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Abstract

The goal of the present thesis is to treat a wide diversity of problems in magnets
by the tools of the modern computational micromagnetism. As an application of
the self-elaborated numerical techniques this thesis includes a phenomenological de-
scription of magnetic phenomena in magnets with different geometry on nanoscale
(part I) and in non-centrosymmetric magnets with chiral Dzyaloshinskii-Moriya
interactions (part II).

Part I. Nanomagnetic systems are well-prepared and controlled objects which in-
duce growing interest for the understanding of magnetic behavior down to nanoscale.
From one side, experiments on these carefully prepared and defect-free nanoobjects
can serve as tests on classical results from micromagnetism. From the other side,
nanosystems with multiformity of structural design provide an arena for the research
of different aspects of surface-induced interactions. Surface-induced interactions in
nanomagnets appear due to complex changes of the electrical and magnetic prop-
erties of surface layers and essentially modify their properties. The role of surface-
induced contributions substantially increases with a perpetual miniaturization of
magnetic nanostructures. Theoretical studies of the present thesis focus mainly on
the effect of surface-induced uniaxial anisotropy in the stability and phase transitions
of different homogeneous and inhomogeneous magnetization distributions in nano-
magnets. Surface anisotropy competing with the intrinsic magnetocrystalline cubic
anisotropy is found to influence the magnetization processes in various geometries of
nanosystems, such as extended magnetic nanolayers, nanowires/nanotubes, and very
small single-domain nanoparticles. In the present thesis, a micromagnetic model to
describe magnetization processes in systems with competing magnetic anisotropies
has been extended, generalized, and adapted to investigate nanomagnetic systems.
Micromagnetic calculations have been implemented for detailed analysis of recent
experimental results:

(i) In layered magnetic nanostructures, e. g., in diluted magnetic semiconduc-
tors as (Ga,Mn)As and (In,Mn)As, competing anisotropies are known to result in
the formation of specific multidomain states. A comprehensive analysis of the spin
configurations in coexisting phases and parameters of domain structures versus the
applied field is given for different values of the magnetic anisotropies and relative
orientations of the anisotropy axes. Phase diagrams in components of applied and
internal magnetic fields have been presented for such systems. These phase dia-
grams display regions of multi-phase domain structures. Lability lines of the phase
diagrams span the regions with a remarkable transformation of the internal do-
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main walls. Transformations for a single domain wall pinned in a constriction of a
(Ga,Mn)As microdevice have been analysed theoretically. As a result, the strongly
changing width and profile of the domain wall may have measurable consequences in
these materials. Finally, for epilayers with perpendicular anisotropy, a theory of the
depolarization effects has been presented and the geometrical parameters of stripe
and bubble domains as functions of a bias field have been calculated.

(ii) In magnetic nanoparticles according to numerous experiments, the magnetic
states are also strongly affected by the competition of surface induced and intrinsic
magnetic anisotropies. Micromagnetic calculations done in the present thesis show
that a proper choice of nanoparticle shape and surface preparation can be used to
adjust their magnetic properties, in particular to stabilize the magnetization along
one direction and to suppress superparamagnetism. It has been found out that
the competition of various contributions to the effective anisotropy entails multiple
magnetization states and the possibility to switch magnetization from one stable ho-
mogeneous state to another that are not necessarily equilibrium states. It has been
demonstrated how to take into account the demagnetizing effect of the nanoparticle
surface, which cannot be included in an effective uniaxial anisotropy. The analysis
of the topologically different phase diagrams gives full information on stable states
and the magnetic switching fields. The calculated magnetic phase diagrams include
different magnetization processes alternative to the classical Stoner-Wohlfarth sce-
nario.

(iii) In ferromagnetic nanowires and nanotubes magnetic couplings induced by lat-
eral surfaces can overcome the stray-field forces and stabilize inhomogeneous states
where the magnetization vector rotates along or perpendicular to radial directions
as Néel or Bloch vortex, respectively. Depending on the surface anisotropy constants
vortices are formed by a continuous rotation of the magnetization vector away from
the homogeneous state with collinear longitudinal magnetization. Depending on the
material and geometrical parameters different types of Néel and Bloch vortices can
exist in nanowires and nanotubes. The phase diagram of the solutions includes sta-
bility regions of different vortex states and homogeneous phases with longitudinal
or transverse magnetization separated by first- or second-order transition lines. Sig-
natures of vortex states are discussed in relation to experimental observations on
magnetization processes in magnetic nanowires. In particular, vortex states may
be responsible for certain anomalies of the magnetoresistance in nanowires. For
nanotubes solutions for twisted states exist similar to the inhomogeneous phases in
ferromagnetic nanolayers.

Part II. In non-centrosymmetric magnets with the chiral Dzyaloshinskii-Moriya
exchange, micromagnetic calculations are done as applied to modulated states uncon-
ventional in magnetism — one-dimensional spiral states and two- dimensional chiral
skyrmions. All the calculations have been implemented within the phenomenolog-
ical Dzyaloshinskii theory for chiral magnets. But due to the deep connection of
phenomenological models for different condensed-matter systems, the results of nu-
merical simulations may also address solitonic textures in chiral liquid crystals, ferro-
electrics, multiferroics, or metallic glasses. The thesis mainly focuses on the uncom-
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mon properties of chiral skyrmions — isolated or composed into extensive skyrmion
lattices. It is shown that isolated skyrmions are smooth, topological, and static spin
textures embedded into homogeneously magnetized ’parental’ state. The relevant
length scale of magnetic inhomogeneity squeezed into skyrmionic knot is tuned by
the competition between direct and chiral exchange. Such localized skyrmionic ex-
citations may be controlled and manipulated, and therefore, may find application
in spintronic devices. Skyrmionic ”particles” may be also driven together to form
complex non-collinear magnetic textures – skyrmion lattices. The formation of the
lattice is determined by the stability of the localized solitonic cores and their geomet-
rical incompatibility that frustrates homogeneous space-filling. During the last years
an intensive search for such skyrmions has been undertaken in chiral helimagnets
with the cubic chiral B20-structure like MnSi and FeGe. Recent experimental results
clearly indicate a complex multidimensional character of chiral modulated magnetic
states in small regions of the phase diagrams of chiral magnets near the ordering
temperatures. Two years ago, chiral skyrmions (isolated and bound into hexago-
nal lattices) have been microscopically observed in thin layers of cubic helimagnets
(Fe,Co)Si and FeGe in a broad range of temperatures and magnetic fields far below
the precursor regions. Such an intensive quest for skyrmions has been inspired, from
one side, by earlier experimental observations of unconventional magnetic properties
in precursor regions and, from the other side, by theoretical predictions on skyrmion
matter made by A. N. Bogdanov et al. starting in 1989 and subsequent works. The
numerical calculations carried out in the present thesis extend the previous theo-
retical results and provide a theoretical basis for the description of experimental
results.

(i) Skyrmion and helical states with constant length of the magnetization M =
const are considered to be a good approximation for the structure of modulated
states far from the ordering temperature. Distribution of the magnetization in these
textures is characterized only by the angular order parameter, and the magnetiza-
tion processes are accompanied by the change of characteristic sizes — the skyrmion
lattice periods or circular skyrmionic cores. Because of a fixed sense of rotation, the
soliton-soliton interaction bears repulsive character. The equilibrium parameters of
skyrmion lattices so far have been calculated within the circular-cell approximation:
the actual hexagonal cell of the skyrmion lattice in micromagnetic calculations had
been substituted by the circle. Numerical methods of the present thesis eliminate
this deficiency and treat the skyrmion solutions on two-dimensional numerical grids.
As the energy difference between various modulated phases is very small, rigorous
solutions for skyrmions allow to address the problem of skyrmion thermodynamical
stability more precisely. The influence of small anisotropic energy terms (uniaxial,
cubic, and exchange anisotropies) on the skyrmion structures and the related ques-
tion of skyrmion stability are comprehensively answered in the present thesis. It is
shown that, due to the combined effect of magnetic field and small anisotropic con-
tributions, skyrmion lattices can be formed as thermodynamically stable states in
large intervals of magnetic field and temperatures in cubic helimagnets. It is argued
that this mechanism is responsible for the formation of skyrmion states observed in
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thin layers of (Fe,Co)Si and FeGe.

(ii) Close to the Curie temperature Tc, it was found that the interaction be-
tween separate localized skyrmions, being repulsive in a broad temperature range,
becomes attractive. A fundamental parameter, the confinement temperature TL,
separates the temperature interval into the part with regular helical and skyrmion
textures (0 < T < TL) and a narrow region with attractive (confined) modulations
(TL < T < Tc). The structure of skyrmion solutions in the region of confinement is
characterized by the longitudinal and angular order parameters. Different skyrmion
lattices may be ”designed” with soft modulus. Skyrmion textures respond to the
applied magnetic field and changes of temperature by simply adjusting the length
of the magnetization and can be even continuously transformed into each other.
Detailed numerical analysis on two dimensional models shows that bound skyrmion
states arise as hexagonal lattices of ±π-skyrmions and square staggered lattices of
π/2-skyrmions. Skyrmionic states can be rendered into thermodynamically stable
phases by including into isotropic phenomenological model (which consists of ex-
change, DMI, and Zeeman energy terms) additional small magnetic couplings. It
has been shown that the confinement of skyrmions provides the physical mechanism
underlying unconventional effects observed near the ordering temperature of chiral
magnets. The formation of skyrmionic matter by thermally driven transitions pro-
vides an example where mesoscale solitonic units are simultaneously nucleated and
bound into extended modulated phases. These peculiarities of the skyrmionic mat-
ter near the ordering temperature may be responsible for experimentally observed
precursor effects.

(iii) Micromagnetic simulations on skyrmion states in confined nanosystems allow
to investigate systematically the influence of surface-induced interactions (in partic-
ular, surface-induced anisotropy) on skyrmion stability and structure. It has been
shown that the interplay between intrinsic chiral interactions and surface/interface
induced anchoring effects gives birth to a new class of multidimensional chiral modu-
lations, convex-shaped ”spherulitic” skyrmions. The shape of spherulites reflects the
modifying effect of the layer surfaces, and their stability limits depend strongly on
values of the material and geometrical parameters of the system. The equilibrium
parameters of spherulitic modulations in layered nanosystems have been calculated
as functions of applied fields, layer thicknesses, and values of surface and volume
uniaxial anisotropies. Magnetic phase diagrams plotted in the space of control pa-
rameters, the values of the field and anisotropic constants, allow to find optimal
parameters for stable spherulituc states in magnetic nanolayers. It is also argued
that the solutions for spherulites may represent a defect-free alternative to the tex-
tures realized in liquid crystals and based on the different types of defects.
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Introduction

Continuing miniaturization of artificial magnetic materials (ultrathin films, various
multilayered systems, nanowires, assemblies of magnetic nanoparticles, and nan-
oclusters) leads to the appearence of a broad spectrum of extraordinary physical
properties unknown in bulk materials and characterized as specific ”nanomagnetic”
phenomena [1–4]. Among them are exchange bias, strongly enhanced magnetoresis-
tance, uniaxial anisotropy, magnetic modulations and others. Due to the complex
physical and chemical processes on surfaces and interfaces, the surface-induced in-
teractions in nanoscale magnets extend to the entire volume of a sample and modify
substantially its electronic and magnetic properties [5–7]. The unique features of
nanomagnets have already found their application in modern magnetoelectronic de-
vices such as spin-valves and/or magnetoresistive heads. Besides, magnetic nanos-
tructures provide a physical basis for ultradense data storage [8–10]. However to un-
derstand the magnetic properties in general and to use the whole potential provided
by reduced dimensions, the comprehensive and systematic study of surface-induced
effects is indispensable.

Magnetic thin films may be considered as excellent model systems for the inves-
tigation of magnetism in reduced dimensions. One of the key properties of mag-
netic layered systems is a surface-induced magnetic anisotropy [5, 11]. Numerous
experiments on a wide variety of thin films demonstrate that this anisotropy is
thickness-dependent and, moreover, may exceed the value of the intrinsic magnetic
anisotropy by order of magnitude [5, 12]. The induced anisotropy stabilizes differ-
ent inhomogeneous phases and as a consequence leads to the thickness-driven phase
transitions between them [11,13]. In a number of nanolayered systems, the intrinsic
magnetocrystalline and induced anisotropies are comparable in the magnitude and
compete with each other [VII]. This competition results in complex magnetization
processes, especially in an applied magnetic field oblique to the easy anisotropy di-
rections [12, 14]. The hysteresis magnetization curves in this case consist of two or
even three subloops and are characterized by the formation of multidomain states
[I-IV],[V-VII]. Such phenomena are also observed in ferromagnet- antiferromagnet
bilayers, where the induced unidirectional anisotropy results in exchange-biased hys-
teresis curves [15,16].

The first-principle numerical calculations offer considerable insight into the phe-
nomena of surface-induced magnetic anisotropy [17, 18]. However, these ab initio
calculations still cannot give a comprehensive manual of the magnetic structures
and magnetization processes in real thin-layered objects. Traditional micromagnetic
simulations, on the contrary, represent a consistent method successfully adapted to
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nanosystems (chapter 1). In the first part of the present thesis, the micromagnetic
framework based on the phenomenological theory of surface-induced interactions is
applied to magnetic nanolayers (chapter 2), nanoparticles (chapter 2), and nanowires
(chapter 3). The problem of competition between surface-induced and intrinsic in-
teractions in the stabilization of multiple homogeneous states and inhomogeneous
magnetic distributions is addressed. The evolution of magnetic states is studied un-
der a variation of the applied magnetic field and different material constants. The
peculiarities of magnetization processes, effects of hysteresis, wide diversity of mag-
netic field-driven phase transitions, and corresponding multidomain states are within
the scope.

Magnetic surfaces and interfaces are also the prominent arena for the chiral mag-
netism. In magnetic nanostructures reduced dimensionality and complex interac-
tions on surfaces and interfaces break inversion symmetry and induce asymmetric
(Dzyaloshinskii-Moriya) exchange coupling [5,19,20]. As a result, the inhomogeneous
magnetic textures acquire a definite chirality, i.e. the preferable (and only one) sense
of the magnetization twisting. The decisive importance of the chiral energy contribu-
tions becomes apparent in the stabilization of multidimensional localized structures
- chiral skyrmions [21–23] [IX-XI]. These magnetic inhomogeneities squeezed into
the spots of nanometer scale have perspectives to be used in a completely new gen-
eration of spintronic and data storage devices where the skyrmionic units may be
created, manipulated, and eventually driven together to form versatile magnetic pat-
terns [IX-XI]. The chiral skyrmions are static topological solitons. Therefore, they
may have advantages for applications [23] over other axisymmetric two-dimensional
magnetization distributions like magnetic bubble domains [24] or vortices appearing
in the magnetic nanodots [VIII]. The discovery of chiral magnetic skyrmions can
be hardly overestimated and marks the inception of a new era in magnetism on
nanoscale. Recently chiral skyrmion lattices stabilized by the induced DMI have
been observed in monolayers of Fe on Ir(111) substrate [25]. Intensive attempts
have been also made to observe skyrmionic states in other magnetic nanolayers and
nanowires [26, 27]. The realm of chiral magnetism in thin-layered systems gained
an increasing interest with the visual observation of chiral skyrmions in nanolayers
of (Fe,Co)Si and FeGe [28, 29]. These compounds are cubic helimagnets itself and
feature the chiral interactions due to asymmetry of the underlying crystallographic
structure. Prepared as thin layers these compounds may introduce the controlled
impact on the chiral modulations, for instance, by surface-induced anisotropy. It is
expected that magnetic nanostructures as systems with induced chirality should dis-
play similar properties as magnetically ordered non-centrosymmetric crystals with
intrinsic magnetic chirality. The second (main) part of the present thesis focuses
on the systematic study of chiral one- and two-dimensional modulations in bulk non-
centrosymmetric helimagnets (chapter 4) and investigation of their modification in
confined systems under influence of surface uniaxial anisotropy (chapter 5). Addi-
tional effects related to the change of magnitude of the magnetization modulus near
the ordering temperature (here called precursor effect) are considered in chapter 6.
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Multidimensional localized structures (topological defects or localized states) are
the focus of research in many fields of modern physics [30,31]. Since the late 1960s,
the problem of soliton-like solutions of non-linear field equations has been addressed
in condensed matter physics, biophysics, in particle and nuclear physics, in astro-
physics, and cosmology [32]. From fundamental point of view, the interest in such
solutions is related to the explanation of countable particles in continuous fields.
Within the structural theory the particle-like properties are ascribed to localized
solutions of nonlinear field equations and the physical fields are described by the
asymptotic behavior of corresponding solutions. Hobart and Derrick [33, 34], how-
ever, found with general arguments that multidimensional localized states are un-
stable in many physical field models: inhomogeneous states may appear only as
dynamic excitations, but static configurations collapse spontaneously into topolog-
ical singularities [34]. As a consequence, the solutions of corresponding non-linear
field equations are restricted to one-dimensional solitons.

The instabilities of localized field configurations can be overcome, if the energy
functionals contain, for example, contributions with higher-order spatial derivatives.
This original idea of Tony Skyrme in 1960s succeded in describing the nuclear par-
ticles as localized states [35]. And the name ”skyrmion” after Skyrme implies these
localized solutions. From the other side as it was mentioned earlier, the instability
of multidimensional localized states may be avoided in condensed matter systems
with broken inversion symmetry, where chiral interactions (energy terms linear with
respect to spatial derivatives of order parameters) play the crucial role in their sta-
bility. In condensed matter physics chiral interactions arise due to structural hand-
edness. Particularly, in magnetic non-centrosymmetric crystals chiral asymmetry of
exchange interactions originates from quantum-mechanical Dzyaloshinskii-Moriya
(DM) coupling [36,37]. In chiral liquid crystals (LC), the acentric shape of underly-
ing molecules is at the heart of chiral effects. Chiral interactions may appear also in
many other systems: in ferroelectrics with a non-centrosymmetric parent paraelec-
tric phase, non-centrosymmetric superconductors, multiferroics [20, 27, 38], or even
in metallic supercooled liquids and glasses [39, 40]. Localized states in these sys-
tems are also named skyrmions by analogy with the Skyrme model for mesons and
baryons [35].

In a large class of ordered condensed media, chiral couplings present the only mech-
anism to stabilize skyrmionic textures, as there exist no physical interactions provid-
ing the energy contributions with higher-order derivatives considered by Skyrme [35].
This fact singles out chiral condensed-matter systems into a particular class of ma-
terials with unique skyrmionic states. In the present thesis I consider a special type
of localized configurations in a classical three-dimensional vector field m, which has
three components (mx, my, mz). Multiple modulations occur as textures with local-
ized twists in two spatial directions, which can be homogeneously extended into the
third direction z as skyrmionic filements or string. The vector m is parallel to z-axis
at the center and antiparallel at the boundary (Fig. 0.1 (a)). Skyrmionic matter
is created by the condensation of these solitonic units (Fig. 0.1 (b), (c)). Such
two-dimensional localized states may be also called ”baby-skyrmions” to distinguish
them from three-dimensional solutions of the Skyrme model [35].

3



-1 1zM M/

III

II

I

( )a

(b)

(c)

Figure 0.1.: Sketch of the axisymmetric distribution of the magnetization in isolated
skyrmions (a) and hexagonal skyrmion lattice (b). (c) the evolution of
skyrmion states with increasing magnetic field shown as snapshots of the
mz-component of the magnetization: hexagonal lattice (I) by expanding
its period (II) transforms into the system of isolated repulsive skyrmions
(III).

The investigations of chiral modulation in magnetism have been started by Dzyalo-
shinskii in 1964 [41] which can be considered as the birth year of chiral magnetism.
Dzyaloshinskii demonstrated that chiral interactions can stabilize spatially modu-
lated structures with a fixed rotation sense of the magnetization [41–43]. Within a
phenomenological theory he derived solutions for the magnetization distribution in
one-dimensional modulated states (spirals or helices) (see Fig. 4.1 (a)) [43]. Follow-
ing the pioneering works of Dzyaloshinskii [41–43] chiral one-dimensional modula-
tions have been investigated theoretically in different classes of non-centrosymmetric
magnetic crystals (see bibliography in Refs. [44, 45]). Phenomenological functionals
introduced by Dzyaloshinskii (see Eq. (4.1)) and their variations have been used
as basic models for interpretation of experimental results in non-centrosymmetric
magnetic materials, and beyond as a general foundation for the study of modulated
phases [46, 47]. The phenomenological model of Dzyaloshinskii plays a similar role
in chiral magnetism as the Frank energy in liquid crystals [48] and the Landau-
Ginzburg functional in superconductivity [49,50]. In non-centrosymmetric magnetic
and liquid crystal systems chiral states are stabilized by the energy contributions,
which have the same phenomenological form. Deep physical relations and common
physical features of inhomogeneous textures in magnetic and liquid crystal materi-
als are reflected in mathematical similarity of phenomenological equations for both
systems. Important common physical aspects and mathematical relations also exist
between chiral skyrmions in non-centrosymmetric magnets and Abrikosov vortices
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and skyrmions in type II superconductors.
During last decades the spatially inhomogeneous spiral states have been experi-

mentally discovered in several classes of magnetic bulk crystals. Most prominently,
chiral modulations have been observed in a group of cubic non-centrosymmetric mag-
nets (MnSi, FeGe and (Mn,Co)Si, (Fe,Co)Si, (Cr,Mn)Ge alloys) [28, 29, 44, 51, 52],
in easy-plane hexagonal magnets as CsCuCl3 and RuCuCl3 [53–55], in a group
of tetragonal antiferromagnets [56–58], and some other magnetically ordered crys-
tals [44, 45]. It was also found that chiral interactions play an important role in
multiferroic systems [59]. Helical magnetic order was identified as a mechanism
for the magneto-electric (ME) effect in several materials like, e.g., RMnO3 (with
R=Tb, Gd) [61] and RMn2O5 (R=Tb, Dy, Ho) [59, 60]. Strong influence of chiral
interactions on the magnetic properties of non-centrosymmetric magnetic metals was
considered in Refs. [31, 62] and recently discovered non-centrosymmetric supercon-
ductors [63]. It should be mentioned, however, that the spiral structures in such
non-centrosymmetric helimagnets are essentially different from numerous other spa-
tially modulated states in systems with competing exchange interactions [44]. The
latter are characterized by rather short periods, usually including only few unit cells,
and an arbitrary rotation sense. Quite to the contrary, chiral modulations usually
have long period and a fixed sense of rotation. For example, in cubic helimagnet
FeGe the periodicity length of the helix in zero field was found to be 70 nm (or 149
unit cells), and cubic B20 alloys FexCo1−xSi have even larger period (with maximal
value of 230 nm for x = 0.3) [51,64].

The assumption of an important role of Dzyalshinskii-Moriya interactions in mag-
netic nanostructures is supported by recent spin-sensitive scanning tunnelling mi-
croscopy (STM) of chiral helical structures in ultrathin magnetic films of Mn atoms
grown on a tungsten (110) substrate by Bode et al. [27]. The unique chirality of the
spiral state was identified by the shift of the pattern in an applied magnetic field. The
experimental results were combined with sophisticated first-principle calculations of
the electronic structure of the manganese surface. Such a system used by Bode et
al. [27] is an outstanding example of the phenomena that the crystalline materials
with full inversion symmetry lose it when prepared as thin layers. Observations
and investigations of physical effects imposed by the induced Dzyaloshinskii-Moriya
interactions have been started only during the last years [27, 65, 66]. The effects of
induced chiral interactions have been experimentally observed in Dy/Y multilayer
films [65], in magnetic nanodisks [67] [VIII], and FePt films [68].

Investigations of chiral skyrmions in condensed-matter systems for a long time
have been restricted to theoretical studies. In magnetism, existence of such particle-
like states was predicted by A. N. Bogdanov in 1989 [69] and investigated theo-
retically in a series of papers [21, 22, 31, 45, 70]. The main achievment of Ref. [69]
is the recognition of skyrmion states - an alternative to one-dimensional (helical)
modulations - being the solutions of the field equations of Dzyaloshinskii’s theory. A
comprehensive analysis of possible skyrmion states with constant value of the magne-
tization in non-centrosymmetric magnets with different crystallographic symmetry
and their radial stabilities have been carried out in Refs. [21,70,71]. The theoretical
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results revealed a complex evolution of these particle-like patterns under the influ-
ence of the applied magnetic field and the values of magnetic uniaxial anisotropy.
The total energy of the skyrmion textures is determined by a balance of two compet-
ing energy contributions, namely, a low-energy core and a high-energy edge area [31].
In the applied magnetic field, the extended magnetic states (skyrmion lattices) can
be decomposed into an assembly of molecular units (isolated skyrmions). The exis-
tence of mesophases, composed of skyrmions as ”’molecular units”, similar to vortex
matter in type-II superconductors [72], was considered first in Ref. [31]. Helices as
one-dimensional modulations are also only successions of localized domain walls, i. e.
helical kinks. Existence of such localized states and the mechanism of their conden-
sation into modulated states are the ruling principles of condensed matter systems
described by Dzyaloshinskii’s theory. In Ref. [21, 70, 73] it was proved that in uni-
axial non-centrosymmetric ferromagnets skyrmion lattices are thermodynamically
stable in a broad range of the applied magnetic fields. In the following papers the
isolated and interacting skyrmions have been investigated theoretically in bulk non-
centrosymmetric uniaxial ferromagnets [21, 69, 74, 75], antiferromagnets [45, 76, 77],
and isotropic helimagnets [31, 77] as well as in confined centrosymmetric magnetic
systems with surface/interface-induced chiral interactions (e. g. nanolayers of mag-
netic metals) [20]. In Ref. [31], the idea of skyrmionic matter at the boundary
between the isotropic paramagnetic phase and the helical ground state was formu-
lated for non-centrosymmetric magnetic metals. These textures can arise sponta-
neously during the formation of the ordered state at the Curie temperature and
create thermodynamically stable states of a chiral magnet in a certain temperature
range. The localization of the skyrmion core by the antiparallel magnetic field and
spatial modulation of the magnetization length represent two different mechanisms
providing the thermodynamical stability of these skyrmion states near the ordering
temperature [45,69].

The theoretical ideas of skyrmions in chiral magnets have triggered various exper-
imental efforts to find evidence for these twisted textures [78,79]. These experiments
collected an impressive range of data that suggest complex magnetic order phenom-
ena. A periodic skyrmion lattice has recently been proposed to form in the A-phase
of MnSi under a magnetic field [79] or directly seen in FeGe [29] and (Fe,Co)Si [28]
layers by Lorentz transmission electron microscopy.

MnSi is considered to be the most investigated chiral helimagnet - the ”toy-tool”
of the chiral magnetism, at least in theory - which keeps attracting a great deal of
scientific interest [78–81]. Various effects observed in MnSi and other cubic helimag-
nets with B20 structure [51, 83] indicate multidimensionally modulated magnetic
states conforming with the theoretical predictions of skyrmions and their proper-
ties [21, 31]. MnSi is an itinerant helimagnet with the ordering temperature Tc of
about 29 K. Below Tc MnSi orders into the helical state with a period of about 18 nm
and propagation vector along <111> crystallographic directions. An experimental
technique that is highly powerful for the investigation of bulk chiral helimagnets like
MnSi is neutron scattering [84]. Neutrons carry magnetic moments and are proved to
be a suitable tool to probe the underlying magnetic structures in condensed matter
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systems. In the helical order for T < Tc small angle neutron scattering shows well de-
fined Bragg peaks of the same intensity for equivalent <111> directions. For T > Tc,
however, a ring appears in the neutron scattering spectra [81,82], which transforms
into a half-moon for polarized neutrons. Such an unconventional diffuse scatter-
ing above Tc may be attributed to the existence of skyrmion-like textures. This is
also accompanied by the strong anomalies of the heat capacity, thermal expansion,
resistivity, and elastic properties of a high quality single crystal of MnSi [85,86].

In the applied magnetic field the spiral state in MnSi transforms into a conical
phase with the propagation direction along the field as shown by Ishikawa et al. [87].
Under increasing field the cone angle decreases and becomes zero at the critical field
600 mT. For higher fields only the homogeneously magnetized state can exist. Just
below Tc an additional magnetic phase develops as a pocket inside the region of the
conical phase. This magnetic phase is called A-phase, and the attempts to explain
its structure are directly related to the search for skyrmion states. The small angle
neutron pattern has a sixfold intensity for a random orientation of a sample in the
A-pocket [79].

Recently, the existence of skyrmions was clearly revealed by microscopic observa-
tion in experiments on thin layers of cubic helimagnets with B20 structure, namely,
in (Co,Fe)Si [28] and FeGe [29] far from the ordering temperatures. To image the
magnetic structure, the authors used Lorentz force microscopy, since the neutron
scattering is inapplicable in the case of thin films and does not allow the direct
identification of non-periodic structures like isolated skyrmions, for instance. In the
applied magnetic field and with changing temperature, the authors observed con-
densed phases of helicoids and skyrmion lattices which were able to set free the
isolated units (kinks or isolated skyrmions) as in a crystal- gas resublimation. The
break-through of Japanese researchers on the first clear conformation of axisymmet-
ric chiral localized states, that are stabilized by a complex interplay of nonlinear and
chiral effects, can be hardly overrated. From one side the experimental results of Yu
et al. [28, 29] confirm the theoretical ideas elaborated earlier [31, 69]. From another
side, however, they provide a new arena for the investigation of surface-induced ef-
fects on the modulated states in non-centrosymmetric helimagnets. The thicknesses
of the layers in these experiments range from 15 nm to 75 nm (less or roughly about
the length of the spiral) and tune the region of skyrmion existence from a vast to
a tiny area in the applied magnetic field which is much higher than fields used in
bulk materials. The conical phase - the main ”competitor” of chiral skyrmions -
is effectively suppressed in these nanolayers. Surface-induced uniaxial anisotropy
(which can be roughly estimated from the characteristic fields, i.e. field of transition
between helices and skyrmions, and/or field of dissapearence of skyrmion lattice)
must play an important role in the skyrmion stabilization [73].

The microscopic observation of skyrmions in magnetic nanolayers far from the
ordering temperatures in Refs. [28, 29] is not called into question. On the contrary,
the experimental results on chiral helimagnets near Curie temperatures mainly using
diffraction or indirect evidence by transport measurements [88], remain essentially
inconclusive and have been contested (see, e.g., [89]). Moreover, the interpreta-
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tion of the ”high-temperature” experimental data has been based on approximate
solutions [79, 90] to the Dzyaloshinskii’s model by using variational approaches in
terms of a mode instability. The corresponding results do not describe the prop-
erties of skyrmions and the phase transition behavior of chiral magnets, which is
governed by the nucleation of a localized mesoscale entities [21, 41, 91]. From the
”high-temperature”experimental results, the relation of the microscopically observed
skyrmions [28,29] with the ”precursor effects” near magnetic ordering [79–81] is un-
clear. This has introduced a new controversy to the long-standing problem of ”pre-
cursor anomalies” in chiral magnetism.

The second part of the thesis reports the main physical properties of chiral skyrmions,
elucidates their physical nature, and discusses peculiarities of skyrmionic textures
in different classes of non-centrosymmetric magnetic systems. The first thorough
investigation on skyrmionic magnetic textures within the general phenomenology of
chiral magnets is presented. The obtained results imply that a host of novel effects
may be studied in these systems including filament-like multidimensional solitons
in three-dimensional bulk systems and baby-skyrmion textures in two-dimensions.
Some important predictions are made on the novel effects like soliton clustering,
skyrmion confinement, and finally complex mesophase formation by unconventional
phase transitions. The present thesis derives first numerically rigorous solutions for
helical and skyrmionic modulations of non-centrosymmetric magnetic systems in a
broad range of the external parameters, establishes novel chiral effects, and discusses
some important physical relations with other condensed-matter chiral systems (in
particular, with liquid crystals). I show in details that such systems own exotic
skyrmionic phases being based on multidimensional solitons, which are unusual ob-
jects themselves. The problem of the thermodynamical stability of skyrmion states
with respect to the one-dimensional helical modulations is the central issue of the
present thesis. The circumstances of skyrmion stabilization by small anisotropic con-
tributions are comprehensively investigated for ”low”- and ”high-temperature” chiral
skyrmions.

0.0.1. Thesis outline

The thesis is organized as follows:

In the first chapter I give a short introduction into the theoretical background
of micromagnetism and into the basic properties of modulated skyrmion and helical
states - solutions of the micromagnetic equations. First, I present the free energy of
a magnet followed by the detailed description of the essential energy terms. Then, as
an example of solutions minimizing the energy functional, I consider one-dimensional
distributions of the magnetization - Bloch and Néel domain walls. Making the anal-
ysis of the domain wall energy in the presence of Dzyaloshinskii-Moriya interactions,
I show under which circumstances it can become negative which leads to a prolifer-
ation of domain walls, i.e. to the appearence of the helical states. The chapter ends
with a brief discussion of the topological and structural properties of two-dimensional
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skyrmion states. It summarizes the known essentials of skyrmions taken in the forth-
coming chapters for granted.

The second chapter may be considered as auxiliary as far as the skyrmion states
are concerned. This chapter provides the basic analysis of homogeneous states in
magnets with competing anisotropies and is instrumental for the further investiga-
tions on the thermodynamical stability of skyrmion states in chapter 4. On the other
hand, the results of the present chapter can be used independently in the analysis of
the interplay between intrinsic and surface/interface-induced magnetic anisotropies
influencing the magnetization processes in nanomagnetic systems. I calculate the
spin configurations in competing phases and parameters of accompanying multido-
main states as functions of the applied field and the magnetic anisotropies. I con-
struct magnetic phase diagrams and on their basis classify different types of the
magnetization reversal which provide detailed analysis of the switching processes in
magnetic nanostructures. The calculated magnetization profiles of isolated domain
walls show that the equilibrium parameters of such walls are extremely sensitive to
the applied magnetic field and values of the competing anisotropies and can vary
in a broad range. For nanolayers with perpendicular anisotropy I calculate the ge-
ometrical parameters of stripe domains as functions of a bias field. These results
are applied to analyse the magnetization processes as observed in various nanosys-
tems with competing anisotropies, mainly, in diluted magnetic semiconductor films
(Ga,Mn)As. At the end of this chapter I derive the values of surface-induced uniaxial
anisotropy for ellipsoidal magnetic nanoparticles as functions of aspect ratios and
particle sizes. I show that this specific anisotropy can stabilize multiple magnetic
states in the system, supresses demagnetization effects and prevents superparam-
agnetism. The calculated phase diagrams indicate the stability regions of different
phases and the transition fields between them. I demonstrate that, by tuning sizes,
geometry and surface anisotropy of elongated particles, a well-defined sequence of
magnetic switching transitions can be realized in prescribed magnetic fields. This
can be used in magnetic recording and spin electronic technologies.

In the third chapter on the example of magnetic nanowires and nanotubes I
give an introduction into the phenomenological theory of surface-induced uniaxial
anisotropy. The phenomenology allows to model a gradual penetration of surface-
induced interactions into the volume of magnetic nanostructures and to investigate
the inhomogeneous magnetization states defined by the surface symmetry. For chi-
ral modulations in magnetic nanostructures and chiral liquid crystals considered
in chapter 5, surface/interface induced interactions produce additional stabilization
effects. At the same time one has to consider different magnetic inhomogeneities
generated by the surface interactions themselves. The phase diagrams in such sys-
tems become extremely rich. The results of the present chapter give the basic insight
in the phenomenon of surface-induced uniaxial anisotropy. In nanowires and nan-
otubes with large aspect ratio of height to radius, large induced magnetic anisotropy
from lateral surfaces may stabilize non-collinear vortex-like states with magnetiza-
tion vector rotating either along or perpendicular to radial directions. I derive and
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solve micromagnetic equations for these ”Néel” and ”Bloch” vortices, and then anal-
yse magnetization profiles and simplified analytical solutions. Phase diagrams for the
occurrence of the different vortex phases in nanowires are presented in dependence
on the surface anisotropy constants, the radius, and the saturation magnetization of
the material. It is found that the transitions between the vortices and the homoge-
neous magnetization state in nanowires take place via continuous rotation, whereas
the transition between the different vortices is first order. The phase diagram for
hollow cylindrical nanotubes displays the regions with planar magnetization struc-
tures and twisted phases that are transforming by various first-order processes. As
a limiting case, I consider the surface-induced anisotropy within the Néel approach,
i.e., the surface effect being essentially confined to the near surface region.

In the fourth chapter I overview some aspects of the two - dimensional skyrmion
states with constant value of the magnetization modulus considered in early papers
of A. N. Bogdanov [21, 69, 70]. On the contrary to the circular-cell approximation
used in Refs. [21, 73], I derive numerically rigorous solutions for baby-skyrmions by
using the direct energy minimization for a standard phenomenological Dzyaloshin-
skii model. It is the task of this chapter to compare quantitatively the skyrmion
features obtained by both methods. In the first half of the chapter I consider mod-
ulated helical and skyrmion states within the isotropic model including only the
primary energy contributions stabilizing the chiral modulations, namely, direct ex-
change, Dzyaloshinskii-Moriya coupling, and Zeeman energy. After the solutions for
one-dimensional cones and helicoids have been determined, I focus on the proper-
ties of isolated skyrmions obtained by numerical and analytical means. I show that
skyrmion textures are composed of these countable localized magnetic units ma-
nipulated and organized into lattices by tuning the competition between direct and
chiral Dzyaloshinskii-Moriya exchange. The theoretical results provide a compre-
hensive description of skyrmion lattice evolution in an applied magnetic field. From
the isotropic phenomenological model it follows that skyrmions are only metastable
solutions with respect to helices, and the inclusion of small anisotropic contributions
is vital for the thermodynamical stability of skyrmions. In the second half of the
fourth chapter I investigate the influence of the additional anisotropic contributions
on the structure and stability of skyrmion states. I demonstrate that uniaxial distor-
tions suppress the helical and conical states, and the skyrmion lattice can be formed
as thermodynamically stable state in a broad range of magnetic field. Cubic and
exchange anisotropy may stabilize skyrmions over cones for particularly chosen di-
rections of the applied magnetic field with respect to the easy anisotropic axes. The
results of the present chapter are related to different classes of non-centrosymmetric
ferromagnets and can be extended to multisublattice magnets (e.g. antiferromag-
nets).

In the fifth chapter I consider the interplay of volume and surface-induced en-
ergy contributions in the formation of specific axisymmetric order-parameter distri-
butions, spherulites, in confined mesoscopic systems. The confined geometry opens
up the perspectives to create new chiral architectures and put into practice control
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over them. I demonstrate the numerical solutions for the double-twisted entities,
which exist as smooth static solitonic textures and are extended into the third di-
rection in accordance with the modulating effect of the surfaces. The processes of
condensation of such peculiar skyrmionic states into the lattice (spherulitic matter)
are strongly defined by the surface anchoring and the force moving localized isolated
units together. The thermodynamic advantage of spherulitic extended matter with
respect to one-dimensional spiral modulations can be achieved in the vast part of
the constructed phase diagram for the appropriately chosen ratios between internal
and induced interactions. I also argue that frustrated spherulite patterns which are
commonly observed in liquid crystal systems can be transformed into nonsingular
skyrmionic textures by adjusting the material and geometrical parameters of the
cells. I briefly touch the question of dipole-dipole interactions in their influence on
the parameters of skyrmion states in thin magnetic layers. Finally, I show how theo-
retical findings of this chapter can be applied for the explanation of modulated states
experimentally observed in nanolayers of cubic helimagnets and liquid crystals.

In the sixth chapter I provide the analysis of skyrmion and helical states with
the variable length of the magnetization modulus. The theoretical results on such
modulated states belong to the main achievment of the present thesis. They allow to
establish the link between the ”low-temperature” skyrmions with constant modulus
theoretically investigated by A. N. Bogdanov et. al. [21, 69, 70] and experimentally
observed by Yu et al. [28, 29] with those ”high-temperature” skyrmions responsible
for a number of precursor effects in the vicinity of the ordering temperature [80,81].
Analysing the properties of isolated skyrmions, I show that the interaction between
the chiral skyrmions, being repulsive in a broad temperature range, changes into
attraction at high temperatures. This leads to a remarkable confinement effect:
near the ordering temperature skyrmions exist only as bound states, and skyrmion
lattices are formed by an unusual instability-type nucleation transition. Numerical
investigations on two-dimensional models demonstrate the confinement and the oc-
currence of different skyrmion lattice precursor states near the ordering transition
that can become thermodynamically stable by anisotropy or longitudinal softness in
cubic helimagnets. Particularly, a square half-skyrmion lattice having no analogue
with smooth constant modulus solutions may develop and even become a stable
phase. The theory and results from numerical simulations demonstrate why a multi-
tude of different small pockets of different phases is generically expected in a distinct
temperature interval, interleaved between paramagnetic and helix magnetic state in
non-centrosymmetric helimagnets like MnSi and FeGe. I also introduce a new funda-
mental parameter, confinement temperature TL, separating the peculiar region with
”confined” chiral modulations from the main part of the phase diagram with regular
helical and skyrmion states.

Finally, in the seventh chapter I apply the concept of skyrmionic textures in
chiral magnetic systems developed in Ref. [92] to continuum models of glass-forming
liquids. A field theory with a frozen gauge background describes the frustrated tiling
of the whole space by incompatible locally preferred clusters. The elastic energy
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term due to decurving the template into a flat space is linear in spatial derivatives
of the local order parameter and is responsible for stabilization of skyrmion units.
A softened version of the order parameter allows to replace the notion of localized
defects as disclination lines by smooth but more complex geometrical adaptation
of ordering with regions of suppressed order-parameter intensity. I show that the
skyrmions in the simplest version of these frustration models are close, but soft
relatives of the hedgehog solutions in Skyrme’s original SU(2) symmetric model for
nucleons. I also argue that stable skyrmions are formed at elevated temperatures in
molecular liquids and that their condensation into frustrated textures underlies the
stability of supercooled and glassy states, which may resemble the states in extended
dense nuclear matter.

Conclusion and outlook on the problems of skyrmion states in condensed-
matter systems presented in the thesis are given at the end.
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1. The main principles of
micromagnetism

This chapter introduces the main principles of micromagnetism (section 1.1) and
outlines the range of questions which may be addressed with the micromagnetic cal-
culations. In the section 1.2 I describe the energy terms of a ferromagnet, make a
notice which energy terms have a significant influence on the realized distributions
of the magnetization and which may be omitted. As an auxiliary example, I con-
sider the classical micromagnetic calculations of the structure of the Bloch and Néel
domain walls (section 1.3.1). After that I show that Dzyaloshinskii-Moriya interac-
tions lead to the transformation of domain walls into the one-dimensional modulated
spiral states with a fixed sense of rotation (1.3.2). I give a short introduction into
the basic properties of these chiral helical states (section 1.3.2) stabilized by the
Dzyaloshinskii-Moriya interaction. In section 1.4 I proceed with two-dimensional
magnetic textures - skyrmions. I define their internal structure (section 1.4.1 A),
mention the question of topological and physical stability (section 1.4.1 B), and
then consider the mechanism of the lattice formation from separate molecular units
- isolated skyrmions (section 1.4.2).

1.1. The purpose of micromagnetism

With the term ”micromagnetism” I infer the family of theoretical problems in which
the well-formed distributions of the magnetization vector M (called microstructures)
are analysed. Micromagnetism is a phenomenological theory with the continuum rep-
resentation of the magnetization: such an approach is correct only if characteristic
length of the problem (the size of the sample, the width of domains, the period of
the modulated states) is larger than the parameter a of the crystallographic lattice.
According to the hierarchy of descriptive levels of magnetically ordered materials in-
troduced in the textbook of A. Hubert and R. Schäfer [24] (Fig.1.1), micromagnetism
addresses the samples with characteristic length scales 1-1000 nm and occupies the
second level just above Atomic Level Theory - statistical thermodynamics of ele-
mentary magnetic moments (<1 nm). The third and fourth levels of the hierarchy
are, correspondingly, domain theory (1-1000 μm) and phase analysis (>0.1 mm).
In the present thesis I focus mainly on the micromagnetism and its application to
nanomagnetic objects, although in the Chapter 2 I argue that the phase theory can
be adapted successfully for nanomagnets. As micromagnetism is a phenomenological
theory, it does not reveal the nature of such fundamental properties of a magnet as
the saturation magnetization, magnetic anisotropy, and magnetostriction. In this
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1. The main principles of micromagnetism

Figure 1.1.: The hierarchy of descriptive levels of magnetically ordered materials.
The values in parenthesis indicate the sample dimensions for which the
different concepts are applicable (adapted from [24]). The levels of the
hierarchy considered in the present thesis are marked by grey color.

sense micromagnetism must not be confused with microscopical (quantum) theory
of magnetically ordered materials. However, with respect to model domain theory
micromagnetism considers magnetic crystals in a more detailed point of view and,
for example, takes into account the internal structure of domain walls.

In micromagnetism the magnetization is represented as a vector function of spatial
coordinates and time M(x, y, z, t). In the present thesis, however, effects related
to the dynamics of the magnetization are not within the scope. In the following
I consider the static magnetization distributions representing the globally stable or
metastable states. The spatial dependence M(x, y, z) can be obtained by minimizing
the total free energy

Wtot =

∫
[wex + wa + wDM + wH + wm + wstr + wms + f0 + ws] dV (1.1)

including exchange wex, anisotropy wa (e.g., uniaxial wu and cubic wcub anisotropies),
Dzyaloshinskii - Moriya wDM, external field (Zeeman) wH , and stray field wm energy
densities. wstr is the energy density of all stresses of non-magnetic origin, wms is a
magnetostrictive energy density. f0 collects non-gradient terms of the magnetization
and accounts for the effects related to the change of the modulus. ws stands for the
surface-induced energy contributions.

The free energy is the essence of micromagnetism: the interplay between differ-
ent energy contributions determines the microstructure realized. In the subsequent
sections I give an overview of energy terms defining the distributions of magnetic
moments. I will present the energy terms as the continuum theoretical expressions
which may be derived from symmetry considerations and by replacing the localized
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1.2. Key Energy Terms of a Ferromagnet

spins Si in the corresponding quantum mechanical Hamiltonians of these energy
terms. In this sense, the continuous micromagnetic approximation can be considered
as a result of transition from an ensemble of discrete magnetic moments in atomistic
models to a continuous vector field. Some energy terms, however, will be omitted
in the following, for example, magnetostrictive effects and effects of non-magnetic
stresses.

I start from the exchange interaction which is considered to be the strongest
interaction in the hierarchy of magnetic energy terms.

1.2. Key Energy Terms of a Ferromagnet

1.2.1. Exchange interaction

A. Isotropic exchange interaction

Magnetic ordering in crystals is related to the exchange interaction due to which
magnetic moments tend to align parallel (ferromagnets) or antiparallel (antiferro-
magnets) to each other. Such exchange interaction is isotropic with respect to rota-
tion of the magnetization in the crystalographic lattice: exchange interaction only
orders the magnetic moments, but does not chose preferable directions for them.

For electrons, the exchange interaction is the consequence of the Pauli principle,
and the magnitude of exchange forces is determined by the overlap of wave function
for neighbouring atoms (the details can be found in any book on magnetism, for
example, in Ref. [93]). As it was discussed by Heisenberg in 1928, the exchange
interaction originates from the quantum exchange term of the Coulomb interaction
between electrons in orbitals on neighboring ions. The exchange energy of two neigh-
boring spins making some non-zero angle is given by the Hamiltonian of exchange
interaction:

He = −2J SiSj (1.2)

where the coupling constant J is the exchange integral. The same expression can be
derived by demanding the invariance of the Hamiltonian of particle interaction with
respect to spatial rotations [94].

Equation (1.2) is relatively simple to derive for two electrons, but generalizing to
a many-body system is far from trivial. Nevertheless, it was recognized in the early
days of quantum mechanics that interactions such as that in Eq. (1.2) probably apply
between all neighboring atoms. This motivates the Hamiltonian of the Heisenberg
model which replaces the initial microscopic Hamiltonian by the sum:

He = −
∑
ij

JijSiSj. (1.3)

The factor 2 is included in the double counting within the sum. The exchange inte-
gral Jij being the function of the radius-vector connecting ith and jth lattice sites
decays exponentially with increasing the distance between adjacent atoms. There-
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1. The main principles of micromagnetism

fore, often it is possible to take Jij to be equal to a constant J for nearest neighbor
spins and to be 0 otherwise. In the case of ferromagnets J > 0 and J < 0 for
antiferromagnets.

A continuum theoretical expression used in the micromagnetism for exchange in-
teraction may be obtained by an expansion of Eq. (1.3) into a Taylor series as
described comprehensively, for instance, in the textbook of Chikazumi [93]:

Wex =

∫
wexdV = A

∫
((∇α1)

2 + (∇α2)
2 + (∇α3)

2)dV (1.4)

Here,

A =
2JS2n

a
(1.5)

is the exchange stiffness constant with n being the number of atoms in a unit cell.
Its zero-temperature value is related to the Curie point Tc: A(0) ≈ kTc/a [24]. αi in
Eq. (1.4) are direction cosines of the magnetization:

α1 = sin θ cos ψ, α2 = sin θ sin ψ, α3 = cos θ. (1.6)

Even if the Heisenberg interaction between localized spins is not applicable (as in
metallic ferromagnets), Eq. (1.4) still describes phenomenologically the stiffness
effect to first order. Only the interpretation of the exchange constant has to be
changed [24].

If the spin quantum number S is replaced by the local magnetization according
to the relation, Ms(r) = gμBSz(r)/Ω(r) (Sz is the z-component of spin S of the
magnetic ion at position r, Ω(r) is the atomic volume per magnetic ion, g is the
Landé factor, μB is the Bohr magneton), it can be obtained:

A =
2JM2

s n

N2g2μ2
Ba

(1.7)

where N = 1/Ω. According to Eq. (1.7) the temperature dependence of the exchange
constant is given by that of Ms(T ). As well, the exchange integral J is related to
the Curie temperature, Tc, within the framework of molecular field theory. The
order of magnitude of the exchange constant A is about 10−7 − 2 × 10−6 erg/cm
[10−12 − 2 × 10−11 J/m]. The value of A, for example, for cobalt in thin layer is
usually about 2 × 10−6 erg/cm [24].

The polar coordinates used for the magnetization in Eq. (1.6) allow to write Eq.
(1.4) in another convenient form:

Wex = A

∫
[(gradθ)2 + cos2 θ(gradψ)2]dV. (1.8)

The exchange energy density can be expressed in a more general form by consider-
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1.2. Key Energy Terms of a Ferromagnet

ing it phenomenologically as an energy of a magnetic inhomogeneity [94,95]. As the
components of the magnetization vector M(r) change gradually from point to point
for the states of a ferromagnet close to the homogeneously magnetized ground state,
the energy density can be expanded into series of gradients of the magnetization.
The coefficients of this expansion are tensors which possess the symmetry properties
of a crystal. A systematic analysis of the stiffness term can be found in Döring’s
review of micromagnetics [95].

