
Consistency of Probabilistic
Context-Free Grammars

Torsten Stüber

Faculty of Computer Science, Technische Universit ät Dresden

TUD-FI12-04-März 2012

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakult ät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

Consistency of Probabilistic Context-Free

Grammars

Torsten Stüber

Faculty of Computer Science, Technische Universität Dresden

D-01062 Dresden, Germany

torsten.stueber@tu-dresden.de

March 13, 2012

We present an algorithm for deciding whether an arbitrary proper probabilistic
context-free grammar is consistent, i.e., whether the probability that a deriva-
tion terminates is one. Our procedure has time complexity O(n3) in the unit-cost
model of computation. Moreover, we develop a novel characterization of consistent
probabilistic context-free grammars. A simple corollary of our result is that train-
ing methods for probabilistic context-free grammars that are based on maximum-
likelihood estimation always yield consistent grammars.

1 Introduction

Probabilistic grammars – also called stochastic grammars – are a class of statistical mod-
els widely used in, e.g., natural-language processing (Manning and Schütze, 1999) and for
the description of the secondary structure of RNA (Sakakibara et al., 1994; Durbin et al.,
1998). Important representatives in this class are, e.g., probabilistic context-free grammars
(for short: pcfg) (Booth, 1969; Booth and Thompson, 1973), weighted regular tree gram-
mars (Alexandrakis and Bozapalidis, 1987; Gécseg and Steinby, 1984), synchronous context-
free grammars (Lewis and Stearns, 1968; Chiang, 2005), and (synchronous) tree-adjoining
grammars (Joshi et al., 1975; Shieber and Schabes, 1990).

Probabilistic grammars are obtained from their non-probabilistic counterparts by associating
every grammar rule with a probability. Usually one requires that the probabilities of all rules
having the same left-hand side sum up to one – in this case we say that the grammar is
proper. However, this condition does not guarantee that the probabilistic grammar generates
a probabilistic language; more precisely, the sum of the probabilities of all leftmost derivations
of the grammar can be less than one. If this sum happens to be one, then we say that the
grammar is consistent. For example, the context-free grammar having the two rules

S → SS , S → a ,

with probabilities p and 1 − p, respectively, is not consistent if p > 0.5; cf. Nederhof and
Satta (2008). The reason for a grammar to be inconsistent is that the derivation trees can

1

have a nonzero probability of never terminating, i.e., some probability mass is lost to infinite
derivations. A basic computational problem of probabilistic grammars is to decide whether a
given proper grammar is also consistent.

This problem has first been investigated in the seminal paper written by Booth and Thomp-
son (1973). Theorem 2 of their paper states that a proper pcfg is consistent if ρ(Mfm) < 1 and
it is not consistent if ρ(Mfm) > 1, where Mfm is the first-moment matrix of the grammar and
ρ(Mfm) is the spectral radius of Mfm, i.e., the magnitude of its largest eigenvalue. The proof
of Theorem 2 is based on classical results on branching processes; cf. Harris (1963). However,
the classical result by Booth and Thompson, which is widely cited in the literature, is unsat-
isfactory for three reasons: (i) in general the result is wrong if the grammar is not reduced,
i.e., if it contains nonterminals that are unreachable from the initial nonterminal. This sug-
gests that the authors make the assumption that the grammar is reduced but do not mention
this. (ii) The result is inconclusive if ρ(Mfm) = 1. In fact, Booth and Thompson omit this
situation because they argue that many special cases have to be considered and instead refer
the reader to the discussion in Harris (1963), albeit not even Harris (1963) gives a complete
characterization and proof for this special situation. For a more thorough discussion on this
issue see Etessami and Yannakakis (2009, Section 8). (iii) Booth and Thompson provide no
algorithm for deciding whether ρ(Mfm) < 1 or ρ(Mfm) > 1 and, thus, no algorithm for deciding
whether a given proper pcfg is consistent. Note that, however, there are simple methods for
approximating the spectral radius of Mfm.

Wetherell (1980) repeats the result given in Booth and Thompson (1973); moreover, Wetherell
gives an algorithm for semideciding whether ρ(Mfm) < 1. According to Etessami and Yan-
nakakis (2009), more recent papers that deal with the related concept of consistency of multi-
type branching processes typically merely restate the results in Harris (1963).

The three issues of the result in Booth and Thompson (1973) have been solved recently
by Etessami and Yannakakis (2009). In particular, they address the special case ρ(Mfm) = 1
and show that such a grammar is always consistent whenever it is reduced; moreover, they
demonstrate that the problem to decide whether a proper pcfg is consistent can be solved
in polynomial time by reducing this problem to linear programming (Matoušek and Gärtner,
2007). The proof of this result is structurally similar to the proof in Harris (1963) and makes use
of Perron-Frobenius theory of matrices (Lancaster and Tismenetsky, 1985; Horn and Johnson,
1990).

In this paper we provide an alternative complete procedure for deciding whether a proper
pcfg is consistent. Our proof is considerably different from the proofs in the literature (Booth
and Thompson, 1973; Etessami and Yannakakis, 2009); it is not based on Perron-Frobenius
theory and is simpler than the proof in Etessami and Yannakakis (2009). The algorithm that
we provide does not make use of linear programming. It has time complexity O(n3) in the unit-
cost model of computation1 and, therefore, is faster than the linear programming approach
by Etessami and Yannakakis in terms of this cost model; for a discussion on the complexity
of linear programming algorithms we refer the reader to, e.g., Matoušek and Gärtner (2007);
Gass (2010). Our main result is stated in Theorem 2; it is based on Theorem 5, which gives
a characterization of proper, restricted, and consistent pcfg. The main part of our decision
procedure is shown in Figure 4.

In many applications the probabilities of a probabilistic grammar are not generated manu-
ally but by an automatic training procedure. In the field of natural-language processing one

1i.e., every arithmetic operation takes constant time independent of the size of the operands.

2

usually employs training procedures that are based on maximum-likelihood estimation (Demp-
ster et al., 1977; Prescher, 2001; Graehl et al., 2008). It is well-known that for pcfg such a
training procedure always yields a consistent grammar (Chaudhuri et al., 1983; Sánchez and
Bened́ı, 1997; Chi and Geman, 1998). In Theorem 26 we repeat this result and show that it
follows as a simple corollary from Theorem 5.

This paper is organized as follows. In Section 2 we recall the concept of probabilistic context-
free grammars and state the main result of this paper (Theorems 2 and 5, and the algorithm
shown in Figure 4). We will prove these results in the subsequent three sections. In Section 3
we discuss the notion of reduced grammars and show that we can restrict ourselves to such
grammars. Section 4 is concerned with the main part of the proof of Theorem 5. In Section 5
we will demonstrate the correctness of the algorithm in Figure 4. In Section 6 we will deal with
training of grammars using the maximum-likelihood method and we will prove Theorem 26.

2 Probabilistic Context-Free Grammars

In this section we recall the definition of probabilistic context-free grammars (Booth, 1969;
Booth and Thompson, 1973) and state our main theorems (see Theorems 2 and 5).

Let Σ be an alphabet. A probabilistic context-free grammar (for short: pcfg) over Σ is a
tuple G = (N,S,R, κ) where

• N is a finite set (of nonterminals) disjoint from Σ,

• S ∈ N ,

• R is a finite set of rules of the form A→ w with A ∈ N and w ∈ (Σ ∪N)∗, and

• κ : R→ [0, 1].

For every A ∈ N we denote by RA the set of rules whose left-hand side is A. We say that G is
proper if

∑

r∈RA
κ(r) = 1 for every A ∈ N . For the remainder of this paper we fix an alphabet

Σ and a pcfg (N,S,R, κ) over Σ.

Example 1. Let Σ = {a, b} and consider the pcfgG = (N,A,R, κ) whereN = {A,B,C,D,E}
and R contains the rules:

A
1/2
−−→ A2C4aDE4 , A

1/2
−−→ a ,

B
1/4
−−→ bB , B

1/2
−−→ C2E2 , B

1/4
−−→ ab ,

C
1/2
−−→ E4 , C

1/2
−−→ bb ,

D
1/4
−−→ bA , D

1/2
−−→ C4bD2E2 , D

1/4
−−→ aa ,

E
1/4
−−→ Bab , E

3/4
−−→ ba .

A2 is the abbreviation for AA. The value κ(r) is written on top of the arrow of the rule r.
Observe that G is proper. ✷

In order to simplify notation, we adopt the following convention. Given r ∈ R, whenever we
write r = A→ w0A1w1 · · ·wn−1Anwn we indicate that the left-hand side of r is A and that the

3

right-hand side contains precisely the nonterminals A1, . . . , An in this order; i.e., w0, . . . , wn

are terminal words. However, whenever we write r = A → wBw′, we merely state that the
left-hand side is A and that the nonterminal B occurs on the right-hand side; i.e., w and w′

may contain terminals as well as nonterminals.
Now we recall the concept of derivations of context-free grammars. Since we consider prob-

abilistic grammars, we have to ensure that we do not count derivations multiply that merely
result from expanding nonterminals in different orders. One way to achieve this is to re-
strict ourselves to leftmost derivations. Here we adopt the more elegant approach to represent
derivations as syntax trees, thereby we avoid the need to choose a representative in a class of
corresponding derivations. For every A ∈ N the set TA of syntax trees for A is the set

TA =
{

r(t1, . . . , tn) | r = A→ w0A1w1 · · ·wn−1Anwn ∈ R, t1 ∈ TA1
, . . . , tn ∈ TAn

}

. (1)

For every t ∈ TA we define the probability Pκ(t) ∈ [0, 1] of t and the yield yield(t) ∈ Σ∗ of t by
recursion:

Pκ(t) = κ(r) · Pκ(t1) · · ·Pκ(tn) , (2)

yield(t) = w0yield(t1)w1 · · ·wn−1yield(tn)wn .

where t = r(t1, . . . , tn) and r = A→ w0A1w1 · · ·wn−1Anwn. We drop κ from Pκ if it is clear
from the context. Given w ∈ Σ∗, the probability P (w) of w is

P (w) =
∑

(

P (t) | t ∈ TS , yield(t) = w
)

.

