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Chapter 1

Introduction

The knowledge of the electronic structure of solids is a fundamental ingredient

to the understanding of their properties. In the last decades there was a tremen-

dous progress in the investigation of electronic structures, but our knowledge is

still far from being complete. The exact solution of the complete many-body

problem of a solid is impossible due to the huge number of degrees of freedom.

To approximate the solution, the standard way is a mapping onto an e�ective

independent particle picture with every particle considered to move in the same

potential created by all other particles. This procedure is very successful for many

metals and intermetallic compounds, but it fails for example for some transition

metal oxides such as CrO2, NiO or CuO. For these compounds, the single electron

picture yields metallic behavior instead of the experimentally observed insulating

behavior. This fact is due to the strong Coulomb correlations present in the

poorly screened d-states. Compounds where the e�ective mean �eld approxima-

tion1 fails due to strong electron-electron interaction are commonly denoted as

strongly correlated systems.

Initiated by the discovery of the high temperature superconductivity (HTSC)

[1], the development of methods for a better description of such strongly correlated

systems was, in particular during the last ten years, one of the most interesting

directions in solid state physics. The knowledge of the mechanism of HTSC

would be important for technical applications, but in spite of many e�orts this

mechanism is still unclear. A further detailed study of di�erent aspects of strongly

correlated systems might also provide a key for the solution of this fascinating

HTSC problem.

The fundamental structural building block in all high temperature supercon-

ductors is a copper-oxygen plane built from CuO2-plaquettes (see Figs. 3.1, 3.21).

1In this context, the expression mean �eld approximation should be understood more gener-

ally for approaches which neglect at least a part of dynamic interactions due to an approximate

mapping onto an e�ective single particle picture.
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Starting from isolated plaquettes of this type which can be written as [CuO4]
�6,

a rich variety of topologically di�erent copper-oxygen networks can be described.

All members of this big family are kept together by Cu 3d-O 2p molecular states.

An important quantity for the electronic properties is the total number of d-holes

in the plaquette. In the isolated plaquette mentioned above, one d-hole is already

present on the copper site. Additional holes or electrons can be introduced either

by substitution of di�erent cations, or by an excess or a lack of oxygen. In the

present work, only undoped compounds with one exception are investigated. For

this class of compounds, the antibonding Cu 3d-O 2p band is half-�lled and splits

into an upper and a lower band due to the strong electron-electron interaction

on the copper site. A correlation gap opens, the groundstate is insulating and in

most cases antiferromagnetic.

The essential di�erence between all these cuprates composed of copper-oxygen

plaquettes is the varying connection between the plaquettes. Corresponding to

the connection, these compounds can be classi�ed as zero-, one-, two- and three-

dimensional systems with respect to the electronic structure (see Chapter 3). A

detailed analysis of the electronic properties especially for the low-dimensional

compounds, which can be regarded in some sense as parent-compounds of the

more complex high temperature superconductors, is the aim of the present work.

The understanding of low-dimensional cuprates might be not only the key for

the problem of HTSC: The main issue addressed in this work are the unusually

magnetic properties of these systems (see Chapter 4) that attracted large theo-

retical interest in recent years. In the class of quasi one-dimensional compounds,

one �nds for example nearly ideal realizations of the one-dimensional spin-1/2

Heisenberg model [2]. Spin-charge separation [3] or phase transitions to anti-

ferromagnetism [4] and to a spin Peierls state [5], respectively, are observed at

low temperatures. These phase transitions are a�ected by large quantum 
uctu-

ations. In some cases the corresponding transition temperature is extremely low

with respect to the dominating exchange interaction, furthermore unusual small

magnetic moments are found. All these properties make the low-dimensional

cuprates to be ideal model systems for checking, improving and developing the-

oretical approaches to physics in low-dimensions.

In this work, a typical strategy to investigate strongly correlated systems like

cuprates is pursued: The relevant orbitals are found from band structure calcu-

lations. Using these orbitals and the related transfer matrix elements, models

which take into account the strong correlations explicitly are constructed and

lead to a more suitable description of such strongly correlated systems.

The thesis is organized as follows: The theoretical background of the band

structure calculations performed on the basis of the density functional theory is

presented in Chapter 2. In Chapter 3, a systematic overview of cuprate com-
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pounds belonging to the typical network geometries is given, including band

structure calculations and the discussion of the relevant orbitals for each presented

compound. The extraction of model parameters from the above mentioned band

structure calculations and a more appropriate treatment of the strong Coulomb

correlations is presented in Chapter 4 with focus on typical examples. The in-

terpretation of spectroscopic measurements starting from band structure calcu-

lations and subsequent model calculations is the topic of Chapter 5. Finally, a

short summary and an outlook is given in Chapter 6.
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Chapter 2

Electronic structure of solids

2.1 Density functional theory

A complete description of a solid could be achieved by solving the Schr�odinger

equation for the many-particle-problem. Due to the huge number of degrees of

freedom in the order of magnitude of the Avogadro-constant, however, the

many-particle wave function is much too complex for such a strategy. Moreover,

the many-particle wave function contains much more information than necessary

for a calculation of relevant physical properties. Density matrices are appropriate

quantities to extract the relevant information out of such unhandy constructs as

N-particle wave functions are. The use of reduced density matrices and some

approximations yield a formulation of the many-particle theory in terms of e�ec-

tive single-particle equations. These can be treated numerically and are suited

to describe many experimental situations with high accuracy.

The accuracy of bandstructure calculations performed using the density func-

tional theory (DFT) within usual approximations1 is especially good for rea-

sonably closed packed structures where correlations play a minor role. For the

strongly correlated systems which are presented in this work this approach fails.

One has to deal with the correlations in a more explicit way within models on

top of the DFT in its computable approximations. Such models will be discussed

in later parts of the chapter.

In the following, the main ideas of the density functional theory developed

by Hohenberg and Kohn [7] and others are shortly presented, together with a

calculational scheme based on this concept.

1The DFT is an exact theory, problems arise only due to the approximations for the unknown

functional of the exchange correlation energy which are assumed for practical calculations [6],

see also (2.1.2).
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2.1.1 Kohn-Sham-Equations

We start with the Schr�odinger-equation for the many-body wave function 	

in the Schr�odinger-representation:

Ĥ(x1 : : : xN ; X1 : : :XN 0)	(x1 : : : xN ; X1 : : :XN 0) = E	(x1 : : : xN ; X1 : : :XN 0) :

(2.1)

In this notation x = (�r) and X = (�R) contain both the variables for space and

spin. For an isolated system of N 0 Z-fold positively charged, pointlike nuclei and

N negatively charged electrons, the Hamiltonian is given as:

Ĥ(x1 : : : xN ; X1 : : :XN 0) = �
NX
i

�i

2
+
1

2

NX
i6=i0

1

jri � ri0 j
�

N;N 0X
i;n

Zn

jri �Rnj
+

+
1

2

N 0X
n6=n0

ZnZn0

jRn �Rn0j
�

N 0X
n

�n

2Mn

: (2.2)

Here, r with the indices i; i0 denote the position of the electrons, R and n; n0

correspond to the position of nuclei. Atomic units are used, i.e., me = ~ =

jej = 1. This Hamiltonian contains pure electronic contributions, pure nuclear

contributions and coupling terms between them. Due to the fact that the ratio

of mass me=mproton � 1=2000 � 1, the movement of the nuclei is much slower

than that of the electrons. Thus, we can consider the electronic system at any

time in equilibrium with the corresponding con�guration of the nuclei. This is

the so-called adiabatic approximation [8] which is reasonable for most low energy

excitations2. The kinetic energy of the nuclei in the last term of Eq. (2.2) is

neglected in this approximation. We will focus now and in the remaining parts

of this thesis on the electronic system considered in the external potential Vext

generated by the �xed nuclei and rewrite the Hamiltonian for the decoupled

problem:

Ĥ = T̂ + V̂ext + Û =

NX
i

 
�i

2
+ vext(ri) +

1

2

NX
i0 6=i

1

jri � r0ij

!
; (2.3)

T̂ =

NX
i

�i

2
; (2.4)

2The adiabatic approximation is good as long as the kinetic energy of the nuclei is small

compared with the electronic transfer integrals. For the case of strong electron-phonon coupling

and high phonon energies (see Sec. 5.4.2), this approximation becomes inappropriate.
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V̂ext =

NX
i

vext(ri) = �
N;N 0X
i;n

Zn

jri �Rnj
; (2.5)

Û =
1

2

NX
i0 6=i

1

jri � r0ij
: (2.6)

Now we can de�ne the ground state wave function 	G of the electronic system,

the ground state energy

EG = h	GjĤj	Gi (2.7)

and the ground state density

nG(r) =
X
�

Z
	�

G(�r; x2 : : : xn)	G(�r; x2 : : : xn) dx2 : : : dxn : (2.8)

It is noteworthy, thatHohenberg andKohn [7] proved, that the groundstate

density nG(r) alone already determines the external potential Vext and hence

	G and all ground state properties uniquely. A variational principle for EG,

formulated in the work of Hohenberg andKohn and generalized later by Levy

[9] and Lieb [10] gives the possibility to construct an explicit scheme to calculate

EG and nG(r) for a constant number of particles:

EG[v
ext] = min

	n

n
h	njĤj	ni

��� Z n(r) dr = N
o

(2.9)

= min
n

�
F [n] +

Z
n(r) vext(r) dr

����
Z
n(r) dr = N

�
; (2.10)

where 	n is the class of all normalized fermionic wave functions with the density

n. The unknown Hohenberg-Kohn functional F [n] = min	!nh	njT̂ + Û j	ni
is a functional of the density only and can be rede�ned as follows:

F [n] = T0[n] + EH[n] + Exc[n] : (2.11)

The Hartree part of the electron-electron interaction energy is given by

EH[n] =
1

2

Z
n(r)n(r0)

jr� r0j dr dr0 ; (2.12)

with self-interaction included. Otherwise, it could not be expressed by the total

density only. T0[n] is the ground state kinetic energy of a non-interacting electron

gas with the density n:

T0[n] =

NX
i

h�ij � �i

2
j�ii ; (2.13)

n =

NX
i

�i�
�

i ; (2.14)

h�ij�ji = �ij : (2.15)
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The functions �i are the N lowest single particle eigenstates in an appropriate

external potential. The only unknown part3 of F [n] is the exchange-correlation

energy Exc[n]
def
= F [n] � (T0[n] + EH[n]), containing the whole information be-

yond mean �eld about kinematic (exchange) and dynamic (correlation) electron-

electron interactions in the ground state. The functional derivative of the ground

state energy with respect to the density under the constraint of Equation (2.10)

has to be zero in the minimum:

�

�n

�
F [n] +

Z
n(r) vext(r) dr� �

Z
n(r) dr

�
=

=
�

�n
T0[n] + vH(r) + vxc(r) + vext(r)� � = 0 : (2.16)

Herein, � is the the chemical potential. The combination of (2.16) with the

functional derivative of T0[n] with respect to the single particle function ��i leads

to the Kohn-Sham-equations:�
�1

2
� + ve�(r)

�
�i = "i�i ; (2.17)

which is a single particle equation in an e�ective potential:

ve�(r) =

Z
n(r0)

jr� r0j dr
0 + vxc(r) + vext(r) (2.18)

where

vxc(r)
def
=

�

�n(r)
Exc[n(r)] : (2.19)

The Kohn-Sham-energies "i have been introduced as Lagrange-multipliers in

the variation to ensure the normalization of the orbitals in the kinetic energy

expression (2.13). The equations (2.17{19) together with the density expres-

sion (2.14) de�ne a non-linear system of integro-di�erential equations for the

determination of the ground state density. This system of equations has to be

solved self-consistently. It should be noted that self-consistency means just that

a stationary value of the energy is found, which is not necessarily the global

minimum. Formally, the Kohn-Sham-equations are correct, but the exchange-

correlation potential (2.19) is unknown for most systems. For a practical solution,

approximations of Exc[n] are needed. Such an approximation, the local density

approximation (LDA), will be presented in the next section.

In many cases, experimental band structures and other measured quantities

can be described with the solutions of Equation (2.17). This is understandable

because of the similarity of the Kohn-Sham-potential vxc and a local approx-

imation of the self-energy operator near the Kohn-Sham Fermi level in most

3remark that T0 is not explicitly known
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metals [11]. Therefore, the band energies near the Fermi level can be interpreted

as quasiparticle excitations.

2.1.2 The local spin density approximation

A weak point of the scheme shown in the last section was the absence of a prac-

ticable expression for the exchange-correlation potential vxc. An exception is the

homogeneous electron liquid, a model system with constant external potential

and constant ground state density nG. For this model system, which contains es-

sential exchange and correlation e�ects, vhomxc and the xc-energy per particle "homxc

can be determined with good accuracy by means of Monte Carlo calculations

[12, 13]. Roughly, "homxc / n1=3 and vhomxc / n1=3.

As approximation for inhomogeneous systems, Kohn and Sham [14] replaced

the xc-energy density at the position r by the xc-energy density of an homoge-

neous electron liquid with the density n(r):

ELDA
xc [n(r)] =

Z
"homxc (n(r))n(r) dr : (2.20)

This is called the local density approximation and seems reasonable for slowly

varying densities, for instance in simple metals. There is no simple reason why

this approach describes well such inhomogeneous systems like atoms, ions or

molecules, where the electrons built up shells and directed bonds, respectively.

Nevertheless, the LDA leads to remarkably good results for transition metals,

molecules and, to a certain extend, even for atoms and ions. The cause for this

success is that the xc energy originates only from the spherical part of the xc hole

around an electron [15], due to the isotropy of the Coulomb interaction. This

part of the xc hole is well described in LDA [16].

The Kohn-Sham variational principle is valid independently of the nature

of the groundstate, if it is itinerant or localized, non-magnetic or spin-polarized.

However, within the above presented spin-degenerated theory it is not possible

to distinguish the latter two situations. Even with the knowledge of the exact

Exc we could not calculate spin densities and related properties. It was shown

by von Barth and Hedin [17] that this theory can be generalized by replacing

the density n by the spin density matrix n��0 = n, the potential vext by the

spin-dependent potential4 vext��0 and the states ("
i;�i) by the corresponding spinor

states ("i�;�
i
�). Without repeating the previous considerations, we rewrite the

4The spin dependency of the potential is introduced for sake of 
exibility, for instance it is

needed for an initial spin-splitting for spin-polarized calculations.
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Kohn-Sham equations as follows:

X
�0

((��

2
+ vH(r; [n]))���0 + vext��0(r) + vxc;��0(r; [n]))�

i
�0 = "i��

i
� ; (2.21)

n��0 =

NX
i

��
i �

�0�
i ; (2.22)

vxc;��0(r; [n]) =
�Exc[n]

�n�0�
; (2.23)

ELSDA
xc [n+; n�] =

Z
"homxc (n+(r); n�(r))n(r) dr ; (2.24)

with the particle density

n =
X
�

n�� = n+ + n� : (2.25)

Here, n+ and n� are the spin up and spin down densities, respectively, with

respect to a preferred axis. The Hartree part of the potential is unchanged.

Now we can calculate the spin momentum density

� = tr(�n) (2.26)

and the related spin magnetic moment �s in a given volume V

�s = ��B
Z
V

dr�(r) : (2.27)

Herein, � = (�x, �y and �z) are the Pauli spin matrices, �B is the Bohr mag-

neton.

This spin-dependent theory is called local spin density approximation (LSDA)

and allows the calculation of all kinds of magnetic systems. Corresponding to the

LDA, the local approximation is done with respect to the xc energy per particle

"homxc of the spin-polarized homogeneous electron gas. For practical calculations,

analytical expressions for "homxc with free parameters �tted to the numerical results

are usually used [17]. To �nd spin-polarized solutions, a spontaneous symmetry

breaking has to be simulated by initially spin-splitting the external potential,

because the non-magnetic state is always a local extremum in the energy func-

tional due to the symmetry between both spin polarizations in a spin-independent

external potential.

2.1.3 Quasiparticle excitations and L(S)DA+U

In Section 2.1.1, theKohn-Sham orbitals �i with the related single particle ener-

gies "i have been introduced formally as auxiliary quantities needed to construct
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the density n. For the case of a non-interacting system, the Kohn-Sham states

above the Fermi energy coincide with the excitations of the system. For certain

excitations of the interacting system, this property is approximately kept. This

allows an easy and straightforward interpretation of experimental spectra using

Kohn-Sham band structures.

We consider the Dyson equation originating from a rigorous many-body

treatment of the interacting system [18]:

[��

2
+ vext(r) + vH(r)]	i(r) +

Z
dr0M(r0; r; Ei)	i(r

0) = Ei	i(r) (2.28)

This equation describes weakly damped single-electron or single-hole excitations

near the Fermi energy, the so-called quasiparticle excitations. In Eq. (2.28),

all interactions beyond the mean �eld level are collected to an energy-dependent

integral operator. Therein, M(r0; r; Ei) is the non-local complex self-energy, un-

known like vxc in the Kohn-Sham equations. Being a ground state property,

it is, according to the Hohenberg-Kohn theorem, a functional of the ground

state density. Formal equivalence of Eq. (2.28) with the Kohn-Sham equations

could be achieved by replacing

M(r0; r; Ei) �! �(r� r0)vxc(r) (2.29)

In fact, the imaginary part of M vanishes at the Fermi level. If we consider

the homogeneous electron gas, M should be translationally invariant and should

depend only on jr� r0j:

M(r0; r; EF) �!Mhom(jr0 � rj; EF; n) ; (2.30)

with the dependence on the density made explicit. It was argued by Sham and

Kohn [19] that the self-energy has a short range behavior, such that

M(r0; r; E) � �(r� r0)~vM(r; E) (2.31)

is a good approximation for slowly varying densities. The Eqs. (2.30) and (2.31)

can be merged into

Mhom(jr0 � rj; EF; n) � �(r� r0)vM(n) (2.32)

and applied to the inhomogeneous situation in the usual local density manner,

replacing vLDAxc (n(r)) by vM(n(r)) in the Kohn-Sham equations.

This consideration establishes the formal equivalence between Kohn-Sham

eigenvalues and quasiparticle excitation energies at the Fermi level. Figure 2.1

shows the approximate numerical equivalence of vM(n) [20] with two approximate
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Figure 2.1: Comparison of two di�erent approximate exchange poten-

tials for the homogeneous electron gas (full line: Perdew-Zunger

[21], dotted line: Hedin-Lundqvist [20]) with values of vM(n) given

by Hedin and Lundqvist [20]. Note, that the distance between vM

and the xc-potentials is almost independent on the density parameter,

rs = (3=4�n)1=3. This corresponds to an almost constant shift of the

potential in a large share of the volume (after Richter [22]).

LDA-xc potentials [20, 21]. It is clearly seen that vM(n) is almost constantly

shifted from the range of the di�erent approximations for vxc. Away from the

Fermi level, vM becomes energy dependent, but this dependence is still in the

same range for Ei � EF not larger than a few eV.

The discussed approximation is closely related to quasiparticle properties of

the homogeneous electron gas. Hence, it works best for nearly free electron states

forming broad bands. In this case, the Kohn-Sham orbital densities well approx-

imate quasiparticle densities, including relaxation. If the bands become narrower,

deviations between L(S)DA band energies and spectra occur. The hopping rate

is lower, and hence a stronger Coulomb interaction is felt by other electrons

because of the reduced screening. Strong on-site correlations result in a jump of

M , as a function of energy, at EF by an amount Ueff . This quantity is related to

the (screened) on-site Coulomb matrix element U . The simplest available ap-

proximation is called L(S)DA+U, where the energy dependence of M is reduced

to the jump at EF and otherwise the L(S)DA approximation is used. Due to the

di�erent screening, Ueff has to be calculated for each individual compound and
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is not just an atomic property like U is. The value of the model parameter Ueff

can be obtained by means of constrained DFT calculations [23].

In the Chapters 4 and 5 it is shown exemplaryly how the strong on-site

Coulomb correlations can be taken into account to improve L(S)DA results.

2.2 The optimized LCAO method

In this section, a calculational scheme to solve the Kohn-Sham equations in

LSDA (see 2.1.2) in the case of an ideal solid will be discussed. For most calcula-

tions of this work, an LCAO-method (linear combination of atomic-like orbitals)

was used. For a detailed description see Ref. [24] which is the basis for the

presentation given in this section.

2.2.1 The local basis set

An ideal solid consists of a geometrical arrangement of atoms on sites R + S

where R de�nes an in�nite Bravais lattice and S the atomic positions inside

the unit cell. This periodic arrangement generates a periodic external potential

caused by the positively charged nuclei. The Kohn-Sham eigenfunctions can be

represented as Bloch wave functions hrjki due to this periodicity. The trans-

lational invariance along the lattice vectors of the Bravais lattice de�nes the

conservation of the quasi-momentum k. Each site of the unit cell can contribute

more than one electron to the system, hence for each k point several states with

the eigenenergies "k� are occupied. So the Bloch wave function hrjki can be

denoted with the band index5 �.

The wave function hrjk�i in our LCAO method is composed of overlapping,

local, atomic-like wave functions jRS). These functions are solutions of an atomic
Schr�odinger equation6. We classify the basis functions as core states jRSc)
and valence states jRS�). In general, the valence functions are extended beyond

the nearest neighbor distance: they are overlapping and non-orthogonal. The

core states jRiSjc) centered at the site Ri + Sj should not overlap with those

of neighboring sites: (RiSjcjRkSlc) = 0 for i 6= k or j 6= l. This condition is

nearly ful�lled for completely �lled shells. Orbitals which violate this condition

have to be treated as valence states. Core states on the same site are orthogonal.

The given subdivision reduces considerably the matrix rank of the band problem:

The core states are already eigenstates in the e�ective crystal potential (in good

5The spin index � is suppressed for sake of simplicity, the equations are the same for both

spin directions.
6In the relativistic case the Dirac equation is used for the calculation of the corresponding

spinor states [25].
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approximation). Since the Bloch states should be eigenfunctions of the same

crystal Hamiltonian, we choose a new set of valence functions jRS�i which are

orthogonal to all core states7 of all atoms:

jRS�i = jRS�)�
X
R0S0c

jR0S0c)(R0S0cjRS�) : (2.33)

Now, the Hamilton matrix is strongly reduced in dimension by the projection

on the Hilbert space of the valence states. If only one valence basis function

per electron is chosen, the corresponding minimal basis set is complete enough

to describe the occupied eigenstates and the low lying empty states.

The eigenfunctions jk�i of the crystal Hamiltonian are, corresponding to the

Bloch theorem, invariant under translation by lattice vectors. Thus, we combine

the basis functions jRS�i in a Bloch-sum ansatz with coe�cients still be to

determined:

jk�i = 1p
N 0

X
RS�

jRS�ick
S�;�e

ik(R+S) : (2.34)

We determine the coe�cients inserting the ansatz (2.34) in the Kohn-Sham

equation (2.17) for the crystal:

Ĥjk�i = "k� jk�i : (2.35)

Multiplying the expression (2.35) from the left side with e�ikS
0h0S0�0j and insert-

ing Eq. (2.34) we �nd the LCAO secular equation:X
RS�

eik(R+S�S0) h0S0�0j Ĥ � "k� I jRS�i ckS�;� = 0 : (2.36)

Equation (2.36) can be written shortly in matrix form:X
S�

�
Hk

S0�0S� � "k�S
k

S0�0S�

�
ck
S�;� = 0 (2.37)

where Hk

S0�0S� and Sk
S0�0S� are the Hamilton matrix and the overlap matrix,

respectively, de�ned for each k vector:

Hk

S0�0S� =
X
R

eik(R+S�S0)h0S0�0jĤjRS�i ; (2.38)

Sk
S0�0S� =

X
R

eik(R+S�S0)h0S0�0jRS�i : (2.39)

Now, the band energies "k� and the coe�cients c
k

S�;� can be determined by solving

the generalized eigenvalue problem for each k. Occupying the lowest N eigen-

values for each k point, where N is the number of electrons in the unit cell, the

7In practice, the orthogonalization is done only with respect to the state with the highest

main quantum number n for each angular momentum l.
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Fermi energy of the metallic system can be determined as the highest occupied

Kohn-Sham eigenstate.

Using the above calculatedBloch eigenfunctions jk�i we compute the valence
part of the particle density:

n(r) =
X
occ:k�

hrjk�ihk�jri (2.40)

=
X
occ:k�

1

N 0

X
R S �

R0S0�0

hrjRS�ick
S�;�e

ik(R+S�R0
�S

0)ck�
S0�0;�hR0S0�0jri : (2.41)

The expression for the valence density (2.40) can be decomposed into a sum of

local contributions consisting of a net part nnet
S
(r)8 and an overlap part novl

S
(r)

for each atom:

nnet
S
(r) =

X
��0

hrj0S�i 1
N 0

X
occ:k�

ck
S�;�c

k�

S�0;�h0S�0jri ; (2.42)

novl
S
(r) =

X
��0

R0+S0 6=S

hrj0S�i 1
N 0

X
occ: k�

ck
S�;�e

ik(S�R0
�S0)ck�

S0�0;�hR0S0�0jri : (2.43)

The contribution of the core states to the charge density of an atom at the site

S can be written as

ncore
S

(r) =
X
core

hrjScihScjri (2.44)

because the core states of one site do not overlap with those of the neighboring

sites.

Starting from the particle density, the crystal potential has to be computed. It

consists of the Hartree part which is calculated solving the Poisson equation

and the xc part which is treated in the parameterization of von Barth and

Hedin [17] or Perdew and Zunger [21], respectively.

In compounds with crystallographically inequivalent sites, ionicities generated

by the local density contributions result in a Madelung-problem. Its solution

can be found by application of an Ewald technique [26].

After the computation of the potential, we can recalculate the basis set and

close the cycle of self-consistency. This procedure has to be repeated until the

potential and the density, respectively, are converged. It usually requires the

application of advanced iteration techniques.

2.2.2 The calculation of the potential

In the previous section the general features of the LCAO scheme were illustrated.

The following part describes some details and additional approximations, which

8The net part contains small orthogonalization corrections from Eq. (2.33).
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optimize this scheme and allow to treat large crystals with a reasonable amount

of computational power and time.

The Hartree-part of the crystal potential is constructed as a sum of overlap-

ping extended spherical site potentials. This is possible because of the linearity

of the Poisson-equation. Hence, a part of non-spherical e�ects which is de-

termined by crystal symmetry is taken into account self-consistently. On the

other hand, the intra-atomic asphericity is suppressed by azimuthal averaging

over the site-charge density during the iteration. This is a good approximation

for most close packed structures. For open structures, the results can be im-

proved by introduction of empty spheres9 at interstitial sites. This construction

of the potential, together with the de�nition of the valence states as described

in Eq. (2.33) and below was quite successful in many applications and yields an

accuracy between so-called mu�n-tin methods and full-potential schemes. Re-

cently, a generalization to a full-potential local-orbital minimum-basis scheme

(FPLO) has been implemented [27]. This scheme10 allows higher accuracy with

only slightly enhanced requirements on computational time and storage.

At the beginning of each self-consistent iteration, atomic-like potentials VRS

are used to calculate the site-dependent valence orbitals. For the later steps VRS

is calculated from the local density of the previous step. The basis functions

(rjRS�) are represented as a product of a radial and an angular-dependent part:

(rjRS�) = �nl�(jr�R� Sj)Ylm(r�R� S) : (2.45)

The multiindex � = (nlm�) denotes the main quantum number n, the angular

momentum quantum number l, the magnetic quantum number m and the spin

�. The Ylm are real spherical harmonics.

While the core states can be calculated directly from the local potential

VRS, for the calculation of the valence states a contraction potential (r=r0(l))
n0 ;

(n0 � 0) is added [28, 29, 24]. This arti�cial attractive potential is introduced to

compress the valence functions jRS�). Thus, the overlap of the jRS�) is strongly
reduced in comparison with uncompressed atomic wave functions while only small

changes occur in the inner atomic region. Hence, the number of multi-center in-

tegrals in the calculation of the Hamilton-matrix and of the overlap-matrix is

reduced correspondingly. The main point of this procedure is, however, to obtain

a su�ciently complete basis for energies above the potential zero.

The variational parameters n0 and r0(l) are found with numerical tests: n0 = 4

(�xed) and r0(l) = x0(l)R
3=2
WS, where RWS is the Wigner-Seitz radius. The

9Empty spheres do not contribute to the external potential, but the valence functions cen-

tered on these sites improve the completeness of the basis set and the representation of the

potential.
10Herein, the calculation of the basis set is slightly modi�ed: Instead of the spherical local

potential the spherically averaged crystal potential is used.
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quantity x0(l) is an angular-momentum dependent variational parameter, which

can be determined for each lattice type by minimization of band energies on

symmetry points in empty lattice tests. Typically, 0:8 � x0 � 1:2. For open

structures, especially if the atomic radii of various components are strongly dif-

ferent, the use of the basis set optimized in this way can cause di�culties.

The exchange-correlation part of the potential, used in the parameterization

of von Barth and Hedin [17], depends in a non-linear way on the density.

Hence, a representation as sum of overlapping site potentials is di�cult. On

the other hand, the xc potential varies only slightly in the interstitial due to its

approximate proportionality to n1=3(r). Therefore, the xc potential is calculated

in atomic-sphere approximation (ASA)11. Spherically symmetric xc potentials

are computed from the spherically averaged densities inside atomic spheres. The

radii of these spheres are determined under the condition, that the densities on

their surfaces are the same and the sum of their volumes is equal to the volume

of the unit cell. For complex or open structures with strongly di�erent types of

atoms, these requirements can be only approximately ful�lled. For such cases, the

introduction of empty spheres can improve the construction of the xc potential.

2.2.3 Advantages and disadvantages of the method

The presented LCAO-scheme has some advantages over other band structure

methods. First, and extensively exploited in this thesis, the atomiclike character

of the basis orbitals gives a natural possibility to extract the relevant orbitals for

the construction of model Hamiltonians (see 4.3.1).

Second, the construction of the potential as a sum of overlapping local poten-

tials provides a good description also for the interstitial region, at least for close

packed structures. The so-constructed potential is more accurate than the mu�n-

tin approximation of LMTO schemes, for example. At variance with so-called

tight binding models, the LCAO method fully takes into account the overlap-

matrix when solving the eigenvalue problem. The calculation of the Hamilton-

matrix and of the overlap-matrix is time-consuming, but has to be considered

with respect to the accuracy of the band structures, which is comparable with

full-potential calculations like FLAPW [30]. So, the accuracy of LCAO for band

structure calculations is comparable to the most sophisticated methods, while its

performance is still comparable with fast methods like LMTO.

For historical reasons, in the implemented computer code, which has been

used for the most calculations in the presented work, the basis orbitals are repre-

sented by Slater-functions. This is the main source of the insu�cient accuracy

11In the FPLO scheme, no shape approximation for the xc potential is done [27].
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for the calculation of total energies12. Except saving computational time, there is

no reason for this representation. Improvements can be achieved by numerically

represented basis orbitals. Together with an improvement of the Madelung-

procedure, this problem is solved in the recently developed FPLO-code [27]. Here,

the determination of the variational parameters x0(l) for the optimization poten-

tial is less problematic due to a variational approach with respect to the total

energy. In its �rst applications, this minimum-basis scheme has provided as ac-

curate results as the best available augmented basis methods like WIEN97 [31].

2.3 Model calculations on top of DFT

In the previous sections it was discussed, that the L(S)DA fails for systems with

strong on-site Coulomb correlations. In Section 2.1.3, L(S)DA+U was men-

tioned as one possibility to improve L(S)DA while retaining an e�ective single-

particle scheme.

Another way to take into account the correlations that are poorly described

by LDA is sketched in the following. For the low energy physics, in most systems,

only a small number of orbitals is relevant. These orbitals can be extracted from

an LDA calculation. Subsequently, the energy bands corresponding to the orbitals

found in this way can be parameterized by �tting a tight-binding (TB) model. A

general TB Hamiltonian can be written in the form

ĤTB =
X
i;�

"i(c
y

i;�ci;�) +
X
<ij>�

tij(c
y

i;�cj;� +H:c:) ; (2.46)

where c
y

i;� and cj;� are the usual creation or annihilation operators for an particle

at site i or j, respectively, for sakes of simplicity, additional orbital indices are

suppressed. The symbol < ij > stands for the summation over bonds connecting

sites i and j, and "i is the so-called on-site energy of the orbital i.

