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1
Introduction

Understanding macroscopic properties of solids requires the knowledge and the
interpretation of the electronic and the magnetic structure. Since the beginning
of last century tremendous progress in this field has been made. The Born-
Oppenheimer approximation [1], in which the motion of the nuclei is separated
from the motion of the electrons, was a crucial step in electronic structure
theory in the 1920s. Another successful achievement was the development of
the Hartree-Fock (HF) method [2–4]. In HF theory, the single-particle wave
function of the electrons is used to solve the many-body problem. One should
keep in mind that the number of particles in solids is of the order of 1023,
and there are three times more coupled differential equations, which have to
be solved. Although computer power increases faster and faster nowadays, it
remains hopeless to solve the many-body problem numerically without further
simplifications. A milestone was the formulation of the Thomas-Fermi (TF)
theory [5, 6]. It was the first model which reduced the many-body problem to the
electron density, for which only a single 3-dimensional integral equation has to
be solved. Despite its success the TF model suffers from its crude approximation
of the kinetic energy and the absence of exchange- and correlation (XC) effects.

Since the introduction in the 1960s, density functional theoretical DFT in-
vestigations have been established as an important branch of condensed matter
physics. This method is one of the most-widely used nowadays. The funda-
mental ideas were developed by Kohn, Hohenberg, and Sham [7, 8]. Hohenberg
and Kohn proved that there exists at most one potential for a given ground-
state density. Later on, Kohn and Sham established the famous Kohn-Sham
equation which provides a formally exact solution of the many-body problem
for the ground-state by introducing a so-called XC potential. This potential
includes all interaction effects beyond mean-field theory. However, even though
the Kohn-Sham equations formally provide an exact solution one can not solve
them, because the figuring XC potential is not known. Approximations are
needed for this XC potential. Thus the accuracy of the calculated ground-state
properties of atoms, molecules, and solids depends on the chosen approximation
for the XC potential.

Kohn and Sham proposed the most straightforward approximation for the
XC potential, the local density approximation (LDA) [8]. The generalisation into
a spin dependent formalism (LSDA) was done by von Barth and Hedin [9]. Itin-
erant magnetism is described quite successfully within LSDA, e.g. the Stoner
parameter [10, 11] is accessible by DFT calculations [12]. Even though LDA and
LSDA are approaches for the homogeneous electron gas, they provide surpris-
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ingly accurate results while being computationally very convenient. However a
more realistic description of inhomogeneous systems would be to include gradi-
ent terms of the XC potential with respect to the electron density. One most suc-
cessful recent attempt in this field is called generalised gradient approximation
(GGA). Higher order derivatives have been included in the XC potential over
the last years [13]. These approaches are referred to by the name meta-GGA. It
seems that GGA gives more realistic bond lengths for most of the investigated
compounds than obtained within LDA. But the magnetism for the most studied
cases of d- and f -shells is equally well reflected in LSDA and in GGA if the same
volume is used in the calculations. In order to find the correct ground-state,
calculations combining the analysis of structural and magnetic properties have
to be done. Take, for example, the element Fe for which in collinear LSDA the
ground-state is obtained to be non-magnetic in the face centered cubic (FCC)
structure. Nevertheless nature prefers a strong ferromagnet in the body centered
cubic (BCC) structure. This is perfectly obtained within GGA. The “homo-
geneous electron gas” ansatz fails if one wants to describe so-called strongly
correlated systems, e.g. consider transition metal oxides as CoO, NiO, or CuO.
In those compounds a strong coulomb repulsion in the incompletely screened d
states exists, which is neither included in LSDA nor in GGA. Thence a metallic
behaviour is obtained, while experiments verify Mott insulators. The inclu-
sion of local Coulomb repulsion remedies this discrepancy between theory and
experiment. This method is known as the LSDA+U method [14, 15].

It seems that for metallic systems the spin polarisation (SP) is already well
described within LSDA (and GGA). However, there are discrepancies between
the measured and calculated orbital magnetic properties, which are accessible
in relativistic calculations only. Hence the question arises how to include orbital
polarisation (OP) into DFT in a proper way. In atoms Hund’s rules are satisfied,
which describe SP, OP and spin orbit (SO) coupling in atoms. Typical energy
scales in atoms according to Hund’s rules are about 1 . . . 10 eV for the spin
polarisation, 0.1 . . . 2 eV for orbital polarisation as well as SO coupling [16]. The
atomic energies are altered in solids and then their order may be transposed in
comparison to free atoms. E.g. band formation, crystal field, and hybridization
of the valence electrons tend to quench the orbital moment. So OP is reduced in
these compounds, e.g. in 3d transition metals the orbital moment is one order
of magnitude smaller than the spin moment.

One significant part in this thesis is to investigate the effect of OP, e.g.
in actinide systems. Recall, that relativistic effects become crucial for atomic
numbers above 30, e.g. the magneto-crystalline anisotropy energy (MCA) is
caused by the SO splitting and hence rests on a correct description of both
spin and orbital polarisation. It is analysed in this work as well. Several ways
to include relativistic effects into DFT have been derived since the 1970s. For
this purpose the quantum field theoretical variant of the Hohenberg and Kohn
principle was applied [17]. The result was a theory based on the four-current-
density functional (CDFT), which was pointed out to include magnetism in a
very natural way. The relativistic version of the Hohenberg and Kohn variational
principle leads to the Kohn-Sham-Dirac equation [13, 18]. Approximate variants
kept the spin current, including its XC spin polarisation, and neglected the
exchange and correlation contribution of orbital currents [19, 20]. OP results
from the interplay of SP and SO coupling and is not caused by correlation
effects. However, these two couplings break time-reversal symmetry leading
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to a non-zero orbital current density. Orbital moments of d and f metals are
calculated which are smaller by a factor of two than the related experimental
orbital moments [16]. Another scheme, in which the “paramagnetic” current
density and the spin density are considered independently in the non-relativistic
limit [21–23], is suitable for systems in very high magnetic fields. It also allows
to calculate ground-state properties of very light open-shell atoms since SO
interaction is not taken into account. However, this method is not a good
starting point for 3d metals, in which OP is caused by SO coupling, and for f
shells, in which OP energies and SO energies are of comparable size [24]. The
systematic underestimation of orbital moments in d and f metals leads to the
conclusion that the inclusion of an XC enhancement of the OP is needed, this
is what we will call OP corrections (OPC). In practise an orbital dependent
functional is added to the energy functional [25], which shows similarities to the
LSDA+U approach [26].

Many different band structure approaches have been developed during past
decades. Until the early 1990s shape restrictions (muffin-tin based methods)
had to be taken into account to the periodic potential due to the limitation
in computer power. This restriction is nowadays obsolete and full-potential
methods have become the rule. A lot of different methods had been suggested,
which for instance differ in the used basis sets or the used potentials. The
main methods are the linear muffin-tin orbital (LMTO) [27], the Korringa-
Kohn-Rostocker (KKR) [28, 29], the augmented spherical waves (ASW) [30],
the augmented plane waves (APW) [31], the linearised augmented plane waves
(LAPW) approach [27, 32]. An example for the KKR method is the spin po-
larised relativistic (SPR)-KKR [33] code, an example for the LAPW method
is the Wien2k 1 code. Another approach is the linear combination of atomic
orbitals (LCAO) method [34] which yields the basic principles for the full poten-
tial nonorthogonal local orbital band structure scheme (FPLO) 2. Full potential
means that no shape restriction is implemented anymore. This work was done
using the FPLO package [35]. Anyhow, there are many different codes available,
some of them provide an accuracy in the range of mHartree for the total energy
and hence these codes yield comparable results, e.g. SPR-KKR, Wien2k and
FPLO.

In this thesis, magnetic properties under three different OP schemes are
analysed by DFT calculations using LSDA and GGA. This thesis is organised
as follows: The theoretical background of non-relativistic and relativistic DFT is
presented in Chapter 2, also including a brief overview of the used band structure
program. Chapter 3 addresses the technical realisation of OPC within the band
structure package. A first application of OPC can be found in Chapter 4, in
which 3d transition metals and alloys are investigated. In Chapter 5 uranium
compounds are considered, in which SO coupling becomes more important. This
chapter covers the question how OP evolves in systems which have 5f character.
Finally, a short summary as well as an outlook is presented in Chapter 6.

1http://wien2k.at
2http://www.fplo.de





2
Theoretical Considerations

DFT provides a powerful tool to calculate many measurable properties of solids,
e.g. magnetism, stress, crystal structure etc. In this way DFT supplies the
theoretical foundation of all the electronic structure calculations done in this
work bearing in mind that DFT is a mathematically exact formulation of the
many-body problem for the electronic ground-state. Therein, the Schrödinger
equation is mapped onto an effective one-particle equation, which can be solved
numerically.

In the 1960s two basic theorems were established by Hohenberg and Kohn [7],
and Kohn and Sham [8]. Hohenberg and Kohn formulated a variational prin-
ciple, in which the ground-state energy of Ne interacting electrons moving in
an external potential ν (r) can be represented as the minimum of energy with
respect to the electron density. Later on, Kohn and Sham presented an effective
one-particle formalism. A mathematical more rigorous formulation of the prob-
lem has been worked out by Levy [36] and Lieb [37], which is briefly discussed
in this context.

Section 2.1 begins with a short presentation of the basic Hamiltonian con-
sidered in many particle physics. In Section 2.2 the focus changes from non-
relativistic DFT to relativistic DFT. Section 2.3 presents the used band struc-
ture package [35], which is used during the this work. Section 2.4 introduces the
concept of MCA and explains how MCA energies are calculated within DFT.
Finally, Section 2.5 presents several used possibilities of describing disorder in
DFT. The textbooks [13, 38, 39] are suggested for further reading. The out-
line of the section considering DFT was motivated in particular by the book of
Eschrig [40] in which more details can be found.

All the following chapters apply atomic units (a.u). They are tabulated in
the Eqns. (2.1), (2.2) and (2.3). Planck’s constant is denoted as ~, me signi-
fies the electron mass and the electrostatic electron charge is labelled with ǫ =
e/
√

4π ǫ0, the electrodynamic electron charge is characterised by e =
√

4π ǫ0ǫ,
and ǫ0, µ0 represents the vacuum permittivity and the vacuum permeability, re-
spectively. Typical energies are given in eV and typical lengths are characterised
in Å. The velocity of light in the vacuum is c = 137.03599 a.u.

1 a.u. = ~ = me = ǫ2 = 2µB (2.1)

1 Ha = 2 Ry = 27.2113845 eV (2.2)

1 aB = 5.291772108 · 10−11 m = 0.5291772108 Å (2.3)

5



6 2.1. Quantum Mechanics Applied to Solids

2.1 Quantum Mechanics Applied to Solids

The stationary Schrödinger equation is analytically solvable for certain poten-
tials up to the two and the three body problem, Eqns. (2.4) - (2.8), with Ne + Ne

= 2, 3. So, numerical solutions have to be obtained in case of larger systems.
In (2.4), Ĥ is called the Hamilton operator, containing the information for a
particular problem. If Eqn. (2.4) is fulfilled, then |Ψm〉 is called eigenfunction,
and Em is the eigenenergy. The index m counts the eigenfunctions.

Ĥ |Ψm〉 = Em |Ψm〉 (2.4)

The aim in many-particle physics is to formulate problem (2.4) for solids
with Ne electrons and Nn nuclei. The many body state for Ne electrons |ΨNe

〉
obeys the fermionic symmetry and is written in the Schrödinger representation
ΨNe

({xk}) ≡ Ψ (x1, . . . , xNe
) = 〈x1, . . . , xNe

|ΨNe
〉, which is a projection of

the abstract Hilbert vector ΨNe
into the r- and the spin space and is usually

called a wave function. For further notation the variable x combines space
variable r and spin variable s. The Hamilton operator Ĥ of an interacting
many-body system with Ne interacting electrons and Nn interacting nuclei is
given by

Ĥ = Ĥe + Ĥn + Ĥe−n + Ĥext, (2.5)

in which

Ĥe =

Ne
∑

k

p̂2
k

2
+

1

2

Ne
∑

k 6= k′

1

|rk − rk′ | (2.6)

Ĥn =

Nn
∑

i

P̂i

2Mi
+

1

2

Nn
∑

i 6= i′

ZiZi′

|Ri − Ri′ |
(2.7)

Ĥe−n = −
Ne
∑

k

Nn
∑

i

Zi

|rk − Ri|
. (2.8)

Ĥe, Ĥn, and Ĥe−n are the electron-electron, nuclei-nuclei, and the electron-
nuclei interaction, respectively. Ĥe and Ĥn are split into an kinetic and a Cou-
lomb part. Ĥext describes a coupling between the charge density or magneti-
sation density with a corresponding external electric or magnetic field. The
nomenclature used above is defined as follows, Mi is the static mass of ion i,
P̂i, and p̂k are the momentum operators of ion i and electron k, Zi denotes the
nuclear charge of ion i, Ri and rk label the positions of ion i and electron k.

The typical magnitude of Ne and of Nn is of the order of the Avogadro
constant NA

1. Eqn. (2.5) inserted into the eigenvalue problem (2.4) discloses
that no computer is able to solve this many body problem without simplifica-
tions. The adiabatic approximation (AD) avails itself of the mean ratio between

1NA = 6.02214179(30) · 1023mol−1
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me and Mi
2. Consequently, it is justified to argue that at any time the elec-

trons feel a static potential caused by the nuclei at rest. As a result of this
static potential the motion of the electrons and the motion of the nuclei can be
separately treated 3. As far as only the electrons are concerned the Hamilton
operator (2.5) can be written in the following form,

ĤAD
e (Ri, Zi) = Ĥe +

Ne
∑

k

Nn
∑

i

Zi

|rk − Ri|
+ const. (Ri) (2.9)

ĤAD
e (Ri, Zi) ΨNe

({xk}) = Ee (Ri, Zi) ΨNe
({xk}) . (2.10)

The eigenvalue equation (2.10) can be solved with respect to the static con-
figuration ({Ri}) of the ions. One selected eigenenergy of Eqn. (2.10) is then
inserted in the Hamilton operator of the ions, and the corresponding eigenvalue
problem Hn + Ee has to be tackled.

The result of the AD is that the number of equations of the original prob-
lem (2.5) is reduced to the number of electrons Ne only and to fermionic symme-
try. Nevertheless, the remaining degrees of freedom in (2.9) are still too many
to solve them exactly. The following sections describe a way of using the density
instead of using the many body wavefunction to solve the many body problem.

2.2 Density Functional Theory

2.2.1 non-Relativistic DFT

2.2.1.1 Hohenberg and Kohn

We are left with solving the problem (2.10). We rewrite the many-body problem,
omitting the index AD, in its spin dependent formalism (2.11),

Ĥe [ν,Ne] = Ĥe + ν. (2.11)

Here Ĥe [ν, Ne] is now written as a functional of the electron number Ne and any
external spin dependent potential ν. The external potential ν is build as the sum
of the electron-nuclei potential Ĥe−n and possibly an applied electromagnetic
field. The spin density4 is defined as,

nss′ (r) =

∫

ΨNe
(rs, x2, . . .) Ψ∗

Ne
(rs′, x2, . . .) dx2 . . . dxNe

. (2.12)

Here,
∫

dx means integration over r and summation over s. In what follows we
assume spin collinearity, nss′ = δss′n (r, s). If n (r, ↑) = n (r, ↓) a first Theorem
by Hohenberg and Kohn holds:

2 me
Mi

≈ 10−3 . . . 10−5

3The adiabatic approach rests on the smallness of ωph/ǫf , where ωph is the maximum
phonon energy and ǫf is the Fermi energy measured from the next van Hove singularity of
the electronic density of states.

4The spin appears naturally in the non-relativistic limit out of the relativistic formulation
of the Schrödinger equation, it will be introduced in Section 2.2.2
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Theorem 1 ν (r) ∈ VNe
is up to an r-independent constant a unique function

of the ground-state density n (r).

The potentials ν (r) are restricted on the set VNe
, which admits only p-

integrable potentials, in particular ν (r) ∈ Lp satisfies the condition of the

p-norm: ‖ν‖p =
∣

∣

∫

d3r |ν (r)|p
∣

∣

1
p < ∞ for 1 ≤ p < ∞. It is further necessary

that Ĥe [ν, Ne] has a ground-state for these particular potentials. Originally,
the theorem was formulated for non-degerenate ground-states as a one-one map-
ping between ν (r) and ground-state density n (r). Indepently, Levy and Lieb
extended the density functional theory for degenerate ground-states and to en-
semble states. The properties of ensemble states are briefly summarised. The
admission of ensemble states is motivated by the idea that increasing the the
variational freedom increases the set of ground-states eventually. Now, let γ̂ be
the statistical operator for ensemble states,

γ̂ =
∑

K

|ΨK〉 gK 〈ΨK | ; 0 ≤ gK ≤ 1;
∑

K

gK = 1. (2.13)

The |ΨK〉 are normalised pure states possessing a statistical probability gK

and a corresponding particle number NK . The |ΨK〉 are expanded into an
orthonormal set of eigenstates of the particle number operator N̂e. The total
electron number Ne is obtained as expectation value of the particle number
operator N̂e, via

Ne = Tr
(

γ̂ N̂e

)

=
∑

K

gKNK (2.14)

and being non-negative and real. The expectation value of the Hamiltonian
Ĥe (2.11), being a functional of the total particle Number Ne and of the external

potentials ν, supplies the total energy of the system: Etotal = Tr
(

γ̂ Ĥe

)

. The

ground-state energy E is obtained by taking the infimimum over the admissible
density operators γ̂ under the constraint of keeping the particle number Ne

fixed,

E [ν, Ne] ≡ inf
γ̂

{

Tr
(

γ̂Ĥe

)

| Tr
(

γ̂ N̂e

)

= Ne

}

. (2.15)

The principle advantage of taking mixed states as compared to the expansion
of a pure state into a basis, is now the linear dependence of Eqn. (2.15) on
the mixing coefficient gK . This linear dependence confines the search of the
minimum on the boundary of the domain spanned by the gK . In this way
degenerate ground-states may be included in DFT. It is easily verified, that
E [ν, Ne] has the following properties [40].

Property 1 E [ν + c, Ne] = E [ν, Ne] +Ne c : gauge invariance with respect
to a constant potential shift c

Property 2 E [ν, cNe,1 + (1 − c) Ne,2] ≤ cE [ν, Ne,1] + (1 − c) E [ν, Ne,2]
: convexity in Ne for fixed ν
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Property 3 E [c ν1 + (1 − c) ν2, Ne] ≥ cE [ν1, Ne] + (1 − c) E [ν2, Ne] :
concavity in ν for fixed Ne

Convexity of E [ν, Ne] in Ne is guaranteed by property 2, which allows to de-
fine a Legendre transformed functional G̃ [ν, µ] with respect to the total particle
number Ne of the ground-state energy E [ν, Ne] (2.15).

G̃ [ν, µ] ≡ sup
Ne

{µNe − E [ν, Ne]} (2.16)

G̃ [ν, µ] = G̃ [ν − µ, 0] ≡ G [ν − µ] (2.17)

G [ν − µ] = − inf
Ne

{E [ν − µ, Ne]} (2.18)

E [ν, Ne] = sup
µ

{Neµ − G [ν − µ]} (2.19)

The variable µ represents the chemical potential of the system. Making use of
gauge property 1, one derives at a functional G [ν − µ] which is dependent on
ν − µ only, Eqn. (2.17). Further on, we put µ = 0 and write the Legendre
transformed functional as G [ν]. G [ν] is convex in ν, as −E [ν, Ne] is.

Now we return to the collinear spin case: ν (x) = (ν (r, ↑) , ν (r, ↓)), n (x)
= (n (r, ↑) , n (r, ↓)). Introducing −n as a variable dual to ν with 〈−n| ν〉 =
− ∑s

∫

n (r, s) ν (r, s) d3r, the above considerations allow to define a density
functional H [n] as the Legendre transformation of G [ν], with the conjugate
pair (ν, −n). See next page for the functional spaces X and X∗.

H̃ [−n] ≡ sup
ν ∈X∗

{〈−n| ν〉 − G [ν]} ≡ H [n] (2.20)

G [ν] = sup
n∈X

{〈ν| − n〉 − H [n]}

= − inf
n∈X

{H [n] + 〈ν|n〉} (2.21)

Applying (2.16) into Eqn. (2.20), one gets

H [n] ≡ sup
ν ∈X∗

{

− 〈n| ν〉 + inf
Ne

E [ν, Ne]

}

(2.22)

≤ inf
Ne

sup
ν ∈X∗

{E [ν, Ne] − 〈n| ν〉} 5 (2.23)

= inf
Ne

F [n, Ne] , (2.24)

in which F [n, Ne] ≡ sup {E [ν, Ne] − 〈n| ν〉 | ν ∈ X∗} is defined as a density
functional that was first introduced by Lieb [37]. Originally, the density func-
tional F [n] was defined as F [n]HK ≡ E [ν [n]] − 〈ν (n)|n〉 by Hohenberg and
Kohn. In their work the density was restricted to come from an Ne-particle
ground-state. The principle advantage by introducing F [n, Ne] as seen above
is that F [n, Ne] is defined on the whole linear space X as compared to F [n]HK ,

5here we used the general rule sup inf ≤ inf sup
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which is not. A further gain is that it yields F [n]HK = F [n, Ne] supporting
an equal solution for (2.24). Finally, the variational principle by Hohenberg and
Kohn is obtained by inserting Eqn. (2.21) into Eqn. (2.19).

E [ν, Ne] = sup
µ

{

Neµ + inf
n∈X

{H [n] + 〈ν − µ|n〉}
}

(2.25)

≤ inf
n∈X

{

H [n] + 〈ν|n〉 + sup
µ

[Ne − 〈1|n〉] µ
}

5

(2.26)

= inf
n∈X

{H [n] + 〈ν|n〉 | 〈1|n〉 = Ne} (2.27)

Since,

sup
µ

[Ne − 〈1|µ〉]µ =

{

+∞
0

for 〈1|n〉 6=
= Ne, (2.28)

the total infimum can only be obtained for 〈1|N〉 = Ne.
At the end of this section we want to stress that by definition only p-

integrable densities on the topological space X are admitted. In particular,
in the non-relativistic limit holds p = 3, X = L3

(

R3
)

. Periodic bound-
ary conditions in R-space can be introduced. This has a rigorous consequence
on the above presented Eqns. (2.25) - (2.27). A substitution of the infinite
R3-space of electron coordinates by a torus T 3 with finite measure is allowed,
yielding X = L3

(

T 3
)

. The space X∗ on which the potentials are defined

is called the dual space to X. A further study leads to X∗ = L
3
2

(

T 3
)

and
(X∗)

∗
= X∗ ∗ = X meaning X is reflexive. The fact that X is defined on

the torus T 3 admits a replacement of the infimum into a minimum, specif-
ically in Eqn. (2.26). This leads to the famous Hohenberg-Kohn principle:
E [ν, Ne] = min

n∈X
{H [n] + 〈ν|n〉 | 〈1|n〉 = Ne}. The advantage of the pre-

ceding procedures is a replacement of the variational problem (2.15), in which
the variation is examined over the states γ̂, by a variation over the density n in
the Hohenberg-Kohn principle (2.27). Unfortunately, the unknown functional
H [n] had to be introduced, for which a constructive expression has to be found.

2.2.1.2 Kohn-Sham Equations

We are left with choosing an appropriate expression for H [n]. For that purpose
the functional H [n] is split into an orbital variation part K [n] and a density
integral L [n].

H [n] = K [n] + L [n] (2.29)

K [n] = min
φl, nl

{k [φl, nl]

∣

∣

∣

∣

∣

∑

l

φ∗l nlφl = n, 0 ≤ nl ≤ 1, 〈φi|φj〉 = δij

}

(2.30)

L [n] =

∫

d3rn (r) l (nss′ (r) , ∇nss′ (r) , . . .) (2.31)
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Where we used nss′ (r) =
∑

l φ
∗
l (rs)nlφl (rs′) as the spin density matrix, the φl

are the single-particle Kohn-Sham orbitals, and nl label the occupation numbers.

Further it is assumed that the functional derivative δ H[n]
δ n ∈ X∗ exists and is

unique6

δ H [n]

δ n
= µ − ν, (2.32)

In order to find the minimum of H [n] one must vary Eqn. (2.29) with respect
to the Kohn-Sham orbitals φ∗l (x), x ∈ T 3. One arrives at Kohn-Sham type
equations.

(

k̂ + ν (x) + νL (x)
)

φl (x) = φl (x) ǫl (2.33)

orbital operator k̂ :
δ k

δ φ∗l (x)
= k̂φl (x)nl (2.34)

local Kohn-Sham potential : νL (x) =
δ L [n]

δ n (x)
(2.35)

The idea of Kohn-Sham was now to calculate H [n] of Ne electrons in the fol-
lowing splitting.

H [n] = T [n] + Eh [n] + Exc [n] (2.36)

T [n] = min
φl, nl

{

− 1

2

∑

l

nl 〈φl|∇2 |φl〉 (2.37)

∣

∣

∣

∣

∣

∑

l

φ∗l nlφl = n, 0 ≤ nl ≤ 1, 〈φi|φj〉 = δij

}

(2.38)

Eh [n] =
1

2

∫

d3r

∫

d3r′
n (r)n (r′)

|r − r′| (2.39)

T [n] represents the kinetic energy of an interaction-free ground-state with den-
sity n (r), Eh [n] is the Hartree energy for any density n (r), including self-
interaction. What is left is the so-called XC energy Exc [n]. It contains the
change in kinetic energy due to interaction. The final Kohn-Sham equations are
derived under minimisation of Eqn. (2.36) with respect to Kohn-Sham orbitals
φ∗l and the particular side condition, that the orbitals φl are orthonormal. The
Lagrange multipliers ǫl, which were introduced on the basis of the side condition,
depict the Kohn-Sham eigenenergies of the system. The Kohn-Sham equations
are:

(

− ∇
2

2
+ νeff (x)

)

φl (x) = φl (x) ǫl, νeff ≡ ν + νh + νxc (2.40)

The external potential ν, the Hartree potential νh and the Kohn-Sham XC
potential νxc are defined as follows.

6A rigorous analysis can be found in [40].
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νh (x) ≡ δ Eh [n]

δ n (x)
(2.41)

νxc (x) ≡ δ Exc [n]

δ n (x)
(2.42)

If E [ν, Ne], Eqn. (2.27), is varied under the orbital occupation numbers nl one
finds,

∂ E [ν, Ne]

∂ nl
= ǫl, (2.43)

which is known as Janak’s theorem [41]. The fundamental aufbau-principle can
be gained together with the constraints to the nl in Eqn. (2.38). Only the lowest
one-particle energies ǫl will be occupied.

nl = 1, ǫl < ǫNe
(2.44)

0 ≤nl ≤ 1, ǫl = ǫNe
(2.45)

nl = 0, ǫl < ǫNe
(2.46)

The ground-state energy of the system may now be expressed via the one-
particle eigenenergies ǫl.

