
Safe Template Processing
of XML Documents

DissertaƟon

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät InformaƟk

eingereicht von

Dipl.-Inform. Falk Hartmann
geboren am 2. April 1973 in Freital

Betreuender Hochschullehrer:
Prof. Dr. rer. nat. habil. Uwe Aßmann, TU Dresden

Gutachter:
Prof. Dr. rer. nat. habil. Uwe Aßmann, TU Dresden

Prof. Dr. Welf Löwe, Linnaeus University

Tag der Verteidigung: 1. Juli 2011

Dresden, im September 2011

Contents

1. Preface 7
1.1. Overview . 8
1.2. Problems . 9
1.3. MoƟvaƟng Example . 10
1.4. Goals . 13
1.5. ContribuƟons . 14
1.6. Related Work . 16
1.7. Typographic ConvenƟons . 16
1.8. Outline . 17

2. IntroducƟon 19
2.1. DefiniƟons . 19

2.1.1. Templates and Related Terms . 20
2.1.2. Life Cycle Phases . 24
2.1.3. The Extensible Markup Language XML 25
2.1.4. XML Schema Languages . 27

2.2. ApplicaƟons . 30
2.2.1. Web ApplicaƟons . 30
2.2.2. Code GeneraƟon . 30

2.3. AlternaƟves to Using Templates . 31
2.3.1. TransformaƟons . 31
2.3.2. Aspect-Oriented Approaches . 32
2.3.3. Unparsers . 33
2.3.4. Comparison of Templates with AlternaƟve Technologies 34

2.4. Related Research Areas . 35
2.4.1. Macro Processing . 35
2.4.2. Templates as Programming Language Feature 35
2.4.3. Invasive SoŌware ComposiƟon . 36
2.4.4. Frame Processing . 37

2.5. ClassificaƟon . 38
2.5.1. Target Language Awareness of Slot Markup 39
2.5.2. Generality of the Slot Markup . 40
2.5.3. Entanglement Index . 40

3

Contents

2.5.4. InstanƟaƟon Data Access Strategy . 42
2.5.5. Query Language . 43
2.5.6. InstanƟaƟon Technique . 44
2.5.7. Reuse in Templates . 44
2.5.8. Further Features . 45

2.6. Conclusion . 46

3. Safe Template Processing 49
3.1. Goals . 49

3.1.1. Safe Authoring . 50
3.1.2. Safe InstanƟaƟon . 50
3.1.3. SeparaƟon of Concerns . 51
3.1.4. Broad Applicability . 53
3.1.5. UƟlizaƟon of ExisƟng Standards . 53

3.2. Requirements . 54
3.2.1. PreservaƟon of Target Language Constraints 54
3.2.2. Coverage of Target Language . 55
3.2.3. Computability . 55
3.2.4. Expressiveness . 56
3.2.5. InstanƟaƟon Data Type Safety . 56
3.2.6. Independence of Query Language . 57

3.3. Proposal of an Architecture fulfilling the Requirements 57
3.4. Conclusion . 60

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language 61
4.1. General Design Decisions . 62
4.2. CreaƟon of Character Data . 65

4.2.1. xtl:text . 66
4.2.2. xtl:attribute . 67
4.2.3. xtl:include . 69

4.3. CondiƟonal and Repeated Inclusion of Template Fragments 71
4.3.1. xtl:if . 71
4.3.2. xtl:for-each . 73

4.4. Reuse of Template Fragments . 76
4.4.1. xtl:macro . 76
4.4.2. xtl:call-macro . 77

4.5. Advanced Features . 78
4.5.1. Accessing mulƟple InstanƟaƟon Data Sources using Realms 78
4.5.2. InstanƟaƟon Pipelines using Bypassing 80

4.6. DefiniƟon of the InstanƟaƟon SemanƟcs using XSL-T 83
4.7. RelaƟon to Document ValidaƟon . 84
4.8. Conclusion . 86

5. Safe Authoring of Templates 87

4

Contents

5.1. Constraint SeparaƟon . 87
5.1.1. Introductory Example . 89
5.1.2. The Constraint XML Schema Language CXSD 94
5.1.3. The InstanƟaƟon Data Constraint Language IDC 98
5.1.4. Constraint SeparaƟon Process . 99
5.1.5. Proof of the PreservaƟon of the Target Language Constraints 103

5.1.5.1. Completeness of the Set of Required AƩributes 104
5.1.5.2. Compliance to the Content Model 105

5.1.6. Visitor-based ImplementaƟon of the Constraint SeparaƟon 107
5.1.7. ParƟal TemplaƟzaƟon . 116

5.2. Template ValidaƟon . 117
5.3. Conclusion . 121

6. Flexible, Efficient and Safe Template InstanƟaƟon 123
6.1. InstanƟaƟon Data EvaluaƟon . 123

6.1.1. Design of the PHP Interface . 124
6.1.2. The IdenƟty PHP . 126
6.1.3. The JXPath PHP . 127
6.1.4. The SPARQL PHP . 127
6.1.5. The System PHP . 128

6.2. Template InstanƟaƟon . 129
6.2.1. XML Access Technologies . 129
6.2.2. OperaƟonal Model of the XTL Engine 130
6.2.3. Pipeline ImplementaƟon of the XTL Engine 136
6.2.4. Memory and RunƟme Complexity . 150

6.3. InstanƟaƟon Data ValidaƟon . 150
6.3.1. The IDC PHP . 151
6.3.2. Template Interface GeneraƟon . 152

6.3.2.1. Introductory Example . 153
6.3.2.2. An Algorithm for the Template Interface GeneraƟon 155
6.3.2.3. ImplementaƟon using a PHP and an API-based Generator . . 160

6.4. Conclusion . 163

7. ValidaƟon 165
7.1. ImplementaƟon of the Prototype . 165

7.1.1. The Constraint SeparaƟon Tool xtlsc 167
7.1.2. The Template ValidaƟon Tool cxsdvalidate 167
7.1.3. The Template InstanƟaƟon Tool xtlinstantiate 168
7.1.4. The Template Interface GeneraƟon Tool xtltc 169

7.2. Test Suites . 170
7.2.1. Constraint SeparaƟon Test Suite . 170
7.2.2. Template ValidaƟon Test Suite . 170
7.2.3. Template InstanƟaƟon Test Suite . 171
7.2.4. Template Interface GeneraƟon Test Suite 172

5

Contents

7.2.5. Round-trip Test Suite . 174
7.3. ApplicaƟons of the Prototype . 175

7.3.1. SNOW: Use of XTL in a Staged Architecture 175
7.3.2. EMODE: Use of XTL for Model-to-Text TransformaƟons 179
7.3.3. FeasiPLe: Use of XTL for Code GeneraƟon from Ontologies 179

7.4. Proof of the PreservaƟon of the Target Language Constraints 180
7.5. RunƟme and Memory Usage Measurements 180

7.5.1. RunƟme Measurement of ValidaƟon against a CXSD Schema 181
7.5.2. RunƟme Measurements of the Template InstanƟaƟon 182
7.5.3. Memory Usage Measurements of the Template InstanƟaƟon 184

7.6. Conclusion . 187

8. Summary, Conclusion, and Outlook 189
8.1. Summary . 189
8.2. Conclusion . 190
8.3. Suggested Improvements for XML Technologies 191
8.4. Future Research DirecƟons . 192

A. Referenced XML Schemata and Instances 193
A.1. XML Schema of XTL . 193
A.2. Purchase Order Schema . 201
A.3. Purchase Order Instance . 202

B. Detailed Results of the RunƟme and Memory Measurements 205

List of Acronyms 211

List of Figures 216

List of LisƟngs 219

List of Tables 221

Bibliography 237

Index 239

6

1
Preface

But, how did the first template appear?

InternaƟonal Encyclopedia of Systems and CyberneƟcs, 1997 [69]

Almost two decades aŌer the introducƟon of the World Wide Web by Tim Berners-Lee in
1989, the automaƟc generaƟon ofWeb pages fromdynamic data is sƟll suffering the same prob-
lem as in the beginning: How can one be sure that the applicaƟon produces valid HTML code?
There have been several approaches to this problem, among them approaches that successfully
solved the problem, thereby unfortunately violaƟng other well-established design rules, like the
SeparaƟon of Concerns principle. The consequences of this violaƟon can hardly be managed in
large applicaƟons developed in a cooperaƟon of many parƟcipants assigned to mulƟple roles in
the development process: therefore, the problem can sƟll be considered unsolved in its gener-
ality.
The goal of this thesis has been to propose a soluƟon that enables Safe Template Processing,

i.e., a template technique that allows to be sure about the results a Web applicaƟon produces.
In addiƟon, it was required that the soluƟon complies to the menƟoned design rules like the
SeparaƟon of Concerns principle. The soluƟon should furthermore be broadly applicable, i.e.,
it should not be restricted to the generaƟon of Web pages. Finally, the approach should uƟlize
exisƟng standards and it should be a pracƟcal soluƟon, i.e., acceptable to a non-academic user.
This thesis presents an approach that fulfills the described goals by extending a template-

basedmechanism (as it is well-known toWeb engineers) with a validaƟon technique that allows
to give guarantees about the results the template is going to produce. Since these guarantees
are given at the Ɵme the template is being authored, certain assumpƟons about the data that

7

1. Preface

is consumed within the template must be made. AddiƟonal techniques have been developed
to check these assumpƟons.
This chapter starts with an overview of the research area in SecƟon 1.1, including insights into

its history. AŌerwards, the problem addressed within this thesis is explained in more detail in
SecƟon 1.2. SecƟon 1.3 illustrates the problemwith a moƟvaƟng example, whereas SecƟon 1.4
outlines goals derived from the described problems. The contribuƟons developed within this
thesis are outlined in SecƟon 1.5. Related research areas are introduced in SecƟon 1.6. The
chapter concludes with typographic convenƟons in SecƟon 1.7 and the outline in SecƟon 1.8.

1.1. Overview

It is widely accepted that Edsger W. Dijkstra introduced the term SeparaƟon of Concerns (SoC)
in his groundbreaking arƟcle “On the role of scienƟfic thought” [48]. It was pleading for a way
of thinking about an aspect of a problem without considering other, related aspects. The idea
has been adopted in the discipline of soŌware engineering in various ways, e.g., as a maxim
during system analysis or as a guideline for architectural design.
Parallel to Dijkstra, the SoC principle has been suggested by William W. Tunnicliffe as a prin-

ciple to be used for applicaƟons in the publishing sector. Tunnicliffe held a presentaƟon about
the separaƟon of informaƟon content of documents from their format at the Canadian Govern-
ment PrinƟng Office in September 1967 [76, Appendix A]. This presentaƟon and the idea of SoC
greatly influenced the development of the Standard GeneralizedMarkup Language (SGML) and
its successor, the Extensible Markup Language (XML).
There exist a number of techniques to separate aspects of a system, and with them, at least

the same number of techniques to perform a necessary composiƟon of the aspects. With re-
spect to soŌware, aspects typically separated from the core logic of a program include for ex-
ample funcƟonality for monitoring, transacƟon handling and security, but also constant data
needed for program execuƟon, if the data volume exceeds the amount comfortably manage-
able in the respecƟve programming language.
A very popular technique to integrate data that has been divided due to the SoC principle is

the template technology. From an unsophisƟcated point of view, a template is just an incom-
plete textual representaƟon of data. Template engines have been used for a variety of purposes,
especially in the areas of code generaƟon and Web engineering.
There are three reasons for the widespread use of templates: (a) the learning effort for a

parƟcular template language is low, as templates closely resemble the syntax of the language
that should be generated with them, (b) it is easy to keep arbitrary complex constant fragments
of the document to be generated in the template itself, and (c) the possibility to adhere to the
SeparaƟon of Concerns principle.
The amount of research conducted on template techniques does not reflect its importance

andwidespreaduse. Research on this area is nevertheless urgently needed, as template engines
are very popular and, as it will be shown shortly, sƟll suffer from the same problems as when
they were introduced, especially with the lack of guarantees that can be given about the result
of the instanƟaƟon of a template. The need for research is also indicated by the large number
of exisƟng template engines: at the Ɵme of wriƟng, [96] alone listed 17 open-source, Java-

8

1.2. Problems

implemented engines. Some of them differ only in minor details and reflect the users’ tendency
to be picky about the parƟcular syntax used, while others introduce novel concepts and designs.

InvesƟgaƟons on this area start with the quesƟon on the origins of the word template in
the sense as sketched above. In general, the term seems to be in use since the early days of
computer science, designaƟng for example “…a plasƟc or sƟff paper form that is placed over
the funcƟon keys on a keyboard to idenƟfy their use…” [71]. Nowadays, the term is overloaded
mulƟple Ɵmes, primarily for the generic programming feature of C++ [174].

It seems to be impossible to track down who used the term template first to denote the
technique described here, but the use of it was straighƞorward as the term had been in use in a
very similar way in the area of electronic form processing, with forms also being a reincarnaƟon
of the SoC principle by drawing a border between the preprinted content of a form and the slots
to be filled.

Most probably the first implementaƟon of templates in the sense used here was the frame
processing approach described by Paul BasseƩ in his landmark paper “Frame-Based SoŌware
Engineering” [17, also appeared in 46]. The term frame used by BasseƩ goes back to the con-
ceptual frames introduced by Marvin Minsky [129]. It remains inscrutable who rebranded or
reinvented BasseƩ’s idea to the term template most widely used today.

It is possible to find even earlier related approaches. The λ-calculus introduced by Alonzo
Church [35] can be seen as an early predecessor of template techniques, as in the term λx.x+y
the bound variable x is interpretable as represenƟng data coming from a data source different
from the source supplying the free variable y.

1.2. Problems

Awell-known pracƟcal problemwith the use of an arbitrary template technique is the possibility
to violate the SoC principle. With respect to Web engineering, this corresponds to the archi-
tectural failure of not disƟnguishing clearly between view and controller (and someƟmes even
model) in an implementaƟon of the Model-View-Controller (MVC) paƩern [154]. The problem
has been pointed out clearly in Terence Parr’s remarkable paper “Enforcing strict model-view
separaƟon in template engines” [143].

A second problem can best be illustrated in the Java Server Pages (JSP) technology, a popular
approach to building Web frontends in the Java technological space. It is shown in SecƟon 2.1,
that JSP documents are in fact templates. JSP users are oŌen confronted with the difficulty of
assuring the correctness of the results of the template instanƟaƟon. In the JSP world, one oŌen
ends upwith a template that does not produce valid the Extensible HypertextMarkup Language
(XHTML) output (at least not in all cases) or with a page that cannot be compiled by the JSP
engine at all. Even with the tool support that became available in the last years, it is sƟll easy to
create such erroneous templates.

Three major categories of JSP documents producing invalid XHTML exist:

1. The page may not even produce valid XML, i.e., it may violate the requirements for well-
formedness. (violaƟon of wellformedness)

9

1. Preface

2. The page produces wellformed XML, but is failing to fulfill the structural constraints that
are defined by the XHTML specificaƟon, irrespecƟve of any data to be inserted into the
template. (violaƟon of structural constraints)

3. A template can produce invalid XHTML because of unsaƟsfied constraints on the data that
should be inserted into it during the instanƟaƟon. (violaƟon of data constraints)

Each of the three categories have different reasons and, more important, different techniques
are applicable to deal with them. AlternaƟve technologies like StringTemplate (ST) and XSL
TransformaƟons (XSL-T) address some of these issues, e.g., the first menƟoned problem does
not occur when using XSL-T.
Especially problems of the second and third category typically produce error messages that

only state the invalidity of the document with respect to the expected target language. Unfor-
tunately, the real cause of the problem, i.e., the informaƟon about the instanƟaƟon data value
and its source, are missing in the error message. The loss of this informaƟon unnecessarily
complicates tracing back the error.
Most of the exisƟng alternaƟve technologies are not easy to use. Template techniques are per

se easy to use; however, this advantage is someƟmes eliminated by rashly added or too many
features. An example for such an impediment that severely violates the ease of use idea is the
error handling exposed by JSP if an error from the third category menƟoned above occurs: the
data inserted during the execuƟon of a JSP document is not checked by the typical JSP engine,
resulƟng in XHTML errors that are shown in the users browser.

1.3. MoƟvaƟng Example

Today’s Web applicaƟons oŌen make use of a MVC architecture that is similar to that shown in
Figure 1.1: the model is represented by a database, the controller is implemented using some
middleware like a servlet container and the view is shown to the user in form of XHTML pages
in a browser.

Figure 1.1.: A typical Web ApplicaƟon can produce both valid and invalid XHTML Documents

10

1.3. MoƟvaƟng Example

In the Javaworld, the servlet container typically used asmiddleware delivers the XHTMLpages
by using so-called Java Server Pages (JSP, [176]). The JSP documents are translated to XHTML
in a mulƟ-step process involving compiling them to Java classes and finally to Java class files. It
is the execuƟon of these class files that integrates the model data into the page finally emiƩed
by the component that processes the JSP documents, the JSP engine.
As shown in Figure 1.1, there is a typical problem in the outlined scenario. The definiƟon of

the JSP language is quite imprecise, it is therefore not possible to check JSP documents in a way
that guarantees that the instanƟaƟon of a JSP page yields a page conforming to the XHTML (or
any other) standard. This enforces the development process that is shown in Figure 1.2.

Figure 1.2.: The current Development Process for Templates

All of the three problems with template technologies introduced above, i.e., violaƟon of well-
formedness, violaƟon of structural constraints as well as violaƟon of data constraints, can be
illustrated with this scenario.
An example for a JSP document causing a violaƟon of wellformedness, i.e., not producing

wellformedXML, is shown in LisƟng 1.1. The document yields a page containing a closing</h1>
tag without a preceding opening <h1> tag. The problem is caused by the different condiƟons
used for the inclusion of the opening and the closing tag. The main cause, however, is that JSP
allows interweaving the XML syntax with its own special markup. Several approaches to the
problem are possible, e.g., the use of model checkers [66] or control- and data-flow analysis.
InteresƟngly, the problemmaybe completely solved by a language design preserving syntax and
semanƟcs. An example for a language which guarantees wellformedness is the XML Template
Language (XTL) introduced in Chapter 4.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<%!

public boolean test1()
{

return false;
}

public boolean test2()
{

11

1. Preface

return true;
}

%>
<head>

<title>JSP not producing wellformed XHTML</title>
</head>
<body>

<% if (test1()) { %><h1><% } %>
Content
<% if (test2()) { %></h1><% } %>

</body>
</html>

LisƟng 1.1: A JSP Document failing to produce wellformed XHTML Documents

An example for a violaƟon of a structural constraint is shown in LisƟng 1.2. This example
produces wellformed XML but fails to fulfill the requirements set by the XHTML specificaƟon.
The body tag, which is required within the html tag, is included only condiƟonally, i.e., the
document is obviously capable of producing documents not complying to the XHTML specifica-
Ɵon. The best soluƟon for this type of problem is to disallow required elements to be subject
to condiƟonal inclusion in some way. This can be achieved by the newly developed upfront ver-
ificaƟon approach, which allows the verificaƟon of structural constraints during the authoring
of a template. This approach is based on a technique called separaƟon of constraints, which
aims at deriving tests that can be applied to templates (like ‘body is not allowed to be subject
to condiƟonal inclusion’) and which is described in SecƟon 5.1.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<%!

public boolean test()
{

return false;
}

%>
<head>

<title>JSP producing invalid content (1)</title>
</head>
<% if (test()) { %>
<body>Content</body>
<% } %>

</html>
LisƟng 1.2: A JSP Document producing a Document that is not XHTML (1)

Finally, a violaƟon of data constraints is illustrated in LisƟng 1.3. The problem is caused by
character data not complying to a prescribed type . The lisƟng produces an anchor (<a> tag)
with a name aƩribute with a corresponding value ‘not an NMTOKEN’. This aƩribute is re-
stricted by the XHTML specificaƟon to be of the type NMTOKEN, which is not allowed to contain
spaces. Thus, the document produced by the JSP file is not valid XHTML. In general, this cat-
egory of errors is in general impossible to be handled when the template is authored, as the
value subject to the typing is instanƟaƟon data, which is per definiƟonem only known later at

12

1.4. Goals

the point in Ɵme when the template is instanƟated. Nevertheless, two improvements over the
current state of the art are possible.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<%!

public String getName()
{

return ”not an NMTOKEN”;
}

%>
<head>

<title>JSP producing invalid content (2)</title>
</head>
<body>

<a name=”<%= getName() %>”/>
</body>

</html>
LisƟng 1.3: A JSP document producing a Document that is not XHTML (2)

First, the handling of errors can be substanƟally improved compared towhat is currently usual
in techniques like JSP by checking constraints imposed on the instanƟaƟon data within the tem-
plate engine. This allows for generaƟng error messages of much greater value. For instance,
in the menƟoned case, the error message could state that the instanƟaƟon data to be used as
value for the name aƩribute of the a element does not comply to the expected type NMTO-
KEN, and it could include the source of that instanƟaƟon data value. Current engines do not
perform a check at all, which may lead to an error in the user’s browser that can in the best
case state that the value is not of the expected type NMTOKEN. Unfortunately, this error would
in most cases not be recorded in the server environment, which could increase the lifeƟme of
that error considerably. An approach called InstanƟaƟon Data ValidaƟon, which improves the
error handling, is described in SecƟon 5.1 as well as in SecƟon 6.3.
Second, if the template is fixed at instanƟaƟon Ɵme, i.e., can only be changed at build Ɵme

of the system employing it, the type system of the language using the template engine may be
used to assert the validity of the instanƟaƟon data. This approach called Template Interface
GeneraƟon is described in SecƟon 6.3.2. It relies on well-known XML binding approaches like
Java Architecture for XML Binding (JAXB) and XMλ, which have not been coupled with template
techniques before.

1.4. Goals

The goal of this thesis is to develop a safe template processing approach that is easy to use and
enables the user to be as safe as possible about the results produced by a parƟcular template.
More precisely, a list of five goals has been specified and is described in the following.
The first goal is to come up with a safe authoring approach. The approach should give a tem-

plate author as much confidence about the result of the instanƟaƟon of a parƟcular template
as early as possible.

13

1. Preface

There are assumpƟons thatmust bemade during the template authoring, as the validity of an
instanƟated templatemay depend on instanƟaƟon data which is by definiƟon not available dur-
ing authoring. Therefore, the second goal is to design a safe instanƟaƟon process that preserves
the semanƟc informaƟon about the real cause of the invalidity of the instanƟated template.
As alreadymenƟoned, template techniques are oŌen used in order to separate concerns, but

some of the exisƟng approaches offer methods to overcome the separaƟon in order to seem-
ingly ease the use of the technique. For the approach to be developed, this is not acceptable.
Therefore, the third goal is to maintain the separaƟon of concerns in template processing, as
this separaƟon has proven to be a powerful concept to reduce the complexity of modern soŌ-
ware architectures and to enable cooperaƟon of different roles in the soŌware development
process.
The fourth goal is broad applicability. The approach should not be restricted to a parƟcular

applicaƟon domain like Web engineering, but should also be usable for code generaƟon. This
implies that the approach should not be restricted to a parƟcular XML dialect like XHTML.
Finally, the fiŌh goal is to maximize the uƟlizaƟon of exisƟng standards for the approach. This

has two major aspects: first, the techniques developed should either rely on exisƟng standards
or extend them, and second, an implementaƟon of the core components should rely on avail-
able tools for these standards.
The first two goals address the problems introduced in SecƟon 1.2, both goals together form

the base for safe template processing. The last three goals further restrict the possible ap-
proaches in a way that enables an implementaƟon and the pracƟcal use of the developed ap-
proach.

