
Extended Version of Elucidative
Development for Model-Based

Documentation and Language Specification

C. Wilke, A. Bartho, J. Schroeter,
S. Karol, U. Aßmann

Institut für Software- und Multimediatechnik

TUD-FI12-01-Januar 2012

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

Extended Version of
Elucidative Development for Model-Based
Documentation and Language Specification

Claas Wilke, Andreas Bartho, Julia Schroeter, Sven Karol, and Uwe Aßmann

Institut für Software- und Multimediatechnik
Technische Universität Dresden

D-01062, Dresden, Germany
{claas.wilke|andreas.bartho|julia.schroeter|

sven.karol|uwe.assmann}@tu-dresden.de

Abstract. Documentation is an essential activity in software develop-
ment, for source code as well as modelling artefacts. Typically, docu-
mentation is created and maintained manually which leads to inconsis-
tencies as documented artefacts like source code or models evolve during
development. Existing approaches like literate/elucidative programming
or literate modelling address these problems by deriving documentation
from software development artefacts or vice versa. However, these ap-
proaches restrict themselves to a certain kind of artefact and to a certain
phase of the software development life-cycle. In this paper, we propose
elucidative development as a generalisation of these approaches support-
ing heterogeneous kinds of artefacts as well as the analysis, design and
implementation phases of the software development life-cycle. Elucida-
tive development allows for linking source code and model artefacts into
documentation and thus, maintains and updates their presentation semi-
automatically. We present DEFT as an integrated development environ-
ment for elucidative development. We show, how DEFT can be applied
to language specifications like the UML specification and help to avoid
inconsistencies caused by maintenance and evolution of such a specifica-
tion.

Key words: Elucidative development, elucidative programming, liter-
ate programming, literate modelling, automated documentation, auto-
mated specification, UML.

1 Introduction

To ensure comprehensibility and reusability, documentation is an essential ac-
tivity in software development. Source code that belongs to frameworks and
shall be reused by other developers has to be documented, as developers have
to understand how to instantiate its classes or to invoke its operations. Besides,
development models intended for reuse or explanatory reasons have to be doc-
umented as well. Finally, modelling languages or frequently used metamodels

2 Wilke et al.

have to be documented (typically as specifications) to explain their concepts
and intentions.

Today, documentation is mostly created and maintained manually. Textual
documents are maintained using text processing software, code listing and di-
agrams are created and pasted into these documents manually. This leads to
problems, once documented software or development artefacts evolve: the doc-
umentation has to be maintained and the changes done to the artefacts have
to be reflected in the documentation. Manual maintenance can cause inconsis-
tencies, as sections requiring a revision can be overlooked. Furthermore, it is
possible that evolved artefacts are updated at only some of their occurrences in
the documentation, leading to further inconsistencies and contradictions. A good
example for a documentation containing many inconsistencies caused by evolu-
tion and maintenance is the Unified Modeling Language (UML) specification [1],
which does not document a tool or a framework but a modelling language used
by a large community of software developers. Since its first revision, the UML
specification documents have been maintained manually, and as a matter of fact,
current versions contain many errors and contradictions [2–7].

To solve such kinds of problems, approaches such as literate programming
(LP) [8], literate modelling (LM) [9] and elucidative programming (EP) [10] em-
phasise a documentation-centric style of programming or modelling. However,
these approaches only cover small parts of the software life cycle restricting
themselves to source code documentation during the implementation phase or
the documentation of UML diagrams during the early stages of software anal-
ysis. Furthermore, to support documentation in model-driven software develop-
ment (MDSD) processes, a holistic approach would have to consider documen-
tation of artefacts from textual and graphical domain-specific modelling lan-
guages (DSMLs), metamodels and general purpose modelling languages, which
is not the case for the current approaches. In this paper, we propose elucidative
development (ED) as a holistic approach to documentation creation and main-
tenance which covers multiple phases of the software development life cycle and
also supports documentation in MDSD processes. In fact, ED is a generalisation
of LP, LM and EP. Furthermore, we present the Development Environment For
Tutorials (DEFT), a tool supporting ED. We show how documentation can be
created and maintained with DEFT and apply ED to a short excerpt from the
UML specification to show, how inconsistencies within specifications caused by
maintenance and evolution can be avoided.

The remainder of this paper is structured as follows. First, we introduce ED
and DEFT in Sect. 2. Afterwards, in Sect. 3, we present an excerpt from the
UML superstructure as a usage example for ED and show, how DEFT can be
used to maintain its evolution. Subsequently, we discuss our approach in Sect. 4
and present related work in Sect. 5. Finally, we conclude this paper in Sect. 6.

Elucidative Development for Documentation and Language Specification 3

2 From Literate Programming to Elucidative
Development

In this section we introduce ED as a paradigm for a consistent documentation of
arbitrary software and modelling artefacts that occur in software development
projects. ED is a generalisation of the EP paradigm, proposed by Nørmark [11],
which itself is a variant of LP by Knuth [8]. Both, EP and LP put strong emphasis
on supporting developers in writing and maintaining program source code and
its documentation in parallel during the implementation phase of the software
life-cycle.

In the following, we first briefly introduce LP, EP and LM, a further vari-
ant of LP for documenting UML analysis models. Afterwards, we discuss the
ED approach and compare it to the aforementioned documentation approaches.
Afterwards, we present DEFT,1 an Eclipse-based tool that can be used for ED.