E [ν, Ne] =

occ
∑

l

ǫl − Eh −
∫

νxc (x) n (x) dx + Exc [n] (2.47)

2.2.1.3 Local Density Approximation and more

In the following a practical expression for νxc will be given, which was missing in
the previous subsection. The homogeneous electron liquid is a sufficiently simple
model system for which the XC energy per particle ǫxc = ǫhom

xc can be estimated
with any accuracy. Kohn and Sham suggested replacing the XC energy density
of the inhomogeneous system with the XC energy density of the homogeneous
electron liquid. This is what in literature is called LDA [8]. The XC energy is
then obtained as an integral over ǫhom

xc at position x and the density n (x).

Exc [n] ≈ ELSDA
xc [n] =

∫

ǫxc (n (x)) n (x) dx (2.48)

νLSDA
xc (x) = ǫxc (n (x)) + n (x)

∂ ǫxc (n (x))

n (x)
(2.49)

The XC-potential νxc is the functional derivative of Eqn. (2.48) with respect
to n (x), Eqn. (2.49). The XC energy density of the homogeneous electron gas
has been determined very accurately for some limiting densities n (x) 7 [42] by

7Two regions are distinguished in those calculations, namely the high density limit and the
low density limit.
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using a quantum Monte-Carlo method. The spin dependence of ǫxc = ǫxc (n, ξ)
is included by introducing the spin polarisation ξ (r) = (n (r, ↑) − n (r, ↓)) /
(n (r, ↑) + n (r, ↓)) (LSDA). The non-spin polarised state ǫxc (n, ξ = 0) and
fully-polarised state ǫxc (n, ξ = 1) were exactly calculated. The intermediate
XC energy density ǫxc (n, ξ) is then interpolated between the paramagnetic
(ξ = 0) and the saturated ferromagnetic (ξ = 1) cases [9]. There are currently
different interpolations based on these exact quantum Monte-Carlo results [43–
45]. In this thesis the parameterisation according to Perdew and Wang [45] is
applied, which is presently known to be the most accurate.

ǫxc (rs, ξ) = ǫx (rs, ξ) + ǫc (rs, ξ) (2.50)

ǫx (rs, ξ) = − 3

4π rs

(

9π

4

)
1
3 (1 + ξ)

4
3 + (1 − ξ)

4
3

2
(2.51)

ǫc (rs, ξ) = ǫc (rs, 0) + αc
f (ξ)

f ′′ (0)

(

1 − ξ4
)

+ [ǫc (rs, 0) − ǫc (rs, 1)] f (ξ)
(

1 − ξ4
)

(2.52)

Where we used rs = [3/ (4π (n (r, ↑) + n (r, ↓)))]
1/3

as the density parame-
ter and the spin stiffness αc (rs) = ∂2 ǫc (rs, ξ = 0) /∂ ξ2. Despite its suc-
cess LSDA is well-known to overbind, and to underestimate experimental lat-
tice parameters by about 1 − 2% [46]. This problem can partly be reme-
died when applying the generalised gradient approximation, in which a gra-
dient term of the density ∂n (x) /∂r is included in the XC energy density
ǫxc = ǫxc (n (x) , ∂n (x) /∂r). In this thesis the parameterisation proposed by
Perdew, Burke, and Ernzerhof [47] is used.

Both parameterisations of the XC energy used here work well for weakly
correlated systems, nevertheless they are a crude approximation of the true XC
energy, e.g. the theoretical calculated band gap in semi conductor is smaller
than its measured value. Furthermore, the self-interaction is not compensated
completely, as it would be for the true XC energy. Therefore, a self-interaction
correction (SIC) is proposed, e.g. the description of the localised 4f -electrons
is improved [44, 48]. On-site-Coulomb interaction can be applied with the so-
called LSDA+U method [14, 15, 49], in which an orbital dependent Coulomb
interaction is added to Eqn. (2.36).

2.2.2 Relativistic DFT

The derivation of the relativistic Kohn-Sham-Dirac equation will be discussed
in this section. A detailed discussion can be found in [40, 50]. In order to
describe interacting relativistic electrons properly, one must adopt the formal-
ism of quantum electrodynamics (QED). For this reason we will substitute the
non-relativistic quantities with their corresponding four-covariant ones. Ac-
cordingly, the many-particle wave function ΨNe

({xk}) is replaced by the four-
component operator-valued electron-positron field Ψ̂ (xσ) 8, in which xσ =
(ct, r) and xσ = (ct, − r)9. Interactions are described with operator-valued

8The corresponding Fock state reads |Ψ〉 .
9Latin symbols pass through the vector components 1 − 3, Greek symbols pass through

0 − 3.
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four-potentials. Thereby, the electrons interact with photon fields Âµ (xσ). A
static external potential is added by means of Aµ (xσ) (without a hat!). The
Hamiltonian of interest is

ĤA =

∫

dr
(

c : ˆ̄Ψ (− iγ · ∇ + c) Ψ̂ : − ĵµÂµ +

+
1

2
:
(

ǫ0Ê
2 + µ0Ĥ

2
)

: − eĵµAµ

)

. (2.53)

Here, it is the four-current density operator ĵµ = c : ˆ̄ΨγµΨ̂ :, the Dirac matri-
ces γ =

(

γ1, γ2, γ3
)

, the electric component Ê and the magnetic component Ĥ

of the electron-electron interaction field Âµ. The dots “:” represent the normal
order, so that creation- and annihilation-operators are in normal order with re-
spect to the creation and annihilation operators of the renormalised asymptotic
fields, i.e. zero external four-potential Aµ 10. The expectation values of all
observables are assumed to be stationary, i.e. 〈Ψ| ĵµ |Ψ〉 = Jµ. Contrary to
the non-relativistic procedure, only the charge Q is fixed,

Q = − 1

c

∫

d3rJ0 (r) , (2.54)

and searching for the ground-state of the quantum field that forms the minimum
of E [A, Q],

E [A, Q] ≡ min
Ψ

{

〈Ψ| ĤA |Ψ〉
∣

∣

∣

∣

∣

−1

c

∫

d3r 〈Ψ| ĵ0 |Ψ〉 = Q

}

. (2.55)

As in the non-relativistic case, the minimum condition is warranted by the
restriction on a finite torus. Unfortunately, the quantum fields Âµ and ĵµ have
to be renormalised [51], due to an anomalous behaviour for non-zero Jµ. The

result is an effective Hamiltonian Ĥeff
A, Q with currents split into conducted and

fluctuating parts as ĵµ = Ĵµ + Jµ, which will not be discussed here. The
main gain by defining such a Ĥeff

A, Q is that one can define with this effective
Hamiltonian a new functional E [A, Q] that is convex in Q for constant four-
potential Aµ. Furthermore E [A, Q] behaves concavely in Aµ for constant Q.

E [A, Q] ≡ min
Ψ

{

〈Ψ| Ĥeff
A Q |Ψ〉

∣

∣

∣

∣

∣

〈Ψ| Ĵµ |Ψ〉 = 0

}

(2.56)

Analogous to the non-relativistic case, one may now define a current-density
functional H [J ],

H [J ] ≡ inf
Q≤ 0

sup
A∈X∗

{

E [A, Q] + e

∫

d3rJµAµ

}

. (2.57)

10The definition of renormalised fields can be found in [51]
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The Hohenberg-Kohn variational principle in its relativistic version reads:

E [A, Q] = inf
J ∈X

{

H [J ] − e

∫

d3rJµAµ

∣

∣

∣

∣

∣

−e
c

∫

d3rJ0 = Q

}

. (2.58)

We demand that Jµ ∈ X = L3
(

T 3
)

, and that Aµ ∈ X∗ = L
3
2

(

T 3
)

on the
corresponding spaces, in which the variation takes place. The same splitting as
in Eqn. (2.36) leads to:

H [J ] = T [J ] − 1

2

∫

d3rJµaµ + Exc [J ] . (2.59)

Recall that we replaced the original electron-electron photon field Âµ with the
renormalised photon field aµ. The minimisation of (2.58) yields the most general
Kohn-Sham-Dirac equation [18]:

[

− icα · ∇ + βm0c
2 − ecβγµ

(

Aµ + aµ + axc
µ

)]

Ψk = Ψkǫk, (2.60)

in which β and αi are 4 × 4 matrices and they are defined in appendix A. The
Kohn-Sham XC four-potential is defined as:

− eaxc
µ =

δ Exc [J ]

δ Jµ
. (2.61)

In order to eliminate the far ranging vector potential Aµ it is necessary to apply
the Gordon decomposition [52] on the four current density Jµ. The resulting
three-current density J (r) is written as,

J (r) = I (r) +
1

m
∇ × S (r) +

∂G (r)

∂ t
, (2.62)

with an orbital current density I (r), a spin density S (r), and a relativistic
correction term G (r), which disappears in stationary cases such as ours. The
spin current density is by definition the curl of the spin density S (r). The

spin density is obtained as expectation value of the spin operator Σ̂: S (r) =
1
2 Ψ̄Σ̂Ψ11. We demand that ∇ · J (r) ≡ 0, due to charge conservation. The
divergence of the spin current density vanishes because ∇ · (∇ × S (r)) ≡ 0
thus the orbital current density must also be divergence-free ∇ · I (r) ≡ 0.
Analogous to the curl of S (r) in (2.62), the orbital current density I (r) is
expressed as a curl of some vector field L (r), which is called “angular momentum
density”. Namely, it is I (r) = 1

2m (∇ × L (r)). However, the definition of an
“angular momentum density” violates Heisenberg’s uncertainty principle with
simultaneous sharp values for position and momentum. By construction L (r)
is defined up to an arbitrary additive gradient term. A “magnetisation” density
M (r) is introduced in the following manner:

− eJ (r) = ∇ × M (r) = − e

2m
∇ × (L (r) + 2S (r)) . (2.63)

11Σ̂ = 12 ⊗ σ. σ are the Pauli matrices which are defined in appendix A.2.
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Using the expression of the three-current density (2.63) in the variational prin-
ciple (2.58) one arrives at the final Kohn-Sham-Dirac equation, which reads
as

[

− icα · ∇ + βmc2 + ν (r) + νh (r) + νxc (r)
]

Ψk (r) −

− µ0β

∫

d3r′
(

h (r′) + hh (r′) + hxc (r′)
)

· δM (r′)

δ Ψ̄k (r)
= Ψk (r) ǫk.

(2.64)

We denote ν (r) as the mechanical potential, νh (r) as the hartree potential,
νxc (r) as the XC potential, h (r′) as the magnetic field, hh (r′) as the hartree
field, and hxc (r′) as the XC field. In practise, hh (r′) is 2 . . . 3 orders of mag-
nitude smaller than hxc (r′), and is thus left out in (2.64). Our final concern is
the non-local character in δM (r′) /δΨk (r), especially in δL (r′). Hence, the
remaining task is to find an appropriate expression for δL (r′) /δΨk (r) [40]. A
practical way doing away with the non-locality of δM (r′) /δΨk (r) in Exc [J ] is
to neglect L (r) (2.65).

Exc [J ] = Exc [cn, ∇ × (L (r) + 2S (r))] ≈ ELSDA
xc [n, 2S (r)] (2.65)

To that effect the basic equation that needs to be solved is Eqn. (2.64) making
use of Eqn. (2.65). In that way full-relativistic calculations were performed in
this work. Additionally, so-called scalar relativistic calculations were performed,
in which the SO is missing [16]. We bear in mind that in 3d-elements the energies
of Hund’s first rule are larger than those of Hund’s second rule. Thus, the neglect
of the orbital current density in Eqn. (2.63) seems justified when describing the
total magnetisation. In contrast to systems in which the energies of Hund’s first
and second rule are comparable, in particular systems involving 5f elements [53],
the validity of Eqn. (2.65) may change. Here the neglect of the orbital current
density is no longer justified, and the calculated orbital magnetic moment µl

is too small. A practical way to circumvent this problem is to introduce OPC,
which will be discussed in Chapter 3.

2.3 Full Potential non-Orthogonal Local Orbital Min-

imum Basis Band Structure Scheme

In this thesis all calculations were done with the FPLO band structure scheme [35].
Accordingly, the main features of FPLO are presented briefly. We want to men-
tion that in this work the FPLO versions 5, 8, and 9 were used. The version 5 is
presented here. The main difference among the different version is the treatment
of the basis states.

FPLO is a full-potential scheme, which means there is no shape restriction
to the potential, as in muffin-tin based methods. It is based on the LCAO [34]
method, in which the Kohn-Sham orbitals (2.40) or (2.64) are projected on
local atomic states |Rsυ〉 12. Here, R denotes a Bravais vector, s a site vector

12The corresponding wave function is ϕsυ (r − R − s) = 〈r|Rsυ〉.
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in the unit cell, and υ is a multi-index, which used either the full relativistic or
the non-relativistic notation 13. These local atomic orbitals are written in terms
of radial functions ψυ

s
(|r − R − s|) 14 and spherical harmonics, 15.

ϕsυ (r − R − s) = ψυ
s (|r − R − s|)Yυ (r − R − s) . (2.66)

The periodic boundary conditions, Section 2.2, grant that the Bloch functions
Φkn are eigenfunctions of the Kohn-Sham Hamiltonian,

Φkn =
∑

R, s, υ

ckn
sυ ϕsυ (r − R − s) eik(R+ s). (2.67)

These Bloch functions are now used as an ansatz for the self-consistent Kohn-
Sham problem. This leads to a matrix equation for the eigenvalue problem
(2.40) or (2.64). The diagonalisation effort is reduced due to a distinction
between core, semi-core, valence, and polarisation states. If the basis is too
small, completeness of the basis is achieved by adding more states to the basis.
The core states are assumed to already be orthogonal to each other, so the
overlap between core states of distinct sites is neglected. Semi-core, valence, and
polarisation states may have a non-zero overlap. Recall that the diagonalisation
of a matrix scales with the cube of its size. In comparison with plane-wave
based codes, which use a high number of plane waves to achieve high accuracy,
this method relies on a relatively small number of basis states. The notation
used in this thesis is defined as following,

element : core :: semi− core / valence + polarisation. (2.68)

All non-core orbitals are compressed by adding a confining potential, νconf =

(r/r0)
4
, with r0 = (x0rNN/2)

3/2
to the site-spherical average of the crystal

potential. Here, rNN denotes the nearest neighbour distance, and x0 is the pa-
rameter which is optimised in every iteration step16. These compressed orbitals
are better suited to construct the extended wave functions than more extended
free atom functions.

The summation over all occupied states yields the total electron density
n (r), which contains on-site R − s = R′ − s′ and off-site R − s 6= R′ − s′

terms.

13υ = (n, l, ml) for the non-relativistic case, and υ = (n, κ, µ) in the relativistic case.
Where (n, l, ml) denote the non-relativistic quantum numbers, and (n, κ, µ) the relativis-
tic [54].

14The ψυ
s

(|r − R − s|) are solutions of the radial Schrödinger or the radial Dirac equation
for a suitable spherical potential.

15A definition can be found in section A.1, in the non-relativistic case Yν = YL (L =
l, ml) and for the relativistic situation Yν = χκµ.

16Since FPLO6, a fixed basis is implemented. The code is faster and more accurate, but
the coherent potential approximation (CPA) [55] is not yet available.
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n (r) =

occ.
∑

k, n

Φ∗
kn (r) Φkn (r) (2.69)

=

occ.
∑

k, n

∑

R+ s, υ

∑

R′ + s′, υ′

(

ckn
sυ

)∗
ckn
s′υ′ ϕ∗

sυ (r − R − s)

ϕs′υ′ (r − R′ − s′) eik((R′ −R) + (s′ − s)) (2.70)

Finally, the density and the potential are expanded in spherical harmonics at
each lattice site s.

n (r) =
∑

R+ s, υ

nsυ (|r − R − s|)Yυ (r − R − s) (2.71)

ν (r) =
∑

R+ s, υ

νsυ (|r − R − s|)Yυ (r − R − s) (2.72)

The resulting total potential is obtained with these densities. FPLO is making
use of Ewald’s method [56] to cope with the long-range tails of the Coulomb
potential. In addition, the shape function technique is used to achieve a locally
finite lattice sum for the Hartree and XC potential. This shape function fs
is subject to the condition

∑

R+ s
fs (r − R − s) ≡ 1. The potentials are

then inserted into the Kohn-Sham equation, and this routine is iterated until
convergence is reached.

The linear tetrahedron method [57], including the Blöchl correction [58], has
been employed in all calculations for the k-space integrations.

2.4 Magneto-Crystalline Anisotropy Energy

The concept of MCA energy was introduced to describe magnetic effects in a
phenomenological model using thermodynamic quantities. Basically, the MCA
is the energy difference between two directions of the magnetisation density.
A significant point is that the magnitude of the magnetisation varies little
while rotating the magnetisation. The progress in a quantitative description
of anisotropy energies of transition metals was very slow until the beginning of
the 1990s. Due to the recent accuracy in DFT codes 17, realistic predictions
can be made for those systems [59–61]. A detailed introduction into magnetic
anisotropy may be found in [62].

Theoreticians started exploring phenomena about the magnetic anisotropy in
the 1930s. It was van Vleck who pointed 1937 out that relativistic corrections are
essential to qualitatively characterise the magnetic anisotropy while describing
the magnetisation non-relativistically [63]. The two sources of MCA are the
classical dipole dipole interaction and the SO interaction. For this purpose let
us define the Gibbs free energy density g (h, m̂), dependent on the external
magnetic field h and on the magnetisation direction m̂. We assume constant

17Anisotropy energies often are calculated as total energy differences, thus numerical accu-
racy in the total energy of µeV/atom is demanded.
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Figure 2.1: Coordinate system used.

temperature T as well as constant stress σ
18. Here, h denotes the external

magnetic field projected in the direction of the magnetisation m̂. This energy
density is split into two main contributions and a contribution, which is only
dependent on the amount of magnetisation |m̂|: g0 (|m̂|). g0 (|m̂|) is fixed to zero
in our considerations. . The shape anisotropy, due to dipole-dipole interaction,
and the intrinsic magneto-crystalline anisotropy, which is dominated by the SO
interaction and has dipolar contributions in higher order. In the absence of an
external field,

g (m̂) = gshape (m̂) + gcrystal (m̂) + g0 (|m̂|) . (2.73)

Further there are contributions arising from the volume (bulk) and from the
surface; we omit the surface contribution. It has been shown that the energy
density can be expanded in terms of the components (α, β, γ) of the mag-
netisation direction m̂ with respect to the crystal axes (x, y, z) [64, 65], com-
pare figure 2.1 19. For a Cartesian coordinate system we have, (α, β, γ) =
(sin θ cosφ, sin θ sinφ, cos θ). Respectively for cubic, tetragonal, and hexagonal
systems it is obtained,

cubic : gcrystal (m̂) = K0 + K1

(

α2β2 + β2γ2 +

+ γ2α2
)

+ . . . (2.74)

tetragonal : gcrystal (m̂) = K0 + K1 sin2 θ + K2 sin4 θ . . . (2.75)

hexagonal : gcrystal (m̂) = K0 + K1 sin2 θ + K2 sin4 θ . . . (2.76)

18This thermodynamic potential g is in general also temperature and pressure dependent,
but we neglect further dependencies in our discussions.

19The number of coefficients can be reduced due to symmetry arguments, e.g. crystal
symmetry
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Recall that for cubic systems the magneto-crystalline energy sets in with a 4th

order term, in contrast to the hexagonal and tetragonal case, which are of 2nd

order. Thus, we can expect that cubic systems have smaller magneto-crystalline
energies than related tetragonal and hexagonal structures. The Kn are called
anisotropy constants 20. We keep in mind that the concept of “anisotropy en-
ergy” as well as “anisotropy constants” is a theory for macroscopic systems,
thus predictions for small objects, such as nanoclusters or single clusters, have
to be regarded with caution [66].

It turns out that in most cases of itinerant band magnetism 21 the expan-
sion (2.74)- (2.76) can be truncated after the first non-vanishing term. As a
consequence the MCA is often calculated as energy difference:

△Emca (n̂1, n̂2) = gcrystal (n̂1) − gcrystal (n̂2) , (2.77)

in which n̂1 and n̂2 denote two high-symmetry crystallographic directions. It
is important to mention that the ground-state energy obtained within a DFT
calculation represents the Gibbs free energy only if the magnetisation direction
points along a high-symmetry crystallographic direction. Otherwise this ground-
state energy is an approximation to true magnetic energy for those directions.
As a result the MCA defined as (2.77) is doubtful [67] if calculated along non-
high-symmetry directions.

2.5 Disorder within DFT

The FPLO code provides four distinct methods to simulate disorder, e.g. va-
cancies, interstitial atoms, or substitutions. The rigid-band approximation is
the easiest one, but treats the problem crudely. The Fermi level is shifted ac-
cording to the number of electrons, which are added to or removed from the
system. Neither the Hamiltonian nor the wave function is changed. We skip
this method to discuss disorder. The most promising scheme to describe disorder
is CPA [68], which is also more expensive. There, an ensemble of configurations
of atoms is used to describe random systems. It is a Green’s function method
to evaluate an average of all possible configurations. In the end a configura-
tionally averaged single particle observable can be extracted. In this thesis the
CPA will not be used to describe disorder since a relativistic version of CPA
is not implemented in FPLO. In the virtual crystal approximation (VCA) an
atom with non-integer atomic number is introduced, for which the number of
valence electrons is adapted to the average number of valence electrons of that
site [69, 70]. To warrant charge neutrality, the same amount of positive charge
is added to the nuclei. This method is used to describe disorder in this thesis.
The last possibility is to create supercells. The advantages of this method are
that different patterns can be compared and local distortions considered. A
disadvantage is that we reduce the number of configurations to a finite, and
often small, number. In addition to this deficiency, supercell calculations are
very time consuming, e.g. if magnetic structures are considered. Convergence

20The Kn are different for different symmetries, and have no direct physical meaning, but
are commonly used to describe anisotropy.

21All investigated compounds are assumed to be itinerant, so a discussion about the localised
model is not taken into account.



Chapter 2. Theoretical Considerations 21

is complicated if we deal with different magnetic solutions, which are almost
degenerate. Nevertheless, we treated disorder within a stochastic average of su-
percells with randomly distributed atoms. The exact procedure for the supercell
construction will be discussed in Section 4.2.





3
Orbital Polarisation in DFT

Before discussing the details about including OPC in DFT a short recapitulation
of Hund’s rules is given. A significant point is that these rules describe the
ground-state of atoms. However, conclusions on the corresponding ground-state
in solids can be made according to these rules. Hund’s rules provide the ground-
state of an atomic shell [71], considering incompletely filled shells with a certain
number of 2 (J + 1)-fold degenerate multiplets. For not too heavy atoms the
ground-state is well approximated by a Russel-Saunders state with fixed values
of total angular momentum L =

∑

i li and total spin S =
∑

i si
1. According

to Hund’s rules the atomic state with the lowest energy has following properties:

Hund’s rule 1. The state with largest spin moment S has lowest energy.

Hund’s rule 2. The state with largest angular momentum L compatible with
maximums S has lowest energy.

Hund’s rule 3. S couples anti-parallel to L for less than half-filled shell, S
couples parallel to L for more than half-filled shell2.

Thus, the atomic ground-state with respect to total angular momentum L
and total spin S can easily be found by applying all Hund’s rules. We turn the
subject now from atoms to solids. By considering the experimentally accessible
magnetic quantities: the spin magnetic moment µs and the orbital magnetic
moment µl, we want to discuss their description in DFT. Both quantities can
be calculated as spatial integral over a certain sample volume V of the spin
density S (r) and the “angular momentum density” L (r), respectively.

1The total momentum J for atoms can be calculated according to Hund’s rules, as J =
S ∓ L.

2 In heavy actinides the j-j coupling has to be considered rather than the Russel-Saunders

coupling due to very large SO coupling, which is for the actinides is of the order of ∼ 1 − 2
eV. In the actinides the OP is of comparable magnitude as the SO coupling contrary to the
3d and 4f shells. The OP energy of actinides is of the order of ∼ 1 eV. Typical energy ranges
of all three Hund’s rules of d- and f -shells can be found in [16]

23
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µs = −µB

∫

V
d3r 2 S (r) , (3.1)

µl = −µB

∫

V
d3rL (r) . (3.2)

We recapitulate that on the one hand, in solids the picture of having isolated
shells is not any more correct, as a direct consequence the ground-state configu-
ration of atoms obtained with the Hund’s rules is not the ground-state configu-
ration observed in solids. On the other hand, OP has obviously been neglected
in Eqn. (2.65). In particular, it was found that the SO coupling is not sufficient
to describe the OP for 5f systems [53]. It turns out that the spin magnetic
moment is for the most investigated cases well described within LSDA or GGA.
Nevertheless, the description of the orbital magnetic moment is not satisfactory
when applying the common approximation as discussed in Section 2.2.2, see
Eqn. (2.65). For this reason additional non-local orbital-dependent potentials
have to be added to the Kohn-Sham equation to properly account for Hund’s
second rule.

First of all, we discuss in Section 3.1 the presentation of the three Hund’s
rules in DFT before introducing the OPC used in this work. The following sec-
tions present two different schemes to remedy the neglect of L (r) in Eqn. (2.65).

3.1 Hund’s Rules in DFT

A brief review concerning the realisation of Hund’s rules in atoms within DFT
is given next. For that reason we summarise results of calculations for the
SP energy, OP energy, and the SO coupling energy obtained with LSDA. In
accordance with Hund’s first rule the SP energy can be written as Esp ∼
S (S − 1/2). Doing so the SP energy is fairly well approximated in DFT within
LSDA as ELSDA

sp ≈ − IS2 [12]. Experimentally observed SP energies are well
reproduced by LSDA calculations [16]. Nevertheless bear in mind that there
arises a self-interaction error for only one electron or one hole in a shell by
the approximation of SP energy in LSDA. The parameter I is called Stoner
parameter, typically being of the order of 0.4 − 0.7 eV for d- and f -states.

The OP energy gain Eop is roughly proportional to L (L − l) with l = 2, 3,
for d- and for f -shells, respectively. The corresponding DFT expression of the
OP energy can be, as introduced previously in the case of the SP energy, approx-
imated via EDFT

op ≈ −PL2, in which the coefficient P is explicitly discussed

below. It was shown that EDFT
op coincides with experimentally measured OP

energies [16]. However keep in mind that by doing so a self-interaction error is
also present for the OP energy for one electron or one hole per spin sub-shell,
similar to the case of the SP energy.

SO coupling is described with Hund’s third rule. The SO coupling energies
are fairly well approximated by Eso ≈ ξ/2

∑

i 〈σîli〉, where ξ are radial integrals

called SO coupling constants3, σ are the Pauli matrices4, l̂ is the angular mo-
mentum operator, and i counts the electron in the shell. ξ was calculated for 3d,

3The ξ can be estimated within ξ ∼ 1

c2
〈 1

r

∂ νeff

∂ r
〉.

4see Appendix A.2
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4f , and 5f atoms [16], ξ is calculated as ξ3d ∼ 0.01 − 0.1 eV, ξ4f ∼ 0.1 − 0.4
eV, and ξ5f ∼ 0.2 − 0.8 eV. Qualitative and quantitative agreement for the
corresponding Eso was obtained between full relativistic LSDA calculations and
experiments [16].

