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Chapter 1

Introduction

The knowledge of the electronic structure of solids is a fundamental ingredient
to the understanding of their properties. In the last decades there was a tremen-
dous progress in the investigation of electronic structures, but our knowledge is
still far from being complete. The exact solution of the complete many-body
problem of a solid is impossible due to the huge number of degrees of freedom.
To approximate the solution, the standard way is a mapping onto an effective
independent particle picture with every particle considered to move in the same
potential created by all other particles. This procedure is very successful for many
metals and intermetallic compounds, but it fails for example for some transition
metal oxides such as CrOs, NiO or CuO. For these compounds, the single electron
picture yields metallic behavior instead of the experimentally observed insulating
behavior. This fact is due to the strong COULOMB correlations present in the
poorly screened d-states. Compounds where the effective mean field approxima-
tion! fails due to strong electron-electron interaction are commonly denoted as
strongly correlated systems.

Initiated by the discovery of the high temperature superconductivity (HTSC)
[1], the development of methods for a better description of such strongly correlated
systems was, in particular during the last ten years, one of the most interesting
directions in solid state physics. The knowledge of the mechanism of HTSC
would be important for technical applications, but in spite of many efforts this
mechanism is still unclear. A further detailed study of different aspects of strongly
correlated systems might also provide a key for the solution of this fascinating
HTSC problem.

The fundamental structural building block in all high temperature supercon-
ductors is a copper-oxygen plane built from CuOs-plaquettes (see Figs. 3.1, 3.21).

'In this context, the expression mean field approzimation should be understood more gener-
ally for approaches which neglect at least a part of dynamic interactions due to an approximate
mapping onto an effective single particle picture.
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Starting from isolated plaquettes of this type which can be written as [CuO,]™®,
a rich variety of topologically different copper-oxygen networks can be described.
All members of this big family are kept together by Cu 3d-O 2p molecular states.
An important quantity for the electronic properties is the total number of d-holes
in the plaquette. In the isolated plaquette mentioned above, one d-hole is already
present, on the copper site. Additional holes or electrons can be introduced either
by substitution of different cations, or by an excess or a lack of oxygen. In the
present work, only undoped compounds with one exception are investigated. For
this class of compounds, the antibonding Cu 3d-O 2p band is half-filled and splits
into an upper and a lower band due to the strong electron-electron interaction
on the copper site. A correlation gap opens, the groundstate is insulating and in
most cases antiferromagnetic.

The essential difference between all these cuprates composed of copper-oxygen
plaquettes is the varying connection between the plaquettes. Corresponding to
the connection, these compounds can be classified as zero-, one-, two- and three-
dimensional systems with respect to the electronic structure (see Chapter 3). A
detailed analysis of the electronic properties especially for the low-dimensional
compounds, which can be regarded in some sense as parent-compounds of the
more complex high temperature superconductors, is the aim of the present work.

The understanding of low-dimensional cuprates might be not only the key for
the problem of HTSC: The main issue addressed in this work are the unusually
magnetic properties of these systems (see Chapter 4) that attracted large theo-
retical interest in recent years. In the class of quasi one-dimensional compounds,
one finds for example nearly ideal realizations of the one-dimensional spin-1/2
HEISENBERG model [2]. Spin-charge separation [3] or phase transitions to anti-
ferromagnetism [4] and to a spin PEIERLS state [5], respectively, are observed at
low temperatures. These phase transitions are affected by large quantum fluctu-
ations. In some cases the corresponding transition temperature is extremely low
with respect to the dominating exchange interaction, furthermore unusual small
magnetic moments are found. All these properties make the low-dimensional
cuprates to be ideal model systems for checking, improving and developing the-
oretical approaches to physics in low-dimensions.

In this work, a typical strategy to investigate strongly correlated systems like
cuprates is pursued: The relevant orbitals are found from band structure calcu-
lations. Using these orbitals and the related transfer matrix elements, models
which take into account the strong correlations explicitly are constructed and
lead to a more suitable description of such strongly correlated systems.

The thesis is organized as follows: The theoretical background of the band
structure calculations performed on the basis of the density functional theory is
presented in Chapter 2. In Chapter 3, a systematic overview of cuprate com-



pounds belonging to the typical network geometries is given, including band
structure calculations and the discussion of the relevant orbitals for each presented
compound. The extraction of model parameters from the above mentioned band
structure calculations and a more appropriate treatment of the strong COULOMB
correlations is presented in Chapter 4 with focus on typical examples. The in-
terpretation of spectroscopic measurements starting from band structure calcu-
lations and subsequent model calculations is the topic of Chapter 5. Finally, a
short summary and an outlook is given in Chapter 6.
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Chapter 2

Electronic structure of solids

2.1 Density functional theory

A complete description of a solid could be achieved by solving the SCHRODINGER
equation for the many-particle-problem. Due to the huge number of degrees of
freedom in the order of magnitude of the AVOGADRO-constant, however, the
many-particle wave function is much too complex for such a strategy. Moreover,
the many-particle wave function contains much more information than necessary
for a calculation of relevant physical properties. Density matrices are appropriate
quantities to extract the relevant information out of such unhandy constructs as
N-particle wave functions are. The use of reduced density matrices and some
approximations yield a formulation of the many-particle theory in terms of effec-
tive single-particle equations. These can be treated numerically and are suited
to describe many experimental situations with high accuracy.

The accuracy of bandstructure calculations performed using the density func-
tional theory (DFT) within usual approximations' is especially good for rea-
sonably closed packed structures where correlations play a minor role. For the
strongly correlated systems which are presented in this work this approach fails.
One has to deal with the correlations in a more explicit way within models on
top of the DFT in its computable approximations. Such models will be discussed
in later parts of the chapter.

In the following, the main ideas of the density functional theory developed
by HOHENBERG and KOHN [7] and others are shortly presented, together with a
calculational scheme based on this concept.

! The DFT is an exact theory, problems arise only due to the approximations for the unknown
functional of the exchange correlation energy which are assumed for practical calculations [6],
see also (2.1.2).
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2.1.1 KOHN-SHAM-Equations

We start with the SCHRODINGER-equation for the many-body wave function ¥
in the SCHRODINGER-representation:

~

H(zy...on, Xy . Xy)W(2y .oy, Xy oo . Xv) = EV(xy ..oy, Xy oo X))
(2.1)
In this notation = (or) and X = (7R) contain both the variables for space and
spin. For an isolated system of N’ Z-fold positively charged, pointlike nuclei and
N negatively charged electrons, the Hamiltonian is given as:

N N,N’
7:[(1‘1...1‘N,X1---XN’) = Z +3 Z|r—rf Z|r
Nz 7 oA,
4z ; "R zﬂ:m (2.2)

Here, r with the indices 7,7 denote the position of the electrons, R and n,n’
correspond to the position of nuclei. Atomic units are used, i.e., m¢ = h =
le] = 1. This Hamiltonian contains pure electronic contributions, pure nuclear
contributions and coupling terms between them. Due to the fact that the ratio
of mass me/Mproton = 1/2000 < 1, the movement of the nuclei is much slower
than that of the electrons. Thus, we can consider the electronic system at any
time in equilibrium with the corresponding configuration of the nuclei. This is
the so-called adiabatic approximation [8] which is reasonable for most low energy
excitations®. The kinetic energy of the nuclei in the last term of Eq. (2.2) is
neglected in this approximation. We will focus now and in the remaining parts
of this thesis on the electronic system considered in the external potential Vi
generated by the fixed nuclei and rewrite the Hamiltonian for the decoupled
problem:

N

Z ( +’Uext rz Z |rZ . I' ) (23)

yp
ﬂ>
<

T = Z% (2.4)

2The adiabatic approximation is good as long as the kinetic energy of the nuclei is small
compared with the electronic transfer integrals. For the case of strong electron-phonon coupling
and high phonon energies (see Sec. 5.4.2), this approximation becomes inappropriate.
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N N,N’
’ _ ext _ Zn
Vet = E v (I‘i)——g m, (2.5)
i im Y n
N
~ 1 1
= = —. 2.6
22— 1] 26)
i £

Now we can define the ground state wave function Wq of the electronic system,
the ground state energy
Eq = (Vg|H|¥g) (2.7)

and the ground state density
ng(r) = Z /\I!’é(ar, To...xn)Va(or, 2o .. 2,) d2y ... dxy, . (2.8)

It is noteworthy, that HOHENBERG and KOHN [7] proved, that the groundstate
density ng(r) alone already determines the external potential Vg and hence
Vs and all ground state properties uniquely. A variational principle for Eg,
formulated in the work of HOHENBERG and KOHN and generalized later by LEVY
[9] and LIEB [10] gives the possibility to construct an explicit scheme to calculate
Eg and ng(r) for a constant number of particles:

/n(r) dr = N} (2.9)
_ mnin{F[n]—i-/n(r) v (r) dr /n(r) dr:N} (2.10)

where ¥, is the class of all normalized fermionic wave functions with the density
n. The unknown HOHENBERG-KOHN functional F[n] = ming_,,(¥,|T + U|¥,)
is a functional of the density only and can be redefined as follows:

Eolv™] = %in{<wn|ﬁ|mn>

Fln] = To[n] + Eul[n] + Ex[n] . (2.11)
The HARTREE part of the electron-electron interaction energy is given by
1 fn(e)n()
Eyln] =5 | ———drd 2.12
H[n] 2/ |r—r’| rdr , ( )

with self-interaction included. Otherwise, it could not be expressed by the total
density only. Tp[n] is the ground state kinetic energy of a non-interacting electron
gas with the density n:

N

To[n] = Z@i' — %I@) : (2.13)

N
n=>y &, (2.14)

(®i|@;) = dij - (2.15)
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The functions ®; are the N lowest single particle eigenstates in an appropriate
external potential. The only unknown part® of F[n] is the exchange-correlation
energy FEiy.[n] = n] — (Ty[n] + Euln]), containing the whole information be-
yond mean field about kinematic (exchange) and dynamic (correlation) electron-
electron interactions in the ground state. The functional derivative of the ground
state energy with respect to the density under the constraint of Equation (2.10)
has to be zero in the minimum:

% <F[n] + /n(r) v (r) dr — /L/n(r) dr) _

= DTy fn] 4 om(r) + ) + o) — = 0. (2.16)

Herein, p is the the chemical potential. The combination of (2.16) with the
functional derivative of Ty[n]| with respect to the single particle function ® leads
to the KOHN-SHAM-equations:

<—%A+veg(r)> B; = £,D; | (2.17)
which is a single particle equation in an effective potential:
vegt (1) = / ;fz,' dr’ + vse(r) + v () (2.18)
where 5
Vye(r) & e e ()] (2.19)

The KOHN-SHAM-energies ¢; have been introduced as LAGRANGE-multipliers in
the variation to ensure the normalization of the orbitals in the kinetic energy
expression (2.13). The equations (2.17-19) together with the density expres-
sion (2.14) define a non-linear system of integro-differential equations for the
determination of the ground state density. This system of equations has to be
solved self-consistently. It should be noted that self-consistency means just that
a stationary value of the energy is found, which is not necessarily the global
minimum. Formally, the KOHN-SHAM-equations are correct, but the exchange-
correlation potential (2.19) is unknown for most systems. For a practical solution,
approximations of Fy.[n| are needed. Such an approximation, the local density
approximation (LDA), will be presented in the next section.

In many cases, experimental band structures and other measured quantities
can be described with the solutions of Equation (2.17). This is understandable
because of the similarity of the KOHN-SHAM-potential vy, and a local approx-
imation of the self-energy operator near the KOHN-SHAM FERMI level in most

3remark that Tj is not explicitly known
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metals [11]. Therefore, the band energies near the FERMI level can be interpreted
as quasiparticle excitations.

2.1.2 The local spin density approximation

A weak point of the scheme shown in the last section was the absence of a prac-
ticable expression for the exchange-correlation potential v,.. An exception is the
homogeneous electron liquid, a model system with constant external potential
and constant ground state density ng. For this model system, which contains es-

hom
XC

sential exchange and correlation effects, v2o™

can be determined with good accuracy by means of Monte Carlo calculations
[12, 13]. Roughly, £1°™ oc n'/3 and vho™ o n!/3,

XC XC

and the xc-energy per particle ¢

As approximation for inhomogeneous systems, KOHN and SHAM [14] replaced
the xc-energy density at the position r by the xc-energy density of an homoge-
neous electron liquid with the density n(r):

ELPA o(r)] = / £0m (1)) n(x) dr (2.20)

This is called the local density approximation and seems reasonable for slowly
varying densities, for instance in simple metals. There is no simple reason why
this approach describes well such inhomogeneous systems like atoms, ions or
molecules, where the electrons built up shells and directed bonds, respectively.
Nevertheless, the LDA leads to remarkably good results for transition metals,
molecules and, to a certain extend, even for atoms and ions. The cause for this
success is that the xc energy originates only from the spherical part of the xc hole
around an electron [15], due to the isotropy of the COULOMB interaction. This
part of the xc hole is well described in LDA [16].

The KOHN-SHAM variational principle is valid independently of the nature
of the groundstate, if it is itinerant or localized, non-magnetic or spin-polarized.
However, within the above presented spin-degenerated theory it is not possible
to distinguish the latter two situations. Even with the knowledge of the exact
FE. we could not calculate spin densities and related properties. It was shown
by VON BARTH and HEDIN [17] that this theory can be generalized by replacing
the density n by the spin density matrix n,» = n, the potential v*' by the
spin-dependent potential* v®! and the states (¢7, ®') by the corresponding spinor
states (¢2, ®'). Without repeating the previous considerations, we rewrite the

4The spin dependency of the potential is introduced for sake of flexibility, for instance it is
needed for an initial spin-splitting for spin-polarized calculations.
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KOHN-SHAM equations as follows:

Z((_% + vn(r, [1]))Bor + V53 () + Ve (1, []) Gy = 5@, (2:21)

g-l

N
Ngo' = Z‘b?q’gl* y (222)

Uxc,o0' (I‘, [n]) = 6EXC [n]

2.2
o (229

Bt ) = [t @) () ey de (220
with the particle density

n=Y neg=n'"+n". (2.25)

Here, n* and n~ are the spin up and spin down densities, respectively, with
respect to a preferred axis. The HARTREE part of the potential is unchanged.
Now we can calculate the spin momentum density

3 =tr(on) (2.26)

and the related spin magnetic moment y4 in a given volume V

s = —MB/V drX(r) . (2.27)

Herein, o = (0, 0, and o0,) are the PAULI spin matrices, pp is the BOHR mag-
neton.

This spin-dependent theory is called local spin density approximation (LSDA)
and allows the calculation of all kinds of magnetic systems. Corresponding to the
LDA, the local approximation is done with respect to the xc energy per particle
€

hom of the spin-polarized homogeneous electron gas. For practical calculations,
hom

XC

with free parameters fitted to the numerical results
are usually used [17]. To find spin-polarized solutions, a spontaneous symmetry

analytical expressions for ¢

breaking has to be simulated by initially spin-splitting the external potential,
because the non-magnetic state is always a local extremum in the energy func-
tional due to the symmetry between both spin polarizations in a spin-independent
external potential.

2.1.3 Quasiparticle excitations and L(S)DA+U

In Section 2.1.1, the KOHN-SHAM orbitals ®; with the related single particle ener-
gies g; have been introduced formally as auxiliary quantities needed to construct
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the density n. For the case of a non-interacting system, the KOHN-SHAM states
above the FERMI energy coincide with the excitations of the system. For certain
excitations of the interacting system, this property is approximately kept. This
allows an easy and straightforward interpretation of experimental spectra using
KoOHN-SHAM band structures.

We consider the DYSON equation originating from a rigorous many-body
treatment of the interacting system [18]:

[_% + 0™ (r) 4 vn ()] Wi(r) + / dr'M(r' r, E;)V,(r') = E;Wi(r)  (2.28)

This equation describes weakly damped single-electron or single-hole excitations
near the FERMI energy, the so-called quasiparticle excitations. In Eq. (2.28),
all interactions beyond the mean field level are collected to an energy-dependent
integral operator. Therein, M (r', r, E;) is the non-local complex self-energy, un-
known like vy, in the KOHN-SHAM equations. Being a ground state property,
it is, according to the HOHENBERG-KOHN theorem, a functional of the ground
state density. Formal equivalence of Eq. (2.28) with the KOHN-SHAM equations
could be achieved by replacing

M(x',r, E;) — 6(r — r')uye(r) (2.29)

In fact, the imaginary part of M vanishes at the FERMI level. If we consider
the homogeneous electron gas, M should be translationally invariant and should

depend only on |r —1/|:

M(x' r, Bp) — M"™™ (|’ —r|, Ep,n), (2.30)

with the dependence on the density made explicit. It was argued by SHAM and
KouN [19] that the self-energy has a short range behavior, such that

M(t',r,E) ~ §(r — )iy (r, E) (2.31)

is a good approximation for slowly varying densities. The Eqgs. (2.30) and (2.31)
can be merged into

MM (|¢' — x|, Ep,n) = §(r — v')vy(n) (2.32)

and applied to the inhomogeneous situation in the usual local density manner,
replacing vEP2(n(r)) by vpr(n(r)) in the KOHN-SHAM equations.

This consideration establishes the formal equivalence between KOHN-SHAM
eigenvalues and quasiparticle excitation energies at the FERMI level. Figure 2.1

shows the approximate numerical equivalence of vys(n) [20] with two approximate
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Figure 2.1: Comparison of two different approximate exchange poten-
tials for the homogeneous electron gas (full line: PERDEW-ZUNGER
[21], dotted line: HEDIN-LUNDQVIST [20]) with values of vy (n) given
by HEDIN and LUNDQVIST [20]. Note, that the distance between vy,
and the xc-potentials is almost independent on the density parameter,
ry = (3/47n)'/3. This corresponds to an almost constant shift of the
potential in a large share of the volume (after RICHTER [22]).

LDA-xc potentials [20, 21]. It is clearly seen that vy (n) is almost constantly
shifted from the range of the different approximations for vy.. Away from the
FERMI level, vy, becomes energy dependent, but this dependence is still in the
same range for F; — Er not larger than a few eV.

The discussed approximation is closely related to quasiparticle properties of
the homogeneous electron gas. Hence, it works best for nearly free electron states
forming broad bands. In this case, the KOHN-SHAM orbital densities well approx-
imate quasiparticle densities, including relaxation. If the bands become narrower,
deviations between L(S)DA band energies and spectra occur. The hopping rate
is lower, and hence a stronger COULOMB interaction is felt by other electrons
because of the reduced screening. Strong on-site correlations result in a jump of
M, as a function of energy, at Er by an amount U.¢. This quantity is related to
the (screened) on-site COULOMB matrix element U. The simplest available ap-
proximation is called L(S)DA+U, where the energy dependence of M is reduced
to the jump at Ey and otherwise the L(S)DA approximation is used. Due to the
different screening, U,¢; has to be calculated for each individual compound and
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is not just an atomic property like U is. The value of the model parameter U, s
can be obtained by means of constrained DFT calculations [23].

In the Chapters 4 and 5 it is shown exemplaryly how the strong on-site
CouLOMB correlations can be taken into account to improve L(S)DA results.

2.2 The optimized LCAO method

In this section, a calculational scheme to solve the KOHN-SHAM equations in
LSDA (see 2.1.2) in the case of an ideal solid will be discussed. For most calcula-
tions of this work, an LCAO-method (linear combination of atomic-like orbitals)
was used. For a detailed description see Ref. [24] which is the basis for the
presentation given in this section.

2.2.1 'The local basis set

An ideal solid consists of a geometrical arrangement of atoms on sites R + S
where R defines an infinite BRAVAIS lattice and S the atomic positions inside
the unit cell. This periodic arrangement generates a periodic external potential
caused by the positively charged nuclei. The KOHN-SHAM eigenfunctions can be
represented as BLOCH wave functions (r|k) due to this periodicity. The trans-
lational invariance along the lattice vectors of the BRAVAIS lattice defines the
conservation of the quasi-momentum k. Each site of the unit cell can contribute
more than one electron to the system, hence for each k point several states with
the eigenenergies X are occupied. So the BLoCH wave function (r|k) can be
denoted with the band index® v.

The wave function (r|kv) in our LCAO method is composed of overlapping,
local, atomic-like wave functions |[RS). These functions are solutions of an atomic
SCHRODINGER equation®. We classify the basis functions as core states |[RSc)
and valence states |[RSp). In general, the valence functions are extended beyond
the nearest neighbor distance: they are overlapping and non-orthogonal. The
core states |R;S;c) centered at the site R; + S; should not overlap with those
of neighboring sites: (R;S;c/R;S;c) = 0 for ¢ # k or j # [. This condition is
nearly fulfilled for completely filled shells. Orbitals which violate this condition
have to be treated as valence states. Core states on the same site are orthogonal.
The given subdivision reduces considerably the matrix rank of the band problem:
The core states are already eigenstates in the effective crystal potential (in good

5The spin index o is suppressed for sake of simplicity, the equations are the same for both
spin directions.

6Tn the relativistic case the DIRAC equation is used for the calculation of the corresponding
spinor states [25].
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approximation). Since the BLOCH states should be eigenfunctions of the same
crystal Hamiltonian, we choose a new set of valence functions |RSy) which are
orthogonal to all core states’ of all atoms:

IRSp) = [RSp) — > |R'S'c)(R'S'c|RSy) . (2.33)
R'S'c
Now, the HAMILTON matrix is strongly reduced in dimension by the projection
on the HILBERT space of the valence states. If only one valence basis function
per electron is chosen, the corresponding minimal basis set is complete enough
to describe the occupied eigenstates and the low lying empty states.

The eigenfunctions |kv) of the crystal Hamiltonian are, corresponding to the
BLoOCH theorem, invariant under translation by lattice vectors. Thus, we combine
the basis functions |[RSy) in a BLOCH-sum ansatz with coefficients still be to
determined:

k) = Z |RSu>cls‘#7yeik(R+S) : (2.34)

1
) N RSu
We determine the coefficients inserting the ansatz (2.34) in the KOHN-SHAM
equation (2.17) for the crystal:

Hlkv) = eX[kv) . (2.35)

Multiplying the expression (2.35) from the left side with e *S'(0S/s//| and insert-
ing Eq. (2.34) we find the LCAO secular equation:

Z eMRHS=S) (08| FT — XT|RSp) ok, = 0. (2.36)
RSu

Equation (2.36) can be written shortly in matrix form:

> (H§ s, — €558 0s,) 8y =0 (2.37)
Su

where Hé{'wsu and SIS{’u’Su are the HAMILTON matrix and the overlap matrix,
respectively, defined for each k vector:

HSys, = DS )(08 | HIRSp) , (2.38)
R
SSusu = D08/ RSp) (2.39)
R
Now, the band energies £X and the coefficients clgw can be determined by solving

the generalized eigenvalue problem for each k. Occupying the lowest N eigen-
values for each k point, where N is the number of electrons in the unit cell, the

"In practice, the orthogonalization is done only with respect to the state with the highest
main quantum number n for each angular momentum /.
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FERMI energy of the metallic system can be determined as the highest occupied
KOHN-SHAM eigenstate.

Using the above calculated BLOCH eigenfunctions [kv) we compute the valence
part of the particle density:

nr) = Y (rlkv)(kvlr) (2.40)

occ. kv
]' > ! !
= D 3 D (TRSu)ck, o TSRS, (RIS r) . (2.41)
occ. kv RSy

R/S/u/
The expression for the valence density (2.40) can be decomposed into a sum of
local contributions consisting of a net part n3*(r)® and an overlap part ng'(r)

for each atom:

ne 1 *
aEE) = D08 S ek, (08K r) (2.42)
! occ. kv
1 : ! ’
nl(r) = Z (r|OS,u>ﬁ Z c§, e SRSV, (RIS |r) . (2.43)
R’fSL:;éS occ. kv

The contribution of the core states to the charge density of an atom at the site
S can be written as
ng™(r) = Y (r[Sc)(Sc|r) (2.44)
core
because the core states of one site do not overlap with those of the neighboring
sites.

Starting from the particle density, the crystal potential has to be computed. It
consists of the HARTREE part which is calculated solving the POISSON equation
and the xc part which is treated in the parameterization of VON BARTH and
HEDIN [17] or PERDEW and ZUNGER [21], respectively.

In compounds with crystallographically inequivalent sites, ionicities generated
by the local density contributions result in a MADELUNG-problem. Its solution
can be found by application of an EWALD technique [26].

After the computation of the potential, we can recalculate the basis set and
close the cycle of self-consistency. This procedure has to be repeated until the
potential and the density, respectively, are converged. It usually requires the
application of advanced iteration techniques.

2.2.2 The calculation of the potential

In the previous section the general features of the LCAO scheme were illustrated.
The following part describes some details and additional approximations, which

8The net part contains small orthogonalization corrections from Eq. (2.33).
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optimize this scheme and allow to treat large crystals with a reasonable amount
of computational power and time.

The HARTREE-part of the crystal potential is constructed as a sum of overlap-
ping extended spherical site potentials. This is possible because of the linearity
of the PoissoN-equation. Hence, a part of non-spherical effects which is de-
termined by crystal symmetry is taken into account self-consistently. On the
other hand, the intra-atomic asphericity is suppressed by azimuthal averaging
over the site-charge density during the iteration. This is a good approximation
for most close packed structures. For open structures, the results can be im-
proved by introduction of empty spheres® at interstitial sites. This construction
of the potential, together with the definition of the valence states as described
in Eq. (2.33) and below was quite successful in many applications and yields an
accuracy between so-called muffin-tin methods and full-potential schemes. Re-
cently, a generalization to a full-potential local-orbital minimum-basis scheme
(FPLO) has been implemented [27]. This scheme'® allows higher accuracy with
only slightly enhanced requirements on computational time and storage.

At the beginning of each self-consistent iteration, atomic-like potentials Vrg
are used to calculate the site-dependent valence orbitals. For the later steps Vgrs
is calculated from the local density of the previous step. The basis functions
(r|RSpu) are represented as a product of a radial and an angular-dependent part:

(I'|RS/L) = ¢nla(|r -R— S|))/lm(r -R- S) . (245)

The multiindex p = (nlmo) denotes the main quantum number n, the angular
momentum quantum number [, the magnetic quantum number m and the spin
o. The Y}, are real spherical harmonics.

While the core states can be calculated directly from the local potential
VRs, for the calculation of the valence states a contraction potential (r/rq(l))™,
(ng > 0) is added [28, 29, 24]. This artificial attractive potential is introduced to
compress the valence functions |RSpu). Thus, the overlap of the [RSu) is strongly
reduced in comparison with uncompressed atomic wave functions while only small
changes occur in the inner atomic region. Hence, the number of multi-center in-
tegrals in the calculation of the HAMILTON-matrix and of the overlap-matrix is
reduced correspondingly. The main point of this procedure is, however, to obtain
a sufficiently complete basis for energies above the potential zero.

The variational parameters ng and (1) are found with numerical tests: ng = 4
(fixed) and ro(l) = zo(l)R2, where Rys is the WIGNER-SEITZ radius. The

9Empty spheres do not contribute to the external potential, but the valence functions cen-
tered on these sites improve the completeness of the basis set and the representation of the
potential.

19Herein, the calculation of the basis set is slightly modified: Instead of the spherical local
potential the spherically averaged crystal potential is used.
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quantity zo(l) is an angular-momentum dependent variational parameter, which
can be determined for each lattice type by minimization of band energies on
symmetry points in empty lattice tests. Typically, 0.8 < x5 < 1.2. For open
structures, especially if the atomic radii of various components are strongly dif-
ferent, the use of the basis set optimized in this way can cause difficulties.

The exchange-correlation part of the potential, used in the parameterization
of vON BARTH and HEDIN [17], depends in a non-linear way on the density.
Hence, a representation as sum of overlapping site potentials is difficult. On
the other hand, the xc potential varies only slightly in the interstitial due to its
approximate proportionality to n'/ 3(r). Therefore, the xc potential is calculated
in atomic-sphere approximation (ASA)'. Spherically symmetric xc potentials
are computed from the spherically averaged densities inside atomic spheres. The
radii of these spheres are determined under the condition, that the densities on
their surfaces are the same and the sum of their volumes is equal to the volume
of the unit cell. For complex or open structures with strongly different types of
atoms, these requirements can be only approximately fulfilled. For such cases, the
introduction of empty spheres can improve the construction of the xc potential.

2.2.3 Advantages and disadvantages of the method

The presented LCAO-scheme has some advantages over other band structure
methods. First, and extensively exploited in this thesis, the atomiclike character
of the basis orbitals gives a natural possibility to extract the relevant orbitals for
the construction of model Hamiltonians (see 4.3.1).

Second, the construction of the potential as a sum of overlapping local poten-
tials provides a good description also for the interstitial region, at least for close
packed structures. The so-constructed potential is more accurate than the muffin-
tin approximation of LMTO schemes, for example. At variance with so-called
tight binding models, the LCAO method fully takes into account the overlap-
matrix when solving the eigenvalue problem. The calculation of the HAMILTON-
matrix and of the overlap-matrix is time-consuming, but has to be considered
with respect to the accuracy of the band structures, which is comparable with
full-potential calculations like FLAPW [30]. So, the accuracy of LCAO for band
structure calculations is comparable to the most sophisticated methods, while its
performance is still comparable with fast methods like LMTO.

For historical reasons, in the implemented computer code, which has been
used for the most calculations in the presented work, the basis orbitals are repre-
sented by SLATER-functions. This is the main source of the insufficient accuracy

"Tn the FPLO scheme, no shape approximation for the xc potential is done [27].
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for the calculation of total energies'?. Except saving computational time, there is
no reason for this representation. Improvements can be achieved by numerically
represented basis orbitals. Together with an improvement of the MADELUNG-
procedure, this problem is solved in the recently developed FPLO-code [27]. Here,
the determination of the variational parameters x((l) for the optimization poten-
tial is less problematic due to a variational approach with respect to the total
energy. In its first applications, this minimum-basis scheme has provided as ac-
curate results as the best available augmented basis methods like WIEN97 [31].

2.3 Model calculations on top of DFT

In the previous sections it was discussed, that the L(S)DA fails for systems with
strong on-site COULOMB correlations. In Section 2.1.3, L(S)DA+U was men-
tioned as one possibility to improve L(S)DA while retaining an effective single-
particle scheme.

Another way to take into account the correlations that are poorly described
by LDA is sketched in the following. For the low energy physics, in most systems,
only a small number of orbitals is relevant. These orbitals can be extracted from
an LDA calculation. Subsequently, the energy bands corresponding to the orbitals
found in this way can be parameterized by fitting a tight-binding (TB) model. A
general TB Hamiltonian can be written in the form

ﬁTB = Zsi(czgciyg) + Z tz'j(C;-rngj,g + HC) , (246)

i,0 <ij>o

where c}yg and c;, are the usual creation or annihilation operators for an particle
at site ¢ or j, respectively, for sakes of simplicity, additional orbital indices are
suppressed. The symbol < ij > stands for the summation over bonds connecting
sites 7 and j, and ¢; is the so-called on-site energy of the orbital :.

Now, the Hamiltonian of the correlated system can be constructed by adding
terms guessed on the basis of physical intuition and adapted to the considered
compound and problem. For the simplest case of only one band!® the famous
HuBBARD Hamiltonian [32] is given as an example

HHM = Z tij (C;[’UC]'J + HC) +U Zﬁi:Tﬁi,Jﬂ ’fli’g = C;r’aciﬂ (247)
<ij>0 )

where the variable U describes the COULOMB repulsion of two particles at the

same site ¢ in addition to the mean field repulsion contained in the TB approach.

