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Abstract 
 
In a Minkowski three dimensional space, whose metric is based on a strictly convex and 

centrally symmetric unit ball B , we deal with ruled surfaces Φ in the sense of E. Kruppa. This 

means that we have to look for Minkowski analogues of the classical differential invariants of 

ruled surfaces in a Euclidean space. Here, at first – after an introduction to concepts of a 

Minkowski space, like semi-orthogonalities and a semi-inner-product based on the so-called 

cosine-Minkowski function - we construct an orthogonal 3D moving frame using Birkhoff’s 

left-orthogonality. This moving frame is canonically connected to ruled surfaces: beginning 

with the generator direction and the asymptotic plane of this generator g we complete this flag 

to a frame using the left-orthogonality defined by B ; ( B  is described either by its supporting 

function or a parameter representation). The plane left-orthogonal to the asymptotic plane 

through generator g(t) is called Minkowski central plane and touches Φ in the striction point 

s(t) of g(t). Thus the moving frame defines the Minkowski striction curve S of the considered 

ruled surface Φ similar to the Euclidean case. The coefficients occur5ring in the Minkowski 

analogues to Frenet-Serret formulae of the moving frame of Φ in a Minkowski space are 

called “M-curvatures” and “M-torsions”. Here we essentially make use of the semi-inner 

product and the sine-Minkowski and cosine-Minkowski functions. Furthermore we define a 

covariant differentiation in a Minkowski 3-space using a new vector called “deformation 

vector” and locally measuring the deviation of the Minkowski space from a Euclidean space. 

With this covariant differentiation it is possible to declare an “M-geodesicc parallelity” and to 

show that the vector field of the generators of a skew ruled surface Φ is an M-geodesic 

parallel field along its Minkowski striction curve s. Finally we also define the Pirondini set of 

ruled surfaces to a given surface Φ. The surfaces of such a set have the M-striction curve and 

the strip of M-central planes in common. 
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Chapter 1 

Introduction 

 

Minkowski geometry is the geometry of a finite dimensional (affine-) linear space possessing 

a norm. Usually this norm is based on a centrally symmetric convex set of this space used as 

unit ball (gauge ball) B. The standard book of Thompson [1] as well as the survey articles [2] 

and [3] cover many basic and advanced results of this geometry. The concept of orthogonality 

in such a Minkowski space is different from the Euclidean one and it makes sense in 

Minkowski spaces with a strictly convex and smooth gauge ball B. In 1934 Roberts [4] 

defined an orthogonality in normed spaces for the first time. After that many authors have 

studied other possibilities to define an orthogonality in Minkowski spaces; most of them are 

non-symmetric relations in contrary to Euclidean orthogonality, see e.g. Birkhoff [5], James 

[6-8] and Day [9]. We will focus on Birkhoff’s non-symmetric “B-orthogonality concept”, as 

its definition is a very geometric one: The supporting plane of the unit ball B  at a point x , 

contains the lines y being “left-orthogonal” to vector x; (and then x is right-orthogonal to y). 

In this introductory Chapter 1 and, even more detailed, in Chapter 2 we repeat the main 

properties of a Minkowski space and its B-orthogonality as well as its relations to other 

orthogonality concepts, thereby following Thompson[1] and Alonso [10-16].  

The other central topic we have to introduce here is the differential geometry of ruled 

surfaces. We will consider ruled surfaces, which are not developable. They are called “skew 

ruled surfaces”. For such surfaces in a Euclidean 3-space Kruppa [17] and Sannia [18] have 

developed a differential geometric treatment by generalising the classical differential 

geometry of curves. This leads to a “main theorem of ruled surfaces”: Given three functions 

(instead of two) of an arc length parameter s of a Euclidean distinguished curve c (the 

“striction curve”), then, disregarding positioning in space, there is exactly one surface having 

the given functions  as Kruppa-Sannia-functions.   

 

The aim of the dissertation is to study ruled surfaces in Minkowski spaces and coming as 

close as possible to an analogue of the above mentioned main theorem.   

1.1  Minkowski space 

In this section we will give some basic concepts related to Minkowski space which are 

essential for our work. Let B  be a centrally symmetric, convex body in an affine three 

dimensional space 3E , then we can define a norm whose unit ball is B . Such a space is called 

Minkowski normed space. In our work we consider only Minkowski spaces with a strictly 

convex and smooth unit ball B . On one hand we can define the norm by using the parametric 

representation of the unit ball B and on the other we can define the norm by using the support 

function of the unit ball B  at all points x B .    

Furthermore, since the Euclidean 3-space is a special case of a Minkowski 3-space, we always 

would like to know to what extent its properties may remain valid also in a general 

Minkowski 3-space. 



 
2 On ruled surfaces in Minkowski three dimensional space 

Definition 1.1: A Minkowski space nM  is a real linear space of finite dimension n and 

endowed with a norm  , that is a functional such that the following properties hold for any 

elements x  and y  of the respective linear space: 

 0 nx x M   , 

 0x   if and only if 0x  , 

 x x     , 

 x y x y    (the triangle inequality). 

1.2    Birkhoff orthogonality 

In this dissertation will prefer a concept of Minkowski orthogonality due to Birkhoff [5], as it 

is most naturally related to the geometry of the gauge Ball B of the Minkowski space and its 

construction is the same as for the Euclidean case. But it is, in general, no longer a symmetric 

relation between linear subspaces of the Minkowski space. Explicitly this construction of 

“left-orthogonality” reads as follows, see Fig. 1.1: The supporting plane of the unit ball B  at 

a point x , contains all the lines y being “left-orthogonal” to vector x; (and then x is right-

orthogonal to y). We use the symbols y x  for y left-orthogonal x resp. yx for y right-

orthogonal x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 

1.3  Inner product space 

A (real) inner product space X  is a special normed linear space with the additional structure 

of an inner product ,   which, for any ,x y  and z X , satisfies the conditions 

B

o
y

x y

x



 

  

3 1    Introduction 

 , ,x y y x , 

 , ,x y x y     , 

 , , ,x y z x z y z   , 

 , 0x x  , with equality if and only if 0x  , 

 
2

,x x x . 

We know that a normed linear space is not necessarily an inner product space. Therefore a 

real normed linear space is an inner product space if and only if each two-dimension linear 

subspace of it is also an inner product space. Equivalent to this we can state (see [1]) that a 

normed linear space is an inner product space if and only if every plane section of the unit ball 

B is an ellipse. For 3n   this means that B is an ellipsoid and the Minkowski space is 

Euclidean.  

As we cannot start with an inner product having the properties above, we need to find a so-

called “semi-inner product”, which is compatible with the B-orthogonality concept and the 

(non-Euclidean) Minkowski norm. It is  known – and we will repeat this in Chapter 2  -  that 

in each real normed linear space  ,X   there exists at least one semi-inner product  ,   

which generates the norm  , that is,  
1 2

,x x x  for all  x X , and it is unique if and only 

if X  is smooth, see Chmielinski [19]. We shall define a semi-inner-product based on the so-

called cosine-Minkowski function [1] and together with a sine-Minkowski function this will 

allow us to calculate coefficients of derivative equations of type Frenet-Serret also in a 

Minkowski 3-space 3

BM , in spite there is no motion group acting there. 

1.4  The aim of the dissertation 

Ruled surfaces can be seen as (continuous) one-parameter sets of lines in the Projective or 

Affine or Euclidean Line Space, (see e.g. Hlavaty [20]). But they can also be seen as two-

dimensional surfaces in a Projective or Affine or Euclidean Point Space, thus having a set of 

straight asymptotic lines, namely their rulings, (see e.g. Kruppa [17] or Hoschek [21]). 

Furthermore, some characteristic properties of a ruled surface in 3E , related to the geodesic 

curvature and the second fundamental form of it, are given by A. Sarıoğlugil [22]. 

The main task of this dissertation is to consider ruled surfaces in a Minkowski three 

dimensional space. It turns out that it is necessary to assume that the unit ball B  of this space 

is centrally symmetric, smooth and strictly convex. That means, the boundary B  contains no 

line segment. Analogue to the Euclidean case we will construct a B-orthonormal frame in a 

Minkowski three dimensional space 3

BM . This frame is based on a given oriented flag 

( , ,P g  ) of incident half-space, namely point P , half-line g  and half-plane  . After some 

steps we get a right handed (affine) frame based on B-orthogonality. 



 
4 On ruled surfaces in Minkowski three dimensional space 

Especially for (neither cylindrical nor conical) ruled surfaces   ,g t t I     there is a 

canonically defined flag connected with each (oriented) generator  g t . It consists of g  

itself, the asymptotic plane   parallel to direction vectors  g t  and its derivative  g t .  As 

the point P  of the flag we use the point of contact s of the so-called central plane Mg n    

with Φ. Thereby Mn  denotes the line left-orthogonal to  . It is constructed as follows: The 

support plane parallel to   touches B in a point Z and unit direction vector of Mn  connects 

the origin with this point Z. We just have to take care by choosing the “right” support plane of 

two that {  g t ,  g t ,OZ}, form a right handed system.  

The touching point 0( )s t  of 0( )t  with Φ is the Minkowski analogue to the Euclidean 

striction point of a ruling  g t and obviously it has to be called “Minkowski-striction point” 

of generator  g t . All those points ( )s t  form a curve MS , the Minkowski striction curve of 

Φ.  Along this curve we consider a moving frame consisting of the unit direction vector g of 

generator  g t , the Minkowski central normal n (parallel OZ) and the Minkowski central 

tangent vector t, which is parallel to the tangent of the M-spherical image of the ruled surface 

Φ at 0( )g t B   

Furthermore, using the above mentioned sine- and cosine-Minkowski functions it becomes 

possible to calculate the coefficients of the Frenet-Serret derivation equations of the moving 

frame. Thereby these coefficients, (describing a special affine transformation of the frame) 

can be called M-curvatures and M-torsions. It turns out that there are 4 such M-curvatures and 

M-torsions. Specialising B to an ellipsoid these M-curvatures and M-torsions tend to the usual 

Euclidean curvature and torsion of a ruled surface, such that the presented treatment 

comprises the Euclidean case, too. 

Finally we adapt the classical concepts of geodesics and geodesic parallelity in Minkowski 

spaces, using the Gauss’s equation in Minkowski space and an adaption of a covariant 

differentiation process, confer also [23]. For this covariant differentiation we use the (local 

Minkowski normal projection into the tangent planes. This M-normal projection is describes 

as a linear combination of the usual Euclidean normal projection and a “deviation” defined by 

a deviation vector measuring the deviation of the Minkowski space from a Euclidean one. We 

redefine the concept of a geodesically parallel field Y  along a curve  c t  on the surface in 

Minkowski 3-space. We give the fundamental condition of a curve to be geodesic using the 

covariant differentiation of its tangential vector fields and can prove the main result of the 

dissertation, that (like in the Euclidean case) the M-striction curve is distinguished among all 

curves of Φ by the property that the generators form a M-geodesic parallel field along this 

curve.   

1.5 Organization of this dissertation 

This dissertation in six chapters as follows. The Chapter 2 after this introductory Chapter 1 

contains a survey over the orthogonality concepts of Minkowski spaces and their properties 

with concentration on the Birkhoff orthogonality and its relations with other orthogonalities. 

In Chapter 3 we collect the main ideas about the supporting theory in Minkowski spaces 
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which will play a basic role in the following calculations. Also here we restrict ourself to 

Minkowski spaces with a strictly convex and smooth gauge ball B. In Chapter 4 we introduce 

the cosine and sine functions in Minkowski spaces and use them to define the unique semi-

inner product in Minkowski space.  

In Chapter 5 we present new results, like the Frenet-Serret derivation equations for ruled 

surfaces in a Minkowski space and derive generalized curvature and torsion concepts.  

Finally, in Chapter 6 we focus on the concept of covariant differentiation in Minkowski 

spaces and the concept of geodesic parallel vector fields along a curve. Here we present also 

the main result about the M-striction curve formulated already at the end of 1.4. Furthermore 

we give a modification of the second fundamental form of a ruled surface in a Minkowski 

space.   

There is no theorem for ruled surfaces in a (non-Euclidean) Minkowski 3-space 

corresponding to Bonnet's theorem just by simple modification of it. That means that if the 

curve is M-striction and M-geodesic it does not follow that it is also an isogonal trajectory of 

the generators. Constance of the striction angle would involve Minkowski angle measurement 

aside orthogonality and also for this there exist many different approaches.  But for the 

(Euclidean) theorem of Pirondini considering the set of ruled surfaces with common striction 

strip (i.e. the striction curve plus the set of central planes) it is possible to formulate also a 

version in Minkowski spaces 3

BM . 
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Chapter 2 

Orthogonality in Normed Linear Spaces 

 

2.1. Introduction 

One of the most fundamental ideas which play a basic role in Euclidean geometry is 

that of orthogonality. In Euclidean space a tangent to a unit sphere is perpendicular to the 

radius that joins the centre to the point of tangency. The concept of orthogonality in normed 

spaces has been studied in different ways because the unit sphere, in general, has shapes 

different from an ellipsoid, which defines the Euclidean space.  

Orthogonality of two vectors 0x   and 0y   in a normed linear space  ,X   has been 

defined by various authors: 

 Roberts [4] in (1934) has defined the orthogonality in normed space as follows: 

Rx y x y x y               (2.1)  

 Birkhoff [5] in (1935), James [6-8] and Day [9] from (1945-1947) from a very 

geometric point of view  were lead to a non-symmetric orthogonality and introduced 

left and right orthogonality as: 

 x y x x y       (left-orthogonality)    (2.2) 

Geometrically, this means that x y  if and only if the line x y  supports the unit 

ball B  at x , see Figure 2.1. The Hahn-Banach theorem then implies that x y  lies 

in a hyperplane which supports B  at x . Obviously  is not a symmetric relation, i.e. 

if x y , it is not means that y x . In fact, for dimensions three or above, the only 

normed spaces for which normality is symmetric are the Euclidean spaces. In 

dimension two, normality is symmetric for the wide class of Radon plans [24]. 

 Carlsson [25] in (1962) has studied the C-orthogonality 

 
2

1

0,  where 2 and a , ,
m

C k k k k k k

k

x y a b x c y m b c


       are such that 

2 2

1 1 1

0, 0
m m m

k k k k k k k

k k k

a b c a b a c
  

           (2.3) 
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Obviously C-orthogonality is not a singular concept, but a family of them. Before 

Carlsson’s work, the following cases of such family have been considered as: 

 James [6] in (1945):  Ix y x y x y    , (isosceles normal) (2.4) 

 Pythagorean [6] in (1945):  
2 2 2

Px y x y x y      (2.5) 

Both of them are introduced by James. 

 Singer [26] in (1957):  S

x y x y
x y

x y x y
       (2.6) 

 Miliĉić [27] used a functional g  and introduced  the following orthogonality 

relations:  

 

   

   
2 2

, 0,

, , 0,

, , 0

g

g

g

x y g x y

x y g x y g y x

x y x g x y y g y x

   



    


    


     (2.7) 

 where, 

   
0

, : lim , ,
t

x ty x
g x y x x y X

t

 
       (2.8) 

For more details on B-orthogonality, g-orthogonality and more, see J. Alonso [10-16] and L. 

Zheng [28]. 

 

 

 

 

 

 

Figure 2.1 
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2.2. Properties of orthogonality in normed linear spaces: 

 In an inner product space  , ,X   , ,P Ix x y   and x y  are all equivalent to the 

condition , 0x y  , for which we have the usual orthogonality x y . The inner product 

space is always a normed linear space with the inner product norm ,f f f . However, 

a normed linear space is not necessarily an inner product space, one of the pervious 

orthogonalities does not imply another in general. 

Therefore a real normed linear space is an inner product space if and only if every 

two-dimension linear subspace of it is also inner product space. Therefore we can say that a 

normed linear space is an inner product space if and only if every plane section of the unit 

sphere is an ellipse. 

The following collects some of the main properties of orthogonality in inner product spaces; 

see Alonso [15-16], 

1.  iff either 0 or 0 ,x y x y           (Nondegeneracy). 

2. If x y  then ,x y       (Homogeneity). 

3. If x y  then y x  (symmetry). 

4. If x y  and x z  implies , ,x y z x y z X    (Additivity). 

5. For every , , 0x y X x   there exist a number   such that x x y  . 

Theorem 2.1: Let X  be a smooth uniformly convex normed space, and  , 0x y X   be 

fixed linearly independent vectors. Then 

1- If  , and( ) ( )z span x y y x z x  , then there exists  such that z y   . 

2- If ( ) ( ) then z y x x y x       . 

Proof: see Miliĉić [27]. 

Definition 2.2: Let X  be a real linear space, a mapping  , : X X     is called a semi-

inner product on X  if it satisfies the following conditions: 

(i)    , 0 for all ,  and , 0 0.x x x X x x x      

(ii)      , , ,  for all ,  and all , , ,z ax by a z x b z y a b x y z X      
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(iii)    , ,  for all  and , ,ax y a x y a x y X    

(iv)     
2

, , ,  for all , .x y x x y y x y X   

It is easy to see that if  ,   is a semi-inner product on X , then the mapping  
1 2

: ,x x x  

for  all x X  is a norm on X . We know that in each real normed linear space  ,X   there 

exist at least one semi-inner product  ,   which generate the norm  , that is, 

 
1 2

,  for all x x x x X  , and it is unique if and only if X  is smooth see J. Chmielinski 

[19]. 

Definition 2.3: Let  ,   be a semi-inner product which generates the norm of any vector 

x X , and let ,x y X . The vector x X  is said to be orthogonal to y X  in the sense of 

Lumer [29] relative to the semi-inner product  ,   if  , 0x y  . We can denote this 

orthogonality by Lx y . 

Proposition 2.4: Let  ,X   be a real normed space, and ,x y X . Then x y  if and only if 

Lx y  relative to some semi-inner product  ,   which generate the norm  . The proof of 

this proposition can be found in S. S. Dragomir [30]. 