We say that the grammar G is consistent if
∑

w∈Σ∗ P (w) = 1; otherwise we say that G is
inconsistent. Note that

∑

w∈Σ∗ P (w) =
∑

(

P (t) | t ∈ TS

)

. Now we present our main theorem.

Theorem 2. There is an O(n3) unit-cost algorithm that decides whether a given proper pcfg
is consistent.

The proof of this theorem is given at the end of Section 5.
We conclude this section by presenting Theorem 5, the second main result of this paper. To

this end we first introduce some auxiliary definitions. Let A ∈ N . We call A productive if there
is a t ∈ TA with P (t) > 0. Moreover, A is reachable if there is a sequence A1, . . . , An ∈ N with
A1 = S, An = A, and for every 1 ≤ i < n there is a rule r = Ai → wAi+1w

′ with κ(r) > 0. We
say that G is reduced if every A ∈ N is productive and reachable. Observe that the grammar
in Example 1 is reduced: every nonterminal can be reached from the start symbol A and every
nonterminal is productive; in fact, every nonterminal can be transformed to a terminal string
in one derivation step.

By 0 and 1 we denote the vectors with 0(A) = 0 and 1(A) = 1 for every A ∈ N . The
definition of the following mapping is inspired by Booth and Thompson (1973, page 445).
Define f : RN → RN as follows for every vector v ∈ RN and A ∈ N :

f(v)(A) =
∑

(

κ(r) ·
∏n

i=1
v(Ai) | r = A→ w0A1w1 · · ·wn−1Anwn

)

.

The significance of f is that its least nonnegative fixed point are the inside probabilities of the
grammar (see Lemma 7). Moreover, let

Pre =
{

v ∈ [0, 1]N | ∀A ∈ N : f(v)(A) ≤ v(A)
}

,

4

StrictPre =
{

v ∈ Pre \ {1} | ∀A ∈ N : v(A) = 1 or f(v)(A) < v(A)
}

.

Roughly speaking, the set Pre is the set of prefixed points of f and the set StrictPre contains
the strict prefixed points of f .

Example 3 (Cont. of Example 1). Observe that

f(v)(A) =
v(A)2 · v(C)4 · v(D) · v(E)4

2
+

1

2
,

f(v)(B) =
v(B)

4
+

v(C)2 · v(E)2

2
+

1

4
,

f(v)(C) =
v(E)4

2
+

1

2
,

f(v)(D) =
v(A)

4
+

v(C)4 · v(D)2 · v(E)2

2
+

1

4
,

f(v)(E) =
v(B)

4
+

3

4
.

Note that 1 is a fixed point of f and, thus, 1 ∈ Pre. However, Pre contains other points; e.g.,
for v ∈ [0, 1]N with

v(A) = 0.8 , v(B) = 1 , v(C) = 1 , v(D) = 0.8 , v(E) = 1 ,

we obtain that

f(v)(A) = 0.756 , f(v)(B) = 1 , f(v)(C) = 1 , f(v)(D) = 0.77 , f(v)(E) = 1 .

Hence, v ∈ Pre and even v ∈ StrictPre. ✷

We define two matrices Mfm,M ∈ RN×N by letting for every A,B ∈ N :

Mfm(A,B) =
∑

r=A→w
κ(r) · |w|B ,

M = Mfm −E ,

where |w|B is the number of occurrences of B in w and E is the unit matrix. The matrix Mfm is
called the first-moment matrix associated with G in Booth and Thompson (1973). By δ(Mfm)
we denote the spectral radius of Mfm, i.e., the maximal absolute value of the eigenvalues of
Mfm.

Example 4 (Cont. of Example 3). For our example grammar we have

Mfm =

1 0 2 1/2 2
0 1/4 1 0 1
0 0 0 0 2

1/4 0 2 1 1
0 1/4 0 0 0

, M =

0 0 2 1/2 2
0 −3/4 1 0 1
0 0 −1 0 2

1/4 0 2 0 1
0 1/4 0 0 −1

,

where the first row/column stands for nonterminal A and so on. ✷

Now we state the main characterization result for proper, reduced, and consistent pcfgs; it
serves as the central tool for proving Theorem 2. Let R≥0 denote the set of nonnegative reals.

5

Theorem 5. Let G be proper and reduced. Then the following statements are equivalent:

1. G is consistent.

2. Pre = {1}.

3. StrictPre = ∅.

4. For every v ∈ RN
≥0 \ {0} there is an A ∈ N such that v(A) > 0 and (Mv)(A) ≤ 0.

5. ρ(Mfm) ≤ 1.

6. The algorithm in Figure 4 returns “does not have Property (B)” upon input M .

Note that the equivalence of the first and the fifth statement of Theorem 5 is essentially
Lemma 8.2 and Lemma 8.4 in Etessami and Yannakakis (2009) and, therefore, the main state-
ment underlying Theorem 8.1 of that paper. We included this equivalence only for complete-
ness, it is not required for proving Theorem 2. The algorithm that is referenced in the sixth
statement of Theorem 5 is shown on page 15.

We remark that the matrix M is of the type RN×N ; however, the algorithm in Figure 4
requires a matrix of the form Rn×n. We do not distinguish between these types because we
can consider the set N to be of the form {A1, . . . , An} for some n; then there is an obvious
one-to-one correspondence between the sets RN×N and Rn×n.

As a first application of Theorem 5 observe that the example grammar given in Example 1
is inconsistent because StrictPre 6= ∅ as demonstrated in Example 3.

We will break up the proof of Theorem 5 into small steps. It follows from Lemmas 12, 14,
15, 17, and 24.

3 Inside Probabilities and Reduced Grammars

As a first step toward a proof of our main result, we recall the useful concept of inside probabil-
ities. In the literature the collection of inside probabilities is also called the partition function
of the grammar, e.g., in Nederhof and Satta (2008). For A ∈ N , we define the inside probability
β(A) of A as follows:

β(A) =
∑

(

P (t) | t ∈ TA

)

. (3)

By definition, G is consistent iff β(S) = 1. We derive

β(A) =
∑

(

P (r(t1, . . . , tn)) | r = A→ w0A1w1 · · ·wn−1Anwn ∈ R, ti ∈ TAi

)

(by (1))

=
∑

(

κ(r) · P (t1) · · ·P (tn) | r = A→ w0A1w1 · · ·wn−1Anwn ∈ R, ti ∈ TAi

)

(by (2))

=
∑

(

κ(r) ·
∏n

i=1

∑

(

P (ti) | ti ∈ TAi

)

∣

∣

∣ r = A→ w0A1w1 · · ·wn−1Anwn

)

=
∑

(

κ(r) ·
∏n

i=1
β(Ai)

∣

∣

∣ r = A→ w0A1w1 · · ·wn−1Anwn

)

(4)

= f(β)(A) .

Hence, the vector β ∈ RN is a fixed point of the mapping f , i.e., f(β) = β. Now we face
the question whether f has other fixed points and whether β is outstanding amongst all fixed
points of f . The following observation follows immediately from the definition of properness
and the definition of f .

6

Observation 6. If G is proper, then the vector 1 is a fixed point of f .

It is easy to construct a counterexample that demonstrates that 1 is not necessarily a fixed
point of f if G is not proper.

We use ≤ to denote the usual component-wise ordering of vectors in RN , i.e., v1 ≤ v2 iff
v1(A) ≤ v2(A) for every A ∈ N . Note that due to the fact that f is a polynomial with
nonnegative coefficients, f is monotone for nonnegative vectors; more formally, for v, v′ ∈ RN

≥0

with v ≤ v′ we obtain f(v) ≤ f(v′). The following lemma is well known – see, e.g., Nederhof
and Satta (2008).

Lemma 7. The vector β is the least fixed point of f in RN
≥0 with respect to ≤. More formally,

β is the least element in {v ∈ RN
≥0 | f(v) = v} with respect to ≤.

The following corollary is a consequence of Observation 6 and Lemma 7.

Corollary 8. If G is proper, then 0 ≤ β ≤ 1, i.e., β ∈ [0, 1]N .

Theorem 2 states that there is an algorithm that decides consistency for arbitrary proper
pcfgs. However, Theorem 5 is only applicable for reduced proper pcfgs. It turns out that the
characterization result in Theorem 5 is sufficient for proving Theorem 2. More precisely, we
show that every proper pcfg is either inconsistent for obvious reasons or there is an equivalent
reduced pcfg that is consistent iff the original pcfg is consistent (Lemma 11).

Lemma 9. Suppose that G is proper, A is reachable, and β(A) < 1. Then β(S) < 1.

Proof. From Equation (4) and Corollary 8 we conclude that, for every B,C ∈ N , if there is
a rule r = B → wCw′ with κ(r) > 0, then β(C) < 1 implies β(B) < 1. Hence, it is easy to
show by induction that the facts that A is reachable and β(A) < 1 imply β(S) < 1. �

For more background on the following observation we refer the reader to Sipser (1996).

Observation 10. The set of reachable nonterminals and the set of productive nonterminals
of G can be constructed in time O(size(R)), where size(R) =

∑

A→w∈R |w|.

Lemma 11. Suppose that G is proper. If there is a reachable non-productive nonterminal,
then G is inconsistent.