3.2 An Introduction to OPC and DFT

3.2.1 OPC Brooks

It turns out that the common approximation used in relativistic DFT by ne-
glecting L (r) and taking only the SO coupling into account is not enough to
properly describe Hund’s second rule in solids. This section explains one way
of getting rid of this lack in theory. Eriksson et al. [25, 72] empirically defined
an expression that is intended to describe the OP energy by introducing an
expression Eopb, which was similar by construction to the SP energy ELSDA

sp .
Doing so the OP energy Eopb ∼ L (L − l) is approximated in a mean field

manner scaling quadratic in the total angular momentum Ls =< L̂s > of a
spin sub-shell s. The expectation value of the total angular momentum op-
erator < L̂s > is to be taken over the Kohn-Sham-Dirac states. In order to
calculate Ls we expanded the Kohn-Sham-Dirac states on appropriate chosen
atomic shell angular momentum states. By the reason of assuming a collinear
situation, the total angular momentum is then replaced by the z-component
of the atomic orbital magnetic moment Ml s =

∑

m〈mP̂m s〉, where P̂m s is a
projector onto the atomic shell orbital with electron spin s and orbital quantum
number m. The final expression for the OP energy Eopb is given by Eqn. (3.3).
The corresponding potential νopb, s, which needs not to be the same for the two
spin channels, is deduced as functional derivative of Eopb with respect to the
Kohn-Sham-Dirac states Ψk,

Eopb = −1

2

∑

s

BsM
2
l s, (3.3)

νopb, s =
δ Eopb

δΨk (r′)
= −BsP̂msMl sm. (3.4)

The eigenvalue shift caused by the m dependent potential νopb lifts the orbital
degeneracy of a shell l into (2l + 1) levels, if the atomic total angular momen-
tum Ml s of the shell is nonzero5. The proportionality factor B is the Racah
parameter6. The Racah parameter is accessible through the so-called Slater
integrals F l [73]. They are calculated as radial integral of radial atomic wave
functions Rn, l, s (r), where n is the principle quantum number of an atomic shell.
We apply the following definition: r< = min (r, r′) and r> = max (r, r′).

5OPC will enhance the OP, but it will not break the symmetry.
6In the case of f -shells, the notation will be E3.
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Bs =
1

441

(

9F 2
s − 5F 4

s

)

(3.5)

E3
s =

1

3

(

5

225
F 2

s +
6

1089
F 4

s − 91

7361.64
F 6

s

)

(3.6)

Fn, l
s =

∫ ∫

drdr′ (rRn, l, s (r))
2 rl

<

rl+1
>

(r′Rn, l, s (r′))
2

(3.7)

It should be noticed that the Racah parameter depends on the choice of the
orbitals. In order to test the dependence of the Racah parameter on the chosen
orbitals, three different SR calculations each time using different orbitals were
performed. At first, self-consistent bulk DFT calculations using FPLO9.00-35
were applied which shall simulate the atom in a proper chemical environment,
see Appendix B for the chosen input parameters. The results obtained for the
atom in the bulk using FPLO were compared with calculations for a single free
atom and for a single free ion. For that purpose the program DIRAC9.00-35 was
used. We solved the Kohn-Sham-Dirac equation by assuming 2+-ions (d-shells)
and 3+-ions (f -shells), in the latter case. The main difference between these two
calculations for free atoms is the contraction of the non-core states in FPLO.
The Racah parameter was accessible for the 5f shell only up to Uranium when
calculating self-consistently using FPLO.

Figure 3.1 shows the results for the three different basis sets used. As a
conclusion it is seen that, if orbitals are taken from a free atom calculation in-
stead of the free ion calculation, the Racah parameter was lowered by about
7%, 8%, 10% (3d, 4d, and 5d-shells) or 9%, 6% (4f , and 5f -shells). Further-
more, the bulk DFT calculations yielded Racah parameters being mostly located
in between those Racah parameters obtained from atomic and ionic calculations
(except for the 4f shell). However, the bulk parameters were much closer to
the atomic parameters than to the ionic parameters. We conclude that calcula-
tions assuming 2+-ions (d-shells) and 3+-ions (f -shells) describe bulk properties
rather well than atomic calculations. However, ionic calculations were used in
the next section by reason of comparability to the previous work [74]. The
obtained Racah parameters for d- and f -shells can be found in Table 3.2.

In the applications described in Chapters 4 and 5 the Racah parameter was
calculated at each iteration step by using optimised atomic orbitals evaluated
in the crystal potential of the system.

3.2.2 OPC Eschrig

The semi-empirical ansatz in Section 3.2.1 was introduced ad hoc. Many at-
tempts were done to explain the proper inclusion of OP and the L2 shape in
Eqn. (3.3), e.g. see [26]. In this thesis we will follow the idea given in [74],
in which a mathematical justification for the L2 shape of Eopb was discussed.
For further reading we refer to [75]. The authors defined the OP energy as dif-
ference of an orbitally polarised ground-state which is obtained by anisotropic
full-potential calculations and the energy of an orbitally unpolarised (meaning
Ml = 0) and spherically averaged reference state. As in the previous inves-
tigations the main interest related to OP is focussed only on contributions of
zeroth order in 1 / c. Hence, the OPC are considered only in the Russel-Saunders
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limit. In order to account for a reasonable atomic configuration in a chemical
bond, atomic calculations would be a suitable choice, as seen in the previous
subsection. However by the reason of comparability with previous studies ionic
calculations assuming 2+-ions (d-shells) and 3+-ions (f -shells) were performed.
We applied non-relativistic (NR) and additional scalar relativistic (SR) ionic
calculations (discussion below) to obtain the OP energies. It turns out that
the final expression for the OP energy is split into a sum of three leading con-
tributions, originating from exchange effects, correlation effects, and a double-
counting (DC) term. The three terms are going to be discussed in more detail
next.

We consider OP as a direct consequence of exchange interaction by calculat-
ing ground-state HF energies. For that reason HF energies of orbitally polarised
and orbitally non-polarised ground-states were compared. The HF OP energy
is defined as Ehf

op = Ehf − Ehf
l = 0. In that sense, OP can be understood as a

contribution of the asphericity of the charge density of an open shell. The final
expression used in our calculations for a given spin sub-shell with Ns electrons
is [76, 77]:

Ehf, l
op =

l
∑

k=1

F 2k

(

Ns (Ns − 1)

2
āl

k +

∑

ml,ml′

2π

(2k + 1)

(

(Ylml
|Y2k,0|Ylml

)(Ylm′
l
|Y2k,0|Ylm′

l
)−

(−1 )
ml −m′

l (Ylml
|Y2k,ml −m′

l
|Ylm′

l
)(Ylm′

l
|Y2k,m′

l
−ml

|Ylml
)
)

)

, (3.8)

where (Yl1ml1
|Yl2,ml2

|Yl3ml3
) are the Gaunt coefficients [78] and F 2k are the

Slater integrals which have already been defined in Eqn. (3.7). The Slater in-
tegrals were obtained using either the radial part of NR local orbitals or the
radial part of SR local orbitals, whereas for the spherical part only the expres-
sion as shown in Eqn. (3.8) was used. In that sense, either a NR or a SR
Ehf, l

op was defined. The coefficients āl
k for the d- and f -shells are tabulated in

Appendix A.2.

The second important contribution to OP is attributed to correlation [74, 75].
In order to account for OP caused from orbital correlation effects, one has to
use the local XC field hxc (r) from Eqn. (2.64). Let us for the moment neglect
the exchange part of this local field, and investigate OP based on correlations
effects: hxc (r) = hx (r) + hc (r). A further approximation in the sense of
CDFT is a splitting of the correlation field hc (r) into a spin correlation field
hc, s (r) and an orbital correlation field hc, l (r). We consider OP generated by
hc, l (r).

h
c, s
lsda (r) = F (ρ (r)) 2S (r) (3.9)

h
c, l
lsda (r) = F (ρ (r)) L (r) (3.10)

hc, l = h
c, l
lsda − h

c, s
lsda

(S (r) |F |L (r))lsda

(S (r) |F |S (r))lsda

. (3.11)
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The function F (ρ) was assumed to point in z-direction also using the collinear
approximation. F (ρ) were chosen as F (ρ) = 2 (ǫc (ρ, 1) − ǫc (ρ, 0)) /ρ. The
von Barth-Hedin spin polarisation function f (ξ) [9] was approximated as f (ξ) =
0.855 · ξ2. We remark that the last expression fits the true spin polarisa-
tion function only for |ξ| ≤ 0.4 (2 % accuracy in the relevant range). How-
ever, the largest observed spin polarisations in condensed matter for atoms are
well below 0.5 leading to the conclusion that the last approximation should be
well justified. By choosing a proper symmetric gauge for the vector potential
A (ρ, φ, z) = eφA (ρ, z) and projecting the Kohn-Sham-Dirac orbitals Ψk onto
the local basis functions φm s ∼ eimφ,7 one derives the expression for L (r)
used in this work, Eqn. (3.12). The orbital correlation energy to the OP energy
Ec, l

op was then written for this special choice of the vector field L (r) in leading
order [75]:8

L (r′, z) = 2
∑

k

nk

∫ ∞

ρ′

dρ′′
(

∑

m s

m

ρ′′
|φm s (r′′) 〈φm s|Ψk〉|2

+A (r′′) Ψk (r′′) Ψk (r′′)
)

(3.12)

Ec, l
op = −µB

2

∫

d3rhc, l (r)L (r, z) . (3.13)

A DC correction has to be introduced by the reason that OP is already present in
νh and νxc, compare Eqn. (2.64). For that reason self-consistent LSDA ground-
state calculations for isolated ions with integer orbital occupation numbers and
spherical potential were applied to evaluate Kohn-Sham orbitals. By using the
Kohn-Sham orbitals we constructed all non-spherical configurations for all ad-
missible values L with maximum S. The corresponding energy was calculated
in a perturbative (single step) treatment. The OP energy of the non-spherical

configuration (Hund’s rule state: νhund, l
h, xc ) was obtained by subtracting the av-

erage energy for all admissible configurations
(

l
Ns

)

of a spin sub-shell l occupied

with Ns electrons, see Eqn. (3.14). The OP already included in LSDA Elsda, dc
op

was estimated as energy difference, see Eqn. (3.15).

〈ν̄l
h, xc〉 =

1
(

l
Ns

)

( l

Ns
)

∑

i = 0

〈νi
h, xc〉 (3.14)

Elsda, dc
op = 〈νhund, l

h 〉 − 〈ν̄l
h+〉 + 〈νhund, l

xc 〉 − 〈ν̄l
xc〉 (3.15)

Here, νi
h and νi

xc denote the Hartree- and XC-potential for the actual config-
uration. The DC expression (3.15) calculated also for both, NR and SR local
orbitals, respectively. The final expression for the OP energy used in this work
is written in the following manner:

7Projection is done either onto local NR orbitals or local SR orbitals.
8The orbital correlation field hc, l (r) was calculated in the collinear approximation (h =

ezh, S = ezS, L = ezL) using LSDA.
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Eopxc = Ehf
op + Ec, l

op − Elsda, dc
op , (3.16)

Eopx = Ehf
op − Elsda, dc

op . (3.17)

(3.18)

The OP energy including correlation effects, Eqn. (3.16), will be called Eopxc,
the expression in which Ec, l

op is explicitly excluded, Eqn. (3.17), is called Eopx.
The last scheme may be seen as an exchange-only variant of this particular OPC
scheme. This ansatz was motivated by the fact that the correlation contribution
to OP is not well-known.

As next we discuss the obtained OP energies, see Eqn. (3.3) and Eqns. (3.16,
3.17). Further we will analyse the different contribution and their individual
weight. Figures 3.2 and 3.3 display numerical results of the OP energies cal-
culated using NR and SR orbitals, respectively. We recognised that the shape
and the amount of Eopxc, opx and Eopb was very similar. The last statement was
substantiated by the reason that OP apparently is mainly based on exchange
effects. Our results showed that Ehf

op yielded the largest amount among all con-
tributions to Eopxc, opx. Nevertheless, minor differences were found between the
distinct OPC schemes. As opposed to Ehf

op , non-vanishing contributions at a
band filling of 1, 2l, 2l + 2, and 4l + 1 developed for Eopb, Eopxc, and Eopx.
Non-vanishing energies for one hole or electron per spin sub-shell are physically
not correct and are due to self-interaction. The self-interaction error for Eopxc

is driven by Ec, l
op and partly remedied by Elsda, dc

op . If Ec, l
op is not considered as

for Eopx, the self-interaction error is caused solely by Elsda, dc
op .

We proceed with comparing the OP energies on the one hand obtained with
local NR orbitals and on the other hand obtained with local SR orbitals. By
taking the average deviation per shell between OP energies obtained either by
using local NR orbitals or using local SR orbitals, we found: 0.26 %, 0.68 %,
3.42 %, 2.80 %, and 4.22 % for Eopxc (3d, 4d, 5d, 4f , and 5f -shell, respectively).
In the same way we got for Eopx an average deviation per shell of: 0.32 %,
0.08 %, 2.06 %, 3.90 %, and 7.06 %. As seen previously, we observed the largest
differences in the f -shells due to relativistic effects.

The obtained Eopxc, opc will be interpolated as in Eqns. (3.19, 3.20) pre-
sented. The coefficients P l

i are parameterised as following P l
i (Ns) = pl

i Ns

((2l + 1 ) −Ns) / 2.9 Projection of the Kohn-Sham states Ψk onto NR or SR
local ionic orbitals φm s was applied to evaluate the electron number Ns and the
ionic orbital moment Ml s,

Efit
opxc = −1

2

∑

s

Popxc (Ns)M2
l, s, (3.19)

Efit
opx = −1

2

∑

s

Popx (Ns)M2
l, s, (3.20)

Ns =
∑

k

nk

∑

m

| 〈Ψk|φm s〉|2 , (3.21)

Ml s =
∑

k

nk

∑

m

〈Ψk|φm s〉m 〈φm s|Ψk〉. (3.22)

9Here, i stands either for opxc or opx.
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Figure 3.2: Numerical Results for OP energies by using local NR orbitals. Notation
as following: - Ec, l

op , - Ehf
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Figure 3.3: Numerical results for OP energies by using local SR orbitals. The same
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Table 3.1: Average deviation per shell l for the Racah parameters, the P l
i coefficients,

and the pl
i coefficients, respectively. The deviation was obtained using NR

and SR orbitals and is presented in percentage: ∆f = 1 − (fsr / fnr).

Shell ∆B [% ] ∆P l
xc [% ] ∆P l

x [% ] ∆pl
xc [% ] ∆pl

x [% ]

3d 0.62 0.48 0.50 0.76 0.79

4d 1.16 0.44 0.82 0.60 1.11

5d 2.27 2.56 1.52 3.51 1.15

4f 5.11 2.95 3.75 3.73 4.68

5f 9.73 3.95 7.05 4.95 8.90

Figure 3.4 presents the resulting coefficients P l
i . By construction the coeffi-

cients P l
i are zero for N = 0, 2l, and 2 (2l + 1). In addition it is seen that the

coefficients P l
i have their maximum at a band filling of 1/4 and 3/4. When

considering the d shells (Figure 3.4a) we observed no evident difference between
the coefficients obtained for the NR and the SR orbitals. As opposed for the
f -shells, see Figure 3.4b. Here, a significant reduction of the coefficients either
obtained with the SR orbitals or obtained with the NR orbitals is recognised.

Table 3.1 presents the average deviation per shell of the obtained coefficients
between both orbitals used, for the Racah parameters, P l

i , and pl
i respectively.

Firstly, we recognised that the most pronounced deviation is obtained for 5f
orbitals. Secondly, the deviation found for the Racah parameters was of com-
parable amount as the deviation found for the parameters P l

x and pl
x. Finally,

the deviation obtained for the coefficients P l
xc and the coefficients pl

xc was sub-
stantially lower than for the other coefficients.

We constructed the coefficients pl
i in such a way, that they showed a linear

dependence on the nuclear charge Z, see Figure 3.5. Consequently, a similar
behaviour as compared to the Racah parameters is observed when going through
a shell. We note that our chosen shape of the parameterisation differs from
the OPB parameterisation [25, 72] in the Ns dependence of P l

i . This choice
yielded a root mean square (RMS) deviation between the calculated Ei, see
Eqns. (3.16, 3.17), and the fitted Efit

opxc, opx, see Eqns. (3.19, 3.20), of only about
5% for one particular shell l and scheme i, see Table 3.2.

By comparing the coefficients Popxc, opx it was found that P l
opxc ≥ P l

opx. The
last statement is caused by rather larger Eopxc than Eopx. We conjecture that
the correlation contribution to OPC will be overestimated by this approach. As
opposed to the Racah parameters, which are re-calculated in each iteration step
(see discussion in Section 3.2.1), the parameters given in Table 3.2 are used in
the self-consistent cycle in order to reduce the unavoidable basis set dependence.

Numerical implementation was done for the coefficients pl
i, for NR or SR case,

respectively. OP arises as a consequence of SO coupling, which is a relativistic
effect. This fact calls for a full-relativistic treatment of a magnetic ion during
the whole self-consistent cycle. This is done by retaining the NR or SR results
for Efit

i from Eqns. (3.19, 3.20), but replace the projector by a full-relativistic
one. Hence, now the Kohn-Sham-Dirac orbitals Ψk are bispinors. Ns and Mls

are now to be obtained as:
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Ns =
∑

kµν

nk 〈Ψk|φµ〉 (3.23)

〈φµ |(1 + sβsz)|φν〉 〈φν |Ψk〉/2, (3.24)

Ml s =
∑

kµν

nk 〈Ψk|φµ〉 (3.25)

〈φµ

∣

∣

∣
(1 + sβsz) l̂z

∣

∣

∣
φν〉 〈φν |Ψk〉/2, (3.26)

where φν , φµ denote suitable defined orthonormal local bispinors of the magnetic
ion shells with relativistic quantum numbers ν, µ. (1 + sβsz) will project on
the electron state with spin s, with s = ± 1, sz is the z-component of the spin
density matrix, and l̂z is the orbital angular momentum operator related to the
nuclear position of the magnetic ion.

Table 3.2: Energy range of the Racah parameters [16], Pxc, x parameters, pxc, x pa-
rameters, and respective RMS deviation for d- and f -shells calculated for
corresponding 2+-ions and 3+-ions. The RMS is taken for a certain shell
nl between the calculated Eiand the fitted Efit

i (see text). Values listed
in black are derived using NR local orbitals, values tabulated in red are
derived using SR local orbitals. All energies are given in meV.

Shell B P l
xc rmsl

xc P l
x rmsl

x

3d
90 − 177 100.3 − 184.8 16 53.1 − 125.3 25

89 − 176 99.8 − 185.2 16 53.6 − 124.0 25

4d
68 − 128 76.5 − 120.2 17 40.4 − 87.9 18

67 − 127 77.2 − 120.6 17 40.1 − 86.7 18

5d
49 − 115 70.5 − 110.2 19 40.7 − 76.8 17

47 − 114 72.3 − 115.2 18 41.7 − 76.8 16

4f
76 − 117 56.4 − 132.6 100 37.3 − 104.7 78

71 − 111 52.8 − 132.5 98 35.8 − 99.7 73

5f
55 − 89 42.4 − 97.4 66 18.8 − 76.8 59

48 − 83 40.2 − 93.0 62 25.4 − 72.4 53

Finally, the resulting OP potential entering the Kohn-Sham-Dirac equation
is shortly discussed. The Kohn-Sham-Dirac orbitals were expanded into a non-
orthogonal basis for the whole arrangement of ions. As a result a basis overlap
matrix appears. In order to account for a local ansatz, the projection onto
the local orbitals φµ, φν is defined with respect to the contragredient basis.
Technical details can be found in [75]. As can be seen, the overlap matrix drops
out from the final expression (3.27). The corresponding potentials entering the
Kohn-Sham-Dirac equation were obtained as functional derivative with respect
to the Kohn-Sham-Dirac states Ψk.
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νi, s =
δ Ei

δΨk (r′)

= −
∑

µ, ν

|φµ〉
(

Pi (Ns)Ml s〈φµ

∣

∣

∣
l̂z

∣

∣

∣
φν〉+

M2
l s

δ Pi (Ns)

δΨk (r′)
δµ ν

)

〈φν | (3.27)

In summary, three different OPC schemes were presented in this chapter, which
differ mainly in the definition of their coefficients (B - OPB, Pxc - OPXC, and
Px - OPX). The OP energies were numerically studied by using either or local
NR orbitals or local SR orbitals. All obtained parameters were implemented in
the FPLO code. In the following chapters these OPC schemes will be applied
on several 3d and 5f compounds, having a closer look on their magnetic ground-
state properties.





4
Transition Metals

This chapter begins with a discussion of magnetic moments and MCA energies
△Emca of Fe, Co, and Ni. Their magnetic moments have been theoretically
reproduced already close to experiments [79]. However, the evaluation of their
MCA energies is problematic. Nowadays the MCA is calculated as total energy
difference, keep in mind that such calculations require an accuracy of about
∼ 10−7 eV 1 (with a fixed structure). At the same time the total energy is
of the order 105 eV/atom demanding high precision and high accuracy on the
numerical calculations. In the last 15 years a qualitatively correct description
between experiment and simulations could be achieved, nevertheless the calcu-
lated values scatter by usually a factor of 2. Even nowadays usual calculations
can not reproduce the correctly measured sign of the MCA for Ni (FCC). The
adjacent discussion in Section 4.1 shows the influence of different methods to
calculate the MCA using DFT and results available in the literature are com-
pared.

In Section 4.2 we turn the focus on the binary Fe1−xCox alloys. These alloys
are interesting due to their application in computer storage devices. Published
results of calculations using the FP-LMTO method [80] analysed the magnetic
properties for certain tetragonal distortions and for certain Co concentrations
while assuming constant volume [81]. The authors demonstrated that a pertur-
bative treatment of the SO interaction leads to an inverse dependency of the
MCA on the energy difference between the occupied and the unoccupied states.
They clearly showed that a huge MCA is found for certain composition x and
certain tetragonal distortion [82, 83]. Nevertheless, volume relaxation obviously
was neglected in their calculations. However, it is present in epitaxial grown
layers. Secondly, disorder was considered only by using the VCA method. Our
calculations simulate these tetragonal distortions by making use of the so-called
epitaxial Bain path (EBP) [84] which accounts for a geometrical relaxation of
the particular structure of these alloys. Additionally, disorder was described
using two different methods, firstly the VCA was applied in order to control
the previously obtained results, and secondly a stochastic average of supercells
with randomly distributed atoms was taken into account. Finally, a comparison
of the disordered phases with the ordered structures of L10-type and L12-type
phases revealed the impact of disorder on the magnetic properties.

1The calculated MCA in this thesis is order of magnitude up to some meV/atom.
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4.1 Fe, Co, and Ni

4.1.1 Calculational Details

The 3d transition metals Fe (BCC), Co (FCC), Co (HCP), and Ni (FCC) were
studied using FPLO in its version 8.65. The presented results were calculated
using the experimental lattice constants [85], as summarised in Table 4.1. The
cut-off angular momentum lmax = 4 was used for the expansion of the potentials
and densities into spherical harmonics. We systematically increased the number
of k-points from 123, 243, 483, to 963 in the Brillouin zone (BZ). In order to
achieve an accuracy by about 1µeV/atom in the total energy, one has to use 963

k-points in case of the cubic structures (Fe (BCC), Co (FCC), and Ni (FCC)),
and in case of hexagonal Co (HCP) 483 k-points are sufficient (see discussion in
Subsection 4.1.2). Orbital moments were calculated as discussed in Chapter 3.
The OPC were applied in the non-relativistic (basis mapping) limit. LSDA as
well as GGA were taken into account in order to analyse the dependence on the
XC-potential.

Three different schemes were applied to evaluate the MCA. The first method
defines the MCA as the energy difference of two distinct spin quantisation axes
n̂i, Eqn. (4.1). This method gives the most accurate results, if the total energy
supplies sufficient accuracy. The second method made use of the force theorem
(FT) [86]. There, a SR2 calculation was converged self-consistently. Followed
by a non self-consistently single-step calculation including SO interaction and
appropriate chosen quantisation axis n̂i. This was done by a full relativistic
calculation. The MCA was then estimated as the difference of the sum of the
occupied band energies ǫn (n̂i), Eqn. (4.2). A number of k-points is needed in
both, the SR and the full relativistic cycle, to ensure sufficient accuracy in the
total energy in order to estimate the MCA. The third method picks up the
idea of Bruno [87]. It was shown by him that by using the perturbation theory
the anisotropy constants Kn scale as (ξnl/△)

n
, in which △ is the characteristic

band splitting3 and ξnl is the SO coupling constant. Typically, this ratio is
for d-shells very small, and the expansion in Eqn. (2.74) - Eqn. (2.76) can be
truncated after the first non-vanishing term. It turned out, that the MCA
can be approximated via the difference of the magnetic orbital moments µl (n̂i)
of the two quantisation axes and then multiplied with the corresponding ξnl,
Eqn. (4.3). When including OPC in the Hamiltonian, the last formula has to
be generalised to Eqn. (4.4) [88].

We remark, that the ansatz of Bruno is applicable only for systems with
more than half filled shells, which holds for the elements Fe, Co, and Ni. We
approximated ξnl as difference the of one-particle energies, Eqn. (4.5), which
were taken from the solution of atomic Kohn-Sham-Dirac equation. The re-
sulting values are tabulated in Table 4.1. The quantisation axes were taken in
analogy to Trygg et al. [61].

2The SR ansatz disregards the SO coupling, thus a wave function with non relativistic
symmetry can be used.

3△ ∼ 1 eV
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Table 4.1: Input parameters for Fe, Co, and Ni in our DFT calculations.

Fe (BCC) Co (FCC) Co (HCP) Ni (FCC)

Spacegroup 229 225 194 225

Wyckoff Position (0, 0, 0) (0, 0, 0)
`

1

3
, 2

3
, 1

4

´

(0, 0, 0)

a [Å] 2.867 3.569 2.507 3.524

c [Å] 2.867 3.569 4.070 3.524

ξ3d, lsda [meV/atom] 62.2 78.4 78.4 97.2

ξ3d, gga [meV/atom] 61.6 77.9 78.0 96.7

n̂1 001 001 001 001

n̂2 111 111 100 111

△Emca = Etotal (n̂1) − Etotal (n̂2) (4.1)

△Eft
mca =

occ.
∑

i

ǫi (n̂1) −
occ.
∑

i

ǫi (n̂2) (4.2)

△EBruno
mca = − ξnl

4µB
(µl (n̂1) − µl (n̂2)) (4.3)

△EBruno
mca, op = − 1

2µB

(

ξnl

2
+
∑

s

BsMLs

)

(µl (n̂1) − µl (n̂2)) (4.4)

ξnl = 3d ≈ 2

5

(

ǫd 5
2

− ǫd 3
2

)

(4.5)

In the following the density of states (DOS), magnetic moments, and MCA are
analysed under the influence of the three OPC schemes (OPB, OPxc, and OPx)
for the three transition metals.

