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Chapter 1

Introduction

Magnetism of interacting many-particle systems has been an important goal
in physics. The task is to derive the magnetic properties of such systems
purely from quantum mechanical principles. It is well understood that the
magnetization in an atom is described by quantum numbers, spin (S), orbital
(L), and total angular momentum (J) of its electrons. A set of guidelines,
named Hund’s rules after Friedrich Hermann Hund [1] helps us to determine
the corresponding quantum numbers for the valence electrons. In free atoms,
the valence electrons are assumed to be involved into open shells. Hund’s rules
can be applied to those electrons and maybe read as follows

i. Multiplicity rule: The lowest energy in the multiplet of states with
different electron configurations has the largest multiplicity (couple the valence
electrons (or holes) to give maximum total spin).

ii. Orbital angular momentum rule: Among the multiplets with the same
multiplicity, the lowest-energy state is that with the largest total orbital an-
gular momentum.

iii. Fine structure rule: In configurations containing shells less than half
filled with electrons, the term having the lowest total angular momentum .J
lies lowest in energy, whereas in those with shells more than half filled, the
term having the largest value of J lies lowest.

According to Hund’s rules, the method of adding up all the spins S and all
the angular momenta L respectively, is the so-called LS or Russell-Saunders
coupling [2]. Hund’s rule of maximum multiplicity, a greater total spin state
makes the resulting atom more stable, most commonly manifested in a lower
energy state, because it forces the unpaired electrons to reside in different
spatial orbitals. An accepted reason for the increased stability of high multi-
plicity states is that the different occupied spatial orbitals create larger average
distances between the electrons, which reduces the electron-electron repulsion
energy. The results of Hund’s rules will change when the electrons become

1



2 CHAPTER 1. INTRODUCTION

relativistic in heavy atoms where the spin-orbit effect becomes comparable to
the electron repulsion. For heavy atoms, we calculate first the angular mo-
mentum (j) for every electron and then we add up them to get total angular
momentum J. This is the so-called j-j coupling.

The question “Are Hund’s rules applicable on different systems such as
molecules and solids?” is still on the agenda. Finding the ground state of the
considered system is frequently a problem. Density functional theory (DFT)
methods apparently are the most widely spread self-consistent methods to
investigate the ground state properties of condensed matter. This is due to
their high computational efficiency and very good accuracy. The importance of
DFT was initiated by the famous works of Walter Kohn, Pierre C. Hohenberg,
and Lu Jeu Sham [3, 4, 5]. In contrast to the text-books presenting the Hartree-
Fock method, which begins conceptually with a many-body wave function and
the description of individual electrons interacting with the nuclei and all other
electrons in the system, density functional theory works with the ground state
density of the entire electron system. Recall that if there are N electrons in
the system (and N might be macroscopically large ~ 10%), the wave function
of the electron system is a function of 3N variables (since the electron wave
function is usually expanded over some basis functions, the actual number of
the variables is governed by the number of basis functions which is typically
much larger than 3N). However, within DFT, the ground state of the system
of interacting electrons in an external potential V¢*(r), is described by the
electronic charge density n(r). Note that the charge density is a function of
three variables only!

In the framework of DFT, the total energy is decomposed into kinetic
energy, Coulomb energy, and a term called the exchange-correlation energy.
They capture all many-body interactions in the considered system. This de-
composition is formally exact, but the actual expressions for the many-body
exchange and correlation interactions are still unknown. The local density
approximation (LDA) turned out to be computationally convenient and sur-
prisingly accurate. In this approximation the exchange-correlation energy is
taken from the known results of the many-electron interactions in an electron
system of constant density (homogeneous electron gas).

Taking into account the relativistic kinetic energy leads to direct and in-
direct relativistic effects on the electronic structure of a solid. The most pro-
nounced direct effect (although not the biggest in magnitude) is the spin-orbit
splitting of band states leading to the magneto-crystalline anisotropy energy
of itinerant magnetism and to magneto-optical effects [6, 7).

A well-known indirect relativistic effect is the change of screening of valence
electrons from the nuclear charge by inner-shell electrons. It is for instance
responsible for the color of gold (due to a relativistic reduction of the distance
of the d-band from the chemical potential which lowers the corresponding
absorption edge). Now the next question arises. Can such relativistic effects



somehow be included in ordinary density functional theory formulated in terms
of the local electron density and ordinary Kohn-Sham orbitals? The answer
to this question, unfortunately, is NO.

Four-current density functional theory (CDFT), the quantum electrody-
namic version of the Hohenberg-Kohn theory [3] is a powerful tool to treat
relativistic effects. Although it is principally designed for systems in strong
magnetic fields, CDFT can also be applied in situations where currents are
presented without external magnetic fields. As already pointed out by A.K.
Rajagopal and J. Callaway [8], the most natural way to incorporate magnetism
into DFT is the generalization to CDFT. These authors treated its most sim-
ple approximation, the spin density functional theory (SDFT), which keeps the
spin current only and neglects completely correlation effects of orbital currents.
Compared to ordinary DFT, this SDFT meets already more subtle problems
[9, 10]. The orbital magnetism as a consequence of Hund’s second rule is absent
in this theory and there is not any more a one-to-one mapping of spin densities
onto external fields. In solids, in particular in metals, the importance of Hund’s
second rule (orbital polarization) and Hund’s third rule (spin-orbit coupling)
is usually interchanged in comparison to atoms. The reason is that the crystal
field and the hybridization of the valence states tend to quench the orbital
magnetism. Thus, in applications of the relativistic CDF'T to solids, the usual
way has been to keep the spin-orbit coupling in the Kohn-Sham-Dirac (KSD)
equation (a relativistic generalization of the ordinary Kohn-Sham (KS) equa-
tion), to neglect the orbital contribution to the total current density and to
approximate the exchange-correlation energy functional with the related spin
density expression. This scheme includes a spontaneous exchange and corre-
lation spin polarization. On the other hand, orbital polarization comes into
play not only as a correlation effect but also as an effect due to the interplay of
spin polarization and spin-orbit coupling. In the presence of both couplings,
time reversal symmetry is broken and a non-zero orbital current density may
occur. Using this scheme for 3d and 4f magnets yields orbital moments where
they are smaller than related experimental values by typically a factor of two
[6].

An alternative scheme, based on the non-relativistic treatment of ” param-
agnetic” current density and spin density as separate quantities, was suggested
by G. Vignale et al. [11, 12, 13]. Since the spin-orbit interaction is not taken
into consideration, this scheme can be suited, for example, for systems in high
magnetic fields [14, 15] or for ground state calculations in very light open-shell
atoms. It is inappropriate for 3d magnetic metals, where the orbital magneti-
zation is induced just by the spin-orbit coupling and also for 4f or 5f metals,
where the orbital polarization and the spin-orbit interaction are comparable in
their magnitudes [16, 17]. H. Ebert et al. [18] calculated the orbital moments
in Fe, Co, Ni in presence of the spin-orbit coupling and found approximately
10% enhancement of the orbital moments compared with the calculated or-
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bital moments in absence of the spin-orbit coupling. This enhancement is
indeed small in comparison to the remaining discrepancy between theory and
experiment for both Fe and Co.

In this Thesis, to overcome such discrepancies, two different orbital polar-
ization (OP) corrections are suggested. Those OP corrections, essentially, can
be described by the introduction of an additional operator, originating from
an OP contribution to the total energy functional [19, 20, 21, 22, 23]. Alter-
natively, it was demonstrated by I.V. Solovyev et al. [24] how OP corrections
can be obtained in the framework of the "LSDA+U” idea [25]. The suggested
approaches appear to be similar to the idea of L. Severin et al. [22], with the
important additional feature of rotational invariance. Numerical results ob-
tained in the different schemes suggested in Ref. [20] and Ref. [22] are found
to largely coincide [26]. There is no direct comparison of the OP correction
method with the LSDA+U method for specific systems available in the litera-
ture. In this context, a systematic investigation of the orbital contribution to
the magnetism of metals is suggested.

In this Thesis, atomic units, a.u., will be used throughout by putting

fi=m, =€ = lau.,

where m, is the electron mass and € = e/\/4me, is the electrostatic electron
charge, e is the electrodynamic electron charge and ¢j is the vacuum permittiv-
ity. This means that energies are given in units of Hartree [1 Hartree = 27.212
eV | and lengths in units of the Bohr radius [1 agen, = 0.529177 x 10~1%m].
The speed of light in vacuum is ¢ = 137.03599 a.u. The four-component Dirac
spinor quantities are given in the standard representation in which the Dirac
matrices 7y, (1 =0,1,2,3) are (in terms of 2x2 blocks) :

1 0 : 0 o
0 __ _ T 1 i _ 2_ 2:
7-—B—<0 _1>ﬁ-—<_% 0)“7W—ﬁ v =4,

where 1 means a 2 x 2 unit matrix, and o;, (i = 1,2,3) are the well known
Pauli matrices defined as,

_1/01 1[0 —i _1(1 0
1=35\ 1 0) 2T3\ i 0o ) T3\ 0 -1 )"

Furthermore,

are the 4 x4 velocity and spin matrices, respectively. The vector o is defined as
o = (01,09,03). Bold letters denote vectors. A combined variable z = (r,0),
will be used throughout for both the position and the spin of a particle.



The Thesis is organized as follows: The theoretical background of the rela-
tivistic four-current density functional theory as a basis for understanding the
orbital magnetism is presented in Chapter 2. In Chapter 3, two different orbital
polarization corrections are given. The OP energies for transition metal ions
and lanthanide ions are calculated. The implementation of both corrections to
periodic systems in the framework of the full-potential local-orbital minimum
scheme (FPLO) is introduced in Chapter 4. The calculated orbital moments
of bee Fe, hep Co, and fce Ni are presented also in Chapter 4 and compared
with experiment. The study of orbital magnetism in eight full-Heusler alloys
and orbital magnetism of Co impurities in gold host matrices, both probed
by X-ray magnetic circular dichroism (XMCD) experimentally, are the topics
of Chapters 5 and 6, respectively. Finally, the Thesis will be summarized in
Chapter 7.



CHAPTER 1. INTRODUCTION




Chapter 2

Relativistic density functional
theory

2.1 Ground state energy functional

It is supposed that all the needed information of a physical system at each
time ¢ is given by a quantum state |¥) in an abstract Hilbert space and the
time evolution of the system is governed by the time-dependent Schrédinger
equation:

L, O[¥) .

th—p— = H|¥), (2.1)
where H is the Hamiltonian operator which contains kinetic energy operator
and all relevant interaction operators. The total energy of the system is given
by the expectation value of the Hamiltonian operator, which in the Dirac
notation, is given by E = (¥|H|¥)/(¥|¥). The total probability of finding the
system somewhere in the position space R? is equal to 1, namely, (¥|¥) = 1,
which allows unbound particles to disappear at infinity. Therefore, the system
must be put into a large box as into a torus of finite volume. The total energy
of the ground state can be obtained as:

Ey = (V|H|V) & [T) = [T), (2.2)

where Ey and |¥g) are the corresponding total energy and quantum state for
ground state of an arbitrary system, respectively. The problem arises is that
for which expression of |¥y) we can calculate properly the total energy of the
ground state. There is not a simple way to achieved such expression. Density
functional theory can provide an effective way to reach ground state.
Consider a system of N identical particles interacting with each other with
pair forces and moving in a given external potential. The related Hamiltonian
consists of the kinetic energy operator , the potential operator ¢ of the inter-
action of the particles with the external field, and the two-particle interaction

7



8 CHAPTER 2. RELATIVISTIC DENSITY FUNCTIONAL THEORY

operator w:

A

H=1+0+1d. (2.3)

Now, we replace the position space R? by a torus T2, i.e. a box with
periodic boundary conditions and with volume |T|? sufficiently large not to
significantly change the considered results. This makes the spectrum of the
Hamiltonian discrete and ground state existing and normalizable. The ground
state energy (the lowest expectation value of the Hamiltonian) as a functional
of the external potential v and the particle number N is given by definition:

Elo, N] = inf {tr(ﬁf]) ‘ tr(pN) = N} , (2.4)

where, {A|B} means set A under constraints B and the infimum search is over
all ensemble states (N particle density matrices) and the most general density
operator for a mixed state is written as:

p=D 1) ok (U] 50<p<1;) p=1, (2.5)
k k

where |U;) are the normalized pure states with Nj electrons and pg is the
probability to find the system in the corresponding pure state. In the following,
convexity and gauge properties of the ground state are presented.

a) Convexity property: Now, fix external potential v and pick two par-
ticle numbers N; and Np. There exist sequences p, @ = 1,2; j = 1,2, ...
with tr(Npi) = N; and limjtr(f[ﬁ§) = E[v,N;]. Take the sequence p; =
cph+ (1 —)p?, 0 < ¢ < 1. Obviously tr(Np;) = Ny + (1 — ¢) N, and
lim;tr(Hp;) = cE[v, N1] + (1 — ¢)E[v, Np]. On the other hand, by definition
Elv,cNy + (1 — ¢)Ns] < lim;tr(Hp;). This proves the convexity of E[v, N] in
N for fixed v:

E[v,eN; + (1 — ¢)Ny] < ¢Elv, N1|+ (1 —¢)E[v, Ny], 0<e<1, (2.6)

by definition (Eq.2.4) and the text above, N > 0 with E[v,0] = 0 for all v.
One may, however, formally define E[v, N| = +oo for all N < 0 and all v,
which makes E[v, N| defined for all N, convex.

On the other hand, since the functional dependence of H on v is of course
affine-linear, namely,

Hlcv, + (1 — ¢)vg] = cHv ] + (1 — ¢)H[wo], 0<e¢<1, (2.7)
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and for fixed N one can obtain,

Elcvi + (1 — ¢)vy, N] =

inf {ctr(ﬁﬁvl) + (1= O)tr(pHy,) ‘ tr(pN) = N} >
p

v

cinf {tr(ﬁf]vl) ‘ tr(pN) = N} +
+ (1—¢ i%f {tr(ﬁI:Iw) ‘ tr(pN) = N} =
cE[vi, N] + (1 — ¢)E[vq, N|, (2.8)

I

where it is used the simple fact that the infimum of a sum cannot be lower than
the sum of the corresponding independent infima. In summary, the ground
state energy E[v, N] is a convex functional of N for fixed v and a concave
functional for fixed N.

b) Gauge invariance: If a functional for ground state exists, it is obvi-
ously gauge invariant with respect to potential constants, i.e. it is the same
for all potentials v + const.,

Elv + const., N| = E[v, N] + N - const. (2.9)

These simple convexity properties of F[v, N| together with the above gauge
property form the deep logical foundation of density functional theory. It is
also important to know that the convexity properties are independent from
the form of internal operators, such as ¢ and . Most concepts considered in
this chapter can be found in the monograph by H. Eschrig [27].

2.2 The Hohenberg-Kohn variational princi-
ple

Starting with the convexity of the ground state energy functional with respect
to the particle number N one defines a Legendre transform of the functional,

Glv—u] = sup {uN — Elv, N]}
= stlvp{—E[v — u, N1}
= —inf{Elv—pu, N}, (2.10)
where p (chemical potential) is the dual variable of N and supremum search

for maximum values and in the second line the gauge property (Eq.2.9) and
in the last line simple fact by definition sup{—g} = —inf{g}, has been used.
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The functional G[v] is just as —FE[v, N] convex in v and can be Legendre
transformed with respect to v by introducing the dual variable —n,

Hin] = sup {(v] —n) — Gv]}, (2.11)

veX*

where X* = L3/2(T?) is the dual space of position space X = L3(T?). The
above relation helps us to rewrite the ground state energy functional with dual
variables of v and N,

Elv,N] = sup {Np—Glv— ul}

= sup {Nu —sup {(v—p| —n) - H[n]}}

neX

— sup { N+ i (0~ o) + Hln}
= sup {inf (u(¥V = (W) + ) + BB (212

The expression in the curved brackets can be regarded as a functional of
and N. The rule inf sup > sup inf can be applied since p can be treated as
a constant potential function in space, (u|/N) = (1|N)p, which leads to the
inequality,

Bo,N] < inf {sgp {u(N = (1n) + (o]n) + H[n]}} NCRE)

The above inequality can be sharpened into an equality [27]. Since the
expression under the supremum is linear in y, the supremum is either +oo,
if (1|n) # N, or zero, if (1|n) = N. One should note that inf[4+00] does not
exist. So that, taking the condition (1|n) = N and coming back to (Eq.2.13),
one can arrive at the expression,

E[v,N| = élel)f({(vm) + H[n]|(1|n) = N}. (2.14)

This last equation express the variational principle by Hohenberg and Kohn
[3]. This variational principle together with above text has important advan-
tages:

i- The dual value n for the external potential is just the density of particles
for the ground state in position space T°.

ii- Taking the fact that the E[v, N|is a convex functional, then its Legendre
transformation H[n] is also convex, lower semi-continuous and has a non-empty
sub-differential H[n] at every n where H|[n]| is finite.
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2.3 Current density functional theory

The correct frame to describe interacting relativistic electrons is the quantum
electrodynamics (QED) where the matter field is the four-component operator-
valued electron-positron field 1[1(u") acting in the Fock space and depending on
space-time variable u® = (ct,r); (u, = (ct, —r)). In a static external field, the
operator Hamiltonian for an interacting relativistic system in a large periodic
spatial volume V' with respect to that reference frame, can be presented as:

Hy= /d%(i{- et A,), (2.15)

where e is the electrodynamic charge quantum and H is the Hamiltonian den-
sity operator which contains the kinetic and internal interaction density oper-
ators in the considered system. The A, denotes the static external field in the
relativistic regime. The four-current density operator 5’“ is given by,

=iyt =i, (2.16)

In QED the total charge of the system in the quantum state |¥) is given
by:

Q=-— Z/d?’r(\l;\jow). (2.17)

We fix the total charge in the system and consider the ground state of the
quantum field as that state minimizing,

E[A, Q] = min {(qx|ﬁA|\1;> ‘ —g /d3r<\Il|j'0|\Il> - Q} . (2.18)

The first demonstration of the existence theorems for a density functional
theory of many electron systems characterized in terms of quantum electrody-
namics by A.K. Rajagopal and J. Callaway [28] emerged in connection with the
discussion of spin-polarized non-relativistic systems. The relativistic case was
analyzed in a later contribution by A.K. Rajagopal [29] and further by A.H.
MacDonald, and S.H. Vosko [30] and H. Eschrig et al. [31]. For the purpose of
discussing the relativistic extensions of the Hohenberg-Kohn theorem we may
specify the Hamiltonian without addressing the questions of renormalization
and the quantization of the electromagnetic field.