Otherwise, let G′ = (N ′, S,R′, κ|R′) where N ′ and R′ are obtained from N and R, re-
spectively, by removing all non-reachable nonterminals and all rules containing non-reachable
nonterminals, respectively. Then G′ is reduced and G′ is inconsistent iff G is inconsistent.

Proof. Assume that there is a reachable non-productive nonterminal A. The definition of β
yields β(A) = 0; thus, G is inconsistent due to Lemma 9.

If every non-productive nonterminal is not reachable, then G′ is obviously reduced and
equivalent to G, i.e., PG(w) = PG′(w) for every w ∈ Σ∗, where PG(w) and PG′(w) are the
probabilities of w in G and G′, respectively. Thus, G′ is consistent iff G is consistent. �

7

4 Characterization of Consistent PCFG

In this section we prove the equivalence of the first five statements of Theorem 5. Let us begin
with exposing the equivalence of the first two statements. Note that Pre is the set of vectors
v in [0, 1]N such that f(v) ≤ v.

Lemma 12. Let G be proper and reduced. Then G is consistent iff Pre = {1}.

Proof. Let ⊥ ∈ [0, 1]N be defined by ⊥(A) = inf{v(A) | v ∈ Pre} for every A ∈ N ; this is
defined because Pre only contains nonnegative vectors and it is nonempty: in fact, it contains
1 because 1 is a fixed point of f due to Observation 6. Clearly, ⊥ is the infimum of Pre with
respect to ≤.

By an argument similar to the fixed point theorem of Tarski (1955, Theorem 1), we show
that ⊥ = β. For every v ∈ Pre, ⊥ ≤ v and, hence, f(⊥) ≤ f(v) ≤ v by the monotonicity of
f . Thus, f(⊥) is a lower bound of Pre and therefore f(⊥) ≤ ⊥, which implies ⊥ ∈ Pre. Since,
f(⊥) ≤ ⊥, also f(f(⊥)) ≤ f(⊥), i.e., f(⊥) ∈ Pre and therefore ⊥ ≤ f(⊥). We conclude that
f(⊥) = ⊥, i.e., that ⊥ is a fixed point of f . Hence, β ≤ ⊥ by Lemma 7. Moreover, ⊥ ≤ β
because β ∈ [0, 1]N by Corollary 8 and, thus, β ∈ Pre.

Now Lemma 9 and the fact that G is reduced imply: G is consistent iff β(A) = 1 for every
A ∈ N iff β = 1 iff ⊥ = 1 iff Pre = {1}. �

Next let us deal with the equivalence of the second and third statement of Theorem 5.
Although both statements look similar, their equivalence is one of the core statements of
Theorem 5 and its proof is fairly involved. Speaking in terms of topology, Pre is a closed set
and StrictPre the open set of the interior points of Pre – see Figure 1. Roughly speaking, the
equivalence of the second and third statement of Theorem 5 means that Pre has an interior if
Pre 6= {1}. However, there may be degenerate cases, where Pre has only boundary points in
spite of Pre 6= {1} (e.g., Pre is a line segment). Therefore, we included these special boundary
points in the definition of StrictPre by requiring “v(A) = 1 or f(v)(A) < v(A)” instead of
solely “f(v)(A) < v(A)”.

1

1

1

Pre

β

1

1

1

1

StrictPre

β

1

Figure 1: Comparison of the sets Pre and StrictPre.

We first prove an auxiliary statement. For every A ∈ N we define fA : RN → R and
gA : RN → R by fA(v) = f(v)(A) and gA(v) = fA(v) − v(A). The following statement
concerns the values of gA for the points on the line segment between two vectors v1 and v2 in
[0, 1]N with v1 ≤ v2 (see Figure 2 for the case |N | = 2). It turns out that all these values are
nonpositive if gA is nonpositive at both v1 and v2; moreover, they are negative if gA is negative
at v1 or v2.

8

1

1

0 1

−1

λ

v1
λ = 0

v2
λ = 1

v1
+ λ(v

2
− v1)

gA(v1 + λ(v2 − v1))

Figure 2: Illustration of Lemma 13.

Lemma 13. Let A ∈ N and v1, v2 ∈ [0, 1]N such that v1 ≤ v2 and gA(v1), gA(v2) ≤ 0.
Moreover, let h : R→ RN : λ 7→ v1 + (v2 − v1)λ.

1. gA(h(λ)) ≤ 0 for every scalar λ ∈ [0, 1].

2. If gA(v1) < 0 or gA(v2) < 0, then gA(h(λ)) < 0 for every scalar λ ∈]0, 1[.

3. Suppose gA(v2) = 0. Then (gA ◦ h)
′(1) ≥ 0 and if gA(v1) < 0, then (gA ◦ h)

′(1) > 0.2

4. Let N ′ = {B ∈ N | v1(B) 6= v2(B)}. If gA(h(λ)) = 0 for some λ ∈]0, 1[, then

• for every r = A → w0A1w1 · · ·wn−1Anwn there is at most one i ∈ {1, . . . , n} with
Ai ∈ N ′, and

•
∑

B∈N ′(v2(B)− v1(B))dB ≥ v2(A) − v1(A), where dB =
∑

r=A→wBw′ κ(r).

Proof. First we derive two auxiliary statements that will be useful throughout this proof.
Observe that for every λ ∈ R:

(gA ◦ h)(λ) = (fA ◦ h)(λ)− v1(A)−
(

v2(A)− v1(A)
)

λ , (5)

(gA ◦ h)
′(λ) = (fA ◦ h)

′(λ)−
(

v2(A)− v1(A)
)

,

(gA ◦ h)
′′(λ) = (fA ◦ h)

′′(λ) .

Note that fA ◦h is a polynomial with nonnegative coefficients because fA is a polynomial in N
with nonnegative coefficients and v2(B)−v1(B) ≥ 0 for every B ∈ N due to the condition that
v1 ≤ v2. Thus, (gA ◦ h)

′′(λ) = (fA ◦ h)
′′(λ) ≥ 0 for every λ ≥ 0. By applying the mean-value

2(ga ◦ h)′ denotes the first derivative of ga ◦ h.

9

theorem we obtain that for every λ1, λ2, λ3 with 0 ≤ λ1 < λ2 < λ3:

(gA ◦ h)(λ1) < (gA ◦ h)(λ2) implies (gA ◦ h)(λ2) < (gA ◦ h)(λ3) and

(gA ◦ h)(λ1) = (gA ◦ h)(λ2) implies (gA ◦ h)(λ2) ≤ (gA ◦ h)(λ3) .
(6)

The first two statements of this lemma immediately follow from (6) and the facts that
gA(v1) = (gA ◦ h)(0) and gA(v2) = (gA ◦ h)(1). Likewise, the mean-value theorem implies the
third statement.

We are left with the task to prove the fourth statement of this lemma. Let us suppose that
(gA ◦ h)(λ) = 0 for some λ ∈]0, 1[. Therefore the second statement implies (gA ◦ h)(0) =
(gA ◦ h)(1) = 0. Observe that then (6) yields (gA ◦ h)(λ) = 0 for every λ ∈ [0, 1]. By
Equation (5), every λ ∈ [0, 1] satisfies v1(A) +

(

v2(A)− v1(A)
)

λ = (fA ◦ h)(λ). Thus, fA ◦ h is
a linear polynomial in λ. Since

(fA ◦ h)(λ) =
∑

r=A→w0A1w1···wn−1Anwn

(

κ(r) ·
∏n

i=1
v1(Ai) +

(

v2(Ai)− v1(Ai)
)

λ
)

, (7)

we conclude that, for every r = A→ w0A1w1 · · ·wn−1Anwn, there is at most one i ∈ {1, . . . , n}
with v1(Ai) 6= v2(Ai); let us write N(r) = Ai if there is such a nonterminal Ai and let us write
N(r) = ∅ if there is no such Ai (i.e., v1(Ai) = v2(Ai) for every i ∈ {1, . . . , n}). This yields the
first assertion of the fourth statement of this lemma.

Now define the constant cr =
∏
(

v1(Aj) | 1 ≤ j ≤ n, v1(Aj) = v2(Aj)
)

for every rule
r = A → w0A1w1 · · ·wn−1Anwn. Clearly, cr ≤ 1 because v1 ∈ [0, 1]N . Using this definition
we obtain that if N(r) = ∅, then

∏n

j=1
v1(Aj) +

(

v2(Aj)− v1(Aj)
)

λ = cr ,

and if N(r) = Ai, then

∏n

j=1
v1(Aj) +

(

v2(Aj)− v1(Aj)
)

λ =
(

v1(Ai) + (v2(Ai)− v1(Ai))λ
)

cr

= v1(Ai)cr +
(

v2(Ai)− v1(Ai)
)

crλ .

Using the fact v1(A) +
(

v2(A)− v1(A)
)

λ = (fA ◦ h)(λ), we can reformulate (7) as

v1(A) +
(

v2(A)− v1(A)
)

λ

=
∑

r∈RA

N(r)=∅

κ(r)cr +
∑

B∈N ′

∑

r∈RA

N(r)=B

κ(r)v1(B)cr + κ(r)
(

v2(B)− v1(B)
)

crλ .

Since both sides of the equation are the same linear function, we conclude that the first-order
coefficients are equal, i.e.,

v2(A)− v1(A) =
∑

B∈N ′

∑

r∈RA

N(r)=B

κ(r)
(

v2(B)− v1(B)
)

cr

≤
∑

B∈N ′

(

v2(B)− v1(B)
)

∑

r∈RA

N(r)=B

κ(r) ,

because cr ≤ 1. The fact that
∑

r∈RA

N(r)=B

κ(r) = dB yields the second assertion of the fourth

statement of this lemma. �

10

Now we can prove the equivalence of the second and third statement of Theorem 5.