1.5. ContribuƟons

First of all, an in-depth analysis of exisƟng template approaches has been accomplished. This
has led to a number of insights about template techniques that are not explicitly stated in
today’s literature. A new definiƟon of the term template has been developed, which clearly
separates templates from related approaches (transformaƟon techniques, unparsers, aspect-
oriented programming). A number of classificaƟon criteria has been found that have been used
to evaluate exisƟng approaches and to disƟnguish valuable features from quesƟonable contri-
buƟons.
In order to assert wellformedness of the result documents, a new universal, syntax- and

semanƟcs-preserving template language called XTL has been developed. XTL abandons the
wide-spread use of a specific syntax for the markup of the template syntax and relies on the
XML namespace [29] concept instead, thereby preserving the syntax and the semanƟcs of the
language it is used to instanƟate. XTL is a universal language in the sense that it allows any XML
dialect to be marked up as a template, it is not specific to a parƟcular XML dialect like XHTML.
In addiƟon to the guarantee on the wellformedness, the developed upfront verificaƟon ap-

proach allows guarantees about the compliance of a resulƟng document with a given XML
Schema. This reduces the risk of undetected errors enormously and enables a new develop-
ment process for templates, especially in the field of Web applicaƟon development.

14

1.5. ContribuƟons

The InstanƟaƟonDataValidaƟon has been developed to enable safe instanƟaƟon by simplify-
ing the detecƟon of the root causes for instanƟaƟon problems. Furthermore, even more guar-
antees about the instanƟaƟon of templates can be given if the template can only be changed
at the build Ɵme of a system, i.e., if it can be considered part of the source code of the project
using it. In this case, a derivaƟve of the unparser approach called Template Interface GeneraƟon
can be used to staƟcally guarantee the correct types of the instanƟaƟon data.
The design criteria applied to XTL and the decisions made during its development are ex-

plained in detail. A semanƟcs of XTL has been specified that avoids typical ambiguiƟes which
can be found in other template language specificaƟons. This semanƟcs also enables a formal
proof of the correctness of the upfront verificaƟon approach. The ease of use of XTL is greatly
improved by the fact that it does not prescribe a parƟcular language used to describe the data to
be inserted into a template, instead, any exisƟng language like the XML Path Language (XPath)
or the SPARQL Protocol and RDF Query Language (SPARQL) as well as simple names may be
used.
No new approach should fall back behind the work of Terrence Parr [143] and the principles

for SoC stated there. Among other contribuƟons, Parr classifies the violaƟons against SoC rules
and introduces the entanglement index of a template technique as the number of rules violated
by it. It turns out that improvements over Parr’s achievements are possible. In contradicƟon to
Parr’s statement that each engine has at least an entanglement index of one, it is also possible
to get an entanglement index of zero using a new technique called parƟal templaƟzaƟon.
A prototype for an XTL engine has been developed, supported by the EU project Services for

Nomadic Workers (SNOW) and the BMBF project Enabling Model TransformaƟon-Based Cost
Efficient AdapƟve MulƟmodal User Interfaces (EMODE). These projects have also been used to
validate the pracƟcal usability of XTL. This validaƟon clearly indicated that the reason for the
ease of use of template languages is the fact that templates closely resemble the documents
they are intended to be instanƟated to. This resemblance, which also influenced the definiƟon
of the term template given in SecƟon 2.1, is called the prototypical nature of templates. The ex-
tensive absence of a prototypical nature also hinders the wide-spread applicaƟon of XSL-T even
though the XSL-T specificaƟon [107] knows a prototypical mode called Simplified Stylesheet
Module (SSM).
Due to the fact that the prototypical nature of template languages restricts their generaƟve

power (e.g., a purely prototypical XML template language is restricted to produce documents
with a depth being a constantmulƟple of the depth of the template), the introducƟonof amacro
feature became inevitable. The power regained by this feature is lowering the ease of use of
the XTL but this is compensated by the shallow learning curve that results from the prototypical
approach: users can start purely prototypical and start learning the macro feature when they
need it, switching to a transformaƟonal style as it is used in XSL-T.
A document marked up using the XTL can also be used to validate other XML documents.

In this case, XTL is interpreted as a schema language in the sense also used by XML Schema
DefiniƟon (XSD) [59; 180; 26]. Again, the prototypical nature of XTL eases the creaƟonof schema
documents. The relaƟonship between templates and schemas also shows a close connecƟon
between macros and schema types.
The major contribuƟons of this thesis are the design of the universal, syntax- and semanƟcs-

preserving slot markup language XTL, the safe template processing technique enabled by the

15

1. Preface

upfront verificaƟon approach and the techniques for the safe instanƟaƟon, namely instanƟaƟon
data validaƟon and template interface generaƟon, and the unificaƟon of document creaƟon and
validaƟon that could be achived using XTL.

1.6. Related Work

Even for the seemingly simple problem of construcƟng documents from mulƟple data sources,
there is a variety of approaches. The most important and modern approaches will be described
in short below.
Template engines are oŌen used in Web engineering and for code generaƟon. JSP [176] is

the most-widely known representaƟve in the Java technological space used in Web applica-
Ɵons. One of the most advanced and scienƟfically backed-up template engines used for code
generaƟon as well as Web engineering is definitely ST [143].
An alternaƟve approach is the use of a transformaƟon engine. This approach is in wide use

especially within the area of Web Content Management Systems (CMS). The difference to the
template technique is rather subtle, but can be summarized best by describing the transfor-
maƟon approach as a more construcƟve approach: it composes the data sources by a special-
ized transformaƟon, which has one of the data sources embedded, as opposed to the template
approach, where the composiƟon instrucƟons can be considered as embedded into one data
source. In the XML technological space, the most popular transformaƟon language is XSL-T,
which has been implemented using different languages.
The use of an unparser is a further opƟon in use for the composiƟon of data sources in Web

applicaƟons. The technique is based on a specific compilaƟon of one of the two data sources
into the language that is also used for the composiƟon program aŌerwards. As an example,
if one wants to compose XML documents using Java, a number of tools exist that allow the
creaƟon of XML documents using a Java API. The SoC principle is somehow soŌened here, but
could be restrengthened using standard design paƩerns [74]. Popular unparsers for XML files
in Java include XMLBeans [8] and JAXB [105].
Aspect-oriented Programming (AOP) is a paradigm used to separate concerns within soŌware

engineering arƟfacts into a so-called core and one ormore aspects. A component called aspect-
weaver is used to compose the core and the aspects. These aspects can be seen as different data
sources that need to be combined, which makes this approach related to template techniques,
especially in the area of code generaƟon. Awide-spread implementaƟon of the Aspect-oriented
Programming (AOP) approach is AspectJ.

1.7. Typographic ConvenƟons

All code lisƟngs shown have been shortened to improve readability even at the expense of syn-
tacƟc incorrectness. For example, in the XML lisƟngs, the prolog, the document type declaraƟon
as well as obvious namespace declaraƟons have been omiƩed, even if this could cause some
XML processing applicaƟons to emit error messages or warnings. The same is true for the pack-
age statement in Java lisƟngs.

16

1.8. Outline

In order to keep the text short and readable, fixed XML prefixes have been used throughout
the document to refer to certain XML namespace. An overview of these prefixes is shown in
Table 1.1.

Prefix
XML Dialect
Namespace URI

cxsd Constraint XSD CXSD (see SecƟon 5.1.2)
http://research.sap.com/cxsd/1.0

idc InstanƟaƟon Data Constraint Language IDC (see SecƟon 5.1.3)
http://research.sap.com/xtl/idc/1.0

s Namespace used for Result Spliƫng (see SecƟon 6.2.3)
http://research.sap.com/xtl/splitting

xhtml
or none

XHTML™1.1 [4]
http://www.w3.org/1999/xhtml

xsd XML Schema [59; 180; 26]
http://www.w3.org/2001/XMLSchema

xsl XSL TransformaƟons (XSL-T) [36]
http://www.w3.org/1999/XSL/Transform

xtl XTL (see Chapter 4)
http://research.sap.com/xtl/1.0

Table 1.1.: XML Namespaces and Prefixes

In the following, no assumpƟons are made about the encoding of XML documents, which
can be declared by the author of the document. As the definiƟon of strings depends on the
set of characters available to express them, the symbol S is used to denote the set of all strings
that can be composed from the available characters, independently of the concrete encoding
chosen.
A typewriter font has been used for in-line code snippets like ContentHandler, Uniform

Resource IdenƟfiers (URI) like http://www.w3.org/2000/xmlns/ and file names like
XTL.xsd.
In the index, the numbers of pages containing definiƟons are printed in bold.

1.8. Outline

Chapter 2 gives a definiƟon of the term template followed by the discussion of the two main
applicaƟon areas of templates and alternaƟve approaches. ClassificaƟon criteria for template
techniques are given. Finally, some ways to emulate complex features with simpler ones are
shown.

17

1. Preface

The safe template processing of XML documents is described in Chapter 3. AŌer a moƟvaƟng
example, the goals of the approach are discussed and requirements for the soluƟon are derived.
A soluƟon is proposed, and the building blocks of the soluƟon are discussed in detail.
The design of the generic slot markup language XTL is discussed in detail in Chapter 4. Its

instanƟaƟon semanƟcs and indicaƟons for the correctness of the upfront verificaƟon approach
are included in this chapter. An alternaƟve use case for a generic slot markup language, namely
the validaƟon of documents, is discussed.
Chapter 5 shows the support which the proposed soluƟon offers to a template author. It

explains how the template technique is adapted to a parƟcular usage scenario and how the up-
front verificaƟon approach helps the template author detect mistakes in templates earlier. The
chapter gives a proof of the correctness of the safe authoring approach. A further improvement,
a technique named parƟal templaƟzaƟon is sketched.
Chapter 6 shows how templates are instanƟated in an efficient, flexible and safe way. Here,

efficiency refers to the reasonable consumpƟon of memory and a fast execuƟon. Flexibility
refers to the implementaƟon of design decisions that enable the wide-spread use of the pro-
posed approach. Finally, safetymeans the realizaƟon of the adequate error handling introduced
as a goal of the proposed approach. A further possible improvement, the Template Interface
GeneraƟon, is introduced.
The work in this thesis has been validated as described in Chapter 7. This chapter discusses

the implementaƟon of the prototype, its applicaƟon in the EU project SNOWand other projects,
and shows the results of performance measurements.
In the final Chapter 8, conclusions are drawn and open research quesƟons resp. direcƟons

are given.

18

2
IntroducƟon

Why is the customer just buying from you? And it is interesƟng that we had a few
examples, for example, a company that is doing drilling machines, and if they sit back and
ask themselves, ”What does the customer really need? Does he need a drilling machine?”
Then the answer is no, he needs holes. The company is now switching to sell holes, which

is an enƟrely different business.
Henning Kagermann, 2006 [104]

This chapter aims at introducing the area of template techniques and at establishing the nec-
essary vocabulary and formal foundaƟons. Therefore, definiƟons of terms specific to this thesis
are given in SecƟon 2.1. SecƟon 2.2 shows typical applicaƟons of template techniques. The
SecƟons 2.3 and 2.4 introduce compeƟng and related approaches. Finally, SecƟon 2.5 sets up
criteria for the classificaƟon of template techniques.

2.1. DefiniƟons

DefiniƟons of the term template and related terms are given in SecƟon 2.1.1. SecƟon 2.1.2
discusses the life cycles of both template techniques and templates. SecƟon 2.1.3 introduces
the formalizaƟon of XML documents used within this thesis. Finally, SecƟon 2.1.4 gives a short
introducƟon into the area of XML schema languages and defines a formalizaƟon of XML Schema,
themost widespread XML schema language, which has been used thoroughly within this thesis.

19

2. IntroducƟon

2.1.1. Templates and Related Terms

Finding a definiƟon for the term template is a necessary precondiƟon for the separaƟon of tem-
plate techniques from other code generaƟon approaches. There are mulƟple ways to approach
the term: from an etymological point of view as in [189], in a syntacƟc way as done in [143] or
in a pragmaƟc sense as in [150] or [197].
In the following, a number of definiƟonswill be given (partly newly expressed and partly taken

from exisƟng research) and discussed in order to find a definiƟon that captures the noƟon of
templates as concise as necessary within this thesis. Most importantly, the definiƟon that is the
result of the process is well-aligned with an intuiƟve point of view on templates and separates
the template approach from related approaches that are not commonly considered as template
techniques. First of all, the language that should be generated using a template technique is
defined in DefiniƟon 2.1.

DefiniƟon 2.1 ((Expected) Target Language). The expected target language or just target lan-
guage is the language T that is intended to be produced using a template technique. �
The DefiniƟons 2.2 and 2.3, explaining the term template syntacƟcally or pragmaƟcally, are

the starƟng point for the elaboraƟon of concise definiƟons.

DefiniƟon 2.2 (Template, unsophisƟcated syntacƟc definiƟon). Every incomplete textual repre-
sentaƟon of data is a template. �
DefiniƟon 2.3 (Template, unsophisƟcated pragmaƟc definiƟon). A template is a means to com-
pose concerns, i.e., a tool to reverse the separaƟon of concerns. �
Both unsophisƟcated definiƟons cover a lot of approaches that would not be considered as

template techniques aŌer a more in-depth analysis. A good example is aspect-oriented pro-
gramming (AOP, [63]), where a core program is woven together with advices from so-called
aspects. For example, the unsophisƟcated DefiniƟon 2.2 would consider the core program as
the template that is incomplete and the advice as the data to be filled into the core. However,
the very nature of templates is their explicit incompleteness, i.e., the locaƟons where the data
is to be inserted in the templates are explicitly marked in the template itself. The following
definiƟon, which is an adapted version from [143], captures this aspect very well.

DefiniƟon 2.4 (Template according to [143]). An unrestricted template, t◦, is an alternaƟng list
of output literals, ti, and acƟon expressions, ei:

t0e0 . . . tieiti+1 . . . tnen
where any ti may be the empty string and ei is unrestricted computaƟonally and syntacƟcally.
If there are no ei in t◦, then t◦ is just a single literal t0. �
The last sentence in Parr’s definiƟon seems to try to emphasize another important property

of templates: a document in the language that the template technique is supposed to pro-
duce is also considered a template. This aspect is called the prototypical nature of templates.
Unfortunately, it is not really enforced by the definiƟon, so documents using transformaƟonal
approaches like an XSL-T stylesheet would fall under this definiƟon. Parr explicitly states that
XSL-T is not captured by his definiƟon:

InteresƟngly, by this definiƟon of template, XSL-T style sheets are not templates at
all because style sheets specify a set of XSL-T tree transformaƟons whose emer-

20

2.1. DefiniƟons

gent behavior is an XML or XHTML document. XSL-T style sheets are programs like
servlets, albeit declaraƟve in nature rather than imperaƟve. [143]

This raƟonale is based on the semanƟcs of XSL-T, but the definiƟon relies on syntacƟc prop-
erƟes that are well saƟsfied by XSL-T. For this reason, the next definiƟon explicitly expresses
the prototypical nature of templates, which clearly rules out XSL-T by defining templates via the
term template language. To accomplish this, the final DefiniƟon 2.5 roots the term template
on the term template language, shiŌing the responsibility to capture the prototypical nature to
the definiƟon of the laƩer term.

DefiniƟon 2.5 (Template, final). A template t◦ is a sentence from a template language T◦. �
Prerequisites for defining the term template language are furthermore the definiƟons of slots

and slot markup languages.

DefiniƟon 2.6 (Slot). A slot is an area of variability in a document. �
It is important to note that the term document has been used in DefiniƟon 2.6 to avoid cyclic

references between this definiƟon and the definiƟons using it. This way of defining slots has
the addiƟonal benefit of also capturing slots introduced in documents for other purposes, i.e.,
the definiƟon also matches the incompleteness in a form intended to be filled out by humans.
Based on DefiniƟon 2.6, it is possible to give the following definiƟon for a slot markup language.

DefiniƟon 2.7 (SlotMarkup Language). A slotmarkup languageS is a non-empty set of features
to denote slots within a document. �
This definiƟon explicitly states that the markup of slots appears within the document itself,

thereby excluding other methods for the designaƟon of slots like pointcut languages used in
AOP approaches [172]. This is also the moƟvaƟon for the term non-empty in the definiƟon: it
prevents AOP approaches frombeing captured by the following definiƟons through just defining
S = ∅. Elements from the slot markup language are also called instrucƟons in the following.
The locaƟons of slots and the locaƟons of slot markup language sentences in a template may

differ for several reasons. First, there may be imperaƟve constructs in the slot markup language
(like for loops) that mark their content as repeatable in an instanƟated document (and thus
define slots), but are not necessarily placed exactly at the locaƟon of a slot. Second, there may
be slot markup in which the locaƟon of the slot markup is by design different from the locaƟon
where the instanƟaƟon data should be inserted.
Given the definiƟon of slot markup languages, the following more elaborated definiƟon for

the term template language can be given.

DefiniƟon 2.8 (Template Language, elaborated). A template language is the language produced
from a target language and a slot markup language such that

1. each sentence from the target language is in the template language and
2. each sequence of literals from the target language interspersed with sentences from the

slot markup language is in the template language. �
Unfortunately, the former definiƟon captures only the syntacƟcal aspect of the prototypical

nature. In order to be concise, it is necessary to include the semanƟcs of the prototypical nature:
if a template that is actually a sentence from the target language is instanƟated, it remains
unchanged. In order to fix this problemof the definiƟon, it is necessary to give a definiƟon of the

21

2. IntroducƟon

term instanƟaƟon as well. This definiƟon also includes the definiƟon of the term instanƟaƟon
data.

DefiniƟon 2.9 (InstanƟaƟon and InstanƟaƟonData). InstanƟaƟon is the applicaƟon of a funcƟon
instantiate with dom(instantiate) = D×T◦ that transforms a template t◦ into instantiate(d, t◦)
by replacing and thereby removing its slots. The data d ∈ D consumed during the slot replace-
ment is called instanƟaƟon data. �
Obviously, the range of the funcƟon instantiate introduced above has remained unspecified.

This range is the so-called actual target language defined below:

DefiniƟon 2.10 (Actual Target Language). The actual target language is the range of the instan-
ƟaƟon funcƟon instantiate, i.e., ran(instantiate). �
The relaƟon between actual and expected target language is discussed thoroughly in Chap-

ter 3. Given the definiƟons of the expected target language and the instanƟaƟon funcƟon, the
semanƟcs of the prototypical nature of templates can be captured by the following formal def-
iniƟon of the term template language:

DefiniƟon 2.11 (Template Language, final). LetTT be the set of terminal symbols from the target
language T, letS be a non-empty slot markup language and let instantiate be an instanƟaƟon
funcƟon. Then the template language T◦ is the smallest language constructed from the target
language and the slot markup languageS such that the following condiƟons are saƟsfied:
∀t ∈ T : t ∈ T◦ ∧ instantiate(d, t) = t for arbitrary instanƟaƟon data d
(target language documents are templates and instanƟate into itself)

and
∀n ∈ N, li ∈ TT ∪ {ϵ}, bi ∈ S ∪ {ϵ}, 0 ≤ i ≤ n : l0b0 . . . libilj+1 . . . bnln ∈ T◦

(templates are constructed from target language terminal symbols and slot markup lan-
guage sentences) �
This definiƟon is sƟll capturing a lot of approaches that include features thatwould not be con-

sidered good ideas (neither in an academic nor in a pracƟcal sense), however such approaches
exist and are template techniques. In Figure 2.1, a comparison of the definiƟons in terms of
captured popular approaches is shown.

(1) DefiniƟons 2.2 and 2.3 (2) DefiniƟon 2.4
(3) DefiniƟon 2.8 (4) DefiniƟon 2.11

Figure 2.1.: Comparison of the Scopes of the DefiniƟons of the Term Template

An important noƟon is also the term template engine as defined below:

DefiniƟon 2.12 (Template Engine). The component¹ responsible for the instanƟaƟon of tem-
plates is called template engine. �
¹The term component is used here and in the following in the sense defined in [51].

22

2.1. DefiniƟons

The relaƟons between the terms just defined are illustrated in Figure 2.2. Basically, the tran-
siƟon from a document in the target language into a template is done by the introducƟon of
elements from the slot markup language, whereas the instanƟaƟon transforms templates into
documents in the actual target language.

Figure 2.2.: RelaƟons between Template and Target Language

Most template engines do not fully use the power enabled by the DefiniƟons 2.11, they in-
stead restrict the template language further, most notably by constraints on the nesƟng of slot
markup language instrucƟons.
A slot markup language typically comprises a second language that is used to refer to in-

stanƟaƟon data, defined below. There are several ways to classify these so-called query lan-
guages—one classificaƟon is given in SecƟon 2.5.5.

DefiniƟon 2.13 (Query Language). The part of the slotmarkup language used to idenƟfy or fetch
instanƟaƟon data is called query language. �

<html xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<!-- ... -->
<body>

<xsl:for-each select=”purchaseOrder/items/item”>
<p>

<xsl:value-of select=”@partNum”/>
</p>

</xsl:for-each>
</body>

</html>

Target language Slot markup language Query language

LisƟng 2.1: Origins of Fragments in a Template

As a template language is obviously a composiƟon of the target languagewith the slotmarkup
language, which itself incorporates instrucƟons from the query language, it is possible to show
the origin of fragments in a template as it is done in LisƟng 2.1. This lisƟng shows a template

23

2. IntroducƟon

producing Hypertext Markup Language (HTML) as the target language, using XSL-T as the slot
markup language, which itself includes XPath as query language.
Please note that the lisƟng shown is not an XSL-T stylesheet (as this would, by definiƟon, not

be a template), but rather an XSL-T simplified stylesheet module (SSM). These modules offer
a prototypical use of the XSL-T language by allowing to embed a subset of XSL-T into target
language documents.

2.1.2. Life Cycle Phases

Tounderstand the following discussions and the overall structure of the thesis, both the life cycle
of a template technique and the life cycle of a template as a document need to be defined and
divided into phases. As the life cycle of a template is preceded by the life cycle of the underlying
template technique, both life cycles are introduced together.
In Figure 2.3, the combined life cycles of a template technique and adhering templates is

shown. For the scope of this thesis, there is no need to introduce end-of-life phases for template
techniques or templates, so the life cycle ends with the use of the template technique or the
validaƟon of an instanƟated template, respecƟvely.