2.3 Relations between Birkhoff and Isosceles orthogonality 

To understand the main difference between B-orthogonality and I-orthogonality, we introduce 

the constant  D X  for all real normed linear space X  according to J. Donghai and Wu. 

Senlin [31], 

   inf inf : , , ID X x y x y S x y





    ,     (2.9) 

where S  is the unit sphere of X . 

Theorem 2.4: (Lower and upper bound of  D X ), For any real normed linear space X  with 

dimension two or more then, 

   2 2 1 1.D X          (2.10) 

The proof is given in [31], where the case of   1D X   is valid if and only if X  is Euclidean 

and so B-orthogonality and I-orthogonality implies each others. 
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Some following examples may be useful to understand the constant  D X  in Minkowski 

plane space. 

Example 2.5: Let the Minkowski plane X  be  2 , , 1
p

p    , be the symmetric 2

pX l , 

then the constant  D X  is given by the following formula, 

 
 

   
 

2

1 1

1
inf ; 0,1 .

1 1
q p

q p

t
D X t

t t

  
  

   

      (2.11) 

Also, 

       2 2 2 1 1
lim 2 2 1  and  where is the real number such that 1p p q
p

D l D l D l q
p q

     . 

Proof: Let  ,a b  be on the unit circle of 2

pl  then, 

1
p p

a b            (2.12) 

If 2,x y  and  , , then ( , )Ix a b x y y b a     because the space 
2

pl  is symmetric plane 

see A. C. Thompson [1] and hence, we can assume the functions 

 
p p p

f x y a b a b         , 

and 

       
p p

g a b a b      . 

Then  g   intersects  f   within the closed interval ,
b a

a b

 
 
 

, we can find the derivative 

of the function  g   as       1 1p p
g p b a b a b a  

 
      . 

Without loss of generality, we can consider that , 0 and a b a b   and let   0g   , we have 

a b

a b










 where 

1 ( 1)p
a

b




 
  
 

. Obviously 
a

b
   and by the following inequality  

 

2 2

0
b a b

a a a b




 
    

 
,       (2.13) 
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we have ,
b a

a b


 
  
 

. Thus  g   attains its minimum on the interval ,
b a

a b

 
 
 

, and then 

 f   attains its minimum on the same interval. 

Let 
1

 and 
1

q

o q

a t t
t

b t



 


, where q  is the real number such that 

1 1
1

p q
   valid. Then we 

have   0og    and  

      
    1

p p

o o

p pp

o o

g a b b a

b t t

  

 

   



    


      (2.14) 

By using some calculations, we can easily find that 

 
 

   

2

1

1
.

1 1

p

o p
q q

t
g

t t







 
        (2.15) 

Thus 

 
 

   
 

2

2

1 1

1
inf ; 0,1 .

1 1
p q p

q p

t
D l t

t t

  
  

   

         

From symmetry of last equation, we have    2 2

p qD l D l  and from theorem (2.4) and 

equation (2.11) also,    2lim 2 2 1p
p

D l


  . For more examples see [31]. 

2.4 Relations between Birkhoff and 2-norm (Diminnie) orthogonality 

To formulate the concept of 2-norm orthogonality and its relations, we are using a concept 

introduced by C. R. Diminnie [32] in 1983, this orthogonality relations of normed linear 

spaces are based on a concept of the area of a parallelogram, formulated by E. Silverman [33-

35]. Finally Diminnie compared it with B-orthogonality.  

Definition 2.5: Let F  denote the set of linear functions defined on the normed linear space 

 ,X   whose norms are less than or equal to 1. Then the ```2-norm`` is defined as follows 

   

   
, sup : ,  and , .

f x f y
x y f g F x y X

g x g y

  
   

  

   (2.16) 
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Where ,x y  may be visualized as the area of the parallelogram with vertices at 

0,  ,  ,  ,x y x y  this quantity was used by F. Sullivan [36] to obtain the convexity properties of 

normed linear spaces. 

Lemma 2.6: The 2-norm ,   has the following properties: 

a. , 0x y   and , 0 if and only if  and  are dependentx y x y . 

b. , ,x y y x . 

c. , ,  for all x y x y    . 

d. , , ,x y z x z y z   . 

e. , ,  for all x x y x y    . 

f. If  ,X   is an inner-product space then, 
2 2 2 2

, , .x y x y x y    

Definition 2.7: Let  ,X   be a normed linear space, then we say x X  is 2-norm 

orthogonal to y X  with the notation 2x y  if and only if ,x y x y  , see [32]. 

Lemma 2.8: x y  if and only if there is a functional f F  such that  f x x  and 

  0f y   i.e. y f  , where f   is the kernel functional of f  which belongs to the dual 

space X  . 

Lemma 2.9: If x y  then ,x y x y  . 

Proof: If x y , then by Lemma 2.8 and Equation (2.16), we have  

 ,  for all x y x g y g F        (2.17) 

From Hahn-Banach theorem, see A. C. Thompson [1] corollary (1.3.4 p34),  g y y , then 

the proof is completed.  

Theorem 2.10: If ,x y X , b  and  x bx y , then there are real numbers 1a  and 2a  

such that 1 2a b a  ,  2 1x a x y  , and  2 2x a x y  . In particular, for all ,x y X , there 

is a real number a  such that  2x ax y  . Proof with details may be found in [32].  
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Remark: In general, the number a  of theorem 2.10 need not be unique and if it is unique, 2  

is unique. 

Lemma 2.11: If 2  is additive, then it is unique. 

Proof: Let ,x y X  with 0x   and suppose that    2 1 2 2 and x a x y x a x y    . Since, 

2  is additive by assumption. Then  2 1 2 1 2.x a a x a a       

Lemma 2.12: If ,  for all ,x y x y x y X   , then 
2  and B-orthogonality are equivalent. 

Proof: Assume that , 0x y   and 2x y  then by Definition 2.7, we have ,x y x y  . 

By using the assumption and replacing  by x x ay , we can find that,  

, ,x ay y x ay y x y x y       , which means that  for all x ay x a    and 

hence x y . 

Conversely, if x y then from Lemma 2.9, we have ,x y x y   then ,x y x y   

2 .x y   

Theorem 2.13: Let  ,X   be a normed space of dimension three or higher. Then, the 

following statements are equivalent. 

1.  ,X   is an inner-product space. 

2. B-orthogonality is symmetric. 

3. B-orthogonality and 2-norm orthogonality are equivalent. 

4. 2  is unique. 

5. 2  is additive. 

Theorem 2.14: 2  is additive if and only if there exists no pair of vectors ,x y X  such 

that  

,  and 1.x y x y x y         (2.18) 

Proof: see [32] 
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Definition 2.15: A normed space  ,X   is strictly convex if its convex unit sphere S  has no 

line segments. 

Lemma 2.16: If  ,X   is strictly convex and ,  for all ,x y x y x y X   , then 2  is 

additive. 

Proof: Assume the converse that 
2  is additive, then there exist ,x y X  such that (2.18) is 

valid. Let (1 )z tx t y   , 0 1t   then z xy  and 1z  . 

Since, 

                          

,

,

,

z x y z x y

y x y

x y

x y z x y

   

 



    

 

and hence        1.z x y x y z       

This means that z S , which is a contradiction to the assumption that the space  ,X   is 

strictly convex, i.e. 2  is additive.  

2.5 Area orthogonality in normed linear space 

In his PhD-Thesis [10] J. Alonso in 1984 introduced the concept of area orthogonality, which 

satisfies all orthogonality relations in an inner product space (see [15, 16]) except the additive 

relation, in case the space X  has dimension three or higher. The area orthogonality has been 

discussed in details by D. Amir [37] and B. Boussouis [38]. 

In this section, we will discuss some relations of area orthogonality with some of the above 

mentioned orthogonalities. Thereby we focus on relations with B-orthogonality, which in the 

following will be used to construct the geometrical frame in Minkowski three dimension 

spaces.    

Definition 2.17: Let E  be a real normed linear space, then x E  is area orthogonal to y E  

with the notation Ax y , if either 0x y  , or x  and y  are linearly independent and such 

that the straight lines spanned by them divided the unit ball of the plane ( , )x y  (identified with 
2 ) into four parts of equal area. 

If we assume that S  be the unit sphere of the plane spanned by x  and y  (the intersection of 

oxy  plane and the unit sphere S ) is convex curve and it can be parameterized by the 

following mapping  
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        1 2: 0,2 ,s s s s S        ,     (2.19) 

where  s   is the point of S  and  0s S  measured with the orientation of the plane. 

Thereby S  is a convex curve, then 1s  and 
2s  are continuous functions of bounded variation 

with 1 20 2      and  1x x s  ,  2y y s   are Area orthogonal if and only if  

                 
2

1

2

1 2 2 1 1 2 2 1

0

1

4
s ds s ds s ds s ds

 



           . (2.20) 

This relation is equivalent with the usual orthogonality when the space E  is an inner product 

space and that it is easy to see that it is nondegenerate, continuous, homogenous and 

symmetric in every real normed linear space.  

Proposition 2.18: For every , , 0x y E x  , there exists a unique   such that 

 Ax x y  . 

Proof: Geometrically, since A-orthogonality is homogenous, then for every homogenous 

plane L E  and every x S E  , there exists a unique z S E  , such that Ax z . 

Analytically, we insert the continuous and strictly monotony function  f   as follows 

                   1 2 2 1 1 2 2 1

0

f s ds s ds s ds s ds

 



             , (2.21) 

for 0    , where  s   is a parameterization of S E  with  0x s . And hence, we can 

find the parameter 1  of the element z S E  , such that  1 0f   ,  1z s   and Ax z . 

Without lose of generality, we take also any element y S E  , such that z x y  , 

.    

Proposition 2.19: (Existence and uniqueness of diagonals), For every ,x y E \ 0  there 

exists a unique 0   such that Ax y x y    . 

Proof: see [14]. 

       From the previous proposition, A-orthogonality is a binary relation with the property of 

existence of diagonals, and then the parallelogram law for pair of A-orthogonal points is a 

sufficient condition for the norm of the space to be induced by an inner product space. So, we 

have the following corollary which gives the characterization of an inner product space by the 

meaning of A-rectangle inequality.    
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Corollary 2.20: A real normed linear space E  is an inner product space if and only if the 

following condition are satisfied, 

 2 2 2 2
, , 2Ax y E x y x y x y x y       ,   (2.22) 

where  is one of the signs  or   . 

Proposition 2.21: Let E  be a real normed linear space. The following properties are 

equivalent: 

(i) E  is an inner product space. 

(ii) If ,x y E  and x y  implies Ax y . 

(iii) If ,x y E  and Ax y  implies x y . 

Proof: see [14]. 

2.6 Birkhoff orthogonality in Minkowski spaces 

In this section, we will insert some theorems to define and discuss the existence of the 

Birkhoff-orthonormal basis in Minkowski spaces with respect to its unit ball B . Taylor’s 

theorem [39] is one of the basic ideas of considering circumscribed parallelotopes to the unit 

ball B  of the Minkowski d-dimension space X . In chapter 5, we will construct the more 

general orthogonal frame by using left and right orthogonality in Minkowski 3-dimensional 

space with respect to some special surfaces (ruled surfaces) to obtain the main idea of this 

dissertation.  

Theorem 2.22 (Taylor): Let A  be a closed, bounded set in d  that spans d . Then there 

exist points 1 2, ,..., dx x x  in A  and hyperplanes 1 2, ,..., dH H H  such that 

(1) For each , ,i ii x H  

(2) For each , ii H  is parallel to the span of  1 2 1 1, ,..., , ,...,i i dx x x x x  , 

(3) For each , ii H  supports A  at ix . 

Corollary 2.23: If B  is the unit ball in Minkowski space X  then there exists a basis 

 1 2, ,..., dx x x  such that 1ix   and  for all  and  with i jx x i j i j , i.e. each pair of these 

basis vectors is mutually orthogonal  i j j ix x x x i j   . 

Proof: Let  1 2, ,..., dx x x  be an ordered set given by theorem 2.22, we can take A B . Since 

iH  supports B  at ix , we have 1ix   and hence, i j ix x H  , we have  for all i jx x i j . 
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Corollary 2.24: If B  and B  are the unit balls in a Minkowski space X  and its dual X  , see 

chapter 3, then there exist bases  1 2, ,..., dx x x  in X  and  1 2, ,..., df f f  in X   such that 

1i ix f   for all i  and  i j ijf x   for all ,i j , where 
0 if ,

1 if 
ij

i j

i j



 


 is the Dirac delta 

function. 

Proof: Let  1 2, ,..., dx x x  be a basis for X  as in Corollary 2.18. Then define if  on X  by 

1

:
d

i j j i

j

f x 


 
 

 
 . Then 1ix   and  i j ijf x  . Also, 1if   follows from the definition of 

the hyperplane  : ( ) 1i iH x f x   which support B  at ix .  

Corollary 2.25: If B  is the unit ball in a Minkowski space, then there is a parallelotope C  

with 2d  vertices at  1 2, ,..., dx x x    such that B C  and each face of C  supports B  at the 

centre of the face. 

To prove Theorem 2.22 and Corollary 2.25, see [1]. 
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Chapter 3 

Support theorems in Minkowski spaces 

 

3.1 Introduction 

 A support theorem is a geometric version of the Hahn-Banach theorem. Each convex 

set K  induces a real valued function called support function of K . Every support function is 

sublinear (convex) and conversely every sublinear function is the support function of some 

convex set K, see [1]. This function plays an importance role in the definition of surface area 

in Minkowski space. The polar reciprocal K  of a closed convex set K  in nM  also depends 

on it fundamentally. We are interested also in the isoperimetric problem in Minkowski space, 

the solution is in general not a Minkowski sphere, but a convex surface called isoperimetrix 

body. In this chapter, we identify the affine point space nM  with a vector space using an 

arbitrary given point o  as origin respective zero vector. We will give a short survey about the 

support function in Minkowski space and some related definitions. 

In a two dimensional (normed) Minkowski space the surface area is defined by the 

induced norm of this space. But the norm in higher dimensional 3n   is no longer sufficient 

to define the surface area. Therefore various definitions of surface area were obtained in 

higher dimensional Minkowski spaces see [40-44]. In this part we will focus only on the 

definition of surface area which is given by Busemann and Petty [43] and the Holmes-

Thompson definition [1]. Of course we have more definitions given by other authors, e.g., 

Benson [45], the definitions of area by means of perimeter see [1] and by means of the 

Löwner ellipsoid. Löwner did not publish this result by himself but we can see [46] for 

complete results, one can find the details of these definitions in the books of Gardner [47] and 

Thompson [1].             

3.2 Dual Space 

 If  ,nM   is a Minkowski space, then the set of all linear functionals onto the one- 

dimensional normed space  ,   carries a natural norm. The resulting Minkowski space is 

called the dual of  ,nM   and is denoted by   ,nM
 
 . It is easy to see that the double 

dual (i.e., the dual of the dual) of a Minkowski space can be naturally identified with the 

space itself. The unit ball of   ,nM
 
  is said to be the polar of the unit ball of  ,nM   as 

we see later.  

Now let us denote nM  with a Minkowski metric  , :n n

BM M   based on a centrally 

symmetric unit ball B , then we can define a norm for the dual affine space  nM


 too by  
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  : sup : .f f x x B         (3.1) 

Definition 3.1 (Linear functional on nM ): A linear functional on affine space nM , f , is a 

linear mapping from nM  to .  

Definition 3.2: The dual space of nM  denoted by  nM


 is the finite dimensional normed 

vector space of all linear functions on nM . 

Definition 3.3: If  nf M


  then the subspace of nM  that is annihilated by f  is denoted by 

f   (kernel of f ). Furthermore, each translate of the kernel of a non-zero linear functional, 

i.e.   :nx M f x   , is called a hyperplane H  in an affine space nM . 

It is easy to see that this norm 

  based on a unit ball  nB M



 , which is related to B  in 

the following way. 

We can show that all linear maps defined on a Minkowski space are continuous. Therefore, 

(3.1) defines a norm on the dual space  nM


 of all linear functionals on nM , which 

coincides with the support function of the unit ball B  and that   : 1nf x M f   

coincides with the polar reciprocal of B , see again [1]. 

Then we can define the dual unit ball in  nM


 by B , i.e. 

  : : 1 .nB f M f


          (3.2) 

3.3 Support function in Minkowski Space 

Definition 3.4: A hyperplane   : :H x f x    is called a support hyperplane of a closed 

convex set K  if K H   and either     , : : 0K H f x f x


    or 

    , : : 0K H f x f x


   , we can say that the linear function f  supports the convex 

set K  at each point x K H . 

Corollary 3.5: If n

BM  is a Minkowski space of dimension n  and if x B  then there exists a 

                         linear function f  with 1f   which supports B  at x . 

Corollary 3.6: If x  is a point in a Minkowski space  ,nM   then 
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  : sup : .x f x f B         (3.3) 

Definition 3.7: The function  Kh f defined by  

    : sup :Kh f f x x K  ,       (3.4) 

is called the support function of the convex set K . The function Kh  is sublinear function on 

 nM


 , i.e.,  

   

     1 2 1 1

0,

,

K K

K K K

h f h f

h f f h f h f

    

  
 

what easily  can be proved by applying the properties of the supremum function in (3.3).  

Proposition 3.8: The support functions have some properties: 

 If K  is bounded then, f  is bounded because it is continuous, Kh  is a real valued 

function on  nM


. 

 If 0 K  then 0Kh   and   0 0Kh f f    if  0 Int K . 

 If K  is symmetric then Kh  is an even function and     : sup :Kh f f x x K  . 

 In the special case when K  is the unit ball B then Kh  is the dual norm on  nM


. 

 If 1K  and 2K  have the same closure the 
1 2K Kh h . 

 If K , 1K  and 2K  are closed convex sets then, 

1.  
1 2K Kh h implies 1 2K K . 

2. , 0K Kh h    . 

3. 
1 2 1 2K K K Kh h h   . 

4. If 1 2K K  then 
1 2K Kh h . 
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5. If  K K x    then      K Kh f h f f x   . 