12An accurate representation of the potential near the nucleus with a finite number of
SLATER-functions results in small unphysical oscillations on neighboring sites.
13The sum over the on-site energies ¢; is a constant for the one-band case of Eq. (2.46).
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If more than one band is required for a proper description of the system, the
above mentioned Hamiltonian can be expanded easily [33]:

-[;[EHM ZSZ C Cz U Z tij(C}-,g.Cj’g' + HC) (248)
<ij>0
+ ZUn,an + Z Vijning .
<ij>

In Eq. (2.48), the on-site COULOMB repulsion U; is generalized to be orbital
dependent and an intersite COULOMB interaction V;; is added.

In general, also in such reduced models, the calculation of physical properties
like the magnetic susceptibility or phase diagrams is extremely complicated for a
wide region of parameters. Therefore, for some limiting cases, it is desirable to
map these models onto more simple ones. For the case U/t — oo, the one band
HUBBARD model of Eq. (2.47) turns into the so-called ¢-.J model [34]

L1
H=> tjcl (1= nis)cio(l —ijs) + > (J5SiS; — ;) (2.49)

ijo <ij>

where S; are the usual spin operators and .J;; the exchange integrals between spins
at site 7 and j. The parameters of the ¢-J model and the one band HUBBARD
model are connected via

Jij = 4t3,/U . (2.50)

It is not the aim of this work to investigate the general behavior of the above
mentioned models. Each of them can be applied to various situations to describe
strongly correlated systems. For instance, within the ¢-J model, the low energy
spin excitations of cuprates can be successfully described. It shall be demon-
strated in this thesis, how this mapping procedure works and how some physical
properties like magnetic moments or NEEL temperatures can be estimated for
a given compound using model calculations (see Chapter 4). A direct compari-
son of the measured quasiparticle dispersion with model calculations is given in
Chapter 5.
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Chapter 2. Electronic structure of solids
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Chapter 3

Cuprates — low-dimensional systems

Oxo-metallates with planar coordination-polyhedra are a challenging class of com-
pounds in solid state chemistry [35]. These compounds show interesting principles
of one-, two- or three-dimensional network formation from these planar structural
units. The physical properties, especially the electronic properties, are strongly
connected with the dimensionality of this network. A large subgroup of the Oxo-
metallates are the cuprates. Nearly all of the rich variety of topologically different
networks are found inside this subgroup. In this chapter, a systematic overview
over the topologically different low-dimensional networks of various cuprates will
be presented. Based on LDA-LCAO bandstructure calculations, a first insight
in the electronic structure will be given for each presented compound. For the
sake of simplicity and comparability, all band structure calculations presented
in this chapter are carried out for the non-spin-polarized case, even if magnetic
solutions exist. Derived from an analysis of the relevant orbitals, which should
not depend on the magnetic or nonmagnetic character of the solution, the nature
of the typical bonding in the considered compounds will be discussed.

3.1 The isolated CuO4-plaquette

The basic element of all cuprate compounds is the planar CuOy-plaquette. It
is shown in Fig. 3.1 together with the relevant covalent o-orbitals. The shell
occupation of the Cu*2-ion! is 3d%4s?, and that of the O 2-ion is 2p°®. The
nominal anionic redox number of this complex is —6: [CuO,4] ®. The highest
occupied atomic orbitals are copper 3d-orbitals and oxygen 2p-orbitals. Most
of those orbitals are non-bonding. There is one g-orbital at each ion with the
angular dependencies of the wavefunction given by (2% — y?)/r? for the Cu 3d-

'In order to simplify ionicity notations for the doped case in the sequel, we use the notation
Cu™? instead of the commonly used notation Cu?".



22 Chapter 3. Cuprates — low-dimensional systems

orbital and by x/r and y/r, respectively, for the O 2p-orbitals. (The plane of the
plaquette was taken to be the z-y-plane of a Cartesian coordinate system.)

Cu™?: 3d%4s"
O 2 2p°
[CUO4]
B unoccupied
‘ __+_ Edpa*
: occupied
~ 10eV ——— non-bonding
covalence | : 3d and 2p
energy | states
{ __*'*_ Ede

Doping: [CuO,] **"°

no binding no d — p resonance

-1 0 1 o

Figure 3.1: The covalent CuQOy4-plaquette, most relevant ingredient for
the cuprates. The copper ion resides in the center of the plaquette, and
the four oxygen ions occupy the corners. The anti-bonding molecular
orbital is shown with sign changes of the wavefunction on all four Cu-O-
bonds. Further details see the text.

The relevant molecular orbital energy level scheme is sketched in Fig. 3.1.
The strong covalent dpo bond leads to an energy splitting between the bond-
ing and anti-bonding levels as large as 10 eV. The fully occupied non-bonding
Cu-3d and O-2p levels are in between. Since due to the ionic 3d° and 2p°® occupa-
tions one electron is missing compared to full 3d and 2p shells, the anti-bonding
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dpo*-level must be half-filled. Hence, the prerequisites for covalent bonding are
fulfilled. (The energy distance between the Cu 3d-level and the oxygen 2p-level
in the molecular field is roughly 3 eV and hence small compared to the cova-
lency splitting, and the covalent band complex is partially occupied.) Due to a
strong intra-atomic correlation present in the Cu 3d-orbitals, the molecular field
approximation is, however, not sufficient to describe the electronic properties,
and the half-filled anti-bonding level splits due to these correlations into a lower
and an upper ‘HUBBARD’ level, each accessible to one electron only. The lower
HUBBARD level is occupied.

For many cuprate compounds, especially for the HTSC, doping of the CuO4-
plaquette is an important issue. The doping charge is named ¢ in Fig. 3.1. If the
plaquette is doped with electrons (6 < 0), then the anti-bonding level becomes
filled and the covalency is correspondingly reduced. At 6 = —1, the anti-bonding
band is full, and there cannot be any covalent dpo-binding any more. Doping
the plaquette with holes (6 > 0) increases the covalency. However, at large
doping rates the oxygen potential is moved down against the copper potential
(while copper remains essentially 3d”), and the level resonance is reduced, which
reduces covalency again. Hence, the CuOy4-plaquette is strongly covalently bound
around half-filling of the anti-bonding dpo*-orbital.

The architecture of quasi-planar cuprate structures by linking CuOy4-plaquettes
which share in one or two oxygen ions was considered first by MULLER-BUSCH-
BAUM [35] on empirical grounds. He made a systematic study of the cuprate
structures long before the high-7, superconductors were discovered. Composing
the basic CuO,4 blocks like bricks from a toy box leads to more and more com-
plex networks. Starting with the most simple structure, the main features due
to different linking of these blocks will be discussed in the following sections.
More detailed investigations of the electronic structure and the related magnetic
properties are presented in the Chapters 4 and 5.

3.2 Stacks of isolated plaquettes — Bi,CuO,

The isolated CuOy4-plaquette has the very high reduction state —6, and the only
structure known where it appears is BiyCuOy, [35, 36]. The unit cell of this
crystal structure is shown in Fig. 3.2. BiyCuO,4 occurs in the tetragonal space
group P4/nnc with the lattice constants a = 8.499 A and ¢ = 5.7973 A . The
unit cell contains four formula units, but only three crystallographically different
sites. The Cu-O distance within a CuOy unit is about 1.93 A and corresponds
to a typical covalent bond length. The plaquettes are arranged in turn stacks,
forming chains of copper ions parallel to the tetragonal axis.
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Figure 3.2: Unit cell of the Bi,CuOy4-crystal, perspective view (top), front
view (down left) and lateral view (down right). Here and in the sequel
the rods between O-atoms are used only to highlight the planar CuO,-

plaquettes. The strong covalent o-bonds that are present between the
central copper and the four surrounding oxygens are not emphasized.

BiCuOQy is an insulator with an antiferromagnetic phase transition below 50 K
[36]. The exact magnetic moment of the copper atoms determined by neutron
powder diffraction is still unclear. It was measured 0.93(6) up at T = 1.5 K [36]
and 0.56+0.04 at T = 13 K [37], respectively. To resolve this discrepancy and to
determine the three-dimensional (3D) magnetic structure, experiments on single
crystals are required. Independent of the exact value of the magnetic moment,
quantum fluctuations seem to play a minor role in the system because these
moments are in the order of the saturation moment of Cu in the 3d° configuration.



3.2. Stacks of isolated plaquettes — Bi, CuQOy 25

density of states of Bi,CuO,
40
30 -
20 r

0 . I

15
10 |-

— total DOS

DOS (states * eV " * cell ™)
N
o
T

energy (eV)

Figure 3.3: Total and partial DOS of Bi;CuO4. The FERMI level is at
zero energy. The contribution of other states is less than 0.1% in the
region shown.

The band-structure calculation for this compound was done scalar relativisti-
cally in the FPLO-scheme [27] and a basis set consisting of Cu (4s, 4p, 3d), O (2s,
2p, 3d) and Bi (5s, bp, 5d, 6s, 6p) was chosen. All lower lying states were treated
as core states. Due to the large extension of the Bi (5s, bp) wave functions it was
necessary to treat them as valence states since they have a considerable overlap to
the core states at neighboring sites (see 2.2.1). For the exchange and correlation
potential the parameterization of PERDEW and ZUNGER was chosen.

As expected from the previous considerations, we find as result a O—2p-Cu—3d
band complex with a width of about 8 eV. The total and the partial densities of
states (DOS) are shown in Fig. 3.3. It is to note that only the Bi—6p states give
a small further contribution to this complex, the admixture of all other states is
negligible. The well-separated narrow peak at FERMI level originates from four
narrow bands crossing the FERMI level, in accord with the four formula units per
unit cell. Of course, the antibonding bands are correlation-split in reality.
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Figure 3.4: Band structure of Bi;CuO4. The FERMI level is at zero
energy. In the upper panel the whole p — d complex is shown, the band
complex at the FERMI level is zoomed in the lower panel. The notation
of symmetry points is as follows: I'=(000), X=(100), M=(110), Z=(001),
R=(011) and A=(111) in units of (7 /a,w/a,n/c).

The KOHN-SHAM band structure is shown in Fig. 3.4. Calculating the weight
of the different orbitals (see Appendix A), we find that the bands at FERMI
level have nearly pure in-plane character. This means that these bands are built

from Cu-3d,y, 3dy2—_,> and O-2p,, 2p, orbitals. The contribution of two different



3.3. Chain cuprate structures 27

Cu—3d orbitals is due to the twisting of the plaquettes against each other (see
Fig. 3.2). A local rotation of the quantization axis shows that for the description
of a single plaquette only one copper orbital is necessary.

The half-filled band complex at the FERMI level shows sizable dispersion in
all main directions of the BRILLOUIN-zone, of the order of half an electron volt
(see Fig. 3.4). Thus, the coupling between the CuO, units is relatively isotropic.
In a one-band tight-binding model, a first estimate for the effective transfer in-
tegrals ¢; to the nearest neighbors gives a value of ¢; < 0.1 eV. With respect
to the small absolute value for the transfer integrals, the discussion of Bi,CuOy,
as “zero-dimensional compound” [38] is understandable, especially for the inter-
pretation of spectroscopic experiments which yield typical linewidths of half an
eV. However, on the energy scale of magnetic excitations, this compound has
to be considered as clearly three-dimensional due to the relatively isotropic dis-
persion. From the site-dependent orbital character of the antibonding bands it
can be concluded, that the main contribution to the 3D coupling comes from
a direct O—2p,/,—0O—2p,/, overlap between neighboring plaquettes in different
stacks leading to an antiferromagnetic exchange, Japy > 0. O—2p,/, denotes a
linear combination of the in plane O—2p, and O—2p, orbitals. A smaller con-
tribution to the coupling discussed above comes from a covalent O-Bi-O bond.
For the exchange coupling between the copper spins this should play a minor
role due to the higher order of the process. In addition to these couplings which
cause antiferromagnetic exchange, ferromagnetic exchange Jgj; < 0 interactions
in 2z direction within a stack originate from a small direct overlap between the
copper in-plane orbitals on neighboring sites. The corresponding exchange inte-
grals calculated from susceptibility data in mean-field spin-wave approximation
[36] are Japy = 11.5 K and Jpy = —5 K, respectively. Because of the quite
isotropic coupling, an RPA spin-wave approach should give reliable results. Due
to the small absolute values of the exchange integrals, the direct ferromagnetic
exchange between parallel plaquettes is experimentally accessible for this com-
pound and can be used for a rough estimate of the corresponding interaction in
the compounds discussed later, were the experimental situation is less favorable.

3.3 Chain cuprate structures

Resulting in the same covalency situation as in the isolated plaquette, but with
a lower reduction state, CuOy-plaquettes may share oxygen ions. Three of the
possible arrangements are sketched in Fig. 3.5.

Depending on the number of shared oxygen ions, we can built corner-shared
chains (see Fig. 3.5(b) and section (3.3.1)), edge-shared chains (Fig. 3.5(c) and
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Figure 3.5: Cuprate chains formed from the plaquette (a) as the build-
ing block. A corner-sharing chain (b), an edge-sharing chain (c¢), and a
double-chain (d) are shown. The phase factors of the orbitals correspond
to the antibonding state. For details see the text.

section (3.3.2)) or double-chains (Fig. 3.5(d) and section (3.3.3)), which is in some
sense a combination of the latter two. Composing the chains constructed in this
way, a rich variety of two-, three- or multi-leg ladders can be build [39]. Thus, a
quasi continuous transition is possible from one-dimensional to two-dimensional
compounds, which are presented in Sec. 3.4.

3.3.1 Corner-shared cuprate chains

If a row of plaquettes is formed where adjacent plaquettes share a corner, a one-
dimensional periodic anionic [CuOj3] *-complex results as shown in Fig. 3.5(b).
As seen from this figure, subsequent orbitals along the chain have a relative phase
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factor —1 in the totally anti-bonding state. That means that the one-dimensional
energy band of this chain in molecular field approximation has its maximum at
the BRILLOUIN-zone boundary. If the subsequent orbitals are forced to have the
same phase to obtain a zero wave vector of the BLOCH state, then the state
cannot be fully anti-bonding any more: the band has its minimum at the center
(C-point) of the BRILLOUIN-zone. Thus, without any calculation we find a cosine-
like anti-bonding band with the minimum at the zone center and the maximum at
the zone boundary. Close to half-filling this band is again correlation-split into a
lower and an upper HUBBARD sub-band, and the material is an insulator instead
of a one-dimensional metal. Examples of this case are SroCuO3 and CayCuOs
[40].

Figure 3.6: The body-centered orthorhombic unit cell of SroCuO3. The
cuprate chains run along the a direction and lie in the drawing plane
(corresponds to the ab-plane in the notation used).

The unit cell of SroCuQOj is shown in Fig. 3.6, the above mentioned Ca-
compound is isostructural to the Sr-compound. SroCuOj; and Ca,CuOs3 occur
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in body-centered orthorhombic structure with lattice constants a = 3.91 A,
b=1269 A, ¢ =349 A and a = 3.79 A, b = 12.26 A, ¢ = 3.28 A, respec-
tively [40, 41]. The CuOj chains run in a direction in the a — b plane.

Experimentally, at high temperature, SroCuO3 and Cay;CuOj3 are found to
be the best known realizations of the one-dimensional (1D) spin-1/2 antiferro-
magnetic HEISENBERG model (AHM). Their NEEL temperatures, Ty ~ 5 K for
SroCuO3 and Ty ~ 9 K for Cay,CuQOg, are very low compared to the intra-chain
exchange integrals Jj ~ 0.2 eV, and the ordered moments (<0.1 yp) are extremely
small [42, 43, 4]. The value Jj = 190 meV for Sr,CuOj; [44, 45] appears to be
the record value of an exchange integral among all known quasi-1D antiferromag-
nets. The correct description of the physics of a magnetic quasi-1D system with
a weak magnetic inter-chain interaction has recently attracted much theoretical
attention [46, 47, 48]. For all these reasons, SroCuOj has been announced to
become a ‘superstar’ in the field of low-dimensional magnetism in near future [2].

The self-consistent LDA-LCAO method has been applied to both compounds
in the scalar relativistic version with a minimum basis treating the Cu-(4s, 4p, 3d),
O-(2s, 2p), Sr-(5s, 5p, 4d) and Ca-(4s, 4p, 3d) orbitals as local valence basis states
and the lower orbitals as core states. Due to the relatively open crystal struc-
ture two empty spheres per unit cell have been introduced with empty sphere
s and p orbitals at each site. For the exchange and correlation potential the
parameterization of VON BARTH and HEDIN was chosen?.

The DOS and the bandstructure of Sr,CuQOj are shown in Fig. 3.7 and Fig. 3.8,
respectively [49]. To check the accuracy of the LCAO band structure® by another
method, also calculations using the linear muffin-tin orbital (LMTO) method were
performed. No substantial differences were found, only the overall bandwidth of
the whole pd band complex was slightly smaller in the LMTO results.

In agreement with the above mentioned general considerations of covalency,
there is a single, well-separated, nearly one-dimensional, half-filled antibonding
band crossing the FERMI level with large dispersion in a-direction (see Fig. 3.8).
The width of this band is about 2.2 eV for both compounds. The characteristic
quasi-1D VAN HOVE singularities near the band edges are clearly seen in the
DOS (see Fig. 3.7). The dispersion in ¢ direction corresponds to the inter-chain
interaction via the shortest inter-chain distance and is about 100 meV (250 meV
for CagCuOs). The smallest interaction is found in b direction with about 40 meV

2For historical reasons and due to comparability with the literature, we used different pa-
rameterizations (VON BARTH-HEDIN and PERDEW-ZUNGER) for the xc potential in different
calculations of this work. The changes in the bandstructure due to this different parameteriza-
tion were checked for one example and were found to be negligible.

3This check is useful because of the difficulties to optimize the minimum basis by determining
the set of o described in (2.2.2).
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Figure 3.7: Total and partial DOS of Sr,CuO3. The FERMI level is at
zero energy. The contribution of Cu-4p states is less than 0.1 % in the
region shown.

(60 meV for CayCuO3). It should be remarked again that the metallic behavior
of the LDA-band structure is in sharp contrast to the experimental observation
of large optical gaps ~ 2 eV which are comparable to the bandwidth obtained
above. This points to the necessity of dealing explicitly with the strong on-site
CoOUuLOMB repulsion at the copper-site.

A tight-binding analysis of the orbitals involved shows that in first approxi-
mation the Cu 3d,2_,» as well as the side oxygen 2p, and the chain oxygen 2p,
orbitals are of direct relevance. Only a small admixture of Cu 4s states (the
contribution of Sr or Ca states is much smaller) can be detected near both edges
of this antibonding half-filled band. Its weight as determined by the ratio of
the corresponding areas under the DOS curves is relatively small with 0.3 % for
Sr,CuO3, but it increases to a weight of 2 % for the Ca compound. This enhanced
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band structure of Sr,CuO,
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Figure 3.8: LCAO energy-bands near the FERMI level for SroCuQOj along
high-symmetry BRILLOUIN-zone directions. The notation of symmetry
points is as follows: I'=(000), X=(100), Y=(010), Z=(001), R=(101)
in units of (7/a,7/b,7/¢c). Strong dispersion can be seen along I'-X
(a-direction, parallel to the CuOj-chains) whereas a small, but non-
negligible dispersion in the perpendicular I'-Z direction (c-direction, cor-
responds to the shortest inter-chain distance) can be seen. The smallest
dispersion is found along b.

Cu 4s admixture is one reason for the larger inter-chain coupling in CayCuQOj.

A parameterization of a one-band model, tight binding analyses for multi-
band models and a detailed analysis of the deduced magnetic properties in terms
of extended HUBBARD and anisotropic HEISENBERG models are given in sections
(4.1) and (4.2).
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3.3.2 Edge-shared cuprate chains
Planar edge-shared chains

Figure 3.5(c) shows two different anti-bonding states on an edge-sharing chain
of cuprate-plaquettes. This chain is formed by anionic [CuO3]~2-complexes with
a further reduced reduction state. With the phase rules as described above the
upper pattern belongs to a zone-center state, and the lower pattern belongs to
a zone-boundary state. Both are maximally anti-bonding, but are not quite o-
states. They are different in energy due to the crystal-field splitting between
the two different oxygen 2p-orbitals engaged. This type of chains is found, for
instance, in LioCuOy [50, 51], in CuGeOj [52, 53] and in the recently discovered
isostructural CuSiOj; [54], which latter two are to be understood as (GeO)CuOy
and (SiO)CuOs,, respectively, in our context. The main differences between the
latter two compounds and LioCuO, are the positions and the valences of the
cations and the canting of the CuOs-chains against each other which strongly
influences the inter-chain coupling.

The crystal structure of Li;CuO, is shown in Fig. 3.9. Li;CuO, exhibits
a body-centered orthorhombic structure with lattice constants a = 2.860 A,
b =9.377 A and ¢ = 3.654 A [50, 51] where the edge-shared chain runs in a
direction and lies parallel to the ab plane. The Cu-O-Cu bonding angle between
nearest neighbor copper and oxygen atoms in the chain deviates with 94° only
slightly from the 'ideal’ 90° angle for an edge-shared chain of CuOg4-squares.

Experimentally, Li;CuO, is an insulator. Neutron scattering indicates three-
dimensional antiferromagnetic ordering at 9 K arising from an antialignement of
ferromagnetic chains, and the magnetic moment of 0.9 was attributed to the Cu
ion. This value is very close to the saturation moment of spin-only Cu*?(4s°3d").

We have performed LCAO band structure calculations [55] and, more recently,
FPLO calculations in order to check the accuracy of the LCAO calculation. We
found very good agreement between both treatments and also with other full
potential calculations [56, 57]. A minimum basis was defined by treating the Cu
(4s, 4p, 3d), O (2s, 2p), and the Li (2s, 2p) orbitals as local valence basis states.
In the LCAO calculations, two empty spheres per unit cell have been introduced.
To improve the completeness of the basis set, we added O and Li 3d states in
the FPLO calculation. The parameterization of vON BARTH and HEDIN and of
PERDEW and ZUNGER, respectively, were chosen for the exchange and correlation
potential.

The total and the partial DOS are shown in Fig. 3.10. The peak in the center
of the antibonding band with nearly pure Cu 3d and O 2p character is in contrast
to remnants of 1D VAN HOVE singularities near the band edges in the correspond-
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Figure 3.9: The body-centered orthorhombic unit cell of LiCuO,. The
edge-shared cuprate chains run along the a direction and lie in the draw-
ing plane (corresponds to the ab-plane in the notation used).

ing antibonding bands of Sr(Ca),CuOs3 [49] (see Fig. 3.7) and CuGe(Si)O3 [58]
(see Fig. 3.13) and gives strong evidence for a non quasi-1D electronic structure.
More detailed investigations show that the band at the FERMI level is composed
mainly of Cu 3d,, and O 2p,, states, with almost equal contributions from both
O orbitals at variance with the above mentioned corner-sharing CuQOj chain com-
pounds. The last circumstance provides via HUND’s rule coupling a natural
explanation for the observed ferromagnetic ordering [50] in chain direction.

As expected from simple chemical considerations of the valence, there is a
single, half-filled, well-separated antibonding band crossing the FERMI level (see
Fig. 3.11). On the one hand, the width of this band is about 1 eV and similar
to CuGeOs, but on the other hand, its dispersion in chain direction ((0,0,0) —
(1,0,0)) exceeds the dispersion in the other two directions by a factor of two only.
A strong effect of next nearest neighbor interactions in chain direction has been
derived from a strong second harmonic contribution to the calculated dispersion.
The equivalence of the dispersion in the two transverse directions is important and
points to a specific interchain interaction. The moderate anisotropy (compared
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Figure 3.10: Total and partial DOS of Li;CuO,. The FERMI level is at
zero energy. The contribution of Cu-4p states is less than 0.1 % in the
region shown.

with the above mentioned cuprates) due to that interaction is in sharp contrast
to the widely accepted intuitive view considering LisCuO, as the best realization
of an 1D-edge-sharing CuOs chain [59]. A comparison of our LDA results and
XAS measurements [60] will be presented in Section 5.4.

A second type of edge-shared chains is realized in CuGeO3 and CuSiOsj, re-
spectively. Instead of a single cation we have a cationic Ge(Si)O complex. The
CuOs chains are canted against each other at variance with the planar arrange-
ment in the above mentioned chain type. This canting mainly influences the
inter-chain coupling. The crystal structure of CuGeOj; (CuSiOj is isostructural)
is shown in Fig. 3.12. CuGeO3 and SiGeOj3 occur in the orthorhombic space group
Pmmb with the lattice constants a = 4.802 A b = 8.475 A ¢ =2.943 A [52, 53]
and a = 4.636 A b= 8774 A ¢ = 2.833 A [54], respectively. The Cu-O(2)-Cu
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Figure 3.11: LCAO energy-bands near the FERMI level for Li,CuO, along
high-symmetry BRILLOUIN-zone directions. The notation of symmetry
points is as follows: I'=(000), Y=(010), X=(100), R=(110) and A=(111)
in units of (7/a, 7/b, 7/c).

bonding angles between nearest neighbor copper and oxygen atoms in the chain
are about 98° in the Ge-compound and 94° in the Si-compound.

Some years ago, CuGeO3 became famous because it was found as the first
inorganic system which shows a spin-PEIERLS transition [5]. The transition tem-
perature is Tsp = 14 K. The antiferromagnetic exchange J,p)s was determined
from the temperature dependence of the magnetic susceptibility x(7') [5], from
inelastic neutron- [61] and from RAMAN-scattering [62, 63, 64] between 8 and
22 meV. The spin-PEIERLS phase transition is found only in very pure samples.
Impurities or doping, for example with a small amount of Zn (on the Cu site)
[65] or Si (on the Ge site) [66] push the transition temperature down very fast.
Already for some atom-percent of impurities, a phase transition to an antifer-
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Figure 3.12: The orthorhombic unit cell of the CuGeOs-crystal, per-
spective view (top), front view (down left) and top view (down right).
The edge-shared cuprate-chains run along the c direction and are canted
against each other.

romagnetic ordered state was observed with similar transition temperature 7y .
This behavior can be explained with a chain-breaking due to the impurities and
an ordering of the remaining unpaired spins. For certain concentrations of impu-
rities, coexistence of AFM and the spin-PEIERLS phase was found [67, 68].

For the recently discovered CuSiO3 compound, the experimental situation
is less clear because the sample quality is not yet satisfactory. For the purest
samples available, the temperature dependence of the magnetic susceptibility
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X (T') is rather similar to the CuGeOj3-data but shifted down in temperature. The
X(7') measurements show a broad maximum at about 13 K and an rapid decrease
below 1> = 8 K to a constant value, but this decrease is less pronounced then for
the Ge-compound. A sharp peak in the specific heat measurement at 7% indicates
clearly a phase transition [69]. The nature of this phase transition is still unclear
(it may be AFM or spin-PEIERLS), but for a reliable determination the sample
quality has to be improved because of the above mentioned role of impurities for
the spin-ordering.

The band structure calculations for CuGeO5; and CuSiO3; were carried out
using the FPLO code with Cu (4s, 4p, 3d), O (2s, 2p, 3d), Ge (3d, 4s, 4p, 4d)
and Si (3s, 3p, 3d) states, respectively, as minimum basis set. Our results are
similar to the results of LAPW [58] and LMTO-ASA [70] bandstructure calcula-
tions, only the bandwidths are slightly smaller. The total as well as the partial
DOS of CuGeOs3 are shown in Fig. 3.13. At variance with all above mentioned
chain-compounds, the admixture of the cationic Ge-O(1) complex to the standard
pd chain-bands is much stronger. This is important for the construction of tight
binding models, where additional orbitals beyond the standard pd-model descrip-
tions have to be taken into account. At variance with Li;CuQO,, the remnants
of 1D vAN HOVE singularities near the band edges of the antibonding band are
clearly developed. This indicates a quasi 1D electronic structure in the vicinity
of the FERMI-level.

The bandstructure of CuGeQOg, shown in Fig 3.14, confirms this indication.
Corresponding to the two formula units per cell, we find two half-filled bands
crossing the FERMI level. These bands show a dispersion of about 1 eV in chain
direction, whereas the dispersion corresponding to the shortest inter-chain dis-
tance is about five times smaller. The dispersion in the direction orthogonal to
the latter two is again smaller by a factor of five. With respect to the band
dispersions in the main directions, the dimensionality of the electronic structure
of this compound can be considered as in between the nearly ideal 1D compound
SroCuO3 and the 3D compound LiCuOs.

The DOS and the bandstructure of CuSiO3 are very similar to that of the Ge-
compound. The mostly changed features are the two antibonding bands crossing
the FERMI level: They have the same shape in both compounds, but the band-
width is reduced by about 40 % to 0.6 eV in CuSiO3. This can be understood due
to the change in the Cu-O(2)-Cu bonding angle which is closer to 90° for CuSiOs,
whereas the Cu-O distance in the chain is nearly the same for both compounds
(1.941 A for CuSiO3 and 1.942 A for CuGeOs).

In both compounds, the next nearest neighbor coupling t, is important and
about half as large as the nearest neighbor coupling ¢;, which plays still the
dominant role. For the above mentioned LioCuO, the situation is reversed, al-
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Figure 3.13: Total and partial DOS of CuGeO3. The FERMI level is at
zero energy. The contribution of Cu-4p states is less than 0.2 % in the
region shown.

though the Cu-O-Cu angle is the same for the Li- and the Si-compound. This fact
underlines the importance of the cations for the electronic structure in these com-
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Figure 3.14: Band structure near the FERMI level for CuGeOj; along
high-symmetry BRILLOUIN-zone directions. The notation of symmetry
points is as follows: X=(100), Y=(010), S=(110), Z=(001), T=(011),
U=(101) and A=(111) in units of (7 /a, 7 /b, w/c). Strong dispersion can
be seen along I'-Z (parallel to the CuO,-chains) whereas a small, but non-
negligible dispersion in the perpendicular =Y direction (corresponding
to the shortest inter-chain distance) can be seen. The smallest dispersion
is found orthogonal to the latter two directions.

pounds. Moreover, the side groups can modify the 90° super-exchange and can
cause a seeming violation of the GOODENOUGH-KANAMORI-ANDERSON (GKA)
rules [71, 72, 73, 74]. An orbital analysis of the antibonding band shows that,
besides the Cu-3d states, mainly the O(2)-2p, orbitals contribute to this band.
The other contributions are suppressed due to a shift in the on-site energies of
the involved oxygen orbitals, caused by the side group. As a first approximation,
the contribution of the perpendicular O-orbitals can be neglected. Therefore, the
nearest neighbor exchange is antiferromagnetic for CuGeO3 and CuSiOg, whereas
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for the Li-system the expected ferromagnetic interaction was found.

The splitting of the two antibonding bands, originating from the interchain
coupling, has nearly the same value for CuSiO3 and CuGeOjs. In this sense, with
respect to the reduced in-chain coupling, the Si-compound is less 1D than the
Ge-system. The less pronounced peak (remnant of the VAN HOVE singularity) in
the DOS on the upper band edge for CuSiO3 supports this argument.