Figure 2.3.: Template Technique and Template Life Cycle

The first phase in the life cycle of a template technique is typically the analysis phase in which
the goals and requirements induced by the scenario in which the technique should be used are
captured. For the technique developed within this thesis, the goals are discussed in SecƟon 3.1
and the requirements are introduced in SecƟon 3.2.
AŌer the analysis phase, the design phase typically proposes a soluƟon fulfilling the goals and

requirements found. This phase typically involves proposing features of the template engine
that directly influence the design of the slot markup language. In this thesis, an architecture
of a soluƟon is sketched in SecƟon 3.3, whereas the major sub-acƟvity, the design of the slot
markup language is described in detail in Chapter 4.
Obviously, the implementaƟon phase consists of the actual development acƟviƟes needed

to create the soŌware that implements the design created by the preceding phase. In this
thesis, issues regarding the implementaƟon phase have been split up and are contained in the
Chapters 5 and 6.
For template techniques that are not fixed to support a single target language, an adaptaƟon

phase may be necessary which occurs between the life cycles of the technique and the tem-
plates. The proposed soluƟon is an example for a technique that involves such an adaptaƟon
step—it is described in detail in SecƟon 5.1.
The first phase in the life cycle of a template is the authoring phase, also referred to as author-

ing Ɵme. The person playing the role of the template author creates the template using some

24

2.1. DefiniƟons

tool, which may be a simple text editor or a sophisƟcated development environment with ad-
vanced features like syntax highlighƟng or text compleƟon. The template validaƟon that is part
of the proposed soluƟon and supports the author in creaƟng correct templates is described in
SecƟon 5.2.
AŌer the template has been authored, it is typically used within the instanƟaƟon phase to

create target language documents. The soluƟon elements addressing this phase are described
in the SecƟons 6.1, 6.2 and 6.3.
Finally, some engines include a post-instanƟaƟon validaƟon phase that checks whether the

instanƟated template conforms to the target language. The proposed soluƟon guarantees the
conformance of the instanƟated template with the target language in other ways, so no part of
this thesis is corresponding to this phase.

2.1.3. The Extensible Markup Language XML

XML is a general purposemarkup language that evolved from SGML and has been published as a
WorldWideWeb ConsorƟum (W3C) recommendaƟon 1998 [28]. The term extensible highlights
the fact that XML allows the definiƟon of arbitrary new languages, which are typically called
XML dialects. A large number of XML dialects exist today, well-known XML dialects include,
for example, XHTML [4], the Wireless Markup Language (WML) [90] and the Scalable Vector
Graphics (SVG) language [61].
ThemenƟoned specificaƟon [28] of XML defines only the concrete syntax of XML documents,

whereas its abstract syntax, the so-called XML informaƟon set, is defined in [42]. A very simple
XML document is shown in LisƟng 2.2.

<?xml version=”1.0” encoding=”UTF-8”?>
<address country=”US”>

<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>

</address>
LisƟng 2.2: A simple XML file

In the following, a formalizaƟon for XML documents is given. Some low-level restricƟons that
are, for example, imposed by W3C specificaƟons (e.g., the restricƟon that a namespace URI
must not be the empty string in [29]) or by IETF specificaƟon (e.g., the syntacƟcal structure of
a URI defined in [23]) are omiƩed from the formalizaƟon for simplicity reasons. Thus, in the
following, NCNames (see [29]) and URIs are modeled as strings.
Furthermore, the formalizaƟon does not consider the namespace prefixes, as they are only

a syntacƟc simplificaƟon for the namespace binding of names. As a consequence, the term
qualified name is used to denote what is called an expanded name in [29], i.e., as a tuple of a
namespace URI and a local name.

DefiniƟon 2.14. Assume a setE of qualified names for elements, a setA of qualified names for
aƩributes and a symbol⊤ indicaƟng text. An XML document is defined to beD = (V, v•, label,
children, attr, value) where:

25

2. IntroducƟon

• V is a finite set of nodes.
• v• is a disƟnguished node in V called the root node ofD.
• label : V 7→ E ∪ ⊤ is a total funcƟon that maps each node to either the qualified name
of an element or the symbol⊤.

• children : V 7→ V ∗ is a total funcƟon that maps a node v ∈ V to a sequence of nodes
v0, . . . , vn(v) such that
1. no node occurs twice in the sequence:

∀0 ≤ i < j ≤ n(v) : vi ̸= vj ,
2. every node besides v• has exactly one parent, whereas v• has none:

∀v ∈ V : card{v′| children(v′) = v0, . . . , v, . . . , vn(v′)} = [v = v•] and
3. no cycles exist:

∀v ∈ V : vp = parent(v) ⇒ v /∈ parent∗(vp)
where parent : V − {v•} 7→ V is the total funcƟon defined as follows
parent(v) = v′ ⇔ children(v′) = v0, . . . , vi, v, vj , . . . , vn(v′).

• attr : V ×A 7→ String is a parƟal funcƟon that is only defined for v ∈ V with label(v) ∈
E,

• value : V 7→ String is a parƟal funcƟon that is only defined for v ∈ V with label(v) = ⊤.
�

The helper funcƟon hasAttr : V × A 7→ boolean is true for a node v and a qualified name a
of an aƩribute if and only if attr(v, a) is defined.
Given the XML document in LisƟng 2.2, DefiniƟon 2.14 yields a document D = (V, v•,label,

children, attr, value) with V = {v•, v1, v2, v3, v4, v11, v21, v31, v41} and the funcƟons label,
children, attr and value as shown in Figure 2.4.

label(v•) = ”address”

label(v1) = ”name”

label(v2) = ”city”

label(v3) = ”street”

label(v4) = ”state”

label(v11) = . . . = label(v41) = ⊤
attr(v•,”country”) = ”US”

value(v11) = ”Alice Smith”

value(v21) = ”123 Maple Street”

value(v31) = ”Mill Valley”

value(v41) = ”CA”

children(v•) = v1, v2, v3, v4

children(v1) = v11

children(v2) = v21

children(v3) = v31

children(v4) = v41

Figure 2.4.: FormalizaƟon of the XML document in LisƟng 2.2

The handling of whitespace (i.e., spaces, tabs and blank lines, see the definiƟon of the non-
terminal S in [28]) in XML documents is a rather complicated issue. In the following, the so-

26

2.1. DefiniƟons

called ignorable whitespace is completely omiƩed from the formal representaƟon of XML in-
stances. This greatly eases the readability of statements made against these formal representa-
Ɵons. It should be clear that implementaƟons of the techniques described using these formal-
izaƟons must reconsider the applicability of this restricƟon, as such ignorable whitespace can
be meaningful, e.g., if the indentaƟon of the document must be considered.

2.1.4. XML Schema Languages

As XML itself can be used to create markup languages called XML dialects, there is a need to
capture vocabularies and rules of XML dialects. In the following, the term schema is used for any
documentwhich describes the permiƩed names for elements and aƩributes together with their
permissible structure and values in an (in most cases, infinite) set of XML documents. Typically,
a schema defines only the syntacƟc structure (and some staƟc semanƟcs) on top of the common
XML grammar (as defined using EBNF in [28]).
Languages used to write schemas are called meta languages, or (more common in the XML

community) schema languages. As the number of schema languages has grown to a consider-
able amount [98], the classificaƟon of schema languages is the subject of several publicaƟons
[130; 116; 131].
One of themost important classificaƟon criteria is that between grammar- and paƩern-based

schema languages [116]. Grammar-based schema languages rely on tree grammars for the
specificaƟon of the document structure, whereas paƩern-based schema languages specify a
number of paƩerns that are interpreted as properƟes that must be fulfilled by complying docu-
ments.
Grammar-based schema languages can be further divided by the formalism underlying the

tree grammar. [131] classifies these formalisms to be either regular, restrained-compeƟƟon,
single-type, or local tree grammars. The expressive power of these languages is shown as a
Venn diagram in Figure 2.5.

(1) Regular tree grammars (2) Restrained-compeƟƟon tree grammars
(3) Single-type tree grammars (4) Local tree grammars

Figure 2.5.: ClassificaƟon of Schema Languages [simplified, based on 131]

Typical schema languages are neither purely grammar- nor paƩern-based. As an example,
XML Schema [59; 180; 26], one of the most widely used schema languages defined by theW3C,
is based on a single type grammar and adds paƩern-based features for the specificaƟon of staƟc
semanƟcs (so called idenƟty constraints). Please note that in this thesis, the lower-case term
schema refers to a schema in some, possibly unspecified, schema language, whereas the upper-
case term Schema always refers to a schema specified using the XML Schema language.

27

2. IntroducƟon

Other important schema languages are Document Type DefiniƟon (DTD), a schema language
defined along with XML in [28], the Regular Language for XML Next GeneraƟon (RelaxNG), a
regular tree grammar-based language [39] and Schematron, a paƩern-based language [99].
A barely considered property of schema languages is their ability to express so-called at-

tribute/element constraints [132]. An example for an aƩribute/element constraint is the state-
ment

”
element a must carry an aƩribute named b or have a child element named c“. Con-

straints of this kind play a role in the definiƟon of the template language XTL. Unfortunately,
aƩribute/element constraints can only be expressed by RelaxNG and Schematron, but not by
XML Schema.
A number of formalizaƟons of XML Schema can be found in today’s XML literature. The intent

and completeness of these formalizaƟons vary widely. The most general formalizaƟon of XML
Schema as a so-called XGrammar can be found in [123]. The XGrammar concept is intended
to formally capture most of the concepts in DTDs, XML Schema and RelaxNG. Other formal-
izaƟons are restricted to a parƟcular aspect of schema languages, like content models [168].
The Model Schema Language (MSL) is a formalizaƟon solely intended to specify the semanƟcs
of XML Schema [30; 31]. As there is no need to use a feature-complete specificaƟon in the
following, a modificaƟon of the XGrammar concept is used.
In order to define the term schema, it is useful to give a formal definiƟon of a simple type

first. Simple types are types that can be used to validate character data, e.g., aƩribute values or
text nodes [180]. The most prominent definiƟon of a set of simple types is the library defined
as part of XML Schema [26]. XML Schema also allows the definiƟon of custom simple types. For
the following, it is unnecessary to define how simple types are defined and how validaƟon is
performed. Therefore, DefiniƟon 2.15 is a very simplisƟc definiƟon of simple types.

DefiniƟon 2.15 (Simple Types). A simple type σ is a possibly infinite subset of the set of strings,
i.e., σ ⊆ S. A string s is said to be conforming to the simple type σ, if and only if s ∈ σ. �
In the following, a simple type will oŌen be denoted by a qualified name q. Instead of wriƟng

s ∈ q, a predicate Valid(s, q) is used, which is true if and only if s ∈ q. Furthermore, string is
used to denote the XML Schema’s string type xsd:string as defined by [26, SecƟon 3.2.1].
Since xsd:string is syntacƟcally unrestricted, Valid(s,xsd:string) is true for all s ∈ S.
A schema can be defined as in DefiniƟon 2.16. While this definiƟon closely resembles the

definiƟon of an XGrammar [123], it differs from the laƩer in various ways. Most notable, the
disƟncƟon between hedge and tree types has been removed. This is possible because in XML
Schema, the appearance of hedge types—in XML Schema called model groups—is purely syn-
tacƟc, because model groups are not allowed to be circular [180, SecƟon 3.8.6]). Second, the
disƟncƟon between element and aƩribute producƟon rules has been omiƩed, because within
the original definiƟon of an XGrammar, the semanƟcs of a derivaƟon from the grammar was
insufficiently specified. Finally, the terminal symbols have been divided into qualified names
for aƩribute and elements.
It is necessary to point out that this definiƟon of a schema is not exactly capturing the XML

Schema language. On one hand, a schema, as defined in DefiniƟon 2.16, must fulfill further
constraints in order to represent a valid XML Schema, e.g., its content models must comply
to the Unique ParƟcle AƩribuƟon (UPA) rule [180, SecƟon 3.8.6]. The UPA rule demands the
unambiguousness of the content models with respect to a parser without lookahead, making

28

2.1. DefiniƟons

XML Schema a restrained-compeƟƟon tree grammar in the sense of [131]. On the other hand,
some XML Schema documents can not be represented by a schema as defined below, e.g., if
the XML Schema uses idenƟty-constraint definiƟons [180, SecƟon 3.11].

DefiniƟon 2.16 (Schema). A schema is the tuple S = (Σ, N,E,A,N•, R) where
• Σ is a set of simple data types,
• N is a set of non-terminal symbols,
• E is a set of qualified names for elements,
• A is a set of qualified names for aƩributes,
• N• ⊆ N is the set of start symbols,
• R is a set of producƟon rules of the form X → e(ad∗, cm) where X ∈ N , e ∈ E,
ad∗ ⊆ AD(Σ, A) is a set of aƩribute declaraƟons as defined in DefiniƟon 2.17 and cm ∈
CM(Σ, N,E) is a content model as defined in DefiniƟon 2.18.

The set of XML documents valid with respect to the schema S is denoted by L(S). �
AƩribute declaraƟons [180, SecƟon 3.2] are defined in DefiniƟon 2.17. This definiƟon focuses

on the essenƟals of aƩribute declaraƟons: a name, a type, whether the aƩribute is required or
opƟonal and whether it has been assigned a fixed value. All other aspects of aƩribute declara-
Ɵons have been omiƩed.

DefiniƟon 2.17 (Set of aƩribute declaraƟons). The set of aƩribute declaraƟons AD(Σ, A) is de-
fined for the set of qualified names for aƩributes A and the set of simple data types Σ as the
set of all tupels (a, σ, i, f) consisƟng of:

• a ∈ A is a qualified name of an aƩribute,
• σ ∈ Σ is a simple type to which the aƩribute value must comply,
• i ∈ {0, 1} is the required cardinality of the aƩribute, and,
• f ∈ {true, false} defines whether a fixed value is assigned to the aƩribute. �

A shorthand notaƟon is defined, which allows to extract all aƩribute declaraƟons that declare
required aƩributes: req(A) = {(a, σ, i, f) ∈ A|i = 1}. Analogously, all aƩribute declaraƟons
that have been assigned a fixed value are denoted by fixed(A) = {(a, σ, i, f) ∈ A|f}.
Content models are defined in DefiniƟon 2.18. Again, this definiƟon is not completely con-

gruent with the XML Schema specificaƟon. On the one hand, it is missing the xsd:allmodel
group [180, SecƟon 3.7]. On the other hand, as this definiƟon basically allows regular expres-
sions as content models, it also allows content models that are not valid in XML Schema, but
would be allowed in regular schema languages like RelaxNG. An examplewould be contentmod-
els that define sequences of simple types mixed with elements, which is not specifiable in XML
Schema. The definiƟon sƟll fulfills its goal, i.e., it allows XML Schema instances to be captured
formally.

DefiniƟon 2.18 (Set of content models). The set of content models CM(Σ, N,E) over the set of
simple typesΣ, the set of non-terminal symbolsN and the set of qualified names for elements
E is defined recursively as follows:

• The empty sequence ϵ is a content model: ϵ ∈ CM.
• All simple types are content models: ∀σ ∈ Σ : σ ∈ CM.
• All non-terminal symbols are content models: ∀n ∈ N : n ∈ CM.
• All element names are content models: ∀e ∈ E : e ∈ CM.

29

2. IntroducƟon

• For two contentmodels cm1 ∈ CMand cm2 ∈ CM, the results of the following operaƟons
are also content models, i.e.,

– cm1, cm2 ∈ CM, meaning a sequence consisƟng of the two content models,
– cm1 | cm2 ∈ CM, meaning a choice between the two content models, and,
– cm1{i, j} ∈ CM, meaning a repeƟƟon of the content model cm1, where i ∈ N,
j ∈ N+ ∪ {∗}, and j ̸= ∗ ⇒ i ≤ j, with the special symbol ∗ meaning unrestricted
repeƟƟon. �

As shorthand notaƟons, cm ? is used to denote cm{0, 1} and cm∗ to denote cm{0, ∗}.

2.2. ApplicaƟons

Templates are ubiquitous. For reasons of simplicity, the twomost prominent applicaƟon classes
are described in more detail below: the use within dynamic Web applicaƟons and for the gen-
eraƟon of code. Other examples are easy to find on almost every desktop computer, e.g., the
inserƟon of fields in OpenOffice documents [141]. Templates are also frequently used as a start-
ing point for the creaƟon of staƟc Web pages, e.g., in tools like JAlbum [92].

2.2.1. Web ApplicaƟons

Web applicaƟons are one of the major applicaƟon areas where template techniques are used.
With the advent of dynamic Web applicaƟons it has become more and more obvious that the
separaƟon of layout and content is vital for the maintenance of large and complex Web sys-
tems. This soon has lead to the creaƟon of languages providing features that allow the easy
composiƟon of documents for the Web (e.g., HTML or later XHTML pages). An early example
for these languages is Perl [188], which facilitates the creaƟon of Web pages using its variable
interpolaƟon feature.
The increasing number ofWeb sites containing user-generated content (paraphrasedwith the

termWeb 2.0) also creates new challenges for template techniques. One of themost important
features today is the isolaƟon of user-generated content from the surrounding page skeleton to
saƟsfy minimum security requirements that are requested by users and operators of aWeb site
[101].
Template engines that can typically be found in today’s Web applicaƟons include the Java-

based engines JSP [176], Velocity [176], ST [173; 143], the PHP-based engine Smarty [165], the
Python-based engine Document Template Markup Language (DTML) [114] and the Ruby-based
engine Embedded Ruby (ERB) [50].

2.2.2. Code GeneraƟon

Code generaƟon as a discipline started with the early work on compilers [79]. In the following,
code generaƟon should be understood as limited to produce textual representaƟons of code.
Template techniques have also been introduced into compiler construcƟon—for an example see
[171].

30

2.3. AlternaƟves to Using Templates

A recent event that fostered the generaƟon of code was the advent of the Model Driven
Architecture (MDA) [128], which led to an ever increasing number of models for all kinds of
domains. A definiƟon for the term model in the sense of the MDA can be found in [24]:

A model is a simplificaƟon of a system built with an intended goal in mind[...]. The
model should be able to answer quesƟons in place of the actual system.

A significant porƟon of these models is sƟll used mainly for code generaƟon [118]. MDA dis-
Ɵnguishes between model-to-model transformaƟons (M2M) and model-to-code transforma-
Ɵons (M2C). The former typically transform higher level abstracƟons into each other whereas
the laƩer typically transform from higher level abstracƟons into textual models, esp. into code.
Obviously, the M2C transformaƟons are a natural domain of template techniques.
M2M transformaƟons are a typical domain of transformaƟon languages (see SecƟon 2.3.1),

but in some cases, template techniques are used for M2M transformaƟons. For example, the
M2M transformaƟon facility in the UML modeling tool Enterprise Architect is based on a tem-
plate approach: templates are instanƟated to create a textual specificaƟon of the target model
which is aŌerwards parsed into some object representaƟon of the model [166].
As already pointed out in [43], nearly all of the available MDA tools support some kind of

template-based code generaƟon. Template techniques that are in wide-spread use for the gen-
eraƟon of source code are the Java-based engines Java EmiƩer Templates (JET) [148], XPAND
[56] and ST [173; 143] as well as the Python-based Cheetah [158] engine.

2.3. AlternaƟves to Using Templates

There are several alternaƟves to using templates as a means for composing documents from
mulƟple data sources that have been divided to achieve a separaƟon of concerns. In the Sec-
Ɵons 2.3.1, 2.3.2 and 2.3.3, the most widespread alternaƟves, i.e., transformaƟon techniques,
aspect-oriented approaches, and unparsers, are discussed.

2.3.1. TransformaƟons

TransformaƟon techniques are an established way to adapt data from one metamodel to an-
other. This is supported by a domain-specific language used to specify a transformaƟon pro-
gram. Many languages that adhere to different programming paradigms have been used as a
basis for transformaƟon languages, e.g., SML [20], Ruby [68] and Prolog [80]. TransformaƟon
techniques are very popular in the Web engineering area, whereas examples for code genera-
Ɵon using transformaƟon technologies can hardly be found.
Themost prominent transformaƟon language used in the area ofWeb applicaƟons (especially

in Web CMSs) is XSL-T. XSL-T is capable of transforming XML documents between XML dialects,
but also into text and HTML documents. A lot of research has been performed on XSL-T. It
turned out that XSL-T is in fact a funcƟonal programming language [135]. XSL-T has been crit-
icized for its verbosity [68] and for its quesƟonable usability [162]. With Xalan [10] and Saxon
[106], two mature implementaƟons are available.

31

2. IntroducƟon

XSL-T has someƟmes been perceived as a template technique. As has been argued in Sec-
Ɵon 2.1, this is not true, as XSL-T stylesheets are lacking the prototypical nature that is a vital
property of template approaches. However, it is important to note that the XSL-T specificaƟon
defines an alternaƟve mode for the use of XSL-T in so-called SSMs, which are true templates
with embedded XSL-T instrucƟons.
The difference between the transformaƟonal and the template approach in the implemen-

taƟon of the view role in the MVC paƩern is discussed in detail in [67], which introduces the
approaches as paƩerns enƟtled transform view and template view, respecƟvely.
An example for code generaƟon using a transformaƟon technique can be found in [25], where

XSL-T has been used to generate Java from the XMLMetadata Interchange (XMI) representaƟon
generated by a Meta-Object Facility (MOF)–based modeling tool.

2.3.2. Aspect-Oriented Approaches

The idea of aspect-orientaƟon, which resulted in its own programming paradigm AOP, came
up in the late 1990ies [108]. The primary idea of AOP is to separate the code into a core and
several aspects. The core contains the main funcƟonal part of the program to be built, whereas
the aspects implement several other funcƟonal or non-funcƟonal enhancements. Contrary to
the transformaƟon approaches above, aspect-oriented approaches are more oŌen uƟlized for
code generaƟon than in Web engineering.
Technically, the aspects are implemented as advices and introduced into the core at sets called

pointcuts of core code locaƟons called join points. The introducƟon process is called weaving.
There are several variaƟons of this principle, that differ in the Ɵme the weaving is done, in how
join points and pointcuts are selected, and so on. The noƟon of pointcuts allows the modular-
izaƟon of cross-cuƫng concerns, keeping together code fragments that are inherently related
and would otherwise be tangled with the code at several locaƟons.
Aspect-oriented code generaƟon is very similar to template-based composiƟon approaches.

The core code can be seen as a template without explicit slots, and the advices can be seen as
instanƟaƟon data. The major difference is that the linking between the two inputs is reversed:
the advices are typically combinedwith the pointcuts, i.e., the instanƟaƟon data is bundledwith
the informaƟon where it should be inserted. This property of the core—not to contain explicit
marks for the embedding of aspect code—is called obliviousness.
One could consider aspect-orientaƟon as a template technique by aligning the linking direc-

Ɵons found in aspect orientaƟon (i.e., from aspect to core) and template approaches (i.e., from
template to instanƟaƟon data), i.e., one could compare the aspect with the template (and the
core with the instanƟaƟon data). This point of view violates DefiniƟon 2.11, as the core has the
prototypical nature required from templates in the definiƟon.
A problem with obliviousness is implemenƟng repeƟƟon and condiƟonal inclusion of parts

of the core code. It is very easy to implement a loop with parametrized content in a template
approach, whereas with aspect-orientaƟon, this is typically not possible. Workarounds include
the opƟons to remove parts from the core code condiƟonally or to add to lists of grammaƟcal
elements.
An advantage of aspect-orientaƟon over template techniques is the handling of crosscuƫng

concerns. An advice can be applied implicitly against many code locaƟons, e.g., using a regular

32

2.3. AlternaƟves to Using Templates

expression matching method names, whereas in template approaches, the embedding of the
same instanƟaƟon data item at mulƟple places must be declared explicitly in the template.

Aspect-orientaƟon has also been used within the area of Web engineering. An example use
case is the localizaƟon of Web documents. Typically, such Web documents are prepared by na-
Ɵve speakers and then translated into different languages by others. This translaƟon does not
change the structure of the document, it rather replaces content (i.e., text elements or aƩribute
values in an XHTML document), therefore there is no need for the condiƟonal or repeated in-
clusion of content. Using an aspect-oriented technique, the translaƟons could be bundled with
pointcuts declaring where to put them in the original documents to replace the content. This
approach has the advantage that no templates must be created and maintained in order to
translate the Web documents [47; 149].