The non-relativistic limit of E[A, Q] from (Eq.2.18) is E[v, N|, where v =
—ecA® and N = —Q/e. One therefore may proceed in analogy with the
previous section 2.2. As the first step, it is important to prove convexity
properties for the relativistic ground state energy. Note that if a ground state
U exists then provided H , is bounded from below.

1The colons (: X :) stand for normal order of the Fock space operators.
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First of all, E[A, Q] for fixed A is a convex functional of the total charge Q.
To see this, one fixes A (for which H, is bounded from below) and takes two
different charges @);, 7 = 1,2 to be integer multiples of the charge quantum
e. If |¥,q,) are the corresponding ground states according to (Eq.2.18) and
0 < a <1, then [¥,) = /a|Paq,) + V1 — a|V4g,). Note that |¥,q,) are
orthogonal to each other (because of an integer difference of charge quanta)
and are common eigenstates of H, and Q The state |¥,) shows the prop-
erty (U,|Q|¥,) = a@i + (1 — @)Q2. Therefore we can obtain, E[A,aQ; +
(1 - @)Qs] < (Vao|Ha|Vo) = a(Waq,|Ha|Vaq,) + (1 — a){(Wag, | Ha|Vaq,) =
aFB[A, Q1]+ (1 — a)E[A, Q. It means for fixed A, the functional E[A, Q)] is
always a convex functional of Q as, for fixed v, the non-relativistic E[v, N| was
always a convex functional of V.

Next, since H 4 has an affine-linear dependence on the external four-potential
At E[A, Q] for fixed Q is a concave functional of A#. After fixing Q one can
take A, Ay for which the I:IAi are bounded from below and 0 < o < 1. Then
H, A1+(1—a)A, 18 also bounded from below, namely

ElaA; + (1 —a)A,, Q] =
= inf { (W[ Ay, [9) + (1 — 0) (| Hy, | 0)

(Qw) = Q} >
> (a)inf {(W'|f4 ) | (¥]QI¥) = Q} +
+ (1= ayinf {(W" | Ha ") | (01QN") = Q} =
= aE[A1, Q]+ (1 — a)E[As, Q). (2.19)

The third simple but important fact is the gauge invariance of the ground
state W 4o with respect to addition of a scalar constant to the potential,

AY 5 A% 1w E[A, Q] — E[A, Q] + cQuw. (2.20)

The four current density J* is a dual variable of the external four vec-
tor potential A, (note that J* is a function and j* is an operator). Using
mentioned convexity property and the gauge invariance, one can obtain the
relativistic version of the Hohenberg-Kohn variational principle, what is called
also Hohenberg-Kohn-Rajagopal variational principle,

S/d3rJ0 = Q}. (2.21)

We can present the four current density J* in terms of the new variational
quantities, bispinor orbitals 1, (7) and orbital occupation numbers ng. The
four-current density reads as J* = ¢, ngtbpy ey, where (Y |thy) = O and
Q@ = —e ), ny is the total electron charge, if all 1)) are in the electron sector.

E[A, Q] = inf {H[J“] - e/d?’rJ"Au
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The current density functional H|[J*] of the Hohenberg-Kohn-Rajagopal
variational principle may be split into:

H[J*] = K[J*] + L][J"], (2.22)
with )
K[JH] = Igcl,inl}c{kwk,nk] ‘ cZnu/m/“wk = J“}, (2.23)
and
£ = / Br I (1) P(JH(x), VI (r). (2.24)

If k[ty, ny] is explicitly given, then L£[J#] = H[J*] — K[J*] is also defined.
One should note that the form of (Eq.2.24) is already a model approximation
and there is no an exact form for L£[J#]. However, it is commonly called the
local density approximation, if P is assumed to depend on the electron density
JO or the spin density.

Substitution of the two previous expressions into (Eq.2.22) yields the rela-
tivistic variational principle for the ground state energy F[A, Q)] in the external
four-potential A, (r):

B[4, Q) = min {K[tse,mi] + £]c Y mithr v | -
Tk k

—ecznk<¢k|70’Y”Au|¢k> I {(Wk|vr) = Ok, —eznk = Q} (2.25)
k k

It has to be clarified that the k[, ng] and £ [c Dk nkd_)kfy“wk} are taken for

kinetic and internal energies. In a many-body system the internal interactions
are Hartree-Fock (HF') and correlation interactions. The next two sections are
devoted to these two interactions.

2.4 Hartree-Fock interaction

For a non-relativistic system of N non-interacting fermions the wave function
can be constructed as a Slater determinant of the orthonormalized single-
particle spin-orbitals [32]:

1
\IISIater - \/ﬁ

Such a Slater determinant is perfectly anti-symmetric. Furthermore, it is
easily verified that the Slater determinant obeys the Pauli exclusion principle
[33]. For an interacting N-fermion system a single Slater determinant can of
course in general not be a solution of the stationary Schrodinger equation.

det|| ¢y, () (2.26)
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However, one can ask for the best Slater determinant approximation to the
true N-particle ground state, what minimizes its expectation value with the
Hamiltonian H. The corresponding minimum value estimates the true ground
state energy.

If one minimizes the total energy of interacting system in a Slater determi-
nant state and enforces orthogonality between the single-particle spin-orbitals,
the Hartree-Fock method emerges [32, 34]. In this context we will provide a
very brief description of the Hartree-Fock method, to define the physical ap-
proximation and the related equations for the orbital polarization corrections.

At self-consistency the Hartree-Fock wave function Wy is the Slater de-
terminant of single particle states. The Hartree-Fock energy is determined:

E =T 4 U 4+ wh, (2.27)

where THF is the expectation value of the operator ¢, and UYF is the expecta-
tion value of @ using the Hartree-Fock wave function:

The Hartree-Fock electron-electron interaction energy W can be written
as:

WHF — ¢’ < /d3rd3 /¢k( )bk (T )¢L'($')¢k’(w') _

_ji /ds 5,191(@) b (2) B} () de(2'). (2.20)

kkl |I’. - Ir.,|

Here k and k' sums run over all occupied single-particle states ¢, an asterisk
denotes complex conjugation and ¢} (2)d(x) = 3. ¢i(r,0)d(r, o).

It can be seen that the first term in (Eq.2.29), which in DFT in sloppy
manner is called the Hartree energy, is equivalent to the classical Coulomb
interaction between two charge densities. The second term has no classical
equivalent and is called HF-exchange energy. In DFT the definition of ex-
change energy is slightly different, as it is the same summation of integrals
but using the Kohn-Sham-Dirac (KSD) single-particle states instead of the
Hartree-Fock states. In this context, when referring to exchange energy, it will
be the KSD exchange energy. So that, the Hartree and exchange interaction
energy functional, using KSD bispinors 1), is given by:

Fo_ éannk’/d?’rd?’r’d_}k(r)wk(rmk'(rlwk'(r,) —
2

kkl |T - rl|

e? 3. Yk () (r) P (r') i (r')
—5 annk/ /d rd°r ) (2.30)

k! [ — 7|




2.5. CORRELATION INTERACTION 15

with iy, = w};fyo. Furthermore, the Hartree-Fock interaction has to give leading
contribution to the current-field interaction term, therefore we can conclude

that the HF four-potential can be presented with a scalar potential, namely
as AjF = (VIF,0).

2.5 Correlation interaction

In the context of many-particle physics, the word correlation is used in a
narrower meaning and is reserved for particle correlation due to interaction
and beyond exchange. For interacting systems, both exchange and correlation
contribute to the total energy. Therefore, the Hartree-Fock energy is not the
correct ground state energy, as one Slater determinant does not provide enough
variational freedom to expand the entire Hilbert space of a set of fully inter-
acting fermions. The difference between the exact ground state energy and
the Hartree-Fock energy is called as correlation energy in quantum chemistry:

There is a good interpretation of why the correlation energy is always nega-
tive. The mathematical reason is the variational argument; Further variational
freedom must lower the energy compared with the HF energy. A physical in-
terpretation of this is that the Hartree-Fock method relaxes each one-electron
orbital in the mean field of the other electrons and the energy is then calcu-
lated as an integral over these orbitals. In reality two electrons in overlapping
orbitals will with great force push each other away if they get too close. This
depletion in the electron density in the vicinity of (increased density further
away from) any electron is referred to as the correlation hole. The electrons are
thus on the average a little further apart than estimated by the HF method.
This lowers their repulsive energy, thus the exact energy should be lower than
the HF energy. There is also an enhancement of kinetic energy by correlated
motion. The Schrodinger variational principle ensures nevertheless, that the
total energy is lowered by correlation.

Whereas all other quantities discussed so far are easy to obtain (in the
sense that they are well defined and can be found for a medium sized system in
relatively short time on a computer), the correlation energy is a very difficult
quantity to calculate. This is because the correlation energy is so directly
related to the degrees of freedom in Hilbert space which can not be spanned
by the single Slater determinant. The large majority of wave function methods
tries to span the Hilbert space by introducing multiple Slater determinants and
including the unoccupied Hartree-Fock one-electron orbitals in this expansion.
The ultimate goal of this would be to give a correct representation of the
full electronic wave function. The wave function of N electrons in the Born-
Oppenheimer approximation in which the nuclei are fixed at their positions,
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can be read as a 3N dimensional complex function with N bispinor indices. The
multi-dimensional search of such a wave function is prohibitively expensive
from a computational point of view for even very small systems. This is the
motivation for looking at density functional theory.

Since the correlation energy shall contribute to the current-field interaction
term, in the variation of the four-current density the correlation four-potential
Aff = (V¢ AY) emerges as a functional derivative to the correlation energy
functional.

2.6 Kohn-Sham-Dirac equation

Taking the Hartree-Fock (HF) expression for k in (Eq.2.25) yields:

Kbk, me] = > (| — icoe - 'V + B[} + W, (2.32)
k

and the local spin density approximation E€[J#] for £. This decision is mo-
tivated by the idea that the spin polarization is more directly related to the
fermionic symmetry than the orbital polarization. After variation of (Eq.2.25)
we arrive at the KSD equation,

[—ica-V + Bc* — ecBy* (A, + (52[1HF + Ag)] Yy = Vrep, (2.33)

where —ec(ATF4;) (r) = (VI (r) is the HF potential operator, and

—eAS(r) = %ET[({Q;], (2.34)

is the correlation four potential. To get rid of the nasty vector potential,
we apply Gordon’s decomposition of the three-current density J figuring in
J* = (cn, J) and in the stationary situation may be written as:

J=I+VxS§, (2.35)

with the orbital current density

I(r) = 7 me(~ Re (d(r)iVis(r) + Alr)du(r)o(r) ), (236)
and the spin density,

0 o

The total stationary current density J must have zero divergence due to
charge conservation. Since the divergence of the spin current density vanishes
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by its very structure as a curl, the orbital current density must also be di-
vergence free: V - I = 0. Once more we take the advantage of including our
system in a finite torus T°, with periodic boundary conditions: the charge
flux through its surface is zero, such that I vanishes there. As a consequence
it may be expressed as a curl of some vector field L, to be visualized as an
“angular momentum density”:

I=(1/2)V x L. (2.38)

Recall that an orbital angular momentum density cannot really figure in
quantum mechanics because, due to Heisenberg uncertainty principle, position
and momentum cannot be simultaneously measured at the same time. Accord-
ingly, above equation defines L only up to an arbitrary additive gradient term.
The total current density may then be expressed as:

ced = LV xm=-fVx (L+25), (2.39)

Ho 2
where m has the dimension of a magnetization density, related in a non-
renormalized way to the angular momenta by the Bohr magneton (up =
toe/2). Note that except for the non-relativistic case, the decomposition of
the current given above is formal, which is also indicated by the appearance of
ideal gyro-magnetic factors. Moreover, what was said above on the ’angular
momentum density’ refers likewise to the orbital part of the magnetization
density.

The four-current density is now given by J* = (nc¢, =V x m/e), and hence
the functional E€[J] may be rewrite as a functional E€[n, m], which it yields
the mechanical correlation potential acting on an electron:

SEC[JH]

VC = CAOC = 7{5!]0(7.) , (240)

and the magnetic correlation field:2
poHY =V x A%(r) = /d?’r'é(r' —r)V' x A%(¢') =
= —/d3r'[V'5(r' —7r)] x A%(r') =
§J(r') 0EC 1 SEC

= | Prlepg———L—— = pg———. 2.41
/d " et dm(r)dJ(r')e 'uoém(r) (241)

So that finally we can obtain:

SEC[JH] SEC
—eAC(r) = ——1 HC(r)= ——
) =5mm = H =5y

Writing (Eq.2.39) formally as —epoJ(r') = [dPrd(r' — r)V x m(r), it finds
—epgdJ (') /om(r) = 0(r' —7)Vx = —[Vi(r' —7)]x = [V'é(r' —r)]x.
1106J (

(2.42)
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where H®(r) is a local field and it is simply a function of the position 7.
However, it depends also functionally on m, possibly in a most non-local way.
This yields the alternative KSD equation:

[~ico ¥+ B+ V() + VI 4 V() | (r) —
. 5711(7*’)
oyk(r)

where V(r) and H(r) are possible external potential and external field, re-
spectively, and

sm) (6L
51/_%("“) = —UB (m + b (r' — )y (7‘)) . (2.44)

—= [ & (H(r') + Hc(r'))

- = 7/)19(7‘)8]‘; y (243)

Here, we have to cope with the HF operator and with the non-local term
SL(r") /8y (r). The HF operator can in most cases be replaced by the approved
LSDA approximation, VI ~ VH(r) + VX (r), where V¥ is the Coulomb
potential of the electron charge density (which includes the self-interaction of
orbitals) and V* is the LSDA exchange potential spin matrix:

Vig(r) = V3(r) + us H™(r) - B2, (2.45)

With the above approximations, the scalar VX may be again combined
with VC into the LSDA expression for VXC and the action of H* may be
combined with the action of H® on the spin part of m into the LSDA expres-
sion pug H*C(r) - B (r).

This is known to work well except for the cases of strong local correlation,
and except for the semiconductor gap problem in which corrections to the
scalar exchange potential VX must be introduced. In the rest of the H®
expression, the magnetization density m has to be replaced with —ugL, the
remaining term which is not contained in the LSDA expression. Corrections
to VXC and HXC are included into the full KSD equation:

—ico-V 4+ BE +V(r)+ VE(r) + VXC(r) + uppT - (H + HXC)]%(T) -

~ MB”% / @ (H(') + HO(r)) - gik(z;; — (r)es. (2.46)

According to (Eq.2.38), the angular momentum density L(r) is a gauge
freedom vector field. The crucial problem remaining is to find a suitable ex-
%;k((?;“’)) , which it has to described properly the orbital magnetism of

the considered system. In the next chapter, a quasi-local functional expression
for L[yy] will be provided.

pression for
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2.7 The local density approximation

The relativistic density functional theory presented above is exact in princi-
ple, however the density functionals EX“[n(r)] and VX“[n(r)], in which all
complications of the many-particle problem are hidden, are not exactly known
and must be approximated. The widespread use of density functional based
calculation of physical and chemical properties arises from the fact that ap-
proximations for EX¢ and VXC have been found which are both simple and
accurate enough for practical applications.

A rather simple and remarkably good approximation for inhomogeneous
system is the so-called local density approximation (LDA), where it replaces
the exact functional EXC by

EXfn) & Byl = [ n(r)efS, (n(e))dr. (247
where X5, (n) is a function of density. This function is used in above equation
locally at each point r with the value n = n(r) of the density at this point.
The LDA states for regions of a material where the charge density is slowly
varying, the exchange-correlation energy at that point can be approximated
by that expansion, what is derived for a locally uniform electron gas with the
same charge density. The function &5, (n(r)) can be spilt into two terms,
exchange (¢*) and correlation (¢%). The exchange part is given by

3.3
Xy — _29\1/3,1/3 92.48
X(n) = —3(5) Pl (2.49)
and can be obtained by the Hartree-Fock method, which neglects correlation,
but includes exchange. The exchange potential in KSD equations follows from

the previous equation:
3

VX(n) = —(;)1/3711/3. (2.49)

The polarization dependence of X5, is more difficult to calculate. Fol-

lowing a suggestion of U. von Barth and L. Hedin [35], the spin polarization

dependence of the exchange and correlation energy of the homogeneous elec-

tron liquid is generally interpolated between the paramagnetic (£ = 0) and the
saturated ferromagnetic (£ = 1) cases and can be approximated by:

e¥%(n, &) = £%(n, 0) + [£%%(n, 1) — £%°(n, 0)] f(€), (2.50)
where £ is the relative spin polarization degree and is given by:

n n

&=

where n(1) and n(]) denote the up and down spin densities and S, is the spin
magnetization density, which in collinear approximation is assumed to aligned
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in z-direction. The f() is the von Barth-Hedin interpolation function and it

is given by:

(L+5 —(1-§)5 —2
23 — 2

Most accurate results for the correlation part have been obtained by quan-
tum Monte Carlo method [36] and reliable parameterizations for these results
are available in [37, 38, 39].

Although the local density approximation is extremely simple, it is surpris-
ingly accurate and forms the core of most modern DFT codes. It even works
reasonably well in systems where the charge density is rapidly varying. How-
ever it tends to under-predict atomic ground state energies, ionization energies,
and it gives too short bond lengths.

f(&) =

—l<e< (2.52)

2.8 RDFT and orbital magnetism

In this section we provide arguments that how RDFT can be related to the or-
bital magnetism. Novel phenomena caused by strong coupling among spin, or-
bital, and lattice degrees of freedom are the central issue in the physics of solid
state in the last few years. One of the modes, when this coupling is mediated by
relativistic spin-orbit interaction leads to the orbital magnetism, which is man-
ifested into different fields of study such as, the magneto-crystalline anisotropy,
magneto-optical effects, magnetic x-ray circular dichroism (XMCD), etc.