4.1.2 Results

We begin with a comparison of the DOS among the studied 3d elements. Fig-
ure 4.1 presents the calculated DOS for Fe, Co, and Ni in LSDA. The DOS were
calculated for a pure full relativistic LSDA+SOC calculation and using several
OPC (OPB, OPxc, OPx) applied to the 3d states. We found no significant influ-
ence of the OPC on the DOS. The DOS is also shown for calculations by Chadov
et al. [89]. They used a KKR method using LSDA and using LSDA + dynam-
ical mean field theory (DMFT) to account for local correlation effects. Their
DMFT results were obtained with the chosen parameters UFe, BCC = 1.8 eV ,
UCo, FCC = 2.3 eV , UCo, HCP = 3.0 eV , and UNi, FCC = 2.8 eV and J = 0.9
(in all cases). The Temperature was adjusted to 400 K. The static double
counting was subtracted from the self-energy in the so-called ”around mean-
field limit” (AMF) [90]. The DOS obtained with the KKR method were in
good agreement with the DOS obtained using FPLO for all 4 considered cases.
The renormalisation of the DOS arising from the DMFT method was already
intensively studied by Grechnev et al. [91]. The same input parameters U and
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J as defined above were used in there, and the Temperature was the same as
used above. Both DMFT calculations showed the same features in the DOS.
The authors showed that correlation mainly affects on the majority-spin band
resulting in a narrowing of the d-band as compared to calculations using pure
LSDA or GGA. In fact, it is well-known that LSDA (GGA) fail in describ-
ing the excitation spectra quantitatively for Fe, Co, and Ni. Photoemission
spectra [92–94] data show that pure LSDA (GGA) calculations yield too broad
majority 3d bands and overestimate the spin splitting. A narrowing of the 3d
majority band was seen by using DMFT, but the 3d bands remained broad
in the presence of OPC. A recent study of Sánchez-Barriga et al. [95] showed
that DMFT based calculations in principal yield good agreement in compari-
son with experimental spin resolved angle resolved photoemission spectroscopy
(ARPES) for low binding energies for many of the peak positions. However, a
quantitatively agreement was not achieved for higher binding energies. The au-
thors concluded that at least in their calculations the mass renormalisation and
scattering rates were underestimated. Nevertheless, Lichtenstein et al. already
proposed that DMFT (local approach) shall work better for Ni and Co than
for Fe [96]. The non-locality of correlation effects in Fe was shown recently by
Schäfer et al. [97] with angle-resolved photoemission experiments. These last
remarks suggest that more many-body calculations involving non-local schemes,
which consider non-local fluctuations in multi-band systems, are needed.

The spin magnetic moments differed only slightly for LSDA, OPC, and
DMFT. The peak in the minority band at about 1.8 eV (Figure 4.1a) was mov-
ing to lower energies for Co and Ni (Figure 4.1b, Figure 4.1c, and Figure 4.1d).
In fact, this was also seen by comparing the band filling of the corresponding
3d elements. The LSDA and GGA calculations showed that Fe (BCC) have 6.5
electrons in the 3d shell. The occupation number changed to 7.5 electrons per
shell for Co and 8.5 electrons per shell for Ni. The calculated spin moments in
LSDA are about 2.2 µB/(3d · atom) for Fe, 1.6 µB/(3d · atom) for Co (FCC and
HCP), and 0.6 µB/(3d · atom) for Ni. The obtained spin moments overestimate
the experimentally measured quantities slightly, Table 4.6. The spin split was
slightly decreased in case of DMFT calculations, but not in the case of applied
OPC.

We will discuss the influence of OPC on the orbital magnetic moments next.
The fully relativistic calculated orbital moments for LSDA are presented in
Table 4.6. The GGA results deviate from the LSDA moments mostly by about
1 − 3 %, see Table 4.6. An exception are the orbital magnetic moments of Co
(FCC, and HCP), where the deviation was about 10 − 15 %. However, it was
found that applied OPC has the same effect on top of either LSDA or GGA.

It turned out, that µl was not dependent on the chosen XC-functional (either
LSDA or GGA) for a pure SOC calculation. Thence, the same µl were obtained
for the considered transition metals using either LSDA or GGA. By comparing
the calculated µl (without OPC) with available experiments4 one recognises,
that the calculated µl were substantially lower by about 45 − 65 % for Fe

4Neutron scattering data [98–100], Einstein - de Haas (EdH) gyro-magnetic ratio mea-
surements [101, 102] and x-ray magnetic circular dichroism (XMCD) measurements [103],
respectively. Bear in mind that the neutron scattering experiments and the XMCD exper-
iments are sensible to the 3d electrons only, despite the EdH experiment accounts for the
total gyro-magnetic ratio and yield in combination with e.g. magnetisation measurements the
effective µs and effective µl.
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Figure 4.1: DOS for 3d elements calculated with FPLO8.65 in LSDA. The DOS is
shown for fully relativistic calculations in which only SOC was taken into
account (black line). Additionally calculations applying several OPC 3d
states were performed (OPB - red dashed line, OPxc - green dotted line,
OPx - blue dashed line). Results of Chadov et al. [89] using a KKR
method using LSDA (turquoise full line) and using LSDA + DMFT are
shown (brown background) as well (details text).

(BCC), 50 % for Co (FCC), 40 − 50 % for Co (HCP), and up to 7 % for Ni
(FCC) than the related measured orbital moments.

This fact of underestimating the orbital moment is correlated with the max-
imum orbital polarisation of atomic shells at quarter and three quarter filling.
It was shown by Söderlind et al. that this discrepancy is lifted by applying the
OPB [104]. Our results using the OPB, OPxc, and OPx method confirmed this
conclusion, Table 4.6. The OPxc approach yielded orbital momenta being by
about 33 % − 50 % larger than the experimentally observed quantities. The
OPx method were in best agreement compared to the the related experimentally
observed quantities of all considered theoretical schemes.

In order to classify the results using the OPC schemes, a comparison with
available calculations from literature is presented. The exact exchange (EXX)
+ CDFT calculations belonging to the class of optimised effective potential
models provides orbital moments which were by far to small, even smaller
than those moments obtained for pure SOC calculations. Solovyev applied the
(constrained) a parameter-free random phase approximation ((c)RPA) method,
which makes use of a screened interaction to improve the description of orbital
magnetism. The computed orbital moments were substantially lower than the
experimental ones for Fe and Co and are equal to experimental moments for Ni.
Recent DMFT results [105] slightly overestimate the orbital moments for the
parameters which were applied in these calculations. Finally, a Tight-binding
(TB) + HF as an example for a model Hamiltonian method is presented [106],
with the Slater integrals F l (l = 0, 2, 4) as input parameters for the d − d inter-
action. By taking the optimum screened Slater integrals (F l)5 a quantitatively

5A screening of 30 % for F 2 and F 4, except for Co (FCC), in which only the moments
referring to a screening of 20 % are presented. F 0 was then adjusted that the measured µs +
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Figure 4.1: The same notation as in Subfigures 4.1a and 4.1b is used.

good agreement of the orbital moments calculated by TB + HF compared to
the related experimentally observed quantities was observed. OP mainly arises
in 3d metals as a result of SO interaction.

Nevertheless, the results for the orbital moments obtained with EXX +
CDFT clearly demonstrate that non-local correlation effects are non-negligible.
However, care is needed in the way of taking into account the correlation contri-
bution. The results obtained with OPxc overshoot the experimentally observed
quantities by far.

Finally, the results for the MCA obtained using the three methods discussed
at the beginning of this section are presented. A number of test calculations
for all considered transition metals were made due to two reasons. Firstly, we
wanted to assure sufficient accuracy in the total energy of the applied methods.
Secondly, we wanted to make sure that no systematic errors were introduced by
the reason of using different symmetries. Figure 4.2 shows the convergence of
the anisotropy with respect to the number of k-points used. We see here that in
order to achieve convergence in the number of k-points we needed about at least
483 (243) k-points in the BZ for the cubic structures, respectively LSDA (GGA),
and we needed at least 243 k-points in the BZ for LSDA and GGA in case of Co
(HCP). The number of k-points in the irreducible wedge of the BZ were around
∼ 60000 for the cubic structures and ∼ 5500 for Co (HCP) for the lowest
symmetry direction. In comparison with previous calculations the number of
k-points used in the irreducible wedge of the BZ were either comparable [61], or
even smaller [107] for Co (HCP). In case of the cubic structures 10 times more
k-points were used than in [61]. In contrast to previously mentioned calculations
we present MCA energies which were obtained using a full-potential method.
Thus, we can conclude that we calculated the MCA very accurately compared
with previous calculations and that the obtained energies were at the limit of
current computer capacities.

As regards the calculated MCA energies for Fe are presented in Table 4.2.
Our results confirm the previously obtained energies by Trygg et al. [61]. The
correct easy axis was obtained for all applied methods. GGA and LSDA yielded

µl was reproduced [85].
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Figure 4.2: Convergence of the MCA for Fe (BCC), Co (FCC), Co (HCP), and Ni
(FCC) as a function of the number of k-points in the BZ for LSDA and
GGA. Notation as following: - Fe (total energy), - Fe (Bruno’s
formulae), - Co (total energy), - Co (Bruno’s formulae),
- Ni (total energy) and - Ni (Bruno’s formulae). The MCA is given
in µeV/(3d · atom).

similar results. When comparing the total energy results with experimentally
observed, one recognises that pure SOC calculations underestimated the MCA
by a factor of 2 − 4. This quantitatively discrepancy was remedied by applying
OPC, as previously concluded [108]. We remark that the MCA energies calcu-
lated with the help of the force theorem method were of comparable magnitude
as the energies obtained from total energy calculations. Bruno’s model yielded
values for the MCA which are higher by a factor of 2 than the corresponding
total energy calculations. It was found that those energies calculated with the
OPx scheme were in best agreement with experimentally observed quantities.
OPxc overestimated the MCA by a factor of 3.5 − 7.0, for total energy calcu-
lations or for Bruno’s model, respectively.

Analogous conclusions can be made, when looking at Co (FCC), Table 4.3,
and Co (HCP), Table 4.4. Minor exceptions were found for Co (HCP), in which
the wrong sign for the MCA was obtained for a pure SOC calculation in LSDA
for a total energy calculation and a force theorem calculation. Only Bruno’s
model in LSDA for a pure SOC calculation yielded the correct sign of the MCA.

The situation changed completely, when analysing the results for the MCA
of Ni (FCC), Table 4.5. In all but two calculations the wrong easy axis was
predicted compared to experiment. The correct easy axis was found for OPB
and OPxc, both using GGA and using Bruno’s model, see Eqn. (4.3). Hence, in
that respect previously conducted investigations were confirmed [61]. Applied
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Table 4.2: MCA energies for Fe (BCC) evaluated from total energy differences. The
notation is as following: SOC means SO coupling only, OPB, OPxc, and
OPx were applied to the 3d-states. The calculations based on the LMTO
method are taken from [61]. Experimental values (red marked) can be
found in [85]. The units are given in µeV/(3d · atom).

Scheme LSDA GGA

Force Theorem FPLO + SOC −0.5 −0.5

Bruno FPLO + SOC −0.8 −0.8

FPLO + OPB −6.2 −5.2

FPLO + OPxc −11.3 −9.0

FPLO + OPx −3.5 −3.1

Total Energy FPLO + SOC −0.6 −0.3

FPLO + OPB −2.6 −2.1

FPLO + OPxc −4.5 −3.4

FPLO + OPx −1.7 −1.3

Trygg LMTO + SOC -0.5

LMTO + OPB -1.8

Experiment -1.4

Table 4.3: MCA energies for Co (FCC) evaluated from total energy differences. The
notation is as following: SOC means SO coupling only, OPB, OPxc, and
OPx were applied to the 3d-states. The calculations based on the LMTO
method are taken from [61]. Experimental values (red marked) can be
found in [85]. The units are given in µeV/(3d · atom).

Scheme LSDA GGA

Force Theorem FPLO + SOC 0.3 0.6

Bruno FPLO + SOC 1.2 1.4

FPLO + OPB 13.1 14.2

FPLO + OPxc 45.0 51.1

FPLO + OPx 8.1 8.7

Total Energy FPLO + SOC 0.4 0.4

FPLO + OPB 4.2 4.9

FPLO + OPxc 14.1 15.5

FPLO + OPx 2.5 3.1

Trygg LMTO + SOC 0.5

LMTO + OPB 2.2

Experiment 1.8
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Table 4.4: MCA energies for Co (HCP) evaluated from total energy differences. The
notation is as following: SOC means SO coupling only, OPB, OPxc, and
OPx were applied to the 3d-states. The calculations based on the LMTO
method are taken from [61]. Experimental values (red marked) can be
found in [85]. The units are given in µeV/(3d · atom).

Scheme LSDA GGA

Force Theorem FPLO + SOC 6.3 −7.6

Bruno FPLO + SOC −33.2 −38.7

FPLO + OPB −115.1 −143.9

FPLO + OPxc −182.2 −233.5

FPLO + OPx −89.7 −111.5

Total Energy FPLO + SOC 4.5 −9.4

FPLO + OPB −107.9 −144.8

FPLO + OPxc −193.5 −254.0

FPLO + OPx −73.0 −102.0

Trygg LMTO + SOC −29.0

LMTO + OPB −110.0

Experiment −65.0

OPxc and OPx did not provide the correct easy axis. Enhancement of the MCA
for applied OPC was found to be rather small for Ni (FCC). Thus, in almost all
studied cases OPC did not change the direction of easy axis in our calculations6.
Nevertheless, OPC favours larger anisotropy in the orbital moments leading to
larger anisotropy energies.

4.1.3 Summary

We demonstrated that OPC is necessary to improve the quantitatively agree-
ment of orbital moments and MCA between theory and experiment. As a re-
sult, the most affected quantities by OPC are the orbital magnetic moment and
MCA while the change of the spin moment is almost negligible. The OPC has
no influence on the DOS. Further DMFT calculations are needed to describe
satisfyingly experimentally observed photoemission spectra7

We conclude that the spin magnetic moment is already well described by
SO coupling. Applied OPC revealed no influence on µs. As opposed to this
the orbital moment was underestimated by about 40 − 60 % in a pure SO
calculation and the related MCA was underestimated even more without OPC.
Overall, we got the general tendency for the corresponding orbital properties,
experiment ≈ OPx ≤ OPB ≤ OPxc for the considered 3d metals.

6The only exceptions are the calculations for Ni (FCC) using GGA + (OPB and OPxc)
and applying Bruno’s formula, see Table 4.5.

7Photoemission spectra are related to excitations, while DFT only accounts for the ground-
state. Of course, we can consider DFT as a good approximation for the excited states also by
considering occupied states above ǫf .
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Table 4.5: MCA energies for Ni (FCC) evaluated from total energy differences. The
notation is as following: SOC means SO coupling only, OPB, OPxc, and
OPx were applied to the 3d-states. The calculations based on the LMTO
method are taken from [61]. Experimental values (red marked) can be
found in [85]. The units are given in µeV/(3d · atom).

Scheme LSDA GGA

Force Theorem FPLO −0.8 −1.4

Bruno FPLO + SOC −1.0 −0.5

FPLO + OPB −1.1 0.5

FPLO + OPxc −1.1 0.3

FPLO + OPx −1.3 −0.3

Total Energy FPLO + SOC −0.6 −0.9

FPLO + OPB −0.7 −0.8

FPLO + OPxc −0.6 −0.8

FPLO + OPx −0.6 −0.9

Trygg LMTO + SOC −0.5

LMTO + OPB −0.5

Experiment 2.7

Comparison of Co (FCC) and Co (HCP) anisotropy energies yielded △Efcc
mca/

△Ehcp
mca ∼ 0.033 − 0.100. The experimentally observed ratio is about 0.028,

calculations by Trygg delivered a ratio about 0.020 − 0.016. The ratios calcu-
lated as total energy difference with applied OPx (LSDA and GGA: ≈ 0.037)
were in best agreement as compared with the measured ratio. We observed that
both LSDA and GGA yielded the same order of magnitude for the MCA. The
band anisotropy of cubic systems should roughly be about a factor of (ξnl/△)

2

weaker than the related quantity of uniaxial systems [87, 112]. Generally, for
3d elements holds: ξ3d ∼ 0.05 − 0.06 eV (for Fe and Co, respectively) and

△ ∼ 1 eV. This results in (ξ3d/△)
2

= 36 · 10−4, and is about 10 times smaller
than the previous values. By this example we showed the qualitative character
of the last estimation.

Furthermore, it was found that the easy axis can be predicted for that di-
rection with the largest angular momentum. This was verified in all our cal-
culations, e.g. for the pure SO calculations. Thus, the SO interaction already
defines the direction of the easy axis and is not only described by OPC. Previous
calculation [61, 89, 104, 106, 107, 111] were confirmed, using the full potential
approach, LSDA as well as GGA calculations, and another type of OPC schemes.
The sign of the MCA for Ni (FCC) remains an open question and could not be
solved by means of our calculations, and is not a problem of LSDA solely as
previously claimed [61]. Inclusion of spin flip excitations as well as magnetic or-
bital moments would be a further step to analyse △Emca, especially to explain
anisotropy of bulk-like thin films.
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Table 4.6: The spin magnetic moment µs, angular magnetic moment µl, and the total magnetic moment using different methods. The magnetic
moments were calculated using LSDA (white row) and GGA (grey row), respectively. Experimental values are taken from [85, 98–
100, 102, 103]. The (EXX) + CDFT refers to [109, 110]. The TB + HF results are taken from [106]. The RPA and c-RPA results can be
found in [111], KKR (+ DMFT) is from [89]. All magnetic moments are given in µeV/(3d · atom).

Fe (BCC) Co (FCC) Co (HCP) Ni (FCC)

Scheme µs µl µl/µs µs µl µl/µs µs µl µl/µs µs µl µl/µs

FPLO + SOC 2.21 0.05 0.02 1.64 0.08 0.05 1.59 0.08 0.05 0.62 0.05 0.08

2.23 0.05 0.02 1.68 0.08 0.05 1.62 0.08 0.05 0.64 0.05 0.08

FPLO + OPB 2.21 0.10 0.05 1.64 0.16 0.10 1.59 0.16 0.10 0.62 0.08 0.13

2.23 0.09 0.04 1.68 0.16 0.09 1.62 0.16 0.10 0.64 0.08 0.13

FPLO + OPxc 2.21 0.12 0.05 1.64 0.20 0.12 1.59 0.20 0.13 0.62 0.08 0.13

2.23 0.05 0.02 1.68 0.22 0.13 1.62 0.23 0.14 0.64 0.08 0.13

FPLO + OPx 2.21 0.08 0.04 1.64 0.14 0.09 1.59 0.13 0.08 0.62 0.07 0.11

2.23 0.08 0.03 1.68 0.14 0.08 1.62 0.14 0.09 0.64 0.07 0.11

EXX + CDFT 2.71 0.03 0.01 −− −− −− 1.77 0.01 0.01 0.50 0.03 0.06

TB + HF5 2.10 0.11 0.05 1.52 0.11 0.07 1.56 0.15 0.10 0.56 0.06 0.11

LMTO + RPA 2.21 0.05 0.02 −− −− −− 1.59 0.10 0.06 0.60 0.05 0.09

LMTO + c-RPA 2.20 0.06 0.03 −− −− −− 1.59 0.11 0.07 0.60 0.06 0.09

KKR + SOC 2.25 0.05 0.02 1.64 0.08 0.05 −− −− −− 0.63 0.07 0.11

KKR + DMFT 2.19 0.09 0.04 1.68 0.14 0.08 −− −− −− 0.67 0.07 0.10

EXP (Neutrons) 2.25 0.14 0.06 – – – 1.87 0.13 0.07 0.66 0.06 0.08

EXP (EdH + magn.
measurements)

2.13 0.08 0.04 1.52 0.15 0.10 – – – 0.57 0.05 0.09

EXP (XMCD) 2.00 0.09 0.05 – – – 1.63 0.15 0.09 – – –
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4.2 Fe1−xCox

4.2.1 Introduction

The current storage capacity of magnetic perpendicular recording disk devices
can be found in the range of 200 − 300 Gb/in2 [113]. In order to store more
information per unit area the grain number per bit has to be lowered. For yet
higher densities, the super-paramagnetic limit [114] make specific demands on
new materials, e.g. the general accepted criterion for magnetic data storage
devices demands that 95 % of the original written magnetisation have to persist
a period over 10 years. In order to avoid thermal instabilities, a minimal stability
ratio of stored magnetic energy (KU · V ), to thermal energy (kB · T ) is required.

A crude appraisal demands on this ratio KU · V / kB · T ≈ 50 − 70 [115],
favouring materials with a large anisotropy. At the same time the anisotropy
field HK is determined by HK = 2 KU / S. In order to allow small switching
fields this ratio has to be kept small. For that reason, materials combining
a large uniaxial anisotropy KU with a large magnetisation saturation S are
the proper choice. Strained FeCo alloys combine a large uniaxial MCA with a
large saturation magnetisation for certain chemical compositions x and certain
tetragonal distortions. Table 4.7 gives an overview of currently used materials
in hard disc drives (marked red), and shows several interesting alloys for future
application. The anisotropy energies are expressed in meV/(3d · atom).

This section begins with the presentation of the methods used to calculate
the magnetic properties, Subsections 4.2.2 and 4.2.3. Calculational details can
be found in Subsection 4.2.4. In Subsection 4.2.5 a discussion is given in which
the results of disordered structures are compared to those of ordered structures.
Finally, the influence of the used XC-potential on volume and anisotropy ener-
gies is given in Subsection 4.2.6. The section closes with a brief summary and
conclusions are given in Subsection 4.2.7.

4.2.2 Fixed Spin Moment Calculations

A powerful tool to study itinerant magnetism is the fixed spin moment (FSM)
method [125–127]. In this method the total energy E is calculated in dependence
on the spin magnetic moment µs. Doing so, orbital contributions to magnetism
are neglected in this approach. Hence, this approach is appropriate to describe
3d elements, for which yield µl/µs ∼ 0.1, see Section 4.1.2.

Typically, this method is used to discuss meta-magnetic transitions [128].
In order to account for a fixed spin moment µs one has to add an additional
constraint h[

∫

S (r) dr − µs ] into Eqn. (2.29). The magnetisation density S (r)
is defined as S (r) = ξ (r)n (r), see Subsection 2.2.1.3. The Lagrange multiplier
h supplies the constraint for a fixed spin moment. The functional derivative δ
H [n] / δ n± = S (r) ± h, according to Eqn. (2.32), yields two spin dependent
Fermi energies ǫsf .8 The two Fermi energies ǫsf can be found with the help of

8The identification of ǫf ± h as Fermi energy for the two different spins s is only justified,
if the two spins are decoupled in the Hamilton matrix. This is not the case when SO coupling
is present or when considering non-collinearity [129].
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Table 4.7: The table shows a collection of several currently interesting alloys for ap-
plication in recording disk devices and their related MCA. The MCA is
listed either as experimentally observed, or theoretically calculated. The
calculations were performed by DFT calculations. Calculations going be-
yond LDA or GGA are denoted with brackets. Currently used Co-based
alloys are marked red [116–118]. Values for CoPd, FePd, CoPt, and FePt
are taken from [59, 119, 120], MnAl is taken from [121, 122], YCo5 and
LaCo5 are taken from [88, 123], and SmCo5 is taken from [124]. The MCA
is given in meV/(3d · atom).

System Material MCA [meV/(3d · atom)]

experiment theory

Co-based Alloys CoPtCr 0.10 – (–)

CoPtCrB 0.05 – (–)

CoPd 0.30 0.40 (1.55)

L10 Alloys CoPt 1.00 2.00 (4.00)

FePd 0.45 0.30 (0.55)

FePt 1.20 3.30 (3.70)

MnAl 0.29 0.26

Rare Earth YCo5 0.76 0.02 (0.32)

Compounds LaCo5 1.12 0.07 (0.57)

SmCo5 3.20 2.24 (4.32)

the corresponding particle numbers Ns
e ,

Ns
e =

∫ ǫs
f

−∞
Ds (ǫ) dǫ, (4.6)

where Ds (ǫ) is the spin dependent DOS. In that sense one may define an imag-
inary field H by taking the derivative of H [n] with respect to the spin magneti-
sation density S (r),9

H =

(

∂ H [n]

∂ S (r)

)

=
1

2µB

(

ǫ+f − ǫ−f

)

=
1

µB
h. (4.7)

The origin of two distinct ǫsf has to be distinguished from that in conventional
Stoner theory, in which the intra-atomic exchange splitting is responsible for
the two ǫsf . We performed scalar relativistic FSM calculations in order to check
if the ground-state of Fe1−xCox alloys is either magnetic or non-magnetic.

4.2.3 Epitaxial Bain Path

A brief presentation about the Bain transformation is given next. Epitaxy and
therewith relaxation processes are discussed as well in this context. Bain was

9In the collinear approximation: H = Hez and S = Sez.
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Figure 4.3: The Bain transformation between the FCC structure and the BCC struc-
ture is shown. We denote the FCC structure by white dots ◦ and the BCC
structure by black dots •. Realisation of the Bain transformation from
FCC to BCC is done by an out-of-plane lattice distortion along the c-axis.
Additionally, a rotation around the c-axis by an angle of 45◦ is needed.
Finally, the lattice parameter a is reduced by a factor of

√
2 to obtain the

BCC structure.

the first, who pointed out that a crystal can continouesly be transformed from a
BCC structure to a FCC structure [84]10. Figure 4.2.3 displays a transformation
between these two cubic structures. It shall give a hint on how this transfor-
mation can be realised. More general transformations between two tetragonal
phases involving other structures than the FCC structure and the BCC struc-
ture are possible as well. But we focus only on those paths between FCC and
BCC symmetry, which in literature are summarised under the name Bain path
or Bain transformation. Even though, Bain did not mention in his work that the
volume has to be kept fixed along the transformation, many numerical studies
in the past were made by keeping the volume constant [131].

Volume relaxation naturally takes place when depositing thin films on sub-
strates. Figures 4.4a and 4.4b sketch this situation for a particular thin films
on a certain substrate. In doing so, one can conclude that volume relaxation
is essential when describing properties of thin films grown on substrates. The
first work to our knowledge including relaxation processes while passing along
the Bain transformation was done by Milstein et al. [132]. The authors consid-
ered transformations along the so-called uniaxial Bain path, in which the total
energy E = E (a (c) , c) is calculated for all lattice parameters c. The in-plane
lattice parameter a11 is relaxed according to the fixed c so that the in-plane
stress disappears (σ1 = σ2 ≡ 0).

Yet, another proposal was suggested by Marcus et al. [133]. Therein, the
EBP was proposed, in which the total energy E = E (a, c (a)) is calculated
in dependence on the lattice parameter a, which is specified by the substrate
and which is assumed to have isotropic in-plane stress (σ1 = σ2). The lattice
parameter c is calculated in such way that the out-of-plane stress σ3 vanishes,
see Eqns. (4.8, 4.9).

