' C M x M which is recognized by a product automaton [P', R',g',h', F'] with
|TIy(F")| < n. Let [P, R, g,h, F] be a product automaton for a language T such that

e T is a non-empty, concatenation closed language in IMi" X IM;',

o |II;(F)|=n, and,

o 1I;(F) satisfies one of the assertions (B), (C), or (D) in Proposition 4.3.
Then, Gen(T') has the FPP.

Proof. We denote () = Il(F). If () satisfies assertion (B), then we denote J = U N V. Hence,
there is an ideal J of () regardless of which assertion of (B), (C), or (D) @) satisfies.

We examine the language Ty = {t € T | holly(t) € J }. If J = (), then Ty = . Now, assume
that J # (. Since the ideal J is a subsemigroup of @, by Proposition 4.5, Ty is concatenation
closed. Further Ty is an ideal of T'. Also by Proposition 4.5, Ty is recognizable. More precisely, the
product automaton Ay = [P, R,g,h, F'N (P x J)| defines T;y. Clearly, lIo(F N (P x J)) yields J.
We have |IIo(F N (P x J))| < |Q] = n. By the inductive hypothesis, there is some integer [; such
that 7y = Gen(Ty)1b.

We show in two steps that Gen(7') has the FPP: At first, we show that there is some [ > 0
such that T\ Ty C Gen(T )", Then, we show Ty C Gen(T)!-3!b.

Fact 4.10 There is an integer | > 0 such that T\T; C Gen(T ) !,

Note that if we factorize any trace t € T'\Ts into some traces of T, then not any factor does belong
to the ideal T;. Otherwise, ¢t would belong to Ty. To prove Fact 4.10, we branch into three cases
depending on which assertion () satisfies.

At first, assume that () satisfies assertion (C). Then, we set { = 1. We show 7'\ Ty C Gen(T')!
by a contradiction. Assume some ¢t € T\T; with t & Gen(T), i.e., there are 1,1, € T with t = t115.
As mentioned above, we have ty,ty & Tj. Thus, holly(t1) = holly(t3) = r and holly(tyty) = 7 € J,
i.e., t € Ty. This is a contradiction.

Assume that () satisfies assertion (D). By Proposition 4.5 (as for 1), Ty is a non-empty,
recognizable, and concatenation closed subset of T. Moreover TyNTy = 0, i.e., T\T; = Ty. By the
inductive hypothesis, since |H| = |Q| — |.J| < n, there is an [ > 0 such that Ty = Gen(Tg)"#.

We have Gen(Ty) C Gen(T'). Indeed, assume some ¢ € Gen (1) with ¢ € Gen(T"). Then, there
are t1,ty € T with ¢ = t1t3. As above, t1,13 & Ty, i.e., 11,13 € Ty. This contradicts t € Gen(Tp).
Thus, we have Ty = Gen(Ty )" "% C Gen(T)"'# and Fact 4.10 is true for [ = [g.

At last, assume that @ satisfies assertion (B). As in the previous cases, Ty and Ty are non-
empty, recognizable, and concatenation closed subsets of T'. Further, Ty and Ty are left ideals
of T'. By the inductive hypothesis, since |U| < |Q] and |V| < |@Q], we have two integers {7, ly > 0
such that Ty = Gen(Ty)b'v and Ty = Gen(Ty )bV,

We have UUV =@ and UNV = J. For every ¢t € T, we have holl(t) € U or holly(t) € V.
Thus, Ty UTy = T. Further, for every t € T, we have h o Il3(¢) € J if and only if h o Ily(t) € U
and h o lly(t) € V. Hence, we have Ty N1y = 1T}.

To show Fact 4.10, it suffices to show Ty\T; C Gen(T)"lvlv+iu Then, we accordingly obtain
Ty \T; C Gen(T)l""’lUlV"'lV such that Fact 4.10 is true for | = lyly + max({y, lv).

We show Ty \ Ty C Gen(T)"lvlvtiu Assume some t € Ty \T).



Case 1: t € Gen(Ty)\ 1
Clearly, t ¢ Ty. If we factorize ¢t into some traces in T, no factor belongs to the ideal Ty, i.e.,
no factor belongs to both Ty and Ty .

The trace ¢ is not necessarily a generator of 7. If t € Gen(7T'), then we are done. So assume
that ¢t & Gen(T'). There are some z € T" and some y € Gen(7') with 2y = t. Assume y belongs
to the left ideal Ty. Then, zy € Ty. This is a contradiction. Thus, y € Ty. Assume o € Ty.
Then, zy =t contradicts ¢t € Gen(7y7). Hence, 2 € Ty and y € Ty.

We deal with z. There are some k <ly and z1,...,2; € Gen(Ty) such that ...z = =.

We show by a contradiction that @q,...,2; € Gen(7'). Just assume some ¢ € {1,...,k} such
that z; can be factorized into two traces z},z) € T. Assume that 2! € Ty, Then, z; € Ty,
which is a contradiction. Hence, 2} € Ty. Now, assume that 2} € Ty. Then, 2, is not a
generator of Ty. Thus, we have 2! € Ty and 2 € Ty. However, this yields a contradiction:
We factorize t into zy...2;_jx! and 2z, ...2,y. Both factors belong to Ty, because x}

and y belong to the left ideal Ty7. Hence, ¢ ¢ Gen(7yr) which is a contradiction.

The assumption that some trace among xq,...,z is not a generator of T yields a contra-

diction. Thus, we have by zq,...,2%,y a factorization of ¢ into generators of T'. Hence,
t € Gen(T)\ v,

Case 2: t € Ty\Ty
There are a k < iy and t1,...,t; € Gen(1y) such that ¢;...t; = t. The generators t1,...,1%

cannot belong to T;. By case 1, we have ty,...,{; € Gen(T)lv"'le"'l, Because k < I/, we
have t € Gen(T)lv'"lelV‘HU‘

This completes the proof of Fact 4.10. If J = (§, then T = T \ T; and Fact 4.10 just proves that
Gen(T) has the FPP. If J # (), then it remains to prove the following fact:

Fact 4.11 If Ty # 0, then we have Gen(Ty) C Gen(T )\ and thus, Tj C Gen(T )3,

For the proof of this fact, assume some ¢t € Gen(7y). Assume traces t1,%3,t3 € T U A such that
t1t2t3 = t, tl,tg € (T\Tj) U A, and tz € TJ U A.
There are traces t1, 1y, t3 which fulfill these conditions: ¢ty = A, t3 = ¢, t3 = A. However, we choose
a triple ty, 1y, ¢35 such that |t3] is minimal.
We have t1,t3 € Gen(T)% ! If t; € Gen(T)U A, then ¢t € Gen(T)b2+1 C Gen(T)t3L
If t2 ¢ Gen(T) and t, # A, we can factorize #, into t4t] with t},¢) € T. Observe that we cannot
have t,t5 € Ty and t§t; € Ty, because this contradicts ¢t € Gen(Ty). If both t;t, and t}t5 belong
to T\Ty, then t € Gen(T)'2L If ¢,t), € T\Ty and t4t; € Ty, then t§ & Ty, otherwise ¢,t}, 1§, and
t5 contradict the choice of ¢, t,, t5, because [t]| < |t,]. Thus, t1t5, ¢ and t5 belong to T'\ Ty and
t € Gen(T)%3!. Similarly, if t,, € Ty and t§t; € T\ Ty, we also have t € Gen(T)"3.
Therefore, we have Gen(7;) C Gen(7)'3 and thus, T C Gen(7)'3. Finally, Fact 4.10
and 4.11 together show that 7' C Gen (7)Y i.e., Gen(7T) has the FPP. o

4.5 Completion of the Proof

Proof of Proposition 4.1. The proposition is obviously true if 1" is the empty set. As a conclusion
of Proposition 4.6, Proposition 4.1 holds for every concatenation closed language T C IM{ x M,
if there is a product automaton [P, R, ¢, h, F] for T' such that II3(F') is a singleton.

Assume some integer n > 1. Assume that Proposition 4.1 is true for every concatenation closed
language T’ C IM{ x M7, if there is a product automaton [P, R', g', b, F'] for T with |IIy( F')| < n.



Now, let T be a concatenation closed language in IM] x IM} recognized by a product automaton
[P,R,g,h, F| with 1I3(F) = n. Then, by Proposition 4.3, the semigroup Il3(F') satisfies one of
the assertions (A), (B), (C), or (D) such that we can apply one of the Propositions 4.6 and 4.9,
respectively. a

5 Inductions on Independence Alphabets

5.1 Connections in Non-Connected Monoids

This section is devoted to the proofs of Proposition 3.3 and 3.4. Assume two disjoint trace monoids
IM(Aq, 1) and IM(Aq, I3). We abbreviate them by IM; and Mg, respectively. Further, we denote
IM(Ay, I;)\ A and IM( Ay, I,)\ A by M and IMJ, respectively. Assume a recognizable language
T C My x IM;. We need a particular construction. We denote:

Wr = TE, Tea, (T 0 (MY < M) T4, T, U (T\MEL (T\NE 4,

We have Wr C M x M7 and it is easy to verify that Wi = 7= n (M{ x IMJ ). Hence, we have
T =Tg, UTE,, UWE. Now, we state two facts that give characterizations for the recognizability
of T* and the finite power property of 7.

Fact 5.1 The language T™ is recognizable if and only if T¢ , , TE 4, , and Wi are recognizable.

Proof. Recognizability of T¢ 4 , T¢ 4,, and W7 clearly implies recognizability of their union 7™
Conversely, assume T* is recognizable. Then, Wi = T* 0 (M{ x IMJ), and thus, Wj are recog-
nizable. Further, T¢ 4 and T¢ , are recognizable as we have seen in Part 2.4. a

Fact 5.2 The language T' has the FPP if and only if Tca,, Tca,, and W have the FPP.

Proof. Assume that 7 has the FPP, i.e., assume some integer n such that 7% = 70" As seen
in Part 2.4, Tc4, and Tcy, have the FPP. Now, let ¢ € W; C TT. There exists an integer m
with 1 < m < n and traces t1,...,¢, € (T'\A) such that ¢t = ¢;...%,,. Every t; belongs either to
Tca, UTca, or to TN (MY x M7 ). Let k be the number of traces among ¢y, .. .,¢, which belong
to_IMi" ><_IM§'. Ifk=0,thent=1¢t...1, € Té’Al Té_AQ C Wy. Otherwise, ¢ € W:’ﬁ Consequently,

Wi = W™ ie., Wr has the FPP.
Conversely, assume that Tcy,, Tca,, and Wr have the FPP and let n > 1 be an integer such

* _ p0,...n * _ p0,...n * 0,...,n
that T§A1 = TgA1 , T§A2 = T§A2 ,and W7 = Wy ", We have

0,...,n 10,...,nn 0,...,n 10,...,nn 1,...n 1,...n yeendn
Wr = T T8 (T 0 (T < M) T2 T U (T\N e (T\Ng © 0 1himd,

Then, th — quwwn C 70, (dnt1)n Hence, we have T* C TO,...,(4n-I—1)n7 ie., T* = T0,.,(4n+1)n

Proving Proposition 3.3 means to show the equivalence of the following four assertions, provided
that both the star problem and the FPP are decidable in both IM; and IMs:

1. The star problem is decidable in My x M.

2. The star problem is decidable for recognizable subsets of M x IMJ.
3. The FPP is decidable for recognizable subsetls of IMi" X IM;'

4. The FPP is decidable in IM; x IMs.



Proof of Proposition 3.3. We have (2)&(3) by Proposition 3.2. Further, we have (1)=-(2) and
(4)=(3), because (2) and (3) are special cases of (1) and (4), respectively.

To show (2)=(1), assume some recognizable language 7" C IM; x IM;. We apply Fact 5.1.
We determine whether T, and T¢, are recognizable. If one of these sets is not recognizable,
then we are done. If both TZ, and TZ, are recognizable, then Wy is also recognizable. Then,
we can decide whether W7 is recognizable, because we presume (2).

We can show (3)=-(4) in the same way by Fact 5.2. o

Now, we prove Proposition 3.4. Assume some trace monoid IM(A, I') with a decidable star problem
and a decidable FPP. Further, assume some letter b ¢ A. We denote IM(A, ) and IM(A, I)\ A by
M and IMT, respectively. To show Proposition 3.4, we have to show that both the star problem
and the FPP are decidable in IM x b*.