For a functional h , we can find the associated set  n

hK M


  where 

    : : 1n

hK f M h f


   ,       (3.5) 

we can easily proof that the set hK  is a non-empty closed convex set. Starting with a closed 

convex set nK M  we derive the corresponding supporting function Kh  and hence the 

corresponding set hK  as (3.5) and we obtain the so-called polar reciprocal of K  which is 

denoted by K . 

Definition 3.9: If K  is a closed convex set in nM , the set K  of K  is called the polar 

reciprocal defined by 

    : : 1nK f M f x x K


     .      (3.6) 

If K  is symmetric then     : : 1nK f M f x x K


      is symmetric, too. 

Theorem 3.10: If K  is a closed convex set in nM  with the origin 0 K  then K K , 

where,  

  : : 1nK x M f x f K     ,       (3.7) 

For more details about the polar reciprocal see [1]. 

Definition 3.11: If K  is a closed convex set in n

BM  with  0 Int K  then for each element 

 \ 0n

Bx M  we define the radial function  K x  of K  to be the positive number such that 

 K x x K  . 

Proposition 3.12: The radial function  K x , defined in definition 3.11, has the following 

properties; 

(i)    1 , 0K Kx x      . 

(ii) If       
1 21 2  and 0 then , 1,2i K KK K Int K x x i     . 

(iii)     , 0K Kx x    . 
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Theorem 3.13: If K  is a closed convex set in n

BM  with  0 Int K  then, 

         
11

 and K KK K
f h f x h x 



   

Proof: Since      : : 1n

KK f M h f x x K


      we have that f K  iff   1Kh f  , 

since Kh  is positively homogenous function this means that   
1

Kh f f K


  which 

complete the proof of the first equation. By the same way we can complete the proof of the 

theorem. 

3.4 Volume and Mixed volume in Minkowski Space 

Definition 3.14: Let n

BM  be an n-dimensional Minkowski space with unit ball B . Then a 

regular Borel measure   is called a Haar measure, see Cohn [48], on nM  if it has the 

following properties: 

1-    for each compact subset  of nK K M  . 

2-  >0 for each open set  of nP P M . 

3-     is translation invariant, i.e. a A A     for all na M , and all Borel sets 

nA M . 

Theorem 3.15: Let n

BM  be an n-dimensional Minkowski space with unit ball B  then there 

exists a Haar measure on n

BM . 

Theorem 3.16: Let n

BM  be an n-dimensional Minkowski space with unit ball B  and if   and 

  are two Haar measures on nM  then there is a constant c  such that c  . 

The proof of the above two theorems can be found e.g. in [1, 48]. Haar [49] proved the 

existence of the left invariant measure on a locally compact group with a countable basis. This 

proof was extended to arbitrary locally compact groups by Kakutani [50], who also give the 

uniqueness property. 

Proposition 3.17: If 1,K K  and 2K  are closed convex sets (Borel sets) in n

BM  then the 

volume functional   have the following properties: 

i-    0 with equality iff dim 1K K n    . 

ii- If 1 2K K  then    1 2K K  . 
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iii-  2 1K K x   implies    1 2K K   (  is translation invariant). 

iv- If    0 then nc cK c K   . 

v-    K K   . 

Definition 3.18: If 1 2, ,..., nb b b  is a basis of the space n

BM  and if T  is a non-singular linear 

transformation on nM  then there exists a dual transformation T   on  nM


 such that 

   T f x f Tx         (3.8) 

If T  transforms a basis 1 2, ,..., nb b b  in nM  to 1 2, ,..., nTb Tb Tb   then the corresponding dual 

bases on  nM


 are 1 2, ,..., nb b b    and 
1 1 1

1 2, ,..., nT b T b T b
         respectively. 

If   is a Haar measure on nM  then there is a unique dual Haar measure   on  nM


 such 

that 

 0, 0, 1i i

i i

b b     
      

   
  ,       (3.9) 

where,  0, i

i

b  denote the parallelotope spanned by the basis vectors 1 2, ,..., nb b b . We can see 

easily that the measure   is independent of the choice of the basis 1 2, ,..., nb b b  in n

BM , see [1]. 

Theorem 3.19: If 1 1 2 2 ... r rK c K c K c K     is a closed convex set in n

BM , with 0rc   then 

   

 
1 2 1 2

1 1 2 2 ...

, ,..., ...
n n

r r

i i i i i i

K c K c K c K

V K K K c c c

    

 
      (3.10) 

i.e.  K  is a homogenous polynomial of degree d in the ,sc . 

The coefficients  
1 2
, ,...,

ni i iV K K K  are known as mixed volumes. The following proposition 

represents some importance properties of the mixed volumes. 

Proposition 3.20: If 1 2 ... nK K K K     then    1 2, ,..., nK V K K K   satisfy the 

following 
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1-  1 2, ,..., 0nV K K K   with strict inequality iff for each 1,2,...,i n  we can find line 

segments  ,i ix x  in iK  such that the vectors i i iy x x   span n

BM . 

2- If 
i iK K   then    1 2 1 2, ,..., ,..., , ,..., ,...,i n i nV K K K K V K K K K . 

3- If  i iK K x    then    1 2 1 2, ,..., ,..., , ,..., ,...,i n i nV K K K K V K K K K . 

4- If 0   then    1 2 1 2, ,..., ,..., , ,..., ,...,i n i nV K K K K V K K K K  . 

5- If i i iK K K    then  

     1 2 1 2 1 2, ,..., ,..., , ,..., ,..., , ,..., ,...,i n i n i nV K K K K V K K K K V K K K K   . 

Definition 3.21: We abbreviate 1 1 1 2 2 2

n-i.times i.times

( , ,..., , , ,..., )V K K K K K K  by 
    1 2,
n i i

V K K


. For 

 2 :K u  the line segment     : 0,1u u    and a convex set n

BK M , let us consider the 

functional 
    1

, : ,
n

K u n V K u


  . The functional ,K u  is an even function because 

   u u  , positively homogeneous and subadditive and hence is the support function of a 

convex set (Projection body) of K  in   nM


 which is denoted by    nK M


  .  

Theorem 3.22: If 1K  and 2K  are two convex bodies in n

BM  then 

      1 1

1 2 1 2,
nn nV K K K K 
  .       (3.11) 

Proof: see [1] 

3.5 The isoperimetric problem in a Minkowski plane 2

BM  

The isoperimetric problem in Minkowski plane stated as: what is the simply closed curve that 

contains a given area such that its length is a minimum? Of course, the solution in 2E  is the 

circle and in fact this result will generalize to the n-sphere in nE . We have that for any simple 

closed curve 2C E  with length  and enclosed area A ,  is a minimum when C  is a 

circle. Thus, we have the isoperimetric inequality 4 A . In 3E  that inequality states that 

if S  is the surface area of a compact convex body of volume V , then 3 236S V  with 

equality if and only if the body is a ball.  

For Minkowski planes the isoperimetric problem may be stated as: among all simple closed 

curves of given Minkowski length, we try to find the enclosing largest area. Here the 

Minkowski length of a closed curve can also be interpreted as the mixed area of it and the 
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polar reciprocal of the Minkowskian unit circle with respect to the Euclidean unit circle 

rotated through 90  see Martini and Mustafaev [51]. Busemann [40,41] between 1947 and 

1949 has presented the solution in the case of Minkowski plane and Benson [45] gives also 

another calculation of it. Busemann showed that the circles in an antinorm (norm dual in a 

certain case to the norm of an arbitrary Minkowski plane) are the solutions to the 

isoperimetric problem in a Minkowski plane, also the anticircles are circles only when the 

circles are Radon curves [24] see also [52]. 

We consider the Minkowski plane 2

BM  with unit ball B , assume the convex body K  whose 

Minkowski  length of its boundary K  is  K  . Suppose that the smooth convex body K , 

then the outward unit Euclidean normal to K  at x  is that unique linear function xf  such that 

  0, 1x x xf y f   and    x xf z f x z K   , where xy  is the unit tangent vector of K  at x . 

This means that function attains its maximum at x  such that  x xf x x f . 

If K  is parameterized by  

     : ,K x x t t      ,       (3.12) 

then we can write the Euclidean and Minkowski elements of arc length at x  respectively as 

follows 

   :d x x t dt  ,        (3.13) 

   :Bd x x t dt  ,          (3.14) 

and we can get the Minkowski length of K  as 

     

 

 
   

B B

K

x

B x K

K d x x t dt

x t
dt f d x

y









 

 






  


 

 

 

     (3.15) 

where  
 
1

x

B x

f
y




  is the reciprocal of the radial function  B xy of the unit ball, which 

is the ratio of the Minkowski and Euclidean length in the direction of the Kernel xf   of xf . 

By using chapter 2 in [1] theorem 2.3.13 we can easily get that if the function  xf is 

extended to all of the dual plane  2

BM


 by positive homogeneity and if it is convex function 
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then the integral    
1

2
x

K

f d x 


  obtains the two dimensional mixed volume  , BV K I , 

where BI  is that convex set of which the extended function  xf  is the support function. 

If 2

BM  and  2M


 are known then From theorem 3.13 the reciprocal of the radial function of 

B  is the support function of B , i.e.      
1

x B x xB
f y h y 


   see Figure 3.1, which is 

convex and is the support function of B  rotated through a quarter turn because of the change 

from xf  to xy  in the argument. However 2

B BI M  where  2

BB M


 . 

We can rewrite (3.15) as 

       2 ,B x B

K

K f d x V K I  


   .    (3.16) 

We have calculate the last integration over the boundary of the smooth convex body K , 

without loss of generality the last formula is valid for all convex body because the number of 

the singular points on K  is countable which does not affect of the value of the integration.  

 

 

 

 

 

 

Figure 3.1 

Theorem 3.23: If 1  and 2  are two convex curves from a  to b  with 1  lies inside 2  then  

   1 2B B    .        (3.17) 

Proof: Since 1  and 2  are two convex curves and 1  lies inside 2  then 1 2K K  where 

 i iK conv   for 1,2i  . By using Proposition 3.20 (3),    1 2, ,B BV K I V K I  which 

complete the proof with (3.16). 

K

o

xxy

ˆ
xf

B

oxy

 B xy

B

o

xy

 xB
h y

ˆ
xf
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Theorem 3.24: If K  is a convex body in the Minkowski space 2

BM  with area equal to that 
BI  

then    B B BI K     with equality iff K  is a translate of 
BI . 

Proof: Using (3.16) we get    2 ,B BK V K I   , putting 
BK I  then    2B B BI I   , 

from the assumption    BK I   and (3.11) we have         
22 , B B BV K I K I I    . 

Therefore,        2 , 2 .B B B B BK V K I I I        

From the above theorem, once we have the minimal perimeter BI , we can get the minimal 

area of any convex body K  as a translate of fixed multiple of BI . Among the homothetic 

image of BI , we need to specify a unique one which is called isoperimetric BI . Since BI  is 

centrally symmetric, then BI  can be taken to be centred at o .  Now we denote the Minkowski 

area by B  to be distinguishing with the Minkowski length B , we also normalized the 

isoperimetric BI  as   

   2B B B BI I   .        (3.18) 

By the same way as in the ratio of the Minkowski and Euclidean length, we define the area 

ratio B  as 

2

2

Minkowski area in 
:

Euclidean area in 

B
B

B

M

M





  .      (3.19) 

According to consider the isoperimetric BI  as a multiple of the perimeter BI  we have 

B BI I , using relation (3.16) and (3.18) to find the value of the factor  , then we get 

 
 

 
 

 
 

1

22

B B B B B B

B

BB B B

I I I

II I

  
 

  


 

   


.    (3.20) 

This deduce that 1

B B BI I  . 

We may normalize the unit ball area as Busemann [42] to be   :B   and easily verify that  

 
   

B B

B B
I

 






 ,      (3.21) 

where    K K   is called the volume product of any closed convex body K . i.e. the 

Minkowski isoperimetric area is the normalized volume product of the unit ball B .  
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We can also do the converse [53] by normalizing the Minkowski isoperimetric area by  

  
   

:B

B B
B

 






 . 

In this case   
1

B BI B I 


  and we have   2B BI   , i.e. using (3.18) we may 

measure an angle either by twice the area of the sector of BI  or by the length of the perimeter 

of BI  which it cuts off. 

3.6 Transversality in Minkowski plane 2

BM   

Proposition 3.25: If  2

BM  is a Minkowski plane and if P  is a parallelogram with one vertex 

at the origin o  and spanned by two vectors x  and y  then  

      B P x f y  ,         (3.22) 

where  
 

ˆ

ˆ
B f

f y
f




  and f̂  is the Euclidean unit linear functional such that  ˆ 0f x   and 

 ˆ 0f y  . 

Proof: From the properties of the functional f̂ , the perpendicular Euclidean height of P  is 

given by  f̂ y  then the Euclidean area can be given as  

         ˆP x f y  ,         (3.23) 

as we mentioned in the last section, we get 

       
 

 
 

ˆ

ˆ

x f y
P x f y

f



  ,       (3.24) 

where  
 
ˆ

:
ˆ

f
f y

f
  is a unit vector relative to BI , and hence 

          
 

 
ˆ

ˆB B B

f
P P x x f y

f
   


   ,     (3.25) 
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where  
 
ˆ

:
ˆB

f
f y

f



  is a unit vector relative to BI , therefore f , like Euclidean one, is 

the linear functional such that   0f x  ,   0f y   and   1
II

f h f  .  

Definition 3.26: Transversal: As the above definition of the function f  we say that y  is 

transversal to x  with the notation y x  if  
I

f y y , i.e. if f  supports I  at 

I

y

y
. Then 

from (3.25) we get   

         B B I
P x y  ,        (3.26) 

3.7 Radon plane 

In this section we shall describe an importance curve that is Radon curve or Radon norm, 

introduced by Radon in 1916 [24]. It is one of centrally symmetric closed convex curve in the 

plane. Using this curve we can define the unit ball of the Radon plane. Almost properties and 

results in Euclidean plane are valid for Radon planes too, e.g., the triangle and parallelogram 

area formulas, the area formula of a polygon circumscribed about a circle and certain 

isoperimetric inequalities [52].    

The definition of the left-orthogonality (2.2) is not in general a symmetric relation. In the case 

of Radon plane the relation  is symmetric. The construction of Radon curve is presented by 

Radon [24]; Birkhoff [5] and Day [9] also have given constructions of it in terms of polarity 

and a quarter rotations with respect to some Euclidean structure. Martini and Swanepoel [52] 

presented it using only an “affine” bilinear form.      

It is clear from the definition of the isoperimetrix BI  in section 3.5 that for every ball B  we 

get 2

BI B . As we see later, in the case of Radon plane we can consider that BI B  for 

some multiple   depending on the Euclidean structure. 

Now we will give some selected facts and theorems which distinguishing Radon plane. We 

refer to some references without all proofs. 

Theorem 3.27: (Radon [24]): A unit circle in a Minkowski plane is a Radon curve if and 

only if B-orthogonality is symmetric. 

Corollary 3.28 (Busemann [40]): A norm is Radon if and only if it equals a multiple of its 

antinorm BI B . 

Theorem 3.29: ([7]): If for any , 0x y   yields x x y   and y x y  , then 0 2  . 
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Proof: Without loss of generality 1  , from the definition of B-orthogonality we have 

 
1

x x y x





  


 and y x y y x      . Then we get,  

1x y x     and 1 1 0 2.x y x           

Lemma 3.30: ([7]) For any linearly independent ,x y  there exist   such that x x y  . 

Furthermore, y x   . 

Theorem 3.31: ([2], [7]): A norm is Radon if and only if the following condition holds: For 

any , 0x y  , x x y   and y y x  , then 0  . 

Lemma 3.32: ([7]): If , 0x y   are two elements in a Minkowski plane 2

BM  fulfilling 

x x y   and x x y  ,   , then x x y   if     . 

Theorem 3.33: ([40], [7]): A plane is of Radon type if and only if the isoperimetrix BI  is a 

circle. 

3.8 The isoperimetric problem in a higher dimensional Minkowski 

space n

BM  

In this section we discuss the concept of surface area in different methods when 3n   for a 

given n-dimensional Minkowski space. We have two well-known definitions of the surface 

area. The first one is obtained by Busemann [41] and the second one is called the Holmes-

Thompson definition [1]. As in the two dimensional space the question is, what is the extreme 

value of the surface area of the unit ball in a n-dimensional Minkowski space, when 3n  ?. 

One of the most distinguishing differences between BI  in 2

BM  and n

BM  is that in the higher 

dimensional space 3n   the shape of the isoperimetrix depends on the definition of the area 

which is not unique.  

We assume n

BM  be an n-dimensional Minkowski space with unit ball B  which is centrally 

symmetric convex body. The unit sphere denoted by B  is the boundary of the unit ball. 

For each d-dimensional subspace dM  of n

BM  we may insert the notation  d d

B B M   which 

is the d-dimensional measure of the relative unit ball in dM . We have the centrally 

symmetric convex body generated by the intersection of the unit ball B  and the subspace 
dM . For each dimension d, we define a function   on all centrally symmetric convex bodies 

as 

      d d d

B B M B M    .      (3.22) 
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By another way, a Minkowski space n

BM  possesses a Haar measure 
B , as we mentioned in 

the two dimensional space, and this measure is unique up to multiplication of the Lebesgue 

measure by a constant. Now we insert the following ratio for all subspace dM , 

    
 

 
:

d

Bd d

B d

U
M

U





 ,       (3.23) 

where U  is a measurable subset of dM . Substitute (3.22) into (3.23) and take dU B M  , 

we get 

        d d d d d

BB M M B M     .     (3.24) 

We can replace, in the following definitions, for simplicity the measure   instead of d , the 

unit ball dB  instead of dB M , B  instead of d

B  and B  instead of d

B . 

