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Abstract

Model-driven software development (MDSD) and component-based software development are
both paradigms for reducing complexity and for increasing abstraction and reuse in software
development. In this thesis, we aim at combining the advantages of each by introducing meth-
ods from component-based development into MDSD. In MDSD, all artefacts that describe a
software system are regarded as models of the system and are treated as the central develop-
ment artefacts. To obtain a system implementation from such models, they are transformed
and integrated until implementation code can be generated from them. Models in MDSD can
have very different forms: they can be documents, diagrams, or textual specifications defined
in different modelling languages. Integrating these models of different formats and abstraction
in a consistent way is a central challenge in MDSD.

We propose to tackle this challenge by explicitly separating the tasks of defining model compo-
nents and composing model components, which is also known as distinguishing programming-
in-the-small and programming-in-the-large1. That is, we promote a separation of models into
models for modelling-in-the-small (models that are components) and models for modelling-
in-the-large (models that describe compositions of model components). To perform such
component-based modelling, we introduce two architectural styles for developing systems with
component-based MDSD (CB-MDSD).

For CB-MDSD, we require a universal composition technique that can handle models defined
in arbitrary modelling languages. A technique that can handle arbitrary textual languages is
universal invasive software composition2 for code fragment composition. We extend this tech-
nique to universal invasive software composition for graph fragments (U-ISC/Graph) which
can handle arbitrary models, including graphical and textual ones, as components. Such com-
ponents are called graph fragments, because we treat each model as a typed graph and support
reuse of partial models.

To put the composition technique into practice, we developed the tool Reuseware that imple-
ments U-ISC/Graph. The tool is based on the Eclipse Modelling Framework3 and can therefore
be integrated into existing MDSD development environments based on the framework.

To evaluate the applicability of CB-MDSD, we realised for each of our two architectural styles
a model-driven architecture with Reuseware. The first style, which we name ModelSoC,
is based on the component-based development paradigm of multi-dimensional separation of
concerns4. The architecture we realised with that style shows how a system that involves mul-
tiple modelling languages can be developed with CB-MDSD. The second style, which we name
ModelHiC, is based on hierarchical composition. With this style, we developed abstraction and
reuse support for a large modelling language for telecommunication networks that implements
the Common Information Model5 industry standard.

1DeRemer, F., Kron, H.: Programming-in-the-large versus programming-in-the-small. (1975)
2Henriksson, J.: A Lightweight Framework for Universal Fragment Composition—with an application in the

Semantic Web. PhD thesis, Technische Universität Dresden. (2009)
3Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Framework. (2009)
4Ossher, H., Tarr, P.: Multi-Dimensional Separation of Concerns and The Hyperspace Approach. (2000)
5DMTF: Common Information Model Standards. http://www.dmtf.org/standards/cim. (2010)
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1
Introduction

Model-driven software development (MDSD) is a software development paradigm that leverages
models as the premier artefacts of software development. Models are specifications that describe
systems at different levels of abstraction, including abstractions of the domain of the customer
for whom a software system is developed. By this, complexity is reduced and separation
of concerns is improved. While system design with models is a common practice in software
engineering, models are often discarded in the implementation phase of the system, which leads
to inconsistencies between system design and implementation. In MDSD, however, models
have precedence over implementation code: They are input to transformation, generation,
and composition engines, which generate system implementations from models and therewith
automate the transfer from system design to system implementation.

This principle of model-driven, as opposed to code-centric, development was promoted
through the Model Driven Architecture (MDA) [OMG01] introduced by the Object Man-
agement Group (OMG) [OMG10a] in 2001. The utilisation of a model-driven architecture
promises advances in different critical fields of software system engineering [OMG01]:

“This is the promise of Model Driven Architecture: to allow definition of machine-
readable application and data models which allow long-term flexibility of imple-
mentation [. . . ], integration [. . . ], maintenance[. . . ], testing and simulation [. . . ].”

– Object Management Group. MDA Guide [OMG01]

For instance [OMG01], a model-driven architecture allows for generating different imple-
mentations from a common set of models and thus new platform technologies (e.g., new pro-
gramming languages) can be targeted with existing designs. Furthermore, since the design of
systems, and not only their implementations, are available in machine-readable form, system
integration can be automated and maintenance becomes simpler. Design models can then,
similar to code, be tested and validated against requirements.
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Figure 1.1: Two existing architectural styles for MDSD: (a) transformation-based style (in-
spired by [OMG01, Figure 2.2]), (b) view-based style (inspired by [AS08, Figure 1]).

A model-driven architecture is a special type of software architecture [SG96] that follows the
MDSD paradigm by adhering to the following two key concepts. First, a model-driven archi-
tecture offers developers machine-readable modelling languages with abstractions appropriate
for the domain of the system under construction. Second, a model-driven architecture utilises
refinement techniques that automatically extract information from models created with such
languages and transfer this information into the implementation of the modelled system.

The OMG initially proposed the Unified Modelling Language (UML) [OMG10b] as stan-
dard language for model-driven architectures. It turned out however, that one standard lan-
guage is not sufficient to model arbitrary systems for various customer domains and that
domain-specific languages [vDKV00] are needed within model-driven architectures [KBJV06].
A domain specific-language used in a model-driven architecture is hence called domain-specific
modelling language (DSML) [Kle08]. To support the usage of DSMLs in model-driven architec-
tures as alternatives or in addition to UML, the OMG standardised the way to define DSML
language concepts in the Meta Object Facility (MOF) standard [OMG06a]—such DSML defi-
nitions are called metamodels.1

The automatic refinement technique used by a model-driven architecture dominates the gen-
eral structure of the architecture. The choice of refinement technique can thus be regarded as
choice of architectural style [SG96]. The architectural style proposed by the OMG in the MDA
guide [OMG01] defines a transformation-based style illustrated in Figure 1.1a. In this style,

1For simplicity, we refer to any language as DSML for which a MOF specification of the language structure
exist. This includes large modelling languages as UML, but also programming languages, such as Java, if
their structure is defined with MOF.
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models are automatically transformed into refined models, which are eventually transformed
into an implementation. However, additional information is required for each automated refine-
ment, which has to be provided through additional models (Figure 1.1a). Although this style of
model-driven architecture defined by the OMG is often referred to as the (one and only) Model-
Driven Architecture, it can be argued that any architecture that follows the MDSD paradigm
is a model-driven architecture. Then, other architectural styles are possible. One such style
is proposed by Atkinson et. al in [AS08] for the KobrA modelling method [ABB+01]. This
view-based model-driven architectural style, illustrated in Figure 1.1b, uses a single underlying
model that holds all information about the system and treats the models developers work with
as views on the underlying model—including the implementation code. Bi-directional trans-
formations are responsible for creating models from and reintegrating models into the single
underlying model (Figure 1.1b). This shows that different architectural styles for model-driven
architectures are possible and, in certain situations, more suitable.

The shown architectural styles have drawbacks which makes them difficult to use in practical
software development; we discuss this in the following. We believe that many problems are
caused by a lack of component support in MDSD. Although, components are a central concept
in software architectures in general [SG96]. In this thesis, we therefore develop a composition
technique for MDSD and styles for component-based model-driven architectures.

1.1 Problem: Consistency and Information Tracing in MDSD

“A central tenet of MD[S]D is that there are multiple representations of artefacts
inherent in a software development process, representing different views of or levels
of abstraction on the same concepts. [. . . ] The basic problem is that the intro-
duction of multiple, interrelated representations implies the issue of assuring their
mutual consistency—a very difficult problem.”

– Hailpern, Tarr.
Model-driven development: The good, the bad, and the ugly [HT06, p. 456]

Hailpern and Tarr essentially state that redundancy is inherent in MDSD because similar
information is defined, or transferred between, multiple artefacts and that therefore consis-
tency between these artefacts needs to be assured which is “a very difficult problem”. In fact,
consistency problems occur during two activities, illustrated in Figure 1.2: (1) during the set
up of a model-driven architecture in terms of defining DSMLs and transformations, which
is performed by a process architect, and (2) during the development of a system with the
model-driven architecture, which is performed by a system designer.

In the first case, the process architect has to integrate the DSMLs and transformations such
that all information can be defined in separate models, as suggested in Figure 1.1a, and that
manual refinement of generated models or code is not necessary. This is a task which is often
not successful because it is difficult to grasp which features from the target platform should be
abstracted and which not. An example is that developers often experience the need to manually
refine generated code since it is not possible to define each information in a separate model.
In such a case, the architecture should be refined. However, such evolutions of model-driven
architectures are not well supported by the transformation-based style.
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Figure 1.2: Roles and their responsibilities in developing and using model-driven architectures
of different styles.

In the second case, the system designer has to cope with the problem of tracing information in
the complex scenario where multiple transformations replicate and scatter similar information.
For examples, developers often modify generated code when they find an error by debugging
the running system, not because it is impossible to change the information in a model, but
because they do no know where this model is located. Locating a model that is responsible
for a piece of generated code is especially difficult if the code was generated by a chain of
transformations that extracted information from different places in different models.

Since in both cases there is knowledge missing about where which information is needed and
where which information is combined, we see the root problem in an insufficient separation of
concerns and in particular in an insufficient separation between components and component
composition, which should be a fundamental principle in each software architecture. This sepa-
ration of component implementations and component composition is also known as distinguish-
ing between programming-in-the-small and programming-in-the-large, one of the foundations
of software architecture, introduced by DeRemer and Kron [DK75] who state:

“We argue that structuring a large collection of modules [i.e., components] to form
a system is an essentially distinct and different intellectual activity from that of
constructing the individual modules [i.e., components]. That is, we distinguish
programming-in-the-large from programming-in-the-small.”

– DeRemer, Kron.
Programming-in-the-Large versus Programming-in-the-Small [DK75, p. 1]
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Bézevin et. al argue that distinguishing these two development activities is also important for
MDSD and introduced the terms modelling-in-the-large and modelling-in-the-small [BJRV05].
They do, however, not discuss the separation of modelling-in-the-large and modelling-in-the-
small in model-driven architectures directly. We believe that this separation requires more
attention to solve the consistency and traceability issues.

A language for programming-in-the-large in software architecture is called architectural de-
scription language, which is a special type of composition language [Aßm03]. In contrast, a lan-
guage for programming-in-the-small, which is used to implement components, is a component
language. In model-driven architectures, however, there is so far no separation of composition
and component languages. In the transformation-based (Figure 1.1a), and also the view-based
(Figure 1.1b) style, there is only a separation between models and transformations, but no
separation between models that are components (defined in component languages) and models
that are compositions of components (defined in composition languages).

To illustrate this, let us again consider the roles different developers play when they work
with a model-driven architecture. In addition to the two roles of process architect and system
designer discussed above, Figure 1.2 splits the system designer role further into system architect
and system developer. The system architect corresponds to the classical software architect of
a non-model-driven architecture. He or she is responsible for modelling the system’s structure
by defining composition of components, which we call composition programs, in composition
languages. The system developer is responsible for defining components with a component
language. Since there is no distinction between composition and component languages, the
system architect and system developer roles are not easy to separate.
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We believe that these two roles should be separated and that we should distinguish between
DSMLs that are component languages and DSMLs that are composition languages. In such
a component-based architectural style, the process architect would decide which DSMLs are
component and which are composition languages as suggested in Figure 1.2b. Instead of
defining transformations, he or she defines modularity concepts through which composition
and component languages relate (Figure 1.2b). System architects are then responsible for
defining the architecture of a system by using the composition language DSMLs and system
developers use the component language DSMLs to model or implement components.

Our suggestion for two component-based model-driven architectural styles are sketched in
Figure 1.3. Both styles require a universal composition language to represent the complete
system structure. This composition language can either be used as unifying format for all
composition language DSMLs (Figure 1.2b left; Figure 1.3a) or directly as single universal
composition language (Figure 1.2b right; Figure 1.3b). The former case allows for customisa-
tion, while the latter allows for reuse of the composition language.

Our hypothesis is that a combination of MDSD and component-based development to de-
sign model-driven architectures with the suggested styles improves the separation of con-
cerns in MDSD and therewith the management of consistency and information tracing. In
this thesis, we therefore develop a universal composition technique for models and a tool
based on that for component-based MDSD (CB-MDSD). CB-MDSD combines the advantages
of MDSD—domain abstraction in DSMLs and automated refinement—and component-based
development—separation of concerns and reuse of components. We use CB-MDSD to define
concrete component-based architectural styles for MDSD and use these styles to implement
model-driven architectures through which we evaluate our hypothesis.

1.2 Thesis Contributions and Structure

The overall contribution of this thesis is component-based model-driven software development
(CB-MDSD) illustrated in Figure 1.4. CB-MDSD is founded on a universal composition tech-
nique for models (Figure 1.4 left), a tool implementing this technique (Figure 1.4 middle),
and two component-based architectural styles for MDSD (Figure 1.4 right). The first style,
called ModelSoC2, transfers the concept of multi-dimensional separation of concerns [OT00]
to MDSD and can be used to implement component-based model-driven architectures that,
similar to traditional transformation-based architectures, allow the inclusion of arbitrary many
DSMLs as composition as well as component languages. The second style, called ModelHiC3,
is based on hierarchical composition and restricts an architecture to include a single predefined
composition language—the Universal Composition Language (UCL). In cases where this re-
striction is acceptable, setting up an architecture with ModelHiC requires less effort as doing
so with ModelSoC.

To illustrate the aforementioned problem and our solution, we first introduce a motivating
example in Chapter 2 which we use throughout the thesis. The remaining structure of the
document is oriented at our three major contributions, which correspond to the three columns
in Figure 1.4. They are summarised in the following.

2Component-based model-driven architectures with multi-dimensional separation of concerns
3Component-based model-driven architectures with hierarchical composition
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Figure 1.4: Overview of CB-MDSD and our contributions.

1.2.1 Contribution 1 (C1): Composition Technique for Typed Graphs (Part I)

In CB-MDSD, models are composed at development time to obtain new integrated models and
implementations of the modelled system. Therefore, a static composition technique is needed
that can compose models by merging them. Since models that are defined in a DSML specified
with MOF are typed graphs, we introduce a composition technique that treats typed graphs
as components.

Our composition technique is an extension of Universal Invasive Software Composition (U-
ISC) introduced by Henriksson [Hen09]. With U-ISC, one can design component support
for textual (domain-specific) languages that are described by context-free grammars [Cho56].
Components in U-ISC, called fragments, are trees obtained by parsing textual artefacts. Com-
position is performed by merging these trees. We base our work on U-ISC, because we require
a method to define component support for domain-specific languages which U-ISC is. How-
ever, U-ISC is limited to textual languages and artefacts that are represented as trees. It
can thus not be applied on arbitrary, possibly graphical, DSMLs with models that are repre-
sented as graphs. We therefore extend U-ISC to work with graphs and call this new approach
Universal Invasive Software Composition for Graph Fragments (U-ISC/Graph) and refer to
Henriksson’s approach [Hen09] as Universal Invasive Software Composition for Tree Fragments
(U-ISC/Tree). U-ISC/Tree is introduced in more detail in Chapter 3. The complete semantics
of U-ISC/Graph are defined with Story Driven Modelling (SDM) [FNTZ00] in Appendix A.

U-ISC/Graph is defined in Chapters 4–6 of Part I. Each of these chapters presents a major
advance over U-ISC/Tree, which are: In Chapters 4 we introduce a method to explicitly define
modularity concepts for fragments called fragment collaborations (FraCols). U-ISC/Tree does
not include such a method, but proposes the introduction of it as future work [Hen09, Section
8.1]. Chapters 5 introduces support for typed graphs as fragments and with that support
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for languages that are defined with EMOF4. In Chapters 6 we define a universal composition
language (UCL) that is independent of component languages and modularity concepts. U-
ISC/Tree does not define a universal composition language. It only provides an abstract base
language [Hen09, Section 2.2.2] that needs to be integrated with each new component language.

1.2.2 Contribution 2 (C2): Composition Framework for Models (Chapter 7)

While Part I defines U-ISC/Graph as a graph composition technique, Part II is concerned with
utilising U-ISC/Graph in practical MDSD. It starts with Chapter 7 in which we present the
Reuseware Composition Framework5 (short Reuseware)—a tool that integrates U-ISC/Graph
into the Eclipse Modelling Framework (EMF) [SBPM09], which is an EMOF-based MDSD
environment. Reuseware realises the concepts of U-ISC/Graph (Contribution 1) which in-
cludes tooling to specify modularity concepts as FraCols and to map them to DSMLs defined
in EMOF. Furthermore, it contains tooling to specify composition programs in UCL.

Reuseware was itself developed in a model-driven way. For this, the specifications of U-
ISC/Graph, which are defined using EMOF and SDM, are used as input to code generators
provided by EMF and the Fujaba toolsuite [NNZ00, GBD07]. The integration in EMF allows
us to reuse existing EMF-based tools to create DSMLs and models with these DSMLs. Thus,
with Reuseware, CB-MDSD, with U-ISC/Graph as underlying composition technique, can
be used in practice.

1.2.3 Contribution 3 (C3): Component-Based Model-Driven Architectures (Chapters 8/9)

Finally, we present two architectural styles for MDSD—ModelSoC and ModelHiC. Both styles
are introduced and evaluated. In the case of ModelSoC (Chapter 8), we explain how multiple
modularity concepts, which are often required when multiple DSMLs are combined, can be
handled in parallel by U-ISC/Graph. With this we realise the hyperspace model for multi-
dimensional separation of concerns [OT00] and extend it for the specifics of MDSD. We re-
visit and extend the example from Chapter 2 and show that a component-based model-driven
architecture with multiple languages can be implemented with CB-MDSD that resolves the
consistency problems of a corresponding transformation-based architecture.

We used ModelHiC (Chapter 9) to develop a modelling environment for a large telecommu-
nication DSML. For this, we present an iterative development process to find suitable abstrac-
tions in CB-MDSD. This work, carried out in collaboration with telecommunication experts at
Telefónica, shows how a new model-driven architecture with hierarchical composition can be
set up by using CB-MDSD with less specification effort as by using transformations to achieve
the same abstraction capabilities.

4Essential MOF [OMG06a]; the MOF core concepts
5http://www.reuseware.org
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2
Motivating Examples and Requirements

This chapter demonstrates CB-MDSD by examples. From these examples, requirements for our
composition technique U-ISC/Graph are derived.

To illustrate the goals of our work, this chapter introduces two examples of component-based
MDSD (CB-MDSD). Using these examples, we illustrate the central concepts of CB-MDSD
and derive requirements we need to address to realise CB-MDSD in practice.

The first example—introduced in Sections 2.1—is a model-driven architecture that uses
multiple DSMLs for the development of a reservation system in which customers can book
tickets and perform other related activities. It is inspired by an example from Roussev and
Wu [RW07]. Five DSMLs1 are used: textual use case descriptions (defined in OpenDocument
format [OAS07]), UML use case diagrams [OMG10b] annotated with invariants (as introduced
in [RW07]), UML class diagrams [OMG10b], a DSML for defining dataflow (not used in this
chapter; will be introduced in Chapter 8), and Java. This example illustrates the ideas of
ModelSoC which we define in Chapter 8.

The second example—introduced in Section 2.2—centres around a single object-oriented
DSML. We use two variants of the examples, one with UML as DSML and one with Java
as DSML. The example illustrates the usage of a universal composition languages in CB-
MDSD, which is the central idea of ModelHiC discussed in Chapter 9. Both examples are
used throughout this thesis for demonstration purposes and the first example is extended in
Chapter 8 to evaluate ModelSoC.

1We refer to all software languages that are defined by an EMOF metamodel as DSMLs. In this case this
includes UML, OpenDocument, Java, and two DSMLs we defined for the purpose of this example. More
details about of how these languages are defined with EMOF are discussed in Chapter 8.
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Actor(s): 
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Flow of events:

Figure 2.1: BookTicket use case description.
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Figure 2.2: BookTicket use case diagram with annotated value added invariants.

2.1 CB-MDSD with Multiple DSMLs

In this model-driven architecture, development starts with textual use case descriptions. For
each use case, a document in OpenDocument format is created that includes a description of
the use case and enumerates the actors participating in the use case (cf. [RW07] for more
details on the document format). The description of the use case BookTicket is shown in
Figure 2.1. While it is hard to process arbitrary free text in the description automatically, the
document clearly states which actors participate in the use case by using a dedicated custom
style to mark actors in the text. This information must be extracted from the document to be
integrated into other models—for instance into a UML use case diagram as shown in Figure 2.2.

This representation as UML use case diagram is needed, because the example refines the use
cases by annotating use case diagrams with value added invariants as introduced by Roussev
and Wu [RW07]. This means, that we define for each actor business values it holds before and
after the execution of the use case. The total number of business values in a use case needs
to be invariant (i.e., a value that exists before use case execution needs still to be there after
execution and a value cannot appear out of nowhere).

In the Book Ticket use case for instance (Figure 2.2), the Customer has an Account and
an Address before execution of the use case and a Seat and a Shipment after execution. The
Address is passed to the Clerk, while the Account is passed to the Bank. The Shipment is
received from the Clerk. However, no actor owns the Seat before use case execution. This is
a violation of the invariant, the developer has to correct. According to [RW07], these cases
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Customer
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Bank

Hall

BookTicket

Figure 2.3: Information needed for an automatic refinement from BookTicket use case descrip-
tion (cf. Figure 2.1) to annotated use case diagram (cf. Figure 2.2).

may occur if there are actors not visible from outside the system (e.g., a passive storage that
cannot be observed as acting entity from the outside). For such cases, they propose to add an
additional actor to the UML use case diagram (but not to the textual use case descriptions).
In this case, the actor Hall is added, which owns the Seat before use case execution (Figure 2.2
top right), which was not present in the textual use case description (Figure 2.1).

In a simple transformation-based solution, one can transform the textual use case description
into a use case diagram without annotations and then refine it manually. However, this forbids
future modifications of the textual use case descriptions, since re-executing the transformation
would override the manual refinements in the UML use case diagrams. To allow for this, the
generated and manually added information needs to be separated. Figure 2.3 shows the parts of
the use case diagram for BookTicket that were added manually. For each actor, the additional
information can be defined in a separate model. In the case of the new actor Hall (Figure 2.3
right), we also need to state that it is an actor participating in the BookTicket use case, since
this information is not available in the textual use case description (Figure 2.1) which only
knows about the actors Customer, Clerk, and Bank. A model transformation can then be
defined that takes the textual use case description (Figure 2.1) and the additional information
(Figure 2.3) as input and produces an integrated use case diagram (Figure 2.2).

While such transformations can be defined with current model transformation technology,
the situation described above is a pattern one would have to apply thoroughly and consistently
to all transformations in a model-driven architecture, which would lead to recurring effort in
transformation design. Therefore, our suggestion for CB-MDSD manifests this pattern using
concepts of component-based design. The main requirements for this are illustrated on the
example in the following.

2.1.1 Switching Formats

The first issue to consider is the automatic transformation of information into different formats.
The information about actors participating in a use case, for example, is required in all formats
of our model-driven architecture (i.e., it needs to be represented in all DSMLs). To automati-
cally transfer information from one format into another, two steps are required: (1) extraction
of information from the model in the original format and (2) composition of information into
an integrated model of the new format. A drawback of transformation-based architectures (cf.
Figure 1.1a) is that model transformations in general do not distinguish these two steps which
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Figure 2.4: OpenDocument as composition and UML use cases as component language.

leads to situations where similar information is extracted several times. For example, the in-
formation about actors, which is extracted from the textual use case descriptions, would have
to be extracted again from the use case diagrams if these diagrams would be used as the base
for further refinement (e.g., to generate Java code from them). Another problem originating
from this is tracing of information. When a particular information about the system has to be
changed, one needs to know, where the information is defined. For example, if one discovers
in the Java code that something about the actor Hall should be changed, it is difficult to trace
whether Hall was introduced in a textual use case description or a UML use case diagram,
because the information has been transformed several times.

To improve this situation, we suggest to treat the transformation of models as composition
of model components. Figure 2.4 illustrates this for generating a use case diagram from a
textual use case description. Here, the source DSML (in this case OpenDocument) is treated
as a composition language and the target DSML (in this case UML use cases) is treated as a
component language. From the source model (in this case the textual use case description) a
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Figure 2.5: UML use cases exchanged for Java as component language.

composition program is extracted. A composition program describes a system by identifying,
linking, and parameterising components. In this case, the components are fragments of UML
use case diagrams (single Actors and single UseCase) that are configured with the names of
the actors (Customer, Clerk, Bank) and the name of the use case (BookTicket) which are
extracted from the textual use case description. Given the composition program and the
components, a composition engine produces the integrated target model (in this case a UML
use case diagram).

We now have a distinction between (1) extraction of information—which is the extraction
of a composition program from the source model—and (2) composition of information—which
is the composition of the target model performed by a composition engine interpreting the
composition program on model components defined in the target language. This composition
accesses internals of the model components through composition interfaces, which have two
purposes. First, they have to give access to internals of the models for modification. For
instance, the Actor component contains a placeholder for the name (NAME_SLOT), which is
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replaced by the name with which the component is parameterised in the composition program.
Second, the composition interfaces should hide details of the component language (UML use
case in Figure 2.4) such that the language can be exchanged, which allows us to reuse the
extracted composition program to compose different types of models. This is illustrated in
Figure 2.5, where the UML use case fragments have been exchanged for Java fragments. While
the composition performed by the composition engine is different (instead of merging UML
Actors and UseCases, Java Methods and Statements are merged), the composition interfaces
remain the same. The observation above lead us to the following requirements for CB-MDSD:

• Requirement 1 (Arbitrary Component Languages) We need to treat arbitrary
models as components and, therefore, should support arbitrary DSMLs as component
languages. Since the structure of models defined in different DSMLs is different, it
needs to be configurable how the internals of a model are mapped to its composition
interface. This configurability ensures that arbitrary DSMLs can be treated as component
languages.

• Requirement 2 (Arbitrary Composition Languages) It should be possible to use
different DSMLs as composition languages. That is, we require a method to extract
composition programs from models defined in arbitrary DSMLs.

• Requirement 3 (Abstract Composition Interfaces) It must be possible to define
abstract composition interfaces for models. That is, interfaces must be independent of
the component language such that components with similar interfaces can be modelled
in different DSMLs. Wrt. Requirement 1, this means that similar interfaces must be
mapped to model internals differently for different DSMLs. This ensures that the com-
position language and composition engine work language-independent (i.e., universal). If
this requirement is met, information in different formats can be composed with a single
composition program.

• Requirement 4 (Universal Composition Language) To meet Requirement 2, a
universal composition language is needed, which is independent of the DSMLs in which
composition information is defined. This language should be both expressive enough to
express all composition information extracted from different types of models and minimal
(i.e., without redundancy) to be simple to understand and process. This ensures that
information defined in different composition languages can be unified in one format for
processing by a universal composition engine.

2.1.2 Combining Multiple Composition Languages

Above, we discussed the extraction of information from one source model by regarding the
DSML of that model as composition language (OpenDocument in the example above). How-
ever, as soon as information is defined in different types of models, multiple DSMLs need to be
treated as composition languages. An example of this can be seen in Figure 2.3, where addi-
tional information about the BookTicket use case is defined in UML use case diagrams. Thus,
to extract this information also UML use case diagrams have to be treated as composition
language (Figure 2.6).

Let us first consider the case of adding the actor Hall, which is not mentioned in the textual
use case description but added through a use case diagram (Figure 2.3 right). As illustrated in
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Figure 2.6: UML use cases as additional composition language.

Figure 2.6, this is similar to the way the other actors were added in the composition program.
However, the source from which this composition information is extracted is now a use case
diagram. The joint composition program can now be used to compose an integrated use case
diagram with the new Actor (Figure 2.6) but also to compose the corresponding Java code
if one exchanges the use case diagram components with Java components (as was done in
Figure 2.5). To allow for this, it must be possible to aggregate composition information from
multiple models in one composition program of uniform format. Therefore, we formulate the
following requirement:

• Requirement 5 (Aggregatable Composition Programs) It must be supported to
aggregate composition information from multiple models in one composition program.
This allows for the gathering of composition information from arbitrary models and
therewith the usage of arbitrary DSMLs as composition languages in combination. Thus,
this requirement extends the features of a universal composition language (Requirement
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4) to support aggregation of multiple composition programs into one. If this requirement
is met, all composition information for one system developed with CB-MDSD can be
collected in one composition program which, at any point during development, represents
the complete architecture of the modelled system.

2.1.3 Combining Multiple Modularity Concepts

Although we have used two different composition languages in Figure 2.6 (OpenDocument and
UML use cases) we composed the same kind of information (actors and use cases). Concretely,
this means that the composition engine composed either UML Actors and UseCases (in case
of UML as component language; Figure 2.4) or Java Methods and Statements (in case of Java
as target component language; Figure 2.6). If we take a language-independent view on this,
we performed an “actor/use case” composition; independent of the fact that actors are at one
time represented by UML Actors and at other time by Java Statements. Formulating such
modularity concepts becomes necessary, if multiple of them are used in parallel.

Let us again consider the refinement of use cases with additional UML use case diagrams
(Figure 2.3). Here we find another modularity concept which is “actor/value” composition.
As Figure 2.7 illustrates, the combination of actors with value added invariant annotations
can again be extracted to further enrich the unified composition program. Only this time,
the modularity concept of “actor/value” composition is used. In the concrete case of Java as
component language, this modularity concept is realised by a specific composition between Java
Statements that represent actors and Java Statements that represent the exchange of business
values between actors (Figure 2.7). Since different modularity concepts may be needed, we
require means to aggregate them:

• Requirement 6 (Aggregatable Composition Interfaces) In CB-MDSD, different
modularity concepts are used in parallel and in combination with multiple DSMLs. In
Requirement 3 we formulated the need for component language-independent composition
interfaces. Here we extend this, by requiring these interfaces to be aggregatable. This
way, the interfaces required by multiple modularity concepts can be aggregated to a joint
interface for one fragment.

2.2 CB-MDSD with a Universal Composition Language

Once we defined a universal composition language (Requirement CL2) we can also consider
using this language directly for CB-MDSD. Then, instead of extracting composition informa-
tion from different models, the universal composition language is used by developers directly to
create composition programs. This can be a suitable solution in situations where development
is centred around a single DSML and transformation of information into different formats is
not an issue. Still, in such cases, component support is a concern sooner or later to allow for
modularisation and reuse. To add such component support, an architect can consider to inte-
grate the universal composition language directly, which spares the effort of defining additional
DSMLs or DSML extensions for the purpose of modularity. Instead, he or she can reuse the
existing universal composition language and its tooling out-of-the-box.
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Figure 2.7: “actor/value” composition as additional modularity concept.

As illustration, consider Figure 2.8 in which UML class diagrams are composed using a new
aspect-like modularity concept. Here, classes are extended with new attributes, associations,
and methods by defining a composition program in a universal composition language. In
the example, a file system is modelled consisting of a FileSystem, an FSFolder, and an
FSFile class. This model is extended with observer/subject functionality, which is defined
in a separate model by the Observer and Subject classes. The composition engine merges
properties of the Observer and Subject classes into the other classes. Instead of extracting
a composition program, it is defined directly in the universal composition language. The
composition program is indicated by the boxes in the figure and the arrows between them.
(In a real composition language, one would probably not see the models inside the boxes, but
only the boxes, representing model components, and the circles, representing the composition
interface.)

Using the universal language directly is possible in this case, because the composition in-
terfaces are simple enough such that the developer can understand the complete composition
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Figure 2.8: Universal composition language used directly to compose UML class diagrams.

program and the impact of changes to it. In contrast, a composition program that represents
the complete architecture of a system defined by multiple DSMLs and covers several modular-
ity concepts at once is difficult to understand for direct manipulation (e.g., Figure 2.7 already
starts to get complex although it only represents a small part of the complete system architec-
ture). The component language (UML class diagrams in Figure 2.8) can still be exchanged for
another language (e.g., Java or another object-oriented language) and the composition program
can be reused.

We argue that in cases like this, where the composition programs are of reasonable size and
the composition interfaces of components are not overloaded, it should be considered to use
the universal composition language directly. However, it is a trade-off that depends on the
concrete model-driven architecture to be realised. We discuss this further in Chapter 9.

In this chapter, we showed examples for our idea of CB-MDSD and derived requirements for
our composition technique from them. The remainder of Part I introduces this composition
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Figure 2.9: Figure 2.4 with all models represented as graphs.

technique—called U-ISC/Graph—and shows how the requirements are met by it. For this, we
will continue to use the examples of this chapter for illustration. To give a hint of the direction
we are going, consider Figure 2.9. It is similar to Figure 2.4 only that the models are not
shown in their concrete (diagrammatic) syntax but as typed and directed graphs. This is how
all models are represented “under the hood” if they are defined in a DSML that was specified
with EMOF. Our composition technique works on these graph representations of models and
is therefore an extension of U-ISC/Tree, which is a composition technique that works on trees.
U-ISC/Tree is introduced in the next chapter as a foundation for our work.
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3
Invasive Software Composition Systems

This chapter explains how CB-MDSD is regarded as a composition system. It introduces Inva-
sive Software Composition (ISC) and Universal Invasive Software Composition for Tree Frag-
ments (U-ISC/Tree) as foundations for such composition systems.

To allow a better understanding of the relationships between models and their composition
in CB-MDSD, we introduce the term composition system. According to [Aßm03], a composi-
tion system is a triple of component model, composition language, and composition technique
(cf. Figure 3.1). First, a component model provides component languages for the definition
of components (cf. Chapter 2 for examples of component languages in CB-MDSD). Second,
a composition language is used to define composition programs which in turn define a system
by composition of components (cf. Chapter 2 for examples of composition programs in CB-
MDSD). Third, a composition technique interprets the composition programs to compose a
system from components. An important role in a composition system play composition inter-
faces, through which different parts of a composition system interact. They are the interfaces
that are used to connect components in composition programs and to access components for
composition by the composition engine (cf. Chapter 2 for examples of composition interfaces
in CB-MDSD). As Figure 3.1 indicates, the three parts of a composition system overlap. It
depends on the concrete composition system how strong these overlaps are.

We call a composition system with unspecified parts that have yet to be defined a generic
composition system. A generic composition systems may hence be used as a common basis for
a set of composition systems.

A model-driven architecture can be realised as a composition system with multiple com-
ponent and composition languages. This is indicated by the examples in Section 2.1, which
suggests the usage of multiple component and composition languages in combination. Since
we aim at a generic solution for CB-MDSD, we define a generic composition system in the
forthcoming Chapters 4–6. The foundations for that are presented in this chapter.
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Figure 3.1: Composition systems consist of a composition technique, a component model, and
a composition language which interact.

Generic composition systems that can be configured to work with different languages are
provided by Invasive Software Composition (ISC) [Aßm03] and Universal Invasive Software
Composition (U-ISC) [Hen09]. However, ISC and U-ISC are not concerned with MDSD and,
therefore, we first need to extend them to provide all the features we require for our generic
CB-MDSD composition system. To understand what can be reused and where extension is
required, we discuss ISC in Section 3.1 and U-ISC in Section 3.2.

An overview of the generic composition system that we develop in this work is given in
Figure 3.2. The figure shows the eight main features of the generic composition system that
we develop in Chapter 4 (Feature 1), Chapter 5 (Features 2–4), and Chapter 6 (Features 5–8).

The features that directly concern the component model and the composition languages
(Features 1, 4, 6, and 8) are derived from the requirements formulated in Chapter 2. Feature 1
expresses the need for abstract composition interfaces (Requirements 3 and 6) for which we in-
troduce a concept called fragment collaborations. Feature 4 requests exchangeable component
languages (Requirement 1), while Features 6 and 8 are both concerned with composition lan-
guages, demanding a universal composition language (Requirements 4 and 5) and exchangeable
composition languages (Requirement 2) respectively. The remaining features (Features 2, 3,
5, and 7) are all related to the composition technique which will be based on the composition
technique of ISC. Their need will therefore be clarified in the remainder of this chapter.

Once the generic composition system is available, it can be configured for a concrete model-
driven architecture as illustrated in Figure 3.3. For generic composition systems, we distinguish
composition system developers and composition system users. Developers fill the generic parts
of a generic composition system and user utilise the such obtained complete system either to
define components or composition programs. In our case, the process developer, who sets up
a model-driven development process by selecting and combining DSMLs, acts as composition
system developer by plugging the DSMLs as component and/or composition languages into
the generic composition system. The such defined composition languages are then used by
architects for modelling-in-the-large and the component languages are used by developers for
modelling-in-the-small. Architects and developers are thus both composition system users.
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Figure 3.3: Users of a composition system for MDSD.

3.1 Invasive Software Composition (ISC) and the Compost System

The foundation for ISC systems is provided in [Aßm03]. ISC is a program transformation
approach that composes partial programs—fragment components (or fragments in short)—
to complete programs by merging them. Arbitrary languages may be chosen as component
language to define fragments (in [Aßm03] only Java is used for demonstration purposes). A
fragment component (called fragment box in [Aßm03]) has a composition interface that consists
of hooks. A hook identifies a point for variation or extension in a fragment component. A hook
can be bound to another fragment component, which means that a fragment component is
inserted at the position of the hook during composition. [Aßm03] also introduced the notion of
nested hooks which combine several hooks into one to form richer composition interfaces. Hooks
are either declared or implicit. Declared hooks are manually defined by fragment developers,
implicit hooks always exist for certain types of fragments.

The composition itself is executed by composition operators (called composers in [Aßm03]).
[Aßm03] identified two basic operators (bind and extend) which can serve as a base for complex
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operators (called compound operators in [Aßm03]). A composition program in ISC consist of
calls to basic or complex composition operators.

While ISC is as a methodology can be implemented for different component or composi-
tion languages, [Aßm03] only provides a generic composition system with Java as composition
language called Compost system1. It implements the ISC foundation in a Java framework
and provides an instantiation of the framework with Java as component language. In these
composition systems, Java is a generic composition language which is extended for concrete
composition systems by implementing complex composition operators as Java methods. Thus,
all Compost-based composition systems use Java, together with a library of composition oper-
ators, as composition language. To support new component languages for fragment definition,
the Compost system needs to be extended manually for each component language. It was
shown that this is possible for XML as component language, but not without considerable
effort [Sav03]. Compost as generic composition system is illustrated in Figure 3.4.

Example 3.1. To illustrate the original ISC as it is realised in Compost, we show an example
in the following. It is based on the example from Section 2.2, but uses Java instead of UML
class diagrams as component language, since Java is supported by Compost while UML is
not. The example follows the idea from [Aßm03, Chapter 10] to use ISC for Aspect-Oriented
Programming (AOP) [KLM+97]. The idea of AOP is to introduce a new modularity con-
cept into an object-oriented language such as Java that enables us to extend existing classes
with additional members. This can be realised through an ISC composition system with a
composition operator that extends the list of members of a class invasively.

In our AOP composition systems we have two different kinds of fragment components—
core and advice fragments. Core fragments implement a system core that is to be extended
by aspects. An aspect consists of two things: advice code and weaving instructions. In ISC
terms, the advice code is realised as fragments, while the weaving instructions are defined in
composition programs.

In the following, we introduce an example system consisting of fragments defined in Java
as component languages (Listings 3.1 and 3.2) and a composition program defined in Java as

1http://www.the-compost-system.org/
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1 public class FileSystem {
2 protected FSFolder[] folders;
3 }
4

5 public class FSFolder {
6 protected String name;
7 protected FSFolder[] subFolders;
8 protected FSFile[] files;
9 }

10

11 public class FSFile {
12 protected String name;
13 protected Byte[] content;
14 }

Listing 3.1: Core fragments implementing a file system in Java.

composition language (Listing 3.4). The core is defined in Listing 3.1 with FileSystem as
the central class that manages the application. It contains a list of FSFolders. A FSFolder
may contain further FSFolders and FSFiles. In Listing 3.2, we see two advice fragments that
implement an observer aspect. This is in line with the observer design pattern [GHJV94] with
the exception that we implement the observer relationship in separate classes and not in the
same class hierarchy as the core system, since we intentionally do not use inheritance to present
AOP as an alternative implementation method. The same example was modelled with UML
as component language and an imaginary universal composition language in Figure 2.8.

The advice classes contain declared hooks. The Observer, for example, can hold an array of
collaborators of yet unspecified type for which it declares the hooks genericCollaboratorType
and genericCollaboratorNameIdentifier (Line 2). These parts of the code are recognised as
hooks, because generic<NAME>Type and generic<NAME>Identifier are naming conventions
introduced by Compost to allow hook declaration without extending the Java syntax. Similar
hooks are defined in the Subject class. Hooks with the same name are grouped into one nested
hook.

The desired aspect composition system can be built in Compost since it supports Java as
component language. As mentioned, Compost uses Java as generic composition language that
can be extended with new composition operators. For our example system, we introduce the
operator weave that can compose core and advice fragments written in Java according to the
composition semantics of our AOP system described above. The weave operator, implemented
as a Java method, is shown in Listing 3.3. It extends the member hook of the core fragment,
which is an implicit hook that all fragments containing a Java class (ClassBox) have, with all
members that are contained in the advice fragment (Line 2). Furthermore, the weave operator
takes another fragment component, the ClassBox collaborator, as argument. This argument
can be used to pass another core class to which the collaborator hooks of the advice code should
be bound. For compost the type (hook genericCollaboratorType) and the collaborator array
name (hook genericCollaboratorNameIdentifier) are only strings. Consequently, the weave
operator constructs the corresponding strings based on the collaborator class name and binds
them to the hooks (Lines 3–5).
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1 public class Observer {
2 protected genericCollaboratorType[] genericCollaboratorNameIdentifier =
3 new genericCollaboratorType[0];
4

5 public void update(genericCollaboratorType subject) {
6 //...
7 }
8 }
9

10 public class Subject {
11 protected genericCollaboratorType[] genericCollaboratorNameIdentifier =
12 new genericCollaboratorType[0];
13

14 public void attach(genericCollaboratorType observer) {
15 genericCollaboratorType[] newObservers =
16 new genericCollaboratorType[genericCollaboratorNameIdentifier.length + 1];
17 for (int i = 0; i < genericCollaboratorNameIdentifier.length; i++) {
18 newObservers[i] = genericCollaboratorNameIdentifier[i];
19 }
20 newObservers[genericCollaboratorNameIdentifier.length] = observer;
21 genericCollaboratorNameIdentifier = newObservers;
22 }
23

24 public void detach(genericCollaboratorType observer) {
25 genericCollaboratorType[] newObservers =
26 new genericCollaboratorType[genericCollaboratorNameIdentifier.length - 1];
27 int skip = 0;
28 for (int i = 0; i < genericCollaboratorNameIdentifier.length; i++) {
29 if (genericCollaboratorNameIdentifier[i].equals(observer)) {
30 skip = 1;
31 }
32 else {
33 newObservers[i] = genericCollaboratorNameIdentifier[i - skip];
34 }
35 }
36 genericCollaboratorNameIdentifier = newObservers;
37 }
38

39 public void notifyObservers() {
40 for (int i = 0; i < genericCollaboratorNameIdentifier.length; i++) {
41 genericCollaboratorType observer = genericCollaboratorNameIdentifier[i];
42 observer.update(this);
43 }
44 }
45 }

Listing 3.2: Advice fragments implementing observer functionality in Java.

1 public static void weave(ClassBox coreFragment, ClassBox adviceFragment, ClassBox collaborator) {
2 coreFragment.findHook("members").extend(adviceFragment);
3 adviceFragment.findGenericType("Collaborator").bind(collaborator.getName());
4 String collaboratorName = "_" + collaborator.getName().toLowerCase();
5 adviceFragment.findGenericIdentifier("CollaboratorName").bind(collaboratorName);
6 }

Listing 3.3: The weave composition operator defined as Java method in Compost.
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1 public static void main(String[] args) {
2 JavaCompositionSystem javaCompositionSystem =
3 new FragmentCompositionSystem(".").getJavaCompositionSystem();
4

5 ClassBox fileSystem = javaCompositionSystem.createClassBox("core/FileSystem");
6 ClassBox folder = javaCompositionSystem.createClassBox("core/FSFolder");
7 ClassBox file = javaCompositionSystem.createClassBox("core/FSFile");
8

9 ClassBox observerCopy1 = javaCompositionSystem.createClassBox("advice/Observer");
10 ClassBox subjectCopy1 = javaCompositionSystem.createClassBox("advice/Subject");
11

12 ClassBox observerCopy2 = (ClassBox) observerCopy1.copy();
13 ClassBox subjectCopy2 = (ClassBox) subjectCopy1.copy();
14

15 weave(fileSystem, observerCopy1, folder);
16 weave(file, subjectCopy1, fileSystem);
17

18 weave(fileSystem, observerCopy2, file);
19 weave(folder, subjectCopy2, fileSystem);
20

21 javaCompositionSystem.print(fileSystem);
22 javaCompositionSystem.print(folder);
23 javaCompositionSystem.print(file);
24 }

Listing 3.4: The composition program to compose core and advice fragments in Compost.

Since Java is also the composition language of all Compost-based composition systems, a
composition program using the above defined composer is also written in Java as shown in
Listing 3.4. After initialising the Compost tooling in Line 2, the core fragments (FileSystem,
FSFolder, and FSFile; cf. Listing 3.1) and advice fragment (Observer and Subject; cf.
Listing 3.2) are loaded in Lines 5–10. Copies of the observer and subject fragments are created
in Lines 12 and 13 because we want to weave the aspect two times (between FileSystem and
FSFolder as well as between FileSystem and FSFile). The weave composer is then called four
times: in Line 15 to weave the observer advice code into the file system, in Line 16 to weave
the subject advice code into the folder, in Line 18 to weave the observer advice code a second
time into the file system and in Line 19 to weave the subject advice code into the file. Finally,
in Lines 21–23, the extended core fragments are printed. The result of the invasive composition
can be observed in Listing 3.5. Note that the observer code was woven into FileSystem twice
with different types because of the different bindings of the collaborator hooks.

ISC defines many concept useful for our generic CB-MDSD composition system based on
which we defined Features 2, 3, 5, and 7 in Figure 3.2. ISC is generic wrt. the component
language and defines the hook concept as a basic composition interface concept to access
fragments that can be integrated into arbitrary component language (Feature 3). Composition
by fragment merging which is performed by composition operators (Features 5 and 7), as
illustrated in the example, is suitable for model composition, since it is a static composition
technique (Feature 2). Also these concepts fit in general, there are certain specifics we need
to consider in order to realise the remaining features that were derived from our requirements.
We discuss this at the end of this chapter. Before, we investigate Universal and Embedded
ISC which define useful extensions of ISC concepts.
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1 public class FileSystem {
2 protected String name;
3 protected FSFolder[] folders;
4

5 protected FSFile[] _fsfile = new FSFile[0];
6

7 public void update(FSFile _fsfile) {
8 // ...
9 }

10

11 protected FSFolder[] _fsfolder = new FSFolder[0];
12

13 public void update(FSFolder _fsfolder) {
14 // ...
15 }
16 }
17

18 public class FSFolder {
19 protected String name;
20 protected FSFolder[] subFolders;
21 protected FSFile[] files;
22

23 protected FileSystem[] _filesystem = new FileSystem[0];
24

25 public void attach(FileSystem observer) {
26 // ...
27 }
28

29 public void detach(FileSystem observer) {
30 // ...
31 }
32

33 public void notifyObservers() {
34 // ...
35 }
36 }
37

38 public class FSFile {
39 protected String name;
40 protected Byte[] content;
41

42 protected FileSystem[] _filesystem = new FileSystem[0];
43

44 public void attach(FileSystem observer) {
45 // ...
46 }
47

48 public void detach(FileSystem observer) {
49 // ...
50 }
51

52 public void notifyObservers() {
53 // ...
54 }
55 }

Listing 3.5: The result of executing the Compost composition program of Listing 3.4.
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3.2 Universal Invasive Software Composition for Tree Fragments (U-ISC/Tree)

[Hen09] introduces Universal Invasive Software Composition. It explores how the development
of ISC systems can be eased by generating component models based on a context-free grammar
of a language. For this, it builds on concepts originating from Grammar-Based Modularisation
as found in the Beta programming language [MMPN93]. To better distinguish the approach of
[Hen09] from ours, we refer to it as Universal Invasive Software Composition for Tree Fragments
(U-ISC/Tree).

In detail, [Hen09] introduces the following approaches that build upon each other.

3.2.1 Universal Grammar-Based Modularisation [Hen09, Chapter 2]

In the object-oriented programming language Beta, modularisation is supported by a fragment
system. The fragment system is not part of the language itself. Thus, modularisation concerns
did not influence the design of the language syntax or semantics. Rather, the fragment system
is defined on top of the Beta language grammar. It supports that each language construct
defined by the Beta grammar can be instantiated and compiled on its own to a fragment.
For instance, one may instate single statements and not only complete classes. Furthermore,
Beta’s fragment system allows the developer to specify so-called slots instead of concrete
elements. Slots thus mark places in code where concrete elements are missing. Slots can then
be bound to fragments by the fragment system to eventually form a program without slots that
can be executed. The fragment system hereby ensures that slots are only bound to fragments
that fit the slot following the typing rules provided by the language grammar.

Although Beta’s fragment system was only used in Beta, its developers recognised that it
can in principle be ported to any language since it is based on concepts of grammars only and
not on Beta specifics [MMPN93]. Henriksson takes up this idea for Universal Grammar-Based
Modularisation, showing that the ideas can be ported to arbitrary languages that are defined
by context-free grammars. He argues, that independent compilation of fragments cannot be
achieved, because compilation is language-dependent. Enabling the independent instantiation
of each language construct of a grammar is, however, possible for arbitrary languages. To
enable the specification of slots with proper tool support, Henriksson introduces a formalism
to automatically extend grammars in such a way that they would allow slot specification (with
a specific syntax for slots) instead of concrete elements on all possible places in a program.
The such obtained grammar—called reuse grammar—still covers the original language but
allows slot specifications in addition. Based on that grammar, tool support (e.g., parsers) can
be generated. Furthermore, a language-independent composition engine can be defined that
binds slots to other fragments by rewriting abstract syntax trees. This composition engine can
utilise the typing given by a grammar to ensure syntactically correct compositions.

3.2.2 Universal Invasive Software Composition [Hen09, Chapter 3]

Henriksson shows that there are many similarities between Beta’s fragment system and ISC.
He observes that the slot concept (of Beta) and the declared hook concepts (of ISC) are similar.
The missing part in Beta is the concept of implicit hooks and the possibility of extension.
While slots can only be bound (i.e., replaced), implicit hooks cannot only be bound but also
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Figure 3.5: U-ISC/Tree as generic composition system.

extended. Furthermore, ISC offers the complex composition operator concept to encapsulate
a set of basic bind or extend operations in one operator. Such a concept is not available in
Grammar-Based Modularisation in Beta.

Henriksson defines U-ISC/Tree as a generalisation of Universal Grammar-Based Modular-
isation. He continues to use the grammar extension formalism of Universal Grammar-Based
Modularisation, which effectively generates an invasive component model. On the one hand,
he allows for tailoring. That is, instead of introducing slots for every language construct, one
can decide for which constructs slots should be allowed. On the other hand, special grammar
annotations to specify implicit hooks are introduced.

In addition to the grammar extension, Henriksson’s approach allows for the specification
of complex composition operators (using, as Compost did, Java as specification language
for them). Composition programs can then be written in a similar fashion as it was done in
Compost (cf. Listing 3.4). However, the component model API (which had to be implemented
manually in Compost) is now generated based on the extended language grammar. This
allows for Compost-like invasive compositions for arbitrary languages defined by a context-
free grammar without implementation effort. Although, it should be noted that the manually
implemented API in Compost for Java as component language is richer than the one that
U-ISC/Tree would generate from a Java grammar. Generating a component model API for
Java or a similar large language was also not performed and not evaluated in [Hen09] and thus
a detailed comparison between generated and manually implemented API was not conducted.

To summarise, U-ISC/Tree employs an extension of the concepts of Grammar-Based Modu-
larisation to generate a component model for an arbitrary context-free language and a Java API
for that component model. This enables developers to write fragment components in their lan-
guage of choice and to write complex composition operators as well as composition programs
in a Compost-like fashion in Java. Thus, it still uses one generic imperative composition
language—Java—in all composition systems.

The advance of U-ISC/Tree over ISC and Compost is that it offers a grammar-driven
mechanism to integrate new component languages into a composition system. This is illustrated
in Figure 3.5.
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1 public class FileSystem {
2 weave "advice/Observer" with collaborator "core/FSFile";
3 weave "advice/Observer" with collaborator "core/FSFolder";
4

5 protected FSFolder[] folders;
6 }
7

8 public class FSFolder {
9 weave "advice/Subject" with collaborator "core/FileSystem";

10

11 protected String name;
12 protected FSFolder[] subFolders;
13 protected FSFile[] files;
14 }
15

16 public class FSFile {
17 weave "advice/Subject" with collaborator "core/FileSystem";
18

19 protected String name;
20 protected Byte[] content;
21 }

Listing 3.6: Composition language concepts embedded in Java.