Lemma 14. Let G be proper and reduced. Then Pre = {1} iff StrictPre = ∅.

Proof. The only-if-part is trivial. It remains to prove the if-part. To this end let S = Pre\{1}
and put N(v) = {A ∈ N | v(A) 6= 1 and fA(v) 6< v(A)} for every v ∈ S. Clearly, StrictPre =
{v ∈ S | N(v) = ∅}. This proof is based on the following claim:

For every v ∈ S with N(v) 6= ∅ there is some v′ ∈ S with N(v′) (N(v). (Claim)

This claim implies our assertion as the following argument demonstrates. Assume that Pre 6=
{1}. Then S 6= ∅ because 1 ∈ Pre by Observation 6. By iterating the claim a finite number of
times we find a v ∈ S with N(v) = ∅. Hence, StrictPre 6= ∅.

It remains to prove the claim. Let v ∈ S with N(v) 6= ∅. Define v0 ∈ [0, 1]N by letting for
every A ∈ N :

v0(A) =

{

1 , if A ∈ N(v),

v(A) , otherwise.

Observe that, for every A ∈ N , the fact that v0 ≤ 1 yields fA(v0) ≤ fA(1) = 1; hence,

if A ∈ N(v) or v(A) = 1, then gA(v0) = fA(v0)− v0(A) = fA(v0)− 1 ≤ 0 . (8)

For every A ∈ N with fA(v) < v(A) we obtain gA(v) < 0; since gA is continuous, there is an
ε > 0 such that gA(v

′) < 0 for every v′ with ‖v′ − v‖ < ε. Thus, there is a λ ∈]0, 1[such that
gA

(

v + (v0 − v)λ
)

< 0 for every A ∈ N with fA(v) < v(A). We put v′ = v + (v0 − v)λ.
It remains to show that v′ ∈ S and N(v′) (N(v). Let A ∈ N . We make four observations.

(a) If fA(v) < v(A), then the definition of v′ yields gA(v
′) < 0 and, hence, fA(v

′) < v′(A).

(b) If A ∈ N(v) or v(A) = 1, then gA(v0) ≤ 0 by (8); since v ∈ S ⊆ Pre, also fA(v) ≤ v(A)
or, equivalently, gA(v) ≤ 0; clearly, v ≤ v0 and therefore Lemma 13(1) implies gA(v

′) ≤ 0,
i.e., fA(v

′) ≤ v′(A).

(c) If v(A) = 1, then also v0(A) = 1 and, hence, v′(A) = 1.

(d) fA(v
′) ≤ v′(A). This holds due to Observations (a) and (b) and due to the fact that at

least one of the three statements fA(v) < v(A), A ∈ N(v), or v(A) = 1 is true.

Observation (d) implies that f(v′) ≤ v′. Clearly, v′ ∈ [0, 1]N \ {1} because v ∈ [0, 1]N \ {1},
v0 ∈ [0, 1]N , and λ ∈]0, 1[. Hence, v′ ∈ S. Moreover, by Observations (a) and (c) we obtain
N(v′) ⊆ N(v).

What is left is to show that N(v′) 6= N(v). On the contrary, suppose that N(v′) = N(v).
We will derive a contradiction.

Let A ∈ N(v) = N(v′). Then fA(v) 6< v(A) and, since v ∈ Pre, we conclude that fA(v) =
v(A); hence gA(v) = 0. Likewise, we obtain gA(v

′) = 0. Furthermore, gA(v0) ≤ 0 by (8). By
Lemma 13(2) we can assert that gA(v0) = 0. Observe that {B ∈ N | v(B) 6= v0(B)} = N(v).
Then the second statement of Lemma 13(4) yields

∑

B∈N(v)
(1− v(B))dAB ≥ 1− v(A) , (9)

11

where dAB =
∑

r=A→wBw′ κ(r). Moreover, by the first statement of Lemma 13(4),

∑

B∈N(v)
dAB =

∑

B∈N(v)

∑

r=A→wBw′
κ(r)

=
∑

(

κ(r) | r ∈ RA,∃B ∈ N(v) : r = A→ wBw′
)

≤
∑

r∈RA

κ(r) = 1 . (10)

For the remainder of this proof choose and fix an A ∈ N(v) such that v(A) is minimal, i.e.,
v(A) ≤ v(B) for every B ∈ N(v). Such an A exists because N(v) 6= ∅ by assumption. Let N0

be the set of all B ∈ N(v) with dAB > 0. If N0 6= ∅, then (9) and (10) imply:

1− v(A) ≤
∑

B∈N0

(1− v(B))dAB ≤
∑

B∈N0

(1− v(B))dAB
(

∑

B∈N0

dAB
)−1

.

The latter term is a weighted average of the terms (1 − v(B)) for B ∈ N0. Then it is easy to
see that the minimality of v(A) implies v(A) = v(B) for every B ∈ N0. Let us reformulate
this property. Define the relation ≺ on N(v) for every B,C ∈ N(v) by: B ≺ C iff dBC > 0. We
have just shown that if v(A) is minimal, then v(A) = v(B) for every B ∈ N(v) with A ≺ B;
hence, for every such B, v(B) is also minimal. By induction, we obtain v(A) = v(B) for every
B ∈ N(v) with A ≺∗ B, where ≺∗ is the transitive-reflexive closure of ≺.

Let B ∈ N(v) with A ≺∗ B. By (9):

1− v(A) = 1− v(B) ≤
∑

C∈N(v)
B≺C

(1− v(C))dBC = (1− v(A))
∑

C∈N(v)
B≺C

dBC .

Since A ∈ N(v), v(A) 6= 1, and hence, 1 ≤
∑

C∈N(v) d
B
C . Together with (10) we obtain

∑

C∈N(v) d
B
C = 1. Then the first statement of Lemma 13(4) yields

1 =
∑

C∈N(v)
dBC =

∑

C∈N(v)
B≺C

dBC =
∑

C∈N(v)
B≺C

∑

r=B→wCw′
κ(r)

=
∑

(

κ(r) | r ∈ RB ,∃C ∈ N(v) : B ≺ C and r = B → wCw′
)

.

Since G is proper, this implies that for every r ∈ RB with κ(r) > 0, there is a C ∈ N(v)
with A ≺∗ C such that C occurs on the right-hand side of r. Hence, none of the nonterminals
B ∈ N(v) with A ≺∗ B are productive, a contradiction to the condition that G is reduced. �

Next we prove the equivalence of the third and fourth statement of Theorem 5. Observe that
for every A,B ∈ N :

Mfm(A,B) =
∂fA
∂B

(1) , M(A,B) =
∂gA
∂B

(1) , (11)

i.e., Mfm(A,B) is the partial derivative of the polynomial fA with respect to the B-component
of the argument vector. This follows immediately from the definition of Mfm, M , fA, and gA.

The following lemma states the equivalence of the third and fourth statement of Theorem 5.
Its proof idea is as follows. Suppose that StrictPre contains a vector v. Using the definition of
StrictPre and Lemma 13 we obtain that for A ∈ N , the directional derivative of gA along the
line connecting v and 1 is positive at 1 (see Figure 3 for an illustration of this situation) – note
that this explanation is simplified as there might be degenerate cases. Using Equation (11),
we obtain that this directional derivative can be expressed as

(

M(1− v)
)

(A). Then the vector
1− v satisfies the conditions of the fourth statement of Theorem 5.

12

1

1

0 1

−1

λ

gA(v + λ(1− v))

StrictPre

β

1

v

Figure 3: Illustration of Lemma 15.

Lemma 15. StrictPre = ∅ iff for every v ∈ RN
≥0 \ {0} there is an A ∈ N such that v(A) > 0

and (Mv)(A) ≤ 0.

Proof. Before we begin with the main part of this proof, we derive some auxiliary statements.
Let v ∈ [0, 1]N \ {1} and hv : R → RN : λ 7→ v + (1 − v)λ. Then for every A ∈ N the chain
rule of multivariable functions yields

(gA ◦ hv)
′(1) =

∑

B∈N

∂gA
∂B

(hv(1)) · (1− v(B)) =
∑

B∈N

∂gA
∂B

(1) · (1− v(B))

=
∑

B∈N
M(A,B) · (1− v)(B) =

(

M(1− v)
)

(A) . (12)

First we prove the if-part of the lemma. To this end we assume that StrictPre 6= ∅, say
v ∈ StrictPre. Then v′ = 1− v is in the set RN

≥0 \ {0} by definition of StrictPre. We show that
v′ has the desired properties, i.e., for every A ∈ N with v′(A) > 0 we have (Mv′)(A) > 0.

Let A ∈ N with v′(A) > 0; then v(A) 6= 1. Since v ∈ StrictPre, this implies fA(v) < v(A)
or, equivalently, gA(v) < 0. Clearly, gA(1) = 0 due to Observation 6. Then Lemma 13(3) and
the fact that gA(v) < 0 imply (gA ◦ hv)

′(1) > 0. By (12), (gA ◦ hv)
′(1) =

(

M(1 − v)
)

(A) =
(Mv′)(A) > 0.

It remains to prove the only-if part of our lemma. Assume that there is a v ∈ RN
≥0 \{0} such

that (Mv)(A) > 0 for every A ∈ N with v(A) > 0. Without loss of generality we can assume
that v(A) ≤ 1 for every A ∈ N , otherwise we can scale v by an appropriate positive scalar.
Let v′ = 1 − v; then v′ ∈ [0, 1]N \ {1}. By (12), (Mv)(A) = (gA ◦ hv′)

′(1) for every A ∈ N .
Clearly, (gA ◦ hv′)(1) = gA(1) = 0 for every A ∈ N . Since (gA ◦ hv′) is continuous for every A,
there is a λ ∈]0, 1[such that (gA ◦ hv′)(λ) < 0 for every A ∈ N with (gA ◦ hv′)

′(1) > 0; put
v0 = hv′(λ). We show that v0 ∈ StrictPre.