Definition 3.34: If K  is a convex body in a d-dimensional subspace dM  of n

BM , then the d-

dimensional Busemann volume of K  is defined by 

    
 

 Bus d
B

d

K K
B


 


 , i.e.,  

 
d d

B

d

M
B





      (3.25) 

Definition 3.35: If K  is a convex body in a d-dimensional subspace dM  of n

BM , then the d-

dimensional Holmes-Thompson volume of K  is defined by 

    
   dHT

B

d

K B
K

 






 , i.e.,  
 dd

B

d

B
M








     (3.26) 

Note that these definitions coincide with the standard notion of volume if the space is 

Euclidean, and if dE  is a d-dimensional ellipsoid ( dM  is Euclidean space) then 

      :d dE  .       (3.27) 

From the basic calculation of the ellipsoid volume in d-dimensional Euclidean space, we get 

     
 

2

:
1 2

d

d
d


 

 
,       (3.28) 

where  x  is the usual special Gamma function. 
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Let   be a surface in d  with the property that at each point x   there exist a unique 

tangent hyperplane, and xf  is the Euclidean unit tangent vector to the surface at x . Then the 

Minkowski surface area of   is defined by 

           :B B xf dS x


    .      (3.29) 

For the Busemann surface area,  B xf  is given by 

      
 

1d
B x

x

f
B f












.        (3.30) 

For the Holmes-Thompson area,  B xf  is given by 

      
  

1

B x

d

B f
f






 




 .       (3.31) 

If K  is a convex body in a d-dimensional subspace dM  with unit ball B , then the 

Minkowski surface area, as (3.16), of K can also be defined by 

         ( 1) ,d

B BK dV K I   .      (3.32) 

Since B  is the support function of BI ,   is the radial function of BI , then we can define the 

so-called intersection body of the convex body K  as follows. 

Definition 3.36: (Lutwak [54]) If K  is a convex body in a d-dimensional subspace dM  with 

unit ball B , then the body whose radial function in a given direction is equal the area of the 

cross-section of K  e-perpendicular to that direction is called the intersection body of K , 

denoted by IK . 

Therefore, for the Busemann measure we get 

    1

Bus

B dI IB  .             (3.33) 

Among the homothetic images of BI  we can specify a unique one, called the isoperimetrix BI  

in d-dimensional see again [1], by the same way as in two dimensional spaces, (3.18) can be 

generalized as follows   

                            B B B BI d I   .       (3.34) 
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For Holmes-Thompson measure, BI  is defined by 

 
 

1

HT

B

d

B
I

 


 ,             (3.35) 

where  B  is the projection body of the dual unit ball B  see definition  3.21. 

We have also that 

1

B B BI I  .              (3.36) 

Therefore, the isoperimetrix for the Busemann measure is defined by 

 Bus Bus

B B

d

B
I I




 ,             (3.37) 

and the isoperimetrix for the Holmes-Thompson measure is defined by 

 
HT HTd
B BI I

B




 .       (3.38) 

Geometric and isoperimetric inequalities for the Busemann and Holmes-Thompson 

definitions of volume and surface area in Minkowski spaces can be found in [55,56]. The 

article [51], too, collects basic inequalities related to isoperimetric problems in Minkowski 

spaces.  
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Chapter 4 

Trigonometry and semi-inner product in Minkowski space 

 

4.1 Introduction 

In this chapter we will discuss trigonometric functions in Minkowski space. Such 

functions were defined for first time by Busemann [44] and updated by Thompson [1]. These 

functions are connected to the concept of B-orthogonality and transversality, see chapter two 

and three. The concept of the angle in Minkowski space is dependent on the position of the 

angle and not only on the size of it. Therefore, we define those functions using the most 

convenient unique linear function which attains its norm at exactly one member of the space. 

The cosine and sine Minkowski functions are of two variables dependent on the sort of those 

variables, cosine function is defined sufficiently when the first variable is a point in the 

Minkowski space, but the sine function is more general an odd function because it may be 

defined using a hyperplane as the first argument. We define the Minkowski semi-inner 

product of two vectors, see definition 2.2, using the cosine Minkowski function which may be 

useful in the core ideas in the later chapters of that dissertation. Finally, we need to discus 

some important relations between those functions and prove some trigonometric formulae 

which are in somehow looks like the Euclidean one. Consequently, we found that the sine 

function in two dimensional Minkowski space is defined in terms of the cosine function 

between a vector and the normal to the hyperplane.     

4.2 Cosine function  

In this section, we construct the more suitable definition of the cosine Minkowski function in 
n

BM  between two vectors 
2

2, n

B Bx y M M  , where 2

2B B M   is the unit ball of the 

subspace 2M  spanned by the two vectors x  and y . Mathematically, as we see later, this 

function dependent on the unique linear functional if the unit ball is smooth at x x  and 

hence this function is a non symmetric function. 

Continuously, we will give some interesting properties of this function connected to the 

concept of Birkhoff orthogonality which is mentioned in chapter two. 

From section 3.5, for all Minkowski space n

BM  with strictly convex smooth unit ball B , we 

have for all , 0n

Bx M x  , up to a positive scalar factor, an unique linear functional xf  

attains its maximum at x . i.e,             

 x xf x x f ,       (4.1) 
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Definition 4.1 (Minkowski cosine function): For all two vectors , n

Bx y M , 0y  , 

the Minkowski cosine function from x  to y , denoted by cm( , )x y , is defined by  

 
 

cm , :
x

x

f y
x y

y f
 .       (4.2) 

Substituting (4.1) into (4.2) we get  

 
 

 
cm , :

x

x

x f y
x y

y f x
 .      (4.3) 

More general, if dM  is a subspace of n

BM  then we can define the cosine Minkowski 

functional 

      cm , : max cm , 0d dx M x y y M   .   (4.4) 

The smoothness of the unit ball B  is a sufficient condition of  cm , n

Bx y y M   to be exist. 

Of course we need only the subspace 2M  spanned by the two vectors x  and y  with the 

intersected unit ball 2

2

M
B B M  .  

In the following proposition we will give some interesting properties of the cosine function 

connecting with the B-orthogonality, we use it later to define the well defined semi-inner 

product in Minkowski space. 

Proposition 4.2: For all 1 2 1 2, , , 0n

Bx x M x x   we have 

(i)    1 2 1 2cm , cm , , 0x x x x      . 

(ii)    1 2 1 2cm , cm ,x x x x   . 

(iii) If 
1x

f  supports B  at 1x  then    1 2 1 2cm , cm ,x x x x   . 

(iv)  1 1cm , 1x x  . 

(v) For all 1 2x x ,  1 2cm , 1x x   with equality iff the line segment 1 1 2 2,x x x x B    . 



 
36 On ruled surfaces in Minkowski three dimensional space 

(vi)  1 2cm , 0x x  iff 
1 2x x  and so 

12 xx f  , where 
1x

f   is the Kernel of the supporting 

function 
1x

f  which supports B  at 1x . 

The proof of this proposition can become directly from the fact that the function xf  in (4.2) is 

linear.  

Definition 4.3: In Minkowski space n

BM , we define the Minkowski semi-inner product of two 

vectors 
1 2, n

Bx x M  as follows: 

 

 
1

1

22

1 2 1

1

,
x

M
x

f x
x x x

f x
 .      (4.5) 

By substitute (4.3) into (4.5), we have 

 1 2 1 2 1 2, ,
M

x x x x cm x x ,     (4.6) 

This definition satisfied the conditions in definition 2.2 which are proved in details in the 

following proposition.  

Proposition 4.4: The Minkowski semi-inner product , : n n

B BM
M M     has the following 

properties for all 1 2 3, , , n

Bx x x x M : 

(i) 1 2 2 1 1 2, , , .n

BM M
x x x x x x M    

(ii) 1 2 3 1 2 1 3, , ,
M M M

x ax bx a x x b x x   , for all ,a b  and all 1 2 3, , n

Bx x x M . 

(iii) 1 2 1 2, ,
M M

cx x c x x  and 1 2 1 2, ,
M M

x dx d x x
1 2, n

Bx x M   and ,c d . 

(iv) , 0
M

x x   and , 0
M

x x   iff  0x  . 

(v) 
2 2 2

1 2 1 2 1 2, , n

BM
x x x x x x M    . 

Proof: For simplicity, we replace the function 
1x

f  by 1f , from the linearity of this function 

we get 
1 1 1 ,n

x ax Bf f x M a    . It is clear from the definition (4.5), (4.6) and the proposition 

4.2 that the statement (i) is valid. 

(ii) L.H.S
 

 
21 2 3

1 2 3 1

1 1

,
M

f ax bx
x ax bx x

f x


    
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   

 
21 2 1 3

1

1 1

1 2 1 3, , .
M M

af x bf x
x

f x

a x x b x x




 

 

(iii) The first part  

 L.H.S
 

 
21 2

1 2 1

1 1

,
M

f x
cx x cx

f cx
   

     

 

 

2

21 2

1

1 1

1 2, .
M

c f x
x

cf x

c x x





 

       The second part 

 L.H.S
 

 
21 2

1 2 1

1 1

,
M

f dx
x dx x

f x
   

     

 

 
21 2

1

1 1

1 2, .
M

df x
x

f x

d x x





 

(iv) It is easy to show that 
2

, 0
M

x x x   and it is equal zero iff 0x  . 

(v)  Let 1 2 1 2, ,n

Bx x M x x   and using proposition 4.2 (v) then 

 
 

2 22 2

1 2 1 2 1 2

2 2

1 2

, cm ,

.

M
x x x x x x

x x





  

Definition 4.3 is a suitable definition of the Minkowski semi-inner product of two vectors 

1 2, n

Bx x M . From the proposition 4.4, the mapping , : n n

B BM
M M     satisfies all 

conditions of definition 2.2, then the mapping : ,
M

x x x  for all n

Bx M  is a norm on 

n

BM . We know that in each Minkowski space n

BM  there exist at least one semi-inner product 

 ,   which generate the norm  , that is,  
1 2

,  for all n

Bx x x x M  , and it is unique if and 

only if the space is smooth see J. Chmielinski [19]. Therefore, if the unit ball B  of the space 
n

BM  is smooth then the semi-inner product (4.5) is the unique one. 
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As we see in the proposition 4.2 (vi) the semi-inner product in each Minkowski space n

BM  is 

compatible with the Birkhoff orthogonality (2.2), i.e. 1 2, 0
M

x x   iff 1 2x x  and so 
12 xx f  , 

where 
1x

f   is the Kernel of the supporting function 
1x

f  which supports B  at 1x . 

4.3 Sine function 

The sine function, like the Euclidean one, is odd function and it is related to the area and 

volume measures. The main idea is trying to define the absolute value of it and find the sign 

later. Using the Euclidean volume of the parallelotope we insert the Euclidean sine function 

and using the ratio of the Euclidean and Minkowski volumes we can find the insert the 

absolute value of the Minkowski sine function. 

Let n

BM  be an n-dimensional Minkowski space based on the centrally symmetric convex unit 

ball B , H  be a hyperplane in n

BM  with 0 H  and suppose f  be a non zero linear function 

such that   0f H  , then the Euclidean volume of the parallelotope spanned by the 

parallelotope P  in H  and the element n

Bx M  with   0f x  , which is denoted by  x P  

is given by 

             1 sin ,n nx P P x H x       

       
 

1n
f x

P
f

  .        (4.7) 

Assume that the ratio of the Minkowski and Euclidean volume in n

BM  is n

B  and the ratio of 

the Minkowski and Euclidean area in H  is 
 f

f


, then we get 

    
 

 
 

 

1

1

n n n

B

n n

B

f x
x P P

f

f xf
P

f f

  

 






 



   

          
 

 
1

n

Bn n
f x

x P x P
x f


 




  

   
  

.     (4.8) 

Comparing (4.8) with the Euclidean volume of  x P  we get 

             1 sm ,n nx P x P H x    .     (4.9) 
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Therefore, 

          
 

 
sm ,

f x
H x

x f
 ,           (4.10) 

where   is the support function of    
1

n

B BI B I


 , therefore   is the norm in  n

BM


 

induced by the isoperimetrix BI  in n

BM , see chapter 3. 

Now we need to choice the sign of the function  sm ,H x  which is equivalent to choice the 

direction of the normal to H , sign of  f x . We need an orientation of n

BM  and a basis of H . 

Therefore, we assume the basis vectors  1 2, ,..., nx x x  then it has a sign as + or – depending on 

whether the orientation of the basis agrees with that of n

BM  or not, i.e, the orientation of the 

parallelotope spanned by the basis vectors in the same order or not. Consider  1 2 1, ,..., nh h h   

be a basis of H  and if n

Bx M  with   0f x  , then the ordered set  1 2 1, ,..., ,nh h h x  is a basis 

for n

BM . We can choose the sign of the  f x (the sign of  sm ,H x ) to be same as the sign of 

the basis  1 2 1, ,..., ,nh h h x . We can say that the sign of the function  sm ,H x  is positive if 

the orientation of the basis f  1 2 1, ,..., ,nh h h x  agrees with the orientation n

BM  and negative 

otherwise. 

Using the pervious ideas we can define the sine Minkowski function between any hyperplane 

through the origin H  and any other non-zero vector n

Bx M  as follows. 

Definition 4.5: Minkowski sine function: Let H  be a hyperplane through the origin and x  

be a non-zero vector in an oriented Minkowski space n

BM  with centrally symmetric unit ball 

B . Consider also a basis  1 2 1, ,..., nh h h   of the hyperplane H . Then the Minkowski sine 

function  sm ,H x  is    

          
 

 
sm , :

f x
H x

x f
 ,           (4.11) 

where  n

Bf M


  is a linear function such that f H   whose sign(   sign f x  as the basis 

 1 2 1, ,..., ,nh h h x  for n

BM  and   is the support function of    
1

n

B BI B I


 , therefore   is 

the norm of f  in  n

BM


 induced by the isoperimetrix BI  in n

BM . 

General and special cases: 

 In the case of dim 2n

BM   (Minkowski plane) then sine Minkowski function of 

ordered pairs of vectors is 
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            sm , sm ,x y y x  ,           (4.12) 

where the minus sign coming from the change of the orientation. 

 If H  is a hyperplane and L  is a subspace of n

BM  the we can define  sm ,H L  as 

                sm , : max sm , \ 0H L H x x L  .         (4.13) 

 If L  and N  are subspaces of n

BM  with    dim max dim ,dim 1L N L N   , for 

simplicity we assume that  max dim ,dim dimL N L  then  

          
 

 
sm , : max

L N

f x
L N x N B

f 

  
   

  
,           (4.14) 

where  f L N


   , f L   and  L N f   is the norm of f  in  L N


  induced by 

the isoperimetrix of the space L N  with unit ball B L N  . 

Let now 2M  be a subspace spanned by the non-zero vectors 1x  and 2x  of the space n

BM  with 

unit ball generated by intersecting the convex centrally symmetric unit ball B  with the space 
2M  ( 2

2B B M  ). Consider the parallelogram P  spanned by 1x  and 2x  then    

             
 1 2

1 2 1 2 1

1

sin ,
f x

P x x x x x
f

   ,               (4.15) 

where  1

n

Bf M


 ,  1 1 0f x   and the sign is comes from the orientation of the subspace, 

therefore 

               
 

2 2

1 2

1

1

B B

f x
P P x

f
     .          (4.16) 

After some calculations we can find the more suitable formula for the Minkowski area of the 

parallelogram P  as follows 

               1 2 1 2sm ,P x x x x  ,                       (4.17) 

and  

           
 

 
1 2

1 2

2 1

sm ,
f x

x x
x f

 ,                (4.18) 
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where  
 

2

1

1

B

f
f





  and   1 1

1

1

x f
f

x
   for which  1 1 0f x  . Simply, if we normalize 

both 
1x  and 

1f  to be Euclidean unit vectors then the support function of the isoperimetrix I  

is the same as the support function of the dual unit ball B rotated through a “quarter turn”. 

Definition 4.6: For each hyperplane H  in n

BM  we have  

                : sup sm , n

BH H x x M   ,                      (4.19) 

and for each vector n

Bx M  let 

                : sup sm ,  is a hyperplane in n

Bx H x H M  .     (4.20) 

Therefore using the definitions 4.5 and 4.6 we get the supremum of the function 
 f x

x
 is f  

i.e. f  attains its norm at x  which means f  supports B  as required then  

             
 

I

f f
H

f f



  ,                     (4.21) 

where f H   and supremum 
 

 

f x

f
 is 

I
x  since   is the norm dual to 

I
x  i.e. f  support 

I  at 

I

x

x
 then 

              I
x

x
x

  .                                 (4.22) 

We can say that the vector n

Bx M  is normal to the hyperplane H  iff    sm ,H x H  and 

it is transversal to the hyperplane H  iff     sm ,H x x . 

Proposition 4.7: The radial function  B x  of I  is  
1

x


 where 1x   because x B . 

Proof: Since        
11

1 .B B BI

I

x x I x x x x
x

   


       

From (4.22) we have the fact that the isoperimetrix I  coincides with the unit ball B iff 1  . 
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4.4 Trigonometric formulae 

In this part we will give some familiar formulae of the sine and cosine Minkowski functions 

in the two dimensional space and we assume also that the unit ball B  is centrally symmetric 

smooth and strictly convex. First we give the law of sine, later we will define the so-called 

normal basis on the Minkowski space 2

BM . We will receive that, as in ordinary trigonometry, 

cosine Minkowski is closely related to the sine Minkowski function; in fact the relation is 

quite similar. 

Theorem 4.8: Let 2, , Bx y z M  are three vectors such that 0x y z   , then the sine’s law is 

valid, 

          
     sm , sm , sm ,x y y z z x

z x y
  .                (4.23) 

Proof: We consider the triangle whose sides are ,x y  and z . The Minkowski area of this 

triangle can be given using (4.17) by three ways to get 

               
1 1 1

sm , sm , sm , ,
2 2 2

x y x y y z y z z x z x       (4.24) 

what completes the proof. 

If we assume that the two dimensional space 2

BM  is oriented and each pairs  ,x y ,  ,y z  and 

 ,z x  is positively oriented then the sign in (4.24) may be neglected. 