Folded edge-shared chains

Folding the edge-shared CuQO, plaquettes up and down, we get a still linear, but
non-planar 'merlon’ chain. The picture of the anti-bonding states is similar to
Fig 3.5(c), but additionally the third oxygen orbital (in planar geometries not
hybridizing with the shown orbitals due to symmetry) is involved in the binding.
In the case of an ideal folding angle of 90°, each copper hybridizes with two
of the oxygen orbitals, whereas one of the O orbitals parallel to the common
plaquette edge hybridizes with both adjacent Cu atoms. Such a chain is realized
in BagCuy04Cly, which should be understood as (BazCly)(CuO,), in our notation.
The crystal structure of this compound is shown in Fig. 3.15.

Ba3Cuy04Cly occurs in the orthorhombic space group Pmma with the lattice
constants a = 6.553 A, b = 6.000 A, ¢ = 10.563 A [75]. Due to the folding,
the chain contains now two inequivalent copper positions, Cuy and Cug. The
Cup atom is slightly elongated from the the plaquette plane. The folding angle
between the plaquettes is about 96°, whereas the plaquettes are ideally quadratic.

Ba3Cuy04Cl; shows insulating behavior and a phase transition to AFM below
20 K. In susceptibility measurements [76] on single crystals, a spin-flop transition
was observed in a magnetic field of 2.6 T parallel to the chains (crystallographic
a direction). This indicates a collinear antiferromagnetic structure with localized
moments in this direction. The ordered magnetic moment was determined to
be near the saturation value of 1 ug. Preliminary investigations by neutron
scattering on powder? could not yet elucidate the magnetic ordered structure
[77].

We performed FPLO band structure calculations with a minimum basis set
consisting of Cu (4s, 4p, 3d), O (2s, 2p, 3d), Ba (5s, 5p, 5d, 6s, 6p), Cl (3s,
3p, 3d) states. Due to the large extension of the Ba (5s, 5p) wave functions it
was necessary to treat them as valence states (see 2.2.1). For the exchange and
correlation potential the parameterization of PERDEW and ZUNGER was chosen.

The resulting total and partial DOS are shown in Fig. 3.16. Compared with all
compounds mentioned above, BagCuy04Cly shows the smallest pd-band-complex

“The above mentioned single crystals are too small for neutron scattering.
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Figure 3.15: The orthorhombic unit cell of BagCuyO4Cl,. The folded
edge-shared cuprate-chains run along the a direction of the crystal. To
demonstrate more clearly the typical structure of the 'merlon’ chain, two
unit cells are shown.

with a width of about 6 eV. The Cl 3p states are nearly filled and give a large
contribution to the DOS about 4 eV below the FERMI-level. We find a small
admixture of Ba 5d and 6s states to the pd-complex. The antibonding band
complex at FERMI-level is the narrowest one for all considered cuprates with
only 0.6 eV bandwidth and shows clear remnants of VAN HOVE-singularities.
Cl-states do not contribute to the antibonding region.

Figure 3.17 shows the bandstructure of BazgCu,O4Cly. The rather small dis-
persion of most bands in the pd-complex is peculiar. This finding can be explained
by the nearly 90° folding of the chain and by the enlargement by 3% of the Cu-O
distance compared with other edge-sharing compounds.

We see four half-filled bands crossing the FERMI-level corresponding to the
four Cu atoms per unit cell. Astonishingly, the strongest dispersion of about
0.4 eV we find in [ - Y direction, which is perpendicular to the merlon chain.
The dispersion in chain direction is half as large, in the third direction almost no
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Figure 3.16: Total and partial DOS of BazCu,O4Cl,. The FERMI level is
at zero energy. The contribution of Cu-(4s, 4p), Ba-6p and Cl-3s states
all together is less than 0.2 % in the region shown.

dispersion is found.

A more detailed consideration of interatomic distances and angles together
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Figure 3.17: Band structure of BazCuy04Cl,. The FERMI level is at zero
energy. In the upper panel the whole p — d complex is shown, the band
complex at the FERMI level is zoomed in the lower panel. The notation
of symmetry points is as follows: I'=(000), X=(100), Y=(010), S=(110),
Z=(001), T=(011), U=(101) and R=(111) in units of (7/a, 7 /b, 7/c).

with an orbital analysis of the antibonding bands gives a first explanation for
this unexpected behavior. Due to the folding angle of 96°, the inter-chain dis-
tance (6.000 A) is shorter than the Cup-Cup distance in chain direction (6.553 A).
Calculating the orbital weight, we find that there are either strongly Cuy dom-
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inated or strongly Cug dominated bands in the chain direction. The band with
the strongest dispersion (in I' - Y direction) contains only contributions of or-
bitals of the Cug-subsystem. Therefore, the main part of this dispersion results
from a direct interaction between plaquettes of the same Cu-type. Due to the
above mentioned shorter Cu-Cu distance perpendicular to the chain for the same
Cu type, the corresponding dispersion is stronger than in chain direction. In this
sense, the generally accepted picture of a folded edge-sharing chain is misleading
regarding to the electronic structure.

Within the orbital analysis, we find that for Cus mainly 3d,,, states contribute
to the antibonding bands with only a very small admixture of the 3d,, orbital,
whereas for Cup the main contribution stems from the 3d,, orbital with only very
small admixture of 3d,, states. Therefore, for further investigation, a model with
only one orbital per Cu site should be applicable in first approximation. For the
Cu,s dominated bands, we see hybridization with O-2p, and O-2p, states, for the
Cup dominated bands with O-2p, and O-2p,. Thus, Cus and Cup plaquettes
share only the O-2p, orbital. Considering the GKA rules, the superexchange via
only one oxygen orbital should lead to an antiferromagnetic exchange between
Cuy and Cup similar to the situation in CuGeO3. Whereas in the Ge compound
the suppression of the second O orbital in the antibonding bands is due to a shift
of the on-site energy, in BazCu,O4Cl, this suppression appears due to symmetry
because of the nearly 90° folding of the chain.

3.3.3 Double- or zigzag chain cuprates

The same reduction state [CuO,] ™2 as in the above discussed edge-shared chains
is realized in the double-chain of Fig. 3.5(d), which is present in SrCuO, [78].
The crystal structure of this compound is shown in Fig. 3.18.

SrCuQs is centered orthorhombic (space group Cmem) with lattice parameters
a = 3904 A, b = 16.27 A, ¢ = 3.556 A [40]. The double-chains run along the
crystallographic a direction and lie in the ab plane. The Cu-O(1)-Cu bonding
angle between copper atoms in the different subchains of a double-chain and
oxygen is about 87°.

This material is magnetically even more complicated than SroCuOs, though
the in-chain exchange has a similar value of about 180 meV [79] (190 meV for
SroCuOj3). A magnetically ordered structure appears below 5 K with a second
phase transition at about 2 K. The ordered magnetic moment was found to be
extremely small with an upper limit of 0.01 pp [80]. Recent experiments deter-
mined a value of about 0.03 ug [79] (0.06 pp for SroCuOs). Except of the chain
direction where the ordering is clearly AFM, the magnetic structure shows wave
vectors incommensurate to the crystal structure [79] at variance with the single
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Figure 3.18: The orthorhombic unit cell of SrCuO,. The cuprate-chains
run along the a direction and lie in the drawing plane (corresponds to
the ab-plane in the notation used).

chain compound SryCuQO3.

Our bandstructure calculation was carried out using the LCAO code with a
minimum basis consisting of Cu-(4s, 4p, 3d), O-(2s, 2p) and Sr-(5s, 5p, 4d) valence
states. To cope with the relatively open crystal structure, four empty spheres per
unit cell have been introduced with empty sphere s and p orbitals at each site.
For the exchange and correlation potential the parameterization of vON BARTH
and HEDIN was chosen. Because the program used is not able to handle non-
symmorphic space groups, we had to calculate a simple orthorhombic unit cell
with four formula units inside. For that reason, we get twice the number of bands
and twice the DOS per unit cell as in a centered case with two formula units in
the primitive cell.

The total as well as the partial DOS and the band structure are drawn in
Figs. 3.19 and 3.20. The DOS is very similar to that of SroCuOj (cf. Fig. 3.7).
The characteristic quasi-1D VAN HOVE singularities near the band edges are
clearly seen and indicate a 1D electronic structure. The half-filled antibonding
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Figure 3.19: Total and partial DOS of SrCuO,. The FERMI level is at
zero energy. The contribution of Cu-4p and O-2s states is less than 0.2
% in the region shown.

bands at FERMI level have nearly pure Cu 3d,>_,» , oxygen 2p, and 2p, orbital
character. Their large dispersion is parallel to the chain direction. The width
of this band is about 2.4 eV. The dispersion in ¢ direction corresponds to the
inter-chain interaction via the shortest inter-double-chain distance and is about
100 meV. The smallest interaction is found in b direction with about 50 meV.
The splitting of the bands at FERMI level is characteristic for the interaction
between the two subchains of a double chain. This interaction is in the same
order of magnitude like the above mentioned weak dispersions orthogonal to the
chain direction. This nearly decoupled behavior can be related to the ~ 90°
Cu-O(1)-Cu bonding angle between the subchains.
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band structure of SrCuO,
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Figure 3.20: Band structure near the FERMI level for SrCuO, along
high-symmetry BRILLOUIN-zone directions. The wave vector is given
in units of (7/a, 7/b, w/c). Strong dispersion occurs along (000)—(100)
(parallel to the CupyO4 double-chains) whereas a small, but non-negligible
dispersion in the perpendicular (000)—(010) direction (corresponds to the
shortest inter-chain distance) can be seen. The smallest dispersion is
found orthogonal to the latter two directions.

3.4 Plane cuprate structures

3.4.1 Planar cuprates with a CuO,-plane

By joining together periodically repeated CuOj-chains of Fig. 3.5(b) so that ad-
jacent chains share the side oxygen ions of such chains, the checkerboard-like
planar structure of Fig. 3.21(a) is obtained. This is an anionic [CuOg] 2-plane
for nominal valence charges.

Doping with holes yields the famous [CuOy]~?*?-plane of the high-T, super-
conductors (see [81] for an overview). The undoped plane (6 = 0) is insulating
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Figure 3.21: Cuprate-planes formed from plaquettes as the building
blocks. The checkerboard pattern (a) may be obtained by joining to-
gether chains of Fig. 3.5(b). The pattern (b) is obtained by putting an
additional copper ion on every second white field in horizontal rows of
the checkerboard (a).

with an antiferromagnetic groundstate. Already at low doping rates it becomes
a strange metal, and for § = 0.1 (as well as for electron doping § < —0.1) it
becomes superconducting. A schematic phase diagram is shown in Fig. 3.22.

The material for which high-T, superconductivity was discovered first was
barium-doped LayCuQOy. The undoped compound is to be understood in our
context as (La0),CuO,. Its structure is shown in Fig. 3.23(a). It consists of a
stacking of two ionic [LaO]™-planes followed by a covalent [CuO,|*~-plane, on top
of each other. If La is partially replaced by an alkaline-earth atom (Ca, Sr or Ba),
hole-doping results in the CuOs-plane. For the understanding of that material it
is crucial that the oxygen of the BaO-plane (the so-called apical-oxygen because
it forms the apex of an oxygen pyramid whose basis is the CuOy4-plaquette) is at
most very weakly covalently bound to the CuQOs-plane®.

LaCuOy is generally considered as the parent compound for all materials
with CuO, planes as structural element and therefore very useful as a reference
system. At high temperatures, it occurs in the body-centered tetragonal space

5The difference of the apical-oxygen and the plane-oxygen is often discussed as originated
by the JAHN-TELLER effect [82]. However, there is no true JAEN-TELLER distortion in most
of the planar cuprates, they are layered structures far from cubic symmetry [81].



50 Chapter 3. Cuprates — low-dimensional systems

300
R La,, Sr, CuO,
%
()
5
© 200+
o
5
l_

100 -

M
AF
| SC | |
0.1 0.2

hole concentration

Figure 3.22: The simplified temperature - hole-concentration phase dia-
gram for Las_,Sr,CuO, with antiferromagnetic (AF), metallic (M) and
superconducting (SC) phase.

group I4/mmm (see Fig. 3.23(a)) with the lattice constants a = 3.78 A and
¢ = 13.15 A. The Cu-O distance in the CuO, plane is 1.89 A (corresponding to
a covalent bondlenght), whereas the distance between Cu and the apical oxygen
is 2.43 A (corresponding to an ionic distance). The low temperature phase is
orthorhombic due to lattice distortion.

For the tetragonal phase of LaCuQOy, we performed LCAO and FPLO band
structure calculations with a minimum basis set consisting of Cu (4s, 4p, 3d),
O (2s, 2p, 3d) as well as Ba and La (5s, 5p, 5d, 65, 6p) states®. Due to the
large extension of the Ba and La (5s, 5p) wave functions it was necessary to
treat them as valence states (see 2.2.1)". In the LCAO calculation, two empty
spheres per unit cell were introduced due to the relatively open structure of this
compound. For the exchange and correlation potential the parameterization of
VON BARTH and HEDIN for the LCAO and of PERDEW and ZUNGER for the

6The FPLO calculations were done recently to check a posteriori the accuracy and reliability
of the LCAO calculations, which we used for most investigations of planar cuprates. This
check should be representative for the planar structure type, because the already mentioned
problems in the determination of the compression parameters zy are identical for all considered
compounds of this family.

"In the LCAO calculation, these states were treated as core states for technical reasons.
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Figure 3.23: Unit cells (a) of the LayCuOy-crystal and (b) of the
YBayCuzO7-crystal.

FPLO calculation was chosen. Comparing the results of both calculations with
each other and with results from the literature [81, 83], no substantial differences
were found. The results of our FPLO calculation are nearly identical with those
of Ref. [81]. There, the bandwidths are a few percent smaller than in our LCAO
results, and a few percent larger than in Ref. [83]. The differences in band energies
for the latter two calculations are of the same order as well.

The total and the partial densities of states are shown in Fig. 3.24. As in
the previous cases, the LDA predicts metallic behavior in contradiction to the
experimentally observed antiferromagnetic insulating behavior. The valence band
is built mainly of Cu-3d and O-2p states with a small admixture of La-5d states.
The oxygen contribution to the complex at the FERMI level stems predominantly
from the plane-oxygen O(1).

Figure 3.25 shows the bandstructure of LaCuQOy. As expected from the chem-
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Figure 3.24: Total and partial DOS of LayCuO,4. The FERMI level is at
zero energy. The contribution of O-2s states is less than 0.1 % in the
region shown.

ical considerations, we find one broad band crossing the FERMI level and 16
bands below inside the pd-complex (33 valence electrons). The bandwidth of
the antibonding band is about 4 eV and approximately twice as large as in the
corner-shared chain compound Sr,CuOj (see Fig. 3.8). This is consistent with
the doubled number of neighboring plaquettes in the CuOs-plane compared with
the CuOs-chain. A considerable dispersion of the antibonding band is found only
in the plane, whereas its dispersion along I' - Z amounts only a few® meV . Other
bands show non-negligible dispersion in the latter direction.

8At the first glance, it seems that the antibonding band has a considerable dispersion in
I' - Z direction. But it seems reasonable to define antibonding via the orbital character of the
bands. Within this definition the antibonding band corresponds to the non-dispersing band
just below -2 eV in I' - Z direction.
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Figure 3.25: Band structure near the FERMI level for La,CuO, along
high-symmetry BRILLOUIN-zone directions. The notation of symmetry
points is as follows: '=(000), X=(100), M=(110), Z=(001) in units of
(r/a, w/a, 7/c).

As an example for a doped cuprate compound, one of the HTSC shall be
presented and discussed briefly. The high-T, material investigated in most detail
is YBayCu3O7, which in our notation should be written YBay(CuOs4)2(CuOs3). Its
structure is shown in Fig. 3.23(b). It contains both CuOs-planes and CuO3-chains
immersed in a lattice of barium and yttrium ions. By counting charges one finds
that compared to nominal charges of those covalent cuprate structures one hole
must be shared by two planes and one chain. Hence, the charge state of the planes
and of the chains is [CuOy]72*? and [CuO3]~3~% respectively. This compound
is, however, metallic?, so the concept of formal valences itself is problematic!®.

9The antiferromagnetic insulator in the systematics of this chapter is YBayCusOg.
10Formal valences are integral quantities, their sum over the unit cell must vanish. They are
not measurable quantities. In ionic compounds, formal valences are very useful for classification
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Figure 3.26: Total and partial DOS of YBayCu3O7;. The FERMI level is
at zero energy. The contribution of Cu-4s states is less than 1% in the
shown region.

and are widely used in chemical and physical models. In metallic materials, this concept looses
rapidly its meaning because the assignment of charge to particular atoms becomes arbitrary.
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Figure 3.27: Band structure near the FERMI level for YBayCu3O7 along
high-symmetry BRILLOUIN-zone directions. The notation of symmetry
points is as follows: I'=(000), X=(100), Y=(010), S=(110), Z=(001),
T=(011), U=(101) and R=(111) in units of (7 /a, 7/b, 7/c).

YBayCuz0O7 has a transition temperature T, ~ 93 K [84], however, it shows also
short-range antiferromagnetic spin fluctuations [85]. It is generally accepted, that
spin fluctuations can mediate attractive pairing-interactions and are involved in
the superconducting state of high-7, materials [86, 87]. This fact underlines that
an advanced knowledge of the magnetic interactions in cuprate chains and planes
is a prerequisite for the understanding of the pairing-mechanism in HTSC.

YBay,CuzO7 occurs in the simple orthorhombic space group Pmmm with the
lattice constants a = 3.9195 A, b = 3.8591 A and ¢ = 13.15 A (see Fig. 3.23(b))
[88]. Corresponding to the presence of CuOs-planes and CuOs-chains, the crystal
shows two inequivalent Cu-sites and four inequivalent O-sites. The CuO,-planes,
formed by Cu(2), O(2) and O(3), are slightly buckled due to lattice distortions.
The chains consist of Cu(1), O(1) and O(4), the plaquettes are slightly racked in
chain direction.

We performed FPLO band structure calculations with a minimum basis set
consisting of Cu (4s, 4p, 3d), O (2s, 2p, 3d), Y (4s, 4p, 5s, 5p, bd) and Ba (5s,
5p, 5d, 6s, 6p) states. Due to the large extension of the Y (4s, 4p) and Ba (5s,
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5p) wave functions it was necessary to treat them as valence states (see 2.2.1).
For the exchange and correlation potential the parameterization of PERDEW and
ZUNGER was chosen.

The results of our calculation agree well with those of other authors (for
example see Refs. [89, 90, 91, 92]), but there are noticeable differences in a few
details, especially for the shape of the FERMI-surface. Due to the lack of detailed
information on the computations in most publications, the origin of the differences
remains unclear. It is to mention, however, that the intrinsic charge transfer in
this material may particularly call for a full potential treatment as FPLO.

The total DOS as well as the partial DOS of YBayCu3O7; are shown in
Fig. 3.26. The valence band is built of mainly Cu-3d and O-2p states with a
small admixture of Y-4d and Ba-5d states. The O(2) and O(3) contributions to
the valence band are nearly identical, showing that the influence of the orthorhom-
bicity due to the CuOjs-chain on the electronic structure of the CuOs-layer is
rather small. The energies of the main features of chain-derived (Cu(1), O(1)
and O(4)) and plane-derived (Cu(2), O(2) and O(3)) states are quite different.
Thus, planes and chains in YBay;CuszO5 are relatively separated from each other
in the HILBERT-space. The states forming a peak just below the FERMI level, and
related to the above mentioned differences in the topology of the FERMI-surface,
are clearly chain-derived.

Figure 3.27 shows the band structure of YBay;Cu3zO;. Besides the three broad
bands crossing the FERMI-level that are expected in these positions according
to all previous considerations, one additional band is found crossing the FERMI-
level. Using the wavefunctions, it is possible to characterize the origin of the
bands. The two broad bands with the maximum on the S-point consist of nearly
pure CuOs-plane states. The band with the large dispersion in ['-X direction
and the ‘unexpected’ band are built almost exclusively of chain states. The un-
expected band causes the most important qualitative differences between different
published calculations. We find it crossing the FERMI-level near the S and the R
point. This leads to only a small hole pocket surface from this band in agreement
with Refs. [90, 92], whereas other calculations [93, 89] find a more complicated
FERMI-surface.

Because most high T, cuprates have antiferromagnetic parent compounds
that LDA does not describe well due to the strong correlations, its application
to the metallic phase also has been considered with suspicion. Nevertheless,
LDA band structure calculations yielded not only reasonable, but in fact very
accurate results predicting a number of properties of metallic cuprates [94], such
as lattice constants and atomic positions, phonon frequencies [95] and electric
field gradients [96].

Angle-resolved photoemission spectroscopy (ARPES) [97, 98, 99] and DE HAAs-
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VAN ALPHEN (dHvA) [100, 101] experiments were able to measure parts of the
FERMI-surface of YBayCuzO;. The results widely coincide with the predictions
of bandstructure calculations [92, 94]. The existence of the hole pocket near the
S and the R point is still under debate. Recent ARPES measurements [98, 99|
could not confirm the existence of these hole pockets concluded from dHvA-data
[100, 101]. This could be due to the influence of the surface.

Up to now, for the undoped standard planar cuprates, it was not possible
to use ARPES for a measurement of the lowest lying excitations, because the
surface quality after cleaving the crystals was not sufficient. If the apical oxygen is
exchanged with an halogen atom in the LayCuQOy structure (for reasons of valence,
the La-atom has to be replaced by a divalent atom like Sr or Ca simultaneously),
the experimental situation is much more favorable. The samples can be cleaved
with high-quality surfaces and the absence of the apical oxygen makes the analysis
and the characterization of the measured spectra simpler.

The first undoped cuprate compound, where the dispersion of a single hole
induced by photoemission was observed, is SroCuO,Cly [102]. These lowest elec-
tron removal state can be interpreted in terms of ZHANG-RICE singlets [103].
SroCu0,Cly is a quasi two-dimensional (2D) antiferromagnetic insulator with a
NEEL temperature [104] of 256 K, whose magnetic structure is well described by
the 2D spin 1/2 HEISENBERG-model. Altogether, SroCuO,Cl, can be considered
as an ideal model compound to answer many questions concerning the electronic
structure of cuprate superconductors in the dialogue of experiment and theory.

The crystal structure of SroCuOsCly is shown in Fig. 3.28. SryCuO,Cl,
is isostructural to LasCuO, and exhibits a body-centered tetragonal structure
(space group I4/mmm) with the lattice constants a= 3.975 A and c= 15.618 A
[105, 106]. The Cu-O distance in the plane is with 1.99 A somewhat larger than in
LayCuOy4. The Cu-Cl,pex distance in SroCuO2Cly (2.96 A) is significantly larger
than the Cu-O,pey distance in LayCuOy4 (2.42 A). This is the structural reason
for the model character of the system: the influence of the out-of-plane ions on
the CuOs-plane is considerably reduced.

LCAO band structure calculations were performed with a minimum basis set
consisting of Cu (4s, 4p, 3d), O (2s, 2p, 3d), Sr (5s, 5p,4d) and CI (3s, 3p) states.
To cope with the relatively open crystal structure, two empty spheres per unit
cell have been introduced with empty sphere s and p orbitals at each site. For
the exchange and correlation potential the parameterization of vON BARTH and
HEDIN was chosen.

The total DOS as well as the partial DOS and the band structure of SroCuO,Cly
are drawn in Figs. 3.29 and 3.30. As expected from our previous discussions, the
LDA calculation for this undoped compound yields a metallic groundstate instead
of the experimentally observed insulating behavior. The DOS is similar to that of
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Figure 3.28: The body-centered tetragonal unit cell of SroCuO5Cl,.

the parent compound Lay,CuQOy (cf. Fig. 3.24), especially the partial DOS of Cu
and O (with O(1) in LapCuQOy), whereas the width of the pd-complex is reduced
by about half of an eV. The admixture of non-plane atoms to the antibonding
band is considerably reduced, the chlorine states are shifted down in energy by
about 2 eV compared with the apical oxygen in LayCuO,.

The close relation between La,CuO4 and SroCuO-Cly is most visible in the
very similar bandwidth and dispersion of the antibonding bands for both com-
pounds (cf. Figs. 3.25 and 3.30). In SroCuO,Cl,, this band is more separated
from the rest of the pd complex due to the already discussed downwards shift in
energy of the chlorine states.

A detailed study of the valence band of SroCuO,Cly; in combination with
ARPES measurements is given in Section 5.3.

3.4.2 Planar cuprates with a CuzOy4-plane

A modification of the standard CuOs-plane, which is shown in Fig. 3.21, is ob-
tained by putting an additional copper atom in the center of every second pla-
quette. This leads to a CuzOy-plane with two inequivalent copper sites. This
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Figure 3.29: Total and partial DOS of SryCuO5Cly. The FERMI level is
at zero energy. The contribution of O-2s and Cl-3s states is less than
0.1% in the region shown.

kind of plane is found in SroCuzO4Cly [107] and the isostructural BayCuzO,Cls.

BayCu3z04Cl; occurs in body-centered tetragonal structure in the space group
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Figure 3.30: Band structure near the FERMI level for SroCuO,Cl; along
high-symmetry BRILLOUIN-zone directions. The notation of symmetry
points is as follows: I'=(000), X=(100), M=(110), Z=(001) in units of
(r/a, w/a, w/c).

I4/mmm with the lattice constants a = 5.51 A and ¢ = 13.82 A [108, 109]. The
Cu-O distance in the plane is 1.96 A and slightly larger than in LayCuOy.

Experimentally, two NEEL temperatures have been found, T4 ~ 330 K and
TE ~ 31 K [110, 111], connected with the two sublattices of A- and B-copper.
The magnetic susceptibility and the small ferromagnetic moment have been ex-
plained phenomenologically [112] together with a determination of the exchange
integrals. Like in undoped SroCuO,Cl, [102], the lowest electron removal states
in BayCu3O4Cly can be interpreted in terms of ZHANG-RICE singlets [103] with
a new branch of singlet excitations connected with the B-sublattice [113] (see
Section 5.2).

The self-consistent LDA-LCAO method has been applied to Ba;Cuz0,4Cls in
the scalar relativistic version with a minimum basis treating the Cu-(4s, 4p, 3d),
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Figure 3.31: The body-centered tetragonal unit cell of BayCuzO,Cl,.

O-(2s, 2p), Sr-(5s, 5p, 4d) and Cl-(3s, 3p) orbitals as local valence basis states and
the lower orbitals as core states. To treat this relatively open crystal structure,
four empty spheres per unit cell have been introduced with empty sphere s and
p orbitals at each site. For the exchange and correlation potential the parame-
terization of VON BARTH and HEDIN was chosen.

The calculation results in a paramagnetic and metallic behavior with two
bands crossing the FERMI-level and a third band just below. The total and the
partial DOS as well as the bandstructure of Ba,Cu3O,Cly are shown in Fig. 3.32
and Fig. 3.33, respectively.

The bands crossing the FERMI-level have no dispersion in z-direction . That
means that the corresponding bonds lie in the z-y-plane. From the partial DOS
it can be seen which states contribute to these bands (see Fig. 3.32). The two
broad bands are essentially formed by a Cu,3d-O2p-hybridization, whereas the
small band is built by Cug3d-O2p-hybridization. Ba and Cl do not contribute to
the states near the FERMI-level.

It might be expected that the additional Cupg atoms give rise to consider-
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density of states of Ba,Cu,0,Cl,
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Figure 3.32: Total and partial DOS of BayCu3z04Cl,. The FERMI level
is at zero energy. The contribution of O-2s and Cl-3s states is less than
0.1% in the region shown.

able differences in the electronic structure in comparison with the usual CuOq
plane. In particular, the amount of coupling between both subsystems seems to
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band structure of Ba,Cu,0,Cl,
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Figure 3.33: Band structure near the FERMI level for Ba;Cu3z04Cl; along
high-symmetry BRILLOUIN-zone directions. The notation of symmetry
points is as follows: '=(000), X=(100), M=(110), Z=(001) in units of
(r/a, w/a, 7/c).

be crucial. Analyzing the orbital weight of the antibonding bands, we find two
nearly decoupled subsystems, belonging to Cus and Cug. The reason is that
the two Cu atoms hybridize with linear combinations of O-2p, and O-2p,, which
are orthogonal to each other. Due to the ideal 90° angle between Cuy-O and
Cup-0O bonds, the coupling of the two subsystems takes place only via a small
transfer-interaction between oxygen orbitals at different sites.

Keeping in mind the nearly decoupled behavior of both subsystems, it is
easy to find that the two broad bands, stemming from the Cu4-subsystem, are
very similar to the bands which one gets by folding the bands of Lay;CuO,4 or
SroCuO,Cly with respect to the half as large BRILLOUIN-zone of BayCuzO4Cls.
This shows that the physics of the Cu4-subsystem is close to the standard CuO,-
plane. Considering the bandwidth of the Cupg-derived antibonding band, we find
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a strong reduction by a factor of about five compared with the CuO,-plane. Thus,
also the antiferromagnetic superexchange should be strongly reduced. These
facts provide a first qualitative explanation of the two strongly different NEEL
temperatures of both subsystems.

A detailed analysis of the valence band of BayCuzO4Cl, in terms of an 11-
band tight-binding model and the calculation of the exchange-integrals within an
extended HUBBARD model is given in Section 4.3.1.
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Chapter 4

Model description of cuprate compounds

4.1 Electronic structure and magnetic properties of the linear chain
cuprates Sr,CuOj3; and Ca,CuO;

SroCuO3 and Cap,CuOjz are considered to be the best appropriated model sys-
tems of strongly anisotropic, spin-1/2 HEISENBERG antiferromagnets. In the
following, on the basis of a band-structure analysis within the local density ap-
proximation (see Sec. 3.3.1) and on the basis of available experimental data a
careful analysis of model parameters for extended HUBBARD model (EHM) and
for the HEISENBERG models is given. Using the band-structure and experimental
data we parameterize a one-band extended HUBBARD model for both materials
which can be further mapped onto an anisotropic HEISENBERG model (AHM).

Comparing several approaches to anisotropic HEISENBERG problems, namely
the random-phase spin-wave approximation and modern versions of coupled quan-
tum spin chains approaches, the advantage of the latter in the reproduction of
reasonable values for the NEEL temperature Ty and the magnetization mg at zero
temperature is demonstrated. In a comparative study the compound CuGeO3 will
be included as well.

4.1.1 Tight-binding parameterization

The metallic behavior of the LDA band-structure, discussed in Section 3.3.1 (see
Figs. 3.8, 4.1) is in sharp contrast to the experimental observation of large optical
gaps ~ 2 eV. This points to the necessity of dealing explicitly with the strong
on-site COULOMB repulsion at the copper-site. The experimental gap cannot
be explained by a spin-density wave since it is large and persists also above the
NEEL temperature Ty. Instead it should be interpreted as a charge transfer gap
between valence states of mostly oxygen character and a copper upper HUBBARD
band above the FERMI level.
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antibonding band of Sr,CuQO,
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Figure 4.1: Dispersion of the nearly one-dimensional antibonding band of
SraCuOj along high-symmetry BRILLOUIN-zone directions. The notation
of symmetry points is as follows: I'=(000), X=(100), Y=(010), Z=(001),
R=(101) in units of (7/a,n/b,7/c). The inset is for fixed k, = k Fermi =
7/2c.

Therefore, the construction of a multi-band, HUBBARD-like model Hamilto-
nian would be desirable. However, it is well known that such a Hamiltonian
can be projected to an effective one-band picture which properly describes the
low-energy physics [114, 115]. The existence of a well isolated, one-dimensional
band in the present situation, shown in Fig. 4.1 in more detail, suggests such a
possibility all the more. It is assumed that the parameters for the one band de-
scription in first approximation can be determined by fitting the band of Fig. 4.1
to a dispersion of the form

6(];) = —2t; 1pacos(kya) — 2ty ,pa cos(2kya) — 2t cos k,c (4.1)

which yields the values listed in the Table 4.1%.

