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Chapter 1

Introduction

Textile industry belongs to the oldest industrial branches and maintaining

its sustained growth for improving the quality of human life. Despite of

being old, spinning process is still developing and very essential for the

production of most of the textile fabrics. The fact that spinning lies at the

very early stage of textile processing chain, its influence on the quality of

the end products is vital. Especially because of the nature of some faults

that can only be seen in the thread after the subsequent processing or

even after the dyeing process.

The main objective of the staple yarn spinning process is to achieve the

highest possible yarn evenness with minimum imperfections, which impart

uniformity in yarn strength. Consequently, these improvements positively

influence the quality of subsequent processes like weaving and knitting.

Better fiber control due to controlled drafting ranks ring spinning as the

best yarn spinning system. As a matter of fact, ring yarn has been used as

a benchmark against which the quality of yarn produced on other spinning

system is judged [1].

The greater demands of quality and economy are directly associated with

the development of the spinning industry. For instance, considering the
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fact that quality of the yarn is adversely influenced by the processing

speeds, the spinning industry is always put under the extensive pressure of

quality improvement at higher speeds. The Fig. 1.1 shows the Uster statis-

tics 2007 elaborating the quality improvements that have been achieved

during the last 50 years for yarn CVm% for cotton carded Ne20 and cotton

combed Ne60 yarns [2].

Figure 1.1: Uster Statistics 2007

The drawing process has strong influence on spun yarn quality. The signif-

icance of draw frame in the spinning process can be comprehended from

the two chronological facts (i) 1972-1989 was the period of high speed

draw frames, when the processing speeds was raised from 250 m/min to

800 m/min (ii) 1989-1999 was the period of development of medium and

short term auto-leveling and online monitoring systems [3].

The card slivers fed to the draw frame have high unevenness value, while

the combed slivers contain ’piecings’ that are unbearable and must be

evened out at the drawing stage to produce the improved quality yarn.

At draw frame the objectives of fiber blending, fiber parallelization and

sliver evenness are achieved by doubling, drafting and auto-leveling, out of

which the doubling and the auto-leveling perform the quality improvement

functions. An overview of the spinning process illustrates the draw frame
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as the last quality improvement machine [4]. This implies that the quality

achieved or the defect produced at this stage will go on to influence the

quality of the ultimate yarn.

The major improvement in sliver evenness is achieved by controlling the

short, medium and long term variations at the draw frame. Keeping in

view that doubling is never sufficient to average out all the irregularities

in the incoming slivers, a lot of pressure has been put on the precise

auto-leveling and draft settings. Very little reaction time associated with

open loop auto leveling system increases the vitality of the auto-leveling

settings, like leveling action point and leveling intensity. The criticality of

these settings implies to the fact that not using an auto-leveler at draw

frame is better than using a badly set one. Similarly, the importance of

the precise draft setting cannot be ignored as they affect the motion of

the fibers in the drafting zones. The badly set draft settings are known to

produce both periodic and non-periodic irregularities due to uncontrolled

fiber motion. These irregularities in the slivers can cause frequent stops

in the following processes. For example the Moir-effects in woven fabrics

and strips in knitted fabrics due to short-term fluctuations and cloudiness

because of long-term irregularities [5, 6]. Likewise non-optimum settings

at the spinning preparation machines or the unsatisfactory maintenance

and cleaning at auto-leveler draw frame are associated with an increase

of thick places in the slivers [7].

The determination of the interactions and relationships is inevitable for a

specific advancement and optimization of a process. However, the diversity

of involved parameters has made the optimization of the spinning process

difficult. For instance, a wide range of material variables, i.e., the inherent

fiber characteristics and the processing variables from cultivation fields to

spinning mills in case of natural fibers, different chemical compositions of



4 1. Introduction

man made fibers, a variety of machine variables from preparation, spinning

and winding machines and the climatic conditions. There are also com-

plex interactions among the above mentioned parameters involving some

or many of them. Generally speaking, the optimization of the machine set-

tings and their interaction with fiber materials plays an imperative role

in the spinning industry.

In the last century, many attempts to find out the interactions between

the diverse variables had been carried out that are based mostly on math-

ematical and statistical models. However, in the last decade, the use of

artificial neural networks has found acceptance in determining the com-

plex interactions between various parameters. The motivation of using

artificial neural networks lies in their flexibility and power of information

processing as they can solve a problem by experience and learning the

input-output patterns provided by the user [8]. The fields of applications

cover medical to engineering and from agriculture to space sciences. In

spinning, various attempts have been made to predict the yarn quality

characteristics from raw material characteristics and to establish the re-

lationships between different influencing parameters.

In this backdrop, the present research involves the use of artificial neural

networks (ANN) as a powerful modeling technique to establish the cor-

relations among the decisive variables of draw frame and quality of sliver

and yarn. On these bases, prediction systems are developed to forecast the

sliver and yarn quality. Conversely, the quick and accurate predictions of

draw frame settings (draft and auto-leveling) are made in accordance with

the yarn quality. Furthermore, it is highly anticipated that this predic-

tion system might be a significant step towards the idea of an ’intelligent

machine’ that can be able to adjust itself according to variations in the

processing materials and conditions.



Chapter 2

Significance of Draw Frame

2.1 Importance of Draw Frame in Spinning Process

The conversion of staple fibers into yarn i.e. spinning, involves many pro-

cesses from bale opening to the yarn winding (Figure 2.1). Depending on

the fiber characteristics of the raw material and the desired yarn char-

acteristics, different machines and spinning methods can be employed.

For example, the manufacturing of the fine yarns require the fibrous ma-

terial with superior characteristics and additional machines like comber,

whereas the coarse yarn can be produced using the medium to low qual-

ity fibers [3]. This implies that a compromise should be found for a cost

effective end product.

In the spinning preparation, the hard pressed cotton bales are opened into

small flocks. In the blow room the fiber opening executed by the nailed

cylinders and scrubbing action of fibers against the grid bars cause the

foreign particles, e.g. vegetable matter and metal etc, to fall under the

force of gravity. Whereas the some opening and cleaning machines use the

principle of centrifugal force to eliminate the foreign particles because they

are heavier than fibers. A partial removal of the foreign matter is achieved
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at this stage. At the same time a mixing of different grades of cotton from

diverse origins improves the fiber uniformity and allows an economical

raw material blend. At the card machine the flocks are opened up to the

single fiber state, semi-parallelized, cleaned, and finally converted into a

card sliver.

Figure 2.1: Flow Chart Diagram of the Yarn Manufacturing Process

After carding, commonly two drawing passages are used. However, the

numbers of drawing passages used are largely dependent on the materials,

yarn characteristics, spinning methods and requirement of end product.

For instance, usually 1-2 drawing passages are required for open end spin-

ning whereas the air-jet spinning needs 3 drawing passages. Similarly, for

ring spinning the numbers of drawing passages usually vary from 2 to 3.

The auto-leveling is carried out mostly for the last drawing passage. Fur-
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thermore, it is also possible to blend the different materials i.e. natural

and synthetics fibers at this stage (sliver blending). Moreover, in case of

polyester cotton blending, carded polyester slivers requires an additional

drawing passage before blending with carded cotton slivers. The functions

of the draw frame are described in detail in the later part of this chapter.

Furthermore at the draw frame stage the selection of carded or combed

can be made. In case of carded yarn, the slivers after second drawing

passage are fed to the roving frame and subsequently to the ring spin-

ning machine. Whereas, for the combed yarns, slivers after first passage

of drawing are fed to the lap former that produces the laps for the combing

machine. Combing eliminates the short fibers, removes the impurities and

parallelizes the remaining fibers. After combing one or two draw frame pas-

sages i.e. breaker and finisher draw frames are required, where the later is

an auto-leveling draw frame. The ability of auto-leveler draw frame to cor-

rect the short term variations eliminates the faults due to the ’piecings’ in

the combed slivers and improves the resulting sliver evenness. The quality

of drawing process directly influences the subsequent yarn manufacturing

process. Subsequently, the combed slivers take the normal way of roving

and ring spinning machines and converted into yarn.

Presently, there are various other spinning methods available such as,

rotor spinning, friction spinning and air-jet spinning etc. However, the

ring and open end spinning have special economic significance. The ring

spinning requires the sliver to be converted into roving before processing

at the ring spinning frame which does not applies to the other spinning

techniques [3, 9].

Each spinning system requires different number of drawing passages for

better yarn quality. For instance open-end spinning mostly requires one or

two drawing passage whereas the air-jet spinning requires three drawing
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passage. These methods can be selected depending on the desired yarn

structure and nature of the end uses.

2.2 Influence of Draw Frame on Following Textile

Processes

In modern spinning process, the draw frame has an important function of

the evening the slivers. However, the evenness of the slivers is essentially

affected by the quality of the draft at the draw frame. There are two major

causes that exert the considerable influence on sliver and yarn evenness.

Firstly, the position of the draw frames in the spinning mill, which is defini-

tively the last compensation point for correcting the faults/imperfections

in the slivers. Secondly, the defect produced at draw frame itself, can

exert the significant disturbances and quality related problems in the fur-

ther process. Material faults (e.g. short fiber contents) and machine faults

(e.g. improper draft zone settings) during the drafting cause periodic and

non-periodic variations (thick or thin places) in the sliver, which create

problems during the subsequent processes.

The improper draft zone settings at the draw frame are considered to

be most disturbing. The approximate values from machine manufacturers

are regarded as initial values for starting the optimization process. In

order to obtain a better sliver uniformity and consequently good yarn

properties, it is advisable to adjust the break and main draft drafting

zones in accordance with the processed material. A comprehensive study

conducted by ’Uster’ inferred that an increase in thick places in the slivers

is connected with the non-optimum settings of the spinning preparation

machines and unsatisfactory maintenance and cleaning measures at auto-

leveler draw frame [7]. In addition the variations caused by the poorly
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set auto-leveling parameters can also have worsening affect on the quality

of yarn. Furthermore, process parameters, e.g., high speed can cause the

improper control of the fibers inside the drafting zone, resulting in a high

CVm% of sliver and then ultimate yarn.

Generally speaking, a large number of thick places and high irregular-

ity in the slivers have negative effects on the downstream processes. The

thick places can lead to process disturbances in roving frame and frequent

end breakages at ring and OE-Rotor spinning machines. Moreover these

thick places in the fed sliver cause air-jet spinning machine to stop. These

sliver variations are also connected with the count variations in the yarn,

which is in turn associated with the variation in the yarn strength. The

weak patches in the yarn lead to the frequent end breakages. Such thick

places and mass fluctuations of the slivers over the entire chain of the

yarn production reduce of the productivity of the textile machines, which

is normally connected with additional costs. Because of large yarn count

variations bobbin rejection may occur at the auto cone machine.

Periodic and non-periodic irregularities in the slivers can also cause fre-

quent stops in the following processes and produce Moir-effects in woven

fabrics and strips in knitted fabrics because of short-wave fluctuations

and cloudiness due to long-wave disturbances. In knitting, thick places

cause even greater problems, as they limit the movement of the stitching

needles. Thus miss-loops can result, which can cause holes in the knitted

fabric.

Therefore, it can be inferred, from the above discussion, that the properly

set draw frame setting can guarantee an optimum sliver quality which can

leads to an improved quality of yarn and textile fabrics produced from it.

Keeping in view the significance of the draw frame in spinning process and

on following textile processes, it seems worthwhile to discuss the functions
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of draw frame in detail. The next section, therefore, underlines the major

tasks of draw frame.

2.3 Tasks of Draw Frame

As depicted in the Figure 2.1, the draw frame is positioned at the cen-

tral place in the yarn manufacturing chain. The draw frame performs the

following tasks:

1. Doubling

2. Blending

3. Drafting

4. Fiber Parallelization

5. Auto-leveling

6. Cleaning

A brief overview of these tasks is presented in this section.

2.3.1 Doubling

Irregularities increase by drafting and decrease by doubling. Doubling is

considered to be the simple and suitable method to even out the drawing

slivers. However, this method is not very precise one. There is the possi-

bility of feeding up to 8 slivers at the draw frame. The objective of the

doubling is to achieve a sliver with better evenness. There is very small

probability of coinciding thin or thick places in all fed slivers. Therefore,

it is believed that these thin and thick places that tend to distribute ran-

domly in fed slivers are compensated through doubling through averaging
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out effect as shown in the Figure 2.2. However, only medium to short term

variations can be compensated through doubling process [10].

Figure 2.2: The averaging out effect due to doubling

2.3.2 Blending

Fibers can be blended using the different methods during spinning prepa-

ration, most common of them are bale blending, flock blending and sliver

blending. Bale blending is done before the blow room and usually carried

out in case of cotton for mixing bales of different grades to achieve an eco-

nomical blend. Whereas the flock blend is usually done in blow room using

the multi-mixer machine. Flock blending is the best way to achieve a very

homogeneous blend. Draw frame also offers the opportunity of blending

the slivers from different materials along with the additional advantages

of homogeneous blend and accurate blending ratios. As the slivers fed to

the draw frame have definite weight per unit length so different combina-

tions of blend ratios can be realized. However the improved homogeneity

requires at least two passages. This statement can be explained by feeding

six slivers of two different materials alternatively to the draw frame. The

output of the first passage will be the sliver containing the six ribbons

of almost equal width. Similarly, the output of second passage will be
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a sliver with 36, consequently that of 3rd passage will contain 216 rib-

bons [9]. The draw frame is also very suitable for blending the natural

fibers like cotton with man-made fibers. After carding, cotton becomes

almost trash free and there is no danger of contaminating the synthetic

fibers with trash [11].

2.3.3 Drafting

In literature, the drafting process is mainly described using the term ”at-

tenuation”, i.e. decreasing the number of fibers in cross section, per unit

length of the fiber bundle by sliding them pass each other. Logically, this

also causes the reduction in the thickness of the fibrous material. So, the

draft can be calculated as the

Draft =
Fineness of all fed slivers

F ineness of delivered sliver
(2.1)

The drafting unit is the heart of the draw frame and quality of the sliver

is mainly representative of the quality of drafting. Drafting is performed

using the pairs of rollers i.e. bottom steel rollers and top rubber roller,

running with successively increasing surface speeds. The top rollers are

pressed on the bottom roller with an optimum pressure, while the bottom

steel rollers are fluted to exert better control on the fibers passing between

them. Here the draft can also be expressed as

Draft =
Surface speed of feed rollers

Surface speed of back roller
(2.2)

3-over-3 roller drafting arrangements with pressure bar is frequently used

in modern high performance draw frames. Whereas, draw frame having 4-

over-3 drafting assembly, works like a 3-over-3 drafting system except the

fourth roller, i.e. deflecting roller, helps to guide the sliver directly into the



2.3 Tasks of Draw Frame 13

delivery trumpet. The drafting assembly of a 4-over-3 draw frame (RSB

D-40) is shown in the Figure 2.3.

Figure 2.3: The drafting arrangement of the draw frame

During drafting the movement of the fibers is relative to each other. It

is highly demanded that this movement must be kept as uniform as pos-

sible by overcoming the cohesive friction among the fibers. As drafting

cannot be done ideally, i.e. achieving individual fiber control, therefore,

every drafting operation is associated with irregularities. Additionally, the

drafting zone settings (i.e. Back and front zone distances, break and main

drafts) play a vital role for realizing a better sliver and yarn quality. Draft-

ing process will be discussed in detail in chapter 3.

2.3.4 Parallelization

The card machine performs the function of opening and parallelizing the

fibers. However, most of the fibers are not totally parallel to the sliver

direction. Furthermore they also contain leading and trailing hooks. The

elimination of these types of hooks cannot be carried out with single pas-

sage drawing. The trailing hooks are removed during the first passage,

whereas the elimination of the leading hooks occurs during the second
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passage. The fibers laying at various directions in the sliver are also par-

allelized through drafting [11]. The degree of parallelization, however, is

largely dependent on the draft zone settings. For example, using wide

draft zone settings, the fibrous material cannot be controlled satisfacto-

rily, resulting in a large amount of floating fibers and low parallelization

grade, which leads to irregularities.

2.3.5 Auto-Leveling

In the yarn spinning, there are sliver weight and yarn count variations,

which cannot be completely eliminated. It is vitally important that the

sliver variations should be reduced through doubling and auto-leveling so

that the count variations in yarn will not cause any disturbances in the

end product. In principle, doubling is not enough to correct the variations

in slivers. Therefore, doubling has to work in combination with the auto-

leveling for better quality results.

Figure 2.4: Length variation curve for slivers with length dependent leveling
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The variations in slivers have different wave lengths. For example, the

variations resulting from card slivers are long term, whereas periodic vari-

ations coming from combing machine are short term. The different auto-

leveling systems are differentiated on the basis of wave length depended

effectiveness. The Figure 2.4 shows the effective range for different auto-

leveling systems. Long term variations are in the range of 25 m or longer.

On the basis of this concept, long term leveler influences mass variations

starting from 25 m of sliver length. The auto-leveling system to correct

the medium length variations are effective starting from 2.5 m. The short

term auto leveling is able to correct the faults from 3 cm to 2.5 m, as

shown in Figure 2.4 [12].

The schematic diagram of the open loop and close loop auto-leveling sys-

tem is being presented hereunder. Figure 2.5 depicts the main features of

these two types of control system. S and A represent the locations of the

sensors and actuators respectively, the dotted lines show the signal path

and the solid lines illustrate the material flow.

Figure 2.5: Schematic diagram of open and close loop auto-leveling systems

In the open loop control system, the total volume of all the slivers is

measured at the feeding end using a scanning system. The adjustment is

done by changing the draft in main drafting field. On the other hand, in

the closed loop systems, the evenness of the delivered sliver is measured

at delivery and adjustments are made in drafting field. The open loop

systems are best suited for the short and medium term variations, while
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the closed loops systems perform better for the long term variations. This

implies that the ’piecings’ coming from the combing machines can be

eliminated with the help of open loop system but closed loop system

cannot correct them [10,13].

The modern high performance draw frames are equipped with the both

types of auto-leveling setup. Following paragraph describes the auto-

leveling function of the Rieter draw frame RSB D-40, which was used

in this research project. The Figure 2.3 depicts the scanning arrangement

along with drafting rollers, whereas Figure 2.6 reveals the schematic of

the auto-leveling at high performance drawing frame [14].

Figure 2.6: Schematic diagram of Auto-leveling system of RSB D-40

The slivers are fed through a pair of scanning rollers (1). The scanning

rollers are based on mechanical scanning i.e., tongue and grove system.

One roller is stationary while the other is movable. The increase or de-

crease in the sliver density entering through the pair of the scanning roller

is measured by the displacement of the moving roller. Their movements

are transformed into electrical voltage values by a signal transformer (2)
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and are forwarded to the processor D95 (3). The processor D95 (3) com-

putes the proper target value for the servo drive (4) (Servo motor and

Servo leveler), which is calculated using the electronic values of the infeed

slivers and the delivery speed of the draw frame. The servo drive (4) deter-

mines a controlled speed for the differential (5), which drives the scanning

rollers at the entry and middle cylinders. The draft change achieved in

the main drafting zone causes the leveling of the volume variations in the

fed slivers. The delivery rollers driven by the main motor M1 (6) run at a

constant speed, so the production remains constant [14].

For better performance, all the existing sliver variations have to be reg-

ulated in the last drawing passage. The sliver mass variations have been

already reduced through doubling before the auto-leveling. Therefore, the

remaining irregularities are compensated by leveling device.

2.3.6 Cleaning

Apart from the main tasks, the drawing frame has an additional function

of cleaning the slivers. After the carding machines, it is not possible to

completely clean the fibers without damaging them. But the dust particles

have the tendency to cling to the fiber surfaces through Coulomb forces.

During drafting, as the fibers containing the trash particles slide past each

other, the fiber-to-fiber friction releases the dust or trash particles caught

between the fibers [9]. The cleaning flaps connected to the central suction

system are placed over the upper rollers help to remove the contaminations

like dirt, dust, broken plant particles etc [11].

This chapter has provided an overview of the function, tasks and sig-

nificance of draw frame in staple yarn spinning. The next chapter digs

deeper into the issues related to draw frame like drafting theories and use
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of Artificial Neural Networks (ANN) in textile industry, through in-depth

analysis of the contemporary literature.



Chapter 3

State of the Art

3.1 Optimization of Draw Frame

As previously discussed in the Chapter 2, the draw frame exerts a sig-

nificant influence on the quality of the sliver, yarn and the resultant fab-

rics. Doubling and auto-leveling perform quality improvement functions

whereas drafting generates the irregularity in the sliver. Consequently the

optimization of drafting and auto-leveling at the draw frame improves the

performance of whole spinning process.

3.1.1 Drafting Process

The heart of the draw frame is its drafting zone, where the drafting of a

set of slivers is accomplished. Drafting causes the fibers to parallelize and

improve the condition of the fibrous assembly for further drafting pro-

cesses. However, an increase in the irregularity is always associated with

the drafting operation. If σin is the standard deviation of linear density of

the infeed sliver and σadded is the variations added due to drafting process

then
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σ2
out = σ2

in + σ2
added (3.1)

In spinning industry, the irregularity is commonly measures in terms of

‘Coefficient of variance (CV%)’, which is given as

CV = 100
σ

x̄
[%] (3.2)

The occurrence of mechanical faults such as roller eccentricity or worn out

parts can affect the sliver irregularity dramatically [9]. However, under

normal processing conditions the major factors that are known to affect

the sliver irregularity and then ultimate yarn quality are classified into

three major and further subgroups as shown in following Figure 3.1.

Figure 3.1: Factors effecting sliver and yarn quality

The control of fiber motion especially the control of floating fibers inside

the drafting zone is the objective of irregularity reduction. In the absence

of the mechanical faults, the correct setting of the drafting parameters
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i.e. delivery speed, distances between the rollers, top rollers pressure etc,

help to do so. However the influence exerted by the infeed sliver variations

is also substantial. Short-fiber content, neps, trash, and other impurities,

degree of fiber parallelization, and number and extent of fiber hooks, are

some of the significant factors that decide the drafting performance of

infeed slivers and the resultant sliver quality [9, 15]. In order to have an

in-depth look in drafting, the case of ideal drafting and its comparison

with real drafting is discussed hereunder.

3.1.1.1 Ideal Drafting versus Real Drafting

The ideal drafting does not induce the additional irregularities in the

drafted sliver; however the irregularities in the infeed sliver remain in the

delivered sliver in the absence of doublings and auto-leveling. For ideal

drafting, an infeed fibrous assembly in which all fibers are straight and

parallel having same fiber length and fineness, with their leading ends

equally spaced should be assumed [16]. During the ideal drafting, it is

also assumed that all the fibers move at the back roller surface speed

’U’ until the leading end of each fiber will be caught by the nip of the

front rollers and then they are instantaneously accelerated to the front

roller surface speed ’V’. Under such circumstances a complete fiber control

can be achieved. The distance between any two fiber leading ends after

drafting will also be equal to that of before drafting, multiplied by the draft

[9]. The Figure 3.2 represents the schematic diagram of single drafting

zone.

On the other hand, in real drafting this velocity change does not take

place ideally. In the Figure 3.2 consider a fiber group of length ’L’ moving

with a velocity ’U’ in the region ’AC’. As this group enters the region ’CB’

it will accelerate from velocity ’U’ to ’V’. This acceleration can take place
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anywhere in this region ’CB’, because of frictional contacts of the fibers,

which are already gripped by the front rollers. The region ’CB’ is also

known as area of floating motion. ’F’ represents the floating fiber which

is not gripped by either of the roller pairs. The large amount of floating

fibers can cause this velocity change to occur abruptly resulting in sliver

irregularities. It is generally accepted that the speed of the fibers changes

from ’U’ to ’V’ and remains at ’V’ - this is known as ”two speed model”. In

roller drafting irregularity is the result of incomplete control of motion of

single fiber or fiber groups. The irregularities are caused by the instability

of the points of acceleration with respect to time and when the fibers are

accelerated at the speed of the front roller discontinuously [17, 18]. The

pressure bars are used in the drafting zone to achieve a better fiber control

and to stabilize the process, but individual fiber control is not possible.