Now, the Hamiltonian of the correlated system can be constructed by adding

terms guessed on the basis of physical intuition and adapted to the considered

compound and problem. For the simplest case of only one band13 the famous

Hubbard Hamiltonian [32] is given as an example

ĤHM =
X
<ij>�

tij(c
y

i;�cj;� +H:c:) + U
X
i

n̂i;"n̂i;# ; n̂i;� = c
y

i;�ci;� (2.47)

where the variable U describes the Coulomb repulsion of two particles at the

same site i in addition to the mean �eld repulsion contained in the TB approach.

12An accurate representation of the potential near the nucleus with a �nite number of

Slater-functions results in small unphysical oscillations on neighboring sites.
13The sum over the on-site energies "i is a constant for the one-band case of Eq. (2.46).
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If more than one band is required for a proper description of the system, the

above mentioned Hamiltonian can be expanded easily [33]:

ĤEHM =
X
i;�

"i(c
y

i;�ci;�) +
X
<ij>�

tij(c
y

i;�cj;� +H:c:) (2.48)

+
X
i

Uin̂i;"n̂i;# +
X
<ij>

Vijn̂in̂j :

In Eq. (2.48), the on-site Coulomb repulsion Ui is generalized to be orbital

dependent and an intersite Coulomb interaction Vij is added.

In general, also in such reduced models, the calculation of physical properties

like the magnetic susceptibility or phase diagrams is extremely complicated for a

wide region of parameters. Therefore, for some limiting cases, it is desirable to

map these models onto more simple ones. For the case U=t!1, the one band

Hubbard model of Eq. (2.47) turns into the so-called t-J model [34]

Ĥ =
X
ij�

tijc
y

i;�(1� n̂i;��) cj;�(1� n̂j;��) +
X
<ij>

(JijŜiŜj �
1

4
n̂in̂j) ; (2.49)

where Si are the usual spin operators and Jij the exchange integrals between spins

at site i and j. The parameters of the t-J model and the one band Hubbard

model are connected via

Jij = 4t2ij=U : (2.50)

It is not the aim of this work to investigate the general behavior of the above

mentioned models. Each of them can be applied to various situations to describe

strongly correlated systems. For instance, within the t-J model, the low energy

spin excitations of cuprates can be successfully described. It shall be demon-

strated in this thesis, how this mapping procedure works and how some physical

properties like magnetic moments or N�eel temperatures can be estimated for

a given compound using model calculations (see Chapter 4). A direct compari-

son of the measured quasiparticle dispersion with model calculations is given in

Chapter 5.
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Chapter 3

Cuprates { low-dimensional systems

Oxo-metallates with planar coordination-polyhedra are a challenging class of com-

pounds in solid state chemistry [35]. These compounds show interesting principles

of one-, two- or three-dimensional network formation from these planar structural

units. The physical properties, especially the electronic properties, are strongly

connected with the dimensionality of this network. A large subgroup of the Oxo-

metallates are the cuprates. Nearly all of the rich variety of topologically di�erent

networks are found inside this subgroup. In this chapter, a systematic overview

over the topologically di�erent low-dimensional networks of various cuprates will

be presented. Based on LDA-LCAO bandstructure calculations, a �rst insight

in the electronic structure will be given for each presented compound. For the

sake of simplicity and comparability, all band structure calculations presented

in this chapter are carried out for the non-spin-polarized case, even if magnetic

solutions exist. Derived from an analysis of the relevant orbitals, which should

not depend on the magnetic or nonmagnetic character of the solution, the nature

of the typical bonding in the considered compounds will be discussed.

3.1 The isolated CuO4-plaquette

The basic element of all cuprate compounds is the planar CuO4-plaquette. It

is shown in Fig. 3.1 together with the relevant covalent �-orbitals. The shell

occupation of the Cu+2-ion1 is 3d94s0, and that of the O�2-ion is 2p6. The

nominal anionic redox number of this complex is �6: [CuO4]
�6. The highest

occupied atomic orbitals are copper 3d-orbitals and oxygen 2p-orbitals. Most

of those orbitals are non-bonding. There is one �-orbital at each ion with the

angular dependencies of the wavefunction given by (x2 � y2)=r2 for the Cu 3d-

1In order to simplify ionicity notations for the doped case in the sequel, we use the notation

Cu+2 instead of the commonly used notation Cu2+.
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orbital and by x=r and y=r, respectively, for the O 2p-orbitals. (The plane of the

plaquette was taken to be the x-y-plane of a Cartesian coordinate system.)
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Figure 3.1: The covalent CuO4-plaquette, most relevant ingredient for

the cuprates. The copper ion resides in the center of the plaquette, and

the four oxygen ions occupy the corners. The anti-bonding molecular

orbital is shown with sign changes of the wavefunction on all four Cu-O-

bonds. Further details see the text.

The relevant molecular orbital energy level scheme is sketched in Fig. 3.1.

The strong covalent dp� bond leads to an energy splitting between the bond-

ing and anti-bonding levels as large as 10 eV. The fully occupied non-bonding

Cu-3d and O-2p levels are in between. Since due to the ionic 3d9 and 2p6 occupa-

tions one electron is missing compared to full 3d and 2p shells, the anti-bonding
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dp��-level must be half-�lled. Hence, the prerequisites for covalent bonding are

ful�lled. (The energy distance between the Cu 3d-level and the oxygen 2p-level

in the molecular �eld is roughly 3 eV and hence small compared to the cova-

lency splitting, and the covalent band complex is partially occupied.) Due to a

strong intra-atomic correlation present in the Cu 3d-orbitals, the molecular �eld

approximation is, however, not su�cient to describe the electronic properties,

and the half-�lled anti-bonding level splits due to these correlations into a lower

and an upper `Hubbard' level, each accessible to one electron only. The lower

Hubbard level is occupied.

For many cuprate compounds, especially for the HTSC, doping of the CuO4-

plaquette is an important issue. The doping charge is named � in Fig. 3.1. If the

plaquette is doped with electrons (� < 0), then the anti-bonding level becomes

�lled and the covalency is correspondingly reduced. At � = �1, the anti-bonding
band is full, and there cannot be any covalent dp�-binding any more. Doping

the plaquette with holes (� > 0) increases the covalency. However, at large

doping rates the oxygen potential is moved down against the copper potential

(while copper remains essentially 3d9), and the level resonance is reduced, which

reduces covalency again. Hence, the CuO4-plaquette is strongly covalently bound

around half-�lling of the anti-bonding dp��-orbital.

The architecture of quasi-planar cuprate structures by linking CuO4-plaquettes

which share in one or two oxygen ions was considered �rst by M�uller-Busch-

baum [35] on empirical grounds. He made a systematic study of the cuprate

structures long before the high-Tc superconductors were discovered. Composing

the basic CuO4 blocks like bricks from a toy box leads to more and more com-

plex networks. Starting with the most simple structure, the main features due

to di�erent linking of these blocks will be discussed in the following sections.

More detailed investigations of the electronic structure and the related magnetic

properties are presented in the Chapters 4 and 5.

3.2 Stacks of isolated plaquettes { Bi2CuO4

The isolated CuO4-plaquette has the very high reduction state �6, and the only

structure known where it appears is Bi2CuO4 [35, 36]. The unit cell of this

crystal structure is shown in Fig. 3.2. Bi2CuO4 occurs in the tetragonal space

group P4/nnc with the lattice constants a = 8:499 �A and c = 5:7973 �A . The

unit cell contains four formula units, but only three crystallographically di�erent

sites. The Cu-O distance within a CuO4 unit is about 1.93 �A and corresponds

to a typical covalent bond length. The plaquettes are arranged in turn stacks,

forming chains of copper ions parallel to the tetragonal axis.
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Figure 3.2: Unit cell of the Bi2CuO4-crystal, perspective view (top), front

view (down left) and lateral view (down right). Here and in the sequel

the rods between O-atoms are used only to highlight the planar CuO4-

plaquettes. The strong covalent �-bonds that are present between the

central copper and the four surrounding oxygens are not emphasized.

BiCuO4 is an insulator with an antiferromagnetic phase transition below 50 K

[36]. The exact magnetic moment of the copper atoms determined by neutron

powder di�raction is still unclear. It was measured 0.93(6) �B at T = 1.5 K [36]

and 0:56�0:04 at T = 13 K [37], respectively. To resolve this discrepancy and to

determine the three-dimensional (3D) magnetic structure, experiments on single

crystals are required. Independent of the exact value of the magnetic moment,

quantum 
uctuations seem to play a minor role in the system because these

moments are in the order of the saturation moment of Cu in the 3d9 con�guration.
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The band-structure calculation for this compound was done scalar relativisti-

cally in the FPLO-scheme [27] and a basis set consisting of Cu (4s, 4p, 3d), O (2s,

2p, 3d) and Bi (5s, 5p, 5d, 6s, 6p) was chosen. All lower lying states were treated

as core states. Due to the large extension of the Bi (5s, 5p) wave functions it was

necessary to treat them as valence states since they have a considerable overlap to

the core states at neighboring sites (see 2.2.1). For the exchange and correlation

potential the parameterization of Perdew and Zunger was chosen.

As expected from the previous considerations, we �nd as result a O�2p-Cu�3d
band complex with a width of about 8 eV. The total and the partial densities of

states (DOS) are shown in Fig. 3.3. It is to note that only the Bi�6p states give
a small further contribution to this complex, the admixture of all other states is

negligible. The well-separated narrow peak at Fermi level originates from four

narrow bands crossing the Fermi level, in accord with the four formula units per

unit cell. Of course, the antibonding bands are correlation-split in reality.
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Figure 3.4: Band structure of Bi2CuO4. The Fermi level is at zero

energy. In the upper panel the whole p� d complex is shown, the band

complex at the Fermi level is zoomed in the lower panel. The notation

of symmetry points is as follows: �=(000), X=(100), M=(110), Z=(001),

R=(011) and A=(111) in units of (�=a; �=a; �=c).

The Kohn-Sham band structure is shown in Fig. 3.4. Calculating the weight

of the di�erent orbitals (see Appendix A), we �nd that the bands at Fermi

level have nearly pure in-plane character. This means that these bands are built

from Cu-3dxy; 3dx2�y2 and O-2px; 2py orbitals. The contribution of two di�erent
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Cu�3d orbitals is due to the twisting of the plaquettes against each other (see

Fig. 3.2). A local rotation of the quantization axis shows that for the description

of a single plaquette only one copper orbital is necessary.

The half-�lled band complex at the Fermi level shows sizable dispersion in

all main directions of the Brillouin-zone, of the order of half an electron volt

(see Fig. 3.4). Thus, the coupling between the CuO4 units is relatively isotropic.

In a one-band tight-binding model, a �rst estimate for the e�ective transfer in-

tegrals t1 to the nearest neighbors gives a value of t1 . 0:1 eV. With respect

to the small absolute value for the transfer integrals, the discussion of Bi2CuO4

as \zero-dimensional compound" [38] is understandable, especially for the inter-

pretation of spectroscopic experiments which yield typical linewidths of half an

eV. However, on the energy scale of magnetic excitations, this compound has

to be considered as clearly three-dimensional due to the relatively isotropic dis-

persion. From the site-dependent orbital character of the antibonding bands it

can be concluded, that the main contribution to the 3D coupling comes from

a direct O�2px=y|O�2px=y overlap between neighboring plaquettes in di�erent

stacks leading to an antiferromagnetic exchange, JAFM > 0. O�2px=y denotes a
linear combination of the in plane O�2px and O�2py orbitals. A smaller con-

tribution to the coupling discussed above comes from a covalent O{Bi{O bond.

For the exchange coupling between the copper spins this should play a minor

role due to the higher order of the process. In addition to these couplings which

cause antiferromagnetic exchange, ferromagnetic exchange JFM < 0 interactions

in z direction within a stack originate from a small direct overlap between the

copper in-plane orbitals on neighboring sites. The corresponding exchange inte-

grals calculated from susceptibility data in mean-�eld spin-wave approximation

[36] are JAFM = 11:5 K and JFM = �5 K, respectively. Because of the quite

isotropic coupling, an RPA spin-wave approach should give reliable results. Due

to the small absolute values of the exchange integrals, the direct ferromagnetic

exchange between parallel plaquettes is experimentally accessible for this com-

pound and can be used for a rough estimate of the corresponding interaction in

the compounds discussed later, were the experimental situation is less favorable.

3.3 Chain cuprate structures

Resulting in the same covalency situation as in the isolated plaquette, but with

a lower reduction state, CuO4-plaquettes may share oxygen ions. Three of the

possible arrangements are sketched in Fig. 3.5.

Depending on the number of shared oxygen ions, we can built corner-shared

chains (see Fig. 3.5(b) and section (3.3.1)), edge-shared chains (Fig. 3.5(c) and
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Figure 3.5: Cuprate chains formed from the plaquette (a) as the build-

ing block. A corner-sharing chain (b), an edge-sharing chain (c), and a

double-chain (d) are shown. The phase factors of the orbitals correspond

to the antibonding state. For details see the text.

section (3.3.2)) or double-chains (Fig. 3.5(d) and section (3.3.3)), which is in some

sense a combination of the latter two. Composing the chains constructed in this

way, a rich variety of two-, three- or multi-leg ladders can be build [39]. Thus, a

quasi continuous transition is possible from one-dimensional to two-dimensional

compounds, which are presented in Sec. 3.4.

3.3.1 Corner-shared cuprate chains

If a row of plaquettes is formed where adjacent plaquettes share a corner, a one-

dimensional periodic anionic [CuO3]
�4-complex results as shown in Fig. 3.5(b).

As seen from this �gure, subsequent orbitals along the chain have a relative phase
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factor �1 in the totally anti-bonding state. That means that the one-dimensional
energy band of this chain in molecular �eld approximation has its maximum at

the Brillouin-zone boundary. If the subsequent orbitals are forced to have the

same phase to obtain a zero wave vector of the Bloch state, then the state

cannot be fully anti-bonding any more: the band has its minimum at the center

(�-point) of the Brillouin-zone. Thus, without any calculation we �nd a cosine-

like anti-bonding band with the minimum at the zone center and the maximum at

the zone boundary. Close to half-�lling this band is again correlation-split into a

lower and an upper Hubbard sub-band, and the material is an insulator instead

of a one-dimensional metal. Examples of this case are Sr2CuO3 and Ca2CuO3

[40].
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Figure 3.6: The body-centered orthorhombic unit cell of Sr2CuO3. The

cuprate chains run along the a direction and lie in the drawing plane

(corresponds to the ab-plane in the notation used).

The unit cell of Sr2CuO3 is shown in Fig. 3.6, the above mentioned Ca-

compound is isostructural to the Sr-compound. Sr2CuO3 and Ca2CuO3 occur
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in body-centered orthorhombic structure with lattice constants a = 3:91 �A,

b = 12:69 �A, c = 3:49 �A and a = 3:79 �A, b = 12:26 �A, c = 3:28 �A, respec-

tively [40, 41]. The CuO3 chains run in a direction in the a� b plane.

Experimentally, at high temperature, Sr2CuO3 and Ca2CuO3 are found to

be the best known realizations of the one-dimensional (1D) spin-1/2 antiferro-

magnetic Heisenberg model (AHM). Their N�eel temperatures, TN � 5 K for

Sr2CuO3 and TN � 9 K for Ca2CuO3, are very low compared to the intra-chain

exchange integrals Jk � 0.2 eV, and the ordered moments (<0.1 �B) are extremely

small [42, 43, 4]. The value Jk = 190 meV for Sr2CuO3 [44, 45] appears to be

the record value of an exchange integral among all known quasi-1D antiferromag-

nets. The correct description of the physics of a magnetic quasi-1D system with

a weak magnetic inter-chain interaction has recently attracted much theoretical

attention [46, 47, 48]. For all these reasons, Sr2CuO3 has been announced to

become a `superstar' in the �eld of low-dimensional magnetism in near future [2].

The self-consistent LDA-LCAO method has been applied to both compounds

in the scalar relativistic version with a minimum basis treating the Cu-(4s; 4p; 3d),

O-(2s; 2p), Sr-(5s; 5p; 4d) and Ca-(4s; 4p; 3d) orbitals as local valence basis states

and the lower orbitals as core states. Due to the relatively open crystal struc-

ture two empty spheres per unit cell have been introduced with empty sphere

s and p orbitals at each site. For the exchange and correlation potential the

parameterization of von Barth and Hedin was chosen2.

The DOS and the bandstructure of Sr2CuO3 are shown in Fig. 3.7 and Fig. 3.8,

respectively [49]. To check the accuracy of the LCAO band structure3 by another

method, also calculations using the linear mu�n-tin orbital (LMTO) method were

performed. No substantial di�erences were found, only the overall bandwidth of

the whole pd band complex was slightly smaller in the LMTO results.

In agreement with the above mentioned general considerations of covalency,

there is a single, well-separated, nearly one-dimensional, half-�lled antibonding

band crossing the Fermi level with large dispersion in a-direction (see Fig. 3.8).

The width of this band is about 2:2 eV for both compounds. The characteristic

quasi-1D van Hove singularities near the band edges are clearly seen in the

DOS (see Fig. 3.7). The dispersion in c direction corresponds to the inter-chain

interaction via the shortest inter-chain distance and is about 100 meV (250 meV

for Ca2CuO3). The smallest interaction is found in b direction with about 40 meV

2For historical reasons and due to comparability with the literature, we used di�erent pa-

rameterizations (von Barth-Hedin and Perdew-Zunger) for the xc potential in di�erent

calculations of this work. The changes in the bandstructure due to this di�erent parameteriza-

tion were checked for one example and were found to be negligible.
3This check is useful because of the di�culties to optimize the minimum basis by determining

the set of x0 described in (2.2.2).
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Figure 3.7: Total and partial DOS of Sr2CuO3. The Fermi level is at

zero energy. The contribution of Cu-4p states is less than 0.1 % in the

region shown.

(60 meV for Ca2CuO3). It should be remarked again that the metallic behavior

of the LDA-band structure is in sharp contrast to the experimental observation

of large optical gaps � 2 eV which are comparable to the bandwidth obtained

above. This points to the necessity of dealing explicitly with the strong on-site

Coulomb repulsion at the copper-site.

A tight-binding analysis of the orbitals involved shows that in �rst approxi-

mation the Cu 3dx2�y2 as well as the side oxygen 2py and the chain oxygen 2px

orbitals are of direct relevance. Only a small admixture of Cu 4s states (the

contribution of Sr or Ca states is much smaller) can be detected near both edges

of this antibonding half-�lled band. Its weight as determined by the ratio of

the corresponding areas under the DOS curves is relatively small with 0.3 % for

Sr2CuO3, but it increases to a weight of 2 % for the Ca compound. This enhanced
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Figure 3.8: LCAO energy-bands near the Fermi level for Sr2CuO3 along

high-symmetry Brillouin-zone directions. The notation of symmetry

points is as follows: �=(000), X=(100), Y=(010), Z=(001), R=(101)

in units of (�=a; �=b; �=c). Strong dispersion can be seen along �{X

(a-direction, parallel to the CuO3-chains) whereas a small, but non-

negligible dispersion in the perpendicular �{Z direction (c-direction, cor-

responds to the shortest inter-chain distance) can be seen. The smallest

dispersion is found along b.

Cu 4s admixture is one reason for the larger inter-chain coupling in Ca2CuO3.

A parameterization of a one-band model, tight binding analyses for multi-

band models and a detailed analysis of the deduced magnetic properties in terms

of extended Hubbard and anisotropic Heisenberg models are given in sections

(4.1) and (4.2).
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3.3.2 Edge-shared cuprate chains

Planar edge-shared chains

Figure 3.5(c) shows two di�erent anti-bonding states on an edge-sharing chain

of cuprate-plaquettes. This chain is formed by anionic [CuO2]
�2-complexes with

a further reduced reduction state. With the phase rules as described above the

upper pattern belongs to a zone-center state, and the lower pattern belongs to

a zone-boundary state. Both are maximally anti-bonding, but are not quite �-

states. They are di�erent in energy due to the crystal-�eld splitting between

the two di�erent oxygen 2p-orbitals engaged. This type of chains is found, for

instance, in Li2CuO2 [50, 51], in CuGeO3 [52, 53] and in the recently discovered

isostructural CuSiO3 [54], which latter two are to be understood as (GeO)CuO2

and (SiO)CuO2, respectively, in our context. The main di�erences between the

latter two compounds and Li2CuO2 are the positions and the valences of the

cations and the canting of the CuO2-chains against each other which strongly

in
uences the inter-chain coupling.

The crystal structure of Li2CuO2 is shown in Fig. 3.9. Li2CuO2 exhibits

a body-centered orthorhombic structure with lattice constants a = 2:860 �A,

b = 9.377 �A and c = 3:654 �A [50, 51] where the edge-shared chain runs in a

direction and lies parallel to the ab plane. The Cu-O-Cu bonding angle between

nearest neighbor copper and oxygen atoms in the chain deviates with 94� only

slightly from the 'ideal' 90� angle for an edge-shared chain of CuO4-squares.

Experimentally, Li2CuO2 is an insulator. Neutron scattering indicates three-

dimensional antiferromagnetic ordering at 9 K arising from an antialignement of

ferromagnetic chains, and the magnetic moment of 0.9�B was attributed to the Cu

ion. This value is very close to the saturation moment of spin-only Cu+2(4s03d9).

We have performed LCAO band structure calculations [55] and, more recently,

FPLO calculations in order to check the accuracy of the LCAO calculation. We

found very good agreement between both treatments and also with other full

potential calculations [56, 57]. A minimum basis was de�ned by treating the Cu

(4s, 4p, 3d), O (2s, 2p), and the Li (2s, 2p) orbitals as local valence basis states.

In the LCAO calculations, two empty spheres per unit cell have been introduced.

To improve the completeness of the basis set, we added O and Li 3d states in

the FPLO calculation. The parameterization of von Barth and Hedin and of

Perdew and Zunger, respectively, were chosen for the exchange and correlation

potential.

The total and the partial DOS are shown in Fig. 3.10. The peak in the center

of the antibonding band with nearly pure Cu 3d and O 2p character is in contrast

to remnants of 1D van Hove singularities near the band edges in the correspond-
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Figure 3.9: The body-centered orthorhombic unit cell of LiCuO2. The

edge-shared cuprate chains run along the a direction and lie in the draw-

ing plane (corresponds to the ab-plane in the notation used).

ing antibonding bands of Sr(Ca)2CuO3 [49] (see Fig. 3.7) and CuGe(Si)O3 [58]

(see Fig. 3.13) and gives strong evidence for a non quasi-1D electronic structure.

More detailed investigations show that the band at the Fermi level is composed

mainly of Cu 3dxy and O 2px;y states, with almost equal contributions from both

O orbitals at variance with the above mentioned corner-sharing CuO3 chain com-

pounds. The last circumstance provides via Hund's rule coupling a natural

explanation for the observed ferromagnetic ordering [50] in chain direction.

As expected from simple chemical considerations of the valence, there is a

single, half-�lled, well-separated antibonding band crossing the Fermi level (see

Fig. 3.11). On the one hand, the width of this band is about 1 eV and similar

to CuGeO3, but on the other hand, its dispersion in chain direction ((0,0,0) !
(1,0,0)) exceeds the dispersion in the other two directions by a factor of two only.

A strong e�ect of next nearest neighbor interactions in chain direction has been

derived from a strong second harmonic contribution to the calculated dispersion.

The equivalence of the dispersion in the two transverse directions is important and

points to a speci�c interchain interaction. The moderate anisotropy (compared
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with the above mentioned cuprates) due to that interaction is in sharp contrast

to the widely accepted intuitive view considering Li2CuO2 as the best realization

of an 1D-edge-sharing CuO2 chain [59]. A comparison of our LDA results and

XAS measurements [60] will be presented in Section 5.4.

A second type of edge-shared chains is realized in CuGeO3 and CuSiO3, re-

spectively. Instead of a single cation we have a cationic Ge(Si)O complex. The

CuO2 chains are canted against each other at variance with the planar arrange-

ment in the above mentioned chain type. This canting mainly in
uences the

inter-chain coupling. The crystal structure of CuGeO3 (CuSiO3 is isostructural)

is shown in Fig. 3.12. CuGeO3 and SiGeO3 occur in the orthorhombic space group

Pmmb with the lattice constants a = 4:802 �A b = 8:475 �A c = 2:943 �A [52, 53]

and a = 4:636 �A b = 8:774 �A c = 2:833 �A [54], respectively. The Cu-O(2)-Cu
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Figure 3.11: LCAO energy-bands near the Fermi level for Li2CuO2 along

high-symmetry Brillouin-zone directions. The notation of symmetry

points is as follows: �=(000), Y=(010), X=(100), R=(110) and A=(111)

in units of (�=a, �=b, �=c).

bonding angles between nearest neighbor copper and oxygen atoms in the chain

are about 98� in the Ge-compound and 94� in the Si-compound.

Some years ago, CuGeO3 became famous because it was found as the �rst

inorganic system which shows a spin-Peierls transition [5]. The transition tem-

perature is TSP = 14 K. The antiferromagnetic exchange JAFM was determined

from the temperature dependence of the magnetic susceptibility �(T ) [5], from

inelastic neutron- [61] and from Raman-scattering [62, 63, 64] between 8 and

22 meV. The spin-Peierls phase transition is found only in very pure samples.

Impurities or doping, for example with a small amount of Zn (on the Cu site)

[65] or Si (on the Ge site) [66] push the transition temperature down very fast.

Already for some atom-percent of impurities, a phase transition to an antifer-
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The edge-shared cuprate-chains run along the c direction and are canted

against each other.

romagnetic ordered state was observed with similar transition temperature TN .

This behavior can be explained with a chain-breaking due to the impurities and

an ordering of the remaining unpaired spins. For certain concentrations of impu-

rities, coexistence of AFM and the spin-Peierls phase was found [67, 68].

For the recently discovered CuSiO3 compound, the experimental situation

is less clear because the sample quality is not yet satisfactory. For the purest

samples available, the temperature dependence of the magnetic susceptibility
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�(T ) is rather similar to the CuGeO3-data but shifted down in temperature. The

�(T ) measurements show a broad maximum at about 13 K and an rapid decrease

below T? = 8 K to a constant value, but this decrease is less pronounced then for

the Ge-compound. A sharp peak in the speci�c heat measurement at T? indicates

clearly a phase transition [69]. The nature of this phase transition is still unclear

(it may be AFM or spin-Peierls), but for a reliable determination the sample

quality has to be improved because of the above mentioned role of impurities for

the spin-ordering.

The band structure calculations for CuGeO3 and CuSiO3 were carried out

using the FPLO code with Cu (4s, 4p, 3d), O (2s, 2p, 3d), Ge (3d, 4s, 4p, 4d)

and Si (3s, 3p, 3d) states, respectively, as minimum basis set. Our results are

similar to the results of LAPW [58] and LMTO-ASA [70] bandstructure calcula-

tions, only the bandwidths are slightly smaller. The total as well as the partial

DOS of CuGeO3 are shown in Fig. 3.13. At variance with all above mentioned

chain-compounds, the admixture of the cationic Ge-O(1) complex to the standard

pd chain-bands is much stronger. This is important for the construction of tight

binding models, where additional orbitals beyond the standard pd-model descrip-

tions have to be taken into account. At variance with Li2CuO2, the remnants

of 1D van Hove singularities near the band edges of the antibonding band are

clearly developed. This indicates a quasi 1D electronic structure in the vicinity

of the Fermi-level.

The bandstructure of CuGeO3, shown in Fig 3.14, con�rms this indication.

Corresponding to the two formula units per cell, we �nd two half-�lled bands

crossing the Fermi level. These bands show a dispersion of about 1 eV in chain

direction, whereas the dispersion corresponding to the shortest inter-chain dis-

tance is about �ve times smaller. The dispersion in the direction orthogonal to

the latter two is again smaller by a factor of �ve. With respect to the band

dispersions in the main directions, the dimensionality of the electronic structure

of this compound can be considered as in between the nearly ideal 1D compound

Sr2CuO3 and the 3D compound LiCuO2.

The DOS and the bandstructure of CuSiO3 are very similar to that of the Ge-

compound. The mostly changed features are the two antibonding bands crossing

the Fermi level: They have the same shape in both compounds, but the band-

width is reduced by about 40 % to 0.6 eV in CuSiO3. This can be understood due

to the change in the Cu-O(2)-Cu bonding angle which is closer to 90� for CuSiO3,

whereas the Cu-O distance in the chain is nearly the same for both compounds

(1.941 �A for CuSiO3 and 1.942 �A for CuGeO3).

In both compounds, the next nearest neighbor coupling t2 is important and

about half as large as the nearest neighbor coupling t1, which plays still the

dominant role. For the above mentioned Li2CuO2 the situation is reversed, al-
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though the Cu-O-Cu angle is the same for the Li- and the Si-compound. This fact

underlines the importance of the cations for the electronic structure in these com-
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Figure 3.14: Band structure near the Fermi level for CuGeO3 along

high-symmetry Brillouin-zone directions. The notation of symmetry

points is as follows: X=(100), Y=(010), S=(110), Z=(001), T=(011),

U=(101) and A=(111) in units of (�=a, �=b, �=c). Strong dispersion can

be seen along �{Z (parallel to the CuO2-chains) whereas a small, but non-

negligible dispersion in the perpendicular �{Y direction (corresponding

to the shortest inter-chain distance) can be seen. The smallest dispersion

is found orthogonal to the latter two directions.

pounds. Moreover, the side groups can modify the 90� super-exchange and can

cause a seeming violation of the Goodenough-Kanamori-Anderson (GKA)

rules [71, 72, 73, 74]. An orbital analysis of the antibonding band shows that,

besides the Cu-3d states, mainly the O(2)-2pz orbitals contribute to this band.

The other contributions are suppressed due to a shift in the on-site energies of

the involved oxygen orbitals, caused by the side group. As a �rst approximation,

the contribution of the perpendicular O-orbitals can be neglected. Therefore, the

nearest neighbor exchange is antiferromagnetic for CuGeO3 and CuSiO3, whereas
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for the Li-system the expected ferromagnetic interaction was found.

The splitting of the two antibonding bands, originating from the interchain

coupling, has nearly the same value for CuSiO3 and CuGeO3. In this sense, with

respect to the reduced in-chain coupling, the Si-compound is less 1D than the

Ge-system. The less pronounced peak (remnant of the van Hove singularity) in

the DOS on the upper band edge for CuSiO3 supports this argument.

Folded edge-shared chains

Folding the edge-shared CuO4 plaquettes up and down, we get a still linear, but

non-planar 'merlon' chain. The picture of the anti-bonding states is similar to

Fig 3.5(c), but additionally the third oxygen orbital (in planar geometries not

hybridizing with the shown orbitals due to symmetry) is involved in the binding.

In the case of an ideal folding angle of 90�, each copper hybridizes with two

of the oxygen orbitals, whereas one of the O orbitals parallel to the common

plaquette edge hybridizes with both adjacent Cu atoms. Such a chain is realized

in Ba3Cu2O4Cl2, which should be understood as (Ba3Cl2)(CuO2)2 in our notation.

The crystal structure of this compound is shown in Fig. 3.15.

Ba3Cu2O4Cl2 occurs in the orthorhombic space group Pmma with the lattice

constants a = 6:553 �A, b = 6:000 �A, c = 10:563 �A [75]. Due to the folding,

the chain contains now two inequivalent copper positions, CuA and CuB. The

CuB atom is slightly elongated from the the plaquette plane. The folding angle

between the plaquettes is about 96�, whereas the plaquettes are ideally quadratic.