10Tetragonal deformations of thin films lead to stable or meta-stable phases. A phase corre-
sponds to local minimum of the free energy and is stable under small tetragonal deformations.
Usually, metals have two tetragonal phases. For further reading about phase stabilities in
DFT we refer [130].

11Tetragonal symmetry is assumed to apply to all our calculations, meaning a = b.
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Figure 4.4: The effect of volume relaxation of thin films grown on substrates is visu-
alised, before epitaxy (Figure (a)) and after epitaxy (Figure (b)), respec-
tively. We mark the substrate by white dots ◦ and the film is represented
by black dots •.

σ1 = σ2 =
1

ca

(

∂ E (a, c)

∂ a

)

a, c

(4.8)

σ3 ≡ 0 =
2

a2

(

∂ E (a, c)

∂ c

)

a, c

(4.9)

There are two symmetry theorems along tetragonal transformations of states
with cubic symmetry [133]:

Theorem 2 The EBP must have an extremum in energy at all structures with
cubic symmetry.

Theorem 3 On paths in the tetragonal plane on which the volume V = c a2 /
2 is constant, E as a function of a or c / a is an extremum at points of cubic
symmetry.

Figure 4.5 shows exemplarily the calculated EBP of FexCo1−x for x =
0.5000. The total energy was calculated in dependence on the lattice parameter
a. Two substantial minima were recognised, respectively at a = 2.380 Å (FCC)
and a = 2.750 Å (BCC). A zero in-plane stress σ1 was obtained for both min-
ima. We remark, that there must exist an instable maximum in between the
two minima, in this particular case a tetragonal phase around a ≈ 2.556 Å is
found12. The in-plane stress σ1 is vanishing at this maximum like it has been
observed for the two minima. However, the maximum represents an instable
state, which is not stable against small perturbation, in contradiction to the
previous situation at the minimum.

Experimental realisation of this instable state is done by heterogeneous epi-
taxial growth. On the one hand this instable state is located in a region with

12Theorem two states that there is an extremum of the energy E at cubic points. This
means that not only minima of the E are possible at cubic points, but also instable maxima.
Then, the minima of E may be found at a stable or meta-stable BCT phase, in contrast to
the situation presented in Figure 4.5
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Figure 4.5: The EBP of a FeCo alloy using VCA in dependency on the lattice pa-
rameter a with respect to LSDA is visualised. The EBP was calculated
for x = 0.5000. The lattice parameter a = 2.380 Å designates the FCC
phase (energy minimum), and a = 2.750 Å designates the BCC phase
(another energy minimum). The maximum in between at a = 2.556 Å
corresponds to an instable body centered tetragonal (BCT) state.

almost vanishing stress, which forms a useful condition to stabilise the film on
the substrate. On the other hand the stabilisation of a tetragonal distorted film
always depends on the magnitude of the lattice misfit between substrate and
film.

In summary, the concept of EBP helps us to identify several phases of
strained materials. We can check quantitatively the elastic behaviour of thin
films, and we can predict stabilised phases on given substrates.

4.2.4 Calculational Details

DFT calculations for Fe1−xCox based on four different symmetries were em-
ployed with FPLO, version 8.65. The first scheme was used to describe disor-
der via the VCA method. For that reason a simple cubic BCT unit cell with
one atom per primitive unit cell had to be created, Figure 4.6a. Secondly,
calculations were done for a particularly created supercell (discussion below)
in order to simulate disorder and check the results obtained using VCA, Fig-
ure 4.6b. Thirdly, calculations of L10-type structure were performed, Figure 4.6c
(x = 0.5000). Finally, calculations for the L12-type structure were performed,
Figure 4.6d (x = 0.7500). Table 4.8 summarises the input parameters for the
four distinct symmetries used in this work. A tetragonal-like character of the
unit cell was taken into account in all of our calculations. Consequently, this
leads to c/a = 1 for the BCC structure and c/a =

√
2 for the FCC structure.

Previously undertaken investigations [81] assumed constant volume of 11.780
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(a) VCA (b) Supercell

Figure 4.6: Different unit cells for FeCo alloys used in our computations. Figure (a)
displays the BCT unit cell for the VCA calculations, Figure (b) visualises
the character of the supercell for particular chosen x = 0.6250, Figure (c)
and Figure (d) present the ordered L10 - type and L12 - type phases,
respectively.

Å3.13 We considered volume relaxation along the EBP for every Co concentra-
tion x and every tetragonal distortion c/a for VCA as well as for the ordered
structures, the L10 structure and the L12 structure, respectively. Relaxation was
taken into account as discussed in Section 4.2.3. The relaxed lattice parameters
are given in Table 4.9. In case of the supercells the constant volume Bain path
(CVBP) was taken into account because of time and memory limitations. The
fixed volume for the supercells was taken from the optimised VCA structures
for which the largest MCA had been obtained. Table 4.11 presents the used
volumes. The supercell approach has been applied for x = 0.5000, and 0.5625
for LSDA and x = 0.5000, 0.5625, 0.6250, 0.6875, and 0.7500 for GGA.

The structural relaxation was done in the SR mode, that is, without SO
coupling. The k-point mesh was set to 243 to achieve sufficient accuracy. The
MCA was evaluated fully relativistic using 483 k-points. We performed total en-
ergy calculations for the MCA and compared these results with Bruno’s model.
The quantisation axes were n̂1 = 100 and n̂2 = 001. In the case of the super-
cells we applied the force theorem to obtain the MCA. For the self-consistent
SR calculation we used 123 k-points. The additional non-self-consistent fully
relativistic one step calculation was done by using 153 k-points.

The accuracy of the force theorem method was tested for several k-point
meshes and for a particularly chosen geometry. For that reason a comparison
of anisotropy energies obtained with the force theorem and anisotropy energies
obtained from self-consistent calculations is given. The MCA was calculated as
discussed in Section 4.1.1. Table 4.10 summarises the results for the different
used k-point meshes. The geometry taken into account was spacegroup 123,
Wyckoff position Fe: (0, 0, 0), and Co: (1/2, 1/2, 1/2). The lattice parameters

13This corresponds to the measured Fe (BCC) volume.
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(c) L10 - type (d) L12 - type

Figure 4.6: The same notation as in Subfigures 4.6a and 4.6b is used.

applied were a = 2.556 Å, and a = 3.171 Å. The most accurate results obtained
with the self-consistent approach differs from the most accurate results obtained
with the force theorem approach by about one % (marked red, in Table 4.10).
A comparison using the force theorem approach between the most accurately
calculated results and those results obtained by the k-point meshes which were
used later on yielded an error bar by about 40 −50µeV/atom. The dependency
on the XC-functional was carefully tested by applying both type of functionals,
LSDA and GGA.

In order to test the results of the VCA calculations for the disordered state,
we constructed supercells using a stochastic model which accounts for nearest
neighbour distances and shall match the disordered state as much as possible,
based on an idea given in [134]. The number of atoms per supercell was 2 ·
23 = 16. To account for special arrangement of the atomic sites we had to use
Spacegroup 1. But we still assumed a tetragonal character of the disordered
pattern. The smallest number of different members14 for the ensemble average
(EAVG) for the particular applied symmetry was 9.

The 9 different patterns were obtained by firstly rotating the supercell (Fig-
ure 4.6b) around the x- or y-axis by π/4. In that way, three configurations
were obtained: an unrotated cell, and two rotated cells. Then for every of the
three arrangements three distinct spin quantisation axes can be chosen leading
to 9 different patterns. The MCA was evaluated as the EAVG of the patterns:
△Ēft

mca = 1/N
∑

i △Ē
ft
mca, i, in which N = 9 and i run over the different pat-

terns for the supercells. In this particular case the following equations result
from the symmetry considerations above:

14In case of cubic symmetry this the EAVG has to be taken for 48 different configurations,
in tetragonal symmetry 16 different configurations remain, further symmetry considerations
lead to 9 different configurations for our purpose.
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Table 4.8: Input parameters for FeCo alloys in our calculations, VCA, Supercell, L10,
and L12, respectively. The corresponding unit cells are visualised in Fig-
ure 4.6. The Wyckoff positions of the supercells are distributed to a certain
number Fe atoms and a certain number of Co atoms in dependence on the
Co concentration x and particular chosen member of the EAVG (see text).

Spacegroup Wyckoff Positions

Fe Co

VCA 139 (0, 0, 0)

Supercell 1

(0, 0, 0) ( 1

4
, 1

4
, 1

4
) (0, 0, 1

2
)

( 1

4
, 1

4
, 3

4
) (0, 1

2
, 0) ( 1

4
, 3

4
, 1

4
)

( 3

4
, 3

4
, 3

4
) (0, 1

2
, 1

2
) ( 1

4
, 3

4
, 3

4
)

( 1

2
, 0, 0) ( 3

4
, 1

4
, 1

4
) ( 1

2
, 0, 1

2
)

( 3

4
, 1

4
, 3

4
) ( 1

2
, 1

2
, 0) ( 3

4
, 3

4
, 1

4
)

( 1

2
, 1

2
, 1

2
)

L10 123 (0, 0, 0) ( 1

2
, 1

2
, 1

2
)

L12 123 (0, 0, 0) ( 1

2
, 1

2
, 1

2
)

( 1

2
, 1

2
, 0)

Table 4.9: Relaxed cubic lattice parameters of FeCo alloys in our calculations (along
the EBP), rescaled to the BCT primitive unit cell. Deviation from the
CVBP is given as: fafcc / abcc

= 1 − (
√

2)1 / 3 · afcc / abcc. For the CVBP

holds: afcc = abcc / (
√

2)1 / 3. Deviation from the ideal ratio afcc =
√

2 cfcc

is found to be at most 1.4 % and due to relaxation. Here, it is defined:
fcfcc / afcc

= 1 −
√

2 · afcc / cfcc. Both f functions are given in %.

VCA Supercell L10 L12

LSDA GGA LSDA GGA LSDA GGA LSDA GGA

abcc [Å] 2.752 2.825 2.746 2.817 2.775 2.850 2.750 2.815

afcc [Å] 2.378 2.466 2.447 2.510 2.382 2.512 2.421 2.500

cfcc [Å] 3.390 3.494 3.460 3.550 3.415 3.563 3.431 3.565

fafcc / abcc 3.0 2.0 0.0 0.0 3.7 1.1 1.2 0.3

fcfcc / afcc 0.8 0.2 0.0 0.0 1.4 0.3 −0.5 0.8
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Table 4.10: MCA energies of a FeCo alloy calculated for the two quantisation axes,
n̂1 = 100 and n̂2 = 001, respectively. The MCA was calculated for
the following chosen input parameters using LSDA: the spacegroup was
123, the two Wyckoff positions were Fe (0, 0, 0) and Co (1/2, 1/2, 1/2),
and the lattice parameters were a = 2.556 Å and c = 3.171 Å. Full
relativistic self-consistent calculations were applied by using 123, 243, and
483 k-points. In case of the force theorem method we applied 123, 183,
243, and 483 k-points for the self-consistent SR calculation (left column)
and then a full relativistic one-step calculation for 123, 183, 243, and 483

k-points (middle horizontal row) to estimate the accuracy of the force
theorem method. The most accurate and the most inaccurate results are
marked red.

Self-Consistent

Full MCA [µeV/(3d · atom)]

Relativistic

K-Points

123 −78.0

243 −124.9

483 −124.9

Force Theorem

Scalar MCA [µeV/(3d · atom)]

Relativistic Full Relativistic K-Points

K-Points 123 183 243 483

123 −72.5 −81.2 −85.7 −81.2

183 −118.9 −123.3 −123.7 −124.2

243 −106.7 −114.7 −116.3 −117.0

483 −117.7 −122.9 −123.0 −123.7

Eband, cell
n̂l

=

occ.
∑

i

ǫcell
i (n̂l) , (4.10)

Ēband
n̂l

=
Eband, xyz

n̂l
+ Eband,−zyx

n̂l
+ Eband, x−zy

n̂l

3
, (4.11)

△Ēft
mca =

Ēband
100 − Ēband

010

2
− Ēband

001 . (4.12)

Here, “xyz” denotes an unrotated cell, “−zyx” a rotation of π/4 about y-axis
(or the [010] direction), and “x − zy” a rotation of π/4 about x-axis (or the
[100] direction). We chose the three quantisation axes n̂l as: [100]-, [010]-, and
[001]-direction, respectively.
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Table 4.11: Volume V per formula unit of FeCo alloys used in the calculations for
the supercells. The volume was taken from relaxed VCA calculations of
certain Co concentrations x for which we obtained the largest MCA.

LSDA GGA

x 0.5000, 0.5625
0.5000, 0.5625, 0.6250,

0.6875, 0.7500

V [Å3 / f.u.] 10.355 11.059

4.2.5 Results

Right at the outset we present the results obtained using VCA. Calculations
were performed for 12 distinct Co concentrations x ∈ [0.0000, 1.0000] and about
12 − 15 points along the Bain path realising certain tetragonal distortions. The
Bain path was considered in between the c/a ratio of 1.0 (corresponding to the
BCC phase) and the c/a ratio of about

√
2 (FCC phase). Firstly, calculations

along the CVBP were conducted to check previous results. The same results as
obtained in the previous publications [81, 82] were obtained that is why we do
not present them. Furthermore, we conclude that our results are reliable, since
the same results were obtained with different codes (either using FP-LMTO or
using FPLO).

Secondly, calculations along the EBP were applied in order to account for
relaxation. The results for the EBP will be discussed now. Figures 4.7, 4.10,
and 4.12 display the VCA results for the total energy E, spin magnetic moment
µs, MCA, respectively. Additional calculations including OPB applied to the
3d states were done to get an upper limit for the MCA using both LSDA and
GGA, respectively. The individual figures are discussed in more detail below.
As a result we calculated in total about 140 − 150 points for each figure. We
interpolated these points using a usual spline method for our two dimensional
data on a 1000 × 1000 grid. We applied two different orders for the spline
method. Firstly, the spline was chosen to be of cubic order so as to account for
a two times continuously differentiable function for total energy. The MCA is
the difference of total energies. Hence, we used the same order for the spline as
taken for the total energy. And secondly, in case of the spin magnetisation we
used a linear spline. This idea was motivated to account for the rapid magnetic
transition seen in LSDA (x = 0.0000 − 0.5000 and a = 2.450 − 2.550 Å),
Figure 4.10a.

The normalised total energies of the optimised structures using the scalar-
relativistic scheme can be found in the Figure 4.7a and Figure 4.7b (contour
plots), for LSDA and for GGA, respectively. By comparing the results obtained
with respect to LSDA and GGA, we conclude that both functionals qualitatively
agree for large x. Differences in the energy landscape were seen for low x.
However, there is found a very plane energy region for both functionals used for
slightly different x. Before discussing the energy landscape in more detail, we
again present the calculated normalised total energies in another way:

Figures 4.8a and 4.8b show the normalised total energy in dependence of
the in-plane lattice parameter a for a certainly chosen Co concentration x. We
found that in LSDA the FCC phase (a ≈ 2.450 Å) is the lowest for almost all
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Figure 4.7: Total energies of FeCo alloys with respect to Co concentration x using a
cubic spline (see text), obtained with LSDA (Figure (a)) and GGA (Fig-
ure (b)). The total energies were calculated for relaxed unit cells with
VCA and were normalised according to the lowest observed total energy
E0 obtained along the EBP for every particular Co concentration x. The
contour line represent lines of constant total energy. The energies are given
in meV/(3d · atom).
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Figure 4.8: Normalised total energies of FeCo alloys with respect to lattice parameter
a, obtained with LSDA (Figure (a)) and GGA (Figure (b)). The total en-
ergies were calculated for relaxed unit cells with VCA and were normalised
according to the lowest observed total energy E0 obtained along the EBP
for every particular Co concentration x. The energies are given in meV/(3d
· atom). The most plane curves are found for x ∈ [0.6000, 0.7000] and
x ∈ [0.7000, 0.8000], in LSDA and in GGA, respectively.

concentrations x, Figure 4.8a. For x = 0.4000, 0.5000, and 0.6000 we found
nearly the same energies for FCC and BCC phase, with an energy difference
lower than 5 meV/(3d · atom). This was not the case in GGA. We observed
that in GGA a change of the ground-state phase from FCC (a ≈ 2.500 Å)
to BCC (a ≈ 2.820 Å) when going from x = 1.0000 to x = 0.0000, see
Figure 4.8b. At very low concentrations the energy barrier between the cubic
phases is about 130 meV/(3d · atom) for LSDA and 190 meV/(3d · atom)
for GGA. At very high concentrations the energy barrier between the cubic
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Figure 4.9: Normalised total energy of FeCo alloys in dependency on the substrate
lattice parameter a obtained in LSDA (Figure (a)) and GGA (Figure (b)).
The total energies were calculated using VCA, EAVG, and for the L10-
type and the L12-type structures. In Figure (a) the VCA calculations were
performed for x = 0.6500, EAVG for x = 0.5600, and L10 for x = 0.5000.
In Figure (b) all results shown, use x = 0.7500. The energies are given in
meV/(3d · atom).

phases is about 100 meV/(3d · atom) for LSDA and 70 meV/(3d · atom) for
GGA. But for intermediate x a flat region of the total energy is observed being
highly interesting for experimental hetero-epitaxial growth of FeCo films grown
on specific substrates. This region is about x ≈ 0.5000 − 0.7000 in LSDA and
shifted to slightly higher concentrations x ≈ 0.6000 − 0.8000 in GGA.

As next the VCA results are compared with the results obtained from the
supercell calculations and with the results obtained for the corresponding or-
dered structures. For that reason the lowest obtained energy barrier in VCA
was estimated. In order to make a well justified comparison between the EAVG
and the ordered structures, only the closest fitting concentrations x were taken
into consideration. Figures 4.9a and 4.9b present the total energies for the
concentrations x = 0.6500, 0.5625, and 0.5000 (VCA, EAVG, and L10 struc-
ture, respectively) obtained with LSDA and for x = 0.7500 (VCA, EAVG, and
L12 structure) obtained with GGA. In LSDA, the flat energy region was pre-
dicted according to the results obtained with VCA at concentrations by about
x ≈ 0.6500. An instable BCT state was seen (also for EAVG) at a substrate
lattice parameter a = 2.604 Å (EAVG: a = 2.596 Å). The energy barrier
between the two cubic phases was calculated to be about 35 meV/(3d · atom)
(VCA). The energy barrier as well as the position was confirmed by the calcu-
lations according to EAVG. The comparison with the L10 phase confirms the
position of the lattice parameter (a = 2.571 Å). But here the energy barrier
was found to be slightly higher of about 60 meV/(3d · atom). We remark that
in VCA there were two more meta-stable phases obtained for this particular x.
Additionally, a maximum of the total energy can be found around a = 2.420 Å
and a minimum was located around a = 2.450 Å. This was neither seen from
the EAVG nor from the L10 results.

In GGA, the instable BCT phase was shifted to larger substrate lattice
parameters: a = 2.664 Å, 2.664 Å, and 2.672 Å (for VCA, EAVG, and L12, re-
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Figure 4.10: Spin magnetic moment µs of FeCo alloys with respect to Co concentra-
tion x and lattice parameter a using VCA, obtained with LSDA (Fig-
ure (a)) and GGA (Figure (b)). The quantisation axis was chosen to
align along the [001]-direction. The spin magnetic moment is given in
µB/(3d · atom).

spectively) and a larger Co concentration: x ≈ 0.7500. The energy barrier was
slightly smaller than obtained with LSDA by about 25 meV/(3d · atom) using
VCA. The ordered L12 phase yielded an energy barrier of about 21 meV/(3d ·
atom), and the EAVG was in between according 23 meV/(3d · atom). The two
additional meta-stable phases obtained in LSDA (VCA) were not seen in any
results obtained by GGA.

In order to find the magnetic ground-state FSM calculations were done at
each point in the in the phase space (a, x). Figures 4.10a and 4.10b display the
obtained spin magnetic moments of the ground-state in VCA in dependency on
a and x, in LSDA and in GGA, respectively. A spin magnetisation collapse in
LSDA for the FCC phase was found at concentrations around x ≈ 0.0000 −
0.6000. We observed three different magnetic states for these concentrations
along the EBP. A high magnetic state (HMS) with µs ≈ 2.0−2.5 µB/(3d · atom)
for high parameters a, a non-magnetic state (NMS) for low parameters a, and a
low magnetic state (LMS) µs ≈ 1.0 µB/(3d · atom) in between, Figure 4.10a. In
case of higher concentrations there was found only one magnetic phase, and the
spin magnetic moment adjusts to that of pure Co: µs = 1.59 µB/(3d · atom).
In GGA, the spin magnetic moment µs was found to be more stable in the whole
phase space (a, x) as observed with LSDA, see Figure 4.10b. In Figure 4.10b only
two magnetic phases were observed at low concentrations x ≈ 0.0000 − 0.2000,
the HMS and the LMS. This difference between LSDA and GGA had already
been discussed in the case of pure Fe (BCC and FCC) [135].

Our calculations confirm previously obtained results [135] and extend the
phasespace to FeCo alloys. As it was the case for LSDA a HMS was found for
large x. The calculated spin magnetic moments in GGA were slightly larger
than the corresponding LSDA moments for the same a and the same x. We
mention that the HMS was obtained in that (a, x)-region which was previously
predicted to be very suitable for hetero-epitaxial growth. Figure 4.11 displays
µs in dependence on a for the chosen concentrations x = 0.5000, and 0.7500
obtained in LSDA, see Figure 4.11a and 4.11b, respectively. In both figures
a comparison of the calculated spin magnetic moment between several applied
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Figure 4.11: Spin magnetic moment µs of FeCo alloys with respect to the lattice pa-
rameter a, obtained with LSDA. The spin magnetic moment was cal-
culated using VCA, EAVG, and for the L10-type (Figure (a)) and the
L12-type (Figure (b)) structures, respectively. The quantisation axis was
chosen to align along the [001]-direction. The magnetic moment is given
in µB/(3d · atom).

methods (VCA, EAVG, and L10 structure or L12 structure, respectively) is
shown. In Figure 4.11a we recognise that the magnetic collapse was observed at
x = 0.5000 and a = 2.470 Å in VCA. The magnetic collapse was confirmed by
the results obtained with EAVG. The results obtained using the L10 structure
yielded a much more broad range for a in which the magnetic collapse occurs.
In contrast to VCA and EAVG, the L10 structure yielded non-vanishing spin
magnetic moments for small a. At x = 0.7500 there was no magnetic collapse
seen for EAVG and for L12, as previously obtained using VCA.

By analysing the magnetic properties we turn the focus now on the MCA
of FeCo alloys. The Figures 4.12a, 4.12b, 4.12e, and 4.12f present the MCA
calculated as total energy difference for the quantisation axes [100]-direction
and [001]-direction, for LSDA, for GGA, for LSDA + OPB, and for GGA +
OPB, respectively. Perpendicular magnetic anisotropy (PMA) was predicted
using VCA around x ≈ 0.3000 − 0.6000 and a ≈ 2.500 − 2.600 Å for LSDA,
in case of GGA we found x ≈ 0.4000 − 0.7000 and a ≈ 2.550 − 2.650 Å (red
marked area in Figures 4.12a - 4.12f). The largest PMA obtained in our calcula-
tions are around 600 µeV/(3d · atom) for both XC-potentials, LSDA and GGA,
respectively. In-plane anisotropy (blue area) was found at the concentrations x
≈ 0.0000 − 0.4000 and x ≈ 0.8000 − 1.0000 in LSDA. We observed the same
tendency in GGA. The in-plane anisotropy scales as half of the magnitude of
the largest PMA.

In order to compare the MCA energies obtained from total energy differences,
we additionally calculated the MCA energies with the help of Bruno’s model,
see Figures 4.12c and 4.12d. For that reason the SO coupling constant was

linearly interpolated ξvca
3d, xc = (1 − x) ξ

Fe(bcc)
3d, xc + x ξ

Co(fcc)
3d, xc in dependency on

the chosen XC-potential and for a particular chosen concentration x. The MCA
energies obtained using Bruno’s model yielded the same order of magnitude as
the MCA energies obtained by total energy differences.

Furthermore, the MCA was evaluated with additionally applied OPB to the
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Figure 4.12: MCA energies of FeCo alloys with respect to Co concentration x and lat-
tice parameter a using VCA, obtained with LSDA and GGA, respectively.
The MCA was calculated by VCA (Figures (a) and (b)), by Bruno’s model
(Figures (c) and (d)), and by additionally applied OPC on top of SOC
(Figures (e) and (f)). The two quantisation axes were chosen to be the
[001]-direction and the [100]-direction (see text). The MCA is given in
µeV/(3d · atom).
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Figure 4.12: The same notation as in Subfigures 4.12a and 4.12b is used.

3d states, Figures 4.12e and 4.12f. No qualitatively change was seen as compared
to the results obtained without OPB seen. However, we recognised an increasing
of the MCA by a factor of 2 when additionally applying OPB.

Next the anisotropy energies obtained using the EAVG are compared with
the VCA results as well as the corresponding ordered structures. Figure 4.13
presents the anisotropy energies for x = 0.5000, and x = 0.5625 using LSDA,
see Figures 4.13a and 4.13b, respectively. We want briefly discuss the LSDA
results before going to the GGA results. For x = 0.5000 it is recognised that
order reduces the MCA by a factor of three to an amount about ∆Emca ≈ 200
µeV/(3d · atom) (for the L10 structure) as compared to the results obtained
with VCA, see Figure 4.13. However, the position of the peak for the largest
MCA (L10: a = 2.571 Å) coincides with the position of the peak observed with
VCA (a = 2.556 Å). The EAVG revealed the same order of magnitude for the
MCA as observed for the L10 structure, but the peak was shifted to slightly
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Figure 4.12: The same notation as in Subfigures 4.12a and 4.12b is used.
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Figure 4.13: The MCA of FeCo alloys with respect to the lattice parameter a, obtained
with LSDA. The MCA was calculated for x = 0.5000 by VCA, by EAVG,
and L10-type structure (Figure (a)) and for x = 0.5625 by VCA, and by
EAVG (Figure (b)). The MCA is given in µeV/(3d · atom).

higher parameters a = 2.596 Å. For x = 0.5625 a reduction from ∆Emca ≈
400 µeV/(3d · atom) (VCA) to ∆Emca ≈ 120 µeV/(3d · atom) (EAVG) was
recognised, see Figure 4.13b.