Moreover the variations in the material properties are the basic cause of

the irregularities [19].

Figure 3.2: Schematic diagram of a drafting zone

As for ideal drafting an ideal fiber assembly is considered. However, in

reality, the distribution of fiber lengths in a card sliver is not uniform
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and these fibers are neither straight nor parallel. Various studies had in-

dicated the importance of the fiber crimp on the drafting operation [20].

For instance, Plonsker and Backer, while calculating the drafting force, ob-

served that at lower speeds, the crimped or hooked fibers tend to exhibit

erratic, springy and pulsating motions inside the drafting zone, whereas

un-crimped fibers slide in relatively smooth manner. These crimped or

hooked fibers also cause the entanglement or interlocking of fibers, which

requires a larger force to be drafted and hence cause the irregularities.

Furthermore, the fiber length distributions commonly expressed as ’Fiber

uniformity ratio’, calculated on the basis of High Volume Instrument

(HVI) measurements, also plays a significant role during drafting. The

presence of large amounts of short fibers makes the drafting performance

worse, because they will behave as the floating fibers inside the drafting

zone. This situation can lead to undesirable early fiber acceleration and

will cause a negative effect on the sliver evenness or may cause the drafting

waves [3]. Floating fibers are subjected to two sets of forces acting at the

opposite directions. From Figure 3.2 it can be postulated that the fibers

that are moving slower and are in the grip of the back rollers restrain the

floating fibers from accelerating while the long fibers that are in contact

with the front rollers try to accelerate the floating fibers to higher velocity.

As the floating fibers travel towards the front rollers the restraining force

decreases while front roller influence increases. At some balance point,

fibers accelerate abruptly from low to high speed, this action is associ-

ated with the law of friction, i.e. static friction is higher than dynamic

friction. As the floating fibers increase their speed the neighbouring short

fibers also experience the accelerating force from surroundings. However,

when a fiber group accelerates un-drafted, it may cause an avalanche ef-

fect and it leaves a void behind causing a drafting wave in the drafted

sliver [18, 19, 21]. Moreover, the role of optimum draft zone settings be-
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comes imperative here. At wider draft zone settings, the short as well as

long fibers will behave like floating fibers causing the irregularity to in-

crease rapidly. On the other hand narrow draft zone settings would cause

fiber breakage and fiber slippage.

The occurring drafting variations can also be explained through the con-

ception of friction, i.e. the transfer of the roller speed to the fibers and

the friction between the fibers. This can lead to the fact that the constant

force does not act on all the fibers simultaneously and permanently and

the mean value of the varying fiber speed changes. During the processing

of the fiber materials in the drafting zone the occurring force is dependent

on the many parameters like the angle of contact between fibers, paral-

lelization state, tension, surface coatings, and environmental factors such

as humidity etc. The drafting force variations occur at different place along

the length of slivers and can be of different levels. Very small drafting force

variations are mostly based on a jerky drafting process (stick-slip change)

individually, within the existing fiber groups of the sliver. The occurrence

of stick slip change is mostly dependent on the fiber type [22,23]. The ex-

periments have shown that fiber relative movements have a considerable

influence on the fiber friction. It is expressed as follows

µd
µs

= c− aebvr (3.3)

Where, µd and µs are the dynamic and static friction coefficients, whereas

a, b and c are the material dependent coefficients and vr corresponds to

relative velocity of fibers.

It is clear from above discussion that the ideal drafting process is not

achievable. The irregularities in the drafted sliver are the result of the

interaction of fiber properties and machine settings. The knowledge of the
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relationships between fiber properties and drafting conditions can provide

answers to the questions concerning the drafting performance of different

materials [24]. This enhances the need of the optimum settings on the

drawing frame for its optimization.

3.1.1.2 Drafting Theories

In order to describe the drafting process comprehensively with an aim of

optimizing it, many theories have been presented in last century. Some of

them are being briefly presented here. The drafting operation, despite of

looking very simple, is a difficult one to analyze. The major reason can

be the fact that every fiber in the fibrous assembly has an individual fiber

length and this fibrous assembly cannot be considered as a continuous

fluid like body.

In the literature, the earlier theories cover the empirical analysis of the

process. Another interesting method was the ‘geometrical method’. The

method was used to find out the velocity change point. The third method

was the use of mathematical relationships to find out the interactions

between the input and output parameters.

The forth and most recent one is the use of computer simulations, which is

a developed form of the geometrical method, but in addition also involve

the use of statistical and mathematical techniques to simulate the process.

This geometrical method involves drawing the sliver on the paper using

straight parallel lines representing the fibers and analyzing the process by

shifting the positions of these lines. The geometrical method was consid-

ered to be suitable for analyzing the velocity-change point. Grishin’s had

done the significant work in this direction [25]. As already mentioned, it

cannot explain the real drafting phenomenon. Many researchers consid-
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ered geometrical method to describe the steady-state motion of the fibers

and cannot be applied to unsteady-state like drafting waves [18].

A large amount of mathematical work is available starting from the ideal

drafting and drafting waves (previously described), the dynamic mod-

eling of drafting process [26, 27] and frictional contacts of fibers during

drafting [28, 29]. However, most of the models involve the immeasurable

parameters like displacement of fiber front ends, average number of fibers,

minimum and maximum lengths etc. Also, mathematical models are al-

ways based on the ideal assumptions and are applicable only when these

assumptions are fulfilled. Moreover, the earlier theoretical work was based

on the assumption that the fibers are capable of independent movement

relative to their surrounding fibers. However, Vroomen and Monfort [30]

first pointed out that the fibers tend to move in groups rather than single

fibers. This is particularly true in drafting sliver.

The recent trend was the dynamical measurement of the drafting process.

Cherif [3] invented the method for touch-less measurement of the fibers

speeds with the help of laser Doppler anemometry. Additionally for the

visualization of the movements of the fibers during drafting process super

high speed video camera was used. The fact was endorsed that the fibers

move in groups inside the drafting field. The measurements showed that at

the low speeds a uniform fiber movement occurs whereas at high speeds

a non-uniform abrupt acceleration of fibers occurs in the middle of the

drafting zone. Also important is to note that this speed behaviour of the

fibers is not constant over the width of the drafting zone and time. Also in

a part of fibers the fiber acceleration movements are not controlled. This

can be described as the stick slip movement of the fibers. Therefore, the

major influence is exerted by the fiber speed behaviour and amount of the

accelerated fibers in the main draft zone [3].
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Indisputably, the improvements achieved in the sliver evenness are inter-

connected with the improvements in the spinning performance and yarn

characteristics. Nevertheless, the theoretical and empirical work was sig-

nificant. The insights gained by such contributions have helped to design

devices and adopt the methods to improve the drafting systems. However,

there is room for further improvement through the application of modern

modeling techniques for enhancing the quality of the end products.

3.1.2 Auto-leveling

The optimization of the drawing frame is concerned not only with the

optimization of draft settings but also connected with the optimization

of the auto-leveling settings. The auto-leveling set up at a modern high

speed draw frame is usually described using two important variables i.e.

leveling intensity and leveling action point. Leveling intensity is a setting

that decides the amount of draft change required to regulate the infeed

variations. Leveling intensity is basically connected with the material to be

processed because the correlation between mass and volume for different

fibers is not same.

Leveling action point (LAP) is considered to be more important parameter

due to its greater influence on the quality of the sliver and ultimate yarn.

At the auto-leveler draw frame (RSB-D40) the thickness variations in the

fed sliver are continually monitored by a mechanical device (a tongue-

groove roll) and subsequently converted into electrical signals. The mea-

sured values are transmitted to an electronic memory with a parameter,

the time delayed response. The time delay allows the draft between the

mid-roll and the delivery roll of the draw frame to adjust exactly at that

moment when the defective sliver piece, which had been measured by a

pair of scanning rollers, finds itself at a point of draft. At this point, a
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servo motor operates depending upon the amount of variation detected

in the sliver piece. The distance that separates the scanning rollers pair

and the point of draft is called the zero point of regulation or the leveling

action point (LAP) [31,32]. However, during material processing the lev-

eling action point changes from its geometric value. This implies that as

the a change in frequency of the incoming variations the leveling action

point also changes. Therefore, feeding speed of the fed slivers entering the

draw frame greatly influences the leveling action point.

Figure 3.3: Schematic diagram of Leveling Action Point

The Uster spectrogram (Figure. 9.1) clearly depicts the faults in the sliver,

in case of false selection of leveling action point. The incorrectly set level-

ing action point dually affects the sliver regularity i.e. leaving the defective

part of the sliver un-regulated and disturbing the normal sliver. Therefore,

auto-leveler must be accurately set to have a good quality sliver otherwise

should be turned off to avoid unwanted irregularities in the sliver. The in-

correct settings of leveling Intensity cause the variations in sliver number,

while badly set leveling action point deteriorates the sliver CV%.

The complexity related to LAP is its dependence on various drawing frame

settings and some of these settings are very frequently changed e.g. deliv-

ery speed and draft settings etc. Whereas, other influencing settings like

feeding tension is mostly associated with the material batch changes. It is

believed that LAP is dependent on the following variables [11,14].
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Figure 3.4: Uster Sectrogram Showing Errors due to Faulty LAP Settings

1. Material

2. Doublings

3. Draft (HV)

4. Delivery Speed (L)

5. Break Draft (VV)

6. Break draft distance (VVD)

7. Main draft distance (HVD)

8. Infeed tension (VE)

9. Sliver deflection bars

10. Infeed Variations

It is also significant to mention here another LAP influencing setting i.e.

sliver deflection bars setting. This setting determines the paths of the

slivers in the drafting zone. The sliver roller setting geometrically change

the distance between the scanning and correction point. Obviously, this

theoretical change is connected with the sliver thickness. The machine

can be set at three different L2/L3 levels i.e. 1/6, 2/5 and 3/4 as shown

in Figure 7.8. The frequently used setting is 2/5. Theoretically the 1/6
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setting decrease the distance by 12 mm and 3/4 increase LAP by 18 mm

for a sliver of 0 mm thickness. For a sliver of 3 mm thickness this increase

in length is 21 mm and decrease is 11 mm.

Figure 3.5: Sliver Deflection Bars Settings

In order to set the LAP value accurately, two methods, i.e., manual or

automatic search function can be performed. Theoretically, it is clear that

minimum CV% can only be achieved at optimum leveling action point.

Therefore, finding a point having minimum CV% is the objective of both

searches. The manual search includes the 7 evenness tests using the Uster

tester, where CVm%, CV(1m)% and spectrograms are collectively consid-

ered. The start value can be taken from the machine panel. In the first step

three Uster evenness test are carried out, i.e. with starting value, starting

value +12 mm and starting value -12 mm. Then results of these tests are

compared and best value is selected on the basis of CVm%, CV(1m)%

and spectrograms. The second step involves 2 evenness tests, i.e. selected

value from first step ±6 mm. The selection criteria for the best value are

same as in first step. The third step is same like the second one, however

here the 2 evenness tests are best CVm% value from second step ±3 mm

were performed. The schematic diagram is given in Figure 3.6 However,

the manual search is connected with the production and material losses

because of the time and material required for accomplishing the manual

tests [14].

The automatic search function offers a comparatively fast but accurate

solution to the problem. This automatic search function at Rieter Auto-
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Figure 3.6: Determination of Leveling Action Point Using Manual Search

leveling Draw Frame RSB-D40 is known as “AUTOset”, which is based

on a minimum CVm% value seeking algorithm. During this function, the

sliver is automatically scanned by adjusting the different LAPs temporar-

ily and the resulted values are recorded. During this process, the quality

parameters are constantly monitored using Rieter Quality Monitor (RQM)

and an algorithm automatically calculates the optimum LAP by selecting

the point with the minimum sliver CVm%. At present, a search range of

120 mm is scanned, i.e. 21 points are examined using 100 m of sliver in

each case; therefore 2100 m of sliver is necessary to carry out the search

function. This 2100 m sliver has to be processed again starting from the

blow room. Nonetheless, this is also time-consuming method accompanied

by the material and production losses, and hence directly affecting the cost

parameters [14]. The Figure 3.7 depicts the user interface from RSB-D40

regarding the “AUTOset” function.The published research work for the

optimization of this vitally important setting is limited and most of the

written material is in the form of patents [31–33].
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Figure 3.7: Automatic LAP search function “AUTOset” at RSB D40

It is therefore worthwhile to attempt the use of ANNs to optimize the

LAP, with a hope that ANNs can develop the relationships between all

influencing variables. This may help to predict a more precise LAP and

the range of 120 mm may be reduced.

3.2 Ring Spun Yarns

There are different spinning technologies available for the conversion of

staple fibers into yarn, like Ring spinning, Rotor spinning, Air-jet spinning

and Friction Spinning etc. While comparing the spinning technologies,

some important points have to be considered. Firstly, instead of various

technologies present, only ring spinning, open-end yarn spinning and air

jet spinning are able to gain the market share [34]. Secondly, the produc-

tion of ring spinning is approximately 1/10 of rotor spinning and 1/20 of

the air jet spinning. Thirdly, the inventions of ring, rotor and air jet spin-

ning are in 1844, 1960 and late 80s respectively. However, despite of all

these, almost 80% of the staple yarns are ring spun [35, 36]. The success

secret of the ring spinning lies in its following advantages that are not

possessed by the other technologies.
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1. Wide range of materials are spun-able

2. Wide count range, i.e. large end-product flexibility

3. High quality due to the careful fiber control during spinning process

4. True twist and therefore strong and compact yarn structure

5. Suitability of the yarn structure and properties for widest range of

fabric end-uses [37–39]

Figure 3.8: Schematic Diagram of Basic Ring Spinning Operation

All these advantages have made the ring yarn a quality benchmark against

which the quality of the yarn produced by the other spinning methods is
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being measured [1]. The following Figure 3.8 depicts the working principle

of the ring spinning machine.

On the other hand, ring spinning also has some disadvantages. Firstly,

in ring spinning twist is inserted by rotating the relatively massive yarn

package, which results in higher power consumption. Secondly, the yarn

is produced at high tensions, so it has the tendency to break, which may

cause the production losses. Thirdly, due to higher costs of production, the

ring spun yarns are expensive. Last but not least, the conventional ring

spun yarns are quite hairy, which may cause the pilling on the surface

of the fabric and can reduce its quality. However, this disadvantage has

been overcome with invention of compact ring spinning. It is a well known

fact that spinning triangle is the major yarn hairiness forming zone. The

compact ring spinning involves the reduction of the spinning triangle [40].

The developments in the spinning technologies are underway and machin-

ery manufactures and spinners are being put under pressure to produce

the best yarn quality at the acceptable price. Additionally, the increased

level of automation and speed in the yarn manufacturing sector has ex-

pected a higher level of quality. All the same, ring spun yarns are still

considered to have the ideal blend of properties. Ring spinning may lack

in production speeds in comparison with the other spinning methods, nev-

ertheless, sufficient advancements were done, like automatic doffing, link

winding, use of longer ring frames and improvements in the splicing tech-

nology. These advancements pave the way for the reduction of the package

size, which in turn is helpful for the use of small diameter rings and thus

higher spindle speed and higher productivity may results [41].
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3.3 Prediction Modeling

The optimization of a process requires exact knowledge of the process,

which is on the one hand knowledge of correlations and inter-dependence

between the process-determining variables and on the other hand knowl-

edge over the actual condition of the process [3].

Yarn structure and properties are primarily influenced by fiber properties,

spinning methods and most importantly process variables. Owing to the

inherent non-linear relationships that exist between the process variables,

material variables, and the resulting yarn properties, development of a

prediction model deals with unraveling a web of interconnected complex-

ities [42].

Until early 90s, predictive modeling has fallen into two main categories:

A theoretical or Mathematical approach and an empirical or statistical

approach. Both types of models have there advantages and disadvantages.

For instance, the mathematical models are derived from the first principle

analysis and have their basis in applied physics [43]. Therefore, they are

appealing and capable of providing a better understanding of the complex

relationships between the yarn properties and the influencing parameters.

However, firstly these models always require simplified assumptions to

make the mathematic tractable, and the validity of the model depends on

the validity of the assumptions. Secondly, the mathematical models are

associated with large prediction errors and therefore not reliable enough

to work in practical situations due to the uncertainties connected with the

real world dynamics.

On the other hand, the empirical or statistical models are easy to develop

but they require the specialized knowledge of both statistical methods

and designs of experiments. Extensive experimentation and test and data
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gathering connected with measurement errors can generate the ‘noise’ in

data. Unfortunately, these models are sensitive to the ‘noise’. Also the

present techniques are insufficient for precise modeling and optimizing

the complex non-linear spinning process [42].

Since early 90s artificial neural networks have been employed for the deter-

mination of complex and analytically not recordable connections between

parameters with success. Like their human models they learn the inter-

relationships in a training phase on the basis of special algorithms and

provide meaningful outputs even from inaccurate input values.

Successfully applied to a wide range of problems, they offer the potential

for performing complicated tasks that have previously required human

intelligence. With suitable training sets, they have been taught to per-

form well in a wide range of applications [44]. Application areas for neural

networks involve function approximation, solution of classification prob-

lems, pattern recognition (radar systems), quantum chemistry, sequence

recognition (hand written recognition), system identification and control,

medical application (disease diagnosis), financial application (stock mar-

kets prediction), data mining, email filtering etc.

3.3.1 Comparison of Neural Network with Other Models

In the history of neural networks applications in textiles many researchers

have attempted to compare the performance of the neural networks model

with the mathematical (mechanistic) and statistical models (regression

equation) using the spinning based data. For instance, the comparison

of neural networks with the regression equations had been done in spin-

ning for predicting the quality of the rotor spun yarn [45] and predicting

the yarn splice properties [46]. In both cases the significant nonlinearities
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contained in structural relationships between fibers and yarn are better

understood by the neural networks and the predictions from the neural

network show a higher accuracy than those of the regression analysis.

There had also been attempts to compare all three models, i.e. mathe-

matical, statistical and ANN [47–49]. In the reported research work the

relative performance of mathematical models, simple statistical models

(based on regression equations), and neural networks models for predic-

tion ring spun yarn tenacity form fiber properties and process parameters

was examined [48]. It was observed that the cotton yarn tenacity predic-

tion error for the neural network was 6.9%, as against 9.3% and 9.9% for

the mechanical and statistical models, respectively. The same trend was

more prominent when the three models were compared with data per-

taining to ring spun polyester fiber yarns. Where, the prediction errors of

1.1%, 8% and 2.2% were observed for ANN, mathematical and statistical

models respectively [50].

3.3.2 Application to Yarn Manufacturing

In the field of textile processing, neural networks (most of the back propa-

gation type) have been used with success to predict set-marks [51], fabric

defects [52], quality of knitted fabrics [53] and yarn parameters at a tex-

turing machine in dependence of the selected machine settings [54]. Very

few instances regarding the application of neural networks in yarn man-

ufacturing have been discussed. The areas that have investigated include

classification of card-web defects [55], control of sliver evenness [56] and

predicting the spinability of the yarn [44].

As the current instruments cannot precisely measure the spinability of the

fibers, [57] devised the neural network model for predicting the spinability
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of the fibers. The training data was consisted of 700 spinable and 700 un-

spinable yarns for both ring and rotor yarns. The trained network was

able to predict the spinablility of the test set with remarkable accuracy,

with 90% of the spinable fibers and 95% of un-spinable fibers. Another

study was conducted regarding the auto-levelers at drawing frame. Huang

and Chang [56] have devised an artificial neural network controlled auto-

leveler in which the linear density of the infeed sliver and desired linear

density of delivered sliver were employed as inputs. Whereas, the ratio of

front and back roller speeds was taken as output. According to their claim

a trained network can improve the CV% of the delivered sliver from 3.37%

(in a system without auto-levelers) to 2.73%. Use of Fuzzy self organizing

controller improved the same value to 2.91%.

3.3.3 Yarn Properties Prediction

The prediction of yarn properties form fiber properties is also a scope of

research for the Textile researchers over the years. They have attempted

to predict the yarn properties using different fibers or fiber blends and ma-

chine input parameters by means of Neural Networks. In literature review,

predicting the relationship between fiber properties and yarn strength [44],

correlating the fiber blends and yarn characteristics [54], predicting the

cotton yarn irregularity on the basis of ’AFIS’ measurement [58], and

predicting the hairiness for ring and rotor spun yarns using fiber proper-

ties [59] are few examples of the applications of ANNs.

The machine parameters along with fiber properties were also employed

as Neural Networks inputs for the prediction of ring and rotor yarn prop-

erties. Sette et al [60] modelled the spinning process using fiber properties

and five machine parameters as input and nine yarn properties as output.

This work is the first use of genetic algorithms and neural networks in a
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textile process and seems to have immense potential. Also Van Nimmen

et al [61] have also used genetic algorithms and neural networks for the

selection of best cotton blends in terms of price and quality.

Therefore, contrasting the conventional techniques which are usually lim-

ited by strict assumptions of normality, linearity and variable indepen-

dence, ANN are universal approximaters. They have the capability to

learn directly from the data, i.e. training, and are able to find the rela-

tionships between input and output patterns even where the volume or

variation within the data is large or the relations between variables are

dynamic and nonlinear. Once trained, artificial neural networks can be

evaluated very quickly, which is a benefit for optimization of a process.
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Chapter 4

Objective of the Research

The description of the function of the drawing frame discussed in the

chapter 2 reveals that various machine parameters can have significant

influence on the sliver and yarn quality. Besides the machine parts, the

machine settings, e.g. delivery speed, break draft, pressure bar, main and

break draft distances can also be varied and they affect the processing and

the quality one way or the other. The situation becomes more complex,

when the influence exerted by the mentioned machine settings varies for

different materials and materials blends at various blending ratios. The

basic knowledge of the effect of these parameters already exists. Similarly

work had also been done to search out the individual influences of these

settings for different materials. However, not only the individual influ-

ences but also the interactions between of various influencing parameters

exert significant effects on the sliver and yarn quality. The sense of com-

bined effect of adjustable settings for different materials is lacking in the

literature. Moreover, as already mentioned the main process involved in

spinning i.e. the drafting process, cannot be carried out ideally, imposed

constrains on the establishment of exact relations between the materials,

machines and product quality.
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The spinning process involves the interaction of a large number of vari-

ables like other industrial processes, but unlike other industries, the re-

lationships among the variables and the product properties is yet to be

established conclusively. The reasons are the high degree of variability in

raw materials, multistage processing and lack of precise control on process

variables. This situation leads to the managerial control of the spinning

mill. A well experienced manager tends to develop a ”feel” of the process

and able to exercise some degree of control on the process. The absence

of complete information about the process does not allow the researcher

to establish exact relationships between the influencing parameters and

the quality, but the manager with his ”feel” can make intelligent guesses

about the process. The possibility of human error and the lack of knowl-

edge in a specific field are the draw backs of this control. Nevertheless,

the managerial control is most commonly used in the spinning industry of

the world. Logically, the ”feel” of the manager is the based on the princi-

ple of ”learning from examples”. This implies a ”learning from examples”

control is best suited for the spinning industry [50].

The section 3.3.1 illustrates the better performance of the artificial neural

networks in comparison with its mathematical and statistical competitors.

Also interesting is the fact that ANN are theoretically based on ”learn-

ing from examples”, which is so far best suitable control in the spinning

industry. However, it does not contain the disadvantages of managerial

control like, human mistake or lack of some specific knowledge

The planned research task is divided into three phases.