Ba3Cu2O4Cl2 shows insulating behavior and a phase transition to AFM below

20 K. In susceptibility measurements [76] on single crystals, a spin-
op transition

was observed in a magnetic �eld of 2.6 T parallel to the chains (crystallographic

a direction). This indicates a collinear antiferromagnetic structure with localized

moments in this direction. The ordered magnetic moment was determined to

be near the saturation value of 1 �B. Preliminary investigations by neutron

scattering on powder4 could not yet elucidate the magnetic ordered structure

[77].

We performed FPLO band structure calculations with a minimum basis set

consisting of Cu (4s, 4p, 3d), O (2s, 2p, 3d), Ba (5s, 5p, 5d, 6s, 6p), Cl (3s,

3p, 3d) states. Due to the large extension of the Ba (5s, 5p) wave functions it

was necessary to treat them as valence states (see 2.2.1). For the exchange and

correlation potential the parameterization of Perdew and Zunger was chosen.

The resulting total and partial DOS are shown in Fig. 3.16. Compared with all

compounds mentioned above, Ba3Cu2O4Cl2 shows the smallest pd-band-complex

4The above mentioned single crystals are too small for neutron scattering.
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with a width of about 6 eV. The Cl 3p states are nearly �lled and give a large

contribution to the DOS about 4 eV below the Fermi-level. We �nd a small

admixture of Ba 5d and 6s states to the pd-complex. The antibonding band

complex at Fermi-level is the narrowest one for all considered cuprates with

only 0.6 eV bandwidth and shows clear remnants of van Hove-singularities.

Cl-states do not contribute to the antibonding region.

Figure 3.17 shows the bandstructure of Ba3Cu2O4Cl2. The rather small dis-

persion of most bands in the pd-complex is peculiar. This �nding can be explained

by the nearly 90� folding of the chain and by the enlargement by 3% of the Cu-O

distance compared with other edge-sharing compounds.

We see four half-�lled bands crossing the Fermi-level corresponding to the

four Cu atoms per unit cell. Astonishingly, the strongest dispersion of about

0.4 eV we �nd in � - Y direction, which is perpendicular to the merlon chain.

The dispersion in chain direction is half as large, in the third direction almost no
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dispersion is found.

A more detailed consideration of interatomic distances and angles together
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Figure 3.17: Band structure of Ba3Cu2O4Cl2. The Fermi level is at zero

energy. In the upper panel the whole p� d complex is shown, the band
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Z=(001), T=(011), U=(101) and R=(111) in units of (�=a, �=b, �=c).

with an orbital analysis of the antibonding bands gives a �rst explanation for

this unexpected behavior. Due to the folding angle of 96�, the inter-chain dis-

tance (6.000 �A) is shorter than the CuB-CuB distance in chain direction (6.553 �A).

Calculating the orbital weight, we �nd that there are either strongly CuA dom-
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inated or strongly CuB dominated bands in the chain direction. The band with

the strongest dispersion (in � - Y direction) contains only contributions of or-

bitals of the CuB-subsystem. Therefore, the main part of this dispersion results

from a direct interaction between plaquettes of the same Cu-type. Due to the

above mentioned shorter Cu-Cu distance perpendicular to the chain for the same

Cu type, the corresponding dispersion is stronger than in chain direction. In this

sense, the generally accepted picture of a folded edge-sharing chain is misleading

regarding to the electronic structure.

Within the orbital analysis, we �nd that for CuA mainly 3dyz states contribute

to the antibonding bands with only a very small admixture of the 3dxy orbital,

whereas for CuB the main contribution stems from the 3dxy orbital with only very

small admixture of 3dyz states. Therefore, for further investigation, a model with

only one orbital per Cu site should be applicable in �rst approximation. For the

CuA dominated bands, we see hybridization with O-2py and O-2pz states, for the

CuB dominated bands with O-2py and O-2px. Thus, CuA and CuB plaquettes

share only the O-2py orbital. Considering the GKA rules, the superexchange via

only one oxygen orbital should lead to an antiferromagnetic exchange between

CuA and CuB similar to the situation in CuGeO3. Whereas in the Ge compound

the suppression of the second O orbital in the antibonding bands is due to a shift

of the on-site energy, in Ba3Cu2O4Cl2 this suppression appears due to symmetry

because of the nearly 90� folding of the chain.

3.3.3 Double- or zigzag chain cuprates

The same reduction state [CuO2]
�2 as in the above discussed edge-shared chains

is realized in the double-chain of Fig. 3.5(d), which is present in SrCuO2 [78].

The crystal structure of this compound is shown in Fig. 3.18.

SrCuO2 is centered orthorhombic (space group Cmcm) with lattice parameters

a = 3:904 �A, b = 16:27 �A, c = 3:556 �A [40]. The double-chains run along the

crystallographic a direction and lie in the ab plane. The Cu-O(1)-Cu bonding

angle between copper atoms in the di�erent subchains of a double-chain and

oxygen is about 87�.

This material is magnetically even more complicated than Sr2CuO3, though

the in-chain exchange has a similar value of about 180 meV [79] (190 meV for

Sr2CuO3). A magnetically ordered structure appears below 5 K with a second

phase transition at about 2 K. The ordered magnetic moment was found to be

extremely small with an upper limit of 0.01 �B [80]. Recent experiments deter-

mined a value of about 0.03 �B [79] (0.06 �B for Sr2CuO3). Except of the chain

direction where the ordering is clearly AFM, the magnetic structure shows wave

vectors incommensurate to the crystal structure [79] at variance with the single
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Figure 3.18: The orthorhombic unit cell of SrCuO2. The cuprate-chains

run along the a direction and lie in the drawing plane (corresponds to

the ab-plane in the notation used).

chain compound Sr2CuO3.

Our bandstructure calculation was carried out using the LCAO code with a

minimum basis consisting of Cu-(4s; 4p; 3d), O-(2s; 2p) and Sr-(5s; 5p; 4d) valence

states. To cope with the relatively open crystal structure, four empty spheres per

unit cell have been introduced with empty sphere s and p orbitals at each site.

For the exchange and correlation potential the parameterization of von Barth

and Hedin was chosen. Because the program used is not able to handle non-

symmorphic space groups, we had to calculate a simple orthorhombic unit cell

with four formula units inside. For that reason, we get twice the number of bands

and twice the DOS per unit cell as in a centered case with two formula units in

the primitive cell.

The total as well as the partial DOS and the band structure are drawn in

Figs. 3.19 and 3.20. The DOS is very similar to that of Sr2CuO3 (cf. Fig. 3.7).

The characteristic quasi-1D van Hove singularities near the band edges are

clearly seen and indicate a 1D electronic structure. The half-�lled antibonding
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bands at Fermi level have nearly pure Cu 3dx2�y2 , oxygen 2py and 2px orbital

character. Their large dispersion is parallel to the chain direction. The width

of this band is about 2:4 eV. The dispersion in c direction corresponds to the

inter-chain interaction via the shortest inter-double-chain distance and is about

100 meV. The smallest interaction is found in b direction with about 50 meV.

The splitting of the bands at Fermi level is characteristic for the interaction

between the two subchains of a double chain. This interaction is in the same

order of magnitude like the above mentioned weak dispersions orthogonal to the

chain direction. This nearly decoupled behavior can be related to the � 90�

Cu-O(1)-Cu bonding angle between the subchains.
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Figure 3.20: Band structure near the Fermi level for SrCuO2 along

high-symmetry Brillouin-zone directions. The wave vector is given

in units of (�=a, �=b, �=c). Strong dispersion occurs along (000){(100)

(parallel to the Cu2O4 double-chains) whereas a small, but non-negligible

dispersion in the perpendicular (000){(010) direction (corresponds to the

shortest inter-chain distance) can be seen. The smallest dispersion is

found orthogonal to the latter two directions.

3.4 Plane cuprate structures

3.4.1 Planar cuprates with a CuO2-plane

By joining together periodically repeated CuO3-chains of Fig. 3.5(b) so that ad-

jacent chains share the side oxygen ions of such chains, the checkerboard-like

planar structure of Fig. 3.21(a) is obtained. This is an anionic [CuO2]
�2-plane

for nominal valence charges.

Doping with holes yields the famous [CuO2]
�2+�-plane of the high-Tc super-

conductors (see [81] for an overview). The undoped plane (� = 0) is insulating
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Figure 3.21: Cuprate-planes formed from plaquettes as the building

blocks. The checkerboard pattern (a) may be obtained by joining to-

gether chains of Fig. 3.5(b). The pattern (b) is obtained by putting an

additional copper ion on every second white �eld in horizontal rows of

the checkerboard (a).

with an antiferromagnetic groundstate. Already at low doping rates it becomes

a strange metal, and for � & 0:1 (as well as for electron doping � . �0:1) it
becomes superconducting. A schematic phase diagram is shown in Fig. 3.22.

The material for which high-Tc superconductivity was discovered �rst was

barium-doped La2CuO4. The undoped compound is to be understood in our

context as (LaO)2CuO2. Its structure is shown in Fig. 3.23(a). It consists of a

stacking of two ionic [LaO]+-planes followed by a covalent [CuO2]
2�-plane, on top

of each other. If La is partially replaced by an alkaline-earth atom (Ca, Sr or Ba),

hole-doping results in the CuO2-plane. For the understanding of that material it

is crucial that the oxygen of the BaO-plane (the so-called apical-oxygen because

it forms the apex of an oxygen pyramid whose basis is the CuO4-plaquette) is at

most very weakly covalently bound to the CuO2-plane
5.

LaCuO4 is generally considered as the parent compound for all materials

with CuO2 planes as structural element and therefore very useful as a reference

system. At high temperatures, it occurs in the body-centered tetragonal space

5The di�erence of the apical-oxygen and the plane-oxygen is often discussed as originated

by the Jahn-Teller e�ect [82]. However, there is no true Jahn-Teller distortion in most

of the planar cuprates, they are layered structures far from cubic symmetry [81].
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Figure 3.22: The simpli�ed temperature - hole-concentration phase dia-

gram for La2�xSrxCuO4 with antiferromagnetic (AF), metallic (M) and

superconducting (SC) phase.

group I4/mmm (see Fig. 3.23(a)) with the lattice constants a = 3:78 �A and

c = 13.15 �A. The Cu-O distance in the CuO2 plane is 1.89 �A (corresponding to

a covalent bondlenght), whereas the distance between Cu and the apical oxygen

is 2.43 �A (corresponding to an ionic distance). The low temperature phase is

orthorhombic due to lattice distortion.

For the tetragonal phase of LaCuO4, we performed LCAO and FPLO band

structure calculations with a minimum basis set consisting of Cu (4s, 4p, 3d),

O (2s, 2p, 3d) as well as Ba and La (5s, 5p, 5d, 6s, 6p) states6. Due to the

large extension of the Ba and La (5s, 5p) wave functions it was necessary to

treat them as valence states (see 2.2.1)7. In the LCAO calculation, two empty

spheres per unit cell were introduced due to the relatively open structure of this

compound. For the exchange and correlation potential the parameterization of

von Barth and Hedin for the LCAO and of Perdew and Zunger for the

6The FPLO calculations were done recently to check a posteriori the accuracy and reliability

of the LCAO calculations, which we used for most investigations of planar cuprates. This

check should be representative for the planar structure type, because the already mentioned

problems in the determination of the compression parameters x0 are identical for all considered

compounds of this family.
7In the LCAO calculation, these states were treated as core states for technical reasons.
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Figure 3.23: Unit cells (a) of the La2CuO4-crystal and (b) of the

YBa2Cu3O7-crystal.

FPLO calculation was chosen. Comparing the results of both calculations with

each other and with results from the literature [81, 83], no substantial di�erences

were found. The results of our FPLO calculation are nearly identical with those

of Ref. [81]. There, the bandwidths are a few percent smaller than in our LCAO

results, and a few percent larger than in Ref. [83]. The di�erences in band energies

for the latter two calculations are of the same order as well.

The total and the partial densities of states are shown in Fig. 3.24. As in

the previous cases, the LDA predicts metallic behavior in contradiction to the

experimentally observed antiferromagnetic insulating behavior. The valence band

is built mainly of Cu-3d and O-2p states with a small admixture of La-5d states.

The oxygen contribution to the complex at the Fermi level stems predominantly

from the plane-oxygen O(1).

Figure 3.25 shows the bandstructure of LaCuO4. As expected from the chem-
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zero energy. The contribution of O-2s states is less than 0.1 % in the

region shown.

ical considerations, we �nd one broad band crossing the Fermi level and 16

bands below inside the pd-complex (33 valence electrons). The bandwidth of

the antibonding band is about 4 eV and approximately twice as large as in the

corner-shared chain compound Sr2CuO3 (see Fig. 3.8). This is consistent with

the doubled number of neighboring plaquettes in the CuO2-plane compared with

the CuO3-chain. A considerable dispersion of the antibonding band is found only

in the plane, whereas its dispersion along � - Z amounts only a few8 meV . Other

bands show non-negligible dispersion in the latter direction.

8At the �rst glance, it seems that the antibonding band has a considerable dispersion in

� - Z direction. But it seems reasonable to de�ne antibonding via the orbital character of the

bands. Within this de�nition the antibonding band corresponds to the non-dispersing band

just below -2 eV in � - Z direction.
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Figure 3.25: Band structure near the Fermi level for La2CuO4 along

high-symmetry Brillouin-zone directions. The notation of symmetry

points is as follows: �=(000), X=(100), M=(110), Z=(001) in units of

(�=a, �=a, �=c).

As an example for a doped cuprate compound, one of the HTSC shall be

presented and discussed brie
y. The high-Tc material investigated in most detail

is YBa2Cu3O7, which in our notation should be written YBa2(CuO2)2(CuO3). Its

structure is shown in Fig. 3.23(b). It contains both CuO2-planes and CuO3-chains

immersed in a lattice of barium and yttrium ions. By counting charges one �nds

that compared to nominal charges of those covalent cuprate structures one hole

must be shared by two planes and one chain. Hence, the charge state of the planes

and of the chains is [CuO2]
�2+� and [CuO3]

�3�2�,respectively. This compound

is, however, metallic9, so the concept of formal valences itself is problematic10.

9The antiferromagnetic insulator in the systematics of this chapter is YBa2Cu3O6.
10Formal valences are integral quantities, their sum over the unit cell must vanish. They are

not measurable quantities. In ionic compounds, formal valences are very useful for classi�cation
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at zero energy. The contribution of Cu-4s states is less than 1% in the

shown region.

and are widely used in chemical and physical models. In metallic materials, this concept looses

rapidly its meaning because the assignment of charge to particular atoms becomes arbitrary.
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Figure 3.27: Band structure near the Fermi level for YBa2Cu3O7 along

high-symmetry Brillouin-zone directions. The notation of symmetry

points is as follows: �=(000), X=(100), Y=(010), S=(110), Z=(001),

T=(011), U=(101) and R=(111) in units of (�=a, �=b, �=c).

YBa2Cu3O7 has a transition temperature Tc � 93 K [84], however, it shows also

short-range antiferromagnetic spin 
uctuations [85]. It is generally accepted, that

spin 
uctuations can mediate attractive pairing-interactions and are involved in

the superconducting state of high-Tc materials [86, 87]. This fact underlines that

an advanced knowledge of the magnetic interactions in cuprate chains and planes

is a prerequisite for the understanding of the pairing-mechanism in HTSC.

YBa2Cu3O7 occurs in the simple orthorhombic space group Pmmm with the

lattice constants a = 3:9195 �A, b = 3:8591 �A and c = 13:15 �A (see Fig. 3.23(b))

[88]. Corresponding to the presence of CuO2-planes and CuO3-chains, the crystal

shows two inequivalent Cu-sites and four inequivalent O-sites. The CuO2-planes,

formed by Cu(2), O(2) and O(3), are slightly buckled due to lattice distortions.

The chains consist of Cu(1), O(1) and O(4), the plaquettes are slightly racked in

chain direction.

We performed FPLO band structure calculations with a minimum basis set

consisting of Cu (4s, 4p, 3d), O (2s, 2p, 3d), Y (4s, 4p, 5s, 5p, 5d) and Ba (5s,

5p, 5d, 6s, 6p) states. Due to the large extension of the Y (4s, 4p) and Ba (5s,
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5p) wave functions it was necessary to treat them as valence states (see 2.2.1).

For the exchange and correlation potential the parameterization of Perdew and

Zunger was chosen.

The results of our calculation agree well with those of other authors (for

example see Refs. [89, 90, 91, 92]), but there are noticeable di�erences in a few

details, especially for the shape of the Fermi-surface. Due to the lack of detailed

information on the computations in most publications, the origin of the di�erences

remains unclear. It is to mention, however, that the intrinsic charge transfer in

this material may particularly call for a full potential treatment as FPLO.

The total DOS as well as the partial DOS of YBa2Cu3O7 are shown in

Fig. 3.26. The valence band is built of mainly Cu-3d and O-2p states with a

small admixture of Y-4d and Ba-5d states. The O(2) and O(3) contributions to

the valence band are nearly identical, showing that the in
uence of the orthorhom-

bicity due to the CuO3-chain on the electronic structure of the CuO2-layer is

rather small. The energies of the main features of chain-derived (Cu(1), O(1)

and O(4)) and plane-derived (Cu(2), O(2) and O(3)) states are quite di�erent.

Thus, planes and chains in YBa2Cu3O7 are relatively separated from each other

in the Hilbert-space. The states forming a peak just below the Fermi level, and

related to the above mentioned di�erences in the topology of the Fermi-surface,

are clearly chain-derived.

Figure 3.27 shows the band structure of YBa2Cu3O7. Besides the three broad

bands crossing the Fermi-level that are expected in these positions according

to all previous considerations, one additional band is found crossing the Fermi-

level. Using the wavefunctions, it is possible to characterize the origin of the

bands. The two broad bands with the maximum on the S-point consist of nearly

pure CuO2-plane states. The band with the large dispersion in �{X direction

and the `unexpected' band are built almost exclusively of chain states. The un-

expected band causes the most important qualitative di�erences between di�erent

published calculations. We �nd it crossing the Fermi-level near the S and the R

point. This leads to only a small hole pocket surface from this band in agreement

with Refs. [90, 92], whereas other calculations [93, 89] �nd a more complicated

Fermi-surface.

Because most high Tc cuprates have antiferromagnetic parent compounds

that LDA does not describe well due to the strong correlations, its application

to the metallic phase also has been considered with suspicion. Nevertheless,

LDA band structure calculations yielded not only reasonable, but in fact very

accurate results predicting a number of properties of metallic cuprates [94], such

as lattice constants and atomic positions, phonon frequencies [95] and electric

�eld gradients [96].

Angle-resolved photoemission spectroscopy (ARPES) [97, 98, 99] and de Haas-
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van Alphen (dHvA) [100, 101] experiments were able to measure parts of the

Fermi-surface of YBa2Cu3O7. The results widely coincide with the predictions

of bandstructure calculations [92, 94]. The existence of the hole pocket near the

S and the R point is still under debate. Recent ARPES measurements [98, 99]

could not con�rm the existence of these hole pockets concluded from dHvA-data

[100, 101]. This could be due to the in
uence of the surface.

Up to now, for the undoped standard planar cuprates, it was not possible

to use ARPES for a measurement of the lowest lying excitations, because the

surface quality after cleaving the crystals was not su�cient. If the apical oxygen is

exchanged with an halogen atom in the La2CuO4 structure (for reasons of valence,

the La-atom has to be replaced by a divalent atom like Sr or Ca simultaneously),

the experimental situation is much more favorable. The samples can be cleaved

with high-quality surfaces and the absence of the apical oxygen makes the analysis

and the characterization of the measured spectra simpler.

The �rst undoped cuprate compound, where the dispersion of a single hole

induced by photoemission was observed, is Sr2CuO2Cl2 [102]. These lowest elec-

tron removal state can be interpreted in terms of Zhang-Rice singlets [103].

Sr2CuO2Cl2 is a quasi two-dimensional (2D) antiferromagnetic insulator with a

N�eel temperature [104] of 256 K, whose magnetic structure is well described by

the 2D spin 1/2 Heisenberg-model. Altogether, Sr2CuO2Cl2 can be considered

as an ideal model compound to answer many questions concerning the electronic

structure of cuprate superconductors in the dialogue of experiment and theory.

The crystal structure of Sr2CuO2Cl2 is shown in Fig. 3.28. Sr2CuO2Cl2

is isostructural to La2CuO4 and exhibits a body-centered tetragonal structure

(space group I4/mmm) with the lattice constants a= 3.975 �A and c= 15.618 �A

[105, 106]. The Cu-O distance in the plane is with 1.99 �A somewhat larger than in

La2CuO4. The Cu-Clapex distance in Sr2CuO2Cl2 (2.96 �A) is signi�cantly larger

than the Cu-Oapex distance in La2CuO4 (2.42 �A). This is the structural reason

for the model character of the system: the in
uence of the out-of-plane ions on

the CuO2-plane is considerably reduced.

LCAO band structure calculations were performed with a minimum basis set

consisting of Cu (4s, 4p, 3d), O (2s, 2p, 3d), Sr (5s, 5p,4d) and Cl (3s, 3p) states.

To cope with the relatively open crystal structure, two empty spheres per unit

cell have been introduced with empty sphere s and p orbitals at each site. For

the exchange and correlation potential the parameterization of von Barth and

Hedin was chosen.

The total DOS as well as the partial DOS and the band structure of Sr2CuO2Cl2

are drawn in Figs. 3.29 and 3.30. As expected from our previous discussions, the

LDA calculation for this undoped compound yields a metallic groundstate instead

of the experimentally observed insulating behavior. The DOS is similar to that of
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Figure 3.28: The body-centered tetragonal unit cell of Sr2CuO2Cl2.

the parent compound La2CuO4 (cf. Fig. 3.24), especially the partial DOS of Cu

and O (with O(1) in La2CuO4), whereas the width of the pd-complex is reduced

by about half of an eV. The admixture of non-plane atoms to the antibonding

band is considerably reduced, the chlorine states are shifted down in energy by

about 2 eV compared with the apical oxygen in La2CuO4.

The close relation between La2CuO4 and Sr2CuO2Cl2 is most visible in the

very similar bandwidth and dispersion of the antibonding bands for both com-

pounds (cf. Figs. 3.25 and 3.30). In Sr2CuO2Cl2, this band is more separated

from the rest of the pd complex due to the already discussed downwards shift in

energy of the chlorine states.

A detailed study of the valence band of Sr2CuO2Cl2 in combination with

ARPES measurements is given in Section 5.3.

3.4.2 Planar cuprates with a Cu3O4-plane

A modi�cation of the standard CuO2-plane, which is shown in Fig. 3.21, is ob-

tained by putting an additional copper atom in the center of every second pla-

quette. This leads to a Cu3O4-plane with two inequivalent copper sites. This
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Figure 3.29: Total and partial DOS of Sr2CuO2Cl2. The Fermi level is

at zero energy. The contribution of O-2s and Cl-3s states is less than

0.1% in the region shown.

kind of plane is found in Sr2Cu3O4Cl2 [107] and the isostructural Ba2Cu3O4Cl2.

Ba2Cu3O4Cl2 occurs in body-centered tetragonal structure in the space group
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Figure 3.30: Band structure near the Fermi level for Sr2CuO2Cl2 along

high-symmetry Brillouin-zone directions. The notation of symmetry

points is as follows: �=(000), X=(100), M=(110), Z=(001) in units of

(�=a, �=a, �=c).

I4/mmm with the lattice constants a = 5:51 �A and c = 13:82 �A [108, 109]. The

Cu-O distance in the plane is 1.96 �A and slightly larger than in La2CuO4.

Experimentally, two N�eel temperatures have been found, TA
N � 330 K and

TB
N � 31 K [110, 111], connected with the two sublattices of A- and B-copper.

The magnetic susceptibility and the small ferromagnetic moment have been ex-

plained phenomenologically [112] together with a determination of the exchange

integrals. Like in undoped Sr2CuO2Cl2 [102], the lowest electron removal states

in Ba2Cu3O4Cl2 can be interpreted in terms of Zhang-Rice singlets [103] with

a new branch of singlet excitations connected with the B-sublattice [113] (see

Section 5.2).

The self-consistent LDA-LCAO method has been applied to Ba2Cu3O4Cl2 in

the scalar relativistic version with a minimum basis treating the Cu-(4s; 4p; 3d),
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Figure 3.31: The body-centered tetragonal unit cell of Ba2Cu3O4Cl2.

O-(2s; 2p), Sr-(5s; 5p; 4d) and Cl-(3s; 3p) orbitals as local valence basis states and

the lower orbitals as core states. To treat this relatively open crystal structure,

four empty spheres per unit cell have been introduced with empty sphere s and

p orbitals at each site. For the exchange and correlation potential the parame-

terization of von Barth and Hedin was chosen.

The calculation results in a paramagnetic and metallic behavior with two

bands crossing the Fermi-level and a third band just below. The total and the

partial DOS as well as the bandstructure of Ba2Cu3O4Cl2 are shown in Fig. 3.32

and Fig. 3.33, respectively.

The bands crossing the Fermi-level have no dispersion in z-direction . That

means that the corresponding bonds lie in the x-y-plane. From the partial DOS

it can be seen which states contribute to these bands (see Fig. 3.32). The two

broad bands are essentially formed by a CuA3d-O2p-hybridization, whereas the

small band is built by CuB3d-O2p-hybridization. Ba and Cl do not contribute to

the states near the Fermi-level.

It might be expected that the additional CuB atoms give rise to consider-
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Figure 3.32: Total and partial DOS of Ba2Cu3O4Cl2. The Fermi level

is at zero energy. The contribution of O-2s and Cl-3s states is less than

0.1% in the region shown.

able di�erences in the electronic structure in comparison with the usual CuO2

plane. In particular, the amount of coupling between both subsystems seems to
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Figure 3.33: Band structure near the Fermi level for Ba2Cu3O4Cl2 along

high-symmetry Brillouin-zone directions. The notation of symmetry

points is as follows: �=(000), X=(100), M=(110), Z=(001) in units of

(�=a, �=a, �=c).

be crucial. Analyzing the orbital weight of the antibonding bands, we �nd two

nearly decoupled subsystems, belonging to CuA and CuB. The reason is that

the two Cu atoms hybridize with linear combinations of O-2px and O-2py, which

are orthogonal to each other. Due to the ideal 90� angle between CuA-O and

CuB-O bonds, the coupling of the two subsystems takes place only via a small

transfer-interaction between oxygen orbitals at di�erent sites.

Keeping in mind the nearly decoupled behavior of both subsystems, it is

easy to �nd that the two broad bands, stemming from the CuA-subsystem, are

very similar to the bands which one gets by folding the bands of La2CuO4 or

Sr2CuO2Cl2 with respect to the half as large Brillouin-zone of Ba2Cu3O4Cl2.

This shows that the physics of the CuA-subsystem is close to the standard CuO2-

plane. Considering the bandwidth of the CuB-derived antibonding band, we �nd
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a strong reduction by a factor of about �ve compared with the CuO2-plane. Thus,

also the antiferromagnetic superexchange should be strongly reduced. These

facts provide a �rst qualitative explanation of the two strongly di�erent N�eel

temperatures of both subsystems.

A detailed analysis of the valence band of Ba2Cu3O4Cl2 in terms of an 11-

band tight-binding model and the calculation of the exchange-integrals within an

extended Hubbard model is given in Section 4.3.1.
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Chapter 4

Model description of cuprate compounds

4.1 Electronic structure and magnetic properties of the linear chain

cuprates Sr2CuO3 and Ca2CuO3

Sr2CuO3 and Ca2CuO3 are considered to be the best appropriated model sys-

tems of strongly anisotropic, spin-1=2 Heisenberg antiferromagnets. In the

following, on the basis of a band-structure analysis within the local density ap-

proximation (see Sec. 3.3.1) and on the basis of available experimental data a

careful analysis of model parameters for extended Hubbard model (EHM) and

for the Heisenberg models is given. Using the band-structure and experimental

data we parameterize a one-band extended Hubbard model for both materials

which can be further mapped onto an anisotropic Heisenberg model (AHM).

Comparing several approaches to anisotropic Heisenberg problems, namely

the random-phase spin-wave approximation and modern versions of coupled quan-

tum spin chains approaches, the advantage of the latter in the reproduction of

reasonable values for the N�eel temperature TN and the magnetizationm0 at zero

temperature is demonstrated. In a comparative study the compound CuGeO3 will

be included as well.

4.1.1 Tight-binding parameterization

The metallic behavior of the LDA band-structure, discussed in Section 3.3.1 (see

Figs. 3.8, 4.1) is in sharp contrast to the experimental observation of large optical

gaps � 2 eV. This points to the necessity of dealing explicitly with the strong

on-site Coulomb repulsion at the copper-site. The experimental gap cannot

be explained by a spin-density wave since it is large and persists also above the

N�eel temperature TN . Instead it should be interpreted as a charge transfer gap

between valence states of mostly oxygen character and a copper upper Hubbard

band above the Fermi level.
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Figure 4.1: Dispersion of the nearly one-dimensional antibonding band of

Sr2CuO3 along high-symmetry Brillouin-zone directions. The notation
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Therefore, the construction of a multi-band, Hubbard-like model Hamilto-

nian would be desirable. However, it is well known that such a Hamiltonian

can be projected to an e�ective one-band picture which properly describes the

low-energy physics [114, 115]. The existence of a well isolated, one-dimensional

band in the present situation, shown in Fig. 4.1 in more detail, suggests such a

possibility all the more. It is assumed that the parameters for the one band de-

scription in �rst approximation can be determined by �tting the band of Fig. 4.1

to a dispersion of the form

"(~k) = �2t1;LDA cos(kya)� 2t2;LDA cos(2kya)� 2t? cos kxc (4.1)

which yields the values listed in the Table 4.11.

1Strictly speaking, the �t of the dispersion along the c-direction requires more Fourier-

components. However, their individual weight is small with respect to the interchain exchange.

It can be expected that within a proper treatment of the local electron correlation the in
uence

of far-reaching hopping integrals should be reduced.
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In Fig. 4.1 the dispersion in the c-direction is clearly visible as an energy

increase with increasing kz by nearly the same amount both at the bottom and

the top of the band. This dispersion is present through the band and gives a

value of t? = 30 meV. To be more accurate, t? is determined from the dispersion

at the Fermi level which is shown in the insert of Fig. 4.1. The corresponding

dispersion for Ca2CuO3 is signi�cantly larger by a factor of 2.5. The smaller

lattice constant of Ca2CuO3 leads to an increase of the inter-chain overlap of the

Cu-3d and O-2p orbitals, but this e�ect alone is too small to explain the strong

enhancement.

The inspection of the Slater-Koster integrals shows that the transfer in

c-direction goes dominantly via the cation Sr and Ca, respectively. The two-

center Hamilton matrix elements between side oxygen O(2) and Ca are two

times larger than the corresponding ones for Sr.

In the same manner (Eq. (4.1)) the energy bands for CuGeO3 (see Fig. 3.14)

were analyzed. The CuO2-chains of edge-sharing CuO4-plaquettes in CuGeO3

result in a more complex highest antibonding band. There are two O-2p states

per site involved, this results in two antibonding bands per chain. Because of the

crystal-�eld they are di�erent in energy (see Sec. 3.3.2) The sizable inter-chain

interaction mediated by Ge and O(1) (see Fig. 3.12) and the presence of two chains

per unit cell leads to two antibonding bands at Fermi level (see Fig. 3.14). For the

qualitative comparison with the above considered CuO3-chain, they were replaced

by one half-�lled band for the sake of simplicity. The tight-binding parameters of

CuGeO3 (see Tab. 4.1) contain a signi�cantly smaller nearest neighbor transfer

integral t1;LDA � 0:2 eV and an anomalously large next nearest neighbor integral

t2;LDA � t1;LDA=2 = 0:1 eV. The large di�erence of the transfer integrals t1;LDA

between chains of corner-sharing plaquettes and CuGeO3 should be related to

the e�cient 180� Cu-O-Cu hopping for the former (�-pd bond) compared with

the ine�cient non-�-pd hopping (about 140�)2 for CuGeO3; for further details

see Ref. [74]. This special structure explains also the relative large next nearest

neighbor transfer integrals t2 in CuGeO3 due to the involved e�ective � pz-pz

hopping along the chain. The inter-chain hopping t? can be deduced from the

dispersion in the b-direction of the antibonding bands of CuGeO3 (see Fig. 3.14)

and is of the same order as in Sr2CuO3 and Ca2CuO3.