3.2.3 Embedded Invasive Software Composition [Hen09, Chapter 4]

Henriksson emphasises that an important success factor for ISC is the ability to abstract
from low level composition operations by defining complex composition operators. He argues
however that for a system developer, who would use ISC to compose fragments written in his
or her own (domain-specific) language, this abstraction is still not appropriate. The developer
should be able to express composition programs in terms of his domain rather than coping
with technical ISC issues like loading fragments in Java-based composition programs.

To overcome this issue, Henriksson introduces Embedded ISC as another layer on top of
U-ISC/Tree. Here he further extends languages, which have already been extended for U-
ISC/Tree, with additional constructs to call composition operators. An example of such a
construct could be an import statement as known, for example, from Java. Such a statement
can be connected to a composition operator that performs the import in terms of extend
composition operator calls. Furthermore, a generic composition language, called FLABS, is
provided, which offers convenient constructs such as fragment loading. Constructs from the
generic language can be integrated into other languages along with the constructs to call
composition operators. Thus, Embedded ISC allows the specification of a domain-specific
composition language that is directly embedded into the component language.

As an example, consider the extension of Java with a weave construct that calls the weave
composition operator (cf. Listing 3.3) directly from inside a Java program as shown in List-
ing 3.6, where the weaving is directly specified in the file system classes. With such an integra-
tion of component and composition language, there is no need to define an external composition
program.

In contrast to Compost or U-ISC/Tree, Embedded ISC allows the usage of other compo-
sition languages than Java if component and composition language are the same. To support
this, it provides a generic composition language that can be integrated into other languages.
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Figure 3.6: Embedded ISC as generic composition system.

3.3 Conclusion

By comparing Figures 3.4, 3.5, and 3.6 with Figure 3.2, we can analyse, where the existing ISC
approaches need to be extended to provide all features for the generic CB-MDSD composition
system. Concerning the composition technique, we need to extend the tree composition ap-
proach to a graph composition approach, since models are represented as graphs (Feature 2).
This has impact on the basic composition operators, which have so far been defined to work
on trees only (Feature 5).

Concerning the component model, U-ISC supports a grammar-driven method to integrate
component languages. For MDSD, where DSMLs are defined with EMOF, we require a
metamodel-driven2 method (Feature 4).

ISC does so far not include a concept to explicitly define modularity concepts to couple
component model and composition language independent of the composition technique. Thus,
this is a new concept we will introduce (we call the concept fragment collaborations; Feature 1).

We also require a universal composition language (Feature 6) as common base to integrate
arbitrary composition languages (Feature 8). ISC so far did not investigate in providing such
a language or supporting arbitrary combinations of component or composition languages. The
key for providing such a universal composition language is the decoupling of composition
language and technique. All ISC realisations so far were tightly bound to Java to define
complex composition operators. The operators—including the basic ones—were directly called
in composition programs. To achieve this decoupling, we will define a universal composition
algorithm (Feature 7) that works for fragments defined in arbitrary component languages.
The algorithm replaces the complex composition operator concept and therefore the need for
operator definition. Furthermore, it hides the basic operators in the composition technique
(Feature 5) and makes composition programs independent of them. This will be possible by
moving component and composition language-specifics from complex composition operators
to the integration of component and composition language (Features 4 and 8) which will be
integrated via fragment collaborations (Feature 1).

2We refer to language specifications defined in EMOF [OMG06a] as metamodels.
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3.3 Conclusion

Hence, fragment collaborations (Feature 1) play a central role in our generic CB-MDSD
composition system. They will therefore be defined next in Chapter 4. Afterwards we deal
with the basics for a composition technique for models (Feature 2) and component model
related features (Features 3 and 4) in Chapter 5. The composition operators and composition
languages (Features 5–8) are treated in Chapter 6 which concludes this part of the thesis and
with that the definition of U-ISC/Graph.
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4
Fragment Collaborations (FraCols)

This chapter introduces fragment collaborations (FraCols) that are the basis of each composition
system for MDSD. The fragment collaboration concept, which is based on role modelling, is
described and a specification language for fragment collaborations is defined.

This chapter, together with Chapters 5 and 6, defines Universal Invasive Software Composition
for Graph Fragments (U-ISC/Graph). The three major new concepts in U-ISC/Graph, com-
pared to earlier ISC approaches (cf. Chapter 3), are: (1) the fragment collaboration concept as
means to define modularity concepts, defined in this chapter, (2) support for graph fragments,
as opposed to tree fragments, defined in Chapter 5, (3) a universal composition language, as
base to support arbitrary composition languages, defined in Chapter 6. With that, the three
chapters define solutions for the eight features required for the generic composition system for
CB-MDSD presented in Figure 3.2. The first feature, fragment collaborations (FraCols), is
introduced in this chapter (Figure 4.1) as basis for the other features. Features 2–4 and 5–8
are covered in Chapters 5 and 6 respectively.

The purpose of composition interfaces is to define a contract between components. To con-
nect two components via composition interfaces, they have to fulfil their respective contracts.
FraCols are for defining such contracts between components but on a language-independent
level. That is, the contracts are defined without knowing the concrete component or the
component language in which the component is or will be defined.

As such, FraCols are not based on modularity concepts defined inside a language—for exam-
ple, Java Class or UML Package—but rather define language-independent modularity concepts.
This decouples composition interfaces from language constructs (i.e., from metaclasses if the
language is defined with EMOF; cf. Section 5.1.1). Only later is a FraCol coupled to one or
multiple languages by binding the language-independent modularity concepts defined by the
FraCol to concepts of the languages. (This is discussed in Chapters 5 and 6.)
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Figure 4.1: Fragment collaboration feature of the generic composition system for CB-MDSD.

To understand the need for FraCols, we recall the example from Section 2.1 that models a
ticket shop system with textual use case descriptions and UML use case diagrams. From these
models, composition programs are extracted that compose a Java implementation.

In Section 2.1.1, we formulated the requirement for abstract composition interfaces (Re-
quirement 3; p. 16) when we discussed that information has to be transformed into different
formats. In the example, information from the textual use case description in OpenDocument
format had to be transformed into UML use case diagrams and into Java. For this, a com-
position program was extracted from the textual use case description. We argued, that this
extraction can be reused by using the composition program for both the composition of UML
use case fragments and Java fragments. Since the composition program relies on the interfaces
of the fragments it composes, these interfaces may not change if the set of UML fragments is
exchanged for a set of Java fragments. Therefore, abstract interfaces, which are component
language-independent, are required. Fragment collaborations define such abstract interfaces.

Requirement 6, formulated in Section 2.1.3, is also related to FraCols. In this section, we
discussed that different kinds of compositions need to be performed in parallel. In the example,
we performed a composition of fragments representing actors with a fragment that represents
a use case. Then, we needed to add also business values, which were represented by different
fragments that had to be composed with the actor fragments in a different way. Thus, the
actor fragments needed to support two different modularity concepts—one for the composition
with use cases and one for the composition with business values. Consequently, is must be
possible that multiple FraCols are supported by a fragment.

Figure 4.1 shows that FraCols concern the component model and the composition language
of our generic composition system for CB-MDSD. They concern the component model, be-
cause they define modularity concepts that will have to be realised by component languages.
They concern the composition language, because composition programs can be formulated on
the base of FraCols, which keeps the fragments and the component languages exchangeable.
FraCols do not concern the composition technique, which is the major difference to existing
ISC approaches that do not define a comparable concept (cf. Chapter 3). There, composi-
tion interfaces always coupled all three parts—component model, composition language, and
composition technique—of a composition system, because they are used directly by the com-
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Figure 4.2: Fragment Collaboration Concepts.

position engine to access fragments. In our case, FraCols are used to couple component model
and composition language independent of the composition technique and the physical access
interfaces of fragments (which we describe in Chapter 5).

In the following, we define the FraCol concepts in Section 4.1 and, based on them, a definition
language for FraCols in Section 4.2.

4.1 Fragment Collaborations based on Role Modelling

To achieve that FraCols can be aggregated, we use the role modelling concepts role and col-
laboration [RG98]—hence the name fragment collaborations. Roles separate features from an
entity which it only holds temporarily when it collaborates with other entities by playing a
role. This is comparable to the use of the term role in acting. In our case, the entities are
model fragments which can collaborate in a composition.

The role modelling concepts for FraCols are presented as class diagram in Figure 4.2. A
FraCol consists of a set of fragment roles1 and composition associations. Composition associ-
ations connect fragment roles through port types, which are distinguishable points a fragment
has to offer on its composition interface when it plays the corresponding fragment role. The
distinction between configurations and contributions as well as static and dynamic port types
is explained below, where we describe the different FraCol concepts in more detail.

1Some role modelling approaches make a distinction between a role, which is played by an entity, and a role
type, which defines properties for a set of similar roles played by multiple entities. In this sense, fragment
roles are role types (consult [Ste00] for an overview of different role modelling approaches).
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Figure 4.3: FraCol binding process.

Attaching a role to an entity is called role binding. In our case, binding a fragment role to
a fragment means that the fragment has to offer a composition interface defined in the role.
Concretely, the fragment needs to offer ports for the port types of the bound fragment role.
Fragment role binding is illustrated in Figure 4.3 on a Java fragment from the example of
Section 2.1. On the left side, we see the fragment—a snippet of Java code. The fragment
role binding adds a composition interface with ports to the fragment that point to places
inside the fragment. These places are code snippets that can be reused (e.g., the complete
name_slot = new NAME_SLOT(); statement at which the Contrib port points) or slots (e.g.
the name_slot and NAME_SLOT strings at which the Name port points) where code snippets
can be inserted. How these pointers into fragments are established exactly is discussed in
Chapter 5. For now, it is important that a fragment role binding creates these pointers and
with that connects the composition interface defined in a fragment role with the internals of a
fragment. By this, the fragment plays the fragment role.

The composition associations define which ports may be connected and thus determine
which composition links, and therewith which collaborations, are allowed. The right side of
Figure 4.3 shows a composition association binding, which is the creation of a composition link
between two ports (Contrib and Rec in the example). The ports relate to port types that are
connected by a composition association. Ports with port types that are not connected by a
composition association can only be bound to a set of primitive string values. This is illustrated
in Figure 4.3, where the Name port is bound to the string values ’customer’ and ’Customer’.
This binding is called a value setting. The sum of composition links and value settings makes
up a composition program. We consider two possibilities to obtain such composition programs
(i.e., perform composition association bindings):

1. Manual composition program definition by using a composition language that supports
direct definition of composition links and value settings.

2. Extraction of composition programs from models.

In the following, we describe the details of FraCols and give examples, where we indicate the
definition and extraction of composition programs. How composition programs and rules for
composition program extraction are defined concretely is discussed in Chapter 6.

Example 4.1. Figure 4.4 depicts the FraCol Participation that can be used for the composition
of actors and use cases in the example of Section 2.1. In Figure 4.5, the binding of the roles
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Figure 4.5: Fragment role binding for Java fragments (cf. Figure 2.5) based on the FraCol
Participation (cf. Figure 4.4).

defined in the FraCol to the fragments is shown. Before binding, the fragments do not offer any
composition interfaces. After the fragment roles are bound, they have interfaces that point
to places within the fragment that are modified in case of a composition. In the example,
the first three fragments representing actors take up the Participant role, while the use case
fragment takes up the Collaboration role. A fragment role can be bound differently to different
fragments. In the example, Java fragments are used, but UML fragments, as in Figure 2.4,
may be used as well. For different fragment types, different pointers into the fragment are
established during the binding. How this is defined is discussed in Chapter 5.

The extraction of a composition program that uses the same FraCol is shown in Figure 4.6.
Here, the FraCol controls the extraction of the composition program from the textual use
case description. In the example, we obtain three composition links that conform to the
Participation association and three value settings that extract the names of actors (as lower
and upper case versions) from the textual use case description.
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If we combine Figures 4.5 and 4.6, we obtain complete FraCol applications that contains both
the connection to composition interfaces of fragments, which are needed to access selected parts
of the fragments for composition, and the complete composition program, which is needed to
identify which parts of the fragments to merge in the composition.

4.1.1 Fragment Roles

Fragment roles have three important properties. First, when bound multiple times to one
fragment, the ports resulting from these bindings are merged. In the example above, the
Collaboration role was bound three times to the use case fragment. This binding produced
one Rec port and not three Rec ports (right side of Figures 4.5 and 4.6). All Participation
composition links use this one port (Figure 4.6).

Second, a fragment can play multiple roles defined in multiple FraCols. This is illustrated
in Figures 4.8 and 4.9, where new ports and composition links are added by binding the roles
defined in the FraCol Exchange (Figure 4.7) to compose actors with business values. From the
fragment perspective, this means that new composition interfaces become available pointing
at different positions in the fragment. From the composition program perspective, new links,
and with that new collaborations between fragments, are established.

Third, as Figure 4.9 illustrates, a composition program may only require parts of a role to
be played by a fragment. While eventually the complete role is required, this allows stepwise
binding if the composition program is extracted from multiple sources (which is needed to
meet Requirement 5; p. 17). In the example, we would have to add additional UML use case
diagrams with business value annotations, as in Figure 2.7, to complete the binding.

4.1.2 Port Types

We distinguish static and dynamic port types. The port types used in the examples so far
were all of static nature. This means that there is always one port of that type on a fragment
that plays the corresponding role.

Dynamic port types on the contrary allow multiple ports of the same type on one fragment.
In this case, the role binding controls which and how many ports of that type are available on
one concrete fragment and the number can vary from fragment to fragment. Consequently, for
dynamic port types, it is not known from the fragment role specification, how many ports will
exist on a fragment. This weakens the contract defined by the fragment role and a composition
program extraction requires knowledge about concrete fragments to establish composition links.
On the upside, dynamic port types give more flexibility to the developers of fragments and are
hence useful in certain situations as the following example illustrates.

Example 4.1.2. Figure 4.11 shows the binding of fragment roles with dynamic port types
in the file system example introduced in Section 2.2. The corresponding FraCol ClassWeav-
ing, shown in Figure 4.10, models the core/aspect relationship described for the Compost
realisation of the example in Section 3.1. In a fragment playing the Core role, each class is
individually extensible. Hence, there is a JoinPoint port for each class. In a fragment playing
the Advice role, each class offers extension content. Hence, there is a Content port for each
class. If new classes are added to one of the example models, the interface dynamically expands
with addition JoinPoint or Content ports.
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AdviceCore
Weave

JoinPoint Content

FraCol
ClassWeaving 
(Example 2.2)

Figure 4.10: FraCol ClassWeaving required for the examples of Chapter 2.

Fragment Role Binding: AspectWeaving

AdviceCore

JoinPoint Content

JoinPoint JoinPoint JoinPoint

Content ContentContentContent

Figure 4.11: Fragment role binding that involves dynamic ports.
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1 fracol ID {
2 fragment role fragmentRoleName {
3 static port type portName;
4 dynamic port type portName;
5 }
6 contributing association associationName {
7 fragmentRoleName.portName --> fragmentRoleName.portName
8 }
9 configuring association associationName {

10 fragmentRoleName.portName --> fragmentRoleName.portName
11 }
12 }

Listing 4.1: Schematic FraCol specification.

In Section 2.2, we argued that in cases like this example, a universal composition language can
be used directly. With such a language, one can define the links based on concrete fragments for
which the role binding was already performed (as in Figure 4.11) and the ports with dynamic
type are known. (We define this universal composition language in Chapter 6.)

4.1.3 Composition Associations

We distinguish two types of composition associations—contributions and configurations—to
control the composition direction. This is necessary because eventually a composition is exe-
cuted that merges fragments. Contributions are directed and define which fragment is merged
into which. That is, the fragment the contribution is pointing at is extended with content from
the other fragment. Configurations, which are not directed, define additional adjustments
inside the merged content of fragments already merged by contributions.

This puts two restrictions on the aggregatability of FraCols. First, FraCols may not be
aggregated in a way that the complete composition program contains cycles resulting from
contributions. Second, if a FraCol contains only configurations, it needs to be aggregated with
FraCols that contain contributions to determine the composition direction.

4.2 FraCol Specification Language

In this section, we present the FraCol specification language. For this language, we use the
FraCol concepts defined in Figure 4.2 as metamodel and add a textual syntax to it. With
this syntax, developers can define FraCols using the concepts introduced in Section 4.1. (The
complete grammar of the FraCol specification language can be found in Section 7.2.)

In the following, the syntax is explained on a schematic FraCol definition shown in Listing 4.1.
In Line 1, an ID is given to the specification. Lines 2–5 show the definition of a fragment
role. It consists of static (Line 3) and dynamic (Line 4) port type definitions. A contributing
association is defined in Lines 6–8 and a configuring association in Lines 9–11. These definitions
state which two port types defined above can be connected.

Example 4.2. Listings 4.2, 4.3, and 4.4 show the specifications of the FraCols shown in
Figures 4.4, 4.7, and 4.10 respectively, which were discussed in this chapter.
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1 fracol org.reuseware.lib.systems.participation.participation {
2 fragment role Participant {
3 static port type Contrib;
4 static port type Name;
5 }
6 fragment role Collaboration {
7 static port type Rec;
8 }
9 contributing association Participation {

10 Participant.Contrib --> Collaboration.Rec
11 }
12 }

Listing 4.2: FraCol specification for Participation (cf. Figure 4.4).

1 fracol org.reuseware.lib.systems.exchange.exchange {
2 fragment role Container {
3 static port type Rec;
4 }
5 fragment role Value {
6 static port type Contrib;
7 static port type Provider;
8 static port type Consumer;
9 static port type Type;

10 static port type ID;
11 }
12 fragment role Provider {
13 static port type Self;
14 }
15 fragment role Consumer {
16 static port type Self;
17 }
18 contributing association Contribution {
19 Value.Contrib --> Container.Rec
20 }
21 configuring association Provide {
22 Value.Provider --> Provider.Self
23 }
24 configuring association Consume {
25 Value.Consumer --> Consumer.Self
26 }
27 }

Listing 4.3: FraCol specification for Exchange (cf. Figure 4.7).

1 fracol org.reuseware.example.class_weaving {
2 fragment role Core {
3 dynamic port type JoinPoint;
4 }
5 fragment role Advice {
6 dynamic port type AdviceContent;
7 }
8 contributing association Weave {
9 Advice.AdviceContent --> Core.JoinPoint

10 }
11 }

Listing 4.4: FraCol specification for AspectWeaving (cf. Figure 4.10).
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Figure 4.12: FraCols configure the generic CB-MDSD composition system.

4.3 Conclusion

Chapter Contribution This chapter contributes the following:

C1-1 Contracts between component and composition languages
FraCols provide the first extension of ISC for explicit contract definition between com-
ponent languages—as part of a component model—and composition languages in ISC
systems. It is therefore the first method to couple component models and composition
languages independent of the composition technique of such systems. This contribution
has the following sub-contributions:

• Application of role modelling on the language level
For FraCols, we successfully transferred the concepts of role modelling to the level
of language development to define contracts between component and composition
languages.

• Specification Language for FraCols
As a technical contribution, we provided a FraCols specification language that can
be integrated into development environments for invasive composition systems.

The FraCol specification language is the first tool a process architect, in the role of a com-
position system developer, can use to configure the generic CB-MDSD composition system.
This is illustrated in Figure 4.12. To configure the system further, means are required to in-
tegrate component and composition languages. These integrations are performed by fragment
role binding and composition program extraction which are not substantiated in this chapter.
The fragment role binding, which concerns component languages and therewith the compo-
nent model, is discussed in the next chapter and the composition program extraction, which
concerns the composition language, is discussed in Chapter 6.
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Graph Fragments

This chapter describes how models are treated as graph fragments. It defines variability concepts
for graph fragments and introduces a language for component model configuration through which
modelling languages can be integrated as component languages into a CB-MDSD composition
system.

The previous chapter introduced fragment collaborations (FraCols) to ensure exchangeability
of component and composition languages in composition systems for CB-MDSD. As next step
towards a generic CB-MDSD composition system (cf. Figure 3.2), this chapter deals with
component languages, which are in our case arbitrary DSMLs defined in EMOF [OMG06a].
As Figure 5.1 illustrates, this concerns three features of the generic CB-MDSD composition
system:

• (Feature 2) To establish the basics for invasive graph composition as composition tech-
nique, we explore how models are treated as graphs and which specifics of such graphs
can be exploited for their composition. This is covered in Section 5.1.

• (Feature 3) For accessing models represented as graphs through composition interfaces,
concepts are required which can be superimposed on graphs to mark access points. We
call these concepts, which we present in Section 5.2, variability types that extend the
hook concept of ISC.

• (Feature 4) Finally, to establish composition interfaces for models of arbitrary DSMLs,
we require a method to define variability types for models and map these to modularity
concepts defined in FraCols. This method is the fragment role binding we indicated in
Chapter 4. For that, we define the component model configuration language REXCM in
which such fragment role bindings are expressed. Figure 5.2 shows that REXCM can be
used by a process architect, in the role of a composition system developer, to configure the
component model of the generic CB-MDSD composition system to integrate new DSMLs
as component languages. This in turn allows developers to develop model components
in that DSML. REXCM is defined in Section 5.3.
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Figure 5.1: Features of the generic composition system for CB-MDSD that concern graph
fragments.
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Figure 5.2: REXCM definitions configure the component model of the generic CB-MDSD com-
position system.

5.1 Models as Graphs

Models in model-driven development can be represented as graphs. We would like to realise our
composition technique as manipulation of these graphs. For this, the composition technique
of U-ISC/Tree, which is based on tree manipulation, should be extended. To understand how
models can be represented and manipulated as graphs, we first have to understand how graph
representations of models are obtained, what their specifics are, and how they can be accessed
for manipulation.

Example 5.1. As illustration that any model can be treated as graphs consider the two
models shown in Figures 5.3 and 5.4. The first figure shows the UML model of the file system
introduced in Section 2.2. The second figure shows the similar system defined in a Java model1

1As mentioned, we treat all languages defined with EMOF as DSMLs. This includes Java which we further
discuss in Section 5.1.2. Consequently, we refer to all artefacts defined in DSMLs as models and do therefore
not distinguish between models and code.
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public class FileSystem2 { public class FSFolder4 { public class FSFile7 {
protected FSFolder4[] folders3; protected FSFolder4[] subFolders5; }

} protected FSFile7[] files6;
}

Figure 5.4: A file system modelled in Java represented as text and as graph.

as introduced in Section 3.1. The elements in the model are numbered to relate them to the
nodes in the graph that represent them.

Each figure shows the model in its concrete syntax, which is a diagram in the case of UML
and a text in the case of Java. The models can be transformed from their concrete syntax
representation into a graph and back, which allows manipulation on the graph that reflects
in the concrete syntax representation. For this, mappings between concrete syntax and graph
representations are required, which differ from DSML to DSML. Such a mapping maps a
concept of a DSML to its representation. For instance, in the case of UML, a class is represented
as a rectangle, while in the case of Java a class is represented as a text block.

We are interested in manipulating the graph representations of models. For that, we have
to explore how graph representations of models, which are defined in EMOF-based DSMLs,
are obtained and how modifications on these graphs are performed. Therefore, we discuss how
DSMLs are defined in EMOF (Section 5.1.1), how concrete syntax is defined on top of that
(Section 5.1.2), and which facilities exist to access parts of the graph representations of models
(Section 5.1.3).
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Figure 5.5: EMOF core modelled in EMOF/Ecore (based on Figures 12.2–12.5 in [OMG06a]).

5.1.1 The Essential Meta Object Facility (EMOF)

The Meta Object Facility (MOF) is a standardised metalanguage (or meta-metamodel) to
specify DSMLs. Such The first MOF standard (MOF 1.1) was released by the OMG in 1997.
MOF is based on UML reusing its class diagram package [OMG10b, Chapter 7]. MOF is used
for the specification of modelling language standards including UML and MOF itself.

Since MOF 2.0 [OMG06a] (released in 2006) a kernel called Essential MOF (EMOF) was
singled out from the Complete MOF (CMOF). According to the specification, EMOF provides
a minimal set of elements to model object-oriented systems. It is therefore easier to map
EMOF specifications to object-oriented implementations (e.g., in Java) than to map CMOF
specifications. The de-facto reference implementation of EMOF is Ecore [SBPM09] in the
Eclipse Modeling Framework (EMF). The first version of Ecore was created prior to MOF 2.0
and had an important influence on the design of EMOF.

Despite minor naming and structural differences, EMOF and Ecore are equally expressive
[SBPM09, Section 15.4.5]. In this thesis, we mostly stick to the Ecore terminology because it
allows us to transfer the conceptual specification directly to the implementation. Below, we
introduce the central concepts of EMOF and show the differences between EMOF and Ecore.

We use EMOF/Ecore for two purposes. First, we use it as metalanguage to describe DSMLs
which are used as component and composition languages in CB-MDSD composition systems.
Second, we specify the concepts and languages of U-ISC/Graph with EMOF/Ecore and gen-
erate the corresponding implementations as part of Reuseware (cf. Chapter 7) from it.

From a scientific point of view, the choice of EMOF/Ecore as metalanguage is not important.
Our results can be transferred to other metalanguages (e.g, Resource Description Framework
Schema (RDFS) [W3C04]). In Section 5.1.3, we will therefore define general concepts and map
them to EMOF/Ecore. By mapping these general concepts to other metalanguages, our results
can be transferred.
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Figure 5.6: Ecore core modelled in EMOF/Ecore (based on Figures 5.1–5.9 in [SBPM09]).

EMOF Concepts

Figures 5.5 and 5.6 show the central concepts of EMOF specified in common UML class dia-
gram notation (i.e., EMOF itself; the graphical notation is shown in Figure 5.7 and described
below). Figure 5.5 uses the terminology of the EMOF specification and Figure 5.6 of the Ecore
implementation. The EMOF concepts should be familiar since they resemble the base concepts
of object-oriented programming languages. We therefore explain briefly Figures 5.5 and 5.6 in
parallel using the schema EMOF terminology (Ecore terminology).

A metamodel specifies a set of Types (EClassifiers) which are collected in a Package
(EPackage). Each package has a unique uri (nsURI) that is the unique identifier of the meta-
model. Types (EClassifiers) are either DataTypes (EDataTypes) or Classes (EClasses). A
data type holds raw data (e.g., a character sequence or a number literal). It is often predefined
and reused from a standard library.

The central concept of EMOF is Class (EClass) to define metaclasses. Each metaclass
represents a concept or a construct in the modelled language. Metaclasses can inherit type and
features through the subclassing concept known from object-oriented languages. Subclassing
is expressed by the superClass (eSuperTypes) reference. A Class (EClass) can be abstract
(isAbstract).

Classes have an arbitrary number of ownedAttributes (eStructuralFeatures) and owned
Operations (eOperations). All features and operations have a type (eType)—defined by
TypedElement (ETypedElement)—as well as a lower (lowerBound) and upper (upperBound)
bound—defined by MultiplicityElement (ETypedElement).

In EMOF, a feature is represented by a Property. (In Ecore, EStructuralFeature has
two sublcasses—EAttributes, where eType has to be an EDataType, and EReference, where
eType has to be an EClass.) A Property (EReference) can have an opposite (eOpposite)
which emulates a bi-directional association.
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(2)

(4)

(3)

Figure 5.7: Graphical EMOF/Ecore notation.

An Operation (EOperation) has a set of ownedParameters (eParameters). Each parameter
is also typed and has a multiplicity. EMOF (Ecore) itself does not define a formalism to specify
the semantics—the body—of an Operation (EOperation).

This concludes the description of the EMOF (Ecore) concepts. From now on, we stick to
the Ecore terminology. In the following, we discuss the graphical notation of Ecore and give
examples. For further details about EMOF and Ecore please consult [OMG06a] and [SBPM09].

Graphical Notation

The graphical notation for Ecore metamodels is summarised in Figure 5.7. The Fujaba [NNZ00]
tool can be used to create diagrams using this notation (cf. Chapter 7 for details about the
tools we used). The notation follows the common UML class diagram notation [OMG10b,
Section 7.4]. However, a few peculiarities to how the notation relates to the Ecore metamodel
that should be considered.

The notation consists of boxes (left side of Figure 5.7) with three compartments and lines
(right side of Figure 5.7) between the boxes with different end symbols. Each box represents
an EClass. The first compartment contains the name of the class. The second contains all
EAttributes of the class (EAttributes contained in the eStructuralFeatures reference of
the class). The third compartment contains the EOperations of the eOperations reference.

There are basically four types of lines to distinguish. (1) represents a subclassing and there-
fore sets the eSuperType relation between two EClasses. All other three lines are instances
of either one EReference or two EReferences which refer to each other as eOpposite. (2)
stands for a reference from one EClass to another, where the first end (no arrow) is the
EClass containing the EReference (in its eStructuralFeatures) and the second end (arrow)
points at the eType of the EReference. The containment of that reference is set to false. (3)
stands for two EReferences connected via an eOpposite relation where both references have
containment set to false. (4) identifies two references, where the reference that is contained
in the EClass at the first end (diamond) has containment set to true. The distinction be-
tween containment and non-containment reference is of high importance for our composition
approach and in Ecore metamodelling in general, as we will discuss in Section 5.2.

Example 5.1.1 Here we show excerpts of two DSML metamodels which we use in examples
throughout this thesis: UML [OMG10b] as realised in [Ecl10d] and Java. The Java metamodel,
and the corresponding tooling to create instances of it (cf. Section 5.1.2), was developed during
the research for this thesis in collaboration with other PhD projects [HJSW10].

Excerpts of the metamodels are shown in Figures 5.8 (UML) and Figure 5.9 (Java). These
excerpts of the metamodels include the class modelling part of UML and Java. Comparing both
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Figure 5.8: An excerpt from the UML metamodel [Ecl10d].

metamodels illustrates how similar concepts can be modelled in different ways with Ecore. For
example, Java contains the concept Field while UML offers both Association and Property
for a similar purpose. Another example is that the concept of having members is modelled via
one containment reference (members) in Java, while in UML multiple containment references
are used (ownedAttribute and ownedOperation). A third example is that TypedElements in
UML directly cross-reference their type via the type non-containment reference, while in Java
there are explicit reference metaclasses (TypeReference and ClassifierReference with the
target non-containment reference to a type).

The binding of metamodels to FraCols, which we present in Section 5.3, needs to be flexible
enough to support such structural differences in metamodels. For example, the fragment roles
for class weaving presented in Example 4.2 have to be mapped differently to UML and Java
due to the structural differences in the metamodels. This is further discussed in Section 5.3.
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5.1.2 Concrete Syntax of EMOF-based Languages

The previous section discussed EMOF/Ecore to specify a DSML by means of its concepts and
their relationships. Such a specification is also called abstract syntax of a DSML. To allow
developers to create models with a DSML, a concrete syntax is needed in addition. How such
a concrete syntax can be defined on top of an Ecore metamodel is presented in this section.

Below, we discuss graphical syntax and textual syntax. In the latter case, we elaborate
on the relationship between Ecore-based languages with textual syntax and grammar-based
languages to emphasise that this thesis is an extension U-ISC/Tree (cf. Section 3.2) which
worked with grammar-based languages.

Graphical Syntax

Traditionally, models in MDSD have graphical syntax. The syntax is implemented in graphical
editors used to create and modify these models. The best example is UML which defines
graphical notations for all its constructs and for which many open and commercial graphical
editors exist (e.g., [IBM10b, IBM10a, TOP10, Bor10, NoM10, NNZ00]).

A graphical representation is a graph visualisation, where nodes and edges are visualised by
shapes and lines. Consequently, layout information, such as position and size of shapes needs
to be managed in addition to a model (which is an instance of an Ecore metamodel). Such
layout information is usually stored together with the model to preserve the layout a developer
has created manually.
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In the graphical representation of a model, a node is often represented by one shape and an
edge is represented by a line. Nevertheless, there can be more complex relationships between
visualisation and model. For example, an edge can also be represented by a shape, or one
shape can represent multiple nodes and edges. This depends on how the graphical syntax is
defined.

Graphical syntax is often hard-coded into tools. In recent years however, technologies and
standards emerged to declare graphical syntax that can be interpreted or from which tools can
be generated. Two prominent candidates for the generative approach are GMF [Gro09] and
TOPCASED [TOP10] that both work with the EMF and languages defined in Ecore. Further-
more, there are approaches that aim at simplifying the specifications of graphical syntax. One
of these approaches is EuGENia [KRPP09]. EuGENia also uses GMF for editor generation
in the background, but may target other technologies as well in the future. There is also an
OMG standard related to graphical syntax—the UML diagram interchange (UML-DI) stan-
dard [OMG06c]—which was designed to make layout information exchangeable between tools.
Although both GMF and TOPCASED do not conform to that standard, there are ongoing
discussions on how to align them with a future version of the standard.

Graphical model editors, hand-crafted and generated alike, work with the Model-View-
Controller principle. That is, the model and the layout information is loaded in memory
and edited there by using the dedicated graphical editor. The models are stored and loaded
using the XML Metadata Interchange (XMI) [OMG07] format that is an OMG-standardised
XML dialect for serialising EMOF-based models. The files in which the models are stored are
not intended to be edited directly (i.e., with a text or XML editor).

Example 5.1.2. (1/2) For illustration, consider the file system UML model (cf. Example 5.1)
shown again in Figure 5.10. The bottom of the figure shows the model as it appears in the
TOPCASED editor. The upper part shows the model as it exists in memory—as a graph.
The graph consists of nodes for the model elements (©). Additionally, layout information (�)
exists that contains information about the position of model elements in the graphical view.
The model elements themselves are unaware of this layout information.

If we edit the model in the TOPCASED editor, the graph is directly modified. Also, if the
graph is modified by other means (e.g., if there is another editor that operates on the same
model) the changes are directly shown in the TOPCASED editor. If the model is saved to
XMI, the graph structure is serialised as it is in memory and is reconstructed when the model
is loaded again.

We used GMF to develop a graphical editor for our universal composition language (cf.
Chapter 7). Furthermore, the graphical modelling languages used in examples throughout this
thesis and in the evaluation (Chapters 8 and 9) are either based on GMF or TOPCASED. In
Chapter 8, EuGENia was used in addition to GMF to specify graphical syntax for two DSMLs.

The question arises how the layout information, which is additional information on top of
the actual models, can be treated during invasive graph composition. Although this is not
in the core of this work, it was nevertheless an important issue to perform the evaluations in
Chapters 8 and 9, because composition results cannot be presented adequately to developers
without a certain layout preservation in the composition process. Therefore, we addressed this
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Figure 5.10: UML model directly edited in graphical editor.

issue in the research performed for this thesis. Our results are discussed at the end of this
thesis in Section 12.1.

Textual Syntax

Traditionally, languages in computer science have textual syntax. This originates from the
fact that first computers were not capable of displaying graphics. Today, textual languages
are still very common—in particular for programming. Compared to graphical syntax, textual
syntax has the advantage of a predefined reading order, which is valuable if sentences are
interpreted in sequential order. Furthermore, there are many tools that work on the basis of
textual representation—for example for comparison, merging, or version control.

Thus, based on the application area of a language, a textual syntax is useful. Textual syntax
can also be used as complement to graphical syntax—in particular in the case of Ecore-based
languages, where a common abstract syntax exists in form of the Ecore metamodel.

In addition to designing new textual DSMLs, being able to specify textual syntax for Ecore-
based languages enables us to describe existing languages in Ecore. The Java metamodel (cf.
Figure 5.9), for instance, is useless in practice without being able to transfer Java code written
in Java’s textual syntax into an instance of the metamodel (and the other way around).

When we started the work on this thesis, there was no tool available that supports the
specification of textual syntax for Ecore-based languages in a similar manner as GMF provides
it for graphical languages. Therefore, we developed EMFText [HJK+09] in collaboration with
other PhD projects.

In principle, EMFText follows the grammar-based language specification idea presented in
[Mey90] that distinguishes between abstract and concrete syntax grammars. This idea was also
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public class FileSystem2 { public class FSFolder4 { public class FSFile7 {
protected FSFolder4[] folders3; protected FSFolder4[] subFolders5; }

} protected FSFile7[] files6;
}

Figure 5.11: Java model edited by parsing and printing text.

followed in [Hen09] for U-ISC/Tree which was defined on the base of abstract syntax grammars.
In EMFText, metamodels are used instead of abstract syntax grammars. In addition, EMFText
offers a language to specify concrete syntax grammars on top of metamodels called Concrete
Syntax (CS). Thus, using EMFText, U-ISC/Graph also works for the textual languages that
were addressed by [Hen09].

In contrast to graphical editors, textual model editors—which are generated by EMFText—
do not work on the model, but on plain text. Although this has drawbacks, it allows arbitrary
text processing tools, such as merge or version control tools, to work on the textual model
representations as well. The text can be parsed into a graph and a graph can be printed into
its text representation. The tooling for that is generated by EMFText.

Example 5.1.2. (2/2) To illustrate the work with textual syntax compared to graphical
syntax, we revisit the file system example defined in Java (cf. Example 5.1) in Figure 5.11.
The bottom shows the three Java classes in their textual representation.

To obtain a graph representation, the texts are first parsed into trees (middle of Figure 5.11).
Such abstract syntax trees are the structures U-ISC/Tree works on. From the modelling per-
spective, the containment references (cf. Section 5.1) between model elements are established
at this stage, but not the cross-references such as the reference between a Field and the Class
that represents the field’s type.

These cross-references are established in a name analysis step that is also performed by the
EMFText generated tooling. The name analysis establishes the cross-references such as the
reference between the folders field (3) and its type FSFolder (4) that is identified by its name
in the text. The tooling for name analysis might require adjustment if the language has specific
scoping rules. We did this adjustment for Java in [HJSW10].
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1 Class ::= annotationsAndModifiers*
2 "class" name[] ("<" typeParameters ("," typeParameters)* ">")?
3 ("extends" extends)? ("implements" (implements ("," implements)*))?
4 "{" (members)* "}";
5

6 Field ::= annotationsAndModifiers* typeReference arrayDimensionsBefore*
7 ("<" typeArguments ("," typeArguments)* ">")?
8 name[] arrayDimensionsAfter* ("=" initialValue:expressions.AssignmentExpression)?
9 ("," additionalFields)* ";";

Listing 5.1: EMFText syntax rule for the Java metaclasses Class and Field (cf. Figure 5.9).

Once a model is transferred into its graph representation, it can be modified there (e.g.,
invasively composed). The right side of Figure 5.11 illustrate how to obtain the textual repre-
sentation of a such modified model by printing the graph back into text. For this, first names
have to be generated from all cross-references. Then all elements can be printed according to
the textual syntax of the language.

As indicated, Figure 5.11 illustrates one advance of our work over U-ISC/Tree [Hen09]. U-
ISC/Tree only works on context-free structures (middle), while our approach works on graph
structures with context (top). This guarantees correct compositions of context-sensitive parts
of a fragment. For example, in U-ISC/Tree, one can modify the class name FSFolder without
recognising that it breaks the result because the name is used elsewhere to refer to the class.
Working on the graph (top), the names have already been resolved to cross-references and
modifying the class name automatically leads to a modification of all usages of the name in
the printed text.

All textual languages used in examples throughout this thesis are defined with EMFText.
Therefore, we give a quick introduction on the concrete syntax specification language of EMF-
Text called CS, which is a variant of EBNF. Listing 5.1 shows two rules of our CS specification
for Java [HJSW10]. As mentioned, the specification refers to the Ecore metamodel of the lan-
guage. For each concrete metaclass, one grammar rule is defined. In Listing 5.1, the rules for
Class and Field are shown (cf. Figure 5.9). On the right-hand side of each rule we find (1)
containment references (e.g., members in Line 4) that define the positions of contained model
elements, (2) attributes (e.g., name in Line 2) that define the position of attribute values, and
(3) keywords (e.g., “class” in Line 2) that are pure concrete syntax and have no counter
part in the metaclass. The usual grammar notations of |, ?, +, * can be used but must fol-
low the multiplicities defined in the corresponding metaclass. For more details, please consult
[HJK+09].

We used EMFText to connect Java to EMF and define other textual domain-specific lan-
guages in the evaluation (Chapters 8 and 9). In particular, the treatment of Java shows that
general-purpose programming languages can be defined in terms of Ecore metamodels and
that a distinction between modelling and programming languages is not necessary from this
perspective. In fact, leveraging Java to a modelling language (in the sense that it is defined by
an Ecore metamodel), allows language-independent approaches and technologies—as the com-
position approach and the Reuseware tool defined in this thesis—to be used uniformly on
models and code. This means that the composition systems built for programming and other
textual languages with U-ISC/Tree in [Hen09] can also be built with our approach. Thus, an-
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other contribution of this thesis is that it shows that universal ISC can be applied for complete
general-purpose languages on the example of Java (not covered in [Hen09]).

5.1.3 Graph Fragments

Above, we discussed how to obtain graph representations of models. We refer to these repre-
sentations as graph fragments, since they are graphs that are treated as components in invasive
composition (where the components are called fragments [Aßm03, Hen09]). Because for inva-
sive composition we need to access and manipulate the structure of graph fragments, we define
it in more detail in the following.

Definition: Graph Fragment

A graph fragment is a directed, attributed, not necessarily completely connected graph G =
(NG, EG) where NG denotes the set of nodes and EG the set of edges of the graph. G has
a distinct spanning forest identified by TG ⊆ EG. The spanning forest consists of spanning
trees, where each has one root node nG ∈ RG, where RG ⊆ NG denotes the set of all root
nodes of the spanning forest. Each nG ∈ NG is either target of one edge in the spanning forest
eG ∈ TG and nG 6∈ RG or the root node of one spanning tree of the spanning forest nG ∈ RG.
Furthermore, if nG ∈ NG then An denotes the set of attributes of nG. There are the two
functions iG : NG → EG and oG : NG → EG, where iG computes the list of all incoming edges
of a node and oG computes the list of all outgoing edges of a node. An edge list oG(nG) can
be ordered.

A graph fragment is typed by its Ecore metamodel. Thus, an Ecore metamodel is a type
graph MM = (CMM , RMM ) where the nodes CMM are all EClasses and the edges RMM are all
EReferences. All attributes Ac for each cMM ∈ CMM are EAttributes. We call this typing
domain typing.

In addition to the domain typing, graph fragments are superimposed with a variability typing
which is introduced in Section 5.2. Before that, we explore how nodes, edges, and attributes
in a graph fragment can be accessed and how their domain types can be discovered.

Access to Graph Fragment Elements in Ecore

To reason over the elements of graph fragments and their types, we require generic access and
reflection facilities for that. Ecore provides such facilities and in this section we explain how
they map to our graph fragment definition above. Conceptually, other graph formalisms and
graph manipulation tools can be mapped in a similar manner to use our approach with other
meta-languages and tools.

We use the generic access and reflection facilities to define graph matching and rewriting rules
on graph fragments without knowledge of the concrete type graphs (i.e., Ecore metamodels,
in the case of Ecore). Figure 5.12a illustrates the facilities we utilise for generic graph access
with Ecore. (Corresponding facilities are also standardised for MOF [OMG06a, Chapter 13].)

• EObject [SBPM09, Section 2.5.3]. Each node nG ∈ NG is an EObject independent of its
type defined by its type graph (i.e., its metamodel). This allows us to define matching
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Figure 5.12: Generic graph access (a) and reflective type graph access (b) for Ecore.

and manipulation rules for nodes, without knowing their concrete type. Furthermore,
the eAllContents edges enable generic access to all contained nodes (i.e., all nodes of
the spanning tree below the current node) independent of their position in the tree. The
eContainer edge allows to navigate to the parent node up the spanning tree.

• Setting [SBPM09, Section 16.3]. To perform reflective access to the type graph for edges
and attributes, we need a handle for them. This means, we require a node that represents
an edge or an attribute. Such a representation is called a Setting. A Setting either
represents a list of edges or a (list) attribute. It has an edge (eObject) to the source
node nG of the represented edge list or the attributed node nG. The value edge(s) of a
Setting point at the target node(s) of the edges and the attribute value(s) respectively.
An edge list contains the subset of all outgoing edges of o(nG) of similar type and is
ordered. An attribute can be a list attribute with an ordered list of PrimitiveValues
instead of a single PrimitiveValue.

Settings are not explicitly accessible right away—they implicitly exist as attributes of
EObjects or edges between EObjects. There are two possibilities to obtain a specific
Setting. First, one can navigate from an EObject nG to Settings representing its
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5.1 Models as Graphs

outgoing edges and attributes oG(nG)∪An via the eSettings edges. Second, a tool can
be used to compute Settings for all incoming edges iG(nG) of a node nG.2

The following facilities shown in Figure 5.12b are used for reflective access to type graphs
(cf. Figure 5.6):

• EObject.eClass. For each nG (i.e., each EObject) the eClass edge gives access to nG’s
type. The node that is reached via eClass is the node from the type graph cMM ∈
CMM that defines the type of nG. It is an EClass, which has the eSuperTypes and
eAllSuperTypes edges. These can be used to navigate the type hierarchy and perform
type checks.

• Setting.eStructuralFeature. For edges eG or attributes an (i.e., for Setting), the
eStructuralFeature edge gives access to the type. Depending on whether the Setting
represents an edge or an attribute, eStructuralFeature points at an EReference or an
EAttribute.3 In addition, the EObject.eContainmentFeature edge (not shown in the
figure) yields the type (the EReference) of the containment edge to the current EObject.

As typical in object-oriented systems, the typing of a graph fragment is expressed by a total
graph morphism, called instance-of, denoted as →instance−of : G → MM . The →instance−of

morphism is defined for nodes, edges, and attributes in the following.

For a node nG ∈ NG (an EObject), →instance−of is defined as follows (following [OMG06a]
and [SBPM09]). Let cMM ∈ CMM be the EClass obtained by following the eClass edge from
nG. Then nG →instance−of cMM . Furthermore, let Csuper ⊆ CMM be the set of all superclasses
of cMM obtained by following all eAllSuperTypes edges from cMM . Then, nG →instance−of

csuper if csuper ∈ Csuper.

For an edge eG ∈ EG (a Setting), →instance−of is defined as follows (following [OMG06a]
and [SBPM09]). Let rMM ∈ RMM be the EReference obtained by following the eStructural-
Feature edge from eG. Then eG →instance−of rMM .

In addition, an edge has the containment property that determines if the edge belongs to
a spanning tree. eG →instance−of rMM is a containment edge (eG ∈ TG) if the containment
attribute of rMM is set to true. eG →instance−of rMM is a non-containment edge (eG 6∈ TG)
if the containment attribute of rMM is set to false. Thus, all containment edges form the
spanning forest (TG) of the graph fragment. This is of particular importance since the spanning
forest can be regarded as a collection of abstract syntax trees (cf. Section 5.1.2) and variability
concepts on this part of the graph fragment are therefore close to U-ISC/Tree concepts.

For an attribute aN ∈ AN (a Setting) for any nG,→instance−of is defined as follows (follow-
ing [OMG06a] and [SBPM09]). Let ac ∈ Ac (for some c ∈ CMM ) be the EAttribute obtained
by following the eStructuralFeature edge from aN . Then aN →instance−of aMM .

2In the Ecore implementation in EMF, the EcoreUtil.CrossReferencer is provided to compute iG(nG)
[SBPM09, Section 16.3].

3In the Ecore implementation in EMF, the EObject.eClass edge is defined as operation eClass(), the
EObject.eSettings edge is defined as operation eSetting(EStructuralFeature) and the Setting.value
edge is defined as operations get() and set(). These are implementation details. Conceptually these op-
erations can be interpreted as edges as described above which allows us to express graph matchings and
manipulation rules over them.
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Symbol Symbol Description Symbol Semantics

// Solid arrow Containment edge eG ∈ TG

//_____ Dashed arrow Non-containment edge eG 6∈ TG

// ?>=<89:;n Circle with incoming
solid arrow

Node inside the graph n 6∈ RG

?>=<89:;n
Circle without

incoming solid arrow
Root node of one spanning tree n ∈ RG

?>=<89:;n • Small circle
attached to circle

Variation edge list that is part of the
set of outgoing edges of n ∈ NG

_
� �

T
�

T_ �n Dashed circle
Node n ∈ NG is a variation node

(slot or hook node)

?>=<89:;/.-,()*+n Double circle
Node n ∈ NG is a reference node

(anchor or prototype node)

Figure 5.13: Notation for graph fragments.

In Ecore, attributes also have a type (eType edge) that always has to be an EDataType (cf.
Section 5.1). We regard all attributes an as strings (character sequences). Although in practice
an EDataType can restrict the set of possible values for an attribute. This kind of primitive
typing, however, is not in focus for the variability typing we discuss in the next sections.

This section explained how models are treated as graphs, how these graphs are typed, and
how generic access to the elements of these graphs can be performed. This is the basis for
invasive composition of graphs as composition technique, which is Feature 2 of our generic
CB-MDSD composition system (cf. Figure 5.1).

5.2 Variability Types

Above, we discussed how models are represented as graphs on the example of models defined
in an Ecore-based modelling language. Once we have such a graph representation, we can
perform model compositions by modifying the graphs. For this, we need to define which parts
of a graph can be accessed and modified and how these parts relate to the composition interface
of the model.

Example 5.2. Figures 5.14 and 5.15 show the file system and observer UML class models of
Example 2.2 in diagrammatic syntax and as graph representations. The graph notation is de-
fined in Figure 5.13. Around the models, a composition interface is indicated that corresponds
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Figure 5.14: A file system modelled in UML as graph fragment.

to the AspectWeaving FraCol used in Example 4.1.2. The question is thus, how the nodes,
edges, and attributes of the graphs map to the ports on the composition interface.

To tackle this issue, this section introduces variability concepts for graph fragments that are
based on the ones of ISC (cf. Chapter 3) but take the additional requirements that stem from
the graph structure of fragments into account. With these concepts, composition interfaces
can be established on models.

The strength of ISC is the strong typing of physical composition interfaces, through which
selected points of fragments are accessed and modified by the invasive composition technique.
Such a point in a fragment is called variation point (or hook or slot which are special types of
variation points; cf. Section 3.2). In the grammar-based U-ISC/Tree, type-safe composition
was ensured by checking if the result of replacing a variation point with another fragment is
still a sentence conforming to the grammar. Effectively, each non-terminal in the grammar
defines a type and each node in an abstract-syntax tree conforms to at least one of theses
types [Hen09, Section 2.3]. This idea can be transferred to Ecore metamodels and extended to
introduce type-safe variability for graphs, which we do in the following.

We distinguish between two typing dimensions. The first is the domain typing of a graph
that exists when it conforms to a type graph (which is in our case an Ecore metamodel; cf.
Section 5.1.3). The second typing dimension is the variability typing which we introduce in the
following. It is not given by the type graph, but superimposed on the graph by fragment role
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Figure 5.15: Observer pattern modelled in UML as graph fragment.

bindings that establish mappings between the type graph (i.e., the metamodel) and a FraCol.
Fragment role binding is discussed in Section 5.3. The variability typing, however, builds on
and profits from the domain typing.

5.2.1 Variability Typing of Nodes, Edge Lists, and Attributes

As introduced in Chapter 3, the composition technique of U-ISC/Tree is the merging of trees.
This is done by replacing one node in a tree with a new subtree. The replaced node and the
subtree’s root node have to be compatible wrt. the domain typing.

We leverage this composition technique to graph merging. For that, we define that each part
of a graph fragment—that is, each node, each edge list, and each attribute—has a variability
type. A part that can be replaced or extended this way is a variation point. A part that may
replace or extend a variation point is a reference point. All other parts are hidden. The term
addressable point is used to refer to any part that is either a variation or a reference point (i.e.,
is not hidden).

As indicated, the containment property of an edge (containment attribute of EReference)
is of importance for the variability typing. We remember from Section 5.1 that each node may
only have one incoming containment edge while it may have multiple non-containment incoming
edges (i.e., each node has exactly one position in the spanning forest of a graph fragment).
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Figure 5.16: Containment edge handling in slot/anchor and hook/prototype compositions

Consider a variation point vnG ∈ G that has an incoming containment edge c1T ∈ TG and a
set of incoming non-containment edges NC1 (NC1 ∩ TG = ∅) and a reference point rnG ∈ G
that has an incoming containment edge c2T ∈ TG and a set of incoming non-containment edges
NC2 (NC2 ∩ TG = ∅). Assume that vnG is replaced by rnG. The resulting set of incoming
non-containment edges for rnG will be NC1∪NC2. However, only one of c1T or c2T can point
at rnG after the replacement.