The first phase involves the application of ANNs to optimize the leveling

action point by reducing the material required for the adjustment and to

predict the sliver quality using the drawing frames parameters (material

and machine) for optimum machine functioning and better sliver quality.
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The objective regarding the optimization of the leveling action point is to

find out the relationships between the influencing variables and to reduce

the search range, using the ANNs. Firstly the experiments will be carried

out by changing the influencing parameters and the data thus acquired

will be presented to the ANNs for the sliver quality and leveling action

point prediction model. Figure 4.1 shows the schematic diagram of first

phase.

Figure 4.1: Optimization of the Sliver Quality

The second phase pertains to the usage of ANNs for the prediction of yarn

quality. Various experiments will be performed by varying the different

levels of the influencing parameters. The drawing frame parameters and

sliver quality characteristics will be the input of ANNs, while the yarn

quality characteristics will be the outputs as shown below in Figure 4.2.

Figure 4.2: Optimization of the Yarn Quality
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The third and last phase does not contain experimentation. It involves

the endeavor to correlate the yarn quality characteristics with the drawing

frame parameters. So that the adjustment of drawing frame settings with

the help of yarn characteristics can be made possible.

Therefore, combining all three mentioned phases result in the formation

of an analysis triangle. As shown in the Fig. 4.3, three arms of the analysis

triangle correspond to the three different co-relation phases supported by

artificial neural networks. This analysis triangle makes the basis of the

present study. It is proposed that a neural network trained in such a way

can function as a decision-making-tool.

Figure 4.3: Analysis Triangle Corresponding to ANN Based Prediction System

The research work involves the development of prediction systems, which

are capable of predicting the quality of sliver and ultimate yarn on the

basis of the drawing frame parameters using the artificial neural networks.

It is highly anticipated that these systems will result in the optimization

of the spinning process. Moreover, they will also help to find out the

individual as well as interaction effect of the drawing frame parameters

on the yarn quality. It is highly likely that the achievement of these goals

will optimize the spinning process and it will be a step forwards towards

the idea of an ”intelligent machine”.
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Materials and Methods

On the basis of experimental structure, the present work is divided into

three sections. The first section includes the experiments related to level-

ing action point. While the second and third sections correspond to the

investigations regarding the sliver and yarn manufacturing respectively.

The goal of the research is the development of a prediction system that

will be able to predict the draw frame settings along with the quality

of sliver and yarn. Therefore, the experiments were planned to provide

better quality input to the artificial neural networks. While planning and

conducting the experiments following important points were taken into

consideration.

� Artificial neural networks are not known to behave well for the ex-

trapolations. The experiments regarding the possible maximum and

minimum levels of an influencing parameter for every material were

included.

� The second problem that neural network may face is the holes in data.

This was avoided by selecting the proper levels of the influencing

parameters. The influencing parameters exerting major influence on
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the output were intensively investigated.

� Large numbers of experiments were conducted so that data set is

large enough to train the neural networks properly and over-fitting

should be avoided.

� In addition, it was also tried that the experimental data contain all

the relevant information that have to be learned by artificial neural

networks to give a better generalized performance.

5.1 Rieter Draw Frame RSB-D40

For this research project, high performance Rieter draw frame RSB-D40

was used (Figure 5.1). The basic elements of the draw frame involve the

creel system for smooth feeding of the slivers to the machine by avoiding

any false drafts, the scanning device for the measurement of the variations

in fed slivers, the machine drives and control system to rectify these in-

coming variations, the drafting system for uniform and controlled drafting

of the fibers and finally the coiler system with automatic can changer to

deposit the sliver in the can without deteriorating its quality.

The heart of the draw frame is its drafting system. In RSB-D40, a 4-

over-3 drafting system is used, where the fourth top roller performs the

function of clamping the fibers and deflects them toward the web funnel.

The pressure applied to fourth top roller is less than that of other three top

rollers. The top rollers having different hardness can be used for various

materials. The machine is capable of operation up to a delivery speed of

1100 m/min, with possibility to process fibers up to 80 mm length.

RSB-D40 is equipped with digital auto-leveling connected to high dynamic

drive system. The infeed variations are measured using the mechanical
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Figure 5.1: Draw Frame RSB-D40

tongue and groove system and then these variations are rectified by chang-

ing the speed of the middle drafting roller connected to the high dynamic

servo drive (Principle already explained in Chapter 2). The on-line quality

monitoring system Rieter Quality Monitor (RQM) is positioned between

the web funnel and the coiling setup of the machine. The variations in

the delivered slivers are measured with the help of RQM. The quality pa-

rameters like CV%, and length variation (values ranging from 5 cm to 5

m), sliver count and spectrogram can be displayed on the machine panel

screen. The RQM also operates in connection with the auto-leveling sys-

tem to carry out leveling action point (LAP) search function ”AUTOset”.

However, in the perspective of the auto-leveling system, there are some

very important settings that should be adjusted precisely to achieve the

optimal performance of machine and better quality of sliver. The adjust-

ment of these settings is known as optimization of machine, which must

be performed in case of material change.
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As already discussed, this research comprises of three major portions.

First one is the optimization of auto-leveling setting i.e. leveling action

point. The procedure of determining the leveling action point on Rieter

drawing frame RSB-D40 involves the RQM. The result of LAP search can

be read directly from the machine panel. Whereas, for the manufacturing

of sliver and ring spun yarn and their off-line quality testing an entire

different procedure has to be followed. Furthermore, the dissimilar influ-

encing parameters must be considered. Therefore the experiments were

planned and carried out separately.

5.2 Investigations on Leveling Action Point

The materials selected and experimental procedure opted for investiga-

tions on leveling action point, are described in this section.

5.2.1 Material Selection

The material selection was based on the frequency of use in spinning indus-

try. In the short staple spinning the mostly used materials worldwide are

cotton (carded or combed), polyester, polyester/cotton blend and viscose.

The second reason of this selection was the fact that draw frame settings

especially that of finisher draw frame play a vital role while processing cot-

ton or its blend with polyester. The raw materials were collected directly

from industry in the form of card slivers according to the specifications

given below in Table 5.1. For in depth study of leveling action point, exper-

iments were performed on cotton carded 1st passage, cotton carded 2nd

passage, polyester 2nd passage, viscose 2nd passage and polyester/cotton

blend 50/50 2nd passage. Furthermore, some additional experiments like
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using sinusoidal sliver, polyester/cotton 67/33 and polyester/cotton 33/67

were also performed.

Materials Staple

Length

[mm]

Fineness

[mic]

Sliver Number

[ktex]

Sliver CV

[%]

Cotton Carded 28 4.1 5.55 3.5

Polyester 38 1.3 5.55 3.75

Viscose 38 1.3 5.55 3.95

Table 5.1: Specification of the card slivers taken from industry

The experimental procedure for all materials remained the same. Before

conducting the experiments the materials were acclimatized in the stan-

dard temperature and relative humidity for 24 hours.

Materials Temperature

[◦C]

Relative Humidity

[%]

Cotton 24 46

Polyester 25 50

Viscose 25 50

Table 5.2: Standard climatic conditions

5.2.2 Machine Optimization

After conditioning, materials were prepared for the experimental phase.

For Cotton 1st passage, the draw frame machine was optimized using

card slivers and then auto-leveling was turned on for performing the ex-

periments (the optimization procedure will follow). However, in case of

experiments pertaining to the second drawing passage (cotton, polyester

and viscose); the materials were processed for first passage using their

corresponding standard optimized settings without auto-leveling. In case

of polyester/cotton 50/50 blend 2nd passage, card slivers from polyester
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and cotton were blended in the first passage using the standard settings.

The first blending passage was without auto-leveling.

For the 2nd passage, the machine was first optimized without auto-

leveling. This implies that after setting the doublings and the draft ac-

cording to the spin plan, the delivered sliver weight should be as close

as possible to the required sliver weight. Furthermore, the spectrogram

should not show any fault like chimney, which represents the accuracy of

the other settings. Then the auto-leveling was turned on and the required

sliver weight was entered. Then again the delivered sliver weight was de-

termined and the actual weight was entered in the machine. Using the

required and actual sliver weight the machine automatically adjusts the

displacement of scanning rollers.

In the next step, the leveling intensity was determined with the help of

sliver test. The sliver test involves the production of the about 100m sliver,

in each case, using 6, 5 and 7 infeed slivers at similar machine settings.

All three sliver produced was then weighted and A% was calculated using

the following formula.

A% =

(
ktex(n−1) − ktexn

)
ktexn

× 100 (5.1)

A% =

(
ktex(n+1) − ktexn

)
ktexn

× 100 (5.2)

Where positive value of A% corresponds to over-leveling and while a nega-

tive value indicates under-leveling. The mean of these two values (without

pre-sings) should be entered to the machine and it will adopt the over or

under compensation. This procedure should be repeated until the A% <=

±0.5% is reached.
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The compression of the scanning rollers is more when the machine is

running at slow speed. So the next was the adaptation of the sliver weight

at slow speed using the following formula. The X% value should not exceed

from ± 0.5%

X% =
100× Sliver weight with slow speed [ktex]

Sliver weight with normal speed [ktex]
− 100 (5.3)

Finally the RQM was set so that it monitors the sliver weight continuously

during operation. After completing the above mentioned procedures the

machine became ready for carrying out the experiments.

As discussed in chapter 2, auto-leveller draw frame RSB-D40 implements

an automatic search function for the optimum determination of LAP,

which is based on the minimum value seeking algorithm. The sliver is

automatically scanned by adjusting the different leveling action points

temporarily and the resulted values are recorded using RQM. The mea-

suring accuracy of RQM is also a point of vital importance. On the basis

of previously performed experiments using carded cotton 1st passage at

300 m/min and 900 m/min, it was noticed that delivery speed has an

influence on the measuring accuracy of RQM. The results of ten LAP

searches conducted with same settings indicate that standard deviation

and CV% is high in case of 900 m/min as compared with 300 m/min using

same material. These experiments concluded that a variation of ± 6 mm

in RQM measurement accuracy is possible, i.e. confidence interval of 95%.

It is also imperative that the CV% of sliver measured by RQM is always

less than Uster CV%, because the former does not include the variations

due to coiling of sliver in cans.

Owing to the material requirement of about 2100m per test, it was not pos-

sible to carry out all the experiments for all materials. Therefore, for the
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first instance all the possible LAP influencing parameters were selected.

The experiments were accomplished to find out the degree of influence of

these parameters on LAP and to choose the highly significant parameters

for the input of artificial neural network. Initially, the following parame-

ters, given in Table 7.1, were selected based on the information provided

in the instruction manual of drawing frame RSB-D40. After analyzing

the results of the experiments, further experiments were conducted only

for the significantly influencing variables. In addition, for the experiments

pertaining to the influence of infeed variations, sliver with sinusoidal varia-

tions was also manufactured. The procedure will be explained in chapter 7.

5.3 Investigations on Sliver Quality Characteristics

In the second section of the experimental phase, the experiments regarding

the sliver quality characteristics were conducted. The materials used and

methods applied are presented below.

5.3.1 Material Selection

During the investigations on the sliver and yarn quality characteristics,

Cotton carded, Polyester and Polyester/cotton blend 50/50 were selected.

In practice, there are two commonly used methods of processing the

polyester/cotton blend. The first one is direct blending to the carded cot-

ton and polyester sliver for the 1st drawing passage and then employing

the 2nd finisher passage. Whereas, the second method involves a pre-

drawing passage for polyester and then blending it with carded cotton for

1st passage, followed by the finisher passage. For this research work both

methods were investigated.
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Influencing variables Materials Values

Delivery speed Cotton 1st Passage 250; 300; 500; 700; 900; 1100 m/min

Cotton 2nd Passage 250; 300; 500; 700; 900; 1100 m/min

Polyester 250; 300; 500; 700; 800 m/min

Polyester/Cotton 300; 500; 700; 900 m/min

Viscose 250; 300 ;500; 700; 900 m/min

Infeed tension Cotton 1st Passage 0.99; 1.00; 1.01; 1.02

Cotton 2nd Passage 0.99; 1.00; 1.01; 1.02

Polyester 0.98; 0.99; 1.00

Polyester/Cotton 0.98; 0.99; 1.00; 1.01

Break draft Cotton 1st Passage 1.15; 1.2; 1.3; 1.5

Cotton 2nd Passage 1.1; 1.15; 1.3

Polyester 1.15; 1.3; 1.4; 1.5; 1.7

Polyester/Cotton 1.3; 1.4; 1.7

Viscose 1.3; 1.5; 1.7

Break draft distance Cotton 1st Passage 38; 41; 43; 44 mm

Cotton 2nd Passage 40; 43; 46 mm

Polyester 47; 49; 51; 55 mm

Polyester/Cotton 47; 51; 55 mm

Viscose 43; 47; 49 mm

Main draft distance Cotton 1st Passage 36; 38; 40 mm

Cotton 2nd Passage 35; 38; 40 mm

Polyester 40; 42 mm

Viscose 40; 42; 44 mm

Sliver deflection bars Cotton 1st Passage 2/5; 1/6; 3/4

Cotton 2nd Passage 2/5; 1/6; 3/4

Polyester 2/5; 1/6; 3/4

Viscose 2/5; 1/6; 3/4

Table 5.3: Experimental plan for leveling action point
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Another important consideration here is the fiber characteristics of cot-

ton. It was planned to conduct the quality experiments on medium to low

quality cotton, because of two major reasons. Firstly, in real practice, the

spinning industry is consistently trying to produce an economical yarn.

Energy conservation is one of the major focuses of the machine manufac-

turers these days. However, inside the spinning mill, this objective can be

achieved by reducing the waste produced and by reducing the raw mate-

rial costs. Therefore, in the present research work, the cotton having high

short fiber contents (SFC) i.e. 13% was used to try and model the real

industrial process. The second motive behind the use of cotton having

high SFC was to analyse the performance of neural networks, whether

they are capable of making good prediction on low grade material or

their better performance is limited to the good quality raw material. Be-

cause, the low quality material, i.e., having too many short fibers, tends

to vary immensely in case of improper settings e.g. an increase in draft

zone distances. An increase in draft zone distance increases the amount

of floating fibers in draft zone and cause major variations in quality es-

pecially regarding the evenness characteristics of sliver and yarn. On the

other hand, by comparison the materials having low short fiber contents,

these settings are less critical. The quality characteristics of the cotton

fibers were evaluated on HVI as well AFIS system.

The above described procedure of acclimatization at standard tempera-

ture and relative humidity was followed. The machine optimization pro-

cedure without auto-leveling and with auto-leveling was followed as ex-

plained earlier. The first drawing passage was carried out with auto-

leveling switched off for all materials. The following variables given in

Table 5.4were considered in order to conduct the sliver quality analysis.
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Influencing

variables

Materials Values

Delivery speed Cotton 2nd Passage 300; 500; 700; 900;

1100 m/min

Polyester 300; 500; 700 m/min

Polyester/Cotton with Pre-drawing 300; 500; 700 m/min

Polyester/Cotton without Pre-drawing 300; 500; 700 m/min

Break draft Cotton 2nd Passage 1.15; 1.3; 1.4

Polyester 1.15; 1.3; 1.4; 1.7

Polyester/Cotton with Pre-drawing 1.15; 1.3; 1.4; 1.7

Polyester/Cotton without Pre-drawing 1.15; 1.3; 1.4; 1.7

Break draft Cotton 2nd Passage 37; 40; 44 mm

distance Polyester 47; 50; 53; 55 mm

Polyester/Cotton with Pre-drawing 43; 46; 50 mm

Polyester/Cotton without Pre-drawing 43; 46; 50 mm

Main draft Cotton 2nd Passage 36; 38; 42 mm

distance Polyester 40; 43; 47 mm

Polyester/Cotton with Pre-drawing 39; 41; 46 mm

Polyester/Cotton without Pre-drawing 39; 41; 46 mm

Total draft Cotton 2nd Passage 5; 6; 7 (6 doublings);

8 (8 doublings)

Polyester 5; 6; 7 (6 doublings);

8 (8 doublings)

Polyester/Cotton with Pre-drawing 5; 6; 7 (6 doublings);

8 (8 doublings)

Polyester/Cotton without Pre-drawing 5; 6; 7 (6 doublings);

8 (8 doublings)

Delivered sliver Cotton 2nd Passage 5; 5.4 ktex

number Polyester 4.3; 5.0; 5.9 ktex

Polyester/Cotton with Pre-drawing 4.3; 5.0; 5.9 ktex

Polyester/Cotton without Pre-drawing 4.3; 5.0; 5.9 ktex

Doublings Cotton 2nd Passage 6; 8 times

Polyester 6; 8 times

Polyester/Cotton with Pre-drawing 6; 8 times

Polyester/Cotton without Pre-drawing 6; 8 times

Table 5.4: Selected Variables for investigations regarding Sliver and Yarn Quality
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5.4 Yarn Manufacturing

In the third section of the experimental phase, the slivers produced as

the result of the above mentioned experiments were further processed to

produce the ring spun yarn. In this case the slivers have to pass through

roving frame and ring spinning machine to be converted into yarn. As the

objective of the research is the development of a sliver and yarn quality

prediction system on the basis of draw frame parameters, therefore, the

main focus here was to optimize the both machines, i.e. simplex and ring

frame, so that the variations caused by influencing variables at draw frame

should be transported to the yarn without the induction of any additional

irregularities or problems by simplex and ring frame. The following spin

given in Table 5.5 plan has realized.

Material Sliver Roving Yarn

Polyester 5 ktex 617 tex 15 tex

20 tex

30 tex

Polyester/Cotton (50/50) 5 ktex 617 tex 20 tex

30tex

Cotton 5 ktex 617 tex 30 tex

Table 5.5: Spin plan for yarn manufacturing

The simplex machine Rieter F-15 and compact ring spinning machine Ri-

eter K-44 were used for this research work. Different materials demand for

dissimilar machine settings both at simplex and ring spinning machine,

therefore, the investigations were carried out separately for different ma-

terials. Before actual experiments, the sliver resulted from the optimized

draw frame settings were used to optimize the simplex and ring spinning

machine. Roving twist, flyer speed, spacer and condensers were optimized
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for every material at roving frame. The break draft and main draft and

draft zone distances were kept constant. Whereas at ring spinning ma-

chine, yarn twist, spacers, and ring travellers were optimized. Also here

the break draft, draft zone distances and spindle speed are kept same;

however main draft was changed to manufacture different yarn numbers.

The important machine settings for both simplex and ring frame are pre-

sented below in Table 5.6 and 5.7.

Parameters Materials

Polyester PES/CO Cotton

Spacer Green(5.9 mm) Black(4.4 mm) Black(4.4 mm)

Roving Twist (T/m) 26.5 37.43 51.23

Flyer Speed (rpm) 1050 800 1100

Break Draft 1.12 1.12 1.12

Total Draft 8.105 8.105 8.105

Table 5.6: Optimized settings on roving frame for different materials

5.4.1 Testing Plan

Before testing, all the materials were acclimatized in standard atmospheric

conditions i.e. Temperature 20 ◦C± 2 ◦C and RH% 65%± 2%. The testing

plan for sliver, roving and yarn is presented in the following Table 5.8.

5.4.2 Evenness, Imperfections and Hairiness

Sliver, roving and yarn evenness was determined by passing them through

the parallel plate capacitors and irregularities recorded in terms of coef-

ficient of variation in mass of fibrous assembly (CVm%). Uster Evenness

Tester (UT-3), also simultaneously measures the imperfection viz., thin,

thick places and neps per thousand meters of yarn. The hairiness mod-

ule of the UT-3 consists of an electronic optical sensor which converts
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Parameters Yarn

Number

Materials

Polyester PES/CO Cotton

Spacer 15 tex Natural(3 mm)

20 tex Black(3.5 mm) Natural(3 mm)

30 tex Cream(3.75 mm) Black(3.5 mm) Yellow(3.25 mm)

Ring Traveler 15 tex ISO Nr. 45

20 tex ISO Nr. 63 ISO No. 56

30 tex ISO Nr. 80 ISO No. 80 ISO No. 71

Total Draft 15 tex 41.00

20 tex 31.50 31.50

30 tex 20.50 20.50 20.50

Twist Multiplier 3.1 3.4 4.0

Spindle

Speed(rpm)

17000 17000 17000

Break Draft 1.14 1.14 1.14

Table 5.7: Optimized settings for compact ring spinning machine for different materials

the scattered light reflection of the peripheral fibers into a corresponding

electronic signal while the solid yarn body is eclipsed. Yarn hairiness is

expressed in the form of hairiness value H, which is an indirect measure for

the cumulative length of all fibers protruding from the yarn surface [62].

5.4.3 Sliver Cohesion

The cohesion between the fibers in a fibrous assembly or in other words the

fiber to fiber friction plays an important role in determining the material

behavior during the drafting operations in spinning. A proper control

exerted on this fiber to fiber friction can help to eliminate the drafting



5.4 Yarn Manufacturing 59

Testing Instrument Testing Materials

Fiber Sliver Roving Yarn

Uster HVI x

Uster AFIS Pro x

Uster Evenness Tester 3

Irregularity, CV%, CV% (1m & 3m) x x x

Imperfections x

Hairiness x

Diagram & Spectrogram x x x

Rothschild Cohesion Meter

Sliver Cohesion x x

Zweigle yarn warp reel

100 m CV% x

Zweigle sliver warp reel

1 m & 10 m CV%, x x

Zwick 2.5

Yarn Strength x

Yarn Elongation x

Table 5.8: Testing plan for fibers, slivers, roving and yarns

problems during the spinning process [63]. There are two methods for the

measurement of cohesion between the fibers in a sliver or roving, i.e. static

and dynamic methods.

The static method includes the clamping of one end of the sliver and

applying the breaking force on the other end, like yarn strength testing.

However, in dynamic method, the sliver is passed through a drafting as-

sembly and the resistance to drafting is electronically measured [64].

Rothschild sliver cohesion meter R-2020 operates on the principle of dy-

namic measurement of fiber-to-fiber friction. The dynamic method is an

attempt to simulate the actual drafting as it happens on draw frame.

Therefore, more valid information can be recorded with this method. This

information also helps to understand the drafting behavior of the fibrous
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material in the further drafting processes like on simplex and ring spin-

ning machine. In view point of present research work, it is anticipated

that sliver cohesion can be an important input parameter for neural net-

works [65].

A detailed introduction of the artificial neural networks will be presented

in the next chapter. However, it is important to mention here that the

neural network always required a large amount of experimental data for

their successful training and better generalized performance. The require-

ment of the experimental data depends on the structure of neural network,

which is directly associated with the complexity of the problem. There-

fore, about 800 experiments were performed for training the networks and

the data acquired from reliable resources were also used in addition.



Chapter 6

Artificial Neural Networks

In the scope of present research, the artificial neural networks (ANN) will

be applied to the experimental data acquired from the area of staple yarn

spinning. For a better understanding of the subject and their applica-

tions, a detailed introduction about the artificial neural networks is being

presented here.

6.1 Introduction

The technological advancement of artificial neural networks (ANN) or sim-

ply neural networks has emerged in the last decade and immediately found

lot of acceptance for solving the complex computational tasks. ANNs can

be defined as structures comprised of densely interconnected adaptive sim-

ple processing elements (called artificial neurons or nodes) that are capa-

ble of performing massively parallel computations for data processing and

knowledge representation [66].

As the name indicates the motivation of developing artificial neural net-

works came from their biological counterpart. Historically, ANNs were the

most demanded computational systems that are advanced and may be in-
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telligent to be capable of performing like human brain. The second drive

may be the fact that the conventional digital computers work entirely dif-

ferent from human brains, so a computational system that can mimic bio-

logical neural network are valuable in the field of computation. Although

ANNs were quite similarly designed like biological networks, however the

main idea behind their development was not to replicate the function of

biological networks but to make use of the knowledge of functionality and

power of biological network for the solution of difficult problems [54]. The

attractiveness of ANNs came from their following remarkable information

processing characteristics.