13

First observe that v0 ∈ [0, 1]N \ {1} because λ < 1 and v′ ∈ [0, 1]N \ {1}. Let A ∈ N . It
remains to show that fA(v0) ≤ v0(A) and that v0(A) = 1 or fA(v0) < v0(A). We distinguish
two cases.

Case 1: (Mv)(A) > 0. Then (gA ◦ hv′)
′(1) > 0 and, thus, gA(v0) = (gA ◦ hv′)(λ) < 0 by the

definition of λ. Hence, fA(v0) < v0(A).
Case 2: (Mv)(A) ≤ 0. Then v(A) = 0 by the definition of v. Thus, v′(A) = 1 and, therefore,

v0(A) = 1. It remains to show that fA(v0) ≤ v0(A). This follows from v0(A) = 1, v0 ≤ 1, the
monotonicity of fA and Observation 6. �

We conclude this section by proving the equivalence of the fourth and fifth statement of
Theorem 5. We included this equivalence only for completeness, it is not required for proving
Theorem 2. In order to demonstrate the correctness of this statement, we need to dip into
Perron-Frobenius theory of matrices. The following lemma is taken from Horn and Johnson
(1990, Corollary 8.3.3).

Lemma 16. Let M ′ ∈ RN×N
≥0 . Then

ρ(M ′) = max
v∈RN

≥0
\{0}

min
A∈N

v(A)6=0

(M ′v)(A)

v(A)
.

Lemma 17. ρ(Mfm) ≤ 1 iff for every v ∈ RN
≥0 \ {0} there is an A ∈ N such that v(A) > 0

and (Mv)(A) ≤ 0.

Proof. By Lemma 16, ρ(Mfm) ≤ 1 iff for every v ∈ RN
≥0 \ {0} there is an A ∈ N with

v(A) 6= 0 and (Mfmv)(A) ≤ v(A). Then the lemma follows from the fact that (Mv)(A) =
∑

B∈N M(A,B) · v(B) =
(
∑

B∈N Mfm(A,B) · v(B)
)

− v(A) = (Mfmv)(A) − v(A). �

The following corollary concludes this section; it is based on those parts of Theorem 5 that
we have proved in this section. Let R>0 denote the set of positive reals.

Corollary 18. Let G be reduced and w ∈ RN
>0 such that wTMfmv ≤ wT v for every vector

v ∈ RN
≥0 \ {0}. Then G is consistent.

Proof. Assume that G is inconsistent. We will derive a contradiction. According to The-
orem 5 there is a v ∈ RN

≥0 \ {0} such that (Mv)(A) > 0 for every A ∈ N with v(A) > 0.
Then

wTMfmv =
∑

A∈N
w(A) · (Mfmv)(A) =

∑

A∈N
w(A) ·

(

(Mv)(A) + v(A)
)

=
(

∑

A∈N
w(A) · (Mv)(A)

)

+wT v .

Since v 6= 0, there is at least one A ∈ N such that v(A) > 0; hence, (Mv)(A) > 0. Since
w(A) > 0 for every A ∈ N , we conclude that

∑

A∈N w(A) · (Mv)(A) > 0. Thus, wTMfmv >
wT v, a contradiction. �

14

5 Decision Procedure

In this section we prove the remaining part of Theorem 5, viz., the equivalence of its fourth
and sixth statement; moreover, we present a procedure for deciding whether an arbitrary pcfg
is consistent. The algorithm in Figure 4 on page 15 forms the main part of this decision
procedure.

Before diving into an explanation of this algorithm, we first need to define two properties
of n × n-matrices, where n is some positive integer. Let M ′ ∈ Rn×n. We say that M ′ has
Property (A) if

M ′(i, j) ≥ 0 for every i 6= j . (A)

Moreover, we say that M ′ has Property (B) if

∃ v ∈ Rn
≥0 \ {0} : (M

′v)(i) > 0 for every 1 ≤ i ≤ n with v(i) > 0 . (B)

Recall that we do not distinguish between matrices of the form Rn×n and RN×N ; cf. the
remark after Theorem 5. In this section we merely introduce matrices of the form Rn×n in
order to employ a canonical order of the rows and columns of the matrix.

The algorithm in Figure 4 takes a matrix having Property (A) as input and decides whether
it has Property (B). Note that the definition of the matrix M implies that M has Property (A).
Furthermore, observe that Property (B) is precisely the complement of the fourth statement of
Theorem 5. Hence, if the algorithm in Figure 4 is correct, then the fourth and sixth statement
of Theorem 5 are equivalent.

Input: matrix M ∈ Rn×n having Property (A)
Output: whether M has Property (B)
1 for k ← n down to 1
2 inull ← 0, ineg ← 0
3 for i← 1 to k
4 if M(i, i) > 0, then return “M has Property (B)”
5 else if M(i, i) < 0, then ineg ← i
6 else if M(i, 1) = M(i, 2) = . . . = M(i, k) = 0, then inull ← i
7 if inull > 0, then ineg ← inull
8 if ineg = 0, then return “M has Property (B)”
9 for j ← 1 to k

10 swap entry (ineg, j) with (k, j) in M
11 for j ← 1 to k
12 swap entry (j, ineg) with (j, k) in M
13 if inull = 0, then
14 for i← 1 to k − 1
15 for j ← 1 to k − 1
16 M(i, j) ←M(k, j) ·M(i, k) −M(i, j) ·M(k, k)
17 return “M does not have Property (B)”

Figure 4: Algorithm for deciding whether a matrix with Property (A) has Property (B).

Now we present an example execution of the algorithm in Figure 4.

15

Example 19 (Cont. of Example 4). First observe that M has Property (A). Consider the
first execution of the outer loop, i.e., for k = 5. The loop in lines 3–6 will quit prematurely if
there is a positive diagonal element in M . This is not the case. Otherwise, after the execution
of this inner loop, inull is the index of the last row containing only 0; if there is no such row
– as in our case – then inull is 0. The variable ineg is the index of the last negative diagonal
element; thus, ineg = 5 in our situation.

The statements in lines 7 and 8 do not have any effect in this first execution of the outer
loop. The two loops in lines 9–12 swap line ineg with line k and row ineg with row k (see
Figure 5). Since ineg = 5 = k, these loops will have no effect right now.

swap

swap

ineg k

Figure 5: Swapping of row/column ineg with row/column k in lines 9–11.

Finally the algorithm executes the loop in lines 13–16, which is essentially a single step
of Gaussian elimination (eliminating row k); however, for reasons of efficiency the k-th entry
of each row is not eliminated as this entry is not needed throughout the later stages of the
algorithm. We obtain the following matrix after the first iteration of the outer loop

0 1/2 2 1/2
0 −1/2 1 0
0 1/2 −1 0
1/4 1/4 2 0

;

note that we omitted the last row and last column because they are not needed for the remain-
der of the execution.

In the next iteration of the outer loop (i.e., k = 4) the algorithm computes inull = 0 and
ineg = 3; hence, in lines 9–12, the third and fourth row and the third and fourth column are
swapped, resulting in the matrix

0 1/2 1/2 2
0 −1/2 0 1
1/4 1/4 0 2
0 1/2 0 −1

.

Another step of Gaussian elimination in lines 13–16 yields the matrix (this time omitting the
last two rows and columns):

0 3/2 1/2
0 0 0
1/4 5/4 0

 .

16

In the next iteration of the outer loop we obtain inull = 2 and ineg = 0 after the loop in lines
3–6. Then in line 7, ineg will be assigned the value 2. Hence, in lines 9–12, the second and
third row/column are swapped. Since inull 6= 0, there will be no Gaussian elimination in this
execution of the outer loop. Hence, we obtain the matrix

(

0 1/2
1/4 0

)

.

In the fourth iteration of the outer loop we compute inull = ineg = 0. Hence, the algorithm
will terminate and answer “M has Property (B)” in line 8.

It is easy to see that our algorithm is correct for this example because M does actually have
Property (B). In fact, M · (4, 0, 0, 2, 0)T = (1, 0, 0, 1, 0)T . ✷

Intuitively, the algorithm performs the following steps throughout every iteration of the
outer loop:

• It looks for a row i in the current matrix having a negative diagonal element or having all
entries equal to zero. If there is no such row or if the matrix contains a positive diagonal
element, then the algorithm halts and outputs “M has Property (B)”.

• It interchanges row i and column i with the last row and column.

• If necessary, it eliminates the last row by means of Gaussian elimination.

• It removes the last row and column from the current matrix – albeit this is just a logical
removal, it is not actually performed in memory.

All these operations are guaranteed to conserve Properties (A) and (B). This is expressed
formally by the following lemmas. Putting these lemmas together yields the correctness of the
algorithm in Figure 4; see Lemma 24.

Observation 20. Let 1 ≤ k ≤ n and let M ′ ∈ Rn×n originate from M by interchanging row
k with row n and by interchanging column k with column n, i.e., M ′(i, j) = M(π(i), π(j)),
where π(k) = n, π(n) = k, and π(i) = i for every other i.

If M has Property (A), then M ′ has Property (A). Furthermore, M has Property (B) iff M ′

has Property (B).

Lemma 21. Suppose that M has Property (A) and M(n, i) = 0 for every 1 ≤ i ≤ n. Define
M ′ ∈ Rn−1×n−1 by letting M ′(i, j) = M(i, j). Then M ′ has Property (A). Furthermore, M ′

has Property (B) iff M has Property (B).