In 1929, P.A.M. Dirac himself thought that relativistic effects would be ”of
no importance in the consideration of atomic and molecular structure” [40],
because the average valence-electron speeds are small. As it is discussed by P.
Pyykkd, Dirac’s argument was wrong for two reasons [41]: (i) The valence s and
p electrons do have high speeds close to the nucleus. Due to mass enhancement,
their shell radii shrink and speeds are increased. Since relativistic effects are
in lowest order proportional to v?/c?> Z?/c?, Dirac’s argument considering the
average speed is invalid. (ii) The shrinking of s and p shell radii leads to a
more effective screening of the nuclear potential. Thus, the d and f states,
possessing low weight in the inner regions of the atom, are destabilized. One
should add (iii), that relativistic spin-orbit coupling is the origin of Hund’s
third rule. To give a few examples for the importance of relativistic effects on
the valence electronic structure [6], we note the following facts:

1- Due to the relativistic s and p shrinking, the energy level of 4f states
in lanthanide atoms or localized-4f solids are raised by 5 eV, in comparison
to the 6s states. In the early actinide atoms this energy shift (5f vs. 7s) is in
the order of 9 eV.

2- ”Non-relativistic” gold would be white, like silver.

3- The single-particle spin-orbit coupling is considerably large in the lan-
thanide 4f shell (0.5 ... 1 eV) while in the actinide 5f shell (1 ... 2 eV).
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Let us consider the question, how orbital magnetism comes into play in
the case of localized 4f states. The spin-orbit coupling in the lanthanide 4 f
shell is stronger than the exchange field originating from the spatial overlap
between 4f and 5d charge densities [6]. Thus, the total angular momentum J
of the 4f core shell is a good quantum number and therefore more or less an
atomic picture will be arise. In this picture, a large total orbital moment is
figured in the atomic shells with more than one electron or hole.

The situation is different for itinerant 3d states. Here, the exchange and the
ligand fields (including band dispersion by hybridization) are much stronger
than the spin-orbit coupling which acts merely as a perturbation. The spin
polarization breaks the time reversal symmetry and orbital moment occurs
which is still small (~ 0.1up /atom).

The most complicated case is presented by the itinerant 5f states of light
actinide where the spin-orbit coupling and the spin splitting are of the same
order of magnitude. Thereby, large spin and orbital moments are observed,
which partially compensate each other. The fact that the band dispersion is
smaller than in 3d metals, gives reason for a quite subtle interplay between lat-
tice and magnetic structure that results, for example, in a frequent occurrence
of non-collinear magnetic ground states [42].

From these arguments, orbital moment ordering is a relativistic effect in
any case. Hence, the non-relativistic DF'T cannot be expected to serve as
a sound basis for the consideration of orbital magnetism and its relativistic
generalization is necessary. In the framework of LSDA, the ordinary density
functional theory does not provide any term that could lead to the formation
of an orbital moment. Current and spin density functional theory [12] would
provide a natural starting point for the description of orbital magnetism.
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Chapter 3

Orbital polarization corrections

Magnetic dipoles or magnetic moments can often result on the atomic scale due
to the movements of electrons. In an atom each electron has magnetic moments
that originate from two sources. The first is the orbital motion of the electron
around the nucleus. In a sense this motion can be considered as a current
loop, which results in a magnetic moment along its axis of rotation. The
second source of electronic magnetic moment is due to a quantum mechanical
property called spin.

In an atom the orbital magnetic moments of some electron pairs cancel
each others. The same is true for the spin magnetic moments. The total
magnetic moment of the atom is thus the sum of all magnetic moments of
its individual electrons, accounting for moment cancellation between properly
paired electrons. For the case of a completely filled electron shell or subshell,
the magnetic moments completely cancel each other. Thus only atoms with
partially filled electron shells have magnetic moment. The magnetic properties
of materials are in large part determined by the nature and magnitude of the
atomic magnetic moments.

In hydrogenic atoms the possible interaction is the Coulomb interaction
between the nucleus and the electron and it is the origin of the internal mo-
tion for the electron in the hydrogenic atom. One should note that due to
the Heisenberg uncertainty principle, the motion of the electron cannot be es-
tablished by its position and speed, simultaneously. However, in the classical
physics, one can assume an electron as a charged particle in a circular orbit is
like a current loop, where the current is the charge times the frequency of the
orbit: I = ¢qf. This current loop creates a magnetic moment whose magnitude
is the current times the area of the loop: M = IA = 7r2qf, where r is the
radius of the orbit. The angular momentum of the electron orbit is defined as,
L = m,rv = 2rmer?f, where v is the speed of electron. So that the orbital
moment of this ”classical” electron is given by,

M=-11p

= o (3.1)

23
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Recall that the spin and orbital moments of the electrons are quantized.
and above equation also has to be quantized. Since the electron has negative
charge, we expect the direction of orbital magnetic moment to be opposite to
that of L.

We know that in atomic physics the total moment is a sum of spin and
orbital contributions. As it was discussed the orbital moment results, in a
classical picture, from the orbital motion of the electron around the nucleus.
Compared to the situation in a free atom, where the orbital moment can be
even larger than the spin moment, in a solid this motion is of course restricted
in presence of other atoms. Hund’s second rule predicts in atoms maximum
orbital angular moment L compatible with maximum spin multiplicity. As
it is known, the orbital moments of atoms more or less are quenched when
incorporated into a crystal. The main reason is that the delocalization of the
electrons due to the overlap of the wavefunctions with the neighboring atoms.
The delocalization leads to a reduction of the kinetic energy and is an impor-
tant contribution to the binding energy of the crystals. The hybridization of
the electron orbitals with the neighboring atoms causes a broadening of the
atomic energy levels to bands. In most cases the bandwidth is larger than
the relatively small energies governed by Hund’s second rule. Then, in con-
trast with an atom, all m;-states may be occupied with equal probability in a
solid. Therefore the orbital moments may reduce in the solid. A second reason
for the suppression of the orbital moments is the symmetry reduction of the
ligand-field potential induced by the presence of neighboring atoms. The to-
tal potential acting on the electrons in the crystal has thus a lower symmetry
than in an atom. Then the orbital angular momentum L is not an appropriate
symmetry operator to calculate the related orbital moments (azimuth quan-
tum numbers [ are not good quantum numbers). The eigenfunctions must be
labeled according to the irreducible representations of the symmetry group of
the crystal, which in general have low dimensions. Thus, in these irreducible
representations the related orbital moments are strongly reduced or even to-
tally quenched. Such intrinsic differences between atomic and bulk behaviors
are characteristic for systems developing itinerant-electron magnetism. Con-
sequently, investigations of orbital magnetism on the way from the atom to
the solid are prime important. As it was discussed, current density functional
theory can provide a practical way to achieved properly the individual orbital
and spin moments in the considered solid, what is subject of this context.

3.1 Definition of spin and orbital moments in
DFT

The spin density is well defined in relativistic spin-DFT. Using (Eq.2.37), one
can define the total spin moment in a collinear system which is simply read as
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an integral over spin density S:
M, = / 2 S(r)d’r = / (nt(r) = n*(r)) dr, (3.2)
1%

where n'(n*) stands for spin up (down) density. However this quantity is
comparable with those values obtain in experiments. The M, value depends
of course on the quality of the XC potential (LSDA) that is used for an actual
calculation. The spin magnetization density S(r), is clearly a consequence
of the imbalance of electrons with spin-up or spin-down and therefore, the
quantity defined in equation above is called spin moment.

From relativistic DF'T, first term in KSD equation (Eq.2.46) contains spin-
orbit coupling implicitly, which provides a mechanism that leads to orbital
magnetism. The electron, traveling on a classical trajectory around the nu-
cleus, experiences the magnetic field originates from the screened nucleus. This
field couples to the magnetic (spin) moment of electron and thus, leads to a
preferential orientation of orbital motion. In analogy with (Eq.3.2), the total
orbital moment can be defined as an integral over orbital density L(r),

Ml:/d3rL(r), (3-3)

where L is introduced in (Eq.2.38) and the integration extends over the total
volume of the sample. The provided L vanishes on the boundary of the range
of integration V' and contains a large gauge freedom.

It has to be pointed out that the calculated orbital moments in the frame-
work of LSDA are typically too small compared with experiment [21, 42, 43,
44, 45, 46]. Besides many limitations of the LSDA caused by the homogeneous
electron gas picture for exchange and correlation energies, the failure may im-
ply an even more functional problem in this approximation. Based on LSDA
in the spin-DFT, the total energy Erspa[n(r), ms(r)] is the explicit functional
of the charge n(r) and the spin magnetization m(r) densities. Even if an
exact SDF'T was able to include all magnetic orbital effects implicitly, there
is no guarantee that the orbital-related quantities can be reproduced explic-
itly on the level of fictitious single-particle Kohn-Sham-Dirac equations. The
explicit formulation for orbital magnetism gave rise to the concept of orbital
polarizations (OP) in band structure calculations. The purpose of this chap-
ter is to clarify the fundamental feature, origins OP in the problem of orbital
magnetism.

3.2 Semi-empirical orbital polarization correc-
tion

In order to improve the small orbital moments calculated in the LSDA, an
ad hoc orbital polarization correction was suggested by M.S.S. Brooks [19] in
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1985. An extended version was proposed by O. Eriksson et al. [20, 21]. In
this context it is called as OPB scheme. They put forward an idea to connect
the OPB entirely with Hund’s second rule. The concept of OPB, empirically
is taken from the theory of open shell atoms within the Russell-Saunders cou-
pling, where it is responsible for Hund’s second rule. It is proposed an ansatz
for OPB functional, which is based on two assumptions: (i) OPB is propor-
tional to M,;?; (ii) it is derived by Racah parameter I®2#"[54, 55]. The expec-
tation value M, and the atomic I®#2" values can calculate self consistently
from the KS orbitals including the effects of the OPB functional. The OPB
correction has attracted considerable attention in the computational electronic
structure community because of its simplicity and relatively encouraging re-
sults obtained along this line for several classes of metallic compounds (see for
instance [21, 47, 48, 49, 50, 51, 52, 53], and upcoming chapters).

The energy functional OPB can be added to the total LSDA exchange-
correlation energy functional and is given by,

EOFPB _ _% Z IiiacahMlQa’ (34)
g

where M, is the orbital moment of the spin-o d(f)-subshell. We use spin
dependent orbital moment M, instead of M. One should note that for M,
only one spin channel will be considered at a time due to Hund’s first rule. The
Racah parameters for 3d and 4f electrons are called B and E3, respectively.
The Racah parameters can be expressed in terms of integrals over the single
particle wave-functions and are recalculated for each iteration step. They gain
following expressions:

IRaah(3q) = B, = (9F? — 5F%) /441, (3.5)
5 6 91
IRNAf) = B = (oo F2 4 ——F — ————F) 3.6
(4f) ‘ (225 ot 1089 7  7361.64 7): (36)
where F* are called Slater integrals and given by:
rk
Ff = /drirf/drjr?@g(ri)k—ilég(rj), (3.7)
r>

where r. = min(r;,r;) and rs = maxz(r;,r;) and ®, are radial part of 3d or
4f atomic wave functions [32, 56, 57].

Applying this energy functional to solids one can find that it leads to energy
shifts for the single particle states with different magnetic quantum numbers
my, according to:

UT?L}DB’U — 5EOPB/5n;tnl — _IRacahMlaml, (38)

where ng7, are the occupation numbers for the m; states with the spin charac-
ters o.
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It has to be mentioned that there are some discrepancies for the OPB ap-
proach. For instance, if one apply the OPB correction to actinide compounds,
the evaluated orbital moments are overestimated compared with experiment
[58]. A second argument follows from the fact that the OPB is a semi-empirical
correction and there is no direct improvement for this scheme based on the ba-
sis of DFT. For this latter problem, an effective justification of OP corrections
in the framework of relativistic density functional theory will be given in the
next section.

3.3 Orbital polarization energies in KSD the-
ory

In the previous section, a semi-empirical OP correction was discussed where
an empirical OP correction was added to the total energy functional. However,
it was also mentioned that so far, density functional theory has been lacking
a deeper theoretical basis of orbital polarization. In this section, a systematic
derivation of orbital polarization corrections from four-current density func-
tional theory is presented. The formulation is an extension to the early work
of H. Eschrig et al. [23] and the evaluated correction is called OPE.

In the previous chapter, the KSD equation was introduced in its complete
form. The last integral gained in the KSD equation (Eq.2.46) contributes to
the orbital polarization corrections:

_OL(r")
51/_Jk(T)

The first part (external field) is the diamagnetic term, and the second is
the correlation term. In the following we skip the diamagnetic term. The spin
polarization dependence of the correlation energy ¢ in LSDA was suggested by
U. von Barth and L. Hedin [35] with an interpolation between the paramagnetic
(£ = 0) and the saturated ferromagnetic (£ = 1) cases. The resulted expression
can be approximated via (Eq.2.50):

s / &' (H() + HOM)) . (3.9)

ng

£%(n,€) =% (n,0) + [e(n,1) — % (n, 0)]£(£). (3.10)

Within 2 % accuracy in a relevant range of spin polarization degree (—0.4 <
¢ < 0.4), the von Barth-Hedin interpolation function can be approximated
according to:

f(€) ~0.855 £2. (3.11)

In the framework of LSDA, the correlation energy functional has the fol-
lowing form:

E° = /d?’r n €%(n, &). (3.12)
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According to (Eq.2.42), the spin correlation field in SDFT and in collinear
LSDA can be evaluated as:
SEC  SEC¢ mgs  0¢%(n,§) mg

HO ) = = St = 0 Ty = F() 25.(r). (313)

where mg = 25,(r) and S,(7) is the spin density, in the z-direction. The
function F(n) in the basis of the LSDA is given by:
C(na 1) — gc(n’ 0)

Fln)=2° . . (3.14)

In the spirit of CDFT, where m = mg+m; = —ug(L+2S), we can split
HC(r) into its orbital and spin components, namely H(r) = H"(r) +
H%3(r). Therefore in analogy with (Eq.3.13), the orbital correlation field
may be read as:

HS"(r) = F(n(r))L.(r), (3.15)
and one can get the orbital correlation term,
5 3./ C,S (! C,L,.t oL (,,.I)
— [ &’r'{H> H™ — . 3.16
- [ @1 (HESG) + HOM) ) (2 (3.16)

Although the derivations up to here were fully relativistic, at the end we
are mainly interested in leading contributions of zeroth order in 1/c. All the
following expressions related to OP are understood in this non-relativistic limit.
The KSD equation includes automatically the kinematic spin-orbit coupling.
In this limit, the directions in spin and orbital spaces are decoupled, and hence
no vector coupling between spin and orbital quantities should appear in the
non-relativistic KS equation. Hence, for the full non-local and non-collinear
theory we demand [ d*r H%®(r)-L(r) = 0 in leading order in powers of 1/c.
In view of (Eq.3.13) and (Eq.3.15) this implies,

(S|L) = /d3r F(n(r))S(r)-L(r) =0, (3.17)

which also means [ d®rS(r)-H " (r) = 0. The LSDA expressions of (Eq.3.13)
and (Eq.3.15) do not obey the last relation. They also do not yield H C asa
curl according to (Eq.2.42). We correct H%" according to:

(StpalLLpa)
(SLDA|SLDA) '

We call it LDA here because it implies both S and L. This yields the final
orbital correlation term

o€l
2nk

H® =Hyp;, — Hip, (3.18)

' HO  (r') e —2 (3.19)

which is independent from the direction of S.
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3.3.1 The orbital density L(r)

Now, we introduce an explicit expression for the orbital density L(r) as a
function of the particle density. The orbital current I(r) = (1/2)V x L(r) can
be read as:

I(r) = 37 me(~ Re (d(r)iVus(r) + Alr)u(r)o(r) ), (3:20)

k

where A includes both the external A°** and the correlation A® magnetic
vector potentials. We apply the collinear approximation, H = e,H,L = e,L,
and symmetric gauge, A(p, ¢, 2) = e,A(p, z). Thus,

p
pA(p,z) = ,uo/ do'p'H(p', 2). (3.21)
0

Taking local basis functions ¢, ~ ¢"™? with vanishing small component, the
¢-averaged current is

e - e, 0L
=2 D k(D ko, (r) P CWeliom Yo, ) + pAIBe(r)n(r) ) = =55,
k my
(3.22)
where the ¢-averaging removes the off-diagonal terms ~ e*(™—"™)%_ Integration

over p yields

L) =23 [ (3 2t hom )l ) 1+ AG () )

(3.23)
This expression should be useful for unfilled inner shells in a solid while for
outer valence electron states the orbital currents from neighboring atoms to a
far extent cancel each others like in Peierls’ argument on diamagnetism of the
homogeneous electron gas [59].

3.3.2 Orbital magnetism in an intra-shell with Hartree-
Fock interaction

Additional to the correlation energy, orbital magnetism also can be understood
as a contribution of asphericity for the charge density for an open valence shell.
It has to be pointed out that an atom with full spherical symmetry dose not
arise any orbital moment. For instance the orbital moment of s electrons
are vanished. In a quantum regime, as it was discussed in Chapter 2, one of
the interactions which can be involved for the many electron systems is the
Hartree-Fock interaction. The Hartree-Fock interaction is subject to form an
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orbital polarization in an unfilled shell of an atom. In the Dirac notations the
Hartree-Fock energy in a spin-o subshell can be given by,

1 occ. 1 1

W = mymy|—|mym;) — (mymj|—|mym 3.24
= 5 > [t — (]|, (324
mym,
where like in (Eq.2.30) the first term is the Hartree energy and the second term
is the exchange energy. The |m;m]) denote two Kohn-Sham electron states
with magnetic quantum numbers m; and my, respectively. We can expand the

1/r;; in terms of complex spherical harmonics functions (see Appendix B):

1
f R ,,,]| Z Tk+1 2/€ 11 Z Ykml Ykml (TJ) (3-25)

TZ] m;=—k

Substitution of above equation in to (Eq.3.24), yields the Hartree-Fock
energy in a more explicit form, namely:

occ.