In the special case that IM is a free monoid, Proposition 3.4 was already obtained by P. Gastin,
E. Ochmaiski, A. Petit, and B. Rozoy [11]. G. Richomme adapted it to arbitrary trace monoids IM
with a decidable star problem and a decidable FPP [29]. We follow [29], but we simplify the proof
by applying Proposition 3.3. Indeed, to show Proposition 3.4, we just need to show that the FPP
is decidable for recognizable languages T C IM* x b+,

For any language 77 C IM™ x {b}*, we denote by Inf(T) the set {u € I4(T) | (;») € T for
infinitely many integers m}. Observe that Inf(7") is recognizable if T" is recognizable. Indeed, in
this case, we can apply Mezei’s Theorem and find some recognizable subsets L;,..., L, C IM*
and some recognizable sets L,..., L! C b* such that T is the union of L; x L’ for i € {1,...,n}:
Inf(T') is then the union of the L; for i such that L/ is infinite, i.e., Inf(7") is recognizable. We adapt
Proposition 4.3 in [11]:

Lemma 5.3 Let T C IM™T x {b}T be a recognizable language. The set T has the FPP if and only
if 1L4(T) has the FPP and there exists an integer s such that 1L 4(T)° C I A(T)*Inf(T)I4(T)*.

Proof. At first, we consider some preliminary facts. The lemma is true for 7' = () such that we
can assume that 7" # (. Consider an automaton [@,h, F] recognizing T. Consider the sequence
h(i), h(z), h(bé),. ..By pumping arguments, there is some integer 1 < m < |@| such that for every
integer k > |Q|, we have h(bkim) = h(bAk) = h(bkim). Consequently, for every v € IM and every
k>1Q|, (%) €T implies (") € T and (%) (;m)* € T. Then, u € Inf(t).

Assume some u € I4(T) \ Inf(T'). There is some k > 0 with (%) € 7. We also have k& < |Q|.
Otherwise, we could conclude by pumping that u € Inf(¢). Now, the following fact is immediate:

Fact 5.4 For every u € IL4(T'), there exists an integer 1 < k < |Q| such that (}) € T.
Moreover, if u € Inf(T), then (}}) (b?n)* cT.

Assume that T has the FPP, i.e., there is some integer n such that 7% = T%". Then, 1 4(T)
also has the FPP. We show that I14(7)* C IL4(7)*Inf(T)I14(T)* for s = n|@Q| + 1. Assume
some u € I4(T)°. There are traces t,...,t; € T and some v € b* such that ¢;...t5 = (:j)
We have [v] > s > n|Q|. Because T has the FPP, we can factorize ¢ into traces #{,...,t, €
for some n’ < n. Because |v| > n|Q|, there is some trace t; among t},...,t/, with [IL;(¢})] > |Q].
Because of the pumping arguments mentioned above, we have 1l 4(¢;) € Inf(7"). Then, we have
u = HA(tll .. .t;»_l)HA(t;»)HA(t;»_I_l .. .t%/) € HA(T)*Inf(T)HA(T)*.

Conversely, assume that T[4(T)* C I4(T)% " and T 4(T)* C Ma(T)*Inf(T)I4(T)* for some
integers n > 1,s > 1. We have I14(T")* % C IL4(T)*Inf(T)I14(T")*. Hence, we can freely assume
that s > (2n 4 1)|Q|. We show another fact:



Fact 5.5 For every t € T?, there is some trace t' € TV571 such that T 4(t) = T 4(¢'),
Ity < [¢']5, and t'(;5,)* C THs=1,

Let write ¢ = (V) for some v € IM* and v € b™. Note that |v] > 5. We can factorize u
into wuq, ug, us with wq,us € I4(T)* and ug € Inf(7T'). Because 114(7") has the FPP, we
have uy € I 4(7T)% ™. Consequently, there is some trace t; € T% " with Il 4(#1) = u;.
By Fact 5.4, we can choose t; such that |II(#1)] < n|@|. Accordingly, there is some
t3 € T " with I 4(t;) = uy and |I[;(¢3)] < n|@|. Further, there is some trace t, € T
such that Tl4(t2) = ug, [I(t2)] < |Q|, and t2 (b?n)* C T. Then, tityt3 is the desired
trace t’, above.

Now, we show that 7 has the FPP. We show that every trace in T("*1)s helongs to 71 (m+1)s=1,

Just assume some trace ¢ € T We can factorize ¢ into to, ..., ¢, € T°. Let o, -, 10 be the
traces which we obtain by applying Fact 5.5 on g, ..., ;. For 0 <1i < m, we define n; = ||, — [t}]s.
Consider the integers ng, ng+n1, ..., 2g+...+n,;,. There are two integers 0 < ¢ < 7 < m such that

no+...+n; and ng+...+n; are equal modulo m. Hence, n;41+...+n; is a multiple of m. Thus, we
have t;41...1; € t;»_l_l .. .t;« <b/’\")* C Tle(i=0(s=1), Consequently, t = t;...t, € Tles(mtl)s=1 g

Based on this characterization, we can prove Proposition 3.4 (following some ideas of [11]).

Proof of Proposition 3.4. By Proposition 3.3, it suffices to show that we can decide the
FPP for recognizable languages T C IM™T x bT. It suffices to show that the characterization
in Lemma 5.3 is decidable. Assume some recognizable language 7 C IM™ x bt. At first, we
determine whether I14(7') has the FPP. If this is not the case, we are done. Otherwise, we
know that I14(7)* is recognizable, and we still have to show how to decide whether there is
some integer s with 114(7)° C Il4(T)*Inf(T)Il4(T)*. As already mentioned, the set Inf(7') is
recognizable. Hence, IT4(7)*Inf(T)I4(7)* is recognizable. Assume some automaton [Q,h, F]
for K = MM \ IL4(7)*Inf(T)I4(T)*. If we have IL4(T)IHY C 114 (T)*Inf(T)IL4(T)*, then |Q| + 1
is the desired integer s. Conversely, assume I14(T)I2H+Y ¢ TI4(T)*Inf(T)T4(T)*. Then, there
are traces uy,...,ug|41 € H4(T) such that uy...u 941 € K. There are two integers 1 < i <
J < |Q| + 1 such that h(uy...w;) = h(uq...u;). Then, h yields the same value on every trace in
uy i (Uigy - ug)™ We have wg oo (wigy - ooug ) (U4 - ugp41) € K dee., none of these traces
belongs to ILo(T)*Inf(T)I14(T)*. On the other hand, we have uy ... u;(wip1 ... u;)" wjy1 ... w41 C
HA(T)|Q|+1+(”_1)(j_i) for any integer n. Consequently, the desired integer s exists if and only if
M4 (T)CHY C T4 (T)*Inf(T)I4(T)*. We can decide this condition by standard techniques of
automata theory. a

5.2 Connections in Connected Monoids

This section is entirely and uniquely devoted to the proof of Proposition 3.5: Assume a connected
independence alphabet (A, I). The star problem (resp. the FPP) is decidable in M(A, I') if and only
if it is decidable in (B, I) for every strict subset B C A.