� A neural network possesses nonlinearity, which is a significant char-

acteristic because most of the real-world problems are non-linear and

it permits better fit to the data.

� The noise tolerance of a neural network helps to offer correct predic-

tion even in the presence of doubtful data and measurement inaccu-

racies.

� A neural network works in parallel and possesses the potential to be

high failure tolerant. The knowledge of the networks is distributed

in the form of “weights”. When a part of the network stops working

then the performance of the network will be reduced but total break

down will not occur.

� A neural network is adaptive in nature, i.e. they can be trained for

the consideration of new data.

� A neural network is capable of generalization, which means that it

is able to calculate the suitable outputs for the inputs that are not

present in the training data [67].
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As previously described, artificial neural networks have found lots of ap-

plications in textiles. This chapter is aimed to provide a preliminary un-

derstanding of ANNs. It also includes the details of the concepts that are

important for of present research work.

6.2 A Brief History of the Field

The history of artificial neural networks interrelated to the history of brain

studies and brain mathematics is about 100 years old. The chronological

highlights of some major breakthroughs in the field of ANNs are given as

under.

1943: It is believed that it all started with a famous and revolutionary

treatise of Warren McCulloch and Walter Pitts. They explained the ca-

pability of simple classes of neural networks “neurons” to compute the

arithmetic and logical functions [68] [69].

1949: The book “The Organization of Behavior” by Donald Hebb was

the next advance in which the classical Hebb learning rule for Synapses

was explained. He argued that the neural pathways are strengthened each

time they are used, a concept that afterwards became the basis of ANN

learning [70].

1959: Rosenblatt wrote a book entitled “Principles of Neurodynamics”,

in which he presented different types of Perceptrons, a type of neural

network. It was demonstrated that the perceptrons are able to learn us-

ing a learning process (Perceptron-Convergence-Theorem). Also in 1959,

Bernard Widrow and Marcian Hoff developed ADALINE (Adaptive Lin-

ear Elements) and MADALINE (Multiple Adaptive Linear Elements)

models [71].
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1969: Marvin Minsky and Seymour Papert augmented the limits of single

perceptrons and demonstrated that they were unable to solve an XOR

problem [72].

1969-1985: John Hopfield presented a series of articles on ‘Hopfield Net-

works’ in 1982. In same year, Kohonen developed the ‘Self-Organizing

Maps’.

1986: The Back-Propagation learning algorithm for Multi-Layer Percep-

trons was rediscovered which is considered to be a keystone in the history

of ANNs. In order to extend the Widrow-Hoff rule to the multiple layers,

David Rumelhart came up with the idea of back propagating the training

error to the hidden layers [73].

1990s: The sub-field of Radial Basis Function Networks was developed.

The trend of applying ANNs to the various research areas was also started.

Today: This field is progressing by leaps and bonds, from the develop-

ment of new training algorithms to the advancement in the methods of

overcoming the ANN’s limitations. The researchers are also foreseeing the

implementation of neural networks in various applications.

6.3 Biological Inspiration

The human nervous system is a controlling authority for all the biological

processes and movements in the body. The human brain can be divided

into two major portions, i.e. central nervous system (CNS) and the pe-

ripheral nervous system. The function of peripheral nervous system is two

fold. It sends the signals from the receptors to central nervous system,

which processes them. Also, it receives the signals from central nervous

system and sends them to the effectors (muscles) as shown in Fig.6.1.
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Figure 6.1: The Functioning of the Human Brain

The biological neuron is a structural and functional unit of a nervous

system. A biological neuron consists of a cell body with a nucleus, Axon

and Dendrites. At the end of the tubular Axons, that can be 1 meter long,

synapses are present that serve as the connections with the other neurons.

The Fig. 6.2 shows the construction of a nerve cell.

Figure 6.2: A Biological Neuron

The outgoing messages are transmitted to the other cells with the help

of axons. They can originate from the CNS and extend all the way to

the body’s extremities, effectively providing a highway for messages to go
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to and from the CNS to these body extremities. Dendrites are the tree-

like structure that receives the signal from surrounding neurons. They are

connected with axon terminals through synapses. The neurons differ from

each other depending upon the behavior and function in central nervous

system e.g. behavior of axons, number of dendrites.

The human brain has a huge number of synapses. Each of the 1011(one

hundred billion) neurons has on average 7,000 synaptic connections to

other neurons. It has been estimated that the brain of a three-year-old

child has about 1015 synapses (1 quadrillion) [8].

As a result of extensive research in this field, some major discoveries have

paved the way for the development and then further improvement of the

artificial neural networks. Firstly, the ”All-or-None-Law” applies to nerve

cell communication as they use an on / off signal (like digital signal)

so that the message can remain clear and effective from its travel from

the CNS to the target cell or vice versa. Secondly, the synapses connec-

tions can be mathematically presented through weight factor wi. for each

synapse. Thirdly, the neural pathways are strengthened each time they

are used; this concept laid the foundation of ANN learning. Last but not

least is the parallel processing of the biological neural networks. Based on

this characteristic, the ANNs show powerful computation ability and high

failure tolerance.

The structure of artificial neural networks was derived from the current

awareness of biological neural systems [74]. The computation is performed

using parallel connections of artificial neurons. An artificial neuron, a sim-

ple processing unit of an ANN, is being presented here under.
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Figure 6.3 shows the diagram of an artificial neuron. Functionally, an

artificial neuron accepts a set of inputs possibly form the other neurons.

Usually the input channels have an associated weight, which means that

the incoming information xi is multiplied by the corresponding weight

wi. The summation function generates the weighted sum of all inputs.

If this input exceeds the specific threshold value then it is transferred

to the output, means the neuron “fire”. Mathematically, the following

equation shows a linear combination network having inputs and weighted

connections. The network will “fire” when the weighted summation of

input will exceed the thresholdΘ.

3∑
i=1

xiwi = x1w1 + x2w2 + x3w3 ≥ Θ (6.1)

Figure 6.3: A Single Artificial Neuron

When a neuron fires then the output function is used. This function is

mostly a non-linear function. The frequently used function is the sigmoid

function because it is continuous and differentiable. The most common

back propagation algorithm for training a network requires such charac-

teristics. Both the biological network and ANN learn by incrementally

adjusting the magnitudes of the weights or synapses strengths [75].
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6.4 Exclusive OR /(XOR) Problem

In order to demonstrate the functionality and non-linearity of a simple

neural network, the exclusive OR (XOR) problem will be demostrated

here. The XOR function is a Boolean function with two variables. The

Table 6.1 shows the inputs (x & y) and outputs (z) for a XOR problem.

The XOR function is defined as

Z = XOR(x, y) (6.2)

X Y Z

0 0 0

1 0 1

0 1 1

1 1 0

Table 6.1: The Inputs and output for XOR problem

Because perceptrons are capable of solving only the linear problems while

the XOR problem is non-linear.

The Figure

f(netj) = { +1 : netj ≥Θj

0 : netj < Θj
(6.3)

Now considering the table, the output neuron only fires if one (but not

both) of the input neurons fire. This will cause one hidden neuron, having

threshold 1.5, not to fire. However the second neuron with threshold 0.5

will fire, since +1 is greater than the 0.5 threshold. The same will happen

at output neuron and the desired answer, i.e. 1, will be realized.

But if both the inputs have value ‘1’, then both hidden neurons will fire

and the result is a total input of 2 - 2 = 0 to the output neuron. Since 0
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Figure 6.4: The non-linearity of XOR problem

Figure 6.5: Simple neural network for XOR solution

is less than the 0.5 threshold of the output neuron, this will stop output

neuron to fire. It can be inferred that the multiple layer perceptrons (MLP)

can solve the non-linear separation tasks. As shown in the Figure 6.6

below.
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Figure 6.6: Solution of XOR problem

6.5 ANN Architecture

There are many possibilities to connect the neurons with each other in

a artificial neural network. However, in the scope of present work and

considering significance of different ANNs the following possibilities are

being described.

6.5.1 Feedforward Network

The feedforward networks are the neural networks in which the informa-

tion flows only in forward direction, i.e. from input layer to the output

layer. The neurons can be nominated according to their position in the

network. They are completely connected to each other in layers. The neu-

rons that will accept the inputs are in input layer and the neurons that

show calculated output are in output layer. Whereas, the neurons between

the input and output layers are the hidden neurons. They may be in single

or multiple layers and perform the computational tasks.



6.6 Classification of ANN 71

Figure 6.7: A feedforward network with two hidden layers

6.5.2 Recurrent Networks & Networks having Shortcut

Connections

The recurrent networks and the feed-forward networks having shortcut

connections are presented in the Figure 6.8. There are many real world

problems like time dependent analysis that are very difficult to solve with

feed-forward networks. So for such problems, recurrent networks or short-

cut connections are employed. Hopfield networks are the popular example

of recurrent networks. Both recurrent networks and the networks with

shortcut connections are very powerful computational tools. However,

they are also very complex and therefore, they are unstable.

6.6 Classification of ANN

Different significant features of the neural networks serve as their classi-

fication criteria. However, they are broadly classified into following types

on the basis of the degree of learning supervision they need for training.
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Figure 6.8: A recurrent network with shortcut connections

6.6.1 Supervised Learning

The supervised learning is an attempt to emulate the “teacher-student

learning relationship”. The target outputs “teacher” corresponding to the

input data is provided to neural networks “student”. The network tries

to learn the complex relationships present in the input data in order to

achieve the desired target output by adjusting the network weights. The

focus of this type of training is to minimize the error between the desired

and calculated outputs. In this case the most frequently used is the mean

square error.

E =
1

2

∑
i

(zi − oi)
2 (6.4)

Where ‘zi’ is the target output and ‘oi’ is the actual output.

Reinforcement learning is also a type of supervised learning. A schematic

diagram of the supervised learning is shown below.
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Figure 6.9: Supervised Learning of ANNs

6.6.2 Unsupervised Learning

For unsupervised training, the neural networks are not provided with the

correct answers (target inputs). The ANNs attempts to learn the corre-

lations among different sets of data by exploring it and categorize into

similar classes on the basis of their similarities and dissimilarities.

6.7 Back Propagation

Back propagation or error back propagation is a learn algorithm, through

which the weights of the networks are modified. There are many kinds

of learning algorithms, some of them are meant for supervised training

and other are for unsupervised trainings. Back propagation is best suit-

able algorithm for supervised multi-layer feed-forward networks. In back

propagation most frequently used non-linear function is sigmoid function.

i.e.

f(x) =
1

1 + e−x
(6.5)

For simplifying, the process of back propagation can be divided into three

sections.
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6.7.1 Feed-forward Pass

The network training is an iterative process. In the first step, the weights

are selected randomly and the input vectors are presented to the neurons

of the first hidden layer. Then output signals values for each neuron in

first hidden layer are determined. The output of the first layer acts as the

input for the next layer. This process is repeated until the output signals

for the output layer are determined. A neural network can contain one

or several hidden layer depending on the complexity of the problem. The

Figure 6.10 below shows a network containing two hidden layers.

Figure 6.10: Feed-forward pass of neural network

6.7.2 Calculation of Error

The calculated output is compared with the target or desired output and

the error is determined. If the error is less than a pre-determined stop-

ping error value then the training stops, otherwise the network starts its

backward pass.
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6.7.3 Backward pass

In backward pass the weights are modified on the basis of a learning rule.

With reference to the Figure 6.10 above, the weights are modified for the

neurons starting from output layer, then for 2nd hidden layer and finally

for 1st hidden layer. This implies that the error is back propagated to the

hidden layers. That why the algorithm is named as Back propagation.

In the Figure 6.10, the 2nd neuron from 1st hidden layer is selected and

detailed information flow inside the said neuron is given below in Figure

6.11

Figure 6.11: Mathematical Operations inside a neuron during back propagation

This neuron takes its input from all neurons of the previous layer, multi-

plied with a variable weight factor W. The total input is then added and

converted to output through an activation function. This output is then

given to the neurons in the next layer.
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The frequently used functions are

neti =
∑
j

wij · oj (InputFunction) (6.6)

ai = neti (ActivationFunction) (6.7)

oi = ai (OutputFunction) (6.8)

For a Neuron ‘i’ the back propagation rule, i.e. on the basis of which the

modification of its weights takes place, is given as

∆wij = σ · δj · oj (6.9)

Also

∆wij = wij (t+ 1) − wij(t) (6.10)

Where, ∆wij is the change in the weightwij , δj is the error single, σ rep-

resents constant learning rate and oj is the output.

The advantage of the back propagation algorithm lies in its flexibility

to be used for diversity of problems, which has given back propagation

neural network the reputation of “Universal Approximaters”. However, in

addition with some other disadvantages, back propagation algorithm is

considered to be slow. In order to overcome this problem “momentum”

term is frequently added in the back propagation algorithm. Using the

momentum term the learning rule will be

wij(t+ 1) = wij (t) + σ · δj · oj + µ ·∆wij (t) (6.11)

Where, µ is the momentum-term.
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The above section has described an overview of the back propagation. The

detailed information about the back propagation algorithm can be found

in [76,76–78]

6.8 Training a Neural Network

6.8.1 Input Selection

The accurate input selection for neural networks requires exact knowledge

of the process, which is the understanding of interconnections of input

variables as well as the overall awareness of the process to be modeled. As a

matter of fact that ANN are good at ignoring irrelevant inputs nevertheless

a large number of irrelevant inputs cause the network to behave badly.

Also irrelevant inputs may not require an increase in the number of hidden

neurons but they will increase the number of weights of the network, which

will in turn increase the requirement of training data. Also, a proper input

selection will allow the network to generalize well avoiding the over-fitting.

Therefore, at the start of the network training the selection of relevant

input i.e. the inputs that have concrete associations with the outputs,

should be selected [79,80].

6.8.2 Pre-processing of Data

Normalizing the input and target variables tend to make the training pro-

cess better behaved by improving the numerical condition of the problem.

The significance of normalizing the data increases when the inputs of the

neural networks contain the input variables having large magnitudes along

with the variables with small magnitudes. In this case, the network will

perceive that the input variables having large magnitude have a greater
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influence on the output, so it will assign larger weights to them, which

will reduce the importance of other input variables. Data normalization

converts all the input variables in a same range so that each variable has

an equal chance to exert its influence on the output [81]. Also back prop-

agation uses the steepest descent method and is sensitive to data scaling.

However, on the other hand the normalization imposes a restriction that

the ANN model will perform poorly on the out of range test data (extrap-

olation) [82].

Usually, the training data is normalized between maximum and minimum

values of [0 & 1] or [1& -1] respectively. Another possibility is to normalize

the data between the mean and the standard deviation of variables.

The input variables can be normalized between 0 and 1 using the following

equation.

Pn =
(P − P min)

(P max−P min)
(6.12)

Where Pn is the normalized value of input value P whereas, Pmin and

Pmax are the minimum and maximum values of the variable P.

6.8.3 Network Initialization

The neural network initialization is the assigning of initial values for

the weights, thresholds and activation functions to all network connec-

tions [67]. As the back propagation is the optimization of the network error

in correspondence of its weights, in view of some scientists the initializa-

tion of weights has a great impact on the network speed, its convergence

and generalization [83]. However other studies imply that initialization

has an insignificant effect on both the convergence and final network ar-

chitecture [84]. Usually all the variable weight factors are initialized using

random values. This randomization helps the non symmetrical assigning
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of the weights. Because the learning rule cannot eliminate the symmetri-

cal network weights so a large part of the network will have same weight

vectors that will reduce the capacity of the network.

The second important part of the network initialization is the assigning

of activation function to the hidden units. As already mentioned the role

of activation or transfer function is to transform sum of all the incom-

ing signals and determine the firing intensity of neuron. The activation

function induces the non-linearity in the neural network and make them

a powerful non-linear problem solver. However, the basic requirement for

an activation function to be used in back propagation is that it should

be continuous and differentiable. Considering this sigmoid function is the

most commonly used activation function followed by ‘tanh’ (hyperbolic

tangent)

6.8.4 Problems During Training

6.8.4.1 Error Surface

The back propagation is based on a gradient descent method and its

objective is to find an absolute or global minimum of the error surface.

Neural network error surfaces are exceedingly complex and contain local

minima, flat spots and plateaus, saddles points and long narrow ravines

[85]. In back propagation same like other gradient descend methods the

problem of getting stuck in a local minima is very common [86]. However,

it is not possible to find the global minimum analytically. If this local

minimum is close to the global one than the performance of the trained

network will be better. On the other hand if the local minimum is far

away from the global minimum, the network will show poor results and

will not be able to converge properly. Furthermore the complexity of the
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error surface is associated with that of neural network. This implies that

the possibility of getting stuck in the local minima increases with the

increase in the networks weights and number of neurons

6.8.4.2 Underfitting and Overfitting

The goal of neural network training is to produce a network which pro-

duces small errors on the training set, and which also responds properly

to novel inputs. When a network performs as well on novel inputs as on

training set inputs, the network is said to be well generalized. The gen-

eralization capacity of the network is largely governed by the network

architecture (number of hidden neurons) and plays a vital role during

the training. A network which is not complex enough to learn all the in-

formation in the data is said to be under-fitted. On the other hand the

network that is too complex to fit the “noise” in the data, leads to over-

fitting. “Noise” means variation in the target values that is unpredictable

from the inputs of a specific network. All standard neural network archi-

tectures such as the fully connected multi-layer perceptrons are prone to

over-fitting. Moreover, it is very difficult to acquire the noise free data

from the spinning industry due to dependence of end products on the

inherent material variations and environmental conditions etc [87,88].

6.8.5 Optimization of Network Parameters

6.8.5.1 Network Structure

The capacity of the neural network depends on network structure, i.e.,

the number of hidden layers and the number on hidden neurons in these

layers. The greater is the number of hidden neurons, the greater will the

connected weight vectors and so will be its ability to learn complex pat-
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terns. The network weights can be easily calculated. For instance, a neural

network having 5 input neurons, 6 hidden neurons in 1st layer, 5 neurons

in 2nd layer and 1 output neurons corresponds to a 5-6-5-1 network. The

network weights will be (5× 6 + 6× 5 + 5× 1 = 65). On the other hand,

using too many hidden neurons can make the network complex. So in-

stead of learning the trends and relationships between the inputs and the

outputs, it will start learning the data points [89]. The major drawback

of this situation is that the network will not generalize well. This implies

that it will perform very well on the training data but very poorly on the

unseen data i.e. test data. The reason that the back propagation networks

are prone to over-fitting, the selection of network structure in accordance

with the complexity of the problem is very important. There are also other

methods to avoid the over-fitting. These methods will be described later.

6.8.5.2 Learning Rate

The learning speed of a neural network is strongly dependent on the learn-

ing rate as it determines the amount of weight change during successive

iterations. A high learning rate designates the high new information learn-

ing speed of the network. Whereas a low learning rate causes the weights

to change slowly and so is the speed of learning of the new information [8].

Considering the disadvantages of the high learning rate, a network that

“learns” the new information quickly also “forgets” the already learned

information at the same pace. Moreover, as the training is accelerated

because of large steps on the error slope, it decreases the stability of the

process and increases the risk of overshooting the global minimum.

On the other hand, a small learning rate helps a slow but steady search

of the global minimum. Also small learning rate is suitable for superior
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“remembering capacity” of the neural network. The recommended value

of the learning rate is from 0.0 to 1.0 [90].

A constant learning rate during the whole training process is optional, an

adaptive learning rate, i.e. a variable learning rate for different training

phases, is believed to be more efficient. Normally, a high learning rate away

from minimum and a small learning rate near the minimum are suggested,

however it is difficult to predict the distance from the minimum [67].

6.8.5.3 Momentum

The motive of the inclusion of momentum term in back propagation is

to improve the search instability and to avoid the local minimum during

the learning process. Basically, the momentum factor determines the di-

rection and amount of weight change. It adds a fraction of weight change

of previous cycle to weight change of current training cycle. This results

a weight change in the same direction after coming across a local mini-

mum. Momentum allows the network to ignore small features in the error

surface and allows the gradient to leave flat plateau swiftly. However, the

danger of overshooting the global minimum remains. The weight update

using the momentum term is given already in equation.

It is clear from the equation that there exists a close association between

momentum and the learning rate. Momentum can be kept constant dur-

ing the training process or it can be adaptive. The value of momentum

factor lies between 0.0 and 0.9 with 0.5 to 0.9 being most commonly used.

The selection of a suitable momentum factor depends on the nature and

complexity of the problem and mostly it is determined by the trial and

error method.
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6.8.6 Levenberg-Marquardt Technique

Back propagation was a breakthrough in neural network research, however

it tends to be slow and have a poor convergence rate. Back propagation

is based on the gradient decent method, and the biases and networks

weights move in the opposite direction to the error gradient. Therefore,

as the error gets smaller, the steps down the gradient also decrease until

the error minimum is reached [91]. A lot of researches have been carried

out to speed up the back propagation algorithm. As previously explained,

most common is the use of momentum term, variable learning rate [92].

However, Levenberg-Marquardt (LM) technique is widely accepted and

most efficient and performs better by using an approximation of New-

ton’s method. Although it requires more memory, it is much fast than

back propagation. For instance, if back propagation needs 454 epoch to

converge, then LM technique requires only 4 epochs. In LM technique the

following update rule is used.

∆W = (JTJ + µI)−1JTe (6.13)

Where ‘J’ is the Jacobian matrix of derivatives of each error to each weight,

‘µ’ is the scalar and ‘e’ is the error vector and ‘I’ is the identity unit ma-

trix. If the scalar µ is very large, this technique approximates the gradi-

ent descent, but if it is small, the expression becomes the Gauss-Newton

method. Because this method is faster but tends to be less accurate when

near an error minimum, the scalar µ, is adjusted like the adaptive learn-

ing rate. As long as the error gets smaller, µ is bigger, but if the error

increases, µ is smaller. In scope of this research work only small informa-

tion is being given about the LM technique, a more detailed description

of the technique can be found in literature [92, 93].
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6.8.7 Generalization

6.8.7.1 Early Stopping

Early stopping is the most commonly used technique to tackle the over-

fitting problem. This involves the division of training data into three sets,

i.e. Training set, Validation set and Test set. The validation error nor-

mally descends during the start of training, as well as the training set

error. However, when the over-fitting starts, the error on the validation

set typically increases. When the validation error increases for a specified

number of iterations, the training is stopped and the weights and biases

are returned to the minimum of the validation error. However, this method

has the draw back that a large part of the data (validation set) can never

be the part of the training [94].

6.8.7.2 Regularization

The other solution of the over-fitting is regularization, which is the method

of improving the generalization by constraining the size of the network

weights. Mackay [95] discussed a practical Bayesian framework for back-

propagation networks, which consistently produces networks with good

generalization.

The initial objective of the training process is to minimize the sum of

square errors:

ED =
n∑
i=1

(ti − ai)
2 (6.14)

Where, ti are the targets and ai are the neural network responses to the

respective targets. Typically, training aims to reduce the sum of squared
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errors F = ED. However, regularization adds an additional term; the ob-

jective function, which is given by

F = βED + αEW (6.15)

In Equation 6.15, EW is the sum of squares of the network weights, and

αandβ are objective function parameters. The relative size of the objective

function parameters dictates the emphasis for training. If α<<β, then the

training algorithm will drive the errors smaller. If α>>β, training will

emphasize weight size reduction at the expense of network errors, thus

producing a smoother network response [96].