Another example for the use of aspect-oriented approaches for the manipulaƟon of XML
documents are AspectXML [127] and the various approaches for XML update languages like
XUpdate [115]. Both example languages use XPath to express pointcuts.

2.3.3. Unparsers

Unparsers are another common opƟon for code generaƟon and Web applicaƟons. While a
parser builds an object structure from a sentence of some grammar, an unparser reverses the
process: it transforms some object structure into a sentence. The object structure can be a
Concrete Syntax Tree (CST) or an Abstract Syntax Tree (AST). Other names for unparsers are
serializers (e.g., used in Xerces [11]), API-based generators [169] or intra-level transformaƟons
[113, Figure 4.1c on page 71]. In the XML technological space, unparsers are typically called
XML binding tools.

In the XML community, unparsers are also called XML binding frameworks, with JAXB [155;
105] and XMLBeans [8] being their most prominent representaƟves. XML binding frameworks
typicallywork in two steps. First, there is a compilaƟon step at build Ɵmewhich compiles an XML
Schema into a corresponding object model in a target language, leveraging the type system of
the target language as much as possible to reflect the constraints of the schema. Second, there
aremarshalling resp. unmarshalling steps at run Ɵme, which translate between XML documents
and the created target language object model (or vice versa). Please note that marshalling
corresponds to unparsing whereas unmarshalling corresponds to parsing. For more details and
an overview and comparison of exisƟng approaches see [111].

Comparable binding frameworks exist for other combinaƟon of languages, e.g., Jenerator for
the generaƟon of Java code from Java programs [187] and the RAP Widget Toolkit (RWT) for
HTML generaƟon from Java. The approach used by XMλ [125] is very similar, except for one
difference: its type system has been designed to match that of XML.

The object model needed by an unparser to generate a document is oŌen constructed using
the visitor paƩern [74] from another, exisƟng object model. This is different from the template
approach, where the template engines (e.g., XPAND [56]) oŌen supply powerful mechanisms
to visit such a model.

33

2. IntroducƟon

2.3.4. Comparison of Templates with AlternaƟve Technologies

Figure 2.6 contains a comparison of four technologies that can be used to achieve a SeparaƟon
of Concerns. One of the technologies, JSP, represents a template technique, the other ones,
XSL-T, AspectJ, and JAXB, represent the alternaƟve technologies introduced above, namely
transformaƟons, aspects-oriented approaches and unparsers, respecƟvely. The four rightmost
columns in the figure show (from leŌ to right): the language of the first concern, the language in
which the relaƟon between the concerns is expressed, the language of the second concern and
the language of the result, i.e., the language into which the concerns are combined. Obviously,
the first and the second concern are interchangeable. Therefore, the language that is more
closely related to the language of the result has been chosen as the first concern. The rectan-
gles spanning the columns indicate how the concerns resp. the relaƟng language are bundled
together (typically in a file).

Figure 2.6.: Comparison of the AlternaƟves with Templates

JSP is typically used to create HTML from a JSP page, which is basically an HTML document
with embedded Java instrucƟons. As Java is a general-purpose language, the second concern
can be any source of data. Taken together, the fact that the Query Language is bundled with
the first concern and the fact that a standalone HTML document is a valid JSP file, make JSP a
template technique.
XSL-T combines two XML languages, XML1 and XML2 into a resulƟng XML dialect. In most

cases, this dialect is one of the input XML dialects, therefore named XML1 w.l.o.g. here. How-
ever, in all cases in which XSL-T is used in its standard form (i.e., not as XSL-T SSM) and if the
XML dialects are not XSL-T itself (an unusual, but not negligable case), XSL-T is not prototypical,
i.e., no document from one of the XML dialects is itself a template.
In AspectJ, both concerns are documents or fragments in the Java language. The concern

enƟtled core is typically more similar to the result than the concern named advice, as the laƩer
concern is typically spread throughout the core concern (a phenomenon called crosscuƫng).
AspectJ cannot be considered a template technique, as the concern that is typically bundled
with the query language is not prototypical for the result.
Finally, in the unparser technique JAXB, the first concern is expressed in Java, which is basically

a direct equivalent of an XML document to be augmented with the second concern using Java

34

2.4. Related Research Areas

instrucƟons. The second concern can be any source of data (as it is the casewith JSP, see above).
The direct equivalent relaƟonship between the first concern and the result is not a prototypical
relaƟonship, as the concern and the result are from different technological spaces.

2.4. Related Research Areas

In the following secƟons, research areas related to the noƟon of templates in the sense defined
above, are discussed. SecƟon 2.4.1 discusses the research in the field of macro processing. Sec-
Ɵon 2.4.2 discusses two languages in which the term template is used to denote a programming
language feature. SecƟon 2.4.3 introduces the Invasive SoŌware ComposiƟon (ISC) approach,
which is a compile-Ɵme composiƟon technique. Finally, SecƟon 2.4.4 discusses frame process-
ing, a technique closely related to template techniques.

2.4.1. Macro Processing

The idea of macros was introduced by [124] in order to extend compiled languages with new
language features. As such, and contrary to the approaches just introduced, macros are not
primarily a technique for composing concerns, but are rather targeƟng reuse on a syntacƟcal
level.
An important improvement to the macro mechanism was its liŌing to a level where syntacƟc

constraints are preserved. An example for this liŌing is the introducƟon of hygienic macros in
LISP [110].
Today, the best-known example are the macros provided by C and its preprocessor. Unfor-

tunately, C macros can easily break the syntacƟc structure of a program or interfere with the
program in unexpected ways. The ideas from [110] were proposed to address the problems
described in [40], but the development of C++ [174] is definitely the most important aƩempt to
solve them. In order to make the use of the C++ preprocessor obsolete, templates (as a mean
to express generic funcƟons) and the inline and const specifiers (to replace constant def-
iniƟons and the use of macros for repeated non-generic code fragments) have been added to
the language. Unfortunately, modern C++ programs sƟll leverage the preprocessor, someƟmes
by mixing its features with the features introduced to abolish it.
Macros are not a typicalmeans for the composiƟon of concerns, but they are part of a number

of template techniques, as shown in SecƟon 2.5.7.

2.4.2. Templates as Programming Language Feature

The aforemenƟoned C++ templates are also a mean for separaƟon: for example, they can be
used to separate the behavior of a container data type from the actually contained type. Ad-
diƟonally, a C++ template can be considered to be of prototypical nature, as the result of the
template instanƟaƟon basically yields the template with its formal type (as well as its non-type)
arguments replaced with the actual ones, even if this instanƟaƟon result is normally not mani-
fested by the C++ compilers.
A template mechanism is also the base of the modularizaƟon technique used in the BETA lan-

guages [112; 122]. Please note that it is strictly speaking not part of the BETA language, as the

35

2. IntroducƟon

language used for modularizaƟon, the so-called fragment language, is independent from BETA.
The fragment language is grammar-based, i.e., every correct sequence of terminal and nonter-
minal symbols from the grammar is called a form and represents amodule. Non-terminals in the
forms are called slots, as the non-terminals are openings where other forms may be inserted.
An example for a form is shown in LisƟng 2.3.

Stack:
(# Private: @<<SLOT private: descriptor>>;

Push:
(# e: @integer
enter e
do <<SLOT PushBody: descriptor>>
#);

Pop:
(# e: @integer
do <<SLOT PopBody: descriptor>>
exit e
#);

New: (# do <<SLOT NewBody: descriptor>> #);
isEmpty:

(# Result: @boolean
do <<SLOT isEmptyBody: descriptor>>
exit Result
#)

#)
LisƟng 2.3: A BETA Form

If a form is associated with a name and a syntacƟc category (basically, the leŌ hand side of the
grammar rule from which the form has been derived), it is called a fragment form. Fragment
groups bundle logically related fragment forms.
A fragment group F may specify a fragment group O as its origin. In this case, the slots

of the fragment groupO are subsƟtuted by the corresponding fragment forms in F . The origin
fragment groupOmust have slots defined for all the fragment forms within the fragment group
F .
This subsƟtuƟon process turns out to be extremely powerful: it subsumes the power available

by C++ templates and exceeds it—for details, see [122].
Obviously, the subsƟtuƟon mechanism is a template instanƟaƟon, with the origin fragment

group O being the template, whereas the fragment forms within F are the instanƟaƟon data.
The term slot in BETA fits the DefiniƟon 2.6 of slots introduced above. A differencewhich should
be noted, is the labeling of slots with syntacƟc categories, which enables (together with the syn-
tacƟc category assigned to forms in fragment forms) a kind of safe authoring for BETA programs.

2.4.3. Invasive SoŌware ComposiƟon

The ISC approach is a compile-Ɵme composiƟon technique proposed in [15]. Its composiƟon
operators treat the components as so-called grey-box components, i.e., the components itself

36

2.4. Related Research Areas

can bemodified (a property ofwhite-box composiƟon techniques), but this happens using well-
defined interfaces (a property aƩributed to black-box composiƟon techniques).
The ISC terminology has been formalized in [86], based on an extension of context-free gram-

mars, called context-free reuse-grammars. Basically, the components of ISC are fragments of
programs that correspond to sentenƟal forms that can be derived from a non-terminal of a
context-free grammar. Non-terminals in these sentenƟal forms are considered as variaƟon
points.
IniƟally, ISC knows two composiƟon operators called bind and extend, separaƟng the set of

variaƟon points into slots and hooks. Slots can be bound, i.e., they can be replaced with single
fragments using the bind operator. Hooks are extensible, i.e., fragments can be added to it
repeatedly with the extend operator.
The main difference between ISC and template techniques is the handling of extensibility.

Whereas ISC allows hooks to be bound mulƟple Ɵmes, this is not possible in template tech-
niques, which instead offer the possibility to iterate from within the template itself, thereby
allowing a single slot to be replicated and bound to different values in the iteraƟons. With a
template approach, extensibility can be emulated using slots, if the template allows to reintro-
duce the slot markup when the slot is bound. Thus, instead of binding a slot denoted by some
markup s directly to the value v, it is bound to the sequence vs, thereby reopening the slot for
further values. Obviously, this emulaƟon requires that there is a post-processing step in which
all slots are removed, e.g., by binding them to empty values.

2.4.4. Frame Processing

Frameprocessing [17; 18; 46] can be considered as an early predecessor of template techniques.
The technique has been named aŌer its main source of inspiraƟon, conceptual frames [129].
In [18], mulƟple views are given on frame processing. The most comprehensive one is to

consider frames as soŌware parts that should be assembled. Assembling frames is done by
invoking frames from a root frame, the so-called specificaƟon frame. Invoked frames may in
turn call further frames, making the assembly process a tree traversal over a set of frames.
During the assembly, some frames needs to be adapted, i.e., modified or completed. Tomod-

ify frames, two basic mechanisms are offered: the use of variables and the use of named blocks.
Whereas variables do not have default values, named blocks have their content as default value.
Variables can be set to arbitrary values by the invoking frame. Named blocks can be arbitrarily
extended at the start or the end of the named blocks or replaced or deleted during assembly.
Finally, frames can also include control statements to condiƟonally or repeatedly include parts
of the frame, depending on the actual values of variables.
Obviously, frame processing closely corresponds to template processing as defined above.

Frames correspond to templates. Variables correspond to slots. Named blocks are not typically
found in template techniques. Control statements for condiƟonal and repeated inclusion of
fragments can be found in most template approaches. However, frame assembly is much more
sophisƟcated than typical template instanƟaƟon, as it is possible to trigger the assembly of
the frames recursively. This is a feature that is not typically found in template techniques. An
excepƟon is ST [173; 143], which could easily emulate the frame assembly process using its
template applicaƟon feature.

37

2. IntroducƟon

LisƟng 2.4 shows the use of the XML-based Variant ConfiguraƟon Language (XVCL), a frame
processing language designed to foster reuse during the implementaƟon of a soŌware product
line [93]. Further examples of frame processing technologies are given in [43].

SpecificaƟon Frame

<x-frame name=”root”>
public class Root
{

public static void main(String[] args)
{

<set var=”max” value=”100”/>
<adapt x-frame=”secondary-frame”>

<insert break=”perform”>
System.out.println(”i =”+i);

</insert>
</adapt>

}
}

</x-frame>

Frame ’secondary-frame’

<x-frame name=”secondary-frame”>
for (int i = 0; i < <value-of expr=”?@max?”/>; i++)
{

<break name=”perform”/>
}

</x-frame>

Result of the Frame Assembly Process

public class Root
{

public static void main(String[] args)
{

for (int i = 0; i < 100; i++)
{

System.out.println(”i =”+i);
}

}
}

LisƟng 2.4: Frame Processing Example with XVCL

2.5. ClassificaƟon

In this secƟon, a classificaƟon for template techniques is given. The classificaƟon focuses on
template techniques and on defining orthogonal criteria. This disƟnguishes it from exisƟng clas-
sificaƟons like [43] and [169].

38

2.5. ClassificaƟon

2.5.1. Target Language Awareness of Slot Markup

The most basic disƟncƟon to be made about slot markup is how its introducƟon influences the
target language syntax and semanƟcs. The target language syntax and semanƟcs may be af-
fected in several ways, which leads to the categories shown in Figure 2.7 and described in the
following. Please note that the figure also includes implicit slot markup (the technique com-
monly used in AOP, see SecƟon 2.3.2) for illustraƟve purposes, however, these are not marking
up slots with respect to the DefiniƟon 2.6.

Figure 2.7.: Target Language Awareness of Slot Markup

Slot markup languages that do preserve the target language syntax are called syntax preserv-
ing slot markup languages, whereas slot markup languages changing the target language syntax
are called syntax destrucƟng languages.
Syntax preserving languages may be further classified into semanƟcs preserving and seman-

Ɵcs abusing languages, depending on whether semanƟc concepts from the target language are
employed as they are intended to be or abused. The disƟncƟon between preservaƟon and
abuse is somehow fluent—an indicaƟon for abuse is that a language element that is not in-
tended to carry any semanƟcs is equipped with meaning by the slot markup language. A typical
example for this is the abuse of comments for slot markup purposes.
Examples for syntax preserving slot markup languages can be found in approaches target-

ing markup languages like HTML or XML. The Template AƩribute Language (TAL) [196] is using
aƩributes from a disƟnct XML namespace, which is clearly a valid use of aƩributes and names-
paces, i.e., TAL is preserving the semanƟcs of the target language features.
On the other hand, XMLC [195] is using the id aƩribute and the span element of XHTML as

slot markup, with the laƩer example clearly being an abuse of the target language semanƟcs.
Languages that destruct the target language syntax typically rely on some kind of special sep-

arator (or pairs of separators) for slot markup. This goes back to the $ symbol used in Unix
shell scripts for variable interpolaƟon and has been reused by Perl and many of its successors.
A typical pair of separators that is used to bracket expressions from the query language are the
strings <% and %>, which seemingly have been introduced by JSP but can also be found in a
variety of other languages, e.g., in Tea [133] and Jxp [102].

39

2. IntroducƟon

The classificaƟon of template techniques targeƟng XML documents may depend on the un-
derstanding of syntax. If syntax is understood aswellformedness, XSL-T SSM is clearly preserving
it. On the other hand, if syntax is understood as compliance to an XML Schema, XSL-T SSM de-
structs the target language syntax by embedding XSL-T elements at locaƟons where they are
not allowed to be placed.

2.5.2. Generality of the Slot Markup

Template approaches can also be classified by the relaƟonship between the number of terminals
in the target language and the number of terminals in the slot markup language.
Some approaches introduce a corresponding terminal in the slot markup language for each

terminal in the target language [160; 156]. This approach makes the slot markup language
specific to the target language.
On the other side, approaches exist that introduce only a small number of slot markup lan-

guage terminals which allow to markup all kinds of slots possible within the target language.
Moreover, the number of terminals introduced is independent from the target language. This
typically makes this kind of approaches target language independent or generic. As an example,
consider XSL-T SSM [107], which can be used to generate arbitrary documents using a fixed set
of slot markup language instrucƟons.

2.5.3. Entanglement Index

The entanglement index is a metric defined in [143] which classifies template approaches ac-
cording to the number of violaƟons against a set of rules guaranteeing a clean separaƟon of
concerns between the template engine and the applicaƟon using it.
These so-called separaƟon rules, which are formulated in [143] with respect to using tem-

plates as the view in the MVC paƩern [154], are the following:

1. (no modificaƟon) The view can not modify the model neither by directly altering model
data objects nor by invoking methods on the model that cause side effects.

2. (no computaƟons) The view cannot perform computaƟons upon dependent data values.

3. (no comparisons) The view cannot compare dependent data values.

4. (no type assumpƟons) The view cannot make data type assumpƟons.

5. (no layout) Data from the model must not contain display or layout informaƟon.

In order to ease the evaluaƟon of these rules in scenarios other then Web applicaƟons, they
have to be reformulated. Themost specific rule (no layout)must be replaced by a rule capturing
the actual intent of using a template engine:

1. (no modificaƟon) The template can not modify the instanƟaƟon data, neither directly nor
by causing side effects.

40

2.5. ClassificaƟon

2. (no computaƟons) The template cannot perform computaƟons upon dependent data val-
ues.

3. (no comparisons) The template cannot compare dependent data values.

4. (no type assumpƟons) The template cannot make data type assumpƟons.

5. (separaƟon of concerns) InstanƟaƟon data must not contain informaƟon that should be
separated from the applicaƟon by the use of the template engine.

The first rule is easy to understand: the instanƟaƟon of a template should be free of side
effects. That rule is reasonable as it is clear that moving applicaƟon code into a template for
whatever reasons is to be avoided. The rule does not prevent the instanƟated template to com-
municate with the controller (as it is typically done using a Hypertext Transfer Protocol (HTTP)
request within Web applicaƟons), it must only be followed during the instanƟaƟon of the tem-
plate within the template engine.
The second, no computaƟons rule can be subject to controversial discussions. On the one

hand, it is obvious that certain computaƟons (e.g., the computaƟon of taxes on a basket in an
e-commerce applicaƟon) should not be subject of a template. On the other hand, some string
computaƟons like special character encoding may be performed within the template without
violaƟng the separaƟon of concerns, especially since the encoding to be applied may depend
on the context of the special characters, e.g., a string may need to be encoded differently as
XML aƩribute value or as element content.
The no comparison rule is also subject to discussion. Obviously, for the comparison of a prod-

uct price with a fixed value, the fixed value should not be part of the template. However, al-
ternaƟng the background colors of rows in a table requires a comparison like i mod 2 = 0 and
can well be done within a template. The ST engine solves this alternaƟng colors task using a
round-robin approach specifically designed to handle exactly this class of tasks. Comparisons
can also be useful in code generaƟon templates. For example, the use of separators is oŌen
associated with a comparison of a loop index with a fixed value (e.g., i > 0). Again, ST provides
a soluƟon for this problem using its separator feature [144].
The fourth rule implies thatmethodswith arguments cannot be called, since type informaƟon

is unavailable in templates. Furthermore, indexing of array elements using instanƟaƟon data is
not possible, since this would require to assume that the data used as index is of a scalar type.
Finally, the fiŌh rule enforces separaƟon of concerns between layout and content in a tem-

plate applicaƟon directly. The applicaƟon logic should not be able to provide layout or display
informaƟon. [143] states that there is no way to enforce this rule. However, for a parƟcular
target language, a disƟncƟon between parts of the language that are allowed to be generated
from instanƟaƟon data and other parts may be possible. In this case, the parƟal templaƟzaƟon
approach described in SecƟon 5.1.7 can be used to enforce the no layout rule.
The IKAT engine from the Reasonable Server Faces (RSF) project [186] states about itself to

have an entanglement index of zero [185]. As a reason for this, IKAT’s inability to permit com-
putable control over output XML aƩributes is given. This is based on the false assumpƟon that
aƩribute values can always be considered as layout. A counterexample for this is also given in
SecƟon 5.1.7.

41

2. IntroducƟon

2.5.4. InstanƟaƟon Data Access Strategy

There are basically two ways how the data needed to instanƟate a template is passed to the
template engine. The names for the strategies are taken from [143].
The first way is a pull strategy: the template engine calls the applicaƟon using it to fetch data

on demand. The second way is a push strategy: the applicaƟons passes all instanƟaƟon data to
the template engine before the actual instanƟaƟon process is started. The differences between
the approaches are summarized in the sequence diagrams in Figure 2.8. The definiƟons below
are versions adapted from [143] by using the introduced terminology and removing clauses not
substanƟally contribuƟng to their clarity.

DefiniƟon 2.19 (Push Strategy, aŌer [143]). A template uses the push strategy if all data used
by the template is computed prior to template instanƟaƟon. �
DefiniƟon 2.20 (Pull Strategy, aŌer [143]). A template uses the pull strategy if any data used by
the template is computed on demand by invoking applicaƟon logic. �
The advantage of the push strategy is that it enforces the independence of the applicaƟon

logic from the order in which the instanƟaƟon data is accessed. The disadvantage is that some
instanƟaƟon data items which may not be needed (e.g., because condiƟons prevent the data
from being used) have to be calculated anyway. The pull strategy does not have this problem:
it allows the lazy evaluaƟon of instanƟaƟon data items.

Figure 2.8.: Sequence Diagrams of Push resp. Pull Strategy

The classical example for the push strategy is ST, whereas the pull strategy is implemented
in a variety of engines like JSP or Velocity. The push strategy can be emulated using the pull
strategy—see SecƟon 6.1.1.
A disƟncƟon between the strategies is someƟmes impossible. An example are the SSMs de-

fined in XSL-T. The data (i.e., the XML document addressed from the stylesheet via XPath ex-
pressions in select or other aƩributes) is typically pushed upfront into the XSL-T processor,
but the evaluaƟon of parƟcular XPath expressions is performed on demand. AddiƟonally, it is
possible to access further data sources via the document funcƟon [36, SecƟon 12.1], so the
data can partly be pulled from the engine. That is, the data from the first source document is
accessed using the push strategy (note that the evaluaƟon within the template engine is not
explicitly prohibited by DefiniƟon 2.19) whereas the documents retrieved via the document
funcƟon are accessed using the pull strategy.

42

2.5. ClassificaƟon

The discussion on the choice of strategy has not yet found a definiƟve answer. [143] argues
that the pull strategy violates the separaƟon of concerns design rule between applicaƟon logic
and template engine by allowing to build applicaƟon logic that relies on a parƟcular evaluaƟon
order of the instanƟaƟon data. While this argument is definitely true, it is quesƟonable whether
the benefits of disallowing this coupling outweighs the effort for the calculaƟon of instanƟaƟon
data that may not be needed during the instanƟaƟon. [117] emphasizes the problem that data
calculated to be pushed into the engine may be unnecessary, thus wasƟng resources. AddiƟon-
ally, it is argued that funcƟonaliƟes that belong to the presentaƟon layer shiŌ into the applica-
Ɵon code. As an example, HTML/XML character escaping is menƟoned, which is not correct,
as the push approach itself does not prevent the engine to have features supporƟng character
encoding, e.g., via its query language.

2.5.5. Query Language

DefiniƟon 2.13 introduces the noƟon of a query language that is used to refer to instanƟaƟon
data fromwithin the template. The query language used in a template can be classified in three
ways, which are illustrated in Figure 2.9.