Based on both the available experimental data and the band structure infor-

mation obtained here, a semi-microscopic strong correlation model will be con-

structed which then can be mapped approximately onto a spin-1/2 Hamiltonian

to describe the magnetic properties. This is the objective of the next section.

2The angle is measured between the antibonding Ge-3d orbital lying in the plaquette-plane

and the O-2pz in chain direction.
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4.1.2 Microscopic description in terms of the extended Hubbard and anisotropic

Heisenberg models

General relations

We parameterize the well-known extended Hubbard model (EHM) for one single

chain with hopping terms to �rst (t1) and second neighbors (t2):

H = �
X

m;j=1;2;s

tj
�
cym;scm+j;s + h:c:

�
+
U

2

X
m;s

cym;scm;sc
y

m;�scm;�s

+
X

m;j=1;2

Vjnmnm+j� j K j
X
i

~Si~Si+1; (4.2)

where nm =
P

s c
y

m;scm;s is the density operator and s denotes the spin index. In

Eq. (4.2), a small, but non-negligible direct ferromagnetic exchange is included,

which naturally appears if we map a multi-band, Hubbard-like Hamiltonian

including spin-
ip terms to a one band model [114]. Its necessity and its main

e�ects will be discussed below.

For the low-energy physics, at half-�lling, the EHM (Eq. (4.2)) can be replaced

to leading order in t=U by a spin-1/2Heisenberg chain. It includes also a second

neighbor exchange J2 [116] and reads

H = J1
X
i

~Si~Si+1 + J2
X
i

~Si~Si+2 ;

JAF1 =
4t21

U � V1
; J2 =

4t22
U � V2

; (4.3)

where the e�ective exchange integral J1 of the spin-1/2Heisenberg Hamiltonian

of cuprates is reduced from the predominant antiferromagnetic superexchange

part by the ferromagnetic contribution (Eq. (4.2))

J1 � JAF1 � jKj : (4.4)

It is to notice that within this approach J2 yields a competitional (frustrated)

character to the usually dominant short range antiferromagnetic correlations,

which are established by J1. That term is especially important for CuGeO3.

The two main parameters U and t1 of the e�ective extended Hubbard model

are directly related to the optical gap Eg and the exchange integral between near-

est neighbors J1, which are experimentally accessible. The following analysis is

considerably simpli�ed within the strongly correlated limit U > 4t, and excitonic

e�ects at zero momentum transfer q are not very strong, i.e. U � tj > Vj
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(j = 1; 2)3. The parameter sets derived below support such a point of view. We

take into account the e�ect of the intersite Coulomb interaction V1 by renor-

malizing the on-site correlation in the form Ueff = U � V1. Then we may use

the optical gap Eg obtained from the Bethe-ansatz solution for the pure 1D

Hubbard model given by Ovchinnikov [118],

Eg =
16t21
Ueff

1Z
1

p
x2 � 1dx

sinh(2�t1x=Ueff )

� Ueff � 4t1 + 2ln2JAF1 for Ueff � t1; JAF1 = 4t21=Ueff :

(4.5)

In the strong-coupling case Eq. (4.5) can be transformed to the useful relation

t1 = 0:5JAF1

�
1 +

q
Eg=J

AF
1 + 1� 2ln2

�
: (4.6)

It has been assumed that the smaller parameters t2 and jKj, i.e. the hopping to
second neighbors and the ferromagnetic exchange in (4.2), have no substantial

in
uence on the charge transfer gap (t2 enhances the spin gap in the spin-Peierls

state).

The presence of a weak second-neighbor exchange can be approximately de-

scribed in some cases by an e�ective renormalized nearest neighbor exchange

integral [119, 120]

J = J1 � rJ2 � J1 � J2; (4.7)

where r = 1 according to Ref. [119] and r = 1:12 according to Ref. [120]. Recently,

Stephan and Penc [121] predicted a strong narrow excitonic peak in the density-

density response function N(q; !) of the EHM in the strong coupling limit at the

zone boundary q = �=b:

!ex(�=b) = U � V1; (4.8)

provided V1 > 0.

Parameter assignment

In principle, Ueff and t1 can be determined from the experimentally measured

Eg and J values using Eqs. (4.4{4.7) which are presented graphically in Fig. 4.2.

In the case of Sr2CuO3, very recently also the narrow excitonic peak at the zone-

boundary (Eq. (4.8)) and with it Ueff were determined experimentally [122].

However, to the best of our knowledge, the available experimental information

3From recent XAS measurements and related cluster calculations [117] we concluded, that

Vj (j = 1; 2) is somewhat larger as assumed here. Taking into account the enhanced value of

Vj , some values calculated later in this section would change slightly, but the results do not

change qualitatively.
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Figure 4.2: Dependence of the transfer integral t1 (left panel) and the

on-site Coulomb interaction Ueff (right panel) of the Hubbard model

according to its Bethe ansatz-solution vs. i-chain superexchange integral

JAF1 in the strong-coupling limit for typical values of the optical gap Eg.

The experimental values for JAF1 are depicted by arrows. They are de-

termined from the total exchange integral J adopting ferromagnetic and

second neighbor contributions discussed in the text.

on all three systems is incomplete or contradicting each other. For instance, for

Ca2CuO3 the charge gap determined from the maximum of =m("(!)) is Eg = 2:1

eV [123], but a direct measurement of the J value from the magnetic susceptibility

does not exist. Interpreting the midinfrared absorption as a phonon-assisted two-

magnon process, a value of J = 255 meV was reported [124]. For Sr2CuO3 the

experimental J values range from 140 to 260 meV [125, 44, 124]. In the following,

190 meV shall be used as a representative value. According to recent data for

this system, the one-dimensional charge transfer gap Eg(Sr) � 1:9 � 0:1 [122]

might be somewhat smaller as compared to the Ca-compound4. The elucidation

of the observed broadening of the expected 1D van-Hove singularity in terms

of the inter-chain interaction, quantum 
uctuations , disorder, or excitonic and

other many-body e�ects is a di�cult problem beyond the scope of the present

discussion.

Taking this situation into account, the available experimental data and also

our band-structure results are used to derive a consistent parameter set of Eq. (4.2)

(t1, t2, Ueff , V1 and j K j) for each of the three substances, separately. Vice versa,
the demand of internal consistency weights the experimental information.

Sr2CuO3 Recent EELS data of Neudert et al. [122] allow to determine

Ueff = 3:15 � 0:1 eV from the maximum of =m("(!)) at the zone boundary

4Strictly speaking, the optical absorption sets in already near 1.5 eV [126, 127, 122].
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(Eq. 4.8). At the same time Eg was measured to be 1:9�0:1 eV from the data at

small momentum. Similarly Eg = 1:92 eV was found from the Raman resonance

energy [128] observed for diagonal in-chain (yy) polarization only. The aim is

to derive values for the magnetic coupling constants from Eqs. (4.4{4.7) using

the experimental values of Ueff and Eg. Since it turned out that the derived

J-values depend sensitively on Ueff and Eg, two sorts of extreme cases are to

consider. From Eq. (4.5) we obtain t1 = 0:410 eV with Ueff = 3.15 eV and

Eg = 1:8 eV (lower bound). That corresponds to JAF1 = 213 meV. According

to Eqs. (4.4, 4.7), that value has to be reduced by the frustrated next nearest

neighbor exchange J2 of about 12 meV (corresponding to t2 = 100 meV from

our tight binding �t) and by the ferromagnetic contribution jKj before it can be

compared with the total experimental exchange integral J = 190� 17 meV [44].

Thus we can estimate a direct ferromagnetic exchange of jKj � 11 � 17 meV.

This K value is slightly smaller than the value of 35 meV for La2CuO4 obtained

in Ref. [114], which might be attributed to the shorter Cu-O bond-length of 1.89
�A for the latter compound. The so-derived parameter set is listed in Table 4.1.

A second parameter set is derived taking Eg = 2 eV and Ueff = 3:25 eV as the

upper bounds of the experimental results. From Eq. (4.5), t1 = 0:394 eV and cor-

respondingly a considerable smaller value of JAF1 = 190 meV are obtained. Such a

parameterization is compatible with the total exchange integral 147+13
�9 meV [125]

derived from the magnetic susceptibility data. It is to note, that both parameter-

izations are incompatible with the large J values of 246 meV [134] and 261 meV

[124] derived from midinfrared optical absorption data5. Anyhow, the elucida-

tion of the microscopic origin of the apparent discrepancy between the magnetic

susceptibility and the midinfrared optical absorption data analyzed in terms of

the simple nearest neighbor spin-1/2 Heisenberg model remains a challenging

problem.

Ca2CuO3 The slightly larger charge transfer gap of 2.1 eV suggests also an

enhanced Ueff -value in comparison with the Sr-compound. That means that it

is again di�cult to �nd a reasonable parameterization which is compatible with

the large J value of 254 meV from midinfrared absorption data. Due to the lack

of experimental information on the magnetic susceptibility, in the following the

theoretical estimate of 160 meV [115] for the J value of Ca2CuO3 will be used.

Adding a ferromagnetic contribution of jKj � 30 meV (of the same order as

5We assume that there is no sizeable ferromagnetic second neighbor exchange over-

compensating the ferromagnetic nearest neighbor contribution jKj and the antiferromagnetic

next nearest neighbor superexchange J2 = 4t22=Ueff . The small di�erences between both values

arise mainly from the adopted phonon frequency of 70 and 80 meV, respectively, involved in

the phonon-assisted absorption process.
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for La2CuO4) and a frustrating J2 � 10 meV, we may �nd JAF1 = 200 meV as a

rough estimate. Then, together with Eg = 2:1 eV, we calculate t1 = 418 meV from

Eq. (4.6). According to Eq. (4.5) that corresponds to Ueff = 3:5 eV, showing

the expected enhancement. On the level of the pd-model the reason for the

enhanced e�ective on-site interaction should be traced back to a larger �"pd �
Ueff . It seems to be related to aMadelung e�ect caused by the di�erence in the

lattice parameters of the Sr- and the Ca-compound, respectively. This point of

group quantity Sr2CuO3 Ca2CuO3 CuGeO3

I t1;LDA=meV 550 520 250

t2;LDA=meV 100 100 81

t?=meV 20 to 30 50 to 65 25 to 33

II Eg=eV (1.8 to 1.9)a;b (2.1)c (1.25)d, (3:7)e

Jk= meV (140)f, (190)g, (260)h (160)i (254)h (11� 1)j, (22 )k

III t1=meV 410 419 187

t2=meV 100 100 90

Ueff=eV (3.15)b 3.5 4.34 (4.2)e

V1=eV 0.21 0.16 0.1

j K j/meV 11 30 19

J?=meV 0.5 to 1.1 2.9 to 4.3 0.6 to 1, (1.1)l

IV TN=K (5)l (8...10)l (4.5)m

�exp=�B (0.06�0:01)l (0.09�0:01)l (0.23)j

V �CSC=�B 0.08 to 0.11 0.19 to 0.24 0.35 to 0.45

J
emp
?

=meV 0.3� 0.1 0.6�0:1 0.27

Table 4.1: Model parameters for Sr2CuO3, Ca2CuO3 and CuGeO3. The LDA-

LCAO-derived tight-binding parameters in the �rst group of rows are explained

in Sec. 4.1.1. The second group contains experimental values (in the case of sev-

eral data we prefer the underlined) which were used in addition to estimate the

corresponding parameters of the EHM as well as the exchange integrals of the

AHM (third group of rows) derived and discussed in Sec. 4.1.2. The experimental

magnetic moment �exp and the N�eel temperature TN (group IV) may be com-

pared with �CSC derived from Eq. (4.20) using the experimental data for Jk and

our estimation of J?. Vice versa, the experimental �
exp determines via Eq. (4.20)

the empirical inter-chain exchange integrals J
emp
?

.
a Raman resonance [128], b EELS [122], c opt. absorption [123], d XPS [129], e

XPS [130], f magn. suscept. [131, 125], g magn. suscept. [44], h midinfrared [124],
i theory [115], j INS, Raman [61, 63, 64, 132, 120], k Raman [62], l �SR [4], m

INS [133].
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view is corroborated by the band-structure calculations discussed in Section 3.3.1

and in the previous section: for Ca2CuO3, the distance between the half-�lled

antibonding band and the �lled bonding bands is larger by 0.7 eV compared to

the corresponding distance for the Sr-compound.

Inter-site Coulomb repulsion and comparison with CuGeO3 According

to the microscopic calculations of Geertsma andKhomski [74] the total nearest

neighbor exchange integral of CuGeO3 J1 = 11.6 meV can be decomposed into

an antiferromagnetic contribution of JAF1 = 30:4 meV and into a relatively large

ferromagnetic one of jKj = 18:8 meV. For CuGeO3 charge transfer gaps of 3.66 eV

[130] and 1.25 eV [129] have been reported6. Using the values Eg = 3:7 eV and

JAF1 = 30:4 meV in Eqs. (4.5) and (4.6), the main parameters of the extended

Hubbardmodel come out as t1 = 0:187 eV and Ueff = 4:34 eV. Interestingly, the

latter value nearly perfectly coincides with the charge transfer energy � = 4.2 eV

found out from the XPS data analyzed within the Anderson impurity model

[130]. Within a pd-model the signi�cantly enhanced corresponding �"pd value

should be attributed to the Ge-cations located near the CuO2-chain oxygens.

This point of view is supported by the following observations: In compounds like

Sr14Cu24O41 where the considered CuO2-chains are surrounded by earth alkaline

cations, the corresponding charge gap is reduced to about 2.8 eV [135]. For that

compound, �"pd as calculated within the ionic point charge model amounts to

3.7 eV [136].

Comparing the data collected in Table 4.1, we suggest that Ca2CuO3 should be

somewhat stronger correlated than its Sr counterpart. Without doubt, the most

strongly correlated compound among them all is CuGeO3 having the smallest

transfer integral t1(Ge) = 0.187 eV and the largest Ueff(Ge) = 4.34 eV. The

large ratios Ueff=t1 obtained in all three cases (7.7(Sr), 8.4(Ca), and 23(Ge))

justify a posteriori the use of Eq. (4.5).

The di�erence between t1 and t1;LDA may be explained by a renormalization

of the transfer integral t1 by the inter-site Coulomb interaction V1. Within the

Hartree-Fock approximation, the correction due to V1 leads to a renormalized

e�ective hopping integral t1+pV1 with the bond order p � 2=�. This renormalized

hopping integral can be compared with t1;LDA, where the inter-site Coulomb

interaction is already partially taken into account. From t1;LDA = t1 + pV1 and

the data of t1 and t1;LDA given in Table 4.1 we may determine V1 = 0:21 eV for

Sr2CuO3, V1 = 0:16 eV for Ca2CuO3, and V1 = 0.1 eV for CuGeO3 (here t1 =

0:187 eV as estimated above has been adopted). Thus, the inter-site Coulomb

6The attribution of sharp peaks near 1.25 eV, 2.9 eV and 3.66 eV observed in Im"(!) to

the dp charge transfer gap which is of interest here, to dd-transitions, and to Ge-states related

interband transition is controverse.
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interactions V1
<� 0.2 eV of all three compounds are quite close to each other

and ful�ll the relation V1 � U . Notice that these numbers for V1 roughly agree

with the corresponding 2D-values 0:11 eV or 0:17 eV given in Refs. [114, 137],

respectively, and the estimate based on the four-band model for CuO3-chains

[138]: V1 � ndnpVpd+n
2
d(Vdd�V2;dd) � 0:23 eV, where typical occupation numbers

nd � 0:7; np � 0:13 and typical values for Vpd = 1:2 eV, V1;dd = 0:5 eV and V2;dd =

0:25 eV have been taken. Herein, Vpd is the copper-oxygen inter-site Coulomb

interaction, V1;dd and V2;dd eV are the nearest and next nearest neighbor copper-

copper inter-site Coulomb interaction, respectively.

The value for t2 in Table 4.1 was either taken from the �t to the band-structure

data (t2;LDA for Sr2CuO3 and Ca2CuO3) or inferred from the experimentally

known value for J2 = 4:3 meV [139] for CuGeO3 using Eq.( 4.6).

Inter-chain exchange A �rst estimate of the magnetic couplings between

chains shall be given. The inter-chain exchange interaction J? in the c-direction

for Sr2CuO3 and Ca2CuO3 (corresponding to the b-direction in CuGeO3) will be

approximated by

J? =
4t2
?

Ueff

; (4.9)

for simplicity, we assumed the same inter-site Coulomb interaction V1 within

the chain and perpendicular to it. The corresponding values are listed in Table

4.1. The discussion above about a possible direct ferromagnetic exchange which

leads to a systematic reduction of exchange integrals suggests that these values

should be considered as upper bounds. In the case of CuGeO3 the so-determined

J? = 1 meV can be compared with experimental data from neutron scattering

[133, 61] J? � 1:1 meV showing a reasonable agreement. It is to notice that in

the case of Sr2CuO3 our inter-chain interaction exceeds the dipolar interaction

evaluated in Ref. [131] by two orders of magnitude.

The magnitude of the weakest interaction J?;b in the b-direction is di�cult to

estimate theoretically. It has been evaluated in Ref. [131] for Sr2CuO3, adopting

the dipolar interaction for J?;b � 10�4 meV. Extracting the corresponding trans-

fer integral t?;b from the bandstructure, we �nd t?;b = 1:8 meV for Sr2CuO3 and

t?;b = 2:6 meV for Ca2CuO3. Because we neglected in our TB-model the higher

Fourier-components in the other two directions (Eq. 4.1), these small values

are at the border of reliability. The corresponding value of J?;b � 10�3 (Eq. 4.9)

should be considered only as an estimate of the order of magnitude. In any case it

may be expected that J?;b is smaller than the other exchange integrals by several

orders of magnitude.
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4.1.3 Some aspects of the N�eel state

The magnetic properties of undoped cuprates (i.e. one hole per Cu-site in the

standard pd-model) are usually described by the anisotropic spin-1/2 antiferro-

magnetic Heisenberg model

H =
X
<i;j>

JijSiSj ; (4.10)

with Jij = Jk(= J1) for (ij) beeing nearest neighbors in the chain direction (a-

direction for Sr2CuO3 and Ca2CuO3) and J? for nearest neighbor copper-sites in

c-direction (see Fig. 3.6). The weakest interaction will be denoted here by J?;b.

According to the results of the previous sections as well as to the experimental

data, Sr2CuO3 and Ca2CuO3 are characterized by very anisotropic interaction

strengths

Jk � J? � J?;b: (4.11)

The anisotropy is about three orders of magnitude for each inequality. In-

stead of the spin-Peierls system CuGeO3, the doped compound GeCu1�xZnxO3

(x=0.034) [132, 66], which shows antiferromagnetic order, will be considered

in the following to allow a comparison. This is an example for an anisotropic

Heisenberg problem with weaker anisotropy than Sr2CuO3 and Ca2CuO3. For

simplicity, we will use for GeCu1�xZnxO3 the same parameters which were de-

rived in the previous section for CuGeO3. We also neglect here the frustrated

exchange J2.

In the following we review several approaches for such strongly anisotropic

systems where quantum and thermal 
uctuations become important. We will

mention the usual spin wave approach in self-consistent random phase approx-

imation (RPA-SWA) where all directions are treated on an equal and simple

footing, and the coupled quantum spin-chain approach (CQSCA) which involves

�rst a sophisticated treatment of the intra-chain direction and then a mean-�eld

treatment of the remaining inter-chain interactions.

RPA spin wave theory

The RPA-SWA yields simple analytical expressions for the N�eel temperature TN

and for the staggered magnetization < Sz
A >= m0 at zero temperature (see [131],

[140] and references therein). Both quantities can be derived from the expression

2m(T ) =
1

1 + 2 
;  =

1

N

X
~q

�
!0


(q)
coth

�

(q)

2T

�
� 1

�
; (4.12)

where


(q) =

q
!2
0 � !2

1(q) ; !1 = 4m(T )Jk (cos qx +R cos qz +Rb cos qy) ; (4.13)
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with !0 = 4m(T )
�
Jk + J? + J?;b

�
, R = J?=Jk and Rb = J?;b=Jk. We put kB = 1.

The N�eel temperature is de�ned by the condition of vanishing magnetization

which yields

TN = Jk=2I(R;Rb); (4.14)

where

I(R;Rb) =
1

�3

Z Z Z �

0

dqxdqydqz

R(1� cos qz) +Rb(1� cos qy) + (1� cos qx)
: (4.15)

Expanding I(R;Rb) for Jk � J? � J?;b gives the approximate expression

I(R;Rb) =
0:66p
R
[1 + 0:24 ln(R=Rb)] ; (4.16)

which determines the N�eel temperature together with (4.14). The zero temper-

ature magnetization m0 is in the same limit given by

m0 =
0:303

1� 0:386 ln (R)
; (4.17)

where the small parameter Rb turned out to be irrelevant. Notice that the RPA-

description adopted reveals a vanishing magnetic moment in the R ! 0 limit.

Thus it di�ers from the ordinary spin-wave theory which yields a diverging ex-

pression m0 = j0:5 + (1=�) lnRj in the weak inter-chain coupling limit.

Let us now check the above expressions using the estimates of the last section

and compare them with the experimental data. These data for TN and the

magnetic moment �exp = gLm0 are given in Table 4.1. In the following, a typical

cuprate Land�e factor gL � 2:1 for Cu+2 [131] will be adopted. Using the values

Jk and J? from Table 4.1 and J?;b = 10�3 meV, we �nd T Sr
N = 38 K, TCa

N = 75 K,

�Sr = 0:20 �B and �Ca = 0:26 �B for the Sr- and the Ca-compound, respectively.

The ratio of the two experimental N�eel temperatures agrees approximately with

the RPA-SWA prediction

TCa
N =T Sr

N �
q
JCa
k
JCa
?
=
q
JSr
k
JSr
?
� 2 (4.18)

where the logarithmic corrections in Eq. (4.14) can be neglected since they are

not very important for the above ratio. However, the absolute values of � and

TN within the RPA-SWA disagree with the experimental data. In the case of

the more isotropic GeCu1�xZnxO3 we �nd �
Ge = 0:32 �B, in a better agreement

to the experiment. But also here, the magnetic moment is overestimated by the

RPA-SWA. In this case that may be ascribed to the e�ect of the frustrated second

neighbor exchange.

For the Sr- and the Ca-compound, the opposite procedure could be tried using

the given experimental data (including Jk) to determine an \empirical" J
emp
?

. The
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resulting values for J
emp
?

are two (from TN ) or more than four (from m0) orders

of magnitude lower than those estimated in the previous section. This seems,

therefore, to be unrealistic. Despite the fact that it gives the correct limits for

m0 both for R! 0 and in the 2D isotropic case for R! 1, the RPA-SWA seems

to overestimate m0 for large anisotropy (R� 1) quite considerably. That points

to the necessity for an improved method. In the case of smaller anisotropy (e.g.

R � 0:1 for GeCu1�xZnxO3), the RPA-SWA seems to give more reliable results.

Coupled quantum spin chain approach (CQSCA)

Adopting Schultz's interchain RPA-expression (Eq. (7) of Ref. [46]), we replace

J? ! 0:5(J? + J?;b) as suggested by our strongly \orthorhombic" parameter

regime Jk � J? � J?;b. This leads to

m0 = 

p
R; (4.19)

where the proportionality factor7 
 is 0.72. The corresponding values for �CSC =

gLm0 are listed in Table 4.1.

Analogously, within these theories one expects TN � J? [47], in particular,

the slightly modi�ed implicit expression for the transition temperature proposed

by Schultz [46] reads

TN =
2

�
J? ln

1=2
�
�Jk=TN

�
; (4.20)

where � � 5:8.

From a principal point of view (Mermin-Wagner theorem), it is clear that

Eq. (4.20) overestimates TN because it does not depend on J?;b. However, since

its in
uence can be described by logarithmic terms like in Eq. (4.16) which then

ensure a �nite TN , the relative changes might be quite small.

Like in the RPA-SWA, our estimated values for J? and the experimental Jk

lead to too large values for TN and m0. But now, using the experimental m0

and Jk we can determine from Eq. (4.16) an \empirical" J
emp
?

of the CuO3-chain

compounds which is of the same order of magnitude as our estimates. The value

of J
emp
?

is smaller by a factor between 2 and 3 (Sr2CuO3, GeCu1�xZnxO3), or 6

(Ca2CuO3) compared to the theoretically estimated values (see Tab. 4.1). The

N�eel temperature can also be used to determine J
emp
?

which gives similar values

showing the internal consistency of the CQSCA, but it should be kept in mind

that Eq. (4.19) does not ful�ll the Mermin-Wagner theorem [142]. In that

respect, an alternative approach to the strongly anisotropic Heisenberg model

(Castro-Neto and Hohn [143]) is noted here, in which the N�eel temperature

7A similar factor 2=� = 0.637, was obtained by Fukuyama et al. [141].
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was found to depend linearly on J?;b. Naturally, the elucidation of the correct

description, how this smallest interaction parameter does a�ect the �nite temper-

ature properties, remains a challenging problem. Without its generally accepted

solution it makes no sense to discuss the absolute values of the N�eel-temperature

beyond an order of magnitude accuracy.

One possible explanation for the reduction of J
emp
?

in comparison with our

estimated J? could be the proximity of a spin-Peierls state. Phase 
uctuation

e�ects beyond the mean-�eld inter-chain approach used in deriving Eq. (4.19) can

then become quite important. Following the renormalization group approach of

Wang [48] for a plane of weakly interacting chains at T = 0, one �nds a strongly

renormalized magnetization which can be traced back to a renormalized exchange

integral. If that is true, Ca2CuO3 should be much closer to the spin-Peierls

phase transition point than Sr2CuO3. Furthermore, for small exchange integrals

compared with the phonon frequency (� 10 to 20 meV), phonon exchange gives

rise to a quasi-instantaneous interaction between localized spins, leading to a

renormalization J ! Jeff < J [144].

Another possible origin for the di�erence between J? and J
emp
?

might be our

simple procedure to estimate J? based on the extended Hubbard model. It was

already mentioned that such a procedure has the tendency to overestimate the

exchange integrals which becomes already apparent for Jk. Last but not least,

there is an uncertainty of the band-structure methods with respect to transfer

integrals as small as in the considered case. The replacement of the full potential

in the region in between the chains by empty spheres as explained in Sec. 3.3.1

might e�ect the transverse tails of the Wannier-functions which determine the

value of the transfer integral t?. Anyhow, roughly the same accuracy for the Sr-

and the Ca-compound should be expected. In this context the stronger deviation

of the magnetic moment of the Ca-compound might be related to somewhat

reduced accuracy of Eq. (4.17) in less anisotropic cases.

The isomorphic compounds Sr2CuO3 and Ca2CuO3 o�er in principle the op-

portunity to study in detail the e�ect of the inter-chain interaction (despite of

possible disorder e�ects) provided that it can be changed in a controlled way.

Indeed, the study of the magnetic properties of the alloy system Sr2�xCaxCuO3

gives an interesting possibility to change continuously the magnitude of the inter-

chain coupling. This is also interesting from the theoretical point of view since

it gives a possibility to check in more detail sophisticated theories for weakly-

coupled quantum spin-chains.

An analogous analysis of the inter-chain couplings and the antiferromag-

netic interactions has been performed for the zigzag chain cuprate SrCuO2 (see

Fig. 3.18) [145]. Due to the similarity of some properties with the above men-

tioned single chains, the main results shall be shortly reported in the following
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to complete this section (For the detailed analysis and discussion see Ref. [145]).

Within LDA calculations, the insulating compound SrCuO2 shows two half-

�lled nearly one-dimensional antibonding bands (see Fig. 3.20) according to the

presence of two spin-1=2 antiferromagnetic subchains with weakly frustrating

intra- and inter-subchain interactions.

Recent EELS data provide for the �rst time clear experimental evidence for

the subchain interaction in good agreement with the band structure calculation

[145].

Using exact diagonalization studies to investigate the in
uence of di�erent

frustrating exchange interactions of the zigzag chain in the parameter region

estimated by LDA, we �nd a rather small e�ect of the frustrating coupling terms

between the two subchains on the magnetic susceptibility and on the speci�c

heat.

The inter-chain Heisenberg exchange in the direction of the weakest cou-

pling is quite di�erent for SrCuO2 and Sr2CuO3 which might be responsible for

the di�erent magnetic ordering at low temperature. There is an indirect cou-

pling in b-direction involving nearest neighbor zigzag chains in b-c-direction (see

Fig. 3.18) ensuring this way a �nite N�eel temperature of about 5 K [79] similar

to the N�eel temperature of Sr2CuO3.

In addition, the quantum 
uctuations within the a-c basal plane are enhanced

in comparison with the single-chain case due to the reduced inter-chain interac-

tion. The corresponding transfer integral in c-direction for SrCuO2 is about half

the value of Sr2CuO3. Applying quantum spin chain theories [146], that explains

the further reduced magnetic moment of 0.033�Bohr[79].

Summarizing, it is to state, that the LDA band structure calculations yield

useful insights into important material-dependent parameters as inter-chain elec-

tron transfer and tendencies of the crystal �eld (Madelung) potential, albeit

that estimate of the on-site and inter-site Coulomb interaction requires more

sophisticated methods such as LDA-calculations with local constraint.

4.2 The orbital-hole distribution in cuprate chains

In the previous section, we investigated the low-energy physics of single-chain

cuprates in the framework of a one-band model. Here, multi-band models are

presented, which are suited to describe processes where di�erent orbitals are

involved.

Combining the theoretical analysis and various spectroscopies, the main pa-

rameter values of extended Hubbard models for the various chain-cuprates can

be determined. In particular, it is the aim of the present discussion to �nd out
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for the anisotropic Sr2CuO3 compound under consideration to which interactions

the polarization-dependent x-ray absorption spectroscopy (XAS) is most sensi-

tive and to determine the corresponding parameters (for a detailed discussion see

Ref. [117]).

The experimentally measured O 1s spectra with the electric �eld vector par-

allel and perpendicular to the CuO3-chains are shown in Fig. 4.3. XAS probes
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Figure 4.3: Polarization-dependent XAS spectra of Sr2CuO3 for the elec-

tric �eld vector E within the plane of the Cu-O4-plaquettes. The a-

axis corresponds to the chain direction. For experimental details see

Ref. [117].

the unoccupied electronic structure. In particular, the �rst peaks above the ab-

sorption threshold measure the number of holes in the initial state of oxygen 2p

orbitals contributing to the upper Hubbard band. From the integrated spectral

weight near the peak values an oxygen hole ratio R = 2nO(2)=nO(1) � 1.22 can

be deduced. The chain oxygen O(1) and the side oxygen O(2) correspond to the

notation in Fig. 3.6.

Starting from an LDA bandstructure calculation followed by the parame-

terization of appropriated TB models, we will adjust the on-site and inter-site

Coulomb parameters of an extended Hubbard model to this experimentally

observed hole ratio.

4.2.1 Tight binding models

The LDA-LCAO bandstructure calculation for Sr2CuO3 yields a quasi 1D-band

crossing the Fermi level (see Figs. 3.8 and 4.1). Three main orbitals contribute
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Figure 4.4: Sketch of a plaquette of the CuO3-chain in Sr2CuO3. The

orbitals and the corresponding transfer integrals of the 7-band TB model

are depicted. For the 4-band TB-model, only the oxygen p-orbitals which

form pd-� bonds with the copper 3d-orbital and the corresponding trans-

fer integrals tppi, tpd1 and tpd2 are relevant.

more than 94 % to the net-DOS (see Appendix A) of the antibonding band,

namely the O(1) 2px and O(2) 2py states as well as the Cu 3dx2�y2 orbitals.

Hence, the usual dp-model with an extension to two non-equivalent oxygen sites

per unit cell can be regarded as a quite good approximation for the description of

the low-energy electronic structure at hand. This model contains three transfer

integrals tpd1, tpd2 and tppi (see Fig. 4.4) and three on-site energies "O(1), "O(2) and

"d corresponding to the above mentioned orbitals.