Proof. It is easy to see that M ′ has Property (A). Suppose that M ′ has Property (B). Hence,
there is a v′ ∈ Rn−1

≥0 \{0} such that (M ′v′)(i) > 0 for every 1 ≤ i ≤ n−1 with v′(i) > 0. Define
v ∈ Rn

≥0 \ {0} by v(n) = 0 and v(i) = v′(i) for every 1 ≤ i ≤ n− 1. The fact that M(i, n) ≥ 0
for every 1 ≤ i ≤ n− 1 implies that (Mv)(i) > 0 for every 1 ≤ i ≤ n with v(i) > 0. Thus, M
has Property (B).

Now suppose that M has Property (B). Let v ∈ Rn
≥0 \ {0} such that (Mv)(i) > 0 for every

1 ≤ i ≤ n with v(i) > 0. Define v′ ∈ Rn−1
≥0 by v′(i) = v(i) for every 1 ≤ i ≤ n − 1. Clearly,

(Mv)(n) = 0 and we conclude that v(n) = 0; hence, v′ 6= 0 and (M ′v′)(i) = (Mv)(i) for every
1 ≤ i ≤ n− 1. It is easy to see that this implies that M ′ has Property (B). �

17

Lemma 22. Suppose that M(i, j) ≥ 0 for every 1 ≤ i, j ≤ n. Then M has Property (B)
iff there is a nonempty set I ⊆ {1, . . . , n} such that for every i ∈ I there is a j ∈ I with
M(i, j) > 0.

Proof. For every v ∈ Rn
≥0 let Iv = {i | 1 ≤ i ≤ n, v(i) > 0}. If M has Property (B), then

there is a v ∈ Rn
≥0 such that Iv is nonempty and for every i ∈ Iv, (Mv)(i) > 0. Clearly,

(Mv)(i) > 0 iff there is a j ∈ Iv with M(i, j) > 0. This implies the only-if-part.
The if-part follows from a similar argument: for a given nonempty set I ⊆ {1, . . . , n} let

v(i) = 1 if i ∈ I and v(i) = 0 otherwise. Then it is easy to see that v witnesses that M has
Property (B). �

The following lemma states that the Gaussian elimination performed in lines 13–16 of Fig-
ure 4 preserves Properties (A) and (B). It is the heart of the correctness proof of the algorithm.

Lemma 23. Suppose that M has Property (A) and M(n, n) < 0. Let M ′ ∈ Rn−1×n−1 with

M ′(i, j) = M(n, j) ·M(i, n) −M(i, j) ·M(n, n) .

Then M ′ has Property (A). Furthermore, M ′ has Property (B) iff M has Property (B).

Proof. First we show that M ′ has Property (A). Let i 6= j. Since M has Property (A), we
conclude that M(n, j) ≥ 0, M(i, n) ≥ 0 and M(i, j) ≥ 0. Then the assumption M(n, n) < 0
implies the assertion.

Next we show that M ′ has Property (B) iff M has Property (B). For the if-part suppose that
M has Property (B). Then there is a v ∈ Rn

≥0 \ {0} such that (Mv)(i) > 0 for every 1 ≤ i ≤ n

with v(i) > 0. Let v′ ∈ Rn−1
≥0 with v′(j) = v(j) for every 1 ≤ j ≤ n− 1.

Assume that v′ = 0. Then (Mv)(n) = M(n, n)·v(n). Since v 6= 0, we conclude that v(n) > 0.
Together with M(n, n) < 0 this yields (Mv)(n) < 0, a contradiction. Thus, v′ ∈ Rn−1

≥0 \ {0}.
Let 1 ≤ i ≤ n − 1 with v′(i) > 0. We show that (M ′v′)(i) > 0. First observe that for every
1 ≤ i ≤ n− 1:

(M ′v′)(i) =
∑n−1

j=1
M ′(i, j) · v′(j)

=
∑n−1

j=1

(

M(n, j) ·M(i, n) · v(j) −M(i, j) ·M(n, n) · v(j)
)

= M(i, n) ·
(

∑n−1

j=1
M(n, j) · v(j)

)

−M(n, n) ·
(

∑n−1

j=1
M(i, j) · v(j)

)

= M(i, n) ·
(

(Mv)(n) −M(n, n) · v(n)
)

−M(n, n) ·
(

(Mv)(i) −M(i, n) · v(n)
)

= M(i, n) · (Mv)(n)−M(n, n) · (Mv)(i) .

Since v′(i) > 0, also v(i) > 0 and, hence, (Mv)(i) > 0. Moreover, (Mv)(n) ≥ 0: if v(n) = 0,
then (Mv)(n) ≥ 0 follows from the fact thatM has Property (A); if v(n) > 0, then (Mv)(n) ≥ 0
follows from the definition of v. Then the facts that M(i, n) ≥ 0 (by Property (A)) and
M(n, n) < 0 imply that (M ′v′)(i) > 0. We conclude that M ′ has Property (B).

It remains to prove the only-if-part. Assume that M ′ has Property (B). Then there is a
vector v′ ∈ Rn−1

≥0 \ {0} with (M ′v′)(i) > 0 for every 1 ≤ i ≤ n − 1 with v′(i) > 0. Let
1 ≤ i ≤ n− 1. Then

(M ′v′)(i) =
∑n−1

j=1

(

M(n, j) ·M(i, n)−M(i, j) ·M(n, n)
)

· v′(j)

18

= M(i, n) ·
(

∑n−1

j=1
M(n, j) · v′(j)

)

−M(n, n) ·
(

∑n−1

j=1
M(i, j) · v′(j)

)

. (13)

We distinguish two cases.
Case 1:

∑n−1
j=1 M(n, j) · v′(j) = 0. We define v ∈ Rn

≥0 \ {0} by letting v(n) = 0 and

v(j) = v′(j) for every 1 ≤ j ≤ n − 1. Then (Mv)(n) =
∑n−1

j=1 M(n, j) · v′(j) = 0. Together
with (13) we conclude

(M ′v′)(i) = −M(n, n) ·
(

∑n−1

j=1
M(i, j) · v′(j)

)

= −M(n, n) · (Mv)(i)

for every 1 ≤ i ≤ n − 1. Then it is easy to see that (Mv)(i) > 0 for every 1 ≤ i ≤ n with
v(i) > 0. Hence, M has Property (B).

Case 2:
∑n−1

j=1 M(n, j) · v′(j) 6= 0. Then
∑n−1

j=1 M(n, j) · v′(j) > 0 because M has Prop-
erty (A).

Let 1 ≤ i ≤ n − 1 such that M(i, n) > 0. Assume that (M ′v′)(i) = 0. Then v′(i) = 0
and we conclude that

∑n−1
j=1 M(i, j) · v′(j) ≥ 0 because M has Property (A). Together with

M(n, n) < 0 and M(i, n) > 0, Equation (13) yields (M ′v′)(i) > 0, a contradiction. Hence,
(M ′v′)(i) > 0. Now (13) implies

∑n−1
j=1 M(n, j) · v′(j)

−M(n, n)
>
−
∑n−1

j=1 M(i, j) · v′(j)

M(i, n)
. (because M(n, n) < 0)

Note that the left-hand side of this inequality is positive by assumption.
Thus, there is an r > 0 such that for every 1 ≤ i ≤ n− 1 with M(i, n) > 0:

r <

∑n−1
j=1 M(n, j) · v′(j)

−M(n, n)
, and (14)

r >
−
∑n−1

j=1 M(i, j) · v′(j)

M(i, n)
. (15)

Define v ∈ Rn
≥0 \ {0} by v(n) = r and v(j) = v′(j) for every 1 ≤ j ≤ n − 1. Our proof is

finished if we show that (Mv)(i) > 0 for every 1 ≤ i ≤ n with v(i) > 0. Let 1 ≤ i ≤ n with
v(i) > 0. We distinguish three cases.

If i = n, then (Mv)(i) =
∑n

j=1M(n, j) · v(j) = M(n, n) · r +
∑n−1

j=1 M(n, j) · v′(j) > 0 due
to (14).

If 1 ≤ i ≤ n− 1 and M(i, n) > 0, then (Mv)(i) = M(i, n) · r +
∑n−1

j=1 M(i, j) · v′(j) > 0 due
to (15).

If 1 ≤ i ≤ n − 1 and M(i, n) = 0, then (M ′v′)(i) = −M(n, n) ·
(

∑n−1
j=1 M(i, j) · v′(j)

)

=

−M(n, n) · (Mv)(i) due to (13). Then the fact that v(i) > 0 implies v′(i) > 0, which yields
(M ′v′)(i) > 0; hence (Mv)(i) > 0. �

Lemma 24. On input M , the algorithm in Figure 4 returns “M has Property (B)” iff M has
Property (B).

Proof. In order to distinguish the variable M , whose value changes during the execution of
the algorithm, from the input matrix M , we denote the input matrix by Minput throughout
this algorithm.

19

For every 0 ≤ k ≤ n let Mk ∈ Rk×k
≥0 such that Mk(i, j) = M(i, j) for every 1 ≤ i, j ≤ k. First

we prove that the following statement is an invariant of the outer loop (from line 1 to line 16):

Mk has Property (A), and Mk has Property (B) iff Minput has Property (B). (I)

The invariant trivially holds on entry into the loop. We show that the invariant remains true
on every iteration of the loop. Let 0 < k ≤ n and consider the according iteration of the outer
loop, i.e., if k = n, then consider the first iteration, etc. Suppose that this iteration does not
quit prematurely by executing the return statements in lines 4 or 8. Consider the current value
of M at the beginning of this iteration and denote by M ′ the value of the matrix at the end
of this iteration. Accordingly, we denote by Mk the upper left k × k-submatrix of M and by
M ′

k−1 the upper left (k − 1)× (k − 1)-submatrix of M ′.
Suppose that the invariant (I) holds at the beginning of this iteration, i.e., that Mk has

Property (A) and, furthermore, that Mk has Property (B) iff Minput has Property (B). We
need to establish that

• M ′
k−1 has Property (A), and

• M ′
k−1 has Property (B) iff Minput has Property (B).