2.1 Literate Programming and Related Documentation Approaches

LP is an integrated approach for writing documentation and programming within
the same file format. Code and text are intertwined in the same document by em-
bedding the source code into the documentation files. Hence, programming takes
place in the documentation environment, e.g., a TEX [12] editor. Consequently,
before the program can be executed or the final documentation is rendered,
pre-compilers (called weave and tangle) have to extract printable TEX documen-
tation and compilable source code from the documentation files. This way, LP
completely avoids inconsistencies between source code and code listings in the
rendered documentation. However, LP has drawbacks in large software projects:
The program is scattered across the documentation files and every code detail
has to be described textually. As a result, the program is fragmented and inter-
twined with pieces of text which makes it harder to understand its real structure
for average programmers who expect programs to be organised along a certain
structure determined by the concepts of the programming language.

EP tries to overcome these problems by strictly separating documentation
and source code artefacts. The connection between them is maintained within
an integrated elucidative programming environment. As a result, programming
language semantics such as name analysis can be reused for consistency checks
in the documentation files. Furthermore, the granularity of the documentation
is adjusted to its actual purpose, e.g., abstract interface descriptions as well as
complete source code descriptions are possible. In comparison to LP, in EP con-
sistency between code listings and the actual program code is ensured by adding
so-called relations between locations in the documentation and elements of the
source code. The entirety of documentation, source code, and relations between
those two is called an elucidative program [10]. If the source code evolves, the
final documentation can be regenerated. It is possible to identify inconsistencies
to some extent, e.g., relations which refer to removed or renamed source code.

1 http://deftproject.org/

4 Wilke et al.

documen-
tation
format

artefact
support

artefact
location

tool
support

operations software
dev. phases

literate
program-
ming (LP)

typesetting
language
(e.g. TEX)

homogenous
(source code)

integrated pre-compiler
(e.g.
CWEB [12])

weave, tangle implementa-
tion

elucidative
program-
ming (EP)

typesetting
language

homogenous
(source code)

separate elucidative
IDE (e.g.
Java Elu-
cidator [14])

embed implementa-
tion

literate
modelling
(LM)

WYSIWYG
format

homogenous
(UML dia-
grams)

separate literate
model ed-
itor (e.g.
LiMonE [13])

embed analysis

elucidative
develop-
ment (ED)

WYSIWYG
format or
typesetting
language

heterogenous
(models,
source code,
XML . . .)

separate elucidative
development
environ-
ment (e.g.
DEFT [15])

hot update,
transconsis-
tency

analysis,
design,
implementa-
tion

Table 1. Comparison of different advanced documentation approaches.

The LM [9] approach applies concepts of LP to high-level UML analysis
models. The main focus of LM lies in improving the communication between
developers, requirements engineers and other stakeholders who are not educated
in UML and, thus, have difficulties in interpreting UML diagrams. Similar to
LP, models and documentation are intertwined within the same document – the
literate model. However, recent efforts also move LM in the direction of separating
documentation and the documented artefacts: The Literate Modelling Editor
(LiMonE) [13] implementation keeps both separate and combines textual model
documentation with Object Constraint Language (OCL) consistency constraints
derived from natural language descriptions.

The first three rows of Tab. 1 contrast the documentation approaches dis-
cussed above with each other. As an essence, it can be seen that each of them is
restricted to one single phase in the software life-cycle and to one single type of
artefact, i.e., source code in a certain (implementation dependent) programming
language or artefacts in a certain modelling language.

2.2 Elucidative Development

ED generalises the aforementioned documentation approaches in two ways (cf.
last line of Tab. 1). First, it covers the analysis, development and implementa-
tion phases in software development. Hence, programmers, designers and other
stakeholders can share their views on the system at different levels of abstraction.
Second, ED provides a conceptual grounding for the documentation of hetero-
geneous kinds of software artefacts, e.g., formalised requirements specifications,
models, or source code. This is essential for model-driven software development
processes, where many different metamodel-based languages are used to imple-
ment a system by transformation and code generation.

As a consequence, an elucidative development environment (EDE) has fol-
lowing basic requirements which go beyond the requirements known from EP,
LP and LM tools:

Elucidative Development for Documentation and Language Specification 5

Fig. 1. Dataflow diagram of an ED document.

Support for model transformations. Different kinds of languages require
different kinds of transformations to prepare artefacts to be displayed in a
documentation file. This includes model-to-model transformations (e.g., op-
erations to filter elements that should not be included in the documentation),
model-to-text transformations (e.g., for deriving textual artefact representa-
tions) and model-to-image transformations (e.g., for converting a diagram
into an image).

Composition of model transformations. The aforementioned transforma-
tions need to be composable to produce images or code listings that integrate
with the surrounding hand-written text and other parts in the documenta-
tion file. Valid compositions are determined by the types of input and output
ports of the participating transformations. Consequently, the compositional
relation of transformations, data and the documentation text form a directed
bigraph, which represents the documents architecture [16]. Fig. 1 shows the
architecture of an hypothetic ED document. Assume a project that imple-
ments an interpreter for a DSML in Java. The corresponding Java source
code is extracted from a Java class model and transformed into a styled code
listing which is finally embedded in the documentation file. To support the
documentation, a statechart image is generated from a UML statechart dia-
gram. The statechart specification originates from the design phase. Finally,
the documentation includes parts from the DSML’s metamodel specification
which are relevant for the documented part of the interpreter.