The Bayesian School of statistics is based on a different view of what

it means to learn from data, in which probability is used to represent

the uncertainty about the relationship being learned. Before seeing any

data, the prior opinions about the true relationship might be expressed

in a probability distribution over the network weights. This probability

distribution will define the relationship. After the program conceives the

data, the revised opinions are captured by a posterior distribution over

network weights. Network weights that seemed plausible before, but which

do not match the data very well, will now be seen as being much less likely,

while the probability for values of the weights that do fit the data well

will have increased [97], [98], [99].

In the Bayesian framework the weights of the network are considered ran-

dom variables. After the data is taken the posterior probability function

for the weights can be updated according to the Bayes’ rule:

P (w|D,α, β,M) =
P (D|w, β,M)P (w|α,M)

P (D|α, β,M)
(6.16)
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In Equation 6.16, D represents the data set, M is the particular neural

network model used, and w is the vector of network weights. P (w|α,M)

is the prior probability, which represents the knowledge about the weights

before any data is collected. P (D|w, β,M) is the likelihood function, which

is the probability of data occurring, given the weights w. P (D|α, β,M) is a

normalization factor, which guarantees that the total probability is 1 [96].

In this study, MATLAB Neural Networks Toolbox function “trainbr” was

employed, which is an incorporation of the Levenberg–Marqaurdt algo-

rithm and the Bayesian regularization theorem (or Bayesian learning) into

back propagation to train the neural network to reduce the computational

overhead of approximation of Hessian matrix and to produce good gener-

alization capabilities. This algorithm provides a measure of the network

parameters (weights and biases) being effectively used by the network.

The effective number of parameters should remain the same, irrespective

to the total number of parameters in the network. This eliminates the

guesswork required in determining the optimum network size.

6.9 Testing A Trained Network

The traditional and most commonly used method for testing a trained

network is “split-sample” “hold-out” method. In this method, the data

is divided into two data sets, i.e. Training data and Test data. Only the

training data set is used to determine the weights of neural network while

the test data set remains unseen to network and is used to analyze the

predictive performance of the network as shown in figure below.

However, the training and test performance of neural network is heavily

dependent on selection method for training and data sets. Also it is influ-

enced by the data points that which data points are in training set and
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Figure 6.12: hold-out method for testing the neural network performance

which are in test set. Furthermore, all the data can never be the part of

test set on which its performance will be proved.

In order to overcome this problem k-fold cross validation technique is

used [100]. In this method, the data is divided into k subsets. For each

training, one of the k subsets is used for the test set and the remaining

k-1 subsets for training the network. In the Figure 6.13, the k-fold cross

validation technique is elaborated with k=4.

Figure 6.13: Cross Validation technique for testing neural network performance

The advantage of this technique is that it is independent of the selection

or division of the data sets. However, the training cycle should rerun for k

times. Most commonly used cross validation are 10% cross validation and

20% cross validation, where one subset consists of 10% and 20% of total

data respectively. The average error E of all k trials can be calculated

using the following.
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E =
1

k

k∑
i=1

Ei (6.17)

Leave-one-out cross validation (LOOCV) is K-fold cross validation taken

to its logical extreme. If there are ‘N’ number of data points available then

for LOOCV, k=N, i.e., K equal to the number of data points. LOOCV

takes much time in comparison with 10% and 20% cross validations, how-

ever is a very good method to evaluate the trained models [101].

6.10 Applications

Neural networks offer the better solution of the problem in comparison

with other modelling techniques. They can recognize and classify the com-

plex, vague and noise patterns. A conventional algorithm that can analyse

such data is very hard to establish. Neural network can therefore be em-

ployed for the problems with many example but not explicit description.

Some of such problems are:

� Classification With the help of neural networks it is possible to clas-

sify the different inputs in to various classes.

� Prediction This is most frequently used application of the neural

networks in which the inputs are used to predict the outputs. The

trained neural networks possess the ability to learn the relationships

between the inputs and output and are able to make an accurate pre-

diction for unseen inputs. Many examples regarding the prediction,

especially in field of textiles are already described in chapter 3.

� Pattern Recognition For the pattern recognition, a specific pattern

should be generated by providing an input pattern. This property of
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neural network can be used for performing the tasks such as recogniz-

ing the hand writings (OCR), face and hand gesture recognition [102].

� Function Approximation

The function approximation is the learning of a function that ap-

proximately generates the same output as produced by a process to

be modeled. A large number of such and other applications are found

in financial management and in industry (e.g. in data processing and

machine construction etc.) and also in the medical field. With the help

of neural networks the complex tasks can be solve with relatively high

accuracy and short time. However the success of the neural networks

depends on the structure of the networks and the quality of the data

used to train them.

6.11 Conclusion

Comprehending all the above mentioned details, i.e., structures, training,

network parameters, evaluation techniques and application areas, the ar-

tificial neural networks can be used in field of textiles. As the matter of

fact that neural networks are really good in understanding the complex

relationships and able to perform very good in the presence of large num-

ber of input variables, make them the potential modeling technique for

the yarn manufacturing process. It is highly anticipated that the power

and flexibility of the neural networks can generate good quality results in

the area of staple yarn spinning and the complex relationships between

the machines, processing material and end product can be understood.
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6.12 Software Description

In order to train the artificial neural networks for the present research

work, a Graphic User Interface (GUI) shown in Figure 6.14 is programmed

using Matlab software and Artificial Neural Network Toolbox at Insti-

tute of Textile Machinery and High Performance Material Technology,

TU Dresden. The program is capable to acquiring the data from MS EX-

CEL, training the networks and making the predictions on the basis of

trained networks. The detailed description is given as under.

Figure 6.14: Graphic User Interface of Artificial Neural Network for Textiles

The graphic user interface (GUI) for training the artificial neural networks

is divided into different sections. This GUI is designed to receive the data

from MS EXCEL files. The section “data information” shown below in

Figure 6.15, takes the data from the entered MS EXCEL file, however the
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MS EXCEL file should be located in same directory. Entering the number

of inputs and output will assign them automatically. For instance, as given

below, the program will assign first three columns of MS EXCEL table as

input and fourth as output.

Figure 6.15: Data acquiring section

The second section regarding the normalization techniques allow the

opportunity of pre-process the data using three frequently applied nor-

malization methods, i.e., between 1 & 0, between -1 &+1 and between

mean and standard deviation. Optionally, the data can be normalized in

MS EXCEL and then entered to GUI, using the option ‘No normalization’.

Figure 6.16: Selection of Normalization Technique

The next important section takes the input for the network structure. The

number hidden layers can vary from 1 to 3. Also number of neurons in

each hidden layer can be entered. As shown below in Figure 6.17, in case

of using 2 hidden layer, the number of hidden neurons in 3rd layer should

be entered as 0.
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Figure 6.17: Choosing the Network Structure

The next section pertains to the setting of vital network parameters for

training, i.e. Maximum Epochs, Permissible error, Momentum rate and

Learning rate (Figure 6.18). The values of these parameters can be set

here. The details of setting them can be found in earlier part of this

chapter.

Figure 6.18: Adjusting the network training parameters

The options regarding the transfer functions or activation functions and

optimization Algorithm can be adjusted in next section. The transfer func-

tions can be set on for hidden layers, as the transfer function for the output

layer remains linear. Matlab Neural Network tool box offers a diversity
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of learning algorithm for the training of neural networks. All of them are

included in the software and can be used as required (Figure 6.19).

Figure 6.19: Selecting the activation functions and optimization algorithm

Referring the Figure 6.14, the button ‘Start Training’ will start the train-

ing process. The error performance during training can be seen by an

automatically generated graph. After finishing the training performance

can be seen on lower half of GUI under ’output’. Also at completion, the

network can be saved as a *.mat file.

Figure 6.20: Prediction on unseen data
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After saving the network the prediction on the test data or unseen data,

stored in a MS EXCEL file, can be performed by the following section of

GUI.



Chapter 7

Leveling Action Point

This chapter encircles the comprehensive analysis of the leveling action

point (LAP) as affected by various machine influencing parameters with

respect to different processing materials. It therefore includes; the exper-

imental results of leveling action point at different machine settings, a

comparative analysis of different processing materials, the selection of rel-

evant influencing parameters for artificial neural networks (ANN), training

of ANNs and finally the testing the quality of the prediction. Furthermore,

the multiple regression analysis is also preformed on the experimental

data.

7.1 LAP Influencing Parameters

Every material demands different machine settings to produce an optimal

sliver quality. For instance, the combed cotton cannot be processed with

the same speed like carded cotton because of fiber piecings which lead

to less sliver cohesion. Similarly, polyester needs less infeed tension in

comparison with cotton and can only be processed up to 700 m/min.

Moreover, different materials need different draft zone distances depending
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mostly on their fiber length distributions. Therefore, results pertaining to

the influence of various draw frame parameters corresponding to variety

of processing materials are being presented. For a comprehensive analysis,

following two approaches were considered.

� Studying the influence of individual parameters by optimizing the

draw frame for each material and then changing the levels of influ-

encing parameters.

� Try to find out the existing interactions between these parameters.

For instance, investigations on infeed tension at low, medium and

high feeding speeds.

7.1.1 Feeding Speed

The experiments have proved the feeding speed as a major LAP influ-

encing parameter. However the drawing machine RSB D40 offers no pos-

sibility to set the feeding speed. So, the feeding speed is considered as

a relation of delivery speed, draft and number of doublings according to

equations.

Feeding Speed =
Delivery speed (L)

Draft (V )
(7.1)

or

Feeding Speed =
Delivered Count X Delivery speed

Doublings X Feed Count
(7.2)

The following figure 7.1 depicts the effect of variable delivery speeds on

the LAP regarding different materials. During experiments only delivery

speeds were changed whereas the other machine settings were kept at

the optimized level. As a matter of fact that delivery speed is indirectly
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proportional to the LAP, a linear downward trend is visible for all the

materials. However, this downward trend is not truly linear especially in

case of cotton.

Figure 7.1: LAP Curves as Affected by Variable Delivery Speeds

The figure 7.1 also clears the LAP positioning of the materials at optimum

settings. The polyester needs less infeed tension for processing in compar-

ison with other materials, which clears the high LAP value for polyester.

However the low LAP values for the Viscose may be due to the smooth

surface of viscose fibers.

Moreover, the same downward trend was exhibited by changing the feeding

speed when the fed sliver weight, delivered sliver weight and doublings

were kept constant. Referring to equation 7.2, an increase in the number

of doublings will decrease the feeding speed and this will result in a higher

LAP value and vice versa. However, in order to find out the individual

influence of doublings and draft, the experiments shown in the table 7.1

were performed using carded cotton for 2nd passage. The feeding speed

was kept constant at variable levels of draft and doublings.



98 7. Leveling Action Point

Expt.

Nr.

Feeding

Count

[ktex]

Doublings

[-]

Delivery

Count

[ktex]

Delivery

Speed

[m/min]

Feeding

Speed

[m/min]

Draft

[-]

LAP

[mm]

1 5.45 4 4.70 300 64.68 4.64 948

2 5.45 6 4.70 450 64.68 6.96 942

3 5.45 8 4.70 600 64.68 9.28 948

4 5.45 4 4.70 550 118.58 4.64 930

5 5.45 8 4.70 1100 118.58 9.28 930

Table 7.1: Investigations on Draft and Doublings at Constant Feeding Speeds

Experiments from 1 to 3 (in the table 7.1) refer to the feeding speed of

64.68 m/min while experiments 4 and 5 were carried out at 118.58 m/min.

The LAP results indicate no change in case of feeding speed of 118.58

m/min, where the doublings were increased from 4 to 8 and the total

draft from 4.64 to 9.28. Whereas in case of feeding speed 64.68 m/min,

the experiment 2 shows a decrease of 1 LAP point i.e. 6 mm, which can

be attributed to the measurement accuracy of the Rieter Quality Monitor

RQM. In brief, varying the total draft or the number of doublings has no or

negligible influence on LAP, provided the feeding speed is kept constant.

The selection of the feeding speed as a major LAP influencing parameter

demands further in depth study. figure 7.2 elaborates the experimental

results using Cotton for 2nd drawing passage conducted at various possible

settings. These experiments provide a detailed insight about the effect of

feeding speed at different processing machine settings shown in figure 7.2.

The quasi-linear downward trend with increasing feeding speed is quite

eminent. Also the comparison of the settings 1, 3 and 4 reveals the effect

of infeed tension in interaction with the feeding speed. This implies the

high tension results in the short LAP.
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Figure 7.2: LAP Curves as Affected by Variable Feeding Speeds for Cotton 2nd Passage

Similar experiments were also performed on cotton carded 1st passage

and polyester 2nd passage. However, due to large amount of experimental

data it is not possible to present all of them. Therefore, an overview is

being given here.

A descending tendency was observed from the experiments conducted on

the cotton carded 1st passage. However, the curves are wavier in com-

parison with the 2nd passage. This can be attributed to the non-parallel

state of fibers inside the card sliver. In contrast, the curves acquired from

the experiments on polyester 2nd passage and polyester cotton blend ex-

hibited better linearity. Also as polyester can only be processed up to

a delivery speed of 700 m/min, because of the thermoplastic nature of

polyester. The polyester fibers tend to melts due to high temperatures

produced when processed at higher speeds. Therefore for polyester fibers

the effects of the high dynamics couldn’t be explored.

Concluding the above analysis regarding the influence of feeding speed on

the LAP, it can be argued that feeding speed is an important parameters
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for all the materials tested. Its inverse proportionality with LAP is not

ideally linear and additionally it also varies for different materials.

7.1.2 Infeed Tension

The infeed tension (VE) is the collective tension in all the slivers before

entering into the drafting zone. VE is a mechanical setting on the draw

frame RSB-D40 and should not be considered in Newton. In order to

avoid false drafts, the sliver should slightly sag at the beginning, between

all the guiding points. After this, there should be a stepwise increase in

the tension. Moreover, it should be noted that every material requires its

own ideal infeed tension for optimal results. This implies that the infeed

tension is strongly material dependent [11]. For example, an optimum

infeed tension setting for the polyester is 0.99 whereas that of combed

cotton is 1.02, which obviously refers to the cohesion between the fibers

inside the fiber strand.

Figure 7.3: LAP Curves as Affected by Variable Infeed Tension Settings
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The results indicated that the infeed tension strongly influences the LAP.

An indirect proportionality exists between infeed tension and LAP. This

implies an increase in infeed tension is known to be resulted in shorter

LAP values. The graph 7.3 presents the LAP of the different materials at

their optimum settings.

Cotton carded for 1st and 2nd passages showed the same trends at same

levels and parallel to each other. However, they deviated from each other

at level 1.02. Polyester and PES/CO blend showed a steady decrease for

LAP while increasing the infeed tension. The amount of change in LAP is

also noticeable, i.e. at least 6 mm, by one level increase in infeed tension,

excluding the last point in case of Cotton carded 2nd passage. However,

an overall average decrease in LAP is approximately 9 mm per one level

increase in infeed tension, which speaks out the significance of the infeed

tension with reference to the LAP.

The following figure 7.4 indicates the behaviour of variable infeed tension

in dependence of feeding speed, break draft and break draft distance cor-

responding to polyester 2nd passage. The influence of the feeding speed

is apparent at the high feeding speeds i.e. machine settings 3, 4 and 5

showed the shorter LAP in comparison with the machine settings 1 and

2. Also all the lines remain almost parallel to each other for the change of

0.98 to 0.99 infeed tensions, i.e. low to normal infeed tensions.

However, in case of settings 3 and 4, i.e. at higher speed an alteration in

infeed tension from 0.99 to 1.00 bring about a higher than normal change.

This implies that despite of the individual influence of infeed tension and

machine dynamics, also the interaction of both also exerts the significant

influence. Furthermore, higher break drafts and break draft zone settings

also exert their influence that can be revealed by comparing the machine

settings 2 and 5. Almost similar results were exhibited by the other mate-
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rials i.e., cotton carded 1st and 2nd passage and polyester/cotton (50/50)

blend.

Figure 7.4: LAP Curves as Affected by Variable Infeed Tensions for Polyester 2nd Passage

7.1.3 Break Draft

As in case of feeding speed and infeed tension, the LAP exhibits an in-

direct proportionality with break draft. However, the expected trend was

not revealed by the experiments. The results are being presented in the

graphical form hereunder.

Generally speaking, the influence of the break draft on LAP is relatively

weak and also not well-defined. While looking at the figure 7.5 the mini-

mum tendency in the downward direction can be seen which is opposite

in case of cotton 2nd passage. For Polyester the LAP value is longer for

first by increase the break draft while a further increase resulted in short

LAP value. The indefinite trends in LAP value exhibited due to varying

different levels of break draft can be associated with the measurement

accuracy of the RQM.
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Figure 7.5: LAP Curves as Affected by Variable Break Drafts

The results achieved by the efforts to find out the interactions between

the break draft and other machine settings are also vague. This implies

that no clear trend is visible. Nevertheless, break draft is an influencing

variable but its influence is relatively weak in comparison with feeding

speed and infeed tension.

7.1.4 Break Draft Distance

In the next stage, the break draft distance was investigated as another

possible LAP influence parameter. According to the instructional manual

of the machine RSB-D40, it is believed that an increase in the break draft

distance will decrease the LAP. The break draft distance showed a rela-

tively low influence which is less than expected. The results pertaining to

the variable break draft distance for different materials at their respective

optimum settings are presented in figure 7.6. As in case of break draft, the

trend for break draft distance is not truly downward. It varies differently

and no clear statement can be given here.
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Figure 7.6: LAP Curves as Affected by Variable Break Draft Distances

This behaviour of LAP change with respect to variable break draft dis-

tance is not limited to the optimized settings. The experiments conducted

at different settings and various materials also showed the similar results.

However importantly, an increase of 3 mm in break draft distance brings

about a LAP change of at least 3 mm in either upwards or downwards

direction.

7.1.5 Main Draft Distance

The main draft distance is investigated as another possible influence pa-

rameter. According to the instruction manual of the machine RSB-D40,

a wider main draft distance results in a short LAP value. This statement

could not be proved by the experiments. The results regarding the variable

main draft distance have been presented in the graph. There is no signifi-

cant increase or decrease in LAP at various levels of main draft distance.

This small or negligible change can be attributed to the measurement

accuracy of RQM.
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Figure 7.7: LAP Curves as Affected by Variable Main Draft Distances

This phenomenon of LAP having not effected with the change in main

draft distance can also be explained theoretically. The fibers in the main

drafting zone are divided into two groups. The first group of the fibers are

those which are in the grip of the middle rollers or have a frictional contact

with these fibers. The second group are the ’accelerated fibers’ which are

under the influence of the front rollers running at higher speed. These

fibers are either in the grip of the front rollers or have frictional contact

with the fibers griped by them. As mentioned earlier, the leveling action

point is the distance from scanning roller to this point ’E’. The imaginary

point ’E’ lies in the main drafting zone where the first group of fibers

ends or simply speaking it is between the both fiber groups. Therefore,

the experimental results can be justified on the basis of two fiber groups

theory.

7.1.6 Sliver Deflection Bars

It is already described in chapter 3, the sliver deflection bar settings ”Ban-

dumlenkstbe” (BUS) increase or decrease the LAP distance geometrically.
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The machine can be set at three different L2/L3 levels i.e. 1/6, 2/5 and

3/4 as shown in figure 7.8. The frequently used setting is 2/5. Changing

this machine setting brings about a variation in LAP distance which is de-

pendent on the thickness of the fed slivers. The following table 7.2explains

the change in the sliver length from L1 to L4 in dependence with sliver

thickness. The following measurements were made using CAD software.

Geometrically, the 1/6 setting decrease the distance by 12 mm and 3/4

increase LAP by 18 mm for a sliver of 0 mm thickness. For a sliver of 3

mm thickness this increase in length is 21 mm and decrease is 11 mm.

Figure 7.8: Sliver Deflection Bar Settings

The investigations were performed to find out whether this change of

path affects the LAP geometrically or not. The experiments on different

materials were carried out at the optimize settings by changing the three

possible settings of sliver deflection bars. The results are presented in the

following figure 7.9.

The figure 7.9 depicts the LAP change in the correct direction when the

length is increased or decreased. Also in case of Cotton 1st Passage, Cotton

2nd Passage and Polyester the change in LAP is almost equals to the

geometrical change, i.e. a change of -12 mm and +24 mm at 1/6 and

3/4 respectively with respect to the medium distance setting of 2/5. But

a significant difference between the geometric change of LAP and the

measured LAP value was observed in case of Viscose. Here a value of -27

mm and +30 mm was determined.
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L2 L3 Sliver Thick-

ness

[mm]

Sliver Length

[mm]

Maximum Distance 3 4 0 322.6

3 4 1 325.9

3 4 2 329.4

3 4 3 333

Medium Distance 2 5 0 304.2

2 5 1 306.7

2 5 2 309.3

2 5 3 312.1

Minimum Distance 1 6 0 292.9

1 6 1 294.6

1 6 2 296.4

1 6 3 298.3

Table 7.2: Geometrical Change in Length due to Sliver Thickness

Figure 7.9: LAP Curves as Affected by Different Sliver Deflection Bar Settings

The thickness of the slivers plays an important role in the non-uniform

change in the LAP. Moreover another reason is the variations in the fric-

tion. By increasing or decreasing the BUS the angle of contact between
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the slivers passing on the BUS changes, which in turn can change the

friction and results in different LAP. This occurs especially in case viscose

because of the smooth surface of the fibers.

Considering the Coulomb’s friction between the sliver and the circular

deflection bars, the magnitude of the applied force ’F2’ can be described

using the Euler-Eytelwein formula

F2 = F1 · eµ·α (7.3)

Where,

F1 = Reaction force

e = Euler′s Constant

µ = Friction Constant

α = Wrap around angle

7.1.7 Infeed Variations

Variations in the fed slivers are considered to be the important LAP influ-

encing variable. However, it is difficult to measure their influence on LAP

because in practice these variations enter the machine randomly.

In order to investigate this influence, sinusoidal irregularities were artifi-

cially produced in the sliver in the first cotton passage. These irregularities

were induced by running the machine in inching mode and giving the si-

nusoidal signals at the scanning rollers. Two different slivers having wave

length of 0.25m and 0.5m and amplitude 30% were produced as shown in

table 7.3. The figure 7.10 shows the Uster diagram of the produced sliver

having sinusoidal variations.
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Delivery Speed

(Inching mode)

Draft

[-]

Feeding

Speed

[m/min]

Wave

Length

[m]

Amplitude

[%]

Frequency

[Hz]

100 6 17 0.50 ±30% 3.33

100 6 17 0.25 ±30% 6.67

Table 7.3: Manufacturing of Sinusoidal Sliver

Figure 7.10: Uster diagram of sinusoidal sliver

Then these artificially produced defective slivers were then fed to the draw

frame along with normal slivers in the second drawing passage. The six

sliver doublings, i.e. (5 normal + 1 defective) were used. This implies that

the variation of 30% is reduced to 5% due to the averaging out effect of

the doublings. The experimental plan given in Table 7.4 below was used

to perform the LAP searches at different frequencies of infeed variations.

The frequency can be expressed as

f =
ν

λ
(7.4)

Where

f=frequency

ν = speed

λ = wavelength

Experiment 1 and 4 are performed using the normal 6 slivers so that the

other experiments should be compared with reference to them.
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Expt.

No.

Delivery

Speed

[m/min]

Feeding

Speed

[m/min]

Wave

length

[m]

Frequ-

ency

[Hz]

Infeed

Tension

[-]

Break

Draft

[-]

Break Draft

Distance

[mm]

1 500 83 Normal 0 1.01 1.15 43

2 500 83 0.5 2.78 1.01 1.15 43

3 500 83 0.25 5.56 1.01 1.15 43

4 900 150 Normal 0 1.01 1.15 43

5 900 150 0.5 5 1.01 1.15 43

6 900 150 0.25 10 1.01 1.15 43

Table 7.4: Experimental Plan for Investigating the Infeed Variations

According to the theory, the open loop systems are able to correct the

infeed variation up to a certain frequency and wave length depending on

the efficiency of the auto-leveling systems. For instance, a high frequency

of the infeed variation will decrease the reaction time of the servo motor,

which will cause it to perform abnormally. The Uster results after the

drawing passage confirm that the induced faults are corrected by auto-

leveling system.