For magnets with the center of inversion the expansion starts from energy terms
quadratic in gradients. Taking into account that the energy density does not depend
on the direction of the magnetization, one can write a general expression for exchange
energy density:

wex = αij
∂M

∂xi

· ∂M

∂xj

(1.9)

where αij are some tensors of second rank. For the ferromagnetic order to be stable,
expression (1.9) must be positive definite [97], i.e. the principal values of tensor αij

must be positive. In uniaxial crystals tensor αij has two independent components
αxx = αyy, αzz. In cubic crystals, αij = Aδij.

B. Asymmetric exchange interaction

In many magnetic crystals the magnetic properties may be strongly influenced
by the asymmetric exchange interaction known also as the Dzyaloshinsky-Moriya
interaction (DMI). When acting between two spins Si and Sj, it leads to a term in
the Hamiltonian which is generally described by a spin vector product:

HDM = Dij · (Si × Sj). (1.10)

where Dij is the Dzyaloshinskii vector.
Dzyaloshinskii-Moriya interactions arise in certain groups of magnetic crystals

with low symmetry where the effects of coupling (1.10) do not cancel. Their effect
is to cant (i.e. slightly rotate) the spins by a small angle. In general, Dij may not
vanish even in centrosymmetric crystalls. Anisotropic exchange interaction occurs
commonly in antiferromagnets and then results in a small ferromagnetic component
of the moments which is produced perpendicularly to the spin-axis of the antiferro-
magnet. The effect is known as weak ferromagnetism. It is found, for example, in
α-Fe2O3, MnCO3, and CoCO3. To explain the phenomenon of weak ferromagnetism
the interaction (1.10) was phenomenologically introduced by Dzyaloshinskii [98].
Moriya found a microscopic mechanism due to the spin-orbit coupling responsible
for the interactions (1.10) [37].

Another fundamental macroscopic manifestation of the antisymmetric coupling
(Eq. 1.10) takes place in non-centrosymmetric magnetic crystals. Dzyaloshinskii
showed that in this case the interaction (1.10) stabilizes long-periodic spatially mod-
ulated structures with fixed sense of rotation of the vectors Si. Within a continuum
approximation for magnetic properties, the interactions responsible for these mod-
ulations are expressed by inhomogeneous invariants. One calls these contributions
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1. The main principles of micromagnetism

to the free magnetic energy, involving first derivatives of magnetization or staggered
magnetization with respect to spatial coordinates, inhomogeneous Dzyaloshinskii-
Moriya interactions. They are linear with respect to the first spatial derivatives of
a magnetization M of type [41]

L(k)
ij = Mi

(
∂Mj

∂xk

)
− Mj

(
∂Mi

∂xk

)
. (1.11)

where Mi and Mj are components of magnetization vectors that arise in certain
combinations in expressions (1.11) depending on crystal symmetry, and xk are spatial
coordinates. Such antisymmetric mathematical forms were studied in the theory of
phase transitions by E. M. Lifshitz and are known as Lifshitz invariants [97].

Depending on the crystal symmetry [41, 69], the Dzyaloshinskii-Moriya energy
WDM(M) includes certain combinations of Lifshitz invariants (1.11). Particularly,
for important uniaxial crystallographic classes, (nmm)(Cnv), 42m(D2d), and n22
(Dn) functional WDM can be written as

(nmm) : WDM =

∫
wDMdV =

∫
[D (L(x)

xz + L(y)
yz )]dV, (1.12)

(42m) : WDM =

∫
[D (L(y)

xz + L(x)
yz )]dV, (1.13)

(n22) : WDM =

∫
[D1 (L(y)

xz − L(x)
yz ) + D2L(z)

xy ]dV. (1.14)

where n = 3, 4, 6, and D1, D2, D are Dzyaloshinskii constants.
Lifshitz invariants for n (Cn) and 4 (S4) classes consist of terms with simultaneous

presence of two Dzyaloshinskii constants related to directions x, y in the basal plane:

(n) : WDM =

∫
[D3 (L(x)

xz + L(y)
yz ) + D4 (L(y)

xz − L(x)
yz )]dV, (1.15)

(4) : WDM =

∫
[D5 (L(x)

xz − L(y)
yz ) + D6 (L(y)

xz + L(x)
yz )]dV. (1.16)

For cubic helimagnets belonging to 23 (T) (as MnSi, FeGe, and other B20 com-
pounds) and 432 (O) crystallographic classes Dzyaloshinskii-Moriya interactions are
reduced to the following form:

WDM =

∫
[D (L(z)

yx + L(y)
xz + L(x)

zy )]dV =

∫
[D M · rotM]dV. (1.17)

Dzyaloshinskii-Moriya interactions stabilizing chiral magnetic states may be also
induced by the symmetry breaking at the surface in confined systems as magnetic
nanolayers, nanowires, and nanodots. As a genuine consequence of surface-induced
DM couplings different types of chiral modulations have been observed [25, 27].
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1.2. Key Energy Terms of a Ferromagnet

Therefore, thin film systems are appropriate candidate structures to study chiral
magnetic skyrmions. In particular, micromagnetic analysis of the chirality selec-
tion for the vortex ground states of magnetic nanodisks shows that the sign and
the strength of the DM coupling strongly influence their structures, magnetization
profiles and core sizes [108]. The calculated relations between strength of the DM
interactions and vortex-core sizes provide a method to determine the magnitude of
surface-induced DM couplings in ultrathin magnetic films/film elements.

C. Anisotropic exchange interaction.

MnSi with the DMI in the form (1.17) is one of the most investigated chiral
helimagnets. The energy scales in this compound are well separated and allow to
distinguish between different contributions to the ground state [99] (see also section
1.4.2 B). The isotropic exchange energy is the strongest energy contribution. It fixes
the spins parallel to each other. The DMI are much weaker and induce the rotation
of spins with the characteristic period of 18 nm (39 unit cells).

The symmetry analysis of the P213 structure of MnSi and FeGe was made by Bak
and Jensen [99] and by Nakanishi [100]. The analysis showed that the expansion of
the free energy in a slow-varying spin density S(r) besides gradient terms of Eqs.
(1.4) and (1.17) must be supplemented by the gradient term in the following form:

WEA = BEA

∫ [(
∂α1

∂x

)2

+

(
∂α2

∂y

)2

+

(
∂α3

∂z

)2
]

dV. (1.18)

which is called exchange anisotropy. The constant BEA is reduced by order of mag-
nitude with respect to the exchange stiffness A. The role of energy term (1.18)
manifests itself in fixing the propagation directions of spiral states in MnSi [99]
and may be considered as a third level of hierarchy of energy scales. As well, the
anisotropic exchange can stabilize skyrmion states along particular crystallographic
directions (section 4.9).

1.2.2. Anisotropy energy

The tendency of the magnetization M to point along different fixed directions in
space is described by the anisotropy energy Wa. Magnetic anisotropy arises from
the spin-orbit interactions and demands additional energetic effort to turn the mag-
netization into any direction different from the preferred axes, called the easy axes.
Generally, the magnetic anisotropy energy term has the same symmetry as the crys-
tal structure of the material, and one calls it a magnetocrystalline anisotropy. The
effects of deviations from ideal symmetry because of lattice imperfections are in turn
described by the induced anisotropies.

In principle, the spin-orbit coupling underlying the magnetocrystalline anisotropy
can be evaluated from basic principles. However, results of ab initio calculations
are still restricted to the zero-temperature ground - state. Often these calculations
are also very difficult or unreliable, in particular for high-symmetry systems like
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1. The main principles of micromagnetism

cubic magnetic crystals. Therefore, it is easier to use phenomenological expressions
(power series expansions that take into account the crystal symmetry) and determine
the coefficients from the experiment. Magnetocrystalline anisotropy is usually small
compared to the exchange energy.

A. Uniaxial anisotropy

The simplest case of anisotropic contribution is uniaxial magnetic anisotropy. In
hexagonal and tetragonal crystals an approximate expression for the anisotropy en-
ergy density is

Wu =

∫
wudV =

∫ [
Ku1α

2
3 + Ku2α

4
3

]
dV =

∫ [
Ku1(a · m)2 + Ku2(a · m)4

]
dV =

=

∫ [
Ku1 cos2 θ + Ku2 cos4 θ

]
dV. (1.19)

where m = M/|M|. In these uniaxial systems the energy depends only on the angle
between the magnetization m and a coordinate axis parallel to the easy axis a.

Usually, anisotropy energies are in the range 102 − 107 J m−3 what corresponds to
an energy per atom about 10−8 − 10−3 eV. For example, hexagonal cobalt exhibits
uniaxial anisotropy with Ku1 = 4.53 × 105 J m−3, Ku2 = 1.44 × 105 J m−3 at room
temperature and the stable direction of spontaneous magnetization parallel to the
c-axis. The values of higher-order terms are usually small and not reliably known.
For large negative and positive values of Ku1, Eq. (1.19) describes an easy axis
and easy plane, correspondingly. For intermediate values, i.e. under the condition
−2 < Ku1/Ku2 < 0, the easy direction lies on the surface of a cone with the angle θ
defined by the ratio between Ku1 and Ku2: sin θ = −Ku1/2Ku2.

Sometimes a generalized second-order anisotropy has to be considered [24]. This
applies to crystals of lower than tetragonal or hexagonal symmetry, or cases when
several uniaxial anisotropies are superimposed. The energy density of this or-
thorhombic anisotropy is written as:

wu =
∑
ij

Kijαiαj (1.20)

where Kij is a tensor of rank two.
In chapter 4 (section 4.7.4) I show that the simultaneous presence of easy-axis

uniaxial anisotropy (Eq. (1.19)) and the applied magnetic field stabilizes skyrmion
states in cubic helimagnets. The easy-plane anisotropy with negative Ku1, on the
contrary, prefers only one-dimensional conical modulations of the magnetization
(Fig. 4.16 (a)).

B. Cubic anisotropy

For cubic crystals the basic expression for magnetic anisotropy is

Wcub =

∫
wcubdV =

∫ [
Kc1(α

2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3) + Kc2α

2
1α

2
2α

2
3 + ...

]
dV. (1.21)
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1.2. Key Energy Terms of a Ferromagnet

Considering only the most important contribution Kc1 one finds that the crystal-
lographic directions <001> and <111> are easy axes for Kc1 > 0 and Kc1 < 0,
respectively. Taking into account the term with Kc2 shows that for some values of
cubic anisotropy constants easy axes along <110> can be realised (see, for exam-
ple, tables and phase diagrams of cubic magnets in [101]). For iron (at 20◦C), for
example, Kc1 = 4.72 × 104 J m−3, Kc2 = −0.075 × 104 J m−3. For nickel (at 23◦C),
Kc1 = −5.7 × 103 J m−3, Kc2 = −2.3 × 103 J m−3 [93].

The Eq. (1.21) is written in the < 001 >-based coordinate system. Very often,
however, it is necessary to have the common expression for the cubic anisotropy
in the coordinate system related to the direction of the applied magnetic field in a
crystal:

wcub = K
(1)
ijklαiαjαkαl + K

(2)
ijklmnαiαjαkαlαmαm. (1.22)

Here, the tensors K
(1)
ijkl and K

(2)
ijklmn are transformed to a new coordinate system with

the help of transformation matrices T [24]. Such a procedure used in this thesis to
consider the skyrmion and helical states in the oblique magnetic fields (section 4.9).

More details about cubic, orthorhombic, and/or exchange anisotropy can be found
in A. Hubert and R. Schäfer’s textbook on magnetic domains [24].

In section 4.9 I consider orientational effect of cubic anisotropy on the propaga-
tion direction of helicoids in cubic helimagnets. Competition of cubic anisotropy
with exchange anisotropy can induce reorientation transitions of helicoids from one
preferable direction to another one. In chapter 2 I consider effect of competition
between uniaxial and cubic anisotropies on the homogeneous states in magnetic
nanolayers and nanoparticles.

C. Surface-induced uniaxial anisotropy

Surface-induced anisotropy is a part of magnetic anisotropy arising due to the com-
plex physical processes on surfaces/interfaces: symmetry breaking at the boundaries
of the magnetic nanostructures itself, homogeneous and inhomogeneous strains cre-
ated by lattice mismatch between substrate and magnetic layer, interdiffusion with
nonmagnetic substrates and spacers. Such additional anisotropies being sensitive to
the thickness of the sample and to the covering with different non-magnetic mate-
rials allow to vary the magnetic properties over a broad range, in particular, to fix
the magnetization in desirable directions as in small particles or to stabilize different
twisted phases of the magnetization.

In the simplest phenomenological model introduced by Néel about sixty years
ago [102] the surface-induced anisotropy is treated as averaged over the thickness d
of a magnetic thin layer. Then the effective anisotropy of the layer is written as

Keff = KV +
Ks

d
(1.23)

where KV is the volume anisotropy (per unit volume), and Ks is the surface con-
tribution (per unit area, that is the dimension of the coefficient Ks is J/m2). If
the influence of two surfaces is considered, factor 2 must be added to the second
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1. The main principles of micromagnetism

d

d

dcr

Figure 1.2.: Effective magnetic anisotropy of a Co layer in a Co/Pd multilayer as
a function of the thickness d. The slope allows to determine KV , the
zero-crossing amounts to 2Ks (adapted from [5]).

anisotropy term.
To illustrate the influence of the surface-induced anisotropy on the spin reorien-

tation in magnetic layers I multiply Eq. (1.23) by d,

Keffd = KV d + Ks, (1.24)

and plot dependence Keffd versus d. The slope of the resulting curve allows to
determine coefficient KV , and the intersection of the curve with the ordinate axis -
the surface anisotropy coefficient Ks (or 2Ks) [5]. As an example, Fig. 1.2 shows
such a curve for a thin Co layer with variable thickness on the Pd substrate. Due
to the negative slope of the curve the volume anisotropy KV favours the in-plane
orientation of the magnetization. The zero-crossing, however, occurs for a positive
value of Ks, i.e. with the magnetization perpendicular to the film plane. Therefore,
the critical thickness dcr marks the reorientation transition from in-plane to out-of-
plane orientation of the magnetization:

dcr = −2Ks

KV

. (1.25)

For the considered system dcr = 13Å. Such behaviour is a general feature of all
magnetic multilayers composed of Co/Pt(Pd), Co/Cu, Fe/Au or Ni/Cu bilayers.

It should be noted, however, that Néel model suffers from some shortcomings
and cannot clarify some peculiarities of the layered systems. In particular, Eq.
(1.24) does not explain an ”anomalous” behaviour of the magnetic anisotropy with
the non-linear character of the dependence Keffd = f(d) (Fig. 1.3). To avoid these
insufficiencies of the Néel’s model, I will consider surface anisotropy in the framework
of the phenomenological theory developed in Ref. [11] and proved to be successful
in the explanation of different experimental phenomena. Within this model it is
assumed that the surface-induced anisotropy extends into the depth of magnetic
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K
e
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Figure 1.3.: Effective magnetic anisotropy in Cu/Ni/Cu sandwiches. Experimental
data are taken from Ref. [103]. The fitting curve and the inset are taken

from Ref. [11]. q = (K
(1)
s + K

(2)
s )/4πM .

layers, and the possible distributions of anisotropy coefficient Ks(r) are described by
the general interaction functional:

Φs =

∫
V

[
αs

∑
i

(
∂Ks

∂xi

)2

+ f(Ks)

]
d3r. (1.26)

where the first term describes the stiffness of the field Ks(r) and f(Ks) = asK
2
s

is a homogeneous function. The surface anisotropy has certain fixed values on the
surfaces:

Ks

(
d

2

)
= K(1)

s , Ks

(
−d

2

)
= K(2)

s . (1.27)

Depending on the characteristic length

λs =

√
αs

as

, (1.28)

the present phenomenological model includes two limiting treatments of induced
anisotropy as a pure boundary effect (λs/d ≈ 0) and the uniaxial anisotropy ho-
mogeneously distributed through the layer (λs/d ≈ 1). In Fig. 1.4 the profiles
Ks = Ks(z) parametrized by the ratio λs/d are plotted. Here, z is a spatial coordi-
nate across the layer.

Energy density of surface-induced interactions according to the proposed phe-
nomenological theory [11] may be represented in the following generalized form:

ws(r) =
∑

i

ηi(r)Ξi(m). (1.29)

Here, ηi(r) are spatially inhomogeneous coefficients that are treated as internal vari-
ables similar to the field of the order parameter m(r) (according to the functional
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K
z(
)

s

Figure 1.4.: Inhomogeneous distribution of the surface anisotropy coefficient Ks(z)
in thin layered systems (taken from [11]). See text and Ref. [11] for
details.

Φs, Eq. (1.26)). Ξi(m) are invariants describing induced interactions [20]. Energy
of the surface-induced uniaxial anisotropy is written as

Ws =

∫
wsdV =

∫ [
Ks(r)(m · s)2

]
dV (1.30)

where s is the unity vector perpendicular to the surface. Energy density of the
surface-induced Dzyaloshinskii-Moriya interaction considered in Ref. [20] looks like

ws = D(r)L(r) (1.31)

where D(r) is a spatially dependent Dzyaloshinskii-Moriya coefficient, and L(r) are
the Lifshitz invariants (see Eqs. 1.11). In the present thesis, however, Dzyaloshinskii-
Moriya interaction is supposed to be always homogeneous irrespective of the consid-
ered magnetic system - bulk or a nanoobject. Surface-induced uniaxial anisotropy, on
the contrary, is treated as the energy contribution with the inhomogeneous coefficient
Ks(r) including limiting cases. In the case of surface-induced uniaxial anisotropy
constrained to the surface region with λs/d → 0, the total magnetic energy (1.1)
of a nanosystem can be simplified by reducing to a sum of the volume (wv(r)) and
surface (ws(r)) contributions:

Wtot =

∫
V

wv dr +

∫
S

ws dr. (1.32)

Then the equilibrium distributions of the magnetization M(r) are derived by solving
the Euler equations for the volume functional wv(r) with the boundary conditions
imposed by the surface energy ws(r) (see e.g. [20,223,227]).

In chapter 3 I adapt the model of surface anisotropy for thin films with respect
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to magnetic nanowires and nanotubes. Further, in chapter 5 I consider stabilization
effect of surface anisotropy on skyrmion states in magnetic nanolayers. In chapter 2
(section 2.7) I show that the competition between intrinsic and induced anisotropies
stabilizes different multiple magnetic states in elongated magnetic nanoparticles.

1.2.3. Zeeman energy

If a magnet is placed in an external magnetic field H, then the elementary magnetic
moments tend to align parallel to the field. The energy corresponding to this process
is called Zeeman energy and is expressed in micromagnetism as:

WH = −
∫

M · H dV. (1.33)

Zeeman energy as well as anisotropy energies (section 1.2.2) belongs to the local-
energy terms, i.e. energy contributions defined only by the local values of the mag-
netization direction. The exchange energy (section 1.2.1) is also local in a sense,
that it is calculated as a function of derivatives of the magnetization.

Zeeman energy (1.33) can be considered as the first part of the magnetic field
energy. The second part is connected with the magnetic field generated by the
magnetic body itself - stray field energy.

1.2.4. Stray field energy

Stray field energy is a consequence of the fact that all elementary magnetic moments
interact with each other by the long-range classical dipole-dipole interactions. This
energy contribution can be written as

Wm = −1

2

∫
M · Hm dV. (1.34)

The stray field Hm is created by the surface and volume charges and obeys the
magnetostatic equations

rotHm = 0, div (Hm + 4πM) = 0. (1.35)

In the literature, different terms are used for the field Hm. It is called either the
magnetic stray field, the dipolar field, the demagnetizing field or the magnetostatic
field.

For some particular cases the energy of stray fields has the form of effective uni-
axial anisotropy. In chapter 4 I show that this treatment is valid for axisymmetric
skyrmions and one-dimensional spirals in the bulk materials. Considering skyrmions
in thin layers, the solution of the magnetostatic problem (Eq. (1.35)) is necessary.
In section 5.6 I investigate the evolution of skyrmion solutions in the presence of
demagnetizing fields on the surface.
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1. The main principles of micromagnetism

Within the phase theory approximation [24] considered in chapter 2 the demag-
netizing field is assumed to be uniform. This is justified for samples with ”perfect”
shape (elipsoidal with limiting cases of plates and cylinders). Therefore, I will con-
sider first homogeneous states in an effective internal field and then map them on
the plane of external field components.

1.2.5. Energy contributions imposed by the variation of the
magnetization modulus

f0 in Eq. (1.1) comprises magnetic interactions imposed by variation of the magne-
tization modulus M ≡ |M|. In a broad temperature range the magnetization vector
practically does not change its length, and nonuniform magnetic states include only
rotation of M. Near the ordering temperature, however, the magnetization modulus
becomes small (M � 1) and strongly depends on the applied field and tempera-
ture. In this case the term f0(M) represents energy expansion for small values of
the magnetization according to Landau theory:

f0(M) = a1M
2 + a2M

4 (1.36)

where a1 and a2 are corresponding coefficients of Landau expansion. The magnetic
moment M enters only in even powers because only even terms are invariant under
a reversal in the sign of the magnetization (only for even powers of M time reversal
symmetry is preserved). The case a1 = 0 corresponds to the critical temperature
where spontaneous magnetization appears. Therefore, one can write a1 in the form:

a1 = J(T − Tc). (1.37)

Effects imposed by spatial variation of the modulus M will be discussed in chapter
6 in application to modulated states near the ordering temperatures.

1.3. One-dimensional distributions of the magnetic
vectors: domain walls and spirals

From the total free energy (1.1), variational calculus derives a set of complicated
non-linear and non-local micromagnetic equations [24, 101]. The solution of these
micromagnetic equations in general case is invoked to give the comprehensive de-
scription of different magnetic phenomena on nanoscale: magnetization processes,
the appearence of domain structure of different types (or different inhomogeneous
states), and evolution of magnetic structures under different circumstances etc.

Unfortunately, no generally applicable route for the solution of the generalized
micromagnetic problem is available. Solving micromagnetic equations is difficult
because they consist in a system of non - linear integro- differential equations. The
magnetostatic problem requires solutions for the stray field Hm: this field originates
from the distribution of magnetic vectors M(x, y, z) and, on the contrary, defines
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1.3. One-dimensional distributions of the magnetic vectors: domain walls and spirals

Figure 1.5.: The rotation of the magnetization vector from one domain to another
through a 180◦ Bloch (a) and Neel (b) walls. Profiles θ(z) (solid blue
lines), sin θ(z) (dashed line), and cos θ(z) (dotted line) are plotted for the
solution (1.42). Definition of the wall thickness δB is shown. (Adopted
from [24])

this distribution. Thus, one has to resort to some simplifications. The main focus of
the thesis is the role of specific Dzyaloshinskii-Moriya interactions in stabilization of
different modulated structures: spirals and skyrmions. As such structures represent
one- and two-dimensional distributions of the magnetization, the micromagnetic
equations can be handled numerically. The computer capabilities available nowadays
make it possible to use numerical recipes to solve micromagnetic problems unsolved
so far.

One-dimensional distributions of the magnetization are relatively easy to calcu-
late using the methods of variational calculus, as first demonstrated by Landau
and Lifshitz in their pioneering work [104]. The rotation of the magnetization M
from point to point depends only on one spatial coordinate, and the equilibrium
distribution is accomplished as a result of competition between different energy con-
tributions: in section 1.3.1 giving a short introduction into the classical theory of
Bloch and Néel domain walls [104, 106] I show that the parameters of a domain
wall are determined by the interplay of exchange and anisotropy energies; in section
1.3.2 I include Dzyaloshinsii-Moriya interaction into consideration of domain walls
and show their transformations into spiral modulations with characteristic length
defined by the stiffness A and Dzyaloshinskii constant D. In chapter 4 I consider
the one-dimensional spiral modulations in more details and provide a comprehensive
analysis of two-dimensional skyrmions in magnets with different crystallographic
symmetry.

1.3.1. Domain walls in uniaxial magnets: Bloch and Néel walls

I start with the structure of classical Néel and Bloch domain walls. The calculation of
the domain wall structure was one of the first achievements of the micromagnetism.
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A. Bloch wall

The first model of transitional layer between two magnetic domains was intro-
duced by Bloch [105]. According to the model, the gradual change of the magne-
tization orientation in a domain wall is a result of competition between magnetic
anisotropy trying to align the moments along the easy axis and to squeeze the wall,
and exchange energy which expands the wall trying to reduce the misorientation of
magnetic moments. Characteristic feature of the Bloch wall is absence of magnetic
charges. This condition is fulfilled if the normal component of the magnetization is
continuous, i.e.

divM = 0. (1.38)

Bloch domain wall can be considered as a set of parallel planes perpendicular to the
wall normal (for definiteness, I direct the normal to the wall along z direction, Fig.
1.5 (a)). Each of these planes is magnetized homogeneously while the neighboring
planes differ by the orientation of the magnetization.

Components of the magnetization in the Bloch wall are functions only of the
coordinate z:

Mx = M cos θ(z), My = M sin θ(z), Mz = 0, (1.39)

and the boundary conditions for the angle θ are

θ(−∞) = 0, θ(∞) = π. (1.40)

By minimizing the energy functional one can obtain the Bloch wall energy:

γB =

∫ ∞

−∞

[
Ku sin2 θ + A

(
dθ

dz

)2
]

dV = 4
√

A Ku. (1.41)

Analytical solution for the magnetization in the Bloch wall

θ = arccos

(
tanh

(
z√

A/Ku

))
(1.42)

plotted in Fig. 1.5 (c) allows to introduce the commonly used notion of domain wall
width (Lilley’s definition) as a distance between the points at which the tangent at
z = 0 intersects the lines θ = 0; π:

δB = π

√
A

Ku

(1.43)

Such a definition will be also used while defining the characterisitic size of isolated
skyrmions in section 4.4.

B. Néel wall

On the contrary to the Bloch wall, the magnetization in Néel wall rotates through
the wall (Fig. 1.5 (b)). Magnetic charges arising within the wall lead to the intrinsic
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magnetostatic field Hm, and
divM �= 0. (1.44)

From energetic point of view the existence of Néel walls in bulk materials is disad-
vantageous, but they can appear in thin films where the magnetostatic energy trying
to keep the wall as narrow as possible competes with exchange energy trying to avoid
strong inhomogeneities of the magnetization. For the same choice of coordinate axes
as for Bloch wall (Fig. 1.5) the components of the magnetization for Neel wall are

Mx = M cos θ(z), My = 0, Mz = M sin θ(z), (1.45)

Minimization of the energy functional

γN =

∫ ∞

−∞

[(
dθ

dz

)2

+ 2πM2
s cos2 θ(z)

]
dz (1.46)

leads to the analytic solutions

θ(z) = arccos

(
tanh

(
z√

A/2πM2
s

))
. (1.47)

The width of the Neel wall is expressed by the following equality

δN = 4

√
A

2πM2
s

. (1.48)

which is very similar to the solution of Bloch wall (Eq. (1.43)). The stray field
constant Kd = 2πM2

s plays the same role for Néel walls as uniaxial anisotropy Ku -
for Bloch walls.

In the next section I consider one-dimensional spiral modulations arising in non-
centrosymmetric magnets with Dzyaloshinskii-Moriya interactions. On the contrary
to domain walls where rotation sense is degenerate, spiral states permit only one
rotational sense (left or right) defined by the sign of Dzyaloshinskii constant D. The
type of realised spiral is specified by the crystallographic symmetry (for details see
section 4.3).

1.3.2. One-dimensional spiral modulations

In the previous sections I considered the distribution of the magnetic vectors within
the classical Bloch and Néel domain walls. Here, I show that Dzyaloshinskii-Moriya
interaction can lead to the proliferation of domain walls, i.e. can destabilize the
homogeneous state with respect to a modulated spiral state. To demostrate this I
direct the wave vector k of such a helix along coordinate axis z as it was for Bloch
wall (Fig. 1.5 (a)) and use spherical coordinates (1.39) for the magnetization vector
M. The Dzyaloshinskii-Moriya energy term in form of (1.17) is included into the
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free energy. Then the energy functional in zero field and zero uniaxial anisotropy is
reduced to the form

γsp =

∫ p0

0

[
A

(
dθ

dz

)2

+ D

(
dθ

dz

)]
dz (1.49)

The competition of the counter-acting exchange and Dzyaloshinskii-Moriya interac-
tions in energy (1.49) yields the ground state of the system in the form of a single-
harmonic mode:

θ(z) =
z

2LD

, LD =
A

D
. (1.50)

The period
p0 = 4πLD (1.51)

and the sense of rotation of spiral modulations are determined by the sign and
magnitude of the Dzyaloshinskii constant D. While the exchange stiffness in (1.49) is
minimal in spatially homogeneous states, the Dzyaloshinskii-Moriya coupling favours
a rotation of M. Thus, winding of the magnetization with appropriate rotation
sense and unlimiting reduction of the modulation period ((dθ/dz) → ∞) leads to
infinitely negative values of Dzayloshinskii energy density. LD proportional to the
ratio of the counter-acting exchange and Dzyaloshinskii constants (1.50) introduces
a fundamental length characterizing the magnitude of chiral modulations in non-
centrosymmetric magnets.

It is important that for any sign of Dzyaloshinskii constant D there is such a
rotation sense of M which can lead to a negative energy γsp. To show this I follow
the standard procedure (see section 2.6.1) and write the energy including Zeeman
and anisotropy interactions in the form:

γsp = γ0 ± D |θ2 − θ1| , σ0 = 2
√

AK

∫ θ2

θ1

√
Φ(θ) − Φ(θ1,2)dθ (1.52)

where Φ(θ) = −M · H − Ku(m · a)2. The first term γ0 depends on the exchange
stiffness A and the barrier height

ΔΦ = [Φ(θmax) − Φ(θ1,2)], (1.53)

where θmax maximizes Φ(θ) along the wall, θ1 and θ2 determine magnetic states in
two adjacent domains by minimizing functional Φ(θ). This positive contribution can
be written as

γ0 = 2ζ|θ2 − θ1|
√

AΔΦ (1.54)

where ζ is a numerical factor determined by the average value of the integrand
(1.52), 0 < ζ < 1. For one sense of rotation the energy contribution from the
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Dzyaloshinskii-Moriya interaction decreases the domain wall energy. Thus, when

|D(θ2 − θ1)| > γ0 (1.55)

the domain wall energy becomes negative, resulting in an instability of the homo-
geneous phase with respect to chiral modulations. Finally, γsp can be expressed
as

γsp = A |θ2 − θ1|
(

1

L0

− 1

LD

)
. (1.56)

where LD (1.50) measures the energy gain due to the modulation, while the domain
wall width

L0 =
ζ

2

√
A

ΔΦ
(1.57)

measures energy losses. Thus modulated states are stable when the ”rotating force”
D overcomes the barriers ΔΦ, and the period 4πLD of free rotation is smaller than
the domain wall width 4πL0. The critical values of the Dzyaloshinskii constants Dc

for transitions between homogeneous (D < Dc) and modulated chiral state (D > Dc)
vary strongly with an applied magnetic field and are given by the equation γsp = 0.
Corresponding formulae for critical values of Dzyaloshinskii constant can be found
in Refs. [45,69,71].

1.4. Two-dimensional distributions of the magnetic
vectors - skyrmions

Dzyaloshinskii-Moriya interactions introduced in section 1.2.1 B and shown to induce
spiral states in magnets (section 1.3.2) may also lead to the appearence of the chiral
skyrmions - particle-like twisted states with radial symmetry.

1.4.1. Chiral flux-lines as the building blocks of skyrmionic
matter

In all the chapters related to skyrmions in chiral magnetic systems (chapters 4-6),
I start the analysis of skyrmion states from the isolated skyrmions which may be
considered as ”bricks” for building the extended skyrmion textures (see sections 4.4,
5.3, 6.3). Isolated skyrmions are the solutions of the micromagnetic equations for
chiral systems minimizing energy functional (1.1) (Fig. 0.1 (a) and Eqs. (4.1), (6.3))
and have distinctive features of topological solitons. Existance of chiral skyrmions
in magnetism was predicted and investigated theoretically by A. Bogdanov et al.
starting in 1989 [69].

A. Internal structure of isolated skyrmions

Isolated skyrmions can be thought of as isolated static solitonic textures localized
in two spatial directions, which can be extended into the third direction as skyrmion
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strings or Hopfions. The magnetization in the center of skyrmion pointing opposite
to an applied magnetic field rotates smoothly and reaches the state along the field
at the outskirt of skyrmion. The way the magnetization twists from the center
to outskirt (i.e. the azimuthal angle of the magnetization in the polar system)
depends on the symmetry of the underlying non-centrosymmetric helimagnet (see
Fig. 4.3 and Eqs. (4.23)). In Fig. 0.1 (a) the magnetization performs Bloch-like
type of rotation (see also the structure of Bloch domain wall in Fig. 1.5 (a)). Also
the magnetization may have Néel-like rotational fashion or even more sophisticated
types of rotation [69].

In the thesis I will use the spherical coordinates for the magnetization:

M = M(sin θ(ρ) cos ψ(ϕ), sin θ(ρ) sin ψ(ϕ), cos θ(ρ)), (1.58)

and cylindrical coordinates for the spatial variables [21,22,70]

r = (ρ cos ϕ, ρ sin ϕ, z). (1.59)

Therefore, the rotation of the magnetization in the isolated skyrmion is characterized
by the dependence of the polar angle θ on the radial coordinate ρ (in chapter 6 I
consider also the dependence of the magnetization modulus M on ρ).

Isolated skyrmions represent countable and smallest possible localized entities in
a magnetization distribution. The nucleus in which most of the skyrmion energy
is concentrated (see section 4.4.2) can be imaged as a two-dimensional elementary
particle. The weak perturbation of the homogeneous state for ρ → ∞ is viewed as
a ”field” created by the particle. Two such elementary particle with the same sense
of the magnetization rotation repel each other.

The characteristic size of the skyrmion is comparable with the width of the do-
main wall, and thus, is much smaller than the radius of a bubble domain stabilized
by dipole-dipole interaction in the magnetic films with perpendicular anisotropy.
But note, that inspite of the topological similarity between skyrmions and common
bubble domains (the skyrmion may be naively visualized as a bubble without its
core), they are different branches of solutions of micromagnetic equations as shown
explicitly in sections 4.7.2 and 5.6. Bubble domains arise only as a result of the
surface depolarization and the tension of ordinary domain walls and are intrinsically
unstable. The skyrmions are stabilized by Dzyaloshinskii-Moriya interactions and
exist even in very high fields without collapse (see for details [23]).

B. Topological and physical stability of isolated skyrmions

Skyrmion states are classified as both topologically and physically stable.

The skyrmion ”knots” are robust against small perturbations and cannot be con-
tinuously unwound. The chirality of a non-collinear structure can be measured from
the strength of the twist or helical rotation of the magnetization, M · (∇×M). For
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the radial skyrmion structure, the local twist is given by the expression

τ =

(
dθ

dρ
+

1

ρ
cos θ sin θ

)
. (1.60)

The sign of this expression measures the local and helical chirality in the structure.
In particular, for 0 ≤ θ ≤ π/2 and θρ > 0 the local chirality of the helical structure
is positive.

Alternatively, the field configuration can be characterized by a topological charge
or skyrmion number Q:

Q =
1

4π

∫
n

(
∂n

∂x
× ∂n

∂y

)
dxdy (1.61)

where n is a unit vector along the magnetization, and the integration is done over the
inhomogeneous magnetization distribution. For trivial magnetization distributions
Q = 0. For skyrmions Q has non-vanishing value.

Both the sign of τ and the skyrmion number Q can be used to characterize the
skyrmion structure.

Skyrmions are also physically stable: the physical size of the skyrmionic disk (Fig.
0.1) ranges from few lattice spacings up to microns depending on the balance between
Dzyaloshinskii- Moriya interaction and the direct exchange. In centrosymmetric
systems the size of skyrmions reduces to zero. Therefore, chiral couplings provide a
unique mechanism to stabilize skyrmionic textures. This singles out chiral condensed
matter systems with Lifshitz-type of invariants into a particular class of materials
with skyrmionic states.

The influence of DMI on the stability of skyrmion states can be considered from
general principles as it was comprehensively described in Ref. [233]. In the energy
functional, one can separate energy terms quadratic (φ2(θ)) and linear (φ1(θ)) in the
spatial derivatives of the configurational variable θ. φ0(θ) includes the terms which
do not contain the spatial gradients. If the energy functional

Φ =

∫
[φ2(θ) + φ1(θ) + φ0(θ)]d

Dx (1.62)

is subject to the stretching-compression rescaling U(x) → U(x/λ), then

ΦD(λ) = λD−2ΩD
2 + λD−1ΩD

1 + λDΩD
0 (1.63)

where

ΩD
k =

∫
[φk(U)]dDx. (1.64)

D is a dimensionality of modulated states. From Eq. (1.63) it clearly seen that
DMI do not change the conditions of stability for one-dimensional spiral states with
D = 1. However, for two-dimensional skyrmions with D = 2 (or even for multidi-
mensional magnetization distributions with D = 3) DMI are extremely important.
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Such solitonic textures can arise in different classes of non- centrosymmetric mag-
netic crystals [31,45,69,107], ferroelectrics, and multiferroics. Also described isolated
skyrmions remind Abrikosov vortices in type II superconductors or thread-like tex-
tures in nematic liquid crystals [48]. However, contrary to these defected patterns
with singularities in the core, the distribution of the order parameter in skyrmions
is smooth.

C. Why skyrmion is called ”skyrmion”?

Localized solutions depicted in Fig. 0.1 (a) have been initially introduced un-
der name magnetic vortices [69] because, to a certain extent, they are similar to 2D
topogical defects investigated in magnetism and known as ”two-dimensional topolog-
ical solitons” or ”vortices” (e.g. well-known Belavin-Polyakov solutions for magnetic
vortices [234]). On the other hand, the term skyrmion has been conceived in a
field rather distant from condensed-matter physics and initially was related to the
localized solutions derived by Skyrme within his model for low-energy dynamics of
mesons and baryons [35]. In fact, the Skyrme model [35] comprises three spatial
dimensions, and the name ”baby-skyrmion” was used by some field theorists to dis-
tinguish two-dimensional localized states from ”mature” three-dimensional solutions
in the original Skyrme model [35], both types of them being topological static soli-
tons. During the last decades the ”skyrmion” has progressively won currency in
general physics to designate any non-singular localized and topologically stable field
configuration. Complying with this trend, in 2002 A. N. Bogdanov and coworkers
renamed ”chiral magnetic vortices” into ”chiral skyrmions” [45].

Thus, the term skyrmion is an umbrella title for smooth localized structures to
distinguish them from singular localized states, e.g., disclinations in liquid crystal
textures [48]. This convention provides only a formal label for a large variety of
very different solitonic states from many fields of physics [109]. In the context of
the present thesis the label ”chiral skyrmion” designates well-defined solutions of
micromagnetic equations which are (i) localized, (ii) axisymmetric, and have
(iii) fixed rotation sense.

1.4.2. Skyrmion lattices

Skyrmion strings (section 1.4.1) may condense into multiply modulated states. The
extended skyrmionic textures are determined by the stability of the localized soli-
tonic skyrmion cores and their geometrical incompatibility which frustrates regular
space-filling. In chapters 4-6 I consider first circumstances under which isolated
skyrmion entities condense into the lattice (sections 4.4.4, 5.4, 6.4.1), then prop-
erties of obtained skyrmion textures (sections 4.5, 6.4.2), and finally address the
question of the energetic competition between one-dimensional helical modulations
and skyrmions (sections 4.6, 5.5, 6.6).

A. Condensation of isolated skyrmions into a lattice

Under the influence of a sufficiently strong DM interactions isolated skyrmions
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condense into lattices [21,31,69]. The process of condensation is ruled by two com-
peting mechanisms: low-energy skyrmion cores trying to fill the whole space, and
high-energy edge area responsible for the repulsion of isolated skyrmions. The trans-
formation of skyrmions during the formation of the lattice has been investigated in
Ref. [21]. Magnetic-field-driven evolution of the skyrmion lattice has similar features
with the evolution of helical states investigated in [41] and bubble and stripe do-
main in uniaxial ferromagnets [24]. Despite a strong variation of the lattice periods
isolated skyrmions preserve axisymmetric distribution of the magnetization in the
central part of cells.

Mechanism of lattice formation through nucleation and condensation of isolated
skyrmions follows a classification introduced by DeGennes [91] for (continuous) tran-
sitions into incommensurate modulated phases. According to DeGennes, the fully
saturated ferromagnetic state is stable locally. However, it becomes unstable with
respect to certain distortions of large amplitude - skyrmions: in practice, isolated
skyrmions as excitations of ferromagnetic state nucleate near defects, and then con-
dense into the lattice. Such nucleation-type phase transitions are rather frequent in
the condensed matter physics: (a) the entry of magnetic flux in a type II supercon-
ductors involves nucleation of vortex lines; (b) an electric or magnetic field induces
the transition between a cholesteric and a nematic liquid crystals; (c) the magnetic
samples break up into domains with increasing role of demagnetizing field [48].

And vice versa, the magnetic state built up from skyrmions may be decomposed
into an assembly of isolated skyrmions - molecular units, i.e. a transformation of
condensed phases occurs by setting free the isolated skyrmion units as in a crystal-
gas resublimation. Depending on small energy differences owing to additional effects,
different extended textures with variable arrangements of the skyrmion cores may
arise, just as in a molecular crystal.

B. The problem of skyrmion thermodynamical stability

The energetic advantage of skyrmion states over helicoids is due to rotation of
the magnetization in two dimensions [21, 31] (see section 4.6). This (double-twist)
grants a larger reduction of the Dzyaloshinskii-Moriya energy than a single-direction
rotation in helical phases (section 1.3.2). Thus, the double-twist yields a lower
energy density in the skyrmion cores compared to helical states. On the other
hand, the incompatibility of spin configurations near the edges of the hexagonal
cells (Fig. 0.1) leads to an excess of the energy density in this region [31] (Fig. 4.10
(a)). The analysis shows that at zero field this energy cost outweighs the energy
gain in the skyrmion core. An increasing external magnetic field anti-parallel to
the magnetization in the skyrmion center gradually decreases the total energy by
suppressing the energy cost near the wall-like structure surrounding the skyrmion
cores with the shape of a honeycomb. At a finite field the lattice has lower energy
than the alternative helical states with the field perpendicular to the propagation
direction - helicoids (see section 4.3.1). However, the skyrmions are still metastable
states with respect to the helical states with the propagation vector along the field
- conical phases (see section 4.3.2). And the problem of skyrmion thermodynamical
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stability arises.
In the forthcoming micromagnetic calculations I will consider the energy functional

(1.1) being comprised from three hierarchichally separated energy terms:

(i) Ferromagnetic exchange interaction (section (1.2.1) A) is supposed to be the
strongest energy contribution aligning the spins parallel to each other;

(ii) Dzyaloshinskii-Moriya interactions (section (1.2.1) B) occupy the second level
of the energetic hierarchy. These chiral energy contributions twist the magnetic
vectors into a helix or skyrmions, but with a small angle between adjacent magnetic
vectors that the characteristic length scales are large. Such a condition allows to
exclude from the consideration discrete atomic-scale skyrmion lattices considered, for
example, as the magnetic ground state of a hexagonal Fe monolayer on Ir(111) [25]
and characterized by large angles between neighboring spins.

(iii) Different anisotropic energy contributions are assumed to be the weakest en-
ergy terms of functional (1.1). Nonetheless, these additional interactions are consid-
ered as playing the crucial role in the thermodynamical stability of skyrmions. From
one side, the role of the additional energy contributions consists in suppressing the
conical phase. This is achieved, for instance, by the uniaxial and cubic anisotropies.
From the other side, additional interactions do not affect the cones, but change
slightly the structure of skyrmions decreasing the energy penalty of boundary re-
gions and thus making skyrmions thermodynamically stable.

36



Part I.

Phenomenological theory of
magnetization reversal in

nanosystems with competing
anisotropies

37



38



2. Magnetization processes in
magnetic nanolayers and
nanoparticles with competing
anisotropies

On the one hand, the results of the present chapter may be considered as having
the significance in their own right in application to magnetic nanostructures. The
skyrmion and spiral states introduced in chapter 1 are not even mentioned here.
The main concern of the present chapter is an consequences of interplay between
intrinsic cubic and surface/interface-induced uniaxial anisotropies in nanolayers of
diluted magnetic semiconductors and magnetic nanoparticles. The calculated phase
diagrams in components of external magnetic field provide suitable tools to clas-
sify and analyse a vast amount of experimental data on magnetization reversal in
(Ga,Mn)As epitaxial layers and nanoparticles. The phase diagrams give compre-
hensive information and enable one to predict the spin configurations in coexisting
phases and parameters of multidomain structures for various ratios of the compet-
ing magnetic anisotropies and for various relative orientations of the anisotropy axes
with some angle between them.

On the other hand, however, the conventions of the present chapter, demonstrating
the analysis of homogeneous states (section 2.3) in systems with competing cubic and
uniaxial anisotropies (including limiting cases of uniaxial and cubic ferromagnets),
are important for the study of the stabilizing effect of these two types of magnetic
anisotropy on skyrmion and helical states in chiral magnets with Dzyaloshinskii-
Moriya interactions (see chapter 4, sections 4.7, 4.9). The mechanisms defining the
thermodynamical stability of skyrmions with respect to one-dimensional modula-
tions in the presence of small anisotropic energy contributions are based entirely on
the clear understanding of the energy landscape for equilibrium homogeneous states
(see as an example Fig. 4.22). Therefore, the results of the present chapter are
instrumental also for modulated states of chapters 4 - 6.

2.1. Introduction

In magnetic nanostructures complex physical processes on surfaces and interfaces
give rise to enhanced uniaxial magnetic anisotropies [1, 2, 5, 110]. The interplay
between these induced and intrinsic (magnetocrystalline) anisotropies strongly in-
fluences the magnetization processes in many important classes of nanoscale sys-
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tems, such as ferromagnet - antiferromagnet bilayers [111–114], thin epilayers of di-
luted magnetic semiconductors [115–120] or in magnetic nanoparticles, [122–125][V]
and is the reason of various remarkable effects involving complex spin reorienta-
tion [116,120,126–134] and the evolution of specific multidomain states [135–139].

Most theoretical studies in this field are restricted to the investigations of Stoner-
Wohlfarth processes through coherent switching [140] in models with uniaxial and
cubic anisotropies [141–147]. Such theories describe magnetization reversal in a lim-
iting case of ideally hard magnetic materials. However, in real magnetic materials
the reversal processes will usually take place by the formation of heterogeneous states
consisting of the competing phases and their transformation under the influence of
the applied field. The analysis of such multidomain states in systems with com-
peting anisotropies and their influence on magnetization reversal is the subject of
this chapter [VI,VII]. These investigations can be executed within a regular micro-
magnetic theory [24, 148] (section 2.2), adapted to nanoscaled systems (see e. g.
Refs. [11, 20, 149]) [VI,VII]. First, I plot phase diagrams of states in components of
internal magnetic field (section 2.3), calculate stability limits of each possible mag-
netic configuration, and describe reorientation effects [148,150,151]. Then in section
2.4, I describe the procedure to map the obtained solutions onto the plane of external
field components, I calculate the parameters of the multidomain states and analyse
the magnetization processes [VI,VII].

In section 2.5 I apply the results to interpret reorientation effects and magnetiza-
tion reversal as observed in experimental works on nanolayers of diluted magnetic
semiconductors, FM/AFM bilayers, and thin films of Heusler alloys. In section
2.6 the calculated equilibrium parameters of the isolated domain walls and stripe
domains are used to analyse recent experimental results in (Ga,Mn)As films with
perpendicular anisotropy. Finally, in the section 2.7 I demonstrate stabilizing effect
of surface-induced anisotropy on multiple magnetic states in elongated nanoparticles
[V].

2.2. Phenomenological model

Within the standard phenomenological theory (see section 1.1) the magnetic energy
of a nanoscale ferromagnetic sample can be written as a functional (1.1) with an
energy density

w = A
∑

i

(
∂m

∂xi

)2

− M · H(e) − 1

2
M · Hm + wa , (2.1)

including exchange interactions (Eq. (1.4)), Zeeman energy (Eq. (1.33)), and energy
of stray fields (Eq. (1.34)). The anisotropy energy density wa includes uniaxial
anisotropy (Ku) with the axis a and cubic anisotropy (Kc) with unity vectors nj

along cubic axes (see sections 1.2.2 A,B)

40



2.3. Phase diagrams in internal field components

wa(M) = −Ku (m · a)2 − 1

2
Kc

3∑
j=1

(m · nj)
4 . (2.2)

The coefficients Ku and Kc are assumed to be positive. Hence, a and nj directions are
easy uniaxial and cubic magnetizaton axes, respectively. For the negative constant
of cubic anisotropy the easy axes are of <111>-type with angles 70.5◦ and 109.5◦

between them (in comparison with 90◦ for Kc > 0). This geometry requires separate
calculations. However, the procedure should be the same as described in details in
the present chapter.

The equilibrium distribution of the magnetization M(r) is generally spatially in-
homogeneous. It can be derived directly by solving the equations minimizing the
energy functional Eq. (2.1) together with the Maxwell equations (1.35). Thus, the
micromagnetic problem is formulated as a set of non-linear integro-differential equa-
tions [24]. In many classes of magnetic systems a strongly pronounced hierarchy of
magnetic interaction scales allows to reduce the micromagnetic problem to a set of
auxiliary simplified problems [24, 148]. The procedure includes: (i) the calculation
of spatially homogeneous equilibrium states by minimizing energy

w0(M) = −M · H + wa(M) (2.3)

in an (internal) magnetic field H for fixed values of the material parameters in
Eq. (2.3). The solutions of (i) are used to construct magnetic phase diagrams in
components of the external magnetic field (ii) and to calculate the equilibrium pa-
rameters of multidomain patterns and the structure of domain walls (iii).

In the rest of the chapter, I apply this program to the model given by Eqs. (2.1)
and (2.2). In order to make transparent the representation of internal homogeneous
states and the phase diagrams, I restrict the discussion to the case of co-planar
arrangements of easy axes and applied fields. Generalizations of this model are
discussed to the end of the next section.

2.3. Reorientation transitions and metastable states.
Phase diagrams in internal field components

In many cases of practical interest, the direction of the uniaxial anisotropy a lies
in the plane spanned by two of the cubic axes nj (see Eq. (2.2)). To be specific
I define this plane as xOz plane assuming that z is directed along a. In this case
energy w0 from Eq. (2.3) can be written as a function of the angle θ between M and
a. Introducing the reduced energy

Φ(θ) =
w0

Kc

+
1

8
(2.4)
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2. Magnetic nanolayers and nanoparticles with competing anisotropies

one obtains

Φ(θ) = −1

8
cos 4(θ − α) − κ cos2 θ − h cos(θ − ψ) , (2.5)

where

κ =
Ku

Kc

, h =
H

Hc

, Hc = KcM0 , (2.6)

α is the angle between the unaxial a and cubic n1 axis, the angle ψ defines the devia-
tion of the magnetic field H from the easy axis a in the xOz-plane; correspondingly,
hz = h cos ψ is the reduced field component along the uniaxial easy direction, and
hx = h sin ψ is the perpendicular component.