Hot update and immediate invalidation. As the documented system arte-
facts and the documentation itself evolve, frequent updates have to be trig-
gered over time. ED documents are active documents [16]. An active docu-
ment triggers an update operation as soon as a change in a source artefact
is observed. Due to its explicit architecture, the document (or the EDE,
respectively) is aware of all places where artefact representations to be re-
computed occur. Since the required transformations may contain complex
computations, the corresponding invalid parts of the document are marked
until the recomputation is finished and the document becomes consistent

6 Wilke et al.

Requirements-OntologyJavaEcore OCL ImageEcore-Diagram EMFText

Specification Document
(ODF or LaTeX)

Image

embed

Text

embed

convert filter style format

UML

Fig. 2. The Development Environment for Tutorials (DEFT).

again. In [16], this kind of update is called a hot update while an active
document with hot update is called a transconsistent document. Transcon-
sistency is closely related to the terms transclusion and transclude, which
both originate from the early hypertext systems [17]. Nelson defines tran-
sclusion as “the same content knowable in more than one place” [18].

In the following, we introduce our tool DEFT. DEFT supports the features
discussed above to a large extent and, thus, is a good candidate for supporting
an ED processes.

2.3 The Development Environment for Tutorials (DEFT)

An EDE supports the documentation author in creating and maintaining elu-
cidative documentations. It also provides automatic notifications and further
support for hot updates of the included source artefacts once the documented
concepts evolve. DEFT is an implementation of such an EDE. It was originally
designed to keep the documentation of whole software systems, tutorials up to
date. As we show in this paper, it is also feasible for writing and maintaining
large language specification documents.

Out of the box, DEFT supports the documentation of artefacts that occur
in usual software development or MDSD, such as Java source files and Eclipse
Modeling Framework (EMF) artefacts (cf. Fig. 2, top). Besides, DEFT’s inte-
gration with EMF allows the documentation of arbitrary languages based on
Ecore, which is the de-facto Essential MOF (EMOF) implementation for Java.
Hence, DEFT supports the documentation of the UML metamodel based on
EMF. For textual modelling, DEFT is integrated with EMFText [19]. Therefore
documentation support for EMFText-based languages is available. Hence, OCL
constraints can be documented by using the EMFText-based OCL implementa-
tion of Dresden OCL [20]. For graphical modelling, the Ecore diagram editors
of the EMF are supported. Integration for UML models and diagrams is current
work in progress. As documentation formats, DEFT supports LATEX and Open
Document Format (ODF) documents (cf. Fig. 2, bottom). A documentation file
produced with DEFT can contain manually written parts like continuous text,

Elucidative Development for Documentation and Language Specification 7

as well as transcluded elements like code listings or images. These elements can
be derived from all the input formats described above and can be converted
or formatted before embedded into the specification document (cf. Fig. 2, cen-
ter). For example, OCL constraints can be transformed into code listings, UML
diagrams can be rendered as images, or enumerations can be generated from
UML metamodel elements (e.g., of a class’ properties and operations). If a mod-
ification of an artefact requires a modification of a transcluded element in the
documentation, DEFT updates the artefact representation automatically.

The user interface of DEFT is divided in multiple areas2. A project ex-
plorer presents documentation chapters, source artefacts, and their relations.
The largest part of the screen is covered by the writing area, where the documen-
tation text can be edited. Relations to artefacts can be added to the document
using a wizard. By default, DEFT does not display the relations directly. Instead,
the computed representation is transcluded. Finally, DEFT provides a task view
which tells the author where changes in the source artefacts took place, where
the documentation has been updated and, thus, where proofreading is necessary.

3 The UML Specification as a Use Case for Elucidative
Development

To demonstrate the advantages of ED in contrast to other documentation ap-
proaches, we decided to use an excerpt from the UML 2 specification. In this
section, we first identify different kinds of consistency problems and give ex-
amples for them within the current UML standard. Afterwards, we discuss the
Object Management Group (OMG)’s specification process and identify error-
prone steps causing consistency issues in current OMG specifications. Finally,
we apply ED to the example and show, how ED can avoid the current inconsis-
tency problems of the UML specification.

3.1 Inconsistencies in UML 2.4.1

Since its first specification, the UML has been extended and revised multiple
times. A major change in the UML was the specification of UML 2.0 in 2005
which contained many new concepts. However, further revisions of UML 2 added
many inconsistencies to the specification document. As a small example, we com-
pare Sect. 7.3.37 of the UML 2.4.1 specification [21, p. 108–110] with the same
section of the UML 2.0 specification document [22, p. 103–105]. It specifies the
class Package within the UML Kernel package as shown in Fig. 3. Changes be-
tween UML 2.0 and UML 2.4.1 are highlighted, as well as inconsistencies that
have not been revised, yet. The example section contains a short description
of the Package class, its inheritance relationships, attributes, associations, con-
straints, additional operations, and semantics.3

2 A screenshot will be presented in Sect. 3.3, in context of the case study.
3 For complexity reasons, the graphical notation, presentation options, and examples

following in the specification are not considered as part of our example.

8 Wilke et al.

Legend: Changes performed between UML 2.0 and 2.4.1
Semantic error in OCL expression introduced by a metamodel modification between UML 2.0 and 2.4.1
Syntactic and semantic error in OCL expression, not revised in UML 2.4.1

7.3.37 Package (from Kernel)

A package is used to group elements, and provides a namespace for the grouped elements.

Generalizations

• “Namespace (from Kernel)” on page 95

• “PackageableElement (from Kernel)” on page 105

Description

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned members of

a package. By virtue of being a namespace, a package can import either individual members of other packages, or all the members

of other packages.