Consequently, we further refine the variability typing. A variation point vnG that looses
its containment edge during replacement is called a hook. A reference point rnG where the
containment edge c2T is replaced by the containment edge c1T of vnG is called a prototype. A
variation point that keeps its containment is called slot and a reference point that keeps its
containment is called anchor.

Figure 5.16 illustrates the slot/anchor and hook/prototype distinctions. In (b), the variation
node 2 is treated as as slot and the reference node B as anchor. In (c), 2 is treated as hook and B
as prototype. The slot/anchor composition (b) only redirects the non-containment edge 1– –>2
to 1– –>B and the containment edges are not modified. On the contrary, the hook/prototype
composition (c) redirects the containment edge 1—>2 to 1—>B as well. However, since B can
only have one incoming containment edge, the containment edge A—>B is destroyed in this
process

The terminology was chosen for the following reasons:

• The term hook was adopted from traditional ISC where each extension point in a fragment
is a hook and the composition corresponds to a physical extension of the fragment. In our
case, a hook is also a place where new nodes are added to a graph, since the containment
hierarchy (i.e., the spanning forest) is modified at these places.

• If the same prototype node is bound to several hooks, the node and its contained nodes
need to be copied each time since one copy is required for each containment edge. Thus,
the original node is a prototype for all copies—hence the term prototype.

• In contrast to binding a hook, binding a slot only adds new non-containment edges to the
graph, but no new nodes. This can be interpreted as parameterising the graph, in contrast
to extending it. Traditionally, the term slot is often used for places of parametrisation
(e.g., in Beta fragments [MMPN93] or in templates).

• We chose the term anchor as counterpart to slot since binding an anchor node means
that it is “anchored” by new edges but the node itself is not moved from its position in
the containment hierarchy (i.e., its spanning tree).
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Figure 5.17: Graph composition by adding an edge to an edge list

(a) before composition (b) after composition

value hook (getVALUE_HOOK, 3, 12) getMyName
value prototype (MyName)

Figure 5.18: Attribute composition by modifying strings.

If nodes are variability typed, we talk about variation nodes and reference nodes. If the
composition behaviour with respect to containment edges is important, we talk about hook
nodes, prototype nodes, slot nodes, and anchor nodes.

Variability typing can also be applied to edge lists. More precisely, to each list of edges
∀eG ∈ oG(nG) : eG →instance−of rMM—that is, all edges of similar type with the same source
node. Such an ordered list of edges can be extended with additional edges of similar type. This
can be used to create additional edges and thus perform composition by creating additional
edges instead of replacing existing nodes.

Let MM = (CMM , RMM ) be the metamodel to which G conforms, where RMM = CRMM ∪
NCRMM is the set of EReferences with CRMM∩NCRMM = ∅. CRMM is the set of EReferences
with containment = true and NCRMM is the set of EReferences with containment = false.
To realise composition by creating additional edges of type rMM , we support the definition of a
variability type for an edge list consisting of all edges eG ∈ oG(nG) with eG →instance−of rMM .
A new edge eG 6∈ EG may be created to connect a reference node rnG ∈ NG without actually
replacing a variation node, if eG →instance−of rMM . If rnG is a prototype, rMM ∈ CRMM has
to hold. If rnG is a slot, rMM ∈ NCRMM has to hold.

Composition by edge creation is illustrated in Figure 5.17. There, no variation nodes (as,
e.g., in Figure 5.16) exist in the graph before composition (a). Only the edges list, which
contains the 1—>2 edge, is variability typed as hook (visualised by the small circle attached
to node 1). Therefore, new edges can be added to this list which is done in (b), where the new
edge 1—>A is added.

We may also type edge lists as reference points. If eG ∈ TG for all edges eG in the edge
list, it is typed as prototype. If eG 6∈ TG for all edges eG in the edge list, it is typed as
anchor. All target nodes of the edges in the edge list are then automatically variability typed
correspondingly. Similar to nodes, any edge list can be hidden.

If edge lists are variability typed, we talk about variation edge lists and reference edge lists.
If the composition behaviour with respect to containment edges is important, we talk about
hook edge lists, prototype edge lists, slot edge lists, and anchor edge lists.
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Figure 5.19: A file system modelled in UML with variability typing.

As mentioned, we consider each attribute to be a string (i.e., a character sequence). The
concepts of hook and prototype are further refined for attributes to value hook and value
prototype. In case of a value hook, a certain part of the attribute—that is, a sub-character
sequence—is defined as replaceable. In case of a value prototype, a certain information is
extracted from the attribute as character sequence. In addition to a normal hook, a value hook
has a begin index, an end index, and a list index which define the range of characters that are
replaced. The list index is needed if we deal with a list attribute. In addition to a normal
prototype, a value prototype holds the actual value extracted from an attribute. This value
does not need to correspond to the attribute but can also be computed based on the attribute.

Attribute composition by string manipulation is illustrated in Figure 5.18. In the example,
the attribute with value hook is getVALUE_HOOK and the begin index and end index are 3 and
12 respectively, which means that only the VALUE_HOOK sub-string is to be replaced. In the
example, this sub-string is replaced with the value prototype with the string value MyName.

• The terms value hook and value prototype were chosen since value hooks and value pro-
totypes are used for extending a graph with additional attribute values (similar to how
hooks and prototypes are used to extend a graph with new nodes). The term value stems
from the fact that primitive string values are treated here instead of nodes and edges.

A distinction between containment and non-containment is not required in the case of at-
tribute values (i.e, there is no value slot or value anchor). This is, because the plain character
sequence data is never cross-referenced but always contained. Consequently there is also no
equivalent to the containment flag found in EAttribute (cf. Figure 5.6).

71



5 Graph Fragments

_
� �

K
�

K_ �B ?>=<89:;76540123Cjj h_V 44V _ h

_
� �

K
�

K_ �D

?>=<89:;76540123E ?>=<89:;76540123F

��

?>=<89:;76540123G

��

?>=<89:;76540123H

?>=<89:;I

TT

8
5

2
/

-
+

(

?>=<89:;J

WW

N
J

F
@

:
5

1

notifyObservers [H]

ContentContent

ContentContent

Figure 5.20: Observer pattern modelled in UML with variability typing.

Example 5.2.1. To compose the file system and observer UML models (Figures 5.14 and
5.15) we would like to achieve a similar extensibility for UML as for Java in Compost (cf.
Example 3.1). For that, we add variability typing to the graph fragment as shown in Fig-
ure 5.19. The notation for graphs with variability types is summarised in Figure 5.13. The
look of variability typed graph parts (see column Symbol Description in Figure 5.13) is also
overlaid on the diagrammatic models. We use this notation throughout the rest of this thesis.

In Figure 5.19, both the list of Properties and the list of Operations (cf. UML metamodel
in Figure 5.8) of each Class are typed as hook edge lists (•). The Classes themselves are
typed as anchor nodes (}: 2, 4, and 7). This allows on the one hand the extension of classes
with new Properties and Operations and on the other hand the access to classes during
composition, for instance to insert them as type of a newly added Property. Another hook
(•) is defined for the list of Associations and Classes of a Package.

The UML model shown in Figure 5.15 models the Observer pattern in a similar fashion as
it was done in Java in Example 3.1. To turn this model into an advice that could be woven
into the file system model, we add variability typing in Figure 5.20. Here we observe, that the
Model node A shown in Figure 5.15 does not reappear in Figure 5.20, because it can never be
reused. The reason for this is that it is not a prototype node and cannot be reached through
containment edges from another prototype node.
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From the advice, we want to reuse the Operations and Associations. Thus, they are vari-
ability typed as prototypes (}: C, E, F, G, and H). Furthermore, the types of the Operations,
Parameters, and Associations should be exchangeable. For example, Observer should be
exchanged for FileSystem as type for the observer parameter of the attach() operation.
Thus, all Classes are slots (B and D) that may be replaced by anchors during composition.

5.2.2 Type compatibility

In the following, we illustrate the interplay between the domain and the variability typing
dimensions by clarifying which parts of a graph may be replaced or extended by other parts
without violating type constraints.

• A prototype node pG may be added to a hook edge list with the type cMM iff
pG →instance−of cMM .

• Let CEL be the set of types of the edges in the edge list i(hG), where hG is the hook node
to replace. A prototype node pG may then replace hG iff
∀cMM ∈ CEL : pG →instance−of cMM .

• An anchor node aG may be added to a slot edge list with the type cMM iff
aG →instance−of cMM .

• Let CEL be the set of types of the edges in the edge list i(sG), where sG is the slot node
to replace. An anchor node aG may then replace sG iff
∀cMM ∈ CEL : aG →instance−of cMM .

• Each value prototype may extend each value hook.

The variability typing concepts introduced above are defined as metamodel in Figure 5.21a.
It contains the variability types Prototype, Hook, Anchor, Slot, ValuePrototype, and Value-
Hook with the corresponding superclasses ReferencePoint and VariationPoint. Each such
variability typed part of a graph fragment is an AddressablePoint. All other parts are auto-
matically hidden.

To assign a variability type to a part of a graph fragment one assigns it in the context of a
node (i.e., an EObject) for which the AddressablePoint has the varTypedEObject reference.
To assign a variability type to a node, only varTypedEObject is set to point at the EObject
that is the node. To assign a variability type to an edge list, varTypedEObject has to point to
the node that is the source of all edges in the list and varTypedEStructuralFeature has to
point at the type of the edges (i.e., an EReference). To assign a variability type to an attribute,
varTypedEObject has to point at the attributed node, while varTypedEStructuralFeature
points at the attribute’s declaration (i.e., an EAttribute).

In summary, we define six variability types for parts of graph fragments—four for nodes
and edge lists (hook, prototype, slot, and anchor) and two for attributes (value hook and value
prototype). Hook, slot, and value hook identify variation points for replacement or extension
during composition. Prototype, anchor, and value prototype identify reference points that
replace or extend during composition. Slots and anchors only influence non-containment edges.
Hooks and prototypes also influence containment edges. Value hooks and value prototypes
influence attributes.
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Figure 5.21: Variability typing (a) and grouping (b) concepts for graph fragments.
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Figure 5.22: Heterogeneous ports on the file system UML model.

5.2.3 Heterogeneous Grouping of Addressable Points

The variability typing discussed above only concerns single locally connected parts (i.e., single
nodes, single attributes, or nodes that are targets of edges in one list) of a graph fragment. A
port on a fragment’s interface however, may relate to several parts inside a fragment as already
indicated in the examples in Chapter 4.

When a fragment is reused, not only single nodes are reused, but a set of nodes which can
be distributed over the graph. In ISC tree composition, all nodes of one subtree were always
considered as one unit of reuse. In graph composition, however, there is a need to address
multiple subtrees due to the structure of graph fragments. If we consider a single subtree
extracted from one of the spanning trees of the spanning forest TG of a graph G, this subtree
may very well contain a node connected with another node not contained in the subtree by an
edge e 6∈ ET . In that case, this other node (or a subtree in which it is contained) needs also to
be considered in the same composition.

Consequently, grouping of addressable points for variability purpose is necessary. Such a
grouping of several places that cross-cut an artefact is referred to as heterogeneous cross-cut
[ABR06]. Therefore, we refer to this kind of node grouping as heterogeneous grouping and call
a concrete instance of such a grouping a heterogeneous port. Figure 5.21b illustrates that a
heterogeneous port combines a number of addressable points. The heterogeneous port concept
has similarities to the nested hook concept of ISC [Aßm03].

75



5 Graph Fragments

_
� �

K
�

K_ �B ?>=<89:;76540123Cjj h_V 44V _ h

_
� �

K
�

K_ �D

?>=<89:;76540123E ?>=<89:;76540123F

��

?>=<89:;76540123G

��

?>=<89:;76540123H

?>=<89:;I

TT

8
5

2
/

-
+

(

?>=<89:;J

WW

N
J

F
@

:
5

1

notifyObservers [H]

Content (Subject)Content (Observer)

Content (Subject)Content (Observer)

Figure 5.23: Heterogeneous ports on the observer UML model.

A heterogeneous port is a physical interface for accessing a fragment through addressable
points grouped by the port. Thus, a heterogeneous port can be directly mapped to a port type
defined in a FraCol. With this, we make the connection between FraCols and composition
interfaces which allows fragments to play fragment roles. In Section 4.1.2 we introduced the
distinction between static and dynamic port types. This influences ports as follows:

• For each static port type, only one port can exist in the composition interface of a
fragment and the name of that port has to be similar to the port type’s name.

• Multiple ports of the same dynamic port type can exist in the composition interface of a
fragment and the name of each of these ports can be freely chosen.

There are almost no restrictions to which addressable points can be grouped into a het-
erogeneous port, which enables maximal flexibility for defining heterogeneous cross-cuts. The
domain typing does not enforce any restrictions to this grouping. The only restriction enforced
by the variability typing is that hooks and prototypes may not be grouped together, because
during composition nodes are transferred from one fragment into another. This can only be
done acyclically to avoid an infinite recursion. Combining prototypes and hooks in one port
would lead to such a case where the fragment on the one hand offers nodes but on the other
hand needs to receive nodes. This is discussed in more detail in Section 6.3.1.
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Figure 5.24: Homogeneous ports on the file system UML model.

Example 5.2.3. Consider the example in Figure 5.22 that shows how the addressable points
in the file system fragment are mapped to ports and with that to the FraCol ClassWeaving that
was defined in Figure 4.10. Here, each class (Node 2, 4, or 7) is an anchor itself and has two
hooks in outgoing edge lists. These three addressable points—one anchor and two hooks—are
related to one class and therefore form a group of addressable points that should be treated
together for the purpose of class extension. Thus, grouping them into one heterogeneous port
makes sense. Furthermore, it is sensible to add the hook for associations (on Node 1) to such a
heterogeneous port to allow for associations that are connected to a class to be added together
with attributes and operations.

Corresponding heterogeneous ports can be formed on the observer advice fragment as shown
in Figure 5.23. Here, all operations—which are prototypes—of one class are grouped together
with that class—which is a slot (Observer or Subject in the example). An association that
is related to that class is added to such a group as well. In Figure 5.23, we define two het-
erogeneous ports: One representing the observer part of the pattern (B, C, and E) and one
representing the subject part (D, F, G, and H).
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5.2.4 Homogeneous Grouping of Ports

The replication of fragments is a central concept in fragment composition. In the tree com-
position of U-ISC/Tree, copying information was the only option when it should reappear at
different positions, since cross-referencing was not possible. Although graphs allow for cross-
referencing information in general, a concrete metamodel might not allow a certain type of
cross-reference.

While there can be different reasons for this situation, the probably most common is that the
metamodel was designed with a certain dominant modularity concept that does not foresee the
required flexibility for modularising and cross-referencing a certain fragment of information. A
prominent example is aspect-orientation [KLM+97] as an extension on object-orientation: The
object-oriented decomposition did not allow for a required separation for certain cross-cutting
information. Aspect-orientation adds this dimension by extracting code that would reappear
at several positions in traditional object-oriented design, into a single fragment called aspect.

When we want to add support for different FraCols to the same language similar situations
can appear. Thus, we allow further grouping of heterogeneous into homogeneous ports (Fig-
ure 5.21b). The heterogeneous ports grouped in a homogeneous port need to have similar
signatures. That is, they have to group the same types of addressable points. Such a homo-
geneous grouping is referred to as quantification in aspect-orientation [FF00]. Heterogeneous
ports that reside inside a homogeneous port are not visible on a fragments interface.

A homogeneous port has the effect that during a composition the graph parts that are
injected through the port are replicated for each of the grouped heterogeneous ports. This is
further explained in Section 6.3. From the outside, heterogeneous and homogeneous ports that
are visible on the interface are not distinguished. Similar to heterogeneous ports, homogeneous
ports can have a static or a dynamic port type.

Example 5.2.4. Consider the fragment of Figure 6.14 which models an ID feature as class
extension consisting of an id property as well as a setter and a getter operation for that prop-
erty. A possible composition scenario is to add this ID feature to all classes in one package—for
instance all classes in the file system package of Figure 5.19. In that case, the three heteroge-
neous ports described above (for extending the FileSystem (2), FSFolder (4), and FSFile (7)
classes) can be further grouped into one homogeneous port as shown in Figure 5.24. All three
heterogeneous ports have the same signature (the class as slot, list of properties as hook, list
of operations as hook, and the package’s association list as hook).

When the ID fragment is composed into the file system fragment, the composition algorithm
would copy the ID fragment three times—one time for each heterogeneous port that is hidden
behind the homogeneous port FileSystemPackage. This is further discussed in Section 6.3.3.

5.2.5 Fragment, Port, and Addressable Point Identification

Identification is an important concept in reuse. This is true on different levels of granularity.
Unique identification can be used to find reuseable artefacts in repositories, but also to address
points on a composition interface. In the case of graph fragments, we have three levels of
identification, which are reflected in attributes of metaclasses in Figure 5.21:
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Figure 5.25: ID feature UML class with variability typing and grouping.

1. Unique Fragment Identifier (UFI): A fragment needs a unique identifier if it should be
globally reuseable. In such a situation, the fragment does not live in a closed envi-
ronment (e.g., the runtime memory of one application) but migrates between different
environments and physical representations. If fragments are shared among people or or-
ganisations, it is important that this identifier is preserved over time and space, since the
contexts in which the fragment is reused need to be able to retrieve the fragment when
needed. We call such an identifier Unique Fragment Identifier (UFI). An UFI is a list of
strings that is unique to each fragment (cf. Figure 5.21a).

2. Port name: Ports are the places on a fragment’s composition interface that can be
addressed for composition. Thus, each port needs an unique name in the context of the
fragment such that it can be distinguished from other ports. This is true for homogeneous
and heterogeneous ports alike. A port name does not need to be globally unique, since
it can be globally identified in combination with the UFI of its containing fragment.

3. Addressable point name: The need for naming addressable points arises from the inter-
nals of a composition system rather than for the purpose of external accessibility (since
addressable points are hidden in ports). As we will learn in Section 6.3.1, names are
required in situations, where similar nodes (i.e., nodes of similar type) are grouped but
require individual identification.

Example 5.2.5. Consider the fragment shown in Figure 5.22. The fragment needs an UFI
via which we can retrieve it for extension (1st level of identification).

If we want to extend it with applications of the observer pattern (cf. Example 5.2.3), each
heterogeneous port that represents a class for extension needs to be addressed individually (2nd
level of identification). For example, the FileSystem is extended with subject functionality, the
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FSFolder with observer functionality. These heterogeneous ports have the dynamic port type
JoinPoint defined in the FraCol ClassWeaving (cf. Figure 4.10). As explained in Section 5.2.3,
names have to be chosen for ports with a dynamic port type. This can be done by deriving
names from inside the fragment. In this case, the names of the classes themselves are good
candidates for the names of heterogeneous ports. In contrast, ports of static type can be
addressed via the name of the port type.

If all classes in the file system package are extended with the ID feature (cf. Example 5.2.4),
it is sufficient to address the homogeneous port representing all classes of the package. In this
case, the name of the package is a good candidate for the name of the homogeneous port (2nd
level of identification).

In the examples above, all hooks grouped in a heterogeneous port have different domain
types. The hook in the list of properties is of type uml::Property; the hook in the list of
operations is of type uml::Operations (cf. UML metamodel in Figure 5.8). If both lists
had the same domain type, we would need another way to distinguish them to perform a
deterministic assignment between hooks and prototypes without mixing up properties and
operations. In that case, a naming of the hooks would be required in the context of the
heterogeneous port that groups the two hooks (e.g., one hook can be named properties and
one operations; 3rd level of identification).

We assume that a repository exists in which fragments can be placed and retrieved via their
UFI.4 Fragments that are represented by instances of the metamodel from Figure 5.21 can be
placed in and retrieved from the repository. These instances link to the underlying model via
the contents edges that reference all root EObjects RG of the underlying graph fragment G.
How instances of Figure 5.21 are obtained from a model, is discussed in the next section.

This section introduced variability typing for graphs that is used to define physical composi-
tion interfaces for fragments through which they can be accessed for composition. This covers
Feature 3 of our generic CB-MDSD composition system (cf. Figure 5.1).

5.3 Component Model Configuration with REXCM

Although we explained that a composition interface of a graph fragment can be defined by
superimposing variability typing on it, we have not yet introduced a method to specify vari-
ability typing. Such a method configures the component model of our CB-MDSD composition
system (Feature 4) and with that defines rules for fragment role binding (cf. Section 4.1).
In this section, we introduce a component model configuration language for that purpose.
Specifications written in that language extend the typing of a DSML by adding variability
typing to the domain typing, which enables reuse of models defined in that DSML. Hence, we
name our component model configuration language Reuse EXtension language for Component
Model configuration (REXCM). As indicated in the beginning of this chapter, composition sys-
tem developers can use REXCM to configure the component model of the generic CB-MDSD
composition system to integrate new DSMLs as component languages, which in turn allows
developers to develop model components in that DSML (this was illustrated in Figure 5.2).

4Such a repository is part of Reuseware (Chapter 7).
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The concepts of REXCM are closely aligned with the variability typing concepts presented in
the previous section. In general, the language has to allow for specifying the conditions under
which a node, an edge list, or an attribute in a graph fragment has a certain variability type.
Such specifications can be performed on the base of the metamodel (i.e., the type graph) of the
language. Additionally, if the rules for variability typing are put in relation to fragment roles
defined in FraCols, they act as fragment role binding rules. Fragment role binding rules hence
define how a certain fragment role is realised by a concrete DSML by stating which parts of
the metamodel map to the role.

Example 5.3. As an example consider Figure 5.26 that shows a part of the UML metamodel
(top) and the FraCol ClassWeaving from Example 4.1 (bottom). Between the port types and
elements of the metamodel, fragment role binding rules are defined, which are annotated with
variability types. These rules can be applied to a UML model, which is an instance of the UML
metamodel. Variability types are computed for every part of the UML model that instantiates
a part of the metamodel for which a rule exists. Furthermore, all variability typed parts of the
model are mapped to a port with the corresponding port type. For example, the rules can be
applied on the file system and observer UML models to derive the variability types shown in
Figures 5.22 and 5.23 respectively.

To express binding rules, we require an expression language which we do not want to define
from scratch. Therefore, we integrate the Object Constraint Language (OCL) [OMG06b],
which is a standardised language to specify expressions for Ecore metamodels.

In the following, we first give a short description of OCL (Section 5.3.1) since OCL is in-
tegrated in REXCM and used in the example later on. Afterwards, we describe the concepts
of REXCM and how it is used (Section 5.3.2). Finally, we define the interpretation of REXCM

(Section 5.3.3).

5.3.1 The Object Constraint Language (OCL)

OCL [OMG06b] is an OMG standard to express constraints and formulate queries on UML or
EMOF/Ecore models. OCL is a language that needs a host language with a UML-like class
concept to operate on, which is Ecore in our case. OCL can be used to formulate constraints
and queries in the context of a class (in our case an EClass). The constraint or query can then
be evaluated on a model element that is an instance of that EClass.

For formulating a constraint or query, one can navigate over the model starting from the
context element, which can be referred to by the self keyword. OCL comes with a standard
library with collection types and primitive types to handle references and attributes with
multiplicities greater than 1 and to perform operations on primitive values such as strings.

Some OCL implementations allow to extend the standard library if desired. The OCL
interpreter we are using supports this and we extend the primitive type string—which has only
few operations available in the standard library—with the Java string API5. (The details of
the implementation are presented in Chapter 7.) This is helpful, because we often need to
perform operations on strings to derive identifiers.

5http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
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1 self.packagedElement->select(c | c.oclIsTypeOf(uml::Class))

Listing 5.2: OCL query for finding all classes contained in a UML package.

1 self.members->select(c | c.oclIsTypeOf(java::members::Field))

Listing 5.3: OCL query for finding all fields contained in a Java class.

A query over Ecore models is formulated in OCL by starting at the self element and then
navigating over the model using names of EStructuralFeatures and the “.” operator as
known from object-oriented languages such as Java. Operations defined on the metaclasses or
on standard library types (as the mentioned string operations) can also be called. Operations
on collections are called via “->” instead of “.”.

Example 5.3.1. Listing 5.2 shows an example OCL query that is formulated over the UML
metamodel in the context of the class Package (cf. Figure 5.8). It queries for all elements con-
tained in the package that are of type Class. For this, we navigate along the packagedElement
reference which returns a collection of elements. On this collection we call the select operation,
which is one of the OCL standard library operations for collections that selects all elements of
a collection that meet a certain condition. In this case, we select all elements that are of type
Class which can be checked by the oclIsTypeOf() operation which is also provided by the
standard library for model elements of any type. A similar query could be defined, for instance,
over the Java metamodel in the context of ConcreteClassifier that selects all Fields from
the list of members (Listing 5.3).

There are more details about OCL we did not mention here. Although we embed the
complete OCL language into REXCM, we only use a small part of the language in our examples.
For further explanations of OCL concepts, please refer to the standard document [OMG06b].

5.3.2 REXCM Language Concepts

In the following, we define the REXCM language. It is a textual language that embeds OCL
for rule definition. The language’s metamodel is depicted in Figure 5.27. Since REXCM is
used to map metamodels to FraCols, it contains relationships to the Ecore metamodel (cf.
Figure 5.6) and our FraCol metamodel (cf. Figure 4.2). The concepts found in the metamodel
are reflected in the textual syntax of the language which we explain in the following on a
schematic REXCM specification shown in Listing 5.4. (The complete grammar REXCM can be
found in Section 7.2.)

Lines 1–4 specify the general properties of the component model configuration. In Line 1,
an ID is assigned to the component model under which it is placed in the repository (cf.
Section 5.2.5). The FraCol that is implemented by this component model configuration is
identified by its ID in Line 2. In order to refer to EClasses in the rest of the specification,
a set of EPackages is identified in Line 3 by the EPackages’ nsURIs (cf. Section 5.1). The
EClasses contained in the first EPackage can be addressed by their name only in the following.
A class from any of the EPackages can be addressed using EPackages’ nsPrefixes in the ::
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Figure 5.27: Component model configuration Concepts.

prefix notation (cf. Section 5.1). Finally, Line 4 defines the EClass (i.e., the context) a root
node has to instantiate to make the REXCM applicable to the corresponding graph fragment—
optionally followed by a condition formulated in OCL that the root node has to fulfil.

Lines 5–21 show a blueprint specification of a fragment role binding. In Line 5, the fragment
role to be bound, which has to be defined in the FraCol identified in Line 2, is referred by its
name. The name is optionally followed by a condition that has to be fulfilled by the root node
when the role binding should be applied. The role binding contains one port type binding for
each port type defined in the role. The port types are referred to by their names (Line 6).

Each port type binding contains arbitrary many addressable point derivation rules to specify
variability types for nodes, edge lists, or attributes. For each type of addressable point, a corre-
sponding derivation rule type exists (cf. Figure 5.21). Which rule type is defined concretely is
determined by the variabilityType (Line 7) which is either hook, prototype, slot, anchor, value
hook, or value prototype. eClass is the name of an EClass defined in one of the EPackages
named above. This EClass has to be instantiated by a node to apply the rule to it. Optionally,

84



5.3 Component Model Configuration with REXCM

1 componentmodel ID
2 implements fracolID
3 epackages <epackage>
4 rootclass rootelementEClass if $OCLExpression$ {
5 fragment role fragmentRoleName if $OCLExpression$ {
6 port type portName {
7 eClass.feature is variabilityType if $OCLExpression$ {
8 foreach $OCLExpression$
9

10 homo port = $OCLExpression$
11 port = $OCLExpression$
12 point = $OCLExpression$
13

14 value = $OCLExpression$ /* only for value prototypes */
15

16 begin idx = $OCLExpression$ /* only for value hooks */
17 end idx = $OCLExpression$ /* only for value hooks */
18 list idx = $OCLExpression$ /* only for value hooks */
19 }
20 }
21 }
22 }

Listing 5.4: Schematic REXCM specification.

a condition can be given in OCL that the node has to fulfil in addition. If a feature is identified,
the rule concerns the variability typing of the edges lists or attributes that are instances of the
feature. If no feature is identified, the rule concerns the variability typing of the nodes that are
instances of the eClass.

If a node (or an edge list or an attribute) is variability typed, additional information to
identify the node (or the edge list or the attribute) might have to be derived. The homogeneous
port name expression (Line 10), port name expression (Line 11), and point name expression
(Line 12), identify the heterogeneous port, the homogeneous port, and the addressable point
itself respectively. Any of the expressions is only required is the corresponding name is required
(cf. discussion in Section 5.2.5). The expressions are formulated in OCL and have to compute
a string value. Furthermore, the optional forEachExpression (Line 8) can be used to create
multiple addressable points for a graph part and assign these to different heterogeneous or
homogeneous ports. This allows one graph part to be used in multiple places of the composition
interface. This is done by querying the graph for a set of nodes, which can be reached from the
context of the rule, and interpret the other expressions in the context of each of these nodes.

As discussed in Section 5.1.3, a value prototype needs to extract information as a string.
Thus, a value expression has to be given for a value prototype derivation rule which is expected
to return a string (Line 14). For value hooks we might require the definition of a range inside an
attribute that shall be manipulated (cf. Section 5.1.3). This can be specified using the begin
index expression (Line 16) and end index expression (Line 17) that are expected to return
positive integer values that identify a position in the attribute that is to be manipulated.
These expressions are not required if the complete attribute should be modified. If the rule
concerns a list attribute, the list index expression (Line 18) can be used to specify the position
in the list that should be modified.
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5 Graph Fragments

OCL, which is used for all expressions discussed above, gives the developer who uses REXCM

the possibility to seamlessly integrate implicit and declared variability into the component
model [Aßm03, Section 4.1.2] (cf. Chapter 3). Rules that do not require special structures or
formats of attribute settings specify implicit parts. For example, a rule that says that each
uml::Class is a prototype specifies implicit variation, since each uml::Class automatically is a
prototype and there is no way for a developer to avoid that. Rules that enforce specific patterns
the developer is aware of (e.g., naming conventions as used in Compost; cf. Example 3.1)
specify declared parts of a composition interface. For example, a rule that says that an attribute
setting with the value HOOK is a value hook gives the developer the possibility to explicitly
declare value hooks. Sometimes however, the border between implicit and declared parts is
fluent and also depends on the knowledge of a user of the composition system. For instance,
when the user knows that each uml::Class is a prototype, one can argue that he or she
explicitly declares a prototype each time he or she defines an uml::Class.

To illustrate the flexibility for component model configuration that is achieved with REXCM,
we give four different examples of REXCM definitions based on the examples discussed so far.

Example 5.3.2. (1/4) The first example realises the component model configuration that
was sketched in Figure 5.26 which binds the FraCol ClassWeaving to UML. The configuration
is shown Listing 5.5. If we apply it to the file system UML model, we obtain the variability
typing and the composition interface shown in Figure 5.22. If we apply the same specification
to the observer UML model, we obtain the variability typing and the composition interface
shown in Figure 5.23.

In detail, Listing 5.5 defines the following. The UML metamodel is identified by its nsURI
as defined in the Eclipse UML2 project [Ecl10d] (Line 2). Since the specification only applies
for UML models, it is stated in Line 3 that the root element of a model has to instantiate the
EClass uml::Model, which is the case for all UML models. Since the specification is valid for
all UML models, no further condition (via if keyword) is defined.

For each of the two fragment roles defined in the FraCol ClassWeaving (cf. Listing 4.4),
which are Core and Advice, a fragment role binding is defined. We would like to define
that a model contains advice classes (i.e., classes that define extension like Observer and
Subject) if its name starts with advice..., which is the case for the observer model in Fig-
ure 5.23. All other models contain core classes (i.e., classes to be extended). We define
the distinction by augmenting each fragment role binding with a condition under which the
corresponding role is played by a fragment. The condition that a fragment is an advice
is self.name.startsWith(’advice’) (Line 6) and the condition that it is a core is not
self.name.startsWith(’advice’) (Line 24).

Each fragment role binding contains four rules. The first two rules of the Core binding
(Lines 8–13) state that the list of operations (ownedOperation) and the list of attributes
(ownedAttribute) of a uml::Class are hooks. port = $self.name$ states that for each
class, both addressable points are assigned to the same port that is named after the class.
This is necessary, because JoinPoint is a dynamic port type. For static port types, the
port name expression is not required since only one port with the name of the port type
is created to which all addressable points are automatically assigned (cf. Section 4.1.2).
As a third extension point for each core class (Lines 14–17), the list of packaged elements
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5.3 Component Model Configuration with REXCM

1 componentmodel org.reuseware.example.class_weaving.uml
2 implements org.reuseware.example.class_weaving
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model {
5

6 fragment role Core if $not self.name.startsWith(’advice’)$ {
7 port type JoinPoint {
8 uml::Class.ownedOperation is hook {
9 port = $self.name$

10 }
11 uml::Class.ownedAttribute is hook {
12 port = $self.name$
13 }
14 uml::Package.packagedElement is hook if $self.oclIsTypeOf(uml::Package)$ {
15 foreach $self.packagedElement->select(c | c.oclIsTypeOf(uml::Class))$
16 port = $self.name$
17 }
18 uml::Class is anchor {
19 port = $self.name$
20 }
21 }
22 }
23

24 fragment role Advice if $self.name.startsWith(’advice’)$ {
25 port type Content {
26 uml::Operation is prototype if $self.owner.oclIsTypeOf(uml::Class)$ {
27 port = $self.owner.oclAsType(uml::Class).name$
28 }
29 uml::Property is prototype if $self.owner.oclIsTypeOf(uml::Class)$ {
30 port = $self.owner.oclAsType(uml::Class).name$
31 }
32 uml::Class is slot {
33 port = $self.name$
34 }
35 uml::Association is prototype {
36 port = $self.ownedEnd->at(1).type.name$
37 }
38 }
39 }
40 }

Listing 5.5: REXCM specification for an aspect system for UML.

of the containing package is used as a place where additional associations can be added.
For this, we define a rule for uml::Package.packagedElements, but use a foreach to as-
sign this point to each port that represents a class in the package. The OCL expression
packagedElement->select(c | c.oclIsTypeOf(uml::Class)) yields the list of classes and
the expression port = $self.name$ is then evaluated in the context of each class which as-
signs the point to the port that is named after the corresponding class. The fourth rule of
the JoinPoint port type binding (Lines 18–20) adds each class as anchor to the port that is
named after the class. This is required to bind the class itself as type of new associations or
operations in the composition.

The Content port type binding contains four rules to derive prototypes and slots, as coun-
terparts to the hooks and anchors of JoinPoint ports (Lines 26–37). In a similar fash-
ion as for core classes, addressable points are grouped into ports named after the classes.
Each uml::Operation or uml::Property prototype is assigned to the port that represents
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1 componentmodel org.reuseware.example.class_weaving.java
2 implements org.reuseware.example.class_weaving
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5

6 fragment role Core if $not namespaces->asSequence()->last().startsWith(’advice’)$ {
7 port type JoinPoint {
8 java::classifiers::Class.members is hook {
9 port = $self.name$

10 }
11 java::classifiers::Class is anchor {
12 port = $self.name$
13 }
14 }
15 }
16

17 fragment role Advice if $namespaces->asSequence()->last().startsWith(’advice’)$ {
18 port type Content {
19 java::classifiers::Class.members is prototype {
20 port = $self.name$
21 }
22 java::classifiers::Class is slot {
23 port = $self.name$
24 }
25 }
26 }
27 }

Listing 5.6: REXCM specification for an aspect system for Java.

the class owning it. A uml::Association, which is owned by a package, is assigned to the
class that is at the first end of the association. The name of that class is extracted via
self.ownedEnd->at(1).type.name.

Example 5.3.2. (2/4) A FraCol can be implemented by multiple component model con-
figurations to integrate multiple component languages that support the same FraCol into a
composition system. We illustrate this for the FraCol ClassWeaving in Listing 5.6 that binds
this FraCol to the Java metamodel. The same fragment roles are bound as in the case of UML,
but different rules are defined that are specific to the Java metamodel (cf. Figure 5.9).

The Java versions of the file system and observer models, which were introduced in the Com-
post example in Section 3.1, are shown in Figures 5.28 and 5.29 with the variability types
and composition interfaces obtained by applying Listing 5.6. This illustrates how complexity
has been moved from composition operator implementations in Java (as required by Compost
and the U-ISC/Tree implementation; cf. Chapter 3). to the component model configurations
in REXCM and how this exploits the graph structure of fragments. In the Compost example
the relationships between Observer and Subject were handled by the weave operator (cf. List-
ing 3.3) which took both as argument (one as adviceFragment and one as collaborator). The
operator used names to bind Java classes and not the classes themselves since it was working
on the abstract syntax tree where names had not been resolved. In our case, the relationships
between Observer and Subject are captured (cf. Figure 5.29) through the cross-references to
D (slot for the Java class that will become the subject) and to B (slot for the Java class that
will become the observer).
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public class FileSystem2 { public class FSFolder4 { public class FSFile7 {
protected FSFolder4[] folders3; protected String name8; protected String name9;

} protected FSFolder4[] subFolders5; protected Byte[] content10;
protected FSFile7[] files6; }

}










Figure 5.28: A file system defined in Java with variability typing and grouping.
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public class ObserverB { public class SubjectD {
protected SubjectD[] subjectsC1; protected ObserverC[] observersC2;

public void updateE() { public void attachF(ObserverB observerI) {
//... //...

} }
} public void detachG(ObserverB observerJ) {

//...
}
public void notifyObserversH() {

//...
}

}

Content (Subject)Content (Observer)

Figure 5.29: Observer pattern defined in Java with variability typing and grouping.
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1 componentmodel org.reuseware.example.class_weaving2.uml
2 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
3 rootclass uml::Model {
4

5 fragment role Core if $not self.name.startsWith(’advice’)$ {
6 port type JoinPoint {
7 uml::Class.ownedOperation is hook {
8 homo port = $self._package.name$
9 port = $self.name$

10 }
11 uml::Class.ownedAttribute is hook {
12 homo port = $self._package.name$
13 port = $self.name$
14 }
15 uml::Package.packagedElement is hook if $self.oclIsTypeOf(uml::Package)$ {
16 foreach $self.packagedElement->select(c | c.oclIsTypeOf(uml::Class))$
17 homo port = $self.oclAsType(uml::Class)._package.name$
18 port = $self.name$
19 }
20 uml::Class is anchor {
21 homo port = $self._package.name$
22 port = $self.name$
23 }
24 }
25 }
26

27 fragment role Advice if $name.startsWith(’advice’)$ {
28 port type Content {
29 uml::Operation is prototype if $owner.oclIsTypeOf(uml::Class)$ {
30 port = $self.owner.oclAsType(uml::Class).name$
31 }
32 uml::Property is prototype if $owner.oclIsTypeOf(uml::Class)$ {
33 port = $self.owner.oclAsType(uml::Class).name$
34 }
35 uml::Class is slot {
36 port = $self.name$
37 }
38 uml::Association is prototype {
39 port = $self.ownedEnd->at(1).type.name$
40 }
41 }
42 }
43 }

Listing 5.7: REXCM specification for another aspect system for UML.
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1 componentmodel org.reuseware.lib.systems.participation.cm.usecase_uml
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model {
5 fragment role Participant {
6 homo port type Name {
7 uml::Actor.name is value hook {
8 port = $’ActoreName’$
9 point = $’name’$

10 }
11 uml::Association.name is value hook {
12 port = $’AssociationName’$
13 point = $’name’$
14 begin idx = $’0’$
15 end idx = $’0’$
16 }
17 }
18 port type Contrib {
19 uml::Actor is prototype {}
20 uml::Association is prototype {}
21 uml::UseCase is slot {}
22 }
23 }
24 fragment role Collaboration {
25 port type Rec {
26 uml::Package.packagedElement is hook if $packagedElement->exists(e|e.oclIsKindOf(UseCase))$ {}
27 uml::Package.ownedComment is hook if $packagedElement->exists(e|e.oclIsKindOf(UseCase))$ {}
28 uml::UseCase is anchor {}
29 }
30 }
31 }

Listing 5.8: REXCM specification that binds UML to the FraCol Participation (cf. Listing 4.2.)

Example 5.3.2. (3/4) The third example, shown in Listing 5.7, illustrates that a FraCol
can be bound to a metamodel in different ways on the binding of ClassWeaving to UML. The
binding rules are similar to Listing 5.5. Only this time, complete packages of core classes are
extended instead of single core classes. Except for the ID, the header (Lines 1–3) and the
Advice fragment role binding (Lines 27–42) are similar. Applied to the file system model, this
component model gives the variability typing and composition interface shown in Figure 5.24.

The four rules in the JoinPoint port type binding (Lines 6–24) are also quite similar to
Listing 5.5. The difference is that each rule contains a homo port = ... expression that
derives the name of a homogeneous port. In this example, the name is derived from the name
of the package that contains a uml::Class. The individual heterogeneous ports, which are
identified by the port = ... expression for each class individually, are then grouped in, and
hidden behind, homogeneous ports according to their packages. This was illustrated for the file
system model in Figure 5.24. Although heterogeneous ports are hidden behind homogeneous
ports, they still need to be individually named to construct the correct heterogeneous groupings
of ownedOperation, ownedAttribute, ownedPackage, and uml::Class that are required by
the matching algorithm discussed in Section 6.3.1.
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1 componentmodel org.reuseware.lib.systems.participation.cm.java
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Participant {
6 homo port type Name {
7 java::commons::NamedElement.name is value hook if $name.contains(’NAME_HOOK’)${
8 point = $’name’$
9 begin idx = $name.indexOf(’NAME_HOOK’)$

10 end idx = $name.indexOf(’NAME_HOOK’) + ’NAME_HOOK’.length() - 1$
11 }
12 }
13 port type Contrib {
14 java::statements::ClassMethod.statements is prototype if $self.name = ’PLACEHOLDER’$ {
15 point = $’INIT’$
16 }
17 }
18 }
19 fragment role Collaboration {
20 port type Rec {
21 java::statements::JumpLabel is hook if $name.toUpperCase() = name$ {
22 point = $name$
23 remove = $true$
24 }
25 }
26 }
27 }

Listing 5.9: REXCM specification that binds Java to the FraCol Participation (cf. Listing 4.2)

1 componentmodel org.reuseware.lib.systems.exchange.cm.java
2 implements org.reuseware.lib.systems.exchange.exchange
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Container { port type Rec {} }
6 fragment role Value {
7 port type Contrib {}
8 port type Provider {
9 java::commons::NamedElement is slot if $name = ’GIVER’${}

10 java::commons::NamedElement.name is value hook if $name = ’ID_SLOT’$ {
11 point = $’ID’$
12 }
13 }
14 port type Consumer {
15 java::commons::NamedElement is slot if $name = ’TAKER’${}
16 }
17 }
18 fragment role Provider {
19 port type Self {
20 java::commons::NamedElement is anchor if $name.contains(’NAME_HOOK’)${}
21 }
22 }
23 fragment role Consumer {
24 port type Self {
25 java::commons::NamedElement is anchor if $name.contains(’NAME_HOOK’)${}
26 }
27 }
28 }

Listing 5.10: REXCM specification that binds Java to the FraCol Exchange (cf. Listing 4.3).
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Example 5.3.2. (4/4) This brings us back to the example of a ticket shop system developed
with CB-MDSD initially defined in Section 2.1. Listings 5.8, 5.9, and 5.10 show three compo-
nent model configurations that are required in this example to handle UML use case diagrams
and Java code. They realise bindings for the FraCols Participation and Exchange (Figures 4.4
and 4.7). Listing 5.8 defines the interfaces for UML use case fragments needed to compose
them as shown in Figure 2.6. Listings 5.9 and 5.10 define the bindings for Participation and
Exchange to Java that was already presented in an abstract way in Example 4.1.

5.3.3 REXCM Semantics

Above we explained the meaning of the REXCM concepts and clarified the effect that an
interpretation of a REXCM configuration on a graph fragment has. The complete semantics of
this interpretation are defined in story diagrams in Appendix A.2. (Consult the introduction
of Appendix A for an explanation of the story diagrams formalism.)

5.4 Conclusion

Chapter Contributions This chapter introduced graph fragment support for ISC as part of
U-ISC/Graph and therewith contributes the following:

C1-2 Type-safe invasive composition interfaces for graphs
We defined novel variability typing concepts for graphs, which extend the variability
typing concepts for trees as defined in U-ISC/Tree [Hen09] by introducing three different
types of variation and three different types of reference points to distinguish (1) between
containment references and cross references as well as (2) between nodes, edge lists, and
attributes. [Hen09] only (1) handled containment references and (2) only operated on
nodes and gave no special treatment to edge lists or attributes. The variability typing
concepts take the specifics of graphs typed by EMOF/Ecore metamodels into account
which is the base for invasive component models that support stronger typed and more
complex invasive composition interfaces than earlier works.

C1-3 Abstraction of physical composition interfaces
We defined novel heterogeneous and homogeneous grouping concepts for composition
interfaces of fragments. These allow for forming groups of variation points that concern
one port type which has been defined in a FraCol and thus form an abstraction over the
physical interface of a fragment. This is the base for binding FraCols to composition
interfaces. The idea of grouping variation points is based on on the nested hook concept
of ISC [Aßm03] but extends it. In U-ISC/Tree, no comparable concept exists. We
allow for grouping of variation and reference points in the same group and support the
combination of heterogeneous and homogeneous grouping. This has not been realised in
this form before. With this, complexity can be hidden behind interfaces rather than in
composition operators. This contribution has the following sub-contribution:

• Component model configuration language
In this chapter, we defined the component model configuration language REXCM

for binding fragment roles defined in FraCols to EMOF/Ecore metamodels. With
these bindings, the variability typing of a model is derived. Thus the REXCM

93



5 Graph Fragments

allows for variability typing of arbitrary models defined in EMOF/Ecore-based lan-
guages. In contrast to the grammar-based component model specification language
of U-ISC/Tree, REXCM does not require modification of a language’s metamodel to
support new modularity concepts.

While this chapter dealt with the integration of new component languages into the generic
CB-MDSD composition system, the next chapter is concerned with integrating composition
languages.
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Universal Composition Language (UCL)

This chapter describes the Universal Composition Language (UCL) and a composition technique
based on universal operators to execute composition programs defined in UCL. On top of UCL,
a formalism is provided to integrate modelling languages as composition languages into a CB-
MDSD composition system.

In the previous chapter, we explained how models are treated as graph fragments and presented
a technique to define composition interfaces to access parts of these fragments. This chapter
explores how these interfaces are used in composition programs to define compositions of graph
fragments. These composition programs are defined in the Universal Composition Language
(UCL) and are executed by a universal composition algorithm. Both, UCL and the algorithm,
are developed in this chapter. In contrast to other composition languages used in ISC so far,
UCL can be used to compose arbitrary fragments without adjustments; in this sense UCL
is universal. For this, it exploits FraCols as means to specify abstract relationships between
composition programs—defined in UCL—and graph fragments. In earlier ISC approaches,
composition languages were directly coupled to operators that had dependencies to component
languages and thus needed adjustments for different types of fragments. This section hence
provides the remaining four features of our generic CB-MDSD composition system as illustrated
in Figure 6.1.

• (Feature 5) To enable the physical composition of graph fragments, we have to extend
the basic composition operators of ISC to work with graph fragments, which we do in
Section 6.1.

• (Feature 6) The concepts to define composition programs with UCL are introduced in
Section 6.2. They are based on the concepts of FraCols and graph fragment interfaces.

• (Feature 7) The universal composition algorithm, which interprets composition programs
defined in UCL, is defined in Section 6.3. It translates a UCL composition program into
calls to the basic composition operators and therewith performs the invasive composition
of graph fragments.
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Composition Technique

Composition Language
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invasive composition
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Figure 6.1: Features of the generic composition system for CB-MDSD that concern the univer-
sal composition language.
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Figure 6.2: UCL used directly in a CB-MDSD composition system.

Afterwards, we discuss the usage of UCL in a CB-MDSD composition system in Sec-
tion 6.4. Figure 6.2 illustrates that UCL can be used directly by architects, in the role of
composition system users, to define composition programs. In this case, no integration
effort for a composition language is required from a composition system developer.

• (Feature 8) UCL is a base composition language through which other composition lan-
guages can be integrated into a composition system. To enable composition system
developers to specify such integrations, we define the language REXCL. Figure 6.3 shows
that REXCL can be used by a process architect, in the role of a composition system devel-
oper, to integrate DSMLs as new composition languages into a CB-MDSD composition
system. This in turn allows architects to develop composition programs in these DSMLs.
REXCL is defined in Section 6.5.
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Figure 6.3: REXCL definitions integrate new composition languages into the generic CB-MDSD
composition system.

6.1 Basic Composition Operators

A powerful feature of ISC is that it provides a common composition technique on which multiple
invasive composition systems build. This basic composition technique is founded on a set of
well-defined basic composition operators. In ISC and U-ISC/Tree, the basic operators worked
on trees and composed these trees. To facilitate graph fragment composition in a similar
fashion, we redefine the basic composition operators using graph rewriting rules, leveraging
the composition technique from tree to graph composition. For this, the reflective access to
graph representations of models, discussed in Section 5.1.3, is utilised.

The basic composition operators of ISC defined in [Aßm03, Section 4.3] are Bind and Extend.
The difference between the Bind and the Extend operator is that Bind applied on a hook
replaces the hook (i.e., it removes the hook from its containing fragment) while Extend applied
on a hook does not modify the hook itself but uses it as a position for extension (i.e., the hook
remains in its containing fragment). Extend can only work on hooks in lists. The position to
where a new fragment is added to the list upon extension is unspecified. However, [Aßm03,
Section 4.3] introduces the complex operators Prepend and Append that can be used to perform
extensions before or after the hook respectively.

The composition algebra of U-ISC/Tree [Hen09, Section 3.2.2] refines the basic composition
operators. U-ISC/Tree therewith distinguishes between slots (i.e., tree nodes that are replaced)
and implicit hooks (i.e., places where new tree nodes can be inserted). [Hen09, Section 3.2.2]
argues that the Bind operator can effectively be used for extension by binding a slot with a list
that contains fragments and a new slot. Still the Extend operator is needed for implicit hooks,
where no tree nodes are present that explicitly mark a slot. In this case, the Prepend and
Append operators also need to be available as basic operators since they cannot be expressed
as combinations of Bind and Extend calls. Thus, Prepend and Append are also basic operators
(defined as different modes of Extend) in U-ISC/Tree [Hen09, Section 3.2.2].

We make the basic composition operators from U-ISC/Tree applicable for graph fragment
composition by defining them in terms of graph rewriting rules (Figures 6.6–6.10). For us, Bind,
Extend, Prepend, and Append are all basic composition operators. In addition, we introduce
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Figure 6.4: Delegation between basic composition operators.
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Figure 6.5: VariationPoint enriched with basic composition and complex compose() opera-
tions (cf. Figure 5.21).

the BasicCompose operator that may be used universally instead of explicitly selecting one
of the other operators as explained below. Only Bind, Prepend, and Append perform direct
composition operations by graph rewriting. BasicCompose and Extend delegate to one of the
other three operators as described in the following.

In our composition technique, the composition operators are decoupled from the composition
language (cf. Figure 6.1). This means that there will be no explicit operator call concept
in the universal composition language. Rather, composition operators will be automatically
selected and called implicitly. By default, this automation calls BasicCompose, which delegates
to another operator depending on the nature of the variation point it is called on by using a
default delegation strategy. Still, developers should be able to influence this delegation in cases
where the nature of the variation point would allow different operators (e.g., both Prepend and
Append can operate on a variation point in a list).

Therefore, we allow developers to influence the delegation strategy via the variation point
itself for which we add a mode flag (cf. Figure 6.5). The mode can be set to default, extend,
prepend, append, or bind. If no mode is specified, default is automatically selected. Figure 6.4
shows the operators and how they delegate to each other. In default mode, the decision between
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Figure 6.6: VariationPoint.basicCompose(): The Basic Compose composition operator.

Bind and Extend depends on whether we operate on a single node or a list of nodes. The
decision between Prepend and Append—in extend or default mode—is based on the position
of the variation point node—if any—in the list of nodes. The details are explained in the
following on the specifications of the basic operators (Figures 6.6–6.10). All basic operators
are available as operations on VariationPoints (Figure 6.5).

To give composition developers the possibility to influence the mode of a variation point, we
add a mode = $OCLExpression$ statement to REXCM that can be used in derivation rules to
define how the mode flag is computed for a concrete variation point (cf. Listing 5.4). In the
following the basic composition operators are defined using story diagrams (for the notation
consult Appendix A).