Definition 4.9 (The M-normal basis): If 2

BM  is a Minkowski plane with strictly convex 

centrally symmetric unit ball B  then for each x B  with 1x  , we define the left normal 

vector to x  with the notation x  which is unique vector if the following conditions are  valid 

(i)   1x  , i.e.  x I B , 

(ii) The pair  ,x x  is positively oriented, 

(iii) x x , i.e.  2

Bf M


   such that  f x x f  we have   0f x  . 

The pair  ,x x  is called a normal basis for 2

BM  see Figure 4.1.  
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Figure 4.1 

Proposition 4.10: If  1 1,x x  is a normal basis then there exists a unique linear function g  

such that  1 0g x   and    1 1
I

g x g g   ,    1 2 2sm ,x x g x   where 2x B , the 

sign comes from the orientation of the pair  1 2,x x . 

Proof: see [1 chapter 8] 

Proposition 4.11: If  ,x x  is a normal basis then the Minkowski area of the parallelogram 

spanned by x  and x  is equal to 1. 

Proof: If  Q x  denotes the required parallelogram which is spanned by x  and x  then from 

(4.17) we get 

                  sm , sm ,Q x x x x x x x x   .        (4.25) 

Using the function g  as in the proposition 4.10, we have 

                       

    

 
 

sm ,

1.

Q x x x x x

x g x x

g x

 



 

         

Theorem 4.12: For all non-zero elements 2, Bx y M  we have 

                       
1 1

cm , cm , sm , sm , 1x y y x x y x y x y 
 

  .  (4.26) 

2

BM

B

o

 I B

x

f

  1P 

x

 2

BM


B

o

x

f
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Proof: Without loss of generality, we can assume that 1x y   because the cosine and 

sine functions are independent of scalar multiples arguments. We assume two normal bases 

 ,x x  and  ,y y  for 2

BM  and try to calculate the 2 2  matrix  : ijT t  such that 

y x
T

y x

   
   

   
; it has to preserve the Minkowski area because of proposition 4.11, therefore 

 det 1T  . We define that matrix by  

            11 12y t x t x  ,        (4.27) 

            21 22y t x t x  .        (4.28) 

Since  det 1T   then 

            
22 121

21 11

t t
T

t t


 

  
 

.        (4.29) 

If xf  is a linear function, with 1xf  , supports the unit ball B  at x  then applying xf  to the 

both sides of (8.27)  an using definition 4.9, we get 

       
     11 12

11,

x x xf y t f x t f x

t

 


       

therefore,  

              11 cm ,t x y .        (4.30) 

Similarly, we take the function g  as in proposition 4.10 and apply it to the both sides of (8.6) 

to get 

                            11 12 12g y t g x t g x t   ,    

then,   

              12 sm ,t x y .        (4.31) 

Form (4.29) we have  

            22 12x t y t y  .        (4.32) 
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If yf  is a linear functional likewise xf  with norm 1 and supports the unit ball B  at y , we can 

apply this function to (4.32) then we get similarly  

              22 cm ,t y x .        (4.33) 

Now we apply the function xf  to (4.28) to get 

            21 xt f y .         (4.34) 

Since   0xf x   then from (4.11) we have 

            
 
 

sm ,
x

x

f y
x y

y f


 ,       (4.35) 

the minus sign comes from the orientation of x  and y , hence 

              21 sm ,xt y f x y  .       (4.36) 

From the definition 4.6 and the fact that 1
I

y   then 

                
1 1

21 sm ,t y x x y 
 

  .      (4.36) 

And hence, (4.30), (4.31), (4.33) and (36) give the matrix T  as follows  

            
   

   ,

cm , sm ,

sm , cm ,x y

x y x y
T

x y y x

 
  
 
 

,      (4.37) 

where,   

              
1 1

,x y y x  
 

 .       (4.38) 

Therefore the formula (4.26) is valid from the fact that  det 1T  . 

Corollary 4.13: We can replace in (4.26) the functions  
1

x


 and  
1

y


 by x  and 

y  respectively. 
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Proof: Since all functions in (4.26) are homogenous functions of degree zero then we can 

suppose that ,x y I  then the proof is clear from (4.22). 

Theorem 4.14: If 2, , Bx y z M  are non-zero vectors we have 

(i)              
1 1

cm , cm , cm , sm , sm ,x z y z x y x y y z x y 
 

  , 

(ii)          sm , cm , sm , sm , cm ,x z y z x y y z y x  , 

(iii)                sm , sm , cm , sm , cm ,y x z x y z x y z x y z y    . 

Proof: If :
x y

T
x y

   
   

   
 and :

y z
S

y z

   
   

   
 then :

x z
ST

x z

   
   

   
 where, 

   

   ,

cm , sm ,

sm , cm ,x y

x y x y
T

x y y x

 
  
 
 

, 

   

   ,

cm , sm ,

sm , cm ,y z

y z y z
S

y z z y

 
  
 
 

, 

   

   

   

   

   

   

,

, ,

cm , sm ,

sm , cm ,

cm , sm , cm , sm ,
,

sm , cm , sm , cm ,

x z

x y y z

x z x z
ST

x z z x

x y x y y z y z

x y y x y z z y



 

 
  
 
 

  
   
   
  

 

Therefore the statements (i), (ii) and (iii), can be found directly by comparing the component 

of the matrix ST . 

The following proposition gives the direct relation between the cosine and sine Minkowski 

functionals which looks like the usual complement law in Euclidean Space. 

Proposition 4.15: If 2, Bx y M  are non-zero vectors then 

                sm , cm ,x y x x y .       (4.39) 

Proof: It is clear from the definition of the cosine and sine Minkowski functional that if xf  

supports B  at x , then 
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 
 

cm ,
x

x

f y
x y

y f
 , 

 
 

 
sm ,

x

x

f y
x y

y f
 . 

Using (4.21) we get  

 
 

x

x

f
x

f



 , 

By substituting the value of  xf  into the previous formulae we can complete the proof. 
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Chapter 5 

Ruled Surfaces in Minkowski Three-dimensional space 

 

5.1 Introduction 

The study of ruled surface in Euclidean space 3  is classical subject in differential geometry. 

Recently such surfaces occur also in some modern areas in mathematics (e.g. Projective 

Geometry, Computer Aided Geometric Design, see e.g. [57] and [58]. Line Geometry, 

especially the theory of ruled surfaces has been applied to Kinematics and Robotics and to 

spatial mechanisms in 3  [59]. Tracing back to 19
th

 century works of Steiner [60] the study 

of closed one-parameter sets of spatial motions became an interesting topic in Kinematics and 

Robotics, see e.g. E.A. Weiß [61], H.R. Müller [62]. Global differential geometric concepts 

for ruled surfaces stem from A. Holditch [63] and J. Hoschek [21]; Pottmann [57] and [58] 

are more recent publications to this theme. 

 

A ruled surface can be generated by sweeping a line through space. Developable surfaces are 

special cases of ruled surfaces [58], they allow a (locally) isometric mapping to a part of the 

Euclidean plane. Cylinders, cones and tangent surfaces of curves are (the only) examples of 

developable surfaces. They consist of torsal generators only, i. e. generators, where the 

tangent plane in each regular point is the same plane. Each generator has at most one singular 

point, which is called cusp, the regular points are parabolic points. Consequently the 

Gaussian curvature of these developable ruled surfaces is zero in every regular point. Non 

developable ruled surfaces are called skew surfaces. They may contain isolated torsal 

generators, too. Non torsal generators are called skew and they consist of regular points only; 

all the points of a skew generator are hyperbolic points, i.e. there the Gaussian curvature of 

the skew surface is negative.  The concepts “regular”, “skew”, “torsal”, ”hyperbolic” and 

“parabolic” belong to Projektive Geometry. Thus they are the same if we consider a ruled 

surface in Euclidean space or in Minkowski spaces.  

 

Ruled surfaces were investigated by G. Monge, who established the partial differential 

equation satisfied by all ruled surfaces, see also A. Sarıoğlugil [22]. Ruled surfaces 

considered as one-parameter set of lines (whereby “lines” are the basic elements of the so-

called line space) have been investigated by V. Hlavaty [20], E.A.Weiß [61] and J. Hoschek 

[21]. We will follow a treatment of ruled surfaces due to E. Kruppa [17], who considered 

them a two-dimensional surface in the Euclidean space and found, that they, in some sence, 

generalise the theory of space curves. 

 

We aim at investigating ruled surfaces Φ in an Minkowski 3-space 3

BM  in the sense of 

Kruppa. For this we need to define an orthonormal frame in an Minkowski 3-space 3

BM ; (for 

this we use the Birkhoff orthogonality concept). There is special curve on the ruled surface 

uniquely defined by the property that its points are the touching points of one plane of the 

frame, the central plane. This distinguished curve is named central curve or striction curve. 

The normed direction vectors of the generators of Φ describe the spherical image of Φ, which 
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is, in general, a curve on the Euclidean or the Minkowski unit sphere B.  In the following we 

exclude cylindrical surfaces from our considerations, as their spherical image is just a point 

and not a regular curve. 

 

Finely we will define a so-called deformation vector which describes the deviation of the 

Minkowski space from a Euclidean space. Then we use it to define the Kruppa-Sannia frame 

in 3

BM  connected to the striction curve  c t  of Φ to formulate the Frenet-Serret derivation 

equations.  

Like in the Euclidean case an orthogonal frame in an Minkowski 3-space with Birkhoff 

orthogonality, see chapter 2, is based on a given (oriented) flag ( , ,P g  ) of incident half-

spaces, namely point P , half-line g  and half-plane  , (see Figure 5.1). We translate this flag 

such that P  becomes the centre of the unit ball B  and we intersect g  and   with B , 

receiving intersection point G  and arc a. The half-tangent t of arc a at G translated through P 

represents the 2
nd

 leg of the frame, it intersects B  in T  and 1:PG e  and 2:PT e  are left-

orthogonal unit vectors. Translating   such that it touches B  gives two possibilities for a 

point of contact N . We choose this one, such that { 1 2 3, , :e e PN e } forms a right handed 

(affine) frame. For this frame we therefore have 1 2e e , 3 1e e  and 3 2e e .  

Especially for (not cylindrical) ruled surfaces   ,g t t I     there is a canonically 

defined flag connected with each (oriented) generator  g t . It consists of g  itself, the 

asymptotic plane   parallel to direction vectors  g t and  g t . As the point P  of the flag 

we use the point of contact of the so-called central plane Mg n   , whereby Mn  denotes the 

Minkowski-normal vector to  . This point s  obviously has to be called “Minkowski-

striction point” of generator  g t . All those points  P t  form a curve S , the Minkowski 

striction curve. In the following we want to show that the characteristic property of an 

Euclidean striction line namely that the generators form a geodesic parallel field along S , 

also yields in the Minkowski case.  
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5.2 Ruled surfaces and frame construction of Minkowski 3-space 

Definition 5.1: A ruled surface  ,u v  is a surface that can be swept by moving a line in the 

space which can be parameterized in the following way: 

                      ( , ) ( , ) ( ) ( )u v x u v x P u ve u                                    (5.1) 

In (5.1) the function ( )P u  describes a so-called director curve, and ( ) 0e u   is the direction 

vector of the (oriented) generator or ruling   R u    and we norm ( )e u  in the sense of the 

Minkowski norm with respect to the given (smooth and strictly convex) unit ball B . A ruling 

is called torsal iff at all its regular points we have the same unit normal vector (same tangent 

plane). The analytic condition for a torsal ruling is 

                      det ( ), ( ), ( ) 0P u e u e u                        (5.2) 

A ruled surface with only torsal rulings is a developable surface. This is a surface which can 

be mapped isometrically into the Euclidean plane. The surfaces which may have a finite 

number of torsal rulings, but all other generators are non-torsal, are called skew surfaces. It is 

well known that all points of a non-torsal ruling R  are regular and two different points have 

also different tangent planes, (see Figure 5.2). Any plane through R  is a tangent plane at 

some point (which might be at infinity in case that the tangent plane is the so-called 

asymptotic plane) see Pottmann and Wallner [58]. A torsal generator  R u   is called 

cylindrical, if { ( ), ( )}e u e u  are linear dependent. In the following we will consider only those 

non-empty and continuous parts of a ruled surface, which are free of cylindrical generators.  

 

 

 

 

Figure 5.2 

The purpose of the following algorithm is to find or to define local invariants of ruled surfaces 

on the basis of a non-symmetric (left) orthogonality concept, in analogy to the classical 

Kruppa-invariants [17] of ruled surfaces in the Euclidean 3-space. This construction is of 

course depending on the shape of the unit ball of the Minkowski space which can be defined 

by using either the support function, see chapter 3, or the vector representation. We will 

present a method for constructing the Minkowski frame on the unit ball and show, how this 

can be applied to design the ruled surface. 

1e

s 


 R u 

1e

Z
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To construct that frame, we begin with the unit vector ( )e u  parallel to the (oriented)  ruling 

 R u  and fix it at the centre of the unit ball B , and hence we find the vector ( )e u  which is 

tangent to the spherical image of Φ and therefore contained in the supporting plane (tangent 

plane) of B at the end point p of ( )e u , see Figure 5.3. a, b. 

Now, we have two vectors ( )e u  and ( )e u  spanning a plane parallel to the asymptotic plane  

 u  of  R u . Thereby ( ) ( )e u e u  and  u touches Φ at the point of infinity of  R u .  

The supporting plane   of B  parallel to α touches B in a point Z. Therewith we have the 

third vector Z , the central tangent vector, which is left-orthogonal to ( )e u  and ( )e u . Now 

we have a B-orthomormal frame ( ;o eeZ ) with ( ) ( )e u e u , ( )Z e u  and ( )Z e u .  The plane 

( ) ( )u R u   parallel to the plane spanned by { ( ), ( )}e u Z u  is called the M-central plane of 

 R u . 

5.3 Striction curve in Minkowski 3-space 

Definition 5.2: The M-striction point ( )s u of a ruling  R u  of a skew ruled surface Φ in 3

BM  

is the touching point of the M-central plane ( )u  of  R u  with Φ. Thereby ( )u  is the plane 

through  R u  left-orthogonal to the asymptotic plane ( )u  of  R u . The set of all M-

striction points is called the ´´M-striction curve´´ of Φ.  

One can parameterize the asymptotic plane as follows: 

                              ,u v P u e u e u      .      (5.3) 

It is the tangent plane at the ideal point of  R u  (if we think of the projective extension of the 

(affine) Minkowski space. The general tangent plane   of the ruled surface ( , )u v  is 

spanned by the partial derivative vectors ux  and vx  as 

          ,u v P u P u ve u e u            (5.4) 

Moreover, we have the unit ball B  which is described either by supporting function or vector 

representation e.g.  ,b    (the unit vector representation) which is central symmetric 

(    , ,b b       ). 

Let   be the tangent plane of the unit ball B  which is described as 

                          , ,b b b                             (5.5) 

The asymptotic plane   parallel to the tangent plane   of the unit ball B  then, 
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    

    

det , , 0

det , , 0

b e u e u

b e u e u





 


 

                         (5.6) 

By solving these equations, we can find the corresponding parameters  u  and 

 u which give the vector  ,b    to be parallel to the central tangent vector and hence 

we can span the central plane   as   

                            ,u P u e u b u u             (5.7) 

In terms of the ruled surface, the central tangent vector Z  is tangent to the surface at the 

central point or striction point. So, the main question to express a  suitable formula of the 

striction curve of the ruled surface in Minkowski space is how we can specialise u  and v  in 

tangent plane   such that  ,u v  is point of contact of  .   

To answer this pervious question, we assume the central plane   with fixed ruling at 

parameter u        

                            ,u P u e u b u u                     (5.8) 

The striction point      ,MS u v P u v e u   with parameter v  calculated from the fact 

that the central tangent vector  b u  lies in the tangent plane. Then, 

                   det , , 0e P v e b  ,              (5.9) 

where  b u  is dependent only on the parameter u . Therefore, we obtain that, 

 
 

det , ,

det , ,

e P b
v

e e b
  .                  (5.10) 

Inserting (5.10) into the equation of striction curve to obtain 

                        
 
 

 
det , ,

det , ,
M

e P b
S u P u e u

e e b
  . (5.11) 

In the special case of Euclidean space the central tangent vector  b u  is    e u e u and 

hence, 

                          
2

P e
v

e


  ,                  (5.12) 
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and the striction curve in the Euclidean space is 

                            2E

P e
S u P u e u

e


  .              (5.13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 a, b 
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5.4 Deformation vectors in a Minkowski plane 2

BM  

In this section we define a new vector called Deformation vector which will help us to find 

the Minkowski version of the Frenet-Serret formulae for the moving frame of a ruled surface 

in a Minkowski space.  

Definition 5.3 (Deformation vector): Let 
2

2

BM  be a Minkowski plane with smooth and 

strictly convex centrally symmetric unit ball 2B . Then the deformation vector x  of any 

normed vector 
2

2

Bx M  is defined as  

 

 

x
x

x
  .         (5.14) 

Note that the pair  ,x x  is a B-orthonormal basis for 
2

2

BM , see Figure 5.4. 

Theorem 5.4: Let 
2

2

BM  be a Minkowski plane with smooth, strictly convex and centrally 

symmetric unit ball 2B . Let 
1

:y x x


  be any normed vector of 
2

2

BM , then its left-

orthogonal  vector y  is described by the formula 

                                 

  ,y x x y cm x x   . 

Proof: Let the vector 
2

2

Bx M , and the normal basis  ,x x . If we assume 
2

2 ,  B

x
y M y

x
  , 

then, we have the deformation vector which can be considered as a linear combination of the 

normal basis  ,x x . 

          1 2y A x A x  .         (5.15)   

Multiply both sides of (5.15) by x  from left as Minkowski semi-inner product (4.6), we have 

         1 2, ,
M M

x y x A x A x  ,       (5.16)   

by using the definition and additive property of the Minkowski semi-inner product and 

, 0
M

x y  . Then  

2

1 20 ,
M

A x x A x  ,       (5.17)   
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and hence, 

 1

2

,
.