Obviously, the decidability of the star problem (resp. the FPP)in IM(A, I') implies its decidabil-
ity in IM(B, I) for every subset B C A. Now, consider the other direction. Assume that the star
problem (resp. the FPP) is decidable in IM(B, I') for every strict subset B C A. Further, assume a
recognizable language 7' C IM( A, I'). We can decide the star problem (resp. the FPP) in two special
cases. Firstly, if there is some letter in A which does not occur in any trace in 7', then we can
decide whether T™* is recognizable (resp. T" has the F'PP), because T'C IM(B, I) for some B C A.
Secondly, if every trace in T’ contains every letter of A, i.e., if T_4 = T, then T* is recognizable by
Proposition 2.2, and we can decide whether T" has the FPP by Proposition 2.3.



The idea is to use the decidability in these special cases to show decidability for arbitrary
recognizable language T C IM(A, I). To achieve this, we recall a construction! by G. Pighizzini [28].
We show by Lemma 5.6 and Fact 5.7 two technical results. Then, we state Lemma 5.8 and 5.9
which give characterizations for recognizability of T* and the finite power property of T. At last,
we show that these characterizations are decidable.

G. Pighizzini called a composition of A a sequence aq,...,as, s > 1 of non-empty, mutually
disjoint subsets of A whose union yields A. Clearly, we have s < |A|. Let Comp(A) denote the set
of all compositions of A. For T"C IM(A, I), let X = (T*)c4 and

Zr = U(oq,...,ozs)EComp(A)XYquYozg .. -XYozSXa

where Y, = Us,cBcal=p for 1 <i < 5. Note that alph(t) = A for every trace t € Zr. Hence, Z7
is a connected language, since (A,I) is connected. G. Pighizzini proved that (T*)=4 = ZF [28].
Here, we need a slightly stronger result, because we are not only interested in the star problem,
but also in the FPP.

Lemma 5.6 For any T CIM(A,I)andn > 1, (1T")=4 C Zilr,...,n.

We prove this lemma by G. Pighizzini’s proof for (T*)=4 = Z7.

Proof. lLet 7 = Zp and t € (T")=4: t = titz2...t, with ¢; € T and alph(titz...t,) = A.
If n = 1 then t € Z. Assume n > 1 and for every integer m, 1 < m < n, (T™)=4 C Zlm,
Let denote by ji,j2,. ..,k the integers ¢ such that alph(ty...t;) # alph(t1...t;—1) and further, let
a, = alph(ty ...t; )\alph(ty...t; _1) for 1 < r < k. By construction, if r # /, then a, N,y = 0
and, since t;...t;, 1 = A, U¥_ja, = alph(t;...t;,) = A. So (a1,...,a;) is a composition of A.
Observe, A € X and (since for all » € {2,...,k}, alph(t;, _,41...t;, 1) CA) L5, _41...4;,-1 € X.
Moreover, since for every r € {1,...,k}, a, C alph(t; ) C A, we have ¢; € Y, . Therefore,
ty...t, € XY, XY,,...XY, CZ. Ifalph(tj41...1,) C A, then tj,41...t, € X and t € Z.
On the other hand, if alph(t;, 41...1,) = A, then since 1 < j; < n — 1, by inductive hypothesis,
L+l ...ty € ZLn=ik and thus, t € Z 7V o=k C gl a

Now, using the following fact, we can prove two characterizations.

Fact 5.7 If T is a recognizable subset of a connected trace monoid M(A,I) and if for every strict
subset B C A, TZ g is recognizable, then Zr is recognizable.

Proof. Indeed, firstly X = (T*)c4 = UpcaTlp is recognizable. Further, for every subset B C A,
T_p is recognizable, and thus, for every subset ' C A, Yo = UccBcal=pg is also recognizable.
Since Comp(A) is finite, it follows that Zz is recognizable. 0

Lemma 5.8 Let IM(A, ) be a connected trace monoid. Let T C IM(A,I) be a recognizable set.
The set T is recognizable if and only if for every strict subset B C A, TZ g is recognizable.

Proof. If T™ is recognizable, then we have already seen in Part 2.4 that for every strict subset
B C A, TEp is recognizable.

Conversely, assume that for every strict subset B C A, TZp is recognizable. By Fact 5.7,
Z7 is recognizable. Moreover, Zr is connected such that by Pro_position 2.2 Z% and Z}' =77\ A
are recognizable. It is easy to verify that ZF C (TF)=4, and by Lemma 5.6 it holds (T+)=4 C Z}.
Hence, ZF = (T1)=a, and thus, T* = (T*)ca U Z£. Consequently, 7™ is recognizable. O

!For the same purpose, we can also consider a similar construction introduced in [29]



Lemma 5.9 Let IM(A,I) be a connected trace monoid. Let T C IM(A,I) be a recognizable set.
The set T has the FPP if and only if for every strict subset B C A, Tcp has the FPP and Zt has
the FPP.

Proof. Assume 7 has the FPP, i.e., we have T* = T%" for some integer n. We have seen
in Part 2.4, for every subset B C A, Tcp has the FPP. Moreover, using Lemma 5.6, we have
ZF C(T")=n C (U Ti)oy = Uy (TV)=p C UL, Zbr' € Zh" Hence, Z3 = 29", ie., Z1
has the FPP.