Figure 2.9.: Categories of Query Languages

First, the query language may be opaque or significant to the template engine. If the query
language is opaque, the template engine either passes the query directly to the applicaƟon
incorporaƟng itself or uses the query to search for instanƟaƟon data in a container passed by
the applicaƟon. In both cases, the template engine has no idea of the internal structure of
the query. On the other hand, if the query language is significant, queries are executed by the
template engine, i.e., the semanƟcs of a query as well as its concrete syntax must be known to
the engine.
Second, a query languagemay be declaraƟve or imperaƟve. In the first case, the instanƟaƟon

data is described by the query, but the query does not define how to actually get the data.
Differently, queries from imperaƟve query languages define the exact way how to fetch the
instanƟaƟon data.
Third, query languages may be general-purpose or domain-specific languages. In the first

case, the query language is a general-purpose programming language on it own, whereas in the
laƩer case, the query language is specific to a certain type of instanƟaƟon data source.
Two examples should clarify this classificaƟon: JSP is using Java as an imperaƟve, general-

purpose query language. Please note that Java is used in a way that makes it opaque to the JSP

43

2. IntroducƟon

engine, as the engine itself is not interpreƟng the query language in any way. XSL-T SSM’s are
using XPath as a significant, declaraƟve and domain-specific (i.e., XML instanƟaƟon data source
specific) query language.

2.5.6. InstanƟaƟon Technique

Template techniques can also be classified by the way templates are instanƟated. Typical in-
stanƟaƟon techniques are compilers and interpreters.
Compilers transfer the template into a persistent intermediate form that is typically exe-

cutable and emits the instanƟated template during the execuƟon. The best known example
for this approach is JSP, which even generates mulƟple intermediate forms: first, a JSP docu-
ment is typically translated into a Java source file, which is aŌerwards compiled into a class file
directly executable by a Java Virtual Machine (JVM).
Interpreters instanƟate the template directly, i.e., without translaƟng it into a persistent in-

termediate form. An example for an interpreƟng template engine is ST.
The advantage of the compiling approach is an improvement of the instanƟaƟon speed, its

disadvantage is the extra Ɵme needed for the compilaƟon. In general, the decision for one
of the two approaches depends both on the frequencies of template changes and template
instanƟaƟon and their raƟo.

2.5.7. Reuse in Templates

It is an important requirement that template fragmentsmust be reusedwithin a single template.
Different approaches are in use to fulfill this requirement.
Many features supporƟng reuse within templates correspond to macros [124] in general pur-

pose languages. These macro mechanisms can be further classified by their support for pa-
rameter passing and by their support for dynamic calls (i.e., the selecƟon of the invoked macro
depending on instanƟaƟon data).
Macro features can be classified by their parameter passing mechanisms. Some engines only

supportmacros without parameters (like XTL, see SecƟon 4.4), others allow passing arbitrary in-
stanƟaƟon data and/or variable values (like XSL-T SSM), and some engines even allow template
fragments to be passed into macros (like Tea [133]).
Another possible macro classificaƟon criterion is the selecƟon mechanism of the macro to

be called: the macro may be staƟcally selected (like in Tea [133]), or it may be chosen depend-
ing on the context in which the template is applied (called template polymorphism in XPAND).
XSL-T SSM even supports both types of selecƟon with its staƟc xsl:call-template and its
dynamic xsl:apply-templates instrucƟons.
ST [173; 143] offers an efficient object-oriented reuse technique called group inheritance. The

moƟvaƟon behind this technique is the use of ST as backend in the parser generator ANTLR[6;
142], where languages as similar as Java version 1.4 and version 5 should be generated without
having to develop and maintain completely independent template sets. In ST, a template set
is called a group. Groups can inherit templates from other groups. This way, it is possible to
specify a common base group for both Java version and extract the differences between the
languages into groups that inherit from the base group.

44

2.5. ClassificaƟon

2.5.8. Further Features

Some template approaches offer unique features, which should be menƟoned shortly.
Jostraca [157] offers capabiliƟes to search and replace text within the whole template during

the instanƟaƟon process. This is clearly not a template-typical feature, but merely an addiƟon
of a common text processing features.
ST [143; 144] offers a feature called group interfaces which allows the specificaƟon of pa-

rameters a set of templates must have. Together with ST’s feature of group inheritance, this
mechanism enables an object-oriented reuse technique in templates. Please note that the term
interface here relates to the contract between the template and another template that uses it,
which is different from how the term is used in SecƟon 6.3.2, where it refers to the contract
between the template and its instanƟaƟon data.
XPAND knows a special syntax to prevent newlines from being taken over from the template

into the instanƟated template. For example, for the use of this feature consider LisƟng 2.5,
which shows an excerpt from an XPAND template and from the Java code produced by it. Please
note the difference between the two lines creaƟng the private methods: in the second one, the
XPANDexpression is closedwith “-»”,meaning that the followingwhitespace should be omiƩed
in the output.

XPAND Template

public class Test
{

«LET ’doA()’ AS method»
private void «method»
{
}

«ENDLET»
«LET ’doB()’ AS method»

private void «method-»
{
}

«ENDLET»
}

InstanƟaƟon Result

public class Test
{

private void doA()
{
}

private void doB() {
}

}

LisƟng 2.5: Suppression of Newlines in XPAND

45

2. IntroducƟon

Repleo [14] is a template engine that also provides syntax-safe template instanƟaƟon. In con-
trast to the approach introduced in this thesis, it proposes a restricted slot markup language
(called template meta language in this context) that destructs the syntax of the target language
(called object language). Repleo also introduces an adaptaƟon phase, which combines the in-
put grammars in a common template grammar. Repleo validates the instanƟaƟon data only
during the instanƟaƟon Ɵme, it does not offer a technique equivalent to the Template Interface
GeneraƟon introduced in SecƟon 6.3.2. Repleo uses an XPath-like query language.
An approach to generaƟng safe template languages is also proposed in [85]. The approach is

very similar to the approach proposed in this thesis, but uses a syntax-destrucƟng slot markup
language. This is moƟvated by the fact that the approach in [85] is not restricƟng the target
language. The query language proposed in [85] is the Object Constraint Language (OCL).

2.6. Conclusion

This chapter defined the terms that are used throughout this thesis. The concise definiƟon of
the template term captures the intuiƟve meaning of this term in the context of Web applica-
Ɵons and code generaƟon very well, which disƟnguishes the definiƟon from exisƟng ones like
[144], which makes the definiƟon a contribuƟon in its own right. An introducƟon to the typical
applicaƟons of template techniques has been given. The alternaƟves to using a template tech-
nique have been described, bothwith their advantages and disadvantages. The related research
areas have been introduced. Finally, classificaƟon criteria have been given, which allow to de-
scribe the properƟes of exisƟng and new template techniques concisely. The classificaƟon goes
beyond exisƟng classificaƟons like [169], as it defines orthogonal properƟes and exhausƟvely
covers the area of template techniques.

46

2.6. Conclusion

Cib

47

2. IntroducƟon

48

3
Safe Template Processing

An diesen einfachen Beispielen wird jene EigenschaŌ von Web-Templates deutlich, die
zugleich ihre pragmaƟsche Stärke und formale Schwäche ist:Web-Templates können

einfach hingeschrieben werden, eine formale Validierung ist nur auf der Ebene der ferƟg
gestellten Web-Dokumente sinnvoll möglich.

Karsten Wendland, 2006 [189]

In this chapter, an approach for a development technique named safe template processing
is shown. SecƟon 3.1 defines goals for an approach that enables safe template processing.
From these goals, requirements are derived in SecƟon 3.2. Based on these requirements, an
architecture is proposed in SecƟon 3.3.

3.1. Goals

The moƟvaƟng example shown in SecƟon 1.3 can be used to define a number of goals which
a design for a template technique should address. Some of the goals may contradict what is
typically expected from template approaches, others are suggested by common sense and are,
nevertheless, not respected by all exisƟng techniques.
As it has already been menƟoned in SecƟon 2.3, several other approaches exist that address

someor all issues in the scenario above. Each parƟcular goal is discussedwith respect to exisƟng
technologies.

49

3. Safe Template Processing

3.1.1. Safe Authoring

Unfortunately, the relaƟon between the template and the target language shown in Figure 2.2
does not reflect today’s reality. Instead, the instanƟaƟon of a templatemay lead to a document
in the target language, but this is not guaranteed in every case. This leads to the typical trial and
error process shown in Figure 1.2, as it is executed by Web developers and designers regularly:
A template is changed, and aŌerwards the result of the instanƟaƟon process is checked.
As the experience with techniques like JSP and XSL-T shows, this process is error-prone for

several reasons: the execuƟng person may consider a change small enough not to be worth
checking and, more important, the change may not be covered by the instanƟaƟon, e.g., be-
cause the changed part is not instanƟated at all due to the used instanƟaƟon data.
The goal that can be derived from this problem is called safe authoring, reflecƟng that the

fulfillment of this goal gives an author the highest safety possible that a created template will
actually instanƟate into the target language. This safety is nevertheless restricted, as the in-
stanƟaƟon data has substanƟal influence on the instanƟated template, i.e., every guarantee
given to the author is given under the presumpƟon that the instanƟaƟon data fulfills certain
properƟes (which will be explained in SecƟon 3.2.5).
The term safe authoring is informally defined as follows: A template approach enables safe

authoring if it gives (under the presumpƟon of certain instanƟaƟon data properƟes) an author
a clear indicaƟon whether a parƟcular template will instanƟate into the target language or not.
The most popular example of an approach not targeƟng the goal of safe authoring is JSP. By

its typical mixture of XHTML as target language, Java as query language and several notaƟons
to disƟnguish between the languages, there is a high risk of creaƟng templates not instanƟaƟng
into the target language.
On the other hand, XML binding technologies like JAXB fulfill the safe authoring goal verywell,

because they employ the type system of some programming language to guarantee instanƟa-
Ɵon results, making it impossible for an author to create documents that fail to instanƟate into
the target language.

3.1.2. Safe InstanƟaƟon

The instanƟaƟon of a safely authored template may fail because the instanƟaƟon data used
does not fulfill the assumpƟons that have been made during the template authoring. These
instanƟaƟon failures must be communicated as error messages. The asynchronism of template
authoring and template instanƟaƟon complicates relaƟng the omiƩed error messages to the
cause of the error.
Furthermore, the person encountering the error (e.g., the user of a Web applicaƟon) is most

probably different from the person that caused the error (e.g., the applicaƟon developer), which
makes understandable error messages even more valuable.
The informal definiƟon of safe instanƟaƟon is as follows: A safe instanƟaƟon checks the in-

stanƟaƟon data and emits error messages that

1. clearly describe the problems that occurred,

2. show their root causes and

50

3.1. Goals

3. allow determining the person that is responsible to fix them.

ExisƟng approaches differ widely in their error handling. JSP seems to be the worst approach
in this respect: depending on whether the error in the template leads to a compilaƟon error
during template instanƟaƟon or just to a malformed XHTML document, different errors may
occur. For examples of error messages caused by invalid JSP pages, see Figures 3.1(a), 3.1(b)
and 3.1(c). For an unexperienced user, it is hard to decide which of the error message is due to
an invalid change of the template and which one is due to incorrect instanƟaƟon data.

(a) CompilaƟon problem

(b) RunƟme excepƟon

(c) Parse problem

Figure 3.1.: Error Messages caused by JSP Pages

3.1.3. SeparaƟon of Concerns

As menƟoned above, templates are frequently used to achieve a separaƟon of concerns. The
separaƟon typically occurs between development arƟfacts, responsibiliƟes (or roles), or life cy-
cle phases. The actual concerns to be separated depend on the applicaƟon area in which the

51

3. Safe Template Processing

approach should be used. An overview of actual concerns in the two most important usage
scenarios for template approaches is shown in Figure 3.2.

Figure 3.2.: SeparaƟon of Concerns in Different Scenarios

Part of this goal is not only to provide means for the separaƟon of concerns: it is equally
important to ensure that the separaƟon is not circumvented by users of a template technique.
The importance of the enforcement of separaƟon of concerns has been described in [143].
The following informal definiƟon considers both parts of this goal: A template approach fulfills

the goal of SeparaƟon of Concerns if it

1. enables the separaƟon of concerns, i.e., allows the distributed, asynchronous and simul-
taneous work on the concerns and

2. enforces the separaƟon of concerns, i.e., restricts the consequences of changing a con-
cern for related concerns as far as possible.

OŌen, the separated concerns are parƟcular documents or other storage units, but the con-
cerns to be separated may also be rather abstract views of stakeholders on a single result of
the development process. E.g., if the template technique is used in a Web applicaƟon, the con-
cerns to be separated are typically layout and content, a separaƟon that has been recognized as
being essenƟal in the publishing sector as early as 1967 by Tunnicliffe [76] and that also holds
in the field of Web engineering. The separaƟon between these concerns can lead to separated
storage units, but the separaƟon can as well take place within a single storage unit.
An analogous separaƟon is desirable if the template engine is used forM2C transformaƟons in

a generaƟve scenario: programming language specifics should be separated from programming
language independent informaƟon stored in a model (described in SecƟon 2.2.2).
The separaƟons between concerns described above correspond to the separaƟon of respon-

sibiliƟes of stakeholders (or roles). In the Web applicaƟon scenarios, the layout concern is typi-
cally the responsibility of a Web designer, whereas the creaƟon of content is typically the re-
sponsibility of an editor (e.g., in a Web CMS scenario) or a soŌware engineer (e.g., acƟng as the
developer of the model and the controller in a Web applicaƟon).
For the code generaƟon scenario, the responsibility for the creaƟon of the arƟfacts described

above may be distributed between a programming language specialist (for the programming
language specifics) and a model developer (responsible for the model as such).
In both scenarios, the authoring of a template and its instanƟaƟon typically occur asynchro-

nously, i.e., the life cycle phases not necessarily overlap each other. It is not atypical that a

52

3.1. Goals

template sƟll gets instanƟated when the author of the template is no longer available to main-
tain it.
Approaches like XML binding technologies (e.g., JAXB) completely fail with regard to this goal,

both in enabling separaƟon as well as in enforcing it. For example, if an unparser-related library
like RWT is used to build a Web user interface, the Web designer and the applicaƟon developer
role are unified.
On the other hand, JSP enables the separaƟon of concerns, but fails to enforce it (which

is indicated by its high entanglement index of 5), as the embedded access to Java allows the
template author to accomplish arbitrary tasks, including the tasks that belong to the model or
the controller in an MVC-based applicaƟon.

3.1.4. Broad Applicability

The architecture should be applicable in a wide range of applicaƟons, from Web CMSs to UML
tools. Therefore, assumpƟons about parƟcular uses of the architecture and its implementaƟons
have to be avoided. On the other hand, this design goal had to be restricted in order to create
a prototype implemenƟng the approach, i.e., the set of target languages addressable has been
limited to XML dialects.
The definiƟon of broad applicability is therefore as follows: A template approach saƟsfies

the goal of Broad Applicability if it is usable in different applicaƟon scenarios and capable of
generaƟng various target languages.
Velocity is an example for a broadly applicable template technique, as it has beenwidely used

for Web applicaƟons [77] as well as for code generaƟon [175]. The languages that have been
generated using Velocity include various XML dialects like XHTML, Java, C++ as well as plain text
(e.g., for the generaƟon of emails).
JSP is restricted in its use by its reliance on Web applicaƟon servers. There have been ex-

periments to separately use JSP, but the coupling to Web applicaƟon servers has proven to be
strong, which complicates the stand-alone use of JSP. Besides this restricƟon, JSP has been used
to generate several web-typical languages like XHTML and WML .

3.1.5. UƟlizaƟon of ExisƟng Standards

During the design and implementaƟon of the Safe Template Processing approach, the ques-
Ɵon of whether a (de facto) standard or component should be reused oŌen arised. Typically,
the consequences are as follows: if the standard is not reused, a completely new way of tem-
plate processing could be introduced (along with the necessary standards, tools and processes),
which leaves more design opƟons at the cost of reducing the chances of the new approach to
becomewidely accepted. AlternaƟvely, adapƟng the exisƟng standards or components reduces
the degrees of freedom for the design, whereas the chances for establishing the approach are
much higher. The alternaƟves can be considered as revoluƟonary or evoluƟonary trials to es-
tablish a new template processing approach.
In the following, for a design quesƟon that can only be decided in the described ways, the

laƩer alternaƟve, i.e., the evoluƟonary improvement, is taken. Or, informally defined: A tem-

53

3. Safe Template Processing

plate technique fulfills the UƟlizaƟon of ExisƟng Standards goal if it minimizes the changes to
the standards, tools and processes leŌ to users adopƟng the technique.
XML binding technologies like RWT can be seen as a way to a revoluƟonary change to the

Web engineering process. This can also serve as an explanaƟon, why these approaches failed
to prevail widely. Advanced JSP editors as found in modern Web development IDEs are a typ-
ical example for the evoluƟonary approach, as they do not try to change the process of JSP
authoring.

3.2. Requirements

From the goals introduced in SecƟon 3.1, a number of requirements can be deduced, which
are described below. These requirements are to be fulfilled by the developed approach. The
requirements address different goals—a summary about these dependencies is shown in Fig-
ure 3.3¹. The dependencies for each requirement are discussed in detail in the corresponding
secƟon. If possible, examples that fulfill the requirement or fail to fulfill it are given.

Figure 3.3.: RelaƟons between Goals and Requirements

3.2.1. PreservaƟon of Target Language Constraints

In order to guarantee that the instanƟated template complies to the target language, all con-
straints that are inherent to the target language (i.e., which form the schema of the target lan-
guage)must also be validwithin the template language. This does notmean that the constraints
can be mapped one-to-one from the target into the template language. Instead, every con-
straint from the target language will lead to an equivalent, maybemore complicated, constraint
in the template language.
Formally, this requirement can be defined as follows:

DefiniƟon 3.1 (PreservaƟon of target language constraints). A template technique preserves
the target language constraints, if for each template t◦ the instanƟaƟon instantiate with the

¹The different styles for the lines in the Figures 3.3, 3.6 and 7.1 have been chosen to improve the perceivability of
these figures, they are not semanƟcally important.

54

3.2. Requirements

instanƟaƟon data d ∈ D yields a document from the target language: ∀t◦ ∈ T◦ : ∀d ∈ D :
instantiate(d, t◦) ∈ T. �
Obviously, this preservaƟon requirement addresses the safe authoring goal. There are several

ways to fulfill this requirement, which differ in their reuse level of exisƟng standards. Therefore
the uƟlizaƟon of exisƟng standards is also related to this requirement.
XSL-T SSM can be seen as an example for a template language that is completely ignoring

target language constraints within the templates: it is possible to generate any XML dialect from
an XSL-T SSM. If a specific dialect defined by some XML Schema is constructed by a stylesheet,
none of the constraints from this XML Schema are checked within the stylesheet. This makes
XSL-T SSM both a powerful and an error-prone template technique.

3.2.2. Coverage of Target Language

A template enginemust be able to produce all documents of the target language. DefiniƟons 2.5
and 2.11 already state that the target language is covered by the templates as the set of tem-
plates is a subset of the template language, i.e., T◦ ⊂ T.
The fragments contained in the instanƟated template originate, however, both from the tem-

plate as well as from the instanƟaƟon data. Thus, the requirement must be fulfilled indepen-
dently of which fragments of the instanƟated template originate from the template.
The distribuƟon of fragments between the template and the instanƟaƟon data is itself re-

stricted by the separaƟon of concerns goal and has not been formalized. The following is there-
fore only a semi-formal definiƟon of the coverage requirement, as it relies on the unspecified
noƟon of a set of valid instanƟaƟon data Dt that reflects which parts of the target language
document t could originate from the instanƟaƟon data:

DefiniƟon 3.2 (Coverage of target language). A template technique covers a target language T
if for each document t from the target language T and for any instanƟaƟon data d from the set
of valid instanƟaƟon data Dt, there exists a template t◦ that instanƟates to t: ∀t ∈ T : ∀d ∈
Dt : ∃t◦ ∈ T◦ : instantiate(d, t◦) = t �
The coverage requirement clearly addresses the goal of broad applicability, as a template

engine that is not capable of creaƟng the complete target language is only useful in very special
cases. Furthermore, the requirement is influenced by the separaƟon of concerns goal, because
this goal determines the distribuƟon of target language fragments between the template and
the instanƟaƟon data.

3.2.3. Computability

As the requirement preservaƟon in SecƟon 3.2.1 indicates, constraints imposed by the target
language have to be transformed to be applicable to validate documents with respect to the
template language. The user of the template engine should not be burdened with the process
of adapƟng a template technique to a parƟcular target language.
Thus, the template language syntax must be automaƟcally computable from the target lan-

guage syntax. As a side effect, this requires the target language syntax to be available in a
machine-readable form (like an XSD document or some other grammar descripƟon).

55

3. Safe Template Processing

The computability requirement therefore addresses the broad applicability goal, as it enables
the use of the template technique for generaƟng documents from arbitrary languages. Further-
more, it also contributes to the fulfillment of the safe authoring goal.

3.2.4. Expressiveness

In order to be actually usable, a template language and hence a slot markup language must of-
fer a well-balanced amount of expressiveness. The language must support control statements,
especially for the condiƟonal and repeated inclusion of template parts.
The absence of these control features typically leads to a violaƟon of the separaƟon of con-

cerns goal. Without the control features, an author basically needs to separate condiƟonal and
repeated parts into (sub-)templates that are instanƟated condiƟonally or repeatedly into frag-
ments that are, in turn, used as instanƟaƟon data for the (master-)template. The effort of creat-
ing and maintaining these (sub-)templates as separate resources then leads to the embedding
of template parts into the code using the template engine.
There is a risk of exaggeraƟng the expressiveness of the slot markup language. This extra

amount of power available to the template developer typically leads to applicaƟon code being
embedded in a template, a situaƟon which is hard to detect and even harder to eliminate.
With respect to the area of Web applicaƟons with their typical division between applicaƟon

and presentaƟon layer (resp. controller and view in theMVC paƩern), the consequences of both
insufficient and exaggerated expressiveness are shown in Figure 3.4.

Figure 3.4.: Consequences of Insufficient or Exaggerated Expressiveness

The expressiveness requirement addresses the separaƟon of concerns goal, as both insuffi-
cient and exaggerated control lead to violaƟons of the goal.
Almost all exisƟng template techniques support the condiƟonal and the repeated inclusion

of template fragments.

3.2.5. InstanƟaƟon Data Type Safety

Incorrect treatment of unexpected instanƟaƟon data items is a major source for problems dur-
ing the instanƟaƟon of templates. Unfortunately, the instanƟaƟon data is, by definiƟon, not
available during the authoring Ɵme of a template. In order to detect problems with the instan-
ƟaƟon data, it is therefore necessary to specify a contract between a template and the used
instanƟaƟon data.

56

3.3. Proposal of an Architecture fulfilling the Requirements

Such a contract consists of constraints asserƟng properƟes of the instanƟaƟondata, especially
concerning the type of the data. The instanƟaƟon data type safety requirement enforces that
the type of the instanƟaƟon data items must be checked by a template technique.
This requirement addresses the safe instanƟaƟon goal: the required contract between the

template and the instanƟaƟon data can be used to clearly communicate problems with the
instanƟaƟon data to users of the technique.