The anisotropy energies were calculated in GGA for the 5 concentrations:
x = 0.5000, 0.5626, 0.6250, 0.6875, and 0.7500. The MCA was observed us-
ing VCA, EAVG, and L10 structure or L12 structure (for the respective x),
see Figure 4.14. Figure 4.14a visualises that the L10 structure (x = 0.5000)
yielded anisotropy energies of 500 µeV/(3d · atom) being larger than the related
anisotropy energies obtained using VCA and EAVG, as opposed to LSDA. In
VCA one finds the MCA about 400µeV/atom and for EAVG 170 µeV/(3d ·
atom). The peak position of the largest MCA were in best agreement for the
EAVG (a = 2.639 Å) and VCA with (a = 2.650 Å). For the L10 phase the peak
was lowered to a = 2.600 Å. Similar conclusions for the MCA are drawn for x ∈
(0.5625, 0.6250, 0.6875, and 0.7500), see Figures 4.14e - 4.14d, respectively. We
observed the general tendency that the MCA was lowered by a factor of three
for the EAVG as compared to the MCA results obtained with VCA, which was
to that respect also seen in LSDA.
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Figure 4.14: The MCA of FeCo alloys with respect to the lattice parameter a, obtained
using GGA. The MCA was calculated for x = 0.5000 by VCA, by EAVG,
and L10-type structure (Figure (a)), for x = 0.7500 by VCA, by EAVG,
and L12-type structure (Figure (e)), for x ∈ (0.5625, 0.6250, 0.6875) by
VCA, and by EAVG (Figures (b), (c), and (d), respectively). The MCA
is given in µeV/(3d · atom).
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Figure 4.14: The same notation as in Subfigures 4.14a and 4.14b is used.

We remark, that for a concentration of x = 0.7500 the L12 phase yielded
slightly smaller MCA energies than the corresponding values in VCA. However,
both energies were of the same order of magnitude. The lowest anisotropy
energies were found for EAVG. We recognised two maxima of the MCA in
Figure 4.14e, obtained by using VCA. The first maximum was at a = 2.619 Å
(a = 2.586 Å) and the second was located at a = 2.667 Å (a = 2.741 Å), where
the values without brackets correspond belong to VCA and the values inside
the brackets belong to EAVG. The first maxima was confirmed by the results
obtained using L12 structure, but the second was not verified for the ordered
structure.

On the basis of the total energy data obtained using VCA (Figures 4.7a
and 4.7b) the in-plane stress σ1 was calculated applying Eqn. (4.8). Fig-
ures 4.15a and 4.15b present the obtained values, in LSDA and in GGA, re-
spectively. In order to minimise amount of the presented data, only the lowest
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Figure 4.14: The same notation as in Subfigures 4.14a and 4.14b is used.
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Figure 4.15: In-plane stress σ1 of FeCo alloys with respect to the lattice parameter a
for Co concentrations x ≥ 0.6000. The in-plane stress σ1 was calculated
according to Eqn. (4.8), obtained with LSDA (Figure (a)) and GGA
(Figure (b)), respectively. Both used XC-potentials yielded vanishing
in-plane stress by about a = 2.600 Å for a concentration x = 0.6000
accompanied by a large MCA (Figure 4.12).

obtained σ1 for LSDA and for GGA are shown. In case of LSDA the stress
for x = 0.6000, 0.6500, 0.7000, 0.8000 and 0.9000 was calculated. For large
concentrations, x ≥ 0.9000, we recognised two regions with vanishing in-plane
stress. The two regions correspond to the FCC phase (a ≈ 2.450 Å) and the
BCC phase (a = 2.750 Å. For lower concentrations there was found a third
region with zero stress. The zero-crossing was depending on the x, we found
for the confining cases: a = 2.680 Å (for x = 0.8000), and a = 2.580 Å (for x
= 0.6000). This stress-free region corresponds to the instable BCT state. The
largest stress σ1 was found in the lattice parameter range of a = 2.550 − 2.600
Å in dependency on x.

The situation was qualitatively the same for GGA. However, the first meta-
stable phase (σ1 = 0) was found at already x = 0.9000, see Figure 4.7b. The
stresses σ1 for x= 0.6000 obtained with GGA are smaller than the corresponding
values obtained with LSDA. We conclude that the instable BCT state (zero
in-plane stress) was strongly depending on the concentration x, in LSDA and
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Table 4.12: Suggested parameter-space of FeCo alloys. The parameter range was cho-
sen such that the MCA shows huge PMA and a large saturation magneti-
sation S accompanied by an almost vanishing in-plane stress σ1.

LSDA GGA

a [Å] 2.530 − 2.570 2.570 − 2.670

x [%] 40 − 60 50 − 70

GGA. Slightly larger lattice parameters a were observed using GGA as compared
to LSDA, for which vanishing in-plane stress σ1 was found. Furthermore, we
emphasise that the observed region, which revealed a flat total energy (almost
vanishing in-plane stress σ1), shows also a very large anisotropy energy ∆Emca

(see previous discussion). Table 4.12 summarises the interesting parameters in
the (a, x)-space of FeCo alloys.

Experimental growth on this particular a and x area could be feasible due
to the very small in-plane stress. Table 4.13 provides the lattice mismatch for
experimentally accessible substrates. Experiments on Cu and Rh deliver the
largest lattice mismatch of 7.054 − 9.681 % and 2.182 − 4.982 %, respectively.
Experiments on Pd(001), Ru(001), and Rh(001) have already been done [136–
140]. Luo et al. measured by means of magnetisation experiments for Fe0.4Co0.6

alloys grown on Pd(001) a MCA of △Emca = 108 µeV/(3d · atom) [137]. The
comparison of the experimentally observed MCA with our obtained results at
x = 0.6000 and corresponding lattice parameter a with respect to LSDA or
GGA using VCA, EAVG, and ordered L10-type and ordered L12-type structures
yielded the same order of magnitude for the MCA. The MCA obtained with
respect to VCA does not reproduce previously applied calculations [82, 83] for
this choice of x and lattice parameter a.

The authors predicted for this x and a a MCA of about 300 − 400 µeV/(3d
· atom), which is 3 − 4 times larger than the experimentally observed. The in-
clusion of relaxation yields MCA energies closer to the experimentally measured
(LSDA: 0 µeV/(3d · atom), and GGA: 82 µeV/(3d · atom)) results of the MCA
in comparison with calculations which neglect relaxation.

Magnetisation experiments as discussed above were already applied on sub-
strates with smaller lattice parameters a than for Pd, e.g. on Ir and on Ru. It
was shown that the anisotropy energies exceed the amount observed for Pd, but
an exact quantification of the MCA was not feasible due to the fact that the
experimental arrangement did not allow a fully magnetisation of the sample.
For a quantification of the anisotropy, experiments involving stronger magnets
than presently have been used are needed. Based on the results for the in-plane
stress and the magneto-crystalline anisotropy energy, we recommend experi-
ments on even smaller lattice parameters than already examined. Based on our
DFT results we suggest experiments on Cu(001), see Figure 4.16. Figure 4.16
presents the MCA in dependency on a for x = 0.6000. It is clearly visible that
the lattice parameter of Cu(001) (aexp = 2.556 Å) was in best agreement with
our predicted substrate lattice parameter (alsda = 2.557 Å) in LSDA which
combines low stress, a large MCA, and a large saturation magnetisation, see
Table 4.13. In GGA, the maximal MCA was shifted to larger lattice parameters
(agga = 2.650 Å). However, this value was still lower than the substrate lattice
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Figure 4.16: The MCA of FeCo alloys for x = 0.6000 using LSDA and GGA. The MCA
was calculated by VCA. The experimental substrate lattice parameters
for Cu(001) and Rh(001) are visualised as black vertical lines. Shown are
the calculated MCA energies without using the spline method (text), in
contradiction to Figure 4.12 in which the spline method was applied. The
MCA is given in µeV/(3d · atom).

Table 4.13: Lattice misfit of FeCo alloys between several shown substrates and related
BCC lattice parameters for a concentration x = 0.600. The optimised
BCC lattice parameters were abcc, lsda = 2.750 Å and abcc, gga = 2.830 Å,
the lattice misfit f = 1 -

`

abcc, lsda/gga/asubstrate, exp

´

is given in %. The
experimental BCC lattice parameters are taken from [141]. Experiments
have already been applied on substrates going from Pt to Rh.

Substrate metal aexp [Å] flsda [%] fgga [%]

Cu 2.556 7.054 9.681

Rh 2.689 2.182 4.982

Ru 2.704 1.673 4.452

Ir 2.715 1.273 4.064

Pd 2.750 0.000 2.827

Pt 2.775 −0.909 1.943

parameter for Rh(001) (aexp = 2.689 Å) on which are present experiments have
been conducted.

4.2.6 LSDA vs. GGA

A further discussion about the discrepancies seen between the LSDA and GGA
results for the L10 structures is presented to clarify the physical correct be-
haviour of the MCA. Figure 4.17a and 4.17b show the calculated µs and µl

in dependence on the lattice parameter a, for LSDA and GGA respectively.
Calculations involving only LSDA will be called pure LSDA and calculations
involving only GGA will be called pure GGA. Spin and orbital magnetic mo-
ment were higher in case of GGA, as well as the relaxed volumes than in LSDA.
It was clearly visible that the µs and µl drop down at a lattice parameter of
2.578 Å in LSDA, while in GGA the moments remained almost constant during
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the whole Bain Path. Additionally, the largest ∆Emca, obtained for VCA (red
line) and L10 structure (blue line), is drawn. The largest MCA observed for
the L10 phase in LSDA was found at a = 2.578 Å. By going to smaller lattice
parameters lower values of the µs and µl were obtained. The magnetic break-
down was also observed by the VCA calculations. However, the VCA results
yielded a smaller lattice parameter a = 2.555 Å for which the largest MCA was
found, see Figure 4.17a. In GGA, this behaviour was reversed. The largest
L10 MCA was at a = 2.615 Å, and VCA a = 2.650 Å. It is well-known, that
LSDA overbind and deliver smaller lattice parameters than corresponding GGA
calculations. Besides, magnetism is generally overestimated in GGA.

In order to rule one or two of the previous possibilities (overbinding in LSDA,
and overestimation of magnetism in GGA) out, we performed LSDA calculation
with relaxed volumes, which were obtained from GGA calculations (denoted:
LDA-GGA), see Figure 4.17c. The break-down of the magnetism for a pure
LSDA calculation, as seen in Figure 4.17a, disappeared. Thus, the magnetic
moments were non-zero for all presented lattice parameters. Comparison with
pure GGA calculations yielded slightly lower magnetic moments than observed
from LDA-GGA calculations. Furthermore, the correct adjustment of the cor-
responding MCA maxima (red and blue lines), as obtained for pure GGA cal-
culations, was recognised. We conclude that the break-down of the magnetism
was caused by over-binding in LSDA. GGA and LSDA yielded for the same
volumes the same magnetic solution. We remark that the ground-state of Fe
(FCC) shows magnetic order [142]. Despite our calculations are not able to
reflect the correct experimentally observed situation (which is a spin density
wave), the results obtained with GGA were FM while the results using LSDA
were non-magnetic for Fe (FCC). The results for the calculations using solely
LSDA were already discussed in Subsection 4.2.5.

Figure 4.18 visualises the anisotropy energies calculated solely in LSDA (de-
noted as: LDA) and calculated in LSDA using the optimised volumes in GGA
(denoted as: LDA-GGA). The LSDA calculations using relaxed GGA volumes
clearly demonstrate that the ordered L10 structure possess an anisotropy energy
of ∆Emca = 690 µeV/(3d · atom), which was of the same order of magnitude
as we found for the calculations using solely GGA. The anisotropy energy was
enlarged by a factor of almost 4 as compared to the results observed solely in
LSDA for the L10 phase. Both, LDA and LDA-GGA, calculations yield com-
parable magnitudes of the MCA when using VCA. However, the position of the
maximum MCA did not coincide for both methods applied, which was mainly
caused by the fact that GGA generates larger volumes than LSDA, as seen in
Subsection 4.2.5. As opposed to the statement for pure LSDA calculations, we
come to the conclusion that order has a deep impact on the magnitude of the
anisotropy. The largest MCA was found for L10 structures. A similar behaviour
was reported for FePt alloys [120].

4.2.7 Summary

We demonstrated the influence of volume relaxation as well as the impact of dis-
order on FeCo alloys by performing first-principle calculations. Our calculations
confirmed that FeCo alloys exhibit high uniaxial MCA and magnetic moments.
The MCA was experimentally verified to be 0.1 meV/(3d · atom) [137]. The
corresponding saturation magnetisation was 2 µB/(3d · atom). The anisotropy
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Figure 4.17: Spin (µs) and orbital (µl) magnetic moments of FeCo alloys in depen-
dency on the lattice parameter a and x = 0.5000, obtained with L10 type
structure. Both moments were calculated in LSDA - using relaxed vol-
umes obtained with LSDA (Figure (a)), in GGA - using relaxed volumes
obtained with GGA (Figure (b)), and in LSDA - using relaxed volumes
obtained with GGA (Figure (c)). The spin moment is denoted as
and the orbital moment is denoted as . We mark the MCA which
was found to be largest along the EBP using VCA and L10 type structure
by ∆E VCA

mca and ∆E L10
mca . The magnetic moments are given µB/(3d ·

atom).
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Figure 4.18: MCA of FeCo alloys with respect to the lattice parameter a and x =
0.5000, obtained with VCA and L10 type structure. The MCA was cal-
culated in LSDA - using relaxed volumes obtained with LSDA (LDA)
and in LSDA - using relaxed volumes obtained with GGA (LDA-GGA).
The MCA is given in µeV/(3d · atom).

energies was computed of the order of 0.2 meV/(3d · atom) (EAVG) and 0.3
meV/(3d · atom) (EAVG + OPC).

A reasonable agreement of the anisotropy energies with recent experiments
in literature was observed. The VCA results provided much higher anisotropy
energies than the EAVG results. This is based on the fact that VCA represents
a perfectly ordered structure with equal atomic charge at every lattice site,
and thus overestimates the MCA by 3 − 4 times. L10 structure delivered 0.6
meV/(3d · atom) (1.3meV/(3d · atom)), applied OPC is written in brackets. We
conclude that order increases the MCA as similarly observed in FePt alloys [120].
We compared LSDA with GGA calculations. We come to the conclusion that
the magnetic collapse, seen in the pure LSDA calculations, was only based on
different observed relaxed volumes between LSDA and GGA, respectively. The
LSDA results using relaxed GGA volumes yielded the same magnetic properties
as we observed for calculations using solely GGA. This statement is emphasised
by the fact that GGA gives the more realistic bond lengths for Fe(BCC) and
Co(FCC). For that reason we believe that LSDA is for that system inappropriate
to describe magnetic properties.

Volume relaxation lowered the optimum substrate lattice parameter by 5 %
compared with previous non-relaxed calculations. Secondly, volume relaxation
broadened the interesting range of the chemical composition x as compared
with previous calculations. Thirdly, there was no sizeable effect seen on the
MCA caused by volume relaxation. Furthermore, an almost vanishing in-plane
stress was found at a ≈ 2.600 Å, combining a huge anisotropy and very flat
energy region. We suggest to examine experiments on Cu(001). According
to the general requested thermal stability ratio, which demands: KU V /kB T
∼= 50 − 70, there are needed up to 2000 − 3000 atoms for one bit at drive
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operating temperatures about T ∼ 340 K to maintain sufficient signal stability
(considered was L10 FeCo with KU ≈ 0.7 meV/(3d · atom)).

Finally, there was recognised no qualitatively change in µs and the MCA by
applying OPB.





5
Uranium Compounds

The actinides demanded the effort of experimentalists and theoreticians to un-
derstand their properties for more than 50 years. The correct description of the
ground-states of actinides by DFT has recently attracted a lot of interest [143].
For instance, one big challenge deals with the understanding of the different
ground-states under pressure for Pu [144–150] and Cm [151, 152]. And even
their compounds exhibit many fascinating properties which are related to the
extraordinary nature of the 5f electrons. In that respect, the behaviour of
the 5f electrons may change by varying the actinide material from one to an-
other (from bonding, localised to bonding, delocalised and vice versa) [146, 153].
Thus, one of the fundamental questions concerning actinide materials addresses
whether their f states are localised or delocalised. A common way to classify
the degree of localisation of the f electrons is done by comparing experimental
spectroscopies, and theoretical calculations.

The electronic states in transition metals are regarded as delocalised, in con-
trast to the lanthanides for which the 4f electrons are considered as localised.
In actinides the f electrons show both, localised character for the light ac-
tinides [154–156] up to Pu and a delocalised character for the heavy actinides.
In that respect the light actinides are well described by LSDA [157, 158]. For
the heavy actinides a Mott localisation between Pu and Am is seen [159], which
is caused by the decrease of f bandwidth and the increase of the intra-atomic
Coulomb energy.

Figure 5.1 compares the experimental equilibrium volumes of 5d transition
metals, lanthanides, and actinides. The progress of the equilibrium volume while
going through the series is related with the localisation-delocalisation transition
of the 5f electrons. For the light actinides the equilibrium volumes decrease
parabolically indicating that the valence electrons contribute to the bonding
(delocalised). The equilibrium volume remains more or less constant behind Pu
as a function of the atomic number and resembles the equilibrium volume of the
lanthanides. In that respect the electrons for the heavy actinides are considered
not to contribute to the bonding and hence are localised (Mott transition [160–
162]). In summary, the actinides are located in between the delocalised tran-
sition metals and the localised 4f systems. We describe here the situation in
metallic solids. In non-metallic compounds it can be more complex.

In this thesis only uranium compounds were considered. In those compounds
the magnetism is mainly driven by the Uranium atoms. According to Hund’s
second rule the spin momentum µs couples anti-parallel to the orbital momen-
tum µl. A second fundamental question in actinides deals with the question
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Figure 5.1: Experimentally observed Wigner-Seitz radius of elements of 4f , 5d shells.
The Wigner-Seitz radius is defined as the radius of the volume per atom
in a solid: rWS = (3/4π V )1/3, where V is the equilibrium volume of the
primitive unit cell. The anomalies for Eu and Tb are due to occupation
instabilities of the 4f shell. The radius is given in Å. The figure is taken
from [167].

whether magnetism is stable or not. An empirical rule defines the critical near-
est neighbour distance of 3.400 Å for the An-An1 distance for which magnetism
sets in, which is known as the Hills limit [163]. According to this limit mag-
netism is non-stable for An-An distances smaller than 3.400 Å due to delocalised
5f electrons, and for An-An distances larger than 3.400 Å magnetism can occur
based on much more localised 5f electrons in the actinide compounds.

A large diversity of interesting and unusual features in actinide compounds
can appear due to the interplay with localisation and delocalisation. To that
respect we mention the discovery of heavy fermion behaviour of actinide com-
pounds [164], the discovery of unconventional superconductivity in PuCoGa5

[165] and the problem of finding the hidden order in URu2Si2 [166] which has
been a big mystery for more than 20 years now for both theoreticians and ex-
perimentalists.

This chapter is organised as follows: We present in Section 5.1 the classes of
uranium monopnictides and monochalcogenides. For both series a large number
of theoretically and experimentally investigations are around and thus our pre-
sented results are easy to classify with other results. In Section 5.2 we discuss
magnetic properties of ten binary UM2 compounds, where M ∈ 3d. Section 5.3
presents the results for the Compounds UAsSe and USb2.

1“An” stands for any specific element of the actinides.
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(a) ferromagnetic (b) anti-ferromagnetic

Figure 5.2: Magnetic and crystallographic structure of UX compounds. The arrows
indicate the spin, denotes a Uranium atom, and denotes a X atom.
In case of FM the easy axis points along [111]-direction (Subfigure (a)), in
case of AFM type-I the magnetisation points alternating along the [001]-
direction (Subfigure (b)).

5.1 UX, with X = (N, P, As, Sb, O, S, Se, and Te)

In the following chapter we want to discuss the electronic properties of the
UX compounds. This class of compounds is one of the most widely studied
actinide compounds. All of them crystallise in the rock-salt structure. While
the monochalcogenides (X = S, Se, and Te) show a ferromagnetic (FM) order,
all monopnictides (X = N, P, As, and Sb) have a type-I anti-ferromagnetic
(AFM) structure, see Figure 5.2. The corresponding ordering temperatures are
tabulated in Table 5.3. Indeed, transitions into multi-k AFM structures are
possible, however we have taken only type-I AFM structures into account in
our calculations. No structural information about UO was found, that is why
we used the FM setup for that compound, like for the other monochalcogenides.

Above TC the FM compounds crystallise in cubic symmetry in the param-
agnetic state. A rhombohedral lattice distortion was observed when decreasing
the temperature [168]. Magnetisation measurements [169, 170] and neutron
scattering analysis on US [171–174] and on UTe [170] revealed that these ma-
terials possess an extremely large MCA [173]. The easy axis of the three FM
compounds observed to align along the [111] direction. All monopnictides keep
the cubic structure when passing TN with the magnetisation pointing along the
[001] direction with alternating sign. As previously told, one is often interested
in the question whether the f electrons are more localised or itinerant. For that
reason investigations of the ordered magnetic U moment were analysed under
pressure. In this connection rhombohedral lattice distortions under pressure
were observed for the monopnictides [175, 176].

All calculations were conducted with FPLO, version 9.00-34. We used 483

k-points in the BZ for the k-space integrations. The XC-potentials was treated
in LSDA. The default basis was used in all our calculations. The site-centered
potentials and densities were expanded in spherical harmonic contributions up
to lmax = 4. All calculations were done in the full relativistic mode. Since
relativistic effects become more important in 5f shells, we took only that ver-
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Figure 5.3: Total energy with respect to lattice parameter a, obtained within LSDA.
The total energy was calculated by pure LSDA, OPB, OPxc, and OPx.
The experimentally observed lattice parameter is aexp = 4.890 Å. The
notation is as follows: - calculated points, - polynomial fit of the
order 4. The total energy is given in meV/f.u.

sions of OPE into account in which the Kohn-Sham-Dirac states are projected
onto local SR orbitals. In Chapter 3 large differences for the OPC energies were
seen between using either NR local orbitals or using SR local orbitals. Hence,
making use of NR local orbitals for OPE is here not justified. Finally, OPC was
applied solely to the 5f states. All other settings were kept as default.

We had to use two different arrangement for either a FM setup or a AFM
type-I setup. The FM setup used spacegroup 225. The following Wyckoff po-
sitions have been applied: N = (0., 0., 1/2), and U = (1/2, 1/2, 1/2). For the
AFM type-I setup the spacegroup was chosen to be 123. The following Wyckoff
positions have been applied: U1 = (0., 0., 1/2), U2 = (1/2, 1/2, 0.), N1 = (0.,
0., 0.), and N2 = (1/2, 1/2, 1/2).

5.1.1 UN

UN is a metal and measured as type-I AFM with a Néel temperature of 53
K [177–180]. Experimental verification of the total moment by about 0.75 ± 0.1
µB/(f.u.)can be found here [177]. Several studies concerning the crystallographic
structure were performed [168, 181, 182]. Recent investigations observed two
rhombohedral distortions under pressure [176]. The structure at zero pressure
was observed to be undistorted, which will be used in the calculations.

In order to analyse the influence of the OPC on the lattice parameter, we
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Table 5.1: Comparison of total energy differences relative to the ground-state, where
we have used ∆E = Estructure - Efm. We assumed following ordering: non-
magnetic (NM), FM, AFM type-I. The energies are given in meV/f.u. All
results using FPLO were obtained with LSDA, the results using Wien2k
were obtained with GGA. In both studies experimental lattice constants
were applied.

Magnetic
Structure

FPLO
FPLO +

OPB
FPLO +

OPxc
FPLO +

OPx
Wien2k [194]

NM 21.0 112.0 144.3 77.6 76.3

FM 0.0 0.0 0.0 0.0 0.0

AFM type-I 7.6 −9.0 −10.9 −3.1 16.1

AFM type-II −− −− −− −− 27.6

calculated the optimised lattice parameter a without OPC, with OPB, with
OPxc, and with OPx. The resulting curves are shown in see Figure 5.3. The
optimum lattice parameter obtained for the pure LSDA calculation underesti-
mates the measured lattice parameter by about two percent (aexp = 4.890 Å.).
It is seen that when applying OPC, the optimum lattice parameter is slightly
increased by about 0.3 − 0.6 %. But still, the optimised lattice parameters were
smaller than the measured lattice parameter. As a conclusion all OPC show
minor influence on the optimum lattice parameter.

Despite UN is a AFM with order type-I, most calculations in literature as-
sume a FM or even a NMS [53, 72, 183–193]. In fact, the only works to our
knowledge assuming AFM ordering (AFM type-I and AFM type-II2) in their
calculations are to be found in [111, 194]. The wrong ground-state was found
when using Wien2k with GGA [194]. In contradiction to experiment the au-
thors found a FM ground-state. We performed first-principles calculations using
FPLO with and without OPC. We assumed either a non-magnetic, a FM, and
an AFM type-I order. The results are listed in Table 5.1. The calculations
without OPC predict a FM ground-state and basically confirm previous results.
So far, no explanation is given, why the ground-state observed either in GGA
or in LSDA differs from the measured one. I was shown by means of neutron
scattering analysis that in UN both AFM and FM instabilities are present [195].
Recently, theoretical support was given by using Fermi liquid theory [196] sug-
gesting that UN is a weak itinerant AFM. The presence of both FM and AFM
instabilities might explain why both, FPLO and Wien2k, calculations yielded
a FM ground-state, using either LSDA or GGA, respectively. When OPC is
applied on top of LSDA the experimentally observed AFM type-I state is cal-
culated to be lower in energy than the FM state. This statement was found
to be independent on the particularly chosen OPC functional. The calcula-
tions assuming a non-magnetic state turned out to be higher in energy than the
magnetic states, either the FM or the AFM configuration, respectively.

Figure 5.4a shows the DOS for either a FM order or an AFM type-I order.
The contribution of the 5f states at the Uranium site is drawn as shadow, either
in black (FM) or in red (AFM type-I). We see that the DOS is formed solely
by the 5f states. Both magnetic orderings yielded similar DOS resulting in an

2AFM type-I is defined in Figure 5.2b, and AFM type-II is explained in [194].
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Figure 5.4: DOS (Figure (a)) and band structure (Figure (b)) of UN obtained with
respect to a FM and a AFM type-I setup, respectively. The results were
calculated using LSDA. We use the following notation: - FM order (U5f

DOS and band structure), and - AFM type-I order (U5f DOS and band
structure). The DOS is given in states/(eV · 5f · atom). The eigenergies
ǫn (k) are given in eV.

unaffected spin moment µs, see Table 5.2. Figure 5.4b reveals differences in the
band structure in dependency on the magnetic ordering. The same notation as
for the DOS is used. Both magnetic orderings yielded band structures which
resemble each other. However, if one takes a closer view at the band structure,
differences at some peculiar points were observed. These differences are mainly
reflected by a splitting of the AFM bands. The splitting is very pronounced at
the X, the Γ, and the R point.

Figure 5.5 presents the Fermi surface for the two orderings. A reoccupation
of the bands is seen at the M point, at which the band no. 65 is shifted above
ǫf . We see that for the AFM type-I ordering, we obtained two-fold degenerated
bands, labelled with band index 61 and 63. From Figures 5.5d - 5.5g it is clearly
visible that these two bands are split in the FM case. We note that a Lifshitz
transition [197] occurs in band no. 61, when going from the AFM state to the
FM state. This band forms an almost two dimensional cylinder in the AFM set-
up, where the Z point is the centre of the cylinder (Figure 5.5a). The cylinder
is transformed into two hole-like spheres around the Z point (Figure 5.5d).