1Strictly speaking, the fit of the dispersion along the c-direction requires more FOURIER-
components. However, their individual weight is small with respect to the interchain exchange.
It can be expected that within a proper treatment of the local electron correlation the influence
of far-reaching hopping integrals should be reduced.
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In Fig. 4.1 the dispersion in the c-direction is clearly visible as an energy
increase with increasing k, by nearly the same amount both at the bottom and
the top of the band. This dispersion is present through the band and gives a
value of t; = 30 meV. To be more accurate, t, is determined from the dispersion
at the FERMI level which is shown in the insert of Fig. 4.1. The corresponding
dispersion for Ca,CuOQj is significantly larger by a factor of 2.5. The smaller
lattice constant of Ca;CuQOj leads to an increase of the inter-chain overlap of the
Cu-3d and O-2p orbitals, but this effect alone is too small to explain the strong
enhancement.

The inspection of the SLATER-KOSTER integrals shows that the transfer in
c-direction goes dominantly via the cation Sr and Ca, respectively. The two-
center HAMILTON matrix elements between side oxygen O(2) and Ca are two
times larger than the corresponding ones for Sr.

In the same manner (Eq. (4.1)) the energy bands for CuGeOj (see Fig. 3.14)
were analyzed. The CuOs-chains of edge-sharing CuOy-plaquettes in CuGeOg
result in a more complex highest antibonding band. There are two O-2p states
per site involved, this results in two antibonding bands per chain. Because of the
crystal-field they are different in energy (see Sec. 3.3.2) The sizable inter-chain
interaction mediated by Ge and O(1) (see Fig. 3.12) and the presence of two chains
per unit cell leads to two antibonding bands at FERMI level (see Fig. 3.14). For the
qualitative comparison with the above considered CuQOj3-chain, they were replaced
by one half-filled band for the sake of simplicity. The tight-binding parameters of
CuGeOj (see Tab. 4.1) contain a significantly smaller nearest neighbor transfer
integral ¢ ,pa ~ 0.2 eV and an anomalously large next nearest neighbor integral
torpa = t1rpa/2 = 0.1 eV. The large difference of the transfer integrals ¢ ;,pa
between chains of corner-sharing plaquettes and CuGeOs should be related to
the efficient 180° Cu-O-Cu hopping for the former (o-pd bond) compared with
the inefficient non-o-pd hopping (about 140°)? for CuGeQys; for further details
see Ref. [74]. This special structure explains also the relative large next nearest
neighbor transfer integrals ¢, in CuGeOj3 due to the involved effective o p,-p,
hopping along the chain. The inter-chain hopping ¢, can be deduced from the
dispersion in the b-direction of the antibonding bands of CuGeOj (see Fig. 3.14)
and is of the same order as in Sr,CuQO3; and CasCuOs.

Based on both the available experimental data and the band structure infor-
mation obtained here, a semi-microscopic strong correlation model will be con-
structed which then can be mapped approximately onto a spin-1/2 Hamiltonian
to describe the magnetic properties. This is the objective of the next section.

2The angle is measured between the antibonding Ge-3d orbital lying in the plaquette-plane
and the O-2p. in chain direction.
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4.1.2 Microscopic description in terms of the extended HUBBARD and anisotropic
HEISENBERG models

General relations

We parameterize the well-known extended HUBBARD model (EHM) for one single
chain with hopping terms to first (¢;) and second neighbors (¢;):

U
H = — Z tj (c:[n’scmﬂ,s + h.c.) + o) ZCL,scm,sCIn,_scm,fs
m;j=1,2;s m;s
+ Z V}'?’Lmnerj— | K | ZSZ'SZ'+1, (42)
m;j=1,2 7
where n,, = » . c}tn,scmys is the density operator and s denotes the spin index. In

Eq. (4.2), a small, but non-negligible direct ferromagnetic exchange is included,
which naturally appears if we map a multi-band, HUBBARD-like Hamiltonian
including spin-flip terms to a one band model [114]. Its necessity and its main
effects will be discussed below.

For the low-energy physics, at half-filling, the EHM (Eq. (4.2)) can be replaced
to leading order in ¢ /U by a spin-1/2 HEISENBERG chain. It includes also a second
neighbor exchange .J, [116] and reads

H =7 Zgigiﬂ +.Jo Zgz'giu :

4¢? 4¢2
AF 1 2
Ji = Jo = 4.
! Uu—-v;’ 2T U= Vy ' (4.3)

where the effective exchange integral .J; of the spin-1/2 HEISENBERG Hamiltonian
of cuprates is reduced from the predominant antiferromagnetic superexchange
part by the ferromagnetic contribution (Eq. (4.2))

Jy~ JMN K. (4.4)

It is to notice that within this approach .J, yields a competitional (frustrated)
character to the usually dominant short range antiferromagnetic correlations,
which are established by J;. That term is especially important for CuGeOs.
The two main parameters U and t; of the effective extended HUBBARD model
are directly related to the optical gap F, and the exchange integral between near-
est neighbors J;, which are experimentally accessible. The following analysis is
considerably simplified within the strongly correlated limit U > 4¢, and excitonic
effects at zero momentum transfer ¢ are not very strong, ie. U > t; > 'V
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(7 = 1,2)3. The parameter sets derived below support such a point of view. We
take into account the effect of the intersite COULOMB interaction V; by renor-
malizing the on-site correlation in the form Uy = U — V;. Then we may use
the optical gap F, obtained from the BETHE-ansatz solution for the pure 1D
HUBBARD model given by OVCHINNIKOV [118];

162 Va? — ldz

Ueff sinh(27rt1x/Ueff)
1

£,

~ Uwpp— 4ty +2n2J for Uyp>t; JM =42 /Uy
(4.5)

In the strong-coupling case Eq. (4.5) can be transformed to the useful relation

t; = 0.5JF (1 + \/Eg/Jf‘F +1-— 21n2> : (4.6)

It has been assumed that the smaller parameters ¢t and |K]|, i.e. the hopping to
second neighbors and the ferromagnetic exchange in (4.2), have no substantial
influence on the charge transfer gap (¢, enhances the spin gap in the spin-PEIERLS
state).

The presence of a weak second-neighbor exchange can be approximately de-
scribed in some cases by an effective renormalized nearest neighbor exchange
integral [119, 120]

J=J —rlox J — Jy, (4.7)
where 7 = 1 according to Ref. [119] and r = 1.12 according to Ref. [120]. Recently,
STEPHAN and PENC [121] predicted a strong narrow excitonic peak in the density-
density response function N(gq,w) of the EHM in the strong coupling limit at the
zone boundary ¢ = 7/b:

wem('/r/b) =U -V, (48)
provided V; > 0.

Parameter assignment

In principle, Uy and ?; can be determined from the experimentally measured
E, and J values using Eqs. (4.4-4.7) which are presented graphically in Fig. 4.2.
In the case of SroCuQOj, very recently also the narrow excitonic peak at the zone-
boundary (Eq. (4.8)) and with it U.s; were determined experimentally [122].
However, to the best of our knowledge, the available experimental information

3From recent XAS measurements and related cluster calculations [117] we concluded, that
V;j (j = 1,2) is somewhat larger as assumed here. Taking into account the enhanced value of
Vj, some values calculated later in this section would change slightly, but the results do not
change qualitatively.
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Figure 4.2: Dependence of the transfer integral ¢; (left panel) and the
on-site COULOMB interaction U,s; (right panel) of the HUBBARD model
according to its BETHE ansatz-solution vs. i-chain superexchange integral
J{*" in the strong-coupling limit for typical values of the optical gap E,.
The experimental values for JA are depicted by arrows. They are de-
termined from the total exchange integral J adopting ferromagnetic and
second neighbor contributions discussed in the text.

on all three systems is incomplete or contradicting each other. For instance, for
CayCuOg3 the charge gap determined from the maximum of Im(s(w)) is B, = 2.1
eV [123], but a direct measurement of the .J value from the magnetic susceptibility
does not exist. Interpreting the midinfrared absorption as a phonon-assisted two-
magnon process, a value of J = 255 meV was reported [124]. For Sr,CuOj3 the
experimental .J values range from 140 to 260 meV [125, 44, 124]. In the following,
190 meV shall be used as a representative value. According to recent data for
this system, the one-dimensional charge transfer gap F,(Sr) ~ 1.9 £ 0.1 [122]
might be somewhat smaller as compared to the Ca-compound*. The elucidation
of the observed broadening of the expected 1D VAN-HOVE singularity in terms
of the inter-chain interaction, quantum fluctuations , disorder, or excitonic and
other many-body effects is a difficult problem beyond the scope of the present
discussion.

Taking this situation into account, the available experimental data and also
our band-structure results are used to derive a consistent parameter set of Eq. (4.2)
(t1, t2, Uesr, V1 and | K |) for each of the three substances, separately. Vice versa,
the demand of internal consistency weights the experimental information.

Sr,Cu0O; Recent EELS data of NEUDERT et al. [122] allow to determine
Uesr = 3.15+£ 0.1 eV from the maximum of Im(e(w)) at the zone boundary

4Strictly speaking, the optical absorption sets in already near 1.5 eV [126, 127, 122].
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(Eq. 4.8). At the same time E, was measured to be 1.9£0.1 eV from the data at
small momentum. Similarly £, = 1.92 eV was found from the RAMAN resonance
energy [128] observed for diagonal in-chain (yy) polarization only. The aim is
to derive values for the magnetic coupling constants from Eqs. (4.4-4.7) using
the experimental values of U.sr and E,. Since it turned out that the derived
J-values depend sensitively on U.sy and E,, two sorts of extreme cases are to
consider. From Eq. (4.5) we obtain ¢; = 0.410 eV with U,y = 3.15 eV and
E, = 1.8 eV (lower bound). That corresponds to J{¥ = 213 meV. According
to Egs. (4.4, 4.7), that value has to be reduced by the frustrated next nearest
neighbor exchange .J, of about 12 meV (corresponding to t, = 100 meV from
our tight binding fit) and by the ferromagnetic contribution |K| before it can be
compared with the total experimental exchange integral J = 190 & 17 meV [44].
Thus we can estimate a direct ferromagnetic exchange of |K| ~ 11 4+ 17 meV.
This K value is slightly smaller than the value of 35 meV for LayCuO, obtained
in Ref. [114], which might be attributed to the shorter Cu-O bond-length of 1.89
A for the latter compound. The so-derived parameter set is listed in Table 4.1.
A second parameter set is derived taking E;, = 2 eV and U.s; = 3.25 eV as the
upper bounds of the experimental results. From Eq. (4.5), t; = 0.394 eV and cor-
respondingly a considerable smaller value of JA = 190 meV are obtained. Such a
parameterization is compatible with the total exchange integral 147"* meV [125]
derived from the magnetic susceptibility data. It is to note, that both parameter-
izations are incompatible with the large J values of 246 meV [134] and 261 meV
[124] derived from midinfrared optical absorption data®. Anyhow, the elucida-
tion of the microscopic origin of the apparent discrepancy between the magnetic
susceptibility and the midinfrared optical absorption data analyzed in terms of
the simple nearest neighbor spin-1/2 HEISENBERG model remains a challenging
problem.

Cay;CuO; The slightly larger charge transfer gap of 2.1 eV suggests also an
enhanced U,ss-value in comparison with the Sr-compound. That means that it
is again difficult to find a reasonable parameterization which is compatible with
the large J value of 254 meV from midinfrared absorption data. Due to the lack
of experimental information on the magnetic susceptibility, in the following the
theoretical estimate of 160 meV [115] for the J value of CayCuO3 will be used.
Adding a ferromagnetic contribution of |K| &~ 30 meV (of the same order as

We assume that there is no sizeable ferromagnetic second neighbor exchange over-
compensating the ferromagnetic nearest neighbor contribution |K| and the antiferromagnetic
next nearest neighbor superexchange J» = 4t3/U. ;. The small differences between both values
arise mainly from the adopted phonon frequency of 70 and 80 meV, respectively, involved in
the phonon-assisted absorption process.
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for LapCuQ,) and a frustrating J, ~ 10 meV, we may find JIAF = 200 meV as a
rough estimate. Then, together with £, = 2.1 eV, we calculate t; = 418 meV from
Eq. (4.6). According to Eq. (4.5) that corresponds to U.rr = 3.5 eV, showing
On the level of the pd-model the reason for the
enhanced effective on-site interaction should be traced back to a larger Ae,y ~
Uers. It seems to be related to a MADELUNG effect caused by the difference in the
lattice parameters of the Sr- and the Ca-compound, respectively. This point of

the expected enhancement.

group quantity SroCuOs CayCuO3 CuGeO;
[ | tizpa/meV 550 520 250
to.Lpa/meV 100 100 81
t, /meV 20 to 30 50 to 65 25 to 33
11 E,/eV (1.8 to 1.9)>P (2.1)° (1.25)9, (3.7)°
Ji/ meV | (140)f, (190)%, (260)" | (160)" (254)" | (114 1)i, (22 )¥
111 t; /meV 410 419 187
ty/meV 100 100 90
Uesr/eV (3.15)P 3.5 4.34 (4.2)°
Vi/eV 0.21 0.16 0.1
| K |/meV 11 30 19
Ji /meV 0.5 to 1.1 2.9 to 4.3 0.6 to 1, (1.1)!
vV Tn/K (5)! (8...10)! (4.5)™
P /g (0.0640.01)! (0.0940.01)! (0.23)7
vV w5 g 0.08 to 0.11 0.19 to 0.24 0.35 to 0.45
J™ [meV 0.3+ 0.1 0.6+0.1 0.27

Table 4.1: Model parameters for SroCuQO3, CayCuO3 and CuGeO3;. The LDA-
LCAO-derived tight-binding parameters in the first group of rows are explained
in Sec. 4.1.1. The second group contains experimental values (in the case of sev-
eral data we prefer the underlined) which were used in addition to estimate the
corresponding parameters of the EHM as well as the exchange integrals of the
AHM (third group of rows) derived and discussed in Sec. 4.1.2. The experimental
magnetic moment pu? and the NEEL temperature Ty (group IV) may be com-
pared with “¢ derived from Eq. (4.20) using the experimental data for J; and
our estimation of J. Vice versa, the experimental ;P determines via Eq. (4.20)
the empirical inter-chain exchange integrals J{".

® RAMAN resonance [128], ® EELS [122], ¢ opt. absorption [123], ¢ XPS [129], ¢
XPS [130], f magn. suscept. [131, 125], & magn. suscept. [44], ' midinfrared [124],
" theory [115], J INS, RAMAN [61, 63, 64, 132, 120], ¥ RamaN [62], ! uSR [4], ™
INS [133].
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view is corroborated by the band-structure calculations discussed in Section 3.3.1
and in the previous section: for Cay;CuOs, the distance between the half-filled
antibonding band and the filled bonding bands is larger by 0.7 eV compared to
the corresponding distance for the Sr-compound.

Inter-site Coulomb repulsion and comparison with CuGeO3; According
to the microscopic calculations of GEERTSMA and KHOMSKI [74] the total nearest
neighbor exchange integral of CuGeO3 J; = 11.6 meV can be decomposed into
an antiferromagnetic contribution of JAF = 30.4 meV and into a relatively large
ferromagnetic one of | K| = 18.8 meV. For CuGeOj3 charge transfer gaps of 3.66 eV
[130] and 1.25 eV [129] have been reported®. Using the values E, = 3.7 eV and
JAM = 30.4 meV in Egs. (4.5) and (4.6), the main parameters of the extended
HUBBARD model come out as t; = 0.187 eV and U,y; = 4.34 eV. Interestingly, the
latter value nearly perfectly coincides with the charge transfer energy A = 4.2 eV
found out from the XPS data analyzed within the ANDERSON impurity model
[130]. Within a pd-model the significantly enhanced corresponding Aeg,, value
should be attributed to the Ge-cations located near the CuOs-chain oxygens.
This point of view is supported by the following observations: In compounds like
Sr14Cug4Oy41 where the considered CuO,-chains are surrounded by earth alkaline
cations, the corresponding charge gap is reduced to about 2.8 eV [135]. For that
compound, Ae,; as calculated within the ionic point charge model amounts to
3.7 eV [136].

Comparing the data collected in Table 4.1, we suggest that Ca,CuOg3 should be
somewhat stronger correlated than its Sr counterpart. Without doubt, the most
strongly correlated compound among them all is CuGeO3 having the smallest
transfer integral ¢;(Ge) = 0.187 eV and the largest U.;;(Ge) = 4.34 eV. The
large ratios Uess/t; obtained in all three cases (7.7(Sr), 8.4(Ca), and 23(Ge))
justify a posteriori the use of Eq. (4.5).

The difference between ¢; and ¢; ;p4 may be explained by a renormalization
of the transfer integral ¢; by the inter-site COULOMB interaction V;. Within the
HARTREE-FOCK approximation, the correction due to V; leads to a renormalized
effective hopping integral t; +pV; with the bond order p ~ 2/x. This renormalized
hopping integral can be compared with ¢, ;,p4, where the inter-site COULOMB
interaction is already partially taken into account. From t;r.pa = t; + pV; and
the data of ¢; and ¢, pa given in Table 4.1 we may determine V; = 0.21 eV for
SroCuOs, V7 = 0.16 eV for CayCuOs, and V; = 0.1 eV for CuGeOjs (here t; =
0.187 eV as estimated above has been adopted). Thus, the inter-site COULOMB

6The attribution of sharp peaks near 1.25 eV, 2.9 eV and 3.66 eV observed in Ime(w) to
the dp charge transfer gap which is of interest here, to dd-transitions, and to Ge-states related
interband transition is controverse.
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interactions V; ~ 0.2 eV of all three compounds are quite close to each other
and fulfill the relation V; < U. Notice that these numbers for V; roughly agree
with the corresponding 2D-values 0.11 eV or 0.17 eV given in Refs. [114, 137],
respectively, and the estimate based on the four-band model for CuOs-chains
[138]: V1 & ngnyVpa+ni(Vaa— Vaaa) = 0.23 eV, where typical occupation numbers
nqg ~ 0.7,n, ~ 0.13 and typical values for V,y = 1.2 eV, V} 49 = 0.5 eV and V5 49 =
0.25 eV have been taken. Herein, V,q is the copper-oxygen inter-site COULOMB
interaction, V) 49 and V5 49 eV are the nearest and next nearest neighbor copper-
copper inter-site COULOMB interaction, respectively.

The value for t5 in Table 4.1 was either taken from the fit to the band-structure

data (tyLpa for SroCuOjz and CayCuOj) or inferred from the experimentally
known value for J, = 4.3 meV [139] for CuGeO3 using Eq.( 4.6).

Inter-chain exchange A first estimate of the magnetic couplings between

chains shall be given. The inter-chain exchange interaction J, in the c-direction

for SroCuO3 and CayCuOj (corresponding to the b-direction in CuGeOj3) will be

approximated by

4
Uets’

I, (4.9)

for simplicity, we assumed the same inter-site COULOMB interaction V; within
the chain and perpendicular to it. The corresponding values are listed in Table
4.1. The discussion above about a possible direct ferromagnetic exchange which
leads to a systematic reduction of exchange integrals suggests that these values
should be considered as upper bounds. In the case of CuGeO3; the so-determined
J1 = 1 meV can be compared with experimental data from neutron scattering
[133, 61] J, =~ 1.1 meV showing a reasonable agreement. It is to notice that in
the case of SroCuOs3 our inter-chain interaction exceeds the dipolar interaction
evaluated in Ref. [131] by two orders of magnitude.

The magnitude of the weakest interaction .J; , in the b-direction is difficult to
estimate theoretically. It has been evaluated in Ref. [131] for Sr,CuOj, adopting
the dipolar interaction for J; , &~ 10~* meV. Extracting the corresponding trans-
fer integral ¢, j from the bandstructure, we find ¢, , = 1.8 meV for Sr,CuO3 and
t1p = 2.6 meV for CagCuO3. Because we neglected in our TB-model the higher
FOURIER-components in the other two directions (Eq. 4.1), these small values
are at the border of reliability. The corresponding value of J, , &~ 107 (Eq. 4.9)
should be considered only as an estimate of the order of magnitude. In any case it
may be expected that J, j is smaller than the other exchange integrals by several
orders of magnitude.
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4.1.3 Some aspects of the NEEL state

The magnetic properties of undoped cuprates (i.e. one hole per Cu-site in the
standard pd-model) are usually described by the anisotropic spin-1/2 antiferro-
magnetic HEISENBERG model

H=)YJ;S; , (4.10)
<iyj>

with Ji; = Jj(= Jp) for (ij) beeing nearest neighbors in the chain direction (a-
direction for Sr,CuQOj3; and CayCuQOs3) and J; for nearest neighbor copper-sites in
c-direction (see Fig. 3.6). The weakest interaction will be denoted here by .J, .
According to the results of the previous sections as well as to the experimental
data, SroCuO3 and Ca,CuOj3 are characterized by very anisotropic interaction

strengths
JH >J > JL,b' (4.11)

The anisotropy is about three orders of magnitude for each inequality. In-
stead of the spin-PEIERLS system CuGeOjs, the doped compound GeCu;_,7Zn,03
(x=0.034) [132, 66], which shows antiferromagnetic order, will be considered
in the following to allow a comparison. This is an example for an anisotropic
HEISENBERG problem with weaker anisotropy than SroCuOj3; and Ca;CuQOg3. For
simplicity, we will use for GeCu;_;7Zn,;0O3 the same parameters which were de-
rived in the previous section for CuGeOs;. We also neglect here the frustrated
exchange .J,.

In the following we review several approaches for such strongly anisotropic
systems where quantum and thermal fluctuations become important. We will
mention the usual spin wave approach in self-consistent random phase approx-
imation (RPA-SWA) where all directions are treated on an equal and simple
footing, and the coupled quantum spin-chain approach (CQSCA) which involves
first a sophisticated treatment of the intra-chain direction and then a mean-field
treatment of the remaining inter-chain interactions.

RPA spin wave theory

The RPA-SWA yields simple analytical expressions for the NEEL temperature Ty
and for the staggered magnetization < S% >= my at zero temperature (see [131],
[140] and references therein). Both quantities can be derived from the expression

2m(T) = < :w . Y= %Z (Q“qu) coth (%) - 1) : (4.12)

q

where

Qq) = \Jwi —wilg), wi=4m(T)J(cosq, + Rcosq, + Rycosq,), (4.13)
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with wg = 4m(T) (Jy+ JL + J1p), R=J./Jjand Ry = J, p/J;. We put kg = 1.
The NEEL temperature is defined by the condition of vanishing magnetization
which yields

Tn = J)/2I(R, Ry), (4.14)

where

dgzdqydq.
I(R, Ry) . 4.15
') /// R(1 — cosq,) + Ry(1 — cos q,) + (1 — cos qy) (4.15)

Expanding I(R, R,) for Jj > J, > J, ; gives the approximate expression

0.66
VR

which determines the NEEL temperature together with (4.14). The zero temper-

I(R, Rb) [1 +0.24 IH(R/R(,)] , (416)

ature magnetization my is in the same limit given by

0.303
1—0.3861In (R) ’

my = (4.17)
where the small parameter R, turned out to be irrelevant. Notice that the RPA-
description adopted reveals a vanishing magnetic moment in the & — 0 limit.
Thus it differs from the ordinary spin-wave theory which yields a diverging ex-
pression my = |0.5 + (1/7) In R| in the weak inter-chain coupling limit.

Let us now check the above expressions using the estimates of the last section
and compare them with the experimental data. These data for Ty and the
magnetic moment p*? = grmyg are given in Table 4.1. In the following, a typical
cuprate LANDE factor g7, &~ 2.1 for Cu™? [131] will be adopted. Using the values
Jj and J| from Table 4.1 and J, = 107 meV, we find Ty = 38 K, Ty* = 5 K,
1" =0.20 pp and p“* = 0.26 pp for the Sr- and the Ca-compound, respectively.
The ratio of the two experimental NEEL temperatures agrees approximately with
the RPA-SWA prediction

TS /TS ~ \/JC“JC“/\/J‘STJET ~ 2 (4.18)

where the logarithmic corrections in Eq. (4.14) can be neglected since they are
not very important for the above ratio. However, the absolute values of i and
T within the RPA-SWA disagree with the experimental data. In the case of
the more isotropic GeCu;_,Zn,O3 we find ;¢ = 0.32 up, in a better agreement
to the experiment. But also here, the magnetic moment is overestimated by the
RPA-SWA. In this case that may be ascribed to the effect of the frustrated second
neighbor exchange.

For the Sr- and the Ca-compound, the opposite procedure could be tried using
the given experimental data (including Jj) to determine an “empirical” J{™. The
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resulting values for J{"™ are two (from T) or more than four (from mg) orders
of magnitude lower than those estimated in the previous section. This seems,
therefore, to be unrealistic. Despite the fact that it gives the correct limits for
mgo both for R — 0 and in the 2D isotropic case for R — 1, the RPA-SWA seems
to overestimate mg for large anisotropy (R < 1) quite considerably. That points
to the necessity for an improved method. In the case of smaller anisotropy (e.g.
R ~ 0.1 for GeCu;y_,Zn,0O3), the RPA-SWA seems to give more reliable results.

Coupled quantum spin chain approach (CQSCA)

Adopting SCHULTZ’s interchain RPA-expression (Eq. (7) of Ref. [46]), we replace
J. — 0.5(JL + Jip) as suggested by our strongly “orthorhombic” parameter
regime Jj > J; > J, ;. This leads to

mo = YVR, (4.19)

where the proportionality factor” v is 0.72. The corresponding values for ¢ =
gr,myg are listed in Table 4.1.

Analogously, within these theories one expects Ty ~ J, [47], in particular,
the slightly modified implicit expression for the transition temperature proposed
by ScHULTZ [46] reads

Ty =27, "2 (AJ
N - 1 in ( H/TN), (420)
where A =~ 5.8.

From a principal point of view (MERMIN-WAGNER theorem), it is clear that
Eq. (4.20) overestimates Ty because it does not depend on .J; ;. However, since
its influence can be described by logarithmic terms like in Eq. (4.16) which then
ensure a finite T, the relative changes might be quite small.

Like in the RPA-SWA, our estimated values for .J; and the experimental J
lead to too large values for Ty and my. But now, using the experimental my
and Jy we can determine from Eq. (4.16) an “empirical” J{™ of the CuOs-chain
compounds which is of the same order of magnitude as our estimates. The value
of J{"™ is smaller by a factor between 2 and 3 (Sro,CuOj;, GeCu;_,Zn,03), or 6
(CapCuOs3) compared to the theoretically estimated values (see Tab. 4.1). The
NEEL temperature can also be used to determine .J{™” which gives similar values
showing the internal consistency of the CQSCA, but it should be kept in mind
that Eq. (4.19) does not fulfill the MERMIN-WAGNER theorem [142]. In that
respect, an alternative approach to the strongly anisotropic HEISENBERG model
(CAsTRO-NETO and HOHN [143]) is noted here, in which the NEEL temperature

TA similar factor 2/m = 0.637, was obtained by FUKUYAMA et al. [141].
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was found to depend linearly on .J, ;. Naturally, the elucidation of the correct
description, how this smallest interaction parameter does affect the finite temper-
ature properties, remains a challenging problem. Without its generally accepted
solution it makes no sense to discuss the absolute values of the NEEL-temperature
beyond an order of magnitude accuracy.

One possible explanation for the reduction of J™ in comparison with our
estimated J, could be the proximity of a spin-PEIERLS state. Phase fluctuation
effects beyond the mean-field inter-chain approach used in deriving Eq. (4.19) can
then become quite important. Following the renormalization group approach of
WANG [48] for a plane of weakly interacting chains at 7" = 0, one finds a strongly
renormalized magnetization which can be traced back to a renormalized exchange
integral. If that is true, CayCuO3 should be much closer to the spin-PEIERLS
phase transition point than SroCuOj3. Furthermore, for small exchange integrals
compared with the phonon frequency (~ 10 to 20 meV), phonon exchange gives
rise to a quasi-instantaneous interaction between localized spins, leading to a
renormalization J — Jopp < J [144].

Another possible origin for the difference between .J; and J{™” might be our
simple procedure to estimate .J; based on the extended HUBBARD model. It was
already mentioned that such a procedure has the tendency to overestimate the
exchange integrals which becomes already apparent for J. Last but not least,
there is an uncertainty of the band-structure methods with respect to transfer
integrals as small as in the considered case. The replacement of the full potential
in the region in between the chains by empty spheres as explained in Sec. 3.3.1
might effect the transverse tails of the WANNIER-functions which determine the
value of the transfer integral ¢,. Anyhow, roughly the same accuracy for the Sr-
and the Ca-compound should be expected. In this context the stronger deviation
of the magnetic moment of the Ca-compound might be related to somewhat
reduced accuracy of Eq. (4.17) in less anisotropic cases.

The isomorphic compounds SroCuO3 and Cay;CuQOg offer in principle the op-
portunity to study in detail the effect of the inter-chain interaction (despite of
possible disorder effects) provided that it can be changed in a controlled way.
Indeed, the study of the magnetic properties of the alloy system Sry_,Ca,CuOj
gives an interesting possibility to change continuously the magnitude of the inter-
chain coupling. This is also interesting from the theoretical point of view since
it gives a possibility to check in more detail sophisticated theories for weakly-
coupled quantum spin-chains.

An analogous analysis of the inter-chain couplings and the antiferromag-
netic interactions has been performed for the zigzag chain cuprate SrCuO, (see
Fig. 3.18) [145]. Due to the similarity of some properties with the above men-
tioned single chains, the main results shall be shortly reported in the following
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to complete this section (For the detailed analysis and discussion see Ref. [145]).

Within LDA calculations, the insulating compound SrCuQOs shows two half-
filled nearly one-dimensional antibonding bands (see Fig. 3.20) according to the
presence of two spin-1/2 antiferromagnetic subchains with weakly frustrating
intra- and inter-subchain interactions.

Recent EELS data provide for the first time clear experimental evidence for
the subchain interaction in good agreement with the band structure calculation
[145].

Using exact diagonalization studies to investigate the influence of different
frustrating exchange interactions of the zigzag chain in the parameter region
estimated by LDA, we find a rather small effect of the frustrating coupling terms
between the two subchains on the magnetic susceptibility and on the specific
heat.

The inter-chain HEISENBERG exchange in the direction of the weakest cou-
pling is quite different for SrCuOs and SroCuOjs which might be responsible for
the different magnetic ordering at low temperature. There is an indirect cou-
pling in b-direction involving nearest neighbor zigzag chains in b-c-direction (see
Fig. 3.18) ensuring this way a finite NEEL temperature of about 5 K [79] similar
to the NEEL temperature of SroCuQs.

In addition, the quantum fluctuations within the a-c basal plane are enhanced
in comparison with the single-chain case due to the reduced inter-chain interac-
tion. The corresponding transfer integral in c-direction for SrCuQO, is about half
the value of SroCuQO3. Applying quantum spin chain theories [146], that explains
the further reduced magnetic moment of 0.033zpon:|79)].