Energy (2.5) is a function of variable θ and includes four material (control) pa-
rameters, namely, angle α, ratio κ and reduced magnetic field components, hx,
hz. Model (2.5) has been introduced in 1964 by Torok et al. [141] for ferromag-
netic films with misorientated uniaxial and biaxial easy magnetization directions.
Previous investigations of (2.5) have been restricted to limiting cases of α = 0
and α = π/4 and were mostly concentrated on investigations of coherent rotation
processes (Stoner-Wohlfarth regime) (see Ref. [140] and bibliography in Ref. [24]).
Within this approach switching processes are identified with the boundaries of the
metastable states (critical astroids). In this section I give a comprehensive analysis
of model (2.5) in the full range of the control parameters (α, κ, h, ψ). In particular,
I show that the analysis of the metastable states only is not sufficient for the un-
derstanding of magnetization reversal in nanosystems with competing anisotropies.
The peculiar evolution of the potential profile (2.5) under the influence of the applied
field and specific reorientation effects are found to be crucial for the magnetization
processes in this class of magnetic materials.

The stationary solutions with the equilibrium values of θ are derived from the
equation

Φθ = 0 (2.7)

and are:

h sin(θ − ψ) = −1

2
sin 4(θ − α) − κ sin 2θ (2.8)

Here I introduce a common notation for derivatives

f(x)x×k ≡ dkf

dxk
. (2.9)

The equation for the lability lines of the solutions,

Φθθ = 0, (2.10)

reads
h cos(θ − ψ) = −2 cos 4(θ − α) − 2κ cos 2θ (2.11)

and determines the stability boundaries of the solutions together with Eq. (2.8).
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2.3. Phase diagrams in internal field components

Critical points of the transitions are determined by the set of equations

Φθ×k = 0, k = 1, 2, 3. (2.12)

The degeneracy of the solutions, θi with i = 1...L, that provide global energy minima
in the system,

Φ(θ1) = Φ(θ2) = ... = Φ(θL), (2.13)

determines the coexistence regions between L magnetic phases and the conditions for
first-order transitions in the magnetic phase diagrams. It is convenient to present
the solutions θ(hx, hz, κ, α) and critical regions for (2.5) in a set of phase planes
(hx, hz) parametrized by the factors α and κ. I start the analysis from the limiting
cases α = 0 and π/4, and after that highlight main features of the general model
(2.5).

For symmetric cases with the easy-axes orientations along one the cubic axis (α =
0) and along the diagonals between them (α = π/4) the Eq. (2.5) can be written as

Φ(θ) = ∓1

8
cos(4θ) − κ cos2 θ − h cos(θ − ψ) , (2.14)

with “−” for α = 0 and “+” for α = π/4. Generally model (2.14) describes magnetic
states in a planar ferromagnet with competing uniaxial (second-order) and biaxial
(fourth-order) magnetic anisotropy. The model has been applied for many bulk and
nanoscale magnetic systems, including reorientation effects in rare-earth orthofer-
rites [148,152][I-IV], several classes of intermetallic compounds [153], first-order mag-
netization processes in high-anisotropy materials [144], and for magnetic nanolayers
with surface/interface-induced magnetic anisotropy [5, 110, 114, 145, 146, 149, 150].
The model from Eq. (2.14) has also proved to be valid for diluted magnetic semi-
conductors as a novel class of magnetic materials [115–117,151].

The invariance of the potential Eq. (2.14) under the transformation

κ → −κ, θ → θ +
π

2
, ψ → ψ +

π

2
, (2.15)

means that the cases with different sign of κ transform into each other by rotation
of the reference system through an angle π/2. This invariance allows one to restrict
the analysis to positive values of κ. The analysis of (2.14) yields four topologically
different types of (hx, hz)-phase diagrams depending on values κ > 0, as shown in
Fig. 2.1. Under transformation (2.15) the equations of equilibrium (2.8), (2.11) for
the potential (2.14) with α = 0 are converted into those equations for α = π/4.
Thus, for the same values of κ the lability lines for both cases transform into each
other by a rotation through π/2 (Fig. 2.1).

For κ > 5 the lability lines have a similar shape as the Stoner-Wohlfarth astroid
[140]. In the limit of large κ, the lability line asymptotically coincides with this
astroid for simple uniaxial ferromagnets. As κ decreases from 5 to zero the lability
lines transform into an eight-cusp line with the shape of the classical wind rose.
At the parameter value κ = 5, a bifurcation takes place by the formation of so-
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Figure 2.1.: The phase diagrams of magnetic states in components of the internal
magnetic field (hx, hz) and different values of the parameter κ for the
ratio of uniaxial and cubic anisotropy (Eq.2.6). The upper panel (A)-(D)
is for systems with α = 0, the bottom panel (E)-(H) is for systems with
α = π/4. Two-headed vectors show orientations of the uniaxial axis
a and the cubic ni axes. The plots present the topologically different
types of phase diagrams: (A), (E) κ > 5, (B), (F) 5 > κ > 1, (C),
(G) 1 > κ > 0, (D), (H) κ = 0. Black lines indicate stability limits
of metastable states. Red lines give the first-order transitions between
different magnetic phases (see text for details).
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2.3. Phase diagrams in internal field components

called “swallow tails” [149] in one pair of opposite cusps (Fig. 2.1 (B), (F)). In the
interval 5 > κ > 1, the swallow tails gradually widen, and at κ = 1 the lower cusp
points reach the horizontal axis. In the interval 1 > κ > 0 the phase diagrams
have regions with overlapping swallow tails (Fig. 2.1 (C), (G)). Finally at κ = 0,
that is for zero uniaxial anisotropy, the lability line transforms into the wind rose
with eight corners. For the two special orientations of the uniaxial anisotropy in
Eq. (2.14) with α = 0 and α = π/4 the lability lines are identical. Still, the phase
diagrams are fundamentally different as they pertain to different magnetic states
and different coexistence regions of metastable magnetic states. Depending on the
control parameters, there are regions with L = 2, 3, or 4 degenerate states, and,
consequently, first-order transitions involving two, three and four phases.

For κ > 5 the first-order lines between two magnetic states are segments of straight
lines connecting opposite cusp points (Fig. 2.1 (A), (E)) [149]:

hz = 0, |hx| ≤ |hc
x| = 2(κ ∓ 1). (2.16)

At zero field the transitions occur between antiparallel magnetic states θ1 = 0 and
θ2 = π. For finite transversal magnetic fields |hx| < hc

x the solutions for coexisting
phases are determined from Eq. (2.8) with hz = 0 and α = 0 (π/4),

sin3 θ − 1 ± κ

2
sin θ ± hx

4
= 0 . (2.17)

These solutions describe a gradual decrease of the magnetization component mz. In
the endpoints of the first-order transitions hx = ±hc

x the magnetization vectors in
both phases are perpendicular to the easy direction.

For 5 > κ > 0 the evolutions of the magnetic states within the swallow tails
are different for the two models (see potential profiles in Fig. 2.2). For the model
with α = 0, the potential wells corresponding to the global energy minima are
swapped within the swallow tails (Fig. 2.2 (A)). Hence, different canted states
become degenerate in equilibrium along lines of first-order transitions (lines a1b1,
a1b2, a2b3, a2b4 in Fig. 2.2 (A)). These lines meet the transition line a1a2 between
symmetric phases, θ1, θ2 = π−θ1, in the points a1 and a2 where three phases coexist.
The coordinates of points a1 and a2 are [149,153]

h̃x = ±2 sin θ̃(cos 2θ̃ + κ), h̃z = 0 (2.18)

and the solutions for the coexisting phases read

θ1 = ±θ̃, θ2 = π ∓ θ̃, θ3 = ±π

2
, (2.19)

where

sin θ̃ =
−1 +

√
1 + 3κ

3
. (2.20)

For the model with α = π/4, the minimum in the potential is unique for the
swallow tails in the parameter range 5 > κ > 1. Hence, the transformation of the
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grams to illustrate the evolution of the magnetic states in both models.
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2.3. Phase diagrams in internal field components

energy profile involves only metastable states (Fig. 2.2 (B)). However, the particular
transformation of the metastable states in these regions plays an important role in
the evolution of the domain wall profiles (see Sec. VI). In the interval 1 > κ > 0 the
first order transitions arise within the region of the overlapping swallow tails. The
transition line is a segment c1c2, with the points

c1 = (0; 2(κ − 1)), c2 = (0;−2(κ − 1)). (2.21)

Along this line segment two phases coexist with solutions θ1 and θ2 = −θ1. The
solutions θ1 are given by the equation

cos3 θ − 1 + κ

2
sin θ − hz

4
= 0 , (2.22)

that can be derived from Eq. (2.8). The first-order transition line from c1 to c2

crosses the other transition line along (hx; 0) in the origin. Hence, in this point four
magnetic phases coexist with

θ1 =
1

2
arccos κ, θ2 = −θ1, θ3 = π − θ1, θ4 = π + θ1 . (2.23)

For κ = 0 (zero unaxial anisotropy) both potentials (2.14) are converted into the
model of a cubic ferromagnet. The corresponding phase diagrams (Fig. 2.1 (D)
and (H)) are identical and include two lines of first-order phase transitions between
symmetric states. In the origin four degenerate phases with magnetization along the
cubic easy axes n1 and n2 coexist.

In the general case with a misalignment between uniaxial and cubic easy axes
given by the parameter α the potential Φ (Eq. (2.5)) is a periodic function of α with
periodicity π/2. Thus an analysis in the range 0 ≤ α ≤ π/4 covers all physically
different states. Here I describe the evolution of the (hx, hz) diagrams when α varies
from zero to π/4. The sets of diagrams in Figs. 2.3 and 2.4 show the transformation
of the transition and lability lines. The case with nonoverlapping swallow tails
for the parameter range 5 > κ > 1 is presented in Fig. 2.3. For small α(κ) two
lines of the phase transitions between canted phases still exist (Fig. 2.3 (B)). With
increasing α the points a1 and a2 for the three-phase coexistence move to either
of the cusp points b2 and b3 (Fig. 2.3 (C)) After these points have merged only
two-phase transition lines exist in the system (line b1b4 in Fig. 2.3 (D), (E)). Thin
(blue) lines in Fig. 2.3 (B)-(F) indicate the values of the magnetic fields where two
metastable states have the same energy. They are not connected with any physical
processes in the system but help to understand the transformation of the energy
profiles.

The phase diagram with overlapping swallow tails for the parameter range 1 >
κ > 0 is shown in Fig. 2.4. In this case the transition lines between pairs of
canted phases in the limit α = 0, Fig. 2.4 (A), gradually transform into straight line
segments for transitions between pairs of the symmetric phases in the limit α = π/4,
Fig. 2.4 (D). During this process the points of the three-phase coexistence a1 and
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2. Magnetic nanolayers and nanoparticles with competing anisotropies

Figure 2.3.: (hx, hz) phase diagrams for κ = 1.2 and different values of α demon-
strate the transformation between the two symmetric cases with α = 0
(A) and α = π/4 (F).
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2.3. Phase diagrams in internal field components

Figure 2.4.: (hx, hz) phase diagrams similar to that in the previous figure but for
κ = 0.7.
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2. Magnetic nanolayers and nanoparticles with competing anisotropies

a2 move towards each other (Fig. 2.4 (B), (C)), and merge into the point with
four-phase coexistence at the origin for α = π/4, Fig. 2.4 (D).

The sets of modified astroids in Figs. 2.1 and 2.3 represent geometrical singulari-
ties studied by a special field in mathematics known as catastrophe theory [154]. It
was found that for rather general form of potentials there exist only seven fundamen-
tal types of singularities referred to as catastrophes [154]. Four of them are realized
in the lability lines of Figs. 2.1 and 2.3. The astroid lines, where one local minimum
merges with a local maximum, are named fold catastrophes. The edge points where
two folds meet have two minima merging with a maximum. These singularities are
known as cusp catastrophes. By a characteristic discord in the terminology, the fea-
ture known in magnetics as “swallow tails” as shown in Fig. 2.1 (B), (F) are called
butterfly catastrophes in mathematics, while the triangular regions, as those with
the cusps c1,b2 in Fig. 2.3 (D), are called swallow tail catastrophes. The lability lines
in Fig. 2.1 belong to a family of hypercycloids. In present article I shall adhere to
the terminology used in micromagnetism.

The transformation of the common Stoner-Wohlfarth astroid (as 4 - cusped hyper-
cycloid - Fig. 2.1 (A), (E)), into the 8-cusped hypercycloid with the wind rose shape
(Fig. 2.1 (D), (H)) occurs in many magnetic systems with competing anisotropies
and has been investigated during the last forty years. To the best of our knowledge
the 8-cusped hypercycloid has been firstly obtained in Refs. [141,155] (see also the re-
marks about earlier conference contributions in Ref. [141]). The transformation from
the common astroids (Fig. 2.1) into a lability line with swallow tails, and the further
evolution of these curves to the wind rose has been obtained in Ref. [141]. Torok et
al. also demonstrated several diagrams of lability line for model with misorientated
anisotropy axes (Eq.(2.14)). In many following papers (see, e.g. Refs. [142,143,156])
pecularities of lability lines for the model (2.14) have been investigated. The coor-
dinates of the critical points for (2.14) were calculated in Refs. [153, 157–159]. The
solutions for the first-order phase transition lines and the coexisting states have been
carried out in Refs. [160, 161] (see also Ref. [149])). In this chapter I have given an
exhaustive summary of model (2.5).

2.4. Magnetic phase diagrams in external field
components

In the previous section the solutions for possible magnetic states have been pre-
sented as functions of the internal field. For ellipsoidal magnets with a homogeneous
magnetization M(h) the equation [24]

h(e) = h + 4πK−1
c N̂m(h) (2.24)

establishes the correspondence between magnetic phase diagrams in terms of the
internal field h and those in terms of the external field h(e) ( N̂ is the demagnetizing
tensor). For phase diagrams in Figs. 2.1 and 2.3 the phase diagrams in external
magnetic field components are plotted in Figs. 2.5 and 2.6, correspondingly. Thin
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2.4. Magnetic phase diagrams in external field components

Figure 2.5.: Magnetic phase diagrams in the components of the external field h
(e)
x ,

h
(e)
z for α = 0 ( (A)- (C)) and α = π/4 ((D)- (F)). Thick lines limit

regions of three- and four-phase (blue) and two-phase (red) multido-
main states. Arrows show magnetic configurations in the (co-existing)
domains. All calculations have been carried out for a spherical sample
(Nii = 1/3).
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lines in Figs. 2.5, 2.6 define values of the external fields in which the internal
field within the stable phases reaches the boundaries of the metastable region. The
transition lines (htr) in Figs. 2.1, 2.3 transform into the areas bounded by thick
(red) lines in Figs. 2.5, 2.6. These areas define maximum possible regions where
thermodynamically stable multidomain states of the competing phases can exist
[24,148,162].

For κ > 5 and α = 0 the (hx, hz) diagram in Fig. 2.1 (A) converts into that
in Fig. 2.5 (A). The transition line in Fig. 2.1 (A) transforms into an area of a
two-phase multidomain state that is bounded by an ellipse (red line). For |κ| < 5
and α = 0 the diagrams in the terms of external-field components become rather
complicated: Fig. 2.5 (B) is obtained by mapping the phase diagram in Fig. 2.1 (B),
and Fig. 2.5 (C) by mapping Fig. 2.1 (D). The lines of the two-phase transitions in
Fig. 2.1 (B), (C) convert into areas of two-phase domain structures (DS); the points
of three-phase coexistence (2.18) “swell” into the triangular regions of three-phase
domain structure; and the point (0,0) in Fig. 2.1 (D), where four phase θj = πj/4
coexist, transforms into a rectangular area with a four-phase multidomain state.

The phase diagrams in Fig. 2.1 (F), (G), (H) for systems with α = π/4 are mapped
into the phase diagrams in Fig. 2.5 (D), (E), (F), correspondingly. For κ > 1 the
phase diagram in Fig. 2.5 (D) includes one region of two-phase multidomain states
and two swallowtail pockets in the metastable region. For 1 > κ > 0 h(e)-phase
diagrams include a rectangular area, where four-phase domain states are stable with
spin configurations in the domains described by Eq. (2.23). Adjacent to this area,
there are four regions in the phase diagrams with two-phase multidomain states (Fig.
2.5 (E)). Finally the h(e)- phase diagram for κ = 0 in Fig. 2.5 (F) becomes identical
to that in Fig. 2.5 (C).

For α varying from zero to π/4 the phase diagrams are plotted in the case κ =
1.2 (Fig. 2.6 (A)-(D)) and κ = 0.7 (Fig. 2.6 (E)-(H)) and reflect the complex
transformation of the regions of the DS existence. For κ = 1.2 the triangular areas
of three phase DS and the regions of two phase DS deform (Fig. 2.6 (B)) and
then disappear at all (Fig. 2.6 (C)) leading to a phase diagram with one distorted
ellipse of two phase DS. The phase diagram for κ = 0.7 demonstrate another kind of
transformation. Now, the regions of three-phase DS do not disappear (Fig. 2.6 (F),
(G)) but, on the contrary, join to form a rectangular area of four phase DS (Fig. 2.6
(H)). Here in Fig. 2.6, the thin dashed lines denote the lines of constant internal field
and constant phase fractions (in regions of stable two-phase DS). When an external
magnetic field is varied following these lines, then either domain walls are displaced
or the magnetization rotates in each domain, respectively.

In the next section I apply the diagrams of solutions in Figs. 2.1, 2.2, 2.3, 2.4
and the phase diagrams in Figs. 2.5, 2.6 to analyze the magnetization processes in
nanosystems with competing anisotropies. I emphasize that those diagrams describe
two limiting cases of ideally hard and ideally soft magnetic behavior. In ideally hard
magnetic materials magnetization processes occur via evolution of metastable states.
Magnetic phases exist everywhere in their stability regions up to their boundaries
(Stoner-Wohlfarth regime). The corresponding magnetization curves (dotted lines in
Fig. 4.16) are characterized by the widest possible hysteresis cycles, [24] and single

53



2. Magnetic nanolayers and nanoparticles with competing anisotropies

-4 0 4
-1

1

0

� =0
= .1 2

(C)

three-phase-

two-phase

multidomain state

multidomain state

h
(e)

a

-4 0 4
-1

1

0

= .0 7

(B)

� �= /4

four-phase-

two-phase

multidomain state

multidomain state

h
(e)

a

-1

1

0

� =0
= .1 2

(D)

two-phase
multidomain

state

three-phase
multidomain

state

-5 0 5

(A)

= .0 7
� �= /4

-5 0 5
-1

0

1

two-phase
multidomain

state

four-phase
multidomain

state

h
(e)

a

(E)

� =0
= .0 7

1

0

-1
0-5 5

two-phase
multidomain

state

three-phase
multidomain

state

m m m m m

h h h h h

Figure 2.7.: Magnetization curves (schematically) for systems with two- and four-
phase multidomain states (A),(B) and for those with two- and three-
phase multidomain states(C)-(E).

domain states are realized in these systems. In the opposite case of ideally soft mag-
netic materials the magnetization reversal occurs via the evolution of thermodynami-
cally stable states. Such anhysteretic processes involve the formation of multidomain
patterns. These spatially inhomogeneous states are composed of domains formed by
the competing phases of the magnetic-field induced first-order transition [24,148].Ex-
tended regions of multidomain states have been observed during reorientation pro-
cesses in several groups of bulk magnetic systems (e. g. orthoferrites and easy-axis
antiferromagnets [148,163]). For these magnetically soft, low anisotropy systems the
multidomain states are described by the phase theory equations [24,148]. The phase
theory approximation stricly is valid only if the characteristic sizes of the sample
are much larger than the sizes of domains, and transitional regions between domains
are localized into narrow domain walls. [24] Both these requiments are met only in
ideally soft, massive magnetic samples. Thus, in soft magnetic materials the mag-
netization processes are mainly determined by occurrence of the first-order phase
transitions and the evolution of the magnetic states in the coexistence phases dur-
ing these transitions (solid lines in Fig. 4.16). The magnetization processes in real
materials are intermediate between these two limiting cases and include both evolu-
tion of the metastable and multidomain states. In magnetic nanolayers domain sizes
usually exceed the layer thickness. In magnetic nanoparticles only few domain walls
are observed, and in sufficiently small particles multidomain states are completely
blocked. On the other hand, coercivity of the magnetic nanosystems prevents the
formation of the equilibrium states and causes hysteretic magnetization reversal.

2.5. Comparison with experiment

The phase diagrams of solutions in Figs. 2.1-2.4 can be applied for explanation of
magnetization processes in many nanomagnetic systems with competing anisotropies,
for example, in thin films of diluted magnetic semiconductors (DMS), in ferromag-
netic(FM) / antiferromagnetic(AFM) bilayers [114,129], Heusler alloys [164], and/or
nanoparticles [150][V]. First, I consider the phase diagrams with symmetric arrange-
ment of easy uniaxial and cubic anisotropy axes (Fig. 2.1, 2.2), as applied for
nanolayers of DMS. And then I give examples of systems with different values of
angle α between anisotropy axes.

Layers of diluted magnetic semiconductors represent a new class of materials with
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a strongly pronounced competing character of the magnetic anisotropy. In existing
(Ga, Mn) As nanolayers the ratio κ of uniaxial and cubic anisotropy varies in a broad
range and is controlled by strains, temperature and hole concentration [115–120,129].
The magnetization processes in Ga1−xMnxAs thin films grown by molecular beam
epitaxy on GaAs(001) substrates are described by the diagrams of solutions for
highly symmetric geometry, α = 0; π/4 (Fig. 2.1). The in-plane magnetization
reversals in these systems are determined by the competition of cubic anisotropy
with easy axes < 100 > and uniaxial anisotropy favouring the directions of < 110 >
type. Thus, the solutions of (2.5) for α = π/4 are applicable in this case (Fig. 2.1
(E)-(H)). The main features of in-plane magnetization processes in such layers are
summarized in Fig. 2.2 (B) and were experimentally investigated in a number of
works [118,126,127,136].

In Ref. [136] the 300nm thick Ga1−xMnxAs(x = 0.03) samples were studied com-
bining direct imaging of magnetic domains and SQUID magnetometry. At temper-
atures above 30K the samples exhibit the uniaxial anisotropy with easy axis along
[110], whereas for temperatures below 30K the magnetization vector deviates from
this direction indicating the dominance of the fourfold symmetry. According to our
phenomenology these magnetic films followed the temperature transition from the
phase diagram in Fig. 2.1 (F) for dominating uniaxial anisotropy (κ > 1) to that
in Fig. 2.1 (G) with competing character of anisotropy (κ < 1).The angle between
the magnetization and the axis [110] is determined by the Eq. (2.23). For T=15K
(the ratio κ = 0.42 was obtained from fits of the hard-axis magnetization curves
and calculating the easy-axis orientation from Eq.(2.14)) this angle is 32o which
agrees with experimental results. The magnetization processes for high temperature
(κ > 1, Fig. 2.1 (F), 2.5 (D)) proceed through the nucleation and expansion of
domains with two orientations of the magnetization vector. In fields applied along
the easy axis [110] the evolution of the DS is accompanied only by the 180o domain
wall movement (Fig. 2.6 (D)), and the metastable states in swallow tails (see energy
profiles in Fig. 2.2 (B)) can be considered as the nuclei of domains. During the mag-
netization processes along [100] axis the domains not only nucleate and expand but
the magnetization rotates inside each domain of various phases (Fig. 2.6 (D)). The
magnetization reversal for low temperature (κ = 0.42) along one of the cubic easy
axes proceeds in three stages [136] through the formation of intermediate domains
(Fig. 2.1 (G), 2.5 (E)). In the first (and the last) stage a transversely magnetized
domain nucleates indicating the entering into the area of two-phase DS in Fig. 2.5
(E). With field increasing the completely reversed domains nucleate and propagate
rapidly through the sample indicating the beginning of the area with four phase DS
in Fig. 2.5 (E) [136]. It is remarkable that the one stage switching processes are also
possible and are accompanied by the transformation of four phase domain structure
for some directions of magnetic field (blue open points in Fig. 2.5 (E)). The magne-
tization curves in Fig. 4.16 (A), (B) are typical for the in-plane geometry displaying
biaxial character of the anisotropy. The successive switching of the magnetization
in Fig. 4.16 (A) are caused by the redistribution of the metastable minima in the
energy profiles for varying magnetic field (Fig. 2.2 (B)). The hysteresis loops of such
a type are more pronounced for purely cubic anisotropy (κ = 0) and were observed
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2. Magnetic nanolayers and nanoparticles with competing anisotropies

for 603 nm-Ga0.957Mn0.043As films [126]. If the applied magnetic field makes the
angle with the [100] axis in the range (0;π/4), and initially spins are aligned along
[100], then the first incoherent reversal is related to the appearance of domains with
[010] magnetization, whereas the second jump is due to the [100] domain (Fig. 2.1
(D)).

In Ref. [165] the character of in-plane magnetic anisotropy has been determined
by means of transport measurements. All layers were patterned into 40-60μm wide
Hall bar structures, and a strong anisotropic magnetoresistance effect provides a very
convenient method to study the anisotropy at fixed temperature. The resistance
polar plots of transport measurements for prevalent biaxial anisotropy [165] look
similar to the phase diagram in Fig. 2.5 (C). The [110] uniaxial anisotropy leads to
the narrowing and subsequent disappearance of the four phase DS area (Fig. 2.5
(D), (E), (F)). As well, it was shown that an additional uniaxial anisotropy with
[010] easy axis is present in the system. This anisotropy results in the formation of
a two phase DS region splitting the rectangle with four phases (Figs. 2.5 (B), (C)).

The solutions with α = 0 (Fig. 2.1 (A)-(D)). are realized for out-of-plane magnetic
field and in-plane orientation of the magnetization [127, 130, 131]. The lability lines
of phase diagrams for α = 0 (Figs. 2.1 (B), (F)) are similar to those for α = π/4
but the magnetization processes are quite different. The triple point with three
coexisting phases inside the swallow tail (Fig. 2.1 (B)) has a crucial influence on the
magnetization reversal and is the reason of specific double shifted hysteresis loops
(Fig. 4.16 (C)) observed in many works [118,120,130].

In Ref. [130] Ga1−xMnxAs films grown on hybrid ZnSe/GaAs substrates with a
low Mn concentration (x ≈ 0.01) were chosen to identify the role of both types of
anisotropies in the magnetic reversal process. Varying the hole concentration p and
temperature T the ratios κ according to Figs. 2.1 (A)-(D) can be swept. For the
hole concentration p = 8.5 · 1019cm−3 the temperature progression results in the
succession of phase diagrams, namely, Fig. 2.1 (A) for T=20K, Fig. 2.1 (B) for
T=7K, Fig. 2.1 (C) for T=3K and Fig. 2.1 (D) for T=1.5K. The switching pro-
cesses for high temperature exhibit the typical behavior of a specimen magnetized
along the hard direction (Fig. 2.1 (A)). In this case, a domain structure exists with
magnetization vector tilted with respect to the magnetic field. As the temperature
is lowered the triple point in Fig. 2.1 (B) denotes the existence of an additional
stable magnetization state along the magnetic field direction. Thus, the subloops
of the hysteresis curves (Fig. 4.16 (C)) reflect the jump of the magnetization into
this minimum accompanied by the three phase domain structure. The variation of
magnetic field in the region spanned by the swallow tails lead to various scenarios of
the DS transformation (see energy profiles in Fig. 2.2 (A)). In particular, different
cases (shown in Fig. 2.5 (B) by the red and blue open points) of the transition
from multidomain states into a single domain state can be realized. For some di-
rections of the magnetic field crossing regions with two- and three-phase DS one
can observe even more complex hysteresis loops consisting of three subloops (Fig.
4.16 (D)). In our phenomenology the maximum hysteresis loops encircle the an-
hysteretic magnetization curves with three and two phase DS. Experimentally that
kind of magnetization processes was observed in Co2MnSi and Co2MnGe Heusler
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alloys. [164] With the temperature decreasing the subloops in Fig. 4.16 (C) broaden
around the two steps of the magnetization, and a hysteresis loop with only a weak
double shift is observed (at T=1.5K, the experimentally measured value of κ ≈ 0.26
corresponds to phase diagram Fig.4.16 (E)). Note, that one should distinguish the
hysteresis loops of such type for the cases with α = π/4 (Fig. 4.16 (A)) and α = 0
(Fig. 4.16 (E)) because the magnetization processes are fundamentally different.
For (Ga,Mn)As systems with low hole concentration (p = 3.0 · 1019cm−3) uniaxial
anisotropy is much larger than the cubic anisotropy [130]. This situation is described
by model (2.5) with κ > 5 (Fig. 2.1 (A), 2.5 (A)). If the magnetic field is applied
along the easy axis of uniaxial anisotropy (Fig. 2.1 (B),2.5 (B)) then the two phase
DS transforms into a single phase state. As a remnant of the DS, 360o domain
walls may remain in this state and can act as nuclei of new reverse domains when
lowering or changing the external magnetic field. Experimentally such situations
have been studied in magnetic field perpendicular to the film and for out-of-plane
magnetization vector [139].

In FM/AFM bilayers of cubic materials the intrinsic cubic < 100 > anisotropy
may compete with the uniaxial anisotropy induced by the exchange couplings be-
tween two layers. [129] To establish the exchange bias uniaxial anisotropy, the bi-
layer film is cooled in an in-plane magnetic field which determines the easy axis of
induced anisotropy. In Ref. [129] the magnetization reversal has been studied in an
exchange-biased CaMnO3 / La0.67Sr0.33MnO3 bilayer film grown on vicinal SrTiO3

< 100 > with the angle between cubic and uniaxial easy axes being α = 30o. With
temperature decreasing the magnetic films followed the transition from the phase
diagram of solutions in Figs. 2.3 (E) (T=160K) to that in Fig. 2.4 (C) (T=5K).
The magnetization processes for high temperatures involve only the redistribution
of a two phase DS (Fig. 2.6 (C)). The metastable states inside each swallow tail lead
only to the slight deformation of energy profiles and do not influence significantly
the magnetization reversal (Fig. 2.3 (E)). For low temperatures those metastable
states become stable (Fig. 2.4 (C)) and alternatively a domain state can be realized.
The three and two phase DS (Fig. 2.6 (F), (G)) in the system result in complex
hysteresis loops with a hint of a double shift (Fig. 4.16 (E)) [129].

Double shifted magnetization curves with strongly pronounced subloops (Fig. 4.16
(C)) and the astroid with swallow tails (Fig. 2.3 (A)) were observed in Ref. [114] for
metallic multilayersamples with the structure Si(100)/ Cu(15nm)/ Ni80Fe20(35nm)/
NiMn(50nm)/ Co(tnm)/ Pd(15nm) grown by an e-beam evaporation system. The
thickness was varied between 5 nm and 25 nm. It was shown that the double-shifted
hysteresis loops (and parameter κ) could be tuned by several parameters, e.g., the
variation of Co film thickness, and the field-annealed time.

In magnetic single-domain nanoparticles the competition of the uniaxial anisotropy
due to the enhanced surface interactions and intrinsic magnetocrystalline anisotropy
stabilizes different multiple magnetic states in the system with the possibility of
switching between them (for details see Ref. [V]). Different geometries of relative
easy axes alignment are realized in these nanoobjects. Phase diagrams with ”swallow
tails” (Fig. 2.6 (C)) for misaligned easy anisotropy axes have been obtained for Fe-
Cu-B nanoparticles [122] and Co clusters. [123] Astroids with rounded corners (Fig.
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2. Magnetic nanolayers and nanoparticles with competing anisotropies

2.5 (A)) have been observed in fcc-Co [124] and BaFeCoTiO nanoparticles [125].
In general, in many cases of practical interest the geometry with noncoplanar

competing anisotropies is observed [129, 132, 133]. For example, in 50 nm thick
Ga0.91Mn0.09As thin films grown on (311)A and (311)B substrates [129] the uniaxial
anisotropies with [011] (or [233]) and [311] easy axes compete with cubic anisotropy
of < 100 > type. In this case three dimensional phase diagrams, parametrized by
the varios ratios of anisotropy coefficients and magnetic field components, have to
be constructed instead of 2D diagrams of solutions. Even for considered DMS films
with (001) orientation, the out-of-plane magnetization processes can be considered
as coplanar only with some restrictions. Indeed, for biaxial in-plane anisotropy and
magnetic field perpendicular to the film one generally has a non-coplanar arrange-
ment of the magnetization in domains. In that case, the phase diagram in Fig.2.5
(B) is only the cross-section of that more complex 3D phase diagram. But due to
the degeneracy of in-plane cubic [100] and [010] axes with respect to the magnetic
field the main peculiarities of the switching processes can be readily explained with
the simple 2D phase diagram (Fig.2.1 (B)). Therefore, the magnetic anisotropy ge-
ometry and magnetic field orientation determine which phase diagrams of solutions
(2D or 3D) is applicable in a particular case.

2.6. Multidomain patterns

Multidomain patterns have been observed in a number of systems with in-plane [136]
and out-of-plane magnetization [135, 137–139, 166–169]. Particularly, isolated do-
main walls trapped in micropatterned constrictions of (Ga,Mn)As films demonstrate
a number of remarkable properties [170–173] and can be used in differerent nano-
electronic devices (e. g. as magnetoresistive elements) [170]. The fine structure of
the isolated domain wall is of prime importance when different types of domain walls
are observed [174][I-IV]. Here in particular, I demonstrate that for the considered
systems with competing anisotropies various types of domain walls exist with large
sensitivity of their appearance on material parameters and external fields. Using the
results of the two previous sections I calculate the equilibrium parameters of iso-
lated planar domain walls and derive the equilibrium parameters of stripe domains
in system with out-of-plane magnetization.

2.6.1. The structure of domain walls

For a planar isolated domain wall with energy density Φ(θ) (2.5) the structure is
derived by optimization of the functional [I-IV]

wDW = Aθ2
x + KcΔΦ(θ) (2.25)

with the boundary conditions

θx(±∞) = 0, θ(+∞) = θ1, θ(−∞) = θ2 (2.26)
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(x is a spatial variable across the domain wall), and

ΔΦ(θ) = Φ(θ) − Φ0, (2.27)

where
Φ0 = Φ(θ1) = Φ(θ2) = {minΦ} (2.28)

is the global minimum of the system. For such a one-dimensional problem (2.25) the
Euler equation and the first integral can be written as [24]

2x2
0θxx = Φθ, (2.29a)

x2
0(θx)

2 = ΔΦ(θ) (2.29b)

where x0 =
√

A/Kc is a charactristic width of the domain wall.
The domain wall profiles θ(x), their energy and characteristic sizes can be readily

derived by direct integration. However, Eqs. (2.29) allow to understand the main
features of such solutions. The Eq. (2.29) shows that the inflection points of the
domain wall profiles θ(x) correspond to stationary points of potential (2.5) (Φθ = 0).
The second equation (2.29) shows that the larger the deviations of the energy from
the minima ΔΦ(θ) the larger the gradients of the profiles, θx. Thus, the nucleation
and further evolution of local minima in the metastable region causes complex recon-
structions of the domain wall profiles. Transformations of the domain wall profiles
have been earlier observed in easy-axis antiferromagnets and other magnetic crystals
(see examples in Ref. [148]). Due to the remarkable lability of the potential profiles
(2.5) (Fig. 2.2) this effect is expected to be strong in the systems with competing
anisotropies. As an example, I derive the parameters of the domain walls for four-
phase domains with the canted states (2.23) that are realized in the systems with
α = π/4, 1 > κ > 0 at zero fields.

In this case three types of domain walls can exists (Fig. 2.8 (A)): DWI between
domains with θ1, θ2 and θ3, θ4

ΔθI = |θ1 − θ2| = |θ3 − θ4| = arccos κ, (2.30)

DW II between θ1, θ3 and θ2, θ4

ΔθII = |θ1 − θ3| = |θ2 − θ4| = π − ΔθI, (2.31)

and DWIII of 180
◦

type between domains θ1, θ4 and θ2, θ3. By integration of (2.29)
the energy σ and the magnetization profiles for the DWI (upper signs) and DWII
(lower signs) can be readily obtained as

σ = δ0

[√
1 − κ

2 ∓ κ arccos(±κ)
]

(2.32)

x =
x0√

2(1 − κ
2)

ln

(
∓tan θ − tan θ1

tan θ + tan θ1

)
, (2.33)
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Figure 2.8.: Domain wall profiles for κ = 0.7: (A), (B)- α = π/4, (C), (D) - α = 0.
Corresponding energy profiles are plotted in Fig. 2.2. Insets show the
phase plane (θ; θx) where θx = dθ/dx (See Eq.(2.29)).

where δ0 =
√

A Kc. Depending on the ratio 1 > κ > 0 DWI with ΔθI < 90o becomes
more favourable than DWII with ΔθII > 90o and should exhibit stronger contrast
in experiment [174]. Such domain boundaries were experimentally observed in thin
films of (Ga,Mn)As by Lorentz microscopy. [174] From Ref. [175] and using (2.33) I
can evaluate the DW width. For DWI at the temperature T = 10 (30)K I obtain δ =
50 (100)nm while for DWII δ = 43 (76)nm which is consistent with the experiment.
Here, A = 0.4 · 10−12Jm−1, Kc = 1.18 (0.32)Jm−3, Ku = 0.18 (0.11)Jm−3. For κ > 1
only DWIII exist.

These domain walls are characterized by strong variation of their parameters with
the applied magnetic field. At magnetic field hz or hx domain walls of two types are
present: walls where the magnetization vector rotates less or more than 180o (Fig.
2.8 (A), (B)). Note, that for magnetic field hz > 2(1−κ) the metastable minima (Fig.
2.2 (B)) strongly influence the profile and energy of the domain. Such a remarkable
modification of the structure should strongly influence magnetoresistence of domain
walls (e. g. in nanoconstrictions).

In Fig. 2.8 (C), (D) domain wall profiles and typical phase portraits for the
case α = 0 (κ = 0.7) are plotted. At applied magnetic field hz only 360o domain
walls exist. Within these walls, nuclei of the domain with π and ±π/2 are present
(see phase portrait in Fig. 2.8 (C)). In a magnetic field strong enough these nuclei
disappear. So, the energy of domain wall increases, although the width decreases.
By application of magnetic fields perpendicular to the easy axis a in the interval
[0; a1] there are walls of two types between upper and lower canted phases (Fig. 2.8
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(D)). In each domain wall nuclei of domains with π/2 and 3π/2, correspondingly,
are present. At hx = hx(a1) these nuclei expand forming three-phase multidomain
textures [130].

2.6.2. Parameters of stripe domains

Magnetic configurations in (Ga,Mn)As systems include a number of noncollinear
two- and multi-phase states. These phases can create thermodynamically stable
multidomain states [148]. For two coexisting phases with the magnetization M(1)

and M(2) effective values of magnetization can be introduced [148]

M⊥ =
(M(1) − M(2)) · v

2
, H =

[
H − Htr − 4π(M(1) + M(2))

] · v
2

. (2.34)

In particular, for perpendicular magnetized (Ga,Mn)As nanolayers with κ > 5 the
phase diagrams of magnetic states (Fig. 2.1, (A), (E)) are similar to those for
uniaxial ferromagnets. In this case M⊥ = M0 and domains are separated by 180◦

domain walls [24]. According to Eq.(2.34) the problem of multidomain states for
two-phase noncollinear states can be reduced to a ferromagnetic collinear domain
structure with up and down magnetization M⊥ in a bias field H (v is the unity
vector perpendicular to the layer plane, Htr is the transition field between the phases
M(1)and M(2)) [148]. Similar multidomain texture are formed in the systems with a
number of coexisting phases larger than two. For example, for −1 < κ < 1, α = 0
the magnetic configurations (Eq. (2.23)) create four-phase multidomain states. In a
layer with a||v these textures can be described by a model of ferromagnetic domains
with the magnetization (Fig. 2.9)

M⊥ = M

√
1 + κ

2
. (2.35)

With effective values of the magnetization M⊥ and bias field H (2.34) the energy
density of a (Ga,Mn)As nanolayer with stripe domains can be reduced to the well-
studied model of ferromagnetic stripes [24,176,177]

w = 2πM2
⊥

[
wm +

2Λp

π2
− Hq

2πM⊥

]
(2.36)

with the stray field energy density given by

wm = 1 − 2p

π2

∫ 1

0

(1 − τ) ln

[
1 +

cos2 (πq/2)

sinh2 (pτ/2)

]
dτ , (2.37)

where

p = 2π
t

D
, q =

(d+ − d−)

D
, (2.38)

t is the layer of thickness t, D = d+ + d− is the stripe period, and d± are domain
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sizes with up and down magnetization (Fig. 2.9). The dimensionless parameter

Λ =
σ(κ)

4M⊥(κ)2t
= π

l(κ)

t
(2.39)

measures the ratio between the domain wall energy σ and the stray field energies.
It scales with the characteristic length

l(κ) =
σ

4πM2
⊥

(2.40)

as the relevant material parameter [24]. Minimization of (2.36) with respect to p
and q derives the solutions for the geometric parameters d± as functions of three
control parameters of model (2.37): the layer thickness t, the bias field H, and
factor Λ. These solution have been investigated in detail (see Refs. [24,176,177] and
bibliography in Ref. [24]). Particularly, it was shown that the solutions for stripes
exist only below certain critical field [177]

H < H∗(Λ) < 4πM⊥. (2.41)

As the bias field approaches H∗ the stripes gradually transform into the homogeneous
state by unlimited growth of the period (D → ∞). However, at the critical field the
domain of the minority phase preserves a finite size d−(H∗) = d∗

−. At higher fields

H∗ > H > 4πM⊥ (2.42)

it exists as a metastable state gradually shrinking to zero size at the saturation field.
In perpendicular magnetized (Ga,Mn)As layers the period of multidomain patterns

exceed their thicknesses [135,139,169]. For such large stripes (D ≥ t) the expansion
of the integral (2.37) allows to simplify the problem [176]. After some algebra,
the solutions for stripes can be derived in analytical form as a set of parametrical
equations

D(H) =
πut√

1 − (H/H∗)2
, d± =

D

π
arccos

(
∓ H

H∗

)
, (2.43)

H∗(u) = 4πM⊥f(u), 2Λ = g(u). (2.44)

Here I introduce parameter

u =
d∗
−
t

(2.45)

and functions

f(u) =
2 arctan 1

u
− u ln

(
1 + 1

u2

)
π

, (2.46)
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and
g(u) = (1 + u2) ln(1 + u2) − u2 ln(u2). (2.47)

According to (2.43) at zero field

D(0) = D0 = πtu, (2.48)

thus, the ratio
D0

d∗−
= π. (2.49)

It means that at the transition field the domain of the minority phase becomes
approximately six times narrower than the domain size at zero field (D0/2). Within
this approximation the equilibrium magnetization in the stripe phase equals

〈M〉 = M⊥q =
2M⊥

π
arccos

(
H

H∗

)
. (2.50)

Finally, in the limit of large domains D � t,

D0 = πt exp(Λ − 1/2), (2.51)

and the transition fields for stripe and bubble domains becomes exponentially small,
e. g. transition field

H∗ = 4M⊥ exp(−Λ + 1/2), (2.52)

the bubble collapse field

Hc = 16M⊥ exp(−Λ − 1/2), (2.53)

and ratio [176]
H∗

Hc

=
e

4
= 0.6796. (2.54)

These results show that the solutions of magnetic domains in (Ga,Mn)As lay-
ers should demonstrate general features similar to those in uniaxial ferromagnets.
However, there is an important difference between these two systems. In uniaxial fer-
romagnets the characteristic length is expressed as a combination of basic magnetic
parameters (constants of uniaxial anisotropy Ku, exchange stiffness A and saturation
magnetization M):

lf =
σf

4πM2
=

√
AKu

πM2
(2.55)

depends only on values of uniaxial anisotropy Ku. On the contrary, in the diluted
magnetic semiconductors the characterstic length l(κ) strongly depends on the val-
ues of competing magnetic anisotropies and varies in a broad range providing a
complex behaviour of multidomain patterns in these materials. Eqs. (2.43), (2.44),
(2.50) connect equilibrium parameters of stripe domains with material parameters
of (Ga,Mn)As systems (2.5). For this model calculations of M⊥ and the domain wall
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energy σ allow to express Λ as a function of κ and α. For example, for four-phase
domains (Eq. (2.23)) the magnetization and the domain wall energies (Eq. (2.32))
yield functions lI(II)(κ) plotted in Fig. 2.9.

Stripe domains have been observed in a number of (Ga,Mn)As nanolayers [135,
137–139, 166–169]. In Table I I collect experimental data (indicated by bold) and
the calculated stripe domains parameters (by solving Eqs. (2.43), (2.44), (2.50))
for (Ga,Mn)As layers (a-c), an yttrium-iron garnet film (d) and FePd nanolay-
ers (e,f). For thin layers of (Ga0.957Mn0.043)As for T = 9 K (1) and T = 80 K
(2) [135] I use the experimental values of t and D0 to calculate other parame-
ters of stripes. For a layer (Ga0.93Mn0.07)As at T = 80 K [169] I use t and a
value of the transition field H∗/(4πM⊥) to calculate l, Λ and domain sizes D0

and d∗
−. For comparison I derive stripe domain parameters for an epitaxial garnet

film Y1.88Lu0.2Ca0.92Ge0.92Fe4.08O12 [178], and for FePd nanolayers [179]. According
to [169] the saturation magnetization in (Ga0.93Mn0.07)As Ms = 28 kA/m. Then,
from the calculated value of the characteristic length I derive σ = 49.0 μJ/m2 (for
comparison, in the (Y,Fe) garnet film Ms = 13.6 kA/m, and σ = 110 μJ/m2 [178]).

In garnet films and other classical materials with perpendicular anisotropy regular
stripe domains are observed, if the layer thickness is considerably larger than the
characterisitic length. In such systems the equilibrium domain sizes at zero field D0

do not exceed the layer thicknesses (D0 ≤ t). When films become thinner than l (e.g.
in the vicinity of the compensation temperature of ferrimagnets [176]) the demag-
netization forces are too weak to overcome coercivity and the formation equilibrium
domains is impeded. As a result such multidomain patterns consist of very large
domains with irregular boundaries [24]. Similar disordered domains and strongly
hysteretic behaviour have been observed in (Ga,Mn)As films with perpendicular
anisotropy [135, 138, 167–169]. It means that the equilibium multidomain state are
hardly reached in these systems. For example, in (Ga0.93Mn0.07)As layers the ob-
served width of the minority stripe at the critical field is d∗

− = 1.7 ± 0.3 μm [169],
and about one order larger than the calculated equilibrium value (d∗

− = 0.2 μm). Up
to now only few results on experimental investigations of multidomain states in per-
pendicularly magnetized (Ga,Mn)As nanolayers have been reported. New detailed
investigations involving modern experimental methods developed in other fields of
nanomagnetism (see e.g. Ref. [253]) are desirable. The results of this section es-
tablish important physical connections with multidomain states in other classes of
perpendicular magnetized materials and provide a theoretical basis for future re-
search.

2.7. Surface-induced anisotropy and multiple states in
elongated magnetic nanoparticles

Magnetic nanoparticles play a vital role in modern magnetoelectronics, and are
considered as very promising materials for various applications in nanophysics and
biomedicine [181,182]. Moreover, magnetic nanoparticles provide an ideal model sys-

65



2. Magnetic nanolayers and nanoparticles with competing anisotropies

Table 2.1.: Parameters of the stripe domains in (Ga,Mn)As layers (a-c) [135,169], a
(Y,Fe) garnet film (d) [178] and FePd nanolayers (e,f) [179]. They include
experimental values (bold) and the results derived from model (2.36).
Here, t is the layer thickness, l is the characteristic length, Λ = πl/t
is the dimensionless parameter measuring the ratio between the domain
wall energy and the stray field energy (see Eqs. (22),(23))), D0 is the
equilibrium period at zero field, d∗

− is the equilibrium size of the minority
phase at H = H∗, the trasition field into the homogeneous state, Eq.
(25).

t, μm l, μm Λ D0,
μm

d∗
−,μm H∗/(4πM⊥)

(a)
(Ga0.957Mn0.043)As

0.2 0.132 2.07 3.0 0.95 6.6 10−2

(b)
(Ga0.957Mn0.043)As

0.2 0.220 3.45 12.0 3.82 1.7 10−2

(c)
(Ga0.93Mn0.07)As

5 10−2 0.10 1.920 0.643 0.2038 3.9 10−2

(d) (Y,Fe) garnet
film

11.0 0.47 0.1342 12.50 3.0 0.6

(e) FePd nanolayer 3.6 10−2 9 10−3 0.7526 0.13 3.9 10−2 0.2612
(f) FePd nanolayer 1.15

10−2

9 10−3 2.477 0.26 8.3 10−2 4.4 10−2

tem to study different aspects of surface magnetism and magnetization reversal [125].
Recently, the advances in nanometer scale fabrication technology lead to the synthe-
sis of different types of elongated magnetic nanoparticles (e.g. spherical, ellipsoidal,
spindle-shaped or ”nanorice”) [183, 184]. In particular, magnetic nanoparticles with
different aspect ratios and sizes (ranging from 5 nm to several micrometers) can
be fabricated by a polyol process as demonstrated in Ref. [184]. In such aspherical
systems the enhanced surface interactions [5] should result in sizable uniaxial mag-
netic anisotropy. In this section I show that the additional anisotropy contribution
allows to vary the magnetic properties over a broad range, in particular, to fix the
magnetization in desirable directions and prevent superparamagnetic effects in small
particles.

2.7.1. ”Shape factors” of surface-induced anisotropy

I consider a case important in practice, where the surface-induced uniaxial anisotropy
is described by constant surface density Ks (Néel approach) [5] and is written as (see
also section 1.2.2 C ):

ws = − 1

V

∫
S

Ks(r)(m · n)2dS, (2.56)
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Figure 2.10.: Comparison of the demagnetization energy ΔEd (dotted line) and the
induced anistropy energy ΔEs (full line) for prolate (a) and oblate (b)
ellipsoids

where n is the unity vector normal to the particle surface. For ellipsoidal nanopar-
ticles with the axes (2a, 2b, 2c) and a constant value of Ks, the surface energy ws is
reduced to a functional form of second-order anisotropy for an orthorhombic ferro-
magnet

Ws = Kv[Λ1(m · a0)
2 + Λ2(m · b0)

2 + Λ3(m · c0)
2] (2.57)

where a0,b0, c0 are the unity vectors along the ellipsoid axes, and the ”shape factors”
Λi(a, b, c) can be written as elliptic functions of the ellipsoid sizes. For ellipsoids of
revolution with eccentricity

k =

√
1 − c2

a2
(2.58)

the coefficients Λi can be expressed via elementary functions. For prolate shapes of
the dimensions (2a,2a,2c) I get:

Λa =
3(1 − k2)

8k3

(
−2k − (1 + k2) log

1 − k

1 + k

)
,

Λc =
3

4k3

(
2k + (1 − k2) log

1 − k

1 + k

)
, (2.59)

and for oblate ellipsoids with the dimensions (2a,2c,2c) I receive:

Λa =
3(1 − k2)

2k3

(
−k

√
1 − k2 + arcsin k

)
Λc =

3

4k3

(
k
√

1 − k2 + (2k2 − 1) arcsin k
)

. (2.60)

Figure 2.10 shows a comparison of shape factors Λi and demagnetizing factors of
an ellipsoid N̂:

ΔEd = (Na − Nc), ΔEs = (Λa − Λc). (2.61)
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2. Magnetic nanolayers and nanoparticles with competing anisotropies

Both the demagnetizing factors Ni and the ”shape factors” Λi(i = a, b, c) are geo-
metrical factors, which depend only on the ratio of the ellipsoid geometrical axes.
However, their impacts on the magnetic states are fundamentally different. The
surface anisotropy energy ws is imposed by short-range internal (local) magnetic
interactions. On the contrary, the demagnetizing fields are produced by the sample
magnetization and have long-range (non local) character. Note that for systems with
locally out-of-plane surface anisotropy (Ks > 0) the uniaxial anisotropy favours the
magnetization orientation along the shorter ellisoidal axis, while the demagnetization
energy (so-called ”shape anisotropy”) reaches the minimum when the magnetization
is along the longer axis. Thus, the uniaxial anisotropy weakens the demagnetization
effects, and may even completely suppress them. According to numerous experi-
ments on magnetic nanolayers, the surface anisotropy Ks can be strongly increased
by covering the magnetic layers with different nonmagnetic materials [5]. Similar
effects could be produced in coated magnetic nanoparticles.