At �rst glance, only the half-�lled antibonding band at the Fermi level should

be considered. However, the extended tight binding �t for this band is numeri-

cally not unique and therefore not suitable for the determination of three di�er-

ent transfer integrals required in the four-band pd-model (see Figs. 3.6, 4.4 and

Eq. (4.21) for the notation of sites and parameters). Thus, additional lower-lying

bands with bonding and nonbonding character have to be included. However,

due to the non-negligible hybridization with further O 2p orbitals (having non-

� overlap), a discontinuity of the O(2) 2py orbital-character (see Appendix A)

is observed in the region of the nonbonding oxygen-derived bands near -4 eV

and -5 eV (see Fig. 4.5), if we restrict ourselves to the four-band model, only.

Therefore, eventually, a �t was performed within the seven-band pd-model where
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Figure 4.5: LDA-LCAO band structure of Sr2CuO3 along the chain di-

rection. The symmetry points are denoted � = 0 and � = �=a, the

Fermi level is at zero energy. The thickness of the lines is scaled with

the sum of all orbital projections of the 4-band TB model (left panel)

and of the 7-band TB model (right panel).

the O(1) 2py and two O(2) 2px-orbitals with corresponding on-site energies and

transfer integrals tppo and tppk were taken into account additionally although they

can be largely ignored in the physics described below. The �tting procedure of a

multi-band TB model using the eigenvalues at high-symmetry points is described

in detail in Section 4.3.1.

The transfer integrals for the TB-�t of the four- and the seven-band model

are given in Table 4.2. Compared with the standard parameter tpd = 1.3 eV for

the CuO2-plane, the transfer integrals tpd1 and tpd2 are enhanced. This is proba-

bly caused by a change of the corresponding Wannier functions [147]. Similar

values are reported for the transfer integrals of the CuO3-chain in YBa2Cu3O6+x

(tpd1 = 1.5 eV, tpd2 = 1.95 eV and tppi = 0.6 eV) [148].

However, the parameter tppi = 1.15 eV obtained from the four-band model

seems to be unreasonably large. This is caused by the non-negligible in
uence

of hopping processes corresponding to tppk. The same is valid for the di�er-

ence of oxygen on-site energies �pp = "O(2) - "O(1). We �nd �pp = -1.5 eV and

�pp = 0.75 eV for the four- and the seven-band model, respectively. The exact

diagonalization studies presented in the following section show a posteriori the

inconsistency of the values for tppi and �pp found in the four-band model.
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TB model tpd1 tpd2 tppi tppo tppk

4-band 1.45 1.8 1.15 - -

7-band 1.56 1.8 0.62 0.41 0.35

Table 4.2: Transfer integrals for the four and seven-band TB �t for

Sr2CuO3. All energies are given in eV.

Thus an extended �t with a subsequent selection of relevant orbitals is more

favorable than a more restricted one with an uncontrolled renormalization due to

neglect of other orbitals. In this context we mention that the small admixture of

Cu 4s and O 2s states contributes also somewhat to the large band width of the

antibonding band8.

4.2.2 Exact diagonalization studies

In this section, a theoretical analysis of the hole distribution using the exact

diagonalization method for a (CuO3)N -cluster (N = 4,6) with periodic boundary

conditions is discussed. For the transfer integrals the above obtained values from

the seven-band TB model are used as input.

According to the orbital analysis in the previous section, a four-band extended

Hubbard model [115] is suitable to describe the XAS measurement. Regarding

the �nal state of the core level excitation, the corresponding Hamiltonian has to

be supplemented with the core-pd-valence hole Coulomb interaction Vci:

H =
X
i

"in̂i +
X

<i;j>;s

tij(c
y

i;scj;s + h:c:) +
X
i

Uin̂i;"n̂i;#

+
X
<i;j>

Vijn̂in̂j +
X
i

Ucin̂cn̂i +
X
i

Vcin̂cn̂i ; (4.21)

where c
y

i;s creates a hole at the site i, n̂i;s = c
y

iscis is the number operator, and

n̂i =
P

s c
y

iscis. In the following, we denote the di�erence of chain-oxygen O(1)

2px and Cu 3dx2�y2 on-site energies by �p1d. For the on-site Coulomb repulsion

at Cu and O sites we adopt Ud = 8.8 eV and Up = 4.4 eV, respectively, as

suggested in Ref. [149]. For the intersite Coulomb interactions we adopt for

the sake of simplicity Vpd1 = Vpd2 = Vpd. Then, the latter value as well as the

values of �pp and �p1d are taken as free parameters to reproduce the XAS data

reported below. We have calculated the XAS spectral function as well as the hole

8Suppressing this admixture arti�cially in the �nal step of a self-consistent calculation, the

bandwidth of the antibonding band is reduced by about 10 %.
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Figure 4.6: Size e�ect for the Cu hole-occupation number nd in the CuO3-

chain of Sr2CuO3 depending on the cluster size L calculated within the

Quantum Monte Carlo method . The crosses denote our exact diagonaliza-

tion results for L = 4 and L = 6.

occupation numbers

ni = hGjn̂ijGi; (4.22)

in the ground state jGi for Cu and for both non-equivalent oxygen sites O(1) and

O(2), since the measured polarized O 1s XAS cross sections are proportional to

the oxygen occupation numbers in the ground state.

In order to get some insight in the �nite size e�ects caused by the small clusters

which can be treated by exact diagonalization methods, the results are compared

with those of Quantum Monte Carlo calculations [150], where up to 16 unit cells

can be considered (see Fig. 4.6). The Quantum Monte Carlo calculations result

in a 1=L2 asymptotic behavior on di�erent curves for L = 4m and L = 4m+2

(m = 1; 2 : : :) clusters. Since the deviations at small m are very small (about 0.4

%), we regard the result for L=16 as an excellent estimate for the L!1 limit.

Therefore, the results for any quantity calculated at m = 6 and m = 4 cluster

sizes can be regarded as lower and upper bounds for the in�nite chain-limit.

The main results of the cluster calculations are the following: The hole ratio

R is sensitively dependent on both the values of �pp and Vpd. Compared to

typical values for the layered cuprates, we �nd a signi�cantly enhanced Vpd of

2.5 � 0.5 eV (see right panel of Fig. 4.7). Thus, we con�rmed the predictions

based on an analysis of Cu 2p XPS spectra [126]. However, in contrast to this

XPS analysis, which is less sensitive to the parameter �pp, a sizable positive value

of �pp � 0.5 ... 1 eV has to be taken into account in accord with the LDA result

(see left panel of Fig. 4.7). Finally, EELS data of Ref. [151] yielding an e�ective
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Figure 4.7: Left panel: Ratio of side- and chain-oxygen occupation numbers

in Sr2CuO3 vs. intersite Coulomb interaction Vpd for the LDA-LCAO

derived parameter set. The legend numbers denote the di�erence of oxygen

on-site energies �pp in eV. The stripe denotes the experimentally (XAS)

derived oxygen hole ratio including error bars.

Right panel: Dependence of the inter-site Coulomb interaction Vpd on the

oxygen on-site energy di�erence �pp for di�erent �pd. The large circle de-

notes the expected region of Vpd and �pp. NNN stands for Cu-Cu interaction

Vdd = 0:8 eV included.

Ue� � 4.2 eV analyzed within an extended one-band Hubbard model. Adopting

this value of Ue� , further Coulomb interaction Vdd should be included in the

four-band model.

To summarize our results, based on bandstructure calculations for Sr2CuO3

a new parameter set at the level of the four-band extended Hubbard pd model

description has been proposed. Surprisingly, signi�cant deviations from sets com-

monly accepted for layered cuprates have been found indicating that the tpd1, tpd2

and tpp do not scale with the Cu-O distance. These deviations can be considered

as the origin of the unusual large values of the intrachain exchange integral (see

Section 4.1.2). At variance to other spectroscopies the polarization-dependent

XAS for the anisotropic single-chain Sr2CuO3 is found to be sensitive to the

di�erence of on-site energies and of the inter-site Coulomb interaction.
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4.3 Tight-binding parameter and exchange integrals of Ba2Cu3O4Cl2

In this section, the parameterization of a multi-band tight-binding model is

demonstrated in more detail. The advantage of a the atomiclike character of

the basis orbitals in our band structure scheme gives a natural possibility to ex-

tract the relevant orbitals for the construction of model Hamiltonians. This is

exploited extensively in the following.

In Figs. 4.9(a) and 4.9(b) the weights of the CuA 3dx2�y2 and CuB 3dx2�y2

orbitals, respectively, are shown. We can observe that the broad band is built up

of predominantly the CuA 3dx2�y2 orbital which hybridizes with one part of the

planar oxygen 2px;y orbitals resulting in dp� bonds. The corresponding oxygen

orbitals, directed to the CuA atoms, are denoted here as p� orbitals. Their weight

is shown in Fig. 4.9(c). The p� orbitals are to distinguish from the oxygen p�

orbitals (Fig. 4.9(d)) which are perpendicular to them [152] (see Fig. 4.10). These

oxygen p� orbitals hybridize with CuB 3dx2�y2 , building the narrow band at the

Fermi-surface (see Fig. 4.9(b)). There is generally very small weight of the p�

orbitals in this narrow band, indicating that there is only small coupling between

the A and B subsystems. The only exception to this occurs around the wave

vector (�=a; 0). A further analysis shows that the band complex between �1 eV
and �3 eV is predominantly built up of out-of-plane oxygen pz together with

the corresponding Cu 3dxz;yz orbitals (not shown), as well as a large contribution

of Cl-derived states [49]. The in-plane oxygen orbitals contribute mainly to the

lower band complex between �4 eV and �8 eV (see Figs. 4.9(c) and 4.9(d)).

Thus, it is evident that the two bands crossing the Fermi-surface which we

want to analyze have nearly pure 3dx2�y2 and 2px;y character
9. Therefore, we have

to consider all together 11 orbitals in the elementary cell of Cu3O4, namely 2 CuA

3dx2�y2 , 1 CuB 3dx2�y2 , 4 oxygen p� and 4 oxygen p� orbitals. In Fig. 4.8(b) we

pick out the corresponding bands from the LDA-bandstructure for which the sum

of all 11 orbital weights (Eq. (A.7) in the Appendix) is large. It is to see that

the sum of all orbital projections in Fig. 4.8(b) decreases with increasing binding

energy. That can be explained by the reasons mentioned above. Further it is to

observe that the lower 8 bands in Fig. 4.8(b) are not as pure as the upper three.

For the upper bands only a very small weight of additional orbitals, in particular

Cu 4s contributions, has been detected. These contributions are neglected in the

following.

9The corresponding band complex with nearly pure 3dx2�y2 and 2px;y character includes

also a third band just below the Fermi-surface. It has CuA 3dx2�y2 and O p� character similar

to the broad band crossing the Fermi-surface. This is not surprising since there are two CuA

in the elementary cell of Cu3O4.
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Figure 4.8: a) LCAO-LDA band structure of the Cu3O4-plane of

Ba2Cu3O4Cl2, the Fermi level is at zero energy. b) The same as in

(a), but the weight of the lines is scaled with the sum of all 11 orbital

projections that are used in the TB model. c) The band structure of

the TB model. The parameter set used is shown in Table 4.3. The wave

vector is measured in units of (�=a,�=a).

4.3.1 Tight-binding parameters

It is our main goal to �nd a TB description of the relevant bands crossing the

Fermi-surface. This task is di�cult due to the large number of bands between
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Figure 4.9: Weight of a) CuA 3dx2�y2 , b) CuB 3dx2�y2 , c) O 2p� and d) O 2p�

orbitals in the LCAO-LDA band structure of Ba2Cu3O4Cl2. The wave vector

is measured in units of (�=a,�=a).

-1 eV and -8 eV of Fig. 4.8(a). There is no isolated band complex which would

make a TB analysis easy. However, as it has been pointed out already, the relevant

bands are a nearly pure combination of Cu 3dx2�y2 and O 2px;y orbitals. Thus, we

will only concentrate on these orbitals, thereby accepting some deviations in the

lower band complex between -3 eV and -8 eV. The relevant orbitals are depicted

in Fig. 4.10. The tight-binding Hamiltonian HTB can be written as a sum of

three parts:

HTB = HA +HB +HAB : (4.23)

There are two classes of orbitals corresponding to the two di�erent subsystems.

One consists of CuA 3dx2�y2 orbitals at the sites R with on-site energies "Ad and

oxygen 2p� orbitals at the sites r with "p:

HA = "Ad

X
Rs

d
y

RsdRs + "p
X
rs

py
rsprs + tpd

X
Rr

s

(�Rrd
y

Rsprs +H.C.) +

+ tpp
X
rr0

s

(�rr0p
y

rspr0s +H.C.) (4.24)
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Figure 4.10: Two elementary cells of the Cu3O4-plane in Ba2Cu3O4Cl2 or

Sr2Cu3O4Cl2 and the Cu 3dx2�y2 and O-2px;y orbitals comprising the TB

model. Also shown are the corresponding transfer integrals tpd, t�d, tpp,

t1��, t
2
�� and tp�. The CuA orbitals with on-site energy "Ad are marked by

black diamonds, the CuB orbitals with on-site energy "Bd by black squares

and the two di�erent kinds of O orbitals with on-site energies "p and "�,

respectively, by black circles. The orbitals of the B-subsystem are shaded

to distinguish them from the orbitals of the A-subsystem (white).

where d
y

Rs and py
rs are the usual creation operators for Cu 3dx2�y2 and O 2p�

orbitals, respectively, and �Rr is a phase factor corresponding to Fig. 4.10 which

connects only neighboring sites. The other class incorporates CuB 3dx2�y2 or-

bitals at the sites G with on-site energies "Bd and oxygen p� orbitals at the sites r

with "�. The HamiltonianHB is obtained by replacing R with G, and the on-site

and transfer energies with the corresponding energies of the CuB-subsystem, re-

spectively. The creation operators py
rs should then be replaced with the operators

�y
rs thus creating an O 2p� orbital. The coupling between both classes of orbitals,

which correspond to the CuA and CuB subsystems, respectively, is provided by

the parameter tp�:

HAB = tp�
X
rr0

s

(�rr0p
y

rs�r0s +H.C.) : (4.25)

All together, there are 10 parameters to determine, 4 on-site energies ("Ad , "
B
d , "p,

"�), the nearest neighbor transfer integrals (tpd, t�d), and several kinds of oxygen

transfers (tpp, t
1
��, t

2
��, tp�).
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parameter "Ad "Bd "p "� tpd t�d tpp t1�� t2�� tp�

TB �t -2.50 -2.12 -4.68 -3.73 1.43 1.19 0.81 0.41 0.50 0.25

EHM 2.50 2.12 6.68 5.73 -1.43 -1.19 -0.81 -0.41 -0.50 -0.25

parameter Ud Up Upd Up� Kpd Kp�

EHM 10.5 4.0 1.2 3.2 -0.18 -0.4

Table 4.3: Parameters of the TB �t and the proposed extended Hubbard

model for the Cu3O4-plane in Ba2Cu3O4Cl2. The parameters are given in elec-

tron representation for the TB �t and in hole representation for the extended

Hubbard model. All energies are given in eV.

In our analysis we found that the CuA-CuB transfer tdd can be neglected since

its estimation10 yields a value smaller than 0.08 eV. Each p� orbital is located

between two CuA sites and we neglect the in
uence of di�erent local environments

on the tpp transfer integral. In the case of the t�� transfer there exist two possible

local arrangements, but the numerical di�erence between t1�� and t
2
�� is small (see

Table 4.3). The necessity to distinguish between oxygen 2p�- and 2p�-orbitals was

�rst pointed out by Mattheiss and Hamann [152] for the case of the standard

CuO2-plane.

Since there is a considerable admixture of other orbitals, especially Cu 3dxy

and Cu 3d3z2�r2, in some of the lower bands of Fig. 4.8(b), it is impossible to

determine the 10 TB parameters by a least square �t of the 11 TB bands to

the heavily shaded LDA bands of Fig. 4.8(b). Instead, at the high symmetry

points � = (0; 0) and M = (�=a; �=a) we picked out those bands in Fig. 4.8(b)

which have the most pure 3dx2�y2 and 2px;y character. Only those energies were

compared with the TB bandstructure (Fig. 4.8(c)) derived by diagonalizing an

11�11 matrix. In this way it is possible to calculate the parameter set analytically
because the TB matrix splits up into 3�3 and 4�4 matrices at the high symmetry
points � = (0; 0) and M = (�=a; �=a). The calculated eigenvalues are given in

the Appendix A. That procedure results in the parameters given in Table 4.3.

These values are similar to those which are known for the standard CuO2-plane.

The largest transfer integrals are tpd = 1:43 eV and t�d = 1:19 eV as expected.

Nevertheless these values are somewhat smaller than in the previous TB �t [49]

10The parameter tdd can be roughly estimated by the weight of the CuA in the CuB band

crossing the Fermi-level at the � = (0; 0) point of the Brillouin zone. At this point the

coupling via tp� is not possible due to symmetry.
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where all oxygen orbitals were treated as identical. The di�erence between tpp

and t�� is roughly a factor of 2 in coincidence with the situation in the standard

CuO2-plane [152], a fact which was not taken into account in [49]. We have found

that only the smallest parameter, tp� = 0:25 eV, is responsible for the coupling

between the subsystems of CuA and CuB. Thus despite the fact that the two

oxygen p� and p� orbitals are located in real space at the same atom, they are

quite far away from each other in the Hilbert space.

4.3.2 Exchange integrals

So far we have found that the TB parameters are rather similar to the standard

CuO2-case and that the coupling between CuA- and CuB-subsystem is quite small.

This justi�es the usage of standard parameters for the Coulomb interaction part

of the Hamiltonian. Of course, it would be desirable to determine these values

by a constrained density functional calculation for Ba2Cu3O4Cl2, but only small

changes to the estimation of exchange integrals presented below are to expect.

The Coulomb interaction also changes the on-site copper and oxygen ener-

gies. Their di�erence, given in the �rst line of Table 4.3, is too small to explain the

charge transfer gap of � 2 eV in Ba2Cu3O4Cl2 [153]. Adding 2 eV to the on-site

oxygen energies, the di�erence � = "p�"Ad (in hole representation which is chosen

from now on) becomes similar to the standard value derived by Hybertsen et

al. [23] for La2CuO4. Our proposal of on-site energies for the multi-band Hub-

bard model H = HTB +Hint is given in the second line of Table 4.3. The values

of Ref. [23] have been used also for the parameters of the Coulomb interaction

part

Hint =
X
i

Uini"ni# +
1

2

X
ij

ss0

Uijnisnjs0 +
X
ij

KijSiSj; (4.26)

where nis is the occupation operator of the orbital i with the spin s and Si the

corresponding spin operator. From Ref. [23] the values for Ud, Up, Upd and Kpd

are known. Since we now have two oxygen orbitals at one site we also have to

take into account the corresponding Hund's rule coupling energy which is in the

notation of (4.26) Kp�. That correlation energy is not given in [23] and we use

here the simple rule Kp� = �0:1Up [154]. The Coulomb repulsion between two

oxygen holes in p�- and p�-orbitals is assumed to be Up� = Up + 2Kp�, which

is a valid approximation given degenerate orbitals. The second part of Table

4.3 combines the TB parameters derived from the bandstructure of Ba2Cu3O4Cl2

(now in hole representation) with the standard Coulomb correlation terms. This

parameter set de�nes an 11 band extended Hubbard model for the Cu3O4-plane

which is used for the following estimation.
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Figure 4.11: Clusters used for the calculation of the exchange integrals

JAA (upper left), JBB (upper middle), J
(1)

AB (lower left) and J
(3)

AB (lower

right). The CuA sites are marked with �lled circles, the CuB sites with

squares and the oxygen sites with open circles.

The exchange integrals have been calculated using the usual Rayleigh-

Schr�odinger perturbation theory on small clusters (Fig. 4.11). All transfer

integrals (and Kp�) have been considered as a perturbation around the local

limit. The exchange integrals have been calculated in the corresponding lowest

order (see Appendix C). The exchange JAA / t4pd=�
3 between two CuA spins is

given in the 4th order for the simple CuA-O-CuA cluster. It turns out that the

in
uence of intersite Coulomb terms Up(�)d and of the exchange terms Kp(�)d is

rather large, decreasing JAA from 246 meV to 99 meV (see Table 4.4). In spite of

our rather approximate procedure, the latter value agrees quite reasonably with

the phenomenological value (130 � 40) meV [112] for Sr2Cu3O4Cl2. JAA is thus

also quite close to the standard value of the CuO2-plane (� 140 meV [23]).

The exchange JBB is given only in 6th order for a larger cluster of two CuB, one

CuA and 4 oxygen orbitals. Correspondingly, it is roughly one order of magnitude

smaller, JBB � 12 meV (Table 4.4). For JAB we need to distinguish between

antiferromagnetic and ferromagnetic contributions. There are two AFM couplings

between nearest neighbor copper atoms J
(1)

AB;af and third nearest neighbor copper
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exchange without Upd; Kpd; Kp� all parameters experiment

integral (meV) (meV) (meV)

JAA 246 99 130 � 40

JBB 17 12 10 � 1

J
(1)

AB;af 6.9 4.6 -

J
(1)

AB;f -10.2 -

J
(1)

AB -5.6 -12 � 9

J
(3)

AB;af 1.4 0.8 -

Table 4.4: Di�erent exchange integrals as explained in the text. Compared are

estimations within the extended Hubbard model with experimental values

[112].

atoms J
(3)

AB;af , both being comparably small at 4.6 and 0.8 meV, respectively. The

ferromagnetic contribution JAB;f = -10 meV between nearest neighbor copper

spins arises in 5th order and is provided by Hund's rule coupling of two virtual

oxygen holes sitting at the same oxygen. Since Kp� is known with less accuracy

than the other interaction parameters, this value has to be taken with care.

The derived exchange integrals JAA, JBB and JAB are in reasonable agree-

ment11 with phenomenologically derived values from magnetic susceptibility data

if we add to the TB parameters the standard localCoulomb correlation energies.

It is to note, however, that we used a rather approximate perturbative procedure

to estimate the exchange integrals. We expect that theRayleigh-Schr�odinger

perturbation theory provides us with the right order of magnitude, but it may

fail in the correct numbers12. In that sense the agreement of the theoretical ex-

change integrals with the experimental ones should not be overinterpreted. On

the other hand, the TB parameters were obtained by �tting to a �rst principle

band structure and they are accurate within the chosen orbital set.

11The anisotropic coupling J � 20 �eV which was found to be responsible for the small

ferromagnetic moment in Sr2Cu3O4Cl2 [112] cannot be estimated within the model proposed

here. It requires a more re�ned treatment incorporating spin-orbit coupling and more orbitals

at the Cu site.
12In particulary, taking into account tpp, which occurs in �fth order, JAA would be enlarged

[115, 155] and could easily reach the experimental value.
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Chapter 5

Analysis of spectroscopy on cuprates

The aim of the this chapter is to demonstrate that especially the dialogue be-

tween experiment1 and theory gives many insights into the electronic structure

of cuprates. Starting with a short introduction in the experimental techniques,

investigations of the occupied and the unoccupied electronic structure of repre-

sentative model cuprates will be discussed.

5.1 Experimental methods

In this section, the experimental methods applied to gain information about the

cuprate compounds will be presented shortly. The occupied and the unoccupied

electronic structure have been investigated by means of angle-resolved photoelec-

tron spectroscopy (ARPES) and x-ray absorption spectroscopy (XAS), respec-

tively. The principles of these two methods are illustrated in the following.

5.1.1 Angle-resolved photoelectron spectroscopy

The principle of a photoemission experiment is drawn in Fig. 5.1. Incident pho-

tons with the energy h� create photoelectrons which leave the sample. In an

ARPES experiment the number of photoelectrons per time interval and solid an-

gle (i.e. the intensity) in dependence on the momentum and the kinetic energy

is measured. This yields the so-called energy distribution curve which contains

valuable information about energy and momentum (if single crystals are used) of

the occupied electronic states of the investigated compound. In the experiments

presented in this work, a �xed photon energy was used (so-called energy distri-

bution curve mode). The discrimination between di�erent kinetic energies of the

photoelectrons is done by means of an electrostatic analyzer. The direction of

1The experiments discussed in this chapter were performed at the Institut f�ur Festk�orper-

forschung of the Institut f�ur Festk�orper- und Werksto�orschung Dresden
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Figure 5.1: Schematic picture of an ARPES experiment

the photoelectron momentum vector is chosen by the azimutal and polar angles

� and � of the energy analyzer with respect to the surface normal (see Fig. 5.1).

Under certain simplifying assumptions, the photocurrent can be written in

the form [156]

I /
X
f;i

jhf jpAjiij2S(k; E)f(E) ; (5.1)

where i and f denote the initial and the �nal state, respectively. The quantity

p is the momentum vector of the photoelectron, A is the vector potential of

the incident photon, f(E) and S denote the Fermi- and the spectral function,

respectively. In the case of photoelectron spectroscopy, the spectral function

S(k; E) describes the probability to remove an electron with the energy E and

the wave vector k. It is related to the single-electron Green`s function G via

S(k; E) = � 1

�
=(G(k; E)) : (5.2)

The spectral function is composed of poles of Lorentzian shape, which represent

quasiparticles of energy Ei, wave vector k and life time �

� = jZk=(�(k; E))j�1 ; (5.3)

wherein Zk is the spectral weight of the quasiparticle given by

Zk =j 1� �

�E
<(�(k; E)) j�1Ei

; (5.4)



5.1. Experimental methods 97

and �(k; E)) is the self energy. All contributions to the spectral function which

cannot be mapped onto a quasiparticle origin are incorporated in the so-called

incoherent part of the spectrum.

Knowing the work function of the analyzer �analyzer, we can calculate the

binding energy EB of the quasiparticle via

EB = h� � Ekin � �sample � (�analyzer � �sample) = h� � Ekin � �analyzer : (5.5)

The term in brackets is due to the contact potential di�erence between the ana-

lyzer and the sample. The connection between the photoelectron momentum p

and the quasiparticle momentum k is given by

~kk = pk (5.6)

for the components of the photoelectron and the quasiparticle momentum vectors

parallel to the sample surface. There is no momentum conservation perpendicular

to the surface. Therefore, it is not possible to determine the component of the

quasiparticle momentum vector perpendicular to the sample surface in a direct

way and quite sophisticated methods have to be applied to solve this problem

[156]. In the case of measurements on Sr2CuO2Cl2 and Ba2Cu3O4Cl2, due to

the quasi 2D electronic structure, this problem does not arise. This means that

there is practically no dependence of the quasiparticle binding energy on the

wave vector component perpendicular to the Cu-O-plane and the knowledge of

p? is not needed. The component of the quasiparticle wave vector parallel to

the sample surface can be easily evaluated from the polar and azimutal analyzer

angles � and � (see Fig 5.1) and the kinetic energy at the quasiparticle peak:

kk /
p
Ekin sin �(cos �x+ sin�y) ; (5.7)

wherein x and y are unit vectors which span the sample surface plane.

The energy-momentum relation of the quasiparticle is not the only informa-

tion one can get from ARPES experiments. The photoionization matrix element

depends on photon energy, the photoelectron momentum, the angle of incidence

of the photons (�i and �i in Fig. 5.1) and the initial and �nal state wave functions.

The choice of photon energy can be used to select di�erent kinds of orbitals

because of the di�erent cross sections (see Section 5.3.1). Moreover, it is possible

to gain information about the parity of the states with respect to the emission

plane. The emission plane is de�ned as the plane spanned by the photoelectron

momentum vector and the sample surface normal. In Fig. 5.2, an example for an

emission plane (grey) is shown with the analyzer in the (x-z) plane. Here, the

sample meant to be a single crystal of Sr2CuO2Cl2 with the CuO2-planes parallel

to the sample surface. The sample is oriented such that the emission plane is
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Figure 5.2: Example for an ARPES experiment using the polarization

dependence of the photoionization matrix element (after Haffner [157].

For details see the text.)

a mirror plane of the geometric structure of the crystal and therefore also a

mirror plane of the Hamiltonian describing the corresponding electronic system2.

The eigenfunctions of the Hamiltonian are simultaneously eigenfunctions of the

operator which creates the mirror operation with respect to the emission plane

and have a de�nite parity with respect to this plane. The operator pA for the

photoionization has de�nite parity to this plane for the case where pA is either

completely in or out of the mirror plane. Thus, the operator pA has odd parity

with respect to the emission plane when the vector potential A is perpendicular

to this plane and even parity if A is parallel to it. In the later sections of this

chapter, these situations will be called vertical and horizontal polarization. The

photoionization matrix element can thus be brought to vanish in dependence on

the parity of initial and �nal state with respect to the emission plane for vertical

or horizontal polarization. Assuming that the states of other electrons do not

change during the photoemission process, the photoionization matrix element

reduces to

hijpAjfi = h�ijpAj�fi ; (5.8)

were h�ij and j�fi are the orbital of the initial state and the free-electron �nal

state, respectively. The latter one has even parity with respect to the emission

plane, otherwise the wavefunction would have a node in the emission plane and

there would be no intensity in the detector. Therefore, for vertical polarization,

only initial states with odd parity contribute to the photocurrent while only even

initial states contribute for horizontal polarization. In this way, it is possible to

2We neglect here for sake of simplicity the antiferromagnetic order of Sr2CuO2Cl2.



5.1. Experimental methods 99

extract information about the parity of the initial wave function with respect to

the emission plane. This possibility is extensively used in the analyses of Sections

5.2 and 5.3.

5.1.2 X-ray absorption spectroscopy

A method to investigate the unoccupied electronic structure of a solid is the x-

ray absorption spectroscopy (XAS). The principle scheme of this experiment is

Figure 5.3: Schematic picture of an XAS experiment in 
uorescence yield

mode. Incoming linearly polarized photons (energy h�1) at normal and

grazing incidence and 
uorescence radiation (energy h�2) are shown (after

Haffner[157].)

drawn in Fig. 5.3. Monochromated photons with the energy h�1 are absorbed

by the sample. If the photon energy is high enough, it is possible to excite core

level electrons into the unoccupied valence states of the solid (see Fig. 5.4). The

onset of core level excitations manifests itself as a step-like absorption edge at

photon energies around the threshold energy, which is in �rst approximation the

di�erence between the core level and the lowest lying unoccupied state that can

be reached.

To extract information about the unoccupied electronic structure, a relation

between the absorption coe�cient and the electronic structure is needed. The
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Figure 5.4: Schematic view of core-level excitations into unoccupied levels

of the electronic structure by absorption of photons of the energy h�1.

As origin for the measured 
uorescence radiation (energy h�2), the decay

of an electron-hole pair is drawn (after Haffner [157].)

absorption coe�cient � for a photon of the energy h�1 in a sample is given by

[158]

�(h�1) = 4�2
X
f;i

jhijH intjfij2�(Ef � Ei � h�1) (5.9)

with hij and jfi being the initial and the �nal state and Ei and Ef their corre-

sponding energies, respectively. The electron photon interaction operator Hint is

given by

Hint = �i~A
X
j

exp(ikrj)erj (5.10)

with A, k, e being the vector potential, the wave vector and the unit vector

of polarization of the photon, respectively, r and r are the position and the

momentum operators of electrons. Regarding the typical extend of core level

wave functions (< 0:5 �A) and the photon energies (h�1 < 1000 eV) used in this

work, the exponential function can be approximated by unity (kr � 1). With

the assumption, that the wavefunctions of the electrons that are not involved in

the excitation that and the unoccupied states are una�ected by the core level

excitation (sudden approximation), Eq. (5.9) is reduced to a single-particle dipol

matrix element. This leads to the following consequences: (I) XAS is a measure

of the unoccupied DOS. Because the core level shows no dispersion in momen-

tum space, the occupied DOS due to the core states are delta functions and hence

Eq. (5.9) describes the unoccupied DOS only. (II) XAS is site-speci�c. The core

level wave functions are well localized, therefore only transitions into wavefunc-

tions with non-negligible amplitude at the core site are possible. (III) XAS ful�lls
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dipol selection rules. The angular momenta of the initial and the �nal state are

connected via lf = li � 1.