In addition a package can be merged with other packages.

Attributes

No additional attributes

Associations

• /nestedPackage: Package [*] References the owned members that are Packages. Subsets

Package::ownedMember

• /ownedMember: PackageableElement [*] Specifies the members that are owned by this Package. Redefines

Namespace::ownedMember.

• /ownedType: Type [*] References the owned members that are Types. Subsets

Package::ownedMember

• package: Package [0..1] References the owning package of a package. Subsets

NamedElement::namespace

• packageMerge: Package [*] References the PackageMerges that are owned by this Package. Subsets

Element::ownedElement

• nestingPackage: Package [0..1] References the Package that owns this Package. Subsets

NamedElement::namespace

Constraints

[1] If an element that is owned by a package has visibility, it is public or private.
self.ownedElements->forAll(e | e.visibility->notEmpty() implies e.visbility = #public or e.visibility = #private)

Additional Operations

[1] The query mustBeOwned() indicates whether elements of this type must have an owner.
Package::mustBeOwned() : Boolean

mustBeOwned = false

[2] The query visibleMembers() defines which members of a Package can be accessed outside it.
Package::visibleMembers() : Set(PackageableElement);

visibleMembers = member->select(m | self.makesVisible(m))

[3] The query makesVisible() defines whether a Package makes an element visible outside itself. Elements with no visibility

and elements with public visibility are made visible.
Package::makesVisible(el: Namespaces::NamedElement) : Boolean;

pre: self.member->includes(el)

makesVisible =

-- case: the element is in the package itself

(ownedMember->includes(el)) or

-- case: it is imported individually with public visibility

(elementImport->select(ei|ei.importedElement = #public)->collect(ei|ei.importedElement)->includes(el)) or

-- case: it is imported in a package with public visibility

(packageImport->select(pi|pi.visibility = #public)->collect(pi|pi.importedPackage.member->includes(el))->notEmpty())

Semantics

A package is a namespace and is also a packageable element that can be contained in other packages.

The elements that can be referred to using non-qualified names within a package are owned elements, imported elements,

and elements in enclosing (outer) namespaces. Owned and imported elements may each have a visibility that determines

whether they are available outside the package.

A package owns its owned members, with the implication that if a package is removed from a model, so are the elements

owned by the package.

The public contents of a package are always accessible outside the package through the use of qualified names.

A

C

C

C

B

C

B

A

Fig. 3. Excerpt from UML 2.0 and its modification until UML 2.4.1 (cf. [22, p. 103f]).

Elucidative Development for Documentation and Language Specification 9

The major changes of the example section are located within the Attributes
and the Associations subsections, as shown in Fig. 3,[A]. A new attribute URI

is introduced. The association ownedMember is renamed to packagedElement.
This association and the ownedType association are marked as derived, which
is indicated by a leading backslash. Furthermore, the package association is
removed. References to the renamed element are revised as well (e.g., the subsets
relationship from nestedPackage to ownedMember). However, these references
are sources of potential errors as the complete specification has to be inspected
to check whether other references to the modified element exist that must be
updated as well. For example, the renaming of the ownedMember association
leads to an inconsistency within the Additional Operations subsection where an
OCL expression references this association (cf. Fig. 3,[B]). This is not surprising
since obviously the OCL expressions used within the UML specification have not
been revised since their original definition in UML 2.0 and have been specified
without using any OCL tooling such as a parser checking their syntax and static
semantics [7]. Thus, the expressions contain various syntactical and semantic
inconsistencies (cf. Fig. 3,[C]). Summarising, we identified four different kinds
of consistency problems4 that occur during specification maintenance:

(P1) Textual Representation: Modification of elements (e.g., rename, remove,
insert) specified in the language, entails the update of enumerations in the speci-
fication containing those elements. For example, the renaming of the association
ownedMember must be performed in the Associations subsection. Neglecting this
leads to inconsistent documents.

(P2) Continuous Text: Missing updates of continuous text that documents and
clarifies specification elements. For instance, if the class Package is renamed, the
introduction of the section and the Description subsection need to be revised
accordingly as they describe the Package class.

(P3) Graphical Representation: The concepts of UML are specified graphically
as class diagrams. Thus, if any property or association of the Package class
is modified, all diagrams containing this class must be updated as well. For
example, the specification contains the Fig. 7.14 documenting the Package class
and its relations [22, p. 31] that must be revised after modifications of this class.

(P4) External References: Other content referring to the specified model ele-
ments (e.g., the OCL expressions) must be updated and probably modified as
well. This is a task that is obviously too complicated to be performed man-
ually, as the UML specification contains many inconsistency problems of this
category [7].

3.2 The OMG Technology Adoption Process

To understand the reasons for all the inconsistency problems, we now shortly
elaborate the OMG technology adoption process, used by the OMG to manage

4 Three out of the four problem kinds exist within our small example.

10 Wilke et al.

its various specifications and their evolution (cf. Fig. 4). It is defined by a series
of strict rules and clearly distinguished responsibilities [23]. The process consists
of five stages5, that are shortly presented in the following:

Request for
Proposals

Specification
Adoption

Specification
Maintenance

Finalisation
Request for
Information

Revision
Task Force

Revision
Adoption

Fig. 4. The OMG Technology Adoption Process.