A cm x x
A

x
          (5.18)   

We know that Minkowski plane 
2

2

BM  is spanned by the pairs  ,x x  or  ,y y , therefore the 

Minkowski area  P  of the parallelogram P  spanned by y  and y  is 

     , ,P y y sm y y y sm y y   .     (5.19)   

Since,  
1

,sm y y
y

 , then by substituting y  from equation (5.15) into (5.18), we have 

     

   
1

,P sm y y
y

                      

 1 2,sm y A x A x                  (5.20) 

Using theorem 4.14 (ii), we have the fact that, for all  
2

2

1 2 3, , 0Bx x x M   we have 

          1 3 2 3 1 2 2 1 2 3, , , , ,sm x x cm x x sm x x cm x x sm x x  .   (5.21)   

If we take 1x y , 2 1x A x  and 3x y , then (5.20) becomes 

  

         1 1 1 1

1
, , , , ,sm y y cm A x y sm y A x cm A x y sm A x y

y
  

   

      
1

, .cm x y
x

       (5.22) 

Now it is easy to calculate the vector y  by multiplying again both sides of (5.15) by x  from 

left as Minkowski semi-inner product, we have 

 1 ,A y cm x y x   .       (5.23)   

Therefore, substituting (5.22) into (5.23) and into (5.18), we find that 

            

  , .y x x y cm x x         (5.24)   
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Without loss of generality, we can use the notation 
yx  instead of the notation 

y

x
  

 

 

 

 

 

 

 

 

Figure 5.4 

5.5 Frenet-Serret frame in Minkowski 3-space: 

Let  1e s  be a unit vector which depends only on one parameter 1s . By attaching this vector 

at the origin O of a fixed (affine) frame of a Minkowski space 3

BM
 
we receive the spherical 

image 1c  of the ruled surface in consideration Φ at the unit sphere B  and we call the cone 

1O c  the “direction cone” of Φ. Without loss of generality we can assume that the parameter 

1s  is a “Minkowski arc length parameter” of the curve 1c , , i.e. the derivation vector  1'e s  is 

normed all over de definition interval of 1s . The direction cone of Φ takes the form 

      1( )ve s          (5.25) 

Based on the right handed B-orthonormal (affine) frame  , ,e z we have e e , z e  and 

z e , and therefore  , 0
M

e e  , , 0
M

z e   and , 0
M

z e  . 

The derivatives of the vectors  , ,e e z  must be linear combinations of these vectors. The 

formulae for these expressions are usually called the Frenet-Serret derivation equations of a 

moving frame. 

We can assume that the vector  1e s    is defined by the first equation of the three Frenet-

Serret equations. We state that the third equation must be the same for Minkowski cases as 

2

2

BM

B

o

 I B

x

x

y

x y



 

  

57 5      Ruled surfaces in Minkowski three dimensional space 

well as for the Euclidean case, because the unit vector  1e s  is left-orthogonal to the 

derivative vector  1e s  as in the Euclidean case. 

The derivative of the unit vector z  can be obtained as a linear combination of the three B-

orthonormal vectors  , ,e z  as follows, 

    1 2 3z B e B B z    .         (5.26) 

Multiplying both sides of (5.26) by z  from left as Minkowski semi-inner product and using 

the properties of it we get 3 0B  , where z z  ( z  lies in the supporting plane of the unit ball 

B  at z ). Therefore 

   1 2z B e B    .          (5.27) 

By the same manner, we multiply both sides of (5.27) by e , we can find 1 ,
M

B e z . Then 

  2,
M

z e z e B    .         (5.28) 

By using the deformation vector e  of the vector e  in the plane  oe , the vector   

becomes  

  
 ,

e e

cm e





 .           (5.29) 

Then, we can rewrite (5.28) as follows 

 
   

2
2,

, ,M

eB
z e z e B

cm e cm e



 

 
    

 
.      (5.30) 

Multiply again both sides of (5.30) by   from left as Minkowski semi-inner product, we can 

easily compute the constant       2 , , ,B z cm z cm e z cm e     , we have from (5.28) 

        , , , ,z z cm e z e cm z cm e z cm e           .     (5.31) 

By the same method, we can assume that the vector    lies in the plane which contains the 

vectors e  and z , hence we can describe it as linear combination of that vectors, 

  1 2d e d z    ,            (5.32) 

where 
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 

 

, ,
.

,

e e cm e

z z cm z





 

 

   


   

       (5.33)   

It is clear to calculate the constants 1d
 
and 2d

 
as follows  

     

   

     

   

1

2

, , ,
,

1 , ,
.

, , ,

1 , ,

cm e cm z cm e z
d

e cm z e cm e z

cm z cm e cm z e
d

z cm z e cm e z

   

    

   

    

  

  

   
 

 


   
 

    (5.34) 

Then (5.32) becomes  

     

 

        

 

        

 

     

 

, , ,

,

, , , ,

,

, , , ,

,

, , ,

,

cm e cm z cm e z
e

H z e e

cm e cm z cm e z cm e

H z e e

cm z cm e cm z e cm z

H z e z

cm z cm e cm z e
z

H z e z

   

  

   

  

   

  

   

  

 
 

  

  


 

  
  



  




  




  


 

  (5.35) 

where,      , 1 , ,H z e cm z e cm e z       .  

Now, we consider ( )x s  describing the space curve c  with arc length s . The tangent vector 

t x  can be moved into the unit sphere S  to obtain the spherical image 1c , the cone 1( )oc  

has generators which are parallel to the tangent of the curve c . As for the previous 

construction, we have the right handed orthonormal (affine) frame  , ,t h b , h  is called the 

principal normal vector and b  is the binormal, without loss of generality, we can consider 

that the derivatives of those vectors are unit vectors and the plane ( )t h  is the osculating plane, 

the plane ( )hb  is the normal plane. By using the derivative of these vectors as before, we 

have 

 
1

dt
h

ds
 ,        (5.36) 
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     

 

        

 

        

 

     
 

1

cm , cm , cm ,

,

cm , cm , , cm ,

,

cm , cm , cm , cm ,

,

cm , cm , cm ,

,

h h h h

h h h

h h h h

h h h

h h h h

h h h

h h h h

h h h

b h t b t hdh
t

ds H b t t

t h b h cm t b h t

H b t t

b h t h b t h b
h

H b t b

t h b t b h
b

H b t b

 
 

  





  





 

    (5.37) 

       
1

cm , cm , cm , cm ,
db

t b t h b t b h t h
ds

       .      (5.38) 

We insert the following abbreviations and notations: 

1 :
ds

ds
   M-curvature, 

  2cm , :  h b     conical curvature, 

  3cm , :  t b     second conical curvature,  

  4cm , :   third conical curvature,hb h   
 

  5cm , :   fourth conical curvatureht h    . 

Multiplying both sides of the equations (5.36), (5.37) and (5.38) with the pervious functions, 

we similarly get Minkowski analogues to the classical torsion functions as follows:  

2 1:      M-torsion, 

3 2:     second torsion, 

4 3:     third torsion, 

5 4:  fourth torsion.  
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Therewith we can rewrite the Minkowski Frenet-Serret Formulae of any curve ( )x s  in the 

final form as 

   t h  ,         (5.39) 

 
 

    

 

    

 
 

 

4 33 4

3 4 4 3

cm , cm ,cm ,

, ,

cm , cm , cm ,

, ,

h hh h

h h h h h h

h h h h

h h h h h h

t b h tt b
h t

H b t t H b t t

b t h b b t
h b

H b t b H b t b

  

   

  
   




 





   (5.40) 

 2 1 2 cm ,b t h t h        .        (5.41) 

The coefficient functions of the M-Frenet-Serret formulae are the 2
nd

, 3
rd

  and 4
th

 curvatures 

and torsions. They have no geometric meaning in general but we can find such a meaning for 

some special unit balls B. 

 

The Euclidean case: 

In the case of an ellipsoid as unit ball, which refers to the Euclidean space, we can easily go to 

the usual Frenet-Serret formulae, whereby the M-curvatures and M-torsions occur as follows: 

 M-curvature                 =   E-curvature  e  , 

 M-conical curvature    =    E-conical curvature  2 2

e  , 

 2
nd

 conical curvature  3 0  , 

 3
rd

 conical curvature  4 2

e   , 

 4
th

 conical curvature  5 1  , 

 M-torsion                 =    E-torsion  1

e  , 

 2
nd

 torsion  2 0  , 

 3
rd

 torsion  3

e   , 

 4
th

 torsion  4

e  = E-curvature. 

Therefore we get   

    

0 0

0

0 0

e

e e

e

t t

h h

b b



 



     
          

         

 .       (5.42) 

 

In addition to this direct limitation we could consider cases, where some of the Frenet-Serret 

frame vectors are mutually B-orthonormal. Also here we can expect simplified Frenet-Serret-

equations.  By using other M-invariants, e.g. linear combinations of the above mentioned, we 

can also find some simplifications, as we state in the following 
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Corollary 5.5: The Frenet-Serret formulae (5.39-41) can be written as 

       

  
1 1

2 1 2

0 0

cm , cm ,

cm , 0

t t

h h t h b h

b h t b



   

  

    
           

          

,      (5.43) 

whereby   and 1  are the following functions of the 3
rd

 and 4
th

 Minkowski torsions: 

            
 

 

sm ,

sm ,

h

h h h

b h

b t t
 


  , 

 

 
1

sm ,

sm ,

h

h h h

t h

b t b
 


      (5.44) 

Proof: Using (4.12), theorem 4.14 (i) and the fact that the three vectors h , ht  and hb  lie in 

the same plane then we have   

             1 1cm , cm , cm , ( ) ( ) sm , sm ,h h h h h h h h ht h b h t b b t b h b t          

                                    4 3

1
cm ,h ht b 


     (5.45) 

and 

         1 1cm , cm , cm , ( ) ( ) sm , sm ,h h h h h h h h ht h b t b h b t t h b t       

        3 4

1
cm ,h hb t 


     (5.46) 

From (4.26) we get 

     1 1, ( ) ( ) sm , sm ,h h h h h h h hH b t b t b t b t       (5.47) 

Therefore, we can simplify (5.40) as follows 

 

 
 

 
 

 

 

 
 

 

 

sm , sm ,
cm ,

sm , sm ,

sm , sm ,
cm , .

sm , sm ,

h h

h h h h h h

h h

h h h h h h

b h b h
h t h t

b t t b t t

t h t h
h b h b

b t b b t b

 

 

 
    



 



   (5.48) 
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From the initial assumptions we have 

      1 1cm , cm , .h t h t h b h b             (5.49) 

Hence, the Frenet-Serret formulae take the more simple form as stated in Cor. 5.5. 

Theorem 5.6: Given a Minkowski space 3

BM  and a B-orthonormal Frenet-Serret frame of a 

curve or ruled surface. If the derivative of the principal normal vector h  lies in the rectifying 

plane  t b  and t b ,  then h t  implies h b  which means that 3

BM  is Euclidean  and 

h t . 

Proof: Since h  lies in the rectifying plane then using (5.40) we have 

            4 3 3 4cm , cm , cm , cm , 0h h h h h hb t b h t t b t h b       .  (5.50) 

Assume that h t , i.e.  cm , 0h t   then from (5.52) we get     3 4 cm , cm , 0h hb t h b    

which implies two possibilities, first of all that  cm , 0h b h b   which means h b   

which is the Euclidean case. Finally, we have  3 4 cm , 0h hb t    and by using the 

definitions of the Minkowski torsions and curvatures we have 

         cm , cm , cm ,h h h hb h t h b t  .       (5.51)  

By using theorem 4.14 (i) and (5.53) we get 

       sm , sm , 0h h ht h b t  .        (5.52)  

If  sm , 0h hb t  , using (4.39) we get  cm , 0h h h h h hb t b t b t   , which contradicts to 

the assumption. Therefore we have only  sm , 0ht h   and since ht t  then h t .   
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Chapter 6 

Geodesics in Minkowski space 

 

6.1 Introduction 

For a (linear) Euclidean space geodesics are just straight lines. On a curved (and sufficiently 

smooth) surface a geodesic is a curve that represents the extremely value of a distance 

function. This concept holds therefore in all normed spaces, especially in those under 

consideration. In the Euclidean space, extremal means „„minimal‟‟, thus geodesics are paths 

of minimal arc length or, in other words, they are the locally shortest paths between two 

distinct surface points. Besides this inner geometric definition there is an outer geometric 

definition, too: The osculating planes of a geodesic on a surface contain the surface normals 

and thus geodesics are the curves along which the geodesic curvature vanishes.  

In this part, using an equivalent to Gauss‟s equation in Minkowski spaces, we define an M-

geodesic parallel field Y  [23] along a curve  c t  on the surface in Minkowski 3-space. We 

give the fundamental condition of a curve to be M-geodesic using the covariant differentiation 

of its tangential vector fields. 

From e.g. [58] we know the fact that the generators of the skew ruled surface along the 

striction curve in Euclidean space are geodesically parallel and that also the converse is true. 

In a Minkowski space we find a similar result, but we must redefine the parallel field along 

the curve with respect to the B-orthogonality and demand additional conditions.  

We find that there is no equivalent to Bonnet‟s theorem for ruled surfaces in Minkowski 

spaces based on the definition of M-striction curve (5.11) as this would involve an angle 

measure. 

Finally we formulate an analogue to the theorem of Pirondini see Müller-Krames [64] 

considering the set of ruled surfaces with common striction strip (i.e. the striction curve plus 

the set of central planes) it is possible to formulate a version in Minkowski spaces 3

BM . 

6.2 The covariant derivative in Minkowski space 

In Euclidean space we are lead to the concepts of the directional derivative of functions and 

vector fields. When calculating the standard derivative of a tangential vector field of a surface 

we receive a vector field, which, in general, is no longer tangential to the given surface. By 

splitting the derivative vector into a tangential and a normal component one can define the so-

called covariant derivative as the tangential component alone. This covariant derivative 

obtained in this manner has some important properties, e.g. it is an inner-geometric concept of 

the surface and therefore belongs to the intrinsic geometry of it, see [23]. 
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By a parallel vector field we mean a vector field with the property that the vectors at different 

points are geodesic parallel in the sense of Levi-Civita. In Euclidean space, there is an affinity 

from one tangential bundle to the neighbouring one canonically defined by the Levi-Civita 

connection between these bundles. A given vector of the first bundle and its corresponding 

one of the second bundle are called geodesic parallel.  

 

Figure 6.1 

Lemma 6.1: Projection onto the tangent space: Let us consider a surface   in Euclidean 

space nE  and let V  be a vector in nE . The projection V  of V  onto the tangent space T  has 

coordinates given by  

                   .ik

ki
V g V

x


 
  

 
,        (6.1) 

where  ikg  is the matrix inverse of  ikg  and    / /i k

ikg x x       are the coefficients of 

first fundamental form in Euclidean space. 

Theorem 6.2: Let  ,u v  be a surface in 3-dim space and V  be a vector field on it, then the 

Minkowski projection V   of  V  onto the Tangent plane  ,u v  are given by 

  . .ik

k ki
V g V V

x x


      
      

     
,      (6.2) 

Proof: We can represent V  by two ways as           

V V V                                                                                                  (6.3) 

and 

V V V                                                                                                    (6.4) 
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where V   and V  are the component of V  which are normal to the tangent plane in the 

Euclidean and Minkowski sense respectively. We write 
kx




 as ke  and write 

1 1 2 2

1 1 2 2

,V a e a e

V a e a e





  


    
                                                                                              (6.5) 

where ia  and ia  are the desired local coordinates of  V  and V   respectively. Let 

1 1 2 2 3 eV b e b e b n   , here en  denotes the normalized surface vector and hence,  

   1 1 1 2 2 2 3 eV a b e a b e b n      ,                                                                         (6.6) 

and so, 

                1 1 1 1 1 2 2 2 1 0V e a b e e a b e e         , 

                2 1 1 1 2 2 2 2 2 0V e a b e e a b e e         .                 

We can rewrite the last equations as 

   

   

1 1 1 11 2 2 21

2 1 1 12 2 2 22

,V e a b g a b g

V e a b g a b g

      


      

,                                                                         (6.7) 

which can be written in the matrix form as  

                 i i i kiV e a b g     . .ik

k ki
V g V V

x x


      
      

     
. 

Therewith we have shown that the Minkowski projection of any vector field onto the tangent 

plane is described by the difference between the Euclidean normal projection and the 

Minkowski normal projection of it.   

Definition 6.3: Covariant Differentiation: If U  and V  are two tangential vector fields 

defined on the surface   then 

 
.

,
Tang

U U U U e eV D V D V D V n n          (6.8) 

called covariant differentiation of V  in the direction of U  where en  is the Euclidean normal 

of the surface and UD V  is the directional derivative of V  in the direction of U , therefore the 

normal part is described by the second fundamental form of  , i.e., , ( , )U eD V n II U V .   

And hence, we can rewrite (6.8) as, 

( , )U U eD V V II U V n  ,           (6.9) 

and we note that equation (6.8) may be called Gauss equation as it induces the covariant 

differentiation.  

Theorem 6.4: The Minkowski second fundamental form of two tangential vector fields is the 

Euclidean second fundamental form multiplied by the component of Euclidean normal vector 

in the direction of the Minkowski normal, i.e 

( , ) ( , ) ,M e M
II U V II U V n n  ,       (6.10) 
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where ( , ) ,M U M
II U V n D V   is the Minkowski second fundamental form and Mn  is the 

Minkowski unit normal vector. 

Proof: The Minkowski covariant differentiation of V  in the direction of U can be written as 

the following form   ( , )U U MM
V D V II U V n    then, 

  ( , )U U MM
D V V II U V n          (6.11) 

Now, if we take the Minkowski semi-inner product of both sides of (6.11) with Mn  from left, 

we get, , 0 ( , )M U M
n D V II U V  . And hence, we can define the Minkowski second 

fundamental form as ( , ) ,M U M
II U V n D V  .       

The Euclidean unit normal vector can be written as 

 e e e Mn n n n            (6.12) 

where, en   and  en  are the tangential and normal Minkowski components respectively. 