In Table 5.2 we list the calculated and experimentally observed spin, orbital,
and total magnetic moments at the uranium site for UN. The pure LSDA results
yield an total magnetic moment of almost zero for both the FM and AFM state,
meaning that the spin magnetic moment und the orbital moment are cancelling
each other. This result was confirmed by LAPW+lo calculations [194]. Non
full-potential LMTO calculations [53, 111] yield non-vanishing total magnetic
moments much closer to the experimentally observed than the full-potential
correspondent. OPC drastically increases the orbital magnetic moment and
pushes the total magnetic moment closer to experiment. We note that the total
magnetic moments obtained for the AFM state are typically larger by 12 − 25
% than the total magnetic moments calculated for the FM state. Computations
using RPA on top of LSDA follow the same trend for the spin, orbital, and
total magnetic moment as seen when applying OPC. When considering only
the calculations using FPLO and AFM order, it is found that the magnetic
moment is in best agreement with experiment for OPx. However, the calculated
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(a) Band 61 (b) Band 63 (c) Band 65

(d) Band 61 (e) Band 62 (f) Band 63 (g) Band 64

Figure 5.5: Fermi surface of UN calculated with LSDA. Figures (a) - (c) correspond
to the AFM type-I configuration, and Figures (d) - (g) assume a FM
configuration.

magnetic moment applying the FM order differs from experiment only by 2.7 %.

In Figure 5.6 we visualise the effect of the different applied OPC using FPLO
on the DOS. The presented results were calculated for the FM state, because the
DOS was not strongly altered between the two distinct magnetic orders (FM
or AFM). The DOS obtained with LSDA was already discussed previously.
We see, that the exchange splitting is most pronounced for OPxc on top of
LSDA, and the smallest splitting is obtained for pure LSDA. OPx on top of
LSDA yielded the smallest splitting of all applied OPC. OPB and OPx yielded
splittings in between OPxc and LSDA. There is more overlap between OPB and
OPx recognised than recognised between OPB and OPxc. These conclusions
are corroborated by the results for the magnetic moments, see Table 5.2.

5.1.2 UX

We proceed by a systematical investigation of the uranium monopnictides and
monochalcogenides in order to get an overview of the magnetic properties along
the whole series. All presented data were calculated by assuming a FM ordering
which is motivated by the fact that the DOS and the magnetic moments are sta-
ble against the magnetic order (FM or AFM), see Figure 5.4 and Table 5.2. In
Table 5.3 we present the measured [198] and theoretically optimised lattice con-
stants. First, we compare the nearest neighbour distance rNN among all studied
compounds, see also Table 5.3. According to Hills limit UN and UO are closely
located at the transition point from delocalisation to localisation. All other
studied compounds are well separated to consider the f electrons as localised.
By comparing the optimised lattice constants with the measured quantities, we
see different trends between the monopnictides as for the monochalcogenides On
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Table 5.2: Magnetic moments of UN. The magnetic moments were calculated with
LSDA. OPC is applied to the 5f states at both uranium sites. The LMTO
results are taken from [53, 111], and the LAPW+lo are taken from [194].
The experimentally observed total magnetic moment is µexp

t = 0.75 ±
0.10 [177]. All magnetic moments are given in µB/(5f · atom).

FM

Method µs µl µt

FPLO −0.98 0.97 −0.02

FPLO + OPB −1.29 2.28 0.99

FPLO + OPxc −1.50 2.68 1.19

FPLO + OPx −1.30 2.03 0.73

LMTO −0.99 1.49 0.50

LAPW+lo −0.86 0.85 −0.01

AFM type-I

FPLO −0.81 1.08 0.28

FPLO + OPB −1.23 2.49 1.26

FPLO + OPxc −1.46 2.90 1.44

FPLO + OPx −1.22 2.26 1.04

LMTO −1.04 1.64 0.60

LMTO - RPA −1.08 2.04 0.96

LMTO - cRPA −1.12 2.28 1.16
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Figure 5.6: DOS of UN obtained with respect to FM order. The DOS is calculated
using either LSDA or LSDA with additional OPC applied to the U 5f
states. The DOS is given in states/(eV · atom).
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Table 5.3: Lattice parameters of UX, X ∈ (N, P, As, Sb, O, S, Se, and Te). The
lattice parameters were obtained using LSDA. All presented lengths are
given in Å. The function f is defined as in Table 4.13 and is given in
%. The measured lattice constants and the Temperatures TC, N are taken
from [198]. The Temperatures are given in K.

X aexp alsda flsda rNN TN X aexp alsda flsda rNN TC

N 4.889 4.809 1.636 3.457 53 O 4.922 4.794 2.601 3.480 −−
P 5.584 5.469 2.059 3.948 125 S 5.482 5.392 1.669 3.876 177

As 5.777 5.703 1.281 4.085 127 Se 5.730 5.692 0.668 4.052 160

Sb 6.191 6.090 1.658 4.378 213 Te 6.124 6.091 0.542 4.330 104

the one hand, we observed no clear tendency for the optimised lattice parameter
of the monopnictides, where a constant underestimation of the measured lattice
constant by 1.3 − 1.7 % was found. On the other hand, we found a decrease for
the lattice misfit when increasing the mass of the monochalcogenides, resulting
in a underestimation of the measured lattice constant by only 0.5 %. However,
the localisation of the f electrons when going from S to Te can not simply be
answered by a increasing of the masses.

The calculated DOS are displayed in Figure 5.7. We obtained metallic so-
lution for all studied compounds. The f electrons were closely located around
the Fermi level. The f bands were found in between lower lying s, p electrons
from the corresponding X atom and upper lying very broaden d bands, which
can mainly attributed to the uranium site. From the DOS we see that the
s, p − f hybridisation is more pronounced for the monopnictides as for the
monochalcogenides. Furthermore, it is recognised that the s, p electrons were
shifted to higher energies (closer to the f electrons) when increasing the mass
of the X atom for both, the monopnictides (Figs. 5.7a, 5.7c, 5.7e, and 5.7g) and
monochalcogenides (Figs. 5.7b, 5.7d, 5.7f, and 5.7h), respectively.

A “pseudo-gap” was found for UN at around 0.70 eV [192]. Among the
monochalcogenides a pseudo-gap was observed for US, USe, and UTe [199].
We clearly found the existence of a pseudo-gap for UN, UP, and UAs (insets
in Figure 5.7). Contrarily in USb, where we obtained only a small pseudo-
gap at 0.58 eV. The pseudo-gap was in case of the monochalcogenides not so
conspicuous as it was for the monopnictides. For UO and US no clear formation
of a gap is seen. Only for USe (at 0.44 eV) and UTe (at 0.39 eV) we found a
tiny pseudo-gap as obtained in the case of USb.

In Table 5.4 we list the calculated magnetic moments of the considered
UX compounds. The moments were calculated for a spin quantisation axis
pointing along the [001]- or the [111]-direction, for the monopnictides and the
monochalcogenides, respectively. The results show that the spin moment was
calculated with opposite sign to the orbital moment. It was observed that the
magnetism in all compounds was stemming mainly from the U site. In LSDA,
there was found for UN and UO an almost exact cancellation of the calcu-
lated spin and orbital moments yielding a total moment of almost zero. A
systematically increasing of the spin moment was observed, when increasing the
masses. Larger orbital moments were also found, for larger masses, however
the increase of the orbital moments was stronger that the increase of the spin
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Figure 5.7: DOS of UX, X ∈ (N, P, As, Sb, O, S, Se, and Te). The DOS was cal-
culated using LSDA. We use the following notation: - total DOS, -
U5f DOS, with black and red for the spin up and the spin down channels,
respectively. The DOS is given in states/(eV · atom). The inset in the left
upper corner of every subfigure displays a zoomed DOS. The same units
are applied for the insets as used for the subfigures.

moments resulting in a non-vanishing total moment for the other monopnic-
tides and monochalcogenides. Comparison with experimental data for the UN
compounds revealed that in LSDA the calculated total moment were too small
about 97 %, and for X = P , As, Sb, S, Se, and Te the calculated total moments
were too small about 50 − 70 %.

The total moment is better reflected when applying OPC on top of LSDA.
However, the comparison of experimentally observed spin and orbital moments
and the corresponding calculated quantities yield that both theoretical values
are overestimated when using OPC. It seems that both quantities having the
same error, so that the sum fits the measured total moment. The spin moment
is already perfectly described in LSDA for the monopnictides and slightly over-
estimated when applying OPC, at least in the case of UAs. For the monochalco-
genides the experimentally observed spin moment is already doubled in LSDA,
and even larger when applying additional OPC.

The orbital moment is underestimated about 30 % in LSDA for UAs, 10 %
for US, 13 % for USe, and 1 % for UTe. The orbital moment is overestimated
about 10 − 25 % when OPC is applied on top of LSDA for UAs. For the
monochalcogenides, the overestimation of the orbital moment is about 35 −
60 %. It seems, that orbital moment is better reflected using solely LSDA for
the heavier monochalcogenides, as USe and UTe, as for the lighter one, as US.

The total moment calculated with OPx is found to be in best agreement
with experiment for UN, UAs, US, and USe. When going to USb and UTe
the total moment is underestimated even when applying OPC. The last results
suggest that the f electrons of the heavier monochalcogenides are may be to
much localised to treat them in itinerant, as LSDA does.

A collection of calculated magnetic moments reported so far is listed in
Tables 5.5 and 5.6 . The comparison of our data with that reported in literature
reveals that our calculations are in good agreement with those results previously
conducted. However, it is seen that calculated moments can scatter by a factor of
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Figure 5.7: DOS of UX, X ∈ (N, P, As, Sb, O, S, Se, and Te). The same notation
as in Subfigures 5.7a and 5.7b is used.
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(e) UAs
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Figure 5.7: DOS of UX, X ∈ (N, P, As, Sb, O, S, Se, and Te). The same notation
as in Subfigures 5.7a and 5.7b is used.

two evaluated within the same method, demonstrating that the results are basis
(LMTO, ASW, LCAO, . . .) and method (LSDA, LSDA + OPB, . . .) dependent.

In Table 5.7 we discuss calculated MCA energies for the monopnictides and
monochalcogenides. An unusual high MCA for cubic systems was found for the
the monochalcogenides [170, 172]. In fact, the large anisotropy was at least
in case of the monochalcogenides attributed to a rhombohedral lattice distor-
tion [175], which simultaneously occurs with the magnetic phase transition. The
monopnictides were also characterised by a large anisotropy [212]. In contrast
to the monochalcogenides there were no structural distortions seen in the mag-
netically ordered state [213, 214]. A detailed overview of the magnetic structure
of UX compounds can be found in [215]. The strong anisotropy in the monop-
nictides is manifested in a strong anisotropic exchange or the rearrangement of
the domain walls when applying an external field [213].

So, for the UX compounds the MCA was defined as in Eqn. (4.1) using n̂1 =

3These calculations were performed using larger lattice parameters than the experimentally
observed.
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Figure 5.7: DOS of UX, X ∈ (N, P, As, Sb, O, S, Se, and Te). The same notation
as in Subfigures 5.7a and 5.7b is used.

Table 5.4: Magnetic moments of UX. The magnetic moments were calculated with
LSDA. Additional OPC was applied to the 5f states at the uranium sites.
The spin quantisation axis was chosen along the [001]- or [111]-direction,
for the monopnictides or the monochalcogenides, respectively. The exper-
imental observed total magnetic momenta are taken from [198, 200, 201].
All magnetic moments are given in µB/(5f · atom).

Method X µs µl µt X µs µl µt

FPLO N −0.99 0.97 −0.02 O −1.78 1.96 0.18

FPLO + OPB −1.30 2.29 0.99 −1.91 3.28 1.36

FPLO + OPxc −1.50 2.69 1.19 −2.06 3.79 1.73

FPLO + OPx −1.30 2.03 0.73 −1.94 3.19 1.25

EXP −− −− 0.75 −− −− −−

FPLO P −1.50 2.03 0.53 S −1.85 2.42 0.56

FPLO + OPB −2.00 3.70 1.71 −2.02 3.77 1.75

FPLO + OPxc −2.30 4.26 1.96 −2.22 4.26 2.03

FPLO + OPx −2.08 3.66 1.57 −2.07 3.74 1.67

EXP −− −− 1.70 −0.98 2.68 1.70

FPLO As −2.01 2.67 0.66 Se −1.95 2.72 0.78

FPLO + OPB −2.32 4.27 1.95 −2.21 4.17 1.96

FPLO + OPxc −2.55 4.77 2.22 −2.42 4.64 2.22

FPLO + OPx −2.39 4.26 1.87 −2.28 4.20 1.92

EXP −1.92 3.84 1.92 −1.09 3.11 2.01

FPLO Sb −2.37 3.37 1.00 Te −2.19 3.23 1.04

FPLO + OPB −2.58 4.85 2.27 −2.44 4.55 2.11

FPLO + OPxc −2.77 5.25 2.48 −2.66 5.00 2.34

FPLO + OPx −2.65 4.90 2.24 −2.53 4.60 2.07

EXP −− −− 2.82 −1.01 3.27 2.26
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Table 5.5: Calculated magnetic moments of UX, X ∈ (N , P , As, and Sb) taken from
literature. All calculations were performed by applying LSDA, those cal-
culations not using LSDA are specially tagged. All magnetic moments are
given in µB/(5f · atom). The spin quantisation axis were chosen along the
[001]- or [111]-direction, for the monopnictides or the monochalcogenides,
respectively. Following abbreviations are used: modified ASW (MASW),
orbital Hartree-Fock (OHF) and mixed basis (MB).

X Method µs µl µt

N LMTO [53] −0.99 0.49 −0.50

LMTO [111] AFM type-I −1.04 1.64 0.60

AFM type-I, RPA −1.08 2.04 0.96

AFM type-I, cRPA −1.11 2.29 1.18

LAPW [194] FM, GGA −0.86 0.85 −0.01

P LMTO [202] FM −2.18 2.66 0.48

FM, OPB −2.43 3.85 1.43

LMTO [111] AFM type-I −1.70 2.73 1.03

AFM type-I, RPA −1.70 2.94 1.25

AFM type-I, cRPA −1.70 3.36 1.66

As LMTO [202] FM −2.32 3.00 0.68

FM, OPB −2.44 4.12 1.68

LMTO [111] AFM type-I −1.97 3.18 1.21

AFM type-I, RPA −1.98 3.23 1.25

AFM type-I, cRPA −1.94 3.85 1.91

Sb LAPW [203]
AFM-type I (single-k), non-
collinear

−2.15 3.48 1.33

AFM-type I,(double-k),
non-collinear

−2.00 3.50 1.50

AFM-type I,(double-k),
non-collinear

−1.84 3.42 1.58

MASW [204]
AFM-type I (single-k), non-
collinear, OPB

−2.20 4.26 2.06

AFM-type I (triple-k), non-
collinear, OPB

−2.24 4.46 2.22

LMTO [202] FM −2.37 3.50 1.13

FM, OPB −2.60 4.57 1.97

LMTO [111] AFM type-I −2.28 3.83 1.55

AFM type-I, RPA −2.27 3.93 1.66

AFM type-I, cRPA −2.22 4.40 2.18

[001] and n̂2 = [111]4. For the monopnictides the correct easy axis was obtained
only for UN and UP (only in LSDA, without OPC). All other calculations yield
the wrong easy axis. The correct easy axis was found for all monochalcogenides.
An increasing of the MCA is observed for increasing mass when going through
both series. To our knowledge the only experimentally quantification of the

4A FM order was assumed to calculate the MCA for all considered compounds.
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Table 5.6: Calculated magnetic moments of UX, X ∈ (O, S, Se, and Te) taken from
literature. Same notation as in Table 5.5 is used.

S LMTO [205] 3 FM −1.53 2.14 0.60

FM, U(OP) −1.48 3.21 1.72

FM, U −1.35 3.42 2.07

ASW [206] FM −1.50 2.60 1.10

LMTO [72] FM −2.10 3.20 1.10

FM, OPB −2.20 4.00 1.80

LMTO [207] FM, OHF −1.51 3.12 1.61

LAPW [208] FM −1.60 2.33 0.73

LMTO [202] FM −1.87 2.39 0.52

FM, OPB −2.06 3.58 1.51

LAPW [209] FM −1.70 2.58 0.88

LCAO [210] FM −1.83 2.40 0.57

LMTO [111] FM −1.88 2.92 1.04

FM, RPA −1.85 3.05 1.20

FM, cRPA −1.83 3.33 1.50

LCAO [211] FM −1.69 2.59 0.90

FM, MB −1.72 2.62 0.82

Se LMTO [205] 3 FM −1.75 2.54 0.79

FM, U(OP) −1.65 3.65 2.00

FM, U −1.96 4.61 2.65

ASW [206] FM −1.70 2.90 1.20

LMTO [72] FM −2.40 3.40 1.00

FM, OPB −2.20 4.30 1.90

LAPW [208] FM −1.94 2.92 0.98

LMTO [202] FM −2.01 2.68 0.67

FM, OPB −2.27 3.89 1.62

LAPW [209] FM −1.96 3.11 1.15

LCAO [210] FM −1.92 2.71 0.57

LMTO [111] FM −2.14 3.37 1.23

FM, RPA −2.10 3.44 1.34

FM, cRPA −2.07 3.74 1.67

LCAO [211] FM −1.79 2.89 1.10

FM, MB −1.79 2.88 1.09

Te LMTO [205] 3 FM −2.12 3.12 1.47

FM, U(OP) −1.91 4.09 2.17

FM, U −2.13 4.95 2.81

ASW [206] FM −2.20 3.50 1.30

LMTO [72] FM −2.60 3.40 0.80

FM, OPB −2.60 4.60 2.00

LAPW [208] FM −2.22 3.42 1.20

LMTO [202] FM −2.35 3.23 0.88

FM, OPB −2.60 4.26 1.66

LAPW [209] FM −2.31 3.71 1.40

LCAO [210] FM −2.11 3.18 1.07

LMTO [111] FM −2.43 3.82 1.39

FM, RPA −2.40 3.84 1.43

FM, cRPA −2.33 4.11 1.77

LCAO [211] FM −2.01 3.39 1.38

FM, MB −2.00 3.40 1.40
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MCA for the UX compounds was given for US. Here, the experimental situation
is rather controversial as results of extrapolation to 0 K vary from 7.3 meV [171]
up to 86.0 meV [216]. The same ordering for the MCA energies as found for
the orbital magnetic moments was obtained: LSDA ≤ OPx, OPB ≤ OPxc.

Table 5.7: MCA of UX. The MCA was calculated using LSDA. Calculations were
performed assuming FM order for all compounds. The measured MCA
energies for US are taken from [171, 216]. All MCA energies are given in
meV/(5f atom).

Method X MCA X MCA

FPLO N −0.1 O 7.9

FPLO + OPB −8.9 40.4

FPLO + OPxc −6.8 43.7

FPLO + OPx −6.0 37.3

EXP −− −−
FPLO P −0.1 S 10.5

FPLO + OPB 15.0 51.4

FPLO + OPxc 33.7 67.1

FPLO + OPx 16.9 49.4

EXP −− 7.3 − 86.0

FPLO As 7.3 Se 15.9

FPLO + OPB 34.2 50.2

FPLO + OPxc 46.3 58.0

FPLO + OPx 37.2 47.9

EXP −− −−
FPLO Sb 19.7 Te 15.4

FPLO + OPB 42.7 44.5

FPLO + OPxc 45.7 36.9

FPLO + OPx 44.6 41.0

EXP −− −−

5.1.3 Summary

We calculated magnetic moments of the ground-state of several UX compounds.
First we investigated the ground-state of UN. For that purpose calculations
applying either the FM or the AFM type-I order were conducted. The measured
AFM ground-state was only obtained when using additionally OPC on top of
LSDA.

Second, we investigated the class of UX compounds and showed the necessity
of OPC to properly quantify the magnetic moments. We performed calculations
using OPxc and OPx obtained with local SR, see Chapter orbitals 3. Applying
OPC to the 5f states yielded much larger orbital momenta than obtained with
pure LSDA. We demonstrated that the OPx yielded for this class of compounds
magnetic moments much closer to experiments than OPxc. The results of OPB
and OPx were comparable.

Third, we calculated the MCA for these two classes of compounds by assum-
ing a FM order for these investigations. We observed the wrong easy axis for
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UP, UAs, and USb. A possible explanation is that the experimentally obtained
ground-state for these compounds is a non-collinear multiple-k ground-state.
Our calculations only admitted a collinear AFM type-I order. In fact, the ex-
perimentally reported MCA for US was observed even for a non-distorted cubic
structure. We saw, that the MCA calculated without applying OPC can be
seen as an lower estimation. The calculations using OPC yielded MCA which
turned out to be an upper estimation.

5.2 UM2, with M = (Sc, T i, V, Cr, Mn, Fe, Co, Ni,

Cu, and Zn)

5.2.1 Calculational Details

The class of UM2 compounds with M ∈ 3d, having cubic Laves phase symme-
try [217], is discussed as next. As opposed to the previously studied case, the
magnetism here is not solely driven by the 5f states moreover become the 3d
states important. Among this class, we mention UFe2 which has been inten-
sively studied since the late 1960s. UFe2 is reported to order FM below 160 K
with a low anisotropy similar to that of pure Fe. This compound has attracted
interest due to the fact that the spin and orbital magnetic moment at the U
site are almost cancelling each other leading to a magnetisation mainly stem-
ming from the Fe site. In that respect, it is interesting to discuss the d − f
hybridisation along the series.

We used 243 k-points in the BZ for the k-space integrations. OPC was
applied to the 5f states at the U site and to the 3d states at the 3d site. All
other settings were as in Section 5.1 introduced. The following symmetry was
applied: Spacegroup 227, Wyckoff positions U = (1/8, 1/8, 1/8) and 3d = (1/2,
1/2, 1/2). Thus, the primitive cell contained 4 atoms of type M and 2 atoms
of type U. We assumed the cubic structure in all our calculations in order to
make consistent statements along the series. Nevertheless, it is known that
UNi2 crystallises in a hexagonal Laves phase [198]. Calculations assuming this
symmetry can be found in [218]. In fact, structural informations for UM2 with
M ∈ Sc, Ti, V , Cr, Cu, and Zn are to the best of our knowledge not existent,
thus the calculations for these compounds show a hypothetical character.

5.2.2 Results

In Table 5.8 we list the theoretical and the experimental [219] lattice constants.
We found a parabolic shape of the volume along the series, as similarly observed
for the pure transition metals, indicating that the d electrons play a crucial
role in this compounds. We used the calculated lattice constants to discuss the
magnetic properties. In Table 5.8 are also shown the nearest neighbour distances
for the d atoms (dd−d) and U atoms (dU−U ). According to Hill’s limit all but
one (the only exception is USc2) compounds exhibit itinerant f electrons, and
should be non-magnetic. Only USc2 is close to the border of having localised f
electrons and magnetic order may occur.

In Table 5.9 we present the calculated magnetic moments obtained without
and with applied OPC to the 3d states at the M sites and the 5f at the U
site. We found a magnetic solution for Sc, Mn, Fe, Co, Ni, Cu, and Zn
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Figure 5.8: Magnetic moments of UM2. The magnetic moments were obtained using
LSDA. The magnetic moments are given in µB/atom. Notation as follow-
ing: - FPLO + SOC, - FPLO + OPB, - FPLO + OPxc,
and - FPLO + OPx.
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Table 5.8: Lattice parameters UM2 with M = (Sc, T i, V, Cr, Mn, Fe, Co, Ni, Cu,
and Zn). The optimised parameters were obtained using FPLO with LSDA.
Measured lattice constants are taken from [219]. All lengths are given in
Å.

M aexp alsda dd−d dU−U

Sc −− 8.025 2.837 3.475

Ti −− 7.496 2.650 3.246

V −− 7.180 2.538 3.109

Cr −− 6.999 2.475 3.030

Mn 7.160 6.885 2.434 2.981

Fe 7.055 6.819 2.411 2.953

Co 7.000 6.815 2.409 2.951

Ni −− 6.899 2.439 2.987

Cu −− 7.081 2.503 3.066

Zn −− 7.353 2.600 3.184

in a pure LSDA + SOC calculation. Ti, V , and Cr are found to be non-
magnetic. Applied OPC yield a magnetic state for Ti. V and Cr are found
non-magnetic for all conducted calculations, even when OPC was applied. By
comparing the orbital magnetic moments obtained with additional OPC, one
recognises that the following relation was obtained for all calculated µl with
the particular method: µlsda

l ≤ µopx
l ≤ µopb

l ≤ µopxc
l . Interestingly, for the spin

moment holds: µlsda
s ≤ µopx

s , µopb
s ≤ µopxc

s , which means that the ordering of
the calculated orbital moments applying OPB and OPx was interchanged with
respect to the ordering of the obtained spin moments for M = Co, Ni, Cu, and
Zn, respectively.

In Figure 5.8 we display the site resolved spin and orbital magnetic moments.
A non-vanishing moment at the M site was found for Sc, Mn, and Fe. In the
case of Sc the spin moment is found to align parallel to the spin moment at the
U site. For Mn and Fe the spin moments are found to be anti-parallel. The
largest spin moment at the M site was observed for Fe. A rapid disappearance
of the spin moment at the M site was seen when going from Fe to Co. The spin
moment at the M site was almost zero for Co, Ni, Cu, and Zn. An increasing
of the spin moment at the U site was observed for these compounds when going
from Co to Zn. By comparing the calculated site resolved orbital moments in
Figure 5.8b and the total orbital moments Table 5.9 one recognises that the
orbital moment is carried only by the 5f states. In all cases the orbital moment
is anti-parallel to the spin moment at the U site.

Figure 5.9a displays the occupation number in dependence on the d band
filling. We recognised that the U occupation remains constant at n5f ≈ 2.7,
which is lower than found in atoms with n5f = 3.0, indicating a possible d − f
hybridisation or a possible charge transfer. The n6d remains also constant, at
n6d ≈ 2.2. For the d band we found a linear dependency of n3d on the band
filling. As a result the occupation number was of similar amount as obtained
for pure 3d elements.

With the help of the Stoner criterion [220], which defines the instability of
the non-magnetic state with respect to the FM state, we are able to relate the
DOS at the Fermi level and the magnetic state of the U and M atoms. In our
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Table 5.9: Magnetic moments of UM2 with M = (Sc, T i, V, Cr, Mn, Fe, Co, Ni, Cu,
and Zn). The magnetic moments were obtained with LSDA. All moments
are given in µB/(f.u.).