The results pertaining to LAP reveal that a frequency of 2.78 Hz has no

effect on the LAP. However, for frequency 5.56 and 5 Hz i.e. for the exper-

iment 3 and 5, a change of 6 mm is observed, while this change increases

to 9 mm for 10Hz. Concluding the investigations, it can be deduced that

there is a definite influence of the infeed variations on the LAP, however

this influence is lower than expected. Moreover higher dynamics of the

machine can also increase this influence.

7.2 Comparison Among Materials

The earlier part of this chapter elaborates the role of various influencing

parameters on the leveling action point (LAP). It also explores the dis-
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similar behaviour of various materials under varying processing conditions

and machine settings. Therefore, ’materials’ should also be considered as

an influencing factor along with other machine parameters.

As already mentioned that different materials require their own specific

processing settings, impose constrain on the comparison of materials cor-

responding to LAP using similar machine settings. Especially, the com-

parison of natural and synthetic fibers cannot be made on this basis.

However, there is possibility to compare different synthetic materials hav-

ing same fiber lengths and fiber finenesses. Therefore, the polyester and

viscose fibers having same fiber length were processed using the similar

machine settings and then compared on the basis of LAP results.

7.2.1 Comparison Between Polyester and Viscose

Comparing the polyester with viscose for second drawing passage, it was

observed that LAP value for polyester is longer than viscose. The cause can

be attributed to the less infeed tension (VE) while processing polyester.

Moreover, for all other tension settings i.e., creel tension (VZ), power creel

tension (VZW) and take-off tension (VA), polyester needs a less tension.

Also the standard processing delivery speed for polyester is 600 m/min

whereas that of viscose is 800 m/min.

On the contrary, the LAP searches carried out on polyester 38 mm and

Viscose 38 mm using the same LAP influencing settings for the second

drawing passage show another side of picture. The following figure 7.11

indicates the difference in LAP values at nine settings given in table 7.5.

The difference of one search point i.e. (3 - 6 mm) is obvious for six set-

tings along with same values for two settings. Experiment no. 8 being the

exception where a difference of two search point i.e. 12 mm is evident.
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Expt.

No.

Feeding

Speed

[m/min]

Sliver

Deflection Bars

[-]

Infeed

Tension

[-]

Break

Draft

[-]

Break Draft

Distance

[mm]

1 41.67 2/5 0.98 1.3 47

2 50.00 2/5 1.00 1.5 51

3 83.33 2/5 0.98 1.5 51

4 83.33 2/5 0.99 1.5 50

5 83.33 2/5 1.00 1.3 47

6 116.67 2/5 0.98 1.5 51

7 116.67 2/5 0.99 1.3 47

8 116.67 2/5 1.00 1.7 47

9 133.33 2/5 1.00 1.7 55

Table 7.5: Experimental Plan for Comparing Polyester and Viscose

The mean absolute difference of 4.33 mm and the correlation coefficient

r = 0.94 was calculated between the two materials. It can be deduced that

characteristic nature of material requiring different processing settings at

the draw frame has a major influence on LAP.

Figure 7.11: Comparison of LAP Results for Polyester and Viscose at Same Processing

Settings
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7.2.2 Polyester/Cotton Blends

Because of the diversity of the applications, the fibrous materials are

blended at the draw frame. The most frequently processed blend in the

textile industry is blending of polyester with cotton. However, these blends

are not necessarily 50/50. They can be blended in all possible blend ra-

tios like 80/20, 75/25, 65/35 etc. and their reverse combinations. There-

fore, a LAP comparison of polyester, polyester/cotton blend (50/50),

polyester/cotton blend (67/33) and polyester/cotton blend (33/67) pro-

cessed at similar machine settings is being presented hereunder.

The LAP searches for various polyester/cotton blends (PES/CO 50/50,

PES/CO 67/33 and PES/CO 33/67) were also carried out using same LAP

influencing settings. The following graph compares the polyester with its

cotton blends corresponding to LAP.

Figure 7.12: Comparison of LAP Results for Different Polyester/Cotton Blends at Same

Processing Settings
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Expt.

No.

Feeding

Speed

[m/min]

Sliver

Deflection Bars

[-]

Infeed

Tension

[-]

Break

Draft

[-]

Break Draft

Distance

[mm]

1 50.00 2/5 0.98 1.3 47

2 50.00 2/5 1.00 1.7 55

3 83.33 2/5 1.00 1.4 50

4 116.67 2/5 0.99 1.4 51

5 116.67 2/5 1.00 1.4 51

6 150.00 2/5 0.99 1.4 51

7 150.00 2/5 1.01 1.7 55

Table 7.6: Experimental Plan for Comparing Different Polyester/Cotton Blend Ratios

The experimental investigations performed for leveling action points on

different polyester/cotton blend ratios compared at same settings showed

almost same LAP results. The maximum variations observed during these

experiments between the said materials are 12 mm that occurs twice. The

lower LAP values for polyester as compared to polyester/cotton blends

are also obvious from the graph. The last two experiments (Experiment

no. 6 and 7) were performed at a delivery speed of 900 m/min; therefore

experiments for pure polyester were not conducted.

7.3 Multiple Linear Regression Analysis

The regression analysis also provides the opportunity to compare the dif-

ferent materials. As previously concluded, the effects of the major LAP

influencing factors like feeding speed and infeed tension, are quasi linear

so it seems worthwhile to carry out a linear multiple regression analysis.

Four factors namely, feeding speed (FS), infeed tension (VE), break draft

(VV) and break draft distance (VVD) are considered for a multiple lin-

ear regression analysis. The following equations for leveling action point

(LAP) corresponding to different materials are resulted from the analysis.
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Cotton Carded 1st Passage

LAP = 2154−{(0.2968×FS)−(1142×V E)−(26.28×V V )−(0.122×V V D)}
(7.5)

Cotton Carded 2nd Passage

LAP = 1700−{(0.369×FS)−(670×V E)−(23.6×V V )−(0.533×V V D)}
(7.6)

Polyester 2nd Passage

LAP = 1837−{(0.2523×FS)−(875×V E)−(22.8×V V )+(0.449×V V D)}
(7.7)

Polyester Cotton (50:50) 2nd Passage

LAP = 1758.4−{(0.2771×FS)−(755×V E)−(27.4×V V )−(0.072×V V D)}
(7.8)

VISCOSE 2nd Passage

LAP = 1342−{(0.322×FS)−(432×V E)−(14.9×V V )+(1.49×V V D)}
(7.9)

The other advantage of the multiple linear regression analysis is that the

materials can be compared at same settings. For instance, the following

graphs constructed on the basis of the above mentioned equations reveal

some important information.

The both graphs show that using same machine settings viscose and

polyester exhibit shorter LAP values, in comparison with cotton/polyester

blend and pure cotton. This can be attributed to the surface smoothness

of the both fibers. Also lines from polyester and viscose lie side by side

confirm the previously explained comparative work on the basis of experi-

ments at same settings. The slope of the line of each material corresponds

to the change in LAP value with respect to the one level change in in-

fluencing parameter. Using the MLR analysis equations this change was

calculated and is presented in following Table 7.7.
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Figure 7.13: Multiple Linear Regression Analysis for Feeding Speed and Infeed Tension

Variable Change Cotton

1st Pass

Cotton

2nd Pass

Polyester

2nd Pass

CO:PES

2nd Pass

Viscose

2nd Pass

Feeding

Speed

17

[m/min]

5.0 6.3 4.3 4.7 5.5

Infeed

Tension

0.01 11.4 6.7 8.8 7.6 4.3

Break

Draft

0.1 2.6 2.4 2.3 2.7 1.5

Table 7.7: Multiple Linear Regression Analysis

It is clear from the Table 7.7 that an increase of 17 m/min will result in

approximately 5-6 mm decrease in Leveling action point. Here 17 m/min

change in feeding speed is selected because it corresponds to the 100

m/min change in delivery speed, provided the weight of fed slivers and de-

livered sliver remain constant (this implies that in case of 6 times doublings

the draft should be 6 times). The significance of this result corresponds

to the frequently occurring situation in the spinning industry where the

speed of finisher draw frame is changed (usually 100 m/min) depending

on the requirements of ring spinning machines. Similarly an increasing

the infeed tension to one level (0.01), for instance from 1.00 to 1.01 will

also cause LAP to decrease to approximately 6 mm. However cotton 1st
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passage being the exception where this change is about 12 mm. Similarly,

changing break draft value to 0.1 results in a 3 mm shorter LAP value.

This also confirms the previously mentioned experimental analysis.

7.4 Training and Test Performance of Neural

Networks

7.4.1 Selection of Relevant Input Parameters

In artificial neural network modeling, the importance of selecting input

relevant parameters cannot be ignored. In viewpoint of artificial neural

network training, it is recommended to decrease the number of input pa-

rameters, if possible. As more input neurons make the ANN structure

more complex i.e. increasing the number of network weights. Hence, data

requirement for a better generalized network will increase. On the other

hand, simple network structure can generalize better and are able to per-

form better on the unseen data. A decrease in input spaces helps to avoid

the curse of dimensionality, which in turn assists to improve the gener-

alization capability of the networks. This objective of reducing the input

parameters can be achieved by following two techniques.

� On the basis of the experimental results, ignoring the input parame-

ters having negligible or no influence on the output.

� Using the combined parameters, i.e. representing the combined effect

of individual variables, instead of using the individual parameters.

Therefore, on the basis of results and analysis described in previous sec-

tions of this chapter, following inferences are deduced to select the relevant

parameters for neural networks training.
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� Selecting the feeding speed as collective parameters instead of con-

sidering delivery speed, doublings and draft as individual input pa-

rameters.

� Removing the main draft distance as an input parameter

� Eliminating infeed variations as an input parameter

� Considering sliver deflection bars settings as geometrical change in

LAP distance. This implies that instead of using this setting as an

input parameter for neural networks, the networks will be trained

using the experiments conducted on most frequently used setting, i.e.,

2/5. In case of other two settings, i.e. 1/6 and 3/4, the subtraction of

12 mm (1/6) or addition of 18 mm (3/4) can be made respectively.

The following figure 7.14 shows the schematic view of the neural network

structure for the prediction of leveling action point.

Figure 7.14: Schematic diagram of ANN Structure for LAP
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7.4.2 Analysis Using Artificial Neural Networks

The artificial neural network analysis is conducted on the basis of ma-

terials namely, Cotton 1st passage, Cotton 2nd passage, Polyester 2nd

passage, Polyester/Cotton blend 50/50 2nd passage. Here, Cotton 1st and

2nd passage are considered individually due to their different performance

in the experimental analysis which is mainly attributed to the degree of

fiber parallelization.

Approximately 500 experiments were conducted and used for training the

networks. The training was carried out using the different normalization

techniques, like normalization between -1 and +1, between mean value

and standard deviation, however the normalization between 0 and 1 was

proved to generate better results. Therefore, the experimental data is pre-

processed between 0 and 1. The training matrix for the prediction of lev-

eling action point is shown in Figure 7.15. The neural networks NN CO1,

NN CO2, NN PES2 and NN PC2 corresponds to Cotton 1st passage, Cot-

ton 2nd passage, Polyester 2nd passage, Polyester/Cotton blend 50/50 2nd

passage, respectively.

Figure 7.15: Training Matrix for Leveling Action Point
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7.4.2.1 Cotton 1st Passage

The data pertaining to cotton 1st passage is subjected to the neural net-

work training using the training parameters shown in Table 7.8. As previ-

ously explained, the Matlab training algorithm ”trainbr” is employed for

training. According to the traditional training and testing method (hold-

out method), the data was divided into two data sets, i.e. training and test

set, which are selected randomly. After training the data is post-processed

to get the original values from the normalized data. The prediction ac-

curacy of the trained network is depicted in the following graph. Mean

absolute error on the test set is 5.95 mm, which corresponds to the 4.94%

regarding the 120 mm range of LAP. However, in this part of the analysis

it is planned to use the mean absolute error instead of mean absolute er-

ror percentage because the former clearly shows the error as the difference

between the experimental and predicted LAP values in mm.

Network Parameters Network Parameters

Number of Neurons in Input Layer 4

Number of Neurons in First Hidden Layer 6

Number of Neurons in Second Hidden Layer 7

Number of Neurons in Output Layer 1

Learning Rate 0.07

Momentum 0.7

Number of Epochs 5000

Stopping Error 0.002

Table 7.8: Network Parameters for NN CO1

Presently cross-validation is the technique being used instead of hold-out

method. As mentioned in Chapter 6, this technique offers a possibility

to test the trained network using all the data step by step. The Cross

validation analysis, i.e. 20%, 10% and Leave-one-out cross validations, is

conducted on the data and the mean absolute error, 5.37 mm, 5.50 mm
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and 5.35 mm is reported respectively. The following diagram elaborates

the results of Leave-one-out cross validation (LOOCV). The histogram

shows the difference between the experimental and predicted values. The

difference remains within 12 mm. However, one value can be seen at -17

mm. This experiment was conducted at highest possible settings for cotton

1st passage, i.e. delivery speed = 1100 m/min, infeed tension = 1.02, Break

draft 1.5 and Break draft distance 43 mm. So the major difference between

the experimental and predicted value is due to the extrapolation, and the

neural networks have showed their shortcoming here. Nevertheless, the

LOOCV results have revealed that the LAP within a range of 12 mm can

be predicted using the artificial neural networks.

Figure 7.16: Test Set Performance of NN CO1

7.4.2.2 Cotton 2nd Passage

The data regarding the cotton 2nd passage is subjected to neural network

training firstly using the training and test sets as described above. The

number of hidden layers and the number of nodes per hidden layer in the

neural network architecture are determined using different combinations

of network parameters. These parameters are given in following table 7.9.
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Figure 7.17: Histogram of Leave-one-out Cross validation for Cotton 1st Passage

Network Parameters Network Parameters

Number of Neurons in Input Layer 4

Number of Neurons in First Hidden Layer 5

Number of Neurons in Second Hidden Layer 6

Number of Neurons in Output Layer 1

Learning Rate 0.1

Momentum 0.7

Number of Epochs 5000

Stopping Error 0.01

Table 7.9: Network Parameters for NN CO2

The following graph depicts the test set performance of the NN CO2 on

ten randomly selected data sets. The reported mean absolute error is 3.21

mm, which is considerably better than that of NN CO1. .

The values of mean absolute error as the results of 20% cross validation,

10% cross validation and Leave-one-out cross validation are determined

as 4.94 mm, 5.07 mm and 4.27 mm respectively. The mean absolute error

values calculated from the cross validation is comparatively higher than

that of the test data set. This leads to the conclusion that cross valida-

tion results are more valid, instead of using randomly selected test data

set, where the neural network performance can be accidentally better or
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Figure 7.18: Test Set Performance of NN CO2

worse. It is also clear for the following histogram presenting the results of

NN CO2, that all the error values remain with in the range of 12 mm.

Figure 7.19: Histogram of Leave-one-out Cross validation for Cotton 2nd Passage

7.4.2.3 Polyester 2nd Passage

NN PES2 was training using data obtained from the experiments con-

ducted on the polyester for the second passage. The four inputs neurons,

namely feeding speed, infeed tension, break draft and break draft distance

and one output neuron for leveling action point are selected. The numbers
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Network Parameters Network Parameters

Number of Neurons in Input Layer 4

Number of Neurons in First Hidden Layer 5

Number of Neurons in Second Hidden Layer 5

Number of Neurons in Output Layer 1

Learning Rate 0.01

Momentum 0.6

Number of Epochs 5000

Stopping Error 0.01

Table 7.10: Network Parameters for NN PES2

of neurons in 1st and 2nd hidden layers are determined using trial and

error. Five hidden neurons in both layers showed better performance. The

other network parameters are given in the following table 7.10.

Figure 7.20: Test Set Performance of NN PES2

The performance of the NN PES2 on the test data, i.e. unseen data is

shown in figure 7.20 . The mean absolute error calculated is 3.64 mm,

which shows a highly significant resemblance between the experimental

and predicted values. The mean absolute error as the results of 20% cross

validation is calculated as 3.71 mm whereas that of 10% cross validation

is 3.70 mm. The histogram describing the results of Leave-one-out cross
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validation is shown below. The mean absolute error of 3.55 mm is reported

for LOOCV. The same trend of having the difference between the exper-

imental and predicted values with in 12 mm is also visible here. Also,

approximately 82% of the values are limited to 6 mm area.

Figure 7.21: Histogram of Leave-one-out Cross validation for Polyester 2nd Passage

7.4.2.4 Polyester/Cotton 50/50 2nd Passage

Lastly, the data pertaining to polyester/cotton blend 50/50 for 2nd pas-

sage is sub-jected to the neural network software to training the network

NN PC2. The net-work architecture and training variables concerning to

NN PC2 are presented in the following Table 7.11.

After training, the network was tested on the unseen data, i.e. test set.

The following graph represents the results between the experimental and

predicted data. The mean absolute error for NN PC2 is determined as 2.87

mm. It is also visible for the graph which shows a very good overlapping

of both curves. The mean absolute errors for cross validation analysis

regarding NN PC2 are mentioned as, 3.17 mm for 20% cross validation,

3.19 mm for 10% cross validation and 3.25 mm for leave-one-out cross

validation. Here the range within which the error values lie is 11 mm.
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Network Parameters Network Parameters

Number of Neurons in Input Layer 4

Number of Neurons in First Hidden Layer 5

Number of Neurons in Second Hidden Layer 5

Number of Neurons in Output Layer 1

Learning Rate 0.07

Momentum 0.6

Number of Epochs 5000

Stopping Error 0.01

Table 7.11: Network Parameters for NN PC2

Figure 7.22: Test Set Performance of NN PC2

Figure 7.23: Histogram of Leave-one-out Cross validation for PES/CO 2nd Passage
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7.4.3 Performance of the Trained Networks Using Industrial

Data

The cross validation performance of the trained networks speaks out for

the validity of the neural network prediction. The mean absolute error

remains less than 6 mm for all four materials and individual error for all

the experiments is within the range of 12 mm.

However, the possibility that various kinds of cotton grown in different

parts of the world might have significant influence on the LAP was also

kept in view and investigated. Rieter Ingolstadt, after the installation of

its machine RSB-D40 gathers the machine performance data from all over

the world. This data was used as a test data to measure the performance

of the trained networks.

7.4.3.1 Cotton Carded

The first instance is for the cotton 1st and 2nd passage. The data were

tested using the corresponding neural networks NN CO1 and NN CO2.

The results are presented in the following graph. The mean absolute error

calculated is 5.84 mm, which implies that trained networks also hold good

for industrial data.

7.4.3.2 Cotton Combed

The second part of the data acquired from the industry was regarding the

combed cotton. The data pertaining to combed cotton was tested using

NN CO2. The graph presenting the prediction results is shown below. A

mean absolute error of 5.93 mm was calculated in this case. However,

there are 2 cases where the individual prediction is more than 12 mm.
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Figure 7.24: Test Set Performance of NN CO1 NN CO2 on Industrial Data

Figure 7.25: Test Set Performance of NN CO2 on Industrial Data for Combed Cotton

7.5 Conclusion, Practical Applications and Future

Pathways

The analysis of results given in this chapter has revealed many interesting

facts about the Leveling Action Point. In the light of the experimental

results, multiple linear regression analysis, neural networks training and

their testing with cross validation and on industrial data, following key

inference are deduced.
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� The significant LAP influencing parameters are (1) Materials (2)

Feeding Speed (3) Infeed Tension (4) Break Draft (5) Break Draft

Distance

� Sliver Deflection Bar setting also changes the LAP, but geometri-

cally. Therefore, it is possible to add or subtract the change from the

prediction due to sliver deflection bars

� Polyester and Viscose tends to have similar LAP values at same ma-

chine settings

� Similarly, the different blend ratios of polyester/cotton have LAP

values comparable with that of polyester/cotton blend 50/50

� A 100m/min increase in delivery speed will result in 6mm shorter

LAP value, i.e. one point of auto search function. Whereas one level

increase in infeed tension will at least decrease LAP up to 6mm

� The neural networks are fully capable for accurate prediction of the

LAP for various frequently used industrial materials using the differ-

ent machine set-tings as input parameters

� The mean absolute error remains within 5% for all the materials.

Moreover, the individual predictions are with in 12mm limits, which

refer to 2 points each in both plus and minus directions

On the basis of achieved results following practical applications are being

proposed.
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7.5.1 Leveling Action Point Prediction Function ”NEUROset”

The procedure of Automatic Search Function ”AUTOset” has been ex-

plained in chapter 3. For automatic searching of leveling action point the

”AUTOset” function has to determine the CV% of 21 points, i.e. from

870 mm to 990 mm range, with 6 mm distance between the two points.

Approximately, 100m sliver is required to measure the CV% for one point.

This implies that a complete search requires about 2100m sliver.

In the framework of the present research work a search function ”NEU-

ROset” is being proposed. ”NEUROset” based on the trained neural net-

works (NN CO1, NN CO2, NN PES2 NN PC2) will be able to limit the

search to 5 points. The function ”NEUROset” can work in combination

with ”AUTOset” for the recommendations of the search starting point.

For instance, if the predicted LAP value from ”NEUROset” is 942 mm,

then 930 mm will be the starting point for ”AUTOset” as described in the

following Figure 7.26. This search will be limited to 5 points. Moreover,

in case the starting or the ending search point (e.g. 930 mm starting and

954 ending in figure) has lowest CV% value, then it is reco mmended to

perform two more points should be scanned in the direction of said point.

This will add to the surety of the search.

The Graphic User Interface (GUI), offering the possibility to calculate

the leveling action point is shown in Figure 7.27. This LAP prediction

program is also written in C Language.

The second significant and potential application of the LAP prediction

using ANN is associated with the manual LAP search (Figure 3.6). The

manual search begins with a recommended start value and the success of

the manual search is entirely dependent on this start value. The selection

of this value is associated with the technical know how of the personals
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Figure 7.26: Proposed Search Range using NEUROset

working in the spinning mill. Therefore, the human error or the errors due

to untrained or less experienced staff can occur. According to the theory

of neural networks, they are trained on the basis of experiences or prac-

tical problem and have the capability to substitute the lack of experience

possessed by the textile workers. Similarly, in the present case, the use

of neural networks is anticipated for the recommendation of the starting

value. Thus, avoiding the undesirable errors due to less experienced work-

ing personals. The following Figure 7.27 shows the GUI, for predicting the

LAP value.

The intelligently predicted setting will shorten the search range, which will

cause waste reduction of the spinning mill. Furthermore, time required to

set the LAP will be reduced helping the increased productivity. This will

also offer a major benefit to the spinning mills where speed and material

changes are very frequent and a large variety of yarns are manufactured.

In addition, the precise predictions can also improve the quality of sliver

and ultimate yarn.
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Figure 7.27: Graphic User Interface for LAP Start Value for Manual Search

Consequently, for the future prospective of machine development, this can

be a big step forward towards the development of an intelligent machine,

which will be able to adopt its settings due to change in machine dynamics,

mechanical settings and even in case of material change at the machine.

Most importantly it requires less material to perform these functions.



Chapter 8

Analysis of Sliver Characteristics

The draw frame settings cause the vital sliver and yarn characteristics to

change both positively and negatively. The present chapter explores the

possibility of connecting the draw frame settings and sliver quality pa-

rameters through the use of artificial neural networks. In first section, the

results of physical testing pertaining to the sliver quality characteristics as

affected by various materials and drawing frame variables are presented.