6.1.1 Basic Compose

The BasicCompose operator is defined in Figure 6.6. It delegates to other basic operators as
shown in Figure 6.4. It honors the mode setting of the variation point that basicCompose()
is called on.

1. At first, it is checked if this VariationPoint is in bind mode. If this is the case, the
composition is forwarded to the bind operator.

2. In all other modes, the multiplicity of the EStructuralFeature that types the edge,
which is created to the reference point upon composition, is used to decide whether to
call bind(). . .

3. . . . or extend().

6.1.2 Extend

The Extend operator is specified in Figure 6.7. It is realised by delegating to the Prepend or
Append operators as shown in Figure 6.4. It honors the mode setting of the variation point
extend() is called on.

1. At first, we determine the Setting which is modified in this extend() call.

2. If this VariationPoint is in prepend mode, we forward to prepend().
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Figure 6.7: VariationPoint.extend(): The Extend composition operator.

3. If this VariationPoint is in append mode, we forward to append().

4. In extend or default mode: If this is a ValueHook, the listIndex gives the place to which
a value should be added in a list of values (i.e., a list attribute represented by the current
Setting). If listIndex is 0, we forward to prepend().

5. In case a node is composed, we check if an explicit variation node exists (passed as
parameter) and if this node is the first in the current setting. If it is, we delegate to
prepend().

6. If we are not at the first position, we forward to append().

6.1.3 Prepend

The Prepend operator is specified in Figure 6.8 and directly modifies the Setting identified
by the given parent node and feature.

1. At first, we determine the Setting which is modified in this prepend() call.

2. We check if a node or a string value is composed, by checking if this VariationPoint is
a ValueHook.

3. In the case that a node is composed, we create a new edge in the edge list (which is
represented by the current Setting) after the edge to the variation node, if a variation
node is given.

4. If no variation node is given, the edge is created as the first edge of the edge list.

5. In case a string value is prepended to a list attribute (i.e., the Setting represents a
list attribute), a new entry is created in the list attribute at the position given by the
listIndex of the ValueHook. The value itself is extracted from the ValuePrototype
which is passed in as referenceNode, because the string value—being an attribute and
not a node—cannot be passed directly.

100



6.1 Basic Composition Operators

]success[

]failure[

]success[]failure[

«create» value
 

value 
{next} setting

referenceNode

variationNode

eSettings eStructuralFeature parent Setting:setting feature

referenceNode) ValuePrototype(:= valuePrototype

this) ValueHook(:= valueHook

VariationPoint::prepend (parent: EObject, feature: EStructuralFeature, referenceNode: EObject, variationNode: EObject ?): Void

«create»

value {first} setting referenceNode

«create»
value {first}[valueHook.listIndex] 

setting

valuePrototype.value) Object(:= value

(1)

(3)

(4)

(5)

(2)

Figure 6.8: VariationPoint.prepend(): The Prepend composition operator.
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Figure 6.9: VariationPoint.append(): The Append composition operator.

6.1.4 Append

The Append operator is specified in Figure 6.9 and directly modifies the Setting identified by
the given parent node and feature. It is built similar to the Prepend operator (cf. Figure 6.8)
only that the new edge is created after the given variation node in the edge list (Pattern 3)
or, if no variation node is given, at the end of the edge list (Pattern 4). An attribute value is
inserted after the given index in a list attribute (Pattern 5) and not before.

6.1.5 Bind

The Bind operator is specified in Figure 6.10 and directly modifies the Setting identified by
the given parent node and feature.

1. At first, we determine the Setting which is modified in this bind() call.
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5 [valueHook.getEndIndex() != -1 && valueHook.getEndIndex() < otherStringValue.length()]: stringValue

value {first}[valueHook.listIndex + 1]

Figure 6.10: VariationPoint.bind(): The Bind composition operator.

2. We check if a node or a string value is composed, by checking if this VariationPoint is a
ValueHook. In the case of a string value, the beginIndex and endIndex attributes need
to be taken into account (cf. Section 5.1.3), since the new attribute value may replace
only parts of the existing attribute value. Since this operation is not a graph rewriting
but a string manipulation, we use Java’s string API for this. This API can be accessed
in collaboration statements. In these statements, the part of the existing value before
beginIndex is prepended and the part of the existing value behind endIndex is appended
to the value that should be bound.

3. In case a node is bound, a new edge is created at the position of the edge to the variation
point. Specifying the position is important in cases where bind mode is explicitly selected
and binding in the context of an edge lists is performed.

4. The edge to the variation node is destroyed. Note that if the setting represents a single
edge (and not an edge list), this edge is removed already at the moment the new edge is
created above (because there can only be one edge of this kind).

5. and 6. Adding the computed string value to the attribute or list attribute that is repre-
sented by the Setting is done in a similar fashion as the creation and deletion of new
and old edges in Patterns 3 and 4.
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eStructuralFeatureeSettings

VariationPoint::remove (parent: EObject, feature: EStructuralFeature, variationNode: EObject): Void

«destroy»

value

Figure 6.11: VariationPoint.remove(): The Remove composition operator.

6.1.6 Remove

In addition to the above presented operators, there is another basic operator Remove defined
in Figure 6.11 for removing variation nodes from a composed fragment. Remove only has an
effect on variation points that are nodes and for which the remove flag is set to true (cf.
Figure 6.5). Thus, remove() can be called after a composition has been completed on all
variation points to clean the interface of variation nodes that are no longer needed and should
not appear in the composed model. Similar as for mode, REXCM is extended with a remove
= $OCLExpression$ statement to control which variation nodes may be removed.

Above we described the basic composition operators of U-ISC/Graph. As mentioned, these
operators are implicitly called when composition programs are executed. How these are defined
is presented next.

6.2 Universal Composition Language Concepts

In Chapter 2 we motivated the need for a universal composition language. We formulated the
following requirements for composition programs defined in that language:

• Universal Composition Language (Requirement 4; p. 16) The language has to be
independent of component languages in so far that components defined in arbitrary com-
ponent language can be used in composition programs.

• Abstract Composition Interfaces (Requirement 3; p. 16) Composition programs
must allow to exchange the set of components they compose for another set of components
with similar interfaces defined in another component language.

• Aggregatable Composition Programs (Requirement 5; p. 17) It must be possible
to extract composition information from different sources and aggregate them in one
composition program.

The prerequisite to meet these requirements is the fragment collaboration concepts of Chap-
ter 4. In existing ISC approaches, these collaborations are hidden in component language-
dependent composition operators. This couples composition programs, which directly call
these operators, tightly to component languages. By explicitly defining fragment collabora-
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FragmentInstanceName

PortTypeName 
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PortTypeName 
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PortTypeName 
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Fragment Instance

Contributing Port Instance

Receiving Port Instance

Configuring Port Instance

Unmatched Composition Link

Configuring Composition Link

Contributing Composition Link

Figure 6.12: Notation for UCL.

tions independent of component languages, and only binding them later to these languages
with REXCM, we are able to define composition programs that are decoupled from component
languages to meet Requirements 3 and 4.

To meet Requirement 5, it is important that composition programs are declarative. In
existing ISC approaches, composition programs are written and interpreted imperatively as a
sequence of operator calls, where each call potentially depends on the composition results of
the previous operator call. To ensure that aggregated composition programs always deliver
the same result, independent of the order in which composition information is aggregated, we
need to avoid this sequential dependency.

Therefore, we define the Universal Composition Language (UCL) that is a declarative com-
position language based on the fragment collaboration concepts defined in Chapter 4. In the
following, we introduce the concepts of UCL using a graphical notation which is summarised
in Figure 6.12. Occasionally, we explain some details best seen in the language’s metamodel
shown in Figure 6.13. The semantics of the language, that is, the translation of declarative
composition programs into composition operator calls, is defined in Section 6.3.

6.2.1 Fragment Instance

A fragment instance, represented as a box (cf. Figure 6.12), represents a graph fragment in a
composition program. In contrast to a fragment (cf. Figure 5.21), a fragment instance is linked
to other fragment instances in the context of a composition program. Different instances of
the same fragment can have different links in another or in the same composition program.
Different fragment instances in one composition program are distinguished through unique
names inside the program (name attribute of fragment instance). A specific kind of fragment
instance is a referenced fragment (reference attribute of fragment instance). A referenced
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Figure 6.13: Universal Composition Language (UCL) concepts.

fragment is not copied during composition as other fragments are which is described in more
detail in Section 6.3.3. The target and targetUFI attributes of fragment instances are required
to define UFIs for composition results such that composed fragment can also be identified for
further reuse in other composition programs.

6.2.2 Port Instance

A fragment instance has one port instance for each port on its fragment’s composition interface.
Port instances are visualised as circles attached to the fragment instance boxes. We distinguish
three kinds of port instances that depend on the nature of the ports they represent, which has
an influence on the composition execution that is discussed in Section 6.3. If a port contains
hooks, it is receiving depicted by a circle with a solid border but is not filled (cf. Figure 6.12).
If a port contains prototypes, it is contributing depicted by a filled circle. If a port instance
contains only slots and anchors, it is configuring depicted by a circle with a dashed outline.
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6.2.3 Composition Link

To define invasive compositions of graph fragments, we introduce the concept composition link.
A composition link has two states: unmatched and matched. A newly defined link is unmatched
depicted by a dashed line (cf. Figure 6.12). It is matched for composition as we discuss in
Section 6.3.1. A matched link is depicted by a solid line and if it connects a contributing with
a receiving port instance, the composition direction is visualised with an arrow (from the port
with prototypes to the port with hooks).

6.2.4 Value Setting

The last UCL concept is value setting. A value setting holds a property/value pair and
can be used to set a value hook to a string value rather than linking it to a value prototype.
Consequently, a port instance may have multiple settings. The property of the value identifies
the value hook to be set by its name. The value specifies the value to be set.

Example 6.2. Figure 6.14 (top) shows a composition program that defines a composition
between the file system and observer UML models known from earlier examples that were
depicted with their composition interface in Figures 5.22 and 5.23. These composition interfaces
were obtained by interpreting a REXCM specification (cf. Listing 5.5) that binds the FraCol
ClassWeaving (cf. Listing 4.4) to UML.

In this example, the observer UML model is reused twice. Once to define an observer/subject
relationship between FileSystem and FSFolder and once between FileSystem and FSFile.
The corresponding ports contain all necessary variation and reference points. Comparing this
composition program with Figures 5.22 and 5.23, illustrates how the addressable points are
hidden to the developer of the composition program—he or she only sees the ports on the
interfaces and not the internal details.

In the middle and bottom of Figure 6.14, the composed model that results from executing
the composition program is shown in graphical UML notation and as graph. We can observe
that two copies of the observer fragment were created, because it was instantiated twice in the
composition program. For each prototype/hook binding, a separate copy was used (e.g., there
are two copies of the attach operation (F) that are bound to different hooks). For anchor/slot
bindings, no additional copies are produced (e.g., the FileSystem class (2) is used as type for
the observer parameter (I) of both copies of the attach operation). How the composition
execution that produced this result works exactly is described in the next section.

The composition links do not depend on parts of graph fragments directly. They only
connect ports which have port types defined in the FraCol ClassWeaving. Therefore, the
fragments behind the fragment instances can be exchanged for other fragments that provide
the same composition interfaces conforming to the ClassWeaving collaboration. Thus we could
compose the Java version of the file system example (cf. Figures 5.28 and 5.29) with the
same composition program. The composition technique, which we present next, is still able to
perform the composition, because the knowledge about how to access the Java fragments is
defined in the corresponding REXCM in Listing 5.6.
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Figure 6.14: Composing file system (cf. Figure 5.22) and observer (cf. Figure 5.23) models.
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6.3 Universal Composition Language Semantics

A composition program can be executed to obtain an invasively composed graph fragment.
For this, the composition program is analysed and translated into basic composition operator
calls. For this, a couple of steps are necessary which are described in the following. The full
semantics of composition program execution are formally defined through story diagrams in
Appendix A.3.

6.3.1 Composition Link Matching

Figure 6.15 gives an overview of the composition execution illustrated on the stepwise pro-
cessing of a composition program that contains three fragments (F1, F2, and F3). The first
activity (a) is the matching of each composition links. Matching a composition link is es-
sentially the identification of basic composer calls between the addressable points of the two
connected ports. This is done by checking for each pair of addressable points if their domain
types, their variability types (according to the rules defined in Section 5.2.2), and their names
match.

The goal of the match is to find for each involved reference point exactly one variation point
to which it is composed later. Consequently, the match fails if there are reference points that
were not or ambiguously matched. That is, they were either matched to none or more than
one variation point. If the match fails, the composition link is invalid and ignored in the
composition execution.

Composition link matching is a type inference activity. It determines if a composition link
is contributing or configuring and which are the composition operator calls that need to be
executed. Conceptually, one could also define operator calls directly and instead of performing
a type inference, we could perform a type check. This is how it was done in Compost and
U-ISC/Tree (cf. Chapter 3).

6.3.2 Composition Step Identification

The composition execution follows a recursive algorithm that is performed in several compo-
sition steps. One composition step resembles the execution of all composition operator calls
of all incoming contributing links and all configuring links of one fragment instance. We call
this fragment instance the receiving fragment of the composition step. All fragment instances
connected to it via incoming contributing links are consequently contributing fragments.

If a contributing fragment can itself act as receiving fragment in another composition step
(i.e., it has itself incoming contributing links) the other step hast to be executed first. This
means that initially the composition steps which involve fragment instances that do not have
incoming contributing links (i.e., they never act as receiving fragment) are identified and ex-
ecuted. After that, the receiving fragment of such a step has no incoming contributing links
anymore since these have been processed. Therefore, it may now act as contributing fragment
in other composition steps.

In Figure 6.15 two composition steps are found and executed. The first step (b) composes
F3 with F2. It is identified because there is a contributing link between F3 and F2 and because

108



6.3 Universal Composition Language Semantics

(f) copy(F2)
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(e) identify Step 2
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Figure 6.15: Stepwise execution of a UCL composition program.
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F3 itself does not have incoming composition links. After the composition was completed, the
second step is identified between (the now composed) F2 and F1, because of the contributing
link between F2 and F1 and because the composed version of F2 does not have an incoming
contributing link anymore. In addition to contributing links, configuring links (as the one
between F1 and F2) and value settings of the receiving fragment are processed in each step.

6.3.3 Fragment Copying

Before a fragment is composed, it is copied. Copying fragments is the basis for invasive com-
position. It is necessary, since we need to modify graphs in invasive composition, without
altering the original graphs. The copy operation for fragments was originally introduced as ba-
sic composition operator in [Aßm03, Section 4.3]. The use of this copy operator in Compost
was demonstrated in Example 3.1. While copying had to be called explicitly in Compost,
we implicitly trigger copying whenever a composition step is executed. In Figure 6.15, F3 is
copied before it is composed with F2 (c) and the result of this composition is copied before it
is composed with F1 (f).

Usually, at least one copy is created per fragment involved in a composition step. An
exception are fragment instances that are set to reference. In such a case, cross-references to
the original fragment are created during composition. To ensure that only cross-references are
created, the port of that fragment may only contain anchors.

Another special case is the involvement of a homogeneous port. In that case, a composition
step is triggered multiple times, leading to repetitive copying of the contributing fragment. One
copy is created for each heterogeneous port behind the homogeneous port. This is necessary,
because a prototype can only be bound once and such a separate copy is required for each
hook, as illustrated in the following example.

Example 6.3.3. In Figure 6.16 (top), a composition that involves a homogeneous port is
shown. It extends the file system UML model with the ID advice from Figure 5.24. Here, only
one instance of the ID fragment is declared in the composition program. The receiving port
FileSystemPackage however, is a homogeneous port that groups all three heterogeneous ports
for the classes of the FileSystemPackage package (cf. Figure 5.24). Thus, since there are
three heterogeneous ports with individual hooks, three copies of the ID fragment are produced
during composition, as we can see in the composed model in Figure 6.16 (middle and bottom).

6.3.4 Basic Composition Operator Calls

During each composition step, the basic composition operators are called according to the link
matches. It is important that the operators are called on the copies that were created for
the step, and not the original graphs. Furthermore, a reference or a variation point in graph
fragments can concern multiple nodes and edges (cf. Section 5.1.3). For example, a variation
node can be connected by multiple edges.1 All those edges need to be considered in a composi-
tion that involves the variation point. The basic composition operators introduced above only

1Note that the terms variation (reference) node and variation (reference) point are not to be confused: A
variation (reference) node is exactly one node in a graph while a variation (reference) point describes a point
of variation (for referencing) in a graph which may concern multiple nodes, edges, or attributes.
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Figure 6.16: Composing file system (cf. Figure 5.22) and ID (cf. Figure 6.14) models.
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modify one edge per call and are thus called for each edge individually. In Figure 6.15, Basic-
Compose is called once in the first composition step (d) and twice in the second composition
step (g).

6.3.5 Variation Point Removal

After composition execution, it is useful to remove remaining unbound variation points, if the
result of a composition is to be interpreted by other external tools (e.g., a compiler) that do not
understand the semantics of the variation points. This concerns cases where variation nodes are
involved (i.e., not cases where edge lists or attributes are modified) and where the nodes were
not already removed by a bind() operator call. If composition is complete, removing variation
points is harmless, since they are not required for further composition steps. Removal is
performed by the basic operator Remove defined in Section 6.1.6.

With this, we conclude the description of the UCL composition semantics. We are now
able to declaratively specify composition programs for graph fragments that are variability
typed—as defined in Chapter 5—with the composition language concepts defined in Section 6.2.
These composition programs can then be executed as explained in this section. To make this
applicable in practice, means are required to define composition programs with UCL, which
are discussed in the next two sections.

6.4 Using the Universal Composition Language

This section explains how UCL is integrated directly into a composition system for composition
program definition. As we illustrated in Figure 6.2, no integration effort for the composition
language is required by a composition system developer if UCL is used. In this case, UCL
is the only composition language in the CB-MDSD composition system. Such composition
systems are used for the ModelHiC architectural style that is utilised for a larger example in
Chapter 9.

6.4.1 Fragment Instantiation

Developers using UCL have to do two things: select fragments to add them to a composition
program and create composition links. The creation of fragment instances and their port
instances, based on the fragments the developer selects, can be automated. This is a straight
forward operation—one fragment instance is created per fragment and one port instance per
port. The operation is defined in Appendix A.4. This tooling for UCL is part of Reuseware
presented in Chapter 7.

Example 6.4.1. Consider again the REXCM specification in Listing 5.5 and the UML frag-
ments from Figures 5.22 and 5.23. The composition interfaces shown in these two figures are
computed based on the REXCM specification (cf. Section 5.3).

A developer can decide to add these fragments to a UCL composition program, which triggers
the creation of a fragment instance for each usage of one of them. In the example shown in
Figure 6.14, the file system fragment is instantiated once and the observer fragment twice.
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Figure 6.17: Composing file system and observer models using a composition program with
customised syntax (cf. Figure 6.14).

The developer can now define composition links between the fragment instances as done
in Figure 6.14 top. The composition execution (cf. Section 6.3) can then be performed,
which analyses the composition program and automatically calls the corresponding composition
operators. It can also give feedback to the developer if links are valid or not. The result of the
composition shown in Figure 6.14 bottom is serialised to a file.

6.4.2 UCL Customisation

The advantage of using UCL in a composition system is that no integration effort is required.
On the contrary, UCL does not contain and can not be extended with domain specific com-
position language constructs as dedicated composition languages (cf. [Hen09, Section 4.2]).
Nevertheless, the UCL syntax—boxes for components and lines to connect them—is very in-
tuitive for many composition systems. Building on this, the user experience can be further
improved by customising the graphical syntax with dedicated icons for certain fragments or
types of fragments.

This customisation does not change the core of the language—that is, the metamodel (cf.
Figure 6.13) does not change but only the graphical syntax. Consequently, even if the concrete
syntax changes, composition programs can still be executed without adjusting the language
semantics. Such syntax adjustments can be done dynamically with the proper tool support.
The UCL editor we provide in Reuseware allows the assignment of dedicated icons to frag-
ments. As an example, Figure 6.17 shows the same composition program as Figure 6.14 with
customised syntax.

To use UCL with customised syntax instead of defining new (domain-specific) composition
languages proved applicable for applications in practice (one is presented in Chapter 9). This
is a clear advantage, since reusing the one customisable language with its tool support relieves
composition system developers from defining dedicated composition languages and tooling. In
existing ISC composition languages, the universal parts of composition languages, which are
the calls of basic operators, could only be used by ISC experts. With UCL, we defined a
universal composition language that can be used by experts of a certain domain, since, despite
of its universality, it hides low-level details of ISC.
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aspects weavings
aspect

Figure 6.18: Metamodel of SimpleWeave composition language.

1 SYNTAXDEF simpleweave
2 FOR <http://www.reuseware.org/example/simpleweave>
3 START WModel
4

5 RULES{
6 WModel::= "core" coreID[’<’,’>’] "{" aspects+ "}" ;
7 Aspect::= "weave" adviceID[’<’,’>’] "{" weavings+ "}";
8 Weaving ::= adviceContentID[] "into" joinPointID[];
9 }

Listing 6.1: Text syntax of SimpleWeave composition language in EMFText CS (a variation of
EBNF).

6.5 Composition Language Integration with REXCL

Although we can use UCL directly as composition language in CB-MDSD, we showed in several
examples that there are use cases for integrating arbitrary modelling languages as composition
languages. For this, we introduce the REuse eXtension language for Composition Language
integration (REXCL). The language shares concepts with the component model configuration
language REXCM (cf. Section 5.3). REXCM and REXCL together thus form the complete reuse
extension (REX) language of U-ISC/Graph. As indicated in the beginning of this chapter,
REXCL can be used by composition system developers to integrate DSMLs as composition
languages into a CB-MDSD composition system, which in turn allows architects to develop
composition programs in these DSMLs (this was illustrated in Figure 6.3).

REXCL specifications are also based on fragment collaborations. Instead of rules for fragment
role binding (as specified with REXCM) rules to establish collaborations between fragments (in
terms of composition links that conform to composition associations) are defined with REXCL.
In a similar fashion to how variability types are identified in a model with REXCM, UCL
concepts are identified in a model with REXCL. In contrast to a REXCM specification, a REXCL

specification does not interpret a model as graph fragment, but as composition program.

Example 6.5. Imagine that we design a compact textual composition language for the FraCol
ClassWeaving presented in earlier examples. We call the language SimpleWeave and define it in
terms of an Ecore metamodel that consists of three metaclasses (Figure 6.18) and an EMFText
syntax definition (Listing 6.1). What we need to do to use the language as composition language
is to assign composition language semantics to the constructs of the language. This can be done
with REXCL. Then, instead of using UCL, we can defining a weaving in our own composition
language as shown in Listing 6.2.
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1 core <org/reuseware/example/uml/cores/FileSystem.uml> {
2 weave <org/reuseware/example/uml/advices/ObserverAdvice.uml> {
3 Subject into FSFolder
4 Observer into FileSystem
5 }
6 weave <org/reuseware/example/uml/advices/ObserverAdvice.uml> {
7 Observer into FileSystem
8 Subject into FSFile
9 }

10 }

Listing 6.2: A composition program defined in SimpleWeave with the same effect as the com-
position program in Figure 6.14.

6.5.1 REXCL Concepts

In the following, we define the REXCL language. Its syntax is similar to the one of REXCM

and, as REXCM, it embeds OCL. The metamodel of REXCL is shown in Figure 6.19. It
reuses the abstract metclasses from the REXCM metamodel (cf. Figure 5.27). Thus, it also
contains relationships to the Ecore metamodel (cf. Figure 5.6) and our FraCol metamodel (cf.
Figure 4.2). The concepts found in the metamodel are reflected in the textual syntax of REXCL

which we explain in the following on a schematic REXCL specification shown in Listing 6.3.
(The complete grammar REXCL can be found in Section 7.2.)

The header in Lines 1–3 is similar as in the REXCM syntax (cf. Section 5.3.2). To extract
a composition program from different sources, it is important that also each composition pro-
gram has a Unique Composition Program Identifier (UCPI). Therefore, a REXCL specification
contains an UCPI derivation rule (Line 5) which is used to compute the UCPI of the compo-
sition program that is extracted when the specification is evaluated for a model. In this way,
several models can contribute information to the same composition program. The rule has to
compute an ID which is a special metaclass we introduce in Figure 6.20. An ID consists of a
list of string segments and the ID metaclass offers a number of operations for modifying the
segments. This allows a convenient derivation and modification of IDs with OCL. For OCL
expressions in REXCL (and also REXCM) specifications, we make the UFI of the current model
available as ID element in the variable ufi. Thus, expressions cannot only inspect elements of
the model (via self), but also the model’s UFI (via ufi).

Each REXCL specification effectively defines rules that ensure that a certain fragment collab-
oration is established in the composition program identified by the UCPI. For that, it contains
rules for fragment instance role bindings and composition association bindings explained in the
following.

Lines 7–16 show a fragment instance role binding that ensures that a certain fragment
instance exists in the identified composition program. The roleName identifies the role in the
implemented FraCol. The reference keyword determines if the fragment instance should be
a reference. The eClass specifies the EClass for which instances the rule applies. The optional
condition can enforce further constraints on those instances. The fragment, ufi, and target ufi
expressions (Lines 9–11) compute the name, UFI, and target UFI of the fragment instance,
respectively. The target ufi expression is optional and only if it is set the target flag of the
fragment instance is set to true. The fragment expression has to return a string and both ufi
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Figure 6.19: Composition language integration concepts.

Figure 6.20: Metaclass for representing and manipulating IDs.
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1 compositionlanguage ID
2 implements fracolID
3 epackages <epackage> +
4 rootclass rootelementEClass if $OCLExpression$
5 ucpi = $OCLExpression$ {
6

7 reference fragment role fragmentRoleName {
8 eClass if $OCLExpression$ {
9 fragment = $OCLExpression$

10 ufi = $OCLExpression$
11 target ufi = $OCLExpression$
12 port type portName {
13 $propertyOCLExpression$ = $valueOCLExpression$
14 }
15 }
16 }
17

18 association associationName {
19 eClass if $OCLExpression$ {
20 foreach $OCLExpression$
21 fragment = $OCLExpression$
22 port = $OCLExpression$
23 -->
24 foreach $OCLExpression$
25 fragment = $OCLExpression$
26 port = $OCLExpression$
27 }
28 }
29 }

Listing 6.3: Schematic REXCL specification.

expressions an ID. The rule ensures, that a fragment instance with the computed properties
exists in the composition programs identified by the UCPI. In addition, settings of a port on the
fragment with the name portName are derived by using a pair of OCL expressions (Line 13).

An association binding, shown in Lines 18–28, is used to ensure that a certain composition
link exists. Again, eClass and its optional condition are used to identify the elements that
trigger the association binding. Then, four rules, which are all expected to return a string,
identify two fragments (fragment name expressions) and two ports (port name expressions)
on these fragments. The association binding ensures that these two ports are linked with a
composition link. If a linked port is static, the port expressions (Lines 22 and 26) can be
omitted, since the name of the port is known from the static port type at the corresponding
association end.

Optionally, the foreach expressions (Lines 20 and 24), which need to return a set of model
elements, can be used to compute two sets of ports where each port of the first set is linked
with each port of the second set.

Example 6.5.1. (1/2) To illustrate REXCL, we continue the definition of the SimpleWeave
composition language by defining composition semantics for the language with REXCL in
Listing 6.4. We assign the following semantics to the three metaclases of SimpleWeave: WModel
instantiates core fragments (Lines 7–13), Aspect instantiated advice fragments (Lines 15–20),
and Weaving creates links between advice Content and core JoinPoint ports (Lines 22–30).
When the expression defined in Lines 6–30 are interpreted, they extract UFIs of the core and
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1 compositionlanguage org.reuseware.example.class_weaving.simpleweave
2 implements org.reuseware.example.class_weaving
3 epackages <http://www.reuseware.org/example/simpleweave>
4 rootclass simpleweave::WModel
5 ucpi = $ufi.trimExtension().appendExtension(’fc’)$ {
6

7 fragment role Core {
8 simpleweave::WModel {
9 fragment = $’CORE’$

10 ufi = $self.coreID.split(’/’)$
11 target ufi = $ufi.trim(1).append(’woven’).append(ufi.segment(-1))$
12 }
13 }
14

15 fragment role Advice {
16 simpleweave::Aspect {
17 fragment = $self.adviceID$
18 ufi = $self.adviceID.split(’/’)$
19 }
20 }
21

22 association weave {
23 simpleweave::Weaving {
24 fragment = $self.aspect.adviceID$
25 port = $self.adviceContentID$
26 -->
27 fragment = $’CORE’$
28 port = $self.joinPointID$
29 }
30 }
31 }

Listing 6.4: REXCL specification of SimpleWeave composition language.

advice fragments as well as port names for the JoinPoint and Content ports from the coreID,
adviceID, adviceContentID, and joinPointID attributes of SimpleWeave models.

Listing 6.2 shows a model defined in SimpleWeave. Interpreting it as composition program
by using the REXCL specification of Listing 6.4, derives the composition program shown in
Figure 6.14. Compared to UCL, SimpleWeave introduces concepts specific to an aspect com-
position system (e.g., the distinction between core and aspect) and abstracts from details (e.g.,
a fixed target UFI is computed that cannot be changed by a user).

SimpleWeave can be combined with any component language, for which a REXCM is defined
that implements the FraCol ClassWeaving (cf. Listing 4.4), to a composition system that offers
both a dedicated component model and a dedicated composition language for aspect weaving.
A user of such a system does not need knowledge about U-ISC/Graph, since all its specifics
are hidden behind the dedicated languages. So far, we defined two component models that can
be combined with SimpleWeave to form an aspect composition system (UML in Listing 5.5
and Java in Listing 5.6). However, by providing a REXCM specification that implements our
FraCol ClassWeaving for another modelling language, SimpleWeave can be made usable for
weaving aspects defined in that language.

This brings us back to the example in Section 3.1, where we defined a composition operator
in Compost as Java method weave() (cf. Listing 3.3). Using the weave construct of Sim-
pleWeave (metaclass Weaving) has the similar effect as the weave() operator. Using weave
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1 compositionlanguage org.reuseware.lib.systems.participation.cl.odt
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot
6 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(’Main.fc’)$ {
7 fragment role Participant {
8 odftext::SpanType if $styleName = ’Actor’$ {
9 fragment = $’Participant:’.concat(mixed->at(1).getValue().oclAsType(String)).concat(

10 ’_’).concat(ufi.trimExtension().segment(-1))$
11 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’participation’,’lib’,’Participant.’.concat(
12 variant)}$
13 port type Name { $’name’$ = $mixed->at(1).getValue()$ }
14 }
15 }
16 association Participation {
17 odftext::SpanType if $styleName = ’Actor’$ {
18 fragment = $’Participant:’.concat(mixed->at(1).getValue().oclAsType(String)).concat(
19 ’_’).concat(ufi.trimExtension().segment(-1))$
20 --> fragment = $’UseCase:’.concat(ufi.trimExtension().segment(-1))$
21 }
22 }
23 }

Listing 6.5: REXCL specification for OpenDocument as composition language that conforms
to the FraCol Participation (cf. Listing 4.3).

in a SimpleWeave model is similar to calling weave() in a Compost composition program
written in Java (cf. Listing 3.4). Therefore, in U-ISC/Graph, the complex composition op-
erator concept has been replaced by the grouping of variation points in ports with REXCM

and specification of composition languages in REXCL. Through this, arbitrary Ecore-based
languages can be integrated as composition languages into composition systems.

Example 6.5.1. (2/2) Finally, REXCL enables us to realise the extraction of composition
information from models and collect it in a single composition program as required for the ticket
shop example of Section 2.1. Listings 6.5 and 6.6 show two REXCL specifications that integrate
OpenDocument and UML use cases as composition languages respectively. They implement
the FraCols Participation and Exchange (Figures 4.4 and 4.7). Listing 6.5 defines how the
Participation composition information is extracted from OpenDocument models. Listing 6.6
defines how the Exchange composition information is extracted from UML use case models.

6.5.2 REXCL Semantics

Above we explained the meaning of the REXCL concepts and showed how composition infor-
mation is extracted from models and merged into a UCL composition program. The complete
semantics of this composition program extraction are defined in in Appendix A.5.
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1 compositionlanguage org.reuseware.lib.systems.exchange.cl.usecase_uml
2 implements org.reuseware.lib.systems.exchange.exchange
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’usecase.uml’,variant).trim(2).append(’Main.fc’)$ {
6 fragment role Value {
7 uml::Comment if $body.contains(’before’)$ {
8 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
9 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’exchange’,’lib’,’Value.’.concat(variant)}$

10 port type Provider {
11 $’value’$ = $body.split(’ ’)->at(1)$
12 $’name’$ = $body.split(’ ’)->at(1).concat(’_’).concat(body.split(’ ’)->at(2))$
13 $’ID’$ = $body.split(’ ’)->at(2)$
14 $’inSet’$ = $body.contains(’inSet’)$
15 }
16 }
17 }
18 association Contribution {
19 uml::Comment if $body.contains(’before’)$ {
20 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
21 --> fragment = $’UseCase:’.concat(ufi.segment(-2))$
22 }
23 }
24 association Provide {
25 uml::Comment if $body.contains(’before’)$ {
26 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
27 -->
28 fragment=$’Participant:’.concat(ufi.trimExtension().segment(-1)).concat(’_’).concat(ufi.segment(-2))$
29 }
30 }
31 fragment role Value {
32 uml::Comment if $body.contains(’after’)$ {
33 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
34 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’exchange’,’lib’,’Value.’.concat(variant)}$
35 port type Consumer {
36 $’value’$ = $body.split(’ ’)->at(1)$
37 $’name’$ = $body.split(’ ’)->at(1).concat(’_’).concat(body.split(’ ’)->at(2))$
38 $’ID’$ = $body.split(’ ’)->at(2)$
39 $’inSet’$ = $body.contains(’inSet’)$
40 }
41 }
42 }
43 association Contribution {
44 uml::Comment if $body.contains(’after’)$ {
45 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
46 --> fragment = $’UseCase:’.concat(ufi.segment(-2))$
47 }
48 }
49 association Consume {
50 uml::Comment if $body.contains(’after’)$ {
51 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
52 -->
53 fragment=$’Participant:’.concat(ufi.trimExtension().segment(-1)).concat(’_’).concat(ufi.segment(-2))$
54 }
55 }
56 }

Listing 6.6: REXCL specification for UML use cases as composition language that conforms to
the FraCol Exchange (cf. Listing 4.3).
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6.6 Conclusion

Chapter Contributions This chapter contributes the following:

C1-4 Basic invasive composition operators for graphs
In this chapter, we defined the basic composition operators of ISC as graph rewritings.
It is the first time that the basic composition operators have been defined in this form. It
is not only a redefinition of the existing operators (which were defined informally for ISC
in [Aßm03] and in a composition algebra for U-ISC/Tree in [Hen09]), but also an exten-
sion of them. This extension takes the requirements of the variability typing for graph
fragments—the support for edge lists and attributes—into account. Furthermore, we in-
troduced the new BasicCompose operator that automatically delegates to an appropriate
operator.

C1-5 Universal invasive composition language and algorithm
This chapter introduced a set of basic composition language concepts for ISC—as an
equivalent to having basic composition operators for the composition technique. Such
a basic set of composition language concepts was not defined before. An invasive com-
position algorithm based on these concepts was introduced that works with declarative
composition programs and automatically handles instantiation (i.e., copying) of frag-
ments. This had to be done manually by developers in ISC before. So far, ISC relied
on complex composition operators that were component language dependent. Our com-
position algorithm is language independent, because all language specifics are hidden
behind composition interfaces which are configured with REXCM. This contribution has
the following sub-contributions:

• Declarative universal composition language
This chapter introduced the first universal ISC composition language that abstracts
from the basic composition operators but stays, thanks to the universal composition
algorithm, universal. It therefore provides the first ISC composition language that
is both (1) integrable into arbitrary ISC composition systems and (2) usable for
developers who are not ISC experts.

• Language for composition language integration
In this chapter we defined REXCL to define rules to integrate arbitrary EMOF/
Ecore-based languages into composition systems as composition languages. Such
a language that is dedicated for defining composition languages for ISC systems
was never defined before. The specification of composition language semantics in
Embedded ISC [Hen09] required direct manipulation of a language’s grammar and
supported only the use of the same language as component and composition lan-
guage.
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Part Contributions Part I, which concludes with this chapter, has the following major
contribution:

C1-6 Declarative composition system specification formalism
In combination, FraCols, REXCM, and REXCL form the first declarative formalism to
specify complete invasive composition systems in which multiple component and compo-
sition languages can be chosen freely and combined. It is also the first formalism of this
kind that relies on a standardised metalanguage (EMOF/Ecore) and does not require
extension of language metamodels.

This concludes this part of the thesis that specified our composition technique U-ISC/Graph.
The next part deals with using U-ISC/Graph for CB-MDSD and with that evaluates the
practical relevance of U-ISC/Graph.
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7
Reuseware Composition Framework

This chapter describes the Reuseware Composition Framework, which implements the concepts
of U-ISC/Graph and thus can be used to develop composition systems with it.

This second part of the thesis deals with defining composition systems with U-ISC/Graph
and using those for CB-MDSD. For that, we define and evaluate, in Chapters 8 and 9, two
architectural styles for CB-MDSD called ModelSoC and ModelHiC. To use U-ISC/Graph in
this practical context, we require tool support, which is introduced in this chapter.

We provide an implementation of U-ISC/Graph called Reuseware Composition Framework
(short Reuseware), which we made available at http://www.reuseware.org. Reuseware
is implemented in Java based on the Eclipse environment [Ecl06] and the Eclipse Modeling
Framework (EMF) [SBPM09]. Reuseware effectively is a generic CB-MDSD composition
system and therefore called a framework. The framework (i.e., the generic composition system)
is instantiated by a composition system developer to a concrete CB-MDSD composition system.
This is done by providing FraCols and REX definitions as defined in Part I.

Figure 7.1 gives an overview of the metamodels and tooling of Reuseware. The core of
Reuseware is generated directly from the conceptual models of U-ISC/Graph defined in Part I
and Appendix A. The EMF provides the EMOF implementation Ecore (cf. Section 5.1.1) and
facilities to translate Ecore metamodels into Java code. Thus, this part of the implementation
is directly derived from the metamodels for the different U-ISC/Graph aspects we presented
in Part I. Story Diagrams (cf. Appendix A) can be translated into Java code as specified
in [FNTZ00] by the Fujaba tool [NNZ00]. Thus, this part of the implementation is directly
derived from the story diagrams defined in Appendix A.

On top of this core, we provide tooling for composition system developers and users. This
tooling consists of textual editors—for composition system developers to write FraCols, REXCM,
and REXCL specifications—and of a graphical editor—for composition system users to define
UCL composition programs. The textual editors were developed wit EMFText [HJK+09] and
the graphical editor was developed with GMF [Gro09].
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Figure 7.1: Metamodels and tooling of Reuseware.

In the following, we describe the architecture of Reuseware and its integration with other
modelling tools in Section 7.1 and give more details of the tools for developers (Section 7.2)
and users (Section 7.3). In Section 7.4, we discuss extension possibilities for Reuseware.

7.1 Architecture of the Reuseware Composition Framework

In Part I, we introduced several software modelling concepts that are used by U-ISC/Graph.
For each of these concepts, we selected one implementation that we used for developing Reuse-
ware or that we integrated with Reuseware.

EMOF/Ecore (cf. Section 5.1) We use Ecore, the EMOF implementation in EMF, for
metamodel definition. EMF was used for developing Reuseware and is also integrated with
Reuseware. At development time, it was utilised to generate code from the metamodels for
FraCols, REX, Graph Fragments, and UCL we define in Parts I (Figure 7.1 middle column).
At runtime, EMF is used for loading, storing, and modifying models.

SDM (cf. Appendix A) Fujaba [NNZ00] is used to specify Ecore models and story diagrams
at development time. Furthermore, it is used to generate code from story diagrams that
integrates with the code generated by EMF. For that, Fujaba offers a special code generator
[GBD07]. We utilised this code generator to generate code that implements the semantics of
REX and UCL from the story diagrams we specified in Part I and Appendix A (Figure 7.1
middle column). Fujaba is not used at runtime and thus not integrated in Reuseware.

Concrete Syntax (cf. Section 5.1.2) We used EMFText [HJK+09] and GMF [Gro09] to
develop syntax for the languages introduced in Part I. From these syntax specifications, editors
are generated (Figure 7.1 right column). EMFText is used at runtime for supporting textual
languages (e.g., Java). The runtime part of GMF is also integrated in an optional extension of
Reuseware for layout composition (cf. discussion in Section 12.1).
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1 SYNTAXDEF fracol
2 FOR <http://www.reuseware.org/coconut/fracol>
3 START FragmentCollaboration
4 RULES {
5 FragmentCollaboration ::= "fracol" fracolID[] ("." fracolID[])*
6 "{" (fragmentRoles | compositionAssociations)* "}";
7

8 FragmentRole ::= "fragment" "role" name[] "{" portTypes* "}";
9

10 StaticPortType ::= "static" "port" "type" name[] ";";
11 DynamicPortType ::= "dynamic" "port" "type" name[] ";";
12

13 Configuration ::= "configuring" "association" name[] "{"end1Role[]"."end1[] "-->" end2Role[]"."end2[]"}";
14 Contribution ::="contributing" "association" name[] "{"end1Role[]"."end1[] "-->" end2Role[]"."end2[]"}";
15 }

Listing 7.1: FraCols text syntax defined in EMFText CS (a variation of EBNF).

OCL (cf. Section 5.3.1) The EMF-based OCL interpreter (MDT-OCL) [Ecl10c] is used at
runtime to interpret OCL expressions that are embedded in REX specifications. The interpreter
is extended to support a richer string API (cf. Section 5.3.1) but otherwise it is a black-box
integration. OCL was not used at development time.

Hand-written code (Java) At development time, the tool was completed by some hand-
written code for user interfaces and integration into the Eclispe platform. This includes adjust-
ments to the UCL editor generated with GMF to realise the syntax customisation described
in Section 6.4. The main part of Reuseware, which corresponds to the conceptual models of
the thesis, is generated as described above.

Potentially, all EMF-based tools (i.e., tools that understand Ecore metamodels) can integrate
with Reuseware since they work on similar data structures. In Chapter 8 and 9, we mainly
integrated with graphical and textual editors, but also integration with other modelling tools,
for instance validation or transformation tools, is possible. This is an advantage gained by
building on the EMOF-conformant Ecore and an important success criterion to transfer our
approach into practice.

7.2 Tooling for Composition System Developers

Reuseware is a generic CB-MDSD composition system and thus can be configured by compo-
sition system developers with FraCols (Section 4.2), REXCM (Section 5.3), and REXCL (Sec-
tion 6.5) specifications. For this, Reuseware provides text editors that support the syntax
of these languages with features like syntax highlighting and auto-completion. These editors
were generated with EMFText, a tool that was also partially developed in the research for this
thesis. For this, the languages’ text sytanxes were defined in the EBNF-like CS language of
EMFText (cf. Section 5.1.2 and [HJK+09] for CS language notation). These definitions for
FraCols, REXCM, and REXCL are shown in Listings 7.1, 7.2, and 7.3 respectively.
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1 SYNTAXDEF rex
2 FOR <http://www.reuseware.org/coconut/reuseextension>
3 START ComponentModelConfiguration
4 RULES {
5 ComponentModelConfiguration ::= "componentmodel" rexID[] ("." rexID[])*
6 "implements" (fragmentCollaboration[] ".")* fragmentCollaboration[]
7 "epackages" ePackages[’<’,’>’]+
8 "rootclass" eBoundClass[] ("if" isExpression[’$’,’$’])?
9 "{" fragmentRoleBindings* "}";

10 }
11 FragmentRole2FragmentBinding ::= "fragment" "role" csFragmentRole[] ("if" isExpression[’$’,’$’])?
12 "{" portTypeBindings* "}";
13 PortType2HeterogeneousPortBinding ::= "port" "type" csPortType[] "{" derivationRules* "}";
14 PortType2HomogenousPortBinding ::= "homo" "port" "type" csPortType[] "{" derivationRules* "}";
15 SlotDerivationRule ::= eBoundClass[] ("." eBoundFeature[])? "is" "slot"
16 ("if" isExpression[’$’,’$’] )? "{" ("foreach" forEachExpression[’$’,’$’])?
17 ("foreach" forEachExpression[’$’,’$’])?
18 ("mode" "=" modeExpression[’$’,’$’])?
19 ("homo" "port" "=" homoPortNameExpression[’$’,’$’])?
20 ("port" "=" portNameExpression[’$’,’$’])?
21 ("point" "=" pointNameExpression[’$’,’$’])?
22 ("remove" "=" removeExpression[’$’,’$’])?
23 "}";
24 HookDerivationRule ::= eBoundClass[] ("." eBoundFeature[])? "is" "hook"
25 ("if" isExpression[’$’,’$’] )? "{" ("foreach" forEachExpression[’$’,’$’])?
26 ("foreach" forEachExpression[’$’,’$’])?
27 ("mode" "=" modeExpression[’$’,’$’])?
28 ("homo" "port" "=" homoPortNameExpression[’$’,’$’])?
29 ("port" "=" portNameExpression[’$’,’$’])?
30 ("point" "=" pointNameExpression[’$’,’$’])?
31 ("remove" "=" removeExpression[’$’,’$’])?
32 "}";
33 AnchorDerivationRule ::= eBoundClass[] ("." eBoundFeature[])? "is" "anchor"
34 ("if" isExpression[’$’,’$’] )? "{" ("foreach" forEachExpression[’$’,’$’])?
35 ("foreach" forEachExpression[’$’,’$’])?
36 ("homo" "port" "=" homoPortNameExpression[’$’,’$’])?
37 ("port" "=" portNameExpression[’$’,’$’])?
38 ("point" "=" pointNameExpression[’$’,’$’])?
39 "}";
40 PrototypeDerivationRule ::= eBoundClass[] ("." eBoundFeature[])? "is" "prototype"
41 ("if" isExpression[’$’,’$’] )? "{" ("foreach" forEachExpression[’$’,’$’])?
42 ("foreach" forEachExpression[’$’,’$’])?
43 ("homo" "port" "=" homoPortNameExpression[’$’,’$’])?
44 ("port" "=" portNameExpression[’$’,’$’])?
45 ("point" "=" pointNameExpression[’$’,’$’])?
46 "}";
47 ValueHookDerivationRule ::= eBoundClass[] ("." eBoundFeature[])? "is" "value" "hook"
48 ("if" isExpression[’$’,’$’] )? "{" ("foreach" forEachExpression[’$’,’$’])?
49 ("foreach" forEachExpression[’$’,’$’])?
50 ("mode" "=" modeExpression[’$’,’$’])?
51 ("homo" "port" "=" homoPortNameExpression[’$’,’$’])?
52 ("port" "=" portNameExpression[’$’,’$’])?
53 ("point" "=" pointNameExpression[’$’,’$’])?
54 ("begin" "idx" "=" beginIndexExpression[’$’,’$’])?
55 ("end" "idx" "=" endIndexExpression[’$’,’$’])?
56 ("list" "idx" "=" endIndexExpression[’$’,’$’])?
57 "}";
58 ValuePrototypeDerivationRule ::= eBoundClass[] ("." eBoundFeature[])? "is" "value" "prototype"
59 ("if" isExpression[’$’,’$’] )? "{" ("foreach" forEachExpression[’$’,’$’])?
60 ("foreach" forEachExpression[’$’,’$’])?
61 ("homo" "port" "=" homoPortNameExpression[’$’,’$’])?
62 ("port" "=" portNameExpression[’$’,’$’])?
63 ("point" "=" pointNameExpression[’$’,’$’])?
64 "value" "=" valueExpression[’$’,’$’]
65 "}";
66 }

Listing 7.2: REXCM text syntax defined in EMFText CS (a variation of EBNF).
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1 SYNTAXDEF rex
2 FOR <http://www.reuseware.org/coconut/reuseextension>
3 START CompositionLanguageIntegration
4 RULES {
5 CompositionLanguageIntegration ::= "compositionlanguage" rexID[] ("." rexID[])*
6 "implements" (fragmentCollaboration[] ".")* fragmentCollaboration[]
7 "epackages" ePackages[’<’,’>’]+
8 "rootclass" eBoundClass[] ("if" isExpression[’$’,’$’])?
9 "ucpi" "=" ucpiExpression[’$’,’$’] !0

10 "{" (fragmentRoleBindings | compositionAssociationBindings)* "}";
11 }
12

13 FragmentRole2FragmentInstanceBinding ::= "fragment" "role" csFragmentRole[] "{"
14 eBoundClass[] ("if" isExpression[’$’,’$’] )? "{"
15 "fragment" "=" nameExpression[’$’,’$’]
16 "ufi" "=" ufiExpression[’$’,’$’]
17 ("target" "ufi" "=" targetUfiExpression[’$’,’$’])?
18 (portTypeBindings)*
19 "}"
20 "}";
21

22 FragmentRole2FragmentReferenceBinding ::= "reference" "fragment" "role" csFragmentRole[] "{"
23 eBoundClass[] ("if" isExpression[’$’,’$’] )? "{"
24 "fragment" "=" nameExpression[’$’,’$’]
25 "ufi" "=" ufiExpression[’$’,’$’]
26 ("target" "ufi" "=" targetUfiExpression[’$’,’$’])?
27 (portTypeBindings)*
28 "}"
29 "}";
30

31 PortType2SettingBinding ::= "port" "type" csPortType[] "{" derivationRules* "}";
32

33 SettingDerivationRule ::= propertyExpression[’$’,’$’] "=" valueExpression[’$’,’$’] ;
34

35 CompositionAssociation2CompositionLinkBinding ::= "association" csCompositionAssociation[] "{"
36 eBoundClass[] ("if" isExpression[’$’,’$’] )? "{"
37 ("foreach" forEach1Expression[’$’,’$’])?
38 "fragment" "=" fragmentInstance1NameExpression[’$’,’$’]
39 "port" "=" portInstance1NameExpression[’$’,’$’]
40 "-->"
41 ("foreach" forEach2Expression[’$’,’$’])?
42 "fragment" "=" fragmentInstance2NameExpression[’$’,’$’]
43 "port" "=" portInstance2NameExpression[’$’,’$’]
44 "}"
45 "}";
46 }

Listing 7.3: REXCL text syntax defined in EMFText CS (a variation of EBNF).

With REXCM and REXCL, modelling languages defined with Ecore are integrated in Reuse-
ware as component or composition languages. These can be existing languages, such as UML
or Java, but also newly defined DSMLs, as demonstrated with the SimpleWeave language in
Example 6.5. In the latter case, existing metamodelling tools can be used for language design.
The only requirement is that the language metamodel is defined with Ecore. Since there are
more and more tools emerging to develop Ecore-based languages and tooling for them, Reuse-
ware integrates well into the current tool ecosystem for language development in MDSD. We
discussed some of these tools in Section 5.1.2.
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1 fracol org.reuseware.lib.systems.default {
2 fragment role Default {
3 dynamic port type Config;
4 dynamic port type Contrib;
5 dynamic port type Rec;
6 }
7

8 contributing association Contribution {
9 Default.Contrib --> Default.Rec

10 }
11

12 configuring association Configuration {
13 Default.Config --> Default.Config
14 }
15 }

Listing 7.4: Default FraCol.

To improve composition system development for simple cases, Reuseware provides a default
FraCol shown in Listing 7.4. The default FraCol defines fragment roles with dynamic port
types in a way that all kinds of composition interfaces can be dynamically constructed by rules
defined in a REXCM. Thus, for simple composition systems, developers do not need to define
their own FraCols but can reuse the default one. When UCL is reused as well, developers only
need to define one REXCM to obtain a composition system for a DSML.

7.3 Tooling for Composition System Users

A the composition system user can perform two kinds of activities: defining graph fragments
and defining composition programs. Graph fragments can be modelled with existing and known
model editors. Reuseware only delivers the tooling to compute the composition interfaces
for these models. (This tooling is generated from the story diagrams of Appendix A.2.)

Composition programs are either directly defined with UCL, or, in cases other modelling
languages were integrated with REXCL, in the existing editors for those languages. For direct
definition in UCL, Reuseware offers a graphical UCL editor that is oriented at the UCL no-
tation we introduced in Section 6.2 and supports the syntax customisation for UCL discussed
in Section 6.4.2. The editor with the graphical syntax is depicted in Figure 7.2. Fragment
instances, port instances, and composition links use the same notation as introduced in Fig-
ure 6.12. In addition, a fragment instance that is set to reference is depicted by a dashed
outline. A fragment can also be set to target, depicted by a grey background, which means
that a composed copy of the fragment that is obtained after execution of the composition is
stored into the repository. The targetUFI attribute is used to set the UFI for this new com-
posed fragment. Value settings can be modified in a tabular properties view, individually for
each fragment (shown in the bottom of Figure 6.12). Here, the settings that exist are listed
grouped by the port instances they belong to.