2.7.2. Magnetization processes and multiple states in magnetic
nanoparticles

The equilibrium magnetic states in the nanoparticle are formed as a result of the com-
petition between applied magnetic field, cubic and uniaxial anisotropies [148–150].
Because the strength of these anisotropy contributions and the relative orientation
of the easy axes can vary over a broad range, the system should possess a large va-
riety of magnetic phases with different types of spontaneous and induced magnetic
reorientation transitions.

Using Eq. (2.24) [V,VI] the phase diagram for the components of the internal field
(Fig. 2.1) is transformed into those in external-field components (Fig.2.11). The
lability lines (full black lines) of these diagrams bound the regions of metastable
states. The areas inside, which are marked by dotted/dashed lines (red and blue),
include several stable states of m with the possibility of switching from one stable
homogeneous state to another. Regions confined by dotted red lines are obtained
by transformation of the corresponding transition lines of Fig.2.1. They include two
stable orientations of m. The critical points in Fig. 2.1 (a) ”swell” into the triangular
regions with three possible homogeneous states (blue dashed line in Fig. 2.11 (b)).
The point in the origin of Fig. 2.1 (b) where four phases coexist is mapped into
a rectangular area with four possible orientations of m. (Fig. 2.11 (d)). One has
to distinguish these regions from those of the multidomain structures considered in
Fig. 2.5.

As an example, I consider magnetization processes in elongated nanoparticles
influenced solely by the uniaxial surface anisotropy. The equilibrium homogeneous
magnetic states in such a nanoparticle are formed as a result of the competition
between applied magnetic field and surface anisotropy [V,VI]. In this case the reduced
energy density from Eq. (2.3) of the system Φ(θ) = (w0 · c)/(KsΔEs) can be written
as

Φ(θ) = − cos2 θ − h cos(θ − ψ) , (2.62)
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2.7. SA and multiple states in elongated magnetic nanoparticles

Figure 2.11.: Typical phase diagrams in the external field components for elongated
magnetic nanoparticles: (a) large uniaxial anisotropy (κ = 6) and
misoriented anisotropy and ellipsoid axes (Nxz �= 0); (b) competing
anisotropies with angle α = 0 between their easy axes and κ = 1.2;
(c) misaligned easy axes with κ = 1.2, α = π/8; (d) easy axis to be
directed along diagonal between two cubic axes, κ = 0.7.

where h = H/Hc

(
Hc = KsΔEs/(cM0)

)
. The solutions of θ minimizing the po-

tential Φ(θ) (2.62) compose a phase diagram in components of internal magnetic
field (hx, hz) (the famous Stoner-Wohlfarth astroid [140], thick full line in Fig. 2.12
(a)). To map this critical line on the space spanned by the components of external

magnetic field (h
(e)
x ; h

(e)
z ) one has to use the following relation [V,VI]:

h(e) = h +
4πc

KsΔEs

N̂m(h). (2.63)

It is possible to write analytic expressions for critical line h(e) (dashed line in Fig.
2.12 (a)):

h(e)
z = (1 − h2/3

x )3/2 + 4πNzz cos θ. (2.64)

Overall the magnetic phase diagram in Fig. 2.12 (a) describes the main features
of the model (2.62) as applied to single-domain nanoparticles and provides a basis
for detailed analysis of the magnetization processes [V,VI]. In experiments on sin-

gle nanoparticles, astroids h
(e)
z (Fig. 2.12 (a)) with rounding of their edges have

been observed in fcc-Co [124] and BaFeCoTiO nanoparticles [185] (Fig. 2.12 (b)).
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2. Magnetic nanolayers and nanoparticles with competing anisotropies

Figure 2.12.: (a) The mapping of the famous Stoner-Wohlfarth astroid (thick full
line) onto the plane of external field components (dashed line). The
thin full line is for the case Nxz �= 0 (read text for details). (b) The
switching field Hsw of the BaFeCoTiO nanoparticle as a function of the
angle θ (Data are taken from W.Wernsdorfer et al. [185]).

Phase diagrams with ”swallow tails” (Fig. 2.11 (c)) have been obtained for Fe-Cu-
B nanoparticles [122] and Co clusters [123]. In nanoparticles with misorientated

anisotropy and ellipsoid geometrical axes (i.e. when Nxz �= 0) the critical line h
(e)
z

undergoes the deformation with oblique sharp edges (thin solid line in Fig. 2.12 (a)).

2.8. Summary and Conclusions

I have developed some micromagnetic methods [24, 148] which give a consistent
description of magnetization processes and multidomain structures in systems with
competing anisotropies such as diluted magnetic semiconductors.

Theoretically constructed phase diagrams in external field components in the lim-
iting case of ideally soft magnetics allow to understand the creation of equilibrium
domain structure [136], within anhysteretic magnetization reversal, and explain vari-
ous parts of magnetization curves (Fig. 4.16). Thus, magnetic phase diagrams allow
to put in good order and classify a vast amount of experimental data on reorientation
effects, multidomain processes, and magnetization reversal in (Ga, Mn) As systems.
These diagrams also give opportunity to predict changes of magnetic states of the
system in zero magnetic field under influence of temperature [135, 137, 138] and in
the case of arbitrary angle α between competing anisotropy axes [132,133].

It is also shown that the applied magnetic field causes drastic transformations of
the domain wall profile and strongly influences its parameters. Domain walls can
serve as nuclei of domains for a new phase. At certain values of the magnetic field
a domain wall can be divided into domains of a new phase and two types of new
domain walls. At certain critical endpoints of phase coexistence, domain walls can
disappear by the rotation of the magnetization in adjacent domains towards each
other.
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2.8. Summary and Conclusions

For nanolayers with perpendicular anisotropy the geometrical parameters of stripe
domains have been calculated as functions of a bias field.

For ellipsoidal magnetic particles I have shown the impact of surface anisotropy on
the stabilization of multiple states and switching between them. I have calculated the
shape factors of surface-induced anisotropy which can be considered as counterparts
of demagnetizing coefficients. Our results are in accordance with the existing exper-
imental data on switching processes in elongated magnetic particles [122,124,185].
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3. Surface-induced anisotropy and
vortex states in ferromagnetic
nanowires and nanotubes

In the previous chapter I considered stabilizing effect of surface-induced anisotropy
on multiple states in magnetic nanolayers and nanoparticles. Corresponding phase
diagrams of states clearly demonstrate the sequence of transitions from one homo-
geneous state to another one with applied magnetic field and the dependence on
competing anisotropies. In the present chapter I show that in nanowires and nan-
otubes with large aspect ratio of height to radius large induced magnetic anisotropy
from lateral surfaces may stabilize non-collinear magnetization states. In section
3.2 a phenomenological model of surface-induced anisotropy is introduced that de-
scribes these effects within a micromagnetic calculation. The phenomenology allows
to model a gradual penetration of surface-induced interactions into the volume of
magnetic nanostructures. As a limiting case, the ansatz includes the Néel approach
for a surface anisotropy that is essentially confined to the near surface region.

In section 3.3 I show that in cylindrical nanowires and nanotubes remanent states
with magnetization vector rotating either along or perpendicular to radial direc-
tions are possible. Micromagnetic equations for these ”Néel” or ”Bloch” vortices are
derived and solved. The main features of the vortex states are given, including a
detailed analysis of magnetization profiles and simplified analytical solutions. Phase
diagrams for the occurrence of the different vortex phases in nanowires are presented
in dependence on the surface anisotropy constants, the radius, and the saturation
magnetization of the material. The transitions between the vortices and the homoge-
neous magnetization state in nanowires take place via continuous rotation, whereas
the transition between the different vortices is first order.

3.1. Introduction

There is a rising interest in the production and investigation of magnetic nanowires
and nanotubes with a large aspect ratio of height/radius h/R. The shape of such
elongated nanomagnetic structures may yield a rather effective magnetic anisotropy,
which is required for applications. Regular arrays of nanowires may be used for
future high-density magnetic recording [186, 187]. Bulk production of such mag-
netic wires may also allow one to assemble them as base units into permanent
magnetic materials [188]. Single wires or tubes are investigated for applications
in magnetoresistive spintronic devices [189], for actuation and manipulation in bi-
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3. SA and vortex states in ferromagnetic nanowires and nanotubes

ological systems [190], or as field-sensitive probes, e.g. in scanning magnetic force
microscopes (MFMs) [191]. To control and optimize the properties of such devices a
detailed understanding and theoretical modelling of ferromagnetic wire-like or tube-
like structures with width in the nanometer range is required.

A great number of magnetic nanowires and -tubes are currently produced by dif-
ferent methods and from different materials. Depending on production method,
such as deposition along edges on surfaces [192], micropatterning [193], or depo-
sition into different template films with a self-organized or etched arrangement of
pores, in various polymer materials, microbiological substrates, mica, or alumina
films [186, 194–197] the nanowires are placed in different matrices or environments.
Also methods to produce magnetic nanotubes using various templates have re-
cently been developed [186, 195, 198–200]. On the other hand, growth of ferromag-
netic 3d metal wires has been achieved in single- or multiwall carbon nanotubes
(CNTs) [201,202]. Also magnetic oxides can be grown as nanowires and nanotubes
or tubes [203–208].

As it is the shape of these ultrafine nanomagnetic structures that may determine
their overall magnetic anisotropic behavior, their intrinsic and surface-induced mag-
netic anisotropy may be considered as a secondary effect. However, as it is known
from magnetic films, a multitude of surface-related effects in nanoscale magnetic
objects alters the intrinsic magnetic properties [5]. It also leads to an inhomoge-
neous spatial variation of magnetic parameters near the surfaces or throughout the
whole nanoscale specimen. Experimental observations on the magnetic behavior of
nanowire systems suggest in fact that additional magnetic anisotropy contributions
can be sizeable and important. Intrinsic strong anisotropy in nanowires of hexagonal
(hcp) Co causes effective easy magnetization directions perpendicular to the wire-
axes [196]. However, similar magnetic properties have been observed also for finely
polycrystalline Ni nanowires, where such strong anisotropy must be related to sur-
face or interface effects [209,210]. Noncollinear remanent states have been reported
in Fe nanowires, which lead to high saturation fields in fields applied perpendicu-
larly to the nanowire [211]. Anisotropic magnetoresistance measurements performed
on nanowires embedded in the polymer membrane have been used as a probe of the
magnetization orientation with respect to the current [186,212,213]. In Ni nanowires
vortex-like non-collinear states are probably the reason of slight deviations of magne-
toresistance from constant value in magnetic field along the nanowire axis [213]. The
analysis of substructures in the ferromagnetic-resonance (FMR) lines of Ni nanowire
indicate the presence of rather strong surface-anisotropies [214–216]. Reduced coor-
dination number at the surfaces causes strong magnetic surface anisotropy as known
for planar surfaces and ultrathin films [102,217]. For nanotubes with thin walls, these
effects may become very prominent and can be amplified by the curved surface struc-
ture. Ab initio calculations for thin wires show that both structural properties and
electronic states are strongly changed in these systems because of the extended sur-
face defects (see, e.g., recent calculations for 3d metal wires in CNT’s in Ref. [218]
and references there). Magnetoelastic effects due to the mechanic coupling with
a surrounding matrix may alter the intrinsic magnetic anisotropy as observed for
thicker wires, e.g., from temperature dependence of magnetic properties in Ni-wire
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arrays [219–221]. However, due to surface effects, the inhomogeneous mechanical
strains in these nanoobjects may also cause an inhomogeneity of the induced mag-
netoelastic anisotropy. In systems made from alloys and compounds, also surface
segregation and termination effects may cause spatially inhomogeneous magnetic
properties in a nanoobject.

In this chapter, the phenomenological theory for a micromagnetic treatment of dis-
tributed surface-induced anisotropies [11, 20] is extended and applied for nanowires
and nanotubes with cylindrical symmetry. This additional energy contribution is
due to induced orbital moments at the surface/interface [19] and may have sig-
nificant influence on magnetic properties of magnetic nanostructures. In magnetic
nanolayers according to depth-resolving experimental techniques the surface-induced
interactions spread into the depth of the magnetic nanosystem [19,20,222] and favour
magnetization orientations perpendicular to the surface. The same orientational ef-
fects should be attributed to cylindrical nanowires. Thus, I assume that there is
an additional induced magnetic anisotropy related to the surface. This anisotropy
energy may be spatially distributed throughout the nanostructure. The idealized
shape of perfectly cylindrical wires or tubes allows to derive symmetry adapted
models and analytical solutions of the profiles to describe inhomogeneous distribu-
tion of the surface anisotropy. Depending on the phenomenological parameter the
surface anisotropy (SA) can be considered as either a mere surface effect (Néel ap-
proach [102, 223]) or a volume contribution. The induced anisotropy can stabilize
vortex-like states by stabilizing a twisted magnetization structure in radial direction
throughout the whole body of the nanowires. These are intrinsically non-collinear
states in remanence. These vortices are not related to the usual surface vortex states
in circular magnetic nanodots or nanocolumns [224], which are due to demagnetiz-
ing effects. Also, these states in remanence are not related to reversal modes, which
appear as instabilities starting from a fully collinear saturated state in an infinite
perfect wire without surface-induced anisotropy due to a reversing external field. I
give the detailed analysis of magnetization profiles and present simplified analytical
solutions to describe the main features of the vortex states. I construct the basic
phase diagrams of remanent magnetic states in nanowires/nanotubes in dependence
on surface anisotropy constants, which include homogeneous state and two vortex
states of different type. For nanotubes I consider also the limiting cases of vortex
states, namely, a tangentially rotating state with magnetization vector along con-
centric circles of the cross-section and a radially rotating state with magnetization
along radial directions. In nanotubes, I show that the magnetic states combine the
features of vortex states in nanocylinders [225, 226] and twisted phases in magnetic
nanolayers [11].

3.2. Micromagnetic equations

Within standard micromagnetics [24] (chapter 1) the equilibrium (generally spatially
inhomogeneous) distribution of the magnetization M(r) in an infinite nanocylin-
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der/nanotube is derived by variation of the energy functional per unit length Wm:

Wm =

∫
V

[
A
∑

i

(
∂m

∂xi

)2

− H · M − 1

2
M · Hm + wa(m) + Ωa(m)

]
dr (3.1)

including exchange interactions (Eq. (1.4)), Zeeman energy (Eq. (1.33)), and energy
of stray fields (Eq. (1.34)).

The homogeneous function wa(m) is the density of the intrinsic magnetocrystalline
anisotropy (section 1.2.2 A,B), and Ωa(m) is the surface anisotropy energy density
(section 1.2.2 C ).

As I consider infinite nanocylinders, thus, only lateral surfaces influence the mag-
netization state preserving cylindrical symmetry of the magnetization distributions.
Then for the following calculations it is convenient to write the magnetization vec-
tor m(r) in terms of spherical coordinates (1.58), and to use cylindrical coordinates
(1.59) for the spatial variable r as it was described in section 1.4.1 A. Moreover,
the solutions of (3.1) are assumed to be homogeneous in the z direction and are
expressed as [225,226]

θ = θ(r), ψ = ϕ + ξ(r). (3.2)

For magnetic nanotubes with internal radius R1 and external radius R2 I introduce
the ratio

η =
R1

R2

(3.3)

in order to treat filled cylindrical nanowires and hollow nanotubes by the same
formalism. In the limit η → 0 one has magnetic nanowires, whereas for η → 1
a tubular thin film of vanishing thickness. Thus, by tuning the parameter η, one
can achieve different modulated states of the magnetization appropriate either to
limiting cases (cylindrical wires and curved films) or intermediate states between
them.

The non-dimensional energy per unit length (3.1) for magnetic nanotubes after
integration with respect to ϕ can be written as

Wm

2πA
=

1∫
η

[
θ2

ρ + sin2 θ(ξ2
ρ + ρ−2) − h cos θ+

+ (βd − σ2(ρ)) sin2 θ · cos2 ξ + σ1(ρ) cos2 θ]ρ dρ . (3.4)

(Here θρ = dθ/dρ, ξρ = dξ/dρ). To reduce the number of control parameters, I
rescale the spatial variable

ρ =
r

R2

(3.5)

and use the following quantities for the demagnetization constant and applied mag-
netic field [24]

βd =
2πM2 · R2

2

A
, h =

H · M R2
2

2A
. (3.6)
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In (5.1) contributions of intrinsic magnetocrystalline anisotropy wa are not included.
The surface anisotropy has been decomposed into two independent contributions

σ1(2)(ρ) [225]:

Ωa(m) = σ1(r)(m · n̂z)
2 − σ2(r)(m · n̂ρ)

2 = σ1(ρ) cos2 θ − σ2(ρ) sin2 θ cos2 ξ. (3.7)

The first term σ1(ρ) represents a uniaxial anisotropy along the cylinder axis and
favors ”easy plane” magnetization states in the cylinder cross-sections. The second
term σ2(ρ) favors states with magnetization directed outward or inward of the lateral
surfaces and tends to suppress the demagnetizing effects.

In the framework of the phenomenological theory of Refs. [11,20], the equilibrium
distributions of surface-induced anisotropies are derived by the minimization of a
general interaction functional [226] (see also section 1.2.2 C for details):

W =

∫ [(
dσ1(2)(ρ)

dρ

)2

+ σ2
1(2)(ρ)G(ρ) +

σ2
1(2)(ρ)

λ2
1(2)

]
2πρ dρ , (3.8)

where
G(ρ) = 0 (3.9)

for the uniaxial anisotropy σ1(ρ) and

G(ρ) =
1

ρ2
(3.10)

for the radial contribution σ2(ρ). The parameters λ1(2) are the characteristic lengths
for this theory which characterize the resistance of the system against the surface-
induced interactions. In principle values of λ1(2) can be derived from ab initio calcu-
lations of induced spin-orbit coupling [218]. Experimentally these parameters can be
obtained only indirectly, for example, from the radius dependences of the function
Φ(R) = KeffR where Keff is the effective anisotropy (Figs. 1.2, 1.3).

The minimization of (3.8) yields the solutions for penetration of surface anisotropy
coefficients σ1(ρ) and σ2(ρ) into the depth of magnetic nanotube:

σ1(2)(ρ) = A1(2)J0(1)

(
iρ

λ1(2)

)
+ B1(2)Y0(1)

(
iρ

λ1(2)

)
, (3.11)

where

A1(2) =
a1(2)

c1(2)

, B1(2) =
b1(2)

c1(2)

, (3.12)
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and

a1(2) = σ1(2)(η)Y0(1)

(
i

λ1(2)

)
− σ1(2)(1)Y0(1)

(
iη

λ1(2)

)
,

b1(2) = σ1(2)(1)J0(1)

(
iη

λ1(2)

)
− σ1(2)(η)J0(1)

(
i

λ1(2)

)
,

c1(2) = Y0(1)

(
i

λ1(2)

)
J0(1)

(
iη

λ1(2)

)
− Y0(1)

(
iη

λ1(2)

)
J0(1)

(
i

λ1(2)

)
, (3.13)

J0(1), Y0(1) are the Bessel functions of first and second kind, respectively. Here σ1(2)(η)
and σ1(2)(1) are coefficients of surface anisotropy on internal and external surfaces
of nanotube.

For small characteristic lengths, λ1(2)/(1 − η) << 1, the profiles (3.11) are essen-
tially confined to the near surface region and decay exponentially within the volume
of the wires/tubes (Fig. 3.1 (a)). In this case, the surface anisotropy can be consid-

Figure 3.1.: Inhomogeneous distributions for the surface-induced anisotropies
σ1(2)(ρ)/σ1(2)(1) within magnetic nanotubes (a), (b) and in nanowires
(c), (d) for different characteristic lengths λ1(2) according to the model
Eq. (3.8) for infinitely long cylindrical objects. (a),(c) show the axial
contribution of the surface anisotropy, whereas (b),(d) are the radial
contribution. In (b) the distribution for a negative boundary coefficient
σ2(η) is shown.

ered as a mere surface effect. Phenomenologically, it is described as an additional
surface energy contribution with constant anisotropy coefficient

κ1(2)(η) = ηλ1(2)σ1(2)(η), κ1(2)(1) = λ1(2)σ1(2)(1). (3.14)
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For larger characteristic lengths, λ1(2)/(1 − η) ≈ 1, the surface anisotropy profiles
vary smoothly within the magnetic volume (Fig. 3.1 (a)).

For nanotubes the profiles of uniaxial and radial anisotropy are almost identical.
The functions σ1(2)(ρ) essentially depend on the ratios of the boundary anisotropy
coefficients on the internal and external surfaces and on the parameter η (Fig. 3.1
(a)). Moreover, for opposite signs of boundary coefficients more complex situations
may occur, which provide a large variability of possible magnetization states (Fig.
3.1 (b)). Experimentally the values of surface anisotropy constants on both surfaces
σ1(2)(η) and σ1(2)(1) can be strongly increased by coverings with different nonmag-
netic materials as it was done for magnetic layers [5].

For magnetic nanowires, as it was noticed before, η → 0, thus distributions of
surface-induced anisotropy can be obtained from (3.11):

σ1(2)(ρ) = σ1(2)(1)
J0(1)

(
iρ

λ1(2)

)
J0(1)

(
i

λ1(2)

) , (3.15)

For λ1(2) � 1 I obtain merely surface anisotropy with coefficients

κ1(2)(1) = λ1(2)σ1(2)(1). (3.16)

For λ1(2) ≈ 1 the axial part of the surface anisotropy has a significant value in the
cross-section center (Fig. 3.1 (c)) while the radial part is zero (Fig. 3.1 (d)) and
almost linearly changes towards σ2(1) at the boundary.

To obtain the equilibrium magnetization states in nanowires/nanotubes one has to
minimize functional (5.1). In the case of distributed surface anisotropy coefficients
σ1(2)(ρ) are included in Euler equations:

θρρ +
θρ

ρ
− sin θ cos θ

ρ2
− ξ2

ρ sin θ cos θ + σ1(ρ) sin θ cos θ − h

2
sin θ

− (βd − σ2(ρ)) sin θ cos θ cos2 ξ = 0,

ξρρ sin2 θ +
ξρ sin θ

ρ
+ 2ξρθρ sin θ cos θ + +(βd − σ2(ρ)) sin2 θ sin ξ cos ξ = 0. (3.17)

On surfaces one has free boundary conditions. For magnetic nanotubes

θρ|1(η) = ξρ|1(η) = 0 (3.18)

and for magnetic nanowires

θ(0) = 0, θρ|1 = ξρ|1 = 0. (3.19)

In the Néel approach surface anisotropy coefficients κ1(2) are included in boundary
conditions, derived from variation of (5.1) with the terms Ωa and an integration by
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3. SA and vortex states in ferromagnetic nanowires and nanotubes

parts [225]. For nanotubes one has:

θρ|1(η) − [κ1 + κ2 cos2 ξ] sin θ cos θ|1(η) = 0, ξρ|1(η) + κ2 sin ξ cos ξ|1(η) = 0. (3.20)

And for nanowires

θ(0) = 0, θρ|1 − [κ1 + κ2 cos2 ξ] sin θ cos θ|1 = 0, ξρ|1 + κ2 sin ξ cos ξ|1 = 0. (3.21)

3.3. Solutions for vortex profiles

In the following, I calculate remanent states and zero-field phase diagrams for surface-
induced anisotropy with positive boundary coefficients in the limit of the Néel ap-
proach. The approach is sufficient to describe the possible magnetization distri-
butions and the structure of the phase diagrams for the different states driven by
surface-induced anisotropies.

For nanowires, the simplest solutions with cylindrical symmetry among the many
possible forms of vortex-like states are described by ξ = const. There are only two
possible solutions of this kind [20, 225, 226]. In the first solution ξ = ±π/2 and
the magnetization vector rotates in the plane perpendicular to the radial directions
similar to the rotation in a Bloch domain wall. I call this stray-field-free structure a
“Bloch vortex” (Fig. 3.2 (a)). In the second solution ξ = 0 and the vector m rotates
along the radial directions as in a Néel domain wall. This ”Néel vortex” possesses
internal magnetic ”charges” (Fig. 3.2 (b)).

The Euler equation for the tilted angle θ in these two vortex states is given by

θρρ +
θρ

ρ
− sin θ cos θ

ρ2
− wθ

2
= 0 , (3.22)

where
w = −h cos θ (3.23)

for the Bloch vortex and
w = −h cos θ + βd sin2 θ (3.24)

for the Néel vortex. Multiplying the Eq. (3.22) by 2ρ2θρ and integrating with respect
to ρ from zero to unity one obtains an integral equation

(ρθρ)
2 − sin2 θ − ρ2w|1 + 2

1∫
0

wdρ = 0 . (3.25)

For the Bloch vortex in zero field h = 0 and with zero anisotropy β = 0, the function
w = 0. The Eq. (3.25) yields analytical solutions (solid lines in Fig. 3.3 (a)) given
by

θ(ρ) = 2 arctan(κ ρ), κ =

√
κ1(1) − 1

κ1(1) + 1
. (3.26)
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3.3. Solutions for vortex profiles

Then, the difference between the energy W0 for the homogeneous state with θ ≡ 0
and the energy Wv for the vortex state of the solutions Eq. (3.26)

ΔW = W0 − Wv = (κ1(1) − 1)2/κ1(1) (3.27)

is positive in the complete existence range of these vortices, κ1(1) > 1. This range
is shown by right inclined hatching in the phase diagram (Fig. 3.4). Therefore, the
Bloch vortex is stable as soon as it arises by a continuous rotation of the magneti-
zation vector from the homogeneous state.

The mz component of the vortex

mz(ρ) = cos θ =
1 − (κρ)2

1 + (κρ)2
(3.28)

changes from unity on the nanowire axis toward its lowest value on the lateral surface
(solid lines of Fig. 3.3 (b)). The average magnetization along the cylinder axis is
derived by integrating mz from Eq. (3.28) with respect to ρ,

< mz >=
2

π

2π∫
0

dϕ

1∫
0

mz(ρ)ρdρ == 2
(

κ1(1) + 1

κ1(1) − 1

)
ln
(

κ1(1)

1 + κ1(1)

)
− 1 . (3.29)

The dependence of the remanent magnetization on wire radius could be used for
an experimental determination of the parameter κ1(1). In particular, the critical
nanowire radius for the transformation into the homogeneous magnetization states
may be observable (Fig. 3.5).

For the Néel vortex the profiles θ(ρ), magnetization distribution, average magne-
tization in z-direction and the magnetic energy have been determined by numerical
integration of Eq. (3.25) with w = βd sin2 θ at various parameters κ1(1), κ2(1) and
some value of βd = 2. It should be emphasized that in the Néel vortex the surface
anisotropy competes not only with the exchange as in the Bloch vortex but also
with the demagnetization. This is the reason that the magnetization vector rotates
less than in Bloch vortices for the same strength of the surface anisotropy (dotted
lines in Fig. 3.3 (a), (b)). Also, the average magnetization < mz > for Néel vortices
retains larger values in the whole range of anisotropy parameters (dotted lines in
Fig. 3.5).

The area of existence for Néel vortices is shown in the phase-diagram (Fig. 3.4)
by left-inclined hatching. One can see from this phase diagram that the Néel vortex
arises from the homogeneous state (vertical hatching in Fig. 3.4) by a gradual rota-
tion of the vector m, i.e. this phase transition under influence of increasing surface
anisotropy is continuous. On the other hand, the transformation between the Néel
vortex and the Bloch vortex state is obtained by a first-order process (thick solid line
in Fig. 3.4). Correspondingly, there are overlapping regions in the phase diagram,
where these two vortex types may co-exist as metastable and stable phase, respec-
tively. The existence ranges of the metastability regions are bounded by lability lines
(given by thinner lines in Fig. 3.4). As a consequence, there can be various types
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3. SA and vortex states in ferromagnetic nanowires and nanotubes

of multidomain states: (i) Pieces of Néel- and Bloch vortices can co-exist along the
first-order line of the phase diagram (Fig. 3.4). (ii) Vortices of either type exist with
net magnetization up and down, and these states always coexist in zero field. (iii)
Bloch vortices can have different sense of rotation/chirality and with specific domain
walls between them θ = θ(ρ), ξ = ξ(ρ). Experimentally such domain walls can be
observed directly using Lorentz microscopy. In Ref. [229] domain walls of differ-
ent chirality were observed in a ferromagnetic La0.6Sr0.4MnO3 nanowire separating
domains with the homogeneous magnetization along the nanowire axis.

The basic solutions of the vortex-like states, as calculated sofar, may be distorted
by additional magnetic effects. In the case of distributed anisotropy, the character-
istic length λ1(2) provides an additional control parameter which strongly influences
the magnetization profiles of vortices (Fig. 3.6). A uniaxial anisotropy as well as
magnetic field h > 0 along the nanowire axis forces the alignment of the spins along
the cylinder axis. This will generally favour more homogeneous states in order to
reduce the region of unaligned spins. A magnetocrystalline uniaxial anisotropy with
inclined easy-axes or similarly cubic anisotropy breaks the cylindrical symmetry.
These effects tend to destroy vortex states. The magnetic state splits into domains
along the wire with magnetization oriented along easy axes of the corresponding
anisotropies. Such effects have been observed, e.g., in polycrystalline Co nanowires
where the hcp c axes were strongly deviating from the nanowire axis [196]).

For magnetic nanotubes, the considered vortex states are possible as well, but only
for appropriate values of κ1(2)(η) and κ1(2)(1) determined within the Néel approach
in Eq. (3.17). The limiting cases of the Néel vortex and Bloch vortex are a radially
rotating state, θ = π/2, ξ = 0 (Fig. 3.2 (e)), and a tangentially rotating state,
θ = π/2, ξ = π/2 (Fig. 3.2 (c)), correspondingly. However, the transitions from the
vortex solutions into these planar states are first order. Particular twisted phases
with θ = π/2, ξ = ξ(ρ) [11,223] are realized by first order phase transitions from the
radially rotating state or by a continuous transition from the tangentially rotating
state. As in the case of nanowires, the different coexisting magnetization states may
form domain structures. In particular, the Néel vortex and the radially rotating state
lead to the appearance of magnetostatic charges and concomitant demagnetization
effects.

3.4. Conclusions

It was shown that in magnetic nanowires and nanotubes, surface-induced uniaxial
anisotropy from lateral surfaces may have a dominating influence on magnetic prop-
erties of these nanostructures. Overcoming the stray-field energy, this anisotropy
may cause spin-reorientation transitions from the homogeneous longitudinal magne-
tization state into two types of vortices.

Within a micromagnetic description, a general model for infinitely long cylindri-
cal ferromagnetic wires/tubes under the influence of surface anisotropy has been
formulated and specialized to solutions with cylindrical symmetry. An analytic so-
lution describing a continuous transition into stray-field-free vortex-states due to
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the axial part of the surface-anisotropy has been presented. General properties of
vortex-states stabilized by surface-anisotropy in cylindrical wires have been briefly
discussed.

The phase diagram of states on the plane of surface-anisotropy constants shows a
characteristic sequence of phases that is due to a balance between demagnetization
and a tendency of the positive surface-anisotropy to turn the magnetization into
the radial directions. When Néel vortices can be stabilized, very interesting domain
states may occur. Nanotubes with strong surface anisotropies and very thin walls
may be best candidates to produce such states.
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Figure 3.2.: Vortex magnetization states of an infinitely long cylinder (shown in
cross-section): (a) ”Bloch vortex”; (b) ”Néel vortex”. Magnetization
states in hollow tubes: (c) tangentially rotating state; (d) twisted mode;
(e) radially rotating state in the limit of dominating surface anisotropy.
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3.4. Conclusions

Figure 3.3.: Profiles θ(ρ) (a) and mz(ρ) (b) of Bloch (solid lines) and Néel vortices
(dotted lines) at various parameters of surface anisotropy κ1(1), κ2(1).
In (a) pairs of curves for Bloch and Néel vortices correspond to the fol-
lowing sequence: 1-(κ1(1) = 1, κ2(1) = 0.46); 2-(κ1(1) = 1.05, κ2(1) =
0.47); 3-(κ1(1) = 1.5, κ2(1) = 0.53); 4- (κ1(1) = 2, κ2(1) = 0.57); 5-
(κ1(1) = 3, κ2(1) = 0.61); 6- (κ1(1) = 10, κ2(1) = 0.7). These states
correspond to points on the line of the first-order phase transition be-
tween the two vortices, see phase diagram in Fig. 3.4.
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Figure 3.4.: Phase diagram of remanent magnetic states in infinitely long magnetic
nanowires in dependence on surface-induced anisotropy and for zero
magnetocrystalline anisotropy. Solid and dotted lines are lines of first
order and continuous phase transitions, respectively. Thin full lines are
the lability lines of corresponding phases.
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Figure 3.5.: Average magnetization of Bloch (solid line) and Néel vortices (dotted
line) versus the surface-induced anisotropies κ1(1), κ2(1). For the Néel
vortex κ1(1) = 0.

�

	

0.2

0.6

1.0

=1.0

0.7

0.7

0.2

0.15

0.5

0.5

0.4

0.4

1.0

0 1

=5)1(1


=10)1(2


� 1(2)

Figure 3.6.: Influence of the parameter λ1(2) on profiles θ(ρ) in the case of distributed
anisotropy for σ1(1) = 5, σ2(1) = 10.
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Phenomenological theory of skyrmion
and helical states in magnets with

intrinsic and induced chirality
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4. Chiral skyrmion states in
non-centrosymmetric magnets

4.1. Introduction

Chiral skyrmion states exist in non - centrosymmetric magnetic crystals [21,22,31,69]
as a consequence of the asymmetric exchange Dzyaloshinskii-Moriya interactions
that destroy the homogeneous magnetic state and generally lead to twisted incom-
mensurate magnetic spin-structures [41]).

Recently, microscopic observation of skyrmion lattices and free skyrmions in mag-
netic layers of the chiral helimagnets with the noncentrosymmetric cubic B20 crystal
structure confirm the existence of these chiral topological spin-textures in otherwise
rather simple magnetic metals [28, 29]. The stabilization of these states and their
transformation properties impressively illustrate the theoretically predicted solitonic
nature of these chiral two-dimensionally localized spin-states [21, 22, 31, 69]. In par-
ticular, the experiments clearly show the ability of skyrmions to form densely packed
two-dimensional arrangements and how the field-driven transformation process can
decompose these lattices by setting free the constituent skyrmions as excitations.
The stabilization of such skyrmion lattices against one-dimensionally modulated he-
lices in these cubic helimagnets at low temperatures requires a subtle effect possibly
combining uniaxial magnetic anisotropy (or cubic and exchange anisotropy) with the
magnetic field [XI,XII]. However, both in magnetic films and in magnetic crystals,
symmetry imposed restrictions on the chiral Dzyaloshinskii-Moriya interactions may
allow to create skyrmion lattices with high perfection in applied fields because the
competing conical helix state does not exist [21,69].

This chapter is mainly devoted to numerically rigorous solutions of hexagonal
skyrmion lattices for cubic helimagnets. It justifies and extends previous approx-
imate solutions that used a circular cell approximation (CCA) for the calculation
of the free energy of skyrmion lattices [21, 69][XI]. The theoretical results of the
present chapter provide a comprehensive description of skyrmion lattice evolution
in an applied magnetic field and/or in the presence of uniaxial, cubic, and exchange
anisotropy. The low-temperature phenomenological theory with fixed modulus of
magnetization, |M|=const, is applied to the magnetic states in chiral magnets.
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4. Chiral skyrmion states in non-centrosymmetric magnets

4.2. Phenomenological theory of modulated states in
chiral helimagnets

4.2.1. The general micromagnetic energy functional

Within the phenomenological theory introduced by Dzyaloshinskii [41] the magnetic
energy density of a non-centrosymmetric ferromagnet with spatially dependent mag-
netization M can be written as

W (M) = A
∑
i,j

(
∂mj

∂xi

)2

+ D wD(M) − M · H︸ ︷︷ ︸
W0(M)

+Wa(m) (4.1)

where A > 0 and D are coefficients of exchange and Dzyaloshinskii-Moriya inter-
actions; H is an applied magnetic field; xi are the Cartesian components of the
spatial variable. wD is composed of Lifshitz invariants (section 1.2.1 B). Almost
all calculations of the present chapter have been done for cubic helimagnets with
wD = m · rotm.

Wa(m) includes short-range anisotropic energies:

Wa(m) = −
3∑

i=1

[
BEA

(
∂mi

∂xi

)2

+ Kc(m · ni)
4

]
− Ku(m · a)2 (4.2)

where BEA, Kc, and Ku are coefficients of exchange, cubic, and uniaxial magnetic
anisotropies, correspondingly; a and ni are unit vectors along easy uniaxial and cubic
magnetizaton axes, respectively.

Functional W0(M) includes only basic interactions essential to stabilize skyrmion
and helical states. Solutions for chiral modulated phases and their most general fea-
tures attributed to all chiral ferromagnets are determined by this functional. Gener-
ically, there are only small energy differences between various modulated states. On
the other hand, weaker energy contributions (as magnetic anisotropies (4.2)) impose
distortions on solutions of model (4.1) which reflect crystallographic symmetry and
values of magnetic interactions in individual chiral magnets. It is essential to rec-
ognize that these weaker interactions determine the stability limits of the different
modulated states. The fact that thermodynamical stability of individual phases and
conditions of phase transfomations between them are determined by magnetocrys-
talline anisotropy and other relativistic or weaker interactions means that (i) the
basic theory only determines a set of different and unusual modulated phases, while
(ii) the transitions between these modulated states, and their evolution in magne-
tization processes depends on symmetry and details of magnetic secondary effects
in chiral magnets, in particular the strengths of relativistic magnetic interactions.
Thus functional (4.1) is the generic model for a manifold of interaction function-
als describing different groups of noncentrosymmetric magnetic crystals, because it
allows to identify the basic modulated structures that may be found in them.
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Dzyaloshinskii’s phenomenology (4.1) is a main theoretical tool to analyze and in-
terprete experimental results on chiral magnets. During last three decades of inten-
sive investigations of chiral modulations in different classes of non-centrosymmetric
magnetic systems a huge empirical material has been organized and systematized
within the framework of this theory (see, for example, a review [44] and bibliog-
raphy in papers [31, 45]). The Dzyaloshinskii interaction functional (4.1) plays in
chiral magnetism a similar role as the Frank functional in liquid crystals [48] or
Ginzburg-Landau functionals in physics of superconductivity [49,50].

4.2.2. Reduced variables and characteristic lengths

For the forthcoming calculations I will use two ways of indroducing non-dimensional
variables.

In the first method, the length scales are reduced by the characteristic width of
the Bloch domain wall (see Eq. (1.43)). This method is valuable in the situations
where anisotropic magnetic materials are considered and the influence of ”tunable”
DM interactions on the solutions of micromagnetic equations is investigated. In par-
ticular in section 5.6, I consider the solutions for magnetic bubble domains stabilized
by dipole-dipole interactions in the presence of induced DMI.

In the second method, the lengths are expressed in units of LD, i.e. the length
scales are related to the period of the spiral state in zero field (see section 1.3.2). Such
a method is suitable for the calculations of the present chapter, as first I consider
different modulated states as solutions of the isotropic energy functional W0(M) and
then ”activate” additional small anisotropic contributions Wa(m).

A. Reduced variables with the length scales in units of the width of the Bloch
domain wall

Following Refs. [70] I introduce the non-dimensional variables based on the domain
wall width

LB =

√
A

Ku

. (4.3)

Then the energy functional (4.1) can be written in the reduced form as

w(m) =
∑
i,j

(
∂mj

∂x̃i

)2

− 4κ

π
m · rotm − 2m · h−

−
3∑

i=1

[
BEA

Ku

(
∂mi

∂x̃i

)2

+
Kc

Ku

(m · ni)
4

]
− (m · a)2 (4.4)

where

h =
H

Ha

, r̃ =
r

LB

, w(m) =
W (M)

HaM
(4.5)

and

Ha =
2Ku

M
(4.6)
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is the anisotropy field.
The parameter

κ =
πD

4
√

A Ku

(4.7)

plays a similar role as the Ginzburg-Landau parameter in the theory of supercon-
ductivity. It describes the relative contribution of the Dzyaloshinsky energy term.
In Refs. [22, 70] it was shown that modulated structures can be realized as thermo-
dynamically stable states only if κ exceeds the value of 1.

B. Reduced variables with the length scales in units of LD

Following Refs. [21] I introduce the non-dimensional variables based on the period
of the helical state in zero magnetic field. Then the energy functional (4.1) can be
written in the reduced form as

w(m) =
∑
i,j

(
∂mj

∂x̃i

)2

−m·rotm−m·h−
3∑

i=1

[
bEA

(
∂mi

∂x̃i

)2

+ kc(m · ni)
4

]
−βu(m·a)2

(4.8)
where

h =
H

HD

, r̃ =
r

LD

, w(m) =
W (M)

HDM
(4.9)

and

HD =
D2

AM
. (4.10)

The reduced constants of exchange bEA, cubic kc, and uniaxial βu anisotropies are
defined as

bEA =
BEAA

D2
, kc =

KcA

D2
, βu =

KuA

D2
. (4.11)

4.3. One-dimensional chiral modulations

As it was shown in section 1.3.2, the Dzyaloshinskii-Moriya interactions (1.11) arising
in non-centrosymmetric magnets play a crucial role in destabilizing the homogeneous
ferromagnetic arrangement and twisting it into a helix (Fig. 4.1). At zero magnetic
field such helices are single-harmonic modes forming the global minimum of the
functional W0(M) [41]:

M = Ms [n1 cos (k · r) + n2 sin (k · r)] , |k| =
1

2LD

(4.12)

where n1, n2 are the unit vectors in the plane of the magnetization rotation orthog-
onal to the wave vector k (n1 ⊥ n2;n1 ⊥ k; n2 ⊥ k).

The modulations (4.12) have a fixed rotation sense determined by the sign of
Dzyaloshinskii-Moriya constant D and are continuously degenerate with respect to
propagation directions in the space.
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Figure 4.1.: One-dimensional chiral modulations in cubic helimagnets. In a heli-
cal ”array” (a) the magnetization rotates in the plane spanned by the
orthogonal unity vectors n1 and n2 and the rotation sense is deter-
mined by the sign of Dzyaloshinskii constant D. Under the influence
of the magnetic field applied perpendicularly to the propagation direc-
tion the helix is transformed into a transversally distorted helicoid with
non-linear profiles θ(x) (c). Magnetic field applied along propagation
direction stabilizes single-harmonic conical phase (b).

An applied magnetic field lifts the degeneracy of the helices (4.12) and stabilizes
two types of one-dimensional modulations: cones and helicoids (Fig. 4.1 (a), (b)).

4.3.1. Helicoids

If the propagation vector k of a spiral state is perpendicular to an applied magnetic
field, I will call such a state helicoid (Fig. 4.1 (a)).

A. Solutions for the polar angle θ in the helicoid

Analytical solutions for the polar angle θ(x) of the magnetization written in spher-
ical coordinates,

M = Ms (sin θ(x) cos ψ, sin θ(x) sin ψ, cos θ(x)) , (4.13)

are derived by solving a pendulum equation

A
d2θ

dx2
− H cos θ = 0. (4.14)

Such solutions are expressed as a set of elliptical functions [41] and describe a gradual
expansion of the helicoid period with increased magnetic field (see the set of angular
profiles θ(x) in Fig. 4.1 (c)). In a sufficiently high magnetic field HH [21] [XI] the
helicoid infinitely expands and transforms into a system of isolated non-interacting
2π-domain walls (kinks) separating domains with the magnetization along the ap-
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k
k

ψ

ψ

( )a (b) (c)

k

Dn, D2d Cnv S4, Cn

Figure 4.2.: Basic modulated structures: a) helicoid for systems with D2d and Dn

symmetry; b) cycloid for helimagnets with Cnv symmetry. The plane
of magnetization rotation (shown by red color) makes angle ψ = π/2
(a) and ψ = 0 with the propagation direction k. For the magnets of S4

and Cn crystallographic classes (c) angle ψ is specified by the ratio of
Dzyaloshinsky constants (see text for details).

plied field [21,41]. Non-dimensional value of this critical field is

hH =
HH

HD

=
π2

8
= 0.30843. (4.15)

B. Solutions for the azimuthal angle ψ in the helicoid

Distribution of the polar angle θ(x) in magnetic field is common for helimagnets
of all crystallographic classes. Azimuthal angle ψ, on the contrary, is fixed by the
different forms of the Lifshitz invariants.

For cubic helimagnets (1.17) as well as for magnets belonging to the crystallo-
graphic classes D2d (1.13) and Dn (1.14) the magnetization M rotates in the plane
perpendicular to the propagation direction like in a common Bloch wall (Fig. 4.2
(a)), i.e. ψ = π/2.

For helimagnets of Cnv symmetry, the magnetization vector undertakes Néel-type
rotation along the propagation direction and comprises cycloid (Fig. 4.2 (b)), i.e.
ψ = 0.

For helicoids with competing DM interactions, angle ψ is determined by the ratio
of DM constants: ψ = arctan(−Dμ/Dν), ν = 3, 5; μ = 4, 6 (Fig. 4.2 (c)).

4.3.2. Cone

A conical spiral is a solution of the functional W0(M) with propagation direction
along the magnetic field in which the magnetization rotation retains single-harmonic
character:

ψ =
z

2LD

, cos θ =
|H|
2HD

. (4.16)

In such a helix the magnetization component along the applied field has a fixed value

M⊥ = M cos θ =
MH

2HD

, (4.17)
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and the magnetization vector M rotates within a cone surface. The critical value

hd = 2HD (4.18)

marks the saturation field of the cone phase.
The conical state combines properties of the homogeneous state and the flat spiral

as a compromise between Zeeman and DM energies. This conical phase is the global
minimum of functional W0(M) (4.1).

Note, that a conical spiral will propagate along direction of an applied magnetic
field, if corresponding Lifshitz invariants are present along this direction.

4.4. Chiral localized skyrmions: the building blocks
for skyrmionic textures

4.4.1. Equations

(b) (c) (e)(d)

Cnv Dn
D

2d
S

4Cn

(a)

Figure 4.3.: Projections of the magnetization onto the basal plane for localized
skyrmions of non-centrosymmetric magnets with Cnv (a), Dn (b), D2d

(c), Cn (d), and S4 (e) symmetry

The equations minimizing functional W0(M) in (4.1) include solutions not only
for one-dimensional helical states (section 4.3), but also for two-dimensional iso-
lated skyrmions (IS) with magnetization written in spherical coordinates (1.58) and
cylindrical coordinates used for the spatial variable (1.59).

The equilibrium solutions θ = θ(ρ) for isolated Skyrmions are common for heli-
magnets of all crystallographic classes considered in section 1.2.1 B. The dependences
θ = θ(ρ) are derived from the Euler equation [21,22,69,70]:

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin 2θ

2ρ2
− sin2 θ

ρ
− h

2
sin θ = 0 (4.19)

with the boundary conditions

θ(0) = π, θ(∞) = 0. (4.20)

The Euler equation (4.19) has been obtained by variation of W0(M) after substitut-
ing (1.58) and (1.59). The non-dimensional units have been introduced in accordance
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with the section 4.2.2 B. In the case of DM interactions with competing counterparts
(1.15), (1.16), however, the spatial coordinates have to be normalized by

LD =
A√

D2
μ + D2

ν

, ν = 3, 5; μ = 4, 6. (4.21)

Then DM energy contributions in reduced form can be parametrized by the relative
ratios

dν =
Dν√

D2
ν + D2

μ

, dμ =
Dμ√

D2
ν + D2

μ

,
√

d2
ν + d2

μ = 1. (4.22)

Azimuthal angle ψ, as in the case of helicoids (see Fig. 4.2), depends on the
symmetry class of the corresponding helimagnet (Fig. 4.3):

Cnv : ψ = ϕ,

Dn : ψ = ϕ − π/2,

D2d : ψ = −ϕ + π/2. (4.23)

For classes with competing DM interactions the functions ψ(ϕ) are specified by the
ratio of DM constants [69]:

ψ(ϕ) = ϕ + arctan (−dμ

dν

). (4.24)

The total energy of an isolated skyrmion with respect to the homogeneous state
can be written as

E =

∞∫
0

ε(θ, ρ)dρ, ε(θ, ρ) = 2πρ

[(
dθ

dρ

)2

+
sin2 θ

ρ2
+ h (1 − cos θ) +

dθ

dρ
+

sin 2θ

2ρ

]
(4.25)

where ε(θ, ρ) is an energy density.

4.4.2. Methods

The most appropriate method to obtain solutions of (4.19) for isolated skyrmions is
to solve the auxiliary Cauchy problems for these equations with the initial conditions
[21]:

θ(0) = π,
dθ

dρ
(0) = ai. (4.26)

For arbitrary values of ai the lines θρ(θ) normally end by spiraling around one of the
attractors (θi, 0) where θi are specified by the magnetic field h. As an example in
Fig. 4.4 (b) two lines with a1 = 0.5 and a3 = 2 are plotted.

The curves end in the points (2kπ, 0) with k = 1, 2... only for certain discrete
values of initial derivatives ai. Then these particular trajectories chosen among all
possible trajectories in phase space (θ, dθ/dρ) represent localized solutions of the
boundary value problem (4.19).
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4.4. Chiral localized skyrmions: the building blocks for skyrmionic textures

Figure 4.4.: Isolated skyrmions: (a) cross-section through an isolated skyrmion
shows axisymmetric distribution of the magnetization (shaded area in-
dicates the core with the diameter D0); (b) isolated skyrmions are ho-
mogeneously extended into the third dimension as skyrmionic filements;
typical solutions of Eq. (4.19) for isolated skyrmions are shown as phase
portraits (c) on the plane ((θ, θρ)) and magnetization profiles θ(ρ) (d).
(e) Energy densities ε(θ, ρ) for different values of the applied magnetic
field h.