If single crystals and polarized radiation (synchrotron radiation) are used, it

is possible to distinguish between orbitals of di�erent symmetry. The transition

matrix element can be decomposed into Clebsch-Gordon coe�cients and re-

duced matrix elements, which only depend on the angular momentum and the

main quantum number. Therefore, for a given symmetry, the possible excitations

are easily to estimate via the Clebsch-Gordon coe�cients.

In principle, an XAS experiment could be done in transmission geometry, but

the x-ray absorption coe�cient is rather high in the soft x-ray region. Thus, such

an experiment would require extremely thin samples of 1�m or less which is hard

to achieve. Therefore, usually decay products of the core level excitation (Auger

electrons and 
uorescence photons (h�)) are detected (see Fig. 5.4).

5.2 Dispersion of a hole in the Cu3O4-plane: A tale of two singlets

Polarization-dependent ARPES measurements of Ba2Cu3O4Cl2 indicate the pres-

ence of two di�erent Zhang-Rice singlets in the two-dimensional Cu3O4-plane

of this insulating copper oxychloride. With the aid of model calculations, we can

show that one singlet is moving in the antiferromagnetically ordered cuprate-like

CuAO2 sub-system and the other on the paramagnetic sub-lattice formed by the

extra CuB atoms.

The electronic structure of the CuO2-planes is believed to hide the key to

high temperature superconductivity in the cuprates. The lowest electron removal

state in the CuO2-plane cuprates is the so-called Zhang-Rice singlet (ZRS)

[103], in which the spin of an intrinsic copper hole, located in the Cu 3dx2�y2

orbital, is compensated by the spin of a hole distributed over the 2px;y orbitals of

the surrounding four oxygen atoms. The ZRS forms as a result of p-type doping

or of electron removal in photoemission spectroscopy. Recently, angle-resolved

photoemission (ARPES) studies of the dispersion of a ZRS in the undoped CuO2-

plane of the oxychloride Sr2CuO2Cl2 have gained considerable interest [102, 159],

as these data were in approximate agreement with the earlier predictions of the

t-J model [160].

In this section, a combined experimental and theoretical study of the dis-

persion of a single hole in the two-dimensional Cu3O4-plane of Ba2Cu3O4Cl2 is

presented. As already discussed in Section 3.4.2, this plane can be regarded as

a cuprate-like CuAO2 sub-system with additional copper atoms, denoted here as

CuB. Both CuA and CuB order antiferromagnetically: the former at 330 K and

the latter only at 31 K [43]. We show that as a consequence of this, in a single
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ARPES experiment carried out at T = 360 K, it is possible to study the disper-

sion of a ZRS in both an antiferromagnetic and paramagnetic spin background

simultaneously in the same Cu3O4-plane.

5.2.1 Experimental

ARPES measurements were recorded at the U2-FSGM beamline [161] at BESSY

with a photon energy of 35 eV using in situ cleaved single crystals. The experi-

mental resolution was set to 160 meV in energy and 2� in angle (corresponding

to a k-resolution of 0.16�/a). During the measurements, the crystals were held

at a temperature of 360 K.

4 3 2 1 0

BC

A

  3π

°
°

°
°

°

°
°

�

�

�

�

�

�

�

�

°

°
°

°

°

°
°

°

°

°

°

°

�

�

�
�

�
�

N
or

m
al

iz
ed

 in
te

ns
it

y 
(a

rb
. u

ni
ts

)

  2π

π

0

Binding energy (eV)

Figure 5.5: ARPES spectra of Ba2Cu3O4Cl2 measured along the (kx; 0)

direction. The values of kx are expressed in terms of (1/a (�A�1)). For

the experimental details see the text and Ref. [162].

Figure 5.5 shows a series of ARPES spectra recorded along the (kx; 0) direction
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in k-space, reaching beyond the edge of the second Brillouin zone (BZ). This

direction is 45� to the Cu-O bonds in real space and is parallel to M1 in Fig. 5.6.

The electric �eld vector of the synchrotron radiation was perpendicular to M1.

Figure 5.6: Two unit cells of the Cu3O4-plane of Ba2Cu3O4Cl2 showing:

(�) cuprate-like CuA, (2) additional CuB and (�) oxygen. The Cu 3dx2�y2
and O 2px;y orbitals are also shown. The orbitals relevant for the motion

of the ZRS on the CuB sub-lattice are shaded. Also shown schematically

are the hopping matrix elements tpd; t
k

pp and t?pp as well as a mirror plane

of the Cu3O4-surface, marked M1.

There are three main features observed in the energy range shown in Fig. 5.5,

labeled A, B and C. The deeper lying valence band features, B and C, are at least

partially due to bands corresponding to the non-mixing oxygen states observed

recently for Sr2CuO2Cl2 [159]. A detailed discussion of features B and C, as well

as other details of the ARPES spectra are given in [162]. It is the behavior of the

feature at lowest binding energies (BE) that prompted the following discussion.
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On moving away from the � point, a weak structure emerges from the main

valence band and grows in intensity as its BE decreases, reaching a minimal BE

of �0.8 eV at (�,0). At this k value, the peak has a width of some 700 meV

and displays a considerable asymmetry to the high BE side. Spectra recorded at

(�,0) under the same conditions except with a total energy resolution of 70 meV

were identical.

At this stage it is instructive to compare these data with those observed

for the CuO2-plane of Sr2CuO2Cl2. The analogous ARPES spectra showed a

similar feature increasing in intensity and dispersing to lower BE's, reaching both

maximal intensity and minimal BE at the (�/2, �/2) point of the Sr2CuO2Cl2

BZ [102, 159], which is equivalent to the (�,0) point of the Ba2Cu3O4Cl2 BZ.

On going beyond (�/2, �/2)Sr, the ZRS peak in Sr2CuO2Cl2 dispersed back

to higher BE and its spectral weight fell away very rapidly, thus resulting in a

strongly asymmetric intensity pro�le as a function of k around (�/2, �/2)Sr. A

detailed discussion of the ARPES data of Sr2CuO2Cl2 is given Section 5.3.

As can be seen from Fig. 5.5, in Ba2Cu3O4Cl2, however, signi�cant spectral

weight remains at around 1 eV BE over a large region of k-space between (�,0)

and (3�,0). In addition, approaching (3�,0), the lineshape is strongly suggestive

of the presence of two components (as marked in Fig. 5.5). Thus, while the

dispersion of the lowest BE structure observed here around (�,0) and (3�,0) is

similar to that in Sr2CuO2Cl2, the existence of a clear structure remaining around

�1 eV between (�,0) and (3�,0) and the double-peaked nature of the feature in

Ba2Cu3O4Cl2 are signi�cant and important di�erences with respect to the CuO2-

plane oxychloride. We suggest that these di�erences indicate that the data shown

in Fig. 5.5 can be interpreted in terms of two singlets ZRSA and ZRSB, where the

3dx2�y2 orbitals of the CuA and CuB are hybridized with di�erent sub-systems of

the in-plane O 2px;y orbitals (see Fig. 5.6). The �lled and open circles in Fig. 5.5

represent the energy positions of ZRSA and ZRSB, respectively.

In Fig. 5.7, we provide indirect experimental evidence that the lowest lying

electron removal states in Ba2Cu3O4Cl2 are ZRS's. Here, we show ARPES spec-

tra recorded at (�,0) with the polarization vector of the radiation aligned either

parallel or perpendicular to the mirror plane M1 (see Fig. 5.6). Due to the exper-

imental geometry used, this results in photoemission from initial states of either

pure even (parallel) or odd (perpendicular) symmetry in regard to re
ection in

M1. As can be seen from Fig. 5.7, the ZRS peak (and part of feature B) disap-

pears completely for the parallel case, thus attesting to the pure odd character of

the initial state concerned. Further polarization-dependent measurements [162]

show the same behavior for the lowest BE feature at k-values between (�,0) and

(3�,0). Upon consideration of the Cu3O4-plane geometry shown in Fig. 5.6, it is

apparent that a purely antibonding combination of the Cu 3dx2�y2 and O 2px;y
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Figure 5.7: Polarization-dependent ARPES spectra of Ba2Cu3O4Cl2 at

the (�,0) point of the Brillouin zone measured with the electric �eld

vector perpendicular (�) and parallel (�) to the mirror plane M1.

orbitals yields a feasible initial state with the correct symmetry, whereas a non-

bonding con�guration, for example, would not. This is fully consistent with the

ZRS character of the �rst electron removal states in Ba2Cu3O4Cl2.

5.2.2 Model calculation

Up to now, we have discussed the qualitative di�erences between the dispersion

relation of ZRS's in the Cu3O4-plane of Ba2Cu3O4Cl2 and the CuO2 plane of

Sr2CuO2Cl2, and have suggested that the former indicates the presence of two

di�erent ZRS's. In order to explore this idea further, we have calculated the mo-

tion of these singlets using a model Hamiltonian containing the relevant orbitals

and correlation at the copper sites only. The tight-binding parameters result

from a �t [163] to the bandstructure for Ba2Cu3O4Cl2 (see Fig. 3.33). For sakes

of simplicity, the parameter set is reduced to three transfer integrals (tpd, t
?

pp,

t
k

pp, see Fig. 5.6) compared with the extended model presented in Section 4.3.1

The coupling between the two O 2p orbital sub-systems is provided by the small

parameter t
k

pp = 0:2 eV [163], which can be neglected in a �rst analysis (see also

Sec. 4.3.1).
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In analogy with Sr2CuO2Cl2, the motion on the CuA sub-lattice can be de-

scribed by a t-J model [160] including additional hopping parameters to second

and third neighbors [164, 165]. The parameters of such an extended t-J model

can be derived from the CuA part of our model Hamiltonian by means of the

cell-perturbation method [137, 166, 167]. An analogous reduction procedure was

also performed for the CuB sub-lattice. Each CuB 3dx2�y2 hybridizes with a com-

bination of O 2p orbitals with b1 symmetry (shown shaded in Fig. 5.6), denoted

here by �i� = (p1��p2��p3�+p4�)i=2. The Hamiltonian (in hole representation)
reads:

H = "Bd

X
i�

d
y

i�di� + Ud

X
i

ndi"n
d
i# + "p

X
i�

�
y

i��i�

�t
?

pp

2

X
<ij>

�
y

i��j� + 2tpd
X
i

(d
y

i��i� + h:c:) ; (5.11)

where the summations run over the CuB sub-lattice only and the parameters3 are:

t?pp = 0:45 eV, tpd = 1:7 eV, "p � "Bd = 3:6 eV and Ud = 10:5 eV [163, 23]. In the

cell perturbation method Eq. (5.11) is diagonalized within a single cell consisting

of one CuB and four oxygen atoms and considers the coupling to neighboring

cells as a perturbation. Adding a hole to the lowest one-hole state within one

cell j �d� >= cos �jd� > � sin�j�� > creates predominantly the ZRSB state j	 >

which is given by a linear combination of the three possible one-cell singlet states.

The higher lying states are projected out and the overlap between neighboring

ZRSB's is provided by t?pp. The hopping of ZRSB's can be derived from the

corresponding hopping term in Eq. (5.11):

�t
?

pp

2
�
y

i��j� �! tBX
	; �d�
i X

�d�;	
j (5.12)

with tB = ��2t?pp=2 and written in terms of Hubbard operators X
	; �d�
i = j	i ><

�d�ij. The value of � = 0:75 is calculated by diagonalizing the 3 � 3 matrix of the
two-hole singlet states within one cell which results in tB = �0:13 eV.

To calculate the dispersion of one hole in the two independent t-J models, the

corresponding magnetic background has to be taken into account. As pointed

out above, this reveals an important di�erence between CuA and CuB. The

experiment was performed at T = 360 K which is much larger than TB
N but of the

order of TA
N . Therefore, we may assume that while the magnetic correlation length

on the CuA sub-lattice is much larger than the size of the magnetic polaron, its

value on the CuB sub-lattice can be expected to be of the order of the CuB sub-

lattice spacing. Correspondingly, the ZRSB moves in a paramagnetic background

3Due to the di�erent number of transfer integrals, the parameters of the reduced model are

slightly di�erent from the corresponding values given in Sec. 4.3.1.
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where its dispersion is determined by the nearest neighbor hopping

E
(B)
k = E

(B)
0 + tB(cos kxa+ cos kya) (5.13)

with a reduction of the bandwidth by only a factor of two [168] in comparison with

free fermions, and where a strong broadening from thermal 
uctuations can be

expected. On the contrary, the ZRSA moves in an antiferromagnetic background

where nearest neighbor hopping (with respect to CuA) is suppressed and where

the dispersion is well known [160]:

E
(A)
k = E

(A)
0 + 0:55JA(cos kS + cos kD)

2

+�(cos kS � cos kD)
2 ; (5.14)

where kS=D = a(kx�ky)=2 is the transformation to the BZ of Ba2Cu3O4Cl2. The

bandwidth of (5.14) is 2:2JA [160], with the parameter �=0.1 eV describing the

in
uence of the additional hopping parameters [164, 165]. The energy di�erence

E
(B)
0 � E

(A)
0 is determined by the local orbital energies and the binding energies

of both the ZRS's and the magnetic polaron on the CuA sub-lattice. Its value

was estimated to be roughly 0.5 eV.

In Fig. 5.8, we plot the experimental E(k) dispersion relation of the ZRS's

in the Cu3O4-plane. The width of the symbols represents the experimental k-

resolution, and the height of the error bars represents the uncertainty in pin-

pointing the energy position of the feature concerned (showing, for example, that

around the � point the exact energy position of the ZRS's is di�cult to de�ne).

The dispersion relations of the ZRSA and ZRSB from (5.13) and (5.14) are shown

as the dotted and solid lines in Fig. 5.8. It is clear that the experimentally

observed dispersion can be well described without exceeding the limits of the pa-

rameters' theoretical estimation. In particular, the dispersion of ZRSB between

(�,0) and (3�,0) is reproduced, as is the presence of the ZRSB as an "extra"

feature at higher BE's, seen experimentally near (3�,0). The overall ZRS band-

width is hard to determine exactly, thus using Eq. (5.14) only a rough estimate of

JA=(230 � 60) meV can be made, which is somewhat larger than both the value

derived in Section 4.3.2 and in Ref. [112] and also larger than the usual values

for CuO2-cuprate planes.

In summary, ARPES spectra of Ba2Cu3O4Cl2 indicate the presence of two

Zhang-Rice singlets in the Cu3O4-plane. The �rst belongs to the CuAO2 sub-

system whose antiferromagnetic ordering results in a dispersion proportional to

the exchange integral, JA, in analogy with observations of the paradigm CuO2

plane antiferromagnet Sr2CuO2Cl2. The second stems from the CuB sub-system,

and our model calculations show that its dispersion is consistent with that of a

hole moving in a paramagnetic background - the bandwidth being proportional to
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Figure 5.8: Experimental dispersion relation of the Zhang-Rice singlets

in Ba2Cu3O4Cl2 along (kx; 0) (symbols), compared with a superposition

of the calculated dispersions (5.13)(ZRSB, solid line) and (5.14)(ZRSA,

dotted line). For the parameters used in the calculation, see the text.

the hopping integral between CuB sites, tB. Thus, as regards the dispersion of a

hole in a magnetic spin background, the Cu3O4 plane of Ba2Cu3O4Cl2 represents

simultaneously both the low and very high doping limits in cuprate materials.

In the present discussion, we concentrated our interest on the interpretation

of the lowest electron removal state. The following section will show for the

example4 of Sr2CuO2Cl2 that ARPES is a powerful tool to analyze the valence

band as well.

4We made also a similar analysis of the VB photoemission spectrum for Ba2Cu3O4Cl2 [162].
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5.3 Analysis of the valence-band photoemission spectrum of Sr2CuO2Cl2

along the high symmetry directions

Sr2CuO2Cl2 was the �rst undoped cuprate for which the angle resolved pho-

toemission measurement of its lowest excitations was successful [102, 169, 170].

These excitations are well described by one hole in a 2D quantum antiferro-

magnet [171, 172, 173]. Deviations from the one-hole dispersion of the pure t-J

model can be reduced by taking into account hopping terms to second and third

neighbors [164, 167]. In the same substance the low binding energy edge of the

main valence band has been interpreted in terms of non-bonding oxygen orbitals

which are completely decoupled from the copper system [159]. These features

were known before as \1 eV-peak" [174]. The non-bonding states are especially

pronounced at (�; �) where they have minimal binding energy. But the detailed

structure of the complete valence band has never been analyzed up to now and

that is the aim of the present work. Furthermore, we will show that additional in-

formation on the low binding-energy features can be obtained by analyzing their

dependence on the polarization of the photon.

Polarization-dependent photoemission measurements are an e�ective tool to

analyze the electronic structure of the valence band in detail. By measuring along

high-symmetry directions all bands can be classi�ed according to their symme-

try properties. This allows a very precise comparison between experiment and

di�erent theoretical predictions. As already discussed, in all the cuprates elec-

tron correlations have a strong in
uence on the electronic bands near the Fermi

level which is especially pronounced in undoped substances [172]. However, the

in
uence of correlations on those parts of the valence band with larger binding en-

ergies is less clear. We will show that the combination of polarization-dependent

ARPES measurements with theoretical investigations taking into account the

electron correlation to a di�ering extent (LDA, LDA+U) provides a unique pos-

sibility to answer this question.

The model cuprate Sr2CuO2Cl2 is very well suited for such an investigation. It

has a tetragonal structure with ideal planar CuO2-layers [106] and cleaves readily

parallel to the CuO2-planes. Furthermore, the presence of Cl instead of apex

oxygen allows a restriction of the states which contribute to the ARPES spectra

to those of the pure CuO2-plane alone. This can be achieved by choosing a photon

energy close to the Cooper minimum for Cl 3p photoemission, i.e. Cl 3p states

will then have a small photon cross section. In this manner we intend to study an

ideal situation whose main characteristics should be generic to all the cuprates.

It is known that simple LDA fails to predict the insulating ground state of

undoped cuprates [81]. There are several improvements of LDA such as the

self-interaction correction (SIC) method [21] or LDA+U [175] which has al-
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ready been applied to the case of lanthanum cuprate La2CuO4 [176]. Here,

we apply LDA+U plus a symmetry analysis at special k-points to interpret

the polarization-dependent photoemission data for Sr2CuO2Cl2, where the ac-

tual value of U is chosen to describe the experimental situation.

5.3.1 Experimental

The ARPES measurements were performed5 using linearly polarized 35 eV pho-

tons from the crossed undulator beamline U2 of the BESSY I facility and BESSY's

HIRES photoelectron spectrometer [161]. The angular resolution was set to �
1� which gives a momentum resolution of � 0.05 �A�1 for states of 1 eV binding

energy, this corresponds to 12 % of the distance between � and (�,0). A total

energy resolution (resulting from both the monochromator and electron analyzer

resolutions) of 150 meV was applied. The ARPES spectra have been recorded in

the electron distribution curve (EDC) mode from both � to (�,�) and � to (�,0).

In the latter case, the sample was oriented in such a way that the Cu - O bonds

of the CuO2-plane were aligned parallel to the �xed, horizontal emission plane,

while in the former case, the Cu - O bonds were aligned at an angle of 45� with

respect to the emission plane. All spectra were recorded at 300 K.

The electronic structure of the valence band (VB) is derived from O 2p, Cu 3d

and Cl 3p orbitals, but for 35 eV photon energy, the photoionization cross section

of the Cl 3p orbitals is much smaller than that of the O 2p and Cu 3d orbitals6,

which therefore dominate the ARPES VB spectra. The measurements had been

performed at room temperature which is slightly above the Ne�el temperature of

Sr2CuO2Cl2 (256 K). Although we are aware that AFM 
uctuations are impor-

tant, we nevertheless analyzed the spectra in terms of the �rst Brillouin zone

(BZ) of the paramagnetic CuO2 plane of Sr2CuO2Cl2. We will see that this is

especially justi�ed for the bands with dominant oxygen character, whereas one

observes some deviations for those bands which couple strongly with the copper

spins. The geometrical structure of a CuO2 plane has two mirror planes7 (de-

noted M1 and M2 in Fig. 5.9). All the bands with a wave vector between � and

(�; �), parallel to the mirror plane M1, can be classi�ed to be either symmetric

or antisymmetric with respect to M1, and analogously also for wave vectors along

�� (�; 0) with respect to re
ections at M2. Experimental information about the

parity of the valence band states with respect to a mirror plane can be obtained by

5For further experimental details see Ref. [177].
6For 35 eV photons the corresponding cross sections are 9.4 Mb for Cu 3d, 8.0 Mb for O 2p

and 0.69 Mb for Cl 3p [178].
7In fact, there is a second mirror plane parallel to M2 but going only through oxygen position.

From the point of view of group theory it is identical to M2 in the paramagnetic case.
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Figure 5.9: The mirror planes of the CuO2-plane in Sr2CuO2Cl2. Filled (open)

circles correspond to copper (oxygen) atoms.

recording the ARPES spectra with either perpendicular or parallel polarization

of the electric �eld vector of the incoming radiation with respect to an emission

plane which is parallel to a mirror plane of the system. It can be shown [179],

that for parallel polarization only initial valence band states which are even with

respect to the emission/mirror plane contribute to an ARPES spectrum while for

perpendicular polarization, only states which are odd with respect to the emis-

sion/mirror plane are seen in a spectrum (see Section 5.1). The polarization of

the electric �eld vector was chosen by using either the vertical or horizontal un-

dulator, which corresponds to perpendicular or parallel polarization with respect

to the emission plane. The emission plane is parallel to the mirror plane M1, if

the ARPES spectra are recorded along the (�,�) direction, while it is parallel

to the mirror plane M2 for spectra along the (�,0) direction. For perpendicu-

lar polarization, the electric �eld vector is always parallel to the CuO2-planes,

i.e. only in-plane orbitals as O 2px;y or Cu 3dx2�y2 contribute to the spectra.

For parallel polarization, the electric �eld vector is completely in-plane only at

normal-incidence. At any other incidence angle of the photon beam, the electric

�eld vector has an out-of-plane component and there are also contributions from

out-of-plane orbitals such as O 2pz to the ARPES spectra.

5.3.2 Band structure calculations

As already discussed in Section 3.4.1, the LDA band structure of Sr2CuO2Cl2

(Fig. 3.30) shows an antibonding band built up of Cu 3dx2�y2 and O 2px;y or-

bitals crossing the Fermi level. This contradicts the experimentally observed

non-metallic behavior which already indicates that one has to treat the electron

correlations in a more explicit way. One could conjecture that the only e�ect of

correlations is to split the half-�lled antibonding band leaving the structure of
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the other valence bands roughly unchanged. That is not the case, however, as

will become clear from our following analysis. One can also observe in Fig. 3.30

that there is nearly no dispersion of the relevant band in the z direction and all

discussions in the present paper will be restricted to the CuO2-plane only.

To obtain more information about the structure of the valence band in our

LCAO-LDA we have calculated the orbital weight (see Appendix A) of each band

at the high symmetry points. Due to the low cross section of the Cl 3p orbitals

for 35 eV photon energy we concentrate on the Cu 3d and O 2p orbitals (i.e. on 11

bands). The eigenfunctions with a dominant contribution from Cu 3d and O 2p

orbitals are collected in Table 6.1 in Appendix D. The in-plane oxygen orbitals

are divided into p� orbitals which are directed to the Cu-site and p� orbitals

perpendicular to them [152]. There are two combinations for each: p� and ~p�,

(p� and ~p�), which are antisymmetric and symmetric with respect to re
ection

in M1, respectively. The precise de�nition of these orbitals will be given in the

next section.

Thus, we are able to predict the symmetry of each band at the high symme-

try points in the Brillouin zone (BZ). However, as will be seen later, the order

of energy levels of the LDA calculation is incompatible with the experimental

spectra. Moreover, as it was mentioned already, LDA calculations are unable to

describe the Mott insulating ground states of the undoped cuprates and do not

produce the Cu local moments that are present in these systems. The splitting

of the spectral density due to the 3dx2�y2 states away from the Fermi energy EF

due to Coulomb correlations and the resulting reduction in Cu-O hybridization

is expected to be largely missing in such calculations. However, what, if any,

changes there are from the LDA bands away from EF is unclear, particularly well

above TN , where the magnetic scattering due to antiferromagnetic spin 
uctua-

tions should be more or less incoherent. Addressing this question is one of the

main goals of the present discussion. In the following we develop a more sophis-

ticated LDA+U calculation taking into account explicitly the e�ects of strong

correlations. As a preliminary step we formulate an e�ective tight-binding model

which will be �tted both to the LDA+U band structure calculations and the

ARPES VB spectra.

5.3.3 Symmetry analysis and tight-binding model

The polarization-dependent ARPES measurements of VB states along the two

high-symmetry directions � � (�; �) and � � (�; 0) discriminate the parity of

these states with respect to re
ections in the corresponding mirror planes M1

and M2. To make the analysis of the experimental data more straightforward it

is helpful to incorporate the symmetry properties of the VB states in our approach
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from the beginning. This becomes especially clear by constructing an e�ective

tight-binding (TB) model taking into account the point-group symmetry of the

VB states. The TB model will be restricted to the 11 bands of Cu 3d and O

2p. Of course, as can be seen in Table 6.1 (Appendix D), there occurs in some

cases a quite strong mixing with the Cl subsystem, but in the following we will

assume that this mixing is taken into account by the particular values of the TB

parameters.

We start with the description of in-plane oxygen orbitals whose analysis is

more involved than that for the copper orbitals or for the out-of-plane orbitals.

We introduce the annihilation operator of an electron in the two oxygen �-orbitals

belonging to an elementary cell at position ~i (~i is a site of the square lattice) as

p
(�)

i+�=2
, where (~�; ~�) = (~x; ~y) or (~y; ~x) with ~x and ~y to be the two orthogonal unit

vectors of the lattice. The dxy orbitals hybridize with a particular combination

of oxygen orbitals arranged over the plaquette at site ~i: p�i =
1
2
(p

(y)

i+x=2� p
(y)

i�x=2+

p
(x)

i+y=2�p
(x)

i�y=2). This plaquette's �-orbitals are not orthogonal to each other. The

orthogonalization can be made by introducing �rst the Fourier transformation

for the original p�-orbitals

p(�)� (q) =
1p
N

X
i

p
(�)

i+�=2
e�i~q(

~i+~�=2) : (5.15)

At the second step we de�ne two kinds of canonical Fermi-operators

p�(q) = ��1q i(sq;yp
(y)
� (q)� sq;xp

(x)
� (q))

~p�(q) = ��1q i(sq;xp
(y)
� (q) + sq;yp

(x)
� (q)) (5.16)

where sq;� = sin(q�=2) (� = x; y) and �q =
p
s2q;x + s2q;y. It is easy to see that p�

and ~p� are orthogonal with respect to each other. The de�nition (5.16) provides

an equivalent representation for �-orbitals in terms of p�(q) and ~p�(q), instead of

the original p
(x)
� (q) and p

(y)
� (q) operators and takes into account the point group

symmetry of the CuO2-plane. In particular, for q along �� (�; �), the p�-orbital

is antisymmetric with respect to re
ections in the mirror plane M1, while the ~p�-

orbital is symmetric (see Fig. 5.10). Along �� (�; 0), we �nd p� to be symmetric

and ~p� to be antisymmetric with respect to re
ection in M2.

Turning now to the oxygen �-orbitals we carry out the same procedure as

above with the corresponding p
(�)

i+�=2;� operators (~� = ~x; ~y). In this case, intro-

ducing the plaquette representation instead of de�ning the original p
(�)
� operators

in momentum space, we de�ne a new pair of canonical Fermi-operators p� and

~p�:

p�(q) = ��1q i(sq;xp
(x)
q� � sq;yp

(y)
q� )

~p�(q) = ��1q i(sq;yp
(x)
q� + sq;xp

(y)
q� ) : (5.17)
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Figure 5.10: Sketch of the di�erent oxygen orbitals within one unit cell of

Sr2CuO2Cl2 (�lled circles - copper, open circles - oxygen) for momenta q ! 0

along �� (�; �).

The notation is chosen in such a way that the p�(q) (~p�(q))-orbitals have the

same symmetry properties with respect to re
ections at M1 and M2 as the p�(q)

or ~p�(q)-orbitals, respectively.

As the de�nition of the corresponding copper annihilation operators is quite

standard, we may write down the TB Hamiltonian

Ht =
X
q��s

cy�s(q)H��(q)c�s(q) : (5.18)

Here, c�s is an annihilation operator of either an oxygen p orbital or a copper d

orbital, where the indices � and � denote the 11 di�erent orbitals and s denotes

the spin. All orbitals can be classi�ed as to whether they hybridize in-plane or

out-of-plane and there is no coupling between the two subsystems. The orbitals

involved in the hybridization in-plane are p�, p�, ~p�, ~p�, dx2�y2 , dxy, d3z2�r2. The

explicit form of the TB-Hamiltonian for in-plane orbitals is given in Ref. [177].

The in-plane part of the TB-model has 11 parameters: the on-site energies "d (for

dx2�y2), "D (for dxy) and " ~d (for d3z2�r2) as well as "p (corresponding to p�) and

"�; the hopping matrix elements tpd, tpD, tp ~d, tpp, t�� and tp�. Besides the orbitals

hybridizing in-plane we have to consider those involved in hybridization out-of-

plane: O 2pz, Cu 3dxz and Cu 3dyz. Restricting ourselves to nearest neighbor

hopping leads to two 2 � 2 matrices with on-site energies "pz and "dz and the

hopping matrix element tpdz.

In order to analyze the experiment it is important to know the parity of the

orbitals with respect to re
ections at the corresponding mirror planes M1 and
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M2. This can also be expressed in terms of group theory since for k vectors along

the line � � (�; �) all wave functions can be classi�ed in terms of irreducible

representations of the small group C2v [180, 181, 182]. The bands built up from

the in-plane orbitals dxy, d3z2�r2 , ~p� and ~p� belong to the representation A1

and are symmetric with respect to re
ections at M1, whereas dx2�y2 , p� and

p� belong to A2 and are antisymmetric. The same small group C2v also acts

along � � (�; 0) and the subdivision of the in-plane orbitals is as follows: A1

(symmetric): dx2�y2 , d3z2�r2, p�, p� and A2 (antisymmetric): dxy, ~p�, ~p�. The

corresponding small groups at the high-symmetry points �, (�; �) and (�; 0) are

D4h and D2h and the assignment of the di�erent orbitals to the corresponding

irreducible representations is given in Table 6.3 in Appendix D. Of course, the

group theoretical analysis is not only valid for the TB model but also for the LDA

bands (Table 6.1 in Appendix D).

The TB-Hamiltonian (5.18) should be completed by an interaction term

H = Ht +HU (5.19)

which will not be written out explicitly. This is just a direct extension of the

three-band Emery model to the case of the complete set of 11 bands for the

CuO2-plane. The interaction term HU involves intrasite Hubbard repulsion for

di�erent kinds of copper- and oxygen-orbitals and appropriate intersite copper-

oxygen repulsions. In order to establish the one-electron parameters entering into

Eq. (5.19) one has to keep in mind that these parameters are \bare" ones while

the results of the band structure calculations should be interpreted in terms of

a mean-�eld solution of Eq. (5.19) [183]. To arrive at the bare parameters, one

would have to take into account the ground-state properties of the CuO2-plane

and approximate the Coulomb interaction terms.