The UCL editor also reports problems that are identified during link matching (cf. Sec-
tion 6.3). If a fragment instance is invalid (i.e., if the fragment it represents does not does
not exist), the box has a grey outline and is marked with a warning symbol. Invalid ports
instances (i.e., port instances of ports that do not exist) have a grey dashed outline. If a link
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Figure 7.2: Graphical syntax of UCL shown in the UCL editor.

is invalid, it is marked with a warning symbol. A link is invalid if the connected port instances
are invalid or if the matching of the link fails.

To support the integration of other composition languages with REXCL, Reuseware offers
the tooling to extract composition information from models defined in other editors and inte-
grate them in derived UCL composition programs. (This tooling is generated from the story
diagrams of Appendix A.5.) In this case, a user might be completely unaware of the fact that
he or she uses U-ISC/Graph concepts for modelling, since Reuseware can work completely in
the background. It depends on the concrete modelling task how much of a composition system,
and hence of the Reuseware tooling, is exposed to the user—and it is up to the composition
system developer to control this.

7.4 Extension Points

As explained above, the tooling for composition system users can be flexibly extended by
integrating arbitrary modelling languages and their editors. On the other side, the tooling
for composition system developers is fixed to the FraCols, REXCM, and REXCL languages
as defined in Part I. However, there are possible alternatives, in particular to REXCM and
REXCL, which we discuss in the following.

7.4.1 Alternative Expression Languages

REXCM and REXCL make heavy use of OCL to formulate conditions and queries over mod-
els. OCL expressions are defined as plain strings in the specifications (cf. metamodels in
Figures 5.27 and 6.19) and are passed to an external tool, the MDT OCL interpreter [Ecl10c],
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1 public interface Evaluator {
2 boolean eval(List<String> ID, EObject context, String expression);
3 boolean eval(List<String> ID, List<EObject> context, String expression);
4

5 String derive (List<String> ID, EObject context, String expression);
6

7 int deriveInt (List<String> ID, EObject context, String expression);
8

9 List<String> deriveID (List<String> ID, EObject context, String expression);
10

11 List<EObject> deriveElementList(List<String> ID, EObject context, String expression);
12 }

Listing 7.5: The Evaluator interface.

which parses the string, evaluates the parsed expression, and returns the result of the evalua-
tion. The external tool is hidden behind the Evaluator interface that is shown in Listing 7.5.
This interface is used in the operations that interpret REXCM or REXCL specifications defined
in Appendices A.2 and A.5.

If we look at the interface, we can observe that it does not depend on OCL or U-ISC/Graph.
The types used are native Java types and EObject. The expression is passed to the tool
unparsed as string. Consequently, there is nothing that hinders the implementation of the
interface for a tool that can parse and evaluate expressions formulated in another language than
OCL. Examples of such languages from the modelling domain are found in the Epsilon language
family [Kol08]. Also languages from other domains such as SQL or web query languages could
be used. In fact, any language that allows for querying a graph structure can be used. This
includes all kinds of rule-based query languages [BEE+07].

Reuseware offers an extension point, where new Evaluator implementations can be plugged
in. Each Evaluator has to be associated with a prefix. In REXCM and REXCL, we allow a
prefix to be appended to each expression string separated by a colon. By default, Reuse-
ware supports the ocl prefix for plain standard compliant OCL and the ocl+ prefix for OCL
with extended string API (cf. Section 5.3.1). If no prefix is given, ocl+ is taken as de-
fault. When evaluating an expression, Reuseware selects an Evaluator based on the prefix,
strips the prefix from the expression string, and calls the Evaluator. For example, in List-
ing 5.5, the expression self.name.startsWith(’advice’) (Line 24) can also be written as
ocl+:self.name.startsWith(’advice’). Therefore, any expression language might be in-
tegrated, if an interpreter exists (or can be written) that can be adapted to the Evaluator
interface. Even languages that are limited in their expressiveness can be utilised. Since the
prefix notation allows for selecting the expression language for each expression individually,
a developer can always fall back to OCL for cases where another language is not expressive
enough.

Also graphical query languages, as the matching part of story diagrams (cf. Appendix A),
could be used. However, the graphical queries cannot be embedded as strings. For this, a
mechanism is needed that allows for expressions to be specified externally and referenced from
inside a REXCM specification. Such a mechanism could well be implemented in an Evaluator
that does not evaluate the expression string directly, but interprets it as a reference to an
externally defined expression. Having such a mechanism built into Reuseware in general

132



7.4 Extension Points

1 public interface CompositionInterfaceComputer {
2 boolean canCompute(Fragment fragment);
3

4 Fragment compute(Fragment fragment);
5 }

Listing 7.6: The CompositionInterfaceComputer interface.

1 public interface CompositionProgramExtractor {
2 boolean canExtract(Fragment fragment);
3

4 DerivedCompositionProgram extract(Fragment fragment);
5 }

Listing 7.7: The CompositionProgramExtractor interface.

however, would also be useful since it would allow us to define libraries of queries that can
then be reused at different positions (e.g., in Listing 5.5 there are several expressions that
reoccur). This should be investigated in the future.

7.4.2 Alternative Composition Interface Calculation

Apart from varying the expression part of REXCM, one can also compute the composition
interface of a graph fragment by other means. In fact, the computeCompositionInterface()
operation (defined in Apendix A.2) can be regarded as a model transformation that has an
arbitrary model as input and a fixed type of output model—an instance of the fragment
metamodel of Figure 5.21. There are two viewpoints on this from the model transformation
perspective. First, computeCompositionInterface() can be seen as a transformation defined
with SDM that takes a REXCM specification as additional input model. Second, REXCM itself
can be seen as domain-specific model transformation language that takes some model as input
and produces an instance of the fragment metamodel as output.

Generic model transformation languages such as QVT [OMG08] allow for input and output
models of arbitrary metamodels. Thus, one can use QVT or another model transformation
language to write a transformation computing the composition interface of some model. Com-
pared to using REXCM, the author of such a transformation requires detailed knowledge of the
fragment metamodel (cf. Figure 5.21). Since such a transformation can also take additional
input models, it is also possible to define alternative component model configuration languages.
Because all our conceptual models are Ecore metamodels, any model transformation technology
that works with Ecore can be used for that.

To support this from the tooling side, Reuseware offers an extension point to override
the computeCompositionInterface() by another CompositionInterfaceComputer that imple-
ments the interface shown in Listing 7.6. An implementation of the method compute() can
call transformation code or a transformation engine with a transformation script. The method
canCompute() decides for a given fragment if the CompositionInterfaceComputer should be
used instead of Fragment.computeCompositionInterface(). This decision can be based on
the types of mode elements in the fragment or the UFI of the fragment.
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7.4.3 Alternative Composition Program Extraction

Similar to composition interface computation, one can also perform composition program ex-
traction, usually defined with REXCL, in alternative ways, since composition program ex-
traction can also be regarded as model transformation from an arbitrary input model to an
instance of the UCL metamodel of Figure 6.13. For this, Reuseware supports overriding of
the DeriveCompositionProgram.extractCompositionProgram() operation (defined in Ap-
pendix A.5) by implementing the CompositionProgramExtractor interface shown in Listing 7.7.
This works similar as using the CompositionInterfaceComputer interface from Listing 7.6. We
experimented with alternative CompositionProgramExtractors in [JZF+09], which were re-
alised with model transformations defined in languages of the Epsilon platform [Kol08]. This
was done together with developers of Epsilon and is further discussed in Section 12.4. More
integration possibilities with other modelling technologies should be addressed in future re-
search.

7.5 Conclusion

Contribution The contribution of this chapter is the Reuseware Composition Framework that
is an implementation of U-ISC/Graph and the generic CB-MDSD composition system.

C2-1 Universal model composition framework
We provide a complete implementation of U-ISC/Graph and the generic CB-MDSD
composition system presented in Part I that is based on EMF and Ecore. Since EMF
is a popular open-source modelling framework and Ecore is a metamodelling languages
aligned with EMOF, our implementation integrates well into the current MDSD tool
ecosystem. The implementation is the base for evaluating U-ISC/Graph in practical
MDSD.

Reuseware is used in the following Chapters 8 and 9 to realise two different model-driven
architectures with CB-MDSD composition systems.
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8
CB-MDSD with Multi-Dimensional Separation

of Concerns (ModelSoC)

In this chapter we introduce ModelSoC, which is an architectural style for CB-MDSD with
multiple DSMLs. We realise ModelSoC with U-ISC/Graph and evaluate it, and with it U-
ISC/Graph, on a an extension of the example presented in Section 2.1. This chapter is an
extended version of the following publication:

• Jendrik Johannes, and Uwe Aßmann. Concern-based (de)composition of Model-Driven
Software Development Processes. In Proceedings of the 13th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2010) – Part II, volume
6395 of LNCS, pages 47–62. Springer, October 2010.

In this chapter, we present the first of two component-based architectural styles for MDSD.
The style supports a specifc type of component-based development which is multi-dimensional
separations of concens [OT00]. Hence, the style is called ModelSoC1. Multi-dimensional sepa-
rations of concerns follows the assumption that a system needs to be decomposable in different
concern dimensions in parallel, although different concern dimensions make use of different
modularity concepts. An example of two different concern dimensions are the decomposition
of a system into use cases or into classes [JN04].

In this sense, each model-driven architecture with multiple DSMLs inherently performs sepa-
ration of concerns in multiple dimensions, since each DSML defines another abstract viewpoint
on the system with its own modularity concept(s) and therefore its own concern dimension(s).
When model components originating from different DSMLs are composed, the concern dimen-
sions meet. At that point it still has to be known, how the model components map to concern
dimensions to support a simultaneous separation of concerns along the different dimensions. In
contrast, for a model-driven architecture that uses only a single DSML, one concern-dimension

1Component-based model-driven architectures with multi-dimensional separation of concerns
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may suffice, which allows for a strict hierarchical decomposition. We discuss a second archi-
tectural style based on hierarchical decomposition, called ModelHiC, in Chapter 9.

ModelSoC is an alternative style for designing model-driven architectures, which, as the
OMG’s transformation-based style (cf. Figure 1.1a), includes multiple modelling languages for
modelling a system from different viewpoints and on different abstraction levels. ModelSoC
defines a conceptual model for designing such architectures, which is an extension of the hyper-
space model for multi-dimensional separation of concern defined by Ossher and Tarr [OT00].
As we will illustrate, the hyperspace model is well suited as a base for ModelSoC, since it (a)
explicitly supports different dimensions for decomposition, which is needed because in different
types of models information is decomposed along different dimensions and (b) is independent
of a concrete language (i.e., not limited to e.g. Java) or a concrete language paradigm (i.e.,
not limited to e.g. object-oriented languages). We used ModelSoC to fully realise the ticket
shop example introduced in Section 2.1.

The contribution of this chapter is thus twofold. First, we introduce ModelSoC which in-
cludes an extension of the hyperspace model that can handle replication of information in
different formats and usage of DSMLs for composing information (Section 8.1). Second, we
show how ModelSoC is realised with U-ISC/Graph (Section 8.2) and evaluated both by real-
ising the example with Reuseware (Section 8.3).

8.1 Conceptual Model for ModelSoC

In this section, we introduce ModelSoC: an architectural sytyle for MDSD based on multi-
dimensional separation of concerns. For this, we define and use an extension of the hyperspace
model for separation of concerns of Ossher and Tarr [OT00].

The hyperspace model supports the decomposition of a system into concerns along several
concern dimensions. These span up an n-dimensional space—a hyperspace—where n is the
number of utilised concern dimensions. Implementation artefacts are perceived as consisting
of units2. Each unit realises at most one concern in each concern dimension which is defined
in a concern mapping that maps units to concerns. Units are composed into hyperslices and
hypermodules. A hyperslice composes all units belonging to one concern. Hypermodules com-
pose several hyperslices to a complete software module or program. The hyperspace model
leaves it open, what exactly can be treated as unit, how concern mappings and hypermodules
are specified, and how the actual composition of a system from units is performed. The imple-
mentation Ossher and Tarr provide is Hyper/J [OT00], which supports different types of Java
fragments as units (e.g., statements). It contains a dedicated language for concern mapping
as well as a language for hyperslice and hypermodule definitions. Such definitions do not only
enumerate concerns to compose, but also include calls to operators for composing Java units
by bytecode weaving.

Since the conceptual hyperspace model is independent of an implementation language, it
can be used to separate concerns of models in a model-driven architecture as the one shown
in Section 2.1. As concern, we regard a piece of information about the system which does not
require further decomposition. Examples of concerns are: (a) Customer participates in Book

2In our case, a unit is always a graph fragment.
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public class BookTicket {
    public void start() {
    }
}

  new Customer(); 

Figure 8.1: Multi-format units: (a) Customer participates in Book Ticket (b) Book Ticket.

Ticket, (b) Bank participates in Book Ticket, and (c) Account is exchanged between Customer
and Bank. Concerns that follow the same mudularity concept belong to the same concern
dimension. For instance, a new actor is composed into a use case by adding it to a use case
model. This works similar for all actors, thus both concerns (a) and (b) belong to the concern
dimension Participation. On the contrary, a new business value exchange is added by stating
for a business value, which actor owns it before and which owns it after use case execution (cf.
value added invariant in Section 2.1). Thus, (c) follows different (de)composition rules and
belongs to another concern dimension (Exchange).

We identified three properties of MDSD that are difficult to map to the hyperspace model as
it is, because they are either not considered by the model or further refine parts of the model
that were left open [OT00]. First (Section 8.1.1), the hyperspace model does not consider
that the same information may be present in multiple formats (e.g., same class in UML and
Java). Second (Section 8.1.2), automated transformation of information is not covered by the
hyperspace model. Third (Section 8.1.3), a refinement of the hyperspace model is that we want
to forbid fixed concern mapping or hypermodule specification languages (as it is the case in
Hyper/J). This is, because languages that are included in a model-driven architecture should
be chosen based on the needs of the system’s domain, which would not be given if a technology
enforces the inclusion of a predefined mapping or module language. Therefore, ModelSoC
introduces the following three concepts as extensions and refinements of the hyperspace model.

8.1.1 Multi-Format Units: Realisation of Concerns in Different Formats

A fragment of a model that represents a certain concern is a unit (in the sense of [OT00]).
Since there may be different viewpoints on the same concern in MDSD (e.g., in Figures 2.4
and 2.5, information about actors and use cases is present in multiple views—OpenDocument,
UML use cases, and Java) there can be several units representing the same concern in different
formats. We introduce the multi-format unit concept that bundles such units. As an example,
consider Figure 8.1 that shows the multi-format unit that realises the concerns Book Ticket and
Customer participates in Book Ticket. To obtain a view that shows certain concerns, one has
to select a viewpoint (e.g., UML use case) and if the format of the viewpoint is supported by all

137



8 CB-MDSD with Multi-Dimensional Separation of Concerns (ModelSoC)

P1 : StringParameters

Integration
Points

IP1 : Document IP1 : uml::UseCase IP1 : FlowModel IP1 : java::Method

Unit
Prototypes

IP2 : Document IP2 : uml::UseCase IP2 : FlowModel IP2 : java::Method
Integration
Points

Actor(s): 
  NAME_SLOT

NAME_SLOT

  new NAME_SLOT(); 

Figure 8.2: Multi-format unit prototype for Participation concern dimension.

multi-format units that realises the corresponding concerns, the view can be composed. Hence,
each multi-format unit supports a set of viewpoints, but not each multi-format unit needs to
support all viewpoints used in an model-driven architecture. The viewpoint of the final system
(Java in the example), is most likely supported by all multi-format units. If support for a new
viewpoint is needed for a multi-format unit, it can be added to it without altering the existing
units (i.e., existing viewpoints) in the multi-format unit (see also Section 8.1.2 below).

A multi-format unit offers integration points and bindings between them to guide concern
composition. Each unit has to support the integration points. Each unit offers its own version
of the points typed by metaclasses of the metamodel for the unit (cf. Figure 8.1). Thus,
integration points can be defined on the metamodel of a unit (cf. Section 8.1.3 below). Since
a unit may need integration along several concern dimensions, the set of integration points is
not fixed but can be extended, when a new concern dimension needs to be supported. For
example, the concern Book Ticket in the concern dimension UseCase (Figure 8.1b) can exist
on its own without the need for integration points because the concern dimension UseCase is
independent of other concern dimensions. The concern Customer participates in Book Ticket
in the concern dimension Participation (Figure 8.1a) requires integration with Book Ticket
since the Participation depends on the UseCase dimension. Therefore, the multi-format unit
for Customer participates in Book Ticket defines integration points for its own units and the
units of Book Ticket and binds them.

8.1.2 Multi-Format Unit Prototypes: Automating Unit Creation

It is not practical to create each unit of a multi-format unit manually. Rather, following the
MDSD idea, units holding the same information should be created automatically. We note that
different concerns of the same dimension have similar structure. For example, the multi-format
unit realising the concern Bank participates in Book Ticket looks similar as the multi-format
unit of Customer participates in Book Ticket shown in Figure 8.1a (only the string Customer
should be exchanged for Bank in each unit).

We can use this similarity to abstract a multi-format unit to a multi-format unit prototype
that defines a common structure for all concerns of one concern dimension. For this, we create
one unit prototype for each format supported by the multi-format unit prototype. A unit
prototype is a small template, that offers parameters for the parts that differ between units of
the same concern dimension.
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Figure 8.3: The concern management system of ModelSoC.

Figure 8.2 shows the multi-format unit prototype for the Participation concern dimension. It
has one parameter P1 for the actor name. A multi-format unit prototype can be instantiated to
a multi-format unit by binding each parameter with a value (e.g., P1 can be bound to Customer
in Figure 8.2 to obtain Figure 8.1a) and integration points with each other. Integration points
exist in a multi-format unit prototype, but not the concrete bindings, because these integrate
individual concerns. Since the parameter P1 is of the primitive type string, it is similar for
all units. A parameter may also have a complex type that can differ for different views. In
that case, different versions of a value are needed to bind the parameter. Integration points
are always individually bound for each unit.

8.1.3 Meta-Level Concern Mappings and Compositions

We call the system supporting development with ModelSoC concern management system, de-
picted in Figure 8.3. The figure illustrates that each concern dimension (a) has a multi-format
unit prototype (b). The instantiation of unit prototypes (c), which includes binding of pa-
rameters and integration points between individual concerns, spans up the concern space (d).
Having this space available, a viewpoint can be selected (e) which reduces multi-format units
to normal units (f). By interpreting the bindings, these units can be composed (g) to an inte-
grated view in the selected viewpoint (h). Such a view corresponds to a hypermodule in the
sense of [OT00].

Once the concern space has been established, steps (d) to (h) can be performed by a universal
composition technology for any concern management system. Steps (a), (b), and (c) however
require individual configuration for each model-driven architecture. Concretely, mechanisms
are required to (a) define concern dimensions as well as integration points and parameters of
the concerns in the dimensions, (b) define multi-format unit prototypes with integration points
and parameters, and (c) define how parameter and integration point binding information is
extracted.

(a) Concern dimensions, concern parameters, and concern integration points can be defined
independently of models and metamodels for a model-driven architecture.

(b) Multi-format unit prototypes can be defined by modelling each unit prototype as a model
fragment in the corresponding modelling language using an existing model editor (cf.
Figure 8.2). Parameters and integration points can be specified for each unit prototype

139



8 CB-MDSD with Multi-Dimensional Separation of Concerns (ModelSoC)

based on the prototype’s metamodel. For example, the rules for IP1 must state that in
the UML use case format an actor is connected to a use case by adding it to the use
case’s uml::Package and for the Java format by adding the actor instantiation state-
ment to the java::Method realising the use case execution. Rules for the parameter
P1 must state that uml::Actor.name represents the parameter in the UML format and
java::Variable.name represents it in the Java format. These rules effectively define the
concern mappings. By assigning the model fragments and rules that make up a multi-
format unit prototype to the corresponding concern dimension defined in (a), we know
to which dimension the instances of the unit prototype belong.

(c) Concern composition information is available in the user-defined models (e.g., in the
textual use case description and the annotated UML use case diagram in Figure 2.6). In
the example, the information that Customer, Bank, and Clerk participate in BookTicket
is given in the BookTicket use case description and that Hall participates in BookTicket
is given in the Hall UML use case model. This information can be extracted by rules
based on the metamodels of the languages used. For instance, one rule must specify
that each textual use case description, defined in OpenDocument format, instantiates the
multi-format unit of the UseCase concern dimension and parameterises it with the name
of the document. Furthermore, another rule must state that each mention of an actor in
the document instantiates the multi-format unit prototype of the Participation dimension
(cf. Figure 8.2) and composes it with the corresponding use case. This effectively forms a
composition program for hypermodules. By assigning the rules for extracting the concern
instantiation and composition information to a concern dimension defined in (a), we know
which multi-format unit prototype to instantiate, which integration points to address, and
which parameters to fill with the extracted information.

8.2 ModelSoC implemented with U-ISC/Graph

In the following, we use U-ISC/Graph to define a concern management system of an archi-
tecture based on ModelSoC. This is done by configuring the generic CB-MDSD composition
system of U-ISC/Graph to define (cf. Section 8.1.3): (a) concern dimensions with integration
points and parameters, (b) multi-format unit prototypes and (c) concern composition rule ex-
traction. Reuseware, as our U-ISC/Graph implementation, then acts as concern management
system for the architecture that can be used inside Eclipse in combination with Eclipse-based
model editors. Figure 8.4 shows the ModelSoC configuration of the generic CB-MDSD com-
position system. All flexibility given for configuring the system is utilised. In the centre is an
arbitrary large set of FraCols where each is implemented by potentially multiple REXCM and
REXCL specifications. This maps to the conceptual model of ModelSoC as follows:

(a) We use FraCols (cf. Chapter 4) to define concern dimensions. In fact, we already defined
some of the FraCols, which now represent concern dimensions, in Part I. For example, the
FraCol for the Participation concern dimension was defined in Chapter 4 in Listing 4.2.
Fragment roles are used to model the types of concerns of a dimension. In the FraCol
Participation, these are Participant (which can be an actor) and Collaboration (which
can be a use case). The port types of the fragment roles are used to declare integration
points (IP1 and IP2 in Figure 8.2 that corresponds to Contrib and Rec in the FraCol)
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Figure 8.4: ModelSoC configuration of the generic CB-MDSD composition system.

and parameters (P1 in Figure 8.2 that corresponds to Name in the FraCol). Composition
associations are consequently used to define which integration points can be connected
(Participation between Contrib and Rec in the FraCol).

(b) Multi-format unit prototypes are defined by a set of graph fragments with the help of
REXCM specifications (cf. Section 5.3). We define each unit prototype in its languages
using a suitable existing model editor and then use REXCM specifications to identify pa-
rameters and integration points and relate them to a FraCol and therewith to a concern
dimension. The REXCM specifications for UML and Java in the Participation dimension
were already defined in Chapter 5 in Listings 5.8. and 5.9. When these specifications are
applied to the multi-format unit prototypes of the Participation dimension (cf. Figure 8.2)
and UseCase dimension, the parameters and integration points are identified.

(c) While REXCM specifications define where fragments can be integrated, REXCL specifi-
cations help with defining which fragments are integrated (cf. Section 6.5). Thus, we
use REXCL specifications to treat modelling languages in as composition languages to ex-
tract composition programs from models that contain the information which fragments are
parameterised and composed. A REXCL to perform this extraction for the Participation
dimension from textual use case descriptions defined in OpenDocument was given in Chap-
ter 6 in Listing 6.5. There, we defined that for each part of a textual use case description
marked with the OpenDocument::SpanType Actor, a new actor fragment is instantiated
with the P1 parameter (the Name port type) bound to the name of the actor (extracted
from the document using the OCL query self.mixed->at(1).getValue() in Line 13).
Furthermore, we define that the binding of IP1 and IP2 (port types Rec and Contrib)
is performed between the correct Participants and Collaborations by extracting the
corresponding actor and use case names from the model and its UFI (Lines 18–20).

With FraCols, REXCM, and REXCL specifications given for all concern dimensions and
viewpoints of a model-driven architecture, Reuseware acts as the concern management system
(cf. Figure 8.3) for that architecture. For this, Reuseware interprets the specifications to
extract a composition program that represents the complete concern space (d) by showing
concerns and relations between them as parameterised and linked unit prototypes. Thus, the
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Figure 8.5: Ecore metamodel of ValueFlow with EuGENia annotations for graphical syntax.

concern space can be visualised graphically in the composition program editor for UCL (cf.
Section 7.3). Since the composition is then executed automatically using the matching and
composition algorithms of U-ISC/Graph (cf. Chapter 6), no further configuration is required
for (e) to (h). Reuseware automatically executes the composition for all supported viewpoints
by creating a composed model for each. The developer can decide at which view to look by
opening a composed model in an editor of his or her choice.

8.3 Evaluation of ModelSoC

To evaluate that ModelSoC and U-ISC/Graph can be used to define component-based model-
driven architectures with better separation of concerns than transformation-based architec-
tures, we first (Section 8.3.1) specified the model-driven architecture introduced in Section 2.1
in Reuseware and used it to develop a first version of the ticket shop system with the fea-
tures book ticket and change seat (Section 8.3.2). Afterwards (Section 8.3.3), we extended the
architecture with a new viewpoint and concern dimension for security and used that to define
security properties of the ticket shop system without changing the models defined before in
other viewpoints.

8.3.1 Model-Driven Architecture Definition

Our model-driven architecture supports five different viewpoints. In Section 2.1 and other
examples of Part I, we already used three of these viewpoints which are use case descriptions
in OpenDocument, UML use case diagrams with business value annotations, and Java code.

As a fourth viewpoint, we use a graphical DSML—called ValueFlow—to define the order
in which business values are exchanged between actors, since this is not known from the
annotated UML use cases (which only define which business values are exchanged but not
in which order). The Ecore metamodel of ValueFlow is shown in Figure 8.5. The graphical
syntax for ValueFlow is defined with metamodel annotations defined in the EuGENia approach
(also shown in Figure 8.5). The annotations should be self explaining (cf. [KRPP09] for more
details). EuGENia uses GMF to generate a complete graphical editor from the annotations.
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Figure 8.6: ValueFlow unit prototype for Exchange concern dimension.

We used this editor during the architecture definition phase to define unit prototypes for all
concern dimensions that needed to be supported by ValueFlow. One example is the Exchange
concern dimension unit prototype modelled in the generated editor shown in Figure 8.6. It
consists of a placeholder Agent, a GiveState GS (representing a business value that is given
away), a TakeState TS (representing a business value that is received) and a link between
those states. The two states and the link between them represent a business value exchange
in ValueFlow. When used as unit prototype, the states are composed into other Agents and
their names are changed. This is defined in a REXCM (cf. Appendix B.3.4).

As a fifth viewpoint, we introduced UML class diagrams for analysis only (i.e., it gives an
overview of all classes that appear in Java code, but does not support modification).

All specifications for the model-driven architecture are collected in Appendix B. We identified
11 concern dimensions that we defined as FraCols. The average size of these specifications is
16 LOC. Each viewpoint can show concerns of certain concern dimensions as presented on the
left side of Figure 8.7. To add support for a concern dimension to a viewpoint, a unit prototype
(created with a normal model editor) and one REXCM was defined (23 in total; average size
26 LOC). Four viewpoints support editing of concerns (i.e., instantiation of unit prototypes)
shown on the right side of Figure 8.7. To add editing support for a concern dimension to
a viewpoint, a REXCL specification was written (15 in total; average size 37 LOC). Certain
concerns are created automatically. For instance, a class is created for an actor as soon as
it appears in some use case, and therefore the OpenDocument viewpoint influences the class
dimension. All marks on the right side of Figure 8.7 that have no counterpart on the left
side identify such situations. Also, some concerns are shown but can not be edited in the
corresponding viewpoint (e.g., actors cannot be changed in Java). All marks on the left side
that have no counterpart on the right side identify these.

If one wants to use ModelSoC for its own model-driven architecture, one has to write FraCols,
REXCM, and REXCL specifications as discussed above. This is a metamodelling task which
is done instead of writing model transformations by the process architect of a model-driven
architecture (cf. Figure 1.2). Compared to model transformations, our specifications are highly
modular as indicated by the small number of LOCs of the specifications in this example. This
is not because the demonstrator system we developed with the architecture (discussed next) is
relatively small—the architecture itself can be used to develop larger systems.
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format only; 2security concerns have complex parameters defined individually for SecProp and Java formats)

Figure 8.7: Concern dimensions and viewpoints of the example component-based model-driven
architecture.

8.3.2 System Modelling

Once the a model-driven architecture is defined with ModelSoC and set up with Reuseware,
developers can use existing model editors or editors that have been specifically generated for
the architecture (as the ValueFlow editor shown above) to edit and view different viewpoints.
For composed views that are graphical, Reuseware also performs layout composition (cf.
Section 12.1) in addition to composing graph fragments. Preserving layout between views
helps developers to relate views to each other. Because of traceability issues, such layout
preservation is often not well supported in transformation-based MDSD.

Furthermore, developers can make mistakes which lead to inconsistencies that are discovered
by Reuseware (e.g., use UML to add an actor to a use case for which no use case descrip-
tion document exists). These errors are discovered, because they lead to invalid fragment
instances, port instances, or composition links that are discovered when Reuseware analyses
the composition program that represents the concern space or when a type or link matching
fails (cf. Section 6.3.1). The errors are annotated to the source models of the error using
Eclipse’s error marking mechanism. If the model editor used supports this mechanism well,
the developer most likely understands the error. However, this is not the case for all editors
and sometimes external editors are used (e.g., OpenOffice to edit documents in OpenDocument
format). Therefore, improving tool support and integration for error reporting and debugging
is part of future work.

Realising a model-driven architecture with ModelSoC, enables us to trace information that is
replicated in, scattered over, and tangled in different integrated views. All information about
how unit prototypes are composed to the system is collected in one unifying composition
program that can be inspected with the UCL editor. Although this composition program
quickly becomes large, it still gives a good overview due to the minimal set of concepts in
UCL. Anyhow, it is an improvement since transformation-based architectures usually do not
give such an overview at all. In the future, the tooling for UCL should be extended to improve
the navigation in large composition programs.
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Figure 8.8: Ecore metamodel of SecProp with EuGENia annotations for graphical syntax.

The biggest drawback is currently that the integrated views cannot be edited directly.
Rather, small models are edited and the integrated views are created immediately for in-
spection. Since tracing—which is already used for layout preservation—is simple with the
explicit concern space representation, we believe that editable views can be realised by using a
round-trip mechanism that propagates changes from the integrated views back. Such a mech-
anism could even allow editing information in a different viewpoint as it was defined in. We
discuss first successful results in this direction in Section 12.2.

While we implemented only two features of a demonstrator system with the model-driven
architecture defined above, this architecture can be used to continue development on this or
other (possible much larger) systems. For this, no modification of the architecture itself is re-
quired. Also, for new model-driven architectures, parts of the specification for this architecture
can be reused due to the high modularity—each concern dimensions can be reused individually.
An architecture can also be flexibly extended as discussed next.

8.3.3 Model-Driven Architecture Extension

In ModelSoC, model-driven architectures are extensible by adding new concern dimensions,
which is an advantage over transformation-based architectures which are often difficult to
extend because many transformations interact and have to be adjusted in parallel.

We show this by extending the architecture defined in Section 8.3.1 with a new concern
dimension for security—after the functional features were developed and the system, without
security, was already running. Security is usually a cross-cutting concern that effects several
places in a system. For modelling security information, we developed a small graphical DSML
called SecProp. The DSML was motivated by a DSML that was developed by Thales Informa-
tion Systems in a case study in Modelplex [MOD08]. There we used U-ISC/Graph to add a
security viewpoint to a system otherwise modelled with UML only.

The metamodel of SecProp with EuGENia annotations is shown in Figure 8.8. SecProp can
be used to define access rights and encryption needs of the business values in the system.
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To allow the security modeller to see existing business values that need security properties,
the information from the concern dimensions Usecase, Participation, and Exchange needed
to be transported to the SecProp viewpoint. This was done by adding new unit prototypes
(defined in SecProp) to the corresponding concern dimensions (cf. Figure 8.7 bottom). A
multi-format unit prototype for the security dimension was introduced supporting the SecProp
and Java viewpoints. To allow integration with other dimensions, new integration points were
added to the Exchange unit prototypes in SecProp and Java (by providing a new REXCM

specification; no changes to the existing specifications or Java fragments were required).

8.4 Conclusion

Chapter Contribution The main contribution of this chapter is the ModelSoC architectural
style for the development of component-based model-driven architectures:

C3-1 Architectural style for MDSD with multi-dimensional separation of concerns
This chapter defined the ModelSoC architectural style for CB-MDSD. In ModelSoC,
the complete architecture of a system is reflected in one UCL composition program
and concerns are separated in a unified way throughout all abstraction levels and view-
points. This ensures that all models are kept synchronised and eases traceability, while
it preserves the property of MDSD to integrate arbitrary DSMLs into a model-driven
architecture. This contribution has the following sub-contributions:

• Hyperspace model extension for MDSD
This chapter presented an extension of the hyperspace model for multi-dimensional
separation of concerns that takes the specifics of MDSD into account—replication
of information in different formats and the usage of DSMLs as composition (i.e.,
hypermodule definition) languages.

• Evaluation of ModelSoC and U-ISC/Graph
In this chapter, we successfully evaluated the applicability of ModelSoC, and there-
with of U-ISC/Graph in this context, by setting up a model-driven architecture
with ModelSoC and developing a small demonstrator system with it. Although we
realised only one concrete model-driven architecture with ModelSoC, we can gen-
eralise our observations, since the process we chose has properties found in many
model-driven architectures: (1) with UML it includes a large standard modelling
language, (2) with Java it includes a large standard programming language, (2)
with OpenDocument it includes a large standard document language, (3) with Val-
ueFlow, it includes a DSML, (4) the standard languages were not altered for the
benefit of ModelSoC or U-ISC/Graph, and (5) we performed an extension of the pro-
cess by including a new DSML to model security, which is commonly recognised as
a cross-cutting concern in system modelling, without altering the previously defined
architecture or models. Therefore, we conclude that ModelSoC and U-ISC/Graph
is applicable for a number of similar MDSD scenarios.

In the next chapter, we present another architectural style for CB-MDSD which is based on
hierarchical composition rather than multi-dimensional separation of concerns.
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CB-MDSD with Hierarchical Composition

(ModelHiC)

In this chapter we introduce ModelHiC, which is an lightweight architectural style for CB-MDSD
with a single DSML and UCL. We introduce a process to develop a modelling environment with
ModelHiC and perform an evaluation that shows that ModelHiC, and therefore U-ISC/Graph
and in particular UCL, can be used to realise component support for a large modelling DSML.
The evaluation was carried out in collaboration with Telefónica using a case study they defined
in the Modelplex project. This chapter is an extended version of the following publication:

• Jendrik Johannes, and Miguel A. Fernández. Adding Abstraction and Reuse to a Net-
work Modelling Tool using the Reuseware Composition Framework. In Proceedings of
6th European Conference on Modelling Foundations and Applications (ECMFA 2010),
volume 6138 of LNCS, pages 132–143. Springer, June 2010.

In this chapter we introduce the ModelHiC1 architectural style for CB-MDSD that, in contrast
to ModelSoC, is used for developing model-driven architectures that centre around a single
DSML to define components and use UCL as composition language. The tools for such ar-
chitectures are also referred to as domain-specific modelling environments, since their focus is
on domain abstraction and not on automatic stepwise refinement by model transformations.
However, we enrich such environments with automatic stepwise refinement by hierarchical com-
position. There, different abstraction levels are supported by UCL composition programs that
represent abstract views on the system. We allow for an hierarchy of composition programs
(i.e., the result of one composition can be input to another composition) and with that re-
alise multiple abstraction levels. Hence, the properties of MDSD, domain-specific abstractions
and automatic refinement, are present and thus domain-specific modelling environments with
component support fall into our definition of model-driven architectures. Although these ar-
chitectures use a single DSML for modelling, generators or interpreters to translate the DSML

1Component-based model-driven architectures with hierarchical composition
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into code or interpret it are still required. In this case, however, the DSML is the lowest level
of abstraction the developer works with (which we call Level 0).

In the following, we first introduce a process for developing architectures with ModelHiC in
Section 9.1 and shortly describe how ModelHiC is realised with U-ISC/Graph in Section 9.2.
We then evaluate ModelHiC in Section 9.3 by adding reuse and abstraction facilities on top of
an existing DSML for telecommunication networks and conclude in Section 9.4.

9.1 Development Process for ModelHiC

In this section, we first discuss, why abstraction and reuse is needed for architectures with a
single DSML. Afterwards, we introduce a process to developed such architectures.

9.1.1 Abstraction and Reuse support for a DSML

A DSML is used to reduce the complexity arising when developing software systems using
a general-purpose language (GPL) such as UML or Java. Unlike a GPL, a DSML focuses
on a particular problem domain and contains a relatively small number of constructs that
are immediately identifiable by domain experts and allow them to construct concise models
capturing the design of the system at an appropriate level of abstraction. While typical DSMLs
are small languages with a manageable number of concepts, a DSML that embodies a standard
vocabulary of a larger domain may grow large in its number of concepts. This eventually
compromises the very aims against which the DSML was built in the first place: domain focus
and conciseness.

One example of such a complex DSML is the telcommunications DSML presented in [EFM09],
which we extend using ModelHiC in Section 9.3. While this language is a DSML in the sense
that it provides dedicated constructs for the telecommunication domain, its size in terms of
the number of constructs and features is comparable to that of a GPL such as the UML—the
Common Information Model (CIM) [DMT10] standard, on which the DSML is based, defines
more than 1500 concepts.

However, the domain for which CIM is designed can be split into more specialised domains
where not all details of CIM are required in each of them. The classical MDSD approach
would be to construct new DSMLs that provide abstractions over and above the constructs
provided by CIM. This means that different DSMLs, all in the telecommunication domain,
are created for different abstraction levels and are combined in a transformation-based model-
driven architecture.

To employ this approach, one has to identify the abstraction levels and decide which DSMLs,
and with which constructs, have to be created. This is an iterative process, since a DSML
has to be tested and used by the domain experts to evaluate its usefulness and improve it.
Updating one DSML alone can be costly when the associated tooling, which includes the
model transformations, needs to be adapted manually, which is often the case with today’s
DSML development technology as experienced in the development of tooling for the original
CIM-based DSML [EFM09]. This cost would even increase if multiple DSMLs, which are
connected in a model-driven architecture, are updated and co-evolved.
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Figure 9.1: Process for developing component support for DSML wit ModelHiC.

Instead of using a classical MDSD approach with a transformation-based architecture, as
described above, we propose ModelHiC to develop abstraction, and provide associated tool-
ing, for a DSML. As we discuss next, this solution can be used as (1) an alternative for the
transformation-bases approach with multiple DSMLs, (2) prototyping for finding the DSMLs
in the transformation-bases approach, and (3) basis for implementing the transformation-bases
approach.

9.1.2 Process to develop Reuse and Abstraction Support for a DSML

Designing a DSML and tooling for it requires feedback from the domain experts. Therefore,
rapid prototyping and continuous updating of the DSML tooling, based on that feedback, is
desirable. Therefore, we propose an iterative process for the development of abstraction and
reuse features for a DSML based on ModelHiC. The process is supported by rapid prototyping
with Reuseware which allows for continuous adjustment of modularity concepts with FraCols
and REXCM. The process, consisting of five phases, is visualised in Figure 9.1:

1. In the first phase, the process architect, collects initial information about desired abstrac-
tion levels from the domain experts who are already familiar with the complex existing
DSML. A method to do this is to let the domain experts define models with the DSML
and explain to the process developer where in these models they see possibilities for ab-
straction and reuse. In the ModelHiC evaluation we present in Section 9.3, this was done
by telecommunications experts at Telefónica who marked parts in a model which they
consider separate components.
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Figure 9.2: ModelHiC configuration of the generic CB-MDSD composition system.

2. In the second phase, the developer designs the first composition system version that is
flexible enough to cover all abstraction and reuse requirements identified in phase one,
but is customised enough such that it can be used by domain experts. We, in the role
of the process architect, developed such a composition system with Reuseware using
ModelHiC. That is, we configured the the generic CB-MDSD system with FraCols and
REXCM specifications for the telecommunications DSML based on the feedback we got
in phase one.

3. In the next phase, the domain experts uses the composition system, creates fragments,
and gives feedback. The developer can give support in this phase.

4. In phase four, the fragments and composition programs are analysed to find common
patterns and to group the fragments following these patterns. From these patterns, the
process architect can derive restrictions and default behaviour for the composition system
or identify constructs for new abstract DSMLs and refine the abstraction levels.

5. In the last phase, the developer improves the composition system based on the results
from the previous phase or builds new DSMLs that replace (parts of) the composition
system. The result is then given to the domain-experts. It is either the final development
environment or a next prototype and phase three to five are repeated.

9.2 ModelHiC implemented with U-ISC/Graph

ModelHiC can be realised with U-ISC/Graph by a specific configuration of the generic CB-
MDSD composition system shown in Figure 9.2. Instead of doing a rich configuration as done
in ModelSoC (cf. Figure 8.4), we limit ourselves to a REXCM specifications for the Ecore
metamodel of the central DSML and do not use REXCL. Instead, UCL is used directly as
composition language. One FraCol is defined to support one modularity concepts (i.e., concern
dimensions) for hierarchical composition. The FraCol is then mapped only once to the DSML
with a REXCM specification.
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Figure 9.3: Excerpt from CIM model of an ADSL service network configuration (provided by
Telefónica R&D for the Modelplex project [MOD08]).
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9.3 Evaluation of ModelHiC: ReuseCIM

In this section we evaluate the applicability of ModelHiC and usability of UCL by presenting
how we develop abstraction and reuse support for a large telecommunications DSML. For this,
we started the development process of Section 9.1, executing the first two phases of it.

We continued the work of [EFM09] who present experiences gained in developing a DSML for
telecommunication experts at Telefónica. There, the Graphical Modeling Framework (GMF)
[Gro09] (cf. Section 5.1.2) was used to develop a graphical editor as core of the DSML tool-
ing. [EFM09] identified challenges for technologies that were not met by the tooling used so
far. One of the identified challenges is abstraction and reuse. That is, supporting domain ex-
perts to create abstract views of complex models and to develop reuseable model components.
We realised this abstraction and reuse support as a composition system with ModelHiC and
therewith integrated Reuseware into the DSML tooling.

The telecommunications DSML is based on the Common Information Model (CIM) [DMT10]
that is a Distributed Management Task Force (DMTF)2 standard for system, network, appli-
cation, and service definitions. The graphical editor, which was the main part of the tooling for
the DSML as presented in [EFM09], is directly based on an Ecore metamodel that represents
a large part of the CIM standard.

In the Modelplex project, Telefónica defined a case study in which they not only use the
CIM-based DSML for telecommunication network modelling, but also formulate abstraction
and reuse concerns [MOD08]. Driven by this case study, we developed abstraction and reuse
tooling with U-ISC/Graph using ModelHiC. In the spirit of [Hen09], who called languages
extended with component support reuse languages, we name the such extended CIM-based
DSML ReuseCIM.

9.3.1 Development Process Utilisation

Phase one of the process (cf. Figure 9.1) was performed by domain experts at Telefónica who
defined a model of a typical ADSL service network configuration for their customers consisting
of 52 model elements. The major part of the model, displayed in the graphical editor of the
DSML, is shown in Figure 9.3. After the model was defined, the domain experts at Telefónica
marked and named parts of the model that can be abstracted into a single concept on a higher
abstraction level and reused at different places in the model. For the marking, they used notes
with different colours. These are only parts of the graphical syntax and do not change the
meaning of the underlying model. In addition, for each concept they marked, they provided a
list of attributes that need to be visible on a higher abstraction level.

The concepts were then grouped into seven specialised domains (Protocols, Physical Inter-
faces, Logical Interfaces, Systems, Network Devices, Network Links, and Network Topologies)
that reside on different abstraction levels (Levels 1–4) as summarised in Figure 9.4. For each
specialised domain and/or each abstraction level, a separate DSML could potentially be de-
fined. Between the different specialised domains, dependencies can be identified (arrows in
Figure 9.4). They express which domains from a lower abstraction level are used to express
concepts of a higher abstraction level. In principle, concepts of Level x can be represented by

2http://www.dmtf.org
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Figure 9.4: Abstraction levels and component types for network models.

concepts of Level x− 1. Certain concepts of higher abstraction levels (Level 2, 3 or 4) are also
expressed directly with concepts of Level 0. This is, because the CIM standard (Level 0) itself
offers constructs of low (e.g., EthernetPort) but also high (e.g., System) abstraction.

In phase two of the process, we configured our generic CB-MDSD composition system for
the CIM-based DSML driven by the requirements specified in the example model (cf. Fig-
ure 9.3). First, we decomposed the model into fragments following the decomposition sugges-
tions marked in the model. Second, we defined UCL composition programs using the UCL
editor. For each set of fragments that makes up one of the components marked in the example
model, one composition program was defined and the corresponding fragments were inserted.
Composition links, however, were not created at this point, because the fragments did not
yet provide composition interfaces. Third, we extended CIM to ReuseCIM by configuring the
generic composition system to support the composition of CIM fragments. Finally, we ad-
justed the fragments to ReuseCIM and completed the UCL composition programs such that
they recompose the original example model.

Figure 9.5 shows the fragments and composition programs that are the decomposed version
of the upper part of the example model shown in Figure 9.3. The three rows in the figure cor-
respond to the abstraction Levels 1–3 (from bottom to top). On Level 1, we have the fragment
BuiltInEthernetHub, which is a Physical Interface modelled in the CIM-based DSML, and
the fragment IP, which is a Protocol also modelled in the CIM-based DSML. On Level 2, three
CIM models are defined: two Logical Interfaces and one System. The first Logical Interface
(EthernetIPInterface) is a composition program that contains the two Level 1 fragments.
On the contrary, the second (ADSLStaticIPinterface) is directly modelled in the CIM-based
DSML. The fragment System is also modelled in the CIM-based DSML. On Level 3, we then
have one composition program (ProviderRouter) that composes the three Level 2 fragments.

An overview of all fragments and composition programs we obtained by decomposing the
complete example model that consists of 52 elements, is given in Figure 9.6. In total, 12
fragments and 8 composition programs were defined. In average, each fragment contains 2.42
model elements which means that a total of 29 model elements were created in the CIM-based
DSML. In the original model, 52 elements were modelled, which means that 44% of the example
model can be created by reusing fragments instead of modelling in the CIM-based DSML.
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Figure 9.5: Upper part of Figure 9.3 decomposed into fragments and composition programs on
Levels 1–3 (bottom to top).
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fragments avg. no.
of model
elements

comp.
programs

avg. no. of
fragments in
comp. prgr.

reused

Level 4 NW Topologies 0 n.a. 1 8.00 0

Level 3 NW Devices 0 n.a. 4 3.25 4
Network Links 2 1.00 0 n.a. 4

Level 2 Logical Interfaces 1 3.00 3 2.67 6
Systems 1 1.00 0 n.a. 4

Level 1 Physical Interfaces 3 3.00 0 n.a. 4
Protocols 5 2.60 0 n.a. 7

Total 12 2.42 8 3.63 29

Figure 9.6: Fragments of the example model.

9.3.2 ReuseCIM Composition System

Since ReuseCIM should extend the existing tooling (the graphical editor of the CIM-based
DSML and the UCL editor of Reuseware) we did not alter or extend the DSML’s metamodel.
Instead, we introduce five prefixes (+, %, ?, *, -) that can be prepended to attribute values of
model elements to define the composition interface of a CIM model fragment. The prefixes are
summarised in Figure 9.7 and are explained in the following on the example of Figure 9.8.

Looking at the two Level 1 models (Figure 9.8; bottom row), we can see that the element
BuiltInHub in the fragment BuiltInEthernetHub is prefixed with + and named +BuiltInHub.
+ exports the element to the composition interface and lets it appear with the name of the
element (in this case BuiltInHub). This can be seen in the composition program EthernetIP-
Interface on Level 2 (left in middle row). Similar is done with the element IP in the fragment
IP. Furthermore, we add a new element (depicted in orange) to the fragment BuiltInEthernet-
Hub that we name ?PrototcolEndpoint and connect it to other elements in the fragment. ? is
used to define a variation point. That is, this is not an element with meaning, but only a
placeholder. It is replaced or removed during composition.

The composition program EthernetIPInterface (1st in middle row) on Level 2 can now
make use of the composition interface. Concretely, the exported element IP is linked to the
variation point ?PrototcolEndpoint. Executing the invasive composition yields a fragment
EthernetIPInterface that is equal to the corresponding part of the original use case model
(cf. Figure 9.3). In the fragment ADSLStaticIPInterface, we declare two elements to be
exported using + (WANIP and ADSLModem). In the fragment System, we also export the element
System, add three variation points (using ?) and add the extension point *Modules (using *).
In contrast to a variation point, an extension point defined by * allows for multiple extensions
and needs to be explicitly removed by using - in a composition program.

Using the exports, variation points, and extension points defined in the fragments of Level 1
and 2, the composition program ProviderRouter on Level 3 (Figure 9.8; top) can now be
enriched with the composition links that are required to compose a CIM model ProviderRouter
that is equal to the corresponding part of the original example model (cf. Figure 9.3 top).

Furthermore, the % prefix is used in all fragments to export attributes to the composition
interface. Figure 9.9 shows this exemplarily for the element System in the fragment System
(middle row on the right in Figure 9.8). Here, we export the Description attribute by setting
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Prefix Type CIM Level 0 Fragments CIM Level 1+ Composition Programs
+ Element

Export
If used in elementName, the corre-
sponding element is exported

If used in an attribute that changes the element
name, the element is re-exported; if not used in
an attribute that changes the name of an ex-
ported element, the element is not re-exported

% Attribute
Export

Use this to export an attribute for mod-
ification; if the prefix is followed by the
same value in multiple places, the at-
tributes are merged and are always set
to the same value

Use this to re-export an attributed

? Variation
Point
Declaration

Create an element of any kind and use
this in elementName to declare a vari-
ation point : a point that can be con-
nected to one exported element and is
automatically removed if not connected

n.a.

* Extension
Point
Declaration

Create an element of any kind and use
this in elementName to declare an ex-
tension point : a point that can be con-
nected to multiple exported element

n.a.

- Extension
Point
Removal

n.a. Use this to remove an existing extension point

Figure 9.7: Naming conventions to define composition interfaces for CIM fragments.

it to %Description. The value followed after % defines the name of the attribute on the next
abstraction level (here Description). Furthermore, the Name attribute is exported to the
attribute System (by using %System).

The exported attributes can be modified in the properties of a corresponding fragment
instance in a composition program. Figure 9.10 shows these attributes for the instance of the
fragment System in the composition program ProviderRouter (top row in Figure 9.8). The
properties also list all extension points, which is only *Modules in this case. An extension
point can be removed if it should be no longer visible on the next abstraction level by setting
it to -, which we do in the case of *Modules here.

Another feature to improve the user experience is the specification of icons that are then
shown on fragments in composition programs. In ReuseCIM, domain experts can specify icons
themselves by placing them next to the fragments they develop.

The composition system for ReuseCIM was defined in terms of a FraCol, a UCL syntax
customisation (cf. Section 6.4.2), and three REXCM specifications. Furthermore, it reused the
default FraCol presented in Section 7.2. The FraCol specifies the central concepts of ReuseCIM
which is used for the implicit parts of composition interfaces of CIM fragments. It is used by the
UCL syntax customisation and one REXCM specification. The other two REXCM specifications,
which implement the default FraCol, deal with declared interfaces which composition system
users (i.e., CIM domain experts) define by using the prefixes described above.

We used two FraCols and three REXCM specifications for clarity. Conceptually, the specifi-
cations can be merged to one FraCol and one REXCM as required by the ModelHiC style (cf.
Section 9.2).
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Figure 9.8: Figure 9.3 decomposed into fragments and composition programs on Levels 1–3.
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Figure 9.9: Properties of the model element System (cf. Figure 9.8 middle).

Figure 9.10: Properties of the Level 2 fragment system.cim (cf. Figure 9.8 top).