Conversely, let m be an integer such that Z; = Z%'"’m and for every strict subset B C A,
TEg = Tg’é"m. Let X = (T*)ca. Observe X C T%™. Moreover, for every subset « C A, Y, C T
and then Z7 = Ulan,are)€Comp(A) X Yar X Yo o . XVa, X C Uy asyeComp(a) T CFI™ 2 Since
for (a,...,a;5) € Comp(A), we have 1 < s < |A|. If we note k = (|A| + 1)m + |A|, then we have
Zp CTY+* Now,let t € T+. If alph(t) C A, t € X C T If alph(t) = A, from Z} = (T*)=4,
te zf =2y ™ CThmk Thus, T* C T ie., T has the FPP. a

Finally, we are able to prove Proposition 3.5.

Proof of Proposition 3.5. Let IM( A, I) be a connected trace monoid. If the star problem (resp.
FPP)is decidable in IM(A, I), then it is decidable in IM( B, I') for every strict subset B C A, because
every recognizable language in IM( B, I') is also recognizable in IM(A, I).

Now, assume that the star problem is decidable in IM(B, ) for every strict subset B C A.
Assume a recognizable language 7" C IM(A, ). By Lemma 5.8, we can decide whether 7™ is
recognizable by deciding whether T¢ p = (Tcp)* for B C A is recognizable.

Assume that the FPP is decidable in IM(B, ) for every strict subset B C A. We apply
Lemma 5.9. We check for every strict subset B C A whether Tcp has the FPP. If one of the
languages Tcpg for B C A does not have the FPP, then T cannot have the FPP. Otherwise, we still
have to check whether Z7 has the FPP. Because TZ g is recognizable for B C A, the language Z7 is
also recognizable by Fact 5.7. Then, we can decide whether Z; has the FPP by Proposition 2.3. O

5.3 Decidability Equivalence

In this section, we prove Theorem 3.1: The star problem is decidable in some trace monoid IM(A,I)

if and only if the FPP is decidable in IM(A, I).

Proof of Theorem 3.1. We prove the theorem by an induction on (A, ). Assume some trace
monoid IM(A, ) with |A] = 1. Then, IM(A,I) is a free monoid in which the star problem is
obviously decidable and the FPP is decidable due to [15, 30].

Now, assume a trace monoid IM(A,I) such that for every strict subset B C A, either both
problems are undecidable in IM(B, I') or both problems are decidable in IM(B, ).

If there is some strict subset B C A such that both problems are undecidable in IM(B, ), then
both problems are undecidable, and thus, equivalent in IM(A, ). Hence, we only consider the case
that both problems are decidable in IM(B, I') for every B C A.

If (A, 1) is connected, both problems are decidable, and thus, equivalent in IM(A, ) by Propo-
sition 3.5. If (A, ) is non-connected, we can split A into two disjoint subsets Ay and Ay such that
Ay X Ay C 1. Then, we can regard IM(A, 1) as IM( Ay, 1) x IM(Az, ). We have by Proposition 3.3
the equivalence of both problems in IM(A, I). O



5.4 Decidability in Trace Monoids without C4

In this section, we want to prove Theorem 3.6: both the star problem and the FPP are decidable in
trace monoids without C4.

Let us recall that a trace monoid IM(A, I') is without C4 if whatever are 4 letters a,b,c,d in A,
M{a,b,c,d}, I)# {a,b}* x {c,d}*. In particular, given any subset B C A, IM(B,I) is also a trace
monoid without C4.

Proof of Theorem 3.6. We prove by an induction on A that the star problem and the FPP are
decidable in trace monoids without C4. For singletons A, IM(A,I) is a free monoid in which the
star problem is obvious and the FPP is decidable due to [15, 30].

Now, assume a trace monoid IM(A, I') without C4. Assume further that both the star problem
and the FPP are decidable in IM(B, ) for every B C A. If IM(A, ) is connected, the result an
immediate conclusion from Proposition 3.5. If IM(A, I) is non-connected, since (A, I) is without
C4, we can write A = B U {b} with b ¢ B and B x {b} C I. Then, the result is an immediate
consequence of Proposition 3.4. a

5.5 A General Characterization

In this section, we prove Proposition 3.7 using results from Sections 5.1 and 5.2: for every recogniz-
able trace language T' in any trace monoid, 1™ is recognizable if and only if Conn(1™)U NConn(T')
has the FPP.
Proof of Proposition 3.7. Let IM = IM(A,I) be a trace monoid. If |[A] < 1, then IM is a
free monoid and each trace of IM is connected. For every recognizable language T" C IM, T™ is
recognizable and Conn(7*) = T™ has the FPP.

Assume |A| > 1 and for any strict subset B C A, the result of Proposition 3.7 is true in IM(B, I).
Let T be a recognizable language in IM and S7 = Conn(7™*) U NConn(7'). Observe S5 = T™*.

1. First consider T is recognizable. By inductive hypothesis, for every strict subset B C A,
Step = Conn(T¢ ) U NConn(Tcp) has the FPP. Let n be an integer such that for every

strict subset B C A, 57__ = Sgg};n. Let t € T* = §%. If alph(t) C A, t € So"  C S%'"’n.

Tcaipn(ty =
Assume alph(t) = A. If (A, 1) is connected, then ¢ € Conn(7T*) C Sp. If (A,I) is non-
connected, then we split A into two disjoint subsets A; and A; with Ay X Ay C I. Let
M= M(A, D\ A, M = M(A3, 1)\ A, and

Wy =Tg 4, TE 4, (T 0 M x M;)TéAl TC4, V(TN /\)JgrAl(T \ /\)JgrA2

as in Part 5.1. From Fact 5.1, W7 is recognizable. Irrom Proposition 3.3, Wy has the FPP,
i.e., there exists an integer m > 1 such that Wj = W%'"’m. Since t € Wy, t € W%'"’m. Since
the subsets STCA1 and STCA2 of 97 have the FPP, we have Wy C S%'"’MTS%'”’M U S?F""’zn.

Since T' C $7, Wr € Sy and ¢ € Sp7 "™ Since (4n+1)m > n, §5 = Sy,
i.e., 7 has the FPP.