M Method µs µl µt

Sc FPLO 2.18 −0.65 1.54

FPLO + OPB 2.57 −1.46 1.11

FPLO + OPxc 2.90 −1.86 1.05

FPLO + OPx 2.66 −1.38 1.28

Ti FPLO 0.00 0.00 0.00

FPLO + OPB 0.30 −0.23 0.07

FPLO + OPxc 0.48 −0.38 0.10

FPLO + OPx 0.15 −0.10 0.05

V FPLO 0.00 0.00 0.00

FPLO + OPB 0.00 0.00 0.00

FPLO + OPxc 0.00 0.00 0.00

FPLO + OPx 0.00 0.00 0.00

Cr FPLO 0.00 0.00 0.00

FPLO + OPB 0.00 0.00 0.00

FPLO + OPxc 0.00 0.00 0.00

FPLO + OPx 0.00 0.00 0.00

Mn FPLO −0.79 −0.01 −0.80

FPLO + OPB −0.73 −0.04 −0.77

FPLO + OPxc −0.69 −0.05 −0.77

FPLO + OPx −0.74 −0.03 −0.77

Fe FPLO −0.70 −0.11 −0.81

FPLO + OPB −0.67 −0.23 −0.90

FPLO + OPxc −0.65 −0.29 −0.94

FPLO + OPx −0.68 −0.19 −0.87

Co FPLO 0.41 −0.13 0.28

FPLO + OPB 0.47 −0.26 0.21

FPLO + OPxc 0.51 −0.30 0.20

FPLO + OPx 0.46 −0.22 0.24

Ni FPLO 0.85 −0.23 0.62

FPLO + OPB 1.22 −0.64 0.58

FPLO + OPxc 1.61 −1.01 0.60

FPLO + OPx 1.16 −0.52 0.64

Cu FPLO 1.28 −0.42 0.86

FPLO + OPB 1.54 −0.97 0.57

FPLO + OPxc 1.93 −1.41 0.52

FPLO + OPx 1.56 −0.86 0.70

Zn FPLO 2.14 −0.68 1.47

FPLO + OPB 2.34 −1.42 0.92

FPLO + OPxc 2.54 −1.88 0.66

FPLO + OPx 2.36 −1.34 1.02
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Figure 5.9: DOS(ǫf ) and occupation numbers UM2. The calculations were performed
using LSDA and assuming a non-magnetic ground-state. The DOS is given
in states/(eV · f.u.). Notation as following - DOS: - total contri-
bution, - 5f contribution, and - 3d contribution, occupation
number: - 5f contribution, - 6d contribution, and - 3d
contribution. The dashed line denotes the critical DOS at ǫf to stabilise
FM at the 3d site, the full line denotes the critical DOS at ǫf at the
U site. The shaded region marked denotes non-magnetic solutions, and
the shaded region marked denotes the region in which the magnetism is
carried mainly by the 3d states.
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calculations for the UM2 compounds only the FM state was taken into account,
thus the use of the FM Stoner criterion is justified. In Figure 5.9b we plot the
total and partial DOS at the Fermi level in dependence on the 3d band filling for
a non-magnetic calculation. First, we want to discuss the magnetic situation for
every single atom. For that reason we calculated the critical DOS at ǫf for which
magnetism is stabilised based on the exchange integrals given in [221] (dashed
and dotted black lines in this figure). In case of the 3d atoms, the critical value
was obtained only for Mn. In the case of Fe, for which we observed the largest
spin moment at the 3d site, the Stoner criterion obviously is not ful-filled in
contradiction to previous calculations [222]. The critical DOS was reached for
Sc, Ni, and Zn at the U site for the 5f states. For the non-magnetic calculated
compounds with Ti and V the Stoner criterion was almost ful-filled.

When applying the Stoner criterion for the whole primitive cell as demon-
strated in [222], the Stoner criterion was for none of the compounds ful-filled.
This is mainly caused by a lower DOS at ǫf as obtained in previous calculations
for, e.g. UFe2 and UCo2 [222].

By comparing our results with available data in literature we want to classify
our results. To our knowledge no experiments and calculations are reported on
M = Sc, Ti, V , and Cr. Thus, our calculations show a predictive character.
Magnetisation measurements suggested that UMn2 possess an AFM structure
which was explained by an anomaly of the susceptibility at 260 K [223]. How-
ever, a number of experiments disagreed with the previous paper. On the one
hand no evidence of magnetic ordering was found [224] and on the other hand
there was reported the absence of magnetic ordering [225, 226]. The same con-
troversial situation is found for the theoretical calculations, where UMn2 was
said either to be paramagnetic [227] or to be FM [228]. Our calculations approve
the calculations of [228] and hence are in disagreement with the experimental
results. The question arises whether this discrepancy is caused by the structural
transformations which occur at T ∼ 210 − 240 K [226] or by the existence of
meta-magnetic states.

The situation in UFe2 is much clearer. Neutron measurements indicated
a cancellation of the spin and the orbital momentum at the U site such that
the magnetism is mainly driven from the Fe site [229]. This behaviour was
qualitatively correct predicted by previous DFT calculations [222]. A collection
of available data in literature is provided by Table 5.10. The cancellation of the
magnetic moment at the U site was confirmed by neutron measurements [230]
and XMCD [231]. All DFT calculations overestimate both, the spin and the
orbital moment resulting in a slightly too large total magnetic moment at the U
site. In fact, the only calculation yielding a vanishing total magnetic moment at
the U site is the LMTO + U(OP) calculation [232]. The total magnetic moment
was not affected by applying OPC, caused by a simultaneously increasing of µl

and µs due to large SO coupling. Our calculated µs at site U and Fe were in
best agreement with experiments, however the cancellation of µs and µl was
not correctly reproduced. The calculated total magnetic moment agreed well
with the measured moment. In fact, the only calculations yielding similar µt are
these by KKR [233] and the LMTO [232], but the local magnetic site moment
was overestimated in both cases.

UCo2 has been reported to be an exchange-enhanced Pauli paramagnet [236,
237]. Theoretical foundation was given in [222]. According Figure 5.9b we
confirm previous calculation, however the calculated state assuming FM order
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Table 5.10: Magnetic moments UFe2 from literature. The LMTO results are taken
from [232, 234]. The KKR results are from [233]. Experiments are
from [230, 231, 235]. All magnetic moments are given in µB/(f.u.).

Method U Fe UFe2

µs µl µt µs µl µt µs µl µt

LMTO −0.71 0.47 −0.24 0.75 0.07 0.82 0.79 0.61 1.40

LMTO + OP −1.03 0.88 −0.15 0.82 0.07 0.89 0.61 1.02 1.63

LMTO −0.61 0.35 −0.26 0.68 0.06 0.74 0.75 0.47 1.22

LMTO + U(OP) −0.71 0.72 0.01 0.71 0.08 0.79 0.71 0.88 1.59

LMTO + U −1.83 3.08 1.25 1.14 0.20 1.34 0.45 3.48 3.93

KKR −0.56 0.29 −0.27 0.69 0.06 0.75 0.82 0.41 1.23

FPLO −0.41 0.09 −0.31 0.55 0.01 0.56 0.69 0.11 0.80

FPLO + OPB −0.46 0.17 −0.29 0.56 0.03 0.59 0.66 0.23 0.89

FPLO + OPxc −0.51 0.21 −0.30 0.58 0.04 0.62 0.65 0.29 0.94

FPLO + OPx −0.45 0.14 −0.31 0.56 0.02 0.58 0.68 0.19 0.87

EXP (Neutrons) −0.22 0.22 0.01 0.59 −− −− −− −− 1.19

EXP (XMCD) −0.20 0.21 0.01 −− −− −− −− −− −−
EXP (MCS) −0.20 −− −− 0.52 −− −− −− −− −−

is lower in energy than the non-magnetic.

UNi2 orders FM with a TC = 21 K [238] in the hexagonal MgZn2 struc-
ture [239]. Neutron measurements indicated that the magnetism is mainly car-
ried by the 5f electrons with a large orbital contribution which is cancelled by
the spin contribution at the U site [240]. Magnetisation measurements approved
a total magnetic moment of 0.08 µB/(f.u.) [239]. By fixing the spin magnetic
moment at the measured amount with the FSM and taking into account both
SO coupling and OPC, the calculated magnetic moments were in best agree-
ment with the measured moments [218]. A simple band theoretical approach
explaining why the magnetism in UFe2 is driven by the 3d states, UCo2 is para-
magnetic, and UNi2 is again FM, by using the 3d band filling as argument for
this scenario, can be found in [241]. As seen by Figure 5.9 our results support
these previous claimed arguments.

Following the trend of this simple band picture for UCu2, this compound
would again be close to the border of being FM like UCo2 when the f5 / 2 shell
crosses ǫf . This is also seen in Figure 5.9b, where the DOS of the 3d states is
almost zero at ǫf and the DOS is entirely made by the 5f states. From that
point of view, we would expect a stronger polarisation at the U site accompanied
by non-magnetic Cu, as seen in Figure 5.8. However, experiments observed a
decreasing of the magnetisation and TC by doping UNi2 with Cu [241]. It
seems that LSDA predicts the wrong ground-state, which may be remedied by
including correlation effects.

5.2.3 Summary

We performed DFT calculations for the UM2, M ∈ 3d, compounds. We calcu-
lated the magnetic moments with and without OPC using the optimised LSDA
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lattice parameters. We obtained FM and non-magnetic order along the series.
The magnetism was carried by two different electronic states. For Ti, Co, Ni,
Cu, and Zn the magnetism was caused by the 5f electrons, while for Mn and
Fe the magnetism was caused by the 3d states. When looking on Table 5.8 one
concludes that localised magnetism is only possible for USc2. Here, the U-U
nearest neighbour distance is close to Hill’s limit. For all other compounds the
valence electrons can be seen as itinerant according to their nearest neighbour
distances.

It could be shown, that the 3d occupation significantly contributes to the
total DOS up to Co. As the 3d band is almost completely filled, the d band was
moving to lower energies that ǫf . The DOS at the ǫf is then solely determined
by the 5f states, which are responsible for the magnetism.

When applying OPC the orbital moment and the spin moment were in-
creased such, that the total moment is unaffected by OPC. Discrepancies in
obtaining the correct magnetic ground-state were found for Mn and Co, which
turned out to be magnetic while being non-magnetic in experiment. The Stoner
criterion was not ful-filled for the FM UFe2, which was previously correctly pre-
dicted by DFT calculations [222]. This is mainly caused by a drastic decrease
of the DOS at ǫf as opposed to previous calculations. A possible explanation
is given by the fact that the previous investigations considered the experimen-
tal observed hexagonal structure, while a cubic structure was assumed in our
calculations. The cancellation of orbital and spin moment in UNi2 was not
reproduced by LSDA and also not by additionally applying OPC.

5.3 UAsSe, USb2

5.3.1 Calculational Details

The classes of uranium dipnictides and dichalcogenides are beautiful examples
for exploring the dual nature of the 5f electrons. In that respect, by chang-
ing the pictogen or chalcogen anion radius, intriguing physical properties may
evolve. In this way the inter-atomic distances are modified leading to more
or less hybridisation of the 5f states with its surrounding. We calculated the
magnetic properties for UAsSe and USb2. UAsSe crystallises in the Pb-FCl
crystal structure, despite USb2 crystallises in the anti-Cu2Sb structure (both
have P4/nmm space group). UAsSe is a FM with [111]-direction of the easy
axis and TC = 113 K [242]. USb2 is a AFM with following stacking + − −+,
resulting that the magnetic unit cell is as twice as large as the crystallographic.
The Néel Temperature was measured TN = 206 K [243]. In order to reduce nu-
merical effort, we assumed FM order for both compounds. Figure 5.10 visualises
schematically the structure assumed in our calculations.

We used 243 k-points in the BZ for the k-space integrations, all other settings
were as in Section 5.1 introduced. We used the measured lattice constants. The
lattice parameters were for UAsSe a = 3.984 Å and c = 8.371 Å, and for USb2

we had a = 4.270 Å and c = 8.748 Å. The nearest neighbour distance was
located for UAsSe about dU−U = 3.984, and for USb2 dU−U = 4.270 in the
U plane. The out-of-plane nearest neighbour distance was about for UAsSe
dU−U = 4.777, and for USb2 dU−U = 4.891. According Hills limit there is to
be expected localised FM behaviour. Typically one finds for very large U-U
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Figure 5.10: Structure of UAsSe and USb2. Notation as following: - U atoms - As,
Sb atoms - Se, Sb atoms. The red bars indicate the spin quantisation
axes, which are chosen for UAsSe to point along the [111] direction and
for USb2 to point along the [100] direction.

spacings AFM behaviour, which is indeed the case for USb2.

Magnetic susceptibility measurements [244, 245], polarised neutron experi-
ments [242], and photoemission experiments [246] favoured localised 5f states
for UAsSe. However, the enhanced Sommerfield coefficient was reported to
be between 27.4 and 40.6 mJ/(mol K2) [247] as well as the experimental and
calculated magneto-optical Kerr spectra [248, 249] suggested a more itinerant
character of the 5f states, at least when the f electrons in the U-U planes are
considered. Recently investigation by means of DFT calculations and ARPES
underlined the fact of strong delocalisation in the U-U planes and strong localisa-
tion in perpendicular direction [250]. Treating the 5f states as partially localised
and partially delocalised was successfully demonstrated in [251], supporting here
the idea of having basal delocalisation and perpendicular localisation of the 5f
states.

5.3.2 Results

Experimentally it was observed that for both compounds the Fermi surface is
quasi two dimensional [252]. For USb2 4 two dimensional cylinders by means
of de Haas - van Alphen measurements were observed [253, 254]. DFT calcu-
lations correctly reproduced this topology of the Fermi surface for USb2 [255].
In order to justify the applicability of a FM configuration, we calculated the
band structure and compared it with the calculated AFM band structure from
literature. Figure 5.11 shows both band structures. The FM band structure was
calculated without applied OPC, the AFM calculation is done fully relativistic
without OPC and taken from [256]. By comparing both results we recognise
differences at the M point, between the Γ and the X points, and between the
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Figure 5.11: Calculated Band structure of USb2. The FM calculation was done with
FPLO9, the AFM band structure was calculated with FPLO using LSDA,
and is taken from [256].

Γ and the M points. Apparently, the FM configuration produces more band
crossings than the AFM configuration leading to a slightly different Fermi sur-
face. However, the two dimensionality remains in both calculations. For both
compounds a FM set-up was chosen by reason of that the magnetic moment at
the uranium site is not strongly dependent on the magnetic order as seen in the
previous sections.

In Table 5.11 we list the calculated magnetic moments of UAsSe and USb2.
The spin quantisation axis was defined for UAsSe along the [111] direction and
for USb2 along [100] direction. The calculated DOS at ǫf is mainly driven by
the 5f states [257], indicating that here the 5f are then responsible for the
magnetism. Comparison with experimental and theoretical data from literature
reveals that the spin moment was in all calculations applying OPC overesti-
mated by a factor of 3.4 − 3.6. Already, in a pure LSDA calculation the spin
moment was overestimated by a factor of 2.7. The measured orbital moment
was underestimated by a pure relativistic LSDA by 47 %. All calculation using
OPC yielded slightly smaller orbital momenta than the measured. Apparently,
the orbital moment is calculated too small even when applying any OPC sug-
gesting that the f states have to be considered within a localised picture. We
found the wrong sign of µt for a pure LSDA calculation. Additionally, calcu-
lations performed with OPC showed that the total magnetic moment is almost
zero, caused by a large spin momentum and at the same time to small orbital
momenta.

For USb2 only the ordered total magnetic moment is measured. As seen
for UAsSe, the calculated total moment is by far to small in comparison with
experiment. We reach same conclusions for the spin and orbital moment with
respect to OPC as previously for UAsSe.

When comparing the occupation numbers, we find for USb2 for the 5f shell
2.85 (LSDA), 2.88 (OPB), 2.92 (OPxc), and 2.89 (OPx) and for the 6d shell 2.01,
1.99, 1.96, and 1.98 in the same notation. In that sense the 5f occupation is
larger that obtained for UM2 compounds (Section 5.2). Even higher occupation
of the 5f states are found for UAsSe with: 2.91, 2.93, 2.99, and 2.95 and for the
6d states: 1.74, 1.67, 1.63, and 1.66.
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Table 5.11: Magnetic moments of UAsSe and USb2. The magnetic moments were
obtained using LSDA. Additional OPC was applied to the 5f states at the
uranium site. The ASW calculation is taken from [249]. The FP-LMTO
calculation is taken from [255] Experiments are taken from [242, 243, 258].
All moments are given in µB/(f.u.).

Cpd. Method µs µl µt

UAsSe FPLO 1.79 −1.18 0.61

FPLO + OPB 2.23 −2.23 −0.00

FPLO + OPxc 2.40 −2.48 −0.16

FPLO + OPx 2.28 −2.23 0.05

ASW + SOC 1.86 −2.63 −0.77

EXP (Neutrons) 0.66 -2.08 -1.42

EXP (Magn.) – – -1.29

USb2 FPLO 1.35 −1.10 0.23

FPLO + OPB 1.63 −1.89 −0.21

FPLO + OPxc 1.89 −2.22 −0.33

FPLO + OPx 1.69 −1.89 −0.20

FPLMTO + SOC 2.05 −3.00 −0.95

EXP (Neutrons) – – -1.88

5.3.3 Summary

By electronic structure calculations, we have shown that for UAsSe and USb2

OPC improve the description of the orbital momentum. However, it turns out,
that the calculated spin moment is for UAsSe calculated too large by a factor
of about 3 − 3.5 in comparison with experiment. A possible way of avoiding
this problem would be to fix the spin momentum by the measured ratio and do
a fully relativistic calculation including OPC, as proposed in [218].

Band structure calculations reproduced the two dimensional character of
the Fermi surface. We mark that at the high symmetry point M little changes
of external variables (pressure, doping, magnetisation, . . .) would produce a
Lifshitz transition. Further calculations have to be done to clarify this situation,
in order to find a singularity in a measurable and appropriate physical quantity,
e.g. the thermopower [259].



6
Summary and Outlook

In this thesis magnetic properties from selected solids in the framework of DFT
were discussed.

In Chapter 3 the applicability of the three Hund’s rules on solids was dis-
cussed. In common approximations like LSDA and GGA, there are missing
orbital dependent potentials, which however are necessary to describe appropri-
ately OP in solids. By introducing a Stoner like expression for the OP, one gets
rid of the underestimation of µl using conventional LSDA or GGA. The OP en-
ergies for 3d, 4d, 5d, 4f , and 5f shells, based on a previously proposed method,
were presented. In order to account for relativistic effects we used either NR
atomic orbitals or SR atomic orbitals to evaluate the OP energies.

In Chapter 4 we investigated magnetic moments and MCA of the transition
metals Fe, Co, and Ni. A careful analysis of these magnetic properties using
the OPC was done and the obtained results were compared with available data
in literature. Orbital moments are better represented when applying OPC, but
OPC often overestimates the measured MCA. In the Second part of Chapter
four we analysed properties of thin FeCo films. Comparing ordered and dis-
ordered alloys it was demonstrated that these alloys have a large saturation
magnetisation and at the same time have a large MCA. By applying the EBP,
meaning that relaxed structures have been taken into account in the calcula-
tions, it was shown that smaller substrates, as currently used in experiments,
will further increase the MCA. It was clearly demonstrated that the effect of
ordering increases the MCA, as similar observed for FePt alloys.

In Chapter 5 a careful study of uranium compounds was done. We investi-
gated the applicability of OPC on selected uranium compounds. The optimised
lattice constant for UN showed no strong dependency on either of the OPC ap-
plied. By assuming different magnetic structures, the experimentally observed
anti-ferromagnetic structure was reproduced only when OPC is applied. In all
other cases, the wrong ground-state was observed. We estimated the MCA of
these systems. It was found for US that the measured MCA was reproduced only
by applying OPC. Furthermore, large MCA were also obtained for the other UX
compounds and experimentally verification is desirable. In the second part of
this chapter we investigated the class of UM2 compounds. It was demonstrated
that along the series different magnetic ground-states were observed. The ques-
tion was answered whether possible magnetism is driven from the 3d states or
the 5f states. The stability of FM was checked by applying the Stoner criterion
on the NM states. It was shown that not all FM observed compounds ful-fill this
criterion. The last part of this chapter presented the results of electronic struc-
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ture calculations of ternary uranium dipnictides and dichalcogenides. It was
shown that applied OPC improves the description of the orbital momenta. Fur-
ther investigations of these quasi-two dimensional compounds about electronic
topological transitions look promising.
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Definitions

A.1 Spherical Harmonics

The complex spherical harmonics YL and the real spherical harmonics YL
12 are

defined as,

YL = (−1)
m + |m|

2 P l
|m| (cos θ)
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(A.2)

Conversion between YL and YL is to be done with,

YL = amYlm + bmYl−m, (A.3)

in which
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The spherical spinors [54] as eigenvectors of the operators J2, Jz, and L2

with corresponding eigenvalues j, µ, and l are,

χκµ = Ωjlµ =

(

cκµ↑Ylκµ− 1
2

cκµ↓Ylκµ+ 1
2
.

)

(A.5)

Here the Clebsch-Gordon coefficients are,

1For further reading, we suggest [260].
2The subscript L refers here to lm.
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ii A.2. Other Definitions Used in Text
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(A.6)

and

lκ =

{

κ κ > 0

−κ − 1 κ < 0
(A.7)

A.2 Other Definitions Used in Text

• Pauli matrices:

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

(A.8)

• β matrix:

β =

(

12 0
0 −12

)

(A.9)

• α matrices:

αk =

(

0 σk

σk 0

)

(A.10)

• γ matrices:

γk =

(

0 −iσk

iσk 0

)

(A.11)

• Σ matrix:

Σ =

(

σ 0
0 σ

)

(A.12)

• āl
k:

āl=2
k=1 =

1

14
, āl=2

k=2 =
1

14
(A.13)

āl=3
k=1 =

2

45
, āl=3

k=2 =
1

33
, āl=3

k=3 =
50

1287
(A.14)



B
Input Parameters for Bulk DFT

Calculations to Evaluate the Racah

Parameter

B.1 d-Shells

Table B.1: Input settings for the bulk DFT calculations for the 3d elements.

3d Spacegroup a
[

Å
]

b
[

Å
]

c
[

Å
]

Wyckoff

Ca 225 5.5884 5.5884 5.5884 (0, 0, 0)

Sc 194 3.3090 3.3090 5.2733 (1/3, 2/3, 1/4)

Ti 194 2.9508 2.9508 4.6855 (1/3, 2/3, 1/4)

V 229 3.0300 3.0300 3.0300 (0, 0, 0)

Cr 229 2.9100 2.9100 2.9100 (0, 0, 0)

Mn 217 8.9125 8.9125 8.9125 (0, 0, 0)

(0.316, 0.316, 0.316)

(0.356, 0.356, 0.034)

(0.089, 0.089, 0.282)

Fe 229 2.8665 2.8665 2.8665 (0, 0, 0)

Co 194 2.5071 2.5701 4.0695 (1/3, 2/3, 1/4)

Ni 225 3.5240 3.5240 3.5240 (0, 0, 0)

Cu 225 3.6149 3.6149 3.6149 (0, 0, 0)

Zn 194 2.6649 2.6649 4.9468 (1/3, 2/3, 1/4)

iii
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Table B.2: Input settings for the bulk DFT calculations for the 4d elements.

4d Spacegroup a
[

Å
]

b
[

Å
]

c
[

Å
]

Wyckoff

Sr 225 6.0849 6.0849 6.0849 (0, 0, 0)

Y 194 3.6474 3.6474 5.7306 (1/3, 2/3, 1/4)

Zr 194 3.2320 3.2508 5.1470 (1/3, 2/3, 1/4)

Nb 229 3.0004 3.0004 3.0004 (0, 0, 0)

Mo 229 3.1470 3.1470 3.1470 (0, 0, 0)

Tc 194 2.7350 2.7350 4.3880 (1/3, 2/3, 1/4)

Ru 194 2.7059 2.7059 4.2815 (1/3, 2/3, 1/4)

Rh 225 3.8034 3.8034 3.8034 (0, 0, 0)

Pd 225 3.8907 3.8907 3.8907 (0, 0, 0)

Ag 225 4.0853 4.0853 4.0853 (0, 0, 0)

Cd 194 2.9794 2.9794 5.6186 (1/3, 2/3, 1/4)

Table B.3: Input settings for the bulk DFT calculations for the 5d elements.

5d Spacegroup a
[

Å
]

b
[

Å
]

c
[

Å
]

Wyckoff

Ba 229 5.0280 5.0280 5.0280 (0, 0, 0)

La 194 3.7720 3.7720 12.144 (0, 0, 0)

(1/3, 2/3, 1/4)

Hf 194 3.1964 3.1964 5.0511 (1/3, 2/3, 1/4)

Ta 229 3.3013 3.3013 3.3013 (0, 0, 0)

W 229 3.1652 3.1652 3.1652 (0, 0, 0)

Re 194 2.7610 2.7610 4.4560 (1/3, 2/3, 1/4)

Os 194 2.7344 2.7344 4.4317 (1/3, 2/3, 1/4)

Ir 225 3.8390 3.8390 3.8390 (0, 0, 0)

Pt 225 3.9242 3.9242 3.9242 (0, 0, 0)

Au 225 4.0782 4.0782 4.0782 (0, 0, 0)

Hg 166 3.4600 3.4600 6.7020 (0, 0, 0)
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B.2 f-Shells

Table B.4: Input settings for the bulk DFT calculations for the 4f elements.

4f Spacegroup a
[

Å
]

b
[

Å
]

c
[

Å
]

Wyckoff

La 194 3.7720 3.7720 12.144 (0, 0, 0)

(1/3, 2/3, 1/4)

Ce 194 3.6200 3.6200 5.9900 (1/3, 2/3, 1/4)

Pr 194 3.6725 3.6725 11.8354 (0, 0, 0)

(1/3, 2/3, 1/4)

Nd 194 3.6580 3.6580 11.7990 (0, 0, 0)

(1/3, 2/3, 1/4)

Pm 194 3.6435 3.6435 11.7626 (0, 0, 0)

(1/3, 2/3, 1/4)

Sm 166 3.6199 3.6199 11.6800 (0, 0, 0)

(1/3, 2/3, 1/4)

Eu 229 4.5810 4.5810 4.5810 (0, 0, 0)

Gd 194 3.6360 3.6360 5.7825 (1/3, 2/3, 1/4)

Tb 194 3.6010 3.6010 5.6936 (1/3, 2/3, 1/4)

Dy 194 3.5930 3.5930 5.6537 (1/3, 2/3, 1/4)

Ho 194 3.5773 3.5773 5.6158 (1/3, 2/3, 1/4)

Er 194 3.5588 3.5588 5.5874 (1/3, 2/3, 1/4)

Tm 194 3.5375 3.5375 5.5546 (1/3, 2/3, 1/4)

Yb 225 5.4847 5.4847 5.4847 (0, 0, 0)

Lu 194 3.5031 3.5031 5.5509 (1/3, 2/3, 1/4)

Table B.5: Input settings for the bulk DFT calculations for the 5f elements.

5f Spacegroup a
[

Å
]

b
[

Å
]

c
[

Å
]

Wyckoff

Ac 225 5.6700 5.6700 5.6700 (0, 0, 0)

Th 225 5.0847 5.0847 5.0847 (0, 0, 0)

Pr 139 3.9250 3.9250 3.2380 (0, 0, 0)

U 63 2.8537 5.8695 4.9548 (0, 0.10199, 1/4)
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