First, a request for information is issued to collect information about the re-
quirements for a new standard from industry. Afterwards, a request for proposals
calls for proposals that are collected and reviewed. This stage results in one or
more major proposals for a new OMG specification. During specification adop-
tion, the proposals have to pass votes of several committees, before they become
an OMG adopted specification. During finalisation, the adopted specification is
maintained. The result of this stage is the final specification document. After
another series of votes, the specification obtains its official release number and
becomes a formal OMG specification. The fifth stage, specification maintenance
is directly initialised once the specification has been published. It is performed
iteratively, each iteration resulting in a new revised specification. In detail a re-
vision task force (RTF) is responsible to maintain change requests, which can be
issued by everybody. Those requests result in an RTF report or a proposal for a
modified specification. Thereby, each issue can be resolved, merged, transferred,
closed, or deferred. Afterwards, the proposal for a revised specification has to
pass votes of the same committees as during specification adoption. Each main-
tenance cycle results in a new finalisation. In this stage the passed proposals
are introduced into the final specification document, resulting in a new OMG
formally released version. A summary of the activities of the maintenance cycle
can be found in [24].

Generally, the process works well as it describes how to adopt a specification
and defines a maintenance cycle that leads to revised specifications. However,
inconsistencies occur as shown in Sect. 3.1. The major reason for these inconsis-
tencies is that the process only handles textual specification documents. During
the first finalisation stage, a textual document is created and released. After-
wards, change requests are formulated w.r.t. this textual specification. Once the

5 A sixth stage, handling specification retirement is not considered in this exploration.

Elucidative Development for Documentation and Language Specification 11

Fig. 5. Transclusion graph for an elucidative UML specification.

issues have been discussed by the RTF, they result in a change proposal that
documents all pages, paragraphs etc. that have to be modified within the textual
specification document. Identifying all element occurrences in the text manually
is complicated and time-consuming and hence, inconsistencies are very likely to
be introduced.

To overcome the inconsistency problems identified above the OMG has issued
a new request for proposal that shall result in a new revised, and inconsistency-
free version of the UML, as well as up-to-date implementations of the metamodel
and its OCL constraints [25]. Besides this specification revision, we propose the
application of ED. Instead of focusing on textual specification documents only,
change requests focus on modifying elements in the formal representation of the
specification (i.e., the specified artefacts such as models and constraints). Tooling
helps to derive textual specifications and to identify regions within them that
have be revised and updated semi-automatically.

3.3 UML Language Specification with DEFT

We now show, how DEFT supports ED exemplified by the UML specification
excerpt presented in Sect. 3.1. The example is realised using the EMF-based
UML metamodel of Eclipse Eclipse Model Development Tools (MDT). For the
specification of derived operations and OCL well-formedeness rules (WFRs) we
use Dresden OCL. Finally, a diagram representation of the Package class and
its relations to other classes is created using the graphical EMF Ecore editor of
EMF.

12 Wilke et al.

For the UML example we transclude diagrams and OCL files in a specification
document. This includes the selection which parts (e.g., which lines from an
OCL file) shall be presented in the document. That way, almost all sections
from the given example can be transcluded into the document (cf. Fig. 5). The
introductory paragraph is derived from an annotated comment of the Package

class. The Generalizations, Attributes, and Associations sections are taken from
the Package class and its relations to other classes. The content of those sections
is directly derived from the metamodel and formatted using rendering templates.
The Constraints and Additional Operations sections are transcluded from the
linked OCL files. Only the sections Descriptions and Semantics are not present
in the artefacts and must therefore be written directly into the document.

Fig. 6 shows a snippet of the elucidative UML specfication in DEFT according
to the transclusion graph in Fig. 5. On the left side of the screen the project con-
tent is shown in the project explorer. It presents specification’s chapters, source
artefacts like the UML metamodel and OCL constraints, and their relations side
by side. The actual specification document is displayed in the writing area and
can be edited using OpenOffice. As visualised in Fig. 6, the artefact representa-
tions in the documentation file are transcluded from the artefacts added to the
project explorer.

To solve the identified problems (P1) to (P4), model artefacts and the speci-
fication document have to be modified in parallel during the maintenance cycle.
During this phase, DEFT supports the author with the revision of the specifica-
tion. If one of the referenced model elements changes, DEFT will immediately
update the corresponding transcluded elements of the documentation and will
notify the specification writer about updates. This helps the author to keep track
of the changed specification parts as displayed in the task view (cf. Fig. 6).

(P1) problems can be avoided by transcluding textual model descriptions. If
the models are modified, DEFT will update the descriptions automatically. (P2)
problems can be handled similarly. Words within manually written text which
relate to names or content of the specified metamodel (such as the terms package
or namespace in Fig. 3) can and should be transcluded as well. If the model
elements are renamed later, the specification document is automatically updated
and the new names will appear in the document. However, if the semantics of the
model changes, it is necessary to update the corresponding text manually. (P3)
problems are also solved automatically. The outdated graphical representation
will be replaced by the current version of the diagram. Finally, (P4) problems can
be avoided if the OCL constraints are re-parsed after metamodel modifications
and it is checked whether they are still consistent w.r.t. their static semantics.
As they are also transcluded, modifications are immediately reflected in the
specification.

Maintenance of the specification is expected to be rerun in multiple iterations
(cf. Fig. 4). After each modification of the specified metamodel the documen-
tation can be revised semi-automatically using DEFT. A revised specification
can be released and the next maintenance cycle can be performed. This iterative
process, using small changes and fast iterations helps to avoid inconsistencies as

Elucidative Development for Documentation and Language Specification 13

Transclude

Change Notification

Legend:

Project explorer Writing area

Task View

Fig. 6. Screenshot of the specification document in DEFT.

each modification of the metamodel or related artefacts is immediately displayed
in the specification via hot update.