2. Conversely, assume that S7 has the FPP. This implies that for every strict subset B C A,
the set S7_, has the FPP, and, by inductive hypothesis, T¢ 5 is recognizable. If (A,[) is
connected, T* is recognizable from Lemma 5.8. Otherwise, Conn(T*) C T% 4. From T* = S7,
and since there exists some n > 1 with 57 C S%'"’n, we obtain T* = (Tg, U T)%". The

4 is also recognizable. Thus, T™ is

c
recognizable. a

language T is recognizable. Since TZ , = UpcaTlp, TE



6 On Some Ideas to Solve the Star Problem

In this section, we examine some conjectures on the star problem and the FPP. First in Part 6.1,
we generalize a result from E. Ochmaiiski [26]. In this paper, the author gave two conjectures.
In Part 6.2, we solve one of them showing the exact frontier of its validity. In Part 6.3, we answer
partially the second conjecture. Finally, in Part 6.4, we examine an idea from M. Latteux.

6.1 Sets Containing only one Non-Connected Trace

Here, we prove Proposition 3.8: In any trace monoid, the star problem and the FPP are decidable
for languages containing at most one non-connected trace. This result was already proved by
E. Ochmaiiski for monoids of the form A* x B* [26]. At first, we adapt this result and its proof to
monoids of the form IM( Ay, 1) X IM(Ag, 7).

Lemma 6.1 Let My = IM( A1, [1) and My = IM(As, I3) be two disjoint trace monoids, Ty C My,
T, € My be languages, and t; € My, to € My be non-empty traces. If both 17 and TS are
recognizable, then the following three assertions are equivalent in My x My

1. (hUTy U (g))* is recognizable.
2. TY Uty and T3 Uty have the FPP.

3. (TWUTy)" U (}) has the FPP.

Proof. We denote T'=T; UT, and t = (g) We have (T'Ut)* = T*(t1™)*. Further, 7% Ut has the
FPP if and only if there exists an integer n such that (T* U t)* = T*(¢T%)%".

(1)=(2) It suffices to show that 77 U t; has the FPP. By Mezei’s Theorem, there are an
integer k, and some non-empty languages Ky,..., Ky C My, and Ly,..., Ly C M, such that
(TUut)y* =Ky x L1 U...UKy x L. Let n be an integer such that for ¢ € {1,...,k} we have some
trace v; € L; with |v;| < n. Assume any trace u € (T} Ut)*. There is some v € My with |v| < n
such that () € (T U1)*. Because |[v| < n and t; # A, we have (1) € T*(tT*)%". Thus, we have
w € Tr(tyT7)0 ", ien, w € (T7 U ty)0m2ntl,

(2)=(3) By hypothesis, there is an integer n > 1 such that (77 U ¢1)* = Ty (t,T5)%"~1, and
(Ty U ty)* = T3(tyT5)% "1, We prove (T U t)* = T*(4T<)%"" =1,

It is sufficient to prove: T*(tT*)"" C T*(¢T*)0n~1,

Let s € T*(tT*)"": s = Il 4, ()4, (s). We factorize I 4, (s) into gy ...y, where y; € T3 (1, TF)"
for 7 € {1,...,n?}. For i € {1,...,n?} there exists some integer k; € {1,...,n}, such that
y; € Ty (t,T7) %, Moreover, since the integers k; can take at most n values, there exists a value
ny € {1,...,n} such that there are (at least) n integers ¢ € {1,...,n?} with k; = ny.

In the same way, Il 4,(t) = 21 ...2,2 with z; € T3 (¢,75)™ and there is an integer ny € {1,...,n}
such that for (at least) n integers ¢ € {1,...,n%}, we have z; € T5(t,T5) 2.

Considering ny integers ¢ with y; € 17 (¢, 17)"~™ (for other ¢, y; € T7(t,17)"), and ny integers
j with z; € T3(t,T5)"™ (for other j, z; € T3 (t,T5)™), we get 1 ...y,2 € Tr(t,Tr)™ =™ and
2 ..zpe € T3t T3)" =mm2, Thus, s € T*(1T*)"" ™72 and since nyny > 1,1 € T=(4T*)0n" =1,

(3)=(1) The sets T} and T are recognizable. Hence, (17UT5)* = T}T5 is recognizable. Because
(ThuTy)*u (g) has the FPP, its iteration is recognizable, i.e., (17 U T U (g))* is recognizable. O



Now, we prove that the star problem and the FPP are decidable for recognizable languages con-
taining at most one non-connected trace.

Proof of Proposition 3.8. Because of Proposition 2.2 and 2.3, the result is known for languages
containing only connected traces, it is sufficient to prove by an induction on the independence
alphabet that, for a connected recognizable trace language C' and a non-connected trace ¢, it is
both decidable whether (C' U ¢)* is recognizable and whether C' U ¢ has the FPP.

Assume some independence alphabet (A, ). If |[A] = 1, then IM(A, [) is a free monoid: There
are only connected traces such that the previous questions are empty. Now, assume that |A| > 1
and for every strict subset B C A, the inductive hypothesis is true in IM(B, I).

Assume a connected recognizable set (' and a non-connected trace t. We denote T’ = C' U 1.

Assume that (A, [I) is connected. We can apply the results from Part 5.2. By Lemma 5.8,
T™ is recognizable if and only if for every strict subset B C A, the language T 5 is recognizable.
For every B C A, we can decide recognizability of TZ g by the inductive hypothesis, because there
is at most one non-connected trace (namely t) in TQ_B. We define the language Zr as in Part 5.2.
By Lemma 5.9, T has the FPP if and only if Z7 and for every strict subset B C A, the language Tcp
has the FPP. We can decide these by Proposition 2.3 and the inductive hypothesis, respectiveli

Now, assume that (A, ) is not connected: A = Ay U Ay with Ay x Ay C . At first, assume
t € M(Aq, )T x M(Ay, I;)T. Then, we can split T into two disjoint languages T = Tca, UTc4,-
We have T* = £A1 TéAQ. Consequently, T* is recognizable if and only if both TéAl and TéA;are
recognizable. Further, T" has the FPP if and only if both Tc4, and Tcy4, have the FPP. We can
decide these conditions by the inductive hypothesis, because there is at most one non-connected
trace in Tca, and Ty, .