1
WhF = 5 Z <F°(1 — Gyt )+

mym;]

4
+ZF% | OV YakolYim) Vg Yosal Vi)~

(=)™ Vi Vot Vi) Yt Yot mm,)} ) (326

where (Yiym, |Yi,.ms|Yisms) are the Gaunt coefficients [60] ' and F* are Slater in-
tegrals which were already defined in (Eq.3.7). The (m, m') spherical averages
for d and f shells with N, electrons in the spin sub-shell yield [57, 62]:

1 1

_1)
d __ Yo\Ve = 1m0 o2 L opdy
Wo = 2 (F e 14F)
l
Ny(N, — 1
_ N(No—1) 5 )(FO—Za;F%), (3.27)
k=1
Ny(N, — 1) 2 1 50
f_ Te\tVe 0 “ 2 - o4 6y
Wo = 2 (F nl gl 1287F)
l
Ny(N, — 1 .
= %(FO =) @ F*). (3.28)
k=1

!The Gaunt coefficients are given in terms of 3j-symbols by, (Yi,m,|Yis,ma|Yisms)
1
(=™ ((211+1)(2IZ:1)(2Z3+1)) ’ ( h I ) ( hola s ), and for the properties

—myi M2 M3 0 0 0
of 3j-symbols see Ref. [61].
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After extracting the W expression from the Hartree-Fock energy WY one
can obtain the Hartree-Fock orbital polarization energy with remaining term
for a given spin sub-shell with N, electrons:

HF _ yj/HF I _
AEqGp =W, =W, =
occ.

l
-1 2
-y k< Moo = g 3 [(nm,mk,omm)mm;\Y%,omm;)—

2k+1

mym;
(1™ Vo Vot Vi) Vit Yoot mm,)} ) (329

In most implementations of the KSD equation for different electronic sys-
tems, a spherical averaged Hartree-Fock potential is used. However when one
considers the orbital magnetism of the system, the contribution of the Hartree-
Fock orbital polarization has to be taken into account.

3.4 Complete KSD equation

A careful treatment of the functional derivative in (Eq.3.19) with L(7) from
(Eq.3.23) [see Appendix A] results in a number of additional correlation terms
for the KSD equation:

[—ica V+BE+V(r)+VEr) + V() +CY(r) +

+(na (B () + () + €)) - 6. alr) +
+8 Z oo (O |¥) Oy (1) = Wi (T e (3.30)

where CV is a scalar potential correction and C~ is a correction to the XC
field, while the C’C L provide a non-local potential sensitive to OP. After using
definition n = Zk nkwkwk, they are given with following expressions:

CV(r) = 2/LB{§AC’L(T)AC(T) + /d3r"AC’L(r”)ﬁ(r”) X

SR e ) o

o’ / C( M
% _ 3,1 AC L 1\~ (2 0 /& 1 0H (,O,Z)
CE(r) —QMB/d P AC (7 )/0 T S CE )

CT(rJlZL — e/d?’T"AC’L(’r”)@ O, (T‘”)|2 + O((HC)Z) . (3‘33)

pll
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Figure 3.1: The expectation values of (CV), (C*) and C5* coefficients for 3d
(left panel) and 4f (right panel) ions.

In a full-potential treatment of LSDA, which is standard nowadays, V¥ +
VX also have some dependence on OP which has to be compared with the
HF results. Since in both cases the orbital occupation numbers have to be
0 or 1 (apart from degeneracies), the OP energies are to be referred to the
configuration average of total energies for all possible configurations of all
electrons of an atom with given z-component of spin. The difference between
the OP energy contributions of HF plus correlation part and of full-potential
LSDA,

E°PF = AEgp + AEST — AEG, (3.34)

should be provided by an effective OP potential correction in the KSD equa-
tion.
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3.4.1 Numerical results

For 2+ ions of the 3d elements and 3+ ions of the 4f elements, the matrix
elements (nlm;|CV|nlm;) and (nim;|C*>|nlm;) as well as the coefficients Cp:"
have been calculated for KS orbitals. We find (CV) < (C¥) << C5F. In the
3d case, (C¥) is more than one order of magnitude while in the 4f case two
orders of magnitude smaller than Cy" (see Figure 3.1)]. Also, the second term
of C’C L' (Eq.3.33) is in the second order to HC , which is comparable with the
expectatlon values of CV and C* and therefore can be neglected.

In view of the still approximative character of the whole approach, one can
hence neglect all correction terms except for the leading term of CSL;L. This is
due to the smallness of H® and A®. All corrections except the leading term
of ot are of second and higher orders in the correlation field, H. Thus
we arrive at the following result for the orbital polarization corrected KSD
equation:

—ica -V + B¢ + Vispa(r) + psHrspa (7) B, | ve(r) +
+/SZUOPE G [ V) Py (1) = () (3.35)

Vispa =V + VI 4+ Vs,  Hispa = H + Higha-

The UOPE includes Hartree-Fock, LSDA and correlation correction via (Eq.3.34).

The leadmg correlation contribution to voF™" is

Crp = ¢ / d37‘AC’L(T)%|<,0m, ()2, (3.36)

where A% has to be taken from (Eq.3.21) with HSL from (Eq.3.15) to (Eq.3.18)
and the first term of (Eq.3.23) for L. The orbital correlation energy to the total
OP energy to leading order is now,

ApeL = kB / drHOL(r)L(r). (3.37)

Corrections of order 1/c should in most cases even be small compared
with the spin-orbit contribution following from the kinetic energy operator in
(Eq.3.35). The results for the OPE energy (Eq.3.34) and its separate compo-
nents for free ions of 3d and 4f elements are shown in Figure 3.2. It compares
qualitatively with the results of J. Melsen et al. [63], who used the OPB cor-
rection. Our OP energies for lanthanide series indicated in Figure 3.2, are also
in semi-qualitative agreement with M. Higuchi et al. calculations [64], who
used the OPB correction.
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Figure 3.2: Orbital polarization corrections to the total energy of 2+ ions

of 3d elements (upper panel) and 3+ ions of 4f elements (lower panel): the

contributions to FOYE (black thick lines) according to (Eq.3.37) are denoted

by black thin lines (AESEP#), blue thin lines with bullets (AE®™) and red

thin lines with open circles (AESES). The EOFB values are shown with violet
dashed lines.
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The OP is generally expected to be dependent on the spin subshell filling
and on the subshell moment, where essential parts are second order in the
orbital moment. We represent the OPE functional with:

1
B0 = 23 T I(No)Miy, Mg = (el Sunio) 1 (Do |), - (3.38)
o k,m
where the I(N,), and N, are given by:

I(N) = 0N (@4 1) = V), Ny = S mellwulomel, (339

and o =1,/ denote the spin directions. The coefficients Y, slightly linearly
increase within a shell from left to right;

Y34 = (48---64) meV, Y4 = (19---22) meV. (3.40)

The final coefficient of the potential correction in the KSD equation becomes;?

1
v == I(Ny) Mygmy — 51'(1\5,)]\45,. (3.41)

Note that, for 1, 21, 2] + 2, and 4l + 1 electrons per shell the total energy
must be m-independent and hence the orbital polarization energy E°F must
be vanished. This is provided by Hartree-Fock, but not by LSDA and also not
by correlation correction and OPB correction (see Figure 3.2).

3.5 Conclusion

In summary, a systematic derivation of orbital polarization corrections from
the four-current density functional theory has been achieved (OPE). The re-
lated orbital polarization energies of 3d and 4f free ions are compared with
the results obtained by empirical orbital polarization corrections (OPB). Both
methods are equally simple to implement. Of course the OPE is apt to future
improvements of the correlation energy functional. In the next chapter, the
complete KSD equation together with its OP corrections will be consider as a
subject to orbital magnetism in solid.

2Note that I'(N,) = d{i(]f]\i")



36

CHAPTER 3. ORBITAL POLARIZATION CORRECTIONS




Chapter 4

The Kohn-Sham-Dirac equation
in solids

The aim of this chapter is to present practical expressions of the two different
orbital polarization schemes discussed in the previous chapter as additional
terms to the KSD equation. For this purpose, a short introduction into the
relativistic full potential local orbital method (FPLO) for electronic structure
calculations is given. It is based on the CDFT within the framework of KSD
equation. At the beginning we neglect the OP corrections and solve the KSD
equation. Afterward, we apply the orbital polarization corrections to KSD
equation and then as examples, we will calculate orbital moments of bee Fe,
hcp Co, and fcc Ni.

The main aspect of the FPLO is that the extended states are expressed
as a linear combination of local orbitals which are solutions to an atomic like
Schrédinger equation with spherically averaged potentials. The orbitals are
classified: states from different sites which do not overlap are treated as core
states and all other states having overlap are valence states. The calculation of
the valence states is modified by introducing an additional confining potential.
It serves to compress the ranging tail of the orbitals and finally increases
the accuracy, efficiency and performance of the scheme for calculating the
electronic structure. Details can be found in Ref. [65, 66, 67].

Since, the Dirac operator couples the spin and spatial degrees of freedom, a
separation into spin up and down states is no longer possible and the dimension
of the eigenvalue problem is doubled in comparison to the non-relativistic
theory. In addition, due to the four-component nature of the KSD equation
a larger number of real space integrations is required. These last two points
make the approximate variants of KSD equation so attractive for solid state
calculations.

On the lowest level, scalar-relativistic schemes allow for a very effective
approximative treatment of relativistic effects. One should keep in mind that
the label ’scalar’ refers to a class of approaches [68, 69] rather than a unique

37
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method. Their common feature is that they neglect the spin-orbit interaction
by averaging it out, the various approaches differing in this averaging proce-
dure. As a consequence, the solutions of the scalar-relativistic equations are
spin eigenstates with non-relativistic symmetry. Recall that for an adequate
description of the electronic structure of heavy elements and the certain aspects
of magnetism, like the magneto crystalline anisotropy energy or a number of
magneto optical effects, the spin-orbit interaction has to be included in the
Hamiltonian. In the following we discuss the practical implementation of the
relativistic FPLO-method.

The KSD equation for crystals when at the first step OP corrections are
neglected, may be cast into:

—ica+ V + B + VI + BE.BT | Wy (r) = Uy(r) &y, (4.1)

where ¥, is KSD state and V' is the effective crystal potential including the
Hartree potential V¥, the external potential V¢ of the nuclei and the exchange
and correlation potential V*¢. The B is the effective magnetic potential due
to the applied field B and the exchange-correlation field B*. In a collinear
approximation with the XC-field ug HX¢ = B"2 aligned along the (arbitrary)
z-axis. This equation neglects all orbital diamagnetic effects. Knowing the
functional V*¢ and B*¢, in the framework of LSDA, the KSD equation has to
be solved self-consistently to find out the ground state energy and the ground
state (spin) density.

In a local orbital method it is advantageous to use a strictly local language
for all relevant quantities, so that computationally expensive transformations
between different numerical representations are avoided during the self consis-
tency cycle. In the FPLO method, V¢ (r), B (r), the density n(r) and the
magnetization density m(r) = m(r)Z are represented as lattice sums:

fr)=)_ f&"(r—R—sl) y,(r — R—s)|, (4.2)
RsL

where f denote for all four scalar functions mentioned above and f4" are radial
functions centred at atomic sites s in the elementary cell defined by the Bravais
lattice vectors R. The y; are real spherical harmonics (see Appendix B) with
a multi index L = Im.

Hence, no shape restrictions are made for the potentials and densities, a
necessary condition for reliable calculations on open structures, usually referred
to as full potential. Of course the L-sum has to be restricted. In the current
implementation of FPLO, a cut-off momentum up to /., = 12 is used.

As starting point for the self consistency cycle we use a density n(r) and
magnetization density m(r) represented as lattice sum (Eq.4.2). These initial
densities may be either obtained from an atomic or a scalar-relativistic band
calculation, the latter choice reducing the number of iterations required for self
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consistency. From the density n(r) and the magnetization density m(r), the
crystal potential is given by

VA
Vcr dBr — Z 8 +
|r [P r — R — s
(VTXC[n( ), m(r)] + Vn(r), m(r)]), (4.3)

where Zg are positive charges located at sites s and 1, | denote spin directions.
The crystal XC-field can be read as

B(r) = % (Vi¥In(r), m(r)] = V€[n(r),m(r)]) (4.4)

The eigenvectors of the lattice periodic Hamiltonian of the KSD equation
are Bloch states |kn) with crystal momentum k and band index n. They are
expressed by the ansatz

kn) = 3 ck | |Rsv) R BrS), (4.5)

1
VN,
ue RSV

as a Bloch sum of localized atom-like four-spinor orbitals |Rsv) centred at

the atomic positions R + s and Cé’y,n are coefficient matrices. The label v =

(&, k, 1) contains a complete set of atomic quantum numbers in relativistic
notation and N, count the unit cells in the Born-von Karman torus. The
chosen ansatz includes only electron-like spinors. This ensures (i) a minimum
size of the matrix, namely twice the size of the non-relativistic problem and
(ii) a restriction of the solutions to the electron sector of the Hilbert space.
Inserting the ansatz (Eq.4.5) into KSD equation (Eq.4.1), we obtain a matrix
equation, HC'— SCE = 0, which has to be diagonalized to find out the related
eigenstates and eigenvectors.

In a minimum basis scheme, the proper choice of the local basis states
|Rsv) is crucial for accurate and efficient calculations, since the numerical
effort for solving the eigenvalue problem scales with the third power of the
number of basis states. A trick proposed by H. Eschrig et al. [70] is to obtain
the atom-like four-spinor orbitals | Rsv), where the local basis states are chosen
as solutions of a single particle Dirac equation which is given by:

HZ |Rsv) = [—ica+ V + Bc® + V§, + BE.BY| |Rsv) = |Rsv) egg,-
(4.6)
This equation includes a spherical and orbital dependent atomic potential,

Vel(r) = Va(r)+ Ve (r)
S dQVe(r —s)+ (5,,1,ﬂ (L> .4

4m |T—8|=r 2 To,s



40 CHAPTER 4. THE KOHN-SHAM-DIRAC EQUATION IN SOLIDS

It is defined as the sum of the spherical averaged crystal potential V¢ and
an additional confining potential term Vgﬁ”f , which is only applied to valence
states (denoted by the symbolic writing d,,). The atomic XC-field BY is the

spherical averaged of the crystal XC-field B = By,

B (r) = % /W_S:T dQ B (r — s). (4.8)

The confining potentials V2 (r) compress the local valence orbitals and
shift their energies, so that they come close to the valence band centers, thus
provide the optimized basis for the construction of extended states. They
contain orbital dependent variational parameters xy g defined as:

3
T T 2
ros = (P8)*, (4.9)

where ryy is the nearest neighbor distance of the nuclei in the crystal. The
parameters z g are independent from the lattice spacing and together with n
are used to adjust the local basis states such that the total energy is minimized.
The exponents 7 also depend on the power of positive charges Zg located at
the sites s and as a matter of experience the values of n are at the range of
4 <7 < 6. Of course, they have to be optimized for every states in an element.

4.1 Orbital moment and occupation number
in FPLO

The orbital moment M, is the total f)z expectation value of the [-shell. Al-
though we cannot say anything about the multiplet wave function from a
single particle theory, we can state that M; =) m, for maximum M, where

m, = <Zuz> is the expectation value of the v-th single particle z-component

of [,. The M, is not really a well defined number and must be approximated
by physical arguments. The orbital moment expectation value of the Kohn-
Sham-Dirac single determinant wave function is

M; =" Npn(kn | L, | kn), (4.10)

kn

where N, is occupation number of the Bloch state,! and now the orbital
moment becomes k—dependent. However the polar vector operator I, opens
the problem of coordinate origin and of course the angular momentum of an
extended state is a dubious concept. We formally proceed by expanding the

!'Number of electrons in the unit cell can be evaluated as N, = NLM > kn Nin-
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KS states into local basis. The band index n may be classifiable with respect
to spin, which is not indicated since spin is an approximate quantum number
in full relativistic calculations. Expansion of orbital moment M, defined in
(Eq.4.10) with the Bloch states (Eq.4.5) yields orbital moment per unit cell
as:

M, = Z Nin Z Z <Rsz/\l IR's' > 5 C";:/U, ik(R-R+s'-s
kn uc Rsv R s'v
(4.11)
We restrict these sums onto (the diagonal) onsite terms only and because
we focus to calculate the total orbital moment of a specific unit cell with its
individual components, therefore an approximate expression for M; can be

read as: N
M, ~ Z kn Z <sz/\l |su> Csyn C’S,,n (4.12)

'LlC
Sv
The orbital moment now is sum over all sites with the net occupation
weighted sum of the single orbital moments.