In an undoped cuprate compound as Sr2CuO2Cl2, the ground state of a par-

ticular CuO2-plane contains one hole per cell which is shared between dx2�y2 and

p� orbitals. Thus a convenient description of the ground state is to introduce the

deviations hndsih = 1� hndsi and hnpsih = 1� hnpsi from the full band (Cu 3d10 O

2p6) electron occupancy. A rough estimate is hndsih � 0:7 and hnpsih � 0:3. Here

hnpsi means the electron number in the p� orbital with spin s (one should note

that the occupation of a local oxygen orbital is only half that number). Now the

mean-�eld (\screened") one-electron energies �"�s read as follows:

�"ds = "d + Ud � Udhn(d)�s ih � 2Updh
X
s0

n
(p)
s0 ih

�"ps = "p + Up � 2Updh
X
s0

n
(d)
s0 ih �

1

2
Uphn(p)�s ih

�"D = "D + Ud � UdDh
X
s0

n
(d)
s0 ih � 2UDph

X
s0

n
(p)
s0 ih
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�"� = "p + U� �
1

2
Up�h

X
s0

n
(p)
s0 ih � 2Ud�h

X
s0

n
(d)
s0 ih ; (5.20)

where �s = �s. There are also similar expressions for �" ~d, �"dz, �"pz which we do not

specify here.

In the paramagnetic LDA band structure where the correlation e�ects are

treated only in an averaged manner, the screening e�ect is nearly the same for

all d-levels. So, in the LDA approach the e�ects of strong correlations due to Ud

are missed. An obvious way to adopt these e�ects is to treat the ferromagnetic

solution by putting, for instance, hnd
#
ih = 0, and hnd

"
ih = nd. Then �"d" = "d+Ud�

2Upd n
p (np =

P
shnpsih), is shifted upwards while �"d# = "d+Ud(1�nd)�2Updn

p is

shifted equally downwards with respect to the paramagnetic solution. Regarding

the other d-levels, let us assume for the moment the rough estimate for the intra-

site Coulomb parameters UdD ' Ud. Then we can see that

�"D = "D + Ud(1� nd)� 2Upd n
p ; (5.21)

and the dxy level as well as all the other remaining Cu d-levels are shifted as was

the lower �"d#. The spin dependence of �"ps in Eq. (5.20) is much less pronounced

than for �"ds and is neglected in the following.

Thus, although being somewhat awkward, the ferromagnetic solution provides

a better description of the strong electron correlations, giving a more reasonable

energy position and occupancy of the di�erent orbitals. Just this approach is

taken by us to carry out the LDA+U calculation. The details of the procedure

and some results of these calculation are presented in the next section.

5.3.4 LDA+U calculation

The main e�ect of a mean-�eld treatment of the multi-band Hubbard model

is a shift of the on-site copper energies against the oxygen ones. Furthermore,

the on-site energy of the Cu 3dx2�y2 orbital is split into one for single occupation

and one for double occupation. If the site is singly occupied with a spin down

electron, this corresponds to a split of the levels into one for spin up �"d" (minority

spin) and one for spin down �"d# (majority spin). This can also be achieved by an

LDA+U calculation [175] including all valence orbitals.

We performed LDA+U calculations for Sr2CuO2Cl2 using a ferromagnetic

splitting in order to study changes in hybridization compared to the LDA results.

The on-site energy of the unoccupied, spin up Cu 3d
"

x2�y2 orbital (minority spin)

is shifted by 2 eV upwards and the occupied, spin down Cu 3d
#

x2�y2
orbital (ma-

jority spin), as well as both spin directions for all the remaining Cu d-orbitals

are shifted by 2 eV downwards. The energy shifts were added at each step of the
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self-consistency cycle until the charge-distribution was stable. We did not try to

connect the chosen energy shifts with the model parameters such as, for instance,

Ud; Upd; Up. According to Eq. (5.20), the actual shift depends also on the occu-

pation numbers hn(d)s ih and hn(p)s ih. Since we did not shift the oxygen levels, our

choice corresponds in fact to the di�erence between Ud and Up weighted with the

corresponding occupation numbers.
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Figure 5.11: LDA+U band structure of Sr2CuO2Cl2: (a) minority spin ("), (b)
majority spin (#).
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The results of the LDA+U calculation are presented in Fig. 5.11 and Table 6.2

in Appendix D. The mainly unoccupied, minority band of dx2�y2 and p� character

can be roughly interpreted as the upperHubbard band. The corresponding band

for majority spin lies just below the Fermi level and has dominantly oxygen

character. Since its spin is opposite to the spin of the copper hole, there is some

justi�cation to interpret that band as the mean �eld representation of the Zhang-

Rice singlet. But due to our ferromagnetic spin structure it has a completely

wrong dispersion relation8. The bandwidth of both bands is expected to be

strongly reduced by correlation e�ects in comparison with Fig. 5.11 such that a

gap opens.

Next in binding energy we �nd bands with dominantly oxygen character. The

nonbonding oxygen band with lowest binding energy at (�; �) is identi�ed to be

of pure p� character. The oxygen bands occur at nearly the same energy for both

spin directions. In fact, only the bands with a considerable weight of the Cu

3dx2�y2 orbital show a strong splitting between spin up and spin down. Therefore

we present in Table 6.2 (Appendix D) only the position of minority spin bands and

both spin directions for bands with a contribution from the 3dx2�y2 orbital
9. The

actual value of the energy shifts of the copper bands in our LDA+U calculation

has little in
uence on the upper oxygen bands, only their copper character is

changed. We have chosen such a shift that the copper bands are at the lower

edge of the valence band, but are not yet split o� the valence band. This is

important in order to achieve good agreement with the experimental results.

Let us now compare the LDA and LDA+U results starting at (�; �). In both

cases (Figs. 3.30 and 5.11), we �nd a group of 5 bands at around 3 eV binding

energy, but the order of energy levels is completely di�erent in the two cases.

For example, the antisymmetric p� band has lowest binding energy of � 2.5 eV

in the LDA+U calculation. In Fig. 3.30 (LCAO-LDA), however, all the other 4

bands of that group have lower BE than the p� level. A similar rearrangement of

energy levels can be observed at the � point. Due to symmetry reasons there is

no hybridization between copper and oxygen bands there. The energy position of

the oxygen bands is nearly the same for LDA and LDA+U , but the copper bands

8The energy position and dispersion of the Zhang-Rice singlet are very sensitive to local

AFM correlations which are well pronounced in the sample measured. To provide a correct

description of the Zhang-Rice singlet (and its triplet partner) one has to subtract two orbitals,

p� and dx2�y2 , from the 11-band manifold. Supplementary calculations for this two-band

Hubbard model, done within the cell-perturbation method, led to a good account of the

Zhang-Rice singlet dispersion measured [167].
9It should be noted that even the pure oxygen bands have a small energy di�erence of 0.17 eV

between both spin directions which is the same for all bands. The reason for that di�erence is

the overlap between spin up and spin down at the Fermi energy. The position of spin down

bands in Table 6.2 in Appendix D is corrected by this 0.17 eV.
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are shifted. The in-plane oxygen bands are twofold degenerated and occur twice

in the LDA+U result with binding energies of 2.69 and 5.57 eV, respectively.

5.3.5 Comparison with the experiment

High-symmetry points

The experimental ARPES spectra at the high symmetry points for both polariza-

tion directions are presented in Fig. 5.12. At the � point, there are two possible

orientations of the sample. Therefor, the symmetry of states may be probed with

respect to re
ections in either M1 (sample directed such that the photoelectron

momentum is along � � (�; �), Fig. 5.12(a)), or M2 (sample directed such that

the photoelectron momentum is along �� (�; 0), Fig. 5.12(b)). The �rst peak at

2.9 eV binding energy in the experimental spectra at the � point with the sample

oriented such that the k-vector is along �� (�; �) (Fig. 5.12(a)) is equally strong

for both polarization directions. This leads us to interpret it as the two pure

oxygen bands (p�p�) and (~p�~p�) which are antisymmetric and symmetric with

respect to re
ections at M1, respectively
10. These bands occur in the LDA+U

calculation as the two-fold degenerated in-plane oxygen bands at 2.69 eV binding

energy. According to this interpretation we would expect an identical peak for

both spin directions also at the � point with the sample oriented such that the

k-vector is along � � (�; 0) (Fig. 5.12(b)). As one can see, Fig. 5.12(b) devi-

ates only slightly from that expectation. In the LDA result, however, there are

three copper levels between 2.3 and 3 eV binding energy. Since every copper-level

has di�erent symmetry properties with respect to M1 and M2 that would lead

to strong di�erences between both polarization directions which is not observed.

Therefore, we assign each experimental peak with the help of the LDA+U re-

sults. Each pure band is denoted by one orbital only. For the mixed bands we

choose a notation using two orbitals, where the �rst one is the dominant one. The

experimental peak positions are compared with the LDA+U positions in Table

5.1.

Let us continue our interpretation of the spectra at the � point with the peak

at 3.9 eV. It is seen with horizontal polarization in Figs. 5.12(a) and 5.12(b).

Therefore, we interpret it as the out-of-plane oxygen 2pz orbital. We observe also

a small contribution of this peak with the \wrong" polarization in Fig. 5.12(a)

which is even larger in Fig. 5.12(b). However, there is no band with the corre-

10In fact, the oxygen in-plane wave functions have to be de�ned by the limit kx = ky = k ! 0

to have a de�ned parity with respect to M1. In the limit kx = k ! 0, ky = 0 they have a

de�ned parity with respect to M2. That arbitrariness can be explained since they build the

two-dimensional representation Eu at the � point.
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Figure 5.12: Experimental photoemission data of Sr2CuO2Cl2 at high-symmetry

points, with the relevant mirror plane given in brackets: (a) at the � point (M1),

(b) at the � point (M2), (c) at (�; �) (M1) and (d) (�; 0) (M2). The assignment

of peaks is according to the LDA+U results. The �lled circles and full lines

correspond to vertical polarization, whereas the open circles and broken lines

give the results for horizontal polarization.

sponding symmetry in that energy region in our LDA+U calculation. The large

peaks at around 6 eV binding energy in Figs. 5.12(a) and 5.12(b) with big dif-

ferences between both polarization directions indicate that there are additional

contributions besides the oxygen orbitals there. Due to the low cross section of

Cl 3p orbitals, we are only left with the pure copper d orbitals. To simplify the

analysis we did not try to assign the Cu 3d3z2�r2 orbital which mixes strongly

with the Cl orbitals and should have reduced intensity. The remaining in-plane

copper orbitals change their polarization dependence between Figs. 5.12(a) and

5.12(b). The d
#

x2�y2 is antisymmetric with respect to M1 and the dxy is symmet-
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�

Orbital LDA+U Exp.

(p�p�) -2.69 -2.9

(~p� ~p�)

pz -3.83 -3.9

d
#

x2�y2
-4.92 -5.8

dxy -5.40

(p�p�) -5.57

(~p� ~p�)

d(x;y)z -5.87 -6.5

(�; �)

Orbital LDA+U Exp.

(p�d
#

x2�y2
) (ZRS) 0.65 -1.2

p� -2.43 -2.4

(pzd(x;y)z) -2.98 -2.7

(~p�dxy) -3.35

(p�d
"

x2�y2
) (ZRT) -4.94 -3.8

(d(x;y)zpz) -6.62 -5.8

(dxy ~p�) -7.20

(d
#

x2�y2
p�) -7.28 -6.0

(�; 0)

Orbital LDA+U Exp.

(p�d
#

x2�y2
) (ZRS) -2.40 -1.1

(pzdxz) -2.96 -2.5

(~p�dxy) -2.94 -2.7

pz -3.79 -3.8

p� -4.32

~p� -4.11 -3.8

(dxy ~p�) -6.17 -5.6

dyz -5.93 -6.6

(dxzpz) -6.37

Table 5.1: Comparison of experimental peak positions (in eV) with the

LDA+U results of Sr2CuO2Cl2 at the high-symmetry points (ZRS and ZRT

mean the Zhang-Rice singlet or triplet, respectively).

ric. However, this situation is reversed when the sample is oriented such that the

k-vector is along �� (�; 0). The intensity ratio between horizontal and vertical

polarization of the peak at 5.8 eV is indeed exchanged if we compare Fig. 5.12(a)

and 5.12(b). The last peak at 6.5 eV occurs for both sample orientations only with

horizontal polarization and is interpreted as the out-of-plane dxz- or dyz-orbital.
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Turning now to the spectra at (�; �), we can only probe the parity with respect

to M1 (Fig. 5.12(c)). The small prepeak at 1.2 eV in the curve with vertical po-

larization is usually interpreted as the Zhang-Rice singlet [102]. The dominant

peak at 2.4 eV binding energy in the spectra with perpendicular polarization can

be identi�ed as the pure p� orbital which has already been discussed in Ref. [159].

The p� band is the only one among the group of 5 bands at around 3 eV binding

energy in both calculations (LDA or LDA+U , Figs. 3.30 and 5.11) which has

odd symmetry with respect to M1. It has lowest BE in the experiment and in

the LDA+U calculation. That indicates that the LDA+U calculation is better

in predicting the correct order of energy levels at high symmetry points than the

pure LDA calculation. At slightly higher binding energy at 2.7 eV we observe a

smaller, broader peak with horizontal polarization. According to our calculation

it should be comprised of three bands, the out-of-plane (pzd(x;y)z) bands and the

in-plane (~p�dxy) band. The small structure at 3.8 eV binding energy (vertical

polarization) can be related to the oxygen p�-orbital hybridizing with dx2�y2 but

having the opposite spin (") than that of the copper hole. The corresponding

band occurs in the LDA+U at 4.94 eV binding energy and can be interpreted as

the Zhang-Rice triplet. A similar structure was also observed in our previous

analysis of the polarization-dependent photoemission spectra of another undoped

model cuprate Ba2Cu3O4Cl2 [162].

The peaks at around 6 eV binding energy should be assigned to bands with a

dominant copper character. However, we note in Table 5.1 systematic deviation

between experimental and theoretical peak positions at (�; �): the theoretical

binding energies are too large. That is plausible since it is expected that the

copper-bands feel the antiferromagnetic correlations much more than the oxygen-

bands which are decoupled from the copper-spins. As a result the copper bands

are expected to follow more the AFM BZ where � and (�; �) are identical. How-

ever, such AFM correlations were not considered in our calculation.

At (�; 0) (Fig. 5.12(d)) a prepeak with low intensity is to observe, which

may be prescribed to the Zhang-Rice singlet state comprised in our calculation

by the hybridization between the p� orbital and d
#

x2�y2
. The strong peak with

horizontal polarization at 2.5 eV is assigned to the out-of-plane (pzdxz) orbital.

The peak at 3.8 eV consists of two orbitals, pz and p�, which are separated

by only 0.5 eV in the LDA+U calculation. Therefore, it is di�cult to use that

peak to extract the parameter t�� from the experimental spectra as it was done in

Ref. [159]. Furthermore, it should distinguished between di�erent oxygen hopping

matrix elements (tpp, tp� and t��)[152] which was also not done there [159].
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Figure 5.13: Angle-resolved photoemission curves calculated bands (solid lines)

along: (a) � { (�,�) for vertical polarization together with the antisymmetric

TB band with dominant oxygen (p�) contribution and the dispersion of the ZRS

according to Ref. [167] (dotted line). (b) � { (�,�) for horizontal polarization

together with the oxygen out-of-plane TB bands and the in-plane bands having

even symmetry. (c) � { (�,0) for vertical polarization together with the antisym-

metric oxygen TB band. (d) � { (�,0) for horizontal polarization together with

the oxygen out-of-plane TB bands and the in-plane bands having even symmetry.

Dispersion relations

The experimental spectra along both high symmetry directions show clear di�er-

ences between both polarization directions (Fig. 5.13). The �rst electron removal
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peak along �� (�; �) has minimal BE at (�=2; �=2) and occurs exclusively with

vertical polarization (Fig. 5.13(a)). That is in complete agreement with the usual

interpretation of that peak as the Zhang-Rice singlet. In our mean-�eld treat-

ment it is built up of the d
#

x2�y2 and p� orbitals having odd symmetry with respect

to M1. The dispersion is well described within the extended t-J model [167] and

the corresponding theoretical curve is included in Fig. 5.13(a) for completeness.

Along � � (�; 0) (Figs. 5.13(c) and 5.13(d)) the Zhang-Rice singlet feature is

less pronounced. According to our symmetry analysis based on a simple mean-

�eld treatment, we would expect it only with horizontal polarization. However,

it is more clearly seen in Fig. 5.13(c) (vertical polarization) than in Fig. 5.13(d)

(horizontal polarization). Recent experiments [184] on several new single crystals

lifted this discrepancy, the Zhang-Rice singlet feature appeared as expected

only with horizontal polarization. The origin of the discrepancy in the present

experiment is still unclear [184].

The peak next in binding energy in Fig. 5.13(a) was already analyzed as

the p�-orbital and it has a clear dispersion going from � to (�; �). The valence

band edge at around 2.5 eV BE is di�erent for both polarizations: it has no

dispersion for vertical polarization (Fig. 5.13(c)) and is built up of only one (~p�)

orbital. In contrast to that, we see for horizontal polarization (Fig. 5.13(d))

one dispersionless out-of-plane band at 3.9 eV and two crossing bands from the

out-of-plane orbitals and the in-plane p� band.

To analyze this dispersion quantitatively it is more convenient to use the TB

model than the LDA+U calculation due to the restricted number of bands in the

former. The parameters of the TB model were found as follows. The LDA+U

results at high symmetry points (see Table 6.2 in Appendix D) were used to

obtain a �rst parameter set. For the �t have been chosen only such energy levels

which have no or very small contribution from other orbitals (Cu 4s, O 2s, Cl). In

such a way our e�ective TB parameters also contain the in
uence of hybridization

to Cl or s orbitals. Fitting to the pure LDA results (see Table 6.1 in Appendix

D) gave nearly the same hopping integrals but di�erent on-site energies. The

parameters are very similar to those known for La2CuO4 [23]. After �tting to the

LDA+U results there remained small di�erences to the experimental dispersions

even for the peaks with lowest binding energy. These small discrepancies to the

experimental peak positions were corrected by small changes of the on-site and

o�-site energies (here, especially tpdz was increased). The resulting parameter set

is shown in Table 5.2.

In Fig. 5.14 we have collected all the peak positions from Fig. 5.13 together

with the dispersion of the TB bands. We have distinguished between the results

for vertical polarization (Fig. 5.14(a)) and horizontal polarization (Fig. 5.14(b)).

According to our previous analysis, the peaks in Fig. 5.14(a) between (�; 0) and �
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"
"

d "
#

d " ~d "D "dz "� "pz "p

2.00 -4.90 -4.78 -5.22 -6.40 -3.88 -3.86 -4.59

tpd tp ~d tpp tp� t�� t�D tpdz

1.33 0.77 0.71 0.34 0.37 0.84 1.15

(0.32) (0.77) (0.77)

Table 5.2: TB-parameters of Sr2CuO2Cl2 obtained by �tting the LDA+U

band structure and the VB photoemission spectra. The o�-site energies in

parentheses are the values from a �t only to the theoretical band structure in

the cases where experimental corrections were appropriate.

should only be compared with the 3 TB bands stemming from the ~p�, ~p� and dxy

orbitals. Analogously, between � and (�; �) (Fig. 5.14(a)), only the antisymmet-

ric bands from the p�, p�, d
#

x2�y2 and d
"

x2�y2 orbitals are presented. In Fig. 5.14,

we have collected the bands arising from both the d
#

x2�y2
or d

"

x2�y2
orbitals, and

have neglected the band corresponding to the Zhang-Rice singlet since we can-

not expect to obtain its correct dispersion in our simple mean-�eld treatment.

The number of bands which contribute to the spectra for horizontal polarization

(Fig. 5.14(b)) is considerably larger: these include all of the out-of-plane orbitals

and additionally the corresponding symmetric bands (representation A1 of C2v)

of the in-plane orbitals. In Fig. 5.14 we have distinguished between bands with

dominant oxygen character for all k values (solid lines) and those bands which

have a considerable coupling to the copper spins (dashed lines). A considerable

agreement is found between experimental and theoretical dispersions for the oxy-

gen bands with small BE. Furthermore, there is some similarity at the � point

besides the peak with vertical polarization at 3.9 eV BE for which we have no ex-

planation. On the other hand, the copper-bands at around 6 eV disperse strongly

in the TB calculation whereas they are nearly dispersionless in the experiment.

Probably this failure of the theoretical description arises due to the neglect of

antiferromagnetic correlations. To avoid misunderstanding it should be stressed,

that also the oxygen bands of our mean-�eld calculation have a copper contri-

bution (except some cases at the high-symmetry points), but that the copper

contribution is not dominant. The calculated dispersion relations of the oxygen

bands are shown in Fig. 5.13 as solid lines in order to guide the eye.
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Figure 5.14: Position of the main experimental peaks for Sr2CuO2Cl2 together

with the TB-bands of the corresponding symmetry along (�; 0)� (0; 0)� (�; �):

(a) antisymmetric bands and experimental data for vertical polarization, (b) out-

of-plane and symmetric bands together with experimental data for horizontal

polarization. Full lines denote the TB bands with dominantly oxygen character,

whereas the dashed lines correspond to bands with a considerable mixing to the

copper system.

5.3.6 Conclusions

It can be summarized that polarization-dependent ARPES at �, (�; �) and (�; 0)

and along the two high-symmetry directions gives detailed information about the
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bands with di�erent parity with respect to re
ections at the mirror planes M1

and M2. The assignment of the peaks can be performed by means of a symmetry

analysis of band structure results. Here we pick out the three major results.

(I) Rearrangement of energy levels: Comparing LDA with LDA+U results at

high-symmetry points we found that the strong electron correlation leads to a

changed order of energy levels, whereby the experimental peak positions could be

more accurately assigned with the help of the LDA+U calculation. In comparison

with an LDA calculation we found the copper bands shifted to higher BE. So, we

conclude that the correlation in
uences not only the band near the Fermi level

but leads to a rearrangement of energy levels throughout the whole VB.

(II) Check of the non-bonding p� band: Polarization-dependent ARPES mea-

surements provide a sensitive test of the symmetries of the excitations with low

BE which were already analyzed before. The p� orbital is seen at (�; �) with

vertical polarization as a single peak. At (�; 0) it is visible with horizontal po-

larization but it overlaps with out-of-plane orbitals which makes a parameter

assignment di�cult. This means that in polarization independent measurement,

such as those in Ref. [159], the spectral weight assigned to the p� peak at (�; �)

will have additional contributions besides the pure p� orbital (of roughly one third

of the total intensity as seen in Fig. 5.12(c)). As a consequence, the experimen-

tal estimate of the spectral weight of the Zhang-Rice singlet part, which was

performed there using the intensity of the p� feature as a calibration, should be

increased by 50 %.

(III) Dispersion relations: Analyzing the dispersion relations we observe a

di�erence between the copper bands which couple strongly to the antiferromag-

netic spin structure and thus feel the antiferromagnetic BZ and the nonbonding

oxygen bands which are decoupled from the spin system and follow the paramag-

netic (or ferromagnetic) BZ. To take that e�ect into account for Sr2CuO2Cl2 we

should extend our theory incorporating the antiferromagnetic order. Then all the

bands are de�ned within the AFM BZ. To obtain in such a scheme the observed

di�erence between � and (�; �) deserves the calculation of matrix elements.

Despite the fact that the experimental order of energy levels can be explained

by an LDA+U calculation one should be aware that the agreement between pho-

toemission and LDA+U cannot be perfect. First of all, the LDA+U calculation

cannot reproduce the satellite structure present in the spectra at about 14 eV

binding energy. And second, the LDA+U has the tendency to push the copper

levels towards too large binding energy. That was visible in our analysis espe-

cially at (�; �). The k-integrated copper density of states can also be measured by

x-ray photoemission with large photon energy such that the copper cross section

dominates that of oxygen [185]. It was found that the x-ray photoemission spec-

trum of the valence band of Sr2CuO2Cl2 showed the existence of Cu 3d electron
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removal states over an energy range of some 5-6 eV. To compare our LDA+U

calculation with earlier ones for La2CuO4 [176], it should be kept in mind that

we had to choose a rather small shift of the copper levels to �nd agreement with

the experimental situation, and we did not choose correlation parameters from

a constrained density functional calculation as in Ref. [176]. It can be expected

that the consideration of self-energy corrections as was done recently by calcu-

lating the three-body scattering contributions [186, 187] improves the situation

and allows to work with real correlation parameters instead of �tted ones. Our

main goal here was the assignment of peaks and not the determination of param-

eters. To extract parameters from polarization-dependent ARPES measurements

there are several improvements necessary both from the experimental and the

theoretical side of view.

5.4 The unoccupied electronic structure of Li2CuO2

Among the large family of chain and ladder networks [39], the simple straight

chains are essential as they appear as building blocks in all of these materials.

They can be classi�ed structurally into two types, namely chains formed by CuO4

plaquettes connected via shared corners ('corner-sharing chain') or shared edges

('edge-sharing chain'). The former is realized in Sr2CuO3, the unoccupied elec-

tronic structure of which has been studied recently [188]. The edge-sharing chain

occurs in other insulating cuprates such as Li2CuO2, the spin-Peierls compound

GeCuO3 and the ladder-type material La6Ca8Cu24O41. The latter system rep-

resents the undoped parent compound of Sr0:4Ca13:6Cu24O41:84, which exhibits

superconductivity under high pressure [189]. Within the class of materials with

edge-sharing chains, at �rst glance Li2CuO2 seems to be an ideal model substance

since in this case the CuO2-chain is the only building block in the crystal structure

apart from the Li counter ions, and thus a direct access to properties connected

with the chain geometry alone is possible.

In contrast to the corner-sharing case, where a 180� Cu-O-Cu exchange path

implies an antiferromagnetic (AFM) nearest-neighbor Cu spin interaction (J1 >

0), the ideal edge-sharing geometry results in a 90� Cu-O-Cu interaction, which

favors a ferromagnetic (FM) spin interaction (J1 < 0) between the Cu-sites

[71, 190, 73]. At the same time, the exchange path Cu-O-O-Cu plays a more

important role, leading to an AFM next-nearest-neighbor interaction, J2, and

thus to frustration. For Li2CuO2, with an Cu-O-Cu angle of � = 94�, exchange

constants of J1 = �100K and J2 = 62K have been obtained from magnetic sus-

ceptibility data and an analysis within a standard pd-model [136]. Besides the

magnetic order along the chain direction (crystallographic a-direction), Li2CuO2
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shows a three-dimensional magnetic structure. Di�erent chains in the (a,c)-plane

are FM ordered, whereas in b-direction an AFM coupling of the di�erent layers of

chains is found [50]. A detailed knowledge of the electronic structure of Li2CuO2

is necessary to understand the fundamentals of these magnetic properties.

In this section we study the unoccupied electronic structure of Li2CuO2 by

means of polarization-dependent x-ray absorption spectroscopy and discuss the

results in the light of the predictions of band structure calculations.

To obtain some insight into the electronic structure from the theoretical point

of view we have performed LDA calculations using the linear combination of

atomic-like orbitals which were already discussed in Section 3.3.2 (see Figs. 3.10

and 3.11). For the comparison with the XAS data, we calculated the orbital-

projected net densities of states (described in detail in Appendix A). [191]. The

calculation shows a paramagnetic and metallic behavior, with one isolated band

crossing the Fermi level. Due to strong on-site electron correlations ignored in

LDA, this antibonding band will split in an upper and a lower Hubbard band

in accordance with the experimentally observed insulating behavior.

Depending on the coordinate system adopted in the (a,b)-plane, the orbitals

relevant for the discussion below are denoted by O 2px0, O 2py0 , Cu 3dx02�y02 in the

case of (x0,y0)-axes along the Cu-O bonds as sketched in Fig. 5.15(a), and O 2px,

O 2py, Cu 3dxy for axes parallel to the crystallographic directions ((x,y)-axes,

Fig. 5.15(b)).

5.4.1 The intrinsic hole distribution in Li2CuO2

The XAS experiments were carried out using in-situ cleaved single crystals at

the SX700/II beamline [192] operated by the Freie Universit�at Berlin at BESSY

with an energy resolution of the monochromator of 280 and 660meV at the O 1s

and Cu 2p absorption thresholds, respectively. For the O 1s and Cu 2p absorp-

tion spectra the 
uorescence yield (FY) and total electron yield (TEY) detection

mode, respectively, were chosen. The spectra for di�erent crystal orientations11

are normalized � 80 eV above the absorption threshold, where the �nal states are

nearly free-electron-like and therefore essentially isotropic.

XAS provides information on the character and symmetry of the unoccupied

electronic states of solids and has played an important role in the investigation of

cuprate-based materials [158]. Dipole selection rules and the localized initial core

states enable a site-speci�c study of the hole distribution. In addition, by using

linearly polarized synchrotron radiation and single crystalline samples, orbitals

with di�erent symmetry can be probed by appropriately aligning the sample with

11The spectra for Ekcwere obtained by extrapolation frommeasurements at grazing incidence

(70� o� the sample surface normal).
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Figure 5.15: A sketch of the edge-sharing chain in Li2CuO2. The di-

rections a and b refer to the crystallographic axes. Cu and O orbitals

are shown for two di�erent coordinate systems: (a) axes of coordinates

along the Cu-O bonds (x0; y0-axes) with O 2px0, O 2py0, and Cu 3dx02�y02

orbitals. (b) axes of coordinates rotated by 45� (x; y-axes) with O 2px,

O 2py, Cu 3dxy orbitals.

respect to the electric �eld vector E of the incoming radiation. For example, in

the geometry Eka only O 1s ! O 2px transitions are selected (Fig. 5.15(b)).

Figure 5.16(a) shows the polarization-dependent Cu2p3=2 x-ray absorption

spectra of Li2CuO2. A narrow peak at � 931:8 eV (the so-called 'white line') is

observed, which can be ascribed to the Cu 3d contributions to the upper Hub-

bard band (UHB)12. As expected from the isotropic neighborhood of the Cu

ion within the (a, b) - plane (Fig. 5.15), almost identical spectra for Eka and

Ekb are observed. A completely di�erent variation in intensity is found for light

polarization perpendicular to the CuO4-units (Ekc). The strong anisotropy of

the white line between the in-plane (Ek(a,b)) and out-of-plane (Ekc) geometry
implies that the low lying Cu 3d derived unoccupied states have predominantly

Cu 3dxy character, with only less than 7% of the intrinsic hole density located in

12Transitions into unoccupied Cu 4s orbitals are also allowed, but show a reduced transition

probability by a factor of 20 compared to Cu 3d �nal states [193, 158]
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Figure 5.16: left panel: Cu 2p3=2 absorption edges of Li2CuO2 for the electric-

�eld vector E parallel to the three crystallographic axes.

right panel: O 1s absorption edges of Li2CuO2 for the electric-�eld vector

E parallel to the three crystallographic axes. The inset concentrates on the

upper Hubbard band derived features for the two in-plane light polarizations

measured with smaller step size.

out-of-plane orbitals (Cu 3d3z2�r2)
13.

Besides the white line, a strongly polarization-dependent absorption feature

is found at 936.8 eV. Features in this energy range in the out-of-plane geometry

have been seen in many other cuprates [158] and can be attributed to transitions

into Cu 3d3z2�r2 orbitals which become partly unoccupied via hybridization with

empty Cu 4s states [194].