Assume t € IM(Aq, I1)t x IM(Ay, I>)*. We denote t; = I14,(¢) and t3 = I 4,(¢). Then, we have
T =Tcs Ulcy, U (g) and T = (Tg 4, UTE 4, U G;))* Since T contains exactly one non-connected
trace, namely (g), the sets Tc4, and Tc 4, are connected, and thus, T 4 and T¢ , are recognizable

from Proposition 2.2. We can use Lemma 6.1: T™ is recognizable if and only if both ¢, Uy and
TE 4, Uty have the FPP. This is decidable by the inductive hypothesis. It remains to show how
to decide whether T" has the FPP. By Lemma 6.1, this is the case if and only if each of the sets
Tca,, Tca,, TE 4, Uty, and TE 4 Uty has the FPP. Since TZ 4 and T 4, are recognizable, this is
decidable by inductive hypothesis. a

6.2 Contradicting a Conjecture by E. Ochmarnski

In this part, we prove Proposition 3.9, i.e., we show that for every finite language T" in some trace
monoid without P3, if 7™ is recognizable, then there is some trace ¢ € T such that (7°\¢)* is
recognizable. We also show that the same assertion is false in P3.

At first, we show a lemma concerning the star problem for finite languages in trace monoids
without P3.

Lemma 6.2 Let IM(A,I) be a trace monoid without P3. For any finite language T C MM, the
following two assertions are equivalent:

1. T* is recognizable.
2. For every a € A which occurs in some non-connected trace in T, there is a trace in at in T.

Proof. For every three distinct letters a,b, ¢ € A with alb and blc¢, we also have alc. Otherwise,
a,b,c would form a P3. Hence, we can split A into m mutually disjoint subsets Ay,..., A, for



some integer m > 1 such that for any two distinct letters a,b € A, we have alb if and only if there
is some ¢ € {1,...,m} such that a,b € A;. Fori € {1,...,m}, the trace monoid IM(A4;, ) is totally
commutative.

(1)=(2) First observe that this part was already proved in a more general context in [22, Corol-
lary 4.2]. In order to be self contained, we prove it. Assume that (2) is false and consider an
integer ¢ between 1 and m. Let a be a letter in A; which occurs in some trace in T, but not any
trace from at belongs to T. Since T* is recognizable, T¢ 4, is recognizable. From Proposition 3.7,
Conn(T¢ 4, ) UNConn(Tcy,) has the FPP. This is a contradiction, because the number of occur-
rences of the letter a in traces of Conn(T¢ 4. ) U NConn(Tca,) is non-zero and limited by some
integer (7 is finite). -

(2)=(1) At first, we consider the case of a totally commutative monoid (m = 1). Choose
some integer n > 0 such that for every letter a which occurs in T, we have ¢ € T*. Further, let
k = |[NConn(T)|. Because IM(A,I) is totally commutative, we have T* = NConn(7)*Conn(T")*.
We show 7% = NConn(7)%"*~1Conn(7")* which implies that 7~ is recognizable. It is sufficient
to show that NConn(7)"* C NConn(7T)%"*="Conn(T)*. Assume some trace ¢ € NConn(T)"*.
There is some s € NConn(T') such that ¢ € NConn(7)"~"s". We have s” € Conn(T)*, because
for every a € alph(s), we have a” € Conn(7)*. Hence, we have t € NConn(7)%"*="Conn(T)*.

Now, consider the general case (m > 1). By inductively applying Lemma 5.8, we can show that
T™ is recognizable by showing that T, is recognizable for every ¢ € {1,...,m}. The languages
Tc4; are subsets of totally commutative monoids such that we can apply the case shown above. O

Proof of Proposition 3.9. Assume some finite language 7T in a trace monoid without P3 such
that 7™ is recognizable. If T'is connected, then (7'\?) is connected, and from Proposition 2.2
(T'\t)* is recognizable for any ¢ € T'. So assume some non-connected trace ¢ € 7. Because T
is recognizable, T' satisfies assertion (2) in Lemma 6.2. Thus, also T\ ¢ satisfies assertion (2) in
Lemma 6.2, and (7°\¢)* is recognizable .

To contradict the assertion in any trace monoid with P3, it suffices to give a counter example
in P3. We consider the finite language T' = {(%), (5), (%), (2), (%), (*;*)}. To verify that 7™ is
recognizable, we show

T* = Conn(7T)*NConn(1")Conn(7T)* U Conn(71)*.

Observe that (c{%’f}*) C Conn(T)* C T*. Assume some trace () € T*. If u = A, v = A, or
u € cfa,c}*, then () € Conn(T)*. Hence, it suffices to consider that v # A and u € a{a,c}*.

v

Assume that |u|. = 0. Then, (v) € Conn( )*. Assume that |u|, = 1. There are two integers
i > 1 and j > 0 such that u = a’ca’. Depending on whether the integers i or j are even or odd,

(1) belongs to (%)™ (D)) COTEIE G (DT EETO T or (7N ENT0) e,
() € Conn(T)*NConn(T)Conn(T)* U Conn(T)*. Finally, assume that |ul. > 1. We factorize (1)
into (Z:) (“A”) such that |u'|, = 1 and u” € c{a,c}*.
Then, we have (Z:) € Conn(T)*NConn(T)Conn(T)* U Conn(T)* and (¥, ) € Conn(T)*.

On other part, whatever is the trace we delete from 7', the iteration of the obtained set is not

recognizable. Since the family of recognizable sets is closed by intersection, this can be observed
from the following six relations:

o {(0.(5).G): (), (50 0 (597 = (597 G)
o {9, (5. G)s (), (5 (U527 = (457G



D00 G, 0 (5 = 5 Q)
L0000 () = o
D000 0 (5 = Q)
D000 G 0 (5 = ()76

We can easily verify by Mezei’s Theorem that the languages which we obtained by the intersections
are not recognizable. Hence, for any ¢ € T, the language (7'\¢)* is not recognizable. a

6.3 On the Second Conjecture by E. Ochmanski

Here, we consider a trace monoid IM(A, ) without C4 and a finite subset 7" C IM which contains
at least two traces. We prove Proposition 3.10: if T™ is not recognizable, then there exists a trace
t €T such that (T'\ t)* is not recognizable. Let recall that this is a partial answer for a conjecture
by E. Ochmanski [26].
Proof of Proposition 3.10. Assume that for every t € T', (T'\¢)* is recognizable. We show that
T* is recognizable. Let A be the set of the letters occurring in traces of 7. We have 7" C IM(A, I).

At first, assume that (A, ) is connected. Assume some strict subset B C A. There exists a
trace t € T such that alph(t) ¢ B. Then, since (1'\t)* is recognizable, T¢g = (T'\t)E g is also
recognizable. Hence, T™ is recognizable by Lemma 5.8. - -

Now, assume that (A, ) is not connected, i.e., A = Ay U {b} with A; x {b} C I. Assume that
some trace ¢ € bT belongs to T'. Then, we have T* = (T'\¢)*t*. Hence, T* is recognizable.