Implicit Composition Interfaces

The core of ReuseCIM is hidden to the composition system users. To explain it, we have to
understand the structure of the CIM models. Each model has a CIM_Model as its root node.
All the other nodes, which are visible as boxes in the diagrams (cf. Figures 9.3, 9.5, and 9.8) are
directly contained in the CIM_Model via the containment reference elements. Consequently,
the elements containment reference always needs to be considered in a composition (this is
the implicit part) and all other references only need consideration if they are connected with
an addressable point (this is the declared part).

We capture the implicit part of ReuseCIM in a FraCol shown in Listing 9.1 and bind it to the
CIM metamodel with the REXCM specification in Listing 9.2. We define two fragment roles—
Core and Element—with one static port each—extensions and contents. Between these two
ports we allow contributing composition links through the contributing association extension.
In the binding to CIM (cf. Listing 9.2) we define an empty CIM_Model as Core (OCL expression
elements->isEmpty()) that can be extended by making the elements reference a hook. A
non-empty CIM_Model is considered as Element (OCL expression not elements->isEmpty())
by making all nodes of the elements reference prototypes.
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1 fracol org.modelplex.cim.ReuseCIMCore {
2 fragment role Core {
3 static port type extension;
4 }
5 fragment role Element {
6 static port type contents;
7 }
8

9 contributing association extension {
10 Element.contents --> Core.extension
11 }
12 }

Listing 9.1: CIM FraCol specification.

1 componentmodel org.modelplex.cim.rex.ReuseCIMCore
2 implements org.modelplex.cim.ReuseCIMCore
3 epackages <http://www.tid.es/cim>
4 rootclass CIM_Model {
5 fragment role Core if $elements->isEmpty()$ {
6 port type extension {
7 CIM_Model.elements is hook {}
8 }
9 }

10 fragment role Element if $not elements->isEmpty()$ {
11 port type contents {
12 CIM_Model.elements is prototype {}
13 }
14 }
15 }

Listing 9.2: CIM REXCM core specification.

Composition Program Syntax Customisation

The implicit part of the ReuseCIM should be hidden to the composition system user and used
automatically. For that, we define a customised composition language syntax as discussed
in Section 6.4.2. To define such a customisation, Reuseware contains a small specification
language that is in its structure similar to the REX languages. It allows the composition system
developer to specify syntax properties for fragment roles and port types. When a fragment
instance with its port instances is rendered in the composition program editor, the syntax
properties of the corresponding fragment roles and port types are taken into account. The
syntax customisation for ReuseCIM is shown in Listing 9.3.

At first, we define that EmptyCore.cim (Lines 4 and 5) is added automatically to each
composition program. EmptyCore.cim is thus part of ReuseCIM and delivered with the spec-
ifications. It contains one single CIM_Model node and is therefore a Core fragment (cf. List-
ing 9.2). The target UFI (Line 6) for the EmptyCore.cim fragment instances is derived from
the UCPI of the composition program (by replacing the extension with cim). Furthermore, we
define that Core fragments are hidden (Line 7), which hides the EmptyCore.cim, and that the
contents port of all Element fragments is hidden (Line 14), which hides the contents port
of each CIM fragment that is added (since each is an Element; cf. Listing 9.2). Note that the
hidden Element.contents and Core.extension ports are always connected automatically by
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1 compositionlanguagesyntax org.modelplex.cim.rex.ReuseCIMSyntax
2 implements org.modelplex.cim.ReuseCIMCore {
3 fragment role Core {
4 fragment = $’EmptyCore.cim’$
5 ufi = $’org/modelplex/cim/lib/EmptyCore.cim’$
6 target ufi = $ucpi.trimExtension().appendExtension(’cim’)$
7 visible = $’false’$
8 }
9 fragment role Element {

10 icon = $ufi.trimExtension().appendExtension(’gif’)$
11 width = $’100’$
12 height = $’50’$
13 port type contents {
14 visible = $’false’$
15 }
16 }
17 }

Listing 9.3: CIM composition program syntax customisation.

Figure 9.11: ProviderRouter composition program without custom syntax (cf. Figure 9.8 top).

the composition program editor, since it tries to connect hidden ports automatically following
the specified associations (which is the extensions association in this case; cf. Listing 9.1).
To illustrate the hiding of the core through the syntax customisation, Figure 9.11 shows the
ProviderRouter composition program without the custom syntax (cf. top of Figure 9.8). Lines
10–12 of Listing 9.3 defines the look of visible Element fragment instances in composition pro-
grams by defining an initial size and that a gif icon is used that is placed next to the fragment
in the repository.

Declared Composition Interfaces

In ReuseCIM, composition interfaces are declared by domain experts using naming conventions.
Naming conventions, which were already used in Compost (cf. Section 3.1), are a convenient
way to support composition interface declaration without changing a language’s syntax. This
support for declared composition interfaces is specified in Listings 9.4 and 9.5. Since we do
not require specific fragment roles for this, we use the default FraCol (cf. Section 7.2) in both
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1 componentmodel org.modelplex.cim.rex.ReuseCIM
2 implements org.reuseware.lib.systems.default
3 epackages <http://www.tid.es/cim>
4 rootclass CIM_Model {
5 fragment role Default {
6 port type Config {
7 ManagedElement is anchor if $elementName.startsWith(’+’)$ {
8 port = $elementName.substring(2,elementName.length())$
9 }

10 }
11 port type Config {
12 ManagedElement is slot if $elementName.startsWith(’?’)$ {
13 mode = $’bind’$
14 port = $elementName$
15 remove = $’true’$
16 }
17 }
18 port type Config {
19 ManagedElement is slot if $elementName.startsWith(’*’)$ {
20 mode = $’extend’$
21 port = $elementName$
22 }
23 }
24 port type Config {
25 ManagedElement is slot if $elementName.startsWith(’-’)$ {
26 port = $elementName$
27 remove = $’true’$
28 }
29 ManagedElement.elementName is value hook if $elementName.startsWith(’*’)$ {
30 port = $’*ExtensionPoints’$
31 point = $elementName$
32 }
33 }
34 }
35 }

Listing 9.4: CIM REXCM for element export, variation, and extension.

REXCM specifications. Listing 9.4 defines a REXCM that interprets the prefixes that concern
element export, variation, and extension (+, ?, *, and -; cf. Section 9.3.2)

• + (Lines 8–10): Any element that has an elementName starting with + is exported by
making it an anchor. The name of the port for the anchor is constructed by removing
the + prefix.

• ? (Lines 11–17): Any element that has an elementName starting with ? is recognised as
a variation point by making it a slot operating in bind mode. The name of the port for
the slot is taken from elementName. Furthermore, setting the remove property to true
ensures that the slot is also removed if it is not bound.

• * (Lines 18–23): Any element that has an elementName starting with * is recognised as
an extension point by making it a slot operating in extend mode. The name of the port
for the slot is taken from elementName.

• - (Lines 24–33): Any element that has an elementName starting with - is removed
(remove property set to true). We enable composition system users to set elementName
of an existing extension point to - by defining a value hook (Lines 30–33) for each
extension point (prefix *) that is accessible through the *ExtensionPoint port.
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1 componentmodel org.modelplex.cim.rex.ReuseCIMAttributes
2 implements org.reuseware.lib.systems.default
3 epackages <http://www.tid.es/cim>
4 rootclass CIM_Model {
5 fragment role Default {
6 homo port type Config {
7 /* a similar rule is defined for each EAttribute in the CIM metamodel */
8 ManagedElement.description is value hook if $description.startsWith(’%’)
9 and not elementName.startsWith(’*’) and not elementName.startsWith(’?’)$ {

10 homo port = $description$
11 port = $’description’$
12 point = $’value’$
13 }
14

15 ManagedElement.elementName is value hook if $elementName.startsWith(’+’)$ {
16 homo port = $’%’.concat(elementName.substring(2,elementName.length()))$
17 port = $’elementName’$
18 point = $’value’$
19 }
20 }
21 }
22 }

Listing 9.5: CIM REXCM for attribute export.

Listing 9.5 defines a REXCM that interprets the prefixes that concern attribute export (? and
+; cf. Section 9.3.2). Since we want to give composition system users the possibility to export
any attribute, we required one value hook rule for each EAttribute in the CIM metamodel.
Lines 8–13 shows this rule for the attribute description.3 This rule makes a description
that starts with % a value hook except those that are parts of variation or extension points
(? and * prefixes). Such an export of the description was shown in Figure 9.9. Because
the elementName of an exported element (+ prefix) should also be exported, we added one
additional value hook rule for that (Lines 15–19).

If a CIM fragment is added to a composition program, a value setting is automatically
created for each value hook (cf. Section 6.4). These settings are then shown in the properties
view of the composition program editor (e.g., Figure 9.10) and can be edited by composition
users in a similar way as they edit attributes of CIM models in the CIM-based DSML editor
(e.g., Figure 9.9).

9.3.3 Discussion

In this section, we have introduced ReuseCIM, a complex DSML that supports domain experts
to define reuseable models on different abstraction levels. ReuseCIM uses a ModelHiC configu-
ration of our generic CB-MDSD composition system as a lightweight alternative to developing
a set of DSMLs for different abstraction levels and connect them via transformations, which
would have been the traditional MDSD approach. ReuseCIM was developed with ModelHiC
with relatively little effort—the complete system definition consists of only 103 Lines speci-
fication code (Listings 9.1–9.5). Nevertheless, the system, described in Section 9.3.2, can be

3Instead of writing the rules for each attribute manually, we used a generator that produces a rule similar to
the one shown in Lines 8–13 of Listing 9.5 for each EAttribute in the CIM metamodel.
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directly used by domain experts without knowledge about graph fragment composition. Ab-
straction levels can be introduced and used by the domain experts as required with the UCL
editor.

Using ReuseCIM, we were able to recompose the complete original example model from the
fragments (cf. Figure 9.6) that were created from it based on the decomposition proposed
by the domain experts (cf. Figure 9.3). As mentioned, 44% of the model consists of reused
fragments compared to complete manual modelling.

The features of this first version of ReuseCIM give the domain experts a lot of freedom.
They can introduce new fragments and design their composition interface and their look in
composition programs individually. They can also introduce new abstraction levels without
modifying any language, tooling, or ReuseCIM specifications, since all CIM models on abstrac-
tion levels higher than Level 0 are UCL composition programs. Thus, the presented ReuseCIM
is useful in particular in the early stages of building component support for the DSML to find
appropriate abstraction levels.

Still, there are also (potential) drawbacks in using the developed composition system over
the classic MDSD approach. First, the flexibility we gave to the composition system inherently
comes with the danger that it again threatens the simplicity and abstraction we wanted to
introduce with the composition system in the first place. Since the domain experts control
the composition interfaces themselves to a large degree, they might overload the interface
of components or design them too restrictive, which makes fragments hard or impossible to
reuse. Second, the tooling (in particular the user interface), which is only a thin layer on
top of Reuseware, can never be as highly customised or adjusted to other platforms and
technologies as individual DSMLs can be.

These drawbacks, however, only apply in certain scenarios. For example, when new users
that only work on one particular abstraction level are introduced to the DSML often, which
justifies the costs of developing customised tools for them; or when people have to work on
specific platforms with resource restrictions that cannot be met by the Reuseware tooling.
To answer such questions for the CIM case, we need to perform more case studies and, most
importantly, get feedback from the domain experts on these questions.

In any case, feedback from domain experts is of high importance for the whole idea of DSML
building. We claim that creating a flexible composition system for an existing complex DSML
with ModelHiC is a good first step to build abstraction and reuse facilities on top of the existing
complex DSML. Even if we switch to a classic MDSD approach later, or a ModelSoC based
one, ModelHiC is a lightweight way to obtain a first prototype that can then be used and
tested by the domain experts to collect feedback on what the correct abstraction levels are.
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9.4 Conclusion

Chapter Contribution The main contribution of this chapter is the ModelHiC architectural
style for the development of component-based model-driven architectures:

C3-2 Architectural style for MDSD with hierarchical composition
With ModelHiC, we introduced a lightweight style to use U-ISC/Graph to define addi-
tional abstraction levels on top of a complex DSML following a hierarchical composition.
This was shown on a large DSML based on an industry standard (the CIM-based DSML).
This can be used both for building a productive development environment or for initial
prototyping. This contribution has the following sub-contributions:

• Iterative process for developing abstraction and reuse support for a DSML
We defined an iterative process for developing abstraction and reuse facilities for
existing DSMLs. The process allows for rapid prototyping thanks to the flexibility
of U-ISC/Graph and Reuseware, which is fundamental to involve domain experts
in the process.

• Evaluation of ModelSoC and U-ISC/Graph
In this chapter, we successfully evaluated the applicability of ModelHiC, and there-
with of U-ISC/Graph in this context, for one complex DSML from the telecommu-
nications domain. We can generalise our observations, since the DSML we chose
has three properties which are typical conditions in practice: (1) the DSML is large,
(2) the DSML is based on an industry standard, and (3) the DSML was developed
before we considered using ModelHiC for adding component support and was not
modified in any way for the benefit of ModelHiC or U-ISC/Graph. Therefore, we
conclude that ModelHiC and U-ISC/Graph are applicable for a number of similar
MDSD scenarios.

This concludes this part of the thesis on using U-ISC/Graph for CB-MDSD. We introduced
two architectural styles, ModelSoC and ModelHiC, for CB-MDSD. While the two presented
architectural styles are the major application scenarios we currently see for CB-MDSD with
U-ISC/Graph, there might well be other useful ways to configure the generic CB-MDSD com-
position systems. This should be subject to future research.
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10
Related Work

In this chapter, we look at works that relate to ours. We consider works from the fields of
Aspect-Oriented Software Development (AOSD) and MDSD. To structure this, the body of
work is separated into different categories. The following gives an overview of what these
categories cover and why they relate to our work.

• Aspect-Oriented Programming (AOP) (Section 10.1) Aspect-Oriented Program-
ming (AOP) [KLM+97] is one of the roots of AOSD. AOP systems extend object-oriented
systems. In AOP, the term aspect is usually used as we used it in the aspect weaving
example (cf. Example 2.2) throughout this thesis. As we have seen from this example,
AOP is one possible application for U-ISC/Graph. Therefore, we compare the modularity
concepts of AOP with ours in Section 10.1.

• Aspect-Oriented Software Development(AOSD) (Section 10.2) Aspect-Oriented
Software Development (AOSD) [FECA05] is, in a more general sense than AOP, con-
cerned with separation of concerns and powerful decomposition and composition of soft-
ware. In AOSD the term aspect is used broader as in AOP and may refer to any kind
of component that uses a novel modularity concept, which is usually not the dominat-
ing modularity concept of the original method or technology extended by AOSD means.
CB-MDSD can thus be classified as an AOSD approach and therefore we compare it to
other popular AOSD approaches (which are not AOP approaches).

• AOP-like Approaches for Modelling (Section 10.3) Works that, similar to ours, bring
together ideas from AOSD and MDSD are summarised under the term Aspect-Oriented
Modelling (AOM) [AOM10]. Most approaches are published in context of the AOM
workshop series [AOM10] and more literature can be found there. AOM approaches can
be separated into AOP-like approaches and more general AOSD approaches for mod-
elling. The former, which are treated in Section 10.3, transfer the aspect concept of
AOP, sometimes with slight extensions, to modelling languages.

• Other AOSD Approaches for Modelling (Section 10.4) AOM approaches that are
concerned with AOSD in the general sense are analysed in Section 10.4.
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• Generic Model Composition Approaches (Section 10.5) There are model composi-
tion approaches, which are often used for AOM, but which are, similar to U-ISC/Graph,
applicable for a variety of composition scenarios and modularity concepts. We look at
these approaches in Section 10.5.

• Model Manipulation in MDSD (Section 10.6) In Section 10.6, we discuss how MDSD
approaches that are not specifically concerned with component-based development, but
in a more general sense with the manipulation and integration of models, relate to our
work.

• Process Management in MDSD (Section 10.7) In this thesis, we also presented two
architectural styles for model-driven architectures. In Section 10.7, we discuss related
work that is concerned with managing model-driven processes and architectures.

10.1 Aspect-Oriented Programming (AOP)

In this section we look at AOP [KLM+97] in its original form as implemented in Aspect/J
[KHH+01].

AOP and AOP-like approaches are focused on AOP component models. That is, they always
relay on core and aspect component types and a joinpoint model as component model. This
means, the base language has to have object-oriented features as basis for AOP features. Thus,
a joinpoint component model of an AOP approach is less flexible as the basic component model
of U-ISC/Graph. Nevertheless, the central AOP concepts can be found in U-ISC/Graph in the
basic concepts. These parts of U-ISC/Graph were to a certain degree inspired by AOP ideas.
We discuss this in the following.

Heterogeneous grouping is found in AOP aspects, which group several advices that are to
be applied together. This is similar to grouping several prototypes into a heterogeneous port.
Homogeneous grouping is performed by pointcuts, which define where advices are woven into a
core. Pointcuts are always defined by the users of aspect systems, while in U-ISC/Graph group-
ings are defined by the composition system developers in REXCM specifications—although, a
developer can give control about the grouping to a user.

Another important property of AOP is obliviousness of the core, which in our terminology
means that a core component has only implicit and no declared interfaces. In U-ISC/Graph, a
composition system developer can design components with implicit interfaces, declared inter-
faces, or both.

In AOP, the core is always the target of a weaving (i.e., the extended component) and the
aspect is the source of a weaving (i.e., the extending component). This is also called an asym-
metric, in contrast to a symmetric, composition where all components play an equal role. For
example, the merge of two components in Hyper/J [OT00] is seen as a symmetric composi-
tion. We believe that if a composition is broken down into basic composition operations, for
each of these operations one can identify one component as extending and one as extended
component—although these roles can switch in the next composition operation. Thus, also
symmetric approaches are asymmetric in their most basic operations. We follow this in our
composition algorithm, where in one composition step we always identify a contributing (i.e.,
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extending) and receiving (i.e., extended) fragment. Still we used our composition algorithm to
perform symmetric composition composition in the Hyper/J sense in ModelSoC.

The most popular AOP tool is Aspect/J [KHH+01] that is limited to Java as component
language. There is a family of Aspect/J-like AOP tools that transfer the Aspect/J concepts to
other component languages. One example is Aspect/C++ [SGSP02]. This tools are, however,
all individually hand-crafted. That is, there is no framework supporting the creation of an
Aspect/J-like tool for arbitrary object-oriented languages. With U-ISC/Graph, and Reuse-
ware as the implementing framework, we can define AOP-like systems for arbitrary languages.

10.2 Other AOSD Approaches from Programming

This section treats other flexible composition approaches that are not based on the AOP
paradigm.

Composition Filters [AWB+94] extends the behaviour of objects by message manipulation
and is, as AOP, limited to object-oriented languages. However, with Compose* [Sof10], there
is a framework as base for composition filter implementations for different languages such
as Compose*/Java for Java and StarLight for several .NET languages. Composition filters
contains a kind of heterogeneous grouping because a filter can extend the complete object
behaviour and not only the behaviour of a single operation. Composition filters was also
recently extended with AOP-like pointcuts for homogeneous grouping [BA01].

Role modelling [RG98] extends object-oriented programming and can be used to encapsu-
late information into roles which are attached to objects to add functionality—making objects
extensible with roles. There are different approaches to role modelling that differ in the details
(see [Ste00] for an overview). One of the approaches is ObjectTeams [Her02] which is currently
only implemented for Java. Thus, role modelling in general is limited to object-oriented lan-
guages and ObjectTeams in particular only gives tool support for Java and no framework to
support other languages. In contrast to AOP, role modelling uses declared interfaces and is
more concerned with heterogeneous grouping in collaborations than with homogeneous group-
ing.

Compared to the other AOSD approaches, the hyperspace approach [OT00], which we dis-
cussed in Chapter 8, is not limited to a specific language or language paradigm. However,
it is a conceptual model and the implementation (Hyper/J) is limited to Java and makes
other trade-offs such as introducing a dedicated language to define modules (which are called
hypermodules in the hyperspace approach).

Since U-ISC/Graph allows us to define implicit and declared interfaces we can use it to
construct composition systems that follow role modelling or composition filter principles but
are not limited to that. What we cannot provide is flexible composition at runtime as the
corresponding implementations ObjectTeams/J [Her02] and Compose* [Sof10] provide, since
we only perform static composition.
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10.3 AOP-like Approaches for Modelling

In this section, we look at approaches that transfer the AOP concepts to modelling. If not
noted differently below, the comparison of AOP with U-ISC/Graph in Section 10.1 also applies
to these approaches.

A prominent UML-based AOP-like approach is the Theme approach [CB05] for aspect-
oriented analysis and design that works with UML and requirement specifications. However, it
is limited to these. Furthermore, it comes with its own specification language for Themes (i.e.,
aspects), which is not exchangeable. Other approaches that are limited to UML are Aspect-
Oriented Design Model (AODM) [SHU06], the JAC Design Notation [PDF+02], AOSD with
Use Cases [JN04], Motorola Weavr [CvdBE07], AOSD Profile [AEB03], and Aspect-Oriented
Architecture Models (AAM) [RGR+06]. A detailed comparison of Theme and these approaches
can be found in [SRK+07].

MATA [WJE+09] is an approach that in principle can be applied to any modelling language.
It uses graph rewriting with pattern matching as a base for aspect weaving. The distinct feature
of MATA, compared to ordinary graph rewriting systems, is, that it allows for specification
of patterns in concrete syntax of the languages it supports (e.g., UML sequence diagrams
with dedicated stereotypes). Thus, this part of MATA is language dependent and has to be
implemented for each supported language manually. So far, the implementation that exists is
an extensions of Rational Software Modeler [IBM10b] that supports UML only.

The tool GeKo [MKBJ08] (also used in RAM [KAAK09]; Section 10.4) can be configured
by metamodels and thus can be used with arbitrary DSMLs. GeKo is based on Kermeta
[Tri10]. In GeKo, the metamodel of the language that should be supported is extended to
allow pointcuts to be defined as partial models in the extended language. This is similar to
the definition of graph rewriting rules in concrete syntax in MATA [WJE+09] but does not
rely on dedicated UML stereotypes. It is also comparable to the grammar extension formalism
of U-ISC/Tree (cf. Section 3.2) that is also used to relax the restrictions of the original
language grammar to allow the definition of fragments. Furthermore, GeKo has similarities to
how new composition language concepts are integrated into languages in U-ISC/Tree, because
it individually extends the component language to obtain a pattern definition language for
pointcuts (pointcuts are composition language concepts). Thus, in GeKo, the base language
is extended with new constructs and composition semantics. It is however not possible to
combine different component and composition languages as in U-ISC/Graph.

Both AOP interpretations of MATA [WJE+09] and GeKo [MKBJ08] are more flexible as
in traditional AOP in the sense that pointcuts are defined as patterns that match on models.
Therefore, pointcuts are not limited to object-oriented language concepts and can consequently
be defined for any modelling language. These patterns allow for both heterogeneous and
homogeneous grouping of elements. However, the user is confronted with defining the patterns
directly on the model structure. Effectively, there is no composition interface. All nodes of the
model are exposed to the user. In U-ISC/Graph, the composition system developer can decide
how much to expose to the user and can hide parts of a model to ensure that it is not altered
during composition. The composition system developer also defines the patterns (which are
OCL expressions in REXCM specifications). The user does not have to (but can) be confronted
with complex pattern definition.
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GenAWeave [Roy08] is a framework for model-driven construction of aspect weavers. It fo-
cuses on creating aspect weavers for existing textual programming languages such as Pascal
or FORTRAN to support evolution of legacy systems. Nevertheless, it uses metamodellig and
model transformation technology to achieve its goal. GenAWeave allows for the construction
of dedicated aspect languages for different base languages by designing a metamodel as an
extension of a generic aspect metamodel that is provided. Instances of these metamodels are
transformed into rewriting rules, using ATL [Ecl10a] model transformations, which can be exe-
cuted by the Design Maintenance System [Bax92] to perform the actual weaving. GenAWeave
thus combines technologies from different areas. It specifically supports aspects in the AOP
sense, and is thus only applicable to languages with structures where notions such as before,
after, and around advice make sense.

10.4 Other AOSD Approaches for Modelling

In the Reuseable Aspect Models (RAM) [KAAK09] approach, different views on a system are
modelled in aspects where each aspect contains three views (structural, state, message) mod-
elled with UML class, state, and sequence models. Thus, in contrast to the other UML-based
approaches, RAM allows for combined modelling in different UML sublanguages, covering
different language paradigms, but is still limited to the languages it supports. RAM is imple-
mented with Geko, Kompose (cf. Section 10.5), and Kermeta [Tri10]. An aspect in RAM can
be regarded as a multi-format unit in ModelSoC that supports three different viewpoints. The
difference is, that no new viewpoints can be added which hinders the integration of DSMLs or
GPLs such as Java.

Another application of AOSD in MDSD is “AOSD with use cases” [JN04]. While it promotes
the idea of using aspect technology to decompose system according to UML use cases, it does
not offer direct tool support for that and is limited to UML.“AOSD with use cases” is related to
our example ModelSoC architecture in Chapter 8 where use case decomposition is one concern
dimension. However, ModelSoC supports arbitrary dimensions and the implementation in
Reuseware gives tool support for automation (not given by [JN04]).

Hovsepyan et al. [HSVB+10] discuss in a case study whether aspect weaving should be
performed on models or code. This is motivated by the fact that some approach perform model
weaving ([FBFG08, MKBJ08]), while others offer translations to aspect (e.g., Aspect/J) code
([CB05, JN04]). With U-ISC/Graph, weaving can be performed on both models and code since
U-ISC/Graph supports any language, graphical or textual, defined with EMOF/Ecore—which
does not exclude programming languages. In particular in ModelSoC, weaving is performed
with Reuseware for any supported viewpoint. While weaving on code level is mandatory to
obtain the final system, weaving for other viewpoints can be supported if it aids development.

In all discussed AOP and AOSD approaches, we have not encountered a concept similar
to FraCols. While in any composition approach, a connection between component model and
composition language is required, this connection is often hard-wired into the approach and
cannot be configured for individual composition systems. Only the conceptual hyperspaces
approach [OT00] does not give such a limitation. However, the relation between composition
operators and components is also hard-coded in the Hyper/J tool.
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10.5 Generic Model Composition Approaches

In this section, we look at model composition approaches that, as U-ISC/Graph, are not limited
to a specific modelling language and a specific modularity concept.

Kompose [FBFG08] (also used in RAM [KAAK09]) can be configured by metamodels and
thus can be used with arbitrary DSMLs. Kompose is, similar to GeKo (cf. Section 10.3),
based on Kermeta [Tri10]. It is, in contrast to GeKo which focuses on AOP-like aspects
by explicitly supporting pointcut definitions, a generic composition tool for different types of
model components. In Kompose, for each language that should be supported, composers have
to be defined in Kermeta’s model transformation language that define what the composition
semantics for that language are. For the user of a such defined composition system, Kompose
offers the generic composition language komp in which compositions can be triggered and
additional pre and post composition operations can be defined on the input and the composed
models.

Kompose has similarities to our framework approach, which separates the composition sys-
tem developer and user roles. In Kompose, composition systems specific to a metamodel can
be defined by implementing composers in Kermeta’s [Tri10] model transformation language.
Here, it can be controlled which part of a model is taken into account during composition.
Thus, parts of models can be left untouched in a composition, which is effectively information
hiding. A kind of composition interface is therefore established. However, this is not as ex-
plicit as in U-ISC/Graph, because a generic model transformation language is used instead of
a dedicated component model configuration language as we offer with REXCM.

In Kompose, models are always matched as a whole and then composed. Thus, there are no
concepts similar to ports or links in komp—the complete models are always matched and com-
posed. This is similar to defining graph fragments that group everything in one port. Instead,
komp, as an imperative model manipulation language, allows for controlling details of the com-
position through arbitrary adjustment of models. Despite komp, there are no other composition
languages in Kompose and integration of new composition languages is not supported.

10.6 Model Manipulation in MDSD

A number of model manipulation approaches exist in MDSD which can be used for composition
and which are not bound to a specific modelling language. These approaches can, as U-
ISC/Graph, be configured by a metamodel of a language.

One important discipline in MDSD is model transformation, as, for instance, offered by the
the Query View Transformation (QVT) standard [OMG08] that is implemented, for exam-
ple, in the Eclipse M2M project [Ecl10b] or the medini QVT tool [ikv10] (cf. [CH03] for an
overview of other prominent model transformation approaches). These tools work language
independent and are configured by metamodels. With model transformations, models can
also be composed by taking separated models as input and creating a new integrated model.
Therefore, model transformations can be used to build component support for modelling lan-
guages, but with more effort as when using a dedicated approach, like U-ISC/Graph, for that.
However, model transformations can be used as a base to implement model composition tools.
Kompose [FBFG08], for example, builds on the model transformation language of Kermeta
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[Tri10]. We defined U-ISC/Graph with SDM (cf. Appendix A), which can also be regarded as
a model transformation technology.

Model weaving, as realised in the Atlas Model Weaver (AMW) [Fab07], is concerned with
establishing relationships between models and model elements. It is a generic approach that
can be used to represent all kinds of relationships. These can then be interpreted (e.g. by model
transformations). Thus, model weaving can also be used to describe composition relationships
and execute them by a model transformation. Again, the shortcoming in our context is that it
is not specialised for composition and thus building a composition system requires extra effort.

Epsilon [Kol08] for model management is a representative for a framework in MDSD that
can be extended with new task-specific languages on the meta level. That is, Epsilon offers
dedicated languages for model management and manipulation tasks such as transformation,
merging, or validation. In contrast to the above MDSD approaches, the language family of
Epsilon can be extended with new languages for special purposes. Thus, it can also act as a
platform for realising composition systems and the effort for creating individual systems could
be reduced by introducing new task-specific languages dealing with composition.

In summary, generic model transformation, weaving, and management technologies may be
used by a composition system developer to build composition systems. Since these technologies
and their formalisms are not dedicated for that, as REXCM or REXCL are, it takes more effort
to do so as when using U-ISC/Graph directly.

Model transformations also relate to U-ISC/Graph in another way. As discussed already
in Section 7.4, REXCM and REXCL can be regarded as domain-specific model transformation
languages. This is best observed, when analysing how U-ISC/Graph is used to transfer infor-
mation from one format into another, which is a task usually done by model transformation in
transformation-based model-driven architectures. All model transformation approaches named
above, give possibilities to declare rules that consist of three parts: (1) a pattern to match,
(2) a template-like structure to produce, and (3) a mapping to insert matched data into the
template. These three functionalities are also found in U-ISC/Graph: (1) is the extraction
of composition programs, (2) are fragments with variation points, and (3) is the mapping
between component and composition language via FraCols. U-ISC/Graph allows, compared
to the other approaches, for independent reuse of (1) and the specification of (2) in concrete
syntax. We illustrate this on the following example.

Example 10.6. A typical transformation in MDSD is to generate Java classes from UML
classes. For example, we could generate the Java version of our file system example (cf.
Listing 3.1) from the UML version (cf. Figure 5.14). For this, a kind of template is needed
that defines the structure of classes in Java and contains variation points for information that
is extracted from the UML model. Traditionally, a code generation engine like MOFScript
[Ecl10f] or Xpand [Ecl10e] is used for that, but also model transformations as discussed above
can be used if they treat Java, as we do, as textual modelling language.

Templates can be defined as graph fragments with variation points and the code generation
can be realised as composition of these fragments. Listings 10.1 and 10.2 show fragments
containing a Java Class and a Java Field. The two fragments contain value hooks and slots
to fill in information about names and type relationships. By instantiating these fragments
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1 public class CLASS_NAME_VALUE_HOOK {
2 // MEMBER_LIST_HOOK
3 }

Listing 10.1: Class template Java fragment.

1 protected TYPE_SLOT FIELD_NAME_VALUE_HOOK;

Listing 10.2: Field template Java fragment.

multiple times (3x class fragment and 6x field fragment), we can define a composition program
that composes Listing 3.1.

The information we capture in this composition program is contained in the UML model
of Figure 5.14. If we interpret each UML class as an instantiation of the class fragment
(Listing 10.1) and each UML property as well as each UML association as an instantiation
of the field fragment (Listing 10.2), we can extract the composition program from the UML
model.

With U-ISC/Graph, we can define a composition system that realises this. Listing 10.3 shows
the FraCol for this composition system. Based on that, we define composition semantics for
the UML metaclasses Class and Association with REXCL in Listing 10.5 and with that treat
UML in this context as composition language. For Java, we define a REXCM in Listing 10.4
to obtain the required composition interfaces of the class (Listing 10.1) and field (Listing 10.2)
fragments. Interpreting the UML model in Figure 5.14 as composition program derives a UCL
composition program (shown in Figure 10.1) that, when executed, produces the Java classes
of Listing 3.1.

10.7 MDSD Process Management

A number of approaches to define MDSD processes and architectures exist. We compare those
to our architectural styles for MDSD.

Approaches such as UniTI [VAB+07], MCC [Kle06], TraCo [HKA10], and Megamodelling
[BJV04] organise MDSD processes by defining relations between models, metamodels, and
transformations. In all these approaches, transformations are a central concept and thus they
are suited to realise transformation-based model-driven architectures. ModelSoC and Model-
HiC, in contrast, rely completely on composition with U-ISC/Graph as refinement method.
Still, ModelSoC and especially ModelHiC could be used as part of a larger MDSD process
and integrated with other automatic refinement techniques by one of these approaches. For
example, the telecommunication models composed with ModelHiC in Chapter 9 require fur-
ther processing (e.g., for generating device configurations from them). For this, U-ISC/Graph
would act as one tool in a chain of refinement tools. Such a chain can be orchestrated with the
approaches named above.

In the introduction, we mentioned an architectural style for MDSD presented by Atkin-
son et. al [AS08]. Their approach is called orthographic modelling and uses, as explained in
the introduction, a single underlying model that holds all information about the system and
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1 fracol org.reuseware.example.uml2java {
2 fragment role Class {
3 static port type Name;
4 static port type Hook;
5 static port type Self;
6 }
7 fragment role Field {
8 static port type Name;
9 static port type Content;

10 static port type TypeSlot;
11 }
12 contributing association Extend {
13 Field.Content --> Class.Hook
14 }
15 configuring association Type {
16 Class.Self --> Field.TypeSlot
17 }
18 }

Listing 10.3: FraCol for a composition system to transform UML to Java.

1 componentmodel org.reuseware.example.uml2java.java
2 implements org.reuseware.example.uml2java
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Field {
6 port type Name {
7 java::members::Field.name is value hook { point = $’name’$ }
8 }
9 port type Content {

10 java::members::Field is prototype {}
11 }
12 port type TypeSlot {
13 java::classifiers::Class is slot {}
14 }
15 }
16

17 fragment role Class {
18 port type Name {
19 java::classifiers::Class.name is value hook { point = $’name’$ }
20 }
21 port type Hook {
22 java::classifiers::Class.members is hook {}
23 }
24 port type Self {
25 java::classifiers::Class is anchor {}
26 }
27 }
28 }

Listing 10.4: REXCM for Java as part of a composition system to transform UML to Java.
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1 compositionlanguage org.reuseware.example.uml2java.uml
2 implements org.reuseware.example.uml2java
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.trimExtension().appendExtension(’fc’)$ {
6 fragment role Class {
7 uml::Class {
8 fragment = $self.name$
9 ufi = $Sequence{’UML2Java’,’java’,’Class.java’}$

10 target ufi = $ufi.trimExtension().append(self.name.concat(’.java’))$
11 port type Name { $’name’$ = $self.name$ }
12 }
13 }
14

15 fragment role Field {
16 uml::Association {
17 fragment = $self.ownedEnd->at(1).type.name.concat(’.’).concat(self.ownedEnd->at(2).name)$
18 ufi = $Sequence{’UML2Java’,’java’,’Field.java’}$
19 port type Name { $’name’$ = $self.ownedEnd->at(2).name$ }
20 }
21 }
22 association Extend {
23 uml::Association {
24 fragment = $self.ownedEnd->at(1).type.name.concat(’.’).concat(self.ownedEnd->at(2).name)$
25 -->
26 fragment = $self.ownedEnd->at(1).type.name$
27 }
28 }
29 association Type {
30 uml::Association {
31 fragment = $self.ownedEnd->at(2).type.name$
32 -->
33 fragment = $self.ownedEnd->at(1).type.name.concat(’.’).concat(self.ownedEnd->at(2).name)$
34 }
35 }
36

37 // repeat Lines 15-35 with ’self.ownedEnd->at(1)’ and ’self.ownedEnd->at(2)’ exchanged
38 }

Listing 10.5: REXCL for UML as part of a composition system to transform UML to Java.

Figure 10.1: The composition program derived from Figure 5.14 using the REXCL from List-
ing 10.5.
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treats the models developers work with—including the implementation code—as views on the
underlying model. They use bi-directional transformations for creating models as views and
reintegrating models into the single underlying model. From the user viewpoint, orthographic
modelling is not so different to ModelSoC. However, setting up an architecture with ortho-
graphic modelling is complex because the bi-directional transformations have to be defined in
model-transformation technologies as the ones discussed in Section 10.6. In particular, defining
the transformations from the views to the single underlying model is challenging since all these
transformations work on the same target model and potentially need to know what all other
transformations do with it. In ModelSoC, we attempt to avoid exactly this complexity by
explicitly splitting the system into different concern dimensions and using UCL as a minimal
language to present the system architecture.
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11
Conclusion

The main goal of this thesis is to introduce concepts from component-based development into
model-driven software development to improve separation of concerns and therewith consis-
tency and tracing in model-driven architectures. To achieve this, we presented the universal
model composition technique U-ISC/Graph and a generic composition system for MDSD that
can be configured to work with arbitrary modelling languages (Part I). U-ISC/Graph and
the generic composition system were implemented in our model composition tool Reuseware
(Chapter 7). As guidance for using the technique and the tool in MDSD, we proposed two
architectural styles for setting up component-based model-driven architectures by configuring
the generic composition system. Both styles are based on recognised component-based devel-
opment paradigms: ModelSoC (Chapter 8) realises multi-dimensional separation of concerns
for MDSD and ModelHiC (Chapter 9) realises hierarchical composition for MDSD.

In the introduction we claimed three major contributions (C1, C2, and C3). These major con-
tributions entail nine contributions we formulated in the conclusion sections of Chapters 4–9.
An overview of these contributions as well as their relationships between each other and to
existing work is given in Figure 11.1. The figure has the same structure as Figure 1.4 that gave
an overview of the document structure in the introduction. In the following, we summarise the
contributions and group them according to the major contributions.

Contribution 1 (C1): Composition Technique for Typed Graphs

C1-1 Contracts between component and composition languages Our solution for a
model composition technique is based on the concept of composition systems and thus
our aim, which we motivated in Chapter 3, was to develop a generic composition system
for MDSD that can be configured with multiple component and composition languages.
For this, we identified the need to define contracts that have to be fulfilled by component
and composition languages when they are integrated into a composition system. These
contracts needed to support aggregation to allow for the extension of a composition
system with new contracts.
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Figure 11.1: Overview of our contributions.

Our contribution here is the fragment collaborations (FraCols) concept defined in Chap-
ter 4. The concept is based on role modelling which ensures the aggregatability of
FraCols. With FraCols, properties of modularity concepts can be defined independent
of concrete component or composition languages. It is the first concept of this kind for
invasive software composition systems. It is one of the three foundations of U-ISC/Graph
(the other two being C1-2 and C1-4). And it is a prerequisite for C1-3, C1-5, and C1-6.

C1-2 Type-safe invasive composition interfaces for graphs Models in MDSD are graphs
with certain properties that we discussed in Section 5.1. To treat models as components,
we thus required a composition technique that works with these kinds of graphs. In
Chapter 3, we decided to extend the tree merging composition technique of U-ISC/Tree,
because this technique is language-independent and type-safe, which are both properties
we required. The first concept we needed to transfer to graphs was the variation point
concept for composition interfaces.

In Section 5.2, we therefore introduced variability typing for graph fragments that extends
the variation point concept of U-ISC/Tree. The extension covers the properties of model
graphs that trees do not have. Our graph fragment variability typing is the first concept
for invasive composition interfaces that give access to graph structures. It is the second
foundation of U-ISC/Graph and a prerequisite for C1-3.

C1-3 Abstraction of physical composition interfaces To make a connection between the
physical composition interfaces of graph fragments and FraCols (C1-1), we needed to
abstract from the physical interfaces available through the variability typing (C1-2).

We therefore introduced grouping concepts for variation points in Section 5.2. These
allow to form groups of variation points that concern one modularity concept which has
been defined in a FraCol. Furthermore, we defined the component model configuration
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language REXCM in Section 5.3, which allows to bind modularity concepts defined in Fra-
Cols to the metamodel of a modelling language that should act as component language.
Through these bindings, variability typings of models are defined as well as mappings of
composition interfaces to FraCols. The grouping concepts for variation points are the first
abstraction mechanisms of this kind for invasive composition interfaces. Furthermore,
before REXCM, ISC did not offer any method for extending languages to component lan-
guages without modifying a language’s metamodel. This contribution is a prerequisite
for C1-6.

C1-4 Basic invasive composition operators for graphs In addition to the variability
typing, the basic composition operators of U-ISC/Tree needed to be extended for graph
composition, because they are the basis of the composition technique. Our extension to
the basic operators needed to take the properties of graphs and the new graph variability
concepts (C1-2) into account.

We defined the operators in terms of graph rewriting rules with story driven modelling in
Section 6.1. We introduced a new basic delegating operator that decides which concrete
operator to call based on the nature of the variation point it is applied to. This way,
operators do not have to be called explicitly anymore in composition programs, as it was
the case in ISC so far, but can be automatically selected, which is a prerequisite for C1-5.
The basic composition operators are the third foundation of U-ISC/Graph.

C1-5 Universal invasive composition language and algorithm We needed a mechanism
to integrate arbitrary languages as composition languages into composition systems. For
that, we required a common format for composition programs as bridge between arbi-
trary composition languages, modularity concepts defined in FraCols (C1-1), and basic
composition operator calls (C1-4).

As such common format, we defined the declarative Universal Composition Language
(UCL) with a minimal set of concepts in Section 6.2. Composition programs formulated
in UCL can be translated to basic operator calls by the universal composition algorithm
defined in Section 6.3. Both UCL and the composition algorithm are independent of a
concrete component or composition language. Component languages are integrated by
using REXCM (C1-3) to define how a concrete model is accessed and which parts of such
a model are passed to the basic operators for modification. Furthermore, to treat an
arbitrary modelling language as composition language, we define the REXCL language
for composition language integration in Section 6.5. REXCL maps a metamodel of a
modelling language to modularity concepts defined in FraCols and with that expresses
how a UCL composition program is extracted from models defined in that modelling
language. Thanks to the declarative nature of UCL, which does not define an order in
which elements of a composition program needs to be interpreted, UCL programs can
be combined by extraction from multiple sources. UCL is the first declarative compo-
sition language for ISC and REXCL the first method to integrate arbitrary composition
languages into composition systems. This contribution is the last prerequisite for C1-6.
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C1-6 Declarative composition system specification formalism Our goal was to develop
a formalism to configure a generic composition system that can be used for MDSD.

FraCols (C1-1), REXCM (C1-3), and REXCL (C1-5) in combination with EMOF/Ecore
yield this formalism. Modelling languages are defined in EMOF/Ecore and modularity
concepts are defined in FraCols. With REXCM and REXCL, the modelling languages are
mapped to the FraCols, either as component or composition languages. Since FraCols
can be combined with very few restrictions, such composition systems can be extended,
even if they are already in use, with new modularity concepts as well as new component
and composition languages. This is the first formalism for defining invasive composition
system with this degree of flexibility.

Contribution 2 (C2): Composition Framework for Models

C2-1 Universal model composition framework to transfer our results into practice and
evaluate them, a tool is required that implements U-ISC/Graph with the generic com-
position system for MDSD (C1) and its configuration formalism (C1-6).

We provide this tool, which is called Reuseware, and described it in Chapter 7. The
core of the tool is generated from the semantics specifications of U-ISC/Graph that
we provide as story diagrams in Appendix A. Reuseware is the first ISC tool that is
based on a standardised metalanguage (EMOF/Ecore) and offers the high flexibility of
integrating arbitrary languages as both component and composition languages.

Contribution 3 (C3): Component-Based Model-Driven Architectures

C3-1 Architectural style for MDSD with multi-dimensional separation of concerns
To fully combine the advantages of MDSD and component-based development, we needed
an architectural style for MDSD that supports the advantages of both.

We developed such a style, called ModelSoC, based on the multi-dimensional separation
of concerns paradigm. For this, we extended the hyperspace model for multi-dimensional
separation of concerns to meet the requirements of MDSD. ModelSoC uses the generic
composition system for MDSD to its full extend and thus can be used to define model-
driven architectures with arbitrary many modelling languages and modularity concepts
(called concern dimensions in multi-dimensional separation of concerns). With Model-
SoC, we contributed a style to define model-driven architectures in which the complete
architecture of a system is reflected in one UCL composition program and where concerns
are separated in a unified way throughout all abstraction levels and viewpoints. This
ensures that all models are kept synchronised and eases traceability, while it preserves
the property of MDSD to integrate arbitrary DSMLs into a model-driven architecture.

We evaluated ModelSoC and with it U-ISC/Graph. For this we used Reuseware to set
up a model-driven architecture with the ModelSoC style and developed a demonstrator
system with it. Since, the architecture was designed to reflect properties found in many
model-driven architectures, we can generalise from it and conclude that ModelSoC and
therewith U-ISC/Graph is applicable for a number of similar MDSD scenarios.
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C3-2 Architectural style for MDSD with hierarchical composition While ModelSoC is
powerful, it can also be complex to use when many DSMLs and modularity concepts are
involved. We also identified model-driven architectures for which a simple hierarchical
composition suffices.

For such architectures, we defined a lightweight component-based architectural style for
MDSD called ModelHiC. This style can be applied to realise abstraction in a model-driven
architecture that is centred around a single DSML and in which abstract modelling is
performed by defining a hierarchy of UCL composition programs. This spares the effort
of integrating different DSMLs for different abstraction levels. ModelHiC thus provides
a restricted, but lightweight, way for model-driven software development.

We evaluated ModelHiC and with it U-ISC/Graph. For this we used Reuseware to
develop abstraction support for one complex DSML with ModelHiC. Since the DSML
we chose had properties which are typical conditions in practice, we can generalise from
it and conclude that U-ISC and ModelHiC are applicable in a number of similar MDSD
scenarios.
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12
Outlook

In this chapter, we discuss open issues and give directions of future work. This includes issues
that we researched during the work on this thesis but did not present so far.

There are important issues related to our work on invasive composition systems for MDSD
that are not part of U-ISC/Graph, but rather build on top of U-ISC/Graph. Still, these issues
are motivated by requirements for the practical use of components in MDSD and thus we were
aware of them from the beginning of our work. In particular to perform the evaluations in
Chapters 8 and 9, we needed to address some of these issues at least partially and integrate
them in Reuseware to provide user friendly tooling. In the following sections, we introduce
the different issues, summarise the initial work done so far, point at our publications about
this work, and propose future directions for continuing this work. If a part of work was done
in collaboration with others, we indicate this.

12.1 Layout Composition Support

We discussed in Section 5.1.2 that models with graphical syntax are augmented with layout
information that has to be managed and stored in addition to the models. The layout contains
information about where shapes and lines that represent parts of a model are positioned on
the screen. If we compose models that have additional layout information with U-ISC/Graph,
this information is lost in the composed model, because it is not part of the original graph
fragments. This is an undesirable situation, since preserving the layout information is vital to
understand a composed model and relate it mentally to the fragments it was composed from.
Furthermore, layout information of the involved composition programs can also be of interest.
Thus not only preserving, but also merging the layout from different sources is an issue.

We addressed this issue together with Karsten Gaul in [JG09] and [Gau10]. In [JG09] we
considered layout preservation and composition in U-ISC/Graph composition systems that
directly integrate UCL. There, the layout information created in the GMF editor for UCL
(cf. Section 7.3) was taken into account. The tool support that resulted from this work was
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used in the evaluation of ModelHiC in Chapter 9. In [Gau10], the layout composition work
was extended to support composition systems with arbitrary composition languages. That
is, combining layout information from models defined in different component and composition
languages using different graphical and textual syntaxes. The result of this work was used in
the evaluation in Chapter 8.

In summary, in [JG09] and [Gau10] we developed an extensible layout composition frame-
work called LaCoMe (Layout Composition Framework). Reuseware calls into LaCoMe after
executing a composition step (cf. Section 6.3) and passes the model fragments with their layout
information, the composition program with its layout information, and the composed model to
LaCoMe. Furthermore, it gives LaCoMe access to the trace information of the SyncEcoreUtil
tool (cf. Appendix A.3.3) which allows LaCoMe to identify certain nodes as copies of others.
LaCoMe uses this information to create a layout for the composed model that preserves as
much information as possible of the original layouts. It also can apply adjustment algorithms
to remove overlaps of shapes that result from the merge of several layouts. Since there is no
established standard for presenting layout information (cf. discussion in Section 5.1.2) LaCoMe
is extensible to support new layout formats. Currently the formats used by GMF [Gro09] and
TOPCASED [TOP10] are supported which are the formats we used in the evaluations. La-
CoMe offers another extension point for adjustment algorithms since it turned out that there
are different possibilities to remove overlaps and that it highly depends on the concrete kinds of
diagrams and models which one to select. For more details please consult [JG09] and [Gau10].

Although it improved the invasive composition of graphical models a lot, our work on layout
preservation and composition is still only a first step. During the work, it became clear that
different adjustment strategies are required for different types of diagrams which makes the
development of language independent solutions challenging. Although [Gau10] provides a
classification of diagram layouts, this classification has yet to be put into practice to automate
the selection of adjustment algorithms. So far, a user has to do manual configurations to select
the best suited adjustment for the task at hand. This becomes a tedious task if many different
languages and models are involved in a development process as in Chapter 8. The results
of a user study on the usefulness of LaCoMe in the model-driven architecture of Chapter 8,
which was performed as part of [Gau10], underpin this. Since there is limited work on layout
preservation in MDSD (in the context of model transformations, only Pilgrim et al. addressed
the issue in [vP07, vPVSGB08]), we belief that continuing this work is important not only for
the usability of U-ISC/Graph but for MDSD in general.

12.2 Round-trip Support

Composed models are in many cases meant to be inspected by users and are not, as for instance
compiled code, only processed by machines. That is the reason why layout preservation,
discussed above, is an important issue. Another issue that is also motivated by the fact that
users work with composed models, is round-trip support for editing these models. That is, users
should be able to modify composed models, for example when they find a mistake that was not
recognised in the fragments from which the model was composed. Such modifications should
be propagated back into the original fragments or the composition program in a way that
recomposing the composed model preserves the changes. If this is not possible, the user should
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at least be informed about that when he or she tries to modify a composed model. Currently,
without round-trip support, users can open and edit composed models, but changes will soon
be lost when the model is recomposed after one of the underlying fragments or composition
programs changes.

We started to work on round-trip support for U-ISC/Graph together with Mirko Seifert
[JSS09], who works on round-trip systems in general, to understand how round-trip can be
supported in U-ISC/Graph and which concepts particular to U-ISC/Graph can be exploited
for that. In this context, a prototype was developed by Mirko Seifert which was used to extend
the security modelling in the ModelSoC architecture of Chapter 8 with round-trip features.

In general, we learnt that round-trip support can be provided easily for the parts of graph
fragments that are hidden behind composition interfaces (cf. Section 5.1.3). These parts are not
modified during composition and appear in the composed model as exact copy of the original
graph fragment part. If a user modifies the copy, the same modification can be automatically
applied to the original. Problems can occur when a fragment is reused in multiple places. Then
it is not clear if the user intents to modify only one or all copies of the reused fragment. For
this, more information about the user’s intent is required. This information can be obtained by
asking the user interactively each time such a situation occurs or by providing strategies that
guess the user’s intention. In one concrete composition system, the users might always expect
a certain behaviour given by the nature of the system. For example, for an aspect fragment,
as used in examples in this thesis, it can be expected that all occurrences of the aspect are
always intended to be modified together. Certain intents might require the modification of
composition programs and the fragment repository. For instance, if only one occurrence of a
fragment is modified, a duplicate of the fragment for that one occurrence needs to be created
and the composition program needs to be changed to use the new duplicate in the future. If
changes to elements that influence the composition interface are made, this can change the
whole composition and have unexpected impact on the composed model. The current solution
produces a preview of the impact of the change and allows the user to undo the change. So far
we only consider U-ISC/Graph composition systems that use UCL as composition language
directly. For more details please consult [JSS09].