4.1.1 Projection arguments

The orbital moment may be derived by projection techniques. In non-orthogonal
basis one can define a quasi orthogonal projector onto states |i) by introduc-
ing the contragredient basis [i} = Y. [j) (S7");; with (k|i} = d;; and overlap
matrix elements are defined with S;; = (i|j). The projector onto |7) then reads,

Py =il = Z i) (S74),, dl; (4.13)

with P?|k) = |i)0;. One may think of
P} = [i)(il, (4.14)

with P?|k) = |i)Si, to be a proper projector in this context. The index o and
h denote the orthogonal and non-orthogonal (hybrid) projections, respectively.
To use a common notion, we define a general projector as

=Y 1Py, Py=(S""),, Ph=20;: (4.15)
J

Using these techniques we arrive at the formulation that the orbital mo-

ment in an unit cell may be defined as a suitable projection of the expression
(Eq.4.10),

My=3" 3" Nealkn | P} | L. | P, | kn). (4.16)

Sv kn



42 CHAPTER 4. THE KOHN-SHAM-DIRAC EQUATION IN SOLIDS

Using P/, the Bloch states |kn) will be projected to localized atom-like
four-spinor orbitals, namely

1
VNU,C

where matrices P and S® are defined in general with:

ik(R +s'-
Gk gy =Gy g, M EFES), (4.18)
R’

iks [ pk ok ~k
P |kn) = |sv)e [P skc } , (4.17)

Sv,n

The following expression can be read for local orbital moment in a given
spin-o shell at site s, namely:

Ma, =YY 3
v  kn

where the v-sum would be the sum over all quantum numbers, which fully
specify the spin-o shell. In relativistic case the spin-projector p,, selects the
v-states of the shell, which have a certain spin character. In this way, we may
use the spin concept approximately.? The orthogonal projector (Eq.4.13) gives
the similar expression to (Eq.4.12),

Nin
Mga = Z (Z NIZC Ck

Sv,n
v kn

2
(PkSka) ‘ Doolsv | L, | V) puo, (4.19)

n,Sv

2 ~
)pw(sy |1, | sV) Puo, (4.20)

and with the non-orthogonal projector (Eq.4.14) we get,

=5 (X e (54
kn ~ Y€

v

2
| ) puolsv |1 | s) puo. (421)
Svn
Now we provide functional derivative of Mg, (Eq.4.19) with respect to the
KS states (kn| and we get the expression:

1 Mg, 1 A
Nin 5<ku| " Nu z; (‘kmpk) g, Prolsv || sv) pug [P"’S’“ck}

Svn

(4.22)
Finally, we introduce a projector for the occupation number. The number
of electrons in a given spin-o shell at site s reads as:

1+ O'ZA:Z
Nso = > Nin(kn | Pg} | — | P4, | kn), (4.23)
Sv  kn

2Recall that there is no spin quantum number in a full relativistic world. However in all
important cases the spin character should be pronounced.
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where the operator % is a projector onto the spin direction for collinear
relativistic calculations. In analogy with (Eq.4.19), the following expression
can be read for local occupation number in a given spin-o shell at site s,

Voo =33 "
v kn

Now we provide functional derivative of Ng, (Eq.4.24) with respect to the
KS states (kn| and we get the expression:

6N, s
Nl,m 5?1[;” - z\; S (1K PR)  puotsr | 2575 |0y s, [PRSEOK]

1+of]z

2
(PkSka) ‘pu(,(su\ | s0) Puos (4.24)

n,Sv

Sv,n

(4.25)

4.2 The OPB functional

The orbital polarization energy functional in OPB approach, which has to be
added to the XC-energy functional in a rather practical form is given by:

1
EOPP = —-Nue Y I Mg, (4.26)
oSe{tl}

where t denote the Wyckoff positions of the sites s and [ is the angular mo-
mentum of the /-shell to be corrected and ¢ denote spin channels of the [-shell.
The OPB-Hamiltonian is obtained as the functional derivative of the functional
(Eq.4.26) with respect to the KS states:

1 1 6Ms,
HOP®|kn) = EOP = —N,, Y I 2 (4.27)

Nkn (5(kn| cSet} N]m (5(kn|
and the matrix elements of the above Hamiltonian are:
HYTP = — Z I3 Mg, Z (SkPk)*’su Poo(sv|l,|sV) pue [PkSk] g’
oSe{tl} v
(4.28)

where * denote the arbitrary matrix indices. Therefore we get the Hamiltonian
matrix elements in orthogonal projection,

HOOPB = — Z IgfjcahMSUZ 8v.80 Pro (V|1 5V) DusOsu e, (4.29)
o8e{tl} v

where ¢;; is zero, unless the matrix elements belong to the block, which belongs
to a corrected orbital. With the non-orthogonal projection, we get

HMOPB = NT Ry SO SK o (svllllsv) poSE,.. (4.30)
oSe{tl} v
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4.3 The OPE functional

In the previous chapter we also introduced the OPE correction as a new ap-
proach for orbital polarization in the framework of CDF'T. Now, the introduced
OPE functional in more effective way, can be expressed as a function of occu-
pation numbers,

1
EO" = = N > Iso(Nso)M3,. (4.31)
oSe{tl}

The OPE-Hamiltonian is obtained as the functional derivative of the func-
tional (Eq.4.31) with respect to the KS states:

HOPE|/€TL> 1 g EOPE _

N]m (kn|
1 6N3U 1 5MSO’
~Nue [ I, (Ngo) M2, —— N 0 + I, (Ns,) M&,N—W
oSe{tl} kn kn
(4.32)

Substitution of the related equations (Eq.4.22 and Eq.4.25), in to the
above equation and using orthogonal projection, the matrix elements of OPE-
Hamiltonian can be read,

0 1 +
T Z[ : SV( Iy, (Nao) M2, pun(vl =222 a0 et
oSe{tl} v
+ISO'(NSG') MSG' pua<3V|lAz|3V> pua) 581/,*:| ) (433)

and with non-orthogonal projection we get:

1 1+0%,
HAO = = Y 50|k (350 (Nao) M3, o (o017 o0) ot
o8e{tl} v
+15,(Nsy) Msop,o (sv|i,|sv) p,,g) 55} . (4.34)

The discussed OP Hamiltonians have to be added to the Hamiltonian of the
XC-LSDA energy functional. In this sense, eventually we can calculate most
accurate values for the individual orbital moments of the considered system.
In the next section we will show that how those OP corrections can work for
three elements.
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4.4 Orbital magnetism in bcc Fe, hcp Co and
fcc Ni

In this section we study the relativistic effects on orbital magnetism of three
light elemental metals, Fe, Co, and Ni, using introduced functionals in FPLO
scheme. In most electronic systems LSDA in the framework of scalar rela-
tivistic calculations can give accurate structural properties [65] and clarified
spin magnetism of the system. However, sometimes the existing orbital mo-
ments have to be taken into account via spin-orbit interaction, which needs
full-relativistic treatment. Additionally, in the present section we show even
in the full relativistic regime, LSDA with spin-orbit coupling, cannot predict
proper orbital moments compared with experiments. it is is pointed out to
add orbital polarization corrections to our functionals.

We focus on the magnetic properties of the bce Fe, hcp Co, and fcc Ni.
The spin magnetism of these 3d elements has been studied extensively over
the last decades [7, 18, 71]. The bee Fe , hep Co and fee Ni are regarded as trial
materials for probing theories of metallic magnetism. The magnetism in these
elements is caused by the 3d electrons, which on the one hand, are relatively
itinerant, but the 3d orbitals also have a tendency towards localization. The
later may provide the orbital moments in these systems.

4.4.1 Computational details

For our calculations the bee Fe, hep Co, and feec Ni analyzed in space groups,
Im3m (No.229), P63/mmec (No.194) , and Fm3m (No.225) in International
Tables, respectively. The following basis sets were adopted: 3s3p; 3d4s4p states
of Fe, Co, and Ni were treated as valence states. The site-centred potentials
and densities in FPLO code were expanded in spherical harmonic contributions
up t0 lpaz = 12. The convergence of the total energies (107° Hartree) and
magnetic moments (107*up) with respect to the k-space integrations (20 x
20 x 20 k-points) was checked separately for each of the considered elements.
The Spatial extension of the basis orbitals, controlled by a confining potential
(%)4, was optimized to minimize the total energies of the three elements.

4.4.2 Results and discussion

To explain the spin moments in Fe, Co and Ni, it is important to point out
that the majority spin bands are mostly filled in all these systems. Therefore,
when we go from Fe to Co and then to Ni, which have the effect of adding
more valence electrons, the minority spin band will be more populated due to
extra electrons and the spin moment drops accordingly (see Figure 4.1).
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Total density of states [state/eV]

Figure 4.1: Total spin density of states for bce Fe, hep Co, and fee Ni, evaluated
with full relativistic FPLO scheme. Indices 1 and | denote for majority and
minority density of states, respectively.
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Table 4.1: Spin (M) and orbital (M;) moments of bee Fe, hep Co and fee Ni.
The indices a and b show the results based on orthogonal and non-orthogonal

projections to OP corrections. Experimental values are presented by Stearns
[72].

Scheme mFe pFe prCo pCo N N
non-relativistic 221 0 1.58 0 0.60 O
scalar-relativistic 219 0 1.60 0 063 0

full-relativistic (SO) 2.18 0.05 1.60 0.08 0.63 0.05

LSDA+OPB(a) 218 009 1.60 014 0.63 0.06
(b) 0.08 0.12 0.05
LSDA+OPE(a) 218 012 1.60 019 063 0.06
(b) 0.13 0.14 0.05
Experiment [72] 213 0.08 152 014 0.57 0.05

The calculated spin and orbital moments are listed in Table.4.1. Here we
list the spin and orbital moments obtained from different schemes. The orbital
moments are strongly depend on the schemes what were applied, whereas the
spin moments are not so much sensitive. The two first raws in Table 4.1 show
that the orbital moments are vanished in a non-relativistic regime and even
when we average out spin-orbit coupling (scalar relativistic calculations).

The orbital moments are small quantities in 3d ferromagnets, ranging from
0.05 to 0.20 pp, as essentially quenched by the bonding (the ligand field).
However, the orbital moments in 3d systems are expected to result from the
spin-orbit interaction. Therefore, one may intuitively expect an orbital mo-
ment that correlates with the spin moment. However, experiments show that
this is not the case, since the orbital moment of Co is much larger than in
Fe and Ni. In Table 4.1, the third line includes results of the full relativistic
calculations in presence of the spin-orbit coupling.

Using OP corrections for Fe and Co can give orbital moments in good
agreement with experiment. While LSDA obtains the orbital moment of Ni in
a good coincidence with experiment, the orbital moments of Ni based on both
OP schemes in their orthogonal projections are over-estimated. However when
we compare the orbital moments of Fe and Co obtained in the OPB correction
with the OPE results in the form of orthogonal projection, then the latter
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gives rise the orbital moments larger than the experimental values. On the
other side, the hybridized version of OPE predicts the orbital moment of Co
very close to experiment and the same situation takes place when orthogonal
version of OPB has been used.

It has to be mentioned, that comparing the orbital moments of Fe, Co,
and Ni determine with OPB in FPLO approach, with the OPB values im-
plemented in the Korringa-Kohn-Rostoker (KKR) method [73], the linear-
muffin-tin-orbital (LMTO) method [74], and in the spin- and orbital-polarized
relativistic multiple-scattering theory (SOPR-MST) method [75], shows a qual-
itative agreement.

4.5 Conclusion

In summary, we have implemented both orbital polarization corrections into
band structure FPLO method. The results have shown that the inclusion
of relativistic effects (such as spin-orbit coupling) in Kohn-Sham equation is
important to get reasonable structural properties compared with experiment.
However, we also show that for some systems orbital polarization corrections
have to be involved in the relativistic formalism, when we want to determine
properly the orbital magnetic moments of the individual atoms in the consid-
ered system.



Chapter 5

Orbital magnetism in
full-Heusler alloys (CoyYZ)

The aim of the present chapter is to study the coexistence of spin and or-
bital magnetism in full-Heusler alloys using two discussed orbital polarization
corrections in the pervious chapters.

Intense experimental [76, 77, 78, 79] and theoretical [80, 81, 82, 83| ef-
forts have been devoted to Heusler alloys [84] recently. An intriguing prop-
erty, disclosed for Co,YZ Heusler compounds by J. Kiibler et al. [85], is so-
called half-metallic ferromagnetism [86], where one spin band is metallic and
the other is semiconducting. Much of the recent interest is just due to this
feature [87], a 100% spin-polarization at Fermi level that promises potential
application in spin-electronic devices. It is, however, frequently overlooked
that half-metallicity is bound to well-ordered bulk compounds in most cases
[88] and considerable experimental difficulties often prevent the preparation of
well-ordered thin films [89] as a precondition for the desired application.

Apart from the mentioned application-driven interest, the magnetism of
ideally ordered bulk Heusler compounds still poses a challenge to the theoret-
ical understanding of electronic structure. If orbital magnetism is neglected,
any half-metallic ground state is invariant with zero Pauli susceptibility in an
external field smaller than a critical field [10], It is also obvious that the spin
magnetic moment per unit cell in such a state must be integer. A number of
other, system-specific theoretical [85, 90, 91, 92, 93] and experimental studies
[94, 95] of spin-only magnetism leading to half-metallicity of the full-Heusler
alloys have been published. On the other hand, less attention has been paid
in the past to the orbital degrees of freedom in these compounds. It is clear
that the concept of half-metallicity neglects spin-orbit coupling. For instance,
neither complete spin-polarization at the Fermi level nor integer magnetic mo-
ments can be expected if spin-orbit coupling is taken into account [96, 97|. It
is thus interesting to study the magnitude of the related deviations from the
idealized case.

49
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Commonly, ligand fields largely quench the orbital magnetic moment in
cubic systems containing 3d transition metals. H.J. Elmers et al [98] have
shown in their x-ray magnetic circular dichroism (XMCD) studies, however,
that the orbital moment in the cubic CosFeAl full-Heusler compound is quite
sizeable, M; ~ 0.5ug/f.u., and even somewhat larger values were reported
for this compound in a more recent study by the same group [100]. With the
same method, K. Miyamoto et al. and S. Wurmehl et al. also found noticeable
orbital moments in CooMnGe [101] and in CosFeSi, [102] respectively.

I. Galanakis [104] considered the orbital magnetic moments of different
Heusler compounds in a theoretical approach using the local (spin) density ap-
proximation [L(S)DA]. He employed a fully relativistic KKR multiple-scattering
Green’s function method and found very small orbital magnetic moments on
each constituent. Compared with the mentioned experimental results, the or-
bital moments found by I. Galanakis are smaller by factors of 2-4. This problem
was also observed for the alloy system CoyCri_,Fe, Al by S. Wurmehl et al.,
who found [100] only a slight improvement by using orbital polarization (OP)
corrections, and for CosFeSi by the same group. In the latter case, neither
OP corrections nor relativistic LDA+U calculations could close the gap be-
tween measured and calculated orbital moments, though both approximations
improved the mismatch in comparison with LSDA [102].

With the intention to resolve this discrepancy, we focus the present investi-
gation on CoyYZ full-Heusler compounds with Y = Mn or Fe; Z = Al, Ga, Si,
or Ge. All combinations of these elements are considered. Some of them, such
as CooMnSi and CooMnGe, were found to be half-metallic in earlier electronic
structure calculations [91]. We study the magnetic and electronic properties of
these eight compounds with a particular emphasis on the influence of spin-orbit
coupling and orbital magnetism. The under-estimation of orbital moments in
the LSDA approach reported by I. Galanakis and S. Wurmehl is confirmed.
We demonstrate, however, that explicit consideration of orbital polarization
effects brings theoretical and experimental data systematically in better coin-
cidence. Finally, we suggest an alternative explanation for the recently [102]
measured magnetic moment of CoyFeSi that can resolve the apparent discrep-
ancy between the two experimental facts of integer total moment and large
orbital moment.

This chapter is organized based on very recetly work by M. Sargolzaei et al.
[105] which contains details about the crystal structure, the numerics and the
results and discussion including calculated spin moments, orbital moments,
a qualitative model for the orbital moments, volume dependent properties of
CooFeSi, and remarks about half-metallicity.
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Figure 5.1: Crystal structure of full-Heusler alloy, CosFeSi.

5.1 Crystal structure and computational de-
tails

The considered full-Heusler alloys Co,YZ adopt the ordered L2;-type structure
(space group Fm3m), which may be understood as the result of four interpen-
etrating face-centered-cubic (fcc) lattices. The Y and Z atoms occupy two fec
sublattices with origin at (0 0 0) and (1/2 1/2 1/2), respectively. The Co
atoms are located in sublattices with origins at (1/4 1/4 1/4) and (3/4 3/4
3/4). For instance, the crystal srtucture of CooFeSi is shown in Figure 5.1.

We have carried out density functional calculations [3, 4] using the rela-
tivistic version [67] of the full-potential local-orbital (FPLO) minimum-basis
band-structure method [66]. In this scheme the four-component Kohn-Sham-
Dirac (KSD) equation, which implicitly contains spin-orbit coupling up to all
orders, is solved self consistently. For the present calculations, the following
states were included in the valence basis: the 3s3p;3d4sdp states of Co, Mn,
Fe, Ga, and Ge and the 2s2p;3s3p;3d states of Al and Si. The inclusion of Ga,
Ge, and transition metals 3s and 3p semicore states together with 2s and 2p
semicore states of Al and Si into the valence basis was used to account for their
non-negligible overlap with neighboring core states. The Al and Si 3d polariza-
tion states were used to improve the completeness of the basis set. All radial
basis states are provided numerically on a grid and adjusted to the potential in
each iteration step. The site-centered potentials and densities were expanded
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in spherical harmonic contributions up to l,,; = 12. The convergence of
the total energies (107% Hartree) with respect to the k-space integrations was
checked separately for each of the considered Heusler alloys. We found that
30 x 30 x 30 = 27,000 k-points in the full Brillouin zone were sufficient in all
cases. The related stability of charge and magnetic population numbers was
better than 10~%. The Spatial extension of the basis orbitals, controlled by a
confining potential (%)4, was optimized to minimize the total energy.

The Perdew-Wang parametrization [39] of the exchange-correlation (XC)
potential in the LSDA was used. In the local spin density approximation for
bce Fe and hep Co, magnetic spin moments are obtained within typically 5%
deviation from experiment. On the other hand, the orbital moments of Fe
and Co are found a factor of 2 smaller compared with experimental values in
this approach. For a better description of orbital magnetism in the d shell
of Fe and Co atoms, two different orbital polarization (OPB and OPE) cor-
rections to LSDA suggested in chapter 3, have been take into account. Here,
the final values of spin and orbital moments are obtained from corresponding
projections on the atomic basis states [65, 67].

5.2 Results and discussion

We optimized the equilibrium lattice parameters using LSDA total energy cal-
culations. The calculated lattice constants, a, are 2-3 % smaller than the
experimental (mostly, room-temperature) values, [106] Table 5.1. Such devia-
tions are common in the LSDA. We also checked that the OP corrections do
not significantly change the evaluated lattice constants. If not indicated other-
wise, the LSDA lattice constants are used in the further calculations in order
to be model consistent. The LSDA and LSDA+QOP spin and orbital moments
for each single constituent are summarized in Table 5.2.