Summarizing, it is to state, that the LDA band structure calculations yield
useful insights into important material-dependent parameters as inter-chain elec-
tron transfer and tendencies of the crystal field (MADELUNG) potential, albeit
that estimate of the on-site and inter-site COULOMB interaction requires more
sophisticated methods such as LDA-calculations with local constraint.

4.2 The orbital-hole distribution in cuprate chains

In the previous section, we investigated the low-energy physics of single-chain
cuprates in the framework of a one-band model. Here, multi-band models are
presented, which are suited to describe processes where different orbitals are
involved.

Combining the theoretical analysis and various spectroscopies, the main pa-
rameter values of extended HUBBARD models for the various chain-cuprates can
be determined. In particular, it is the aim of the present discussion to find out
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for the anisotropic SroCuO3 compound under consideration to which interactions
the polarization-dependent x-ray absorption spectroscopy (XAS) is most sensi-
tive and to determine the corresponding parameters (for a detailed discussion see
Ref. [117]).

The experimentally measured O 1s spectra with the electric field vector par-
allel and perpendicular to the CuOs-chains are shown in Fig. 4.3. XAS probes

T I T I T I T I

Normalized intensity

T

I I
528 530 532
Absorption energy (eV)

Figure 4.3: Polarization-dependent XAS spectra of SroCuOj3 for the elec-
tric field vector E within the plane of the Cu-Oy4-plaquettes. The a-
axis corresponds to the chain direction. For experimental details see
Ref. [117].

the unoccupied electronic structure. In particular, the first peaks above the ab-
sorption threshold measure the number of holes in the initial state of oxygen 2p
orbitals contributing to the upper HUBBARD band. From the integrated spectral
weight near the peak values an oxygen hole ratio R = 2no)/non) ~ 1.22 can
be deduced. The chain oxygen O(1) and the side oxygen O(2) correspond to the
notation in Fig. 3.6.

Starting from an LDA bandstructure calculation followed by the parame-
terization of appropriated TB models, we will adjust the on-site and inter-site
CouLoMB parameters of an extended HUBBARD model to this experimentally
observed hole ratio.

4.2.1 Tight binding models

The LDA-LCAO bandstructure calculation for SroCuQOj yields a quasi 1D-band
crossing the FERMI level (see Figs. 3.8 and 4.1). Three main orbitals contribute
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Figure 4.4: Sketch of a plaquette of the CuOj3-chain in SroCuOj3. The
orbitals and the corresponding transfer integrals of the 7-band TB model
are depicted. For the 4-band TB-model, only the oxygen p-orbitals which
form pd-o bonds with the copper 3d-orbital and the corresponding trans-
fer integrals t,,;, tpq1 and 40 are relevant.

more than 94 % to the net-DOS (see Appendix A) of the antibonding band,
namely the O(1) 2p, and O(2) 2p, states as well as the Cu 3d,2_,
Hence, the usual dp-model with an extension to two non-equivalent oxygen sites

2 orbitals.

per unit cell can be regarded as a quite good approximation for the description of
the low-energy electronic structure at hand. This model contains three transfer
integrals tpq1, tpa2 and t,p; (see Fig. 4.4) and three on-site energies eo(1), £o(2) and
g4 corresponding to the above mentioned orbitals.

At first glance, only the half-filled antibonding band at the FERMI level should
be considered. However, the extended tight binding fit for this band is numeri-
cally not unique and therefore not suitable for the determination of three differ-
ent transfer integrals required in the four-band pd-model (see Figs. 3.6, 4.4 and
Eq. (4.21) for the notation of sites and parameters). Thus, additional lower-lying
bands with bonding and nonbonding character have to be included. However,
due to the non-negligible hybridization with further O 2p orbitals (having non-
o overlap), a discontinuity of the O(2) 2p, orbital-character (see Appendix A)
is observed in the region of the nonbonding oxygen-derived bands near -4 eV
and -5 eV (see Fig. 4.5), if we restrict ourselves to the four-band model, only.
Therefore, eventually, a fit was performed within the seven-band pd-model where
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T II r 11
wavevector

Figure 4.5: LDA-LCAO band structure of SroCuO3 along the chain di-
rection. The symmetry points are denoted I' = 0 and II = 7/a, the
FERMI level is at zero energy. The thickness of the lines is scaled with

the sum of all orbital projections of the 4-band TB model (left panel)
and of the 7-band TB model (right panel).

the O(1) 2p, and two O(2) 2p,-orbitals with corresponding on-site energies and
transfer integrals #,,, and £,,| were taken into account additionally although they
can be largely ignored in the physics described below. The fitting procedure of a
multi-band TB model using the eigenvalues at high-symmetry points is described
in detail in Section 4.3.1.

The transfer integrals for the TB-fit of the four- and the seven-band model
are given in Table 4.2. Compared with the standard parameter ¢,; = 1.3 eV for
the CuOg-plane, the transfer integrals ¢,4; and ?,4 are enhanced. This is proba-
bly caused by a change of the corresponding WANNIER functions [147]. Similar
values are reported for the transfer integrals of the CuOs-chain in YBay;Cu3Ogy,
(tpar = 1.5 eV, tpge = 1.95 eV and t,,; = 0.6 eV) [148].

However, the parameter t,,, = 1.15 eV obtained from the four-band model
seems to be unreasonably large. This is caused by the non-negligible influence
of hopping processes corresponding to t,,. The same is valid for the differ-
ence of oxygen on-site energies A, = co(2) - £0(1). We find A,, = -1.5 eV and
A,p = 0.75 eV for the four- and the seven-band model, respectively. The exact
diagonalization studies presented in the following section show a posteriori the
inconsistency of the values for ¢,,, and A,, found in the four-band model.
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TB model tpdl tpdg tppi tppo tppH
4-band 145 | 1.8 | 1.15 - -
7-band 1.56 | 1.8 | 0.62 | 0.41 | 0.35

Table 4.2: Transfer integrals for the four and seven-band TB fit for
SraCuOg. All energies are given in eV.

Thus an extended fit with a subsequent selection of relevant orbitals is more
favorable than a more restricted one with an uncontrolled renormalization due to
neglect of other orbitals. In this context we mention that the small admixture of
Cu 4s and O 2s states contributes also somewhat to the large band width of the
antibonding band®.

4.2.2 FExact diagonalization studies

In this section, a theoretical analysis of the hole distribution using the exact
diagonalization method for a (CuOj)y-cluster (N = 4,6) with periodic boundary
conditions is discussed. For the transfer integrals the above obtained values from
the seven-band TB model are used as input.

According to the orbital analysis in the previous section, a four-band extended
HUBBARD model [115] is suitable to describe the XAS measurement. Regarding
the final state of the core level excitation, the corresponding Hamiltonian has to
be supplemented with the core-pd-valence hole COULOMB interaction V;:

H = Zgzﬁz + Z tij (C;-[’st,s + hC) + Z Uiﬁi,ﬁ%’,i
) <%,j>,8 7
+ Y Vighatiy + Y Uit + Y Ve, (4.21)
<i,j> ) i
f
i,

iy = 3. ¢l cis. In the following, we denote the difference of chain-oxygen O(1)

§ 7S

where ¢; ; creates a hole at the site 4, n;; = c}scis is the number operator, and
2p, and Cu 3d,2_,2 on-site energies by A,4. For the on-site COULOMB repulsion
at Cu and O sites we adopt Uy = 8.8 eV and U, = 4.4 eV, respectively, as
suggested in Ref. [149]. For the intersite COULOMB interactions we adopt for
the sake of simplicity Vpq1 = Vpae = Vpa. Then, the latter value as well as the
values of A,, and A4 are taken as free parameters to reproduce the XAS data
reported below. We have calculated the XAS spectral function as well as the hole

8Suppressing this admixture artificially in the final step of a self-consistent calculation, the
bandwidth of the antibonding band is reduced by about 10 %.
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Figure 4.6: Size effect for the Cu hole-occupation number ny in the CuO3-
chain of SryCuOj; depending on the cluster size L. calculated within the
Quantum Monte Carlo method . The crosses denote our exact diagonaliza-
tion results for L = 4 and L = 6.

occupation numbers

n, = (Gii|G), (4.22)

in the ground state |G) for Cu and for both non-equivalent oxygen sites O(1) and
O(2), since the measured polarized O 1s XAS cross sections are proportional to
the oxygen occupation numbers in the ground state.

In order to get some insight in the finite size effects caused by the small clusters
which can be treated by exact diagonalization methods, the results are compared
with those of Quantum Monte Carlo calculations [150], where up to 16 unit cells
can be considered (see Fig. 4.6). The Quantum Monte Carlo calculations result
in a 1/L* asymptotic behavior on different curves for L = 4m and L = 4m+2
(m =1,2...) clusters. Since the deviations at small m are very small (about 0.4
%), we regard the result for L=16 as an excellent estimate for the L — oo limit.
Therefore, the results for any quantity calculated at m = 6 and m = 4 cluster
sizes can be regarded as lower and upper bounds for the infinite chain-limit.

The main results of the cluster calculations are the following: The hole ratio
R is sensitively dependent on both the values of A,, and V,4. Compared to
typical values for the layered cuprates, we find a significantly enhanced V4 of
2.5 + 0.5 eV (see right panel of Fig. 4.7). Thus, we confirmed the predictions
based on an analysis of Cu 2p XPS spectra [126]. However, in contrast to this
XPS analysis, which is less sensitive to the parameter A, a sizable positive value
of Ay, ~ 0.5 ... 1eV has to be taken into account in accord with the LDA result
(see left panel of Fig. 4.7). Finally, EELS data of Ref. [151] yielding an effective
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Figure 4.7: Left panel: Ratio of side- and chain-oxygen occupation numbers
in SroCuOs3 ws. intersite COULOMB interaction Vp4 for the LDA-LCAO
derived parameter set. The legend numbers denote the difference of oxygen
on-site energies A,, in eV. The stripe denotes the experimentally (XAS)
derived oxygen hole ratio including error bars.

Right panel: Dependence of the inter-site COULOMB interaction V)4 on the
oxygen on-site energy difference A, for different A,q. The large circle de-
notes the expected region of V,4 and A,,. NNN stands for Cu-Cu interaction
Via = 0.8 eV included.

Uegg ~ 4.2 €V analyzed within an extended one-band HUBBARD model. Adopting
this value of U, further COULOMB interaction Vj,; should be included in the
four-band model.

To summarize our results, based on bandstructure calculations for SroCuOs;
a new parameter set at the level of the four-band extended HUBBARD pd model
description has been proposed. Surprisingly, significant deviations from sets com-
monly accepted for layered cuprates have been found indicating that the ¢,41, p4o
and t,, do not scale with the Cu-O distance. These deviations can be considered
as the origin of the unusual large values of the intrachain exchange integral (see
Section 4.1.2). At variance to other spectroscopies the polarization-dependent
XAS for the anisotropic single-chain SroCuQOj3 is found to be sensitive to the
difference of on-site energies and of the inter-site COULOMB interaction.
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4.3 Tight-binding parameter and exchange integrals of Ba,Cu3;0,Cl,

In this section, the parameterization of a multi-band tight-binding model is
demonstrated in more detail. The advantage of a the atomiclike character of
the basis orbitals in our band structure scheme gives a natural possibility to ex-
tract the relevant orbitals for the construction of model Hamiltonians. This is
exploited extensively in the following.

In Figs. 4.9(a) and 4.9(b) the weights of the Cuy 3d,2_,2 and Cup 3d,>_,»
orbitals, respectively, are shown. We can observe that the broad band is built up
of predominantly the Cu, 3d,2_,2 orbital which hybridizes with one part of the
planar oxygen 2p, , orbitals resulting in dpo bonds. The corresponding oxygen
orbitals, directed to the Cuy atoms, are denoted here as p, orbitals. Their weight
is shown in Fig. 4.9(c). The p, orbitals are to distinguish from the oxygen p;
orbitals (Fig. 4.9(d)) which are perpendicular to them [152] (see Fig. 4.10). These
oxygen p, orbitals hybridize with Cup 3d,2_,2, building the narrow band at the
FERMI-surface (see Fig. 4.9(b)). There is generally very small weight of the p,
orbitals in this narrow band, indicating that there is only small coupling between
the A and B subsystems. The only exception to this occurs around the wave
vector (m/a,0). A further analysis shows that the band complex between —1 eV
and —3 eV is predominantly built up of out-of-plane oxygen p, together with
the corresponding Cu 3d,, ;. orbitals (not shown), as well as a large contribution
of Cl-derived states [49]. The in-plane oxygen orbitals contribute mainly to the
lower band complex between —4 eV and —8 eV (see Figs. 4.9(c) and 4.9(d)).

Thus, it is evident that the two bands crossing the FERMI-surface which we
want to analyze have nearly pure 3d,2_,» and 2p, , character?. Therefore, we have
to consider all together 11 orbitals in the elementary cell of CuzO4, namely 2 Cu 4
3dy2_y2, 1 Cup 3d,2_,2, 4 oxygen p, and 4 oxygen p, orbitals. In Fig. 4.8(b) we
pick out the corresponding bands from the LDA-bandstructure for which the sum
of all 11 orbital weights (Eq. (A.7) in the Appendix) is large. It is to see that
the sum of all orbital projections in Fig. 4.8(b) decreases with increasing binding
energy. That can be explained by the reasons mentioned above. Further it is to
observe that the lower 8 bands in Fig. 4.8(b) are not as pure as the upper three.
For the upper bands only a very small weight of additional orbitals, in particular
Cu 4s contributions, has been detected. These contributions are neglected in the
following.

9The corresponding band complex with nearly pure 3d,>_,2 and 2p,, character includes
also a third band just below the FERMI-surface. It has Cuy 3d,2_,2 and O p, character similar
to the broad band crossing the FERMI-surface. This is not surprising since there are two Cuyz
in the elementary cell of CuzQOy.
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Figure 4.8: a) LCAO-LDA band structure of the Cu3O4-plane of
BayCuz0,Cly, the FERMI level is at zero energy. b) The same as in
(a), but the weight of the lines is scaled with the sum of all 11 orbital
projections that are used in the TB model. ¢) The band structure of
the TB model. The parameter set used is shown in Table 4.3. The wave
vector is measured in units of (7/a,7/a).

4.3.1 Tight-binding parameters

It is our main goal to find a TB description of the relevant bands crossing the
FErMI-surface. This task is difficult due to the large number of bands between
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Figure 4.9: Weight of a) Cuy 3d,2_,2, b) Cup 3d,2_,2, c) O 2p, and d) O 2p,
orbitals in the LCAO-LDA band structure of BayCuzO4Cl,. The wave vector
is measured in units of (7/a,7/a).

-1 eV and -8 eV of Fig. 4.8(a). There is no isolated band complex which would
make a TB analysis easy. However, as it has been pointed out already, the relevant
bands are a nearly pure combination of Cu 3d,:_,» and O 2p,, orbitals. Thus, we
will only concentrate on these orbitals, thereby accepting some deviations in the
lower band complex between -3 eV and -8 eV. The relevant orbitals are depicted
in Fig. 4.10. The tight-binding Hamiltonian Hyp can be written as a sum of

three parts:
HTB:HA+HB+HAB- (423)

There are two classes of orbitals corresponding to the two different subsystems.
One consists of Cuy 3d,2_,2 orbitals at the sites R with on-site energies €7 and

oxygen 2p, orbitals at the sites r with g,:

HA = 53 Z d}tsts + 51’1 Zpisprs + tpd Z(aerTRsprs + HC) +
Rs

rs Rr
s

+ lpp Z(Oznfplsprfs +H.C.) (4.24)

rr/

8
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Figure 4.10: Two elementary cells of the Cu3Oy4-plane in BayCu3zO4Cl; or
SroCusz04Cly and the Cu 3d,2
model. Also shown are the corresponding transfer integrals ¢,4, tzd, tpp,
tl

T

_y2 and O-2p, , orbitals comprising the TB
t2_and t,,. The Cuy orbitals with on-site energy £/ are marked by
black diamonds, the Cup orbitals with on-site energy £Z by black squares
and the two different kinds of O orbitals with on-site energies ¢, and &,
respectively, by black circles. The orbitals of the B-subsystem are shaded
to distinguish them from the orbitals of the A-subsystem (white).

where dTRs and pl, are the usual creation operators for Cu 3dg2_,2 and O 2p,
orbitals, respectively, and agr, is a phase factor corresponding to Fig. 4.10 which

connects only neighboring sites. The other class incorporates Cug 3d,2_,2> or-

-y
bitals at the sites G with on-site energies 5 and oxygen p, orbitals at the sites r
with £,. The Hamiltonian Hp is obtained by replacing R with G, and the on-site
and transfer energies with the corresponding energies of the Cug-subsystem, re-
spectively. The creation operators pl, should then be replaced with the operators
1, thus creating an O 2p, orbital. The coupling between both classes of orbitals,
which correspond to the Cuy and Cup subsystems, respectively, is provided by
the parameter ¢,,:

Hup =ty Z(Ozrr/plsﬂrzs +H.C.). (4.25)

rr/

8

All together, there are 10 parameters to determine, 4 on-site energies (¢4, €2, ¢,
£r), the nearest neighbor transfer integrals (t,q4, tzq), and several kinds of oxygen
transfers (t,,, tL ., t2., tyr).

ppy "mwy Ywmwo
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A B 1 2
parameter 8d Ed Ep Ex tpd tﬂd tpp t7r7r tTrﬂ' tpﬂ'

TB fit -2.,50 -2.12 468 -3.73 143 119 081 041 0.50 0.25

EHM 250 212 6.68 573 -143 -1.19 -0.81 -041 -0.50 -0.25

parameter Ug U, Ups Upr Kpa Kps

EHM 105 40 12 32 -0.18 -04

Table 4.3: Parameters of the TB fit and the proposed extended HUBBARD
model for the CuzO,4-plane in BayCu3O,4Cly. The parameters are given in elec-
tron representation for the TB fit and in hole representation for the extended
HUBBARD model. All energies are given in eV.

In our analysis we found that the Cuy-Cup transfer ¢4; can be neglected since
its estimation'® yields a value smaller than 0.08 eV. Each p, orbital is located
between two Cuy4 sites and we neglect the influence of different local environments
on the ¢,, transfer integral. In the case of the ¢, transfer there exist two possible
local arrangements, but the numerical difference between ¢! and ¢2_ is small (see
Table 4.3). The necessity to distinguish between oxygen 2p,- and 2p,-orbitals was
first pointed out by MATTHEISS and HAMANN [152] for the case of the standard
CuO»-plane.

Since there is a considerable admixture of other orbitals, especially Cu 3d,,
and Cu 3ds,2 ,2, in some of the lower bands of Fig. 4.8(b), it is impossible to
determine the 10 TB parameters by a least square fit of the 11 TB bands to
the heavily shaded LDA bands of Fig. 4.8(b). Instead, at the high symmetry
points I' = (0,0) and M = (7/a,m/a) we picked out those bands in Fig. 4.8(b)
which have the most pure 3d;2_,» and 2p,, character. Only those energies were
compared with the TB bandstructure (Fig. 4.8(c)) derived by diagonalizing an
11x11 matrix. In this way it is possible to calculate the parameter set analytically
because the TB matrix splits up into 3 x3 and 4 x4 matrices at the high symmetry
points I' = (0,0) and M = (n/a,7/a). The calculated eigenvalues are given in
the Appendix A. That procedure results in the parameters given in Table 4.3.
These values are similar to those which are known for the standard CuOs-plane.
The largest transfer integrals are ¢, = 1.43 eV and t;4 = 1.19 eV as expected.
Nevertheless these values are somewhat smaller than in the previous TB fit [49]

0The parameter 44 can be roughly estimated by the weight of the Cuy in the Cup band
crossing the FERMI-level at the ' = (0,0) point of the BRILLOUIN zone. At this point the
coupling via t,, is not possible due to symmetry.
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where all oxygen orbitals were treated as identical. The difference between %,,
and t,, is roughly a factor of 2 in coincidence with the situation in the standard
CuOg-plane [152], a fact which was not taken into account in [49]. We have found
that only the smallest parameter, ¢,, = 0.25 eV, is responsible for the coupling
between the subsystems of Cuy and Cup. Thus despite the fact that the two
oxygen p, and p, orbitals are located in real space at the same atom, they are
quite far away from each other in the HILBERT space.

4.3.2  Exchange integrals

So far we have found that the TB parameters are rather similar to the standard
CuO,-case and that the coupling between Cu4- and Cupg-subsystem is quite small.
This justifies the usage of standard parameters for the COULOMB interaction part
of the Hamiltonian. Of course, it would be desirable to determine these values
by a constrained density functional calculation for Ba;Cu3O4Cly, but only small
changes to the estimation of exchange integrals presented below are to expect.
The CouLOMB interaction also changes the on-site copper and oxygen ener-
gies. Their difference, given in the first line of Table 4.3, is too small to explain the
charge transfer gap of ~ 2 eV in BayCuz0,Cl, [153]. Adding 2 eV to the on-site
oxygen energies, the difference A = ¢,—&7 (in hole representation which is chosen
from now on) becomes similar to the standard value derived by HYBERTSEN et
al. [23] for La;CuOy4. Our proposal of on-site energies for the multi-band HUB-
BARD model H = Hrg + H;;,; is given in the second line of Table 4.3. The values
of Ref. [23] have been used also for the parameters of the COULOMB interaction
part
Hip =Y Umirngy + % > Uynisnge + > KySiS;, (4.26)
) )

ij
SS,

where n;, is the occupation operator of the orbital i with the spin s and S; the
corresponding spin operator. From Ref. [23] the values for Uy, U, U,q and K4
are known. Since we now have two oxygen orbitals at one site we also have to
take into account the corresponding HUND’s rule coupling energy which is in the
notation of (4.26) K,,. That correlation energy is not given in [23] and we use
here the simple rule K,, = —0.1U, [154]. The COULOMB repulsion between two
oxygen holes in p,- and pr-orbitals is assumed to be U,, = U, + 2K,,, which
is a valid approximation given degenerate orbitals. The second part of Table
4.3 combines the TB parameters derived from the bandstructure of Bay;CuzO4Cl,
(now in hole representation) with the standard COULOMB correlation terms. This
parameter set defines an 11 band extended HUBBARD model for the Cu3O4-plane
which is used for the following estimation.
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O

Figure 4.11: Clusters used for the calculation of the exchange integrals
Jaa (upper left), Jpp (upper middle), JE;% (lower left) and Jfl); (lower
right). The Cuy sites are marked with filled circles, the Cup sites with
squares and the oxygen sites with open circles.

The exchange integrals have been calculated using the usual RAYLEIGH-
SCHRODINGER perturbation theory on small clusters (Fig. 4.11). All transfer
integrals (and K,,) have been considered as a perturbation around the local
limit. The exchange integrals have been calculated in the corresponding lowest
order (see Appendix C). The exchange J4a o t;,/A® between two Cu, spins is
given in the 4th order for the simple Cuy-O-Cuy cluster. It turns out that the
influence of intersite COULOMB terms Upr)q and of the exchange terms K(z)q is
rather large, decreasing J44 from 246 meV to 99 meV (see Table 4.4). In spite of
our rather approximate procedure, the latter value agrees quite reasonably with
the phenomenological value (130 + 40) meV [112] for SroCu3zO4Cly. Ja4 is thus
also quite close to the standard value of the CuOs-plane (~ 140 meV [23]).

The exchange Jgp is given only in 6th order for a larger cluster of two Cug, one
Cu4 and 4 oxygen orbitals. Correspondingly, it is roughly one order of magnitude
smaller, Jgp ~ 12 meV (Table 4.4). For Jsp we need to distinguish between
antiferromagnetic and ferromagnetic contributions. There are two AFM couplings
between nearest neighbor copper atoms ngl)?’a 7 and third nearest neighbor copper
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exchange without Uy,q, Kpq, Kp, all parameters experiment
integral (meV) (meV) (meV)
Jaa 246 99 130 £ 40
JBB 17 12 101
T o 6.9 4.6 -
vy -10.2 -
J) 5.6 1249
I 1.4 0.8 -

Table 4.4: Different exchange integrals as explained in the text. Compared are
estimations within the extended HUBBARD model with experimental values
[112].

atoms Jfg’af, both being comparably small at 4.6 and 0.8 meV, respectively. The
ferromagnetic contribution J4p; = -10 meV between nearest neighbor copper
spins arises in 5th order and is provided by HUND’s rule coupling of two virtual
oxygen holes sitting at the same oxygen. Since K, is known with less accuracy
than the other interaction parameters, this value has to be taken with care.

The derived exchange integrals J44, Jgp and J4p are in reasonable agree-
ment!! with phenomenologically derived values from magnetic susceptibility data
if we add to the TB parameters the standard local COULOMB correlation energies.
It is to note, however, that we used a rather approximate perturbative procedure
to estimate the exchange integrals. We expect that the RAYLEIGH-SCHRODINGER
perturbation theory provides us with the right order of magnitude, but it may
fail in the correct numbers'?. In that sense the agreement of the theoretical ex-
change integrals with the experimental ones should not be overinterpreted. On
the other hand, the TB parameters were obtained by fitting to a first principle
band structure and they are accurate within the chosen orbital set.

1 The anisotropic coupling J ~ 20 peV which was found to be responsible for the small
ferromagnetic moment in SroCuz04Cly [112] cannot be estimated within the model proposed
here. It requires a more refined treatment incorporating spin-orbit coupling and more orbitals
at the Cu site.

2In particulary, taking into account t,,, which occurs in fifth order, J44 would be enlarged
[115, 155] and could easily reach the experimental value.
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Chapter 5

Analysis of spectroscopy on cuprates

The aim of the this chapter is to demonstrate that especially the dialogue be-
tween experiment! and theory gives many insights into the electronic structure
of cuprates. Starting with a short introduction in the experimental techniques,
investigations of the occupied and the unoccupied electronic structure of repre-
sentative model cuprates will be discussed.

5.1 Experimental methods

In this section, the experimental methods applied to gain information about the
cuprate compounds will be presented shortly. The occupied and the unoccupied
electronic structure have been investigated by means of angle-resolved photoelec-
tron spectroscopy (ARPES) and x-ray absorption spectroscopy (XAS), respec-
tively. The principles of these two methods are illustrated in the following.

5.1.1 Angle-resolved photoelectron spectroscopy

The principle of a photoemission experiment is drawn in Fig. 5.1. Incident pho-
tons with the energy hv create photoelectrons which leave the sample. In an
ARPES experiment the number of photoelectrons per time interval and solid an-
gle (i.e. the intensity) in dependence on the momentum and the kinetic energy
is measured. This yields the so-called energy distribution curve which contains
valuable information about energy and momentum (if single crystals are used) of
the occupied electronic states of the investigated compound. In the experiments
presented in this work, a fixed photon energy was used (so-called energy distri-
bution curve mode). The discrimination between different kinetic energies of the
photoelectrons is done by means of an electrostatic analyzer. The direction of

! The experiments discussed in this chapter were performed at the Institut fir Festkorper-
forschung of the Institut fir Festkérper- und Werkstofforschung Dresden
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Figure 5.1: Schematic picture of an ARPES experiment

the photoelectron momentum vector is chosen by the azimutal and polar angles
¢ and 6 of the energy analyzer with respect to the surface normal (see Fig. 5.1).
Under certain simplifying assumptions, the photocurrent can be written in
the form [156]
Ioc Y |(fIpAli)[*S(k, B)f(E), (5.1)
fi

where i and f denote the initial and the final state, respectively. The quantity
p is the momentum vector of the photoelectron, A is the vector potential of
the incident photon, f(E) and S denote the FERMI- and the spectral function,
respectively. In the case of photoelectron spectroscopy, the spectral function
S(k, E) describes the probability to remove an electron with the energy E and

the wave vector k. It is related to the single-electron GREEN's function G via
S(k, E) = —3(G(k, F)). (5.2)

™

The spectral function is composed of poles of Lorentzian shape, which represent
quasiparticles of energy E;, wave vector k and life time 7

=232k, E))|, (5.3)

wherein Zy is the spectral weight of the quasiparticle given by

0 1
Zie=| 1= == R(E(k, B)) |, , (5.4)
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and X(k, E)) is the self energy. All contributions to the spectral function which
cannot be mapped onto a quasiparticle origin are incorporated in the so-called
incoherent part of the spectrum.

Knowing the work function of the analyzer ®,,qyzer, We can calculate the
binding energy Ep of the quasiparticle via

EB =hv — Ekm — q)sample — (q)analyzer — q)sample) =hv — Ekm — q)analyzer . (55)

The term in brackets is due to the contact potential difference between the ana-
lyzer and the sample. The connection between the photoelectron momentum p
and the quasiparticle momentum k is given by

hkj = p| (5.6)

for the components of the photoelectron and the quasiparticle momentum vectors
parallel to the sample surface. There is no momentum conservation perpendicular
to the surface. Therefore, it is not possible to determine the component of the
quasiparticle momentum vector perpendicular to the sample surface in a direct
way and quite sophisticated methods have to be applied to solve this problem
[156]. In the case of measurements on SroCuO,Cly and BayCuzO4Cl,, due to
the quasi 2D electronic structure, this problem does not arise. This means that
there is practically no dependence of the quasiparticle binding energy on the
wave vector component perpendicular to the Cu-O-plane and the knowledge of
p. is not needed. The component of the quasiparticle wave vector parallel to
the sample surface can be easily evaluated from the polar and azimutal analyzer
angles ¢ and 6 (see Fig 5.1) and the kinetic energy at the quasiparticle peak:

k| o \/ Epin sin0(cos ¢gx + singy) , (5.7)

wherein x and y are unit vectors which span the sample surface plane.

The energy-momentum relation of the quasiparticle is not the only informa-
tion one can get from ARPES experiments. The photoionization matrix element
depends on photon energy, the photoelectron momentum, the angle of incidence
of the photons (#; and ¢; in Fig. 5.1) and the initial and final state wave functions.

The choice of photon energy can be used to select different kinds of orbitals
because of the different cross sections (see Section 5.3.1). Moreover, it is possible
to gain information about the parity of the states with respect to the emission
plane. The emission plane is defined as the plane spanned by the photoelectron
momentum vector and the sample surface normal. In Fig. 5.2, an example for an
emission plane (grey) is shown with the analyzer in the (x-z) plane. Here, the
sample meant to be a single crystal of SroCuO,Cly with the CuOs-planes parallel
to the sample surface. The sample is oriented such that the emission plane is
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A~
© 3
(4]

“ hv

Figure 5.2: Example for an ARPES experiment using the polarization
dependence of the photoionization matrix element (after HAFFNER [157].
For details see the text.)

a mirror plane of the geometric structure of the crystal and therefore also a
mirror plane of the Hamiltonian describing the corresponding electronic system?.
The eigenfunctions of the Hamiltonian are simultaneously eigenfunctions of the
operator which creates the mirror operation with respect to the emission plane
and have a definite parity with respect to this plane. The operator pA for the
photoionization has definite parity to this plane for the case where pA is either
completely in or out of the mirror plane. Thus, the operator pA has odd parity
with respect to the emission plane when the vector potential A is perpendicular
to this plane and even parity if A is parallel to it. In the later sections of this
chapter, these situations will be called vertical and horizontal polarization. The
photoionization matrix element can thus be brought to vanish in dependence on
the parity of initial and final state with respect to the emission plane for vertical
or horizontal polarization. Assuming that the states of other electrons do not
change during the photoemission process, the photoionization matrix element
reduces to

(ilpAlf) = (dilpAlgy), (5.8)

were (¢;| and |¢;) are the orbital of the initial state and the free-electron final
state, respectively. The latter one has even parity with respect to the emission
plane, otherwise the wavefunction would have a node in the emission plane and
there would be no intensity in the detector. Therefore, for vertical polarization,
only initial states with odd parity contribute to the photocurrent while only even
initial states contribute for horizontal polarization. In this way, it is possible to

2We neglect here for sake of simplicity the antiferromagnetic order of SroCuQO2Cls.
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extract information about the parity of the initial wave function with respect to
the emission plane. This possibility is extensively used in the analyses of Sections
5.2 and 5.3.