In the work so far, the focus was on fragments and composition interfaces and only partially
on composition programs. In the future, it should be investigated how more changes can be
automatically back propagated to composition programs and how the UCL (cf. Chapter 6) and
FraCols (cf. Chapter 4) concepts can help with that. To take this a step further, extending the
round-trip support for models that are interpreted as composition programs, is of high interest.
In particular, ModelSoC, as presented in Chapter 8, would profit from this immensely since it
would allow editing of the generated views.

12.3 Fragment Library System

Once a composition system is in use and fragments are developed and reused, it is important
to organise the fragments in a library and provide means to search for suitable fragments in
it. Also composition programs and even composition systems themselves should be organised
and searchable. In the end, only the ability to find fragments that are useful for the task at
hand makes these fragments reuseable for a user.
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We developed together with Matthias Schmidt a library system for models in [SPJF10]. The
system is based on faceted classification and browsing, which is a popular method for searching
in many online systems (e.g., in Ebay). The library system was implemented as an extension
of Reuseware that includes a visual fragment browser for Eclipse. We evaluated the tooling
in [SPJF10] using the fragments from the evaluation in Chapter 9.

Faceted classification is a concept from book libraries which was introduced by Ranganathan
in the 1930s. Pŕıeto-Diaz [PDF87, PD91] was the first who proposed its usage for software
component libraries. In a faceted classification, not an object as a whole, but different aspects
(i.e., facets) of an object are described. For example, well-known facets used in book libraries
are author, topic, and publisher. A set of facets define a controlled vocabulary that is used
for classification. In our approach, a facet developer, who is possibly also composition system
developer, defines facets that are suitable to describe fragments of a certain composition system.
The composition system user, who defines fragments, can classify them by using the vocabulary
defined by the facets. Another user can use the facet-based browser in Eclipse to interactively
browse the library of classified fragments. Instead of classifying all fragments manually, a facet
can also come with a query defined in OCL that derives the value for that facet for a fragment
automatically by inspecting the fragment. All details are described in [SPJF10].

The critical point of the faceted browsing system is that all fragments need to be sufficiently
classified. If this is done manually, there is danger of incomplete, wrong, or outdated classifica-
tion. Therefore, the possibility of automatic classification is important and should be further
investigated. One way to ensure sufficient classification would be to integrate it deeper into the
composition system development process. On the one hand, the composition system developer
could be urged to define facets with automatic classification rules. On the other hand, the
composition system users could be forced by a tool to define certain facets when they regis-
ter fragments with the repository. Apart from fragments, also FraCols, REXCM, and REXCL

definitions could be classified. This is in particular important for highly customised compo-
sition systems with many small specifications as used in ModelSoC (e.g., the specifications of
the architecture defined in Chapter 8 collected in Appendix B). If one wants to set up a new
model-driven architecture with ModelSoC, it is important to search for existing specifications
that can be integrated instead of defining everything from scratch. For this, a dedicated set
of facets could be defined. In the future, larger case studies need to be performed to evaluate
and improve facets and classification methods further.

12.4 Easing Composition System Development

Developing a composition system for MDSD is a language engineering, or metamodelling, task.
It is a complex task, since the developer has to understand the concepts of U-ISC/Graph and
learn the specification languages FraCol, REXCM, and REXCL. In other language engineering
disciplines such complexity also exists. For example, developing a graphical syntax with GMF
[Gro09] (cf. Section 5.1.2) is difficult to learn because GMF also has rich and complex speci-
fication languages. The EuGENia [KRPP09] approach simplifies that by abstracting from the
specification languages in GMF. Instead, it offers a much more compact formalism based on
metamodel annotations. Instead of forcing the user to define all details, EuGENia assumes
default values for places where nothing has been specified. Although GMF allows much more

188



12.5 Combining Composition with Rewriting

configurability, EuGENia is considerably easier to learn and use and still allows for most func-
tionality. In a similar way, we could abstract from our specification languages to offer a limited
but easier to learn way to specify composition systems.

In [JZF+09] we developed, together with the developers of EuGENia, an approach to de-
fine composition languages by means of metamodel annotations (instead of using REXCL).
Although this approach is more limited, it is simpler to learn and use and is particular suit-
able to combine DSMLs in a composition system that are located in the same domain as we
discussed in [JZF+09].

Technically, we realised the annotation based approach by generating an ETL model trans-
formation [Kol08] from annotations that can transform models into composition programs.
Thus, instead of using REXCL with the extractCompositionProgram() operation (cf. Ap-
pendix A.5), we directly transform models into composition programs with the generated
transformation. For this the transformation is registered with Reuseware using the Com-
positionProgramExtractor extension point defined in Section 7.4, where we already discussed
such a way of using model transformations instead of REXCM or REXCL specifications in more
detail.

In the future, further possibilities for easing development of invasive composition systems
should be investigated. New formalisms and languages can be developed with metamodelling
and model transformation technologies. In particular, we expect that abstract formalisms can
be found for specific categories of composition system—for instance, composition systems used
for ModelSoC (cf. Chapter 8). Tools more specialised for composition system development
could also be imagined. Instead of defining a textual specification, one could also think of
graphical tools or a tool based on wizards.

12.5 Combining Composition with Rewriting

Another interesting direction of future work we have not yet worked on is the combination
of composition with rewriting. U-ISC/Graph is only concerned with composition of graphs,
but not with rewriting them internally. However, at the point in a model-driven architecture
where platform specifics need to be taken into account, rewriting can become important to do
optimisation (e.g., tuning source code fragments). An interesting question is how composition
and rewriting can be combined.

In fact, the layout adjustment discussed in Section 12.1 can be seen as such a rewriting.
After a composition step, information that is connected with the graph but does not influence
the composition is rewritten to meet some optimisation goal—in that case an optimal diagram
layout. Similar, internals of a composed fragment can be rewritten—for example to optimise
execution speed. Thus, we could generalise the layout composition (which is performed in
addition after a composition step) to general composition post processing that may perform
other kinds of rewriting after a composition step. If such a rewriting can ensure that it only
changes internals but not the composition interface of the composed fragment, it would not
interfere with the composition algorithm. An interesting point is that rewritings cannot only
be performed on single fragments or on the complete composition result, but also after inter-
mediate composition steps on intermediate composition results. It is an interesting research
question if, and for which kinds of optimisations, this brings advantages.
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12.6 Integrating U-ISC/Graph into other Tools

In Part I of this thesis we conceptually developed U-ISC/Graph and in Chapter 7 we presented
Reuseware as an implementation of it. The concepts of U-ISC/Graph could be transferred
to other tools as well. For example, one could imagine composition support based on U-
ISC/Graph as a new component in the mentioned Epsilon model management platform [Kol08].

To realise this, the U-ISC/Graph specifications in EMOF models and story diagrams (cf.
Appendix A) could be used by alternative code generators to generate a U-ISC/Graph compo-
sition engine that respects the APIs of the tool into which U-ISC/Graph should be integrated.
Another implementation possibility is to formulate the U-ISC/Graph semantics in other model
transformation languages or to generate model transformation scripts from the story diagrams.
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A
U-ISC/Graph Semantics defined with Story

Driven Modelling

A.1 Introduction to Story-Driven Modelling (SDM)

This appendix contains the semantics definitions of U-ISC/Graph that are specified with the
Story-Driven Modelling (SDM) formalism, to which we give a short introduction in the follow-
ing. SDM [FNTZ00] extends UML activities [OMG10b, Chapter 12] to story diagrams. Story
diagrams can be seen from the modelling as well as from the graph rewriting perspective. From
the modelling perspective, they introduce a specific kind of action—the story pattern action—
into activity diagrams. From the graph rewriting perspective, the SDM formalism is a graph
matching and rewriting language following the ideas of graph grammars.

As stated in [FNTZ00], story diagrams were developed to improve the integration of graph
grammars with design and implementation languages such as UML and Java. Consequently,
the story diagram implementation found in Fujaba integrates into UML activity diagrams.
From such activity diagrams executable Java code is generated by Fujaba.

We will not discuss in detail how story diagrams are translated into Java here, but describe
the semantics of story diagrams informally. We limit this description to the elements of story
diagrams we use in this thesis.

A.1.1 SDM Concepts

SDM is an extension of UML activities [OMG10b, Chapter 12]. A UML activity can be used to
define the behaviour of an operation—in the Ecore case an EOperation (cf. Figure 5.6)—with
a workflow. Hereby, a set of actions and a flow between them is modelled. In an abstract
model, an action might only contain a description in natural language that describes what is
done inside the action. In a more concrete model, an action needs to be linked to some other
model or code that exactly describes the semantics of the action—usually in terms of reading
and modifying the state of the modelled/implemented system.
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Figure A.1: Graphical story diagram notation.

In the case of the metamodelling language Ecore, where the EOperations and consequently
the actions within describe language semantics, an exact description of semantics is desired.
Ecore itself does not contain a formalism for this by default. Although UML does offer for-
malisms for behaviour modelling, it also allows adding additional formalisms to describe action
semantics if needed.

SDM is such a formalism that allows the specification of action semantics in terms of graph
rewriting rules—called story patterns. Since we describe semantics for graph modifications and
compositions, the SDM formalism suits our purpose. In the following, we describe the details
of UML activities and SDMs directly on their graphical notation which we will use throughout
this thesis.

A.1.2 Graphical Notation

The elements of story diagrams and their graphical notations are shown in Figure A.1. They can
be separated into three parts: (1) The activity diagram part that is UML standard notation
[OMG10b, Section 12.4]. (2) The part of story pattern actions that assemble the left side
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(matching part) of a graph rewriting rule. (3) The part of story pattern actions that assemble
the right side (rewrite) part of a graph rewriting rule.

In SDM, the activity diagram notation acts as explicit rule control language that controls
the order in which graph rewriting rules are applied. An activity is always invoked on a
node of a model that is an instance of the EClass containing the corresponding EOperation.
Furthermore, if the EOperation declares EParameters, other nodes are passed as arguments
to the activity. All rules operate—match and rewrite—on the graphs that the invoked-on node
and the argument nodes are nodes of. Other nodes of these graphs can be bound to named
variables that can be referenced by other rules. Thus, all rules (story patterns) of a story
diagram operate in a common context and build upon each other.

Activity Diagram (Figure A.1 (1)) The following activity diagram concepts are used in
this thesis: Each activity starts with an initial node (1.1) and ends with one or more activity
finals (1.2). If the EOperation has a return type, the activity finals have to be annotated
with a node of the corresponding type that is returned as a result of the activity. The main
parts of an activity are the story pattern actions (1.3). The order in which the actions are
executed is specified by transitions (1.4) between the actions. An action will either succeed
(pattern matches at least once) or fail (pattern does not match). Therefore, an action can have
two outgoing transitions where one is annotated with [succeed] and one with [failure]. In
addition to story pattern actions, decision nodes (1.5) are supported. A decision node always
has two outgoing transitions, where one is annotated with a boolean expression over the nodes
currently bound in the activity and one with [else]. A special action is the for-each action
(1.6) that is executed for every match (and not only for one match). A for-each action always
has an outgoing transition [end]. It may also have an outgoing transition [each time] that
points to a follow-up pattern that is executed for each match.

Story Pattern Action – Match Part (Figure A.1 (2)) Inside a normal or an for-each
story pattern action, the following elements are used for graph matching: In general, a story
pattern consists of a set of nodes1 notated in UML object diagram notation [OMG10b, Chapter
7], which is node:EClass (where node is an instance of EClass). Bound nodes (2.1) are the
starting points of each match. They need to be already bound in the context of the activity.
Always available is the special bound node this that is the node the activity is invoked on.
The arguments of the operation are also available as bound nodes. Unbound nodes (2.2) are
the parts of a rule that are bound during matching. After a successful match, these nodes
are available as bound nodes in successive rules. Unbound nodes can be negative (2.3), which
means that the rule only succeeds if the node cannot be bound. They can also be optional
(2.4), which means that the node is bound in case of a match, but would not let the rule fail
if the binding is not possible.

Nodes are connected via edges (2.5) that are instances of EReferences (cf. Figure 5.6).
An edge can therefore only be drawn between nodes that are instances of EClasses that are
connected by the corresponding EReference. A set of connected nodes needs to contain at
least one bound node as a starting point for the matching. Similar to nodes, edges can be
negative (2.6), or optional (2.7). Another required construct is the multi edge (2.8). Edges
that are instances of the same EReference can be part of an edge list—if the upperBound of

1In the original UML and SDM terminology nodes are called objects and edges are called links. We stick to
the graph terminology and therefore use the terms node and edge consistently.
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that EReference is greater than one. With the multi edge concept, we can take the order of
edges in an edge list into account for matching and rewriting.

Story Pattern Action – Rewrite Part (Figure A.1 (3)) After a rule matches, rewrite
operations can be performed. These are creations or destructions of matched nodes or links
(3.1–3.3). Additionally, so called collaboration statements (3.5) can be formulated. In general,
these statements can be used to call into arbitrary existing code. In our case, we use collabo-
ration statements for two purposes. First, they are used to call other story patterns. Second,
they are used to call standard library operations on primitive data types such as string. The
syntax of these statements is close to Java statement syntax. The statements are executed in
an order defined by the leading number (1: in Figure A.1 (3.5)). The collaboration statements
of a story pattern action are only executed if the matching succeeds.

We gave a brief overview of the SDM graph rewriting formalism and its syntax above. This
may be used as a reference to support the understanding of the diagrams which are presented
in this appendix. For further details about SDM please refer to [FNTZ00] and the Fujaba
website http://www.fujaba.de.
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compositionInterfaces

rPortTypeBinding

rRoleBinding

<<from Fragment>>

<<from Fragment>> <<from REX>>

<<from REX>>

Fragment
<< from Fragment >>

0..*

reuseExtensions 
<< from ReuseExtension >>

ReuseExtension

createPort (ci: CompositionInterface, element: EObject, 
                   apRule: AddressablePointDerivationRule,
                   staticPort: Port, binding: PortType2PortBinding) : HeterogeneousPort

computeCompositionInterface() : Void
createStaticPort (ci: CompositionInterface, binding: PortType2PortBinding) : Port

Figure A.2: Relationships between fragment (cf. Figure 5.21) and reuse extension (cf. Fig-
ure 5.27) metamodels.

A.2 Composition Interface Computation

This section defines the semantics for composition interface computation based on REXCM

specifications described in Section 5.3.

Figure A.2 depicts the relationships between the composition interface (cf. Figure 5.21) and
the REXCM (cf. Figure 5.27) metamodels. The reference reuseExtensions is used to link
a fragment to the reuse extensions that define how its interface is computed. The created
composition interface will link to the fragment role and port type bindings that are responsible
for its creation. For this, the references rRoleBinding and rPortTypeBinding are needed.

computeCompositionInterface() is depicted in Figure A.3. In principle it iterates over the
ComponentModelSpecifications that are reached via reuseExtensions. Then it attempts to
apply each rule specified in the current specification to each node of the fragment. It makes use
of the additional operation createStaticPort() (Figure A.4) and createPort() (Figure A.5).
In detail, it works as follows.

1. All composition interfaces created in previous computeCompositionInterface() calls
are removed.

2. The following patterns are performed for each REXCM specification that is reached via
reuseExtensions. To distinguish different composition interfaces for different fragment
roles, one composition interface is created here for each fragment role bound in the
REXCM specifications. To decide whether to continue to Pattern 3, we utilise an external
Evaluator (cf. Section 7.4) that can evaluate OCL expressions by calls into the MDT
OCL interpreter [Ecl10c]. The eval() operation evaluates towards a boolean value. It
accepts a UFI (i.e., a list of strings), an EObject (or a list of EObjects as in this case)
and an OCL expression (as plain string) as arguments. It returns true if evaluating the
expression on one of the EObjects returns true or if the expression is empty. Thus, in this
case, it evaluates to true if the isExpression is satisfied for one of the root elements of
the model (contents reference) or if no expression is specified. In that case, we continue.
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else

Evaluator.eval(UFI, varTypedElement, apRule.isExpression)

each time

Evaluator.derive(UFI, element, prototypeRule.pointNameExpression)
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Evaluator.derive(UFI, element, anchorRule.pointNameExpression)

Evaluator.deriveElementList(UFI, varTypedElement, apRule.forEachExpression)

«create»

Evaluator.derive(UFI, element, vPrototypeRule.valueExpression)
Evaluator.derive(UFI, element, vPrototypeRule.pointNameExpression)

each time

each time

eBoundFeatureeBoundClass

each time

EcoreUtil.getAllContents(this.contents)

«destroy»compositionInterfaces

Evaluator.eval(UFI, this.contents, rex.isExpression)

else

eClass

«create»
varTypedEObject varTypedEStructuralFeature addressablePoints

Evaluator.eval(UFI, element, slotRule.removeExpression)
Evaluator.derive(ufi, element, slotRule.modeExpression)
Evaluator.derive(ufi, element, slotRule.pointNameExpression)

«create» «create»

«create»
varTypedEObject varTypedEStructuralFeature addressablePoints

«create» «create»

«create»
varTypedEObject varTypedEStructuralFeature addressablePoints

Evaluator.eval(UFI, element, hookRule.removeExpression)
Evaluator.derive(ufi, element, hookRule.modeExpression)
Evaluator.derive(ufi, element, hookRule.pointNameExpression)

«create» «create»

«create»
varTypedEObject varTypedEStructuralFeature addressablePoints

«create» «create»

«create»
varTypedEObject varTypedEStructuralFeature addressablePoints

«create» «create»

(12)

«create»
varTypedEObject varTypedEStructuralFeature addressablePoints

listIndex:=Evaluator.deriveInt(UFI, element, vHookRule.listIndexExpression)

Evaluator.derive(ufi, element, vHookRule.modeExpression)
Evaluator.derive(ufi, element, vHookRule.pointNameExpression)

vHook :ValueHook

«create» «create»

endIndex:=Evaluator.deriveInt(UFI, element, vHookRule.endIndexExpression)
beginIndex:=Evaluator.deriveInt(UFI, element, vHookRule.beginIndexExpression)

each time

createPort(ci, element, apRule, staticPort, portBinding)

reuseExtensions

ComponentModelConfiguration

«create»
compositionInterfaces

binding :FragmentRole2FragmentBinding

fragmentRoleBindings «create» rRoleBinding

  computeCompositionInterface (): Void
Fragment

Figure A.3: Fragment.computeCompositionInterface() operation.
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3. In this pattern, static port types are processed. For each static port type, a port is
created using the createStaticPort() operations defined below.

4. Now that we have verified that the current REXCM specification applies to this fragment
and created an empty interface for it, we have to determine the variability type for
each of the model elements. To obtain an iterator over all elements, we make use of
the EcoreUtil.getAllContents() operation provided by the EMF that iterates over
the containment hierarchy (i.e., the spanning forest) of this fragment’s graph (contents
reference).

5. Each derivation rule has to be checked for each model element. Thus, we also iterate of all
rules defined in the REXCM specification. For each model element and rule combination,
we execute the following patterns.

6. Initially, we check if the current element is an instance of the EClass. For that, we apply
negation to find wrong matches. If the type is correct, we evaluate the isExpression
using the Evaluator before continuing to Pattern 7.

7. We now iterate over all elements that are reached by interpreting the forEachExpression.
For this, the Evaluator offers the deriveElementList() operation. This operation in-
terprets the given query (here forEachExpression) in the context of the given element
(here varTypedElement) and returns the result as a list. It returns a list containing the
original element if the passed query is empty, which is the case if no forEachExpression
expression is specified. Based on the rule applied to the current element, a port is selected
or newly created using the createPort() (Figure A.5) operation that is described below.

8. to 13. The actual variability type assignments are performed by creating appropriate
addressable points. Which type of addressable point is created is determined by the
type of the addressable point derivation rule (e.g., a slot is created for a slot derivation
rule). In each case the Evaluator’s derive() operation is called to derive the name of the
addressable point using the point name expression. In the case of a value hook (Pattern
12), the beginIndex and the endIndex are derived in a similar fashion and in the case of
a value prototype (Pattern 13) the value is derived. The variability type is attached to
the element by setting the varTypedEObject reference of the created addressable point to
the element. If a feature was specified, this is set in the varTypedEStructuralFeature
reference. Finally, the addressable point is added to the port.

The operation createStaticPort() is shown in Figure A.4 and explained in the following.

1. We find the StaticPortType bound by the port type binding. Afterwards, we either
create a heterogeneous port or a homogeneous port depending on the concrete port type
binding

2. In the former case we do:

2.1 If a heterogeneous port that is linked with the binding exists, we return that port.

2.2 If no heterogeneous port for the given binding exists, we create one, assign the name
of the bound port type as port name to it, and link it to the binding.

3. In the latter case (homogeneous port) we do:

3.1 If a homogeneous port that is linked with the binding exists, we return that port.
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portBinding instanceof

Fragment::createStaticPorts (ci: CompositionInterface, portBinding: PortType2PortBinding): Port

PortType2HomogenousPortBinding

(1)

Figure A.4: Fragment.createStaticPort() operation.

3.2 If no homogeneous port for the given binding exists, we create one, assign the name
of the bound port type as port name to it, and link it to the binding.

The operation createPort() that was utilised above is shown in Figure A.5 and described
in the following. According to the port and homogeneous port name expressions of a given
derivation rule, the operation selects an existing port from a given composition interface or
creates a new one and adds it to the interface.

1. If the staticPort parameter is bound to a HomogeneousPort, we set homoPort to the
parameter value and directly proceed with Pattern 3.3 to handle heterogeneous ports. If
the staticPort parameter is bound to a HeterogeneousPort, no further ports need to
be created dynamically and that port is returned.

2. If no static port exists, we have to decide if a homogeneous port is needed in addition to a
heterogeneous port. If a homogeneous port name expression is defined in the derivation
rule, we can create a homogeneous port that wraps a set of heterogeneous ports (cf.
Section 5.2.4). If not, we create only a heterogeneous port (cf. Section 5.2.3). In the
latter case we do:

2.1 We derive the port name from the derivation rule’s port name expression using the
Evaluator. If a heterogeneous port with that name already exists on the given com-
position interface, this port is returned.

2.2 If no heterogeneous port with this name exists, it is created, the name is assigned, it
is added to the composition interface, linked to the binding, and returned.

3. In the former case (homogeneous port is required) we do:
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Fragment::createPort (ci: CompositionInterface, element: EObject, apRule: AddressablePointDerivationRule,

apRule.homoPortExpression != ""

Evaluator.derive(UFI, element, apRule.portNameExpression)

Evaluator.derive(UFI, element, apRule.homoPortNameExpression)

«create» Evaluator.derive(UFI, element, apRule.homoPortNameExpression)

«create»

heterogeneousPorts
Evaluator.derive(UFI, element, apRule.portNameExpression)

heterogeneousPorts
Evaluator.derive(UFI, element, apRule.portNameExpression)

«create»

«create»

Evaluator.derive(UFI, element, apRule.portNameExpression)

staticPort: Port, binding: PortType2PortBinding): HeterogeneousPort

[ staticPort instanceof HomogeneousPort ]
homoPort := (HomogeneousPort) staticPort

staticPort
[ staticPort instanceof HeterogeneousPort ]

«create»
rPortTypeBinding

«create»
rPortTypeBinding

Figure A.5: Fragment.createPort() operation.

3.1 We derive the name of the homogeneous port from the derivation rule’s homogeneous
port name expression using the Evaluator. If a homogeneous port with that name
already exists we continue with 3.3.

3.2 If no homogeneous port with this name exists, it is created, the name is assigned and
it is added to the composition interface.

3.3 We derive the name of the heterogeneous port from the derivation rule’s port name
expression. If a heterogeneous port with that name exists in the homogeneous port,
it is returned.

3.4 If no heterogeneous port with this name exists in the homogeneous port, it is created,
the name is assigned, it is added to the homogeneous port, linked to the binding,
and returned.

201



A U-ISC/Graph Semantics defined with Story Driven Modelling

A.3 Universal Composition Language Semantics

This section defines the semantics for UCL described in Section 6.3.

A.3.1 Composition Link Matching

Two operations for matching addressable points (cf. Figure 5.21a) are defined. VariationPoint.
typeMatch() checks if the domain type of a given reference point, which is defined in the cor-
responding metamodel, matches the type of the variation point. AddressablePoint.match()
checks if two addressable points are compatible from the variability typing viewpoint. In the
following, we first explain the details of typeMatch() shown in Figure A.6. Afterwards, we
examine match() in more detail.

1. First we navigate to the Fragment containing this VariationPoint because it is needed
later in Patterns 5.1 and 6.1.

2. If a HomogeneousPort is involved, the previous pattern fails to find the Fragment, so this
pattern performs the task.

3. Patterns 3–6 perform a case analysis on whether a node (varTypedEObject) or a feature
(varTypedEStructuralFeature) is variability typed. This pattern covers the case, where
two EReferences are variability typed.

3.1 We apply negation to find negative matches. If the type of both EReferences is not
equal, then the type of this VariationPoint has to be a super type of the type of
the ReferencePoint (eAllSuperClasses edges). If this is not the case, the error
pattern matches and false is returned.

4. Next, the case where the reference point types a node is covered.

4.1 We apply negation to find wrong matches. If the type of the EReferences that is
typed by the variation point is not equal the type of the EObject that is typed by
the reference point, then the type of this VariationPoint has to be a super type of
the type of the ReferencePoint (eAllSuperClasses edges). If this is not the case,
the error pattern matches and false is returned.

5. Next, the case where the variation point types a node is covered.

5.1 We apply negation to find wrong matches. The following condition has to be true
for each edge that points at the EObject typed by the variation point: If the type
of one of these edges (Settings) is neither equal nor a super type of the type of the
EReferences typed by the reference point, the error pattern matches and false is
returned. This is necessary, because all edges that point at the variation node are
altered during composition. Thus, all types have to match.

6. Finally, the case where both the variation point and the reference point type a node (and
not an edge list) is covered.

6.1 We apply negation to find wrong matches. The following has to be true for each edge
that points at the EObject typed by the variation point: If the type of one of these
edges (Settings) is neither equal nor a super type of the type of the EObject typed
by the reference point, the error pattern matches and false is returned.
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]success[

]success[

]failure[

]success[

]failure[

]failure[
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compositionInterfacesportsaddressablePoints

VariationPoint::typeMatch (rp: ReferencePoint): Boolean

eAllSuperTypes
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][

[

Figure A.6: VariationPoint.typeMatch() operation.
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null

match

Prototype::match (ap: AddressablePoint): APMatch

«create»
«create»

«create»

hook.typeMatch(this)

]success[

(1)

(2)

Figure A.7: Prototype.match() operation (as example for AddressablePoint.match()).

In addition to the type matching above, also the variability types between addressable points
need to be matched, which is performed in AddressablePoint.match(). It is specified similarly
for each concrete subclass of AddressablePoint and is shown and explained for Prototype in
Figure A.7.

If AddressablePoint.match() succeeds, it returns an APMatch used to cache and transport
the match. The inverse flag of APMatch indicates the direction in which source and target
are related. The default direction implies that source can replace target (i.e., source is a
reference and target is a variation point). If inverse is set, the opposite is the case.

1. First, it is checked if the AddressablePoint given as parameter is a Hook, since this is
the variability type compatible with Prototype. It is also checked if names of Hook and
Prototype are equal. This check will also succeed if both names are not set.

2. Second, the domain type compatibility check is performed by calling the above described
typeMatch() operation (cf. Figure A.6) on the Hook. If this succeeds, an APMatch is
created with this Prototype as source and the Hook as target. Since this is the default
matching direction, inverse is set to false. Note that the typeMatch call is missing in
the definitions of match() for ValueHook and ValuePrototype, since attributes do not
have a domain type and therefore always match.

To match a complete composition link, the CompositionLink.match() operation shown in
Figure A.9 is performed. It relies on the type and variability type matching of variation and
reference points.

match() determines if the link is valid. To record matches in the case of a valid link,
we introduce the APMatchGroup concept between CompositionLink and APMatch (cf. Fig-
ure 5.21) shown in Figure A.8. match() sets the matches reference of CompositionLink to an
APMatchGroup in which all APMatches, which are produced by performing AddressablePoint.
match() operations, are collected. Thus, since an APMatch describes the match between two
addressable points, match() determines if and how the addressable points behind the ports of
the two connected port instances can be composed.

The match() operation of Figure A.9 is detailed in the following:
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0..*

matches 

0..*

APMatch

singleMatches 

Void : )ComposedFragment:result, Fragment:composedTarget, Fragment:composedSource (execute

APMatchGroup

<< from Fragment >> << from CompositionProgram >>
CompositionLink

Figure A.8: APMatchGroup and its relations to APMatch (cf. Figure 5.21) and CompositionLink
(cf. Figure 6.13).

1. The attributes valid, contributes, and empty are reset. They are computed in the
following patterns.

2. All old APMatchGroups are destroyed.

3. The following Patterns 5–13 are performed for each combination of heterogeneous port
behind the source. . .

4. . . . and target port instances.

5. An APMatchGroup (cf. Figure A.8) for the pair of source and target heterogeneous ports
is created.

6. Each combination of addressable points is individually matched via the match() opera-
tion on the source addressable point and all successful matches are recorded in the current
match group.

7. If no match was found, the link is set invalid because there is nothing to compose.

8. If a variation point is target of several matches that do not have reference points with
similar names as source, the matching is ambiguous and the link is set invalid.

9. If a reference point is source of several matches, the matching is ambiguous and the link
is set invalid.

10. It is checked if at least one reference point was matched either on the source. . .

11. . . . or on the target port.

12. If no reference point was matched, the link is set to invalid because there is nothing to
compose.

13. If the link is valid and connects a receiving with a contributing port, the contributes
flag is set to true.

14. If no match group was created (i.e., there were no ports behind the port instances to
connect), the link is set to empty.

15. If the link is not valid, match groups that were created in the attempt to find a valid
match are destroyed.
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Figure A.9: CompositionLink.match() operation.
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0..*

instantiations 
0..*

instantiations InstantiationSetFragment
<< from Fragment >><< from CompositionProgram >>

FragmentInstance

Figure A.10: InstantiationSet and instantiations relations between InstantiationSet,
Fragment (cf. Figure 5.21), and FragmentInstance (cf. Figure 6.13).

A.3.2 Composition Step Identification

The composition execution is controlled by FragmentInstance.fCompose() that determines
the composition steps and triggers copying of fragments. fCompose() is shown in Figure A.11.

1. A copy of the current fragment (result) is created using the Fragment.copy() operation
(cf. Section A.3.3). This copy is—for the time of this operation—marked as concrete
instantiation of the fragment by adding it to an InstantiationSet (temporarily created
for the execution time of this operation) and to the instantiations of the current
fragment instance. InstantiationSets, depicted in Figure A.10, are used to hold a
temporal state for the duration of one composition execution. With an instantiation we
here refer to a composed fragment that was originally copied from the fragment it is an
instantiation of.

2. For all port instances, all settings are executed in the context of the result (see description
of Setting.execute() below).

3. For each fragment instance of the composition program (except the current one)—which
is a potential contributor of graph parts—we perform the following activities.

3.1 In the case that the contributor indeed contributes to the current fragment instance
through at least one contributing composition link, one link is selected as primary
link and the next activity is triggered.

3.2 For each match group of the primary link, we create an instantiation of the contrib-
utor by a recursive fCompose() call. The result is added to the instantiation set and
marked as instantiation of the contributor.

3.3 For each contributing composition link between the current fragment instance and the
contributor, a match group is executed (cf. description of MatchGroup.execute()
below). Note that in cases of multiple match groups, which might exist if homoge-
neous ports are involved, the primary link controls which match group is currently
evaluated. It is expected that all contributing links between two fragments have the
same number of match groups, due to the nature of homogeneous ports.

4. The helper operation completeInstantiation() is called that can (through recursive
calls to itself) perform additional instantiations of fragment instances that potentially
contribute additional elements (cf. description below).

5. The execute() operation of all match groups (details below) that belong to non-contributing
links is performed. The execute() for the match groups of contributing links was exe-
cuted in Pattern 3.3.

6. All the temporarily created instantiations edges are destroyed.
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Figure A.11: FragmentInstance.fCompose() operation.
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Figure A.12: FragmentInstance.completeInstantiation() operation.
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]failure[

]success[

PortInstance::fAllPorts (): HeterogeneousPort *

(1)
fPort

HeterogeneousPort:heteroPortthis
(2)

HomogeneousPort:homoPortthis

homoPort.heterogeneousPortsheteroPort

fPort

Figure A.13: FragmentInstance.fAllPorts() operation.

The following describes the helper operation completeInstantiation() shown in Figure A.12
in detail.

1. First, we remember the number of instantiations that currently exists.

2. We examine all valid links of the current composition program that have the contributes
flag set to false. For each fragment we encounter that is target of a link but does not
have an instantiation yet, we do the following.

2.1 If the port can contribute elements despite the fact that it is not marked as con-
tributing, an instantiation is created.

2.2 If the port can be referenced and the fragment instance is set to reference, the
fragment behind the instance is taken as the instantiation without copying it. This
way, the composition accepts the original fragment as participant in the composition
and allows the creation of new cross-reference to this fragment. Note that, since
Port.canBeReferenced() returns true only when the port contains anchors, only
cross-references towards the original fragment are established, but the fragment itself
is never modified, which makes its direct participation in the invasive composition
acceptable.

3. This pattern (with 3.1 and 3.2) is similar to Pattern 2 (with 2.1 and 2.2) with the only
difference that the computations are performed for the source of each composition link
(and not for the target).

4. If the execution of this operation did produce new instances, the operation calls itself
again, since the new instances potentially contains more composition links of interest to
other yet uninstantiated fragment instances.

There are some small operations on PortInstance that were used above. The operation
fAllPorts() (Figure A.13) is provided to conveniently access all HeterogeneousPorts directly
in cases these are grouped by a HomogeneousePort. The operations 1) canContribute(),
2) canReceive(), and 3) canBeReferenced() (Figures A.14–A.16) compute if 1) the port
instance can contribute nodes because its port contains prototypes 2) the port instance may
receive nodes because its port contains hooks 3) the port instance can be referenced because
its port contains anchors.
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Figure A.14: PortInstance.canContribute() operation.
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Figure A.15: PortInstance.canReceive() operation.
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Figure A.16: PortInstance.canBeReferenced() operation.
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A.3.3 Fragment Copying

Copying graph fragments boils down to producing an exact copy of the underlying graph. A
tool for this task is already delivered with EMF in the EcoreUtil.Copier utility [SBPM09,
Section 16.4] that we reuse here. The EcoreUtil.Copier provides the operation copyAll()
which takes a list of root EObjects (i.e., root nodes) of an arbitrary graph fragment. It then
copies these nodes and all their contained nodes along the containment spanning trees (i.e.,
all nodes that can be reached via an edge eG ∈ TG) of the graph. For each node, it stores a
mapping between the original and the copy.

In the node copying step via copyAll() the non-containment edges (eG 6∈ TG) are not consid-
ered. These are copied through a call to copyReferences() also available on EcoreUtil.Copier.
This mechanism allows the successive copying of cross-connected graphs via copyAll() before
calling copyReferences().

Furthermore, we introduce a cache for graph fragment copies in a tool called SyncEcoreUtil.
This cache remembers the relation between a fragment copy and a fragment original as well as
an original and its copies. Thus it can be asked to provide an original for a copy or all copies for
an original. Retrieving this information is important for calling the basic composition operators
on the correct copies but can also be exploited by other tools (e.g., for diagram composition
or round-trip support discussed in Section 12.2).

Figure A.17 shows the story diagram that defines the Fragment.copy() operation. In the
story diagram we use collaboration statements to integrate the EcoreUtil.Copier and the
SyncEcoreUtil explained above.

1. An EcoreUtil.Copier is instantiated and used to copy all nodes and edges of the graph
fragment that is reached via Fragment.contents.

2. A new ComposedFragment is created with the copyUFI as UFI that was passed as param-
eter to this operation. Thus, always when a fragment is created via the copy() operation
it will be a ComposedFragment (as opposed to a PhysicalFragment). This allows us to
distinguish fragments that were created by developers (PhysicalFragment) from frag-
ments that were created by copying and composition (ComposedFragment). The latter
can always be recreated from other fragments and have to be recreated if fragments they
depend on change. The created copy is registered with the SyncEcoreUtil.

3. For each root node, we obtain the copy from the EcoreUtil.Copier (via get() operation)
and add it to the contents of the copy.

A.3.4 Basic Composition Operator Calls

The actual composition of graph fragments is performed in the two execute operations Match
Group.execute() (Figure A.18) and Setting.execute() (Figure A.19), which are called at
appropriated places in fCompose() as described above.

MatchGroup.execute() iterates over all its matches, finds the appropriate copies of nodes
that are to be composed and then calls the variation point compose() operation discussed
below which in turn calls the basic composition operators (cf. Section 6.1). In detail, this is
shown in Figure A.18 and explained in the following.
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]end[

(2) «create»

«create»

(3)

(1)

1: EcoreUtil.Copier copier := new EcoreUtil.Copier()

Fragment::copy (copyUFI: String*): ComposedFragment

Figure A.17: Fragment.copy() operation.

1. The parameters of the operation are composedSource (the composed fragment that is
source of this match), composedTarget (the composed fragment that is target of this
match) and result (the composed fragment that is the target of the whole composition
step). These fragments contain the copies that are of interest for composition execution.
Since nodes move between the copies during one composition step, the result is needed
here as well because a node might already have moved there (from composedSource or
composedTarget) by a previous execute call for matches between prototypes and hooks.
We combine the contents of all three fragment copies to form the context into which we
have to look for node copies.

2. We iterate over all matches with default match direction (inverse = false). For each
match, we obtain a copy of the node typed by the variation point that is target of
the match. This is done using the SyncEcoreUtil in which the relationship between
original fragments and composed fragments (i.e., fragment copies) is recorded (cf. Sec-
tion A.3.3). In addition to the original node (here variationNode) and the context, the
SyncEcoreUtil requires a composed fragment as parameter, which is the one for which
the copy was originally created (here composedTarget). This way, the correct copy can
be selected, if multiple copies for one node exist.

2.1 We also obtain the copy for the current reference node. Then we call compose()
(described below) on the current variation point passing the obtained copies as pa-
rameters. This pattern fails in cases where the source fragment is set to reference.
In this case, the original reference node is treated as copy. . .
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Figure A.18: APMatchGroup.execute() operation.
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]end[
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Figure A.19: Setting.execute() operation.

2.2 . . . and passed as parameter to compose().

3. This pattern (with 3.1 and 3.2) performs similar to Pattern 2, with the difference that
it treats inverse matches (inverse = true). This means that for the variation point
the copy related to the composedSource (and not the composedTarget as in Pattern
2) is requested from SyncEcoreUtil and for the reference point the copy related to the
composedTarget is requested.

Setting.execute(), depicted in Figure A.19, works in a similar, but simpler, manner.
Here, never nodes and edges are modified but only attributes. Therefore, this operation can be
executed independent of the rest of a composition step (because attributes are always copied
and never cross-referenced).

1. We navigate from a setting to the corresponding port and find the value hook for the
setting. In cases of a homogeneous port, fAllPorts() returns multiple ports over
which we iterate. We obtain the copy of the attributed node that holds the value hook
(valueHookNodeCopy) using the SyncEcoreUtil. Since a string value has to be encapsu-
lated into a value prototype before it can be passed to a basic composition operator (cf.
Section 6.1), we temporarily create a value prototype that encapsulates the value of this
setting. We then call basicCompose() on the value hook with the required parameters.

The operation VariationPoint,compose() encapsulates the composition of one variation
point by calling the basic composition operators defined in Section 6.1. Each basic composition
operator has the following parameters: parent, feature, referenceNode, and variationNode.
parent and feature identify the Setting that is to be manipulated by the basic composition
operator.2 referenceNode is the node that will be added to the graph by the basic composition
operator. variationNode is an optional parameter that is only bound if there is a variation
node (and not only an edge list) the operator can work on.

There are two reasons for having the nodes parent, referenceNode, and variationNode
as parameters although VariationPoint links to the node it types (cf. varTypedEObject in
Figure 5.21). The first is that the basic operators always create only one new edge between
the parent and referenceNode. The composition of one variation point can involve multiple

2The reason for not having one parameter of type Setting here is that Setting is an internal type in Ecore
that cannot be used in interfaces.
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edges and hence multiple basic composer calls. Thus, there are often multiple parents or
referenceNodes where a basic composition operator has to be called for each. The second
reason is that we always operate on copies of these nodes and not on the original nodes. The
copies are produced and selected during composition as discussed above.

Figure A.20 shows the VariationPoint.compose() operation which is described in the
following. The operation takes as parameters the reference point to be bound to this variation
point (rp), the concrete variationNode and referenceNode copies that it operates on, the
composed fragment (result) that will hold the copied nodes after composition, and a context
containing the root EObjects of all graph fragments involved in the current composition. The
context is needed to compute the list of incoming edges of a variation node i(vnG).

1. We distinguish four cases depending on whether the current variation point and the given
reference point concern nodes (varTypedEStructuralFeature not set) or edge lists/at-
tributes (varTypedEStructuralFeature set). First, if varTypedEStructuralFeature is
set for both variation point and reference point the following is performed:

1.1 Since the reference point types an edge list in this case, the reference node is the source
of the edge list. The nodes that are actually composed are reached via following these
edges. Therefore, we iterate over the value edges of the Setting that represents the
edge list, since there is potentially more than one edge.

1.2 to 1.4 For the first edge, we call the basicCompose() operator which will then forward
to another basic operator (cf. Section 6.1). For all other edges, we directly call the
append() operator to preserve the order of the list.

2. Second, we look at cases where only this variation point is referring to an edge list, but
not the reference point.

2.1 We need to distinguish between reference nodes and attributes. If the reference
point is a ValuePrototype, we perform an attribute composition and pass the
ValuePrototype itself as reference node to the basicCompose() (referenceNode
is unbound in this case).

2.2 Otherwise, we pass the reference node.

3. Third, we look at cases where only this reference point is referring to an edge list, but
not the variation point.

3.1 As in Pattern 1.1, we deal with an edge list possibly containing several entries we
iterate over.

3.2 (with 3.2.1 and 3.2.2) Here, we have a concrete variation node vnG and need to
handle all incoming edges i(vnG). To compute i(vnG) we use the EcoreUtil.
CrossReferencer as described in Section 5.1.3. In this pattern we only consider non-
containment edges (eG 6∈ T ). Similar as in Patterns 1.2–1.4, we call basicCompose()
for the first value in the iteration of 3.1 and append() for all other values.

3.3 to 3.5 In the case that this is a hook, we also change the containment edge of the
variation node in a similar fashion as done for the other edges in Pattern 3.2.

4. (with 4.1) In the fourth and last case, this variation and the reference point are nodes.
The composition of all incoming edges (and the containing edge in case of a hook) is
performed in a similar fashion as in Patterns 3.2 and 3.3.
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1: append(container, vReference, value, prevNode2)

1: append(container, vReference, value, variationNode)

each time

eContainingFeature
eContainer

vReference

1: basicCompose(variationNode, vFeature, referenceNode, null)

each time

EcoreUtil.CrossReferencer.find(context).get(variationNode)

eObjecteStructuralFeature

vReference

vSetting

value

1: basicCompose(variationNode, vFeature, valuePrototype, null)

value

eSettings

eStructuralFeature

varTypedEStructuralFeature

rFeature

eSettings

eStructuralFeature

varTypedEStructuralFeature

varTypedEStructuralFeature

rFeature

failure

varTypedEStructuralFeature

VariationPoint::compose (rp: ReferencePoint, referenceNode: EObject, variationNode: EObject, result: ComposedFragment, context: EObject *): Void

each time

1: basicCompose(container, 
        vReference, value,
            variationNode)

failure

failure

1: basicCompose(container, vReference, value, prevNode)

eContainingFeature
eContainer

vReference

vReference, referenceNode, variationNode)
1: basicCompose(container,

EcoreUtil.CrossReferencer.find(context).get(variationNode)

eObject

eStructuralFeature

vReference

vSetting

Figure A.20: VariationPoint.compose() operation.
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A.4 Fragment Instantiation in UCL

This section defines the semantics for interface creation in UCL composition programs that
developers can interactively connect with composition links as described in Section 6.4.

The semantics are define in the operations FragmentInstance.update() (Figure A.21) and
PortInstance.update() (Figure A.22). FragmentInstance.update(), is an updating oper-
ation that can be called repetitively. If the underlying fragment changes, update() can be
re-evaluated. This is important because fragments already used in a composition program
might still change over time. Another thing to notice here is that update() also removes in-
valid port instances. It does however only do so if the port instances are not linked (cf. next
section).

1. We iterate over all Ports of the Fragment that is instantiated by this FragmentInstance
(reached via fFragment) to check the instantiation of each of these Ports.

2. If a PortInstance of the current Port already exists (reached via fPort), no new instan-
tiation needs to be performed for this port. Otherwise, we continue to perform a port
instantiation.

3. We instantiate the current Port by creating a PortInstance and setting the portName
to the name of the Port since the name uniquely identifies the Port (cf. Section 5.2.5).
Furthermore, we create the fPort link between the PortInstance and the Port.

4. On each PortInstances we call PortInstances.update() (cf. Figure A.22) which
checks if the port instance is still valid and updates the Settings of the port instance.

In the following we describe PortInstances.update() shown in Figure A.22.

1. We check a series of conditions, which lead to the removal of this PortInstance if they
all fail. First we check, if the instantiated Port still exists by following fPort.

1.1 If the port exists, we update the Settings (cf. Section 6.2.4) for this PortInstance.
On a newly created instance this is the initialisation of the Settings. A Setting
is created for each value hook of the current Port. First, we need to find the
HeterogeneousPort. . .

1.2 . . . which can be encapsulated in a HomogeneousPort.

1.3 For all value hooks in the port we do the following:

1.4 If a Setting with the name of the current value hook already exists (property
attribute of Setting) we do not need to create one. The name uniquely identifies
the ValueHook (cf. Section 5.2.5).

1.5 Else, we create a Setting for the ValueHook in the HeterogeneousPort. We set the
property attribute of the Setting to the name of the ValueHook.

2. We check if there are CompositionLinks that have this PortInstance as source. In
this case we do not remove this instance to allow the user to inspect the problem.

3. We check if there are CompositionLinks that have this PortInstance as target. In
this case we do not remove this instance to allow the user to inspect the problem.

4. We check if there are Settings connected to this PortInstance. In this case we do not
remove this instance to allow the user to inspect the problem.

5. If this PortInstance is invalid and not connected to anything else, it is destroyed.
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]end[

]end[

(4)

1: portInstance.update()

portInstances

PortInstance:portInstance

this

]success[

]failure[

(3)

«create»

portInstances 

«create»

port.getName():=portName

PortInstance:portInstance
this

]each time[

(2)
portInstances
 

PortInstance:portInstance portthis

(1)
ports compositionInterfaces this Fragment:fragment CompositionInterface:ci Port:port

FragmentInstance::update (): Void

fFragment

fPort

port fPort
«create»

Figure A.21: FragmentInstance.update() operation.
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]end[

]success[

]success[

]success[

]success[

]success[

]success[

]failure[

]failure[

]failure[

]failure[

PortInstance::update (): Void

]failure[

]each time[

]failure[
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Setting:setting
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(1.5)
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Figure A.22: PortInstance.update() operation.
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CompositionProgram

 

derivedFrom

<< from Ecore >>
EObject

<< from CompositionProgram >>

PortInstance

compositionSystemID : String *
fragmentRoleName : String
portName : String

<< from CompositionProgram >><< from CompositionProgram >>
CompositionLink

DerivedCompositionProgram

extractCompositionProgram() : Void

createFragmentInstance (fragment: Fragment, element: EObject, 
roleBinding: FragmentRole2FragmentInstanceBinding): FragmentInstance

createCompositionLink (fragment: Fragment, source: EObject, target: EObject, 
assocBinding: CompositionAssociation2CompositionLinkBinding) : CompositionLink 

 

derivedFrom

Figure A.23: Extensions of the UCL metamodel (cf. Figure 6.13)

A.5 Composition Program Extraction

This section defines the semantics for composition program extraction based on REXCL spec-
ifications described in Section 6.5.

Figure A.23 shows extensions of the composition program metamodel from Figure 6.13
required for REXCL interpretation. DerivedCompositionProgram is added as subclass of
CompositionProgram to distinguish manually defined and derived composition programs. Fur-
thermore, we add a derivedFrom reference to FragmentInstance and CompositionLink that
may point at any node in a graph (i.e., any EObject). These references are used to trace which
element triggered a derivation. This is also useful for debugging to trace composition problems
back to their source.

The DerivedCompositionProgram metaclass has a extractCompositionProgram() opera-
tion that is shown in Figure A.24. The extractCompositionProgram() operation follows the
same strategy as a fragment’s computeCompositionInterface() operation (cf. Figure A.3).
Fragments, from which composition programs are derived, are linked to a DerivedComposition
Program via derivedFrom links. The REXCL specifications are linked with these fragments via
reuseExtension links (cf. Figure A.2). In the computeCompositionInterface() operation,
the DerivedCompositionProgram is filled with fragment instances and composition links based
on these graph fragments and REXCL specifications. Such a derived composition programs can
then be executed (cf. Section 6.3) just as manually defined composition programs.

The details of extractCompositionProgram() are described in the following.

1. At first, all old existing composition links. . .
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each time

[ each time ]

DerivedCompositionProgram::extractCompositionProgram (): Void

[ Evaluator.eval(fragment.ufi, element, roleBinding.isExpression) ]

«destroy»

«destroy»

«destroy»

fragmentInstances
«destroy»

reuseExtension

EcoreUtil.getAllContents(fragment.contents)

fragmentRoleBindingseBoundClass eBoundClass compositionAssociationBindings

Evaluator.deriveElementList(fragment.ufi, 

each time

eClass

(5.1)
element

eClass

(6.1)
element

each timeeach time

failure failure

success success

[ Evaluator.eval(fragment.ufi, element, assocBinding.isExpression) ]

  element, assocBinding.forEach1Expression)

Evaluator.deriveElementList(fragment.ufi, 
  element, assocBinding.forEach2Expression)

Figure A.24: DerivedCompositionProgram.extractCompositionProgram() operation.
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2. . . . and fragment instances are removed.

3. For all fragments and REXCL specifications the composition program should be derived
from, the following is performed.

4. We iterate over all nodes of the current graph fragment. We make use of the EcoreUtil.
getAllContents() operation provided by EMF. The following is performed for each
node.

5. We iterate over all fragment role bindings and find the affected EClass for each.

5.1 We check if the current element is an instance of the EClass. For that we apply
negation to find wrong matches. If the type is correct, we evaluate the isExpression
using the Evaluator before continuing to Pattern 5.2.

5.2 The createFragmentInstance() operation described below is used to create a new
or update an existing fragment instance.

6. We iterate over all composition association bindings and find the affected EClass for
each.

6.1 We check if the current element is an instance of the EClass. For that we apply
negation to find wrong matches. If the type is correct, we evaluate the isExpression
using the Evaluator before continuing to Pattern 6.2.

6.2 The forEach1Expression is evaluated to obtain a list of elements from which the
source port instances of a composition links are derived.

6.3 The forEach2Expression is evaluated to obtain a list of elements from which the
target port instances of composition links are derived.

6.4 The createCompositionLinkInstance() operation described below is used to create
a new or update an existing composition link for each combination of elements that
were obtained by evaluating the for each expressions in Patterns 6.2 and 6.3.

The createFragmentInstance() operation shown in Figure A.25 is described next:

1. First we check if the fragment instance, identified by its unique name, already exists. In
any case, we add the element to the derivedFrom reference since different sources can
cause the creation of the same fragment instance.

2. If the fragment instance did not yet exist it is created. name and UFI are derived using
the Evaluator. The reference flag is set if the role binding is a FragmentRole2Fragment
ReferenceBinding.

3. If a target UFI expression was specified, the targetUFI is derived by evaluating it and
the target flag is set to true.

4. After we ensured that the fragment instance exists in the previous patterns, we evaluate
PortType2SettingBindings. For this we iterate over all these bindings and their setting
derivation rules.

4.1 We check if an instance of the current port type already exists. The port is identified
by the name of the port type (that corresponds to the name of the port in the case
of a static port type), the name of the fragment role the port belongs to, and the ID
of the composition system the fragment role is defined in.