In Fig. 4.4 (b) such a separatrix solution corresponds to (dθ/dρ)(0) = a2 = 1.088.
Note, that in magnetic fields applied opposite to the magnetization in the center of
an isolated skyrmion, besides the ordinary skyrmions with Δθ = θ(0) − θ(∞) = π,
also skyrmions with any odd number of half- turns Δθ = 3π, 5π can exist [70].

The set of profiles θ(ρ) for different values of the applied magnetic field is plotted
in Fig. 4.4 (d). As these profiles bear strongly localized character, a skyrmion core
diameter D0 can be defined in analogy to definitions for domain wall width [24]
(section 1.3.1), i.e. as two times the value of R0, which is the coordinate of the point
where the tangent at the inflection point (ρ0, θ0) intersects the ρ-axis (Fig. 4.4 (a),
(d)):

D0 = 2(ρ0 − θ0(dθ/dρ)−1
ρ=ρ0

). (4.27)

According to conventions of Refs. [21,22,69] such arrow-like solutions will be decom-
posed into skyrmionic cores with linear dependence

θ(ρ) = π(1 − ρ

R
), ρ ≤ LD (4.28)

and exponential ”tails” with

θ ∝ exp [−ρ

√
h

2
], ρ � LD. (4.29)

The exponential character of skyrmion asymptotics has been derived by solving the
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4. Chiral skyrmion states in non-centrosymmetric magnets

Euler equation (4.19) for ρ → ∞:

d2θ

dρ2
− hθ

2
= 0. (4.30)

Therefore, a ”nucleus”with a diameter 2R can be considered as a two-dimensional
particle-like state as it accumulates almost all energy of the isolated skyrmion. At
the same time the asymptotic exponential tails will be viewed as the ”field”generated
by the particle [233].

From subdivision of the skyrmion structure general features of two-dimensional
localized skyrmions can be revealed.

4.4.3. Analytical results for the linear ansatz

Equilibrium radius R of the skyrmion core can be found from substituting the linear
ansatz into (4.25) and minimizing with respect to R. The skyrmion energy (4.25) is
reduced to a quadratic potential

E(R) = E0 + αR2 − π

2
R, Rmin =

2.641

h
, Emin = E0 − 2.074

h
(4.31)

where
E0 = 6.154 (4.32)

is the ”internal” energy of the skyrmions,

α = 0.297 h, (4.33)

and the parabola vertex point (Rmin, Emin) determines the minimum of energy
(4.31).

This simplified model offers an important insight into physical mechanisms un-
derlying the formation of the chiral skyrmions. The exchange energy E0 does not
depend on the skyrmion size and presents an amount of positive energy ”trapped”
within the skyrmion (see red-shaded positive peak of energy for solutions θ(ρ) in
Fig. 4.4 (e)) . The equilibrium skyrmion size arises as a result of the competition
between chiral and Zeeman energies:

Rmin ∝ |D|
H

. (4.34)

In centrosymmetric systems with D = 0 localized solutions are radially unstable and
collapse spontaneously under the influence of applied magnetic field [21].

98
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4.4.4. Inter-skyrmion interaction and condensation of isolated
skyrmions into the lattice

Asymptotic behaviour of the skyrmion solutions with θ ∝ exp [−ρ
√

h/2], ρ → ∞
is determined by the Dzyaloshinskii-Moriya interactions. It can be considered as a
specific ”field” generated by the particle [233] which causes the repulsive character
of the inter-skyrmion potential:

U(L) ∝
√

L exp [−L

√
h

2
] (4.35)

where L >> 1 is the distance between skyrmion cores.
The ensemble of repulsive particle-like isolated skyrmions can condense into a

lattice if the value of an applied magnetic field is smaller than the critical value hS.
In this case negative energy density associated with DM interactions (blue-shaded
area of energy distribution ε(θ, ρ), Fig. 4.4 (e)) outweights the positive exchange
contribution (red-shaded area), and the skyrmion strings tend to fill the whole space
with some equilibrium radius Rmin. For equation (4.19),

hS = 0.400659. (4.36)

The mechanism of lattice formation through nucleation and condensation of isolated
skyrmions follows a classification introduced by DeGennes [91] for (continuous) tran-
sitions into incommensurate modulated phases (see section 1.4 for details).

4.4.5. Distinction of solutions for localized skyrmions from
Belavin-Polyakov solitons

Note, that solitonic solutions with the same boundary conditions θ(0) = π, θ(∞) = 0
as those for isolated skyrmions can be obtained also for isotropic centrosymmetric
ferromagnets (well-known Belavin-Polyakov solutions for the nonlinear SO(3) σ-
model [234]). In this case for h = β = 0 differential equation (4.19) has a manifold
of analytical solutions:

θ(ρ) = 2 arctan

(
ρ

ρ0

)N

, ψ(ϕ) = Nϕ + α. (4.37)

described by the angle α and the parameter of integration ρ0:

α ∈ [0, π], ρ0 ∈ [0,∞) (4.38)

In spite of the seeming similarity with isolated skyrmions considered before, Belavin-
Polyakov (BP) solitons represent a distinct branch of solutions.

First, the solutions of Eq. (4.37) are achiral localized structures with the energy

E0 = 4πN (4.39)
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4. Chiral skyrmion states in non-centrosymmetric magnets

independent of the sense of rotation, i.e. angle α. On the contrary, the sense of
rotation and the exact value of angle α in isolated skyrmions is dictated by the crys-
tallographic symmetry and corresponding DM interactions (see formulas in section
4.4) and Fig. 4.3).

Second, solutions (4.37) have no definite size. Their energy is invariant under scale
transformation of the profiles

θ(ρ) → θ
(ρ

λ

)
, λ > 0. (4.40)

The solutions (4.37) represent always separatrix lines in the phase portraits (Fig.
4.4 (c)) which for any value of initial derivatives hit the point θ(∞) = 0. Applied
magnetic field and/or uniaxial anisotropy force Belavin-Polyakov solutions to end by
spiraling around pole (π/2, 0) so that they never reach point (0, 0). From the analysis
of energy (4.31) it is seen that it has a parabolic dependence on size of the soliton
with minimum for zero radius R. Thus applied magnetic field or internal anisotropic
interactions lead to the spontaneous collapse of Belavin-Polyakov solutions. In chiral
skyrmions the influence of DM interactions shifts the vertex of parabola describing
the skyrmion energy (4.31) into the region of finite skyrmion radii. On the phase
plane (θ, dθ/dρ) only curves with appropriate initial derivatives will end in the point
(0, 0) (Fig. 4.4 (c)).

Third, asymptotic behaviour of Belavin-Polyakov solutions has a 1/ρ-character
defined by the exchange energy. In isolated chiral skyrmions θ ∝ exp[−ρ] which is
caused by DM interactions. Moreover, energy density distributions ε(ρ) (Fig. 4.4
(e)) reveal two distinct regions: positive exchange-energy ”bags” concentrated in the
skyrmion center and extended areas with negative DM-energy density stretching up
to infinity.

4.5. Properties of ideal skyrmion lattices: double
twist versus compatibility

In early numerical approaches used in Refs. [21,22,70] the circular cell approximation
(CCA) had been used to derive equilibrium parameters of skyrmion lattices. In this
method the lattice cell is replaced by a circle (Fig. 4.5 (b)), and then Eq. (4.19) is
integrated with boundary conditions

θ(0) = π, θ(R) = 0. (4.41)

After that, the energy density of the lattice

WCCA =
1

πR2

∫ R

0

ε(θ, ρ)dρ (4.42)

is minimized with respect to the cell radius R (Fig. 4.5 (e)) and the equilibrium size
Rmin is found.
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Figure 4.5.: Hexagonal (a),(b) and square (c),(d) skyrmion lattices: (a) and (c) are
unit cells with axisymmetric distribution of the magnetization near the
center; (b) and (d) are fragments of the lattices. In (b) the replacement
of the cell in the skyrmion lattice by the circle according to the method
of circular cell approximation is shown as outline. (e) Below the criti-
cal field hS the energy of a skyrmion lattice has a minimum for some
equilibrium cell size Rmin.

In real hexagonal (Fig. 4.5 (a)) and/or square skyrmion lattices (Fig. 4.5 (c), (d)),
the axisymmetric distribution of the magnetization is preserved only near the center
of lattice cell while the overlappping solutions θ(ρ) in the inter-skyrmion regions are
distorted. Therefore, it is worthwhile to compare corresponding numerically rigorous
solutions with those obtained from the circular-cell approximation.

4.5.1. Methods: numerical recipes

For two-dimensional skyrmions the Euler-Lagrange equations derived from the en-
ergy functional (4.1) are non-linear partial differential equations. These equations
have been solved by numerical energy minimization procedure using finite-difference
discretization on rectangular grids with adjustable grid spacings and periodic bound-
ary conditions. Components (mx, my, mz) of the magnetization vector m have been
evaluated in the knots of the grid, and for the calculation of the energy density (4.1)
I used finite-difference approximation of derivatives with different precision up to
eight points as neighbours. To check the stability of the numerical routines I refined
and coarsened the grids from 42×72 points up to 168×288. To avoid elliptical insta-
bility of the hexagonal skyrmion lattice I used grid spacings Δy ≈ Δx so that grids
are approximately square in order to reduce the artificial anisotropy incurred by the
discretization. The final equilibrium structure for the 2D baby-skyrmion hexagonal
lattice was obtained according to the following iterative procedure of the energy
minimization using simulated annealing and a single- step Monte- Carlo dynamics
with the Metropolis algorithm [235]:
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4. Chiral skyrmion states in non-centrosymmetric magnets

(i) The initial configuration of magnetization vectors in the grid knots for Monte-
Carlo annealing is specified by the solutions from circular-cell approximation.

(ii) A point (xn, yn) on a grid is chosen randomly. Then, the magnetization vector
in the point is rotated without change of its length. If the energy change ΔHk

associated with such a rotation is negative, the action is immediately accepted.
(iii) However, if the new state’s energy is higher than the last, it is accepted

probabilistically. The probability P depends upon the energy and a kinetic cycle
temperature Tk:

P = exp

[
−ΔHk

kBTk

]
, (4.43)

where kB is Boltzmann constant. Together with probability P a random number
Rk ∈ [0, 1] is generated. If Rk < P new configuration accepted otherwise discarded
(see, for example, [236]). Generally speaking, at high temperatures Tk, many states
will be accepted, while at low temperatures, the majority of these probabilistic moves
will be rejected. Therefore, one has to choose appropriate starting temperature for
heating cycles to avoid transformation of metastable skyrmion textures into globally
stable spiral states.

(iv) The characteristic spacings Δx and Δy are also adjusted to lead to the en-
ergy relaxation. The procedure is stopped when no further reduction of energy is
observed.

4.5.2. Features of ideal skyrmion lattices

While condensing into the lattice, isolated skyrmions can form either hexagonal or
square skyrmion order (Fig. 4.5 (a)-(d)). Contour plots for the components mx, my,
and mz of the magnetization vector m in both lattices are shown in Fig. 4.6 (a), (b).
Separate isolated skyrmions preserve axisymmetric distribution of the magnetization
near the cell center while the overlap of solutions θ(ρ) (Fig. 4.4 (d)) distorts the
inter-skyrmion regions.

A. Comparison of energy densities and surface areas of the lattice cells from
circular-cell approximation and numerical simulations.

Figure 4.7 shows the distribution of the free-energy densities and magnetization
profiles θ(ρ) for equilibrium hexagonal skyrmion lattice in the circular-cell approx-
imation and from numerical simulations. Due to the denser packing of individual
skyrmions, hexagonal lattices provides smaller energy density in comparison with
square lattice.

The difference of energy densities in hexagonal cell and CCA cell for h = 0 is

ΔW =
WCCA − Whexagon

WCCA

=
0.234 − 0.2312

0.234
= 0.012. (4.44)
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Figure 4.6.: Contour plots for mx, my, and mz components of the magnetization
on the plane (x, y) for the hexagonal (a) and square (b) skyrmion lat-
tices of a helimagnet with D2d symmetry. The white arrows show the
corresponding distribution of the magnetization.
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For the square cell the difference is larger,

ΔW =
WCCA − Wsquare

WCCA

=
0.234 − 0.2235

0.234
= 0.0449. (4.45)

The surface area of the cell in CCA is larger than the surface of the corresponding
numerical hexagon,

ΔS =
SCCA − Shexagon

SCCA

= 0.0167, (4.46)

whereas the surface area of square lattice cell is larger than the circle,

ΔS =
Ssquare − SCCA

SCCA

= 0.0234. (4.47)

Hence, the statement of the circular- cell approximation [21], that surface areas of
a circle and a hexagonal cell must coincide, is basically erroneous. However, the
smallness of all the differences between CCA and rigorous numerical simulations for
model (4.1) allows to consider circular-cell approximation as an excellent approach
for the global properties of the hexagonal skyrmion lattice. In particular, CCA
yields an exact value of the upper critical field hS as the skyrmions are located at
big distances from each other and are independent on the detailed arrangement of
individual filaments: hS is the same for square and hexagonal lattices.

The distortions of angular solutions near the border of hexagon lead to correspond-
ing redistribution of exchange and DM energy density (Fig. 4.7): due to the increase
of exchange energy density along the apothem of the hexagon (dotted blue line), the
total energy density (dotted black line) has also higher value than corresponding
CCA energy density (thin black line).

B. Expansion into the Fourier series of the mz-component of the magnetization
for the lattice from the rigorous calculations

The Fourier expansion for z-component of the magnetization may be written as

mz =
∞∑

i,j=0

λij[aij cos(
2πix

R1

) cos(
2πjy

R2

) + bij sin(
2πix

R1

) cos(
2πjy

R2

)+

+cij cos(
2πix

R1

) sin(
2πjy

R2

) + dij sin(
2πix

R1

) sin(
2πjy

R2

)] (4.48)

where
λ00 = 0.25, λi0 = λ0j = 0.5, λij = 1, (4.49)

R1 and R2 are characteristic sizes of the elementary lattice cell (Fig. 4.6 (a)). With
the present choice of origin of coordinates, coefficients

bij = cij = dij = 0. (4.50)

The coefficients aij may be represented graphically for different values of the applied
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4.5. Properties of ideal skyrmion lattices: double twist versus compatibility

Figure 4.7.: Distributions of exchange (blue lines), DM (red lines), and εi(ρ) to-
tal energy densities in a hexagonal lattice for two particular directions
i through the cell (dotted line along apothem, dashed line along the
diagonal of the hexagon) plotted together with the corresponding de-
pendences for circular-cell approximation (solid thin lines); profiles θi(ρ)
for circular-cell approximation (solid thin line) and numerical hexagon
(dotted and dashed lines).

105



4. Chiral skyrmion states in non-centrosymmetric magnets

magnetic field (Fig. 4.8). Due to axial arrangement of the core the amplitudes of
higher harmonics have comparable values with those of leading lattice harmonics.
Positive coefficients cij of the expansion (4.48) are marked by red color, whereas
negative coefficients - by blue. Multiplying the diameter of each circle by ten one
can extract the value of the underlying coefficient.

In Ref. [79] a triple spin-spiral crystal is presented as a skeleton for such a skyrmion
lattice in cubic chiral magnets. While the topology and rough geometry of these
states is the same, this theoretical interpretation of the Skyrmion states of chiral
magnets assumes that the skyrmionic states can be described by the first few har-
monics of a hexagonal lattice. Skyrmions in this approach have triangular cores
instead of radial cores. This point of view does not agree with the exact solutions
and detailed demonstration of radial and localized solutions for skyrmions in the
present chapter. The approach of [79] discounts the existence and relevance of the
localized and radial nature of the skyrmion solutions. By virtue of the localized
character of the skyrmion cores and its axial symmetry such an approximation by
a number of Fourier modes is very poor as the convergence of the Fourier series is
slow. Owing to the localization of the skyrmions their properties cannot be modeled,
nor understood from a multi-Q ansatz with a finite number of Fourier components.
In particular, the important transformation process of a Skyrmion lattice into an
assembly of isolated skyrmion lines under an applied field cannot be described by
the picture of a triple spin-spiral crystal.

Thus, the theoretical interpretation proposed in Ref. [79] is considered to be not
correct.

C. Rigorous solutions for skyrmion lattices with Dzyaloshinskii-Moriya interac-
tions representing the weighted sum of Lifshitz invariants

In the case of DM interactions (1.15), (1.16) with competing counterparts, the
skyrmions have a more complicated structure as shown in Fig. 4.9 for particular
case of Cn symmetry. For d1 = 0.2, d2 = 0.9798 angle ψ = φ+78o, and the structure
of skyrmions is slightly different from the ”Bloch”-type skyrmion with Dn symmetry
(Fig. 4.3 (b)). Note, that the cases d1 = 1, d2 = 0 and d1 = 0, d2 = 1 denote
skyrmions with Cnv (Fig. 4.3 (a)) and Dn (Fig. 4.3 (b)) symmetry, correspondingly.

4.6. Competition of skyrmions with helicoids within
the isotropic phenomenological model

From the previous calculations it is known [31] [XI,XIV,XV], that ”double-twisted”
rotation of the magnetization as in skyrmions yields an energetic advantage only at
small distances from the skyrmion axis in comparison with ”single-twisted” spiral
phases [31]. Conversely, the energy density is larger at the outskirt of the skyrmion
which is the consequence of an inherent frustration built into models with chiral
couplings: the system cannot fill the whole space with the ideal, energetically most
favoured double-twisted motifs. The equilibrium energy of the skyrmion cell at zero
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Figure 4.8.: Graphical representation of the coefficients of the Fourier expansion
for z-component of the magnetization in the hexagonal skyrmion lattice
for different values of the applied magnetic field h = 0 (a), h = 0.2
(b), h = 0.4 (c). Positive coefficients are marked by red color, whereas
negative - by blue.
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Figure 4.9.: Contour plots of mx, my, and mz components of the magnetization for
helimagnets with Cn symmetry (h = β = 0, d1 = 0.2, d2 = 0.9798).

field

w̃S(ζ) =
2

ζ2

∫ ζ

0

ε(ρ)ρdρ (4.51)

plotted as a function of the distance from the center ζ (Fig. 4.10 (a)) shows that an
energy excess near the border outweighs the energy gain at the skyrmion center. As
a result, the skyrmion states are metastable states in comparison with lower-energy
helical phases.

At higher magnetic fields, however, the skyrmion lattice has lower energy than
the helicoid. The first order transition between these two modulated states occurs
at [21]

H1 = 0.1084HD. (4.52)

Properties of the skyrmion lattice solutions are collected in Fig. 4.10 and in Table
4.1. With increasing magnetic field, a gradual localization of the skyrmion core D0

is accompanied by the expansion of the lattice period. The lattice transforms into
the homogeneous state by infinite expansion of the period at the critical field

HS = 0.40066HD. (4.53)

Remarkably, the skyrmion core retains a finite size, D0(HS) = 0.920LD and the
lattice releases a set of repulsive isolated skyrmions at the transition field HS, owing
to their topological stability. These free skyrmions can exist far above HS. On
decreasing the field again below HS, they can re-condense into a skyrmion lattice
(Fig. 4.10 (b)). A similar type of sublimation and resublimation of particle-like

108



4.6. Competition of skyrmions with helicoids

( )a (b)

L
L/

D

1

1.5

2

H H/ D
0 0 2. 0 4.

Skyrmion
lattice

Helicoid Cone

a
b

d

c

(H) (S)

0D

=0.30843H/H
D
0.400659

-0.25

-0.30

0 1.0

Figure 4.10.: (a) Local energies w̃(ζ) of the skyrmion lattice and helicoid at zero
field (reproduced from [31]); (b) equilibrium sizes of the cell core (D0,
Eq. (4.27)) and lattice period R compared to helicoid and cone periods.

textures occurs in helicoids at the critical field hH (Eq. (4.15)): the period infinitely
expands and the helicoid splits into a set of isolated 2π domain walls or kinks [21,41].

Table 4.1.: Critical fields and characteristic parameters of the hexagonal skyrmion
lattice: H1 transition field between the helicoid and skyrmion lattice;
HS saturation field of the skyrmion lattice; last column gives properties
of IS as excitations of the saturated state for an (arbitrary) high field
H/HD = 0.7

H1 HS

Reduced magnetic
field, H/HD

0 0.1084 0.40066 0.7

Lattice cell period,
L/LD

1.376 1.270 ∞ -

Core diameter,
D0/LD

1.362 1.226 0.920 0.461

Averaged magneti-
zation, mS

0.124 0.278 1 1

For a negative magnetic field applied along the magnetization in the center of
skyrmion strings, both the skyrmion cores and the lattice cell size expand. Near the
critical field hH = −0.30843 the vortex lattice consists of honeycomb-shaped cells
separated from each other by narrow 360◦ domain walls (Fig. 4.11 (d)). Note, that
for negative fields the honey-comb lattice is highly instable. It is hardly accessible
and easily elongates into spiral state. For negative magnetic fields, isolated skyrmions
do not exist.

Thus, it can be concluded that for functional W0(M) (4.1) the cone phase is
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Figure 4.11.: Evolution of the hexagonal skyrmion lattice in magnetic field applied
either opposite to the magnetization in the skyrmion center (b), (c) or
parallel to it (d). The solutions are presented as angular profiles along
diagonals of the hexagons (a), and contour plots for all components
of the magnetization on the plane (x, y): (b) h = 0.4, (c) h = 0.3,
(d) h = −0.2. Inset of (a) shows the equilibrium characteristic size
of the hexagonal lattice for both directions of the magnetic field: for
positive values of the magnetic field the skyrmion lattice transforms
into a system of isolated skyrmions with repulsive potential between
them, whereas for negative magnetic field it turns into the homogeneous
phase through a honeycomb structure with increasing lattice period (d).
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the global minimum in the whole range of the applied fields where the modulated
states exist (0 < h < hd). The helicoids and skyrmion lattices can exist only as
metastable states. One has to look for additional energy contributions capable to
stabilize skyrmion phase. In the next sections I consider some successful candidates
for this role: uniaxial, cubic, and exchange anisotropy.

4.7. Stabilization of skyrmion textures by uniaxial
distortions in non - centrosymmetric cubic
helimagnets

From the numerical investigation of Eq. (4.1), I show now that a sufficiently strong
magnetic anisotropy Ku (4.2) stabilizes skyrmionic textures in applied magnetic
fields. The uniaxial anisotropy Ku in cubic helimagnets can be imposed, for example,
by surface/interface interactions in thin films or nanolayers and tuned by covering
the surface with different non-magnetic materials.

In sufficiently thick magnetic layers, such induced anisotropy can be considered as
a pure surface effect which distorts the uniform prolongation of skyrmion filaments
perpendicularly to the surface and transforms them into convex shaped spherulites.
In details, such a case will be considered in chapter 5. In thin magnetic nanolayers
surface-induced uniaxial anisotropy is uniformly distributed through the layer and
can be considered as homogeneous uniaxial anisotropy with constant Ku. On the
other side, the uniaxial anisotropy in cubic helimagnets may be induced by uniaxial
strains in bulk systems.

By comparing the equilibrium energies of the conical phase, the helicoids, and
the rigorous solutions for hexagonal skyrmion lattice, I have constructed the phase
diagram of solutions (Fig. 4.12).

As in section 4.4, I start analysis of the phase diagram from isolated skyrmions.

4.7.1. Isolated skyrmions in chiral helimagnets with uniaxial
anisotropy

In cubic helimagnets with uniaxial anisotropy, isolated skyrmions are solutions of
the Euler equation written in the reduced form:

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin 2θ

2ρ2
− sin2 θ

ρ
− h

2
sin θ − βu

2
sin 2θ = 0 (4.54)

with the boundary conditions

θ(0) = π, θ(∞) = 0. (4.55)

The region of metastable existence of simple π-skyrmions was calculated in Ref.
[22]. On the phase diagram (Fig. 4.12) it is marked by white color and expands over
large values of positive magnetic field and easy-axis uniaxial anisotropy.
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Figure 4.12.: Magnetic phase diagram of the solutions for model (4.1) including
uniaxial anisotropy βu. Filled areas designate the regions of thermody-
namical stability of corresponding modulated phases: I - conical phase
(blue shading); II - skyrmion phase (red shading); III - helicoid (green
shading). White shading stands for the region of isolated skyrmions
and kinks. In the region with grey shading no modulated states are
available. Hatching shows the existence region of helicoids. The conical
phase exists within the area (a-d-B-f). For βu > 0.0166 corresponding
to the point A a skyrmion lattice can be stabilized in high magnetic
fields. For βu > 0.25 corresponding to the point f only helicoids and
skyrmions can be realized as thermodynamic phases. Two insets show
the magnifications of particular parts of the phase diagram: inset (i)
exhibits the region D − F − e where spiral state as only one modu-
lated phase can exist; the inset (ii) shows the line (red dashed line) of
skyrmion bursting hb in negative fields (see text for details).
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Figure 4.13.: (a) Angular profiles θ(ρ) for isolated skyrmions in zero magnetic field
and for different values of easy-axis uniaxial anisotropy βu show the
expansion of skyrmion cores while approaching the critical value of
uniaxial anisotropy βcr = 0.61685. In (b) the size of the core of isolated
skyrmions determined according to the Lilley’s definition (see section
4.4) is plotted in dependence on the uniaxial anisotropy constant βu

for different values of the applied magnetic field (dashed blue line).
Red solid lines in (b) show the size of the skyrmion core in a skyrmion
lattice, green dotted lines - the size of the lattice cell. For constant
value of the applied magnetic field and variable constant of uniaxial
anisotropy the lattice releases the isolated skyrmions for some critical
value of βu. This corresponds to the intersection point of red and blue
lines; the green lines tend to infinity; the characteristic size of the core
of the skyrmions undergoes a sudden change. For h = 0 there is no
connection between the skyrmion lattice and isolated skyrmions.

113



4. Chiral skyrmion states in non-centrosymmetric magnets

For h = 0 and

βu > βcr =
π2

16
(4.56)

isolated skyrmions exist as a separate branch of skyrmion solutions [22]. With
decreasing constant βu the cores of isolated skyrmions expand, and the localized
skyrmions dissappear as a solution for the critical value βcr (Fig. 4.13 (a)). The
characteristic size R0 of the Skyrmion core determined according to the Lilley defi-
nition (blue dashed lines in Fig. 4.13 (b)) expands to infinity for βu = βcr.

In the applied magnetic field h > 0, the isolated skyrmions can condense into
the lattice with decreasing constant of uniaxial anisotropy βu. The solid red and
dotted green lines in Fig. 4.13 (b) show dependences of the characteristic core and
lattice cell sizes on the changing constant of uniaxial anisotropy βu. In the point
of intersection of red and blue lines, i.e. in the point of condensation of isolated
skyrmions into the lattice, the skyrmion core undergoes a sudden leap, while the
equilibrium lattice period expands unlimitedly.

For large values of uniaxial anisotropy π-skyrmions can exist even at negative fields
(see inset (ii) of Fig. 4.12). The magnetization in the skyrmion core is then oriented
along the field, while the surrounding matrix is magnetized in the opposite direction.
Thus, the skyrmion size increases with increasing magnetic field. Finally, when h
reaches a certain critical value hb(βu) (inset (ii) of Fig. 4.12) the skyrmion ”bursts”
into the homogeneous state with the magnetization parallel to the applied field. First
such a behaviour of isolated skyrmions in a negative magnetic field was described in
Ref. [70]. Also the technique to explore skyrmion stability was elaborated.

In the following I exploit the methods of Ref. [70] and present a comprehensive
analysis of the structure and stability of all types of isolated skyrmions of the model
(4.54).

4.7.2. Localized skyrmions and the manifold of solutions of
micromagnetic equations: the question of radial stability

In addition to skyrmion solution of Eq. (4.54) (Fig. 4.14 (a)) a family of specific
vortex states with small values of derivative in the center dθ/dρ(ρ = 0) can be found.

The first vortex of this family is also of π-type, but has a larger core size (Fig.
4.14 (e)). The energy distribution in such a vortex (Fig. 4.14 (h)) looks qualitatively
the same as for the common skyrmion (Fig. 4.14 (d)). This vortex can exist even
for zero values of Dzyaloshinskii-Moriya interaction.

All other members of the vortex family (Fig. 4.14 (i), (m)) are characterized
by the parts with a reverse rotation of the magnetization vector - nodes. Each
sequential vortex has more nodes than preceding one and exhibits oscillations of the
magnetization in the tail (Fig. 4.14 (i), (m)). The phase portraits for such vortices
before hitting the point (0,0) round by turns the attractors in points (0,±π/2) (Fig.
4.14 (j), (n)).

The analysis of stability for all solutions of equation (4.54) shows that only the
skyrmion solution (Fig. 4.14 (a)) is stable with respect to small perturbations of the
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structure.
To check the stability of obtained skyrmion solutions I consider radial distortions

of type ξ(ρ) with constraint
ξ(0) = ξ(π) = 0. (4.57)

Such distortions are the relevant leading instabilities of radial skyrmion structures
θ(ρ). By inserting θ̃(ρ) = θ(ρ) + ξ(ρ) into the energy functional (4.25) with uniaxial
anisotropy I obtain the perturbation energy

E(2) =

∫ ∞

0

[(
dξ

dρ

)2

+ G(ρ)ξ2

]
ρdρ (4.58)

with

G(ρ) = cos(2θ)

(
1

ρ2
+ β

)
+

h

2
cos θ − sin(2θ)

ρ
. (4.59)

Radial stability of the function θ(ρ) means that the functional E(2) is positive for
all functions ξ(ρ) which obey condition (4.57). Correspondingly, the solutions will
be unstable, if there is a function ξ(ρ) that leads to a negative energy (4.58). Thus,
the problem of radial stability is reduced to the solution of the spectral problem for
functional (4.58). I solve it by expanding ξ(ρ) in a Fourier series:

ξ(ρ) =
∞∑

k=1

bk sin(kθ(ρ)) (4.60)

Inserting this into Eq. (4.58) reduces the perturbation energy to the following
quadratic form:

E(2) =
∞∑

l,k=1

Aklbkbl (4.61)

where

Akl =

∫ ∞

0

[
kl

(
dθ

dρ

)2

cos(kθ) cos(lθ) + G(ρ) sin(kθ) sin(lθ)

]
ρdρ. (4.62)

To establish radial stability of a solution, one has to determine the smallest eigen-
value λ1 of the symmetric matrix A (4.62). If λ1 is positive, the solution θ(ρ) is
stable with respect to small radial perturbations. Otherwise it is unstable.

For our skyrmion solutions (Fig. 4.14 (c)) the eigenmode ξn(ρ) corresponding
to the nth eigenvalue (λn) consists mainly of the function sin(nθ(ρ)), with small
admixtures of other harmonics. In particular, the eigenmode corresponding to the
smallest eigenvalue λ1 can be written as

ξ1(ρ) = sin(θ(ρ)) +
∞∑

k=2

εk sin(kθ(ρ)), (4.63)
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4. Chiral skyrmion states in non-centrosymmetric magnets

Figure 4.14.: Different types of isolated skyrmions which can be found among the
solutions of the Euler equation (4.54) for negative magnetic field and
easy axis uniaxial anisotropy. The first column (a), (e), (i), (m) shows
the angular profiles θ(ρ). The second column (b), (f), (j), (n) exhibits
the phase portraits. The eigenmodes plotted in the third column (c),
(g), (k), (o) allow to deduce that all the solutions except skyrmions
(c) are unstable. The distributions of the energy density for different
types of localized solutions are plotted in the fourth column (d), (h),
(l), (p).

where εk << 1 in most cases. The function ξ1(ρ) describes a displacement of the
vortex front. Thus the lowest perturbation of the structure is connected with an
expansion or compression of the profile. The calculations showed that in the region
of existence of skyrmion solutions matrix (4.62) has only positive eigenvalues, and
thus these solutions are radially stable.

The smallest eigenvalues of large π-vortices (Fig. 4.14 (e)) are always negative
(Fig. 4.14 (g)). These vortices are unstable either with respect to infinite expansion
of the core, or to a contraction into a common skyrmion [70]. The solutions of the
spectral problem for vortices with nodes (Fig. 4.14 (k), (o)) reveals their instability
with respect to perturbations that remove the energetically disadvantageous humps.
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axis (c) uniaxial anisotropy shown as radial profiles θ(ρ) (a) and surface
plots of mz-component of the magnetization.
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4.7.3. Transformation of hexagonal skyrmion lattice under
influence of uniaxial anisotropy

For h = 0 the influence of uniaxial anisotropy on the skyrmion structure is rather
weak for |βu| < 0.25, but then it becomes pronounced up to the critical value |βcr| =
π2/16 where a second-order phase transition into the homogeneous state occurs.

Easy-plane type anisotropy, βu < 0, leads to the compression of the regions close
to the skyrmion core and boundary (Fig. 4.15 (a), red dashed lines in (c) and surface
plot (b)). The easy-plane region of the lattice cell with θ(x, y) = π/2 grows rapidly
approaching critical value βcr.

Easy axis anisotropy, βu > 0, on the contrary, expands the near-core region (θ = 0)
and the skyrmionic outskirt with θ = π (Fig. 4.15 (c), blue dotted lines in (a)).

4.7.4. Stabilization effect of uniaxial anisotropy on skyrmion
states

For βu = 0 as it was noted in section 4.6, the conical phase is the globally stable state
from zero field to the saturation field (0 < h < 0.5), [99] (Fig. 4.12 interval (a− d)).
skyrmion lattices and helicoids are metastable solutions: skyrmions exist in the
interval of magnetic fields from negative critical field with HH/HD = π2/16 = 0.3084
(Fig. 4.12 point b) to positive critical field with HS/HD = 0.4006 (Fig. 4.12 point
c); helicoids exist below the critical fields HH/HD (Fig. 4.12 point b).

A sufficiently strong uniaxial anisotropy βu suppresses the conical states. Cones
can exist only in the triangular region (a−d− f): within the region (a−d−B−A)
they are thermodynamically stable and flip into the saturated state by the second-
order phase transition at the critical line (d − B) when the conical structure closes.
Within the region (a − A − B − f) the conical phase is a metastable state, at the
lines (a−A) and (A−B) it discontinuously transforms into helicoids and skyrmions,
respectively.

Modulated states with the propagation vectors perpendicular to the applied field
(helicoids and skyrmion lattices) can exist even for larger values of uniaxial anisotropy
(up to the point e): helicoids occupy the area (a − b − D − e) with the line
(b − D − e) of unwinding into homogeneous state, while skyrmions have the ex-
isting area (a− c−B −D − e) for positive fields and (a− b− e) for negative fields.
The skyrmion lattice is the only modulated state that can exist in the triangular
region (B −E −D), and only helicoids exist in the region (D −F − e) (see inset (i)
of Fig. 4.12).

By comparing energies of corresponding modulated phases (Fig. 4.16 (a)) one
can conclude that skyrmions can be stabilized only with simultaneous influence of
positive magnetic field and easy-axis uniaxial anisotropy. For easy-plane uniaxial
anisotropy, the conical phase is always the global minimum of the system.

The skyrmion states are thermodynamically stable within a curvilinear triangle
(A − B − D) with vertices (A) = (0.0166, 0.1197), (B) = (0.0907, 0.3187), and
(D) = (0.47, 0.05)) (Fig. 4.12). The phase diagram from present rigorous solutions
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very slightly differs from the calculations within the circular-cell approximation.
Only point (A) = (0.0125, 0.1079) has the slightly different coordinates [XI].

The solutions for helicoids exist within area (a−A−D − e) with the line A−D
of first-order phase transition into skyrmion lattice.

Thus, critical points A, B, D separate the phase diagram (Fig. 4.12) into three
distinct regions with thermodynamical stability of each of considered phases. More-
over, one can introduce different regimes of uniaxial anisotropy:

(I) In the low anisotropy regime (βu < βuA = 0.0166) only helical states are
realized as thermodynamically stable phases: at the line a − A helicoids transform
into cones;

(II) For βuA < βu < βuB = 0.0907 the skyrmion lattice becomes absolutely stable
in a certain range of the applied field: at the line A − D, first, helicoid flips into
skyrmion phase and then at the line A − B skyrmions transforms into cones;

(III) For βuB < βu < βuD = 0.47 there is only phase transition between helicoids
and skyrmions at the line A − D;

(IV) Finally for ( βuD < βu < βue = βcr) the helicoids are thermodynamically
stable in the whole region where modulated states exist.

4.7.5. Magnetization curves

Fig. 4.16 (b) shows the magnetization curves of all considered modulated structures
for different values of uniaxial anisotropy.

For conical and helical phases, magnetization curves represent anhysteretic lines
symmetric with respect to the field direction. In the region of helicoid existence,
the magnetization changes linearly almost for all values of the applied magnetic
field (except drastic increase near the field of saturation), but remains smaller in
comparison to the linear magnetization increase of the conical phase.

Magnetization curves for skyrmion lattices bear pronounced hysteretic character
with the mutual conversion of two critical fields hH and hS (points b and c in the Fig.
4.12). For instance, in large negative magnetic fields far beyond the disappearence of
the honeycomb skyrmion texture, isolated skyrmions with the magnetization along
z axis (with θ(0) = 0) can be nucleated. These skyrmions condense into a lattice in
accordance with the physical principles described previously. In positive magnetic
field this skyrmion lattice becomes a honeycomb structure and transforms into the
homogeneous state. Thus, exemplified magnetization curve is composed from three
subloops with remanent magnetization in zero magnetic field (Fig. 4.16 (b), inset).

4.8. Stabilization effect of exchange anisotropy on
skyrmion states. Phase diagram of states

From the numerical investigation of Eq. (4.1) with an exchange anisotropy (Eq.
(4.2)) I now show that skyrmion textures can be stabilized over conical phases even
for relatively small values of bEA.
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Figure 4.16.: (a) The energies of the skyrmion lattice (red dotted line), cone (dashed
green lines) , and helicoid (solid blue lines) with respect to the homo-
geneous state plotted as functions of magnetic field for different values
of uniaxial anisotropy β. For β > 0.25 only helicoids and skyrmions
can be realized. (b) Magnetization curves of all modulated states for
different values of uniaxial distortions β: green dashed lines for con-
ical phase, red dotted lines for skyrmion lattice, and blue solid lines
for helicoid. Inset shows hysteretic magnetization process for skyrmion
lattice (see text for details).
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Figure 4.17.: (a) The contour plot for mz-component of the magnetization in the
isolated skyrmion for h = 0.5, bEA = −0.5. The isolated skyrmion
aquires a square shape under influence of cubic exchange anisotropy.
(b) Profiles mz plotted in dependence on the spatial coordinate r in
two cross-sections of the isolated skyrmion shown in inset.

The exchange anisotropy (see also section 1.2.1, Eq. (1.18)), on the contrary to
uniaxial anisotropy (section 4.7.4), does not affect the one-dimensional conical phase,
but deforms significantly the skyrmion states. With

bEA < 0 (4.64)

it supplies the skyrmions with additional negative energy density. For some critical
value of b

(crit)
EA (I will distinguish between two values: b

(crit1)
EA is the critical value

of exchange anisotropy when the skyrmion lattice can be stabilized in an applied
magnetic field; b

(crit2)
EA is the value of EA when even in zero field the skyrmion lattice

is the global minimum of the system; see phase diagram in Fig. 4.19) the amount of
the additional energy is sufficient to make the skyrmions the global minimum of the
system. In the following I will consider exactly this mentioned situation. The cones
and skyrmions will be considered in the field applied along < 001 > crystallographic
direction.

Isolated skyrmions in the presence of exchange anisotropy assume a special char-
acter of the magnetization distribution: the double-twisted core retains its circular
symmetry, but the boundary region is distorted into a square shape. It is clear that
the numerical method in those cases, by the restriction to rectangular unit cells, is
unable to reproduce the correct energy minimum if the lattice cell undergoes a dis-
tortion into parallelogram shape. I neglect this effect in the numerical calculations,
because it is small. Thus, the solutions in Figs. 4.17, 4.18 and phase diagram in
Fig. 4.19 have to be considered as semi- quantitative approximations. In Fig. 4.17
(a) such a square-like distribution of the magnetization is shown by contour plot of
z-component of the magnetization for bEA = −0.5, h = 0.5. In Fig. 4.17 (b) the
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4. Chiral skyrmion states in non-centrosymmetric magnets

profiles mz = mz(r) are clearly different along the two cuts of the isolated skyrmions
(see inset in Fig. 4.17 (b)).

When isolated skyrmions condense into the lattice with the decreasing magnetic
field, they are subject to the influence of two opposite mechanisms: from one side,
they tend to form the densely packed lattice, from the other side however, the
skyrmions try to keep this square symmetry imposed by the exchange anisotropy.
As a result, the lattice of skyrmions is highly distorted. Rectangular lattices of this
type have been calculated and relaxed according to the principles of section 4.5.1.

In Fig. 4.18 (b) I plotted the ratio R1/R2 (R1 and R2 are the sizes of the elementary
cell along two perpendicular directions x and y shown in Fig. 4.18 (a)) versus
magnetic field for different values of the constant bEA. As for perfect hexagonal
lattice

R1

R2

= 0.5773 (4.65)

(Fig. 4.18 (b) stright line), the skyrmion lattice in the applied magnetic field shows
the tendency of the deformation toward the square lattice with

R1

R2

= 1 (4.66)

(especially for large values of bEA, see the last curve in Fig. 4.18 (b)). With increasing
constant of exchange anisotropy the saturation field of the skyrmion lattice (that is
the field when the lattice releases the free isolated skyrmions) also increases (dotted
line in Fig. 4.18 (b) and the line hS in Fig. 4.19).

In Fig. 4.19 I plotted the phase diagram for cones and skyrmions depending on
the constant of exchange anisotropy bEA. For

bEA < b
(crit1)
EA = −0.13 (4.67)

the spacious pocket shows up in the applied magnetic field with the thermodynam-
ically stable skyrmions. For

bEA < b
(crit2)
EA = −0.45 (4.68)

even in zero magnetic field the skyrmions have the lowest energy of all modulated
phases considered in this chapter.

4.9. Stabilization of skyrmion textures by cubic
anisotropy

In the present section I explicitly refer to the cubic anisotropy that can favour
skyrmions over conical phases for suitable orientation of the applied magnetic field
and skyrmion axes (as well as propagation direction of the cones and helicoids)
with respect to the easy anisotropy axes. Results of this section give straightforward
recommendations how to make skyrmionic spin textures the thermodynamically sta-
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Figure 4.18.: (a) The contour plot for mz-component of the magnetization in the
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Figure 4.20.: The sketches of the magnetization rotation in the conical phase in the
presence of cubic anisotropy with kc > 0 (a) and kc < 0 (b) are shown
together with the schematic representation of the magnetization traces
in a space (c). Depending on the orientation of the cone propagation
direction (z) with respect to the easy (green arrows) and hard (red
arrows) anisotropy axes and the applied magnetic field (h||[001]) the
energy density of the cone can be increased or reduced (see text for
details).
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ble state of the system. Calculations for all modulated phases have been obtained
rigorously using methods of section 4.5.1.

The detailed analysis of chiral modulations in the presence of cubic anisotropy
offers also practical recommendations to experimentalists under which circumstances
to look for stable skyrmion states in bulk cubic helimagnets.

4.9.1. Distorted conical phase in the presence of cubic
anisotropy

As it was noted in section 4.7, uniaxial anisotropy along the propagation direction
suppresses the conical phase for the values of the anisotropy coefficient βu much
smaller than it does for the skyrmion and helical phases (Fig. 4.12). After cones
have been suppressed, skyrmions may become the thermodynamically stable state
of the system in the applied magnetic field [XI].

Uniaxial anisotropy does not affect the ideal single-harmonic type of the magne-
tization rotation in the cone state, but just leads to the gradual closing of the cone.
Cubic anisotropy, on the contrary, violates the ideal spin configuration of the conical
phases: the magnetization deviates from the ideal conical surface trying to embrace
the easy axes and to avoid the hard directions (Fig. 4.20).

Depending on the mutual arrangement of easy anisotropy axes and propagation
direction of the cone the cubic anisotropy can either increase the energy of this phase
or decrease it. Therefore, the rotation of the magnetization in the conical phase must
be in tune with a complex landscape of the cubic anisotropy with various global and
local minima.

The homogeneous states in a system with the cubic anisotropy in the applied
magnetic field are described by the behaviour of the following energy functional (see
also section 1.2.2 B):

Φ(Θ, Ψ) = kc(m
2
xm

2
y +mx2m2

z +m2
ym

2
z)−h ·m, m = (sin Θ cos Ψ, sin Θ sin Ψ, cos Θ)

(4.69)
where angles Θ and Ψ define the orientation of the magnetization in the spherical
coordinate system. I introduce angles Θ and Ψ for the magnetization in the ho-
mogeneous state to distinguish them from the angles θ and ψ characterizing the
distribution of the magnetization in skyrmion states.

Depending on the values of the coefficient kc and the components of magnetic
fields different spatially homogeneous phases can be realized in the system. The
basic principles how to handle such a type of functionals and to define the manifold
of extrema in the applied magnetic field are given explicitly in chapter 2. Here, I
will refer to the results of that chapter, while dealing with the modulated phases.

In the forthcoming calculations, the magnetic field h is considered to be applied
along [001] crystallographic direction. The cases with kc > 0 and kc < 0 are discussed
separately. Certainly, these two examples cannot address the problem of skyrmion
stabilization over cones for random orientation of the magnetic field. But they
represent the auxiliary cases consideration of which is instructive in the following.
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A. Solutions for conical phase with kc > 0, h||[001].

In Fig. 4.22 I have plotted the energy density Φ of Eq. (4.69) for some values of
the applied magnetic field as surfaces in dependence on the angles Θ and Ψ (Fig.
4.22 panel (a)), three-dimensional polar plots (Fig. 4.22 panel (b)), and their two-
dimensional cuts (Fig. 4.22 panel (c)). Two-dimensional cuts of energy surfaces of
panel Fig. 4.22 (a) are plotted in Fig. 4.21 (b), (c) as Φ = Φ(Θ) for Ψ = 0 and
h = 0, 0.2. Fig. 4.21 (a) represents the astroid plotted according to the conventions
of the chapter 2. The lability (orange) lines have been obtained by solving the
system of equation, ΦΘ = 0, ΦΘΘ = 0 (see also Eqs. (2.8), (2.11)). The red lines are
the lines of first-order phase transitions - the solutions with different orientations
of the magnetization (global minima of the functional (4.69)) have equal energies
along these lines (see also Eq. (2.13)). The present astroid corresponds to the
two-dimensional case with Ψ = 0. The field applied along [001] crystallographic
direction has only z-component, i.e. in the following h = hz. Although, any other
directions of the applied magnetic field can be considered. From all these graphs
the comprehensive analysis of the magnetization rotation in the conical phase can
be carried out.

For kc > 0 and h = 0 the equilibrium states of the magnetization correspond to
the easy axes of cubic anisotropy oriented along <001> crystallographic directions
(green arrows in Fig. 4.20 (a) and blue circle in FIg. 4.21 (b) marking the global
minimum of Φ(Θ, Ψ)). Maxima of the functional (4.69) are <111> directions -
the hard axes of cubic anisotropy (red arrows in Fig. 4.20 (a)). The equilibrium
states of the magnetization in the homogeneous state have the orientations with
Θ = kπ/2, k = 0, 1, 2.... In Fig. 4.22 (a), (b) these minima are marked by the yellow
circles. In the panel (c) of Fig. 4.22 the orientations of the magnetization are shown
by the blue arrows.

For h = 0 the magnetization in the conical phase rotates in the plane (001)
(brown plane in Fig. 4.20 (a)). While rotating, the magnetization leaves one energy
minimum corresponding to <001> directions and, rotating through the saddle point
between hard axes <111>, gets into another energy minimum with <001> direction.
The trace of the magnetization in the conical phase is shown by thick yellow line in
Fig. 4.22 (a),(b).

In the applied magnetic field h||[001] the energy functional (4.69) has a global
minimum corresponding to the state along the field and local minima for the states
of the magnetization deflected from the plane (001). These minima disappear in the
point A1 of the astroid (Fig. 4.21 (a)). The local minimum for the magnetization
pointing against the field, Θ = π, vanishes in the point A2.

Rotation of the magnetization in the conical phase around the field sweeps the
metastable states of Eq. (4.69) for h < h(A1) and saddle points for h > h(A1).
The conical phase becomes the metastable solution in comparison with the skyrmion
lattice (see the phase diagram of states in Fig. 4.30 (a)). In a critical field the conical
phase by a first-order phase transition flips into the homogeneous state. In Fig. 4.23
(a) I plotted the energy density of conical spiral with respect to the homogeneous
state. The line ε in Fig. 4.30 (a) signifies the first-order phase transition when
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Figure 4.21.: kc > 0, h||[001]. (a) The phase diagram in internal field components
obtained according to the conventions of chapter 2. The orange lines
are the lability lines bounding the region with plenty of local minima of
energy functional (4.69). On the red lines two different angular phases
have the same energy density, i.e. these are lines of the first-order phase
transitions. (b), (c) show the energy density Φ = Φ(Θ) (4.69) for fixed
value of the azimuthal angle Ψ = 0 and different values of the applied
magnetic field h.

the energy difference of two phases is zero. The fields corresponding to jump of
metastable conical phase with positive energy into homogeneous state are not shown
on the phase diagram.

The magnetization curves for conical phase are depicted in Fig. 4.23 (b). From
the behavior of all components of the magnetization (Fig. 4.23 (c)) in the applied
magnetic field it can be concluded that the cones become more distorted in the high
magnetic fields - the rotating magnetization tries to avoid the hard anisotropy axes
<111>.

B. Solutions for conical phase with kc < 0, h||[001].

For kc < 0 and h = 0 the equilibrium states of the energy functional (4.69) cor-
respond to the easy axes of cubic anisotropy oriented along <111> crystallographic
directions (green arrows in Fig. 4.20 (b)). The angle of these easy direction with
respect to the field h||[001] is 70.5◦. Maxima of the functional (4.69) are <001>
directions - the hard axes of cubic anisotropy (red arrows in Fig. 4.20 (b)).

The magnetization in the conical phase performs such a rotation to sweep the
easy directions <111> (Fig. 4.25 (a), (b)). Even in zero field the conical phase has
non-zero component of the magnetization along the field (Fig. 4.20 (b)).

In the applied magnetic field the global minima of Eq. (4.69) gradually approach
the field direction. For h > h(B2) (see the astroid in Fig. 4.24 (a)) only the states
with the magnetization along the field can exist. In the intermediate point B1 the
local minima of those <111> axes dissappear that make angles more than 90◦ with
the field, i.e. the easy axes under the brown plane in Fig. 4.20 (b).