5.2.1 Calculated spin moments

OP corrections turned out to influence the spin moments only marginally.
Thus, we discuss only LSDA spin moments (Table 5.2). As expected, the
Mn and Fe atoms as Y components carry the largest spin moments (2.65/5-
3.09up) in the considered compounds. The sp atoms are weakly spin-polarized
and couple anti-ferromagnetically with Mn, Fe and Co. One should note that
the Mn and Co spin moments in the case of CooMnZ increase when we sub-
stitute Si for Al or Ge for Ga. This is in accordance with the Slater-Pauling
behavior[107] discussed by I. Galanakis et al.[93] The total spin magnetic mo-
ments of CooMnAl, Co,MnSi, and Co,MnGe are very close to an integer value
(4 up, 5 pp, and 5 ppg, respectively). In particular, CooMnSi and CooMnGe
are found to be half-metals in the calculations, if spin-orbit coupling is ne-
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Table 5.1: The experimental lattice constans (Villars et al.[106] ) are compared
with the calculated LSDA lattice constants. The values are in atomic units.

CorYZ aSPA  gexp

CooMnAl 10.56  10.88
CooMnSi  10.44 10.69
CooMnGa 10.56 10.91
CooMnGe 10.62 10.86
CogFeAl 10.54  10.83
CooFeSi 10.40 10.67
CooFeGa  10.56 10.84
CooFeGe  10.60  10.85

glected. The tiny deviation from integer Bohr magneton number is due to
spin-orbit coupling that slightly reduces the spin moment. The compound
CoyMnAl is very close to half-metallicity (see Figure 5.2, and Table 5.5) with-
out spin-orbit coupling, while the isoelectronic CooMnGa is not a half-metal
in our approach. The probable reason for this dissimilarity is the larger size of
the Ga atom compared with the Al atom that leads to a stronger hybridiza-
tion with the transition metal valence states and a related broadening of the
bands, see Figure 5.2. The gap in the minority spin density of states is more
narrow than the related gap of CooMnAl and the broadened minority states
cross the Fermi level. A different situation is found for the case of CosMnSi
and CooMnGe. Here, the Fermi level is situated close to the unoccupied mi-
nority states since the number of valence electrons is by one larger than in the
CosMnAl and CooMnGa compounds. Thus, the gap narrowing by replacing
Si with Ge does not destroy the half-metallicity.

The CoyFeZ compounds are normal ferromagnetic metals with both ma-
jority and minority bands crossing the Fermi level, see Figure 5.2. The Fe and
Co spin moments are less affected by changing the alloying element Z in these
compounds and the total spin moment stays close to 5 ug per formula unit.
This behavior violates the Slater-Pauling behavior, as it was already discussed
by I. Galanakis et al. for the two cases of CoyFeAl and CoyFeSi [93]. The
particular case of CooFeSi is discussed in more detail in Section 5.2.4.



54 CHAPTER 5. ORBITAL MAGNETISM IN FULL-HEUSLER ALLOYS (CO;YZ)

Table 5.2: Spin (M;) and orbital (M;) moments for constituents of the CoYZ
full-Heusler alloys together with total spin and total orbital moments and their
sum, calculated at the LSDA lattice constant. The first line for each compound
gives the LSDA results and related model results (see text) in parentheses.
Lines with the indices OPB and OPE show results of calculations with orbital
polarization corrections suggested by O. Eriksson et al. [20, 21] and by H.
Eschrig et al. [23] added to the LSDA-XC energy functional, respectively. The
influence of OP corrections on the spin moments is marginal and left out in

the Table.
COQYZ MCO Mlco MY MIY MZ Mtotal Mltotal Mtotal
s s s s
CooMnAl  0.740 0.014 (0.068) 2.650 0.010 -0.133 3.997 0.038 4.035
OPB 0.023 0.008 0.054 4.051
OPE 0.027 0.007 0.061  4.058
CooMnSi  1.022 0.029 (0.077) 3.028 0.010 -0.078 4.994 0.069  5.063
OPB 0.040 0.013 0.095  5.089
OPE 0.045 0.015 0.107  5.101
CooMnGa 0.715 0.011 (0.067) 2.698 0.014 -0.089 4.039 0.036 4.075
OPB 0.020 0.013 0.0563 4.092
OPE 0.024 0.017 0.065 4.104
CooMnGe 0.978 0.031 (0.065) 3.089 0.015 -0.050 4.995 0.078 5.073
OPB 0.044 0.020 0.109 5.104
OPE 0.049 0.023 0.122  5.117
CogFeAl 1.116  0.050 (0.058) 2.704 0.040 (0.051) -0.098 4.838 0.140 4.978
OPB 0.058 0.072 0.189  5.027
OPE 0.067 0.082 0.217  5.055
CogFeSi 1.198 0.038 (0.065) 2.671 0.072 (0.031) -0.034 5.033 0.149 5.182
OPB 0.053 0.127 0.235  5.268
OPE 0.060 0.159 0.281 5.314
CooFeGa  1.114 0.040 (0.056) 2.738 0.054 (0.061) -0.061 4.905 0.134  5.039
OPB 0.060 0.077 0.197  5.102
OPE 0.071 0.090 0.232  5.137
CoqFeGe 1.257 0.045 (0.067) 2.752 0.080 (0.038) 0.006 5.272 0.170 5.442
OPB 0.063 0.140 0.267  5.539
OPE 0.074 0.184 0.333  5.605
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Figure 5.2: Total densities of states of all considered compounds close to the
Fermi level, obtained by fully relativistic LSDA calculations. Majority (mi-
nority) spin channels with dashed red (solid blue) lines are shown in the upper
(lower) parts of the individual panels.
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5.2.2 Orbital moments

Total and site-resolved orbital moments calculated in different approximations
are given in Table 5.2. Relativistic LSDA produces orbital moments induced
from spin polarization via spin-orbit coupling. Our LSDA calculated orbital
moments are in a very good agreement (within a deviation of 0.005 g or less)
with the orbital moments evaluated for four of the considered compounds by
I. Galanakis [104].

The orbital moments are in all cases small compared with the spin moments
as it is usual in cubic 3d transition metals. In particular, the Mn orbital
moments are tiny since the Mn 3d shell is close to half-filling. Comparing the
orbital moments of Fe and Co in CosFeZ with those of Mn and Co in CosMnZ
reveals that the former are considerably larger.

To our knowledge, there are only three XMCD experiments to determine
orbital moments for the considered compounds. Since the ratio M;/M; is more
closely related to the original experimental data than the individual moments,
we compare experimental and theoretical results of this ratio in Table 5.3. It
should be pointed out that the analysis of the XMCD experiments give forth
the ratio M;/(Ms — 7(T,)). The magnetic dipole term (7,) comes about by
the anisotropy of the atomic spin density due to spin-orbit coupling or ligand
field effects [108, 109, 110]. However, for 3d transition metal atoms in a cubic
environment, the 7(7}) is typically by a factor of about 103 smaller than the
spin magnetic moment M;, [100, 111] and therefore can be neglected in the
considered cubic compounds.

From their XMCD studies, K. Miyamoto et al. obtained a ratio of about
0.07 for Co and of about 0.01 for Mn in CooMnGe [101]. The Co value is more
than two times larger than that obtained by our LSDA calculation, 0.03. The
same LSDA value has been found by I. Galanakis et al. [104], and an even
smaller value of about 0.02 has been obtained by S. Picozzi et al. [91] by means
of generalized gradient approximation FLAPW calculations. However, when
we compare the orbital magnetic moments calculated with the two variants of
OP corrections (0.0445/Co and 0.049u5/Co, Table 5.2) which account for the
direct non-relativistic interaction of the orbital moments with the inner field,
they are in a much better agreement with experiment. This enhancement to
about 0.05 is slightly dependent on the lattice constant, Table 5.3. Also, the
LSDA+OP ratios for Mn are almost equal to the experimental value of 0.01,
whereas the related LSDA results are smaller (0.005 in our calculation, 0.007
in Ref. [104] and 0.003 in Ref. [91]).

A further XMCD study was recently carried out on quaternary alloys by
H.J. Elmers et al., including the case of CoyFeAl [98, 99]. They found that
the ratios of M;/Mj for Co and Fe are 0.14+0.02 and 0.06+0.02, respectively.
These ratios are found to be 0.045 for Co and 0.015 for Fe in our LSDA
calculations. Even the application of OP corrections results in values that are
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Table 5.3: Comparison of available experimental (XMCD) and calculated ra-
tios M;/M,. Calculated data obtained by LSDA and LSDA+OPE [23] are
given for both LSDA and experimental lattice constants.

Element Exp LSDA LSDA+OPE LSDA LSDA+OPE
in compound at a™SP4 at a™SPA at a®® at a®®
Co in CooMnGe 0.07 [101] 0.032 0.050 0.034 0.056
Mn in CooMnGe 0.01 [101] 0.005 0.007 0.006 0.008
Co in CogFeAl 0.14 £ 0.02 [98, 99] 0.045 0.060 0.041 0.072
Fe in CogFeAl 0.06 £+ 0.02 [98, 99] 0.015 0.030 0.020 0.033
Co in CogFeSi 0.1 [102] 0.032 0.050 0.037 0.064
Fe in CosFeSi 0.05 [102] 0.027 0.060 0.026 0.050

roughly two times smaller than the experimental values.

Most recently, an XMCD experiment was reported by S. Wurmehl et al.
for CooFeSi [102]. Their M;/M; ratios, extrapolated to 0 K, are 0.1 for Co and
0.05 for Fe, respectively. Our corresponding LSDA ratios amount to 0.032 for
Co and 0.027 for Fe. Using the two variants of OP corrections reveals a very
good agreement with the experimental value for Fe, but both of them give two
times smaller values than the experiment for Co (about 0.05...0.06 for both
elements). It should be noted, that our result is closer to the experimental
result for Fe than the LDA+U result given in Ref. [102] (0.05 for Co and 0.02
for Fe, respectively).

Summarizing this section, orbital polarization corrections reduce the dif-
ference between calculated and measured ratios M;/M; in comparison to plain
LSDA for all six considered cases. In the mean, LSDA yields about 40% of the
measured ratio, while LSDA+OPE yields about 70%, with moderate sensitiv-
ity to the choice of the lattice parameter.

5.2.3 Ligand field model for the orbital moments

In order to better understand the origin of the relatively small but yet different
orbital moments of Co, Mn and Fe in the distinct Heusler alloys compiled
in Table 5.2, we performed a simple model calculation for the LSDA orbital
moment of the 3d shell, based on the model described in Ref. [112]. The
value of the orbital moment is determined by an interplay between the ligand
field and the spin-orbit coupling. The ligand field splitting tends to quench
the orbital moment while spin-orbit interaction partially restores it. Since the
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Co,MnAl
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Co-3d PDOS [states/eV atom], cubic representation resolved

Figure 5.3: Co 3d partial DOS for CosMnAl (upper panel) and Co,MnSi
(lower panel). The three-fold degenerate to, (two-fold degenerate e,) states
are shown with dashed red (solid blue) lines in majority (1) and minority ()
spin sub-shell.
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systems at hand are cubic, the ligand field splits the five-fold degenerate 3d
spin sub-shell in three-fold degenerate to, states (|yz), |2x), |zy)) and two-fold
degenerate e, states (|z% — y?),|32%2 — r?)) in the standard notation of real d-
orbitals. Each of the real spherical harmonics has zero orbital moment. Figure
5.3 shows this situation for two examples, CooMnAl and Co,MnSi, in the
absence of spin-orbit coupling. Assuming the quantization axes for spin and
orbital moments to be the same (z-direction) and the majority spin projection
to be positive, the Hamiltonian matrix of the sum of spin-orbit and ligand field
interactions in the subspace of the ¢,, and e, functions for minority spin reads:

lyz) : 0 —=i¢/2 0 0 0

|zx) +i€/2 0 0 0 0

lzy) : 0 0 0 —i& 0 |, (5.1)
lz? — y?) 0 0 +i& A 0
1322 — r?) : 0 0 0 0 A

where A is the ligand field splitting between the e, and ty, levelsand £ ), lA“s?zZ
is the spin-orbit coupling operator with the positive spin-orbit coupling con-
stant £&. Under the condition £ < A, which is usually fulfilled in 3d transition
metals, the new minority ¢y -like eigenstates have energies —£/2, —£?/A, and
/2 and the e,-like eigenstates have energies A, and A + £2/A. The orbital
moment is calculated by the following approximate expression:

My=— )" (L) x sgn(o) /_ N PDOS(i,0)dE, (5.2)

o=t} i=1

where (l,); = 1,4£/A, —1 are the orbital moment projections of the minority
tog-like new eigenstates and (l,); = 0, —4&/A are the orbital moment projec-
tions of the minority eg-like new eigenstates. PDOS is the partial density of
states for the ty,-like and egy-like new eigenstates.

Using a calculated spin-orbit coupling constant £ of 0.054 (0.045) eV for
Co (Fe) [113] and typical ligand field splitting A of 1 eV, we obtained the
numbers given in parentheses in Table 5.2. These orbital magnetic moments
are in qualitative agreement with the orbital moments obtained by the full
calculation, though the individual numbers differ by factors up to 6. While
the model provides the principal mechanisms of spin-orbit coupling on the
orbital moment, the reason for the deviations lies in the simplification of the
model Hamiltonian, where the action of the ligand field is described by a
single parameter. The densities of states presented in Figure 5.3 show, that
this approximation is not well justified: 5, and e, states are not simply split
but exhibit considerably different shapes of the DOS.

Another, yet more simplified, model was suggested some time ago by Eriks-
son et al. [114] and, in parallel, by Ebert et al [115]. In that model, spin-orbit
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Table 5.4: Comparison of available experimental and calculated total mag-
netic moments per formula unit. Calculated data obtained by LSDA and
LSDA+OPE are given for both LSDA and experimental lattice constants.
The degree of order within the L2; structure has not always been analyzed.
All experimental data were obtained at low temperature.

Compownd M, M, M, MO
at aSP*  at a™SP*  at a®P  at q®*P
CooMnAl 4.01£0.05 [118] 4.035 4.058 4.066 4.095
CooMnSi  4.90 [116], 5.07-£0.05 [118] 5063 5101 5071  5.114
CooMnGa  4.0540.05 [118] 4.075 4.104 4.150 4.162
CooMnGe  4.93 [116], 5.11+0.05 [118, 119] 5.073 5.117 5.078 5.129
CosFeAl  4.96 [116], 5.29 [99] 4978  5.055 5083  5.193
CosFeSi  5.18 [116], 5.7 [117], 5182 5314  5.664  5.800
5.97£0.05 [102]
CosFeGa  5.13 [116], 5.15 [95] 5039 5137 5149  5.270
CoqFeGe 5.54 [116] 5.442 5.605 5.700 5.857

coupling was assumed to shift the m;-subbands rigidly. Such a shift yields neg-
ative orbital moment contributions in the majority spin subband and positive
orbital moment contributions in the minority spin subband, in accordance with
Hund’s third rule. Applied to half-metals, a rigid shift would give zero orbital
moment contribution for the spin channel which has a gap at the Fermi level.
That means the rigid shift model would provide negative orbital moments for
at least the two half-metallic compounds considered here, in contradiction with
the full calculations and with experiment on Co,MnGe.

As a consequence, the change of the orbital moment projection of the states
due to spin-orbit coupling considered in the present model, (Eq.5.4), is crucial
for obtaining the correct sign of the orbital moment. The values given in Table
5.2 are composed of relatively large (about 0.3up) and almost compensating
contributions from the two spin channels. Thus, the quantitative result is
sensitive to the discussed simplification of the model.

5.2.4 Volume dependent properties of CosFeSi

The compound CosFeSi went into the focus of interest recently, when S.
Wurmehl et al. measured a large total magnetic moment of about 6 pug [102].
This value, which is higher than previously measured values of 5.18 up and
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Figure 5.4: Density of states of CooFeSi close to the Fermi level, evaluated
for two different lattice parameters. Theoretical lattice parameter: full black
lines; 1.02-fold experimental lattice parameter: dashed red lines. Majority
(minority) spin DOS are given in the upper (lower) part of the figure.
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Figure 5.5: Band structure of CoyFeSi (upper panel) and Co,MnSi (lower
panel) close to the Fermi level. The spin character is indicated by the red
dashed lines (majority spin) and blue full lines (minority spin).
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Figure 5.6: Volume dependence of the calculated total magnetic moment of
CogFeSi. LSDA: black line with diamonds; LSDA+QOPB: red line with squares;
LSDA+OPE: blue line with bullets. The dashed lines show the range of ex-
perimental errors in Ref. [102] [(5.974+0.05)up at T=5 K |.

[116] 5.7 pp [117] indicates half-metallic behavior. Indeed, related LDA+U
calculations yield a gap in the minority spin DOS at the Fermi level and a
total moment of 6 pg. It was concluded that Co,FeSi is a half-metal with
important correlation effects [102, 103]. On the other hand, both LSDA and
LSDA+OP calculations yield much smaller total moments, (~ 5.2 ... 5.3 ug)
at theoretical lattice constant, see Table 5.2, and a large DOS in both spin
channels, see Figure 5.2.

The question arises of why this compound shows strong correlation ef-
fects, while the other, chemically very similar compounds are well described
by LSDA(+OP) theory. This fact is demonstrated in Table 5.4, where exper-
imental total moments are compared with total moments calculated at both
theoretical and experimental lattice constants. Concerning the Mn-containing
compounds it can be stated that the agreement between experiment and the-
ory is within two times the experimental error bounds (including the scatter
of experimental results) for both choices of lattice parameters and for both
LSDA and LSDA+OP approaches.