The second section includes the artificial neural networks based analy-

sis. It is observed that trained neural networks are able to recognize the

complex interactions between the said variables and prediction system

involving these variable can be constructed.

In order to carry out the experimental phase, the machine was optimized

for each material separately and effects of different influencing parameters

were determined by varying various levels of settings. It is also important

to consider that all of the experiments are meant for ring spinning, there-

fore the results presented below pertain to the second drawing passage

with auto-leveling. For conducting the experiments with auto-leveling,

the three settings namely, leveling intensity, adaptation to slow speed and

leveling action point (LAP) are of high significance. The machine was op-



134 8. Analysis of Sliver Characteristics

timized for leveling intensity and for slow speed only in case of change of

material. However, Leveling action point was optimized before conducting

the experiments that involve the LAP influencing parameters according

to the results presented in chapter 7. In order to use the material econom-

ically, the manual searches were conducted for adjusting the LAP. The

trained artificial neural networks, as explained in last chapter, were used

to recommend the start value for the manual search for more than 150

experiments. Then the standard procedure was adopted for the manual

LAP search. Based upon the CV% results and spectrograms generated

by Uster evenness tester, the results of chapter 7 were reinforced that the

LAP value lies within 12 mm range of the value recommended by artificial

neural networks.

The following important draw frame variables were selected to find out

their influence on the sliver quality.

8.1 Sliver Quality Influencing Parameters

It is also important to mention here that a large amount of experiment

were carried out in order to observe the influence of draw frame parameters

on the sliver quality. For each experiment, Uster evenness testing and

sliver cohesion force testing were performed. Due to the large amount

of experimental data, it is not sensible to include all the results in this

dissertation. Therefore the complete results are not presented here. For

instance, mostly the different CV% values (CVm%, CV(1m)%, CV(3m)%)

have shown similar trend, so only one of them is discussed instead of all

three.
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8.1.1 Effect of Delivery Speed

The effect of delivery speed on the sliver unevenness corresponding to cot-

ton, polyester and cotton/polyester (50/50) blend is presented in the fol-

lowing Figure 8.1. The experiments were performed for the second drawing

passage with the auto-leveling turned-on. This implies that infeed materi-

als have relatively good fiber parallelization, while the short and medium

term variations are compensated by the auto-leveling during the second

passage.

Figure 8.1: Sliver CVm [%] as Influenced by Delivery Speed

The polyester sliver has the better evenness in comparison with cotton

and polyester/cotton blend which can be attributed to the longer fiber

length and better fiber length distributions for polyester. Also, only in

case of polyester/cotton blend there is remarkable deterioration of sliver

evenness at 700 m/min, otherwise the variation in delivery speed at lower

levels, up to 700 m/min, does not influence the sliver evenness seriously.

However, for cotton at 900 m/min and 1100 m/min a change in delivery

speed caused the CVm% value to increase steeply, which can be due to the

uncontrolled movements of the accelerated fibers (the second fiber group
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according to two fiber groups theory) at high speeds. Furthermore, a high

percentage of short fibers in cotton adversely affects the sliver evenness.

The following Figure 8.2 regarding the middle term variations in the sliver

evenness, i.e., CV(1m)% and CV(3m)%, indicates almost the same trends

as in case of CVm%. However, the unevenness of polyester sliver shows a

regular upwards trend with the increase in delivery speed.

Figure 8.2: Sliver CV(1m)[%] CV(3m)[%] as Influenced by Delivery Speed

The laboratory results corresponding to the sliver cohesion as affected by

the variations in the delivery speeds is given below in Figure 8.3. For all

three materials the delivery speed of the sliver is directly proportional to

the sliver cohesion. This implies that an increase in delivery speed tends to

increase the sliver cohesion. All three materials have their different levels of

fiber cohesion, cotton sliver having the lowest followed by polyester/cotton

blend and then polyester. The lower sliver cohesion values of cotton slivers

are attributed to the shorter fiber lengths and high short fiber contents.
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Figure 8.3: Sliver Cohesion [N] as Influenced by Delivery Speed

8.1.2 Effect of Break Draft

The influence of the break draft change on the sliver evenness shows a

strong material dependence, i.e., mean fiber length and the fiber length

distributions. The Figure 8.4 depicts that in case of polyester the CVm%

decreases by increasing the break draft up to 1.3 and then further in-

crease in break draft causes the CVm% to increase. This implies that a

normal optimal trend is shown by polyester. However, in case of cotton

and polyester/cotton blend the maximum evenness is achieved at the min-

imum break draft level. Also, it is also important to consider here that

experiments were performed at standard settings for each material. There-

fore, the results pertaining polyester and polyester/cotton blend (50/50)

were performed at delivery speed of 500 m/min whereas that of cotton is

700 m/min.

The whole phenomenon is associated with the static fiber to fiber fric-

tion. An increase in the break draft allows the fibers to slide over each

other, thus reducing the static friction between the fibers. As a result, the

fibers especially the floating fibers tend to show uncontrolled movements
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in the main drafting zone, which are in turn associated with the draft

disturbances and unevenness of the delivered sliver.

Figure 8.4: Sliver CVm [%] as Influenced by Break Draft

8.1.3 Effect of Break Draft Distance

The experiments concerning to the variations in break draft distance have

revealed an overall modest effect on the sliver evenness. Polyester/cotton

blend has shown a more influence of break draft distance in comparison

with polyester and cotton slivers, where the increase in clamping point

distance in the break draft zone increases the CVm% slightly, as shown

in Figure 8.5. This small effect of the break draft distance may be due to

the controlled motion of the fibers in the break draft zone is because of

less difference between the speeds of the back and middle roller, i.e., low

break draft. Therefore, there is no possibility of having an early acceler-

ation of fibers. Also fiber-to-fiber friction is higher in break draft zone in

comparison with the main draft zone. Similarly here, the delivery speed

for cotton experiments was set to 700 m/min whereas that of polyester

and polyester/cotton blend (50/50) are 500 m/min.
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Figure 8.5: Sliver CVm [%] as Influenced by Break Draft Distance

8.1.4 Effect of Main Draft Distance

The laboratory testing results pertaining to the experimental variations

in the main draft distance are presented in the following Figure 8.6. The

Figure depicts that the change in main draft distance has affected the

CVm% of the sliver, however, this influence is material dependent. In

case of polyester sliver the minimum CVm% is achieved at middle set-

ting, whereas for other two materials, i.e., for cotton and polyester/cotton

blend, the minimum value is realized at the minimum distance between

the middle and front roller. This affect can be justified by the presence of

the larger amount of short fibers in the infeed slivers, in case of cotton and

polyester/cotton blend. These short fibers will act as the floating fibers in

the main drafting zone especially in case of wider main draft zone settings.

Therefore, the wider settings increase the amount of floating fibers which

in turn cause draft disturbance resulting in a higher CVm% value. Similar

trends have been exhibited for medium term variations, i.e., CV(1m)% and

CV(3m)%. Furthermore, for determining the effect of main draft distance

on sliver cohesion, no clear trend is visible.
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Figure 8.6: Sliver CVm [%] as Influenced by Main Draft Distance

8.1.5 Effect of Doublings

Before discussing the results about the effect of doublings on the sliver

characteristics, it is important to mention that these experiments were

conducted for 6 and 8 doublings. As delivered sliver weight was kept con-

stant, i.e., 5 ktex, hence the draft was increased along with doublings.

This implies that 6 times draft was used for the 6 sliver doublings and 8

time draft for 8 sliver doublings. The Figure 8.7 represents the influence

of doublings on the sliver evenness. It is clear that for all three materials,

8 doublings with 8 times draft have high CVm%.

In roller drafting, it is well known fact that irregularities increase with

drafting and decrease with doubling. However, the worsening effects of

drafting can be more than the average out effect of doubling and a higher

CV% is achieved.
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Figure 8.7: Sliver CVm [%] as Influenced by Sliver Doublings

8.1.6 Interaction effects among influencing variables

In the previous section the individual influences of the machine param-

eters on the quality of the sliver were revealed. It is clear that various

machine parameters exert different influences with respect to materials

being processed. Nevertheless, it is not easy to understand all the complex

individual influences between the machine parameters and the materials.

In addition, not only the individual influences but also the interactions

between of various influencing parameters exert significant effects on the

sliver quality. The numerous interactions between the influencing parame-

ters along with their individual influences tend to exert a combined effect

on the quality of the manufactured product. In order to explain the in-

teractions between the influencing variables, consider the following Figure

8.8, which indicates the effect of break draft on the sliver quality at dif-

ferent delivery speeds for polyester/cotton blend.
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Figure 8.8: Sliver CVm [%] as Influenced by Break Draft and Delivery Speeds

The Figure 8.8, depicts the results of sliver CVm% for polyester/cotton

blend as affected by the different break draft at three delivery speeds. It

can be seen that all three lines are different to each other, which indicates

the dissimilar behaviour of the drafted fibers at various levels of machine

dynamics.

As mentioned earlier in chapter 3, the drafting process cannot be per-

formed ideally. Also the draft disturbances tend to increase at high speeds

and in the presence of more short fibers, which explains the different trend

showed by polyester/cotton blend at 700 m/min delivery speed. Also, the

individual effect of delivery speed is clear, which implies that delivery

speed of 300 m/min has shown better CVm% followed by 500 m/min and

then 700 m/min.

There are numerous interactions present between draw frame parameters

and sliver quality and hundreds of experiments are needed to cover all

of them. In addition to this, the non-ideal behaviour of the fibers inside

the drafting zones has made the mathematical and statistical modeling of

drafting process very complex.
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Therefore, the situation demands for the use of artificial neural networks,

in order to describe all the individual and interaction effects from the

information present in the data. The trained neural networks are antici-

pated to intelligently predict the quality of the sliver on the basis of which

the draw frame can be set “intelligently”. The analysis conducted on the

basis of artificial neural networks in being presented in the next section.

8.2 Training and Test Performances of Neural

Networks

8.2.1 Selection of Relevant Input Parameters

As already explained in chapter 7, the selection of input parameters plays

a vital role for successful training and better testing performance of the

neural networks. However, at the draw frame a large number of quality

influencing parameters are involved. As previously described, they exert

their individual influences as well as the combined influences involving the

two or more of them together. Hence, it is not possible to eliminate any of

them for reducing the number of inputs for neural networks. Therefore, all

the possible quality influencing parameters were taken into consideration.

This implies, the influencing parameters discussed earlier in this chapter,

i.e. materials, delivery speed, break draft, main draft, break draft distance,

main draft distance, doublings as well as two additional parameters, i.e.

infeed sliver weight and delivered sliver weight. Here, it is important to

consider the delivered sliver weight as an input parameter, because even-

ness values of sliver is strongly dependent on the number of fibers present

in the cross-section of the sliver. A thick sliver should have a better even-

ness value and vice versa. The experiments were carried out to cover the

most frequently industrially used range of delivered sliver weight from
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4 ktex to 5.5 ktex. The following Figure 8.9 shows the schematic view of

the neural network structure for the prediction of sliver CVm%.

Figure 8.9: Schematic diagram of ANN Structure for Sliver CVm [%]

8.2.2 Analysis Using Artificial Neural Networks

In order to analyse the sliver quality characteristics using the artificial

neural networks the analysis was conducted on the basis of sliver qual-

ity parameters. The large number of input parameters for sliver quality

prediction tends to increase the networks weights and hence more experi-

ments are needed to train a good generalized network. Therefore, it is not

ideal to train different networks for every material.

Before starting the training the data was normalized between 0 and 1. For

sliver quality prediction four neural networks, i.e. for sliver CVm%, sliver

CV(1m)%, sliver CV(3m)% and sliver cohesion, were trained. The training

matrix for the prediction of sliver quality is shown in Figure 8.10. The

neural networks NN S CVm, NN S CV1m, NN S CV3m NN S Cohesion

corresponds to sliver CVm%, sliver CV(1m)%, sliver CV(3m)% and sliver

cohesion, respectively.
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Figure 8.10: Training Matrix for Sliver Quality Prediction

8.2.2.1 Sliver CVm%

The experimental data concerning to the CVm% was subjected to the

neural network training and the network ”NN S CVm” was trained. The

nine input neurons as mentioned in Figure 8.9 were selected. The numbers

of neurons in 1st and 2nd hidden layers are determined using trial and

error. A network having 15 hidden neurons, i.e. eight hidden neurons in

first layer and seven in second hidden layer showed better performance.

The other network parameters are given in the following Table 8.1.

Network Parameters Values

Number of Neurons in Input Layer 9

Number of Neurons in First Hidden Layer 8

Number of Neurons in Second Hidden Layer 7

Number of Neurons in Output Layer 1

Learning Rate 0.02

Momentum 0.5

Number of Epochs 2000

Stopping Error 0.001

Table 8.1: Network Parameters for NN S CVm

The test performance (hold out method) of the NN S CVm on the test

data, i.e. unseen data is shown in Figure 8.11.
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Figure 8.11: Test Set Performance of NN S CVm

The mean absolute error calculated is 0.165 in terms of CVm% value,

which corresponds to a mean absolute error of 6.68%, as the CVm% val-

ues are normalized between 1.5 and 4. The results clearly show a highly

significant resemblance between the experimental and predicted values.

The mean absolute error in terms of CVm% values as resulted from 10%

cross validation is calculated as 0.175% whereas that of 20% cross valida-

tion is 0.182.

8.2.2.2 CV(1m)%

The data pertaining to CV(1m)% is fed to the neural network software for

training the network NN S CV1m. The best structure of neural network

and training parameters concerning to NN S CV1m achieved after several

attempts of training and testing are given in the Table 8.2.

After training, the network was tested using the hold-out method to check

the generalization capability of the trained network. It is revealed that a

mean absolute error in term of CV(1m)% value is 0.090, which indicates

that there exists a strong correlation between the experimental and pre-
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Network Parameters Values

Number of Neurons in Input Layer 9

Number of Neurons in First Hidden Layer 7

Number of Neurons in Second Hidden Layer 7

Number of Neurons in Output Layer 1

Learning Rate 0.05

Momentum 0.6

Number of Epochs 2000

Stopping Error 0.001

Table 8.2: Network Parameters for NN S CV1m

dicted values. The following Figure 8.12 represents a very good overlap-

ping of both curves.

Figure 8.12: Test Set Performance of NN S CV1m

The mean absolute errors for cross validation analysis in terms of

CV(1m)% values regarding NN S CV1m are mentioned as, 0.094% for

10% cross validation and 0.102% for 20% cross validation.

8.2.2.3 Sliver CV(3m)%

The data pertaining to CV(3m)% is subjected to the neural network

training using the training parameters written in Table 8.3. As already
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described, the Matlab training algorithm ”trainbr” is used for training.

The prediction accuracy of the trained network is depicted in the follow-

ing Figure 8.13. Mean absolute error on the test set as given in term of

CV(3m)% values is 0.0894%. The Cross validation analysis, i.e. 10%, 20%

cross validations, is conducted on the data and the mean absolute error

in terms of CV (3m)% values is 0.296% and 0.099% is reported respec-

tively. The little difference between the experimental and predicted values

indicates the goodness of fit for the neural networks.

Network Parameters Values

Number of Neurons in Input Layer 9

Number of Neurons in First Hidden Layer 6

Number of Neurons in Second Hidden Layer 7

Number of Neurons in Output Layer 1

Learning Rate 0.07

Momentum 0.7

Number of Epochs 2000

Stopping Error 0.001

Table 8.3: Network Parameters for NN S CV3m

Figure 8.13: Test Set Performance of NN S CV3m
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8.2.2.4 Sliver Cohesion

The data regarding the sliver cohesion is subjected to neural network

training using the randomly selected training and test sets. The number

of hidden layers and the number of nodes per hidden layer in the neural

network architecture are determined using trial and error. These param-

eters as described in following Table 8.4 were selected.

Network Parameters Values

Number of Neurons in Input Layer 9

Number of Neurons in First Hidden Layer 5

Number of Neurons in Second Hidden Layer 6

Number of Neurons in Output Layer 1

Learning Rate 0.09

Momentum 0.7

Number of Epochs 2000

Stopping Error 0.001

Table 8.4: Network Parameters for NN S Cohesion

The following Figure 8.14, depicts the test set performance of the

NN S Cohesion on randomly selected data sets. The reported mean abso-

lute error is 0.251 [N].

Figure 8.14: Test Set Performance of NN S Cohesion
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The values of mean absolute error as the results of 10% cross validation

and 20% cross validation are determined as 0.5623 [N] and 0.296 [N] re-

spectively.

8.3 Conclusion

As revealed from the above mentioned analysis, the neural networks are

fully capable of predicting the quality of the sliver on the basis of the

various machine parameters for different materials. The low mean absolute

error values for test sets and also for cross-validation point to the excellent

quality of the prediction. It can also be deduced that not only it is possible

to predict the quality of the sliver, but also the draw frame parameters,

especially the draft zones settings can be adjusted on the basis of the

predicted sliver quality. These results presented here along with the results

of previous chapter, i.e., about leveling action point, corresponds to the

achievement of goal of the present research.

Concluding, it can be stated that use of artificial neural networks on the

draw frame was successful. The neural networks are able to understand

the underlying relationships between the draw frame parameters and sliver

quality characteristics. The draw frame parameters, especially the draft

zones settings as well as the auto-leveling setting, i.e., leveling action point

can be predicted and the trained networks are capable of producing a

quality output for the unseen data given to them.



Chapter 9

Analysis of Yarn Quality

The last part of present research corresponds to the yarn manufactur-

ing using the slivers produced at various settings of quality influencing

draw frame parameters. As previously mentioned the roving frame F-15

and compact ring spinning machine K-44 were optimized separately for

each material. The efforts were also made to use the optimized settings

that should remain constant for all experiments belonging to each mate-

rial. The objective of this practice was to minimize any influence exerted

by the simplex and ring machines. So the experimental change done at

draw frame should be transmitted to the yarn without any disturbances

or additional irregularities due to simplex and ring spinning machines.

In order to achieve this objective the Uster spectrograms of the slivers,

rovings and yarns were continuously monitored. The Figure 9.1 indicates

the spectrogram of roving produced using the sliver having variations due

to abnormal main draft distance. The variations from 70 cm to 1 m cor-

respond to the sliver 9-12 cm variations in sliver which are multiplied by

8.1 times draft at roving frame.
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Figure 9.1: Spectrogram of Roving Produced from the Experimental Sliver

The advantage of this methodology was to avoid the use of noisy data for

artificial neural networks. The noisy data can be defined as the output

data having the influences that are not present in inputs. Therefore, it

is highly anticipated that the true relationships between the draw frame

parameters and yarn quality can be established.

Due to numerous interactions involved and large amount of experiments

conducted, it is not possible to include here all the analysis concerning to

the laboratory testing. Therefore, a brief analysis of the influences of draw

frame parameters on the yarn quality on the basis of physical testing is

presented here.

9.1 Yarn Quality Influencing Parameters

Before describing the influences of the draw frame parameters on the yarn

quality characteristics, it is important to notice that a large number of

yarn spinning experiments were carried out using all three materials, i.e.,

polyester, cotton and polyester/cotton blend (50/50). All each yarn pro-

duced, Uster evenness testing (CVm%, CV(1m)%, CV(3m)% and yarn

hairiness) and tensile testing (yarn tenacity and yarn elongation) were

performed. All the results can not be presented here in order to retain

the volume of dissertation within limits. Therefore some of the results
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are being presented hereunder. Broadly speaking, the yarn evenness val-

ues, i.e., CVm%, CV(1m)% and CV(3m)% have shown similar tendancies.

Therefore, all the graphs are not included. As explained in the chapter 5

“materials and methods”, three different yarns, i.e. 15 tex, 20 tex and 30

tex were manufactured. However, it was not possible to manufacture 20

tex using cotton, because of high percentage of short fibers present in it.

Therefore, the results presented under corresponds to 30 tex yarn, so that

the connection between the different materials can be described.

9.1.1 Influence of Delivery Speed

The influence of the delivery speed at draw frame on the yarn evenness has

revealed that drafting process in strongly material dependent. At the slow

speeds the CVm% values remain almost constant. However, afterwards

a further increase in the delivery speed causes the deterioration of the

yarn evenness. It is important to mention here that the influence of the

delivery speed on yarn CVm% showed almost the same trend as in case of

sliver CVm%. The overall coefficient of variations for polyester are much

better than cotton and polyester/cotton blend, which is due to better

fiber length distributions. The high CVm% for PES/CO blend can be

seen at 700 m/min. In contrast to the cotton the yarns from the polyester

slivers depict a controlled worsening of the quality. This happen due to the

abrupt change in the speed of the draft fibers, which is more pronounced

at high machine dynamics and in the presence of higher amount floating

fibers.

Effect of delivery speed of on tenacity and elongation of ring spun yarns

is also material dependent. Polyester yarn having more fiber strength and

manufactured from an even sliver, have produced a strong yarn of tenacity

38 cN/tex. Furthermore, an increase in the delivery speed at draw frame
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causes the tenacity of polyester ring spun yarn to reduce. For cotton the

tenacity almost remains constant upto 700 m/min and then decrease for

900 m/min and 1100 m/min. Similarly for polyester/cotton blend, the

tenacity for 300 m/min and 500 m/min remains almost constant, but a

considerable desend is shown for 700 m/min speed.

Figure 9.2: Yarn CVm [%] as Influenced by Delivery Speed

9.1.2 Influence of Break Draft

The break draft change at draw frame exerts a highly significant influ-

ence on the yarn quality. Considering the middle term variations, i.e. CV

(1m)% and CV (3m)%, it is revealed that the best yarn quality can be

achieved only at optimum break draft settings. The results of middle term

variations for ring yarn show the resemblance with results achieve from

the slivers.
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Figure 9.3: Yarn CV (1m) [%] and CV (3m) [%] as Influenced by Break Draft

As explained by the Figure 9.3, the polyester ring yarn shows a more even

yarn at break draft 1.3. On the other hand, for cotton and polyester/cotton

blend the lower middle term variations are achieved at minimum break

draft, i.e. 1.15, which is due to the presence of high short fiber contents.

Approximately the same trend is exhibited by the strength parameters

of the ring spun yarns, which endorsed the fact that even yarn has more

strength in comparison with the uneven yarns.

9.1.3 Influence of Break Draft Distance

The influence of the break draft distance is exhibited in the Figure 9.4. The

influence exerted by break draft distance is less as compared with that of

delivery speed and the break draft. However a clear trend is visible. This

implies that an even yarn is achieved at the optimum break draft distance

setting. This optimum is achieved at middle distance setting in case of

polyester and polyester/cotton blend. On the other hand the best CVm%

is resulted from the narrowest setting for cotton, i.e. 37 mm, which is

due to the higher percentage of short fiber present in cotton. These short

fibers tend to behave as the floating fibers in case of wider break draft zone
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or main draft zone settings. The short term variations in yarn evenness,

i.e., CV (1m)% and CV(3m)% also show the same trend as CVm% due

to variations in the break draft. The influence of break draft distance

variations on the strength parameters of the ring spun yarn is relatively

modest.

Figure 9.4: Yarn CV m [%] as Influenced by Break Draft Distance

9.1.4 Influence of Main Draft Distance

The effect of main draft distance on the quality of the ring spun yarn

for CV (1m)% is presented in the figure 9.5. It is noticed that influence

of main draft distance on the quality of the ring yarn is more obvious,

in comparison with the effect of break draft distance. This is because of

higher speeds and draft ratio between middle and front rollers in contrast

with the back and middle rollers, which causes the uncontrolled motion

of the fibers in the drafting zone. The wider main draft settings tend

to increase the amount of floating fibers, which cause draft disturbance,

especially when fibers are moving at higher speeds. On the other hand
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narrow settings tend cause the draft disturbances, because the resistance

to drafting and acceleration of the fibers is increased. The same results

are shown in the following Figure 9.5.