In Fig. 4.26 (a) I plotted the energy density of the conical phase with respect to
the homogeneous state for different values of cubic anisotropy kc in dependence on
the field h. The magnetization curves for conical phase (Fig. 4.26 (b)) display the
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Figure 4.22.: kc > 0, h||[001]. The energy density Φ (4.69) plotted as two-
dimensional surfaces in dependence on the angles Θ and Ψ (a) and
three-dimensional polar plots A + BΦ (b) where A and B are suitable
scaling factors. In the present case A = 0.5, B = 1. The cuts of graphs
in panel (b) with Ψ = 0 are shown in panel (c). Path of the rotating
magnetization in the conical phase is imaged by the yellow lines with
yellow circles being the minima of Eq. (4.69). In the applied magnetic
field the states of the magnetization in the cone correspond only to the
local minima.
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cubic anisotropy; (b) magnetization curves showing the component of
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Figure 4.24.: kc < 0, h||[001]. (a) Astroid obtained according to the rules of chapter
2. The red lines are the lines of the first-order phase transitions. The
orange lines (lability lines) bound the region with a multitude of local
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Figure 4.25.: kc < 0, h||[001]. The energy density (4.69) plotted as two-dimensional
surfaces in dependence on the angles Θ and Ψ (a) and three-
dimensional polar plots (b). The cuts of panel (a) with Ψ = π/4 are
shown in panel (c). Path of the rotating magnetization in the conical
phase is shown by the yellow lines with yellow circles being the minima
of Eq. (4.69). In the applied magnetic field the magnetization in the
cones rotates to sweep the global minima of Eq. (4.69).
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Figure 4.26.: kc < 0, h||[001]. Solutions for the conical phase: (a) energy density
of the conical phase with respect to the homogeneous state in depen-
dence on the applied magnetic field h for different values kc of the cubic
anisotropy; by the second-order phase transitions cones transform into
the homogeneous state with the magnetization along the field. (b) Mag-
netization curves showing the component of the magnetization along
the field, mz. Even in zero magnetic field the magnetization has non-
zero z- components. (c) The components of the magnetization plotted
along the propagation direction for different values of the applied mag-
netic field.

non-zero mz-component of the magnetization in zero field as described earlier. From
the behavior of all components of the magnetization (Fig. 4.26 (c)) in the applied
magnetic field it can be concluded that the cones undergo the greatest deformation
of their mz-component in zero magnetic field.

4.9.2. Distorted helicoid in the presence of cubic anisotropy

In the section 4.3.1 I introduced the following definition for the helicoid: helicoid is
a spiral state with the propagation direction perpendicular to the applied magnetic
field. (Fig. 4.1 (a)). In the presence of cubic anisotropy such a definition must
be generalized to include arbitrary orientations of the applied magnetic field and
propagation directions of helicoids.

Both the spin arrangements and the corresponding propagation directions in the
helicoid are found to be extremely sensitive to the orientation and strength of the
applied magnetic field as well as to the sign and value of the anisotropic constant
kc. Perturbations of the uniform rotation for the helicoid are related to the shape of
potential profiles of homogeneous states (Figs. 4.22, 4.24, 4.25).

In a general case, there is a multitude of solutions for helicoids characterized by
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Figure 4.27.: kc > 0, h||[001]. Solutions for the helicoid: (a) sketch showing the
plane of the magnetization rotation (yellow plane), easy (green arrows)
and hard (red arrows) directions of the cubic anisotropy, the directions
of the applied magnetic field h and the helicoid propagation direction k.
The projections of hard anisotropy axes onto the plane of rotation are
shown by dotted red lines. (b) mz-component of the magnetization in
dependence on the coordinate y for different values of the field. With
increasing magnetic field parts of the curves with the magnetization
along the field widen. (c) Polar plot for the component of the magneti-
zation perpendicular to k for h = 0.2. The densest distribution of the
magnetic vectors corresponds to θ = 0 although the local minima can
be distinguished also for θ = ±π/2.

variable directions of propagation vectors. In the following, helicoids are defined as
states with vectors k oblique to the field. Conical phase (see section 4.9.1) in the
present definition can be considered as one of the helicoids with the propagation
direction along the field.

A. Solutions for helicoids with kc > 0, h||[001].

For the case with kc > 0, h||[001] the helicoids propagate in the plane (001) along
one of the easy axes < 001 > of cubic anisotropy (Fig. 4.27). Magnetic field is
applied perpendicularly to the vector k as it was considered for helicoids of isotropic
functional W0 (section 4.3.1). Deviation of the propagation direction from the plane
(001) as well as from the easy cubic axis in the plane increases the energy of the
helicoid.

The plane of the magnetization rotation in the helicoid contains the easy anisotropy
axes < 001 > (green arrows in Fig. 4.27 (a) including the easy axis [001]||h) and the
projections of the hard anisotropy direction < 111 > onto this plane (red dotted lines
in Fig. 4.27 (a)). Already for h = 0 the helicoid accomplishes an inhomogeneous
rotation disturbed by anisotropic interactions.

Increasing magnetic field leads to slow rotation of the magnetization in the vicinity
of the axis [001] and acceleration of the rotation for the directions opposite to the
field. In Fig. 4.27 (c) the polar plot is shown for the component of the magnetization
perpendicular to the vector k. Distribution of the magnetic moments is densest
for θ = 0. The angular phases obtained by deflecting the inplane magnetization
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with θ = ±π/2 correspond to the local minima of Eq. (4.69) and also lead to the
denser distribution of the magnetic moments (see Fig. 4.22). Described solutions
are depicted in Fig. 4.27 (c) by red arrows.

In Fig. 4.27 (b) I have plotted mz component of the helicoid in dependence on
the spatial coordinate y along the propagation direction for different values of the
applied magnetic field. For some critical value of the field the helicoid transforms
into the homogeneous state with the magnetization along the field. This transition
is signalled by an unlimited growth of the period for the helicoid and leads to the
set of isolated domain walls with infinite separation between them. The line of these
critical fields on the phase diagram (Fig. 4.30 (a)) has a label η (green dashed line).
The energy density of the helicoid with respect to the homogeneous state is shown
in Fig. 4.30 (b) (solid blue line).

B. Solutions for helicoids with kc < 0, h||[001].

For the case kc < 0, h|| < 001 > the energy of the helicoid must be minimized with
respect to the orientation of the wave vector k relative to the applied magnetic field.
The equilibrium solutions for helicoids are directly related to the energy landscape
of cubic anisotropy (see Fig. 4.25).

For h = 0, the propagation direction of a helicoid was found to point to <111>
crystallographic directions. For definiteness in the following calculations, I assume
k||[111], h||[001] (see sketch in Fig. 4.28 (a)). The magnetization in the helicoid
rotates in the plane (112) (grey shaded triangle in Fig. 4.28 (a)). The plane of the
magnetization rotation contains the projections of easy anisotropy axes < 111 >. I
marked the easy directions under the plane of rotation by blue color and above the
plane - by red. Also all easy directions have been numbered. Rotating magnetization
deviates from the plane (112) and sweeps these easy exes. The mz-component of the
magnetization shown in Fig. 4.28 (b) is negative for the crystallographic directions
[111[ (marked as 1), [111] (3), [111] (5), and positive for [111] (2), [111] (4), [111]
(6).

For h = 0 the helicoid has lower energy in comparison with the cones with k||[001].
While conical phase is able to sweep four easy anisotropy axes (see section 4.9.1 B),
the rotating magnetization in the helicoid meets six easy anisotropy directions on
its way (Fig. 4.28 (a)).

Applied magnetic field h||[001] leads to the significant distortions of the helicoid
structure. The field destroys the degeneracy of energy minima of cubic anisotropy:
easy axes 1,2, and 3 have lower energy in comparison with metastable directions 4, 5,
and 6. During this complex magnetization process the wave vector k of the helicoid
is directed along the metastable minimum [111] with slight change of its orientation
in the applied magnetic field. The distribution of the magnetic vectors in the plane
perpendicular to the propagation direction becomes denser in the lower part of the
polar plot in Fig. 4.28 (d).

In Fig. 4.30 (d) I plotted the energy density of the cone (blue line) and helicoid
(green line) versus h. For some critical value of the magnetic field (point β in Fig.
4.30 (d)) conical phase becomes energetically more favourable than the helicoid.
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This point indicates the first-order phase transition between these one-dimensional
modulated phases. The critical fields have been plotted in the phase diagram (Fig.
4.30 (c)) for different values of the cubic anisotropy constant kc. Note, that in the
present geometry the cone sweeps easy axes 1,2,3 as well as the axis [111] perpen-
dicular to the plane of rotation of the helicoid. As soon as the metastable minima
4,5,6 dissappear, the helicoid transforms into the conical phase (see the third plot
in panel (a) of Fig. 4.28).

4.9.3. Transformation of the hexagonal skyrmion lattice in the
presence of cubic anisotropy

Alongside with the drastic influence on the conical phases and helicoids (see sec-
tions 4.9.1 and 4.9.2), cubic anisotropy distorts significantly skyrmion states: the
symmetry of the skyrmion cores reflects the underlying energy landscape of the cu-
bic anisotropy (Figs. 4.22, 4.25) and undergoes the respective transformation (Fig.
4.29).

In the calculations according to the methods of section 4.5.1, the direction of the
skyrmion axes have been tuned with respect to the field and easy anisotropy axes in
the search of the states with the lowest energy (the same minimization of the energy
had been done in the section 4.9.2 B for helicoids). For kc > 0 the equilibrium
position of the skyrmion axis is codirectional with the applied magnetic field. For
kc < 0 the skyrmion axis has been found to follow the global minimum of the cubic
anisotropy (Eq. (4.69)), i.e. for h = 0 the skyrmion axis is directed along the easy
cubic axes < 111 >, but in the field it starts to move toward the field.

In Fig. 4.29 (a)-(c) I have plotted the contour plots for mz-components of the
magnetization in skyrmion lattices for both signs of the cubic anisotropy kc. In Fig.
4.29 (a) and (b) the axes of skyrmion lattices are directed along the field; the cores of
skyrmions become square shaped with the tendency either to elongate or to shorten
along particular directions.

The skyrmion lattice of Fig. 4.29 (a) can be stabilized only in the applied mag-
netic field. The field localizes the skyrmion cores and prevents skyrmions from the
transformation into helicoids. For the field lower than some critical value (in Fig.
4.30 (b) this field is marked by γ0) the easy axes of the cubic anisotropy in the
plane of the skyrmion lattice induce the instability of skyrmions with respect to he-
licoids. By numerical means used in the present thesis it is hardly possible to obtain
the solutions of the skyrmion lattice for zero and small magnetic fields. The easy
directions of the cubic anisotropy are shown by the white arrows in Fig. 4.29 (a).

For another critical value of the field the skyrmion lattice releases the free isolated
skyrmions. In Fig. 4.30 (a) these fields are depicted as the line γ (dashed red line).
The energy density of skyrmion lattice is plotted in Fig. 4.30 (b) (red solid line for
kc = 0.5). With increasing value of the constant kc the interval between two critical
fields (i.e. between the points γ0 and γ) decreases. For the constants kc > kc(E)
(Fig. 4.30 (a)) the skyrmion lattice is highly unstable.

The skyrmion lattice plotted in Fig. 4.29 (b) has the larger energy in comparison
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Figure 4.28.: kc < 0, h||[001]. Solutions for the helicoid with k||[111]: (a) sketch
showing the plane of the magnetization rotation (grey triangular
plane), easy directions of the cubic anisotropy (blue straight lines),
the directions of the applied magnetic field h and the helicoid propa-
gation direction k, and the coordinate axes (red arrows) related to the
helicoid. The projections of the easy anisotropy axes onto the plane
of the magnetization rotation are numbered and marked by blue (the
axes are above the plane) and red (the axes are under the plane) color.
(b) mx (red line), my (black line), and mz (blue line) components of
the magnetization in dependence on the coordinate z||k for h = 0. The
maxima and minima of the mz-component correspond to the deviations
toward easy anisotropy directions. (c) Polar plot for the component of
the magnetization perpendicular to k for h = 0.2. The densest dis-
tribution of the magnetic vectors corresponds to the lower part of the
plot: the rotating magnetization spans the easy direction in the direct
vicinity of the applied magnetic field.
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Figure 4.29.: Contour plots for components of the magnetization in skyrmion lattices
for both signs of the cubic anisotropy constant kc: (a), (b) contour plots
for mz-components of the magnetization with the axis of the skyrmion
lattices directed along the field, i.e. along [001]. Axes <100> of cubic
anisotropy are shown as white arrows. In (a) with kc > 0, these axes are
easy directions, whereas in (b) with kc < 0 - they are hard anisotropy
axes. (c) Contour plot for mz-component of the magnetization in the
skyrmion lattice with the axis along [111] crystallographic direction.
Dotted white arrows indicate the projections of anisotropy axes <111>
onto the plane of skyrmion lattice. (d) Contour plots for mx, my, and
mz components of the magnetization in a case when axes of skyrmions
do not point to the equilibrium state of the functional (4.69). The cores
of the skyrmions are shifted from the center of the lattice cell, but the
lattice retains the stability against transformation into helicoids.
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with the lattice directed along the < 111 > crystallographic directions (Fig. 4.29
(c)). White (solid) arrows in this case with kc < 0 indicate hard axes of the cubic
anisotropy. White dotted arrows are projections of the easy axes < 111 > onto the
plane (001) of the skyrmion lattice. In the present calculations such a lattice was
used as a cross-check of calculations: the energies of two skyrmion lattices coincide,
when the angular phases of the functional (4.69) are aligned along the field.

In Fig. 4.29 (c) the axis of the skyrmion lattice points to the crystallographic
direction [111]. In this case the dotted white arrows show the projections of the cubic
easy axes < 111 > onto the plane (112). The core of the lattice acquires the shape of
a curvilinear triangle. With increasing magnetic field such a lattice gradually rotates
keeping its axis parallel to an equilibrium state of the energy functional (4.69). In the
panel (d) of Fig. 4.29 I plotted the skyrmion lattice in the applied magnetic field,
but with the axis directed along [111] axis. The figure shows that the skyrmion
lattice is essentially robust against the transformation into the helicoid even if its
core is displaced from the central position in the lattice cell. Energy density of the
skyrmion lattice is plotted in Fig. 4.30 (d) (red solid line). The skyrmions are only
metastable states in comparison with cones and helicoids.

4.9.4. The phase diagrams of states in the presence of
magnetocrystalline cubic anisotropy

The phase diagrams of states for both signs of cubic anisotropy constant kc and
the field applied along [001] are plotted in Figs. 4.30 (a), (c). Further, I analyse
each of these phase diagrams and give some qualitative recommendations as far the
thermodynamical stability of skyrmions with respect to conical phases is concerned.

A. Phase diagram of states for kc > 0, h||[001].

Cones as modulated states with negative energy relative to the homogeneous state
exist below the line d-A-B-C (dashed blue line ε in Fig. 4.30 (a)). At this line
cones flip into the saturated state by a first-order phase transition as described in
section 4.9.1 A. Nevertheless, above this line cones still exist as states with positive
energy. Only within the region filled with a blue color (0-d-A-D or region I) they are
thermodynamically stable. In the remaining part the cones are metastable states.
At the lines ν (red solid line A-D in Fig. 4.30 (a)) and κ (green solid line) cones
transform discontinuously into skyrmions (red-colored area II) and helicoids (green
colored region III), respectively. Dotted lines mark the phase transitions between
the metastable states: δ is the line of first-order phase transition between skyrmions
and helicoids (blue line a-D), for kc = 0 the point ’a’ corresponds to this transition
in the isotropic case; line D-B (green dotted line) stands for the transition between
metastable cones and helicoids in the region where skyrmions are thermodynamically
stable states; line D-C (dotted red line) is the line of the first-order phase transition
between skyrmions and cones in the region of stability of helicoids.

As it is seen from the phase diagram (Fig. 4.30 (a)), the skyrmion states are
thermodynamically stable within a curvilinear triangle (A - D - E) with vertices
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(A) = (0.047, 0.379), (D) = (0.233, 0.264), and (E) = (0.613, 0.203)). At the line
D-E they transform into helicoids, and at c-A-E-C (red dashed line γ) - into the
homogeneous state with the magnetization along the field. (C)=(0.651,0.176) is the
point of intersection of the lability lines for cones (blue dashed lines) and skyrmions;
in the point E the lability lines for skyrmions and helicoids cross each other. Point
B has the coordinates (0.269,0.253). For kc > kc(C) helicoids and cones can exist for
much larger values of the applied magnetic field than skyrmions; skyrmions undergo
the elongation into the helicoids in this region (see also section 4.9.3).

The solutions for helicoids exist below the line b-B-E (green dashed line) where
they turn into the homogeneous state. In the region III of the phase diagram (Fig.
4.30 (a)) helicoids are the thermodynamically stable states of the system. Due to
the strong influence of the cubic anisotropy on the conical phase, helicoids can exist
in higher fields than cones for kc > kc(B).

The present phase diagram has been built by comparing energies of corresponding
modulated phases. In Fig. 4.30 (b) the energies of the skyrmion lattice (red line),
helicoid (green line), and cone (blue line) are plotted in dependence on the applied
magnetic field h for kc = 0.4. In zero field the conical phase is the state with
the minimal energy. Then, in the point κ the cone transforms into the helicoid.
Points δ and ν indicate the transitions to skyrmions from helicoids and to skyrmions
from cones, respectively. These transitions demand the closer look at them. For
kc = 0.3, h(δ) < h(ν), but for kc = 0.4, h(δ) < h(ν) (see inset of Fig. 4.30 (b)).
For h < h(γ0) the skyrmion lattice may elongate into the helicoid (see section 4.9.3
for details). The skyrmion cores become instable with respect to elliptic distortions.
Numerically, such a transformation is accompanied by the drastic increase of the
grid spacings (Δy >> Δx or Δx >> Δy) along one of the spatial directions y or
x (see section 4.5.1 for the introduction into the numerical recipes of the present
calculations).

B. Phase diagram of states for kc < 0, h||[001].

For kc < 0 and the field h||[001] only one-dimensional chiral modulations are
present in the phase diagram as thermodynamically stable states of the system (Fig.
4.30 (c)). At zero field the helicoid (green line) has lower energy in comparison with
the cone (blue line in Fig. 4.30 (d)). The reason of this is explicitly explained in the
section 4.9.2 B : rotating magnetization in the helicoid sweeps 6 easy axes of cubic
anisotropy, while the conical phase - only 4. The situation is drastically changed in
the applied magnetic field: point β signifies transformation of the helicoid into the
cone by the first-order phase transition.

Skyrmions are metastable solutions. Points α1 and α2 of the transitions to skyrmions
from cones and to skyrmions from helicoids are characterized by the higher energy
densities comparing with the energy of the global helical and conical phases, respec-
tively. Therefore, these transitions are hidden. In this connection the influence of
the higher-order anisotropy terms may have significant influence on the skyrmion
states.

C. General remarks how to stabilize skyrmion states in the presence of cubic
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4.10. Candidate materials for experimental observation of skyrmion textures

anisotropy

Considered phase diagrams of states (Figs. 4.30 (a), (c)) allow to deduce some
qualitative recommendations how to stabilize skyrmions over conical phases in the
presence of cubic anisotropy. Such phase diagrams, however, cannot be considered
as complete, since I did not considered possible three-dimensional states realized in
the system. Moreover, competition of different small anisotropic contributions will
also distort the stability regions of different modulated phases.

(i) As it was concluded in section 4.9.1, cubic anisotropy effectively suppresses
conical phases for kc > 0 and h||[001]. Rotating magnetization of the conical phase
in this case sweeps the metastable directions of the energy functional (4.69). The
same effect may be achieved for the field h|| < 111 > and kc < 0. In this case, the
hard axes < 100 > of the cubic anisotropy impair the ideal harmonic rotation of the
magnetization in the conical phase. The phase diagram of states looks qualitatively
similar to the phase diagram in Fig. 4.30 (a), but with slightly different coordinates
for all critical points. Therefore, the suppression of the cone depends on the sign
of the cubic anisotropy constant kc: for kc > 0 the field must be applied along
<001>, for kc < 0 - along <111>. The cubic anisotropy kc must be larger than
some threshold value corresponding to the point A in Fig. 4.30 (a).

For kc < 0, h||[001], and h > h(β), the conical phase is the thermodynamically
stable state of the system (Fig. 4.30 (c)). The rotating magnetization in a cone
sweeps the global minima of energy functional (4.69). The same situation will be
also realized for kc > 0 and h|| < 111 >, when the magnetization spans easy
anisotropy axes <100>. The skyrmions will form only metastable states in these
situations.

(ii) At the same time the constant kc of cubic anisotropy must not be larger than
the critical value kc(E). Otherwise, the skyrmions will tend to elongate into spirals
(see for details section 4.9.3). Such an instability of skyrmions is related to the
easy anisotropy axes <100> in the plane of the skyrmion lattice (Fig. 4.29 (a)).
Skyrmions can be stabilized only in the applied magnetic field h > h(γ0) (Fig. 4.30
(b)). For kc < 0, h|| < 111 > the skyrmions will suffer from instability toward
helicoids with k|| < 111 > as easy cubic axes <111> make some angle with the
skyrmion plane.

4.10. Candidate materials for experimental
observation of skyrmion textures

From the general phenomenological point of view, the choice of materials that will
show skyrmion lattices as low-temperature states in applied fields is dictated only by
symmetry requirements and a magnetic ordering transition. Therefore, many differ-
ent magnetic crystals from classes D2d and Cnv could be listed as promising objects of
pointed searches for skyrmion lattice phases in their magnetic phase diagrams. Here,
I mention only very few of them, where clear indications of non-collinear magnetic
states are known from early experiments.
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Figure 4.30.: Phase diagrams of states for kc > 0 (a) and kc < 0 (c). Magnetic field
h is applied along [001]. The regions of the thermodynamical stability
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The detailed description of the phase transitions between modulated
phases is given explicitly in the text. (b), (d) The energy densities of
the modulated phases in dependence on the field for fixed value of kc

(see section 4.9.4 for details).

140



4.10. Candidate materials for experimental observation of skyrmion textures

Defect spinel structure magnets GaM4X8. The magnetic phase diagram of GaMo4X8

shows a clear intermediate phase between ground-state and field saturated state
[237]. The material behaves as almost a ferromagnet, and Rastogi and Wohlfahrt
[237] pointed out the similarity with the behavior of MnSi and the possibility of a
twisted non-collinear spin-structure.

CeTMSn magnets. The examplary CeCuSn exists in two modifications, α- and
β-CeCuSn. Only the β-variant is non-centrosymmetric with space-group P63mc be-
longing to Laue class C6v and displays a series of marked anomalies in the magnetiza-
tion data M(H), while the centrosymmetric variant behaves apparently as a simpler
magnetic systems. The direct comparison of the two different crystallographic states
suggests an important role of chiral DM interactions [238].

In Ref. [21] two tetragonal materials Tb3Al2 and Dy3Al3 were proposed as suit-
able candidates for the observation of chiral skyrmions and spiral structures. Both
crystals belong to the space group C4

4v ; Tb3Al2 has a Curie temperature TC = 100
K, and for Dy3Al3, TC = 190 K has been measured [239,240]. At high temperatures
they have rather complicated easy-axis type magnetic structures. At a transition
temperature Tt they seem to switch to an easy-plane structure. This transition was
found at Tt = 10 K for Tb3Al2 and at Tt = 20 K for Dy3Al3. Up to now modulated
magnetic structures have not been identified in these materials, but in view of the
magnetic symmetry they could be present, particularly near Tt, where the uniaxial
anisotropy constant is small and conditions for the realization of a magnetic mixed
state are favourable.

The cubic materials MnSi, FeGe, FexCo1−xSi, and CoxMn1−xSi belong to another
group where skyrmions are believed to induce anomalies of phase diagram near the
ordering transition (see chapter 6). In these compounds spiral structures related to
the Dzyaloshinsky-Moriya interactions are well known [64, 87, 241]. The helix pitch
LD = 2π/|k| is in general large in these compounds: it is 18 nm in the case of MnSi
or even larger (>230 nm) for Fe0.8Co0.2Si (see also some examples in the Table 4.2).

Table 4.2.: Néel temperatures (TN), helix periods (LD), and saturation fields (HD)
for some cubic helimagnets, data from Ref. [51].

Compound MnSi FeGe Fe0.3Co0.7Si Fe0.5Co0.5Si Fe0.8Co0.2Si

TN [K] 29.5 278.7 8.8 43.5 32.2
LD [nm] 18.0 68.3- 70.0 230 90.0 29.5
HD [T] 0.62 0.2 (6.0 ±

1.5)·10−3

(4.0 ±
0.5)·10−2

0.18

The skyrmion states in the present magnets can be easily stabilized by the small
cubic anisotropy with easy axes along < 001 > crystallographic directions and the
applied magnetic field directed along < 001 > as shown in section 4.9. The main
effect of the cubic anisotropy in this case is suppression of the conical phase. The
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4. Chiral skyrmion states in non-centrosymmetric magnets

phase diagram depicted in Fig. 4.30 (a) will be qualitatively the same for easy axes
of cubic anisotropy along < 111 > and the field parallel to one of these directions.

The skyrmion states may be stabilized over cones and helicoids also by the uniaxial
anisotropy. The results of section 4.7.4 may help to clarify the role of small uniaxial
distortions in high-pressure experiments in MnSi - an important and unsolved prob-
lem, which continues to attract widespread attention. For example for MnSi, earlier
experiments [242] and analysis [243] of magnetoelastic couplings allow a quantita-
tive estimate of strain-induced uniaxial anisotropy. The magnetoelastic coupling
with uniaxial strains uzz is given by wme = b uzz (Mz/MS)2, where MS = 50.9 A/m
is the saturation magnetization [244] and b = 7.4 GPa is a magnetoelastic coeffi-
cient derived from the magnetostriction data in Ref. [242]. Using exchange constant
A = 0.11 pJ/m, as estimated from the spin-wave stiffness reported in Ref. [245], and
D = 2 q0 A = 0.86 μJ/m2 for MnSi [31] one has K0 � 17 kJ/m3 and a dimensionless
scale b/K0 � 44 for the induced anisotropy. Thus, a modest strain uzz = 0.0024 is
sufficient to reach an induced anisotropy K/K0 = 0.1 which is enough to stabilize
the skyrmion lattice in magnetic field. This strain corresponds to a tensile stress
σzz= 680 MPa for MnSi by using the elastic constant c11= 283 GPa. [85] The rather
low uniaxial stress necessary to stabilize the skyrmion lattice is particularly relevant
for pressure experiments with a uniaxial disbalance of the applied stresses, but it
could also be achieved in epitaxial films.

Additional uniaxial anisotropy may be also of surface-induced nature. In magnetic
nanosystems surface/interface interactions provide additional stabilization mecha-
nism of skyrmion states. As recently the skyrmion states were observed in thin
magnetic layers of Fe1−xCoxSi and FeGe [28, 29], this might have the significant
contribution (for the details see chapter 5 and particularly the section 5.7).

4.11. Conclusions

In non-centrosymmetric magnetic materials, Dzyaloshinskii-Moriya exchange based
on the relativistic spin-orbit couplings stabilizes helical one- dimensional modula-
tions, as well as solitonic textures, i.e., localized topologically non- trivial baby-
skyrmions - repulsive particle-like spin textures imbedded into homogeneously mag-
netized ”parental” state. These isolated skyrmion excitations can be manipulated as
particle-like entities. Their relevant length scale can be tuned by the competition
between direct and chiral DM exchange and may range from few atomic spacings
up to microns. Theoretical results for the basic phenomenological continuum the-
ory of chiral magnets demonstrate that localized spin-textures with constant value
of the magnetization modulus may form extended regular states. The formation of
skyrmionic textures is determined by the stability of the localized solitonic cores and
their geometrical incompatibility that frustrates homogeneous space-filling. On the
contrary to the circular-cell approximation, used as a method of choice to obtain
approximate solutions for skyrmion lattices in early papers of A. N. Bogdanov et
al. [21,22,70], the rigorous solution for skyrmion states in this chapter are derived by
the direct energy minimization for phenomenological models of non-centrosymmetric
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helimagnets from different crystallographic classes. These numerical results provide
a comprehensive description of the structure of the skyrmion lattice and its evolu-
tion in the applied magnetic field directed either opposite or along the magnetization
in the center of the skyrmion cell. Differences of lattice parameters from circular-
cell approximation and from numerical calculations lie within 2% and, therefore,
demonstrate that CCA is a good approximation.

It is shown that for crystals from Laue classes D2d and Cnv skyrmion lattices are
stable with respect to one-dimensional helices in the applied magnetic field. As the
transition between spiral and skyrmion states is a first- order phase transition, do-
mains of coexisting phases may be formed. For cubic helimagnets and other systems
with Lifshitz invariants attached to three spatial directions, additional anisotropic
contributions suppressing conical phase must be considered. Skyrmion lattices can
be stabilized in a broad range of thermodynamical parameters in the presence of
uniaxial anisotropy. Skyrmion stability demands the combined effect of uniaxial
anisotropy and magnetic field. These findings demonstrate that distorted cubic he-
limagnets are very promising objects for investigations of skyrmion states. On the
other hand, skyrmion states may be stabilized over cones by small cubic anisotropy
itself. To achieve this goal the applied magnetic field must point along particular
crystallographic directions strongly deforming the conical state.
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5. Skyrmion and helical states in thin
layers of magnets and liquid
crystals

5.1. Introduction

As shown in chapter 4, specific chiral interactions in bulk non - centrosymmetric
helimagnets provide a unique mechanism for stabilization of the localized and mod-
ulated structures with fixed sense of the magnetization rotation in one (spirals) or
in two (baby-skyrmion) dimensions. Twisted modulations of such a type arise as
a result of the competition between the exchange stiffness and chiral interactions,
whereas Zeeman energy in accordance with smaller energy contributions rules the
thermodynamical stability of the corresponding modulated phases. Currently how-
ever, the scope of material science interest has been shifted to the confined artificial
systems in which the structural inversion asymmetry of the surface gives rise to qual-
itatively new phenomena. The new aspects of the physics in reduced dimensions
include Rashba effect [246, 247], chiral Dzyaloshinskii-Moriya interactions [20, 27],
surface/interface induced anisotropy [102, 227], and/or anchoring in liquid crystals.
Understanding of these effects opens up the perspectives to create chiral architec-
tures in nanosystems and put into practice control over them.

Surface-induced uniaxial anisotropy is a key factor that can influence chiral modu-
lated states in magnetic nanosystems. Its interplay with volume energy contributions
leads to the formation of specific axisymmetric distributions of the magnetization,
spherulites, which exist as smooth static solitonic textures and are extended into the
third direction in accordance with the modulating effect of the surfaces. As a starting
point for investigations of this phenomenon I have calculated the equilibrium struc-
tures of skyrmions in a nanolayer with the induced uniaxial anisotropy for a case of
”thick” layers when the induced magnetic anisotropy is strongly localized to the layer
surfaces (a rigorous criterion of ”thick” layer can be found in Ref. [227]; see also sec-
tion 1.2.2 C for details). In this limiting case the induced anisotropy can be treated
as a mere surface effect (according to Néel’s theory of surface anisotropy [102]) and
is included into the corresponding micromagnetic equations only through boundary
conditions (section 5.2, section 1.2.2 C ). In section 5.3-5.5 I give a comprehensive
analysis of the spherulitic states in confined nanolayers.

Dipolar stray fields appearing on the surface of confined layers are another im-
portant factor having a sizable effect on modulated states. Due to the strong mag-
netodipole interaction chiral helices and skyrmion lattices can be significantly de-
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5. Skyrmion and helical states in thin layers of magnets and liquid crystals

formed. In section 5.6 I address this practically unexplored problem of the interplay
between short-range energy contributions stabilizing modulated phases, skyrmions
and helices, and the long-range magnetostatic forces.

5.2. Phenomenological model of modulated states in
thin magnetic films

As it was shown in section 1.2.2 C on the example of thin magnetic layers and
in the chapter 3 on the example of magnetic nanowires and nanotubes, gener-
ally the surface-induced anisotropy must be considered as inhomogeneously dis-
tributed through the volume of the nanosystem. However, the case with the induced
anisotropy constrained to the surface region represents the practically most impor-
tant situation. When the penetration length λs (see section 1.2.2 C ) is much smaller
then the characteristic sizes of the system, the surface-induced interactions influence
the magnetization distributions only through the boundary conditions for the energy
functional (Eq. (1.32)). In Refs. [227,228], for instance, the corresponding estimates
led to λ = 1.9Å for Co/Au films and λ = 26.4; 31.9 Å for Ni/Cu multilayer systems.

In the present chapter I consider a magnetic nanolayer infinite in x- and y-
directions and confined by parallel planar surfaces at z = ±T/2. The volume energy
density wv (Eq. (1.32)) is taken from Eq. (4.1) including uniaxial anisotropy Ku

(third energy term in (4.2)). Surface part of the Eq. (1.32) is written as

ws = −Ks(m · s)2 (5.1)

with constant coefficient Ks = const of surface anisotropy (general case is expressed
by Eq. (1.30)).

Importantly, such a model allows to describe also thin layers of chiral nematic
liquid crystals sandwiched between two glass plates. The possible distributions of
the director n(r) in a bulk cholesteric liquid crystal placed in an electric field E = Ee
are determined by the minimization of the Frank free energy [48,248]:

fv =
K1

2
(div n)2 +

K2

2
(n · rotn − q0)

2 +
K3

2
(n × rotn)2 − ε0

2
(n · E)2. (5.2)

Here, Ki (i = 1, 2, 3) and q0 are elastic constants; εa is the dielectric anisotropic
constant (we consider only materials with εa > 0); p = 2π/|q0| determines the pitch
of a helical structure in the ground state (at E = 0). For the one elastic constant
approximation, K1 = K2 = K3 = K, the Frank energy density (5.2) can be reduced
to the form:

fv = K(gradn)2 + 2Kq0n · rotn − ε0E
2(n · e)2. (5.3)

For H = 0 the energy density wv coincides functionally with fv(n) (Eq. 5.3). This
allows to investigate skyrmionic states in chiral ferromagnets and liquid crystals
within a common mathematical framework. The surface energy ws for liquid crystals
(Eq. (5.1)) describes a homeotropic anchoring of glass surfaces with Ks > 0 [48]. In
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the experiments with liquid crystals, such glass surfaces confine a thin layer of a liquid
crystal and anchor the molecules perpendicularly to the surfaces. Phenomenological
model (Eq. (5.3)) allows to obtain continuous distributions of the director n for
liquid crystals.

5.3. Isolated skyrmionic states

To investigate the structure of isolated skyrmions in thin magnetic layers one has to
introduce cylindrical coordinates for the spatial variable r = (r, φ, z), and the spheri-
cal coordinates for the order parameters m and n: m,n = (sin θ cos ψ, sin θ sin ψ, cos θ)
(see section 4.4 for the details). On the contrary to the isolated skyrmions in bulk
systems which are characterized by the dependence θ = θ(r) in the cross-section
of a skyrmion filement (section 4.4) and are homogeneously extended into the third
direction (z), the localized skyrmions in confined media are solutions of the following
boundary value problem with θ = θ(r, z):

θZZ + θρρ +
θρ

ρ
− sin θ cos θ

ρ2
− sin2 θ

ρ
− γ sin 2θ + h sin θ = 0,

(θZ + β sin θ cos θ)|Z=±t/2 = 0,

θ(0, Z) = π, θ(∞, Z) = 0. (5.4)

Skyrmionic strings in such systems are distorted into specific 3D textures in ac-
cordance with the anchoring effect of the surfaces, but the topology remains the
same [249].

In Eq. (5.4) I introduced the new length scales for magnets:

ρ0 =
A

D
(5.5)

and liquid crystals

ρ0 =
1

2q0

. (5.6)

Then ρ = r/ρ0, Z = z/ρ0. Four control parameters in Eq. (5.4), γ, h, β, and t, are
expressed as combinations of material parameters of the model functional (5.1) and
(5.3). For magnetic layers:

γ =
AKu

D2
, h =

HMsA

D2
, β =

Ks

D
, t =

TD

A
, (5.7)

For liquid crystals:

γ =
εε0E

2

Kq2
0

, h = 0, β =
Ks

2Kq0

, t = 2Tq0. (5.8)
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Invariance of Eq. (5.4) under a scaling transformation:

t → kt, γ → γk2, h → hk2, β → βk. (5.9)

allows to investigate solutions of Eq. (5.4) for a fixed reduced layer thickness t (t=1
in the present chapter). For the liquid crystals it is convenient to redefine anisotropy
parameter γ and to write it in the units of κ:

γ =
π2

16κ
2
, κ =

E0

E
, E0 = πq0

√
K

4ε0

. (5.10)

The critical field E0 [249] marks the crossover between localized and modulated
skyrmion states for bulk chiral helimagnets.

Boundary value problem (5.1) has been solved by a standard finite-difference
method with discretization on rectangular grids with adjustable grid spacings. As
initial guess for the iterrative procedure according to Seidel method with Chebishev
acceleration [250] I used the known solutions of Eq. (5.1) for bulk chiral systems [21],
i.e. I started from the solutions with β = 0 (see section 4.4).

Solutions for isolated skyrmions may be represented as a set of profiles θ(ρ) for
fixed coordinates Z. The profiles are strongly modified by the anchoring β from
bell-like type in the center of the layer to arrow-like at the surface (blue lines in
Fig. 5.1 (a)). The thickness-dependent radii R(Z) for each angular profile θ(ρ) are
defined as shown by red tangent lines in Fig. 5.1 (a), i.e. according to the Lilley
definition (see section 1.3.1). The function R(Z) reproduces the convex shape of
solutions with the largest value in the center of the layer (Z = 0) and the smallest
value corresponding to the layer surfaces (Z = ±t/2) (Fig. 5.1 (a), inset, and (b)-
(e)). With increasing anchoring parameter β angular profiles θ(ρ) near the surfaces
become strongly localized (Fig. 5.1 (b)) with the characteristic sizes comparable to
the molecular length; in this case the elastic approach of Eq. (5.4) is inapplicable,
and the isolated skyrmions collapse into the homogeneous state.

The influence of the surface anchoring may lead not only to the compression of
ideally cylindrical filement into convex-shaped spherulite, but also to the specific
skyrmionic states with ”necks” when the minimal value of R(Z) is reached not at
the surface of the layer, but at some coordinate Z in the volume (Fig. 5.1 (c)). Such
a peculiar shape of an isolated spherulite is a result of complex interplay between
surface and volume energy contributions. It cannot be an artefact of the proposed
method to define the function R(Z) since the lines with constant angle θ show the
same behaviour near the surface (see inset in Fig. 5.1 (a)).

The decrease of the film thickness t results in the same effects as increase of the
anchoring parameter β (Fig. 5.1 (d), (e)) as it can be concluded from the equation
(5.9) of the scale transformation. The set of profiles R(Z) for the fixed value of
anchoring parameter β = 3 and variable thicknesses t of the layer displays the
change of the spherulite shape from that with ”necks” for thin layers to the convex
shape for thick films (Fig. 5.1 (d), (e)).

Still for the wide range of control parameters all angular profiles θ(ρ) are of arrow-
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Figure 5.1.: (a) Equilibrium solutions of isolated spherulitic domains, shown as a set
of profiles θ(ρ) for fixed coordinate Z through the layer. Bold blue lines
mark the profiles at the surface and in the center of the layer. Inset
schematically displays the distribution of the order parameter vector
field with ψ = ϕ−π/2. The effect of anchoring is imaged by its influence
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each angular profile: (b), (c) represent shapes of the localized spherulites
for different values of surface anchoring β; (d), (e) - for different film
thicknesses t .
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like type squeezed along the sample thickness by anchoring. Such a type of angular
profiles permits the use of the ansatz [249]:

θ(ρ, Z) = π
ρ

R(Z)
. (5.11)

The function R(Z) describes the compression of angular profile θ(ρ) for R > 1 and
its expansion with R < 1. Integrating (5.4) with the ansatz (5.11) with respect to
ρ, results in ∫ t/2

−t/2

[
I0

(
dR

dZ

)2

+ I1R
2

(
π2

16κ
2

)
− I2R − I3hR2

]
dZ (5.12)

where

I0 =

∫ 1

0

t3
(

dθ

dt

)2

dt =
π2

4
, I1 =

∫ 1

0

t sin2 θdt =
1

4
,

I2 =

∫ 1

0

t

(
dθ

dt

)
dt =

π

2
, I3 =

∫ 1

0

(
t

2

)
cos(θ)dt = − 1

π2
(5.13)

The Euler equation for the functional (5.12) with the boundary conditions(
dR

dZ

)
Z=±t/2

= R(Z)β
I1

I0

(5.14)

has an analytical solution [249]:

R(Z) =
1

πA

(
1 − β cosh(Z

√
A)

β cosh( t
√

A
2

) + π2
√

A sinh( t
√

A
2

)
, A =

1

16κ
2

+
4h

π4
. (5.15)

Considered analytical approach for arrow-like angular profiles describes numerically
obtained solutions with a good accuracy, and can be generally applied for other
appropriately chosen initial functions θ(ρ/R(z)).

5.4. Condensation of repulsive skyrmions into a
lattice

In the bulk helimagnets the inter-skyrmion interaction is known to be repulsive and
screened at large distances L (see section 4.4.4). In thin confined layers the standard
interaction of skyrmions (Eq. 4.35) is modified, and related to the exponential decay
of the polar angle. The solution of the linearized Euler equation (5.4) for ρ −→ ∞
has the asymptotic decay with

θ(ρ, Z) ∝ cos (λZ) exp (−αρ). (5.16)
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(a) and in the skyrmion lattice (β = 0.2) (d) for the profiles θ(ρ) at the
surface (blue line) and in the central film plane (red line) (κ = 3, h = 0);
(b) schematic representation of the hexagonal skyrmion lattice in the
circular cell approximation; (c) dependence of the skyrmion energy on
the radius of lattice cell R for different values of the applied magnetic
field (κ = 3, β = 0.1). Above the threshold field (red line) only isolated
skyrmions can exist.
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Here, α = (π/4κ)2 − h + λ2, and λ are the roots of the transcendental equation,
λ tan λZ = β (Fig. 5.2 (a), inset). The energy density underlying such a slow
rotation is negative and depends on the distance from the center of the layer. In
Fig. 5.2 (a) I plotted the energy density distribution in the profile at the surface
(blue line) and in the center of the layer (red line). The interaction energy of two
vortices has the expression:

U(L, β) =

√
2πL

α3
exp (−αL). (5.17)

The parameter λ due to the anchoring effect of the surfaces modifies this inter-
skyrmion potential in comparison with Eq. (4.35). The lattice will be established
from isolated skyrmions when the DM energy contribution (red-shaded area of en-
ergy distribution wsk(ρ), Fig. 5.2 (a)) of all profiles θ(ρ, Z) outweights the exchange
energy contribution (blue-shaded area). Since the exchange part of the energy den-
sity is much larger for the surface profiles θ(ρ,±t/2) (blue line in Fig. 5.2 (a)), the
field of lattice formation will be smaller for larger values of parameter β (see, for
instance, the second plot in Fig. 5.3 (d), κ here is fixed). This explains the shape
of the lability surface for the lattice of spherulites in Fig. 5.3 (a). For Skyrmionic
states in the lattice I used the circular-cell approximation [50] and solved Eq. (5.1)
with boundary conditions θ(0, Z) = π, θ(R(Z)) = 0 (Fig. 5.2 (b)).

5.5. Skyrmion lattices versus helicoids. Phase
diagram of solutions

Alternative to the two-dimensional skyrmion state is the one-dimensional helicoid
(Fig.5.3 (a), inset) with propagation vector along Y -axis, parallel to the surfaces.
Angle θ of the magnetization with respect to Z axis in the helicoid can be obtained
from the Euler equation with boundary conditions:

θZZ + θY Y − γ sin θ cos θ = 0,

θ(0) = π, θ(p) = 0,

(
∂θ

∂Z
+ β sin θ cos θ)|Z=±t/2 = 0 (5.18)

where p is a period of the helicoid.
In the distorted helicoid propagating in the magnetic layer, angle θ is a function

of two coordinates, Y and Z. This distinguishes the solutions θ(Y, Z) from those
considered in chapter 4 with the dependence of the angle only on one spatial coor-
dinate [21], θ = θ(Y ) (see section 4.3.1). In the plane XZ (see inset in Fig. 5.3 (a))
the solutions for helicoids have convex shape as it was noted also for spherulites. I
have plotted the dependences θ = θ(Z) in equidistant planes with fixed coordinate
Y (thin black lines in Fig. 5.3 (b)). Such profiles have the most distorted shape in
the vicinity of the point Y = p/2. Note that profiles for Y = p/2 are straight lines
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5.6. Magnetostatic problem for isolated skyrmions

with θ = π/2: the magnetization is balanced by the two anchoring surface planes.
Dependence of the angle θ along coordinate Y is also strongly distorted by the an-
choring effect of the surfaces: the order parameters m (or n) point up (θ = 0) and
down (θ = π) in the wide regions (domains) and rotate rapidly in the interstitial
regions (domain walls). Such a behavior of the spiral state may be also deduced
from the densest localization of lines θ(Z) in the vicinity of θ = 0; π (thin black lines
in Fig. 5.3 (b)).

The distribution of the energy density in the helicoid along the propagation direc-
tion Y is plotted in Fig. 5.3 (b) for the profiles at the surface θ(Y, t/2) (blue line)
and in the center of the layer θ(Y, 0) (red line). The largest loss of the rotational
energy occurs for the planes with θ = π/2 (Fig.5.3 (b)).

On the phase diagram the regions of modulated skyrmion matter and helicoidal
state are bounded by the surfaces with red and black lability lines, respectively
(Fig. 5.3 (a)). Corresponding two-dimensional cuts of this three-dimensional phase
diagram are shown in Fig. 5.3 (d). For h = 0 (i.e. in the plane (κ, β)) the energy
density of the helicoid is always lower than that for skyrmion lattice (Fig. 5.3 (c)),
i.e. skyrmions are metastable states with respect to helicoids for all possible values
of the anchoring parameter β. The region of the thermodynamical stability of the
helical state is marked by blue color in Fig. 5.3 (d). According to the phase diagram
of Fig. 5.3 (d), increasing parameter β (for fixed value of κ) leads to the suppression
of skyrmions (red line) for much lower values than the suppression of helical states
(black line). If the skyrmion lattice as metastable state has been formed for β = 0,
then on the lability (black) line it releases free isolated skyrmions. But since the
helicoids are the global minimum of the system above the lability line of the skyrmion
lattice, the isolated skyrmions must undergo ellongation into the helices.

For κ −→ ∞ (meaning zero uniaxial anisotropy [70]), i.e. on the plane (β, h) (Fig.
5.3 (d)), the thermodynamical stability of skyrmions can be achieved in the applied
magnetic field only for relatively small values of the anchoring parameter β - in the
triangular region marked by red color in Fig. 5.3 (d). For values of β larger than some
threshold βth (Fig. 5.3 (d)), the helicoids are the thermodynamically stable state.
On the basis of competing Zeeman energy and surface-induced uniaxial anisotropy
the anchoring can be classified as weak (favouring skyrmion lattice in the field for
β < βth), intermediate (favouring helical state in zero and the applied magnetic field
for βth < β < β0), and strong (only isolated domain walls and localized skyrmions
can exist, β > β0).

5.6. Magnetostatic problem for isolated skyrmions

In previous sections I discussed characteristic features of modulated states arising as
a result of competing internal short-range interactions (as the exchange interactions,
the Dzyaloshinkii-Moriya coupling, different types of intrinsic and induced magnetic
anisotropy) and ignored the effects imposed by magnetodipole forces. In many mag-
netic nanostructures this assumption is justified by weakness of stray field effects
as compared to the internal magnetic interactions (e.g. nanosystems with in-plane
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Figure 5.3.: (a) Phase diagram of solutions in the space of control parameters
(κ, β, h). Surfaces with red and black lines bound the regions of
skyrmion lattice and helical state stability, respectively. (b) Distribu-
tion of the energy density in the helicoid (β = 0.5) for the profiles
θ(Y ) (see inset in (a) for schematic representation of distorted heli-
coid) at the surface (blue line) and in the central film plane (red line)
(κ = 3, h = 0); thin black lines show the dependences θ(Z) in equidis-
tant planes ZX. (c) Energy dependence of equilibrium skyrmion lattice
(green lines) and spiral state (dotted orange lines) on the changed pa-
rameter of surface anchoring β (h = 0). (d) The two-dimensional cuts
of the three-dimensional phase diagram (a).
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5.6. Magnetostatic problem for isolated skyrmions

Figure 5.4.: (a) Equilibrium angular profiles θ(ρ) for skyrmion solutions of Eq. (5.19)
plotted for different values of film thickness T , h = −0.05, κ = 0.5, Q =
5; (b) function f(ρ) (5.20) for corresponding skyrmion solutions.

magnetization). However, in a large group of nanostructures with perpendicular
anisotropy the magnetodipole coupling play an important role to stabilize specific
multidomain patterns and topological defects [251–255]. Generally in nanolayers
and multilayers with perpendicular magnetization the stray fields can also strongly
modify chiral patterns - helices and skyrmions [23]. In this section I investigate
the influence of long-range magnetostatic interactions on the characteristic features
of isolated skyrmion states. It is only the first step to address the problem of the
formation of the equilibrium modulated patterns under the competing influence of
the Dzyaloshinskii-Moriya and magnetostatic interactions.

The total energy W of the skyrmion filement in the layer of thickness T can be
written in the following reduced form:

WLB

2Ku

=2πT

∫ ∞

0

[(
dθ

dρ

)2

+
sin2 θ

ρ2
+ sin2 θ + (2h − 1

Q
)(1 − cos θ)+

+
4κ

π

(
dθ

dρ
+

sin θ cos θ

ρ

)
− f(ρ)

QT
cos θ

]
ρdρ (5.19)

where LB =
√

A/Ku serves as a scale of the non-dimensional radial variable ρ, and
Q = Ku/2πM2 is a quality factor, κ = πD/4

√
AKu.

The stray-field energy of the skyrmion string had been derived by solving the
corresponding magnetostatic problem as shown in Ref. [256,257] for magnetic bubble
domains. Here, in Eq. (5.19)

f(ρ) =

∫ ∞

0

∫ ∞

0

(1 − cos θ(ρ′))(1 − e−ξT )J0[ξρ
′]J0[ξρ]ρ′dρ′dξ (5.20)

J0 is a Bessel function of zero order.
I solve the magnetostatic problem for two types of localized solutions (Fig. 4.14
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5. Skyrmion and helical states in thin layers of magnets and liquid crystals

Figure 5.5.: (a) Equilibrium angular profiles θ(ρ) for magnetic bubble domains (Eq.
(5.19)) plotted for h = −0.05 and h = 0.06, and κ = 0.5, Q = 5; (b)
function f(ρ) (5.20).

(a), (e)). In the absence of demagnetizing fields the first localized solution (Fig.
4.14 (a)) represents skyrmion stabilized by the DM interactions. The second type of
localized solution (Fig. 4.14 (e)) is unstable and can exist only in the field applied
along the magnetization in the center. In the presence of dipole-dipole interactions
this second type of the localized solution becomes stable, it is the solution for the
famous magnetic bubble domain [23].

Typical solutions θ(ρ) for localized skyrmions are shown in Fig. 5.4. For quality
factor Q = 5 and κ = 0.5 I plot the set of solutions parametrized by the film
thickness T . With the decrease of the thickness the angular profiles become more
localized. The solutions for skyrmions can exist in very strong positive field: they
are protected from the collapse by DM interaction.