Thus, from (6.12) follows   ,e M e M
n n n . Inserting (6.12) into (6.9) and comparing the 

result with (6.11) one receives 

  ( , ) ,

( , ) ( , ) , .

U U eM

M e M

V V II U V n

II U V II U V n n

     


  

,       (6.13) 

 ( , ) ( , ) ,e M eII U V II U V n cm n n         (6.14) 

and thereof follows finally  

 , , ,M U U e e M eM
n D V D V n n cm n n .      (6.15) 

 

6.3 Parallel fields in Minkowski space 

At first we recall the Euclidean case: 

Definition 6.5: let  c t  be a curve on a surface   in an Euclidean space with tangent  c t  

and let Y  be a tangential vector field along   that is C  on  c t . The field Y  is geodesic 

parallel along the curve  c t , if  (and only if) 0cY   along  c t . The regular curve  c t  is 

a geodesic on  , if (and only if) 0cc  , i.e. if its tangents  c t  are geodesic parallel along 

 c t or its geodesic curvature vanishes. 

Other (equivalent) characterizations of geodesics in a Euclidean space are that their osculating 

planes contain the surface normals or that they are locally the shortest paths between two 

distinct surface points.  

In the following we modify this definition such that it makes sense in a Minkowski space. 

One possibility would be to define the Minkowski auto-parallel curves, i. e. the M-geodesics 

on a surface Φ, by the property that their osculating planes contain the M-normals of Φ 

respectively. For the moment we still can decide to choose the lines left-orthogonal or the one 

right-orthogonal to Φ as M-normals or even a (fixed) linear combination of both normals. A 

similar approach can be used for defining M-geodesic parallelity. 
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Let us first consider Definition 6.6A and its consequences: 

Definition 6.6A: Assuming that ( )V t  is a tangent vector field attached to the curve 

( ) ( ( ))c t x u t  of a surface Φ in a Minkowski space, then it is an “ML-geodesic parallel field” 

along ( )c t  if ( )V t  is left-orthogonal to the surface at the point ( )x t . 

In other words, let  c t  be a curve on a surface   in Minkowski space with tangent  c t  and 

let Y  be a tangential vector field along   that is C  on  c t , then the field Y  is ML-geodesic 

parallel along the curve  c t , if   0c M
Y   along  c t . The curve  c t  is an ML-geodesic, 

if   0c M
c  , i.e. if its tangents  c t  are ML-geodesic parallel along  c t .  

Lemma 6.7A: A curve  c t  on a surface   in Minkowski space is ML-geodesic iff cD c  is 

left-orthogonal to the surface   i.e. ,c c e ec D c n n     .  

Proof: Let  c t  be a curve on a surface   in an Minkowski space, the Gauss equation in 

Minkowski sense implies   ,c c M c MM M
c D c n D c n   . Thus   0c M

c   iff cD c  is in the 

direction of the Minkowski normal vector Mn  ( c MD c n ). By using equation (6.13), we 

receive ,c c e ec D c n n     , which completes the proof. 

Theorem 6.8A: In a Minkowski 3-space 3

BM  the generators of the skew ruled surface along 

the M-striction curve MS  are ML-geodesic parallel. 

Proof: From the definition of the striction points 0( )s t  as the touching point of the central 

plane 0( )t  with Φ follows by Definition 6.6A that ( ) ( )e u u . Thus ( ) ( )e u e u  and 

because of  ( ) ( )e u e u  (see Figure 5.3 a, b) ( ), ( )e t e t  must be mutually left-orthogonal. 

Therewith B  has the property that along the spherical image of Φ B-orthogonality is a 

symmetric relation. As we consider arbitrarily chosen ruled surfaces B-orthogonality has to be 

globally symmetric and B must be an ellipsoid. Based on Definition 6.6A we restrict 

ourselves to the Euclidean case only. 

Right-orthogonality is not declared yet and it seems impossible to find a definition of a right-

orthogonal line of a surface in any point P  of it. For ruled surfaces we can find a naturally 

defined right normal at least in the striction points as follows:   

Definition 6.9: The asymptotic plane   and the central plane   are right-orthogonal planes 

per definition, as z e z e  and e e . Thus we can put e ├  and call it the right-

orthogonal vector of the central plane. 

When we construct the left-orthogonal vector y  to  , we find that in general y e  (we 

orient y  such that  , ,e y z  forms a right handed frame). 

Then, within the pencil of planes around a generator  g t  we can define a deviation vector 

 d t  by 
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Definition 6.10: Let  y t  be the touching point of the unit ball B  with a plane   ,   

central plane of a generator  g t  of a ruled surface such that its vector  y t  together with the 

direction vector  e t  of  g t  and the central vector  z t  forms a right handed affine frame 

      ; , ,o e t y t z t . Then      :y t e t d t   is the "deviation vector" between the left- and 

right- B-orthonormals of the central plane.   

We now start with right-orthogonality and modify Def. 6.6A to  

Definition 6.6B: Let ( )V t  be a tangent vector field attached to the curve ( ) ( ( ))c t x u t  of a 

surface Φ in a Minkowski space, then it is an “MR-geodesic parallel field” along ( )c t  if ( )V t  

is right-orthogonal to the surface at the point ( )x t . 

Now we must modify Lemma 6.7A, too: 

Lemma 6.7B: A curve  c t  on a ruled surface   in Minkowski space is MR-geodesic iff 

cD c  is right-orthogonal to the surface   

Proof: Now we reformulate the Gauss equation (6.11) for ruled surface to be  

  ( , )
RR

U U MM
D V V II U V n          (6.11) 

where, 
RMn  is the right-normal unit vector to the ruled surface   at the striction point and 

( , )II U V  is the corresponding second fundamental form. Then a curve  c t  on the surface   

in Minkowski space is MR-geodesic iff  
R

U M
V  vanishes, i.e. cD c  is right-orthogonal to the 

surface  . 

With Def. 6.6B and Lemma 6.7B the formulation of Theorem 6.8A need not be changed: 

Theorem 6.8B = Theorem 6.8A: In a Minkowski 3-space 3

BM  the generators of the skew 

ruled surface along the M-striction curve MS  are MR-geodesic parallel.     

Proof: This time ( ) and ( )e u u  must be right-orthogonal with the consequence that 

( ) ( )  ( ) ( )e u e u Z u e u . This is valid because of ( ) ( ), ( ) Z u e u e u per definition of the M-

central tangent. Based on Definition 6.6B we indeed have an extension of a classical 

Euclidean result to any Minkowski space with a smooth and strictly convex (centrally 

symmetric) gauge ball B.  

6.4 Further theorems on ruled surfaces 

6.4.1 Bonnet's theorem 

In the introductory Chapter 1 we mentioned that there is no theorem corresponding to 

Bonnet's theorem in the Minkowski 3-space. The Euclidean Bonnet‟s theorem [17,64] reads 

as follows: 

If c  is a curve on a ruled skew surface and has two of the three following properties, 
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 c  is an isogonal trajectory of the generators, i.e. 1 ,ce const  where 1e  is the 

Euclidean unit vector in the direction of the generator, 

 c  is a geodesic curve,  

 c  is  striction line, 

then c has also the third property. 

A direct translation to a theorem in Minkowski spaces would demand a concept of isogonality 

there. This would involve an angle measure in the Minkowski space. Like for the concept of 

orthogonality there are of course many different ways to define an angle measure in 

Minkowski spaces and it would be worthwhile to investigate each of the usual definitions, 

whether it allows an analogue statement to the Euclidean theorem of Bonnet. As this lengthy 

discussion would exceed this dissertation we save this topic to another occasion just 

mentioning that “isogonality” could also mean “constant cosine-Minkowski” ( ( ) ( ))cm e t c t of 

the pair of lines (generator, tangent of striction curve) .  

6.4.2 Pirondini’s theorem 

The Euclidean Theorem of Pirondini reads as follows. 

Theorem 6.11: Let a (skew) ruled surface Φ be given in Euclidean 3-space. It defines the 

“striction stripe” consisting of the striction curve { ( )}c s u  and the developable surface   

enveloped by all central planes ( )u  of Φ. If we rotate each generator ( )e u around its 

striction point ( )s u  in its central plane ( )u  by a fixed angle measure  , then we receive 

a new surface ( ) : { ( , ) | ( , ) : ( ) }f u f u e u       having again ( , )c   as its striction stripe.  

Again an angle measure is essential. The proof of the Euclidean Pirondini theorem makes use 

of the property that the generators are geodesic parallel along c and adding a constant angle to 

the striction angle ( ) ( ) ( )u e u s u   does not affect this property.  Amore or less elementary 

proof can be formulated as follows: 

Develop the striction stripe ( , )c   into a plane so that the curve c becomes a plane curve C  

say. Then the generators { ( )}e u  will occur as a pencil of parallel lines ( )e u , because they are 

geodesic parallel and development does not affect this intrinsic geometric property. Rotating 

each line ( )e u  by a fixed angle α delivers again a pencil of parallel lines ( )f u , which, by the 

inverse of the development operation, stem from a new ruled surface with the same striction 

stripe ( , )c  . 

To formulate a Minkowski geometric version of Theorem 6.11 we at first redefine what we 

mean with “fixed Minkowski rotation angle”:  

 

As the direction vectors of the new generators ( )f u  are in any case linear combinations of 

the (unit) vectors ( ), ( )e u s u , i.e. ( ) ( ). ( ) ( ). ( )f u u e u u s u   , we might formulate 

 

Definition 6.12: By “fixed Minkowski rotation angle” of generators ( )e u around their M-

striction point ( )s u in their M-central plane ( )u  we mean that the new unit vector ( )f u  

resulting by this M-rotation is described by ( ) . ( ) . ( )f u e u s u    with constant coefficient 

functions ,  .  
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With this Def. 6.12 we formulate 

 

Theorem 6.13: Let a (skew) ruled surface Φ be given in a Minkowsi space with smooth, 

strictly convex gauge ball B . It defines the “striction stripe” consisting of the striction curve 

{ ( )}c s u  and the developable surface   enveloped by all central planes ( )u  of Φ. If we 

rotate each generator ( )e u around its striction point ( )s u  in its central plane ( )u  by a fixed 

Minkowski rotation angle measure 2( , )   , then we receive a new surface 

( , ) : { ( ; , ) | ( ; , ) : ( ) ( )}f u f u e u s u            having again ( , )c   as its M-striction 

stripe.  

Proof: Consider a ruled surface   in a Minkowski 3-space 3

BM  with M-striction line MS  

(5.11), rotate all generators g  about its central point (the point of contact) in the central plane 

  through an angle (in general not constant) ( )t . We get the corresponding generator g  

where it lies in the central plane   then we have,  

         g t t e t b   ,       (6.16) 

where the vector  g t  is unit vector in the direction of the rotated generators, from (5.11) we 

choose the M-striction line MS  as the director curve then we have, 

                        det , , 0Me S b  . (6.17) 

With respect to the new surface  , we consider again MS  as the director curve and use 

(5.11) we get 

                        
 
 

 
det , ,

det , ,

M

M M

g S b
S u S u g u

g g b
  , (6.18) 

since,  

                              det , , det , , det , ,M M Mg S b t e S b t b S b   =0. (6.18) 

This means from (5.18) that    M MS u S u  which complete the proof. 

Of course the functions   t  and  t  in Euclidean version must be constant because the 

rotation angle is constant. We note also that the angle ( )t  in the previous proof is measured 

in Euclidean space.  

 

6.4.3 Conoidal surfaces, Conoids  

Conoidal surfaces have generators, which are parallel to a fixed plane ρ, what means that their 

generators meet a directrix line at infinity. Conoids are conoidal surfaces possessing a proper 

directrix line in addition. This means that conoids belong to a (special) hyperbolic line 

congruence, where one of the focal lines is a line at infinity. Both concepts, conoidal surfaces 

and conoids, are of affine geometric nature and one can consider them in a Minkowski space, 

too.  



 

  

71 6   Geodesics in Minkowski space 

Because of the existence of a directrix plane ρ the spherical image of such a ruled surface Φ 

must be an arc belonging to the planar intersection of the gauge ball B with a diameter plane 

parallel to ρ. Therewith follows that al M-central tangents of Φ have the same unit direction 

vector Z and the M-striction curve is the contour line (shadow contour) of Φ with respect to a 

parallel projection parallel to Z.  

Analogue to the Euclidean case one can define an “M-straight conoid” Φ by the property that 

the proper directrix line of Φ is parallel to Z. 

 

6.5 Conclusion 
 

We have shown that examples of Euclidean properties of skew ruled surfaces Φ (at least in 

most cases) can be translated into properties of Φ in a Minkowski space.  Of course there 

remain many open questions. In this dissertation we e.g. omitted those problems involving 

angle measures. By presenting just one topic of these problems, namely the theorem of 

Pirondini, we want to point out the arbitrariness of finding and using a suitable angle concept. 

 

Furthermore we omitted to discuss Minkowski analogues of the important Euclidean first 

order invariant called pitch.  And also the discussion of special ruled surfaces remains to 

another occasion. For example, it would be interesting to know, how surfaces with constant 

M-curvatures and M-torsions look like. 

In this sense this dissertation is a first step in the research of ruled surfaces in Minkowski 

spaces. 
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Emad Shonoda  
Summary of the Dissertation 

“Ruled Surfaces in three-dimensional Minkowski Space” 
 

For the topic treated in the dissertation the place of action is an affine 3-space 3E  endowed 
with a metric which is ruled by a centrally symmetric, convex body B as unit ball. Such a 
space is called Minkowski normed space. We will consider only Minkowski spaces with a 
strictly convex and smooth unit ball B . This means that the boundary B∂  contains no line 
segment and each point of B has a unique supporting plane and is therefore regular in the 
sense of differential geometry.  

We aim at studying ruled surfaces in such a Minkowski space BM  following thereby E. 
Kruppa’s treatment of ruled surfaces in a Euclidean 3-space. According to Kruppa a ruled surface can 
be uniquely described by three so-called Kruppa-invariants (curvature, torsion and striction as 
functions of the arc length parameter of the striction curve of the considered surface).  Thus the 
program is fixed, namely to find substitutes of the Kruppa invariants and the striction curve for ruled 
surfaces in a Minkowski space BM  and geometric properties of those substitutes. It will turn out that 
we find several types of curvatures and torsions and that we have to modify the usual covariant 
differentiation in a way that connects the topic also to the so-called “relative differential geometry”. 

The first thing to do is to find a useful substitute for the Euclidean (Cartesian) moving frame, i.e. to 
replace the Euclidean concepts of orthogonality by one defined by B. For a Euclidean space 
orthogonality stems from the polarity of an oval quadric, the unit sphere B, and is symmetric and 
motion- (and similarity-) invariant. In Minkowski geometry one has to look for suitable substitutes for 
this concept and references provide a large number of more or less reasonable Minkowski 
orthogonalities. The most frequently used definitions are due to Birkhoff [5] and to James [6-8]. It 
turns out that these orthogonalities are not symmetric. We will use the Birkhoff orthogonality as the 
one closest to geometry. We have to distinguish a line a left-orthogonal to another b from b being 
right- (but in general not left-) orthogonal to a, (in signs: a  b, b  a), and the same symbols are used 
for the orthogonality relations of lines and planes and of planes and planes. If BM  is a normed linear 

space with unit ball B  and if , Bx y M∈  then, we say that x  is left orthogonal (Birkhoff orthogonal) 

to y  ( x y ), if x y xα+ ≥  for all α  in . If x  is left-normal to y , it does not follow that y  

is left-normal to x . In fact, for dimensions three or above the only normed spaces for which normality 
is symmetric are the Euclidean spaces. In dimension two, normality is symmetric for the wide class of 
Radon planes [24]. 

We collect the main results of this dissertation briefly: 

- Definition of the Minkowski striction curve (M-striction curve) and the left-orthogonal 
moving frame of a ruled surface. The striction point S of a generator g  is declared as 
the touching point of the central plane of g, the latter being left-orthogonal to the 
asymptotic plane of g. 
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- Definition of a semi-inner product in BM  (following Thompson [1]) and with this the 
functions Cosine-Minkowski and Sine-Minkowski.  

- Definition and calculation of Minkowski substitutes for the classical Euclidean 
Kruppa-curvature and –torsion as coefficients of the system of Frenet-Serret 
equations. 

- Modification of the covariant differentiation in BM  and definition of a “deformation 
vector”. 

- Characterisation of the M-striction curve as the uniquely defined curve, along which 
the generators of the ruled surface form a Minkowski-geodetic parallel field. 

- Definition of a Pirondini set of ruled surfaces having the M-striction curve and the 
strip of central planes in common.  

The dissertation is structured as follows:  

Chapter 1 is an introductory chapter with an explanation of the problem and giving basic 
definitions and presenting the aim of the dissertation. 

Chapter 2 presents some of the different orthogonality concepts in normed linear spaces. For 
example the orthogonalities which are given by Roberts [4] in (1934), Birkhoff [5] between 
1945-1947, Carlsson [25] in (1962) and Miliĉić [27] and we show relations between these 
orthogonalities.  Based on the Birkhoff orthogonality concept we define a semi-inner product 
in a real linear space which later will be fundamental (in chapter 5). 

Chapter 3 contains a summary about the support theorem and some related definitions in 
Minkowski space which play an importance role for the definition of the Minkowski surface 
area. The polar reciprocal K  of a closed convex set K  in n

BM  also depends on it 
fundamentally. As a topic aside we collect results concerning the isoperimetric problem in 
Minkowski space. Its solution BI  is, in general, not a Minkowski sphere, but a convex surface 
called isoperimetrix. We discuss the concept of surface area following different approaches in 
for a given n-dimensional Minkowski space ( 3n ≥ ). There are mainly two definitions of the 
surface area, one by Busemann [41] and the other by Holmes-Thompson [1]. For n

BM , 3n ≥ , 
the shape of the isoperimetrix depends on the definition of the area, which is not unique. 