The situation is less satisfactory for the Fe-containing compounds. Here, on
the one hand, significant scatter in the experimental data is found, pointing to
sensitivity with respect to the preparation. For instance, the experimental scat-
ter could be caused by different degrees of disorder in the samples, as observed
for CogFeAl earlier [100]. Also, the calculated data confirm such a sensitivity;
while the total moment of Mn-containing compounds is almost insensitive to
lattice expansion, the Fe-containing compounds show considerably different
moments at a“SPA and a®*P | respectively. To be specific, LSDA+OPE data
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will be compared with experiment, since this approach describes the M;/M;
ratio reasonably well.

The calculated total moments of CooFeAl, CosFeGa, and CosFeGe are close
to (at aLSDA) or moderately larger than (at a®*P) the measured ones. On the
other hand, the calculated total moments of CooFeSi are within the scatter
of the experimental moments. Most obvious is the large dependence of the
total moment of CoyFeSi on the lattice spacing: it changes by 10% between
theoretical and experimental lattice constant.

The reason for this sensitivity is elucidated in Figure 5.4. At the theoretical
lattice constant, the Fermi level is situated in a steep slope at the band edge of
an almost empty minority spin 3d band. The related band structure is shown in
Figure 5.5 and compared with the band structure of CooMnSi. The dominating
spin character of the states is indicated by red dashed lines (majority) and
blue full lines (minority). Spin-orbit interaction mixes the spins, but this
effect is small in the considered 3d elements, see Section 5.2.5. At the Fermi
level, almost pure majority spin bands are present in Co,MnSi, whereas flat
minority spin bands cross the Fermi level in Co,FeSi. The latter give rise to
the discussed steep band edge (Figure 5.4) and, thus, to the sensitivity of the
magnetic moment of Co,FeSi with respect to the lattice spacing. Similar flat
bands are present in Co,MnSi as well, but here they are unoccupied due to
the larger exchange splitting of Mn in comparison with Fe.

If the volume of Co,FeSi is increased, the flat minority spin band becomes
more narrow and is further emptied. In turn, the exchange splitting increases,
reinforcing the magneto-volume effect. At a lattice constant slightly larger
than the experimental one, the band is empty (Figure 5.4, red dashed line).
The resulting dependence of the total moment on the lattice parameter in
all three employed approximations is shown in Figure 5.6. An expansion of
slightly more than 1% beyond the experimental lattice parameter brings the
calculated LSDA+OPE moment into the range defined by the experimental
error bounds of the newest data [102]. At this spacing, the ratios M;/Mj,
calculated with LSDA+OPE, amount to 0.08 for Co and 0.045 for Fe, in very
nice agreement with the experimental values of 0.1 and 0.05, respectively [102].
This model dependence of the magnetic moment on the lattice parameters
could be experimentally checked under pressure to decide whether Co,FeSi is
a half-metal or not.

These results suggest an alternative explanation of the measured integer
total moment of CooFeSi, contrasting the suggested correlation-induced half-
metallicity. While the LDA+4U approach yields a half-metallic state with an
integer total moment and a total orbital moment of about 0.2ug at the experi-
mental lattice constant, [102] the LSDA+OPE approach yields the experimen-
tal total moment at a 1.5...2% expanded lattice constant, and a total orbital
moment of about 0.35up. This is close to the experimental value of about
0.45up, estimated from the measured moment ratios and the calculated site
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Table 5.5: Spin polarization degree for half-ferromagnetic Co,YZ full-Heusler
alloys. SPD values at LSDA lattice constants without spin-orbit coupling (SO:
no) and with spin-orbit coupling (SO: yes) are given in percent.

Y SO Al Si Ga Ge

Mn no 97 100 81 100
yes 95 97 81 99

Fe no 39 -7 43 -67
yes 38 -72 41 -65

spin moments given in Ref. [102]. The degree of spin polarization at the Fermi
level (see Section 5.2.5) is very small in the suggested alternative approach,
see Figure 5.4.

What remains open is the question why a lattice expansion is needed to
simulate the experimental situation. It is clear from Figure 5.4, that the elec-
tronic structure of well-ordered Co,FeSi at theoretical lattice spacing bears a
tendency toward enhancement of the magnetic moment. A small site-disorder,
that cannot be completely excluded on the basis of the existing data, [102]
could provide such a moment enhancement, as it was found for the sister com-
pound CoFeAl [100] which is much less susceptible to parameter changes than
CoyFeSi, see Table 5.4.

Summarizing this section, we propose that the measured moment of CosFeSi
need not be caused by a correlated half-metallic state. It could, e.g., arise from
a small but influential disorder of the sample. In the latter case, the spin po-
larization at Fermi level would be very small.

5.2.5 Half-metallicity

We have finally studied the effect of spin-orbit coupling and orbital polar-
ization on the half-metallicity of the considered full-Heusler alloys. The spin
polarization degree (SPD) of the density of states (DOS) is defined by

spp = " (er) = n*(er)

n'(er) + nten)’ 53)

where n?(ep) corresponds to majority (1) and minority (J) spin DOS at the
Fermi level. In Table 5.5, we present the SPD values in percent, with and
without spin-orbit coupling at LSDA lattice constants. Recall, in perfect half-
metals, SPD amounts to 100%. According to our band structure calculations,
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only CooMnSi and CoaMnGe are fully spin polarized in the absence of spin-
orbit coupling. However, spin-orbit coupling reduces SPD by 3% and 1%,
respectively for those intermetallic compounds. Adding OP corrections to the
LSDA-XC functional does not significantly change the spin polarization degree.

Moreover, the calculated SPD values for the considered compounds indicate
that the Mn-based full-Heusler alloys seem to be more suitable candidates for
half-metallicity, whereas SPD values for Fe-based full-Heusler alloys consider-
ably deviate from 100%. For instance, CoyFeSi has a relatively large negative
SPD value at LSDA lattice constant. From Figure 3 and the discussion in
previous section it is, however, obvious that lattice expansion considerably
reduces the SPD value.

Recently, S.V. Karthik et al. [120] have shown in their point contact An-
dreev reflection (PCAR) experiments that Co,FeAl is a normal ferromagnet
with PCAR spin polarization value of 56%. This finding is in qualitative agree-
ment with our result (SPD 38%) and KKR result (30%) obtained by Y. Miura
et al. [80] One should note that there is no one-to-one correspondence between
PCAR data and SPD values obtained from the DOS [121]. Only in an ideal
half-metal are both values equal to 100%. Note further that the measurement
of spin polarization value at the Fermi level is a quantity very sensitive to the
sample preparation. S. Picozzi et al. have shown that defects such as Mn and
Co antisites destroy the half-metallicity for CooMnSi and Co,MnGe [122].

Concerning CosFeGa, our calculated SPD (41%) falls in between two other
calculated values (37%, LMTO-ASA calculation by R.Y. Umetsu et al. [123];
58%, FLAPW result by M. Zhang et al. [95]). All these results qualitatively
match the related PCAR data (58%) [95].

The fully ordered CoaMnSi with L2; structure is predicted to be a half-
metal in our calculations which is in good agreement with LSDA results ob-
tained by S. Ishida et al. [90] with the LMTO-ASA method and by H.C.
Kandpal et al. [103] with the FLAPW approach. In contrast with these the-
oretical predictions, L. Ritchie et al. in their PCAR experiments have found
that Co,MnSi is a normal ferromagnet with PCAR spin polarization of 55%
[94]. As they discussed the PCAR values are strongly dependent on surface
segregation and disorder.

5.3 Conclusion

Density functional FPLO calculations were performed for CooYZ (Y=Mn, Fe
and Z=Al, Si, Ga, Ge) full-Heusler alloys. We have calculated the spin and
orbital moments of individual components in each compound including spin-
orbit coupling and two variants of orbital polarization corrections.

Calculated orbital moments are in a reasonable agreement with experi-
ment if orbital polarization corrections are taken into account. A rigid-band
model for the orbital moment yields the wrong sign in the case of half-metals.
Considering changes of the character of ligand field states split by spin-orbit in-
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teraction yields orbital moments with the correct sign and order of magnitude,
but a single ligand field parameter does not provide quantitative agreement
with the full calculations. A large value of about 0.18up is predicted for the
Fe orbital moment in CosFeGe. Further experiments to check this prediction
are desirable. An explanation is proposed for the recently measured total mo-
ment of CogFeSi and its orbital contributions. This explanation relies on a
combination of orbital polarization enhancement (mainly driven by exchange)
and residual site-disorder. It predicts almost balanced spin-up and spin-down
densities of states.



Chapter 6

Co impurities in Au host
matrices

In the previous chapters, it has been shown that the orbital moment, M, in
magnetic materials is determined by the interplay of several effects, such as
Coulomb interaction, the spin-orbit interaction, hybridization, and the ligand
fields. To study those effects, the independent determination of M; and spin
magnetic moments, M, was carried out.

Recall, in free atoms Hund’s second rule predicts a maximum orbital mo-
ment. In contrast, the orbital moments in solids are more or less quenched
as a result of electron delocalization and band formation. For instance, in
chapter 5 it was shown that the individual orbital moments in the considered
full-Heusler alloys are very small due to the action of the ligand fields. How-
ever, for exceptional cases orbital moments can be large even in a solid. An
example for the latter situation will presented in this chapter.

Among of the magnetic elements, Co has attracted special attention in the
field of orbital magnetism. In depending on the chemical and structure envi-
ronment, Co exhibits considerable differences in the size of its orbital moment.
For instance, Co films sandwiched between Au layers [124] and single cobalt
atoms deposited onto platinum [125] show almost unquenched orbital moments
(1.1 pp). Co nanoclusters on Au (0.16-0.21 pp) [126], one dimensional Co
monoatomic chains (0.68 ug) [127], ultrathin Co films on Ge (0.14-0.22 pup)
[128], Co on Ni (0.13 up), Co on Pd (0.29 up) and Co on Pt (0.21 ug) [129],
show different orbital moments per Co atom.

The investigation of magnetic impurities in non-magnetic metals is an old
problem with particular subtleties [130, 131]. In particular, direct investigation
of the orbital moments is one of the main interests in the field of magnetism.
Recently, W.D. Brewer et al. [132], managed to perform a direct observation
of the orbital magnetism in cubic solids (Cu and Au) by means of X-ray mag-
netic circular dichroism (XMCD). In this XMCD study on transition metal
impurities in gold, a large enhancement of the orbital moment for Co, com-

67



68 CHAPTER 6. CO IMPURITIES IN AU HOST MATRICES

pared with other 3d metals, has been observed. This is an astonishing result
since a cubic environment is generally believed to suppress orbital magnetism
[133]. So, it seems that either the ligand field of gold is weak or its spin-orbit
coupling strong enough to produce a large orbital moment of Co. Recall that
gold at its bulk phase does not show any sign of ordered magnetism. It appears
that cobalt and gold are an interesting combination of metals which can be
expected to show large orbital magnetism.

On the other hand, it is well known that Co-Au systems are characterized
by a large positive heat of formation (+11 kJ/mol) [134]. This means that
Co and gold cannot be formed as a regular compound in equilibrium, and Co
impurities in a gold host matrix can be prepared only via a non-equilibrium
procedure. In analogy with the metastable compound Ag;Co [135], one can as-
sume a high concentration (25%) of Co in Au, and suppose that they can form
in a hypothetically metastable compound AuzCo with L1, structure similar as
CusAu ordered compound [136]. For the AuzCo compound, it has been shown
that the orbital moment of Co is almost quenched due to strong hybridization
[137]. Eventually, the magnetic behavior of low concentration of Co impurity
in gold presents a conundrum. The aim of this chapter is to study the unusual
magnitude of the orbital moment of single Co impurity in bulk Au with cubic
symmetry.

6.1 Computational details

As a model to study the electronic structure and magnetic properties, an fcc-
like supercell with a single Co atom surrounded by 31 Au atoms was used.
This corresponds to a Co concentration of approximately 3% in the bulk gold.
In the XMCD study [132], Co concentrations of 1.5% were investigated. For
practical reasons 3% impurity concentration was taken into account in our
study. In this model, each Co atom is surrounded by 5 shells of gold atoms in
the supercell (see Figure 6.1).

Density functional calculations based on LMTO-ASA formalism for pairs
of 3d impurities in Au have recently been done by S. Frota-Pessoa [138] to
investigate the inter-atomic exchange coupling between two adjacent impuri-
ties. It has been found that for Co pairs that a ferromagnetic configuration is
favored. In our study, we only focussed on the single-atom impurities which
are dominating in the considered concentration range.

In the calculations, the average volume per atom was fixed to 114 a3, ; /atom
corresponding to the experimental volume of bulk fcc-Au. However, since the
atomic volume of Co is considerably smaller than that of Au, lattice relaxations
in the vicinity of Co atom can be expected, resulting in a reduced Co-Au dis-
tance. This effect is accounted for in the present calculations by allowing a
relaxation of the nearest neighbor Au shell surrounding the Co impurity. The
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Figure 6.1: Supercell of gold atoms including a Co impurity. Red sphere shows
the Co atom at the position of (%, %, %) and the green spheres show the first
nearest neighbor of gold atoms to Co atom in a cubic symmetry.

Au-Co distance has been optimized by means of total energy calculations with
the relativistic version of the full potential local orbital minimum basis band
structure scheme (FPLO) [66, 67]. The spin-orbit coupling and OP corrections
in the framework of FPLO have been taken into account to evaluate the spin
and orbital magnetic moments. In these calculations, the following basis sets
were adopted: the 5sbp; 5d6s6p states of Au were treated as valence states,
while for Co, we used the 3s3p; 3d4sdp states. The inclusion of 3s3p semicore
states for Co and 5s5p semicore states for Au was used to account for non-
negligible core-core overlap. For the site-centered potentials and densities we
used expansions in spherical harmonics up to l,,,., = 12. The spatial extension
of the basis orbitals, controlled by a confining potential (%)6, was optimized
to minimize the total energy. The number of k points in the irreducible part
of the Brillouin zone was 6 x 6 X 6 = 216. The Perdew and Wang parameteri-
zation [39] of the exchange-correlation potential in the framework of local spin
density approximation (LSDA) was used. To calculate the orbital moment of
Co in the d shell, we also used the OPB and OPE corrections. Here, the final
values of spin and orbital moments are obtained from corresponding projec-
tions on the atomic basis states of Co [67]. The quantization axis has been
chosen in the direction of (001).
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6.2 Results and discussion

6.2.1 Geometry optimization

The geometry optimization is carried out by calculation of the total energy as
a function of Au displacement around Co impurity (see Figure 6.2). It reveals
that the nearest neighbor Au shell around each Co impurity moves inwards by
about 2%. The unrelaxed distance of Au-Co is 5.44 Bohr radii and the relaxed
distance is 5.37 Bohr radii. Such relaxations also can be evaluated from scalar
relativistic calculations [139]. Comparing full relativistic geometry optimiza-
tion with scalar relativistic results show that the spin-orbit coupling and OP
corrections have only a minor influence on the internal lattice parameters of
the whole matrix (see Figure 6.2). We also considered shrinkage of the sphere
included by first nearest neighbors of gold atoms when the impurity is removed
and replaced by a vacancy. It is found out that the relaxation of such a sphere
is 4.5%, the gold atoms moving inwards to the center of sphere. However, we
did not find any magnetic solution for the considered vacancy. Our vacancy
calculations guarantee that the magnetic properties of Co impurities in gold
are dominated by the Co atoms.

Figure 6.3 shows the scalar relativistic total energy of pure gold (Auss) and
gold with Co impurity (Aus; Co) including first layer relaxation around the Co
atom. It shows that the calculated lattice constant of Auz;Co is smaller than
the lattice constant of Augy (the difference is about 0.4%). It has been shown
[67], that the difference of lattice constants of fcc Au calculated with scalar
and full-relativistic schemes is very small. This fact was also found for internal
relaxations and lattice relaxations of the considered system.

6.2.2 Electronic structure and magnetic properties

The formation of a magnetic state is shown in Figure 6.4. The density of states
(DOS) of the relaxed supercell structure and also the related Co projected DOS
obviously show that the magnetic behavior of the whole matrix is dominated by
the Co 3d electrons. The spin-up Co-projected DOS is situated at the upper
edge of the Au-5d band, showing some broadening by 3d-5d hybridization.
On the contrary, the spin-down Co-projected DOS is pinned to the Fermi
level and shows only very week hybridization effects. The exchange splitting
between majority and minority spins is about 1.5 eV and Co-3d bands are
much narrower than those of hep Co (see Figure 4.1). Such a narrow band is
favorable for the occurrence of showing orbital magnetism. It can be expected
that the lattice relaxation reduces spin and orbital magnetic moments of Co
in comparison with the unrelaxed case.

In Table 6.1, the spin and orbital magnetic moments of Co for unrelaxed
and relaxed structure in the presence of both OP corrections are given. The
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Figure 6.2: Geometry optimization I: calculated total energy (TE) in depen-
dence of the nearest neighbor Co-Au distance in the scalar-relativistic (upper
panel) and full-relativistic including spin-orbit coupling and OPB correction
(lower panel) approaches.
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Figure 6.3: Geometry optimization II: calculated total energy of Aus, (black
circle points) and Aus;Co (red square points) as a function of supercell lattice
constant in the scalar-relativistic scheme. The total energy of Aus, is shifted
to be compared with the total energy of Auz;Co. Dashed and solid vertical
lines show the optimized lattice constants of Aus, and Aus;Co, respectively.
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Figure 6.4: Calculated densities of states for supercell structure and Co atom.
The solid line show the spin resolved DOS for the whole matrix and dashed
lines show the Co projected DOS. The vertical line shows the Fermi level.

values in parentheses were calculated with hybridized OP correction functional
to be compared with those values out of parentheses calculated with orthogo-
nal functionals. The calculated ratios M;/M, are compared with the XMCD
experimental ratio. In the LMTO method [140] the spin and orbital moments
have also been calculated for one Co atom surrounded by a large fcc cluster
of 9000 Au atoms but lattice relaxation as an important effect for reduction
of the orbital moment has been neglected. Our present calculations reveal
that lattice relaxation around the impurity change the spin magnetic moment
of Co by about (+0.5...-2.5%). The OP corrections slightly enhance the spin
magnetic moment of the Co impurity up to 10%. In Figure 6.5, the spin and
orbital magnetic moments of Co in dependence of the distance between Co
impurity and first layer of gold atoms are shown. Obviously, the lattice relax-
ation considerably reduces the orbital magnetic moment of the Co impurity.
While in the LSDA an orbital moment of 0.20 yp is found for the unrelaxed
structure (to be compared with the LSDA value 0.23 up of the LMTO method
[140]), the moderate relaxation of 2% yields a large orbital moment reduction
by about 25%. This effect has been found in presence of both OP corrections
as well (see Table 6.1). Calculations employing the OPE correction yield about
30% higher orbital moments than those using the OPB correction. In both
approaches the ratio between orbital and spin moment is larger than the ex-
perimental value. Such an overestimation of orbital magnetism is frequently
but not always found in the LSDA+OP approach (see Chapter 5).
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Table 6.1: Calculated spin (M) and orbital (M;) moments of Co impurities
in Au and their ratios (M;/M;). Values obtained with the LSDA and both
version of orbital polarization corrections (OPB, OPE) are shown for relaxed
and unrelaxed structures. All values are calculated at the lattice constant
of AuzCo (a = 8.125 Bohr radii) The values of OPB and OPE indicated in
parentheses have been calculated with hybridized OP functionals and values
without parentheses have been calculated with orthogonal OP functionals.