4.2 If the required port instance does not yet exist, it is created.
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each time

success

DerivedCompositionProgram::createFragmentInstance (fragment: Fragment, element: EObject, roleBinding: FragmentRole2FragmentInstanceBinding): FragmentInstance

derivedFrom

fragmentInstances

roleBinding instanceof FragmentRole2FragmentReferenceBinding
Evaluator.deriveID(fragment.UFI, element, roleBinding.ufiExpression)

Evaluator.derive(fragment.UFI, element, roleBinding.nameExpression)

portInstances role.name
portType.name

«create»
portInstances

role.name
portType.name

settings

Evaluator.derive(fragment.UFI, element, settingRule.propertyExpression)
Evaluator.derive(fragment.UFI, element, settingRule.valueExpression)

settings

Evaluator.derive(fragment.UFI, element, settingRule.propertyExpression)
Evaluator.derive(fragment.UFI, element, settingRule.valueExpression)

Evaluator.deriveID(fragment.UFI, element, roleBinding.targetUfiExpression)

fragmentRoles

csFragmentRole derivationRules

portTypeBindings

derivedFrom

fragmentInstances

roleBinding instanceof FragmentRole2FragmentReferenceBinding
Evaluator.deriveID(fragment.UFI, element, roleBinding.ufiExpression)

Evaluator.derive(fragment.UFI, element, roleBinding.nameExpression)

[ else ]

[ roleBinding.
targetExpression != "" ]

success
success

Figure A.25: DerivedCompositionProgram.createFragmentInstance() operation.
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fragmentInstances Evaluator.derive(fragment.UFI, source, assocBinding.fragmentInstance1NameExpression)

fragmentInstances
Evaluator.derive(fragment.UFI, target, assocBinding.fragmentInstance2NameExpression)

«create»
fragmentInstances Evaluator.derive(fragment.UFI, target, assocBinding.fragmentInstance2NameExpression)

portInstances
Evaluator.derive(fragment.UFI, source, assocBinding.portInstance1NameExpression)

role1.name
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Evaluator.derive(fragment.UFI, source, assocBinding.portInstance1NameExpression)
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«create»

«create»

«create»
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Figure A.26: DerivedCompositionProgram.createCompositionLink() operation.
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4.3 We derive property and value utilising the current setting derivation rule. If the
setting already exists for the derived property, the value in that setting is changed.

4.4 Otherwise the setting is created with the derived property/value pair.

The createCompositionLink() operation shown in Figure A.26 is described in the following:

1. For the first end, the port type and the fragment role is determined.

2. For the second end, the port type and the fragment role is determined as well.

3. to 10. We check for each fragment role and port type, if the corresponding fragment
instance and port instance exists and create them if they do not.

11. After we ensured that the two port instances exist, we check if they are already linked.
If this is the case, the current element is added to the derivedFrom reference of the link
and we are done.

12. Otherwise, a composition link is created between the two port instances.
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B
Concern Dimensions of Chapter 8

This appendix contains the specifications that realise the different concern dimensions of the
model-driven architecture defined with ModelSoC style in Chapter 8. For each concern dimen-
sion, a FraCol, a set of REXCL specifications (to extract concern composition information),
and a set of REXCM specifications with fragments (defining unit prototypes) are provided.

B.1 Concern Dimension Usecase

B.1.1 FraCol Definition

1 fracol org.reuseware.lib.systems.usecase.usecase {
2 fragment role UseCase {
3 static port type Name;
4 }
5 }

B.1.2 OpenOffice REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.usecase.cl.odt
2 implements org.reuseware.lib.systems.usecase.usecase
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot
6 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(’Main.fc’)$ {
7 fragment role UseCase {
8 odfoffice::DocumentRoot {
9 fragment = $’UseCase:’.concat(ufi.trimExtension().segment(-1))$

10 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’usecase’,’lib’,’UseCase.’.concat(variant)}$
11 target ufi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trimExtension(
12 ).appendExtension(variant)$
13 port type Name {
14 $’name’$ = $ufi.trimExtension().segment(-1)$
15 }
16 }
17 }}
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B.1.3 OpenOffice Unit Prototype

1 componentmodel org.reuseware.lib.systems.usecase.cm.odt
2 implements org.reuseware.lib.systems.usecase.usecase
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot {
6 fragment role UseCase {
7 port type Name {
8 odftext::PType.mixed is value hook if $mixed->size() = 1 and mixed->at(1).getValue() = ’NAME_SLOT’$ {
9 mode = $’bind’$

10 point = $’name’$
11 }
12 }
13 }
14 }

B.1.4 UML Use Case Unit Prototype

1 componentmodel org.reuseware.lib.systems.usecase.cm.usecase_uml
2 implements org.reuseware.lib.systems.usecase.usecase
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass Model {
5 fragment role UseCase {
6 port type Name {
7 UseCase.name is value hook {
8 point = $’name’$
9 }

10 }
11 }
12 }

228



B.1 Concern Dimension Usecase

B.1.5 Value Flow Unit Prototype

1 componentmodel org.reuseware.lib.systems.usecase.cm.valueflow
2 implements org.reuseware.lib.systems.usecase.usecase
3 epackages <http://www.emftext.org/language/valueflow>
4 rootclass Model {
5 fragment role UseCase {
6 port type Name {
7 Model.name is value hook {
8 point = $’name’$
9 }

10 }
11 }
12 }

B.1.6 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.usecase.cm.java
2 implements org.reuseware.lib.systems.usecase.usecase
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role UseCase {
6 homo port type Name {
7 java::commons::NamedElement.name is value hook if $name.contains(’NAME_HOOK’)${
8 point = $’name’$
9 begin idx = $name.indexOf(’NAME_HOOK’)$

10 end idx = $name.indexOf(’NAME_HOOK’) + ’NAME_HOOK’.length() - 1$
11 }
12 }
13 }
14 }
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B.1.7 SecProp Unit Prototype

1 componentmodel org.reuseware.lib.systems.usecase.cm.secprop
2 implements org.reuseware.lib.systems.usecase.usecase
3 epackages <http://www.emftext.org/language/SecProp>
4 rootclass SecPropModel {
5 fragment role UseCase {
6 port type Name {}
7 }
8 }

B.2 Concern Dimension Participation

B.2.1 FraCol Definition

1 fracol org.reuseware.lib.systems.participation.participation {
2 fragment role Participant {
3 static port type Contrib;
4 static port type Name;
5 }
6 fragment role Collaboration {
7 static port type Rec;
8 }
9 contributing association Participation {

10 Participant.Contrib --> Collaboration.Rec
11 }
12 }

B.2.2 OpenOffice REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.participation.cl.odt
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot
6 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(’Main.fc’)$ {
7 fragment role Participant {
8 odftext::SpanType if $styleName = ’Actor’$ {
9 fragment = $’Participant:’.concat(mixed->at(1).getValue().oclAsType(String)).concat(

10 ’_’).concat(ufi.trimExtension().segment(-1))$
11 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’participation’,’lib’,’Participant.’.concat(
12 variant)}$
13 port type Name { $’name’$ = $mixed->at(1).getValue()$ }
14 }
15 }
16 association Participation {
17 odftext::SpanType if $styleName = ’Actor’$ {
18 fragment = $’Participant:’.concat(mixed->at(1).getValue().oclAsType(String)).concat(
19 ’_’).concat(ufi.trimExtension().segment(-1))$
20 --> fragment = $’UseCase:’.concat(ufi.trimExtension().segment(-1))$
21 }
22 } }
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B.2.3 UML Use Case with Invariant REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.participation.cl.usecase_uml
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’usecase.uml’,variant).trim(2).append(’Main.fc’)$ {
6 fragment role Participant {
7 uml::Actor {
8 fragment = $’Participant:’.concat(ufi.trimExtension().segment(-1)).concat(’_’).concat(
9 ufi.segment(-2))$

10 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’participation’,’lib’,’Participant.’.concat(
11 variant)}$
12 port type Name { $’name’$ = $ufi.trimExtension().segment(-1)$ }
13 }
14 }
15 association Participation {
16 uml::Actor {
17 fragment = $’Participant:’.concat(ufi.trimExtension().segment(-1)).concat(’_’).concat(
18 ufi.segment(-2))$
19 --> fragment = $’UseCase:’.concat(ufi.segment(-2))$
20 }
21 }
22 }

B.2.4 OpenOffice Unit Prototype

1 componentmodel org.reuseware.lib.systems.participation.cm.odt
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot {
6 fragment role Participant {
7 port type Name {
8 odftext::SpanType.mixed is value hook if $styleName = ’Actor’$ {
9 mode = $’bind’$

10 point = $’name’$
11 }
12 }
13 port type Contrib {
14 odftext::SpanType is prototype {}
15 }
16 }
17 fragment role Collaboration {
18 port type Rec {
19 odftext::SpanType is hook if $styleName = ’Actor’ and mixed->at(1).getValue() = ’ACTOR_SLOT’$ {
20 remove = $true$
21 }
22 }
23 }
24 }
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B.2.5 UML Use Case Unit Prototype

1 componentmodel org.reuseware.lib.systems.participation.cm.usecase_uml
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model {
5 fragment role Participant {
6 homo port type Name {
7 uml::Actor.name is value hook {
8 port type =$’ActoreName’$
9 point = $’name’$

10 }
11 uml::Association.name is value hook {
12 port type =$’AssociationName’$
13 point = $’name’$
14 begin idx = $’0’$
15 end idx = $’0’$
16 }
17 }
18 port type Contrib {
19 uml::Actor is prototype {}
20 uml::Association is prototype {}
21 uml::UseCase is slot {}
22 }
23 }
24 fragment role Collaboration {
25 port type Rec {
26 uml::Package.packagedElement is hook if $packagedElement->exists(e|e.oclIsKindOf(UseCase))$ {}
27 uml::Package.ownedComment is hook if $packagedElement->exists(e|e.oclIsKindOf(UseCase))$ {}
28 uml::UseCase is anchor {}
29 }
30 }
31 }

B.2.6 Value Flow Unit Prototype
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1 componentmodel org.reuseware.lib.systems.participation.cm.valueflow
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <http://www.emftext.org/language/valueflow>
4 rootclass valueflow::Model {
5 fragment role Participant {
6 port type Name {
7 valueflow::Agent.name is value hook if $name = ’NAME_HOOK’$ {
8 point = $’name’$
9 }

10 }
11 port type Contrib {
12 valueflow::Agent is prototype if $name = ’NAME_HOOK’$ {}
13 }
14 }
15 fragment role Collaboration {
16 port type Rec {
17 valueflow::Model.agents is hook {}
18 }
19 }
20 }

B.2.7 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.participation.cm.java
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Participant {
6 homo port type Name {
7 java::commons::NamedElement.name is value hook if $name.contains(’NAME_HOOK’)${
8 point = $’name’$
9 begin idx = $name.indexOf(’NAME_HOOK’)$

10 end idx = $name.indexOf(’NAME_HOOK’) + ’NAME_HOOK’.length() - 1$
11 }
12 }
13 port type Contrib {
14 java::statements::StatementListContainer.statements is prototype if $self.oclIsKindOf(java::
15 commons::NamedElement) and self.oclAsType(java::commons::NamedElement).name = ’PLACEHOLDER’$ {
16 point = $’INIT’$
17 }
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18 }
19 }
20 fragment role Collaboration {
21 port type Rec {
22 java::statements::JumpLabel is hook if $name.toUpperCase() = name$ {
23 point = $name$
24 remove = $true$
25 }
26 }
27 }
28 }

B.2.8 SecProp Unit Prototype

1 componentmodel org.reuseware.lib.systems.participation.cm.secprop
2 implements org.reuseware.lib.systems.participation.participation
3 epackages <http://www.emftext.org/language/SecProp>
4 rootclass secprop::SecPropModel {
5 fragment role Collaboration {
6 port type Rec {
7 secprop::SecPropModel.elements is hook {}
8 secprop::SecPropModel.channels is hook {}
9 }

10 }
11

12 fragment role Participant {
13 port type Contrib {
14 secprop::Element is prototype {}
15 }
16 port type Name {
17 secprop::Element.name is value hook {
18 point = $’name’$
19 }
20 }
21 }
22 }

B.3 Concern Dimension Exchange

B.3.1 FraCol Definition

1 fracol org.reuseware.lib.systems.exchange.exchange {
2 fragment role Container {
3 static port type Rec;
4 }
5 fragment role Value {
6 static port type Contrib;
7 static port type Provider;
8 static port type Consumer;
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9 }
10 fragment role Provider {
11 static port type Self;
12 }
13 fragment role Consumer {
14 static port type Self;
15 }
16 contributing association Contribution {
17 Value.Contrib --> Container.Rec
18 }
19 configuring association Provide {
20 Value.Provider --> Provider.Self
21 }
22 configuring association Consume {
23 Value.Consumer --> Consumer.Self
24 }
25 }

B.3.2 UML Use Case with Invariant REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.exchange.cl.usecase_uml
2 implements org.reuseware.lib.systems.exchange.exchange
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’usecase.uml’,variant).trim(2).append(’Main.fc’)$ {
6 fragment role Value {
7 uml::Comment if $body.contains(’before’)$ {
8 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
9 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’exchange’,’lib’,’Value.’.concat(variant)}$

10 port type Provider {
11 $’value’$ = $body.split(’ ’)->at(1)$
12 $’name’$ = $body.split(’ ’)->at(1).concat(’_’).concat(body.split(’ ’)->at(2))$
13 $’ID’$ = $body.split(’ ’)->at(2)$
14 $’inSet’$ = $body.contains(’inSet’)$
15 }
16 }
17 }
18 association Contribution {
19 uml::Comment if $body.contains(’before’)$ {
20 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
21 --> fragment = $’UseCase:’.concat(ufi.segment(-2))$
22 }
23 }
24 association Provide {
25 uml::Comment if $body.contains(’before’)$ {
26 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
27 -->
28 fragment=$’Participant:’.concat(ufi.trimExtension().segment(-1)).concat(’_’).concat(ufi.segment(-2))$
29 }
30 }
31 fragment role Value {
32 uml::Comment if $body.contains(’after’)$ {
33 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
34 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’exchange’,’lib’,’Value.’.concat(variant)}$
35 port type Consumer {
36 $’value’$ = $body.split(’ ’)->at(1)$
37 $’name’$ = $body.split(’ ’)->at(1).concat(’_’).concat(body.split(’ ’)->at(2))$
38 $’ID’$ = $body.split(’ ’)->at(2)$
39 $’inSet’$ = $body.contains(’inSet’)$
40 }
41 }
42 }
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43 association Contribution {
44 uml::Comment if $body.contains(’after’)$ {
45 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
46 --> fragment = $’UseCase:’.concat(ufi.segment(-2))$
47 }
48 }
49 association Consume {
50 uml::Comment if $body.contains(’after’)$ {
51 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
52 -->
53 fragment=$’Participant:’.concat(ufi.trimExtension().segment(-1)).concat(’_’).concat(ufi.segment(-2))$
54 }
55 }
56 }

B.3.3 UML Use Case Unit Prototype

1 componentmodel org.reuseware.lib.systems.exchange.cm.usecase_uml
2 implements org.reuseware.lib.systems.exchange.exchange
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model {
5 fragment role Container {
6 port type Rec {
7 uml::Package.ownedComment is hook if $self.oclIsTypeOf(Package)$ {}
8 }
9 }

10 fragment role Value {
11 port type Contrib{
12 uml::Comment is prototype {}
13 }
14 port type Provider {
15 uml::Comment.annotatedElement is slot if $body.contains(’(before)’)${}
16 uml::Comment.body is value hook if $body.contains(’(before)’)$ {
17 point = $’value’$
18 begin idx = $body.indexOf(’VALUE’)$
19 end idx = $body.indexOf(’VALUE’) + ’VALUE’.length() + 1$
20 }
21 uml::Comment.body is value hook if $body.contains(’(before)’)$ {
22 point = $’ID’$
23 begin idx = $body.indexOf(’ID’)$
24 end idx = $body.indexOf(’ID’) + ’ID’.length() + 1$
25 }
26 uml::Comment.body is value hook if $body.contains(’(before)’)$ {
27 point = $’inSet’$
28 begin idx = $body.indexOf(’INSET’)$
29 end idx = $body.indexOf(’INSET’) + ’INSET’.length() + 1$
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30 }
31 }
32 port type Consumer {
33 uml::Comment.annotatedElement is slot if $body.contains(’(after)’)${}
34 uml::Comment.body is value hook if $body.contains(’(after)’)$ {
35 point = $’value’$
36 begin idx = $body.indexOf(’VALUE’)$
37 end idx = $body.indexOf(’VALUE’) + ’VALUE’.length() + 1$
38 }
39 uml::Comment.body is value hook if $body.contains(’(after)’)$ {
40 point = $’ID’$
41 begin idx = $body.indexOf(’ID’)$
42 end idx = $body.indexOf(’ID’) + ’ID’.length() + 1$
43 }
44 uml::Comment.body is value hook if $body.contains(’(after)’)$ {
45 point = $’inSet’$
46 begin idx = $body.indexOf(’INSET’)$
47 end idx = $body.indexOf(’INSET’) + ’INSET’.length() + 1$
48 }
49 }
50 }
51 fragment role Provider {
52 port type Self {
53 uml::Actor is anchor {}
54 }
55 }
56 fragment role Consumer {
57 port type Self {
58 uml::Actor is anchor {}
59 }
60 }
61 }

B.3.4 Value Flow Unit Prototype

1 componentmodel org.reuseware.lib.systems.exchange.cm.valueflow
2 implements org.reuseware.lib.systems.exchange.exchange
3 epackages <http://www.emftext.org/language/valueflow>
4 rootclass valueflow::Model {
5 fragment role Container {
6 port type Rec {}
7 }
8 fragment role Value {
9 port type Contrib{}

10 port type Provider {
11 valueflow::GiveState is prototype {}
12 valueflow::GiveState._value is value hook {
13 point = $’value’$
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14 }
15 valueflow::GiveState.name is value hook {
16 point = $’name’$
17 }
18 valueflow::GiveState.ID is value hook {
19 point = $’ID’$
20 }
21 }
22 port type Consumer {
23 valueflow::TakeState is prototype if $name <> ’NEXT’$ {}
24 valueflow::TakeState.name is value hook if $name <> ’NEXT’$ {
25 point = $’name’$
26 }
27 }
28 }
29 fragment role Provider {
30 port type Self {
31 valueflow::Agent.states is hook if $name = ’NAME_HOOK’$ {}
32 }
33 }
34 fragment role Consumer {
35 port type Self {
36 valueflow::Agent.states is hook if $name = ’NAME_HOOK’$ {}
37 }
38 }
39 }

B.3.5 Java Unit Prototype
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1 componentmodel org.reuseware.lib.systems.exchange.cm.java
2 implements org.reuseware.lib.systems.exchange.exchange
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Container {
6 port type Rec {}
7 }
8 fragment role Value {
9 port type Contrib {}

10 port type Provider {
11 java::commons::NamedElement is slot if $name = ’GIVER’${}
12 java::commons::NamedElement.name is value hook if $name = ’ID_SLOT’$ {
13 point = $’ID’$
14 }
15 }
16 port type Consumer {
17 java::commons::NamedElement is slot if $name = ’TAKER’${}
18 }
19 }
20

21 fragment role Provider {
22 port type Self {
23 java::commons::NamedElement is anchor if $name.contains(’NAME_HOOK’)${}
24 }
25 }
26

27 fragment role Consumer {
28 port type Self {
29 java::commons::NamedElement is anchor if $name.contains(’NAME_HOOK’)${}
30 }
31 }
32

33 }

B.3.6 SecProp Unit Prototype

1 componentmodel org.reuseware.lib.systems.exchange.cm.secprop
2 implements org.reuseware.lib.systems.exchange.exchange
3 epackages <http://www.emftext.org/language/SecProp>
4 rootclass secprop::SecPropModel {
5 fragment role Container {
6 port type Rec {
7 secprop::SecPropModel.elements is hook {}
8 secprop::SecPropModel.channels is hook {}
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9 secprop::SecPropModel.data is hook {}
10 }
11 }
12 fragment role Provider {
13 port type Self {
14 secprop::Element is anchor {}
15 }
16 }
17 fragment role Consumer {
18 port type Self {
19 secprop::Element is anchor {}
20 }
21 }
22 fragment role Value {
23 port type Contrib{
24 secprop::Channel is prototype {}
25 secprop::Data is prototype {}
26 }
27 port type Provider {
28 secprop::Channel.source is slot {}
29 secprop::Data.name is value hook {
30 point = $’value’$
31 }
32 secprop::Channel.name is value hook {
33 point = $’name’$
34 }
35 }
36 port type Consumer {
37 secprop::Channel._target is slot {}
38 }
39 }
40 }

B.4 Concern Dimension Flow

B.4.1 FraCol Definition

1 fracol org.reuseware.lib.systems.flow.flow {
2 fragment role Participant1 {
3 static port type Self;
4 static port type Next;
5 }
6 fragment role Participant2 {
7 static port type Self;
8 static port type Next;
9 }

10 configuring association Flow1To1 {
11 Participant1.Next --> Participant1.Self
12 }
13 configuring association Flow1To2 {
14 Participant1.Next --> Participant2.Self
15 }
16 configuring association Flow2To1 {
17 Participant2.Next --> Participant1.Self
18 }
19 configuring association Flow2To2 {
20 Participant2.Next --> Participant2.Self
21 }
22 }
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B.4.2 Value Flow REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.flow.cl.valueflow
2 implements org.reuseware.lib.systems.flow.flow
3 epackages <http://www.emftext.org/language/valueflow>
4 rootclass valueflow::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’valueflow’,variant).trim(2).append(
6 ’Main’).appendExtension(’fc’)$ {
7 association Flow1To1 {
8 valueflow::GiveState if $nextState.oclIsTypeOf(GiveState)$ {
9 fragment = $’Value:’.concat(name)$

10 --> fragment = $’Value:’.concat(nextState.name)$
11 }
12 }
13 association Flow1To2 {
14 valueflow::GiveState if $nextState.oclIsTypeOf(TakeState)$ {
15 fragment = $’Value:’.concat(name)$
16 --> fragment = $’Value:’.concat(nextState.name)$
17 }
18 }
19 association Flow2To1 {
20 valueflow::TakeState if $nextState.oclIsTypeOf(GiveState)$ {
21 fragment = $’Value:’.concat(name)$
22 --> fragment = $’Value:’.concat(nextState.name)$
23 }
24 }
25 association Flow2To2 {
26 valueflow::TakeState if $nextState.oclIsTypeOf(TakeState)$ {
27 fragment = $’Value:’.concat(name)$
28 --> fragment = $’Value:’.concat(nextState.name)$
29 }
30 }
31 }

B.4.3 Value Flow Unit Prototype

1 componentmodel org.reuseware.lib.systems.flow.cm.valueflow
2 implements org.reuseware.lib.systems.flow.flow
3 epackages <http://www.emftext.org/language/valueflow>
4 rootclass valueflow::Model {
5 fragment role Participant1 {
6 port type Self {
7 valueflow::GiveState is anchor {}
8 }
9 port type Next {

10 valueflow::GiveState.nextState is slot {}
11 }
12 }
13 fragment role Participant2 {
14 port type Self {
15 valueflow::TakeState is anchor {}
16 }
17 port type Next {
18 valueflow::TakeState.nextState is slot {}
19 }
20 }
21 }
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B.4.4 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.flow.cm.java
2 implements org.reuseware.lib.systems.flow.flow
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Participant1 {
6 port type Self {
7 java::statements::StatementListContainer.statements is prototype if $self.oclIsKindOf(java::
8 commons::NamedElement) and self.oclAsType(java::commons::NamedElement).name = ’PLACEHOLDER’$ {
9 }

10 }
11 port type Next {
12 java::statements::JumpLabel is hook if $name = ’NEXT’$ {
13 remove = $true$
14 }
15 }
16 }
17 fragment role Participant2 {
18 port type Self {}
19 port type Next {
20 java::statements::JumpLabel is hook if $name = ’NEXT’$ {
21 remove = $true$
22 }
23 }
24 }
25 }

B.5 Concern Dimension Trigger

B.5.1 FraCol Definition

1 fracol org.reuseware.lib.systems.trigger.trigger {
2 fragment role Container {
3 static port type Rec;
4 }
5 fragment role Trigger {
6 static port type Contrib;
7 }
8 contributing association Contribution {
9 Trigger.Contrib --> Container.Rec

10 }
11 }

B.5.2 Value Flow REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.trigger.cl.valueflow
2 implements org.reuseware.lib.systems.trigger.trigger
3 epackages <http://www.emftext.org/language/valueflow>
4 rootclass Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’valueflow’,variant).trim(2).append(’Main.fc’)$ {
6 association Contribution {
7 GiveState if $previousState.oclIsUndefined()$ {
8 fragment = $’Value:’.concat(name)$
9 --> fragment = $’UseCase:’.concat(ufi.trim(1).segment(-1))$

10 }
11 }
12 }
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B.5.3 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.trigger.cm.java
2 implements org.reuseware.lib.systems.trigger.trigger
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Container {
6 port type Rec {
7 java::statements::JumpLabel is hook if $name = ’BODY’$ {
8 remove = $’true’$
9 }

10 }
11 }
12 fragment role Trigger {
13 port type Contrib {
14 java::statements::StatementListContainer.statements is prototype if $self.oclIsKindOf(java::
15 commons::NamedElement) and self.oclAsType(java::commons::NamedElement).name = ’PLACEHOLDER’$ {
16 }
17 }
18 }
19 }

B.6 Concern Dimension Factory

B.6.1 FraCol Definition

1 fracol org.reuseware.lib.systems.factory.factory {
2 fragment role Factory {
3 static port type Product;
4 }
5 fragment role Receiver {
6 static port type Slot;
7 }
8 fragment role TwinReceiver {
9 static port type Slot1;

10 static port type Slot2;
11 }
12 configuring association Produce {
13 Factory.Product --> Receiver.Slot
14 }
15 configuring association Produce1 {
16 Factory.Product --> TwinReceiver.Slot1
17 }
18 configuring association Produce2 {
19 Factory.Product --> TwinReceiver.Slot2
20 }
21 }

B.6.2 OpenOffice REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.factory.cl.odt
2 implements org.reuseware.lib.systems.factory.factory
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot
6 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(’Main.fc’)$ {
7 reference fragment role Factory {
8 odftext::SpanType if $styleName = ’Actor’$ {
9 fragment = $’Factory:’.concat(mixed->at(1).getValue().oclAsType(String))$
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10 ufi = $ufi.replace(’odt’,variant).trim(1).append(mixed->at(1).getValue().oclAsType(
11 String).toLowerCase()).append(mixed->at(1).getValue().oclAsType(String).concat(
12 ’Initialiser’)).appendExtension(variant)$
13 }
14 }
15 association Produce {
16 odftext::SpanType if $styleName = ’Actor’$ {
17 fragment = $’Factory:’.concat(mixed->at(1).getValue().oclAsType(String))$
18 --> fragment = $’Participant:’.concat(mixed->at(1).getValue().oclAsType(String)).concat(
19 ’_’).concat(ufi.trimExtension().segment(-1))$
20 }
21 }
22 }

B.6.3 UML Use Case with Invariant REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.factory.cl.usecase_uml
2 implements org.reuseware.lib.systems.factory.factory
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’usecase.uml’,variant).trim(2).append(’Main.fc’)$ {
6 reference fragment role Factory {
7 uml::Actor {
8 fragment = $’Factory:’.concat(ufi.trimExtension().segment(-1))$
9 ufi = $ufi.replace(’usecase.uml’,variant).trim(2).append(name.toLowerCase()).append(

10 name.concat(’Initialiser’)).appendExtension(variant)$
11 }
12 }
13 association Produce {
14 uml::Actor {
15 fragment = $’Factory:’.concat(ufi.trimExtension().segment(-1))$
16 --> fragment = $’Participant:’.concat(ufi.trimExtension().segment(-1)).concat(’_’).concat(
17 ufi.segment(-2))$
18 }
19 }
20 reference fragment role Factory {
21 uml::Comment if $body.contains(’before’)$ {
22 fragment = $’Factory:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(
23 ’ ’)->at(2)).concat(’Producer’)$
24 ufi = $ufi.replace(’usecase.uml’,variant).trim(2).append(ufi.trimExtension().segment(
25 -1).toLowerCase()).append(’Produce’.concat(body.split(’ ’)->at(1))).appendExtension(variant)$
26 }
27 }
28 reference fragment role Factory {
29 uml::Comment if $body.contains(’after’)$ {
30 fragment = $’Factory:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(
31 ’ ’)->at(2)).concat(’Consumer’)$
32 ufi = $ufi.replace(’usecase.uml’,variant).trim(2).append(ufi.trimExtension().segment(
33 -1).toLowerCase()).append(’Consume’.concat(body.split(’ ’)->at(1))).appendExtension(variant)$
34 }
35 }
36 association Produce1 {
37 uml::Comment if $body.contains(’before’)$ {
38 fragment = $’Factory:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(
39 ’ ’)->at(2)).concat(’Producer’)$
40 -->
41 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
42 }
43 }
44 association Produce2 {
45 uml::Comment if $body.contains(’after’)$ {
46 fragment = $’Factory:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(
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47 ’ ’)->at(2)).concat(’Consumer’)$
48 -->
49 fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
50 }
51 }
52 }

B.6.4 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.factory.cm.java
2 implements org.reuseware.lib.systems.factory.factory
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Receiver {
6 port type Slot {
7 java::commons::NamedElement is slot if $name = ’SLOT’${}
8 }
9 }

10 fragment role TwinReceiver {
11 port type Slot1 {
12 java::commons::NamedElement is slot if $name = ’SLOT1’${}
13 }
14 port type Slot2 {
15 java::commons::NamedElement is slot if $name = ’SLOT2’${}
16 }
17 }
18 fragment role Factory {
19 port type Product {
20 java::classifiers::Class is anchor if $eContainer().oclIsTypeOf(java::containers::CompilationUnit)$ {}
21 }
22 }
23 }

B.7 Concern Dimension Class

B.7.1 FraCol Definition

1 fracol org.reuseware.lib.systems.class.class {
2 fragment role Core {
3 static port type Rec;
4 }
5 fragment role Class {
6 static port type Contrib;
7 static port type Self;
8 static port type Name;
9 }

10 contributing association Contribution {
11 Class.Contrib --> Core.Rec
12 }
13 }

B.7.2 OpenOffice REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.class.cl.odt
2 implements org.reuseware.lib.systems.class.class
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot
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6 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(’Main.fc’)$ {
7 fragment role Core {
8 odfoffice::DocumentRoot {
9 fragment = $’CLASS_CORE’$

10 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’class’,’lib’,’Core.’.concat(variant)}$
11 target ufi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(
12 ’Main’).appendExtension(variant)$
13 }
14 }
15 fragment role Class {
16 odftext::SpanType if $styleName = ’Actor’$ {
17 fragment = $’Class:’.concat(mixed->at(1).getValue().oclAsType(String))$
18 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’class’,’lib’,’Class.’.concat(variant)}$
19 port type Name {
20 $’name’$ = $mixed->at(1).getValue()$
21 }
22 }
23 }
24 association Contribution {
25 odftext::SpanType if $styleName = ’Actor’$ {
26 fragment = $’Class:’.concat(mixed->at(1).getValue().oclAsType(String))$
27 --> fragment = $’CLASS_CORE’$
28 }
29 }
30 }

B.7.3 UML Use Case with Invariant REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.class.cl.usecase_uml
2 implements org.reuseware.lib.systems.class.class
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’usecase.uml’,variant).trim(2).append(’Main.fc’)$ {
6 fragment role Class {
7 uml::Actor {
8 fragment = $’Class:’.concat(ufi.trimExtension().segment(-1))$
9 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’class’,’lib’,’Class.’.concat(variant)}$

10 port type Name {
11 $’name’$ = $ufi.trimExtension().segment(-1)$
12 }
13 }
14 }
15 association Contribution {
16 uml::Actor {
17 fragment = $’Class:’.concat(ufi.trimExtension().segment(-1))$
18 --> fragment = $’CLASS_CORE’$
19 }
20 }
21 }
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B.7.4 UML Class Unit Prototype

1 componentmodel org.reuseware.lib.systems.class.cm.uml
2 implements org.reuseware.lib.systems.class.class
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model {
5 fragment role Core {
6 port type Rec {
7 uml::Package.packagedElement is hook if $self.eContainer().oclIsTypeOf(Model)$ {}
8 }
9 }

10 fragment role Class {
11 port type Contrib {
12 uml::Class is prototype {}
13 }
14 port type Self {
15 uml::Class is anchor {}
16 }
17 port type Name {
18 uml::Class.name is value hook {
19 point = $’name’$
20 }
21 }
22 }
23 }

B.7.5 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.class.cm.java
2 implements org.reuseware.lib.systems.class.class
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit, java::containers::EmptyModel {
5 fragment role Core {
6 port type Rec {
7 java::containers::EmptyModel is hook {}
8 }
9 }

10 fragment role Class {
11 port type Contrib {
12 java::containers::CompilationUnit is prototype {}
13 }
14 port type Self {
15 java::classifiers::Class is anchor {}
16 java::classifiers::Class.members is hook {}
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17 }
18 port type Name {
19 java::classifiers::Class.name is value hook if $eContainer().oclIsTypeOf(java::
20 containers::CompilationUnit)$ {
21 point = $’name’$
22 }
23 }
24 }
25 }

B.8 Concern Dimension Dataclass

B.8.1 FraCol Definition

1 fracol org.reuseware.lib.systems.dataclass.dataclass {
2 fragment role Core {
3 static port type Rec;
4 }
5 fragment role Class {
6 static port type Contrib;
7 static port type Self;
8 static port type Name;
9 }

10 contributing association Contribution {
11 Class.Contrib --> Core.Rec
12 }
13 }

B.8.2 UML Use Case with Invariant REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.dataclass.cl.usecase_uml
2 implements org.reuseware.lib.systems.dataclass.dataclass
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’usecase.uml’,variant).trim(2).append(’Main.fc’)$ {
6 fragment role Class {
7 uml::Comment {
8 fragment = $’Class:’.concat(body.split(’ ’)->at(1))$
9 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’dataclass’,’lib’,’EntityClass.’.concat(variant)}$

10 port type Name {
11 $’name’$ = $body.split(’ ’)->at(1)$
12 }
13 }
14 }
15 association Contribution {
16 uml::Comment {
17 fragment = $’Class:’.concat(body.split(’ ’)->at(1))$
18 --> fragment = $’CLASS_CORE’$
19 }
20 }
21 }

248



B.8 Concern Dimension Dataclass

B.8.3 UML Class Unit Prototype

1 componentmodel org.reuseware.lib.systems.dataclass.cm.uml
2 implements org.reuseware.lib.systems.dataclass.dataclass
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model {
5 fragment role Core {
6 port type Rec {
7 uml::Package.packagedElement is hook if $self.eContainer().oclIsTypeOf(Model)$ {}
8 }
9 }

10 fragment role Class {
11 port type Contrib {
12 uml::Class is prototype {}
13 }
14 port type Self {
15 uml::Class is anchor {}
16 }
17 port type Name {
18 uml::Class.name is value hook {
19 point = $’name’$
20 }
21 }
22 }
23 }

B.8.4 Java Unit Prototype
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1 componentmodel org.reuseware.lib.systems.dataclass.cm.java
2 implements org.reuseware.lib.systems.dataclass.dataclass
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit, java::containers::EmptyModel {
5 fragment role Core {
6 port type Rec {
7 java::containers::EmptyModel is hook {}
8 }
9 }

10 fragment role Class {
11 port type Contrib {
12 java::containers::CompilationUnit is prototype {}
13 }
14 port type Self {
15 java::classifiers::Class is anchor {}
16 java::classifiers::Class.members is hook {}
17 }
18 port type Name {
19 java::classifiers::Class.name is value hook if $eContainer().oclIsTypeOf(java::
20 containers::CompilationUnit)$ {
21 point = $’name’$
22 }
23 }
24 }
25 }

B.9 Concern Dimension Associate

B.9.1 FraCol Definition

1 fracol org.reuseware.lib.systems.associate.associate {
2 fragment role Core {
3 static port type Rec;
4 }
5 fragment role Associated {
6 static port type Self;
7 }
8 fragment role Association {
9 static port type Contrib;

10 static port type Source;
11 static port type Target;
12 static port type Name;
13 static port type NameLowerCase;
14 }
15 contributing association Contribution {
16 Association.Contrib --> Core.Rec
17 }
18 configuring association AssociationSource {
19 Association.Source --> Associated.Self
20 }
21 configuring association AssociationTarget {
22 Association.Target --> Associated.Self
23 }
24 }
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B.9.2 UML Use Case with Invariant REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.associate.cl.usecase_uml
2 implements org.reuseware.lib.systems.associate.associate
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’usecase.uml’,variant).trim(2).append(’Main.fc’)$ {
6 fragment role Association {
7 uml::Comment if $not body.contains(’inSet’)$ {
8 fragment = $’Association:’.concat(ufi.trimExtension().segment(-1)).concat(’2’).concat(body.split(
9 ’ ’)->at(1))$

10 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’associate’,’lib’,’AssociationToOne.’.concat(
11 variant)}$
12 port type Name { $’name’$ = $body.split(’ ’)->at(1)$ }
13 port type NameLowerCase { $’name’$ = $body.split(’ ’)->at(1).toLowerCase()$ }
14 }
15 }
16 fragment role Association {
17 uml::Comment if $body.contains(’inSet’)$ {
18 fragment = $’Association:’.concat(ufi.trimExtension().segment(-1)).concat(’2’).concat(body.split(
19 ’ ’)->at(1))$
20 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’associate’,’lib’,’AssociationToMany.’.concat(
21 variant)}$
22 port type Name { $’name’$ = $body.split(’ ’)->at(1)$ }
23 port type NameLowerCase { $’name’$ = $body.split(’ ’)->at(1).toLowerCase()$ }
24 }
25 }
26 association Contribution {
27 uml::Comment {
28 fragment = $’Association:’.concat(ufi.trimExtension().segment(-1)).concat(’2’).concat(body.split(
29 ’ ’)->at(1))$
30 --> fragment = $’CLASS_CORE’$
31 }
32 }
33 association AssociationSource {
34 uml::Comment {
35 fragment = $’Association:’.concat(ufi.trimExtension().segment(-1)).concat(’2’).concat(body.split(
36 ’ ’)->at(1))$
37 --> fragment = $’Class:’.concat(ufi.trimExtension().segment(-1))$
38 }
39 }
40 association AssociationTarget {
41 uml::Comment {
42 fragment = $’Association:’.concat(ufi.trimExtension().segment(-1)).concat(’2’).concat(body.split(
43 ’ ’)->at(1))$
44 --> fragment = $’Class:’.concat(body.split(’ ’)->at(1))$
45 }
46 }
47 }

B.9.3 UML Class Unit Prototype
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1 componentmodel org.reuseware.lib.systems.associate.cm.uml
2 implements org.reuseware.lib.systems.associate.associate
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model {
5 fragment role Core {
6 port type Rec {
7 uml::Package.packagedElement is hook if $self.eContainer().oclIsTypeOf(uml::Model)$ {}
8 }
9 }

10 fragment role Associated {
11 port type Self {
12 uml::Class is anchor {}
13 }
14 }
15 fragment role Association {
16 port type Contrib {
17 uml::Association is prototype {}
18 }
19 port type Source {
20 uml::Class is slot if $name = ’SLOT_SOURCE’$ {}
21 }
22 port type Target {
23 uml::Class is slot if $name = ’SLOT_TARGET’$ {}
24 }
25 port type Name {
26 uml::Association.name is value hook {
27 point = $’name’$
28 }
29 }
30 }
31 }

B.9.4 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.associate.cm.java
2 implements org.reuseware.lib.systems.associate.associate
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit, java::containers::EmptyModel {
5 fragment role Core {
6 port type Rec {
7 java::containers::EmptyModel is hook {}
8 }
9 }

10 fragment role Associated {
11 port type Self {
12 java::classifiers::Class is anchor {}
13 java::classifiers::Class.members is hook {}
14 }
15 }
16 fragment role Association {
17 port type Contrib {}
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18 homo port type Name {
19 java::commons::NamedElement.name is value hook if $name.contains(’NAME_HOOK’)${
20 point = $’name’$
21 begin idx = $name.indexOf(’NAME_HOOK’)$
22 end idx = $name.indexOf(’NAME_HOOK’) + ’NAME_HOOK’.length() - 1$
23 }
24 }
25 homo port type NameLowerCase {
26 java::commons::NamedElement.name is value hook if $name.contains(’NAME_LOWER_CASE_HOOK’)${
27 point = $’name’$
28 begin idx = $name.indexOf(’NAME_LOWER_CASE_HOOK’)$
29 end idx = $name.indexOf(’NAME_LOWER_CASE_HOOK’) + ’NAME_LOWER_CASE_HOOK’.length() - 1$
30 }
31 }
32 port type Source {
33 java::classifiers::Class.members is prototype {}
34 }
35 port type Target {
36 java::classifiers::Class is slot if $name.contains(’CLASS_SLOT’)$ {}
37 }
38 }
39 }

B.10 Concern Dimension Typebinding

B.10.1 FraCol Definition

1 fracol org.reuseware.lib.systems.typebinding.typebinding {
2 fragment role GenericEntity {
3 static port type TypeParameter;
4 }
5 fragment role Type {
6 static port type Self;
7 }
8 configuring association Binding {
9 Type.Self --> GenericEntity.TypeParameter

10 }
11 }

B.10.2 OpenOffice REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.typebinding.cl.odt
2 implements org.reuseware.lib.systems.typebinding.typebinding
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot
6 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(’Main.fc’)$ {
7 association Binding {
8 odftext::SpanType if $styleName = ’Actor’$ {
9 fragment = $’Class:’.concat(mixed->at(1).getValue().oclAsType(String))$

10 --> fragment = $’Participant:’.concat(mixed->at(1).getValue().oclAsType(String)).concat(
11 ’_’).concat(ufi.trimExtension().segment(-1))$
12 }
13 }
14 }

B.10.3 UML Use Case with Invariant REXCL Specification
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1 compositionlanguage org.reuseware.lib.systems.typebinding.cl.usecase_uml
2 implements org.reuseware.lib.systems.typebinding.typebinding
3 epackages <http://www.eclipse.org/uml2/3.0.0/UML>
4 rootclass uml::Model
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’usecase.uml’,variant).trim(2).append(’Main.fc’)$ {
6 association Binding {
7 uml::Actor {
8 fragment = $’Class:’.concat(ufi.trimExtension().segment(-1))$
9 --> fragment = $’Participant:’.concat(ufi.trimExtension().segment(-1)).concat(

10 ’_’).concat(ufi.segment(-2))$
11 }
12 }
13 association Binding {
14 uml::Comment {
15 fragment = $’Class:’.concat(body.split(’ ’)->at(1))$
16 --> fragment = $’Value:’.concat(body.split(’ ’)->at(1)).concat(’_’).concat(body.split(’ ’)->at(2))$
17 }
18 }
19 }

B.10.4 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.typebinding.cm.java
2 implements org.reuseware.lib.systems.typebinding.typebinding
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role GenericEntity {
6 port type TypeParameter {
7 java::classifiers::Class is slot if $name = ’TYPE_SLOT’$ {}
8 }
9 }

10 fragment role Type {
11 port type Self {
12 java::classifiers::Class is anchor {}
13 }
14 }
15 }

B.11 Concern Dimension App

B.11.1 FraCol Definition

1 fracol org.reuseware.lib.systems.app.app {
2 fragment role Main {
3 static port type Rec;
4 static port type Name;
5 }
6 fragment role Execution {
7 static port type Contrib;
8 static port type Executable;
9 }

10 fragment role Executable {
11 static port type Self;
12 }
13 contributing association Execute {
14 Execution.Contrib --> Main.Rec
15 }
16 configuring association AddExecutable {
17 Execution.Executable --> Executable.Self }}
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B.11.2 OpenOffice REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.app.cl.odt
2 implements org.reuseware.lib.systems.app.app
3 epackages <urn:oasis:names:tc:opendocument:xmlns:office:1.0>
4 <urn:oasis:names:tc:opendocument:xmlns:text:1.0>
5 rootclass odfoffice::DocumentRoot
6 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(’Main.fc’)$ {
7 fragment role Main {
8 odfoffice::DocumentRoot {
9 fragment = $’APP_CORE’$

10 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’app’,’lib’,’Main.’.concat(variant)}$
11 target ufi = $ufi.replace(’fragments’,’integrated’).replace(’odt’,variant).trim(1).append(
12 ufi.segment(-4).substring(1,1).toUpperCase().concat(ufi.segment(-4).substring(
13 2,ufi.segment(-4).length()))).appendExtension(variant)$
14 port type Name {
15 $’name’$ = $ufi.segment(-4).substring(1,1).toUpperCase().concat(ufi.segment(-4).substring(
16 2,ufi.segment(-4).length()))$
17 }
18 }
19 }
20 fragment role Execution {
21 odfoffice::DocumentRoot {
22 fragment = $’Execution:’.concat(ufi.trimExtension().segment(-1))$
23 ufi = $Sequence{’org’,’reuseware’,’lib’,’systems’,’app’,’lib’,’Execution.’.concat(variant)}$
24 }
25 }
26 association Execute {
27 odfoffice::DocumentRoot {
28 fragment = $’Execution:’.concat(ufi.trimExtension().segment(-1))$
29 --> fragment = $’APP_CORE’$
30 }
31 }
32 association AddExecutable {
33 odfoffice::DocumentRoot {
34 fragment = $’Execution:’.concat(ufi.trimExtension().segment(-1))$
35 --> fragment = $’UseCase:’.concat(ufi.trimExtension().segment(-1))$
36 }
37 }
38 }

B.11.3 Java Unit Prototype
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1 componentmodel org.reuseware.lib.systems.app.cm.java
2 implements org.reuseware.lib.systems.app.app
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role Main {
6 port type Rec {
7 java::statements::JumpLabel is hook if $name = ’APP_CODE’$ {
8 remove = $true$
9 }

10 java::variables::LocalVariable is anchor if $typeReference.getTarget().oclAsType(
11 java::classifiers::Class).name = ’APP_NAMEWindow’$ {}
12 }
13 homo port type Name {
14 java::commons::NamedElement.name is value hook if $name.contains(’APP_NAME’)${
15 point = $’name’$
16 begin idx = $name.indexOf(’APP_NAME’)$
17 end idx = $name.indexOf(’APP_NAME’) + ’APP_NAME’.length() - 1$
18 }
19 java::references::StringReference._value is value hook if $value.contains(’APP_NAME’)${
20 point = $’name’$
21 begin idx = $value.indexOf(’APP_NAME’)$
22 end idx = $value.indexOf(’APP_NAME’) + ’APP_NAME’.length() - 1$
23 }
24 }
25 }
26 fragment role Execution {
27 port type Contrib {
28 java::members::ClassMethod.statements is prototype {}
29 java::members::Field is slot if $name.startsWith(’PROCESS_CONTAINER’)$ {}
30 }
31 port type Executable {
32 java::classifiers::Class is slot if $name = ’PROCESS’$ {}
33 }
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34 }
35 fragment role Executable {
36 port type Self {
37 java::classifiers::Class is anchor if $eContainer().oclIsTypeOf(java::containers::CompilationUnit)$ {}
38 }
39 }
40 }

B.12 Concern Dimension Security

B.12.1 FraCol Definition

1 fracol org.reuseware.lib.systems.security.security {
2 fragment role SecurityInformation {
3 static port type Contrib;
4 static port type ElementSlot;
5 }
6 fragment role Container {
7 static port type Rec;
8 }
9 fragment role SecureElement {

10 static port type Self;
11 }
12 contributing association Contributution {
13 SecurityInformation.Contrib --> Container.Rec
14 }
15 configuring association Secure {
16 SecurityInformation.ElementSlot --> SecureElement.Self
17 }
18 }

B.12.2 SecProp REXCL Specification

1 compositionlanguage org.reuseware.lib.systems.security.cl.secprop
2 implements org.reuseware.lib.systems.security.security
3 epackages <http://www.emftext.org/language/SecProp>
4 rootclass secprop::SecPropModel
5 ucpi = $ufi.replace(’fragments’,’integrated’).replace(’secprop’,variant).trim(2).append(’Main.fc’)$ {
6 fragment role SecurityInformation {
7 secprop::Data {
8 fragment = $’SecurityInformation:’.concat(ufi.trimExtension().segment(-1))$
9 ufi = $ufi.replace(’secprop’,variant).trimExtension().appendExtension(variant)$

10 }
11 }
12 association Secure {
13 secprop::Data {
14 fragment = $’SecurityInformation:’.concat(ufi.trimExtension().segment(-1))$
15 --> fragment = $’Value:’.concat(ufi.trimExtension().segment(-1))$
16 }
17 }
18 association Contributution {
19 secprop::Data {
20 fragment = $’SecurityInformation:’.concat(ufi.trimExtension().segment(-1))$
21 --> fragment = $’UseCase:’.concat(ufi.segment(-2))$
22 }
23 }
24 }
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B.12.3 SecProp Unit Prototype

1 componentmodel org.reuseware.lib.systems.security.cm.secprop
2 implements org.reuseware.lib.systems.security.security
3 epackages <http://www.emftext.org/language/SecProp>
4 rootclass secprop::SecPropModel {
5 fragment role SecurityInformation {
6 port type Contrib {
7 secprop::Data is prototype {}
8 }
9 port type ElementSlot {

10 secprop::Data.channel is slot {}
11 }
12 }
13 fragment role SecureElement {
14 port type Self {
15 secprop::Channel is anchor {}
16 }
17 }
18 fragment role Container {
19 port type Rec {
20 secprop::SecPropModel.data is hook {}
21 }
22 }
23 }

B.12.4 Java Unit Prototype

1 componentmodel org.reuseware.lib.systems.security.cm.java
2 implements org.reuseware.lib.systems.security.security
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit {
5 fragment role SecurityInformation {
6 port type ElementSlot {
7 java::members::ClassMethod.statements is prototype if $name = ’SECURITY_BEFORE_SEND’$ {
8 point = $’before’$
9 }

10 java::members::ClassMethod.statements is prototype if $name = ’SECURITY_AFTER_RECEIVE’$ {
11 point = $’after’$
12 }
13 java::members::Field is slot if $name = ’VALUE_SLOT’$ {}
14 }
15 port type Contrib {}
16 }
17 fragment role SecureElement {
18 port type Self {
19 java::statements::LocalVariableStatement is hook if $variable.name = ’ID_SLOT’$ {
20 mode = $’append’$
21 point = $’before’$
22 }
23 java::statements::ExpressionStatement is hook if
24 $expression.oclAsType(java::references::IdentifierReference).target.name = ’consumer’$ {
25 mode = $’prepend’$
26 point = $’after’$
27 }
28 java::variables::LocalVariable is anchor if $name = ’ID_SLOT’$ {}
29 }
30 }
31 fragment role Container {
32 port type Rec {}
33 }
34 }
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C
Glossary

architectural style for MDSD a way of organising automatic refinement in a model-driven
architecture.

CB-MDSD short for component-based model-driven software development

component-based model-driven architecture a model-driven architecture that relies on CB-
MDSD concepts.

component-based model-driven software development a way of developing software that com-
bines properties of component-based and model-driven software development.

component language a language in which components are written.

component model the part of a composition system that defines what a component is that
can be processed by the systems.

composition interface an interfaces to access a fragment for composition.

composition language a language for to write composition programs.

composition link a link between two port instances in a composition program defined in UCL.

composition program defines a system as a composition of components.

composition system a system that provides an infrastructure for defining and composing com-
ponents.

composition technique The part of a composition system that defines how components are
composed.

DSML short for domain-specific modelling language.

domain-specific modelling language a language defined in EMOF.

EMOF OMG standard for defining domain-specific modelling language.

FraCol short for fragment collaboration.

fragment short for graph fragment

fragment collaboration a contract about properties fragments have to provide between a com-
ponent language and a composition language.
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fragment role defines properties for one fragment in a fragment collaboration.

fragment instance a fragment that is reused in a composition program defined in UCL.

generic composition system a composition system with configurable parts.

graph fragment a model that is treated as component in U-ISC/Graph.

invasive software composition system a composition system that uses physical merging of
components as composition technique.

metamodel a language definition in EMOF.

model an artefact defined in a DSML.

model-driven architecture a software architecture that supports domain abstraction with DSMLs
and automated refinement.

ModelHiC an architectural style for MDSD based on hierarchical composition.

ModelSoC an architectural style for MDSD based on mutli-dimensional separation of concerns.

port one distinguishable point on the composition interface of a fragment.

port instance a port in the context of a fragment instance.

port type part of a fragment role.

REXCL a specification language used to integrated a DSML into a composition system as
composition language.

REXCM a specification language used to integrated a DSML into a composition system as
component language.

U-ISC/Graph short for universal invasive software composition for graph fragments

UCL short for universal composition languages.

universal composition language the composition language of U-ISC/Graph.

universal invasive software composition for graph fragments the model composition technique
defined in this thesis.
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