Conversely, assume T N (bﬁ) is empty. We show that this yields a contradiction. Some trace
in IM(Aq, )T x b belongs to T. Because |T| > 2, we can choose some ¢ € T such that some
trace in IM(Ay, )" X bt belongs to T'\t. We denote X = T'\t. The iteration X* is recognizable.
By Proposition 3.7, Conn(X*) U NConn(X ) have the FPP. This is a contradiction. The letter b
does not occur in the traces in Conn(X*), otherwise some trace in (bﬁ) would belong to X and T
The set NConn(X) is finite because X and 7" are finite. Thus, the number of occurrences of the

letter b in traces in Conn(X*)U NConn(X) is limited by some integer. Hence, this set cannot have
the FPP. a

6.4 On M. Latteux’ Conjecture

In this part, we prove Proposition 3.11: Assume some trace monoid IM which is not a free monoid.
For every integer ng > 0, there is some recognizable language T C IM such that T has the FPP, but
[T9%"]~ does not have the FPP for any integer n € {1,...,no}.

Proof of Proposition 3.11. It suffices to show the claim for the trace monoid a* x b*. Assume
some integer ng > 0. Let k = 2ng + 1. We define a recognizable language T" C a* X b*.

ak a ak +
T= (bk) U ((bk)+) U <( b) )

We show by Lemma 5.3 that 7 has the FPP. We have 1,(7) = a U (¢*)* and Inf(11,(7)) = a.
Further, we have II,(7)* = a*. The language 11,(7") has the FPP, because any word in a* can be
factorized into (at most) one word of the form (a*)* followed by at most k& — 1 times the word a.
We also have I1,(T)! C II,(T)*Inf(T)I,(T)* = a*. Consequently, T has the FPP by Lemma 5.3.



We examine the iteration T%" for n € {1,...,n9}. We have

k z yk( kyx zk zk yk kyx
0,0 — a® a®a¥%(a”) a®%qY a®%a¥%(a”)
T - U (bl’k> U U (bybxk(bk)*) U U ((bl’kbyk(bk)*) U ( prkpy )
z €40,...,n} zy €{1,...,n—1}, z €40,....,n—1},
x-l—ysn ye{17"'7n}7
r+y<n =T3 =T,
:T1 :T2

k
The set T covers all traces which we obtain by the concatenation of the trace (j) at most
n times. The language T, covers all the traces in T”~" which we obtain by the concatenation

of at least one trace from ((bﬁ)+), at least one trace from <(alz)+)7 and possibly some traces (Z:)
The sets T5 and Ty cover the remaining concatenations.

We show that [T%+"]7! does not have the FPP. We define the language [ = [T9-"]7L.
We have a™*b"% p"Fa™* ¢ [T1]71 C L. We examine words of the form a"*(b***a2"¥)+pnF ¢ [*.

Assume that I has the FPP. Then, every word of the form a™*(62"%q?"*)*p"* can be factorized
into a limited number of words from L. By choosing a word from a"*(b***a>"*)* "% of sufficient
length and factorizing it into a limited number of words from L, we obtain a factorization which
includes some word in L with more than 4nk letters. Consequently, there is some [ > 0 such
that @™ (b***q>*)'p" can be factorized into words from L, and there is one word w € L in the
factorization with |w| > 4nk.

However, we show that this yields a contradiction. Note that |w|, > 2nk and |w|, > 2nk.
Hence, we have w & [T} UT5 U Ty]7L, ie., w € [T] 7.

Assume that the first and the last letter of w are a. Then, |w|, is multiple of 2nk such that
w & [T5]7t, because there are not any traces ¢ € Ty such that |¢], is a multiple of 2nk. If the first
and the last letter of w is b, then |w|, is multiple of 2nk, and we obtain a contradiction, accordingly.

Consequently, the first letter of w is the letter @ and the last one is b, or vice versa. Assume
that the first letter of w is a. There is an integer 1 < i < 2nk, such that w € a*(b**a?"¥)*b*. Note
that in the division of ¢ by k, we get some remainder between 1 and n (« in the expression for T5).

The word w cannot be the first factor in the factorization of a”*(b*"*q"*)'p"* because i is not
a multiple of k. We examine the predecessor w’ of w in the factorization. Depending on whether
the first letter of w’ is a or b, w' satisfies some property: Either |w'|, is a multiple of 2nk or
|w'|, + ¢ yields a multiple of 2nk. Assume w’ € [T7]™'. Then, |w’|; is not a multiple of 2nk, but
|w'|, + ¢ cannot yield a multiple of 2nk, because k divides |w'|, but k& does not divide i. Assume
w' € [Ty]™1. Then, |w'|, is not a multiple of 2nk. Further, similar to the division of i by k, we
obtain in the division of |w'|, by k some remainder between 1 and n. Hence, we obtain in the
division of |w'|, 4+ i some remainder between 2 and 2n (let recall k& > 2n), i.e., |w'|, + 7 is not a
multiple of 2nk. If w’ € [T4]™!, we obtain a contradiction accordingly to the cases w’ € [T1]~! and
w' € [Ty]~'. Consequently, w’ € [T3]™! which implies w’ = a?b*"*a?""~" for some integer j. Then,
we have |w'|, < nk, i.e., j 4+ 2nk — i < nk. Together with i < 2nk, we obtain j < nk. Further, the
division of 7 by k yields some remainder between 2 and 2n.

Thus, w’ cannot be the first factor in the factorization of a . We examine its
predecessor w”. Similarly to w’, the word w” has to satisfy one property: Either |w”|; is a multiple
of 2nk or |w'|, 4+ j yields a multiple of 2nk. As above, we conclude w” € [T3]71, i.e., we have
w” € a*b*"*a?"k =7, Because j < nk, we have |w”|, > nk. Such words do not belong to [T3]!.

Consequently, the desired word w” does not exist. From the assumption that the first letter
of w is @ we concluded a contradiction. If we assume that the first letter of w is b and the last

nk (banQan)lbnk

one is a, we accordingly obtain a contradiction. Hence, the desired word w cannot exist, i.e., the
assumption that L has the FPP yields a contradiction. a
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