M; M, Ml/Ms
unrelaxed (LSDA) 1.74 0.20 0.11
OPB 1.84 (1.79) 1.66 (1.37) 0.90 (0.76)
OPE 1.91 (1.83) 2.13 (1.80)  1.12 (0.98)
relaxed (LSDA) 1.72 0.15 0.09
OPB 1.78 (1.79)  1.52 (1.21)  0.85 (0.67)
OPE 1.86 (1.85) 2.03 (1.69)  1.09 (0.91)
LMTO-unrelaxed (LSDA) [140] 2.1 0.23 0.11
OPB 1.6 1.11 0.70
Exp [132] - . 0.3540.05

6.2.3 Model calculations

In order to better understand the evaluated orbital moments in the LSDA,
the size of 3d orbital moments can be approximated to first order (spin-orbit
coupling treated as a weak perturbation on the Co site) by the difference of
the spin-split local densities of states at Fermi level [115].

In a simple tight binding model proposed by H. Ebert et al. [115], one can
obtain a very simple expression for the orbital moment:

My~ —¢[n' (ep) — n*(er)], (6.1)

where n' and n* are the spin up and spin down local densities of states at the
Fermi level for the considered atom and £ is the spin-orbit coupling constant. It
can be seen in Figure 6.4 that the majority band for Co is almost completely
filled, while the minority bands are partially filled. The magnitude of the
orbital moment of Co can be basically estimated from n*(er) of the local
density of states. This naturally explains the calculated orbital moments based
on LSDA. Taking into account & = 0.054 eV for Co (see Chapter 5) and the
calculated spin up and down local densities of states for Co atom (n'(ex) =
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Figure 6.5: Spin and orbital magnetic moments of Co in dependence of the
distance between Co and nearest neighbor Au atoms. The red (blue) filled
squares show the spin magnetic moments of Co in presence of OPB (in absence
of OPB). The thick vertical line denotes the optimized neighbor distance, the
vertical dotted line shows the Au-Au distance in the unrelaxed structure. The
red (blue) filled circles show the orbital magnetic moment of Co with (without)
OPB correction.

0.5 states/eV, n¥(ex) = 3.5 states/eV), an orbital moment of 0.15up can be
expected, which is in a good agreement with the LSDA values in the DFT
calculations (see Table 6.1).

6.2.4 Importance of OP corrections

The model discussed in the previous section cannot explain the size of the
orbital moment of a Co impurity obtained in the XMCD experiment.

As it is pronounced the LSDA scheme is clearly inferior to LSDA+4OP
approach. The calculated orbital moment of Co impurity in LSDA is under-
estimated by a factor of two compared with XMCD experiment. However the
estimated orbital moment based on both OP corrections are overestimated by
a factor of two compared with experiment. These big differences can be under-
stood from two factors, band broadening and occupation. From H. Ebert et al
theory [115], we found that most contribution to orbital moment dominated
from the minority bands of Co impurity at the Fermi level, either than ma-
jority bands which they are strongly hybridized with Au-5d bands of the gold
matrix. The Figure 6.6 (a,b) show the LSDA and LSDA+OPB my-resolved
minority density of states close to the Fermi level for d bands of Co atom, re-
spectively. It is obviously visible that the OP correction makes the bands more
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approach.
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Table 6.2: Occupation numbers n(my;) for minority m,;-3d states of Co impurity
in Au.

m] m=—2 m=—-1 m=0 my=1 m;=2
LSDA 0.602 0.647 0.573 0.653 0.672
LSDA+OPB 0.402 0.568 0.574 0.707 0.786

splits. Such splitting comes into play from OPB potential —BL,m; which acts
over every my; state to separate them more from each others at a given spin
sub-shell. It means that bands with positive m; characters will be more oc-
cupied and with negative m,; characters move more to unoccupied bands (see
Figure 6.6).

Table 6.2 shows the occupation numbers of minority 3d-Co states in the
LSDA and the LSDA+OPB approaches. It is visible now that OP correction
enhances the occupation number differences in comparison with the LSDA
values. This changing strongly affects on the magnitude of orbital moment. For
a rough estimation of orbital moment as a function of occupation numbers, we
use (Eq.4.10) in its k-independent form. As it is expected the Co impurity can
be understood more or less as a free like character in the Au matrix. Therefore
from this argument and using values in Table 6.2, the orbital moment of Co
impurity in the LSDA approach was found to be 0.15up5 and in LSDA+OPB
approach is 0.9up. Qualitatively, these values are in a very good agreement
with the related values mentioned in Table 6.1.

The question arises whether the large ratio of M;/M; observed on Co in
an Au matrix originates from the strong spin-orbit coupling of Au or from the
weak Co-Au interaction. To answer, we can compare the orbital moment of
Co in Au with Co in Ag. In our calculations, it is found out that the LSDA
value of the orbital moment of Co in Ag is 0.26up (LSDA value 0.26up in
the LMTO method [140]) and in presence of the OPB correction (hybridized
version) is 1.264p5 (to be compared with the related LMTO value 1.40p 5 [140]).
Comparing similar values for orbital moment of Co in Au with Co in Ag, one
can see the both LSDA and LSDA+OPB values in the Au matrix are smaller
than those values in the case of Ag. Since Ag atoms are lighter than Au atoms
and the spin-orbit coupling of heavy elements is stronger than that of the
light elements, it can be concluded that the spin-orbit coupling on the gold
atom cannot be a reason for the enhancement of the orbital moment of Co in
Au. Finally, we argue that the weakness of Co-Au hybridization gives forth a
reason for the large orbital moment of Co impurity. However, the relaxation
of atoms adjacent to the impurity was taken into account to study the effect
of host-impurity hybridization on orbital moments.
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6.3 Conclusion

In this chapter, we presented results of density functional calculations on the
electronic structure of Co impurities inside Au in the framework of local spin
density approximation. The orbital and spin magnetic moment have been eval-
uated using the relativistic version of the full-potential local orbital minimum
basis code, with and without inclusion of orbital polarization corrections. In
agreement with experimental findings, the orbital moment is enhanced with re-
spect to Co metal. On the other hand, lattice relaxation is found to reduce the
orbital moment considerably, whereas the spin moment is less affected. From
this finding we would also expect a rather strong pressure dependence of the
orbital moment, which could be verified experimentally. Taking into account
the bulk modulus of gold as B = 220/G Pa, a pressure dependence of the Co
orbital moment in gold, dy;/dP ~ —0.03up/GPa, is predicted. The Co-3d
states are only weakly hybridized and form narrow bands. In this respect the
Co impurity maintains almost an atom-like character, which explains the large
orbital moment observed in the experiment.
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Chapter 7

Summary

Orbital magnetism in a solid is strongly influenced by the ligand field, origi-
nating from the structural environment and geometry of the solid. The orbital
moments in a solid with cubic symmetry are expected to be quenched if spin-
orbit coupling is neglected. However, spin-orbit coupling induces orbital mo-
ments, accordingly. The relativistic nature of the spin-orbit coupling requires
orbital magnetism to be treated within QED, and the treatment of QED in
solids is possible in the frame of current density functional theory.

The spin-orbit coupling is accounted for in many DF'T calculations of mag-
netic systems within the LSDA. However, a strong deviation of the LSDA
orbital moments from experiment is found in such approaches. To avoid such
deviations, orbital polarization corrections would be desirable. In this Thesis,
those corrections have been investigated in the framework of CDFT.

After a short review for CDFT in Chapter 2, in Chapter 3, an ad hoc OP
correction term (OPB) suggested by Brooks and Eriksson is given. This cor-
rection in some cases gives quite reasonable corrections to orbital moments of
magnetic materials. Another OP correction (OPE), which has been introduced
recently, was derived from the CDFT in the non-relativistic limit. Unfortu-
nately, the program can only incompletely be carried through, as there are
reasonable but uncontrolled approximations to be made in two steps of the
derivation. Nevertheless, the result is quite close to the ad hoc ansatz. The
calculated OPE energies for 3d and 4f free ions are in qualitative agreement
with OPB energies.

In Chapter 4, both corrections are implemented in the FPLO scheme to
calculate orbital moments in solids. We found that both OPB and OPE correc-
tions implemented in FPLO method, yield reasonably well the orbital magnetic
moments of bce Fe, hep Co and fee Ni compared with experiment.

In Chapter 5, the effect of spin-orbit coupling and orbital polarization cor-
rections on the spin and orbital magnetism of full-Heusler alloys is investi-
gated by means of local spin density calculations. It is demonstrated, that OP
corrections are needed to explain the experimental orbital moments. Model
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calculations employing one ligand field parameter yield the correct order of
magnitude of the orbital moments, but do not account for its quantitative
composition dependence. The spin-orbit coupling reduces the degree of spin
polarization of the density of states at Fermi level by a few percent. We have
shown that the orbital polarization corrections do not change significantly the
spin polarization degree at the Fermi level. We also provide arguments that
CoyFeSi might not be a half-metal as suggested by recent experiments.

In Chapter 6, to understand recent XMCD data for Co impurities in gold,
the electronic structure of Co impurities inside gold has been calculated in the
framework of local spin density approximation. The orbital and spin magnetic
moment have been evaluated. In agreement with experimental findings, the or-
bital moment is enhanced with respect to Co metal. On the other hand, inter-
nal relaxations are found to reduce the orbital moment considerably, whereas
the spin moment is less affected. Both OPB and OPE yield a large orbital
moment for Co impurities. However, those calculated orbital moments are
almost by a factor of two larger than the experimental values. We also found
that the orbital magnetic moment of Co may strongly depend on pressure.
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Appendix: Functional
derivatives

With cylindrical coordinate (p, z, ¢) and A = A% + ASL one finds for func-
tional derivitive of L(7),!
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The orbital correlation term becomes
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The functional derivitive of A®(r) is given by
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SHC(r') . SHE(r')  ((r) SHC(r') 1 0HC(r") .
Son(r) ( Sn(r)  n(r) () | n(r) o¢(r) ZZ)W I
1 0HC(r") oL, (r")

3 n
*5“’“/ N N CORT AR




Appendix B

Appendix: Complex and real
spherical harmonics

Using Legendre polynomials, P|lm| (cosd), the complex spherical harmonics read

as:
[20+1 [(l—|m|)! ,
Y, = (—1)(m+im)/2 pl 0 im¢ B.1
L ( ) |m|(COS ) AT (l+ |m|)' € ’ ( )
and the real spherical harmonics are presented with:
20+ 1 (I—=1|m[)! [ cos(|m|#) m >0
= P ) = . (B2
YL m| (cost) \/27r(1 + 6mo) \/(l + |m|)! | sin(|m[f) m <0 (B-2)

The complex and real spherical harmonics are related with following equa-
tion:

Y, = am¥y, + bl (B.3)
with
am, b
i 1
m = 1 0
1 i
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Abstract of Thesis:

Orbital Polarization in Relativistic Density
Functional Theory

The description of the magnetic properties of interacting many-particle
systems has been one of the most important goals of physics. The problem is
to derive the magnetic properties of such systems from quantum mechanical
principles. It is well understood that the magnetization in an atom described
by quantum numbers, spin (S), orbital (L), and total angular momentum (J)
of its electrons. A set of guidelines, known as Hund’s rules, discovered by
Friedrich Hermann Hunds help us to determine the quantum numbers for the
ground states of free atoms.

The question “to which extent are Hund’s rules applicable on different sys-
tems such as molecules and solids?” is still on the agenda. The main problem
is that of finding the ground state of the considered system. Density functional
theory (DFT) methods apparently are the most widely spread self-consistent
methods to investigate the ground state properties. This is due to their high
computational efficiency and very good accuracy. In the framework of DF'T,
usually the total energy is decomposed into kinetic energy, Coulomb energy,
and a term called the exchange-correlation energy. Taking into account the
relativistic kinetic energy leads to direct and indirect relativistic effects on the
electronic structure of a solid. The most pronounced direct effect (although
not the biggest in magnitude) is the spin-orbit splitting of band states. A well-
known indirect relativistic effect is the change of screening of valence electrons
from the nuclear charge by inner-shell electrons. One can ask that how rela-
tivistic effects come into play in ordinary density functional theory. Of course
ordinary density functional theory does not include those effect. Four-current
density functional theory (CDFT), the quantum electrodynamic version of the
Hohenberg-Kohn theory is a powerful tool to treat relativistic effects. Al-
though it is principally designed for systems in strong magnetic fields, CDFT
can also be applied in situations where currents are present without external
magnetic fields. As already pointed out by Rajagopal and Callaway (1973),
the most natural way to incorporate magnetism into DFT is the generalization
to CDF'T. These authors, however, treated its most simple approximation, the
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spin density functional theory (SDFT), which keeps the spin current only and
neglects completely correlation effects of orbital currents. By using the Kohn-
Sham-Dirac (KSD) equation, spin-orbit coupling is introduced kinematically.
The part of the orbital magnetism that is a consequence of Hund’s second rule
coupling is absent in this theory and there is not any more a one-to-one map-
ping of spin densities onto external fields. In solids, in particular in metals, the
importance of Hund’s second rule coupling (orbital polarization) and Hund’s
third rule (spin-orbit coupling) is usually interchanged in comparison to atoms.
Thus, in applications of the relativistic CDF'T to solids, the usual way has been
to keep the spin-orbit coupling in the KSD equation (an extension to ordinary
Kohn-Sham (KS) equation) and to neglect the orbital contribution to the total
current density and approximate exchange-correlation energy functional with
spin density only. This scheme includes a spontaneous exchange and corre-
lation spin polarization. Orbital polarization, on the other hand, comes into
play not as a correlation effect but also as an effect due to the interplay of spin
polarization and spin-orbit coupling: In the presence of both couplings, time
reversal symmetry is broken and a non-zero orbital current density may occur.
Application of this scheme to 3d and 4f magnets yields orbital moments that
are smaller than related experimental values by typically a factor of two.

Orbital magnetism in a solid is strongly influenced by the ligand field,
originating from the structural environment and geometry of the solid. The
orbital moments in a solid with cubic symmetry are expected to be quenched
if spin-orbit coupling is neglected. However, spin-orbit coupling induces or-
bital moments, accordingly. The relativistic nature of the spin-orbit coupling
requires orbital magnetism to be treated within QED, and the treatment of
QED in solids is possible in the frame of current density functional theory.

The kinematic spin-orbit coupling is accounted for in many DFT calcu-
lations of magnetic systems within the LSDA. However, a strong deviation
of the LSDA orbital moments from experiment is found in such approaches.
To avoid such deviations, orbital polarization corrections would be desirable.
In this Thesis, those corrections have been investigated in the framework of
CDEFT.

After a short review for CDFT in Chapter 2, in Chapter 3, an ad hoc OP
correction term (OPB) suggested by Brooks and Eriksson is given. This cor-
rection in some cases gives quite reasonable corrections to orbital moments of
magnetic materials. Another OP correction (OPE), which has been introduced
recently, was derived from the CDFT in the non-relativistic limit. Unfortu-
nately, the program can only incompletely be carried through, as there are
reasonable but uncontrolled approximations to be made in two steps of the
derivation. Nevertheless, the result is quite close to the ad hoc ansatz. The
calculated OPE energies for 3d and 4f free ions are in qualitative agreement
with OPB energies.

In Chapter 4, both corrections are implemented in the FPLO scheme to



calculate orbital moments in solids. We found that both OPB and OPE correc-
tions implemented in FPLO method, yield reasonably well the orbital magnetic
moments of bece Fe, hep Co and fee Ni compared with experiment.

In Chapter 5, the effect of spin-orbit coupling and orbital polarization cor-
rections on the spin and orbital magnetism of full-Heusler alloys is investi-
gated by means of local spin density calculations. It is demonstrated, that OP
corrections are needed to explain the experimental orbital moments. Model
calculations employing one ligand field parameter yield the correct order of
magnitude of the orbital moments, but do not account for its quantitative
composition dependence. The spin-orbit coupling reduces the degree of spin
polarization of the density of states at Fermi level by a few percent. We have
shown that the orbital polarization corrections do not change significantly the
spin polarization degree at the Fermi level. We also provide arguments that
CoyFeSi might not be a half-metal as suggested by recent experiments.

In Chapter 6, to understand recent XMCD data for Co impurities in gold,
the electronic structure of Co impurities inside gold has been calculated in the
framework of local spin density approximation. The orbital and spin magnetic
moment have been evaluated. In agreement with experimental findings, the or-
bital moment is enhanced with respect to Co metal. On the other hand, inter-
nal relaxations are found to reduce the orbital moment considerably, whereas
the spin moment is less affected. Both OPB and OPE yield a large orbital
moment for Co impurities. However, those calculated orbital moments are
almost by a factor of two larger than the experimental values. We also found
that the orbital magnetic moment of Co may strongly depend on pressure.
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