Chapter 4 presents the trigonometric functions in Minkowski space which are defined for 
first time by Busemann [42] and updated by Thompson [1]. The concept of the angle in 
Minkowski space is dependent on the position of the angle and not only on the size of it. 
Therefore, we define those functions using the most convenient unique linear function which 
attains its norm at exactly one member of the space. The cosine and sine Minkowski functions 
are of two variables dependent on the sort of those variables. These functions are connected to 
the concept of B-orthogonality and transversality. We define the Minkowski semi-inner 
product of two vectors, using the cosine Minkowski function which may be useful in the core 
ideas in the later chapters of that dissertation. Also we insert some importance trigonometric 
formulae in the two dimensional space which can be used later. 

Chapter 5 contains the construction of an Minkowski orthonormal frame using Birkhoff 
orthogonality in 3

BM . Like in Euclidean case it is based on a given (oriented) flag (P,g,α) of 
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incident half-spaces, namely point P, half-line g and half-plane α. We translate this flag such 
that P becomes the centre of the unit ball B and we intersect g and α and B , receiving 
intersection point G and an arc a. The half-tangent t of arc a at G translated through P 
represents the 2nd leg of the frame, it intersects B  in T and 1:PG e=  and 2:PT e=  are left-
orthogonal unit vectors. Translating α such that it touches B gives two possibilities for a point 
of contact N. We choose the one, such that { 1 2 3, , :e e PN e= } forms a right handed (affine) 
frame (see Figure 5.1 in the dissertation). For this frame we therefore have  

1e 2e , 3e 1e , 3e 2e .  

Especially for (non-cylindrical) ruled surfaces Φ = { ( ) ,g t t I∈ ⊂ } there is a canonically 
defined flag connected with each (oriented) generator g(t0). It consists of g  itself, the 
asymptotic plane α parallel to direction vectors ( )g t and ( )g t . As the point P of the flag we 
use the point of contact of the so-called central plane Mg nζ = ∨ , whereby Mn  denotes the 
Minkowski-normal vector to α. This point P:=s obviously has to be called “Minkowski-
striction point” of generator ( )g t . All those points P(t) form a curve S, the Minkowski 
striction curve (see Figure 5.3 a,b of dissertation).  

Furthermore we define the Minkowski covariant differentiation on the ruled surface. It is the 
product of the usual differentiation and the (local) Minkowski-normal projection. This 
Minkowski-normal projection deviates from the Euclidean normal projection by a 
“deformation vector” and and with this vector it is possible to find Minkowski-Frenet-Serret 
formulae for ruled surfaces. In these formulae the occurring coefficients mean M-curvatures 
and M-Torsions. If B especially is an ellipsoid, the Frenet-equations and coefficients become 
those for the Euclidean case. 

Chapter 6: Using the Minkowski covariant differentiation and the Minkowski version of  
Gauss’s and Weingarten’s derivative equations we can define the geodesic parallel field Y  
along a curve ( )c t  on the surface. and we can formulate the fundamental condition for a 
curve to be Minkowski geodesic.  

In Euclidean space the striction curve S is characterised by the fact that it is the unique curve 
such that the generators form a geodesic parallel field along S. In a Minkowski space this is 
also true, if we redefine the concept “parallel field” along the curve with respect to the B-
orthogonality. Here additional conditions have to be used, too.  

There is no theorem corresponding to Bonnet's theorem in the Minkowski 3-space, that means that if 
the curve is M-striction and M-geodesic it does not follow that it is also an isogonal trajectory of the 
generators. Constance of the striction angle would involve Minkowski angle measurement aside 
orthogonality and also for this there exist many different approaches.  But for the (Euclidean) theorem 
of Pirondini considering the set of ruled surfaces with common striction strip (i.e. the striction curve 
plus the set of central planes) it is possible to formulate a version in Minkowski spaces 3

BM . 

 

References and Figures mentioned in this text please see the dissertation itself. 
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Emad Shonoda  
Kurzfassung der  Dissertation 

“Ruled Surfaces in three-dimensional Minkowski Space” 
(Regelflächen im 3-dimensionalen Minkowski Raum) 
 

Schauplatz des Gegenstandes, den diese Dissertation behandelt, ist ein affiner 3-Raum mit 
einer Metrik, di durch einen zentralsymmetrischen, convexen  Eichball B definiert wird. Ein 
solcher Raum heißt Minkowski-Raum. Wir werden nur solche Minkowski-Räume benützen, 
bei denen B noch zusätzlich glatt und streng convex ist. Jede Stützebene von B berührt B also 
in genau einem Punkt und der Rand B∂ von B ist eine im Sinne der Differentialgeometrie 
reguläre (geschlossene) Fläche. 
 
Wir studieren Regelflächen in einem solchen Minkowski-Raum 3

BM  und folgen dabei der auf 
E. Kruppa zurückgehenden Behandlungsweise von Regelflächen eines euklidischen Raumes. 
Gemäß Kruppa ist eine Regelfläche durch drei Invariantenfunktionen, (die vom Bogenlängen-
Poarameter dereiner ausgezeichneten Flächenkurve, der Striktionskurve, abhängenden 
Kruppa’schen Funktionen Krümmung, Torsion und Striktion ) bis auf Bewegungen im 
euklidischen 3-Raum eindeutig bestimmt. Damitz ist das Arbeitsprogramm der Dissertation 
fixiert: Man suche nach Analoga der Kruppa-Invarianten für Regelflächen eines Minkowski-
Raumes und studiere ihre geometrischen Eigenschaften. Es zeigt sich, dass wir auf mehrere 
Krümmungs- und Torsionsfunktionen stoßen und dass wir die kovariante Differentiantion von 
Vektorfeldenr im Sinne einer „relativen Differentialgeometrie“ zu modifizieren haben. 

Als erstes muss ein im Sinne der Metrik des 3
BM  orthonormiertes Begleit-Dreibein für 

Regelflächen erklärt werden. Im euklidischen Fall stammt die Orthogonalität (und die 
Normiertheit) vom Polarsystem einer ovalen Quadrik, der euklidischen Einheitssphäre. In 

3
BM  ist eine große Zahl von unterschiedlichen Orthogonalitätsbegriffen  definiert worden, 

worunter diejenige von Birkhoff [5], die auch wir zur Grundlage nehmen,  die gängigste ist. 
Die Birkhoff-Orthogonalität ist in nicht-euklidischen Minkowski-Räumen keine 
symmetrische Relation! Wir haben die Begriffe „a ist links-orthogonal zu b“ (a  b) und „a ist 
rechts-orthogonal zu b“ ( was gleichbedeutend mit b  a ist) zu unterscheiden. Wir verwenden 
die nämlichen Symbole auch für die Orthogonalitätsrelationen zwischen Geraden und Ebenen 
bzw. Ebenen und Ebenen. Sei  3

BM  ein Mikowski-Raum mit dem Eich-Ball B und 3, Bx y M∈  
dann heißt x  links-orthogonal (Birkhoff orthogonal, B-orthogonal) zu y  ( x y ), wenn gilt 
x y xα+ ≥  for all α ∈ . Aus x y  folgt i. a. nicht y x . In der Tat, für Dimension 3 

und höher sind die einzigen Minkowski-Räume mit symmetrischer Orthgogonalität die 
euklischen Räume. Hingegen ist für Minkowski-Ebenen die Orthogonalität symmetrisch 
(genau) für die große Klasse der sogenannten Radon-Ebenen [24]. 

Wir fassen die Hauptresultate dieser Dissertation wie folgt zusammen:  

- Definition der Minkowski-Strictionskurve (M-striction curve) and eines B-
orthgogonalen Begleitbeins einer Regelfläche Der Striktionspunkt S einer 
Erzeugenden g  der Regelfläche ist dabei erklärt als Berührpunkt der sogenannten 
Zentralebene von g,  die ihrerseits links-orthogonal zur asymptotischen Ebene von g 
ist. 
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- Definition eines semi-inneren Produkts in 3
BM  (- dabei folgen wir Thompson [1]) und 

damit Erklärung einer  „Cosine-Minkowski-Funktion“ und einer „Sine-Minkowski-
Funktion“.  

- Definition and Berechnung der Minkowski-geometrischen Analoga der klassischen 
euklidischen Invarianten (Krümmung, Torsion) von Kruppa als Koefficienten des 
Systems von Ableitungsgleichungen von Frenet-Serret. 

-  Modifikation der covarianten Differentiation in 3
BM  und Definition eines  

“Deformations-Vektors”. 

- Characterisierung der M-Strictionskurve als jene eindeutig bestimmte Flächenkurve, 
uniquely defined curve, längs der die Erzeugenden der Regelfläche geodätische 
parallel sind. 

- Definition der Pirondini-Schar von Regelflächen zu einer gegebenen (nicht-
zylindrischen) Regelfläche. Es sind dies alle jene Flächen, die mit der Ausgangsfläche 
den Striktionsstreifen (bestehend aus der Striktionskurve und der von den 
Zentralebenen eingehüllten Torse) gemeinsam haben.  

Gliederung der Dissertation: 

Chapter 1 ist ein einführendes Kapitel, in welchem das zu behandelnde Problem erklärt wird 
und grundlegende Definitionen dargelegt werden. 

Chapter 2 gibt eine Zusammenstellung der Orthogonalitätsbegriffe in Minkowski-Räumen 
Beispiele solcher Orthogonalitätsbegriffe sind etwa die von Roberts [4] (1934), Birkhoff [5] 
(1945-1947), Carlsson [25] (1962) und Miliĉić [27] stammenden. Sämtliche dieser Begriffe 
müssen sich auf den Eichball B stützen, weshalb sich auch Beziehungen zwischen diesen 
Begriffen aufzeigen lassen.  Auf der Basis der Birkhoff Orthogonaliät definieren wir ein semi-
inneres Produkt, das später (in Chapter 5) grundlegend wird.  

Chapter 3 enthält eine Zusammenstellung der durch die Stützfunktion des Eichballs B 
erklärten Begriffsbildungen, wie sie zur Definition eines Flächeninhaltbegriffes in Minkowski 
erforderlich sind. Der polar-reziproke Körper K  einer konvexen Menge K  in n

BM  hängt 
ebenfalls davon ab. Als ein Gegenstand am Rande wird das Isoperimetrie-Problem erwähnt. 
Das Lösungsgebilde BI  ist im allgemeinen keine Minkowski-Sphäre, sondern eine Konvexe 
Fläche, die sogenannte Isoperimetrix. Wir führen verschiedene Konzepte der Inhaltsdefinition  
in einem n-dimensionalen Minkowski-Raum an ( 3n ≥ ), wobei hauptsächlich auf die 
Definitionen des Flächeninhaltes durch Busemann [41] and durch Holmes-Thompson [1] 
eingegangen wird. For n

BM , 3n ≥ , hängt die Gestalt der Isoperimetrix von der Definition der 
Flächenmaßes ab und ist demnach nicht eindeutig. 

Chapter 4 stellt trigonometrische Funktionen in Minkowski-Räumen vor; solche sind 
erstmalig von Busemann [42] eingeführt und später von Thompson [1] modifiziert worden. 
Der Winkelmaß-Begriff in Minkowski-Räumene hängt nicht allein von der Gestalt des 
Winkels ab, sondern auch von seinen Position. Wir definieren deshalb soche 
Winkelfunktionen durch eine eindeutig erklärte lineare Funktion, die ihre Norm für ein 
bestimmtes Exemplar eines Winkels annimmt. Die cosine- und sine- Minkowski-Funktionen 
beschreiben Größe und Lage eines solchen Winkels. Diese trigonometrischen Funktionen sind 
natürlich von B abhängig.  Damit erklären wir das Minkowski-semi-innere Produkt zweier 
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Vektoren, welches sich für diese Dissertation als fundamental  für die Berechnung von 
Vektor-Abhängigkeiten erweist. 

Chapter 5 ist das erste der Liniengeometrie in 3
BM  gewidmete Kapitel. Es stellt die 

Definition und Handhabung des B-orthonormierten Begleit-Dreibeins einer Regelfläche und 
deren M-Striktionskurve vor. Wie im euklidischen Fall wird dieses Begleit-Dreibein von der 
Flagge (P,g,α) bestehend aus der Erzeugenden g, ihrem Fernpunkt P und dessen 
Tangentialebene α , der sogenannten asymptotischen Ebene, abgeleitet. Wir verschieben diese 
Flagge parallel, sodas P zum Mittelpunkt O von B wird. Der normierte Richtungsvektor 1e der 
Erzeugenden g ist das 1.Bein des Dreibeins; durchläuft g die Regelfläche Φ, so entsteht so das 
“sphärische Bild” von Φ auf B. Dessen normierter Tangentenvektor 2e  (er ist der 
Ableitungsvektor des Erzeugendenvektors) bestimmt dabei das 2.Bein und spannt mit 1e eine 
zur asymptotischen Ebene α parallele Ebene auf. Es gilt dabei 1e 2e . Verschiebt man α so, 
dass B berührt wird, ergeben sich zunächst zwei Möglichkeiten. Wir wählen diejenige aus, 
sodass der Ortsvektor zum Berührbunkt N die beiden bisherigen Beinvektoren zu einem 
Rechtsdreibein { 1 2 3, , :e e PN e= } (Fig. 5.1 der Dissertation). Wir haben also insgesamt  

1e 2e , 3e 1e , 3e 2e .  

Speziell für (nicht-zylindrische) Regelflächen Φ = { ( ) ,g t t I∈ ⊂ } haben wir mit obiger 
Konstruktion ein B-orthonormiertes Begleitbein konstruiert. Dessen 1. und 2. Beinvektor sind 
demnach Linearkombinationen des (i.a. nicht normierten) Erzeugendenrichtungsvektors 
( )g t  und dessen Ableitungsvektors ( )g t . Der dritte Beinvektor spannt mit g die sogenannte 

M-Zentralebene Mg nζ = ∨  auf, wobei Mn =λ 3e den Minkowski-Normalvektor zu α 
bezeichnet. Der Berührpunkt P(t)=s von ζ mit Φ muss dann offensichtlich “Minkowski-
Striktionspunkt” der Erzeugenden ( )g t  genannt werden. Alle diese Punkte P(t) bilden die 
Kurve S, die M-Striktionskurve  von Φ, (Fig.5.3 a,b).  

Des Weiteren erklären wir eine covariante Differentiation auf Flächen in Minkowski Räumen. 
Wie im Euklidischen ist sie das Produkt aus der gewöhnlichen Differentiation und der 
(lokalen, links-orthogonalen) Minkowski-Normalprojektion. Letztere lässt sich in zwei 
Komponenten zerlegen, wovon eine die euklidische Normalprojektion ist und die zweite eine 
tangentiale Scherung bestimmt durch einen „Deviation Vector“, der eben die Abweichung des 
Minkowski-Raumes von einem euklidishcen Raum beschreibt. Damit ist auch die 
Bestimmung der Koeffizientenfunktionen der Frenet-Serret-Ableitungsgleichungen für 
Regelflächen möglich. Die in diesen Gleichungen auftretenden Koeffizienten werden 
sinngemäß als M-Krümmungen und M-Torsionen bezeichnet. Speziell im Fall, dass B ein 
Ellipsoid ist, gehen die allgemeinen Frenet-Serret-Formeln in die bekannten euklidischen 
über. 

Chapter 6: Unter Verwendung der oben genannten covarianten Differentiation und der 
Minkowski-Versionen der Formeln von Gauß und Weingarten läßt sich eine geodätische 
Parallelverschiebung auf einer Fläche im Mikowski-Raum erklären und insbesondere ein M-
geodätisches Parallelvektorfeld Y  längs einer Flächenkurve ( )c t  definieren. Ebenso kann 
man die fundamentale Bedingung dafür herleiten, dass eine bestimmte Kurve eine M-
Geodätische  der Fläche ist.  
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Im Euklidischen ist die Striktionskurve S einer (windschiefen) Regelfläche dadurch 
charakterisiert, dass die Regelflächenerzeugenden längs ihr ein geodätisches Parallelfeld 
bilden. In Minkowski-Räumen ist das ebenso richtig, wenn man die Begriffe „Parallelfeld“ 
und „covariante Differentiation“ etwas weiter modifiziert. (Bei Links-Normalprojektion ist 
die M-geodaetische Parallelität der Erzeugenden längs der M-Striktionskurve nur dann 
gegeben, wenn die Orthogonalität symmetrisch ist, es sich also um einen euklidischen Raum 
handelt. Für Regelflächen lässt sich auch eine Rechts-Normalprojektionlängs der M-
Striktionslinie erklären und damit eine neue covariante Differentiation begründen.)  

Die Diskussion weitere liniengeometrische Sätze, die für Regelflächen im euklidischen Raum 
gelten, auf ihre Gültigkeit in Minkowski-Räumen zu untersuchen, ist naheliegend. Zum 
Beispiel gibt es in Minkowski-Räumen zunächst kein dem Theorem von Bonnet entsprechdes 
Theorem. (Es würde besagen, dass wenn eine Kurve einer Regelfläche zwei von den drei 
Eigenschaften (sie ist Striktionslinie, Geodätische, Isogonaltrajektorie der Erzeugenden) hat, 
so hat sie auch die dritte.  Zuerst müsste ein mit der B-Orthogonalität kompatibler 
Winkelbegriff in 3

BM  eingeführt und der Begriff „Isogonalität“ erklärt werden. Da es auch für 
die Erklärung des Winkelmaßes mehrere Zugänge gibt, verdient der Satz non Bonnet eine 
gesonderte Behandlung, die nicht im Rahmen dieser Dissertation erfolg. Hingegen lässt sich 
für den (euklidischen) Satz von Pirondini, der die Menge aller Regelflächen betrachtet, die 
den Striktionsstreifen (bestehend aus der Striktionslinie und der von den Zentralebenen 
eingehüllten Torse)  in Minkowski-Räume  übertragen 3

BM . Auch hier enthält die  
ursprüngliche Formulierung des Satzes zwar  einen Winkelmaßbegriff, der aber umgangen 
werden kann. 

Ein kurzer Ausblick beschließt die Dissertation.  

 

Die hier zitieren Literaturangaben und Figuren beziehen sich auf die Dissertation und sind 
hier nicht gesondert aufgelistet.  
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