5.1.2 X-ray absorption spectroscopy

A method to investigate the unoccupied electronic structure of a solid is the x-
ray absorption spectroscopy (XAS). The principle scheme of this experiment is

detector

sample

N hv,

Figure 5.3: Schematic picture of an XAS experiment in fluorescence yield

mode. Incoming linearly polarized photons (energy hv;) at normal and
grazing incidence and fluorescence radiation (energy his) are shown (after
HAFFNER[157].)

drawn in Fig. 5.3. Monochromated photons with the energy hi, are absorbed
by the sample. If the photon energy is high enough, it is possible to excite core
level electrons into the unoccupied valence states of the solid (see Fig. 5.4). The
onset of core level excitations manifests itself as a step-like absorption edge at
photon energies around the threshold energy, which is in first approximation the
difference between the core level and the lowest lying unoccupied state that can
be reached.

To extract information about the unoccupied electronic structure, a relation
between the absorption coefficient and the electronic structure is needed. The
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unoccupied
levels

core level

Figure 5.4: Schematic view of core-level excitations into unoccupied levels
of the electronic structure by absorption of photons of the energy hv;.
As origin for the measured fluorescence radiation (energy huy), the decay
of an electron-hole pair is drawn (after HAFFNER [157].)

absorption coefficient p for a photon of the energy hv; in a sample is given by
[158]
plhin) =47y |GIH™| f)S(E; — By — hn) (5.9)
fii
with (i| and |f) being the initial and the final state and E; and E; their corre-
sponding energies, respectively. The electron photon interaction operator H;,; is
given by
Hip = —ihA " exp(ikr;)eV; (5.10)
j
with A, k, e being the vector potential, the wave vector and the unit vector
of polarization of the photon, respectively, r and V are the position and the
momentum operators of electrons. Regarding the typical extend of core level
wave functions (< 0.5 A) and the photon energies (hv, < 1000 eV) used in this
work, the exponential function can be approximated by unity (kr < 1). With
the assumption, that the wavefunctions of the electrons that are not involved in
the excitation that and the unoccupied states are unaffected by the core level
excitation (sudden approximation), Eq. (5.9) is reduced to a single-particle dipol
matrix element. This leads to the following consequences: (I) XAS is a measure
of the unoccupied DOS. Because the core level shows no dispersion in momen-
tum space, the occupied DOS due to the core states are delta functions and hence
Eq. (5.9) describes the unoccupied DOS only. (IT) XAS is site-specific. The core
level wave functions are well localized, therefore only transitions into wavefunc-
tions with non-negligible amplitude at the core site are possible. (III) XAS fulfills
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dipol selection rules. The angular momenta of the initial and the final state are
connected via [y = [; £ 1.

If single crystals and polarized radiation (synchrotron radiation) are used, it
is possible to distinguish between orbitals of different symmetry. The transition
matrix element can be decomposed into CLEBSCH-GORDON coefficients and re-
duced matrix elements, which only depend on the angular momentum and the
main quantum number. Therefore, for a given symmetry, the possible excitations
are easily to estimate via the CLEBSCH-GORDON coefficients.

In principle, an XAS experiment could be done in transmission geometry, but
the x-ray absorption coefficient is rather high in the soft x-ray region. Thus, such
an experiment would require extremely thin samples of 1um or less which is hard
to achieve. Therefore, usually decay products of the core level excitation (AUGER
electrons and fluorescence photons (hv)) are detected (see Fig. 5.4).

5.2 Dispersion of a hole in the Cu;O,-plane: A tale of two singlets

Polarization-dependent ARPES measurements of Ba;Cuz04Cl; indicate the pres-
ence of two different ZHANG-RICE singlets in the two-dimensional CuzOy4-plane
of this insulating copper oxychloride. With the aid of model calculations, we can
show that one singlet is moving in the antiferromagnetically ordered cuprate-like
Cus04 sub-system and the other on the paramagnetic sub-lattice formed by the
extra Cup atoms.

The electronic structure of the CuOs-planes is believed to hide the key to
high temperature superconductivity in the cuprates. The lowest electron removal
state in the CuOs-plane cuprates is the so-called ZHANG-RICE singlet (ZRS)
[103], in which the spin of an intrinsic copper hole, located in the Cu 3d,>_,»
orbital, is compensated by the spin of a hole distributed over the 2p, , orbitals of
the surrounding four oxygen atoms. The ZRS forms as a result of p-type doping
or of electron removal in photoemission spectroscopy. Recently, angle-resolved
photoemission (ARPES) studies of the dispersion of a ZRS in the undoped CuO,-
plane of the oxychloride SroCuO,Cls have gained considerable interest [102, 159],
as these data were in approximate agreement with the earlier predictions of the
t-J model [160].

In this section, a combined experimental and theoretical study of the dis-
persion of a single hole in the two-dimensional Cu3O4-plane of Bay,CuzO4Cl; is
presented. As already discussed in Section 3.4.2, this plane can be regarded as
a cuprate-like Cu, 05 sub-system with additional copper atoms, denoted here as
Cupg. Both Cuy and Cup order antiferromagnetically: the former at 330 K and
the latter only at 31 K [43]. We show that as a consequence of this, in a single
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ARPES experiment carried out at T = 360 K, it is possible to study the disper-
sion of a ZRS in both an antiferromagnetic and paramagnetic spin background
simultaneously in the same Cu3O4-plane.

5.2.1 Experimental

ARPES measurements were recorded at the U2-FSGM beamline [161] at BESSY
with a photon energy of 35 eV using in situ cleaved single crystals. The experi-
mental resolution was set to 160 meV in energy and 2° in angle (corresponding
to a k-resolution of 0.167/a). During the measurements, the crystals were held

at a temperature of 360 K.

Normalized intensity (arb. units)

Binding energy (eV)

Figure 5.5: ARPES spectra of BayCu304Cl, measured along the (k,,0)
direction. The values of k, are expressed in terms of (1/a (A~')). For
the experimental details see the text and Ref. [162].

Figure 5.5 shows a series of ARPES spectra recorded along the (k,, 0) direction
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in k-space, reaching beyond the edge of the second BRILLOUIN zone (BZ). This
direction is 45° to the Cu-O bonds in real space and is parallel to M; in Fig. 5.6.
The electric field vector of the synchrotron radiation was perpendicular to M;.

Figure 5.6: Two unit cells of the CuzO4-plane of BayCuz0,4Cl; showing:
(e) cuprate-like Cuy, (O) additional Cup and (o) oxygen. The Cu 3d,2_,2
and O 2p, , orbitals are also shown. The orbitals relevant for the motion
of the ZRS on the Cup sub-lattice are shaded. Also shown schematically
are the hopping matrix elements ¢, tﬂp and tlfp as well as a mirror plane
of the CuzOy4-surface, marked M;.

There are three main features observed in the energy range shown in Fig. 5.5,
labeled A, B and C. The deeper lying valence band features, B and C, are at least
partially due to bands corresponding to the non-mixing oxygen states observed
recently for SroCuO,Cly [159]. A detailed discussion of features B and C, as well
as other details of the ARPES spectra are given in [162]. It is the behavior of the
feature at lowest binding energies (BE) that prompted the following discussion.
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On moving away from the I' point, a weak structure emerges from the main
valence band and grows in intensity as its BE decreases, reaching a minimal BE
of ~0.8 eV at (m,0). At this k value, the peak has a width of some 700 meV
and displays a considerable asymmetry to the high BE side. Spectra recorded at
(7,0) under the same conditions except with a total energy resolution of 70 meV
were identical.

At this stage it is instructive to compare these data with those observed
for the CuOs-plane of SroCuOyCl,. The analogous ARPES spectra showed a
similar feature increasing in intensity and dispersing to lower BE’s, reaching both
maximal intensity and minimal BE at the (7/2, 7/2) point of the SroCuO2Cl,
BZ [102, 159], which is equivalent to the (7,0) point of the BayCu30,Cly, BZ.
On going beyond (7/2, 7/2)s,, the ZRS peak in SroCuO,Cly dispersed back
to higher BE and its spectral weight fell away very rapidly, thus resulting in a
strongly asymmetric intensity profile as a function of k around (7/2, 7/2)s,. A
detailed discussion of the ARPES data of SroCuO5Cl, is given Section 5.3.

As can be seen from Fig. 5.5, in Bay;Cu3z04Cl,, however, significant spectral
weight remains at around 1 eV BE over a large region of k-space between (,0)
and (37,0). In addition, approaching (37,0), the lineshape is strongly suggestive
of the presence of two components (as marked in Fig. 5.5). Thus, while the
dispersion of the lowest BE structure observed here around (m,0) and (37,0) is
similar to that in SroCuO,Cl,, the existence of a clear structure remaining around
~1 eV between (7,0) and (37,0) and the double-peaked nature of the feature in
Bay,Cu3z0,4Cl, are significant and important differences with respect to the CuO,-
plane oxychloride. We suggest that these differences indicate that the data shown
in Fig. 5.5 can be interpreted in terms of two singlets ZRS 4 and ZRSg, where the
3dg2_,2 orbitals of the Cuy and Cup are hybridized with different sub-systems of
the in-plane O 2p,, orbitals (see Fig. 5.6). The filled and open circles in Fig. 5.5
represent the energy positions of ZRS4 and ZRSg, respectively.

In Fig. 5.7, we provide indirect experimental evidence that the lowest lying
electron removal states in BayCuzO4Cly are ZRS’s. Here, we show ARPES spec-
tra recorded at (7,0) with the polarization vector of the radiation aligned either
parallel or perpendicular to the mirror plane M; (see Fig. 5.6). Due to the exper-
imental geometry used, this results in photoemission from initial states of either
pure even (parallel) or odd (perpendicular) symmetry in regard to reflection in
M;. As can be seen from Fig. 5.7, the ZRS peak (and part of feature B) disap-
pears completely for the parallel case, thus attesting to the pure odd character of
the initial state concerned. Further polarization-dependent measurements [162]
show the same behavior for the lowest BE feature at k-values between (7,0) and
(3m,0). Upon consideration of the CuzOy4-plane geometry shown in Fig. 5.6, it is
apparent that a purely antibonding combination of the Cu 3d,>_,> and O 2p,,
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Figure 5.7: Polarization-dependent ARPES spectra of BayCu3zO4Cls at
the (7,0) point of the BRILLOUIN zone measured with the electric field
vector perpendicular (e) and parallel (o) to the mirror plane M.

orbitals yields a feasible initial state with the correct symmetry, whereas a non-
bonding configuration, for example, would not. This is fully consistent with the
ZRS character of the first electron removal states in BayCu;0O4Cls,.

5.2.2 Model calculation

Up to now, we have discussed the qualitative differences between the dispersion
relation of ZRS’s in the Cu3zOy4-plane of BayCu304Cly and the CuOy plane of
SraCuO,Cly, and have suggested that the former indicates the presence of two
different ZRS’s. In order to explore this idea further, we have calculated the mo-
tion of these singlets using a model Hamiltonian containing the relevant orbitals
and correlation at the copper sites only. The tight-binding parameters result
from a fit [163] to the bandstructure for Ba;CuzO4Cly (see Fig. 3.33). For sakes
of simplicity, the parameter set is reduced to three transfer integrals (¢4, tzfp,
tﬂp, see Fig. 5.6) compared with the extended model presented in Section 4.3.1
The coupling between the two O 2p orbital sub-systems is provided by the small

parameter tﬂp = 0.2 eV [163], which can be neglected in a first analysis (see also

Sec. 4.3.1).
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In analogy with SroCuO,Cly, the motion on the Cu, sub-lattice can be de-
scribed by a t-J model [160] including additional hopping parameters to second
and third neighbors [164, 165]. The parameters of such an extended ¢-J model
can be derived from the Cuy part of our model Hamiltonian by means of the
cell-perturbation method [137, 166, 167]. An analogous reduction procedure was
also performed for the Cup sub-lattice. Each Cup 3d,>_,» hybridizes with a com-
bination of O 2p orbitals with b; symmetry (shown shaded in Fig. 5.6), denoted
here by T, = (P15 — P20 — P30 + P40 )i/2. The Hamiltonian (in hole representation)
reads:

H o= B3 d i+ U3 nthnd 42,3 wlmis
e 7 i

L
—%” > il mie + 2ty ¥ (dl,mi + hec) (5.11)
<ij> i
where the summations run over the Cup sub-lattice only and the parameters® are:
tlfp =045eV, t,g=17eV, e, —cf =3.6 eV and U; = 10.5 eV [163, 23]. In the
cell perturbation method Eq. (5.11) is diagonalized within a single cell consisting
of one Cup and four oxygen atoms and considers the coupling to neighboring
cells as a perturbation. Adding a hole to the lowest one-hole state within one
cell |do >= cos 8|do > —sin |ro > creates predominantly the ZRSp state |¥ >
which is given by a linear combination of the three possible one-cell singlet states.
The higher lying states are projected out and the overlap between neighboring
ZRSp’s is provided by t:jp. The hopping of ZRSg’s can be derived from the
corresponding hopping term in Eq. (5.11):

tJ_ U, do v-do,¥
—gw;% — tp XX (5.12)
with t5 = —n’t,,/2 and written in terms of HUBBARD operators X;I”'i” = Wi ><
doi|. The value of = 0.75 is calculated by diagonalizing the 3 x 3 matrix of the
two-hole singlet states within one cell which results in {5 = —0.13 eV.

To calculate the dispersion of one hole in the two independent ¢-.J models, the
corresponding magnetic background has to be taken into account. As pointed
out above, this reveals an important difference between Cu, and Cupg. The
experiment was performed at T = 360 K which is much larger than TZ but of the
order of T4. Therefore, we may assume that while the magnetic correlation length
on the Cuy sub-lattice is much larger than the size of the magnetic polaron, its
value on the Cup sub-lattice can be expected to be of the order of the Cupg sub-
lattice spacing. Correspondingly, the ZRSg moves in a paramagnetic background

3Due to the different number of transfer integrals, the parameters of the reduced model are
slightly different from the corresponding values given in Sec. 4.3.1.



5.2. Dispersion of a hole in the CuzOy-plane 107

where its dispersion is determined by the nearest neighbor hopping
E,(CB) = E(EB) + tp(cos kya + cos kya) (5.13)

with a reduction of the bandwidth by only a factor of two [168] in comparison with
free fermions, and where a strong broadening from thermal fluctuations can be
expected. On the contrary, the ZRS, moves in an antiferromagnetic background
where nearest neighbor hopping (with respect to Cuy) is suppressed and where
the dispersion is well known [160]:

EMN = EYY 40.55J4(cos ks + cos kp)®
+A(cos ks — coskp)? , (5.14)

where kg/p = a(ky = k,)/2 is the transformation to the BZ of BayCugO4Cl,. The
bandwidth of (5.14) is 2.2.J4 [160], with the parameter A=0.1 eV describing the
influence of the additional hopping parameters [164, 165]. The energy difference
ESB) — E((]A) is determined by the local orbital energies and the binding energies
of both the ZRS’s and the magnetic polaron on the Cu, sub-lattice. Its value
was estimated to be roughly 0.5 eV.

In Fig. 5.8, we plot the experimental E(k) dispersion relation of the ZRS’s
in the Cu3Oy-plane. The width of the symbols represents the experimental k-
resolution, and the height of the error bars represents the uncertainty in pin-
pointing the energy position of the feature concerned (showing, for example, that
around the I" point the exact energy position of the ZRS’s is difficult to define).
The dispersion relations of the ZRS 4 and ZRSp from (5.13) and (5.14) are shown
as the dotted and solid lines in Fig. 5.8. It is clear that the experimentally
observed dispersion can be well described without exceeding the limits of the pa-
rameters’ theoretical estimation. In particular, the dispersion of ZRSp between
(r,0) and (3,0) is reproduced, as is the presence of the ZRSp as an ”extra”
feature at higher BE’s, seen experimentally near (3m,0). The overall ZRS band-
width is hard to determine exactly, thus using Eq. (5.14) only a rough estimate of
J4=(230 £+ 60) meV can be made, which is somewhat larger than both the value
derived in Section 4.3.2 and in Ref. [112] and also larger than the usual values
for CuO,-cuprate planes.

In summary, ARPES spectra of BayCu3O,Cl; indicate the presence of two
ZHANG-RICE singlets in the Cu3O4-plane. The first belongs to the Cu,04 sub-
system whose antiferromagnetic ordering results in a dispersion proportional to
the exchange integral, J4, in analogy with observations of the paradigm CuO,
plane antiferromagnet SroCuO5Cl,. The second stems from the Cup sub-system,
and our model calculations show that its dispersion is consistent with that of a
hole moving in a paramagnetic background - the bandwidth being proportional to
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Figure 5.8: Experimental dispersion relation of the ZHANG-RICE singlets
in BayCu3O4Cly along (k;, 0) (symbols), compared with a superposition
of the calculated dispersions (5.13)(ZRSg, solid line) and (5.14)(ZRS 4,
dotted line). For the parameters used in the calculation, see the text.

the hopping integral between Cup sites, tg. Thus, as regards the dispersion of a
hole in a magnetic spin background, the CuzO,4 plane of Ba;CuzO4Cl; represents
simultaneously both the low and very high doping limits in cuprate materials.

In the present discussion, we concentrated our interest on the interpretation
of the lowest electron removal state. The following section will show for the
example* of Sr,Cu0O,Cl, that ARPES is a powerful tool to analyze the valence
band as well.

4We made also a similar analysis of the VB photoemission spectrum for BasCuz 04Cly [162].
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5.3 Analysis of the valence-band photoemission spectrum of Sr,CuQO,Cl,
along the high symmetry directions

SroCuO5Cly was the first undoped cuprate for which the angle resolved pho-
toemission measurement of its lowest excitations was successful [102, 169, 170].
These excitations are well described by one hole in a 2D quantum antiferro-
magnet [171, 172, 173]. Deviations from the one-hole dispersion of the pure ¢-.J
model can be reduced by taking into account hopping terms to second and third
neighbors [164, 167]. In the same substance the low binding energy edge of the
main valence band has been interpreted in terms of non-bonding oxygen orbitals
which are completely decoupled from the copper system [159]. These features
were known before as “1 eV-peak” [174]. The non-bonding states are especially
pronounced at (7, 7) where they have minimal binding energy. But the detailed
structure of the complete valence band has never been analyzed up to now and
that is the aim of the present work. Furthermore, we will show that additional in-
formation on the low binding-energy features can be obtained by analyzing their
dependence on the polarization of the photon.

Polarization-dependent photoemission measurements are an effective tool to
analyze the electronic structure of the valence band in detail. By measuring along
high-symmetry directions all bands can be classified according to their symme-
try properties. This allows a very precise comparison between experiment and
different theoretical predictions. As already discussed, in all the cuprates elec-
tron correlations have a strong influence on the electronic bands near the FERMI
level which is especially pronounced in undoped substances [172]. However, the
influence of correlations on those parts of the valence band with larger binding en-
ergies is less clear. We will show that the combination of polarization-dependent
ARPES measurements with theoretical investigations taking into account the
electron correlation to a differing extent (LDA, LDA+U) provides a unique pos-
sibility to answer this question.

The model cuprate SroCuO,Cly is very well suited for such an investigation. It
has a tetragonal structure with ideal planar CuO,-layers [106] and cleaves readily
parallel to the CuOs-planes. Furthermore, the presence of Cl instead of apex
oxygen allows a restriction of the states which contribute to the ARPES spectra
to those of the pure CuOs-plane alone. This can be achieved by choosing a photon
energy close to the COOPER minimum for Cl 3p photoemission, i.e. CI 3p states
will then have a small photon cross section. In this manner we intend to study an
ideal situation whose main characteristics should be generic to all the cuprates.

It is known that simple LDA fails to predict the insulating ground state of
undoped cuprates [81]. There are several improvements of LDA such as the
self-interaction correction (SIC) method [21] or LDA+U [175] which has al-



110 Chapter 5. Analysis of spectroscopy on cuprates

ready been applied to the case of lanthanum cuprate LayCuO,4 [176]. Here,
we apply LDA+U plus a symmetry analysis at special k-points to interpret
the polarization-dependent photoemission data for SroCuO5Cl,, where the ac-
tual value of U is chosen to describe the experimental situation.

5.3.1 Experimental

The ARPES measurements were performed® using linearly polarized 35 eV pho-
tons from the crossed undulator beamline U2 of the BESSY I facility and BESSY'’s
HIRES photoelectron spectrometer [161]. The angular resolution was set to 4
1° which gives a momentum resolution of + 0.05 A~! for states of 1 eV binding
energy, this corresponds to 12 % of the distance between I' and (7,0). A total
energy resolution (resulting from both the monochromator and electron analyzer
resolutions) of 150 meV was applied. The ARPES spectra have been recorded in
the electron distribution curve (EDC) mode from both I' to (7,7) and I to (7,0).
In the latter case, the sample was oriented in such a way that the Cu - O bonds
of the CuOs-plane were aligned parallel to the fixed, horizontal emission plane,
while in the former case, the Cu - O bonds were aligned at an angle of 45° with
respect to the emission plane. All spectra were recorded at 300 K.

The electronic structure of the valence band (VB) is derived from O 2p, Cu 3d
and Cl 3p orbitals, but for 35 eV photon energy, the photoionization cross section
of the Cl 3p orbitals is much smaller than that of the O 2p and Cu 3d orbitals®,
which therefore dominate the ARPES VB spectra. The measurements had been
performed at room temperature which is slightly above the Neél temperature of
SroCu04Cly (256 K). Although we are aware that AFM fluctuations are impor-
tant, we nevertheless analyzed the spectra in terms of the first BRILLOUIN zone
(BZ) of the paramagnetic CuOs plane of SroCuO,Cl,. We will see that this is
especially justified for the bands with dominant oxygen character, whereas one
observes some deviations for those bands which couple strongly with the copper
spins. The geometrical structure of a CuO, plane has two mirror planes’ (de-
noted M; and M, in Fig. 5.9). All the bands with a wave vector between I and
(m, ), parallel to the mirror plane M;, can be classified to be either symmetric
or antisymmetric with respect to My, and analogously also for wave vectors along
[' — (m,0) with respect to reflections at My. Experimental information about the
parity of the valence band states with respect to a mirror plane can be obtained by

SFor further experimental details see Ref. [177].

6For 35 eV photons the corresponding cross sections are 9.4 Mb for Cu 3d, 8.0 Mb for O 2p
and 0.69 Mb for Cl 3p [178].

"In fact, there is a second mirror plane parallel to My but going only through oxygen position.
From the point of view of group theory it is identical to M, in the paramagnetic case.
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Qo

Figure 5.9: The mirror planes of the CuOs-plane in SroCuO,Cl,. Filled (open)
circles correspond to copper (oxygen) atoms.

recording the ARPES spectra with either perpendicular or parallel polarization
of the electric field vector of the incoming radiation with respect to an emission
plane which is parallel to a mirror plane of the system. It can be shown [179],
that for parallel polarization only initial valence band states which are even with
respect to the emission/mirror plane contribute to an ARPES spectrum while for
perpendicular polarization, only states which are odd with respect to the emis-
sion/mirror plane are seen in a spectrum (see Section 5.1). The polarization of
the electric field vector was chosen by using either the vertical or horizontal un-
dulator, which corresponds to perpendicular or parallel polarization with respect
to the emission plane. The emission plane is parallel to the mirror plane My, if
the ARPES spectra are recorded along the (m,7) direction, while it is parallel
to the mirror plane My for spectra along the (7,0) direction. For perpendicu-
lar polarization, the electric field vector is always parallel to the CuO,-planes,

i.e. only in-plane orbitals as O 2p,, or Cu 3d,>_,» contribute to the spectra.

—y
For parallel polarization, the electric field vector is completely in-plane only at
normal-incidence. At any other incidence angle of the photon beam, the electric
field vector has an out-of-plane component and there are also contributions from

out-of-plane orbitals such as O 2p, to the ARPES spectra.

5.3.2 Band structure calculations

As already discussed in Section 3.4.1, the LDA band structure of SroCuO,Cl,
(Fig. 3.30) shows an antibonding band built up of Cu 3d,2_,» and O 2p,, or-
bitals crossing the FERMI level. This contradicts the experimentally observed
non-metallic behavior which already indicates that one has to treat the electron
correlations in a more explicit way. One could conjecture that the only effect of
correlations is to split the half-filled antibonding band leaving the structure of
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the other valence bands roughly unchanged. That is not the case, however, as
will become clear from our following analysis. One can also observe in Fig. 3.30
that there is nearly no dispersion of the relevant band in the z direction and all
discussions in the present paper will be restricted to the CuO,-plane only.

To obtain more information about the structure of the valence band in our
LCAO-LDA we have calculated the orbital weight (see Appendix A) of each band
at the high symmetry points. Due to the low cross section of the Cl 3p orbitals
for 35 eV photon energy we concentrate on the Cu 3d and O 2p orbitals (i.e. on 11
bands). The eigenfunctions with a dominant contribution from Cu 3d and O 2p
orbitals are collected in Table 6.1 in Appendix D. The in-plane oxygen orbitals
are divided into p, orbitals which are directed to the Cu-site and p, orbitals
perpendicular to them [152]. There are two combinations for each: p, and p,,
(pr and p,), which are antisymmetric and symmetric with respect to reflection
in My, respectively. The precise definition of these orbitals will be given in the
next section.

Thus, we are able to predict the symmetry of each band at the high symme-
try points in the BRILLOUIN zone (BZ). However, as will be seen later, the order
of energy levels of the LDA calculation is incompatible with the experimental
spectra. Moreover, as it was mentioned already, LDA calculations are unable to
describe the MOTT insulating ground states of the undoped cuprates and do not
produce the Cu local moments that are present in these systems. The splitting
of the spectral density due to the 3d,._,» states away from the FERMI energy Er
due to COULOMB correlations and the resulting reduction in Cu-O hybridization
is expected to be largely missing in such calculations. However, what, if any,
changes there are from the LDA bands away from EF is unclear, particularly well
above Ty, where the magnetic scattering due to antiferromagnetic spin fluctua-
tions should be more or less incoherent. Addressing this question is one of the
main goals of the present discussion. In the following we develop a more sophis-
ticated LDA+4U calculation taking into account explicitly the effects of strong
correlations. As a preliminary step we formulate an effective tight-binding model
which will be fitted both to the LDA+U band structure calculations and the
ARPES VB spectra.

5.3.3 Symmetry analysis and tight-binding model

The polarization-dependent ARPES measurements of VB states along the two
high-symmetry directions I' — (7, 7) and I' — (7, 0) discriminate the parity of
these states with respect to reflections in the corresponding mirror planes M;
and M,. To make the analysis of the experimental data more straightforward it
is helpful to incorporate the symmetry properties of the VB states in our approach
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from the beginning. This becomes especially clear by constructing an effective
tight-binding (TB) model taking into account the point-group symmetry of the
VB states. The TB model will be restricted to the 11 bands of Cu 3d and O
2p. Of course, as can be seen in Table 6.1 (Appendix D), there occurs in some
cases a quite strong mixing with the Cl subsystem, but in the following we will
assume that this mixing is taken into account by the particular values of the TB
parameters.

We start with the description of in-plane oxygen orbitals whose analysis is
more involved than that for the copper orbitals or for the out-of-plane orbitals.
We introduce the annihilation operator of an electron in the two oxygen m-orbitals
belonging to an elementary cell at position 77(; is a site of the square lattice) as
pz(.i)ﬁ/Q, where (&, 3) = (Z,7) or (7, %) with Z and 7 to be the two orthogonal unit
vectors of the lattice. The d,, orbitals hybridize with a particular combination

of oxygen orbitals arranged over the plaquette at site % Pri = %(pgi)m j2 pg‘zi)m P

pz(.i)y 2 pz(.f)y 12)- This plaquette’s m-orbitals are not orthogonal to each other. The
orthogonalization can be made by introducing first the FOURIER transformation

for the original p,-orbitals
e 1 o4 —ig(i+f
e = —= N P, e A (5.15)

At the second step we define two kinds of canonical FERMI-operators

pe(@) = A li(sgypY(q) — 520 (q))

Prl@) = A;Vi(sqaP? (@) + 54405 (1)) (5.16)

where s, = sin(¢a/2) (@ = z,y) and Ay = /52, + 52 . It is easy to see that p,
and p, are orthogonal with respect to each other. The definition (5.16) provides
an equivalent representation for m-orbitals in terms of p,(¢) and p.(g), instead of
the original pS;”")(q) and pgry)(q) operators and takes into account the point group
symmetry of the CuOs-plane. In particular, for ¢ along I' — (7, 7), the p,-orbital
is antisymmetric with respect to reflections in the mirror plane M, while the p,-
orbital is symmetric (see Fig. 5.10). Along I' — (, 0), we find p, to be symmetric
and p, to be antisymmetric with respect to reflection in Ms.

Turning now to the oxygen o-orbitals we carry out the same procedure as

()
i+a/2,0

ducing the plaquette representation instead of defining the original p,

operators (@ = #,%). In this case, intro-

o

above with the corresponding p

operators
in momentum space, we define a new pair of canonical FERMI-operators p, and

Dot
Po(q) = A, Vi(50.00LY — 54,01
Po(q) = Ay i(54,0\ + 54.0%Y) . (5.17)
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Figure 5.10: Sketch of the different oxygen orbitals within one unit cell of
SroCu0,Cly (filled circles - copper, open circles - oxygen) for momenta ¢ — 0
along I' — (m, 7).

The notation is chosen in such a way that the p,(q) (p,(q))-orbitals have the
same symmetry properties with respect to reflections at M; and M, as the p,(q)
or pr(q)-orbitals, respectively.

As the definition of the corresponding copper annihilation operators is quite
standard, we may write down the TB Hamiltonian

Hy =3 e (a) B (0)cus(q) - (5.18)

quvs

Here, c,, is an annihilation operator of either an oxygen p orbital or a copper d
orbital, where the indices p and v denote the 11 different orbitals and s denotes
the spin. All orbitals can be classified as to whether they hybridize in-plane or
out-of-plane and there is no coupling between the two subsystems. The orbitals
involved in the hybridization in-plane are p,, pr, Po, Pr, dyp2—y2, dyy, d32_p2. The
explicit form of the TB-Hamiltonian for in-plane orbitals is given in Ref. [177].
The in-plane part of the TB-model has 11 parameters: the on-site energies ¢4 (for
dy2_y2), €p (for dyy) and e (for ds,2_,2) as well as e, (corresponding to p,) and
£r; the hopping matrix elements t,4, tpp, t,4; tpp, tax and ;. Besides the orbitals
hybridizing in-plane we have to consider those involved in hybridization out-of-
plane: O 2p,, Cu 3d,, and Cu 3d,,. Restricting ourselves to nearest neighbor
hopping leads to two 2 x 2 matrices with on-site energies €,, and ¢4, and the
hopping matrix element %,4,.