4 Discussion

After presenting ED and applying it to an excerpt of the UML specification we
now discuss the resulting benefits. In our opinion ED can help to achieve more
consistent language documentation and more formal specifications in MDSD pro-
cesses. As results from our earlier work demonstrated, almost every second OCL
constraint of the UML 2.4.1 specification contains errors that can be avoided by
using ED [7]. A simple integration of model-based techniques and OCL parsing
into the specification process is sufficient to solve problems as syntactical and
type checking errors (about 61.6% of all inconsistencies identified in [7]). Besides,
the use of transclusion avoids inconsistencies due to overlooked modifications
caused evolution of the UML metamodel (another 22.1% of all inconsistencies
identified in [7]).

Furthermore, ED allows small maintenance iterations as the maintenance
of the source artefact and the specification are more interconnected. Thus, re-

14 Wilke et al.

quested changes are realised and newly revised specifications can be released
quickly and regularly. Another advantage of using source artefacts during the
specification process is that models can be shipped together with the specifica-
tion. For example, the specified UML metamodel and parsable OCL files can be
provided.

However, creating an initial documentation using DEFT may at first be time-
consuming and more complicated than using a non-elucidative process. Learning
how to use DEFT and how to integrate artefacts into specification documents and
implementing transformations for language-specific presentation of content (e.g.,
as for the Associations section of the given example) may be a time-consuming
task as well. However, we argue that ED pays off when the documentation (or
the system) evolves. Besides, for documents like the UML specification, where
similar sections occur for all the different classes defined in the manually—a
script could help to generate a first version of the documentation containing
similar information transcluded from the various artefacts. Such a script would
have to be written once, whereas otherwise, the same content for all metaclasses
would have to be created manually.

Further, we argue that ED helps starting a language specification when the
language is still in an early stage and many changes occur. Early documentation
pays off as documenting a language gives new thoughts and sights onto possible
problems in the language design. ED supports specification evolution and thus,
encourages to start a language documentation early.

The UML specification process could also be enhanced using a standard tem-
plate engine. However, instead of using a template, applying ED with DEFT has
several advantages. First, the purpose of DEFT is creating and maintaining large
documentation files in an author-oriented way. Hence, it offers more appropriate
abstractions and a WYSIWYG editor while a template engine is more likely a
simple programming language and requires a certain amount of extra learning
effort. Second, a template engine is not aware of the involved artefact relations,
thus there is no support for hot update. Regeneration has to be triggered manu-
ally and involves the whole documentation, in the case of the UML specification
this can be time consuming. Third, it is more difficult to identify changes that
need to be proofread by a human. Finding differences between new and previous
versions would require running a differentiation tool. With standard differentia-
tion tools this can be cumbersome to examine.

5 Related Work

In this section we discuss tools that are related to our proposed tool DEFT and
applicable for maintaining documentations and specifications. Furthermore, we
present work discussing the soundness and quality of the UML specification and
WFRs within the UML specification.

5.1 Documentation in MDSD Processes

Besides DEFT, other tools for documentation in MDSD processes exist.

Elucidative Development for Documentation and Language Specification 15

Topcased6 is an open-source tool for model-driven development. It is based
on the modelling capabilities of the Eclipse MDT but comes together with its
own editors for graphical UML modelling and OCL editing support. As part of
the tool suite, Topcased Gendoc allows the generation of textual documentations
for UML models. Templates consisting of explanatory descriptions of the mod-
elled concepts can be defined, including queries against UML models to derive
explanatory figures and diagrams. It is possible to generate reports similar to
the documents maintained with DEFT. However, Topcased Gendoc uses a com-
pletely generative approach to create model documentations and, thus, suffers
from the shortcomings for generative approaches as discussed in Sect. 4.

The Eclipse-based tool suite Business Intelligence Reporting Tools (BIRT)
can be used to generate business reports from data maintained in databases.7 It
uses a template-based approach for the generation of textual reports, including
tables and charts derived from the documented data. Although BIRT allows the
creation and maintenance of documents, its major focus is on the generation of
database reports and not on the documentation of modelling artifacts, such as
EMF models. Furthermore, similar to Topcased Gendoc, BIRT only supports a
model-based an no elucidative documentation process.

Intent8 is a recent documentation project inspired by LP. Documentation
is created and maintained in a textual DSML that can express textual doc-
umentation as well as EMF-based artefacts (e.g., EMF model elements). The
described artefacts and the documentation are derived from this description.9

Besides models, Intent also supports other artefacts describable using EMF (e.g.,
source code).

The LiMonE (c.f. Sect. 2.1) tool uses natural language processing for improv-
ing documentation consistency. For example, a sentence like “A Class can have
multiple Operations”can be transformed into an OCL query that checks that the
association between the classes Class and Operation has the right multiplicity
in the UML metamodel. By combining DEFT and LiMonE, the elucidative pro-
cess outlined in this paper could be further improved, as consistency checks on
explanatory descriptions within the UML specification would be possible. The-
oretically, even hints could be derived to inform the user which sentences within
the specification have to be modified in which way to update the descriptions
w.r.t. the modified metamodel.