Solutions for magnetic bubble domains shown in Fig. 5.5 are characterized by
much larger radial sizes in comparison with skyrmions. Such solutions are stable
only in the narrow interval of magnetic field applied against the magnetization in
the center. Any slight deviation of the control parameters T , κ, Q, and h leads
to the instability of these magnetic domains, although as a solution of the Euler
equation bubble domains can exist even in the absence of dipole-dipole interaction
(as it is seen from Fig. 4.14 (e)-(h)).

Bubble domains and skyrmions are two fundamentally different types of solutions
of micromagnetic functional. As bubble domains are stabilized only in the narrow
region of applied magnetic fields and film thicknesses [24], the skyrmions look more
preferable for the possible applications.

5.7. Observions of skyrmionic and helical textures in
Fe0.5 Co0.5Si nanolayers: theoretical analysis

Real-space images of skyrmion states in a thin layer of cubic helimagnet Fe0.5Co0.5Si
have recently been obtained by using Lorentz transmission electron microscopy [28].
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Figure 5.6.: The ideal magnetization curves for a bulk sample (based on results
of [21]) (a) and for a thin layer (b) of a cubic helimagnet with sup-
pressed cone phases. Solid lines indicate the thermodynamically stable
states; dashed lines in Fig. (a), metastable configurations. The tran-
sition field H1 in the thin layer ”spreads” into a region of multidomain
states. Fragments of experimentally observed images [28] demonstrate
excellent agreement with theoretically calculated magnetization curves.
The patterns indicated with sign (!) contain images of isolated chiral
skyrmions.

This is the first clear experimental manifestation of chiral skyrmion states in a
non-centrosymmetric magnetic crystal. The first-order transition of a helicoid into
a skyrmion lattice and its subsequent transformation into a system of isolated
skyrmions observed in bias magnetic fields (Figs. 1, d-f, 2, 3 (a-d) in [28]) are
in excellent agreement with the theoretical predictions on the behavior of skyrmions
and the field-driven transitions into densely packed skyrmion lattices according to
the magnetic phase diagrams calculated earlier [21,31] (Fig. 5.6).

In the experiments, the thickness 20 nm of the magnetic layer Fe0.5Co0.5Si is much
smaller than the helix period LD = 90 nm [28]. But, even for such a small thickness,
the conical state propagating only for a fraction of a period perpendicularly through
the layer has lower energy than a skyrmion lattice, absent additional effects that
stabilize it in applied fields. Usually in magnetic nanolayers strong perpendicular
uniaxial anisotropy arises, either as a result of surface effects [5] or of lattice strains.
Thus, induced anisotropies give a possible explanation for the experimental obser-
vation of the skyrmions in these Fe0.5 Co0.5Si layers, in accordance with the phase
diagram for cubic helimagnets with uniaxial distortions (Fig. 4.12) [XI].

Fig. 5.6 presents the magnetization curve for a bulk isotropic helimagnet (a) (based
on results of [21], Fig. 12) and the corresponding magnetization curve for a thin layer
involving demagnetization effects [24] (b). Compared to theoretically calculated
values in a bulk material (HS, HH) the corresponding critical fields in a thin layer

are shifted, and their values can be estimated as H̃S(H) = HS(H) + 4πM . Due to
demagnetization effects multidomain states can be stabilized in the vicinity of the
transition field H1 [21]. The boundaries of these regions with coexisting phases

can be estimated as H̃1H = H1 + 4πMmH(H1), H̃1S = H1 + 4πMmH(H1). The
magnetizations of the competing phases at the transition field equal mH(H1) =
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5. Skyrmion and helical states in thin layers of magnets and liquid crystals

0.111 and mS(H1) = 0.278. The jump of the magnetization at the transition equals
ΔM = [mS(H1)−mH(H1)]M = 0.167M , i.e., it reaches about 17 % of the saturation
value.

The magnetization curves in Fig. 5.6 are constructed for ideally soft magnetic
material under the condition that only the equilibrium states are realized in the
magnetic sample. In real materials the formation of the equilibrium states is of-
ten hindered (especially during the phase transitions), and evolution of metastable
states and hysteresis effects play an important role in the magnetization processes.
Particularly, the formation of the skyrmion lattice below HS can be suppressed.
Then isolated skyrmions exist below this critical field. At a critical field HEl the
skyrmions become unstable with respect to elliptical deformations and ”strip-out”
into isolated 2π domain walls. In a bulk material HEl = 0.267 HD (indicated in

Fig. 5.6 with a red arrow). In a thin layer, one estimates H̃El = HEl + 4πM . As
discussed earlier [21, 31, 69] the evolution of chiral skyrmions in magnetic fields has
many features in common with that of bubble domains in perpendicular magnetized
films, [24] and with Abrikosov vortices in superconductors [72].

The images from Ref. [28] (Fig.5.6 (b)) reflect in details theoretically predicted
evolution of the chiral modulations in the applied magnetic field: the helicoid phase
is realized at low fields (region (I)); at higher field this transforms into the skyrmion

lattice (region (II)) via an intermediate state (H̃1H < H < H̃1S); finally the skyrmion
lattice by extension of the period transforms into the homogeneous phase where
isolated skyrmions still exist as topologically stable 2D solitons.

Two patterns indicated in Fig. 5.6 (b) with exclamation mark manifest the main
result of Ref. [28]: the first images of static two-dimensional localized states aka
chiral skyrmions! In Ref. [28] this result has been overlooked and misinterpreted as
a coexisting ferromagnetic and skyrmion lattice phases. As it was expounded in the
previous section, the transition of the skyrmion lattice into the homogeneous state
is a continuous transition, but of the particular nucleation type. Such transitions
exclude the formation of coexisting states.

The condensed skyrmion phases in the micrograph of Ref. [28] also appear as heav-
ily distorted densely packed two-dimensional lattice configurations. This is expected
for skyrmionic matter. As these mesophases are composed from elastically coupled
radial strings, dense skyrmion configurations generally do not form ideal crystalline
lattices but various kinds of partially ordered states, e.g. hexatic ordering imply-
ing only orientational order of bonds without positional long-range order, or other
glassy arrangement following standard arguments put forth for the similar vortex
matter in type-II superconductors [72]. The observation derives from the particle-
like (or string-like) nature of skyrmions and suggests that skyrmionic mesophases
may display rich phase diagrams.
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5.8. Observation of skyrmion states in chiral liquid
crystals

As it was noted in section 5.2, the phenomenological energy of cholesterics (5.3)
has an identical mathematical form as that of cubic helimagnets (4.1). This implies
close relations between chiral textures in both condensed matter systems. How-
ever, in contrast to magnetic systems favoring smooth distributions of the order
parameter, liquid crystals usually form patterns composed of various types of sin-
gularities. Defects in liquid crystals are of various dimensionalities, not only line
defects, but also points and walls, and appear due to the prevalence of orientational
order over positional in the applied magnetic or electric fields. In the defects the
director n is said to be undefined and the properties of defects are often not well
controlled. For many years the investigations of liquid crystal textures have been
mostly concentrated on the processes related to the formation and evolution of these
topological defects [38,248,258]. Only during the last decade physical analogies be-
tween liquid crystal and magnetic systems have been utilized to find new skyrmionic
textures in these systems [31,249,259,260]. Particularly, the analogy with cholesteric
blue phases [258] has been used to establish the skyrmionic ground state in chiral
magnetic metals near the ordering temperature [31]. The results on observations
of specific skyrmion states (spherulitics) in confined cholesteric systems (Fig. 5.7
(b) [248]) can help to investigate similar structures in magnetic nanolayers [28, 29].
Liquid crystals have several advantages over magnetic systems for the modelling and
investigation of various inhomogeneous structures. The system parameters can be
varied over wide limits to establish necessary conditions for a given experiment; as a
rule experiments are conducted at room temperature and are comparatively simple;
the results of investigations are easily visualized, to a degree not usually attainable
in the investigation of magnetic nanolayers.

Fig. 5.7 shows modulated patterns in chiral magnets (c,d) in comparison with
those in chiral liquid crystals (a,b). Under non-restricted conditions, chiral-nematic
LC molecules, which are characterized by an antisymmetric center in the molecule,
organize themselves by following a helicoidal director alignment (Fig. 5.7 (a)). How-
ever, more exotic ground states are possible (for example, cholesteric fingers [261]
and/or triple-twist torons [262]), in particular, spherulites (Fig. 5.7 (b)).

Such circular objects, called bubble domains or spherulites, can be formed as
isolated entities or arranged in a hexagonal array (Fig. 5.7 (b)). For the first time,
they have been observed in 1974 simultaneously by Kawachi and Kogure [263] and
Haas and Adams [264] in materials of negative dielectric anisotropy. The spherulites
were generated by applying pulses of DC or AC low frequency electric field strong
enough to induce electrodynamic turbulence. Two years later, Bhide et al. [265]
studied the optical properties of this pattern by laser diffraction and proposed that
the bubble domain was a cholesteric pocket with oblate spheroid shape. This model
was replaced by a more convincing model in papers of Akahane et al. [266, 267].
In this model which was inspired by the paper of Cladis and Kleman [268], two
looped disclinations were assumed to exist near the glass plates. Another model
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(a) (e)(b)

(c) (d) (f)

Figure 5.7.: Modulated phases in liquid crystals (a),(b) and their analogues in mag-
netic systems (c),(d): (a), (c) helical modulations in cholesterics [248]
and in cubic helimagnets [271] with the distribution of the order pa-
rameters shown as a sketch in (f); (b), (d) isolated spherulites in a
chiral liquid crystal [269] and hexagonal lattice of chiral skyrmions in
(Fe,Co)Si [28]. (e) shows schematically the structure of a spherulite.

of Stieb [269] suggested that only one singular line is located along the axis of
spherulite (Fig. 5.7 (b)). As well, according to the experiments of Pirkl et al. [270]
the bubble domains can be formed from the looped finger in the cholesterics with
positive dielectric anisotropy. In the present chapter I have shown that a non-singular
model with a continuous distribution of the director field in the spherulite is among
the solutions of the equations minimizing the Frank functional for the cholesteric
layer with the homeotropic boundary alignment. Thus, the spherulitic bubbles in
anchored chiral liquid crystal films [263–265] may be skyrmion textures.

5.9. Conclusions

In this chapter I investigated some effects imposed by the confined geometry of
magnetic nanolayers on skyrmion states, namely, the influence of surface-induced
anisotropy and demagnetizing fields on the stability and the structure of localized
skyrmions. I showed that the surface-induced anisotropy produces pinning (anchor-
ing) effect on magnetic states. It suppresses very effectively modulated skyrmion
states and distorts the tubular structure of skyrmion filements making them of
convex-like shape with narrow ”necks” near the surface. The similarity of phe-
nomenological models for nonsingular spherulitics in liquid crystals and skyrmions
in chiral magnetic materials offers new prospects for investigations of these solitonic
states within a common theoretical approach. The rich experimental material on
observation of spherulitic patterns in liquid crystals [248] in this sense can be used
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as guidelines for investigations of skyrmion states in chiral magnetic layer systems.
Also in this section I addressed the problem of the influence of demagnetizing

effects on the skyrmion solutions. I showed that skyrmions and magnetic bubble do-
mains are two different branches of cylindrical magnetization structure with different
mechanism of internal stabilization.
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6. Confinement of skyrmion states in
non-centrosymmetric magnets
near ordering temperatures

In this chapter I consider skyrmionic states in non-centrosymmetric magnets near
the ordering temperatures. I show that the interaction between the chiral skyrmions,
being repulsive in a broad temperature range, changes into attraction at high tem-
peratures. This leads to a remarkable confinement effect: near the ordering temper-
ature skyrmions exist only as bound states. The confined skyrmions as discernible
units may arrange in different mesophases. The confinement of multiple skyrmions
is a consequence of the coupling between the magnitude and the angular part of
the order parameter. Thus, near the ordering transitions, I consider the local mag-
netization not only as multiply twisted but also longitudinally modulated. From
numerical investigations on 2D models of isotropic chiral ferromagnets, a staggered
half-skyrmion square lattice at zero and low fields and a hexagonal skyrmion lat-
tice at larger fields are found in overlapping regions of the phase diagram near the
transition temperature. The creation of skyrmions as stable units and their con-
densation into different extended textures occurs simultaneously through a rare case
of an instability-type nucleation transition [272]. As well, I introduce a new funda-
mental parameter, confinement temperature TL separating the peculiar region with
”confined” chiral modulations from the main part of the phase diagram with regular
helical and skyrmion states.

6.1. Introduction

The peculiarities of the paramagnetic to helimagnetic transition in the intermetallic
compounds MnSi and cubic polymorph FeGe have been investigated experimentally
since a long time and seem to be related to the specific frustration introduced by
the chiral Dzyaloshinskii-Moriya interactions. These compounds represent only two
examples from the rich family of B20 magnets. The literature on the experiment
in MnSi is overwhelming, this compound may be considered as a laboratory for
investigation of chiral magnetic modulations near the ordering temperatures. The
experiments on FeGe are still scarce. In the following I briefly summarize the main
experimental results on the chiral magnetic properties of these compounds.

MnSi and FeGe crystallize in the B20 structure with the space group P213 pos-
sesing no inversion symmetry and containing 3-fold axes along the <111> space
diagonals and 2-fold screw axes parallel to the cube axes. MnSi [80, 273] orders
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magnetically at 29K and forms the helical modulation with the period of 18 nm.
In another P213-compound FeGe [51] the ordered phase is observed below 280K:
the propagation directions of the spirals point to <100> crystallographic axes and
change to <111> with decreasing the temperature below 220K; the period of the
spiral with 70 nm is much larger than in MnSi.

Intensive long-term experimental investigations of the chiral helimagnet MnSi and
new experiments on FeGe report numerous physical anomalies along the magnetic
ordering transition, and particularly, indicate the existence of a small closed area
in (H, T ) phase diagram, the so-called ”A-phase” [78–80, 273–279, 281, 282]. As the
modulation period is of the order of several hundred unit cells, the small angle neu-
tron scattering is an appropriate tool to reveal different precursor anomalies. The
first neutron scattering experiments on MnSi have been performed by Ishikawa [87]
in 1976. In 1984 Ishikawa and Arai [279] interpreted the A-phase in MnSi as a
paramagnetic state as no magnetic satellites around the nuclear peak were observed.
Later, Lebech and Harris [273] revealed that the system in the A-pocket is still in a
modulated state with the propagation direction perpendicular to the field. The mag-
netic phase diagram of MnSi close to the ordering temperature has been studied by
different techniques, and the results were summarized by Kadowaki [80] (Fig. 6.1).
Such a phase diagram based on ultrasound attenuation [274], ESR [283], magnetiza-
tion and magnetoresistance [80] suggest the subdivision of the A-phase in different
phases with phase separation lines between them. At least two subregions, A1 and
A2, can be singled out within the A-phase. Recent neutron scattering experiments
revealed the six-spot pattern within the A-pocket [79] due to magnetic modula-
tions transversal to the applied field and rather independent on the field direction.
However, such ”six spots” patterns as well as the Hall effect measurements [88] do
not give the direct evidence for the existence of skyrmion states in the A-phase of
MnSi. Note, that direct observation of skyrmions in nanolayers of FeGe [29] and
(Fe,Co)Si [28] (see chapter 5, section 5.7) have been performed at temperatures
far below the Curie ferromagnetic temperature and is not relevant to the A-phase.
The phase diagram of FeGe near the ordering temperature also displays a complex
structure of A-pockets with a complex succession of temperature- and field-driven
crossovers and phase transitions [XIII].

In zero magnetic field the precursor effects have been observed above TC as a ring
of diffuse scattering in small angle neutron scattering on MnSi [78, 279, 280] and
FeGe [51]. In both cases the radius of the ring is equal to the ordering wave vector.
By doing neutron spin-echo spectroscopy [81] in MnSi such precursor effects were
attributed to a non-trivial ”spin-liquid phase” appearing in a limited temperature
range just above TC .

Described experiments show that the modulated phases mediating between para-
magnetic and helical state in zero field or with applied magnetic field (the A-phase
region) cannot be associated with a distinct simple phase. The A-phase must be
explained by certain different mesophases. In this sense the current theoretical
attempts to explain the A-phase by the formation of a specific modulated phase
either with a one-dimensional (1D) modulation (”single”-q helicoids) [89,281,282] or
as ”triple-q” modulated textures [79] are considered to contradict the experimental
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Figure 6.1.: (a) Phase diagram of MnSi near the ordering temperature found by
different techniques (after Kadowaki [80]). (b) Phase diagram of FeGe
with the magnetic field H||[100] (after H. Wilhelm [XIII]).

data and a theoretical analysis of this chapter [XII,XIV,XV].
Within the phenomenological theory developed in the present chapter (section

6.2), the occurrence of an anomalous precursor regime in chiral magnets near mag-
netic ordering relies on the formation of localized (solitonic) states [31][XIX,XV]
(section 6.3). Theoretical analysis of localised 1D and 2D magnetic states in a
cubic helimagnet reveals that the interactions between helicoidal kinks [284], and
skyrmions [XII,XIV,XV] near the ordering temperature become attractive (section
6.3.1). The strong coupling between angular degrees of freedom of magnetization
to its longitudinal magnitude has the consequence that magnetic ordering occurs
as the simultaneous nucleation and condensation of stable solitonic units (section
6.4). The temperature range below ordering, where this coupling of longitudinal
and transversal magnetization components occurs, is determined by a characteristic
confinement temperature TL [XII,XIV,XV] (section 6.3.3). These phenomena have
a universal character and are relevant near the paramagnetic state [XII,XIV,XV].
The details of the mesophase formation sensitively depend on very small additional
effects such as, e.g., magnetic anisotropies, dipolar interactions, fluctuations etc.
These competing influences provide mechanisms for complex and unconventional
magnetic phase diagrams. Already for low temperatures as shown in chapter 4,
the minor anisotropy energy contributions cause the thermodynamical stability of
modulated phases with respect to each other. Some characteristic features of the
experimental phase diagrams Fig. 6.1 can be interpreted also in the framework of
the modified Dzyaloshinskii model for metallic chiral cubic helimagnets [31] (section
6.7) that neglects such secondary effects but may be able to provide a more realistic
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6. Confinement of skyrmion states near ordering temperatures

description of the inhomogeneous twisted magnetic structure in these mesophases.

6.2. Phenomenological theory and equations

Near the ordering temperatures the magnetization amplitude varies under the influ-
ence of the applied field and temperature. Commonly this process is described by
supplementing the magnetic energy (4.1) with an additional term f0(M) [99] (see Eq.
(1.36)). By rescaling the spatial variable, the magnetic field, and the magnetization
in (4.1)

x =
r

LD

, h =
H

H0

, m =
M

M0

(6.1)

where

LD =
A

D
, H0 = κM0, M0 =

√
κ

a2

, κ =
D2

2A
, (6.2)

energy density w0(M) (4.1) can be written in the following reduced form

Φ = (grad m)2 − wD(m) − h · m + am2 + m4. (6.3)

Coefficient a is expressed as

a =
a1

κ
=

J(T − Tc)

κ
. (6.4)

Alongwith three internal variables (components of the magnetization vector m)
functional (6.3) includes only two control parameters, the reduced magnetic field
amplitude, h, and the ”effective” temperature a(T ) (6.4). By direct minimization
of Eq. (6.3) one can derive one-dimensional (helicoids and conical helices) and
two-dimensional skyrmions (isolated and bound states) for arbitrary values of the
control parameters. As in the chapter 4, I analyse first solutions for localized isolated
skyrmions.

6.3. Solutions for high-temperature isolated
skyrmions

The structure of isolated skyrmions near the ordering temperature is characterized
by the dependence of the polar angle θ(ρ) and modulus m(ρ) on the radial coordinate
ρ (in chapter 4 only angular order parameter θ(ρ) has been considered). The total
energy E of such a skyrmion (per unit length along z) after substituting ψ(φ) (see
dependences ψ(φ) corresponding to different crystallographic classes in section 4.4
and Fig. 4.3) is as follows:

E = 2π

∫ ∞

0

Φ(m, θ)ρdρ (6.5)
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where energy density is

Φ = m2
ρ + m2

[
θ2

ρ +
sin2 θ

ρ2
− θρ − sin θ cos θ

ρ

]
+ am2 + m4 − hm cos θ (6.6)

with a common convention ∂f/∂x ≡ fx. The Euler equations for the functional (6.3)

m2

[
θρρ +

θρ

ρ
+

sin θ cos θ

ρ2
+

2 sin2 θ

ρ
− h sin(θ)

]
+ 2 (θρ − 1) mρ = 0,

mρρ +
mρ

ρ
+ m

[
θ2

ρ +
sin2 θ

ρ2
+ θρ +

sin θ cos θ

ρ

]
+ 2am+

+ 4m3 − h cos(θ) = 0 (6.7)

with boundary conditions

θ(0) = π, θ(∞) = 0, m(∞) = m0, m(0) = m1 (6.8)

describe the structure of isolated skyrmions. The magnetization of the homogeneous
phase m0 is derived from equation:

2am0 + 4m3
0 − h = 0. (6.9)

Eq. (6.7) can be solved numerically. But before to consider typical solutions θ(ρ),
m(ρ) of Eqs. (6.7) I consider the asymptotic behaviour of skyrmion solutions and
some remarkable results that can be obtained by simple means. For 1D kinks such
an analysis was done in Refs. [284,285].

6.3.1. Crossover of skyrmion-skyrmion interactions

As it was determined in sect. 4.4, the asymptotic behaviour of isolated skyrmions
bears exponential character [21]:

Δm = (m − m0) ∝ exp(−αρ), θ ∝ exp(−αρ). (6.10)

By substituting these to the linearized Euler equations (6.7) for ρ → ∞

Δmρρ − m0θρ − 1

2
fmm(m0)Δm = 0,

m2
0θρρ − hθ

2
m0 + m0Δmρ = 0 (6.11)

one finds three distinct regions in the magnetic phase diagram on the plane (a, h)
with different character of skyrmion-skyrmion interactions (Fig.6.2): repulsive inter-
actions between isolated skyrmions occur in a broad temperature range (area (I))
and is characterized by real values of parameter α ∈ �, the magnetization in such
skyrmions has always ”right” rotation sense; at higher temperatures (area (II)) the
skyrmion-skyrmion interaction changes to attractive character with α ∈ C; finally, in
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6. Confinement of skyrmion states near ordering temperatures

area (III) near the ordering temperature, aN = 0.25, only strictly confined skyrmions
exist with α ∈ �.

Equation for parameter α obtained from (6.11)

α4 + α2[−2 a − 8 m2
0 + 1] + (a + 6 m2

0) (a + 2 m2
0) = 0 (6.12)

allows to write the equation for the line separating different regions:(
fmm(m0) − fm(m0)

m0

)2

− 4

(
fmm(m0) +

fm(m0)

m0

)
+ 4 = 0,

h = fm(m0). (6.13)

For the particular case of Landau expansion (1.36) the separating line looks like

h
 =
√

2 ± P (a)(a + 1 ± P (a)/2), P (a) =
√

3 + 4a (6.14)

with turning points p (−0.75,
√

2/4), q (0.06, 0.032
√

5), and u (-0.5, 0) (dashed line
in Fig. 6.2 (a)).

The typical solutions as profiles θ(ρ), m(ρ) for isolated skyrmions in each region
are plotted in Fig. 6.2 (b)-(c). As in the region II the exponents α are complex
numbers, the profiles display antiphase oscillations (Fig. 6.2 (c)). Rotation of the
magnetization in such an isolated skyrmion contains two types of rotation sence: if
rotation has ”right” sense, the modulus increases, and otherwise, modulus decreases
in parts of the skyrmion with ”wrong” rotation sense. Such a unique rotational
behaviour of the magnetization is a consequence of the strong coupling between two
order parameters of Eq. (6.7) - modulus m and angle θ.

6.3.2. Collapse of skyrmions at high fields

The solutions of Eqs. (6.7) exist only below a critical line h0(T ) (Fig. 6.2 (a)). As
the applied field approaches this line, the magnetization in the skyrmion center m1

(Eq. (6.8)) gradually shrinks (Fig. 6.3 (b)), and as m1 becomes zero, the skyrmion
collapses. This is in contrast to low-temperature skyrmions which exist without
collapse even at very large magnetic fields [21] and are protected by the stiffness of
the magnetization modulus which maintains topological stability of skyrmions. At
high temperatures the softness of the magnetization amplitude allows to destroy the
core of the skyrmion by ”forcing” through the magnetization vector m1 along the
applied field. The angle θ nevertheless undergoes strong localization as it was also
noted for ”low-temperature” skyrmions (Fig. 6.3 (a)). As an example, I illustrated
the magnetization process for an isolated skyrmion for a = −0.5 (Fig. 6.3).

6.3.3. Phenomenon of confinement

The coupling of angular and longitudinal order parameters may be so strong, that
oscillations in the asymptotics of isolated skyrmions do not diminish. The purely
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6.3. Solutions for high-temperature isolated skyrmions

Figure 6.2.: The diagram on plane (a, h) showing the regions with different types
of skyrmion-skyrmion interaction: I - repulsive interaction between iso-
lated skyrmions; II - attractive inter-skyrmion interaction; III - the re-
gion of skyrmion confinement. Dashed line is defined by the Eq. (6.14):
the turning points have the following coordinates - p (−0.75,

√
2/4),

q (0.06, 0.032
√

5), and u (-0.5, 0). Above the line h0 no isolated
skyrmions can exist. (b) Dependences of angular θ and logitudinal m
order parameters on polar coordinate ρ for isolated skyrmion in region
I (a = −1, h = 0.4). (c) θ(ρ) and m(ρ) for isolated skyrmion in region
II (a = 0.21, h = 0.05).

Figure 6.3.: Increasing magnetic field applied to isolated skyrmion (a = −0.5) local-
izes profiles θ(ρ) (a) and leads to the disappearence of isolated skyrmions
by squeezing out modulus m1 in the center (b).
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6. Confinement of skyrmion states near ordering temperatures

imaginary exponent α then reflects the region of strict confinement. For −0.5 <
a < 0.25 line (6.14) delimits a small pocket (III) in the vicinity of the ordering
temperature. Within this region skyrmions can exist only as bound states and
drastically differ from those in the main part of the phase diagram.

The confinement temperature aL = −0.75 subdivides the temperature interval
in low- and high-temperature parts: (i) in the main part (a < aL = −0.75) the
rotation of the local magnetization vector determines the chiral modulation, while
the magnetization amplitude remains constant; (ii) at high temperatures (aL =
−0.75 < a < aN = 0.25) spatial variation of the magnetization modulus becomes
a sizeable effect, and strong interplay between longitudinal and angular variables is
the main factor in the formation and peculiar behaviour of chiral modulations in
this region.

The confinement temperature aL [XII,XIV,XV] provides the scale that delineates
the border between these two regimes in the phase diagram. The characteristic
temperature aL is of fundamental importance for chiral magnets. It is of the same
order of magnitude as the temperature interval

(aN − ac) ∝ D2

A
(6.15)

(Fig. 6.2 (a)), where chiral couplings cause inhomogeneous precursor states around
the magnetic order temperature (for details see Ref. [31]). Here, ac is the con-
ventional Curie temperature for centrosymmetric systems. When the temperature
drops below ac, the energy density of a ferromagnetically spin-aligned state is the
lowest one. Dzyaloshinskii-Moriya interactions with negative energy density favour
the rotation of the moments. Therefore, the transition to the ferromagnetic state
is preceded by a transition to modulated states at the temperature aN . Due to the
relativistic origin and corresponding weakness of the DM exchange the shift

Δa1 = aN − ac, (6.16)

as well as
Δa2 = aN − aL, (6.17)

is small. For MnSi Δa1 is estimated to be 0.9 K [31]. The shift Δa2 must be three
times as large as Δa1 [XII,XIV,XV].

The crossover and confinement effects arise as a generic property of the asymptotic
behavior of chiral solitons at large distances from the core. These effects also apply
to kinks [284,285] and Hopfions [286].

6.4. The structure and properties of confined
skyrmions

Isolated skyrmions condense into a hexagonal lattice below a field hc (red line in Fig.
6.5), which marks the transition between the −π-skyrmion lattice (Fig. 6.4 (a)) and
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6.4. The structure and properties of confined skyrmions

Figure 6.4.: The structure of the hexagonal skyrmion lattice near the ordering tem-
perature aN (a = 0.23, h = 0) shown as a sketch with the distribu-
tion of the magnetization vectors (a) and the contour plots of the mz-
component of the magnetization and its length m (b). In spite of the
triangular region with the magnetization opposite to the magnetization
in the ”main”hexagon which are invoked to reduce the heightened energy
density along the apothem of the hexagon (for details see Fig. 4.7 and
the explanation in the section 6.4), the circular-cell approximation is a
good approach to describe the field- and temperature-driven processes
of such a lattice. (c), (d) Profiles θ(ρ) and m(ρ) in the hexagonal cell
for two different perpendicular directions through the core (blue dashed
and black dotted lines) plotted together with the solutions for skyrmion
in the circular-cell approximation in the applied positive and negative
magnetic field (red solid lines).
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6. Confinement of skyrmion states near ordering temperatures

the homogeneous paramagnetic state. The typical contour plots of mz-component
of the magnetization and the modulus m in the hexagonal skyrmion lattice near the
ordering temperature are depicted in Fig. 6.4 (b). It is seen that the central hexagon
of the contour plot for mz-component has been rotated in comparison with the
hexagon with constant value of the magnetization length (Fig. 4.6 (a)). Moreover,
this hexagon is enclosed by six triangular regions with the magnetization opposite to
that in the center of the ”main” hexagon. Such a redistribution of the magnetization
at the outskirt of the lattice cell might be explained by the fact that the total energy
density along the apothem of the hexagon (dotted black line in Fig. 4.7) is larger
than the energy along the diagonal (dashed line in Fig. 4.7). Therefore, the system
tries to suppress energetically unfavourable regions by squeezing the value of the
modulus [XII,XIV,XV].

The solutions for skyrmion lattices in this chapter are obtained by using finite
differences for gradient terms and adjustable grids to accommmodate modulated
states with periodic boundary conditions (see description of the numerical recipes
in Sect. 4.5.1). In addition to the angular degree of freedom, high-temperature
solutions were minimized also with respect to the length of the magnetization vector
in each point of the numerical grid.

As a cross-check of obtained results, I have used the circular-cell approximation
as described in Sect. 4.5.1. According to the method, the hexagonal cell is replaced
by a circle, and one has to solve the system of differential equations (6.7) with the
boundary conditions:

θ(0) = π, θ(R) = 0, m(R) = m2, m(0) = m1. (6.18)

Solving these equations, where the order parameters depend only on one spatial
coordinate, is essentially easier than rigorous solution for the 2D magnetization
structures. In Fig. 6.4 (c), (d) I have plotted the angular and longitudinal pro-
files for the skyrmions in the circular-cell approximation (red lines) and from the
numerical simulations on the two-dimensional grid along perpendicular directions in
the hexagon (dotted black and dashed blue lines). The circular-cell approximation
describes surprisingly well the skyrmion structures and their transformation with
temperature and magnetic field inspite the triangular regions with opposite mag-
netization and slight difference for the longitudinal profiles in the applied magnetic
field (Fig. 6.4 (d)). Moreover, such an approximation allows to analyse the pro-
cesses with skyrmion lattices from another perspective and to plot dependences to
be hardly achieved for rigorous 2D solutions. As an example I consider the process
of condensation of isolated skyrmions into the lattice.

6.4.1. Condensation of isolated skyrmions into the lattice

In the region II of the phase diagram a transition of a hexagonal skyrmion lattice
into the homogeneous state is of the first order on the contrary to the second-order
phase transition in the ”low-temperature” region I. Thus, the hysteretic magneti-
zation process between homogeneous state and skyrmion lattice is expected. The
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6.4. The structure and properties of confined skyrmions

Figure 6.5.: (a) Phase diagram - magnetic field h vs. temperature a. Below the
line hc skyrmions condense into a hexagonal lattice. For a < aL the
transition is second-order phase transition of nucleation type. For a >
aL the transition becomes first-order phase transition. The hexagonal
skyrmion lattice exists as metastable state up to the nucleation field
hn. For temperatures between points A and B, hn < h0, for larger
temperatures aB < a < aN = 0.25 the isolated skyrmions disappear at
lower fields than the dense skyrmion lattice, h0 < hn. For clarity, line
hn is only schematically given in panel (a), numerically exact data are
shown in panel (b).

hysteretic character of the transition can be illustrated by plotting the energy den-
sity of skyrmion bound states (Fig. 6.6 (a)) depending on the modulus m2 at the
outskirt of the lattice cell (see boundary conditions of Eq. (6.18)). In the interval
of magnetic fields hh < h < hn the energy density has two minima corresponding
to homogeneous state and hexagonal skyrmion lattice, respectively. The fields hh

(not shown in Fig. 6.5) and hn mark the boundaries where homogeneous state and
skyrmion lattice lose their stability, respectively. On the line hc (Fig. 6.5) the en-
ergy of the hexagonal lattice equals that of the homogeneous state. In the interval
hc < h < hn the hexagonal skyrmion lattice exists as a metastable state.

Solutions for θ(ρ) and m(ρ) in some points of the curve of energy density are
plotted in Fig. 6.6 (b), (c). I start from the usual skyrmion bound state (point 1) and
gradually decrease the modulus on the boundary of the lattice cell. Angular profile
becomes more localized (point 2) and for some value of m2 there is no skyrmion
lattice anymore. Instead of the hexagonal lattice the system of differential equations
(6.7) has a solution for a modulated state with the modulus in the center and at the
outskirt pointing in the same direction (point 3 with θ(0) = θ(R) = π). During this
process modulus in the center m1 goes through zero and the magnetization in the
center is reversed to the other side. Decreasing m2 further, the homogeneous state
is reached.
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Figure 6.6.: Energy density Φ (Eq. (6.6)) in dependence on the modulus m2 at the
boundary of skyrmion lattice cell (a) (see boundary conditions of Eq.
(6.18)) exhibits two pronounced minima corresponding to −π-skyrmion
lattices (points 1) and homogeneous state (point 5). Changing the mod-
ulus m2 as a parameter one can smoothly turn the hexagonal skyrmion
lattice into the homogeneously magnetized state. Profiles θ = θ(ρ) (b)
and m = m(ρ) (c) make it possible to trace the process of the trans-
formation: in the intermediate points 3 and 4 the system of differential
equations (6.7) has as a solution modulated states with the magnetiza-
tion in the center and at the periphery pointing in the same direction
(in the present case, along the field); in the point 5 the homogeneous
state with θ = 0, m = m0 shows up. Such a magnetization process
bears pronounced hysteretic character and takes place in the field inter-
val hh < h < hn.
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Figure 6.7.: (a) Difference of energy densities of hexagonal skyrmion lattice and ho-
mogeneously magnetized state plotted as a surface in dependence on the
radius R of the lattice cell in circular-cell approximation and modulus
at the boundary m2 in correspondence with Eq. (6.7) and boundary
conditions (6.18). The minimum in the point c contains the equilibrium
skyrmion lattice mz-component of which is shown in the first snapshot
of (c). (b) modulus in the center of the lattice cell plotted as a surface in
dependence on the radius R and m2. (c) the succession of snapshots of
the skyrmion lattice along the line c − b. Deviation from the minimum
of energy leads to the destruction of the lattice in the point b (see text
for details).

6.4.2. Peculiar properties of bound skyrmions in the region of
confinement

As it was already noted, strong interplay between longitudinal and angular variables
is the main factor in the formation and peculiar behaviour of chiral modulations
in the region of confinement. The confined skyrmions drastically differ from their
”low-temperature” counterpart considered in chapter 4. Some properties of them
can be described by the dependence of the radial structure on the moduli in the
center m1 and at the boundary m2 in the circular-cell approximation as it was
introduced in section 6.4.1. The skyrmions in the confinement region can exist only
as bound states ideally as a condensed lattice. Trying to expand the skyrmion
lattice, one immediately destroys it. In Fig. 6.7 (a) I have plotted the energy
density of the hexagonal skyrmion lattice with respect to the homogeneous state in
dependence on the radius R and the modulus m2 at the boundary of a lattice cell
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6. Confinement of skyrmion states near ordering temperatures

(a = 0.23, h = 0.03). In Fig. 6.7 (b) the modulus m1 in the center of skyrmion cell
in dependence on the radius R and m2 is depicted.

The equilibrium state of the lattice corresponds to the minimum of the energy
density (point c). For fixed modulus m2 and variable radii R the minimum of the
energy density is located at the line g − c − d. In the point d (and at the line
a−d− b) the energy density becomes zero, and homogeneous state has lower energy
than skyrmion lattice in the region a− e− f − b− d− a. In the point g the modulus
m1 in the center of the lattice cell goes through zero, and the lattice disappears.
Such a process of the lattice destruction by squeezing the modulus in the center
takes place in whole at the line e − a − g − b − f (Fig. 6.7 (a), (b)).

With fixed radius R and variable modulus m2 the minimum of energy density is
localized at the line a − c − b. The sequence of the snapshots of the lattice exhibits
the states along the line c− b with the final homogeneous state reached in the point
b.

By playing with the modulus m2 at the outskirt of the lattice cell I can demonstrate
also the transformation of the skyrmion lattice from the state with magnetization in
the center opposite to the applied magnetic field (−π-skyrmions) to the state with
the magnetization along the field (+π-skyrmions). In Fig. 6.8 (a) I have plotted
the energy density (Eq. (6.6)) in dependence on m2 which exhibits two pronounced
minima with ±π-skyrmion lattice in each of them. On the path from +π-skyrmions
(point 5) to −π-skyrmions (point 1) transitional structures as homogeneous state
(point 3) or different modulated states with the same direction of the magnetization
in the center and at the boundary (point 4) are met.

6.4.3. The structure of staggered half-skyrmion lattices

The half-skyrmion lattice depicted in Fig. 6.14 (a) represents a special case of mod-
ulated state near the ordering temperature which does not have ”low-temperature”
counterpart with a fixed modulus. A lattice of half-skyrmions is a solution for
2-dimensional energy functional (6.3) and has been calculated by brute-force en-
ergy minimization (it is impossible to exploit the circular-cell approximation in this
case). The condensed square structure has been described as a staggered and chi-
ral lattice composed of half-skyrmions with four of them forming one unit conven-
tional square lattice cell with lattice parameter L (Fig. 6.14). These four half-
skyrmions are arranged in a staggered up/down pattern. One 4th plaquette with
side lengths L/2 of this structure is what I will call a square half-skyrmion cell.
The field configuration of this half-skyrmion has the magnetization perpendicular
m = (mx; my; mz) = (0; 0;±m0) at the center, r = (L/4; L/4). However, |m| is a
spatially varying function with m0 > 0 being the maximum value of this soft mag-
netization order parameter in the structure. Around this center, the magnetization
vector circulates once through the full circle. At the edge C of this square cell, m is
in the plane. Thus, the polar angle θ = arccos(m · ẑ) of the structure rotates from
0 to π/2 from center to edge of the square cell. It is clear that this is not the full
skyrmion, it is only a piece of a skyrmion solution and it cannot exist as an isolated
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Figure 6.8.: Energy density (Eq. (6.6)) in dependence on the modulus m2 at the
boundary of skyrmion lattice cell (a) exhibits two pronounced minima
corresponding to +π and −π-skyrmion lattices (points 5 and 1, respec-
tively). Changing the modulus m2 as a parameter one can smoothly turn
one skyrmion lattice into the other. Profiles θ = θ(ρ) (b) and m = m(ρ)
(c) make it possible to trace the process of the transformation: in the
intermediate point 4 the system of differential equations has as a solu-
tion modulated states with the magnetization in the center and at the
periphery pointing in the same direction (in the present case, along the
field); in the point 3 the homogeneous state with θ = 0, m = m0 shows
up.
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6. Confinement of skyrmion states near ordering temperatures

Figure 6.9.: Dependences of moduli in the center m1 and at the boundary m2 of the
skyrmion cell on the applied magnetic field h for two values of reduced
temperature a = −1 (a) and a = 0.14 (b). In the first case (a) modulus
m2 at the outskirt ”meets” the modulus of the homogeneous state mhom

for h = h0. The period of the lattice in this point expands infinitely and
only isolated skyrmions can exist. With h = hn marking the transition
into homogeneous state, the modulus m1 in the isolated skyrmion goes
through zero. In the second case (b) the modulus m1 in the center of
the skyrmion cell shrinks to zero faster than the lattice expands into
the isolated skyrmions. The bound and isolated skyrmions are two dis-
tinct branches of solutions which cannot be turned each into other (the
oscillations of order parameters are very pronounced for a > aB).

localized structure. The topological charge of such a cell

Q =
1

4π

∫ L/2

0

∫ L/2

0

dxdy m · [∂xm × ∂ym] (6.19)

is Q = 1/2. Thus, from the topological point of view, the square (sub)-cells of the
lattice structure could be identified with merons [287]. The value of Q depends on the
integration region being only a finite part of the 2D plane. Only the definite choice of
the square cell fixes this value of Q unambiguously. Following terminology proposed,
e.g., by Rajaraman and co-workers [287] I call the textures in such square cells half-
skyrmions. The arrangement of half-skyrmions necessitates that the magnetization
m = 0 at (L/2; L/2) passes through zero to match the half-skyrmion configurations
in the interstitial regions between the radial and chiral skyrmionic cores. Here, the
corresponding field configuration of the in-plane unit vector m = (mx; my; 0) is an
anti-vortex.
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6.5. The field-driven transformation of skyrmion
lattices near the ordering temperature

6.5.1. Transformation of −π-skyrmion lattice

In the applied magnetic field the hexagonal −π-skyrmion lattice disappears at the
lability line hn: to the left side of the point B (Fig. 6.5) the lattice releases the free
isolated skyrmions (the oscillations of the order parameters are almost undetectable
for a < aB); to the right side of the point B the skyrmion lattice transforms into
homogeneous state with modulus in the center of the lattice cell going through zero.
Therefore, the temperature aB can serve as another characteristic landmark together
with the confinement temperature aL.

In Fig. 6.9 I have plotted dependences of moduli in the center m1 and at the
boundary m2 of the lattice cell on the magnetic field for two different values of
reduced temperature a = −1 (Fig. 6.9 (a)) and a = 0.14 (Fig. 6.9 (b)) which
characterize the described behavior.

In the first case (a = −1) the modulus at the outskirt of skyrmion lattice be-
comes equal to that of the homogeneous state, the lattice expands and only isolated
skyrmions can exist. Then with increasing magnetic field, modulus m1 in the center
of isolated skyrmion goes through zero and the skyrmion collapses. Such a case
corresponds to the major part of the phase diagram for a < aB. The evolution of
skyrmion lattices under a magnetic field closely agrees with the behavior studied ear-
lier for the low-temperature limit [21,69]: the transition mechanism at the high-field
limit is of the nucleation type with isolated skyrmion excitations appearing below
the instability line h0.

In the second case (a = 0.14), however, the modulus m1 in the center of the
skyrmion goes through zero while the skyrmion lattice still is intact. Such a lattice
does not set free isolated skyrmions. Isolated skyrmions exist as a different branch
of solutions and cannot condense into the lattice. As an example of such an isolated
skyrmion, I consider its structure for some parameters a and h where oscillations in
the skyrmion asymptotics are pronounced (for instance, for a = 0.21, h = −0.048).
The isolated skyrmion is embedded into the homogeneously magnetized state, and
the size of the numerical grid is chosen to garantee the full decay of oscillations in
the skyrmion tail. In Fig. 6.10 (a) I have plotted the dependences of modulus and
z-component of the magnetization through the cross section of isolated skyrmion.
Contour plots of each component of the magnetization are depicted in 6.10 (b).

For the purpose of investigation of skyrmion-skyrmion interaction, I introduce
two skyrmions into a square sample and define the interaction energy per skyrmion
εint versus the inter-skyrmion distance L (Fig. 6.11). Due to the strongly oscil-
latory character of this dependence two isolated skyrmions will tend to locate at
some discrete, equilibrium distances from each other and to be placed in minima of
inter-skyrmion energy εint. On the other hand, single isolated skyrmion (minimum
corresponding to L = 0) cannot elongate into the pair of skyrmions because of the
high potential barrier toward the minimum with finite L (the first deepest minimum
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6. Confinement of skyrmion states near ordering temperatures

Figure 6.10.: (a) Structure of isolated skyrmion characterized by the dependencies of
the modulus (red line) and mz-component of the magnetization (black
line) in the cross-section for a = 0.21, h = −0.048; (b) contour plots of
the components of the magnetization.

of εint). Adding skyrmions one by one an optimal number of skyrmions in the cluster
is found - the isolated skyrmions tend to form the hexagonal lattice with the densest
space filling. The deepest minimum of εint for two interacting isolated skyrmions is
very close to the period of hexagonal skyrmion lattice existing for the same control
parameters. Importantly, in the very narrow region between the lines h0 and hn (Fig.
6.5 (b)) skyrmions can exist only as bound states in the form of perfect hexagonal
lattice or different cluster formations [XII,XIV,XV].

In Fig. 6.12 I depict the process of transformation of the −π-skyrmion lattice into
the homogeneous state for a = 0.23 and some characteristic values of the applied
magnetic field h. Due to the ”softness” of the magnetization modulus the field-
driven transformation of the skyrmion lattice evolves by distortions of the modulus
profiles m(ρ) while the equilibrium period of the lattice does not change strongly
with increasing applied field. Despite the strong transformation of the internal struc-
tures the skyrmion lattice preserves axisymmetric distribution of the magnetization
near the center of the skyrmion lattice cell (Fig. 6.12). As for ”low-temperature”
skyrmions with constant modulus, the local energetic advantage of skyrmion lattices
with soft modulus over helicoids is due to a larger energy reduction in the ”double-
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Figure 6.11.: (a) The skyrmion-skyrmion interaction energy εint plotted in depen-
dence on the distance L between the centers of two isolated skyrmions.
(b) Dependencies of the modulus (red line) and mz-component of the
magnetization (black line) in the cross-section of two interacting iso-
lated skyrmions for a = 0.21, h = −0.048 corresponding to the first
(deepest) minimum of the interaction energy εint; (c) contour plots of
the components of the magnetization.
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6. Confinement of skyrmion states near ordering temperatures

Figure 6.12.: Numerically exact solutions of hexagonal skyrmion lattice (a) for a =
0.23 and different values of the applied magnetic field shown as contour
plots of the modulus m and mz-component of the magnetization (c) as
well as their diagonal cross-sections (d), (e). The diagonal cross-section
of the energy density is shown in (b).
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6.5. The field-driven transformation of skyrmion lattices

Figure 6.13.: (a) Dependences of energy densities in all considered modulated struc-
tures on the applied magnetic field h (a = 0.23), the energy density
is calculated with respect to the homogeneously magnetized state; (b)
differences of the averaged magnetization along the applied magnetic
field of −π-skyrmion lattice (red line) and conical phase (green dashed
line) with the modulus m0 of the homogeneously magnetized ferro-
magnetic state; (c) energy density of the −π- skyrmion lattice with
respect to the conical phase exhibits the minimum in the field (point
ξ), where average magnetizations along the field of cones and skyrmions
are equivalent.

twisted” skyrmion cell core compared to ”single-twisted” helical states [31,38].
The energy density of the skyrmion lattice with respect to the homogeneous state

for the considered magnetization process is plotted in Fig. 6.13 (a). With increasing
magnetic field the energy density of skyrmion lattice decreases, and in the point γ
reaches the minimum. In the minimum of the energy density the averaged value of
mz-components of the −π-skyrmion lattice (Fig. 6.13 (b)) equals the magnetization
of the homogeneous state m0 (6.9).

In the point ξ = 0.02 (Fig. 6.13 (b)) the average magnetization mz along the
field in the skyrmion lattice intersects the magnetization of the cone. This point
corresponds to the minimum of the energy difference between skyrmion lattice and
conical phase (Fig. 6.13 (c)). The structure of the −π-skyrmion lattice in this point
has a peculiar nature. The modulus in the center of skyrmion acquires the same
value as in the center of triangular regions (Fig. 6.12 (c)), and the distribution of
the modulus in the skyrmion lattice becomes periodic with the doubled period as
compared to initial skyrmion state in the point α. The distribution of the energy
density along y-direction (red dashed line in Fig. 6.12 (b)) also indicates the special
structure of the lattice in the minimum ξ.
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6. Confinement of skyrmion states near ordering temperatures

Figure 6.14.: Structure of the two-dimensional half-skyrmion lattice, derived as a
minimum energy solution for the equation (6.3). (a) overview showing
the distribution of the magnetization vectors in the base plane. (b)
numerically exact solutions of square skyrmion lattice for a = 0.23 and
different values of the applied magnetic field shown as contour plots of
the modulus m and mz-component of the magnetization. (c),(d) the
diagonal cross-sections of contour plots (b).

Since it is the point with the minimal energy difference with respect to conical
phase, additional small energy contributions can stabilize skyrmion lattices for the
field around the point ξ (shaded region in Fig. 6.13 (c)).

The increasing magnetic field leads also to the increase of skyrmion energy density,
the field gradually suppresses the antiparallel magnetization in the cell core and
reduces the energetic advantage of the ”double-twist” (Fig. 6.12 (c)). At the line hn

the lability threshold of the lattice is achieved: the magnetization modulus in the
cell center becomes zero (see magnetization profile for h = 0.042 in Fig. 6.12 (d),
(e)).
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6.5. The field-driven transformation of skyrmion lattices

6.5.2. Field- and temperature-driven transformation of the
staggered half-skyrmion lattice

The dependence of the energy density on the applied magnetic field for staggered
half-skyrmion lattice is plotted in Fig. 6.13 (a) (blue line). The energy density has a
minimum relative to the homogeneous state for h = 0 and is symmetric with respect
to the direction of the applied magnetic field.

The average mz-component of the half-skyrmion lattice equals zero as it is in the
homogeneous background. For h = 0 the square half-skyrmion lattice is energetically
more favourable than the densely packed hexagonal lattice, but any increase of the
magnetic field leads only to the increase of its energy density.

In the magnetic field the relative area of half-skyrmion plaquettes magnetized
along the field grows at the cost of the oppositely magnetized plaquettes. For
some value of magnetic field (point β) the energies of the square and −π hexag-
onal skyrmion lattices are equivalent. Zero magnetization along the defect lines
between up and down pointing plaquettes increases in the field. These interstitial
regions serve as nuclei of triangular regions, since for some limiting magnetic field
the half-skyrmion lattice becomes unstable and transforms into the hexagonal −π-
skyrmion lattice. Contour plots of the mz and m for h = 0.013 exhibit already the
elongation of the half-skyrmion lattice toward hexagonal one (Fig. 6.14 (b)).

The defect lines are also the reason of the instability of half-skyrmion lattice with
decreasing temperature. As it costs additional energy to make the magnetization
zero along the particular line, the half-skyrmion lattice can exist only in vicinity
of the ordering temperature aN . For some critical temperature a the half-skyrmion
plaquettes undergo elliptic instability and elongate to form a (defected) spiral state
(Fig. 6.15). The properties of intermediate structures between the spiral and half-
skyrmion lattice and the question of their stability have still to be resolved (Fig.
6.15). Apparently, such a structure is stabilized by the variation of the modulus
which retains the square symmetry. As the difference of the moduli in ”positive” and
”negative”plaquettes becomes negligible, the spiral state with constant temperature-
defined modulus arises.