3.2.6. Independence of Query Language

To be usable independently of a specific source of instanƟaƟon data, a template technique
should be designed to be capable of dealing with any query language.
This is especially important since different types of instanƟaƟon data may have completely

different access mechanisms. For example, the query language for accessing an XML document
as data source can be XPath, while a template that should directly access a relaƟonal database
would use the Structured Query Language (SQL) for the same purpose.
It is important to note that this requirement can only be fulfilled to a certain degree. Allowing

a query language to alter the state of the data used to fill the template seriously injures the
separaƟon of concerns goal. This issue was discussed in detail in [143].
The independence of query language requirement addresses the broad applicability goal.
ExisƟng approaches differ in their independence of the query language. Some approaches

use a general programming language as query language, i.e., these approaches are itself strictly
bound to a parƟcular query language, which, however, allows employing arbitrary query lan-
guages using its own language means. For example, a JSP engine can use JXPath [9] within Java
to access XML documents using XPath.
Other approaches have a fixed query language that is capable of operaƟng on different meta-

models. An example for this approach is XPAND [56]. In these approaches, the query language
itself delivers the flexibility of accessing mulƟple instanƟaƟon data sources.

3.3. Proposal of an Architecture fulfilling the Requirements

Based on the outlined requirements, we propose an architecture that enables safe template
processing [82]. The architecture consists of six soluƟon elements, which are addressing the
various requirements described in SecƟon 3.2. In the following, the meaning of each element
of the architecture is explained in detail. As the architecture itself is independent of a parƟcular
target language, the descripƟons can be applied to any implementaƟon of the architecture.
The soluƟon elements can be assigned to the life cycle phases introduced in SecƟon 2.1.2.

InformaƟon is passed between the parƟcular soluƟon elements from elements in earlier life
cycle phases to laƩer ones. Figure 3.5 shows the soluƟon elements, their assignment to life
cycle phases and the flow of informaƟon between the elements. The relaƟons between the
soluƟon elements and the requirements are shown in Figure 3.6.
The Slot Markup Language Design process creates the basis for the template technique: the

slot markup language itself. Both concrete syntax and semanƟcs must be designed carefully
to allow other soluƟon elements to rely on it. This process must deliver a grammar for the

57

3. Safe Template Processing

� Design � AdaptaƟon � Authoring � InstanƟaƟon

Figure 3.5.: The Proposed Architecture

language elements in the slot markup language in a machine-readable form. The design of the
slot markup language can be considered a part of the design phase of a template technique.

The requirements PreservaƟon, Coverage, Expressiveness and Independence of Query Lan-
guage had substanƟal influence on the Slot Markup Language Design. It therefore contributes
to the goals of Safe Authoring, SeparaƟon of Concerns, Broad Applicability, and UƟlizaƟon of
ExisƟng Standards.

If the target languages to be produced by the template technique are restricted to be XML
dialects, the machine-readable form of the slot markup language grammar would preferably be
an XML Schema. Chapter 4 describes the design of a slot markup language targeƟng arbitrary
XML dialects in detail.

Next, we propose a Constraint SeparaƟon component, which adapts the template technique
to a parƟcular target language by combining the grammars of the slot markup language and the
target language and transforming them into the grammar of the template language and a set
of instanƟaƟon data constraints. This component is part of the adaptaƟon phase of a template
technique.

The design of the Constraint SeparaƟon largely depends on the PreservaƟon requirement and
addresses the goals of Safe Authoring and UƟlizaƟon of ExisƟng Standards. The component is
described in more detail in SecƟon 5.1.

58

3.3. Proposal of an Architecture fulfilling the Requirements

Figure 3.6.: RelaƟons between Requirements and SoluƟon Elements

The Template ValidaƟon component applies the template language grammar produced by
the Constraint SeparaƟon process to check the validity of the templates created by an author. It
belongs to the authoring phase. A successful validaƟon asserts the author that the templatewill
instanƟate into the target language as long as the instanƟaƟondata complies to the instanƟaƟon
data constraints emiƩed by the Constraint SeparaƟon.
The component performing the Template ValidaƟon is influenced by the requirement Preser-

vaƟon, i.e., it addresses the goals of Safe Authoring and UƟlizaƟon of ExisƟng Standards. A
detailed descripƟon of the component can be found in SecƟon 5.2.
A validated template can be used by the Template InstanƟaƟon process to produce a docu-

ment from the target language within the instanƟaƟon phase. For the instanƟaƟon, instanƟa-
Ɵon data is needed, which is delivered by the InstanƟaƟon Data EvaluaƟon process.
The template engine, the component performing the Template InstanƟaƟon process, is de-

termined by the requirements of Expressiveness, Independence of Query Language and Preser-
vaƟon. It therefore addresses the goals of SeparaƟon of Concerns and Broad Applicability. A
detailed descripƟon of an efficient template engine design is given in SecƟon 6.2.
As alreadymenƟoned, the instanƟaƟon data consumed by the Template InstanƟaƟon process

is delivered by the InstanƟaƟon Data EvaluaƟon process, which is fetching the data from some
instanƟaƟon data source.
The Independence of Query Language requirement is the main determinant for the compo-

nent implemenƟng this evaluaƟon process. The component therefore contributes to the Broad
Applicability goal. A design for this component is introduced in SecƟon 6.1.
The InstanƟaƟon Data EvaluaƟon only delivers instanƟaƟon data from a data source, but is

not capable of asserƟng its properƟes; instead, the InstanƟaƟon Data ValidaƟon process is re-
sponsible for these asserƟons.
Obviously, the component implemenƟng the InstanƟaƟon Data ValidaƟon process depends

on the InstanƟaƟon Data Type Safety requirement and addresses the Safe InstanƟaƟon goal.
The component is described in detail in SecƟon 6.3. An alternaƟve approach for addressing
the same requirements and goals is the Template Interface GeneraƟon approach described in
SecƟon 6.3.2.

59

3. Safe Template Processing

3.4. Conclusion

This chapter analyzed the problems introduced in SecƟon 1.3 in order to define goals for the
approach to be developed by this thesis. The goals have been used to set up a number of re-
quirements. Based on the requirements, an architecture has been proposed that is (for the
moment, presumably) fulfilling the requirements and therefore helps reaching the goals. The
relaƟons between the goals, the requirements and the soluƟon’s elements have been discussed
in detail, which is important for understanding tradeoffs made during the design and the imple-
mentaƟon of the approach.
The following chapters are structured as follows. Chapter 4 discusses the design of a slot

markup language. Chapter 5 describes the soluƟon elements of the architecture that are as-
signed to the adaptaƟon phase or the authoring phase. Finally, Chapter 6 discusses the solu-
Ɵon elements assigned to the instanƟaƟon phase. These relaƟons are illustrated in Figure 3.7.
Please note that starƟng with Chapter 4, the thesis deals with XML target languages, thereby
restricƟng the general discussions and proposals made so far to the XML technological space.

Figure 3.7.: RelaƟons between the SoluƟon Elements and the Following Chapters

60

4
Design of a Universal, Syntax- and
SemanƟcs-Preserving Slot Markup

Language

Ein Loch ist da, wo etwas nicht ist.

Kurt Tucholsky, 1931 [184]

One of the most important steps in the implementaƟon of the approach proposed in Chap-
ter 3 is the design of a slot markup language. The SeparaƟon of Concerns goal proposed in
SecƟon 3.1.3 requires the slot markup language to enable the user to incorporate the template
engine without having to violate the intended separaƟon of concerns. Thus, the design of this
language determines whether the architecture is acceptable for a given purpose. Furthermore,
the design of the slot markup language influences the soluƟon elements of the approach as de-
scribed in SecƟon 3.3. The template engine must be implemented depending on the features
of the slot markup language. In addiƟon to this, the expressive power of the grammar needed
to describe the template language also depends, besides on the target language, on the design
of the slot markup language. An example for such a language, named XML Template Language
(XTL) is shown in detail in this chapter.
SecƟon 4.1 explains the decisionsmadeduring the design of the XTL. The following SecƟon 4.2

introduces the language features that allow for creaƟng XML document character data, whereas
SecƟon 4.3 shows features for the condiƟonal or repeated inclusion of template fragments. Sec-
Ɵon 4.4 introduces macros, which enable reuse within XTL templates. Two special XTL features,

61

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

namely realms and bypassing, are explained in SecƟon 4.5. Furthermore, SecƟon 4.6 outlines
how the semanƟcs of XTL can be described translaƟonally in relaƟon to XSL-T. Finally, Sec-
Ɵon 4.7 discusses the applicaƟon of XTL to a different domain, namely as a schema language
for the validaƟon of XML documents.

4.1. General Design Decisions

AsmenƟoned in SecƟon 1.3, most template techniques available today are not guaranteeing the
wellformedness of instanƟated templates. In order to fulfill the goal of safe authoring, the well-
formedness of the instanƟaƟon result must be guaranteed. There are several ways to achieve
this, which can be divided into syntax-preserving and syntax-destrucƟng approaches, as intro-
duced in SecƟon 2.5.1.
Syntax-destrucƟng approaches have the disadvantage of being hard to implement (as most

of the tools have to be reimplemented to reflect the template language syntax) but oŌen offer
a template language with slightly improved readability. Syntax-preserving approaches have the
advantage of enabling the reuse of exisƟng tools (i.e., incidentally also addressing the UƟlizaƟon
of ExisƟng Standards goal) for the syntax of the target language. The readability of these tem-
plate languages can oŌen be improved by lightweight changes like adjustments of the syntax
highlighƟng for the slot markup parts of the template language.
It has been decided that XTL should be a syntax-preserving slot markup language. The lan-

guage feature that should be used by XTL is the XML namespace http://research.sap.
com/xtl/1.0 parƟcularly reserved for the XTL. Thus, XTL templates are wellformed XML
documents that contain slots designated by nodes that belong to the XTL namespace. In ad-
diƟon to asserƟng the wellformedness of the instanƟaƟon results, using an XML namespace
and refraining from non-XML slot markup syntax enables the use of standard XML schema lan-
guages (like XML Schema [59; 180; 26]) to describe the template language grammar in the first
place.
Next, the expressiveness of XTL had to be decided. Therefore, it was necessary to define

which features should be supported by the language. Basically, these features fall into one of
three categories: features supporƟng the creaƟon of XML nodes, features allowing to control
the instanƟaƟon and features for the reuse of template fragments. The design of the parƟcular
features is described in SecƟon 4.2, 4.3 and 4.4, respecƟvely.
Several addiƟons to the XTL language have been considered. Basically, they can be grouped

into two categories: elements which may be added without injuring the safe authoring ap-
proach and elements that will seriously harm this approach.

Syntax

The normaƟve definiƟon of XTL is the XML Schema document XTL.xsd. As the XML Schema
syntax itself is very verbose, the syntax of the elements is explained textually instead of by
showing fragments of the schema. The complete schema can be found in Appendix A.1.

62

4.1. General Design Decisions

SemanƟcs

For the core language elements of XTL, a denotaƟonal semanƟcs for the instanƟaƟon is given
below. This semanƟcs is given as a Haskell [182] program. It operates on a simplified XML
model that uses the type shown in Figure 4.1 to represent XML documents. This data type
closely resembles the XML data model introduced in SecƟon 2.1.3.

data Node =
Text String |
Comment String |
Element QName (Map QName String) [Node]

LisƟng 4.1: RepresentaƟon of XML documents in the InstanƟaƟon SemanƟcs

Please note that the QName is represenƟng a triple consisƟng of three strings: a prefix, a
local name and a namespace URI, i.e., it extends a qualified name in the sense of [29] with
the capability of keeping the prefix. An example for a QName would be the triple (”xtl”,
”text”, ”http://research.sap.com/xtl/1.0”).
Furthermore, the denotaƟonal semanƟcs accesses instanƟaƟon data using a clearly defined

interface named IDS. The interface is defined using a Haskell class and is shown in LisƟng 4.2.
It basically consists of five funcƟons which are explained at the parts of the semanƟcs where
they are used.

type IDS a = (a -> String -> String, a -> String -> [a], a -> String
-> Bool, a -> String -> [Node], a)

evalText :: IDS a -> (a -> String -> String)
evalText (text, _, _, _, _) = text

evalForEach :: IDS a -> (a -> String -> [a])
evalForEach (_, forEach, _, _, _) = forEach

evalIf :: IDS a -> (a -> String -> Bool)
evalIf (_, _, if_, _, _) = if_

evalInclude :: IDS a -> (a -> String -> [Node])
evalInclude (_, _, _, include, _) = include

root :: IDS a -> a
root (_, _, _, _, root) = root

LisƟng 4.2: DefiniƟon of the IDS class

The denotaƟonal semanƟcs starts with the funcƟon instantiateDocument shown in
LisƟng 4.3. This funcƟon takes an InstanƟaƟonData Source (IDS) and a representaƟon of an XML
document (serving as template) and yields the instanƟated template. This funcƟon triggers the

63

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

instanƟaƟon by calling the funcƟon instantiateNodes on the children of the root node
(which can, by definiƟon, never be an element defined by XTL).
The funcƟon instantiateNodes has a quite complicated signature: it takes three argu-

ments and delivers a 3-tuple as result. The first parameter is a map of macros, which is ex-
plained in more detail in the SecƟons 4.4.1 and 4.4.2. The second parameter is the IDS needed
to evaluate instanƟaƟon data. The third parameter is the list of nodes to be instanƟated. The
3-tuple returned by the funcƟon contains a (possibly modified) map of macros, a mapping from
expanded names to strings represenƟng a set of aƩributes and a list of nodes created during
the instanƟaƟon. The funcƟon takes the first element from the list of nodes to be instanƟated
and processes it by calling the instantiateNode funcƟon. AŌerwards, it calls itself on the
remainder of the list. The return value is created from the result of both calls by combining the
returned aƩributes and concatenaƟng the returned children.

type AttrMap = Map QName String
type MacroMap = Map String [Node]

instantiateDocument :: IDS p -> Node -> Node
instantiateDocument ids (Element qn attributes children) =

let
(_, attributes1, children1) = instantiateNodes ids (root

ids) empty children
in

Element qn (union (transformNamespaceAttributes attributes)
attributes1) children1

instantiateNodes :: IDS p -> p -> MacroMap -> [Node] -> (MacroMap,
AttrMap, [Node])

instantiateNodes ids context macros (node:further) =
let

(macros1, attributes1, children1) = instantiateNode ids
context macros node

(macros2, attributes2, children2) = instantiateNodes ids
context macros1 further

in
(macros2, attributes1 ‘union‘ attributes2, children1 ++

children2)
instantiateNodes ids context macros [] = (macros, empty, [])

instantiateNode :: IDS p -> p -> MacroMap -> Node -> (MacroMap,
AttrMap, [Node])

LisƟng 4.3: Preamble of the DenotaƟonal InstanƟaƟon SemanƟcs

The instantiateNode funcƟon has a signature similar to that of instantiateNodes,
but takes only a single node as its third parameter. The implementaƟon of that funcƟon is given
below in the SecƟons 4.2.1 to 4.5.2. The treatment of text, comment nodes and element nodes
is shown in LisƟng 4.4. Since there is a special treatment of elements assigned to the bypassing

64

4.2. CreaƟon of Character Data

namespace explained in SecƟon 4.5.2, a boolean guard is used to restrict the element processing
by these default rules to elements not assigned to the bypassing namespace. Elements from
the XTL namespace are treated by special rules, which are shown below, but are to be found
before the default rules in the complete semanƟcs.

instantiateNode ids context macros (Text text) = (macros, empty,
[Text text])

instantiateNode ids context macros comment@(Comment _) = (macros,
empty, [comment])

instantiateNode ids context macros (Element qn@(QN prefix
namespaceURI localName) attributes children) | not (isBypassURI
namespaceURI) =
let

(macros1, attributes1, children1) = instantiateNodes ids
context macros children

in
(macros1, empty, [Element qn (union attributes attributes1)

children1])

LisƟng 4.4: SemanƟcs for Text, Comment and Element Nodes

Examples

Since XTL has been designed to fulfill the requirement of independence of the query language,
the query language is arbitrary. In the examples below, XPath is used as the query language.
As the instanƟaƟon data, the purchase order example document po.xml (from [59], see also
SecƟon A.3) is used. This means that the values of the select aƩributes below must be read
as XPath expressions targeƟng po.xml.

4.2. CreaƟon of Character Data

For each XML node type (like element, comment, aƩribute etc.), there could have been a corre-
sponding XTL language feature allowing to dynamically create the node from the instanƟaƟon
data insteadof staƟcally including it in the template. Fully supporƟng this 1:1-relaƟonshipwould
violate the separaƟonof concerns goal, as it would allow the arbitrary creaƟonof element nodes
(idenƟfied via their names) from instanƟaƟon data.
As element nodes are not character data in the sense of [28, SecƟon 2.4], but rather markup,

they should never be subject to dynamic creaƟon. The same is true for aƩribute names. On
the other hand, text nodes and aƩribute values are character data in an XML document, and
their creaƟon from instanƟaƟon data must therefore be supported by the XTL. Therefore, XTL
supports the dynamic creaƟon of text as described in SecƟon 4.2.1 and the dynamic creaƟon of
aƩribute values as described in SecƟon 4.2.2, but does not offer a feature to dynamically create
elements. An excepƟon to this laƩer statement is the dynamic inclusion of XML fragments as
described in SecƟon 4.2.3, where the drawbacks of this feature are explained as well.

65

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

The dynamic creaƟon of comments and processing instrucƟons would be possible, but has
not been included in the current version of XTL.

4.2.1. xtl:text
There are basically four design opƟons for an instrucƟon intended to create a text node. First,
an element of the target language can be used for that purpose—the instanƟaƟon data would
then be denoted via an aƩribute of that element (e.g., XMLC uses HTML’s span tag with its id
aƩribute for that purpose). Second, an aƩribute at the parent element could theoreƟcally be
used, but this aƩribute has to denote several things: where to insert the text node, if mulƟple
children exist, and where to get the instanƟaƟon data from. Third, a comment could be used to
denote the posiƟon of the text node to be created—the comment content could then be used
to denote the instanƟaƟon data. Finally, the slot markup language could contain an instrucƟon
solely designed for the purpose of creaƟng text nodes.
The reuse of a target language element is not possible in a generic slot markup language,

as the target language is arbitrarily exchangeable by definiƟon. Furthermore, the use of an
aƩribute at the parent element would severely harm the understandability of the XML tem-
plate and in addiƟon to that, the posiƟon at which the text node is to be inserted must be
updated together with the content of the element, which is a potenƟal source of errors. The
third opƟon—abusing comments for the creaƟon of text nodes—contradicts the requirement
of preservaƟon, as comments are not enforceable using XML schema languages.
Therefore, XTL follows the straighƞorward approach and contains an instrucƟon xtl:text

that is replaced with instanƟaƟon data during the instanƟaƟon.

Syntax

The xtl:text element supports two aƩributes: one for the descripƟon of the instanƟaƟon
data to be used to replace the element and one for the support of realms, which is described in
detail in SecƟon 4.5.1.
The select aƩribute contains a string of the query language which is passed to the instan-

ƟaƟon data evaluator. The string is evaluated within a certain context: if the xtl:text is not
contained in any xtl:for-each instrucƟon, the context is the enƟrety of the instanƟaƟon
data. For the treatment of xtl:text within xtl:for-each, refer to the descripƟon of
xtl:for-each in SecƟon 4.3.2.

SemanƟcs

In LisƟng 4.5, the funcƟon evaluateText is used to determine the instanƟaƟon data item to
be used for replacing the xtl:text instrucƟon. In order to prevent xtl:text to be used to
create markup, the instanƟaƟon data item evaluated must be processed in the way described
in [28, SecƟon 2.4], i.e., all ampersand characters & and the leŌ angle bracket < must be re-
placed by the strings & and <, respecƟvely, by all valid XTL engine implementaƟons.
In the denotaƟonal semanƟcs, this escaping process is performed by the call to the funcƟon
escapeText.

66

4.2. CreaƟon of Character Data

The evaluateTextmethod has to return a string value. The conversion of non-string val-
ues returned by the evaluaƟon into a string value is up to the concrete implementaƟon of this
funcƟon. For XPath, a natural choice would be to follow XSL-T in its use of the XPath funcƟon
string to convert the query result into a boolean value [38, SecƟon 4.2].

instantiateNode ids context macros (Element (QN _”text”
”http://research.sap.com/xtl/1.0”) attributes _) =
let

selectExpr = attributes ! (QN ”” ”select” ””)
in

(macros, empty, [Text (escapeText (evalText ids context
selectExpr))])

LisƟng 4.5: SemanƟcs of xtl:text

Example

LisƟng 4.6 shows howxtl:text could be used to create a text node—in this case as a subnode
to the name element literally contained in the template.

Template

<?xml version=”1.0”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<name><xtl:text select=”/purchaseOrder/shipTo/name”/></name>
</sample>

InstanƟaƟon Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<name>Alice Smith</name>
</sample>

LisƟng 4.6: Example Use of xtl:text

4.2.2. xtl:attribute
CreaƟng aƩributes is substanƟally more complicated than creaƟng text. Basically, two opƟons
arise. First, the slot may be marked up using the aƩribute value itself (e.g., via a special syntax
like in href=”$url”). This has the advantage of being easy to read, but the problem that
the special syntax must be encoded by the author if it is used without being meant as slot
markup. The second opƟon is to use an XML element to dynamically create the aƩribute from
instanƟaƟon data. This refrains the user from encoding any special markup: if the aƩribute
exists at the element, it has to be taken into the instanƟated template as is. The decision to
make XTL use the second opƟon via an xtl:attribute element as defined here supports
the goal of Safe Authoring, as the author is freed from dealing with encoding special markup.

67

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

The SeparaƟon of Concerns goal is not affected by this decision, as xtl:attribute only
allows the dynamic creaƟon of the aƩribute value, but not of the aƩribute name.
The construcƟon of aƩributes is supported by the XTL using the element xtl:attribute,

which is adding an aƩribute to its parent element. The aƩribute has a fixed name (i.e., the
name is not taken from the instanƟaƟon data) and a value taken from the instanƟaƟon data. In
LisƟng 4.8, xtl:attribute is used to create a date aƩribute at the order element.

Syntax

The xtl:attribute element supports four aƩributes. As with xtl:text, one of the at-
tributes is for the support of realms, which is described in detail in SecƟon 4.5.1.
The name aƩribute defines the name of the aƩribute to be created by xtl:attribute.

Its value must be a QName, which allows for inserƟng qualified and unqualified aƩributes. As
already menƟoned above, the value is staƟc, i.e., it is not possible to create an aƩribute with a
name taken from the instanƟaƟon data.
As xtl:text, xtl:attribute supports the select aƩribute. Its value is used to get

the instanƟaƟon data to be used as the aƩribute value. Again, this string is evaluated within a
certain context: if the xtl:attribute is not contained in any xtl:for-each instrucƟon,
the context is the enƟrety of the instanƟaƟon data. For the treatment of xtl:attribute
within xtl:for-each, refer to the descripƟon of xtl:for-each in SecƟon 4.3.2.
Finally, a mode aƩribute could be used to define the precedence of an aƩribute created by

xtl:attribute compared to a literally specified aƩribute of the same QName. By default,
the literally contained aƩribute would be overwriƩen. Using this aƩribute, it is possible, for
example, to append the dynamically created value to the literal one. As this funcƟonality is
possibly harming the requirement of preservaƟon, its use is only allowed if the aƩribute to be
created is defined to be of the XML Schema type String.