5.2 Consistency of UML Specifications

A lot of related work exist that focuses on consistency of the UML specification.
One of the most well-known publications in this domain is an article by

Henderson-Sellors [3] that documents the result of a panel discussion of a group
of modelling experts documenting their impressions of UML 2.0. Although the

6 http://www.topcased.org/
7 http://www.eclipse.org/birt/
8 http://eclipse.org/intent/
9 According to http://wiki.eclipse.org/Intent/Architecture, visited in January 2012.

16 Wilke et al.

article addresses various kinds of problems in UML, these descriptions include
the necessity of future revisions to improve the specification and the finding that
many definitions are scattered throughout the specification.

In [2] Selic defines a basis for a formal description of UML 2.0’s runtime
semantics. Although the paper focuses on the semantics definition, it also doc-
uments that semantics of UML concepts is scattered throughout the complete
specification and different statements even contradict, which leads to inconsis-
tent semantics definitions and statements such as that UML has “no semantics”.
Again, this work can be considered a motivation that the UML specification
requires techniques such as ED.

France et al. present the UML 2.0 in [26], but criticise its size and complexity.
The work states that one of the UML’s major challenges is its evolution which
cannot be performed manually since concepts are scattered around the complete
specification and are strongly interconnected.

A work by Belaunde that focuses on the OCL instead of the UML specifica-
tion process gives a short insight into the OMG specification process and lists
some reasons causing the existing inconsistencies during specification mainte-
nance [24].

Other authors focus on the consistency of OCL rules within the UML spec-
ification and also on co-refactoring (or co-evolution) of OCL rules and their
constrained (meta)model. Some of these works are outlined below.

In 2003, Fuentes et al. [5] investigated the consistency of OCL rules within
the UML 1.5 specification. They identified about 450 errors they categorised into
non-accessible elements, empty names and other errors, including about 150 er-
rors w.r.t. inconsistencies between the rules and the UML metamodel. Besides
the identification of 450 errors Fuentes et al. also investigated inconsistencies
(and even contradictions) between the given OCL rules and their textual docu-
mentation.

In 2004, Bauerdick et al. investigated OCL WFRs specified within the UML
2.0 superstructure [6] and detected more than 350 errors within these OCL rules.
The errors were structured into categories including syntactical errors, incon-
sistencies between OCL rules and UML metaclasses and type checking errors.
Eearlier work of the same group was performed by Richter et al. in 2000 [4]. An
excerpt of UML 1.3 metamodel was investigated containing more than 70 OCL
expressions with more than 35 errors.

In earlier work we investigated the consistency of constraints defined within
the UML 2.3 specification using OCL [7]. We identified about 320 errors in 442
OCL constraints. Hence, about 26% of all investigated OCL rules contained
errors w.r.t. consistency between the rules and the evolved UML metamodel.

Some works exist that focus on the UML/OCL co-evolution or co-refactoring
problem. Marković et al. formalised first refactorings of UML class diagrams
that affect related OCL constraints and proposed Query/View/Transformation
(QVT) rules for OCL co-refactorings [27]. Further work in this area based on
existing Eclipse tools was done by Hassam et al. [28]. These results could be
used to further improve our approach w.r.t. guidance for semi-automated OCL

Elucidative Development for Documentation and Language Specification 17

co-evolution which could help to keep the OCL WFRs and operation body defi-
nitions consistent to the UML metamodel.

6 Conclusion

In this paper we have presented the elucidative development approach as a more
versatile variant of literate programming. ED supports the documentation of
source code, model artefacts and language specifications and DSMLs. Source
artefacts such as metamodels and OCL constraints are transformed and trans-
cluded into documentation files via hot update.

As a use case, we investigated an excerpt from the UML specification and
identified inconsistency problems of different kinds resulting from a manual speci-
fication maintenance process. As demonstrated, these problems can be prevented
by using an elucidative IDE such as DEFT instead.

Additionally, some support for describing variants of the same specification
would be a valuable add-on for ED, since a different group of readers may require
different levels of abstraction with regard to the full specification. For example,
for a business audience, a specification usually needs to be much more abstract to
ease understanding. In [29], we proposed to use feature models [30] to model and
generate variants from document families based on the ODF and OpenOffice.
Since DEFT also supports ODF, an integration of both approaches should be
easily feasible in the future. Also, a combination with the LiMonE approach
seems a promising idea, especially if feature models are used to capture semi-
structured text content of specifications. However, these ideas still in an early
state of evaluation.

Furthermore, ED could be combined with other techniques for co-evolution.
For example, co-evolution of EMF or UML models OCL constraints that allows
the propagation of model modifications to their OCL rules would be an interest-
ing task. First works in this domain exist [27, 28] and could provide a basis for
such an integration.

Finally, round-trip support that allows the editing of transcluded model rep-
resentations in the documentation and propagates changes back to the model
repository could improve the usability of DEFT and ED.

Acknowledgement

This research has been co-funded by the European Social Fund and Federal State of
Saxony within the project ZESSY #080951806, by the European Social Fund, Federal
State of Saxony and SAP AG within project #080949335, by the Collaborative Re-
search Center 912 (HAEC), funded by DFG, and by the Federal Ministry of Education
and Research within the project CoolSoftware #FKZ13N10782.

References

1. Object Management Group (OMG) Unified Modeling Language. Online available
specification. http://www.omg.org/spec/UML/.