Figure 9.5: Yarn CV (1m) [%] as Influenced by Main Draft Distance

Moreover, as in case of break draft distance the influence of main draft

distance on the strength parameters of the yarn is relatively small in

comparison with that of delivery speed.

9.1.5 Miscellaneous Influences

In the previous section, it is explained the yarn quality is inter-linked with

the drawing parameters. However, in addition to the factors mentioned

there are other individual and combined influences that affect the quality

of yarn and then that of final textile product.

For example, the experiments related to doublings and draft i.e., using

8 doublings and 8 times draft, have inferior yarn quality as compared

with the experiments using 6 doublings and 6 times draft. An increase
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in total draft tends to increase the irregularities in the sliver and yarn,

but it also increases the parallelization of the fibers which has a positive

effect on the yarn quality. However, in the presence of high short fiber con-

tents and / or wider main draft zone settings, the yarn evenness decreases

steeply with an increase in total draft at draw frame. For instance, in case

of polyester/cotton blend (50/50), the CVm% for 6 times draft is 16.72%

while the measured CVm% for 8 times draft is 19.98%. In contrast, in case

of polyester there is marginal increase in CVm%, i.e. 10.23% and 10.45%

for 6 times and 8 times draft respectively.

Similarly, main draft distance not only exerts its individual effect on the

quality of the yarn, but also the influence of main draft distance combined

with that of delivery speed produce the diverse results.

Moreover, it is also inferred that short term and medium term variations in

the sliver have a strong correlation with that of yarn. These results point to

the fact that quality improvement achieved or defect produced at finisher

draw frame will directly affect the yarn quality. However, it is conditional

to the properly optimized roving and ring spinning machines, so that

they may not add further irregularities to the yarn. Furthermore, it was

noticed that sliver cohesion is a very important measurement parameter

and it significantly correlates with the strength parameters of the yarn.

Finally, it can be deduced that there is an interconnected web of influences

between the draw frame and yarn quality. Therefore, the artificial neural

networks are being applied reveal these interactions.
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9.2 Analysis of Yarn Quality Using Artificial Neural

Networks

9.2.1 Selection of Relevant Input Parameters

The selection of input parameters plays a significant role for the successful

training of artificial neural networks. The same input parameters that

were used for the sliver quality analysis (materials, delivery speed, break

draft, break draft distance, main draft distance, doubling and total draft)

were also considered for the analysis of the yarn quality. However, infeed

sliver weight and delivered sliver weight were excluded, because for the

analyzing the yarn quality on the basis of draw frame parameters, all draft

settings at roving and ring spinning machines were constant.

The second point of the consideration here was the yarn number. As it

is already mentioned the cotton used for the present research contains a

high percentage of short fibers. So, it was not possible to manufacture the

20 tex yarn from it, hence, 30 tex yarns were produced. Whereas using

the other two materials both 20 tex and 30 tex yarns were manufactured.

Therefore, yarn number was selected as an additional input parameter,

to make the training of neural network using all the data possible. Fur-

thermore, it is anticipated that network will be able to predict the yarn

quality characteristics for all yarns between the yarn number range of 20

tex and 30 tex.

Therefore, the eight quality influencing parameters were taken into con-

sideration as presented in the following schematic diagram 9.6.



160 9. Analysis of Yarn Quality

Figure 9.6: Schematic diagram of ANN Structure for Yarn CVm [%]

9.2.2 Analysis Using Artificial Neural Networks

The neural network analysis concerning to the yarn quality was performed

on the basis of yarn quality parameters. As discussed before the eight input

parameters are taken into account. The same procedure of normalization

was adopted, i.e. data was normalized between 0 1. For predicting the

yarn quality characteristics six neural networks, i.e. for yarn CVm%, yarn

CV(1m)%, yarn CV(3m)% and yarn hairiness, yarn tenacity and yarn

elongation were trained.. The neural networks NN Y CVm, NN Y CV1m,

NN Y CV3m, NN Y Hairiness, NN Y Tenacity and NN Y Elongation,

corresponds to yarn CVm%, yarn CV(1m)%, yarn CV(3m)%, yarn hairi-

ness, yarn tenacity and yarn elongation at break respectively. The training

matrix for the prediction of yarn quality is shown in Figure 9.7.
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Figure 9.7: Training Matrix for Yarn Quality Prediction

9.2.2.1 Yarn CVm%

The prediction performance of yarn evenness, i.e. CVm% is presented in

the Figure 9.8, while the network training parameters are given in the

Table 9.1. The Figure 9.8 depicts a very close correlation between the ex-

perimental and predicted values. The mean absolute error for NN Y CVm

for the hold-out method is calculated as 1.820% as expressed in terms of

CVm%. Whereas the mean absolute error results for 10% cross validation

and 20% cross validation are 1.6% and 2.393%. A high error in case of 20%

cross validation may be due to the less number of experiments available

for the training.

Network Parameters Values

Number of Neurons in Input Layer 8

Number of Neurons in First Hidden Layer 7

Number of Neurons in Second Hidden Layer 6

Number of Neurons in Output Layer 1

Learning Rate 0.04

Momentum 0.5

Number of Epochs 2000

Stopping Error 0.01

Table 9.1: Network Parameters for NN Y CVm
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Figure 9.8: Test Set Performance of NN Y CVm

9.2.2.2 Yarn CV (1m)%

The data pertaining to medium term variations, i.e. CV (1m)% was sub-

jected to neural network training. The following network parameters given

in Table 9.2 are achieved by trying the various combinations of hidden neu-

rons learning rate and momentum. The network structures having min-

imum error were then tested using the cross validations. At the end the

network having the minimum generalization error was selected.

Network Parameters Values

Number of Neurons in Input Layer 8

Number of Neurons in First Hidden Layer 5

Number of Neurons in Second Hidden Layer 6

Number of Neurons in Output Layer 1

Learning Rate 0.09

Momentum 0.7

Number of Epochs 2000

Stopping Error 0.001

Table 9.2: Network Parameters for NN Y CV1m



9.2 Analysis of Yarn Quality Using Artificial Neural Networks 163

The test performance of the trained network in represented in Figure

9.9. The mean absolute error as expressed in terms of yarn CV (1m)%

is 0.1856%, whereas mean absolute error recorded in case of 10% cross

validation is 0.1822%.

Figure 9.9: Test Set Performance of NN Y CV1m

As usual, the 20% cross validation was also performed and a mean absolute

error of 0.3132 was reported, which is on the higher side because for each

training phase about 20% data was not available for training.

9.2.2.3 Yarn CV (3m)%

The data regarding the yarn CV (3m)% is subjected to neural network

training firstly using the randomly selected training and test sets. The

number of hidden layers and the number of nodes per hidden layer in the

neural network architecture are determined using trial and error. These

parameters as described in following Table 9.3 were selected. The neural

network NN Y CV3m trained on the basis of data concerning yarn CV

(3m)% showed a very good test performance.
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Network Parameters Values

Number of Neurons in Input Layer 8

Number of Neurons in First Hidden Layer 5

Number of Neurons in Second Hidden Layer 6

Number of Neurons in Output Layer 1

Learning Rate 0.1

Momentum 0.7

Number of Epochs 1000

Stopping Error 0.001

Table 9.3: Network Parameters for NN Y CV3m

The following Figure 9.10, depicts the test set performance of the

NN Y CV3m on randomly selected data sets. The reported mean absolute

error is 0.0935% in term of CV (3m)%. The values of mean absolute error

as the results of 20% cross validation, 10% cross validation and Leave-

one-out cross validation are determined as 0.0994%, 0.1965% respectively.

Figure 9.10: Test Set Performance of NN Y CV3m
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9.2.2.4 Yarn Hairiness

NN Y Hairiness corresponds to the trained neural network for the pre-

diction of yarn hairiness on the basis of draw frame parameters. It is

well known fact that yarn hairiness is mainly dependent on fiber length

distributions of the processed materials. Also for these experiments the

compact ring spinning machine K 44 was used, that is why the hairiness

value are lower than that of conventional ring spinning machine. How-

ever, the underlying association of the draw frame parameters and the

yarn hairiness is completely understood by the neural networks as shown

in Figure 9.11. Therefore a mean absolute error of 0.2321 in terms of hairi-

ness value was observed. Similarly the 10% cross validation mean absolute

error was reported as 0.213 and that of 20% cross validation is 0.4216.

Network Parameters Values

Number of Neurons in Input Layer 8

Number of Neurons in First Hidden Layer 5

Number of Neurons in Second Hidden Layer 6

Number of Neurons in Output Layer 1

Learning Rate 0.1

Momentum 0.7

Number of Epochs 1000

Stopping Error 0.001

Table 9.4: Network Parameters for NN Y Hairiness

The network parameters are given in the table, and the Figure 9.11 in-

dicates the difference between the experimental and predicted values and

confirms a good fit of the neural networks in case of yarn hairiness.
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Figure 9.11: Test Set Performance of NN Y Hairiness

9.2.2.5 Yarn Tenacity

NN Y Tenacity corresponds to a 7-5-6-1 network structure as shown in

the following Table 9.5. NN Y Tenacity represents the neural network

that is trained to understand the complex relationships between the draw

frame parameters and the yarn tenacity while the yarn twist for each

material remains constant. The following Figure 9.12 shows a very good

overlapping of the experimental and predicted values and a mean absolute

error of 1.103 [cN/tex] is reported. The Figure 9.12 also represents the test

performance of the NN Y Tenacity at three different levels. The lowest

yarn tenacity pertain to the cotton, while the middle and high values are

for polyester/cotton blend (50/50) and polyester respectively. In all three

cases a very good association between the experimental and predicted

values have been achieved. The mean absolute errors for 10% and 20%

cross validations are 1.213 [cN/tex] and 2.289 [cN/tex] respectively.
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Network Parameters Values

Number of Neurons in Input Layer 8

Number of Neurons in First Hidden Layer 5

Number of Neurons in Second Hidden Layer 6

Number of Neurons in Output Layer 1

Learning Rate 0.09

Momentum 0.7

Number of Epochs 1000

Stopping Error 0.001

Table 9.5: Network Parameters for NN Y Tenacity

Figure 9.12: Test Set Performance of NN Y Tenacity

9.2.2.6 Yarn Elongation

The yarn elongation at break is another important strength parameter

for the yarn quality. NN Y Elongation was trained to correlate the draw

frame parameters and the yarn elongation. It was observed that neural

network can be trained on the basis of draw frame settings to predict the

yarn elongation.
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Network Parameters Values

Number of Neurons in Input Layer 8

Number of Neurons in First Hidden Layer 8

Number of Neurons in Second Hidden Layer 5

Number of Neurons in Output Layer 1

Learning Rate 0.02

Momentum 0.5

Number of Epochs 1000

Stopping Error 0.003

Table 9.6: Network Parameters for NN Y Elongation

Figure 9.13: Test Set Performance of NN Y Elongation

A 8-8-5-1 neural network reported a mean absolute error of 0.2736% as

expressed in term of yarn elongation. The results are being presented in

the following Figure 9.13. The mean absolute errors in terms of elongation

are 0.3155% and 0.3236% as reported for 10% and 20% cross validations

respectively.
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9.3 Conclusion

The variations in the draw frame parameters influence the yarn quality

characteristics, i.e. the evenness, hairiness and strength characteristics of

yarn. However, these effects are strongly material dependent. In this part

of research natural fiber (cotton), man-made fiber (polyester) and their

blend (polyester/cotton 50/50) were taken into consideration. All three

materials behave different under the effect of the changes made at draw

frame. The above mentioned results also revealed the significance of draw

frame, from where the quality of the yarn can be precisely controlled.

These influencing draw frame parameters affect the yarn quality charac-

teristics individually, as well as collectively involving a combined effect of

two or more than two parameters. For instance, an increase in delivery

speed at draw frame significantly deteriorates the yarn-CV-values. Same is

the case with a non-optimized break draft settings, which largely increase

the yarn-CV-values. Similarly a faulty main draft distance great influences

the yarn quality, however, the intensity of this effect increases at high ma-

chine dynamics. Therefore, main draft distance along with delivery speed

also exerts their combined influence.

Moreover, it is also observed that yarn quality is strongly connected with

the sliver quality. The influences of draw frame variables on the sliver

quality are largely similar to their effects on yarn quality. Therefore, it

can be said that the quality of finisher draw frame sliver is a reflection of

yarn quality.

The use of artificial neural networks for understanding the underlying re-

lationships between the draw frame parameters and yarn quality as well

as its predicting on the basis of draw frame parameters is successful. The

trained networks are able to predict the yarn quality characteristics and
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mean absolute errors of less than 5% are calculated between the experi-

mental and predicted values. This implies that a confidence level of 95%

has been achieved.



Chapter 10

Concept Development of Intelligent

Spinning Machines

10.1 Applications of Research

The successful results and its analysis on the basis of artificial neural net-

works (ANN) not only confirm the ability of neural networks to learn the

complex relationship associated with the spinning process but also their

potential to make a correct prediction of sliver and yarn quality. This

will in turn enable the user to predict the optimum settings based on the

sliver and yarn quality. The intelligent shortening of leveling action point

(LAP) search range, the prediction of sliver and yarn quality and possi-

bility to set the draw frame on the basis quality parameters lead towards

the achievement of the research objectives. This implies the goals of the

present research which corresponds to the development of a prediction

system are successfully met.

The implication of the presented prediction system based on the analysis

triangle has achieved these fruitful results.
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� The leveling action point search can be reduced to one fourth, which

essentially decreases the material requirements for settings, thus re-

ducing the amount of waste produced in the spinning mill.

� The precision and intelligent setting of leveling action point can

strongly enhance the sliver and ultimate yarn quality.

� In case of marginal change in LAP influencing variables a manual

search can be performed using a precise ’start value’ recommended

by neural networks.

� The optimization of draw frame, which is vital for producing a quality

yarn, can be done on basis of sliver and yarn quality characteristics.

� The prediction system based on artificial neural networks can be

very helpful to greatly reduce the range of trial error method for

optimizing the draw frame within sensible limits.

� The need of extremely experienced and skillful managers in the spin-

ning industry can be reduced and the better quality results can be

achieved with less experienced managers. Additionally the human

errors can be avoided.

� The precise adjustment of draw frame settings on the basis of sliver

and yarn quality characteristics can greatly help to achieve the qual-

ity related objectives in spinning industry.

� The intelligence of artificial neural networks can be therefore induced

in the draw frame, to make it capable of making intelligent decisions

in cases of change of material or infeed sliver variations etc.
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10.2 Concept for Intelligent Spinning Machines

The development of computer-aided manufacturing systems has led to

the evolution of computer integrated manufacturing. Now, the manufac-

turing systems are trying to achieve more and more flexibility in product

design, process planning, scheduling, process control, and quality assur-

ance. Therefore, it is anticipated that next phase will be the development

of intelligent manufacturing system. This can be accomplished through

intelligent system that can adapt to changes in their environment (like

variations in infeed materials etc).

The quality of yarn is largely depended on the quality of raw material

from which it is being manufactured. The fiber characteristics as well

as the blending of variety of fibers play a vital role not only towards the

quality of end product but it also influences the manufacturing costs. Some

studies have been carried out to predict the yarn quality with the help of

fiber characteristics using artificial neural networks. Thus, predicting the

appropriate blend as well as fiber characteristics for required yarn.

However, the spinning process consists of a set of inter-related operations

performed by different machines and consequently various intermediate

products (like card sliver, drawing sliver, roving etc.) are produced. There-

fore, the fibers - machines interactions become very important. Setting of

machine intelligently in accordance with the material being processed is

the key to optimization of spinning process. In present research three dif-

ferent prediction tasks (leveling action point, sliver characteristics and

yarn characteristics) were successfully performed using the drawing frame

parameters as input to artificial neural networks as shown in Figure 10.1.

This implies that the neural networks are capable of understanding the

fibers - machine interactions. Also through the use of trained artificial
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neural networks the draw frame can be intelligently set on the basis of

sliver as well as yarn quality characteristics. In conclusion, the ability of

artificial neural network for the using in spinning process is proved.

Figure 10.1: Objective Achieved by Present Research

On the basis of presented results, the concept for intelligent spinning ma-

chines is proposed here for further studies in present area of research.

The said system based on artificial neural networks corresponds to the

intelligent environment that should have the following characteristics.

1. The intelligent system should be customer driven, i.e., the yarn qual-

ity as well as the other requirements like scheduled delivery date

provided by the customer should be emphasized in the system.

2. The optimum machine settings and process parameters can be pre-

dicted with respect to infeed material and quality produced.

3. The properties of raw materials / infeed materials can be determined

on the basis of end product.

4. The quality of each intermediate product should be assured.

The Figure 10.2 represents the schematic diagram of the intelligent sys-

tem. It shows the spinning process from card sliver to yarn involving three

machines, i.e. draw frame, roving frame and ring spinning machine. Three
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individual trained neural networks (ANN for draw frame, ANN for roving

frame and ANN for ring spinning machine) are connected to individual

machines. These three networks should be capable to predicting the qual-

ity characteristics of product produced at each machine on the basis of

infeed material characteristics and machine settings.

Figure 10.2: Concept for Intelligent Spinning Machines

Conversely, by entering the different levels of machine parameters along

with infeed material characteristics to these trained neural networks and

calculating their responses on the produced quality, the machines can be

set optimally on the basis of required quality. Also, these trained neural

networks should provide the additional advantage of predicting the opti-

mum machine settings without trial and error, thus saving the time and

material.
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In the next step, these three ANNs will be connected to another trained

neural network which in turn should be connected to a data bank. The

data bank should include the information about the quality requirements

for yarn, provided by the customer, along with scheduled delivery data and

manufacturing costs. Moreover, the required card sliver, drawing sliver and

roving qualities should also be entered in the data bank. Furthermore, the

information from individual machine networks should be shared. All these

components will comprise an intelligent system which can be capable of

providing the many benefits. The following two scenarios are considered

here.

Forwards (Card sliver to Yarn)

It is anticipated that the proposed intelligent system should be capable

of predicting the yarn quality on the basis of card sliver characteristics

and machine settings. Thus, the quality requirements provided by the

customer can be compared with the predicted quality. This comparison

can provide the opportunity to decide whether it is possible produce the

yarn with customer specified characteristics or not. Thus, the potential of

raw material and the machinery can be truly judged.

Backwards (Yarn to Card Sliver)

In backward direction, the intelligent system can offer many advantages.

The determination of optimum settings for required quality is one of them.

Suppose that customer requires cotton yarn having CVm equals to 13 %.

Using the neural network based intelligent system, it can be predicted that

for given raw material such yarn can be produced only with a drawing

sliver of CVm less than 3 %, which is not possible at higher draw frame

speeds like 1000 m/min. Therefore, the speed of draw frame should be

reduced to achieve the required quality. At this stage, the information
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regarding the scheduled date of delivery and manufacturing costs already

provided to the intelligent system can calculate that economical viability

of production. Also, the accepted delivery date with the scheduled delivery

time can be considered. Furthermore, the quality of each intermediate

product can be assessed. Therefore the quality of whole spinning chain

will be assured.

On the basis of results achieved by present research, the concept of the in-

telligent system for spinning machines has been proposed. It is anticipated

that with the use of artificial intelligence the spinning machines can help

them to get involved in the decision making process for the optimization

of spinning process.
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Chapter 11

Summary and Outlook

In the scope of present research work, draw frame RSB-D40 was selected

as the central spinning machine where quality of the yarn and the ultimate

textile product can be controlled. The work was divided into three phases,

pertaining to leveling action point (LAP), sliver quality and yarn quality.

Mainly the work was focused on polyester, cotton and polyester/cotton

blend (50/50), while viscose was also used for the phase regarding leveling

action point.

The LAP searches were carried out automatically at the RSB-D40 using

Rieter Quality Monitor (RQM). On the other hand the quality charac-

teristics of the sliver and yarn were determined by physical testing in the

laboratory. For all three phases the analysis on the basis of laboratory

results as well as the analysis based on artificial neural network was per-

formed. In order to train the neural networks, the software using Matlab

was developed.

In the first phase regarding LAP, it is inferred that materials, feed-

ing speed, infeed tension, break draft and break draft distance are

significant LAP influencing parameters. Sliver deflection bar setting

also geometrically changes the LAP. Moreover, the different blend ra-
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tios of polyester/cotton have LAP values comparable with that of

polyester/cotton blend 50/50. Also it was revealed that 100 m/min in-

crease in delivery speed will result in 6 mm shorter LAP value. The anal-

ysis conducted on the basis of artificial neural network has shown that

mean absolute error remains within 5 % for all the investigated materials

(cotton carded 1st passage, cotton carded 2nd passage, polyester, viscose

and different blending ratios of polyester/cotton blend). Moreover, the

individual predictions are with in 12 mm limits, which refer to 2 points

each in both plus and minus directions. On the basis of achieved results

a neural network based function ”NEUROset” has been proposed, which

requires only 5 search points. Furthermore, the ”start value” for manual

LAP search can also be proposed using the neural networks.

The laboratory results concerning to sliver quality in second phase of the

work have shown individual as well as the combined effects of the draw

frame parameters. Delivery speeds, break draft, break and main draft

distances, doublings, total draft have significant influence on the sliver

quality. However, these influences are strongly dependent on the type of

material and fiber length distributions. With the help of neural networks

the individual and multiple interactions between the draw frame variables

and the sliver quality can be determined and the prediction of sliver qual-

ity can be made. The low mean absolute error values achieved for test

sets and also for cross-validations correspond to the excellent quality of

the prediction. It is not only possible to predict the quality of the sliver,

but also the draw frame parameters, especially the draft zones settings

can be adjusted on the basis of the predicted quality.

In the third phase the yarn quality was assessed on the basis of draw frame

parameters. The slivers manufactured in second phase were processed to

convert them into yarn. The yarn of 20 tex and 30 tex were manufac-
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tured, in order to cover the industrially most frequently used range of

yarn numbers. It was revealed from the laboratory results that the draw

frame parameters that have affected the sliver quality also showed their

effects in the yarn characteristics. Similar to the sliver quality analysis,

the individual and combined effects of the draw frame parameters can

be seen. In addition, it was observed that yarn quality is strongly con-

nected with the sliver quality. Therefore, quality of finisher draw frame

sliver is a reflection of yarn quality. The use of artificial neural networks

for understanding the underlying relationships between the draw frame

parameters and yarn quality as well as its predicting on the basis of draw

frame parameters is successful. The trained networks are able to predict

the yarn quality characteristics and mean absolute errors of less than 5 %

are calculated between the experimental and predicted values.

This research work is can be applied directly to the spinning industry

for precise settings, waste reduction and time required to optimize the

machines. The intelligent machine can effectively compensate the conven-

tional trial and error method used in the spinning industry for achieving

the optimized machine settings. Additionally, the future intelligent spin-

ning machines equipped with artificial intelligence will be able to take

part in the decision making process in spinning industry and capable to

adopt themselves accordingly for material change or infeed variations.

The concept of intelligent spinning machines has been proposed, which

should be the next step towards the further development of the spinning

machinery after the inclusion of sensor systems and full scale automation

to avoid the negative influence of worker on the quality of the product.

The involvement of machine in the decision making process in spinning

industry can bring out the fruitful results and disadvantages like less ex-

perienced staff and human errors can be avoided. Also ”learning from
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experiences” ability of artificial neural networks can be fully utilized in

the spinning industry.

In broader prospective, the significant results achieved during this research

work pave the way for the utilization of the artificial neural networks for

the other textile processes, like manufacturing processes following spin-

ning, e.g. knitting and weaving, or new textile fields like electro-spinning.
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