6.5.3. Field-driven transformation of +π-skyrmion lattice

The +π-skyrmion lattice undergoes also a transformation toward the more sta-
ble −π-skyrmion lattice as it was described for square half-skyrmion lattice (see
sect. 6.5.2). Magnetic field applied along the magnetization in the skyrmion center
stretches m1 and compresses m2 (see boundary conditions of Eq. (6.18)). Such a
process leads only to the increase of the energy density (Fig. 6.13 (a)): the +π-
skyrmion lattice is the state with the largest energy density of all modulated phases
under consideration.

As soon as m2 = 0, the +π-skyrmion lattice looses its stability. In this sense, the
magnetization process is reminiscent of the −π-skyrmion lattice in which m1 = 0 in
the point of the lattice instability (see sect. 6.5.1). In increased magnetic field the
modulus at the boundary of the skyrmion m2 will be directed along the field. As it
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6. Confinement of skyrmion states near ordering temperatures

Figure 6.15.: Contour plots of the modulus m (b) and mz-component of the mag-
netization (a) of a two-dimensional intermediate modulated structure
between half-skyrmion lattice and spiral state with constant modulus.
While the structure exhibits the difference of the moduli in oppositely
magnetized plaquettes and maintains its square symmetry, it is appar-
ently stable (this questions demands additional investigation).

was explained in sect. 6.4.2 (Fig. 6.8), such a state with the magnetization vectors
pointing along the field direction in the center of skyrmion and at the outskirt rep-
resents only the intermediate state toward the energy minimum with −π-skyrmion
lattice. In Fig. 6.16 I display the process of the transformation of +π-skyrmion
lattice into −π-skyrmions with the help of contour plots (Fig. 6.16 (d)) exhibiting
distribution of the modulus m and mz-component of the magnetization in the ele-
mentary cell as well as their dependences on the spatial coordinate in the diagonal
cross-section (Fig. 6.16 (b), (c)).

6.6. Phase diagram of solutions for cubic helimagnets

In cubic helimagnets the Dzyaloshinskii-Moriya energy includes contributions with
gradients along all three spatial directions. This stabilizes chiral modulations with
propagation along the direction of an applied field as cone phases [99]. For the
isotropic model Φ(m) (6.3) the cone phase solution with the fixed magnetization
modulus and rotation of m around the applied magnetic field:

ψ = z, cos(θ) =
h

m
, m =

|a − 0.25|
2

, (6.20)

is the global energy minimum in the whole region where modulated states exist
(green line in Fig. 6.13 (a)).

In Fig. 6.17 (a) I plotted the phase diagram of solutions for isotropic cubic he-
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6.6. Phase diagram of solutions for cubic helimagnets

Figure 6.16.: Structure of a two-dimensional +π-skyrmion lattice, derived as a so-
lution for the model’s equation (6.3). (a) overview showing the dis-
tribution of the magnetization vectors in the base plane: magnetic
field is applied along the magnetization in the center of the skyrmion.
(b), (c) Distributions of the modulus and the mz-component of the
magnetization in the diagonal cross-sections of contour plots (d) for
different values of the applied magnetic field. (d) Numerically exact
solutions of +π-skyrmion lattice for a = 0.23 and different values of
the applied magnetic field shown as contour plots of the modulus m
and mz-component of the magnetization characterize the process of
the transformation of +π-skyrmion lattice into the more stable −π-
skyrmion lattice.
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6. Confinement of skyrmion states near ordering temperatures

Figure 6.17.: (a) Details of the phase diagram near the ordering temperature show
the existence regions for different modulated states according to the
energy dependences of Fig. 6.13 (a). Lines for first order transitions: β
square half-skyrmion lattice ↔ hexagonal skyrmion lattice, δ helicoid
↔ hexagonal skyrmion lattice. Lines ν1 and ν2 mark the transition
from the helical and conical equilibrium phases into the paramagnetic
phase, respectively. In the interval of magnetic fields hc < h < hn

(hatched region) the −π-skyrmion lattice exists as metastable state
with respect to the homogeneous state. In the point γ the energy
density of −π-skyrmion lattice achieves minimum. (b) Magnetic phase
diagrams of cubic helimagnets with exchange anisotropy b = −0.05
and the applied field along (111) (solid) and (001) (dashed) axes (a)
contains regions with thermodynamically stable hexagonal and square
half-skyrmion lattices.
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6.7. Chiral modulations in non-Heisenberg models

limagnets according to the model functional (6.3). I showed lines for transitions
between different metastable states in accordance with Fig. 6.13 (a).

For cubic helimagnets, the energy density (6.3) has to be supplemented by anisotropic
contributions,

Φa = b
∑

i

(∂mi/∂xi)
2 + kc

∑
i

m4
i , (6.21)

where b and kc are reduced values of exchange and cubic anisotropies [99]. In the
section 4.9 on the example of modulated states with the fixed length of the longitu-
dinal order parameter m, I showed already that these anisotropic interactions impair
the ideal harmonic twisting of the cone phase (for details see sect. 4.7.4 and sect.
4.9) and lead to the thermodynamic stability of skyrmion states. The same is true
also for the modulated states with soft length of the modulus m as shown in the
equilibrium phase diagram (Fig. 6.17 (b)).

The difference between the energy of the hexagonal skyrmion lattice Wsk and of
the cone phase Wcone calculated for the isotropic model, ΔWmin = Wsk − Wcone,
has minima along a curve ξ(a). See Fig. 6.13 (c)) which reaches the critical point
ξ(aN) = 0 as

ΔWmin = 0.0784(0.25 − a). (6.22)

Weak exchange anisotropy of a cubic helimagnet, therefore, creates a pocket around
aN , where the hexagonal skyrmion lattice becomes the global energy minimum in
a field (Fig. 6.17 (b)). This case is realized in cubic helimagnets with negative
exchange anisotropy (b < 0) as in MnSi [99]. This anisotropy effect provides a basic
mechanism, by which a skyrmionic texture is stabilized in applied fields. Thus,
the basic Bak-Jensen model [99] (Eq. 4.1) possibly can explain the observation of
a skyrmion phase at finite fields in MnSi - so-called ”A-phase” [79, 273, 276]. The
exchange anisotropy b < 0 also leads to the thermodynamic stability of half-SLs
(Fig. 6.17 (b)). The stabilization of these textures may be responsible for anomalous
precursor effects in cubic helimagnets in zero field [31,62,81].

The thermodynamic signature of the transition from the paramagnetic state into
the A-phase in experiment is very similar to that into the precursor state in zero
magnetic field that has been put into evidence by the observations of Pappas et
al. [81].

6.7. Chiral modulations in non-Heisenberg models

A generalization of isotropic chiral magnets proposed in Ref. [31] replaces the usual
Heisenberg-like exchange model by a non-linear sigma-model coupled to a modu-
lus field with different stiffnesses. This yields a generalized gradient energy for a
chiral isotropic system with a vector order parameter, which is equivalent to the
phenomenological theory in the director formalism [31,38] of liquid crystals:∑

i,j

(∂imj)
2 →

∑
i,j

(∂imj)
2+(1−η)

∑
i,j

(∂im)2 → m2
∑
i,j

(∂inj)
2+η

∑
i

(∂im)2. (6.23)
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6. Confinement of skyrmion states near ordering temperatures

Figure 6.18.: Critical line (6.14) in the case of non-Heisenberg model for different
values of parameter η in (6.23).

Parameter η equals unity for a ”Heisenberg” model, in chiral nematics η = 1/3 [38].
For η > 1 the field- and temperature-driven evolutions of skyrmion and helical

states is qualitatively the same as for η = 1 (see Fig. 6.13 (a) for the energy depen-
dencies of different modulated phases on the field). However for the thermodynami-
cal stability of skyrmions, higher values of additional anisotropic contributions must
be applied. The endpoints of the lines bounding the confinement region are shifted
to the left (i.e. in the region of lower temperatures) with respect to aN = 0.25 (blue
line in Fig. 6.18). Therefore, the conical phase can exist for higher temperatures in
comparison with skyrmions.

For η < 1 on the contrary, the additional ”softness” of the longitudinal order
parameter makes the confined chiral modulations extremely sensitive to the applied
magnetic field, temperature, and anisotropic energy contributions: different chiral
states undergo a very complex sequence of phase transitions (see section 6.7.1). In
zero magnetic field the region of confinement extends to the temperatures higher
than aN (green line in Fig. 6.18). This means that skyrmions and helicoids can exist
and compete for the thermodynamical stability for a > aN . Cones appear only for
a < aN independent on the value of η.

The phase diagram of states plotted in Fig. 6.21 (a) for η = 0.8 deserves a careful
consideration.

6.7.1. Field- and temperature-driven transformation of
modulated states for η = 0.8

In Fig. 6.21 (b) the energy densities of all considered modulated phases are plotted
with respect to the energy of the conical phase. The snapshots of the contour plots
for mz-components of the magnetization in particular points of these curves are
shown in panels (c) and (d). These contour plots provide basic insight into the
transformation of different modulated phases in the applied magnetic field.

A. Transformation of the −π-skyrmion lattice in applied magnetic field
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6.7. Chiral modulations in non-Heisenberg models

For η = 0.8, the hexagonal lattice of −π-skyrmions represents the metastable
state with the largest energy density from all skyrmion textures. In the applied
magnetic field the energy density of −π-skyrmion lattice increases (red line in Fig.
6.18 (b), points m1 and m2), and eventually at some critical magnetic field h(m3)
the skyrmion lattice undergoes the transformation toward spiral state with the lower
energy density. At the field h(n3) the first-order phase transition occurs between
metastable helical and −π-skyrmion states. To obtain numerical solution for −π-
skyrmion lattice, the temperature Tk of the Monte-Carlo annealing must be relatively
low (see section 4.5.1). Otherwise, −π-skyrmions transform into the state with the
lowest energy for h < h(m3) and even for h = 0. For h < h(n3), −π-skyrmions turn
into the half-skyrmion square lattice; for h(n3) < h < h(m3) - into the helicoid.

In Fig. 6.21 (d) the structure of skyrmion lattice is characterized by the contour
plots for mz-component of the magnetization. Magnetic field applied along the
magnetization in the centers of triangular regions (blue triangles surrounding the
main hexagon in Fig. 6.21 (d), points m1 and m2) increases significantly their fraction
with respect to the parts of the lattice with opposite directions of the magnetization.
In the point m3 the lattice looses its stability and elongates into the spiral. In Fig.
6.21 (d) (point m3) the initial moment of the transformation is shown.

B. Transformation of the +π-skyrmion lattice in applied magnetic field

+π-skyrmion lattice is the metastable state in the interval of magnetic fields 0 <
h < h(n1). In the point n1 the first-order phase transition occurs between half- and
+π-skyrmion lattices. In the interval of fields h(n1) < h < h(n2), +π-skyrmions are
the global minimum of the system. In the point n2 the helicoids (see paragraph D
of the present section) replace the skyrmions by the first-order phase transition. In
the phase diagram (Fig. 6.21 (a)) the region of thermodynamical stability of +π-
skyrmions is displayed by the hatching. For h < h(n1) +π-skyrmions can be easily
transformed into the square lattice of half-skyrmions as shown by the dotted line in
Fig. 6.18 (b). Therefore, the temperature of the Monte-Carlo annealing must be
sufficiently low.

In the applied magnetic field the fraction of the skyrmion lattice with the magneti-
zation along the field grows rapidly at the expense of the triangular regions with the
opposite magnetization (point p1 in Fig. 6.21 (d)). For the fields h > h(n2), there are
two scenarios for the evolution of this skyrmion lattice: in the first variant, the +π-
skyrmion lattice turns into the helicoid as it was described also for −π-skyrmions;
alternatively, +π-skyrmions may transform into the homogeneous state.

C. Transformations of the half-skyrmion lattice

For η < 1, half-skyrmion lattice is the global minimum of the system in the interval
of magnetic fields 0 < h < h(n1) (blue line in Fig. 6.21 (b)). Additional energy costs
to make the magnetization zero along particular directions in the square lattice are
lower than for η > 1. As a result, the region of square lattice lability broadens
essentially. For η = 0.8 half-skyrmion lattice is thermodynamically stable in the
temperature interval 0.152 < a < 0.265, h = 0 (see phase diagram in Fig. 6.21 (a)).
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6. Confinement of skyrmion states near ordering temperatures

In the applied magnetic field, as it was also described in section 6.5.2, the relative
area of plaquettes in the half-skyrmion lattice magnetized along the field grows at the
cost of the oppositely magnetized plaquettes (h2 in Fig. 6.18 (c)). For h > h(n1) the
half-skyrmion lattice may either transform into the more stable +π-skyrmion lattice
(point h3 in Fig. 6.21 (c)) with the subsequent transformation into the helicoid or
elongate into the spiral state through intermediate structures shown in Fig. 6.21 (c),
h4. Energy density has a local minimum for such modulated states (see also Fig.
6.15).

The region of thermodynamical stability of half-skyrmion lattice is marked by blue
color in Fig. 6.18 (a).

D. Transformation of helicoids in the applied magnetic field

For definiteness, one-dimensional helical states will be considered to propagate
along y-coordinate axis; applied magnetic field is directed along z (Fig. 6.19 (a)).
Rotating magnetization m is written in spherical coordinates,

m = m(y) (sin θ(y), cos θ(y), 0), (6.24)

with θ(y) being the angle of the magnetization with respect to z axis and m(y) - the
longitudinal order parameter.

Energy density of such a helical state after substituting (6.24) into Eq. (6.3) can
be written as

Φ = m2

(
dθ

dy

)2

− m2 dθ

dy
+ η

(
dm

dy

)2

+ am2 + m4 − hm cos θ (6.25)

The Euler equations

d2θ

dy2
+

2

m

dm

dy

dθ

dy
− 1

m

dm

dy
− h

2m
sin θ = 0,

d2m

dy2
− m

η

((
dθ

dy

)2

− dθ

dy
+ a + 2m2

)
+

h

2η
cos θ = 0 (6.26)

with boundary conditions

θ(0) = 0, θ(p/2) = π, m(0) = m1, m(p/2) = m2 (6.27)

describe the structure of the helicoid in dependence on the values of the applied
magnetic field h. p is a period of the helicoid.

In Fig. 6.19 (b)-(e) I have plotted the dependences m = m(y) (c) and θ = θ(y) (b)
as well as dm/dy(y) (e) and dm/dy(y) (d) in the helicoid for different values of the
field. In zero magnetic field the magnetization with the constant modulus performs
the single-mode rotation around the propagation direction. The longitudinal and
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6.7. Chiral modulations in non-Heisenberg models

angular order parameters are analytically defined as

m =

√
0.25 − a

2
, θ =

y

2
. (6.28)

Increasing magnetic field h||z destroys the single-mode character of rotation in
the helicoid: magnetic field stretches the value of the magnetization along the field
(m2 in Fig. 6.19 (c)) and squeezes it for the opposite direction (m1 in Fig. 6.19
(c)). The angular profiles become strongly localized (blue lines in Fig. 6.19 (b)).
Dependences of derivatives for corresponding order parameters are also highly non-
linear (Fig. 6.19 (d), (e)): the magnetization vector tries to rotate faster in the parts
of the helicoid opposite to the field.

For some critical value of the magnetic field (in Fig. 6.19 for a = 0.23, this critical
field is 0.024) the value of m1(0) decreases to zero. In the further increasing magnetic
field as a possible solution of Eq. (6.26) and, therefore, a candidate of the helicoid
evolution, I considered the one-dimensional spiral state with the following boundary
conditions:

θ(0) = 0, θ(p/2) = θ0, m(0) = m1, m(p/2) = 0. (6.29)

In Fig. 6.20 the same characteristic features for this spiral state as in Fig. 6.19 are
depicted. The length of the magnetization along the field continuously increases,
whereas the angle θ(p/2) decreases.

Considered helicoid is the global minimum of the system in the range of fields,
h(n2) < h < h(ν1) (Fig. 6.21 (b)). In the point n2 it replaces by the first-order phase
transition the +π-skyrmion lattice. Point ν1 marks the first-order phase transition
with homogeneous state. For h > h(ν1) such a helicoid can still exist, but as a
metastable solution with the positive energy density. In Fig. 6.21 (a) the region of
the helicoid stability is shown by the light violet color.

6.7.2. Phase diagram of solutions for η = 0.8

The magnetic phase diagram (Fig. 6.21) calculated for η = 0.8 includes pockets
with square half-skyrmion lattice, hexagonal lattice with the magnetization in the
center of the cells parallel to the applied magnetic field (i.e. +π according to termi-
nology introduced in section 6.4.2), and helicoids with propagation transverse to the
field. At low fields, a half-skyrmion staggered lattice is the global minimum of the
system. At lines E-A and A-C this lattice undergoes a first-order phase transition
into the conical phase and the +π-skyrmion lattice, correspondingly. At higher field,
+π-skyrmion lattice competes with a helicoidal phase with the line B-C being the
line of a first-order phase transition between them. In contrast, the −π-skyrmion
lattice states expected to form a metastable low-temperature phase in chiral cubic
helimagnets (see chapter 4), do not exist near magnetic ordering in this model. Crit-
ical points of this phase diagram have the following coordinates: A=(0.209,0.029),
B=(0.204,0.036), D=(0.265,0), E=(0.152,0).

The phase diagram shows that both helicoidal kink-like and skyrmionic precursors
may exist.
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Figure 6.19.: Solutions for the helicoid presented as dependences θ(y) (b), dθ/dy(y)
(d), m(y) (c), dm/dy(y) (e) demonstrate strong transformation of the
helical structure in the applied magnetic field for a = 0.23. Longi-
tudinal value of the magnetization along the field gradually increases,
whereas opposite to the field - decreases (see sketch in (a) and longi-
tudinal profiles in (c)). Angular profiles become more localized (see
solutions in (b)). In a critical magnetic field h = −0.024 the magneti-
zation opposite to the field is equal to zero, m1(0) = 0.
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Figure 6.20.: Solutions for the one-dimensional modulated state with boundary con-
ditions (6.29) presented as dependences θ(y) (b), dθ/dy(y) (d), m(y)
(c), dm/dy(y) (e). Such a state is considered as a possible scenario
for the evolution of a helicoid in a strong magnetic field. In (a) the
structure of the helical state is presented schematically.
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Figure 6.21.: (a) Theoretical phase diagram for chiral magnets near magnetic order-
ing according to the modified non-linear sigma-model [31]. In larger
applied fields, i.e. in the A-region, a densely packed full skyrmion lat-
tice is found in region (I). The helicoid transverse to an applied field
is reentrant in region (II). Region (III) is a half-skyrmion lattice with
defects. (b) Dependences of energy densities in all considered modu-
lated phases on the applied magnetic field h (a = 0.23) calculated with
respect to the conical phase. The evolution of skyrmion states is shown
in (c) and (d) with the help of contour plots for mz-component of the
magnetization.
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6.8. Conclusions

In the present chapter, I have investigated the basic phenomenological model for
chiral ferromagnets (Eq. (6.3)). I obtained rigorous solutions for skyrmions and
analytical solutions for one-dimensional helical and conical states in the whole range
of the control parameters - the reduced values of temperature, a, and magnitude
of the applied magnetic field, h (see Eqs. (6.4), (6.1)). I have analysed the trans-
formation of the modulated phases under the influence of the magnetic field and
temperature and constructed the phase diagrams of states in Figs. 6.2, 6.17, 6.21.
Here, I highlight the most important results of the present chapter:

(a) By analysing solutions for localized isolated skyrmions (section 6.3), it was
found that inter-skyrmion coupling being repulsive in a broad temperature range
becomes oscillatory near the ordering temperature. This may be explained by ”soft-
ening” of the magnetization modulus at high-temperatures and strong interplay
of angular and longitudinal order parameters. Isolated skyrmions attracting each
other may form clusters and confined skyrmion lattices corresponding to minima of
skyrmion-skyrmion interaction energy (see Fig. 6.11). Similar effects take place also
for helical states [284,285].

(b) Temperature interval in the phase diagram of Fig. 6.2 may be divided in low-
and high-temperature parts: in the main part (a < aL = −0.75, see section 6.3.3)
skyrmions are regular chiral modulations with repulsive inter-skyrmion interaction
(described in chapter 4). In the high-temperature region (a > aL) spatial variation
of the modulus defines the magnetization processes. The confinement temperature
aL is a fundamental parameter of a chiral magnet delineating the border between
two different regimes of chiral modulations. The width of high-temperature interval
Δa2 is determined by the ratio of isotropic and anisotrpic (DMI) exchange (see Eq.
6.15).

(c) Near the ordering temperature skyrmion and helical textures are confined:
they can exist only as bound states in the form of clusters or lattices. Trying to
push the skyrmions away from the equilibrium (i.e. trying to decrease or increase
the period of the skyrmion lattice) leads to the their annihilation (Fig. 6.7): the
farther (closer) the skyrmions from each other the smaller the modulus in the center,
and for some critical distance between them, only the homogeneous state is present.

(d) Confined skyrmion and helical textures arise from the disordered state through
a rare case of an instability-type nucleation transition. Decreasing the temperature
from paramagnetic region leads to the appearence of skyrmion matter already in
the form of lattice. And opposite, the magnetization modulus in skyrmionic lattice
gradually decreases to zero with approaching the Curie temperature from the low-
temperature part. However, the lattice retains its symmetry up to the critical point.

(e) The properties of confined chiral modulations investigated in this chapter reveal
a noticeable similarity with characteristic peculiarities of cubic helimagnets near the
ordering temperatures and known as ”precursor states” and ”A-phase anomalies”.
This allows to suggest that induced by the softening of the magnetization magnitude
the crossover and confinement of chiral modulations is the basic physical mechanism
underlying anomalous properties of ”precursor states” in chiral magnets.
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(f) As the energy differences between different modulated phases in the confine-
ment region are very small, additional energy contributions result in changes of
relative phase stabilities and may cause drastic modification of phase diagrams: cu-
bic anisotropy stabilizes −π-skyrmions in the particular interval of the magnetic
field and half-skyrmions in zero field, whereas in the non-Heisenberg model square
half-skyrmions transform into the +π-skyrmions and eventually into the transversal
spirals with increasing magnetic field.
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7. Supercooled and glass-forming
liquids as skyrmionic textures

In the present chapter, the concept of skyrmionic textures in chiral magnetic systems
has been extended to continuum models for glass-forming liquids [288]. These mod-
els describe the frustrated tiling of space by incompatible locally preferred clusters
of a molecular liquid within a generalized elastic theory. The field theory for the lo-
cal order-parameter includes antisymmetric couplings derived from the decurving of
ideal template units into flat space. As a qualitatively new feature, model with soft-
ened modulus of the local intensity of the order parameter was proposed in Ref. [92].
The corresponding classical field theory allows the stabilization of skyrmionic local-
ized states and extended textures. The notion of a glassy structure as an entan-
gled network of defect lines is replaced by the complex geometry of an elastic and
frustrated continuum that can display both ”rotation” or twisting and logitudinal
suppression of the ideal local order. The skyrmions in the simplest version of the
frustration models are close, but soft relatives of the hedgehog solutions in Skyrme’s
original SU(2) symmetric model for nucleons. It is argued that stable skyrmions are
formed at elevated temperatures in molecular liquids and that their condensation
into frustrated textures underlies the stability of supercooled and glassy states.

7.1. Introduction

In the present chapter I consider simplified field theoretical approaches which offer
a general insight into the mechanism of supercooling and the glass-transition [288].
Such theoretical approaches may be treated as a counterpart to the atomistic models,
such as molecular dynamics simulations, which commonly address the structure of
metallic supercooled liquids and glasses or other simple glass-forming molecular liq-
uids. Continuum theories become a starting point for a refined continuum mechanics
that could address plastic behavior in glasses.

One approach for a statistical continuum theory has been based on the concept of
locally preferred structural units and their geometrical incompatibility, which frus-
trates a regular tiling of the whole space. Thinking of the metallic glasses as a
model objects consisting of identical spherically symmetric atoms with interaction
via soft pair potentials, Frank [289] noted that the ground state of four such atoms
is a perfect tetrahedron. Twenty such tetrahedra can be combined to form a regular
icosahedron. This icosahedron is really the most stable cluster instead of densest
crystalline fcc or hcp hard-sphere packings. However, in three dimensions this lo-
cally preferred structure (tetrahedral or icosahedral) cannot propagate freely to tile
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7. Supercooled and glass-forming liquids as skyrmionic textures

the whole space. This underlies the notion of geometric frustration: the five-fold
symmetry axes of the icosahedron prevents a space-filling crystalline arrangement of
such units without defects.

An important step in deriving a continuum theory for such states of a condensed
matter system was made on one hand by Sadoc, Kleman and Mosseri [290,291], and
on the other by Nelson and co-workers [292, 293]. This approach consists in using
the ideal structure of polytope {3, 3, 5} [294] as a reference state in a curved three-
dimensional space S3. Then a regular and unfrustrated tiling by a dense icosahedral
packing is possible. Going back from the reference state to the actual configuration
in ”flat” Euclidian space E3 necessarily forces in topological defects that perturb
the ideal structure. The most relevant defects for the physics of atomic glasses are
”disclinations”. Disclinations are associated with the breaking of rotational symme-
try, and they are line defects in three dimensions. The corresponding approaches
of mapping from S3 to E3 were developed in Refs. [39, 291–293, 295–297]. The gra-
dient energies in these approaches are expressed in terms of covariant derivatives,
e.g. with respect to a constant curvature of the S3, which encodes the uniform
geometric frustration of the ideal template structure (for comprehensive reviews on
these approaches, see Refs. [288, 298]). The frustration models share the geometri-
cal construction with gauge-field theories. However, in the frustration models the
constant-curvature covariant derivatives are fixed. Therefore, one can consider these
models for glass-forming condensed matter as frozen gauge-field theories [299].

In section 7.2 I introduce the frustration models for dense glass-forming and su-
percooled liquids. I show that such models allow the formation of dense skyrmionic
textures, i.e. topologically non-trivial continuum states with localized units [35,300].
In section 7.3 I demonstrate the similarity of the continuum frustration models in the
theory of supercooled liquids and glasses with Landau-Ginzburg theories containing
Lifshitz invariants [31, 41, 233]. The solutions for skyrmion states in the frustration
models for liquids and glasses are presented in section 7.4. In section 7.5 a few
physical consequences of this skyrmion picture are discussed.

7.2. The frustration models for glasses

An elastic energy term which is obtained in the standard approach by decurving the
template into flat space is linear in spatial derivatives of the local order parameter
describing the intensity and orientation of the local structural features (averaged
over a certain volume), i.e. a set of local ”vector order-parameters” Qn(r) is ob-
tained by projecting a local particle configuration onto the surface of a tangent 4D
hypersphere with appropriate radius to accommodate polytope {3, 3, 5} and then
much in the fashion of Landau-Ginzburg theory a free-energy functional of this local
order parameter is derived [293, 297]. Frustration is introduced via the covariant
derivative entering the gradient term:

(∂μ − iκ̃L̂
(n)
0μ )Qn (7.1)
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7.3. SU(2) model of metallic supercooled liquids and glasses

and the absolute values (modulus or intensities) of the vectors |Qn|. Here, the

matrices L̂
(n)
0μ are generators of SO(4) rotations without slip in the (0, μ) plane where

0 denotes the direction in the four-dimensional space which is perpendicular to the
tangent Euclidian space described by the coordinates m = x, y, z. κ̃ is the inverse
radius of the hypersphere S3.

Frustration arises from the fact, that the covariant derivative cannot be made zero
everywhere. In the framework of the differential geometry making the covariant
derivative vanish along a curve amounts to parallel transporting the local order
parameter along the curve. In the approach of Nelson this is done by ”rolling” the
tangent 4D sphere S3 with the ideal icosahedral template along the chosen curve
in Euclidian space. Frustration then means that one cannot extend such a parallel
transport to the whole space. Rolling the sphere without sleep along the closed
circuit results in the fact that initial and final values of order parameter after such
parallel transport will be different. The magnitude of this difference is proportional
to the curvature κ̃. In turn, the presence of a non-zero curvature comes from the
non-commutativity of generators L̂

(n)
0μ and non-abelian group SO(4).

An explicit construction, see Ref. [297], yields a free energy expression of the type

Fg =
1

2

∑
n

[
Kn |(∂μ − iκ̃L̂

(n)
0μ )Qn|2 + fn(|Qn|)

]
, (7.2)

where
fn(x) = rnx

2 + O(x2) (7.3)

are homogeneous functions, the sum over n is restricted to representations of SO(d+
1) that leave invariant the ideal template, and Kn are normalization constants.

7.3. SU(2) model of metallic supercooled liquids and
glasses and the relation to the Skyrme model

Now I make some transformations of the free-energy functional. Sachdev and Nelson
[297] noted that the Gaussian free energy Eq. (7.2) with a set of many-component
order parameters Qn can be strongly simplified by using the homomorphism between
the SO(4) group and SU(2)⊗ SU(2), as two SU(2) groups decouple. So, instead of
the group SO(4) I now have to deal with a single SU(2) group. Also I consider
a simplified model for one particular vector Q12 to represent the most important
structural features of a template. Then one can write the local order parameter for
this particular n in terms of rotation matrices D (Wigner matrices) representing the
SO(4) group:

Q(r) = q D†(r)Q0 D†(r) (7.4)

Here, q is a real number representing the magnitude of the order parameter. Then,
employing the simplest representation of the SU(2) group by 2× 2 unitary matrices
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7. Supercooled and glass-forming liquids as skyrmionic textures

U the free energy of one SU(2) field can be written in the following form:

Fsu2 =
1

2
K
{

(∂μ q)2 − q2Tr[U †∂μU − iκ̄

2
U † σμ U ]2

}
+ f(q) , (7.5)

where σμ are Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (7.6)

On this stage of our transformations one is able to compare this form of energy
with that considered by Skyrme for his SU(2) model of nuclear matter [35]. First of
all, a field with SU(2) group structure can support non-trivial topological textures.
In fact, the form of Skyrme’s radial hedgehog solution

U = exp[iF (ρ) r · �σ] (7.7)

is applicable to the free energy for metallic glasses. However, the principal difference
is that the stabilization of these localized hedgehog solutions with a finite definite
diameter in Skyrme’s non-linear sigma model stems from a higher-order gradient
term. On the contrary, in this type of free energy the solutions are stabilized by the
terms linear in the gradients.

Making additional transformation of the free-energy functional one can reveal the
similarity between the SU(2) model and the chiral magnets. I rewrite the SU(2)
form of energy in terms of a 4-component unit vector Φ

Φ = (φ0, �φ) ≡ (φ0, φ1, φ2, φ3) (7.8)

with the modulus of this vector being unity

|Φ| = φi φi = 1 (7.9)

by the parametrization of matrix U:

U = φ01̂ + φμ σμ. (7.10)

where 1̂ is a unitary matrix. Then, the free energy can be written in the following
form

Fso4 = K q2 (∂α φi)
2 + Kη(∂μ q)2 + κ q2 [φμ ∂μ φ0 − φ0 ∂μ φμ−

−εαβγφα ∂β φγ] + f(q) (7.11)

where κ is the curvature, εαβγ is the totally antisymmetric tensor, summation over
greek indices is over the coordinates x, y, z in the physical space E3, while summation
over latin indices runs over the 4 vector components.

f(q) = aq2 + bq4 + O(q5). (7.12)
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7.4. Soft skyrmions in the SU(2) model

One can now compare the energy functionals (7.11) representing the frustration
model for dense super-cooled liquids and glasses with the theory of chiral ferromag-
nets.

Fso3 = A m2 (∂νnμ)2 + A η (∂νm)2 + D εαβγ mα ∂β mγ + fm(m) (7.13)

where
fm(m2) = am2 + bq4 + O(m5). (7.14)

It is evident that the structure of both models is almost identical. For the case of
a 3-component magnetization vector m it was shown that the energy terms linear in
gradients stabilize nonhomogeneous distributions of the magnetization. Physically
these energy contributions stem from Dzyaloshinskii-Moriya interactions. Also, as
in the case of a chiral metallic ferromagnetic system, as discussed in Ref. [31], the
authors have modified the elastic energy or longitudinal stiffness by a factor η. The
physically sensible range of parameter η, namely, from zero to unity, allows large
modulations of the order parameter magnitude. For metallic glasses the energy
contributions are the same, and they are a consequence of the inherent frustration
in the models. The softening of the modulus m or the intensity q is the crucial
point of both models that allows to shrink the magnitude of the order-parameter
vectors at the outskirts of the multiple twisted skyrmionic objects, e.g. near certain
lines or points in extended textures which mark the defects in the fixed modulus
fields like in liquid crystals with constant modulus of the director vector. Thus,
with the softened version of the order parameter for 4D case, I replace the notion of
localized defects as disclination lines by the picture of a smooth but more complex
geometrical adaptation of the ordering. The necessary network of disclinations in
the SO(4) picture of a dense hard-sphere packing with ideal icosahedral template is
replaced by regions with suppressed order-parameter intensity.

7.4. Soft skyrmions in the SU(2) model

Now I present in details the results of calculations for the model SU(2) for iso-
lated and extended skyrmion textures. Skyrme ansatz in usual spherical coordinates
(ρ; θ, ϕ) reads as follows:

(�φ, φ0) =

⎛⎜⎜⎝
sin F (ρ) sin θ cos ϕ
sin F (ρ) sin θ sin ϕ
sin F (ρ) cos θ
cos F (ρ)

⎞⎟⎟⎠ . (7.15)

Radial soft hedgehog skyrmions are described by the profile function F (ρ) and the
radially varying modulus q(ρ). The Euler-Lagrange equations from the variation
of the free energy with this ansatz yield a boundary value problem for a system of
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7. Supercooled and glass-forming liquids as skyrmionic textures

Figure 7.1.: Solutions for soft hedgehog skyrmions shown as dependenses of q(ρ) (a)
and F (ρ) (b). The intensity of the order parameter q disappears at the
radius R whereas the angle F (R) = θ0.

ordinary differential equations:

d2F

dρ2
+

2

ρ

dF

dρ
− κ

q

dq

dρ
+

2

q

dq

dρ

dF

dρ
− 2κ

ρ
sin2 F − sin 2F

ρ2
= 0 (7.16)

d2q

dρ2
+

2

ρ

dq

dρ
− q

η

[(
dF

dρ

)2

+
2 sin2 F

ρ2
− κ

dF

dρ
− κ

sin 2F

ρ
+ a + 2bq2

]
(7.17)

with boundary conditions

q(0) = q0 > 0, F (0) = 0;π, q(R) = 0, F (R) = θ0. (7.18)

Modulus in the center has the maximum, and is zero on the outskirt. The angle F
starts to rotate from initial value zero or π, and has some value θ0 near the radius.

Typical examples of skyrmion cells obtained by numerically solving the Euler
equations are shown in Fig. 7.1. The dependence of modulus q on the distance from
skyrmion center ρ has the bell shape while the angle F changes almost linearly in
the radial direction. Expansion into series near zero

F (ρ) = π + tan(α)ρ, (7.19)

q(ρ) = q0(1 +
a + 3 tan2 α + 2bq2

0 − 3κ tan α

6η
ρ2) (7.20)

and radius R

F (ρ) = θ0 − 1

2
(R − ρ), (7.21)

q(ρ) = (R − ρ) tan β +
tan β

R
(R − ρ)2 (7.22)

reflects the characteristic features of calculated solutions. In the center of skyrmion
core the angle α (see Eq. (7.19)) defines both the slope of the stright line F (ρ) and
the parabolic dependence of the modulus q. On the outskirt the modulus q linearly
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Figure 7.2.: (a) Phase diagram of solutions for the frustration model Eq. (7.11) of
supercooled and glass states. The high-temperature (and low density)
liquid state is separated from a uniform helical state or a crystalline state
by the formation of localized skyrmionic states (dashed blue region) and
condensed phases formed from such units. (b), (c) dependences of the
radius R of the skyrmion cell and the modulus in the center q0 on the
temperature a for the particular cut of the phase diagram with η = 0.3.

depends on ρ whereas the angle F is determined by the parameters of the geometry.
In the calculations I have optimized the energy with respect to the modulus in the
center q0, to the radius R, and to the value of rotation angle θ0. It is clearly seen
that the profiles strongly depend on the temperature. For high temperatures the
amplitude q0 decreases and the systems transforms into disordered state.

As well, one is able to construct the phase diagram of solutions as shown in Fig.7.3.
Here, the small values of η lead to the broadening of interval of skyrmionic states.
The upper line marked by circles is the line of the second order phase transition
into disordered state. By approaching this critical line the radius of the skyrmion
cell (Fig. 7.3(b)) grows unlimitedly with zero modulus q0 (7.3(c))). The lower line
marked with triangles indicates the transition into the helical state. This state is akin
to the crystalline phase with constant modulus. But it is assumed that these two
states below line a = 0 are never reached. Instead, the system in the liquid nucleates
first skyrmions, which then condense into mesophases. So, the skyrmions lock the
system into a certain topologically disordered state. However, the dense packing of
these molecular units is again frustrated. It is impossible to arrange these spherical
objects without frustration as it was shown for the spheres in Frank’s icosahedral
packing.

In Fig. 7.3 I present schematically the solutions. In this figure I depicted only
three-component vector with marking the fourth component by color. The length of
these vectors changes according to the modulation with the function sin F (ρ). When
the length becomes zero the fourth component is maximal, i.e. red or blue. One can
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7. Supercooled and glass-forming liquids as skyrmionic textures

Figure 7.3.: Schematic representation of the skyrmion solution. The fourth compo-
nent of the vector Φ is marked by the color.

consider various projections of 4D space on 3D one. And some of them are presented
here.

7.5. Discussion

The identification of skyrmionic textures in the frustration models has a number of
attractive features. It explains a cross-over or precursor effects in liquids [301] by
the formation of skyrmions, which have a definite size encompassing a larger group
of molecules. In simple molecular liquids, the size of such skyrmions will possibly
contain about 100 atoms, as the ideal {3, 3, 5}-polytope has 120 vertices. Such units
will be long-term stable or metastable in the cooled and dense liquid state.

At lower temperatures a condensation of skyrmionic quasi-static units must take
place. The problem to pack molecular units now re-appears at the larger length scale
of skyrmion diameters. However, the dense packing of skyrmionic units is even more
arduous than that of spherical molecules with central pair interactions, because the
skyrmions carry a 4-component vector as an orientational degree of freedom. An
ideal dense packing requires a structure with ”antiferromagnetic” correlations be-
tween neighboring skyrmions. In fact, aggregates of few skyrmions as models for
nuclear matter again show a preference for icosahedral organization [302], while ex-
tended skyrmion matter mostly form densely packed half-skyrmion crystals with an-
tiparallel (iso)spin structure [303]. In both types of localized and extended textures,
the skyrmions may loose their identity and form various other shapes. Similar ideas
are currently debated with respect to favorable clusters in metallic multi-component
alloys [304,305]. In such atomistic models, a hierarchy of units forming larger units
must be organized as aperiodic space-filling pattern. The uniform frustration models
identify such patterns as condensed skyrmionic phases.
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7.6. Conclusions

Application of the concept of frustration to liquids boils down to the following sum-
mary of propositions: a liquid is characterized by a locally preferred structure which
is different than that of the crystalline phase. This local structure is an arrangement
of molecules that minimizes some local free energy. But the local structure cannot
tile the whole place. This is precisely the content of the concept of frustration. It is
possible to construct an abstract reference system in which the effect of frustration
is turned off and to develop a statistical mechanical approach. The free energy of the
frustrated system is almost identical to the energy functional considered in micro-
magnetics of non-centrosymmetric magnets. And this fact allows to obtain insights
on the mechanism for glassiness from this frustration model. One can describe the
defects in a continuous way as regions with suppressed order-parameter intensity
instead of a complex network of disclinations. Then for the metallic glasses I show
the possibility of formation of specific skyrmion states stabilized by linear gradient
terms. According to the constructed phase diagram these skyrmions are stable in
some interval of temperatures, and can even prevent the transition into helix state
or crystalline phase, locking the system in this state. But packing these spherically
symmetric objects also induces inherent frustration. The frustration which is related
with the packing problem of skyrmionic balls is much more severe on longer length
scales.
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Conclusions

In the present thesis, tools of the micromagnetism (the main principles of the mi-
cromagnetism have been described in chapter 1) have been used to address the
wide spectrum of problems in magnets on nanoscale. In the first part of the thesis
the interplay of magnetocrystalline and surface-induced anisotropies have been con-
sidered as applied to magnetic nanolayers, nanoparticles, and nanowires/nanotubes.
Within the phenomenological theories, homogeneous and inhomogeneous distribu-
tions of the magnetization vector have been derived in dependence on material pa-
rameters of nanosystems and applied magnetic field. Corresponding phase diagrams
of states have been constructed. In the second part of the thesis the specific
inhomogeneous distributions of the magnetization (skyrmions) have been compre-
hensively investigated in magnets with chiral Dzyaloshinskii-Moriya interactions.
Present understanding of the skyrmionic magnetic states has been described with a
view on recent experimental observations in chiral cubic helimagnets. The question
of thermodynamical skyrmion stability has been theoretically addressed. Surface-
anisotropy as a probable additional energy contribution stabilizing skyrmions with
respect to one-dimensional helical modulations has been considered.

The major part of calculations in the present thesis has been done by using the self-
elaborated numerical code, validity of which has been additionally tested on classical
micromagnetic problems. Further, the main results of the thesis are summarized
following the sequence of the chapters:

Part I.

Chapter 2. In this chapter I have considered the interplay between intrinsic
and surface/interface-induced magnetic anisotropies in the influence on the mag-
netization processes in nanomagnetic systems, namely, in magnetic nanolayers and
nanoparticles. Micromagnetic theory to describe a magnetic-field-driven reorien-
tation in nanomagnets with cubic and uniaxial anisotropies has been developed.
Within the phenomenological model, I have obtained solutions for the magnetiza-
tion orientations in competing phases and plotted the phase diagrams in internal
field components. Taking into account demagnetizing effect of the layer (particle)
surfaces, the phase diagrams in external field components with the regions of mul-
tidomain (multiple) states have been constructed. The main peculiarities of existance
regions of multidomain states with different number of phases have been analysed.
Calculated phase diagrams provide the theoretical basis to classify different types
of the magnetization reversal and to analyse the switching processes in magnetic
nanostructures. In particular, the results of chapter 2 have been applied for the the-
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oretical analysis of the magnetization processes as observed experimentally in a novel
class of condensed-matter systems – thin films of diluted magnetic semiconductors
(Ga,Mn)As. For nanolayers magnetized perpendicularly to the surface, the geomet-
rical parameters of stripe domains as functions of a bias field have been calculated.
On the basis of the known solutions for the magnetization in homogeneous phases,
different types of isolated domain walls have been modelled and their magnetization
profiles have been obtained. It has been shown that the applied magnetic field and
values of the competing anisotropies essentially modify the equilibrium parameters
of such walls. In the second part of chapter 2 the values of surface-induced uniaxial
anisotropy for ellipsoidal magnetic nanoparticles have been derived as functions of
aspect ratios and particle sizes. It has been shown that induced uniaxial anisotropy
stabilizes multiple magnetic states in the system with the possibility to switch be-
tween them. The phase diagrams with the stability regions for different phases and
the transition fields between them have been plotted.

Chapter 3. In this chapter the phenomenological model of surface-induced
anisotropy developed in Ref. [11] for magnetic nanolayers has been extended and
generalized with respect to magnetic nanowires and nanotubes. With such a phe-
nomenology a gradual penetration of surface-induced interactions into the volume of
magnetic nanostructures have been modelled in nanoobjects with cylindrical symme-
try. Possible inhomogeneous distributions of the magnetization in these nanosystems
have been derived. It has been shown that large induced magnetic anisotropy from
lateral surfaces of magnetic nanowires/nanotubes stabilizes non-collinear Bloch and
Néel vortex-like states with the magnetization rotating either along or perpendicu-
lar to radial directions. Magnetization profiles and simplified analytical solutions for
these vortex states have been comprehensively analysed by solving corresponding
micromagnetic equations. The results of numerical simulations have been gath-
ered in phase diagrams showing the occurence regions for different vortex phases in
dependence on the surface anisotropy constants, the radius, and the saturation mag-
netization of the underlying material. It has been also found that the transitions
between topologically different vortices are first-order phase transitions, whereas
vortices transform continuously into homogeneously magnetized state.

Part II.

Chapter 4. In this chapter two - dimensional skyrmion states with constant value
of the magnetization modulus considered within the circular - cell approximation in
early papers of A. N. Bogdanov [21,69,70] have been derived as numerical solutions of
two- dimensional lattice models. By implementing direct quantitative comparison,
it has been found that skyrmion properties of rigorous and approximate ”round”
solutions are within the relative error value of about 2%. Within the standard
Dzyaloshinskii model including only primary energy contributions (direct exchange,
Dzyaloshinskii-Moriya coupling, and Zeeman energy) solutions for one-dimensional
cones, helicoids, and for two-dimensional skyrmion states have been thoroughly anal-
ysed and their evolution in the applied magnetic field investigated. It has been shown
that within the isotropic phenomenological model skyrmions are only metastable
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solutions with respect to helices. Therefore, the quest for the means leading to
skyrmion thermodynamical stability has been undertaken. It has been comprehen-
sively demostrated that small anisotropic forces like cubic, uniaxial, and exchange
anisotropies not only determine the propagation directions of spirals and axes of
skyrmions with respect to certain crystal directions, but also stabilize skyrmion tex-
tures in a broad range of magnetic fields. The equilibrium parameters of skyrmions,
helices, and cycloids have been determined as functions of a bias magnetic field and
the values of competing anisotropic interactions. The corresponding phase diagrams
of states have been constructed. Finally some candidate materials for experimental
observation of skyrmion textures have been described.

Chapter 5. In this chapter the interplay of volume and surface-induced energy
contributions has been considered in the influence on the skyrmion states in confined
mesoscopic systems - thin layers of liquid crystals and magnets. Numerical solutions
of the micromagnetic equations with the surface anisotropy defining the boundary
conditions have been determined. The solutions have clearly revealed compex evolu-
tion of the tubular skyrmions into specific double-twisted spherulites with effect from
surface anisotropy. The process of condensation of such peculiar spherulitic states
into the lattices (spherulitic matter) is different from condensation of skyrmions in
bulk materials and is strongly defined by the surface anchoring and the force moving
localized isolated units together. It has been found that thermodynamic stability of
spherulitic extended matter can be assured in the vast part of the constructed phase
diagram for the appropriately chosen ratios between internal and induced interac-
tions. The question of dipole-dipole interactions with their effect on the skyrmion
states in thin magnetic layers has been also addressed. Finally, theoretical findings
of this chapter have been applied for explanation of modulated states experimentally
observed in nanolayers of cubic helimagnets and liquid crystals.

Chapter 6. In this chapter the structures of skyrmion and helical states with soft
modulus have been comprehensively analysed from a phenomenological perspective
using the basic Dzyaloshinskii theory for isotropic chiral magnets. It has been shown
that the magnetization in modulated phases near the ordering temperature becomes
essentially inhomogeneous because longitudinal and orientational degrees of freedom
couple. As a result, the solitonic chiral modulations, being repulsive in the vast tem-
perature range far below the ordering temperature, develop attractive soliton-soliton
interactions in the direct vicinity of Curie temperature. It has been found that near
the ordering temperature skyrmions can exist only as bound states, and skyrmion
lattices are formed by an unusual instability-type nucleation transition from the
paramagnetic state. These attributes belong to a remarkable confinement effect
of skyrmions and helicoids. A confinement temperature TL, has been introduced
to divide the temperature interval into a part with regular skyrmions modulations
and a part with confined skyrmions. Numerical investigations on two-dimensional
models have revealed the confinement effect on different skyrmion lattices, namely,
on ±π-hexagonal and π/2-square skyrmion lattices. Particularly, to a square half-
skyrmion lattice much attention has been devoted as it has no analogue to textures
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with smooth constant modulus. Thermodynamical stability of skyrmion states has
been considered with the influence of small anisotropic contributions and within
the non-Heisenberg model. Theoretical results on such modulated states, belong-
ing to the main achievement of the present thesis, allow to address the problem
of unconventional magnetic ordering transitions and precursor phases known from
experiments on the cubic helimagnets with chiral Dzyaloshinskii-Moriya couplings
near the ordering temperatures. They also allow to establish the link between the
”low-temperature” skyrmions with constant modulus theoretically investigated by
A. N. Bogdanov et. al. [21, 69, 70] (also in chapter 4) and experimentally observed
by Yu et al. [28,29] with ”high-temperature” skyrmions responsible for a number of
precursor effects in the vicinity of the ordering temperature [80,81]. The theory and
results from numerical simulations demonstrate why a multitude of different small
pockets of different phases is generically expected in a distinct temperature interval,
interleaved between paramagnetic and helix magnetic state in non-centrosymmetric
helimagnets MnSi and/or FeGe.

Chapter 7. In this chapter the concept of skyrmionic textures in condensed
matter systems has been extended to continuum models of glass-forming liquids.
Initially, the idea was published in Ref. [92]. In the present chapter numerical solu-
tions confirming this idea have been obtained. It has been shown that the skyrmions
appear as solutions for the field theory with a frozen gauge background describing the
frustrated tiling of the space by incompatible locally preferred clusters. It has been
also argued that stable skyrmions are formed at elevated temperatures in molecular
liquids and that their condensation into frustrated textures underlies the stability
of supercooled and glassy states, which may resemble the states in extended dense
nuclear matter.
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List of Abbreviations

1D…………………One-dimensional 

2D…………………Two-dimensional 

3D…………………Three-dimensional 

AE………………...Anisotropic exchange 

AFM……………...Antiferromagnetic or antiferromagnet 

CA………………..Cubic anisotropy 

CCA……………...Circular-cell approximation 

DDI……………….Dipole-dipole interaction 

DM……………….Dzyaloshinskii-Moriya

DMI………………Dzyaloshinskii-Moriya interaction 

FM………………..Ferromagnetic or ferromagnet 

IS…………………Isolated skyrmion 

LC…………………Liquid crystals 

ME………………..Magneto-electric

SA………………...Surface anisotropy 

UA………………..Uniaxial anisotropy 
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K. Nielsch, J. Am. Chem. Soc. 129, 9554 (2007).

[209] F. Tian, J. Zhu, D. Wei, J. Phys. Chem. C. 111, 12669 (2007).

[210] B. Das, K. Mandal, Pintu Sen, S. K. Bandopadhyay, J. Appl. Phys. 103,
013908 (2008).

[211] X. Y. Zhang, G. H. Wen, Y. F. Chan, R. K. Zheng, X. X. Zhang, N. Wang,
Appl. Phys. Lett. 83, 3341 (2003).

[212] Y. Rheem, B.-Y. Yoo, W. P. Beyermann, N. W. Myung, Nanotechnology 18,
015202 (2007).
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[230] A. Crépieux, C. Lacroix, J. Magn. Magn. Mater. 182, 341 (1998).
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