SemanƟcs

In LisƟng 4.7, the funcƟon evaluateText is reused to determine the instanƟaƟon data item
to be used as the value for the aƩribute to be created. In order to preventxtl:attribute to
create mulƟple aƩributes (an aƩack typically used against Web applicaƟons known as markup
injecƟon), the evaluated instanƟaƟon data must be processed in the way described in [28, Sec-
Ɵon 2.4]. This is similar to the processing in xtl:text, but in addiƟon to the replacements
made there, single quotes ’ and double quotes ”must also be replaced by the strings '
and ", respecƟvely. This escaping is performed by the call to the funcƟon escapeAt-
trValue in LisƟng 4.7.
The processing of themode aƩribute is not included in the denotaƟonal syntax for readability

reasons.

instantiateNode ids context macros (Element (QN prefix ”attribute”
”http://research.sap.com/xtl/1.0”) attributes _) =
let

name = attributes ! (QN ”” ”name” ””)
selectExpr = attributes ! (QN ”” ”select” ””)

68

4.2. CreaƟon of Character Data

in
(macros, singleton (mkQName name) (escapeAttrValue (evalText

ids context selectExpr)), [])
where

mkQName :: String -> QName
mkQName s = case elemIndex ’:’ s of

Nothing -> QN ”” s ””
Just idx -> QN ”” (drop (idx+1) s) (take (idx-1) s)

LisƟng 4.7: SemanƟcs of xtl:attribute

Example

In LisƟng 4.8, the xtl:attribute element is used to create a data aƩribute at the ele-
ment containing the xtl:attribute, namely the order element literally contained in the
template.

Template

<?xml version=”1.0”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<order>
<xtl:attribute name=”date”

select=”/purchaseOrder/@orderDate” />
</order>

</sample>

InstanƟaƟon Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<order date=”1999-10-20”/>
</sample>

LisƟng 4.8: Example Use of xtl:attribute

4.2.3. xtl:include
XTL offers an xtl:include element that can be used to dynamically include complete XML
fragments (consisƟng of mulƟple XML nodes) into the instanƟaƟon result.
Strictly speaking, xtl:include is also a parƟal violaƟon of the independence of query

language requirement, as it can not be asserted that every query language is capable of de-
livering an XML fragment that could be inserted by the template engine. Despite of this, the
xtl:include statement has been added for two reasons: fragment inclusion is a very pow-
erful language feature and query languages not capable of delivering XML fragments could be
adapted to create XML from query results.
Evenmore quesƟonable is the fact that xtl:include can be used to generate markup and

character data. This may violate the requirement of separaƟon of concerns. Therefore, the

69

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

xtl:include element is not included in the subset of XTL supported by the safe authoring
approach (for details, see SecƟon 5.1).

Syntax

The xtl:include element supports the same two aƩributes as xtl:text: a select at-
tribute for the descripƟon of the instanƟaƟon data to be used to replace the element and one
for the support of realms, which is described in detail in SecƟon 4.5.1.

SemanƟcs

In LisƟng 4.9, the funcƟon evaluateInclude is reused to determine the instanƟaƟon data
item to be used as the value for the aƩribute to be created. This funcƟon has to return nodes of
an XML document, therefore there is no need for escaping special XML characters: they must
already have been replaced in the instanƟaƟon data.

instantiateNode ids context macros (Element (QN _ ”include”
”http://research.sap.com/xtl/1.0”) attributes _) =
let

selectExpr = attributes ! (QN ”” ”select” ””)
in

(macros, empty, evalInclude ids context selectExpr)

LisƟng 4.9: SemanƟcs of xtl:include

Example

In LisƟng 4.10, the xtl:include element is used to include all name elements together with
the contained text node from po.xml into the instanƟated template. Please note that this
example shows that character data as well asmarkup are created using this instrucƟon.

Template

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:include select=”//name”/>
</sample>

InstanƟaƟon Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<name>Alice Smith</name>
<name>Robert Smith</name>

</sample>

LisƟng 4.10: Example Use of xtl:include

70

4.3. CondiƟonal and Repeated Inclusion of Template Fragments

4.3. CondiƟonal and Repeated Inclusion of Template Fragments

Following the argumentaƟon in SecƟon 3.2.4, there is a need to support the condiƟonal and
repeated inclusion of template fragments in order to fulfill the expressiveness requirement.
Obviously, both features have their counterparts in general purpose programming languages
like Java.

4.3.1. xtl:if

Typical condiƟonal statements include simple if statements (with or without else branches),
expanded if statements (with mulƟple condiƟons like if...elseif...) and switch state-
ments. If one abstracts from the concrete syntax, these statements can be classified by how
many of their branches can be selected. For example, a standard if...then...else...
statement chooses exactly one of the two branches, whereas the switch statement in Java
may select none, one or more branches (mostly depending on the use of break statements
within the branches).
The independence of query language and the preservaƟon requirement prohibit the introduc-

Ɵon of a statement that allows the selecƟon ofmulƟple branches into XTL. The first requirement
prevents deciding howmany branches can be selected. The second requirement would be hard
to fulfill in the presence of such a statement as all combinaƟons of branches must be checked
for their validity within the target language.
Therefore, XTL can only support condiƟonal inclusion statements that select atmost one of its

branches. This only requires that the content of each branch is valid within the target language.
From the syntacƟcal point of view, it must be decided whether the condiƟonal statement

should be implemented as an aƩribute (like in TAL) or as an element (comparable to the if
statement in XSL-T). The second approach is more comfortable, but also harder to implement.
In fact, the current XTL version only supports a very simple xtl:if statement that only

allows one branch to be included or not.

Syntax

The xtl:if element supports the two aƩributes also known from xtl:text: one for the
descripƟon of the instanƟaƟon data to be used to replace the element and one for the support
of realms, which is described in detail in SecƟon 4.5.1.
The select aƩribute contains a string from the query language that is passed to the instan-

ƟaƟon data evaluator. The string is evaluated within a certain context: if the xtl:if is not
contained in any xtl:for-each instrucƟon, the context is the enƟrety of the instanƟaƟon
data. For the treatment of xtl:if within xtl:for-each, refer to the descripƟon of xtl:
for-each in SecƟon 4.3.2.
As opposed to the XTL elements described above, the xtl:if element is not declared to be

empty, but rather allows a sequence of arbitrary elements as its content. These elements are
the content that is condiƟonally included in the instanƟated template, depending on the result
of the evaluaƟon of the select aƩribute. The children of xtl:if are evaluated during the

71

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

instanƟaƟon, i.e., other XTL statements can be included. This also includes the use of xtl:at-
tribute, which allows the condiƟonal creaƟon of aƩributes.

SemanƟcs

In LisƟng 4.11, the funcƟon evaluateIf is used to determine the instanƟaƟon data item
needed to decide whether the children of the xtl:if element are processed and inserted
into the instanƟated template or not.
Since this decision has two alternaƟves, the evaluateIf method has to return a boolean

value. It is up to the concrete implementaƟon of the evaluateIf funcƟon whether true or
false has to be returned if the query string does not evaluate into a boolean value. For XPath,
a natural choice would be to follow XSL-T in its use of the XPath funcƟon boolean to convert
the query result into a boolean [38, SecƟon 4.3].
If the evaluaƟon of the instanƟaƟon data item into a boolean value yields true, the content

of the xtl:if element is processed by the instantiateNodes funcƟon and the result of
this processing becomes the result of processing the xtl:if element. If the evaluaƟon yields
false, an empty aƩribute map as well as an empty child list is returned.

instantiateNode ids context macros (Element (QN _ ”if”
”http://research.sap.com/xtl/1.0”) attributes children) =
let

selectExpr = attributes ! (QN ”” ”select” ””)
in

if (evalIf ids context selectExpr)
then

instantiateNodes ids context macros children
else

(macros, empty, [])

LisƟng 4.11: SemanƟcs of xtl:if

Example

An example for xtl:if is shown in LisƟng 4.12, which also shows that an else branch can be
simulated with the most query languages.

Template

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:if select=”count(//items/item)=2”>
<fulfilled id=”1”/>

</xtl:if>
<xtl:if select=”not(count(//items/item)=2)”>

<fulfilled id=”2”/>
</xtl:if>

</sample>

72

4.3. CondiƟonal and Repeated Inclusion of Template Fragments

InstanƟaƟon Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<fulfilled id=”1”/>
</sample>

LisƟng 4.12: Example Use of xtl:if

4.3.2. xtl:for-each
In typical programming languages, especially in languages following an imperaƟve or object-
oriented paradigm, a variety of statements for the repeated execuƟon of fragments can be
found. These statements can be classified into being controlled by condiƟons, by a counter
or by a collecƟon.
CondiƟon-controlled statements are typically classified by the Ɵme at which the condiƟon is

evaluated: at the start of the statement (in Java represented by a mere while statement) or at
its end (in Java represented by thedo...while statement). The statementsmay also support
an opƟon for an early exit, which allows the repeƟƟon to be immediately exited.
The condiƟon-controlled statements are typically used to make repeƟƟons depend on evalu-

aƟon results obtained inside the statement. As there is no possibility to perform calculaƟons in
XTL itself, such a statement does hardly make sense.
Count-controlled statements can be considered a special form of collecƟon-controlled state-

ments, if collecƟons of a given size (corresponding to count) can be constructed.
SyntacƟcally, the situaƟon is similar to xtl:if: the statement for repeated inclusion can be

implemented as an aƩribute (like in TAL) or as an element.
For that reasons, XTL only supports one statement for the repeated inclusion of template

fragments, namely xtl:for-each. Currently, there is no statement for an early exit. Thus,
XTL is quite similar to XSL-T in its support for repeƟƟon.

Syntax

Thextl:for-each element supports four aƩributes: one for the descripƟon of the instanƟa-
Ɵon data item to be used as the collecƟon for controlling the repeƟƟon, two for the specificaƟon
of ordering the collecƟon before using it and one for the support of realms, which is described
in detail in SecƟon 4.5.1.
The select aƩribute contains a string from the query language that is passed to the in-

stanƟaƟon data evaluator. The string is evaluated within a certain context: if the xtl:for-
each is not contained in any xtl:for-each instrucƟon, the context is the enƟrety of the
instanƟaƟon data. For the treatment ofxtl:for-eachwithinxtl:for-each, refer to the
semanƟcs of xtl:for-each described below.
The order-by aƩribute also contains a string from the query language that is intended to

be evaluated by the instanƟaƟon data evaluator. The result is used to sort the elements of the
collecƟon obtained from the select aƩribute. The order aƩribute determines whether the
elements should be sorted in ascending or descending order.

73

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

Differently from the XTL elements described above, the xtl:for-each element is not de-
clared to be empty, but rather allows a sequence of arbitrary elements as its content. For
obvious reasons, the use of xtl:attribute as a (direct) child is prohibited, nevertheless,
xtl:attribute elements may be (indirect) descendants of xtl:for-each elements.
The children of xtl:for-each are the content that is to be repeated in the instanƟated

template, depending on the result of the evaluaƟon of the select aƩribute.

SemanƟcs

In LisƟng 4.13, the funcƟon evaluateForEach is used to determine an instanƟaƟon data
item collecƟon. If the result returned by evaluaƟng the query string taken from the select
aƩribute is not a collecƟon, it is the responsibility of the concrete implementaƟon of evalu-
ateForEach to convert it into a list (which may be empty).
The collecƟon is interpreted as a list of contexts, as they are passed as an argument to the

evaluateText, evaluateInclude, evaluateIf and evaluateForEach funcƟons.
Thus, xtl:for-each is the only XTL element that is capable of changing the context which
determines the root for the evaluaƟon of select aƩributes.
OpƟonally, it may be necessary to sort the collecƟon returned by evaluateForEach. This

happens if an order-by aƩribute has been specified. The value of this aƩribute is evaluated
by calling evaluateText for each of the elements in the collecƟon as context and sorƟng the
collecƟon corresponding to the returned values.
The content of the xtl:for-each element is evaluated once for each element from the

collecƟon by calling instantiateNodes and passing the current element from the collec-
Ɵon as the context for the instanƟaƟon.
The mechanism of establishing a new context within xtl:for-each is basically similar

to the noƟon of the context item in XSL-T. As a consequence, relaƟve XPath expressions are
similarly evaluated in XTL and XSL-T.
Since the syntax disallows the use of xtl:attribute as a child of xtl:for-each, the

instantiateNodemethod returns always an empty aƩribute map for xtl:for-each.
It is also important to note that the use of the order-by aƩribute can seriously slow down

the instanƟaƟon of a template, as the whole collecƟon must be evaluated before sorƟng can
take place. If no order-by aƩribute is specified, the evaluaƟon of the collecƟon can instead
take place lazily.

instantiateNode ids context macros (Element (QN _ ”for-each”
”http://research.sap.com/xtl/1.0”) attributes children) =
let

selectExpr = attributes ! (QN ”” ”select” ””)
contexts = evalForEach ids context selectExpr
orderedContexts = orderContexts ids attributes contexts
result = map (\currentContext -> instantiateNodes ids

currentContext macros children) orderedContexts
allChildren = map (\(macros, attributes, children) ->

children) result
in

74

4.3. CondiƟonal and Repeated Inclusion of Template Fragments

(macros, empty, concat allChildren)
where

orderContexts :: IDS p -> AttrMap -> [p] -> [p]
orderContexts ids attributes contexts =

if (QN ”” ”order-by” ””) ‘member‘ attributes
then

let
orderBy = attributes ! (QN ”” ”order-by” ””)
order = findWithDefault ”ascending” (QN ””

”order” ””) attributes
ascOrdering c1 c2 = compare (evalText ids c1

orderBy) (evalText ids c2 orderBy)
ordering = (if order == ”ascending” then id else

flip) ascOrdering
in

sortBy ordering contexts
else

contexts

LisƟng 4.13: SemanƟcs of xtl:for-each

Example

In LisƟng 4.14, xtl:for-each is used to create a number of empty item elements which
have an aƩribute named price which has the value of the USPrice element corresponding
to the item.

Template

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:for-each select=”//items/item”>
<item>

<xtl:attribute name=”price” select=”USPrice/text()”/>
</item>

</xtl:for-each>
</sample>

InstanƟaƟon Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<item price=”148.95”/>
<item price=”39.98”/>

</sample>

LisƟng 4.14: Example Use of xtl:for-each

75

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

4.4. Reuse of Template Fragments

An important addiƟon is the introducƟon of a macro mechanism, as this allows to use a trans-
formaƟonal style within the template and, as a consequence, abolishes the limitaƟon of pure
prototypical templates, in which the depth of the instanƟated template is a linear funcƟon of
the depth of the template.

4.4.1. xtl:macro

Many of the slot markup languages support to reuse fragments of the template or target lan-
guage. As explained in SecƟon 2.5.7, there is a variety of design opƟons for macromechanisms.
XTL only supports the most basic noƟon of macros. Neither parameter passing nor other

advanced techniques are supported. Macros are defined using xtl:macro.

Syntax

xtl:macro supports only one aƩribute, the name aƩribute declaring the name of themacro.
This value must be a string. The content of the xtl:macro element is assigned to the name
literally. The use of xtl:macro is restricted: xtl:macro can only be used as direct child
of a template’s root element and no element nodes besides the root element and other xtl:
macro (as well as xtl:init) elements are allowed to precede it.

SemanƟcs

LisƟng 4.15 shows that instantiateNode evaluates the xtl:macro element by just re-
turning a modified map of macros, in which the value of the name aƩribute is associated with
the list of children of the xtl:macro element. No elements or aƩributes are generated by
the instanƟaƟon of xtl:macro.

instantiateNode ids context macros (Element (QN _ ”macro”
”http://research.sap.com/xtl/1.0”) attributes children) =
let

name = attributes ! (QN ”” ”name” ””)
in

(insert name children macros, empty, [])

LisƟng 4.15: SemanƟcs of xtl:macro

Example

As the definiƟon of macros does not change the instanƟated template, the use of xtl:macro
is shown below in LisƟng 4.17 together with the use of xtl:call-macro to invoke the de-
fined macro.

76

4.4. Reuse of Template Fragments

4.4.2. xtl:call-macro
In order to invoke a macro defined with xtl:macro, XTL offers the xtl:call-macro ele-
ment.

Syntax

xtl:call-macro supports only one aƩribute, the name aƩribute declaring the name of the
macro. This value must be a string. No children are allowed in xtl:macro. The use of xtl:
call-macro is unrestricted.

SemanƟcs

LisƟng 4.16 shows that the instanƟaƟon of xtl:call-macro instanƟates the children of the
xtl:macro with the same value of the name aƩribute at the locaƟon of the xtl:call-
macro element. Please note that this instanƟaƟonmay occur in a different context (i.e., within
an xtl:for-each element) than the one that was acƟve at the xtl:macro.

instantiateNode ids context macros (Element (QN _ ”call-macro”
”http://research.sap.com/xtl/1.0”) attributes _) =
let

name = attributes ! (QN ”” ”name” ””)
nodes = macros ! name

in
instantiateNodes ids context macros nodes

LisƟng 4.16: SemanƟcs of xtl:call-macro

Example

In LisƟng 4.17, xtl:macro is used to define a macro with the name simple. AŌerwards,
xtl:call-macro is used to invoke the defined macro. The lisƟng demonstrates that the
children of xtl:macro are instanƟated at the locaƟon where the macro is actually invoked
using xtl:call-macro, as the aƩribute created using xtl:attribute occurs at the par-
ent element of xtl:call-macro.

Template

<?xml version=”1.0”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:macro name=”simple”>
<xtl:attribute

name=”date”
select=”/purchaseOrder/@orderDate”/>

<date>
<xtl:text select=”/purchaseOrder/@orderDate”/>

</date>

77

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

</xtl:macro>
<order>

<xtl:call-macro name=”simple”/>
</order>

</sample>

InstanƟaƟon Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<order date=”1999-10-20”>
<date>1999-10-20</date>

</order>
</sample>

LisƟng 4.17: Example Use of xtl:macro and xtl:call-macro

4.5. Advanced Features

During the pracƟcal use of XTL in the projects SNOW and EMODE, a lot of features have been
added. Some of the features turned out to be very valuable, while others have been removed
due to unexpected problems or have been replaced by more powerful ones.
The most important advanced features are XTL’s capability to handle mulƟple instanƟaƟon

data sources using realms described in SecƟon 4.5.1 and the support for instanƟaƟon pipelines
using bypassing described in SecƟon 4.5.2.

4.5.1. Accessing mulƟple InstanƟaƟon Data Sources using Realms

It has turned out to be very beneficial to be able to access mulƟple instanƟaƟon data sources
fromwithin one template. XTL supports any number of instanƟaƟon data sources. For example,
it is possible to access several XML documents using XPath in one template. Furthermore, each
source could be accessed using a different query language, allowing to access an XML document
using XPath and an ontology using SPARQL. A combinaƟon of a data source with an instanƟaƟon
data evaluator capable of evaluaƟng the queries from the associated query language is called a
realm.

Syntax

XTL supports realms by two syntacƟcal means: a realm aƩribute and an element named
xtl:init.
The realm aƩribute can be used with all XTL elements that support the select aƩribute.

The value of therealm aƩribute is interpreted by an implementaƟonof an XTL template engine
in order to know which instanƟaƟon data evaluator is capable of interpreƟng the value of the
select aƩribute.

78

4.5. Advanced Features

The xtl:init instrucƟon can be used to iniƟalize a realm, more exactly, its assigned in-
stanƟaƟon data evaluator. xtl:init can only be used as a direct child of the template’s root
element and no elements except xtl:macro or xtl:initmay precede it.

SemanƟcs

The handling of realms has not been made part of the denotaƟonal semanƟcs of XTL in order
to keep the semanƟcs short and easy to understand. Furthermore, adding realms would not
add much value to the semanƟcs, as it would only influence the way an IDS is chosen to call its
funcƟons like evaluateText etc.
The use of mulƟple realms leads to mulƟple contexts. Each of the realms has its own context,

i.e., the evaluaƟon of an xtl:attribute element with a realm aƩribute with a value of
a uses as its context either the context set by the innermost xtl:for-each with a realm
aƩribute with the value a or the instanƟaƟon source in its enƟrety, if there is no suitable xtl:
for-each.
An implementaƟon should introduce the noƟon of a default realm, which is usedwhen a tem-

plate contains XTL elements with select aƩributes, but without explicit realm aƩributes.
The children of the xtl:init instrucƟon are passed to the instanƟaƟon data evaluator

responsible for the realm denoted by the value of the realm aƩribute of xtl:init. An XTL
template engine implementaƟon must not interpret this content in any way.

Example

LisƟng 4.18 illustrates the use of two realms within a single template. The first realm is named
po and refers to the po.xml file known from the previous examples. The second realm is
named id and is assigned to an instanƟaƟon data evaluator named identity that returns
the select aƩribute’s value in its evaluateText funcƟon and a collecƟon of length n from
its evaluateForEach funcƟon, if the corresponding select aƩribute has a value of n.
It should be noted that the inner xtl:for-each instrucƟon obviously does not change the

context that is used by the xtl:text instrucƟon with the realm aƩribute of the value po.

Template

<?xml version=”1.0”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:for-each select=”//items/item” realm=”po”>
<xtl:for-each select=”2” realm=”id”>

<item>
<xtl:text select=”productName” realm=”po”/>

</item>
<item>

<xtl:text select=”productName” realm=”id”/>
</item>

</xtl:for-each>
</xtl:for-each>

</sample>

79

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

InstanƟaƟon Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<item>Lawnmower</item>
<item>productName</item>
<item>Lawnmower</item>
<item>productName</item>
<item>Baby Monitor</item>
<item>productName</item>
<item>Baby Monitor</item>
<item>productName</item>

</sample>

LisƟng 4.18: Example Use of Realms

4.5.2. InstanƟaƟon Pipelines using Bypassing

ApplicaƟons performing complex XML transformaƟons are oŌen arranging mulƟple XML trans-
formers (like XSL-T processors) in transformaƟon pipelines, an architectural paƩern also known
as staged architecture [16]. There are two ways to arrange transformers into such a pipeline,
which are shown in Figure 4.1.
The first type, a horizontal pipeline, transforms a document XMLA into a second document

XMLB and aŌerwards into a third document XMLC. Each of the three documents can comply to
a different XML dialect, as long as none of the documents represents an XSL-T stylesheet. The
second type, the verƟcal pipeline, differs exactly in the XML dialect produced by the transfor-
maƟon of the first document XMLA: the result of this first transformaƟon is itself a stylesheet
that is then used to transform XMLB into XMLC.

Figure 4.1.: Types of XML TransformaƟon Pipelines

The first type corresponds to the pipelines typically used in Cocoon [7] to implement complex
XML transformaƟons, whereas the second type corresponds to the ideas proposed in [65] and
[64] to implement XSL-T language extensions transparently. A verƟcal XSL-T pipeline can also
be used to parƟally define the semanƟcs of XTL. This is demonstrated in SecƟon 4.6.

80

4.5. Advanced Features

Bypassing is a feature that helps wriƟng templates that are intended to be instanƟated using
a mulƟ-stage (verƟcal) pipeline of XTL instanƟaƟon engines.

Syntax

SyntacƟcally, XTL defines a special namespace URI that is parameterizable with the number of
instanƟaƟons that should be passed unƟl the element associatedwith the namespace is actually
processed. This URI has the form http://research.sap.com/xtl/1.0/bypass/n
where n is the number of XTL template engines that should be passed before the element from
this namespace should actually be processed. The number n is called generaƟon number. If n
is omiƩed, a default of 1 is assumed.