18 Wilke et al.

2. Selic, B.: On the Semantic Foundations of Standard UML 2.0. In: Formal Methods
for the Design of Real-Time Systems. Volume 3185 of LNCS., Springer Berlin/Hei-
delberg (2004) 75–76

3. Henderson-Sellers, B.: UML – The Good, the Bad or the Ugly? Perspectives from
a panel of experts. Software and Systems Modeling 4 (2005) 4–13

4. Richters, M., Gogolla, M.: Validating UML Models and OCL Constraints. In:
Proceedings of the 3rd international conference on the Unified Modeling Language:
advancing the standard, Berlin/Heidelberg, Springer (2000) 265–277

5. Fuentes, J., Quintana, V., Llorens, J., Génova, G., Prieto-Dı́az, R.: Errors in the
UML metamodel? ACM SIGSOFT Software Engineering Notes 28(6) (2003)

6. Bauerdick, H., Gogolla, M., Gutsche, F.: Detecting OCL Traps in the UML 2.0
Superstructure: An Experience Report. In: UML 2004 - The Unified Modelling
Language. Volume 3273 of LNCS., Springer Berlin/Heidelberg (2004) 188–196

7. Wilke, C., Demuth, B.: UML is still inconsistent! How to improve OCL Constraints
in the UML 2.3 Superstructure. In: Proceedings of the Workshop on OCL and
Textual Modelling (OCL 2011). Volume 44 of Electronic Communications of the
EASST. (2011)

8. Knuth, D.E.: Literate Programming. In: The Computer Journal. Volume 27(2).
(May 1984) 97–111

9. Arlow, J., Emmerich, W., Quinn, J.: Literate Modelling - Capturing Business
Knowledge with the UML. In: The Unified Modeling Language UML’98: Beyond
the Notation. Volume 1618 of LNCS., Springer Berlin/Heidelberg (1999) 378–392

10. Nørmark, K.: Elucidative programming. Nordic Journal of Computing 7 (June
2000) 87–105

11. Nørmark, K.: Requirements for an Elucidative Programming Environment. In:
Proceedings of the 8th International Workshop on Program Comprehension. IWPC
’00, Washington, DC, USA, IEEE Computer Society (2000) 119–128

12. Knuth, D.E., Levy, S.: The CWEB System of Structured Documentation: Version
3.0. 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(1994)

13. Schulze, G.: Synchronization of UML Models and Narrative Text using Model Con-
straints and Natural Language Processing. Master’s thesis, University of Innsbruck
(2011)

14. Nørmark, K., Andersen, M., Christensen, C., Kumar, V., Staun-Pedersen, S.,
Sørensen, K.: Elucidative programming in Java. In: Proceedings of IPCC/SIGDOC
’00, IEEE Educational Activities Department (2000) 483–495

15. Bartho, A.: Creating and maintaining tutorials with DEFT. In: Program Com-
prehension, 2009. ICPC’09. IEEE 17th International Conference on, IEEE (2009)
309–310

16. Aßmann, U.: Architectural styles for active documents. Science of Computer
Programming - Special issue on new software composition concepts 56 (April 2005)
79–98

17. Nelson, T.H.: Complex information processing: a file structure for the complex,
the changing and the indeterminate. In: Proceedings of the 1965 20th national
conference, New York, ACM (1965) 84–100

18. Nelson, T.H.: Literary Machines. 3rd edn. Mindful Press, Sausalito, CA (1981)
19. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and

Refinement of Textual Syntax for Models. In: Model Driven Architecture - Founda-
tions and Applications. Volume 5562 of LNCS., Berlin/Heidelberg, Springer (June
2009) 114–129

Elucidative Development for Documentation and Language Specification 19

20. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Thiele, M., Wende, C., Wilke,
C.: Integrating OCL and Textual Modelling Languages. In: Workhops and Sym-
posia Proceedings of Models 2010. Volume 6627 of LNCS., Berlin/Heidelberg,
Springer (May 2011)

21. Object Management Group (OMG) Unified Modeling Language: Superstructure
Version 2.4.1. Online available specification (August 2011)

22. Object Management Group (OMG) Unified Modeling Language: Superstructure
Version 2.0. Online available specification (August 2005)

23. Object Management Group (OMG) OMG’s Technology Adop-
tion Process. OMG Website Article (Visited in January 2012)
http://www.omg.org/gettingstarted/processintro.htm.

24. Belaunde, M.: Evolution fo the OCL OMG Specification. In: Invited talk at the
Workshop on OCL and Textual Modelling, collocated with MODELS2010. (2010)

25. Object Management Group (OMG) UML Specification Simplification RFP (De-
cember 2009) http://www.omg.org/cgi-bin/doc?ad/2009-12-10.

26. France, R., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development
using UML 2.0: promises and pitfalls. Computer 39(2) (2006) 59–66

27. Marković, S., Baar, T.: Refactoring OCL Annotated UML Class Diagrams.
In: Model Driven Engineering Languages and Systems. Volume 3713 of LNCS.
Springer Berlin/Heidelberg (2005) 280–294

28. Hassam, K., Sadou, S., Le Gloahec, V., Fleurquin, R.: Assistance System for OCL
Constraints Adaptation During Metamodel Evolution. In: Proceedings of 15th
European Conference on Software Maintenance and Reengineering (CSMR 2011),
Los Alamitos, CA, USA, Conference Publishing Services (CPS) (2011) 151–160

29. Karol, S., Heinzerling, M., Heidenreich, F., Aßmann, U.: Using feature models for
creating families of documents. In: Proceedings of the 10th ACM symposium on
Document engineering. DocEng ’10, New York, ACM (2010) 259–262

30. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Pittsburgh, PA (1990)