Consider the value of the variables inull and ineg after the execution of the loop from lines 3
to 6. At least one of these values is different from zero, otherwise the algorithm would quit in
line 8; this contradicts the assumption that the algorithm does not quit in this iteration of the
outer loop. We distinguish two cases.

Case 1: inull > 0. Then M(inull, 1) = M(inull, 2) = . . . = M(inull, k) = 0 due to line 6, i.e.,
the row inull in the matrix Mk is zero. In lines 9 to 12 the rows inull and k as well as the columns
inull and k of the matrix Mk are interchanged. Let us denote the resulting matrix by M swap

k .
Due to Observation 20, M swap

k has Property (A); moreover, M swap
k has Property (B) iff Mk has

Property (B). Since inull > 0, lines 14 to 16 are not executed and M ′
k−1 results from M swap

k by
removing the k-th row and k-th column. Since every element of the k-th row of M swap

k is zero,
Lemma 21 yields that M ′

k−1 has Property (A); moreover, M ′
k−1 has Property (B) iff M swap

k
has Property (B). Hence, the invariant holds after this execution of the loop.

Case 2: inull = 0 and ineg > 0. Then M(ineg, ineg) < 0. Similarly to Case 1, let M swap
k be the

value ofMk after executing the loops from line 9 to line 12. Again, M swap
k has Property (A) and,

furthermore, M swap
k has Property (B) iff Mk has Property (B). Observe that M swap

k (k, k) < 0.
Since inull = 0, the loop from line 14 to line 16 is executed. Lemma 23 yields that M ′

k−1 has
Property (A); moreover, M ′

k−1 has Property (B) iff M swap
k has Property (B).

This finishes the proof that (I) is an invariant of the outer loop. Now we continue the
correctness proof of the algorithm. We need to distinguish three cases.

Case 1: the algorithm terminates in line 4. Then there is a 1 ≤ i ≤ k such that Mk(i, i) > 0.
Thus, Mk has Property (B): let v ∈ Rk

≥0 \ {0} with v(i) = 1 and v(l) = 0 for every other l;
then (Mkv)(i) = Mk(i, i) > 0 and (Mkv)(l) = Mk(l, i) ≥ 0 for every other l because Mk has
Property (A) due to invariant (I). Furthermore, (I) implies that also Minput has Property (B).

Case 2: the algorithm terminates in line 8. Thus, both inull and ineg are zero after the
execution of the loop from line 3 to line 6. We conclude that, for every 1 ≤ i ≤ k, Mk(i, i) = 0
and that there is a 1 ≤ j ≤ k such that Mk(i, j) 6= 0. This yields that Mk ∈ Rk×k

≥0 because Mk

has Property (A) due to (I). Lemma 22 implies that Mk has Property (B); this is witnessed
by letting I = {1, . . . , k}. Invariant (I) implies that also Minput has Property (B).

20

Case 3: the algorithm terminates in line 17. Clearly, k is zero after the execution of the outer
loop. The loop invariant yields that M0 has Property (B) iff Minput has Property (B). However,
M0 does not have Property (B): every vector v in R0×0

≥0 is equal to the zero-dimensional zero-
vector. Thus, Minput does not have Property (B) either. �

Proof of Theorem 2

We conclude this section by giving a proof of Theorem 2. Given a proper pcfg G = (N,S,R, κ),
denote the set of non-reachable (resp. non-productive) nonterminals of G by Nnr (resp. Nnp).
One can decide whether G is consistent by employing the following steps:

1. Construct the sets Nnr and Nnp.

2. If Nnp 6⊆ Nnr, then G is inconsistent.

3. Remove all nonterminals in Nnr and all rules containing nonterminals in Nnr from G.

4. Construct M .

5. Execute the algorithm in Figure 4 on input M . If it returns “does have Property (B)”,
then G is inconsistent; otherwise G is consistent.

The correctness of these steps follows from Lemma 11 and Theorem 5. The first four steps have
time complexity O(size(R)), see Observation 10. The last step has time complexity O(|N |3) in
the unit-cost model of computation. Hence, the complete method has time complexity O(n3),
where n = max{size(R), |N |}.

6 Consistency of Grammars Resulting from Training

In the field of natural-language processing the rule probabilities of a pcfg are usually estimated
from data by means of maximum-likelihood estimation (Wetherell, 1980; Prescher, 2005). Then
the following question arises: is a grammar that results from such a training process guaranteed
to be consistent? This question has first been investigated in Wetherell (1980) and has been
answered affirmatively by Chaudhuri et al. (1983); Chi and Geman (1998). In this section we
give a simpler alternative proof of the result by Chi and Geman (1998); in fact, we show that
it is a simple corollary of Theorem 5. Moreover, our result (see Theorem 26) extends the result
by Chi and Geman: it is applicable to a broader variety of data and we will show that every
maximum-likelihood estimate yields a consistent grammar.

First let us recall some concepts. The data are represented as a corpus, which is either
(i) a sequence t1, . . . , tn of parse trees – or, equivalently, syntax trees in TS – (called complete-
data corpus) or (ii) a sequence w1, . . . , wn of strings in Σ∗ (called incomplete-data corpus).
The latter type of corpora is called incomplete because for every string w there are multiple
possible syntax trees that represent w, i.e., whose front is w. More precisely, there is a mapping
A : Σ∗ → P(TS) such that A(w) ∩ A(w′) = ∅ for every w 6= w′; A assigns to every string the
set of syntax trees of that string. This mapping is called an analyzer.

In general, incomplete data can emerge in more varied forms, e.g., fragments of parse trees
or fragmentary strings. Hence, in this general form incomplete-data corpora are sequences
y1, . . . , yn of elements taken from a set Y of observations. Moreover, there is an analyzer
A : Y → P(TS) such that A(y) ∩ A(y′) = ∅ for every y 6= y′; A associates every observation

21

with possible syntax trees that are consistent with the observation. Note that, given this
definition every complete-data corpus is also an incomplete-data corpus by letting Y = TS and
by letting A be the identity; therefore, we restrict ourselves to incomplete-data corpora in the
following discussion.

In the sequel we fix a pcfg G = (N,S,R, ·); the last component of G is irrelevant. We say
that a probability assignment κ : R → [0, 1] is proper (consistent, respectively) if (N,S,R, κ)
is proper (consistent, respectively). For every syntax tree t ∈ TS , and y ∈ Y we define

Pκ(y) =
∑

t′∈A(y)
Pκ(t

′) , Pκ(t | y) =

{

Pκ(t)/Pκ(y) , if t ∈ A(y)

0 , otherwise

Observe that this definition implies

∑

t∈TS

Pκ(t | y) = 1 . (16)

Given a corpus y1, . . . , yn a maximum-likelihood estimate (for short: mle) of y1, . . . , yn is a
proper probability assignment κ such that

∏n

i=1
Pκ(yi) ≥

∏n

i=1
Pκ′(yi) .

for every proper probability assignment κ′; see Chi and Geman (1998); Prescher (2005).
The process of training a grammar consists of (i) determining an mle of the given corpus

and (ii) using the result as the probability assignment of the grammar. In general there is
no closed form solution of the first step. However, an mle can be approximated by means of
the EM algorithm (Baker, 1979; Dempster et al., 1977). A representation of this algorithm
that is based on Prescher (2005) is shown in Figure 6. The argmax that is executed in the
M step is defined over all proper probability assignments κ : R → [0, 1]. Note that Prescher
defines corpora as multisets f : Y → R≥0 (with real-valued frequencies) instead of sequences
y1, . . . , yn.

Input: probability assignment κ0 : R→ [0, 1], corpus y1, . . . , yn ∈ Y n

Output: a sequence κ1, κ2, . . . of probability assignments
Variables: a mapping h : TS → R≥0

1 for each i← 0, 1, 2, . . .
2 E step: h(t)←

∑n
j=1 Pκi

(t | yj)

3 M step: κi+1 ← argmaxκ
∏

t∈TS
Pκ(t)

h(t)

Figure 6: EM algorithm for training pcfgs based on Prescher (2005).

The outer loop of the EM algorithm halts after a predetermined number of executions
or when the κi stabilize. The EM algorithm does not necessarily approach an mle, but it
consecutively increases the likelihood of the corpus; more precisely (Prescher, 2005, Theorem 5),

∏n

i=1
Pκ0

(yi) ≤
∏n

i=1
Pκ1

(yi) ≤
∏n

i=1
Pκ2

(yi) ≤ · · · (17)

Given a proper probability assignment κ we say that κ results from training if there is an
incomplete-data corpus y1, . . . , yn such that

22

• κ is an mle of y1, . . . , yn or

• there is a probability assignment κ0 such that κ is generated in some iteration of the EM
algorithm on input κ0 and y1, . . . , yn; i.e., κ is of the form κi.

Roughly speaking, κ results from training if it is the actual or an approximative mle. In the
remainder of this section we will show that every such κ is consistent. The following lemma is
essential for the subsequent derivation.

Lemma 25. Suppose that κ results from training. Then there is an h : TS → R≥0 such that,
for every r = A→ w ∈ R,

κ(r) =

∑

t∈TS
h(t) ·#(r, t)

∑

r′∈RA

∑

t∈TS
h(t) ·#(r′, t)

,

where #(r, t) is the number of occurrences of r in t.