Turning to oxygen, Fig. 5.16(b) the O 1s absorption edges for Li2CuO2 is

shown. These measurements probe O 2px (Eka), O 2py (Ekb) and O 2pz (Ekc)
unoccupied states. The unoccupied states in the 'high' energy range above

530.5 eV result from the hybridization of Li 2s/2p states with previously occupied

O bands. We will mainly concentrate on the peak directly above the absorption

onset at � 530 eV which is related to transitions into O 2p orbitals hybridized

with Cu 3d states forming the UHB [158]. The polarization dependence is ex-

pected to be similar to that found for the white line in the Cu 2p absorption

spectra. Indeed, in the out-of-plane geometry (Ekc) the spectral weight of the

13In the evaluation of the spectral weight, di�erent matrix elements for transitions into Cu

3dxy and Cu 3d3z2�r2 states were taken into account.
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UHB is strongly suppressed, with less than � 11 % of the holes with O 2p char-

acter located in orbitals perpendicular to the (a,b)-plane. From the observed

anisotropy in the Cu 2p and O 1s absorption edges one can conclude that the

UHB is predominantly built up from the in-plane orbitals Cu 3dxy, O 2px, and

O 2py. A similar result is found within our LDA approach, in which states other

than these three contribute jointly less than one percent to the band at the Fermi

level. Compared to the LDA result, the larger out-of-plane contributions observed

in experiment are most likely a result of the �nite degree of linear polarization

(> 90%) of the monochromatized synchrotron radiation. An alternative expla-

nation could be related to phonons or zero-point motion. They cause a breaking

of the local symmetry and therefore hybridization between in- and out-of-plane

states is no longer suppressed by symmetry. Although the relevant orbitals for

the formation of the UHB have almost exclusively in-plane character, the LDA

band structure shows a dispersion of the corresponding antibonding band in the

z-direction which is equivalent to the dispersion in y-direction and comparable to

that in chain direction x [55]. From this we can conclude that there is a relatively

large inter-chain coupling via oxygen orbitals, and that Li2CuO2 is not an ideal

1D model system as the crystal structure might suggest at the �rst glance. From

the dispersion of the antibonding band of an e�ective one-band model in chain

direction,

E(~k) = �2t1 cos(kxa)� 2t2 cos(kxa)�
8t01 cos(kx

a

2
) cos(ky

b

2
) cos(kz

c

2
)�

8t02 cos(kx
3

2
a) cos(ky

3

2
b) cos(kz

3

2
c); (5.22)

where t1;2 denote the intra-chain transfer integrals and t01;2 the corresponding

interchain integrals, we estimate for the transfer integrals values of t1 = -52 meV

(-63 meV), t2 = -80 meV (-94 meV), t01 = -12 meV (-16 meV), t02 = -44 meV

(-44 meV). The numbers in parentheses are the results obtained by Weht and

Pickett [56]. The nearest-neighbor intra-chain transfer integral is signi�cantly

smaller than the corresponding value of the corner-sharing chain in Sr2CuO3

(t1 = 0:55 eV [49]), re
ecting the hindered hopping along the chain direction due

to the � 90� Cu-O-Cu geometry in Li2CuO2.

5.4.2 Character and width of the upper Hubbard band

We will now focus on the O 1s absorption edges for Eka and Ekb near 530 eV,

where the chain geometry would suggest identical spectra. As illustrated in

Fig. 5.15(a), the alignment of the light polarization parallel to the a axis is identi-

cal to the situation of Ekb as far as the projection of the unoccupied O 2px0/2py0
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states along these two directions is concerned. Surprisingly, in our XAS measure-

ments the UHB derived feature for Eka and Ekb turn out not to be identical.

The hole density in the orbitals O 2px and O 2py is almost the same
14, but we

observe a distinct shift in energy of 150meV between the two polarization direc-

tions. Although an absolute energy calibration can hardly be performed to an

accuracy of 0.1 eV, we can very sensitively and signi�cantly determine a relative

shift between the Eka and Ekb spectra15.

To discuss a possible anisotropy between the a and b-direction we make use

of the orbital representation shown in Fig. 5.15(b), which corresponds to the

experimental geometry probing O 2px and O 2py states. The Cu ions still have

an isotropic neighborhood consistent with the observations in the Cu 2p XAS,

but now the O 2px and O 2py orbitals are not a priori symmetrically equivalent.

For example, the presence of counterions strongly hybridized with the O 2py

orbitals would lead to a sizable anisotropy. The crystal structure of CuGeO3 is

a good illustration for this situation, as the Ge ions are located directly opposite

the oxygen atoms of the edge-sharing chain. In Li2CuO2, however, the Li ions

do not reside opposite to the oxygen atoms, but are situated in between them

with a O-Li-O bonding angle of approximately 90�. Thus, in the present case the

counterions do not give a basis for a possible anisotropy.

In contrast to the corner-sharing chain in Sr2CuO3, where one can naturally

ascribe two di�erent peak positions to two symmetrically inequivalent oxygen

sites [188], the crystal symmetry in Li2CuO2 contains only one oxygen site. As

the excitation into the two oxygen orbitals starts from the same core level, one

would consequently expect to observe one UHB at a certain energy, provided that

possible excitonic e�ects between the excited electron and the core hole do not

depend on the �nal state (O 2px, O 2py).

In a �rst step we look for an explanation of the observed energy shift in the

framework of the LDA calculation where the partial, orbital-resolved unoccupied

DOS near the Fermi energy is expected to be re
ected in our XAS data directly

above the absorption threshold. The character of the orbitals building a dispersive

band may change across the Brillouin zone, e.g. from predominantly O 2px to

14This is consistent with our LDA calculation (see Fig. 5.17) but contradicting to the FLAPW

calculations of Tanaka et. al. [57]. They found mainly contributions of the O 2px orbitals to

the antibonding band, this can be related to the orbital projection in the FLAPW scheme. The

orbital contribution of O 2px and O 2py is crucial for the magnetic coupling in Li2CuO2.
15For the measurement, we use the following scheme: the corresponding directions have been

measured immediately one after another in a cycle Eka, Ekb, Eka. After a new �ll of the storage

ring, the measurements were repeated but now starting the cycle with Ekb. Thus a jump in

the monochromator energy due to the mechanical drive of the grating and/or instabilities of

the electron beam in the storage ring can be excluded as an explanation of the shift. Moreover,

measurements were performed on several samples with identical results.
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O 2py. Since the XAS experiment yields k-space-integral information, one would

then observe a di�erent energy position when probing O 2px and O 2py orbitals,

each dominating a di�erent part of the band. Indeed, some e�ect is visible in

the O 2p net density of states derived from our LDA bandstructure calculations

shown in Fig. 5.17. In the lower part of the �gure, the calculated DOS has been
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Figure 5.17: O 2p net density of states of the LDA-LCAO band structure for

Li2CuO2 near the Fermi energy (EF=0). Upper curves: calculated DOS.

Lower curves: calculated DOS broadened to account for lifetime e�ects,

phonons and experimental resolution. For the parameters used, see the

text.

broadened to account for lifetime e�ects of the core hole16 (0.2 eV Lorentzian)

and energy resolution (0.28 eV Gaussian) [196]. The use of these values leads to a

total linewidth of 0.6 eV in discrepancy to the experimentally observed linewidth

of about 1 eV. The same discrepancy occurs in Ref. [196] for the case of La2CuO4

and is ascribed therein to an reduced lifetime of the core hole in a solid compared

with a free atom. This seems unrealistic because it requires a three times larger

life time broadening in the solid. The intersite Auger processes, proposed to be

responsible for this broadening in Ref. [196], would cause an anisotropy for the

16The value of 0.2 eV corresponds to the lifetime of the core hole in a free oxygen atom [195].



5.4. The unoccupied electronic structure of Li2CuO2 135

linewidths for Eka and Ekb which is not observed. Therefore, we suppose an

only slightly enhanced broadening (compared with the free atom) of 0.3 eV as

more realistic.

We have to look for an additional mechanism of broadening to reproduce the

experimental linewidth. Usually, it was characterized as partially originating from

the dispersion of the UHB and partially stemming from phononic contributions.

Mostly, they are di�cult to separate from each other and are discussed together as

solid-state broadening [197]. Because of the extremely small bandwidth, Li2CuO2

is the most suitable model compound for a separate investigation of both contri-

butions.

The experimentally observed linewidths of the UHB in Li2CuO2, Sr2CuO3,

and Sr2CuO2Cl2 are nearly identical with about 1 eV, whereas the LDA band-

widths are strongly di�erent: 1 eV for Li2CuO2, 2.2 eV for Sr2CuO3, and about

4 eV for Sr2CuO2Cl2 . Since the correlations are poorly described in LDA, the

actual bandwidths should be essentially smaller. The exchange integrals J in

these compounds are substantially distinct from each other, hence the magnetic

coupling seems to play a minor role for the broadening. The comparison of these

three compounds of di�erent dimensionality points to the dominance of an 'uni-

versal' broadening mechanism originating from phonons which should be similar

in all three compounds due to the common CuO4 building block.

The vibrational broadening in the XAS is usually discussed on the basis of

the Franck-Condon principle [197]. Since a general quantitative description is

complicated, we consider a simpli�ed model where the initial and the �nal states

are given by two harmonic oscillators (force constant K, phonon frequency !ph)

with a di�erence of �R in the con�guration coordinate [198, 199]. For this case,

the Franck-Condon factor is reduced to a Poisson distribution:

Fn = e��
�n

n!
; (5.23)

where

n =
E

~!ph
� =

K(�R)2

2~!ph
: (5.24)

In the limit of � � 1 this can be approximated by a symmetric Gaussian:

Fn =
1p
2��

exp(�(� � n)2

2�
) : (5.25)

This corresponds to the experimentally observed nearly symmetric line shape17

(see Fig. 5.16).

17A more accurate analysis of the remaining asymmetry is di�cult due to the overlap of

the UHB with the higher lying absorption features. Furthermore, the symmetric broadening

mechanisms (life time, resolution) will cover the asymmetry.
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In the symmetric limet, the phononic contribution to the linewidth is given

by [200]

�ph = 2:35
p
�~!ph : (5.26)

The relevant bond stretching phonon modes have a typical energy of about

100 meV [201]. Thus, Eq. (5.26) leads to � = 6:5 for a phononic contribu-

tion of 0.6 eV to the linewidth derived from the XAS data. This relatively high

number of involved phonons implies the importance of electron-phonon coupling,

i.e. polaronic e�ects. Within a theory of small polarons [202], Eq. (5.24) can be

transformed in

�Elat +�Eel = 0 ; (5.27)

using the Hubbard-Holstein model. Here, �Elat corresponds to the change

of the lattice energy due to the emitted phonons, and �Eel = ��~!ph describes
the polaronic shift due to electron-lattice interaction. This results in an enlarged

e�ective mass m� of the quasiparticle (polaron) and therefore in a reduced band-

width. A quantitative theoretical description is complicated because the phononic

energy ~! is similar to the electronic transfer integral t and we �nd a medium

electron-phonon coupling constant �el�ph � �~!ph=W � 0:6 : : : 0:7. Herein, W

is the bandwidth of the LDA calculation which can be regarded as an upper

estimate.

These values for the parameters require a big numerical e�ort for solving the

related equations [203]. Qualitatively, the similar linewidth of the UHB in the

XAS data of all insulating cuprate compounds (independent of the dispersion

in the LDA bandstructure) can be understood as a combination of polaronic

narrowing and phononic broadening. Similar explanations within this simple

polaronic picture were given for the broadening in photoemission spectra [204,

205].

Let us direct our attention now to the anisotropy of the UHB. One recognizes

a small energy shift between the calculated O 2px and O 2py densities of states

at the Fermi energy, in the same direction as experimentally observed. How-

ever, the theoretically estimated shift of 50meV turns out to be not su�cient to

fully explain the experimental value of 150meV. Therefore, there must be some

additional mechanism involved.

As the phonon contributions have signi�cant in
uence on the actual linewidth,

the chain structure of Li2CuO2 could lead one to expect some anisotropy of the

phonon properties, thus accounting for the experimentally observed energy shift.

For example, O 1s core-level excitations into the O 2px and O 2py orbitals could

result in coupling either to di�erent numbers of phonons or to phonons of di�er-

ent energies. However, considering the role of phonons in the excitation process

in terms of a simple Einstein model, one �nds that the �rst moment (center of
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gravity) of the spectral function is independent of the coupling strength [206, 207].

For an asymmetric lineshape, an energy shift between the two polarization direc-

tions could result from the di�erent energy positions of the peak maximum with

respect to the center of gravity in each case. However, as the peak maximum and

the center of gravity coincide in the strong coupling limit (symmetric lineshape),

it would appear unlikely that, within this simple framework, the observed energy

shift is caused by phonon contributions.

As a �nal point we mention the possible role played by electronic correlation

e�ects in the XAS �nal state. Since there are only 0.1 holes per O 2px;y orbital, the

excited electron must be distributed over several surrounding ions. This charge

redistribution in the XAS �nal state depends sensitively on the transfer integrals

between the orbitals involved. These are in turn in
uenced by geometric e�ects

(the Cu-O-Cu bond angle is 94�) and in the case of the oxygen-oxygen transfer

integrals additionally by the proximity of cations in the immediate vicinity. Both

of these e�ects could lead to a situation in which the �nal state charge distribution

is di�erent for the two polarization conditions. Taking this fact, in combination

with the various intersite Coulomb interactions (both core-valence and valence-

valence), it is conceivable that the �nal state energies for Eka and Ekb result

in a shift of both the same magnitude and direction as observed in experiment.

Consequently, the direction and magnitude of the experimentally observed energy

shift provides a useful constraint for the parameters involved in future model

calculations of edge sharing CuO2-chains.

To summarize our results, direct experimental information on the character

and symmetry of the intrinsic holes in the edge-sharing chain of Li2CuO2 has been

obtained by polarization-dependent x-ray-absorption spectroscopy. Although for

light polarization within the plane of the CuO4-plaquettes the chain geometry

suggests isotropic oxygen contributions to the UHB, we observe a shift in energy

in dependence of the direction of the light polarization. This shift has been

discussed within the framework of bandstructure e�ects, the role of phonons in

the excitation process as well as the impact of electronic correlations in the XAS

�nal state.
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Chapter 6

Summary and outlook

The physics of cuprates is strongly in
uenced by the dimension of the copper-

oxygen network in the considered crystals. Due to the rich manifoldness of dif-

ferent network geometries realized by nature, cuprates are ideal model systems

for experimental and theoretical studies of low-dimensional, strongly correlated

systems. The dimensionality of the considered model compounds varies between

zero and three with a focus on one- and two-dimensional compounds.

Starting from LDA band structure calculations, the relevant orbitals for the

low-energy physics have been characterized together with a discussion of the

chemical bonding in the investigated compounds. It was shown, that qualitative

results can already be estimated by considering structural elements like local and

crystal symmetry, interatomic distances, and bond-lengths. By means of this

systematic approach, the in
uence of particular structural components on the

electronic structure could be concluded.

For all undoped cuprate compounds, paramagnetic LDA band structure cal-

culations yield a metallic groundstate instead of the experimentally observed

insulating behavior, and the strong correlations have to be taken into account in

a more explicit way. Model calculations using Hubbard- or Heisenberg-like

models are suitable to investigate most of the magnetic couplings in cuprates.

The necessary parameters were obtained from tight-binding parameterizations of

LDA band structures, except the correlation part which was obtained from ex-

periments or from constrained LDA calculations reported in the literature. In

a comparative study of the chain compounds Sr2CuO3, Ca2CuO3, and CuGeO3,

the in-chain and inter-chain interactions were investigated, which are responsi-

ble for the phase transition either to an AFM or to a spin Peierls state at

low temperatures. Even if the absolute values calculated for exchange integrals,

magnetic moments, and ordering temperature are too large, the ratio for di�er-

ent compounds was found in agreement with experiment. This emphasizes the

necessity to improve the models available for such anisotropic compounds.
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Each theoretical result has to be veri�ed by experiment, and the interpre-

tation of experiments usually needs a theoretical background. In the dialogue

between experiment and theory, valuable insights into the occupied and un-

occupied valence band structure of cuprates were obtained. ARPES measure-

ments on Ba2Cu3O4Cl2 were interpreted in terms of two Zhang-Rice singlets

moving in di�erent magnetic spin backgrounds and representing in this way si-

multaneously the low and very high doping limit. A valence band analysis of

Sr2CuO2Cl2 compared with polarization-dependent ARPES experiments showed,

that an LSDA+U scheme is more appropriate to interpret the spectra than sim-

ple LDA, which gives not only the wrong groundstate, but also the wrong energy

order of the orbitals. A comparison of XAS spectra with the calculated density of

states for Li2CuO2 highlighted the importance of phononic and polaronic e�ects

for the interpretation of high energy spectroscopy.

The present work shows, that the combination of experiment, LDA, and model

calculations is a powerful tool for the investigation of the electronic structure

of strongly correlated systems. Using the presented paramagnetic and the not

discussed spin-polarized band structure results, further work could follow these

lines: Starting with a TB parameterization, the magnetic coupling in the \zero-

dimensional" Bi2CuO4 and in the merlon chain compound Ba3Cu2O4Cl2 can be

analyzed. For the edge-sharing chain compound Li2CuO2 a multi-band model

can be constructed to calculate the exchange integrals. First estimates are in

contradiction to experimental values from neutron scattering by at least one or-

der of magnitude. Furthermore, a comparative study between the spin Peierls

compound CuGeO3 and the recently discovered isostructural CuSiO3 including

experimental results is already in preparation. A more general aspect for further

investigations concerns the in
uence of orbitals beyond the standard pd models.

Preliminary results show their importance for physical properties connected with

long range interactions in strongly anisotropic compounds, like ordering temper-

ature or magnetic moments.
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Appendix

A De�nition of the net-DOS and of the orbital weight

In our LCAO calculations, the Bloch wave function jk�i is composed of over-

lapping atomic-like orbitals jLiji centered at the atomic site j in the elementary

cell i with coordinates Ri + Sj,

jk�i =
X
Lij

Ck�
Lije

ik(Ri+Sj)jLiji (A.1)

with the normalization condition hk�jk�i = 1. Here, L = fnlmg where n, l, and
m denote the main quantum number, the angular momentum and the magnetic

quantum numbers, respectively (see Section 2.2.1). Note that for each l only one

main quantum number n is considered. With the usual de�nition for the density

of states

�(!) =
1

Nk

X
k�

Z
d3r hk�jrihrjk�i�(! � Ek�) (A.2)

where Nk is the number of elementary cells equivalent to the number of k-values,

� can be written as

�(!) =
1

Nk

X
k�

Z
d3r

X
Lij

X
L0i0j0

Ck�
LijC

k��
L0i0j0hLijjrihrjL0i0j 0i

�eik(Ri+Sj�Ri0�Sj0 )�(! � Ek�) (A.3)

or

�(!) =
1

Nk

X
k�

X
Lij

X
L0i0j0

Ck�
LijC

�k�
L0i0j0SLij;L0i0j0e

ik(Ri+Sj�Ri0�Sj0 )�(! � Ek�) (A.4)

where SLij;L0i0j0 is the overlap matrix. Now we can decompose � into an on-site

part (i = i0 and j = j 0) and an overlap part (i 6= i0 or j 6= j 0). For the on-site
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part we �nd SLij;L0ij = �LL0 due to the orthogonality of atomic-like orbitals at the

same site. So we can de�ne a net density of states (net-DOS)

�net(!) =
1

Nk

X
k�

X
Lij

jCk�
Lijj2�(! � Ek�) : (A.5)

The di�erence between the DOS and the net-DOS consists in the overlap density

and is relatively small near the nonbonding states (see Fig. 2 of Ref.[191]).

To de�ne the orbital character of a k-point of a band �, we write the net-DOS

(A.5) as

�net(!) =
1

Nk

X
k�

X
Lj

W k�
Lj �(! � Ek�) ; (A.6)

where we de�ne the weight of the orbital jLji in the state jk�i in the form:

W k�
Lj =

X
i

jCk�
Lijj2 : (A.7)

The sum of all weights is approximately unity,
P

LjW
k�
Lj � 1, with small devia-

tions due to the neglect of the overlap density.

B Analytical expressions for the eigenvalues of the 11-band tb-model

of the Cu3O4-plane

As written in Section 4.3.1, the tight-binding matrix is block-diagonal at the high

symmetry points � = (0; 0) and M = (�=a; �=a), so it is possible to calculate the

eigenvalues analytically. In the following these eigenvalues are listed correspond-

ing to the di�erent parts of the tight-binding Hamiltonian.

Eigenvalues at k = (0; 0):

CuA-subsystem:

"Ad

"p � 4tpp (B.1)

1

2

h
"Ad + "p + 4tpp �

q
(�A + 4tpp)2 + 32t2pd

i
CuB-subsystem:

"� � 2t+��
1

2

�
"Bd + "� + 2t+�� �

q
(�B + 2t+��)

2 + 16t2�d

�
(B.2)
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coupling between the subsystems:

1=2("p + "� �
q
�2

p� + 64t2p�) (B.3)

The eigenvalues in (B.3) are twofold degenerated.

Eigenvalues at k = (�; �):

CuA-subsystem:

1

2

h
"Ad + "p �

q
�2

A + 16t2pd

i
(B.4)

CuB-subsystem:

"� + 2t���
1

2

�
"Bd + "� � 2t��� �

q
(�B � 2t���)

2 + 16t2�d

�
(B.5)

coupling between the subsystems:

"p

"� (B.6)

where �A = "p � "Ad , �B = "� � "Bd , �p� = "p � "�, t
�

�� = t1�� � t2��. The

eigenvalues in (B.4) and (B.6) are twofold degenerated.

C Exchange integrals in pertubation theory for the Cu3O4-plane

�A = "p � "Ad ; �B = "� � "Bd ; �AB = "p � "Bd ; �BA = "� � "Ad (C.1)

tpdA = tpd; tpdB = t�d (C.2)

J
[4]

AA =
4t2pdA

(�A + Upd)2

n
Kpd +

2t2pdA

2�A + Up

+
t2pdA

Ud

+
K2

pd

�A + Upd

o
(C.3)

J
[6]

BB =
8t2pdB(t

1
��)

2

�2
B

n 1

(�B + Upd)2

�
Kpd +

2t2pdB

Ud

�
+

K2
pd

(�B + Upd)3

+t2pdB

� 1

2�B + Up

+
1

2�B

�� 1

�B + Upd

+
2

2�B

�2o
(C.4)
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J
(3)[6]

AB =
X
A$B

2t2p�t
2
pdBKpd

�2
B(�AB + Upd)2

�
1 +

Kpd

�AB + Upd

�

+
X
A$B

2t2p�t
2
pdAt

2
pdB

�2
B(�AB +�A + Up)

� 1

�A

+
1

�AB + Upd

�2

+
X
A$B

2t2p�t
2
pdAt

2
pdB

�2
B(�AB + Upd)2("

A
d � "Bd + Ud)

(C.5)

J
(1)[6]

AB;af =
X
A$B

4t2p�t
2
pdBKpd

�2
B(�AB + Upd)2

�
1 +

Kpd

�AB + Upd

�

+
X
A$B

4t2p�t
2
pdAt

2
pdB

�2
B(�A +�AB)

� 1

�A

+
1

�AB + Upd

�2

+
X
A$B

4t2p�t
2
pdAt

2
pdB

�2
B(�AB +�A + Up)

� 1

�A

+
1

�AB + Upd

�2

+
X
A$B

8t2p�t
2
pdAt

2
pdB

�2
B(�AB + Upd)2("

A
d � "Bd + Ud)

(C.6)

J
(1)[5]

AB;f =
22t2pdAt

2
pdB2Kp�

(�A +�B + Up�)2

� 1

�A

+
1

�B

�2
(C.7)
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D Orbital weight of valence bands in Sr2CuO2Cl2

�

Nr. E/eV pz p� p� d3z2�r2
d(x;y)z dxy d

x2�y2
Os Cus

P
Cl not. M1 M2

1 -1.64 0 0 0 0 0 0 .903 .097 0 0 d
x2�y2

A S

2 -2.28 0 0 0 .817 0 0 0 .015 .005 .163 d3z2�r2
S S

3,4 -2.34 0 .456 .530 0 0 0 0 0 0 .014 (p�p�) A S

(~p�~p�) S A

5 -2.72 0 0 0 0 0 1.00 0 0 0 0 dxy S A

6,7 -2.96 0 0 0 0 .984 0 0 0 0 .016 d(x;y)z o o

8,9 -3.46 1.00 0 0 0 0 0 0 0 0 0 pz o o

(-3.19) (.526) (.474)

10,11 -5.14 0 .495 .495 0 0 0 0 0 0 .010 (p�p�) A S

(~p�~p�) S A

(�; �)

Nr. E/eV pz p� p� d3z2�r2
d(x;y)z dxy d

x2�y2
Cus Os

P
Cl not. M1

1 2.32 0 .554 0 0 0 0 .446 0 0 0 (d
x2�y2

p�) A

2 -1.33 0 0 .196 .006 0 .792 0 0 0 .006 (dxy~p�) S

3,4 -1.58 .563 0 0 0 .437 0 0 0 0 0 (d(x;y)zpz) o

5 -1.87 0 .038 0 .637 0 .009 0 .055 0 .261 (d3z2�r2
~p�) S

6 -2.12 0 0 1.00 0 0 0 0 0 0 0 p� A

7,8 -4.56 .641 0 0 0 .268 0 0 0 0 .091 (pzd(x;y)z) o

9 -5.21 0 .424 0 0 0 0 .576 0 0 0 (p�dx2�y2
) A

10 -6.15 0 .003 .702 .001 0 .291 0 0 0 .003 (~p�dxy) S

11 -7.23 0 .495 0 .018 0 0 0 .294 0 .193 (~p�d3z2�r2
) S

(�,0)

Nr. E/eV pz p� p� d3z2�r2
dyz dxz dxy d

x2�y2
Cus Os

P
Cl not. M2

1 -.40 0 .128 0 .015 0 0 0 .599 .105 .105 .049 (d
x2�y2

p�) S

2 -1.42 0 0 .335 0 0 0 .665 0 0 0 0 (dxy~p�) A

3 -1.63 .395 0 0 0 0 .601 0 0 0 0 .004 (dxzpz) o

4 -2.12 0 .002 .001 .655 0 0 0 .096 .007 .019 .220 (d3z2�r2
d
x2�y2

) S

5 -2.87 0 0 0 0 .880 0 0 0 0 0 .120 dyz o

6 -3.29 .594 0 0 0 0 .019 0 0 0 0 .387 pz o

7 3.58 0 .532 0 0 0 0 0 0 0 0 .468 ~p� A

8 -3.96 0 0 .935 0 0 0 0 0 0 .046 .019 p� S

9 -4.13 .403 0 0 0 0 .270 0 0 0 0 .327 (pzdxz) o

10 -4.62 0 .057 .475 0 0 0 .348 0 0 0 .120 (~p�dxy) A

11 -5.74 0 .268 .004 .079 0 0 0 .149 .032 .009 .459 (p�dx2�y2
) S

Table 6.1: LDA data of Sr2CuO2Cl2 at high-symmetry points showing the weights of the

di�erent orbital groups contributing to each band. Also given are the di�erent re
ection sym-

metries with respect to M1 and M2 (see Fig. 5.9, respectively (antisymmetric (A), symmetric

(S) and out-of-plane bands (o)).
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�

Nr. E/eV pz p� p� d3z2�r2
dyz dxz dxy d

x2�y2
Os Cus

P
Cl not. M1 M2

1 -.30 0 0 0 0 0 0 0 .909 .091 0 0 d
"

x2�y2
A S

2,3 -2.69 0 .439 .543 0 0 0 0 0 0 0 .018 (~p�~p�) S A

(p�p�) A S

4,5 -3.83 1.00 0 0 0 0 0 0 0 0 0 0 pz o o

(-3.69) (.567) (.433)

6 -4.58 0 0 0 .640 0 0 0 0 .031 0 .329 d3z2�r2
S S

7� -4.92 0 0 0 0 0 0 0 .893 .107 0 0 d
#

x2�y2
A S

7 -5.40 0 0 0 0 0 0 1.00 0 0 0 0 dxy S A

8,9 -5.57 0 .499 .463 0 0 0 0 0 0 0 .038 (~p�~p�) S A

(p�p�) A S

10,11 -5.88 0 0 0 0 .803 (.803) 0 0 0 0 .197 dy(x)z o o

(�; �)

Nr. E/eV pz p� p� d3z2�r2
dyz dxz dxy d

x2�y2
Os Cus

P
Cl not. M1

1 3.12 0 .467 0 0 0 0 0 .533 0 0 0 (d
"

x2�y2
p�) A

1� .65 0 .704 0 0 0 0 0 .296 0 0 0 (p�d
#

x2�y2
) A

2 -2.43 0 0 1.00 0 0 0 0 0 0 0 0 p� A

3,4 -2.98 .711 0 0 0 .143 .143 0 0 0 0 .002 (pzdx(y)z) o

(-2.97) (.006)

5 -3.35 0 .009 .345 .030 0 0 .564 0 0 .004 .048 (~p�dxy) S

6 -3.66 0 .096 .020 .356 0 0 .053 0 0 .051 .424 (d3z2�r2
~p�) S

7 -4.94 0 .561 0 0 0 0 0 .439 0 0 0 (p�d
"

x2�y2
) A

8,9 -6.62 .155 0 0 0 .341 .341 0 0 0 0 .123 (dx(y)zpz) o

(-6.06) (.093) (.275) (.275) (.357)

10 -7.20 0 .003 .392 .010 0 0 .591 0 0 0 .004 (dxy~p�) S

10� -7.28 0 .207 0 0 0 0 0 .793 0 0 0 d
#

x2�y2
p� A

11 -7.86 0 .478 .001 .073 0 0 0 0 0 .280 .168 (~p�d3z2�r2
) S

(�,0)

Nr. E/eV pz p� p� d3z2�r2
dxz dyz dxy d

x2�y2
Os Cus

P
Cl not. M2

1 .47 0 .053 0 0 0 0 0 .696 .124 .106 .021 (d
"

x2�y2
p�) S

1� -2.40 0 .273 0 .039 0 0 0 .323 .083 .119 .163 (p�d
#

x2�y2
) S

2 -2.94 0 0 .659 0 0 0 .341 0 0 0 0 (~p�dxy) A

3 -2.96 .704 0 0 0 .245 0 0 0 0 0 .051 (pzdxz) o

4 -3.76 0 .086 .003 .344 0 0 0 .057 .006 .017 .487 (d3z2�r2
p�) S

5 -3.79 .705 0 0 0 .013 0 0 0 0 0 .282 pz o

6 -4.11 0 .635 0 0 0 0 0 0 0 0 .365 ~p� A

7 -4.32 0 0 .933 .001 0 0 0 0 .049 0 .017 p� S

8 -5.93 0 0 0 0 0 .859 0 0 0 0 .141 dyz o

9 -6.17 0 0 .199 0 0 0 .801 0 0 0 0 (dxy~p�) A

10 -6.37 .128 0 0 0 .384 0 0 0 0 0 .488 (dxzpz) o

11 -6.44 0 .390 0 .409 0 0 0 .104 .035 .062 0 (p�d3z2�r2
) S

11� -7.49 0 .298 0 .060 0 0 0 .520 .004 .076 .042 (d
#

x2�y2
p�) S

Table 6.2: The LDA+U data of Sr2CuO2Cl2 at the high-symmetry points. The bands noted

by a star correspond to majority spin (#), whereas all the other data are given for minority

spin ("). The column "not." gives the notation used in Section 5.3.3 to describe the bands.
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(a) �

orbitals repr. M1 M2

p�, ~p� E
(1)
u (5�) 0 0

p�, ~p� E
(2)
u (5�) 0 0

(p
(1)
z + p

(2)
z )=

p
2 A2u (2�) + +

(p
(1)
z � p

(2)
z )=

p
2 B2u (4�) � +

dx2�y2 B1g (3+) � +

dxy B2g (4+) + �
d(x;y)z Eg (5+) 0 0

d3z2�r2 A1g (1+) + +

(b) (�; �)

orbitals repr. M1

d3z2�r2, ~p� A1g (1+) +

p� A2g (2+) �
dx2�y2 , p� B1g (3+) �
dxy, ~p� B2g (4+) +

d(x;y)z, p
(1;2)
z Eg (5+) 0

(c) (�; 0)

orbitals repr. M2

dx2�y2 , d3z2�r2, p� Ag (1+) +

dxy, ~p� B1g (2+) �
~p� B2u (3�) �
p� B3u (4�) +

dxz, p
(1)
z B2g (3+) +

p
(2)
z B1u (2�) +

dyz B3g (4+) +

Table 6.3: Assignment of the orbitals to irreducible representations of the

corresponding small groups at high-symmetry points: a) � (group D4h), b)

(�; �) (D4h) and c) (�; 0) (D2h). The notations in parentheses are according

to Luehrmann [181] (see also Ref. [152]). Also given are the characters

with respect to re
ections at M1 or M2, respectively, whereby + and -

correspond to the S and A given in Table 6.1. The orbital p
(1)
z means pz

orbitals at positions i� x=2, and p
(2)
z at positions i� y=2.
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