In order to analyze the experiment it is important to know the parity of the
orbitals with respect to reflections at the corresponding mirror planes M; and
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Ms. This can also be expressed in terms of group theory since for £ vectors along
the line ' — (7, 7) all wave functions can be classified in terms of irreducible
representations of the small group Cs, [180, 181, 182]. The bands built up from
the in-plane orbitals d,,, ds,>_,2, D, and p, belong to the representation A,
and are symmetric with respect to reflections at M,;, whereas d,>_,2, p, and
pr belong to A, and are antisymmetric. The same small group C5, also acts
along I' — (7,0) and the subdivision of the in-plane orbitals is as follows: A;
(symmetric): dy2_y2, ds2_2, Dy, pr and A, (antisymmetric): dyy, Py, Dr. The
corresponding small groups at the high-symmetry points I', (7, 7) and (7, 0) are
Dy, and Dy, and the assignment of the different orbitals to the corresponding
irreducible representations is given in Table 6.3 in Appendix D. Of course, the
group theoretical analysis is not only valid for the TB model but also for the LDA
bands (Table 6.1 in Appendix D).
The TB-Hamiltonian (5.18) should be completed by an interaction term

H=H,+Hy (5.19)

which will not be written out explicitly. This is just a direct extension of the
three-band EMERY model to the case of the complete set of 11 bands for the
CuOs-plane. The interaction term Hy involves intrasite HUBBARD repulsion for
different kinds of copper- and oxygen-orbitals and appropriate intersite copper-
oxygen repulsions. In order to establish the one-electron parameters entering into
Eq. (5.19) one has to keep in mind that these parameters are “bare” ones while
the results of the band structure calculations should be interpreted in terms of
a mean-field solution of Eq. (5.19) [183]. To arrive at the bare parameters, one
would have to take into account the ground-state properties of the CuOs-plane
and approximate the COULOMB interaction terms.

In an undoped cuprate compound as SroCuO,Cly, the ground state of a par-
ticular CuO,-plane contains one hole per cell which is shared between d,2_,> and
p, orbitals. Thus a convenient description of the ground state is to introduce the
deviations (n?), = 1 — (n?) and (n2), = 1 — (n2) from the full band (Cu 3d'° O
2p%) electron occupancy. A rough estimate is (n?);, ~ 0.7 and (n?), ~ 0.3. Here
(nP) means the electron number in the p, orbital with spin s (one should note
that the occupation of a local oxygen orbital is only half that number). Now the
mean-field (“screened”) one-electron energies &,, read as follows:

Egs = €q+Ug— Ud<ng-d)>h - 2Upd<z ’I‘Lg)>h
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_ 1 d
Er = ep+Ur— §Upﬂ<z nﬁ@)h - 2UdW(Z ng,)>h , (5.20)
S S
where 5 = —s. There are also similar expressions for &;, £4,, £,, which we do not

specify here.

In the paramagnetic LDA band structure where the correlation effects are
treated only in an averaged manner, the screening effect is nearly the same for
all d-levels. So, in the LDA approach the effects of strong correlations due to Uy
are missed. An obvious way to adopt these effects is to treat the ferromagnetic
solution by putting, for instance, (n@h =0, and (n@h =n? Then &4 = g4+ Uy —
2Upq nP (n? =Y (nf)), is shifted upwards while &4, = g4+ Uy(1 —n?) —2U,4n? is
shifted equally downwards with respect to the paramagnetic solution. Regarding
the other d-levels, let us assume for the moment the rough estimate for the intra-
site COULOMB parameters Uyp ~ U,;. Then we can see that

ep =¢ep + Uy(l — n?) —2U,q n?, (5.21)

and the d,, level as well as all the other remaining Cu d-levels are shifted as was
the lower £4;. The spin dependence of &,, in Eq. (5.20) is much less pronounced
than for £45 and is neglected in the following.

Thus, although being somewhat awkward, the ferromagnetic solution provides
a better description of the strong electron correlations, giving a more reasonable
energy position and occupancy of the different orbitals. Just this approach is
taken by us to carry out the LDA+U calculation. The details of the procedure
and some results of these calculation are presented in the next section.

5.3.4 LDA+U calculation

The main effect of a mean-field treatment of the multi-band HUBBARD model
is a shift of the on-site copper energies against the oxygen ones. Furthermore,
the on-site energy of the Cu 3d,>_,» orbital is split into one for single occupation
and one for double occupation. If the site is singly occupied with a spin down
electron, this corresponds to a split of the levels into one for spin up &4+ (minority
spin) and one for spin down £, (majority spin). This can also be achieved by an
LDA+U calculation [175] including all valence orbitals.

We performed LDA+U calculations for SroCuO,Cl, using a ferromagnetic
splitting in order to study changes in hybridization compared to the LDA results.
The on-site energy of the unoccupied, spin up Cu 3d12_y2 orbital (minority spin)
is shifted by 2 eV upwards and the occupied, spin down Cu 3ali2_y2 orbital (ma-
jority spin), as well as both spin directions for all the remaining Cu d-orbitals
are shifted by 2 eV downwards. The energy shifts were added at each step of the
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self-consistency cycle until the charge-distribution was stable. We did not try to
connect the chosen energy shifts with the model parameters such as, for instance,
Ud, Upd, Up. According to Eq. (5.20), the actual shift depends also on the occu-
pation numbers (ngd)) p and <n§” )) n. Since we did not shift the oxygen levels, our
choice corresponds in fact to the difference between U, and U, weighted with the

corresponding occupation numbers.
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Figure 5.11: LDA+4U band structure of SroCuO5Cly: (a) minority spin (1), (b)
majority spin ({).
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The results of the LDA+U calculation are presented in Fig. 5.11 and Table 6.2
in Appendix D. The mainly unoccupied, minority band of d,2_,» and p, character
can be roughly interpreted as the upper HUBBARD band. The corresponding band
for majority spin lies just below the FERMI level and has dominantly oxygen
character. Since its spin is opposite to the spin of the copper hole, there is some
justification to interpret that band as the mean field representation of the ZHANG-
RICE singlet. But due to our ferromagnetic spin structure it has a completely
wrong dispersion relation®. The bandwidth of both bands is expected to be
strongly reduced by correlation effects in comparison with Fig. 5.11 such that a
gap opens.

Next in binding energy we find bands with dominantly oxygen character. The
nonbonding oxygen band with lowest binding energy at (m,7) is identified to be
of pure p, character. The oxygen bands occur at nearly the same energy for both
spin directions. In fact, only the bands with a considerable weight of the Cu
3dg2_,2 orbital show a strong splitting between spin up and spin down. Therefore
we present in Table 6.2 (Appendix D) only the position of minority spin bands and
both spin directions for bands with a contribution from the 3d,>_,» orbital?. The
actual value of the energy shifts of the copper bands in our LDA+U calculation
has little influence on the upper oxygen bands, only their copper character is
changed. We have chosen such a shift that the copper bands are at the lower
edge of the valence band, but are not yet split off the valence band. This is
important in order to achieve good agreement with the experimental results.

Let us now compare the LDA and LDA+U results starting at (7, 7). In both
cases (Figs. 3.30 and 5.11), we find a group of 5 bands at around 3 eV binding
energy, but the order of energy levels is completely different in the two cases.
For example, the antisymmetric p, band has lowest binding energy of ~ 2.5 eV
in the LDA+U calculation. In Fig. 3.30 (LCAO-LDA), however, all the other 4
bands of that group have lower BE than the p, level. A similar rearrangement of
energy levels can be observed at the I' point. Due to symmetry reasons there is
no hybridization between copper and oxygen bands there. The energy position of
the oxygen bands is nearly the same for LDA and LDA+U, but the copper bands

8The energy position and dispersion of the ZHANG-RICE singlet are very sensitive to local
AFM correlations which are well pronounced in the sample measured. To provide a correct
description of the ZHANG-RICE singlet (and its triplet partner) one has to subtract two orbitals,
P and dy2_,2, from the 11-band manifold. Supplementary calculations for this two-band
HUBBARD model, done within the cell-perturbation method, led to a good account of the
ZHANG-RICE singlet dispersion measured [167].

9Tt should be noted that even the pure oxygen bands have a small energy difference of 0.17 eV
between both spin directions which is the same for all bands. The reason for that difference is
the overlap between spin up and spin down at the FERMI energy. The position of spin down
bands in Table 6.2 in Appendix D is corrected by this 0.17 eV.
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are shifted. The in-plane oxygen bands are twofold degenerated and occur twice
in the LDA+U result with binding energies of 2.69 and 5.57 eV, respectively.

5.3.5 Comparison with the experiment

High-symmetry points

The experimental ARPES spectra at the high symmetry points for both polariza-
tion directions are presented in Fig. 5.12. At the [' point, there are two possible
orientations of the sample. Therefor, the symmetry of states may be probed with
respect to reflections in either M; (sample directed such that the photoelectron
momentum is along I' — (7, 7), Fig. 5.12(a)), or My (sample directed such that
the photoelectron momentum is along I' — (7, 0), Fig. 5.12(b)). The first peak at
2.9 eV binding energy in the experimental spectra at the [ point with the sample
oriented such that the k-vector is along I' — (7, 7) (Fig. 5.12(a)) is equally strong
for both polarization directions. This leads us to interpret it as the two pure
oxygen bands (p.p,) and (p,p,) which are antisymmetric and symmetric with
respect to reflections at M;, respectively'®. These bands occur in the LDA+U
calculation as the two-fold degenerated in-plane oxygen bands at 2.69 eV binding
energy. According to this interpretation we would expect an identical peak for
both spin directions also at the I' point with the sample oriented such that the
k-vector is along I' — (m,0) (Fig. 5.12(b)). As one can see, Fig. 5.12(b) devi-
ates only slightly from that expectation. In the LDA result, however, there are
three copper levels between 2.3 and 3 eV binding energy. Since every copper-level
has different symmetry properties with respect to M; and M, that would lead
to strong differences between both polarization directions which is not observed.
Therefore, we assign each experimental peak with the help of the LDA+U re-
sults. Each pure band is denoted by one orbital only. For the mixed bands we
choose a notation using two orbitals, where the first one is the dominant one. The
experimental peak positions are compared with the LDA+U positions in Table
5.1.

Let us continue our interpretation of the spectra at the I' point with the peak
at 3.9 eV. It is seen with horizontal polarization in Figs. 5.12(a) and 5.12(b).
Therefore, we interpret it as the out-of-plane oxygen 2p, orbital. We observe also
a small contribution of this peak with the “wrong” polarization in Fig. 5.12(a)
which is even larger in Fig. 5.12(b). However, there is no band with the corre-

9Tn fact, the oxygen in-plane wave functions have to be defined by the limit k, =k, =k — 0
to have a defined parity with respect to M;. In the limit k, = k — 0, k, = 0 they have a
defined parity with respect to M.. That arbitrariness can be explained since they build the
two-dimensional representation E, at the I' point.
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Figure 5.12: Experimental photoemission data of SroCuO5Cl, at high-symmetry
points, with the relevant mirror plane given in brackets: (a) at the I" point (M),
(b) at the I' point (M), (c) at (7, 7) (M;) and (d) (7,0) (Mz). The assignment
of peaks is according to the LDA+U results. The filled circles and full lines
correspond to vertical polarization, whereas the open circles and broken lines
give the results for horizontal polarization.

sponding symmetry in that energy region in our LDA+U calculation. The large
peaks at around 6 eV binding energy in Figs. 5.12(a) and 5.12(b) with big dif-
ferences between both polarization directions indicate that there are additional
contributions besides the oxygen orbitals there. Due to the low cross section of
ClI 3p orbitals, we are only left with the pure copper d orbitals. To simplify the
analysis we did not try to assign the Cu 3ds,>_,2 orbital which mixes strongly
with the Cl orbitals and should have reduced intensity. The remaining in-plane
copper orbitals change their polarization dependence between Figs. 5.12(a) and
5.12(b). The diQ_lﬂ is antisymmetric with respect to M; and the d, is symmet-
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Orbital LDA+U Exp.
(Pxpo) -2.69 2.9
(PrPo)

p- -3.83 3.9
dyo_yo -4.92 5.8
gy -5.40

(Popr) 557

)

d(z.y)- -5.87 6.5

(7, )

Orbital LDA+U Exp.
(podyz_ ) (ZRS) 0.65 12
Pr -2.43 2.4
(P2d(z)-) -2.98 2.7
(Prday) -3.35

(podl._,2) (ZRT) 4.94 338
(d(z,y)zpz) -6.62 -5.8
(doypr) -7.20

(dbs_,2P0) 728 6.0

(7, 0)

Orbital LDA+U Exp.
(podys_,2) (ZRS) -2.40 1.1
(p-d.-) -2.96 -2.5
(Prday) -2.94 2.7
p- -3.79 3.8
Pr 4.32

Do 4.11 3.8
(dacyﬁﬁ) -6.17 -5.6
dy- -5.93 6.6
(de=p-) -6.37

Table 5.1: Comparison of experimental peak positions (in eV) with the
LDA+U results of SroCuO,Cl, at the high-symmetry points (ZRS and ZRT
mean the ZHANG-RICE singlet or triplet, respectively).

ric. However, this situation is reversed when the sample is oriented such that the
k-vector is along I' — (m,0). The intensity ratio between horizontal and vertical
polarization of the peak at 5.8 eV is indeed exchanged if we compare Fig. 5.12(a)
and 5.12(b). The last peak at 6.5 eV occurs for both sample orientations only with
horizontal polarization and is interpreted as the out-of-plane d,.- or d,,-orbital.



122 Chapter 5. Analysis of spectroscopy on cuprates

Turning now to the spectra at (7, ), we can only probe the parity with respect
to My (Fig. 5.12(c)). The small prepeak at 1.2 eV in the curve with vertical po-
larization is usually interpreted as the ZHANG-RICE singlet [102]. The dominant
peak at 2.4 eV binding energy in the spectra with perpendicular polarization can
be identified as the pure p, orbital which has already been discussed in Ref. [159].
The p, band is the only one among the group of 5 bands at around 3 eV binding
energy in both calculations (LDA or LDA+U, Figs. 3.30 and 5.11) which has
odd symmetry with respect to M;. It has lowest BE in the experiment and in
the LDA+U calculation. That indicates that the LDA+U calculation is better
in predicting the correct order of energy levels at high symmetry points than the
pure LDA calculation. At slightly higher binding energy at 2.7 eV we observe a
smaller, broader peak with horizontal polarization. According to our calculation
it should be comprised of three bands, the out-of-plane (p.d(;,).) bands and the
in-plane (prd,,) band. The small structure at 3.8 eV binding energy (vertical
polarization) can be related to the oxygen p,-orbital hybridizing with d,>_,» but
having the opposite spin (1) than that of the copper hole. The corresponding
band occurs in the LDA+U at 4.94 eV binding energy and can be interpreted as
the ZHANG-RICE triplet. A similar structure was also observed in our previous
analysis of the polarization-dependent photoemission spectra of another undoped
model cuprate BayCuz04Cl, [162].

The peaks at around 6 eV binding energy should be assigned to bands with a
dominant copper character. However, we note in Table 5.1 systematic deviation
between experimental and theoretical peak positions at (7, 7): the theoretical
binding energies are too large. That is plausible since it is expected that the
copper-bands feel the antiferromagnetic correlations much more than the oxygen-
bands which are decoupled from the copper-spins. As a result the copper bands
are expected to follow more the AFM BZ where I" and (7, 7) are identical. How-
ever, such AFM correlations were not considered in our calculation.

At (m,0) (Fig. 5.12(d)) a prepeak with low intensity is to observe, which
may be prescribed to the ZHANG-RICE singlet state comprised in our calculation
by the hybridization between the p, orbital and di2_y2. The strong peak with
horizontal polarization at 2.5 eV is assigned to the out-of-plane (p,d,.) orbital.
The peak at 3.8 eV consists of two orbitals, p, and p,, which are separated
by only 0.5 eV in the LDA+U calculation. Therefore, it is difficult to use that
peak to extract the parameter ., from the experimental spectra as it was done in
Ref. [159]. Furthermore, it should distinguished between different oxygen hopping
matrix elements (t,,, t,» and t.,)[152] which was also not done there [159].
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Figure 5.13: Angle-resolved photoemission curves calculated bands (solid lines)
along: (a) I' — (m,m) for vertical polarization together with the antisymmetric
TB band with dominant oxygen (p,) contribution and the dispersion of the ZRS
according to Ref. [167] (dotted line). (b) I' — (m,m) for horizontal polarization
together with the oxygen out-of-plane TB bands and the in-plane bands having
even symmetry. (c) I' — (m,0) for vertical polarization together with the antisym-
metric oxygen TB band. (d) I’
the oxygen out-of-plane TB bands and the in-plane bands having even symmetry.

(m,0) for horizontal polarization together with

Dispersion relations

The experimental spectra along both high symmetry directions show clear differ-
ences between both polarization directions (Fig. 5.13). The first electron removal
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peak along I' — (7, 7) has minimal BE at (7/2,7/2) and occurs exclusively with
vertical polarization (Fig. 5.13(a)). That is in complete agreement with the usual
interpretation of that peak as the ZHANG-RICE singlet. In our mean-field treat-
ment it is built up of the diz_yrz and p, orbitals having odd symmetry with respect
to M;. The dispersion is well described within the extended ¢-J model [167] and
the corresponding theoretical curve is included in Fig. 5.13(a) for completeness.
Along I' — (7,0) (Figs. 5.13(c) and 5.13(d)) the ZHANG-RICE singlet feature is
less pronounced. According to our symmetry analysis based on a simple mean-
field treatment, we would expect it only with horizontal polarization. However,
it is more clearly seen in Fig. 5.13(c) (vertical polarization) than in Fig. 5.13(d)
(horizontal polarization). Recent experiments [184] on several new single crystals
lifted this discrepancy, the ZHANG-RICE singlet feature appeared as expected
only with horizontal polarization. The origin of the discrepancy in the present
experiment is still unclear [184].

The peak next in binding energy in Fig. 5.13(a) was already analyzed as
the pr-orbital and it has a clear dispersion going from I" to (7, 7). The valence
band edge at around 2.5 eV BE is different for both polarizations: it has no
dispersion for vertical polarization (Fig. 5.13(c)) and is built up of only one (p,)
orbital. In contrast to that, we see for horizontal polarization (Fig. 5.13(d))
one dispersionless out-of-plane band at 3.9 eV and two crossing bands from the
out-of-plane orbitals and the in-plane p, band.

To analyze this dispersion quantitatively it is more convenient to use the TB
model than the LDA+U calculation due to the restricted number of bands in the
former. The parameters of the TB model were found as follows. The LDA+U
results at high symmetry points (see Table 6.2 in Appendix D) were used to
obtain a first parameter set. For the fit have been chosen only such energy levels
which have no or very small contribution from other orbitals (Cu 4s, O 2s, Cl). In
such a way our effective TB parameters also contain the influence of hybridization
to Cl or s orbitals. Fitting to the pure LDA results (see Table 6.1 in Appendix
D) gave nearly the same hopping integrals but different on-site energies. The
parameters are very similar to those known for Lay,CuQ, [23]. After fitting to the
LDA+U results there remained small differences to the experimental dispersions
even for the peaks with lowest binding energy. These small discrepancies to the
experimental peak positions were corrected by small changes of the on-site and
off-site energies (here, especially ¢,4, was increased). The resulting parameter set
is shown in Table 5.2.

In Fig. 5.14 we have collected all the peak positions from Fig. 5.13 together
with the dispersion of the TB bands. We have distinguished between the results
for vertical polarization (Fig. 5.14(a)) and horizontal polarization (Fig. 5.14(b)).
According to our previous analysis, the peaks in Fig. 5.14(a) between (7, 0) and I’
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—T —T — — — — — —
Eq €y €4 €D Ed, Ex Ep, Ep

2.00 | -490 | -4.78 | -5.22 | -6.40 | -3.88 | -3.86 | -4.59

th tpzi tpp tpﬂ t7T7r t7rD tpclz
1.33 1 0.77 | 0.71 | 0.34 | 0.37 0.84 1.15
(0.32) | (0.77) | (0.77)

Table 5.2: TB-parameters of SroCuO,Cly obtained by fitting the LDA+U
band structure and the VB photoemission spectra. The off-site energies in
parentheses are the values from a fit only to the theoretical band structure in
the cases where experimental corrections were appropriate.

should only be compared with the 3 TB bands stemming from the p,, p, and d,
orbitals. Analogously, between I' and (7, 7) (Fig. 5.14(a)), only the antisymmet-
ric bands from the p,, px, dj‘,LyQ and dI‘,LyQ orbitals are presented. In Fig. 5.14,
we have collected the bands arising from both the diz_yQ or dlz_yQ orbitals, and
have neglected the band corresponding to the ZHANG-RICE singlet since we can-
not expect to obtain its correct dispersion in our simple mean-field treatment.
The number of bands which contribute to the spectra for horizontal polarization
(Fig. 5.14(Db)) is considerably larger: these include all of the out-of-plane orbitals
and additionally the corresponding symmetric bands (representation A; of Cy,)
of the in-plane orbitals. In Fig. 5.14 we have distinguished between bands with
dominant oxygen character for all k values (solid lines) and those bands which
have a considerable coupling to the copper spins (dashed lines). A considerable
agreement is found between experimental and theoretical dispersions for the oxy-
gen bands with small BE. Furthermore, there is some similarity at the I' point
besides the peak with vertical polarization at 3.9 eV BE for which we have no ex-
planation. On the other hand, the copper-bands at around 6 eV disperse strongly
in the TB calculation whereas they are nearly dispersionless in the experiment.
Probably this failure of the theoretical description arises due to the neglect of
antiferromagnetic correlations. To avoid misunderstanding it should be stressed,
that also the oxygen bands of our mean-field calculation have a copper contri-
bution (except some cases at the high-symmetry points), but that the copper
contribution is not dominant. The calculated dispersion relations of the oxygen
bands are shown in Fig. 5.13 as solid lines in order to guide the eye.
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Figure 5.14: Position of the main experimental peaks for SroCuO,Cly together
with the TB-bands of the corresponding symmetry along (7,0) — (0,0) — (7, 7):
(a) antisymmetric bands and experimental data for vertical polarization, (b) out-
of-plane and symmetric bands together with experimental data for horizontal
polarization. Full lines denote the TB bands with dominantly oxygen character,
whereas the dashed lines correspond to bands with a considerable mixing to the
copper system.

5.3.6 Conclusions

It can be summarized that polarization-dependent ARPES at T, (7, 7) and (7, 0)
and along the two high-symmetry directions gives detailed information about the
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bands with different parity with respect to reflections at the mirror planes M;
and Ms. The assignment of the peaks can be performed by means of a symmetry
analysis of band structure results. Here we pick out the three major results.

(I) Rearrangement of energy levels: Comparing LDA with LDA+U results at
high-symmetry points we found that the strong electron correlation leads to a
changed order of energy levels, whereby the experimental peak positions could be
more accurately assigned with the help of the LDA+U calculation. In comparison
with an LDA calculation we found the copper bands shifted to higher BE. So, we
conclude that the correlation influences not only the band near the FERMI level
but leads to a rearrangement of energy levels throughout the whole VB.

(IT) Check of the non-bonding p, band: Polarization-dependent ARPES mea-
surements provide a sensitive test of the symmetries of the excitations with low
BE which were already analyzed before. The p, orbital is seen at (m,7) with
vertical polarization as a single peak. At (m,0) it is visible with horizontal po-
larization but it overlaps with out-of-plane orbitals which makes a parameter
assignment difficult. This means that in polarization independent measurement,
such as those in Ref. [159], the spectral weight assigned to the p, peak at (m, )
will have additional contributions besides the pure p, orbital (of roughly one third
of the total intensity as seen in Fig. 5.12(c)). As a consequence, the experimen-
tal estimate of the spectral weight of the ZHANG-RICE singlet part, which was
performed there using the intensity of the p, feature as a calibration, should be
increased by 50 %.

(IIT) Dispersion relations: Analyzing the dispersion relations we observe a
difference between the copper bands which couple strongly to the antiferromag-
netic spin structure and thus feel the antiferromagnetic BZ and the nonbonding
oxygen bands which are decoupled from the spin system and follow the paramag-
netic (or ferromagnetic) BZ. To take that effect into account for SroCuO,Cl, we
should extend our theory incorporating the antiferromagnetic order. Then all the
bands are defined within the AFM BZ. To obtain in such a scheme the observed
difference between I' and (7, 7) deserves the calculation of matrix elements.

Despite the fact that the experimental order of energy levels can be explained
by an LDA+U calculation one should be aware that the agreement between pho-
toemission and LDA+U cannot be perfect. First of all, the LDA+U calculation
cannot reproduce the satellite structure present in the spectra at about 14 eV
binding energy. And second, the LDA+U has the tendency to push the copper
levels towards too large binding energy. That was visible in our analysis espe-
cially at (7, 7). The k-integrated copper density of states can also be measured by
x-ray photoemission with large photon energy such that the copper cross section
dominates that of oxygen [185]. It was found that the x-ray photoemission spec-
trum of the valence band of SroCuO-Cly showed the existence of Cu 3d electron
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removal states over an energy range of some 5-6 eV. To compare our LDA+U
calculation with earlier ones for LayCuOy [176], it should be kept in mind that
we had to choose a rather small shift of the copper levels to find agreement with
the experimental situation, and we did not choose correlation parameters from
a constrained density functional calculation as in Ref. [176]. It can be expected
that the consideration of self-energy corrections as was done recently by calcu-
lating the three-body scattering contributions [186, 187] improves the situation
and allows to work with real correlation parameters instead of fitted ones. Our
main goal here was the assignment of peaks and not the determination of param-
eters. To extract parameters from polarization-dependent ARPES measurements
there are several improvements necessary both from the experimental and the
theoretical side of view.

5.4 The unoccupied electronic structure of Li,CuO,

Among the large family of chain and ladder networks [39], the simple straight
chains are essential as they appear as building blocks in all of these materials.
They can be classified structurally into two types, namely chains formed by CuQOy
plaquettes connected via shared corners (’corner-sharing chain’) or shared edges
(’edge-sharing chain’). The former is realized in SroCuOjs, the unoccupied elec-
tronic structure of which has been studied recently [188]. The edge-sharing chain
occurs in other insulating cuprates such as Li;CuQO,, the spin-PEIERLS compound
GeCuOj3 and the ladder-type material LagCagCus40y4. The latter system rep-
resents the undoped parent compound of Srg,Ca;36Cu4041.84, Which exhibits
superconductivity under high pressure [189]. Within the class of materials with
edge-sharing chains, at first glance Li,CuQO4 seems to be an ideal model substance
since in this case the CuOs-chain is the only building block in the crystal structure
apart from the Li counter ions, and thus a direct access to properties connected
with the chain geometry alone is possible.

In contrast to the corner-sharing case, where a 180° Cu-O-Cu exchange path
implies an antiferromagnetic (AFM) nearest-neighbor Cu spin interaction (J; >
0), the ideal edge-sharing geometry results in a 90° Cu-O-Cu interaction, which
favors a ferromagnetic (FM) spin interaction (J; < 0) between the Cu-sites
[71, 190, 73]. At the same time, the exchange path Cu-O-O-Cu plays a more
important role, leading to an AFM next-nearest-neighbor interaction, .J5, and
thus to frustration. For Li;CuQO,, with an Cu-O-Cu angle of § = 94° exchange
constants of J; = —100K and .J, = 62 K have been obtained from magnetic sus-
ceptibility data and an analysis within a standard pd-model [136]. Besides the
magnetic order along the chain direction (crystallographic a-direction), Li;CuOy



5.4. The unoccupied electronic structure of LiosCuQOs 129

shows a three-dimensional magnetic structure. Different chains in the (a,c)-plane
are FM ordered, whereas in b-direction an AFM coupling of the different layers of
chains is found [50]. A detailed knowledge of the electronic structure of LioCuOq
is necessary to understand the fundamentals of these magnetic properties.

In this section we study the unoccupied electronic structure of Li;CuOy by
means of polarization-dependent x-ray absorption spectroscopy and discuss the
results in the light of the predictions of band structure calculations.

To obtain some insight into the electronic structure from the theoretical point
of view we have performed LDA calculations using the linear combination of
atomic-like orbitals which were already discussed in Section 3.3.2 (see Figs. 3.10
and 3.11). For the comparison with the XAS data, we calculated the orbital-
projected net densities of states (described in detail in Appendix A). [191]. The
calculation shows a paramagnetic and metallic behavior, with one isolated band
crossing the FERMI level. Due to strong on-site electron correlations ignored in
LDA, this antibonding band will split in an upper and a lower HUBBARD band
in accordance with the experimentally observed insulating behavior.

Depending on the coordinate system adopted in the (a,b)-plane, the orbitals
relevant for the discussion below are denoted by O 2p,/, O 2p,/, Cu 3d2_,- in the
case of (z',y')-axes along the Cu-O bonds as sketched in Fig. 5.15(a), and O 2p,,
O 2p,, Cu 3d,, for axes parallel to the crystallographic directions ((z,y)-axes,
Fig. 5.15(b)).

5.4.1 The intrinsic hole distribution in Li, CuO,

The XAS experiments were carried out using in-situ cleaved single crystals at
the SX700/II beamline [192] operated by the Freie Universitit Berlin at BESSY
with an energy resolution of the monochromator of 280 and 660 meV at the O 1s
and Cu 2p absorption thresholds, respectively. For the O 1s and Cu 2p absorp-
tion spectra the fluorescence yield (FY) and total electron yield (TEY) detection
mode, respectively, were chosen. The spectra for different crystal orientations!!
are normalized ~ 80 eV above the absorption threshold, where the final states are
nearly free-electron-like and therefore essentially isotropic.

XAS provides information on the character and symmetry of the unoccupied
electronic states of solids and has played an important role in the investigation of
cuprate-based materials [158]. Dipole selection rules and the localized initial core
states enable a site-specific study of the hole distribution. In addition, by using
linearly polarized synchrotron radiation and single crystalline samples, orbitals
with different symmetry can be probed by appropriately aligning the sample with

"The spectra for E||c were obtained by extrapolation from measurements at grazing incidence
(70° off the sample surface normal).
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Figure 5.15: A sketch of the edge-sharing chain in Li;CuO,. The di-
rections a and b refer to the crystallographic axes. Cu and O orbitals
are shown for two different coordinate systems: (a) axes of coordinates
along the Cu-O bonds (z',y'-axes) with O 2p,, O 2p,, and Cu 3d,2_,»
orbitals. (b) axes of coordinates rotated by 45° (z,y-axes) with O 2p,,
O 2p,, Cu 3d,, orbitals.

respect to the electric field vector E of the incoming radiation. For example, in
the geometry E||la only O 1s — O 2p, transitions are selected (Fig. 5.15(b)).
Figure 5.16(a) shows the polarization-dependent Cu2p;/, x-ray absorption
spectra of LisCuO,. A narrow peak at ~ 931.8 eV (the so-called *white line’) is
observed, which can be ascribed to the Cu 3d contributions to the upper HuB-
BARD band (UHB)™. As expected from the isotropic neighborhood of the Cu
ion within the (a, b) - plane (Fig. 5.15), almost identical spectra for E||a and
E||b are observed. A completely different variation in intensity is found for light
polarization perpendicular to the CuOg4-units (E||c). The strong anisotropy of
the white line between the in-plane (E||(a,b)) and out-of-plane (E||c) geometry
implies that the low lying Cu 3d derived unoccupied states have predominantly
Cu 3d,, character, with only less than 7% of the intrinsic hole density located in

2Transitions into unoccupied Cu 4s orbitals are also allowed, but show a reduced transition
probability by a factor of 20 compared to Cu 3d final states [193, 158]
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Figure 5.16: left panel: Cu 2p3/, absorption edges of LioCuO, for the electric-

field vector E parallel to the three crystallographic axes.

right panel: O 1s absorption edges of Li;CuO, for the electric-field vector

E parallel to the three crystallographic axes. The inset concentrates on the

upper HUBBARD band derived features for the two in-plane light polarizations

measured with smaller step size.

out-of-plane orbitals (Cu 3ds,2_,2)'3.