Proof. First we show that there is a h : TS → R≥0 such that

∏

t∈TS

Pκ(t)
h(t) ≥

∏

t∈TS

Pκ′(t)h(t) (18)

for every proper probability assignment κ′. Since κ results from training there is a corpus
y1, . . . , yn such that κ is an mle of y1, . . . , yn or it is generated by the EM algorithm. The
latter case trivially implies (18) due to the definition of the M step of the EM algorithm. Now
let us consider the former case, i.e., κ is an mle. For every t let h(t) =

∑n
i=1 Pκ(t | yi). Using

Equation (16) we obtain that for every proper probability assignment κ′,

∏

t∈TS
Pκ′(t)h(t)

∏n
i=1 Pκ′(yi)

=

∏

t∈TS

∏n
i=1 Pκ′(t)Pκ(t|yi)

∏n
i=1

∏

t∈TS
Pκ′(yi)Pκ(t|yi)

=
∏n

i=1

∏

t∈TS

Pκ′(t | yi)
Pκ(t|yi) . (19)

By Equation (16) and Theorem 1(i) of Prescher (2005) we find that, for every i:

∏

t∈TS

Pκ(t | yi)
Pκ(t|yi) ≥

∏

t∈TS

Pκ′(t | yi)
Pκ(t|yi) .

Then Equation (19) yields that for every κ′:

∏

t∈TS
Pκ(t)

h(t)

∏n
i=1 Pκ(yi)

≥

∏

t∈TS
Pκ′(t)h(t)

∏n
i=1 Pκ′(yi)

.

Now (18) follows from the fact that κ is an mle of y1, . . . , yn and, hence,
∏n

i=1 Pκ(yi) ≥
∏n

i=1 Pκ′(yi). This finishes the proof of (18).
The assertion of the lemma follows from (18) and Theorem 10 of Prescher (2005). �

We will now employ Corollary 18 and Lemma 25 in order to show that every κ that results
from training is consistent.

Theorem 26. Suppose that κ results from training. Then κ is consistent.

23

Proof. Let G = (N,S,R, κ). By Lemma 25 there is a h : TS → R≥0 such that, for every
r = A→ w ∈ R,

κ(r) =

∑

t∈TS
h(t) ·#(r, t)

∑

r′∈RA

∑

t∈TS
h(t) ·#(r′, t)

.

We conclude that κ(r) > 0 iff r occurs in some t ∈ TS with h(t) > 0. Then it is easy to see
that every reachable nonterminal of G is productive. We can assume that G is reduced by
Lemma 11.

Define w ∈ RN
≥0 by letting w(A) =

∑

r∈RA

∑

t∈TS
h(t) ·#(r, t) for every A ∈ N . Since G is

reduced, every nonterminal is productive. In particular, for every A ∈ N there is an r ∈ RA

with κ(r) > 0; it is easy to see that this implies w(A) > 0. Hence, w ∈ RN
>0. In view of

Corollary 18 it suffices to show that wTMfmv ≤ wT v for every v ∈ RN
≥0 \ {0}:

wTMfmv =
∑

A,B∈N
w(A) ·Mfm(A,B) · v(B)

=
∑

A,B∈N
w(A) ·

∑

r=A→w
κ(r) · |w|B · v(B)

=
∑

A,B∈N
w(A) ·

∑

r=A→w

∑

t∈TS
h(t) ·#(r, t)

∑

r′∈RA

∑

t∈TS
h(t) ·#(r′, t)

· |w|B · v(B)

=
∑

A,B∈N

∑

r=A→w

∑

t∈TS

h(t) ·#(r, t) · |w|B · v(B)

=
∑

B∈N
v(B) ·

(

∑

t∈TS

h(t) ·
(

∑

A∈N

∑

r=A→w
#(r, t) · |w|B

))

≤
∑

B∈N
v(B) ·

(

∑

t∈TS

h(t) ·
(

∑

r∈RB

#(r, t)
))

= wT v .

In the last line we used that fact
∑

A∈N

∑

r=A→w #(r, t) · |w|B ≤
∑

r∈RB
#(r, t) which is a

simple property of every syntax tree t. �

7 Conclusion

We have presented an algorithm for deciding whether an arbitrary proper probabilistic context-
free grammar is consistent. This algorithm has time complexity O(n3). Furthermore, we have
shown that maximum-likelihood training of pcfg always yields a consistent grammar, even if
the maximum-likelihood estimate is approximated by means of the EM algorithm.

Our method carries over to other formalisms. The structure of the set of derivations of more
sophisticated grammar models – like weighted regular tree grammars, synchronous context-free
grammars and tree-adjoining grammars (see Section 1) – can be described by pcfgs; hence, the
algorithm presented in this paper can be employed for deciding consistency of those models.

The following questions and problems have not been covered in this paper and suggest further
research.

• Can the result from Section 6 be extended to more advanced grammar models?

• Given a partition function β′ (see Section 3 and Nederhof and Satta (2008)), can one
employ a modification of our algorithm to decide the correctness of β′, i.e., whether
β = β′? Is this even possible when we drop the requirement that the input grammar is
proper?

24

• Nederhof and Satta (2008) investigated methods for approximating the inside probabili-
ties of a pcfg (i.e., its partition function). Is it possible to develop alternative approaches
for approximating the partition function by employing the techniques developed in this
paper?

• The equivalence of the first and fifth statement of Theorem 5 suggests that there are
grammars that are borderline consistent, i.e., they are still consistent but almost incon-
sistent. Such grammars have the property that ρ(Mfm) = 1. This implies that there
is a vector v ∈ RN

≥0 \ {0} and a nonterminal A such that v(A) > 0 and (Mv)(A) = 0.
We conjecture that such grammars have some curious properties: e.g., that there is a
polynomial p such that P (|w| = n) ≈ p(n)−1, where P (|w| = n) denotes the probability
to derive a word of length n. We conjecture that for every other grammar (i.e., incon-
sistent and non-borderline consistent grammars) P (|w| = n) does not fall polynomially
but exponentially. It is worthwhile to characterize and study such grammars more thor-
oughly, e.g., to develop automatic training methods that always yield grammars that are
borderline consistent.

References

Alexandrakis, A. and Bozapalidis, S. (1987). Weighted grammars and Kleene’s theorem. Inform. Process. Lett.,
24(1):1–4.

Baker, J. (1979). Trainable grammars for speech recognition. In Klatt, D. and Wolf, J., editors, Speech
Communication Papers for the 97th Meeting of the Acoustical Society of America. Boston, MA, pages 547–
550.

Booth, T. (1969). Probabilistic representation of formal languages. In IEEE Conference Record of 1969 Tenth
Annual Symposium on Switching and Automata Theory, pages 74–81. IEEE.

Booth, T. and Thompson, R. (1973). Applying probability measures to abstract languages. Computers, IEEE
Transactions on, 100(5):442–450.

Chaudhuri, R., Pham, S., and Garcia, O. (1983). Solution of an open problem on probabilistic grammars.
Computers, IEEE Transactions on, 100(8):748–750.

Chi, Z. and Geman, S. (1998). Estimation of probabilistic context-free grammars. Computational Linguistics,
24(2):299–305.

Chiang, D. (2005). A hierarchical phrase-based model for statistical machine translation. In ACL ’05: Proceed-
ings of the 43rd Annual Meeting on Association for Computational Linguistics, pages 263–270. Association
for Computational Linguistics.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis. Cambridge Universiy
Press.

Etessami, K. and Yannakakis, M. (2009). Recursive markov chains, stochastic grammars, and monotone systems
of nonlinear equations. Journal of the ACM (JACM), 56(1):1–66.

Gass, S. (2010). Linear Programming: Methods and Applications: Fifth Edition. Dover Pubns.

Gécseg, F. and Steinby, M. (1984). Tree Automata. Akadémiai Kiadó, Budapest.

Graehl, J., Knight, K., and May, J. (2008). Training tree transducers. Computational Linguistics, 34(3):391–427.

25

Harris, T. (1963). The Theory of Branching Processes. Springer-Verlag Berlin.

Horn, R. and Johnson, C. (1990). Matrix analysis. Cambridge University Press.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree Adjunct Grammars. J. Comput. System Sci.,
10:136–163.

Lancaster, P. and Tismenetsky, M. (1985). The Theory of Matrices: with Applications. Academic Press.

Lewis, P. and Stearns, R. (1968). Syntay-directed transduction. J. ACM, 15(3):465–488.

Manning, C. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing, volume 59. MIT
Press.

Matoušek, J. and Gärtner, B. (2007). Understanding and Using Linear Programming. Springer-Verlag Berlin.

Nederhof, M. and Satta, G. (2008). Computing partition functions of pcfgs. Research on Language & Compu-
tation, 6(2):139–162.

Prescher, D. (2001). EM-basierte maschinelle Lernverfahren für natürliche Sprachen. PhD thesis, Universität
Stuttgart.

Prescher, D. (2005). A Tutorial on the Expectation-Maximization Algorithm Including Maximum-Likelihood
Estimation and EM Training of Probabilisitic Context-Free Grammars. Technical report, University of
Amsterdam.

Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjölander, K., Underwood, R., and Haussler, D. (1994).
Stochastic context-free grammers for trna modeling. Nucleic acids research, 22(23):5112.

Sánchez, J. and Bened́ı, J. (1997). Consistency of stochastic context-free grammars from probabilistic estima-
tion based on growth transformations. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
19(9):1052–1055.

Shieber, S. M. and Schabes, Y. (1990). Synchronous tree-adjoining grammars. In Proceedings of the 13th
International Conference on Computational Linguistics, volume 3, pages 253–258, Helsinki, Finland.

Sipser, M. (1996). Introduction to the Theory of Computation. International Thomson Publishing.

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific journal of Mathematics,
5(2):285–309.

Wetherell, C. (1980). Probabilistic languages: A review and some open questions. ACM Computing Surveys
(CSUR), 12(4):361–379.

26