Besides the white line, a strongly polarization-dependent absorption feature
is found at 936.8eV. Features in this energy range in the out-of-plane geometry
have been seen in many other cuprates [158] and can be attributed to transitions
into Cu 3ds,2_,2 orbitals which become partly unoccupied via hybridization with
empty Cu 4s states [194].

Turning to oxygen, Fig. 5.16(b) the O 1s absorption edges for Li;CuO, is
shown. These measurements probe O 2p, (E|ja), O 2p, (E||b) and O 2p, (E||c)
unoccupied states. The unoccupied states in the ’high’ energy range above
530.5 eV result from the hybridization of Li 2s/2p states with previously occupied
O bands. We will mainly concentrate on the peak directly above the absorption
onset at ~ 530eV which is related to transitions into O 2p orbitals hybridized
with Cu 3d states forming the UHB [158]. The polarization dependence is ex-
pected to be similar to that found for the white line in the Cu 2p absorption
spectra. Indeed, in the out-of-plane geometry (E||c) the spectral weight of the

13Tn the evaluation of the spectral weight, different matrix elements for transitions into Cu
3d,y and Cu 3ds.2_,2 states were taken into account.



132 Chapter 5. Analysis of spectroscopy on cuprates

UHB is strongly suppressed, with less than ~ 11 % of the holes with O 2p char-
acter located in orbitals perpendicular to the (a,b)-plane. From the observed
anisotropy in the Cu 2p and O 1s absorption edges one can conclude that the
sy O 2pg, and
O 2p,. A similar result is found within our LDA approach, in which states other

UHB is predominantly built up from the in-plane orbitals Cu 3d

than these three contribute jointly less than one percent to the band at the FERMI
level. Compared to the LDA result, the larger out-of-plane contributions observed
in experiment are most likely a result of the finite degree of linear polarization
(> 90%) of the monochromatized synchrotron radiation. An alternative expla-
nation could be related to phonons or zero-point motion. They cause a breaking
of the local symmetry and therefore hybridization between in- and out-of-plane
states is no longer suppressed by symmetry. Although the relevant orbitals for
the formation of the UHB have almost exclusively in-plane character, the LDA
band structure shows a dispersion of the corresponding antibonding band in the
z-direction which is equivalent to the dispersion in y-direction and comparable to
that in chain direction z [55]. From this we can conclude that there is a relatively
large inter-chain coupling via oxygen orbitals, and that Li;CuOs is not an ideal
1D model system as the crystal structure might suggest at the first glance. From
the dispersion of the antibonding band of an effective one-band model in chain
direction,

E(k) = =2t cos(kza) — 2t5 cos(kya) —
a b c
8t} cos(km§) COS(kyi) COS(kzi) —

8t cos(kxga) cos(ky;b) cos(kzgc), (5.22)

where ;5 denote the intra-chain transfer integrals and ¢}, the corresponding
interchain integrals, we estimate for the transfer integrals values of t; = -52 meV
(-63 meV), to = -80 meV (-94 meV), ¢{ = -12 meV (-16 meV), t), = -44 meV
(-44 meV). The numbers in parentheses are the results obtained by WEHT and
PICKETT [56]. The nearest-neighbor intra-chain transfer integral is significantly
smaller than the corresponding value of the corner-sharing chain in SroCuOj
(t, = 0.55 eV [49]), reflecting the hindered hopping along the chain direction due
to the ~ 90° Cu-O-Cu geometry in LisCuOs.

5.4.2 Character and width of the upper HUBBARD band

We will now focus on the O 1s absorption edges for E|la and E||b near 530eV,
where the chain geometry would suggest identical spectra. As illustrated in
Fig. 5.15(a), the alignment of the light polarization parallel to the a axis is identi-
cal to the situation of E||b as far as the projection of the unoccupied O 2p,//2p,
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states along these two directions is concerned. Surprisingly, in our XAS measure-
ments the UHB derived feature for Ela and E||b turn out not to be identical.
The hole density in the orbitals O 2p, and O 2p, is almost the same'*, but we
observe a distinct shift in energy of 150 meV between the two polarization direc-
tions. Although an absolute energy calibration can hardly be performed to an
accuracy of 0.1eV, we can very sensitively and significantly determine a relative
shift between the E||la and E||b spectra'®.

To discuss a possible anisotropy between the a and b-direction we make use
of the orbital representation shown in Fig. 5.15(b), which corresponds to the
experimental geometry probing O 2p, and O 2p, states. The Cu ions still have
an isotropic neighborhood consistent with the observations in the Cu 2p XAS,
but now the O 2p, and O 2p, orbitals are not a prior: symmetrically equivalent.
For example, the presence of counterions strongly hybridized with the O 2p,
orbitals would lead to a sizable anisotropy. The crystal structure of CuGeQOs; is
a good illustration for this situation, as the Ge ions are located directly opposite
the oxygen atoms of the edge-sharing chain. In Li,CuOs, however, the Li ions
do not reside opposite to the oxygen atoms, but are situated in between them
with a O-Li-O bonding angle of approximately 90°. Thus, in the present case the
counterions do not give a basis for a possible anisotropy.

In contrast to the corner-sharing chain in SroCuQj3, where one can naturally
ascribe two different peak positions to two symmetrically inequivalent oxygen
sites [188], the crystal symmetry in Li;CuO; contains only one oxygen site. As
the excitation into the two oxygen orbitals starts from the same core level, one
would consequently expect to observe one UHB at a certain energy, provided that
possible excitonic effects between the excited electron and the core hole do not
depend on the final state (O 2p,, O 2p,).

In a first step we look for an explanation of the observed energy shift in the
framework of the LDA calculation where the partial, orbital-resolved unoccupied
DOS near the FERMI energy is expected to be reflected in our XAS data directly
above the absorption threshold. The character of the orbitals building a dispersive
band may change across the BRILLOUIN zone, e.g. from predominantly O 2p, to

14This is consistent with our LDA calculation (see Fig. 5.17) but contradicting to the FLAPW
calculations of TANAKA et. al. [57]. They found mainly contributions of the O 2p, orbitals to
the antibonding band, this can be related to the orbital projection in the FLAPW scheme. The
orbital contribution of O 2p, and O 2p, is crucial for the magnetic coupling in Li»CuOs.

15For the measurement, we use the following scheme: the corresponding directions have been
measured immediately one after another in a cycle E||a, E||b, E||a. After a new fill of the storage
ring, the measurements were repeated but now starting the cycle with E||b. Thus a jump in
the monochromator energy due to the mechanical drive of the grating and/or instabilities of
the electron beam in the storage ring can be excluded as an explanation of the shift. Moreover,
measurements were performed on several samples with identical results.
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O 2p,. Since the XAS experiment yields k-space-integral information, one would
then observe a different energy position when probing O 2p, and O 2p, orbitals,
each dominating a different part of the band. Indeed, some effect is visible in
the O 2p net density of states derived from our LDA bandstructure calculations
shown in Fig. 5.17. In the lower part of the figure, the calculated DOS has been

——02p,

Net DOS (arb. units)

Energy (eV)

Figure 5.17: O 2p net density of states of the LDA-LCAO band structure for
LiCuOs near the FERMI energy (Er=0). Upper curves: calculated DOS.
Lower curves: calculated DOS broadened to account for lifetime effects,
phonons and experimental resolution. For the parameters used, see the
text.

broadened to account for lifetime effects of the core hole'® (0.2 eV Lorentzian)
and energy resolution (0.28 eV Gaussian) [196]. The use of these values leads to a
total linewidth of 0.6 eV in discrepancy to the experimentally observed linewidth
of about 1 eV. The same discrepancy occurs in Ref. [196] for the case of LayCuOy
and is ascribed therein to an reduced lifetime of the core hole in a solid compared
with a free atom. This seems unrealistic because it requires a three times larger
life time broadening in the solid. The intersite AUGER processes, proposed to be
responsible for this broadening in Ref. [196], would cause an anisotropy for the

16The value of 0.2 eV corresponds to the lifetime of the core hole in a free oxygen atom [195].
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linewidths for E|la and E||b which is not observed. Therefore, we suppose an
only slightly enhanced broadening (compared with the free atom) of 0.3 eV as
more realistic.

We have to look for an additional mechanism of broadening to reproduce the
experimental linewidth. Usually, it was characterized as partially originating from
the dispersion of the UHB and partially stemming from phononic contributions.
Mostly, they are difficult to separate from each other and are discussed together as
solid-state broadening [197]. Because of the extremely small bandwidth, Li;CuO,
is the most suitable model compound for a separate investigation of both contri-
butions.

The experimentally observed linewidths of the UHB in LioCuO,, SroCuOs,
and SroCuO,Cl, are nearly identical with about 1 eV, whereas the LDA band-
widths are strongly different: 1 eV for Li;CuO,, 2.2 eV for Sr,CuQOj, and about
4 eV for SryCuO,Cly . Since the correlations are poorly described in LDA, the
actual bandwidths should be essentially smaller. The exchange integrals .J in
these compounds are substantially distinct from each other, hence the magnetic
coupling seems to play a minor role for the broadening. The comparison of these
three compounds of different dimensionality points to the dominance of an 'uni-
versal’ broadening mechanism originating from phonons which should be similar
in all three compounds due to the common CuO, building block.

The vibrational broadening in the XAS is usually discussed on the basis of
the FRANCK-CONDON principle [197]. Since a general quantitative description is
complicated, we consider a simplified model where the initial and the final states
are given by two harmonic oscillators (force constant K, phonon frequency wyy)
with a difference of AR in the configuration coordinate [198, 199]. For this case,
the FRANCK-CONDON factor is reduced to a POISSON distribution:

_zB"
Fo=e"=, (5.23)
where 5 K(AR)?
= = 5.24
" hwph 6 2hwph ( )
In the limit of 3 > 1 this can be approximated by a symmetric Gaussian:
1 (8 —n)?
F,=— —_—). 5.25

This corresponds to the experimentally observed nearly symmetric line shape!”
(see Fig. 5.16).

17A more accurate analysis of the remaining asymmetry is difficult due to the overlap of
the UHB with the higher lying absorption features. Furthermore, the symmetric broadening
mechanisms (life time, resolution) will cover the asymmetry.
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In the symmetric limet, the phononic contribution to the linewidth is given
by [200]

Tpn = 2.35v/Bhwy, - (5.26)

The relevant bond stretching phonon modes have a typical energy of about
100 meV [201]. Thus, Eq. (5.26) leads to = 6.5 for a phononic contribu-
tion of 0.6 eV to the linewidth derived from the XAS data. This relatively high
number of involved phonons implies the importance of electron-phonon coupling,
i.e. polaronic effects. Within a theory of small polarons [202], Eq. (5.24) can be
transformed in

AEj +AE, =0, (5.27)

using the HUBBARD-HOLSTEIN model. Here, AE;,; corresponds to the change
of the lattice energy due to the emitted phonons, and AE, = —fhw,, describes
the polaronic shift due to electron-lattice interaction. This results in an enlarged
effective mass m* of the quasiparticle (polaron) and therefore in a reduced band-
width. A quantitative theoretical description is complicated because the phononic
energy hw is similar to the electronic transfer integral ¢ and we find a medium
electron-phonon coupling constant Ae;_,n, ~ Bhiw,,/W & 0.6...0.7. Herein, W
is the bandwidth of the LDA calculation which can be regarded as an upper
estimate.

These values for the parameters require a big numerical effort for solving the
related equations [203]. Qualitatively, the similar linewidth of the UHB in the
XAS data of all insulating cuprate compounds (independent of the dispersion
in the LDA bandstructure) can be understood as a combination of polaronic
narrowing and phononic broadening. Similar explanations within this simple
polaronic picture were given for the broadening in photoemission spectra [204,
205].

Let us direct our attention now to the anisotropy of the UHB. One recognizes
a small energy shift between the calculated O 2p, and O 2p, densities of states
at the FERMI energy, in the same direction as experimentally observed. How-
ever, the theoretically estimated shift of 50 meV turns out to be not sufficient to
fully explain the experimental value of 150 meV. Therefore, there must be some
additional mechanism involved.

As the phonon contributions have significant influence on the actual linewidth,
the chain structure of LioCuO5 could lead one to expect some anisotropy of the
phonon properties, thus accounting for the experimentally observed energy shift.
For example, O 1s core-level excitations into the O 2p, and O 2p, orbitals could
result in coupling either to different numbers of phonons or to phonons of differ-
ent energies. However, considering the role of phonons in the excitation process
in terms of a simple EINSTEIN model, one finds that the first moment (center of
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gravity) of the spectral function is independent of the coupling strength [206, 207].
For an asymmetric lineshape, an energy shift between the two polarization direc-
tions could result from the different energy positions of the peak maximum with
respect to the center of gravity in each case. However, as the peak maximum and
the center of gravity coincide in the strong coupling limit (symmetric lineshape),
it would appear unlikely that, within this simple framework, the observed energy
shift is caused by phonon contributions.

As a final point we mention the possible role played by electronic correlation
effects in the XAS final state. Since there are only 0.1 holes per O 2p, , orbital, the
excited electron must be distributed over several surrounding ions. This charge
redistribution in the XAS final state depends sensitively on the transfer integrals
between the orbitals involved. These are in turn influenced by geometric effects
(the Cu-O-Cu bond angle is 94°) and in the case of the oxygen-oxygen transfer
integrals additionally by the proximity of cations in the immediate vicinity. Both
of these effects could lead to a situation in which the final state charge distribution
is different for the two polarization conditions. Taking this fact, in combination
with the various intersite COULOMB interactions (both core-valence and valence-
valence), it is conceivable that the final state energies for E||a and E||b result
in a shift of both the same magnitude and direction as observed in experiment.
Consequently, the direction and magnitude of the experimentally observed energy
shift provides a useful constraint for the parameters involved in future model
calculations of edge sharing CuO,-chains.

To summarize our results, direct experimental information on the character
and symmetry of the intrinsic holes in the edge-sharing chain of Li,CuOs has been
obtained by polarization-dependent x-ray-absorption spectroscopy. Although for
light polarization within the plane of the CuO4-plaquettes the chain geometry
suggests isotropic oxygen contributions to the UHB, we observe a shift in energy
in dependence of the direction of the light polarization. This shift has been
discussed within the framework of bandstructure effects, the role of phonons in
the excitation process as well as the impact of electronic correlations in the XAS
final state.
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Chapter 6

Summary and outlook

The physics of cuprates is strongly influenced by the dimension of the copper-
oxygen network in the considered crystals. Due to the rich manifoldness of dif-
ferent network geometries realized by nature, cuprates are ideal model systems
for experimental and theoretical studies of low-dimensional, strongly correlated
systems. The dimensionality of the considered model compounds varies between
zero and three with a focus on one- and two-dimensional compounds.

Starting from LDA band structure calculations, the relevant orbitals for the
low-energy physics have been characterized together with a discussion of the
chemical bonding in the investigated compounds. It was shown, that qualitative
results can already be estimated by considering structural elements like local and
crystal symmetry, interatomic distances, and bond-lengths. By means of this
systematic approach, the influence of particular structural components on the
electronic structure could be concluded.

For all undoped cuprate compounds, paramagnetic LDA band structure cal-
culations yield a metallic groundstate instead of the experimentally observed
insulating behavior, and the strong correlations have to be taken into account in
a more explicit way. Model calculations using HUBBARD- or HEISENBERG-like
models are suitable to investigate most of the magnetic couplings in cuprates.
The necessary parameters were obtained from tight-binding parameterizations of
LDA band structures, except the correlation part which was obtained from ex-
periments or from constrained LDA calculations reported in the literature. In
a comparative study of the chain compounds SroCuQOj3, CayCuO3, and CuGeOs,
the in-chain and inter-chain interactions were investigated, which are responsi-
ble for the phase transition either to an AFM or to a spin PEIERLS state at
low temperatures. Even if the absolute values calculated for exchange integrals,
magnetic moments, and ordering temperature are too large, the ratio for differ-
ent compounds was found in agreement with experiment. This emphasizes the
necessity to improve the models available for such anisotropic compounds.
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Each theoretical result has to be verified by experiment, and the interpre-
tation of experiments usually needs a theoretical background. In the dialogue
between experiment and theory, valuable insights into the occupied and un-
occupied valence band structure of cuprates were obtained. ARPES measure-
ments on Bay,Cuz04Cly were interpreted in terms of two ZHANG-RICE singlets
moving in different magnetic spin backgrounds and representing in this way si-
multaneously the low and very high doping limit. A valence band analysis of
SraCuO,Cly; compared with polarization-dependent ARPES experiments showed,
that an LSDA+U scheme is more appropriate to interpret the spectra than sim-
ple LDA, which gives not only the wrong groundstate, but also the wrong energy
order of the orbitals. A comparison of XAS spectra with the calculated density of
states for Lio;CuO, highlighted the importance of phononic and polaronic effects
for the interpretation of high energy spectroscopy.

The present work shows, that the combination of experiment, LDA, and model
calculations is a powerful tool for the investigation of the electronic structure
of strongly correlated systems. Using the presented paramagnetic and the not
discussed spin-polarized band structure results, further work could follow these
lines: Starting with a TB parameterization, the magnetic coupling in the “zero-
dimensional” Bi,CuO,4 and in the merlon chain compound Bas;Cuy;0O4Cl, can be
analyzed. For the edge-sharing chain compound Li,CuQOs a multi-band model
can be constructed to calculate the exchange integrals. First estimates are in
contradiction to experimental values from neutron scattering by at least one or-
der of magnitude. Furthermore, a comparative study between the spin PEIERLS
compound CuGeOj3 and the recently discovered isostructural CuSiO3 including
experimental results is already in preparation. A more general aspect for further
investigations concerns the influence of orbitals beyond the standard pd models.
Preliminary results show their importance for physical properties connected with
long range interactions in strongly anisotropic compounds, like ordering temper-
ature or magnetic moments.
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Appendix

A Definition of the net-DOS and of the orbital weight

In our LCAO calculations, the BLOCH wave function |kv) is composed of over-
lapping atomic-like orbitals |Lij) centered at the atomic site j in the elementary
cell 2 with coordinates R; + S;,

ko) =) CrreRitS|Lij) (A.1)

Lij

with the normalization condition (kv|kv) = 1. Here, L = {nlm} where n, [, and
m denote the main quantum number, the angular momentum and the magnetic
quantum numbers, respectively (see Section 2.2.1). Note that for each [ only one
main quantum number n is considered. With the usual definition for the density
of states

o) = Nik 3 / P (ke (v k)o(w — i) (A.2)

where Ny is the number of elementary cells equivalent to the number of k-values,
p can be written as

N 2 [ A S0 3 el i)

Lij L'i'j'
¢ K(Ri+8;—Ry1 =S,/ )5(w — F) (A.3)
or
)= N O S O St MRS S5 — By)  (A4)

kv Lij L'i'j’

where Sp;; 1 is the overlap matrix. Now we can decompose p into an on-site
part (i =i and j = j') and an overlap part (i # i’ or j # j'). For the on-site
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part we find Sy, 1; = 011 due to the orthogonality of atomic-like orbitals at the
same site. So we can define a net density of states (net-DOS)

Prer(w) = ZZIO‘L‘W — B) - (A.5)

kv Lij

The difference between the DOS and the net-DOS consists in the overlap density
and is relatively small near the nonbonding states (see Fig. 2 of Ref.[191]).

To define the orbital character of a k-point of a band v, we write the net-DOS
(A.5) as

Pret (W Z > WES(w— Ey), (A.6)
kv Lj
where we define the weight of the orbital |Lj) in the state |kv) in the form:

Wllij = Z |CLZ]|2 (A7)

[

The sum of all weights is approximately unity, > Lj WE’ ~ 1, with small devia-
tions due to the neglect of the overlap density.

B Analytical expressions for the eigenvalues of the 11-band tb-model
of the Cu;0,-plane

As written in Section 4.3.1, the tight-binding matrix is block-diagonal at the high
symmetry points I' = (0,0) and M = (7 /a,7/a), so it is possible to calculate the
eigenvalues analytically. In the following these eigenvalues are listed correspond-
ing to the different parts of the tight-binding Hamiltonian.

FEigenvalues at k = (0,0):

Cu-subsystem:

€d
ep — 4ty (B.1)
% [ + 2 Aty (A4 + 41)2 4 3222,
Cup-subsystem:
—2tf

T

1
5 {a{f +epn+ 2t + \/ Ap +2tF )2 + 16t72rd] (B.2)
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coupling between the subsystems:
1/2(ep +ex £ (/AZ, +6412) (B.3)
The eigenvalues in (B.3) are twofold degenerated.
FEigenvalues at k = (m, 7):
Cu-subsystem:
1 A A2 2
5 [ad tept /A2 + 16tpd] (B.4)
Cup-subsystem:
Exr+ 2t
1
5 {sdB +e,— 2t \/(AB — 2t )% + 16t§d] (B.5)
coupling between the subsystems:
p
Ex (B.6)

where Ay = ¢, — ¢, Ap = e, — B, Ay, = ¢, —&,, t5, = tL L+ 2. The

eigenvalues in (B.4) and (B.6) are twofold degenerated.

C Exchange integrals in pertubation theory for the Cu3;O,-plane

A

B B A
Ay=¢ep—c;, Ap=er—e5, Aup=¢p—¢c;, Apa=c¢c,—¢] (C.1)

tpda = tpds TpaB = tra

(C.2)

} (C.3)

2 2 2 2
g Apga { K, + 2tyaa tpaa Kpd
A4 (Aq+ U2 U P " 2A,+ U, Uy Ap+Upy
719 8tpu5(trr)’ { 1 ( K+ 2t121dB> N K,
BB AQB (AB + Upd)2 P U, (AB + Upd)3

H;dB(zAB 1T, 2;9) (AB Jlr Uyt 2§B>2}

(C.4)
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Z 25 thap <1 n Kpa )
AQ AAB + Upd) AAB + Upd

o AQB(AAB+AA+U) Ay Auap+Up
22 B yatogp

+ pmp
/E:B AL (Aap + Upg)? (5(1 - 5(1 + Ua)

42 t2 K
Jwie prtpap s (1 n pd )
AB,af Z AZ AAB + Upd) AAB + Upd

A< B

N Z 4t27r pdAtde <L + ;)2
A% AA + AAB) Ay Aup+ Uy

o AQB(AAB + AL +U) Ay Aup+ Uy

Ly Staetoualias ©6)
AZ (AAB—i-Upd) (Sd —Sd —|—Ud) ’

2212 12 52K, 1 1 \2
Jﬁxlz)a[? _ pdAlpaB=iip g (_ 4 _) (C.7)
’ (AA+AB+Up7r) Ay Ap




D. Orbital weight of valence bands in SroCuQO,Cl, 145

D Orbital weight of valence bands in Sr,CuO,Cl,

r
Nr. E/eV Pz Po joy ds,2_,2  dy). day dmz,yz Os Cus, >l not. M; My
1 -1.64 0 0 0 0 0 0 903 .097 0 0 dI2,y2 A S
2 2.28 0 0 0 817 0 0 0 015 .005 .163 dgo 2 S S
3,4 -2.34 0 456 .530 0 0 0 0 0 0 014 (p=ps) A S
(P=Ps) S A
5 -2.72 0 0 0 0 0 1.00 0 0 0 0 dzy S A
6,7 -2.96 0 0 0 0 .984 0 0 0 0 .016 d(x,y); o] o
89  -3.46  1.00 0 0 0 0 = o o
(-3.19)  (.526) (.474)

10,11 -5.14 0 1495 .495 0 0 0 0 0 0 .010 (Popr) A S

(PoPr) S

(7, )

Nr. E/eV  p.  ps  pr dg2 2 deyy. dey  dp22 Cus Og  3CI not. M |
1 232 0 554 0 0 0 0 446 0o 0 0 (dp2_,2p0) A
2 -1.33 0 0 .196 .006 0 792 0 0 0 .006 (deyDr) S

3,4 -1.58 .563 0 0 0 437 0 0 0 0 0 (d(z,y)zpz) o
5 -1.87 0 .038 0 637 0 .009 0 055 0 261 (d3,2_,2Ps) S
6 -2.12 0 0 1.00 0 0 0 0 0 0 Pr A

7,8 -4.56 .641 0 0 0 .268 0 0 0 .091 (pzd(z,y)z) o
9 521 0 424 0 0 0 0 576 0 0 0 (ped,z_,2) A
10 -6.15 0 .003 .702 .001 0 291 0 0 0 .003 (Prday) S
11 -7.23 0 1495 0 .018 0 0 0 294 0 193 (Pods,2_,2) S

(7,0)

Nr. E/eV Pz Po Pr d3z2—r2 dy; des dzy dxz_yz Cug O ECI not. Ms
1 -.40 0 128 0 .015 0 0 .599 105 105 .049 (dmz_yng) S
2 -1.42 0 0 .335 0 0 .665 0 0 0 0 (deyDr) A
3 -1.63 .395 0 0 0 0 601 0 0 0 0 .004 (de2pz) o]
4 212 0  .002 .00l  .655 0 0 0 096 007 019 220 (dg,2_,2d,2_,2) S
5 -2.87 0 0 0 0 .880 0 0 0 0 0 120 dy- o)
6 -3.29 594 0 0 0 019 0 0 0 0 .387 Pz o)
7 3.58 0 532 0 0 0 0 0 0 0 468 Po A
8 -3.96 0 0 .935 0 0 0 0 0 0 .046 .019 Pr S
9 -4.13 .403 0 0 0 0 270 0 0 0 0 327 (p2daz) o)
10 -4.62 0 057 475 0 0 0 .348 0 0 0 120 (Prdzy) A
11 -5.74 0 268 .004 .079 0 0 0 149 .032  .009 459 (pgdxz_yz) S

Table 6.1: LDA data of SryCuO,Cly at high-symmetry points showing the weights of the
different orbital groups contributing to each band. Also given are the different reflection sym-
metries with respect to M; and My (see Fig. 5.9, respectively (antisymmetric (A), symmetric
(S) and out-of-plane bands (0)).
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r
Nr E/eV Pz Po Pr ds,2_,2 dy: dzz dey sz—yQ Os Cus, Sl not. M; M2
1 -.30 0 0 0 0 0 0 0 909 .091 0 0 d12_u2 A S
23 -2.69 0 439 .543 0 0 0 0 0 0 0 018  (PspPos) S A
(prps) A S
45  -3.83  1.00 0 0 0 0 0 0 0 0 0 0 p- o o
(-3.69)  (.567) (.433)
6 -4.58 0 0 640 0 0 0 0 031 0 329 dyz .2 S S
7* -4.92 0 0 0 0 0 0 893 .107 0 0 diQ_u2 A S
7 -5.40 0 0 0 0 0 1.00 0 0 0 0 day s A
89  -5.57 0 499 463 0 0 0 0 0 0 038  (PePr) S A
(prps) A S
10,11  -5.88 0 0 0 0 803 (.803) 0 0 0 0 197 dy(. o o
(m, )
Nr. E/eV Pz Po Pr d3z2—r2 dy; des dmy dxz_y2 Os Cug ECI not. M1
1 3.12 0 467 0 0 0 0 0 533 0 0 0 (s ops) A
1 65 0 704 0 0 0 0 0 296 0 0 0 (podizﬂlz) A
2 -2.43 0 0 1.00 0 0 0 0 0 0 0 0 P A
34 298 711 0 0 0 143 143 0 0 0 0 .002 (P=da(y)2) o
(-2.97) (.006)
-3.35 0 009 345 .030 564 0 0 .004 .048 (Prday) S
-3.66 0 096 .020 356 .053 0 0 .051 .424 (ds,2_,2Ps) S
7 -4.94 0 561 0 0 0 439 0 0 0 (podly_ 2) A
89  -6.62  .155 0 0 0 341 341 0 0 0 0 123 (dz(y)=P=) o
(-6.06)  (.093) (.275)  (.275) (.357)
10 -7.20 0 003 .392 .010 0 0 591 0 0 0 .004 (deyDr) S
10 -7.28 0 207 0 0 0 0 0 793 0 0 diQ_UQpU A
11 -7.86 0 A78 .001 073 0 0 0 0 0 280 .168  (Podz2_,2) S
(7r,0)
Nr. E/eV  p.  po  pr  dg2,e de: dy:  day dpe_,2 Os Cug 3CI not. M; |
1 AT 0 .053 0 0 0 0 0 696 124 106 021 (dl,_ ,ps) S
1* 240 0 273 0 .039 0 0 0 323 .083 .119 .163 (padiQ_y2) S
2 29 0 0 .659 0 0 0 341 0 0 0 0 (Prday) A
3 296 .704 0 0 0 245 0 0 0 0 0 .051 (p2dez) o
4 =376 0  .086 .003 344 0 0 0 057 006 .017 .487 (ds.»_,2ps) S
5 =379 705 0 0 0 013 0 0 0 0 0 .282 p- o
6 -4.11 635 0 0 0 0 0 0 0 .365 Po A
7 -4.32 0  .933 .001 0 0 0 049 0 017 P S
8  -5.93 0 0 859 0 0 0 .141 dy. o
9 -6.17 199 0 0 .801 0 0 0 (deyDr) A
10 -6.37  .128 0 384 0 0 0 0  .488 (dezp=) o
11 -644 0  .390 .409 0 0 0 104 035 062 0  (pods,2 ,2) S
11 -749 0 298 0 .060 0 0 0 520 .004 076  .042 (dizﬂlzpa) S

Table 6.2: The LDA+U data of SroCuO,Cl; at the high-symmetry points. The bands noted
by a star correspond to majority spin (), whereas all the other data are given for minority
spin (1). The column ”not.” gives the notation used in Section 5.3.3 to describe the bands.
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(a) T
orbitals repr. M, M,
Pos P B ()] 0] 0
Pr, P B ()] 0] 0
P +0D)/V2 A )]+ |+
0 —p/NV2 [ Bu )| -]+
g2y By, (3") — +
dzy By,  (47) + -
)z E, (G| 0 0
d32_p2 Ay (11) + +

(b) (m, )
orbitals repr. M;
d3.2—12, Do Ay, (1Y) +
Px Ay (27) -
di2—y2, Po By, (37) -
Ay, Pr By, (47) +
Aoy 127 B, (5%) 0

(c) (m,0)
orbitals repr. M,
Ay Ao 2 ps | Ay (1) T
Ay, Pr By, (27) -
Do By, (37) —
Px B3, (47) +
ez, pgl) By, (3+) +
¥ B, (27) +
dyz B3g (4+) +

Table 6.3: Assignment of the orbitals to irreducible representations of the
corresponding small groups at high-symmetry points: a) I (group Dyy), b)
(m, ) (Dyp) and ¢) (m,0) (Dsgy). The notations in parentheses are according
to LUEHRMANN [181] (see also Ref. [152]). Also given are the characters
with respect to reflections at M; or Ms, respectively, whereby + and -
correspond to the S and A given in Table 6.1. The orbital pgl) means p,

orbitals at positions ¢ + x/2, and pg) at positions i + y/2.
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