SemanƟcs

LisƟng 4.19 shows the denotaƟonal semanƟcs of the bypassing feature. This is an extension
to the default processing of elements shown in LisƟng 4.4: the difference is that the funcƟon
is guarded by the expression isBypassURI namespaceURI. This guard asserts that this
rule is only applied if the element is from a namespace complying to the namespace URI shown
above.
If the element is from a bypassing namespace, it is copied into the instanƟated template with

a namespace with a generaƟon number decreased by one. If the generaƟon number reaches
0, the element is assigned to the standard XTL namespace. The aƩributes of the element are
directly transfered to the instanƟated document, whereas the content of the element is instan-
Ɵated and the result is added as child to the element in the instanƟaƟon result.

instantiateNode ids context macros (Element (QN prefix namespaceURI
localName) attributes children) | isBypassURI namespaceURI =
let

(macros1, attributes1, children1) = instantiateNodes ids
context macros children

newNamespaceURI = transformBypassURI namespaceURI
in

(macros1, empty, [Element (QN prefix newNamespaceURI
localName) (union attributes attributes1) children1])

transformBypassURI :: String -> String
transformBypassURI uri =

if uri == ”http://research.sap.com/xtl/1.0/bypass/” ||
uri == ”http://research.sap.com/xtl/1.0/bypass/1”

then ”http://research.sap.com/xtl/1.0”
else case matchRegex (mkRegex

(”http://research.sap.com/xtl/1.0/bypass/([0-9]+)”)) uri of
Nothing ->

uri
Just nodes ->

”http://research.sap.com/xtl/1.0/bypass/” ++ show (read
(nodes !! 0) - 1)

81

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

transformNamespaceAttributes :: AttrMap -> AttrMap
transformNamespaceAttributes =

mapWithKey (\key -> \value ->
case key of

QN _ _ ”http://www.w3.org/2000/xmlns/” ->
transformBypassURI value

_ -> value)

isBypassURI :: String -> Bool
isBypassURI = isPrefixOf ”http://research.sap.com/xtl/1.0/bypass/”

LisƟng 4.19: Bypassing SemanƟcs

Example

LisƟng 4.20 shows the use of bypassing. In the first instanƟaƟon step, some element names are
collected from the instanƟaƟon data document. Furthermore, these names are used to dynam-
ically construct select aƩributes which are evaluated in the second instanƟaƟon, where the
number of elements with that parƟcular name in the instanƟaƟon data document is counted.
The example shows that XTL elements within XTL elements marked for bypassing are evalu-

ated, thereby allowing the dynamic construcƟon of queries. This feature also works over dif-
ferent query languages and greatly enhances the expressive power of the templates. However,
care should be taken as it is easy to construct unreadable templates this way. SecƟon 7.3.1
demonstrates a use case where bypassing is valuable.

Template

<?xml version=”1.0” encoding=”UTF-8”?>
<sample

xmlns:xtl=”http://research.sap.com/xtl/1.0”
xmlns:xtl-bp=”http://research.sap.com/xtl/1.0/bypass/1”>
<xtl:for-each select=”//*[starts-with(local-name(), ’item’)]”>

<count>
<xtl:attribute name=”name” select=”local-name(.)”/>
<xtl-bp:attribute name=”count”>

<xtl:attribute name=”select”
select=”concat(’count(//’,local-name(.),’)’)”/>

</xtl-bp:attribute>
</count>

</xtl:for-each>
</sample>

InstanƟaƟon Result aŌer First InstanƟaƟon

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<count name=”items”>
<xtl:attribute name=”count” select=”count(//items)” />

82

4.6. DefiniƟon of the InstanƟaƟon SemanƟcs using XSL-T

</count>
<count name=”item”>

<xtl:attribute name=”count” select=”count(//item)” />
</count>
<count name=”item”>

<xtl:attribute name=”count” select=”count(//item)” />
</count>

</sample>

InstanƟaƟon Result aŌer Second InstanƟaƟon

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<count count=”1” name=”items”/>
<count count=”2” name=”item”/>
<count count=”2” name=”item”/>

</sample>

LisƟng 4.20: Bypassing Example

4.6. DefiniƟon of the InstanƟaƟon SemanƟcs using XSL-T

The instanƟaƟon semanƟcs of XTL can also be definedusing XSL-T. Because of the fact that XSL-T
is limited to using XPath as its query language, this translaƟonal definiƟon of XTL’s semanƟcs is
restricted to the parƟcular query language XPath.
The easiest way of defining a translaƟonal semanƟcs would be to implement a single XSL-T

stylesheet that takes an XTL template and an addiƟonal XML document as instanƟaƟon data
source and outputs the instanƟated template. Unfortunately, this is not possible as XSL-T (as
it is currently defined in [107]) is not capable of dynamically evaluaƟng XPath expressions em-
bedded in its source documents. It is possible to circumvent this restricƟon in two ways. First,
an XSL-T extension funcƟon (like saxon:evaluate() implemented in [106]). Second, a ver-
Ɵcal two-stage transformaƟon process could be used to avoid the necessity of dynamic XPath
evaluaƟon.
Such a two-stage transformaƟon process is shown in Figure 4.2. The leŌ hand side shows a

template engine that transforms an XTL template using an XML instanƟaƟon data source XMLA
into an instanƟated template XMLB. The right side of the figure shows the implementaƟon of
the same process using an XSL-T processor: first, the XSL-T processor compiles the XTL template
into an XSL-T stylesheet, which can aŌerwards be used to transform XMLA into the instanƟated
template XMLB.
The stylesheet XSL-T1 represents the generic translaƟon process between XTL and XSL-T: it

writes the XPath expressions contained in the XTL template as values of select aƩributes
into the stylesheet XSL-T2. As these XPath expressions are now no longer part of the source
document, but rather of the stylesheet, they can be evaluated by a standard XSL-T processor.

83

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

Figure 4.2.: Using a VerƟcal XSL-T Pipeline to Emulate the XTL Engine

4.7. RelaƟon to Document ValidaƟon

A generic XML slot markup language like XTL can also be used to check the validity of XML
documents, i.e., as a schema language [81]. The prototypical nature of templates in general
and of XTL templates in parƟcular makes this schema language easy to learn and use. Figure 4.3
illustrates the differences between template instanƟaƟon and validaƟon against a schema.

� ValidaƟon � InstanƟaƟon

Figure 4.3.: Schema ValidaƟon and Template InstanƟaƟon

InstanƟaƟon transforms an XTL document and an instanƟaƟon data source into an instanƟ-
ated template, whereas validaƟon takes an XTL document and an XML document and answers
the quesƟon: Could this XML document be produced by the XTL document? In some specific
cases, even the reconstrucƟon of the instanƟaƟon data may be possible.
The validaƟon semanƟcs of XTL can be given denotaƟonally [81]. Another opƟon is to give a

translaƟonal semanƟcs by transforming XTL to RelaxNG. This transformaƟon can easily be im-
plemented using XSL-T. XTL as a schema language allows to define the languages that can be
defined by regular tree languages (see [81]). It is even possible to express certain aƩribute/ele-

84

4.7. RelaƟon to Document ValidaƟon

ment interdependencies in XTL, a feature missing in many other schema languages (see Sec-
Ɵon 2.1.4).

As Figure 4.3 suggests, in most cases the result of the validaƟon process will only yield a
yes/no answer. This leads to the quesƟon whether the query language terms embedded in
the select aƩributes in the XTL document used as schema are significant or opaque (see
SecƟon 2.5.5) to the validator. Whereas [81] treats the select aƩributes as opaque (which
makes them meaningless, as there is no instanƟaƟon data source supplied by the applicaƟon
using the validator), they can be used for other purposes. First, the select aƩributes could
be used to establish a link to simple types, allowing aƩribute values or text element content
to be restricted. Second, the select aƩributes could also be used to establish a mechanism
to validate staƟc semanƟcs within the instance. For example, a simple idenƟfier could be used
that is bound when it is first referenced in a select aƩribute. In subsequent references, the
current corresponding value is checked for equality against the bound value.

Giving the select aƩributes a semanƟcs may also lead to the opportunity to parƟally re-
construct the instanƟaƟon data source, as it has been suggested in Figure 4.3. An important
condiƟon that must be fulfilled by the query language is reversibility of the queries: an XPath
expression like //author/@name is clearly not reversible, as it is unclear how many nodes
have been consumed by the // operator before the author element has been found. For an
example of a reversible XPath subset, see SecƟon 6.3.2.

� ValidaƟon � InstanƟaƟon

Figure 4.4.: Similarity between Schema/Template and Instance

Comparing XTL to other schema languages like RelaxNG and XML Schema indicates a conƟn-
uum of XML Schema languages in terms of similarity between instance and schema. Similarity
between the instance and a schema/template ismainly violated in twoways: first, by the reifica-
Ɵon of elements or aƩributes using a metaelement and second, by the introducƟon of macros.
The similarity between a RelaxNG document and an instance is greater than that between an
XML Schema document and a corresponding instance, because of XML Schema’s strict disƟnc-
Ɵon between element declaraƟons and type definiƟons. Furthermore, the similarity between
an XTL document and a corresponding instance is greater than that between a RelaxNG docu-
ment and an instance, as RelaxNG enforces the reificaƟon of all elements and aƩribute names
using rng:element and rng:attribute, whereas XTL allows to literally include elements

85

4. Design of a Universal, Syntax- and SemanƟcs-Preserving Slot Markup Language

and aƩribute names. The similarity relaƟon between the menƟoned schema languages is illus-
trated in Figure 4.4.
This figure also illustrates the similar relaƟonship between transformaƟon languages and pro-

totypical template languages. Again, the similarity between an XSL-T SSM and an instance pro-
duced by it is greater than that between an XSL-T stylesheet and its corresponding result, be-
cause XSL-T SSM does not enforce a new top level document structure like XSL-T does.
According to the relaƟonships described, it should also be clear that XTL’s xtl:macro and

xtl:call-macro instrucƟons correspond to RelaxNG’s rng:define and rng:ref in-
strucƟons. Even further, these instrucƟons also correspond to the definiƟon of types in XML
Schema. When considering instanƟaƟon, XTL’s macros correspond to the template rules in an
XSL-T stylesheet.

4.8. Conclusion

This chapter dealt with the design of XTL, a broadly applicable, syntax- and semanƟcs-preser-
ving slot markup language. StarƟng with general design decisions, the various features of XTL
have been introduced by defining their syntax and semanƟcs and by giving examples for their
use. The semanƟcs has been defined denotaƟonally. As Haskell has been used to express this
denotaƟonal semanƟcs, a first implementaƟon of XTL is possible just based on this chapter. The
semanƟcs has also been given by translaƟng XTL into XSL-T, which is only possible in a two-stage
process because of technical limitaƟons of XSL-T. Finally, the relaƟon of slot markup languages
to document validaƟon has been discussed.
The precise definiƟon of the semanƟcs is a contribuƟon of this thesis, as other template tech-

niques typically do not define the semanƟcs formally. The denotaƟonal semanƟcs has also been
used to check the validity of a later Java implementaƟon of the XTL instanƟaƟon process (see
SecƟon 6.2 and 7.2).

86

5
Safe Authoring of Templates

BeƩer safe than sorry.

(English proverb)

This chapter explains the processes Constraint SeparaƟon and Template ValidaƟon from Fig-
ure 3.5, which are the processes that support the safe authoring of templates. The Constraint
SeparaƟon process, which adapts the template engine to a parƟcular target language is shown
in detail in SecƟon 5.1, where it is also described formally as a transformaƟon based on the
XML Schema formalizaƟon introduced in SecƟon 2.1.4. SecƟon 5.2 introduces the Template
ValidaƟon process, which checks the validity of a template with respect to the target language
to which the template engine has been adapted.
In the following, the target language is assumed to be defined by an XML Schema. XML

Schema is widely used for the definiƟon of XML dialects and is well-supported by a number
of tools, including validators and editors with support for both the creaƟon of XML Schema
documents and documents complying to a certain schema. Therefore, this decision directly
addresses the UƟlizaƟon of ExisƟng Standards goal.

5.1. Constraint SeparaƟon

The Constraint SeparaƟon component is responsible for converƟng the grammar of the target
language into grammars that can be used to validate templates, as well as into constraints on
the instanƟaƟon data. The inferred grammar is used by the template validator to perform the
authoring Ɵme validaƟon of the templates, whereas the instanƟaƟon data constraints are used

87

5. Safe Authoring of Templates

to check the instanƟaƟon data in the instanƟaƟon data validator. The grammar transformer is
therefore separaƟng the authoring Ɵme from the instanƟaƟon Ɵme constraints.
The separaƟon process is designed such that the conclusion illustrated in Figure 5.1 can be

drawn: if a template conforms to the template language and the instanƟaƟon data conforms
to the instanƟaƟon data constraints (both emiƩed by the Constraint SeparaƟon), then the in-
stanƟated template conforms to the target language grammar (which has been used as input
for the Constraint SeparaƟon) process. The process is amazingly simple—for a discussion of its
correctness see SecƟons 5.1.5 and 7.2.5.

� AdaptaƟon � Authoring � InstanƟaƟon

Figure 5.1.: Conclusion Enabled by the Constraint SeparaƟon Process

The Constraint SeparaƟon process described here relies on the separability of parts of a doc-
ument which could be created dynamically and parts of the documents which are always part
of the template. It is assumed that for all target languages to be created, markup is always
part of the template, whereas character data can be part of the template or subject to dynamic
creaƟon.
For declaraƟve text markup languages like XHTML, the assumpƟon stated above is reason-

able. The template author—in this scenario a Web designer—is responsible for describing the
layout and the structure of the document, which is described in XHTML by markup and char-
acter data. The content of this document is typically delivered by the applicaƟon that is using
the template to render its output. Therefore, it must also be possible to create character data
dynamically.
It is important to note that structural differences in documents of the target language can sƟll

be expressed by using XTL. However, the stated assumpƟon prevents the proposed template
approach to be used in scenarios, in which the elements of the markup itself are dynamic. An
example for such scenarios are applicaƟons that must be capable of producing arbitrary XML

88

5.1. Constraint SeparaƟon

languages, which are not known before instanƟaƟon Ɵme. These applicaƟons therefore remain
the domain of transformaƟon techniques like XSL-T.

5.1.1. Introductory Example

In the following, the separaƟon of constraints is shown in an example. The XML Schema used
for the example is the purchase order schema po.xsd (see LisƟng A.3, [59]). An instance doc-
ument for this schema is shown in LisƟng 5.1. In the lisƟng, four parts of the instance document
are shown that should be changed by the Constraint SeparaƟon process in order to allow them
to be dynamically set or to be influenced by the instanƟaƟon data. The four cases are discussed
in the following.

<?xml version=”1.0” encoding=”UTF-8”?>
<purchaseOrder

orderDate=”1999-10-20”> ¬
<shipTo country=”US”>

<name>Alice Smith</name> ­
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country=”US”>

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<comment>Hurry, my lawn is going wild!</comment> ®
<items> ¯

<item partNum=”872-AA”>
<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
<item partNum=”926-AA”>

<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>

</purchaseOrder>

LisƟng 5.1: A Purchase Order with PotenƟally Dynamic Parts Highlighted

89

5. Safe Authoring of Templates

First, the Constraint SeparaƟon process must ensure that the value of the aƩribute order-
Data ¬ in LisƟng 5.1 could be created dynamically using an xtl:attribute instrucƟon.
The same must be allowed by the Constraint SeparaƟon for the content of the name ­ ele-

ment—the XTL instrucƟon that could be used here is xtl:text.
Furthermore, an element declared to be opƟonal, like comment ®, should be replacable by

an xtl:if instrucƟon containing the same element: in this example, a comment element.
OpƟonality is declared by the underlying XML Schema, in this case po.xsd, by seƫng the
minOccurs and maxOccurs aƩributes to 0 and 1, respecƟvely.
Finally, repeatable elements, like the item elements within the items ¯ elements, should

be producable by an xtl:for-each instrucƟon with appropriate content. In this example,
appropriate means conforming to the rules for the item element. An element is considered
repeatable when the underlying XML Schema sets maxOccurs to a value greater than 1.
The Constraint SeparaƟon process should produce a template language grammar that allows

the documents in both LisƟng 5.1 and LisƟng 5.2 as instances.
What are the modificaƟons the Constraint SeparaƟon process needs to execute to transform

the target language grammar into the correspondings template language grammar? In the fol-
lowing, it is just considered how an XML Schema may look like, if it allows both documents in
the LisƟngs 5.1 and 5.2 as instances.

<?xml version=”1.0” encoding=”UTF-8”?>
<purchaseOrder xmlns;xtl=”http://research.sap.com/xtl/1.0”>

<xtl:attribute name=”orderDate” select=”date”/>
<shipTo country=”US”>

<name><xtl:text select=”shipTo/name”/></name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country=”US”>

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<xtl:if select=”length(comment) > 0”>

<comment>
<xtl:text select=”comment”/>

</comment>
</xtl:if>

<items>
<xtl:for-each select=”items/item”>

<item>
<xtl:attribute name=”partNum” select=”partNum”/>
<productName>Lawnmower</productName>
<quantity>1</quantity>

90

5.1. Constraint SeparaƟon

<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
</xtl:for-each>

</items>
</purchaseOrder>

LisƟng 5.2: A Purchase Order XTL Template

Enabling the use of xtl:attribute in order to create aƩribute values is rather easy. The
aƩribute orderDate is defined in the complex type PurchaseOrderType, which is shown
in LisƟng 5.3.

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>

<xsd:element name=”shipTo” type=”USAddress”/>
<xsd:element name=”billTo” type=”USAddress”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”items” type=”Items”/>

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date”/>

</xsd:complexType>

LisƟng 5.3: The PurchaseOrderType from po.xsd

Fortunately, the content model of the PurchaseOrderType is a sequence, so it is easy
to allow the use of xtl:attribute at its beginning. The resulƟng modified Purchase-
OrderType is shown in LisƟng 5.4. There is no use aƩribute at the definiƟon of the order-
Date aƩribute, which makes it an opƟonal aƩribute. If the aƩribute orderDate would have
been defined as required using use=’required’, the Constraint SeparaƟon process would
have to change this to use=’optional’ in order to allow the aƩribute to be omiƩed when
an xtl:attribute instrucƟon is present to create it.

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>

<xsd:element ref=”xtl:attribute” minOccurs=”0”
maxOccurs=”unbounded”/>

<xsd:element ref=”shipTo”/>
<xsd:element ref=”billTo”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element ref=”items”/>

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date”/>

</xsd:complexType>

LisƟng 5.4: The Modified PurchaseOrderType, Allowing the Use of xtl:attribute

91

5. Safe Authoring of Templates

The modified type allows the use of xtl:attribute as shown in LisƟng 5.2. However,
the modified type introduces a lot of inaccuracies. First, there is no relaƟon between the at-
tributes created using xtl:attribute instrucƟons and the set of aƩributes permiƩed on
xtl:attribute’s parent element. Second, there is no guarantee that an orderDate at-
tribute created using xtl:attribute has a value that is, as required by the original aƩribute
definiƟon, a valid value of the type xsd:date. Whereas the first problem can be addressed in
the template language grammar (i.e., it can be validated during the authoring phase), the laƩer
problem can only be addressed during the instanƟaƟon phase, as the data used to create the
aƩribute is only available at this point.
The text node in LisƟng 5.1 that has been replaced by an xtl:text in LisƟng 5.2 is defined

in the type USAddress, which is shown in LisƟng 5.5.

<xsd:complexType name=”USAddress”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”country” type=”xsd:NMTOKEN”

fixed=”US”/>
</xsd:complexType>

LisƟng 5.5: The USAddress Type from po.xsd

In order to allow the replacement of the text node by an xtl:text instrucƟon, a complex
type with mixed content could be used. An example for such a type definiƟon is shown in List-
ing 5.6.

<xsd:complexType name=”USAddress”>
<xsd:sequence>

<xsd:element name=”name”>
<xsd:complexType mixed=”true”>
<xsd:sequence>

<xsd:element ref=”xtl:text” minOccurs=”0” maxOccurs=”1”>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”country” type=”xsd:NMTOKEN” fixed=”US”/>

</xsd:complexType>

LisƟng 5.6: The Modified USAddress Type, Allowing the Use of xtl:text

92

5.1. Constraint SeparaƟon

The relaxed USAddress type allows the introducƟon of xtl:text as shown in LisƟng 5.2,
but introduces similar problems like the introducƟon of xtl:attribute above. First of all,
the mixed content model does not exclusively allow the use of either literal text or the xtl:
text instrucƟon, but rather allows a mixture of both. Second, there is again no guarantee on
the validity of the created text with respect to the originally defined type.
Allowing the use of xtl:if and xtl:for-each to surround opƟonal or repeatable ele-

ments requires introducing a choice between the original element and the respecƟve XTL in-
strucƟon. For example, to allow the use of xtl:if to surround the opƟonal comment el-
ement (see LisƟngs 5.1 and 5.2, ®), a type definiƟon like the one shown in Figure 5.7 can be
used.

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>

<xsd:element name=”shipTo” type=”USAddress” />
<xsd:element name=”billTo” type=”USAddress” />
<xsd:choice minOccurs=”0”>

<xsd:sequence>
<xsd:element minOccurs=”1” ref=”comment” />

</xsd:sequence>
<xsd:sequence>

<xsd:element ref=”xtl:if” minOccurs=”1”
maxOccurs=”1” />

</xsd:sequence>
</xsd:choice>
<xsd:element name=”items” type=”Items” />

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date” />

</xsd:complexType>

LisƟng 5.7: The Modified PurchaseOrderType, Allowing the Use of xtl:if

Again, the introducƟon of the XTL instrucƟon has opened up a number of new problems.
First of all, the syntacƟc definiƟon of xtl:if defines its content model based on an xsd:any
wildcard. Therefore, the modified type does not guarantee that the content of xtl:if is ac-
tually a comment element. For the introducƟon of xtl:for-each, there is no guarantee
that the number of evaluaƟons of the xtl:for-each instrucƟon is between the values of
minOccurs and maxOccurs of the original type. Finally, if a sequence of mulƟple opƟonal
or repeatable elements is enabled for the use of xtl:if and xtl:for-each, violaƟons of
the UPA may occur.
Theproblemsopenedupby the simple relaxaƟonof the target language grammar just demon-

strated are adressed with the means introduced in the secƟons below. SecƟon 5.1.2 introduces
the Constraint XML Schema DefiniƟon Language (CXSD), an extension of XML Schema, which
extends XML Schema in its expressive power in a way needed by the Constraint SeparaƟon pro-
cess. Furthermore, SecƟon 5.1.3 introduces the InstanƟaƟon Data Constraint language (IDC), a
very simple XML dialect that is used by the Constraint SeparaƟon process to express constraints
determined on the instanƟaƟon data. Based on these prerequisites, the Constraint SeparaƟon

93

5. Safe Authoring of Templates

process is introduced in SecƟon 5.1.4. SecƟon 5.1.5 demonstrates that the proposed process
preserves that constraints defined by the target language. Finally, SecƟon 5.1.6 describes the
implementaƟon of the Constraint SeparaƟon and SecƟon 5.1.7 introduces an extension of the
Constraint SeparaƟon process called ParƟal TemplaƟzaƟon.

5.1.2. The Constraint XML Schema Language CXSD

As shown in the example above, validaƟng a template with respect to its instanƟaƟon results
requires a powerful schema language. XML Schema itself is not powerful enough to express
the constraints that must hold in order to assert that the instanƟated template conforms to the
target language XML Schema. In other words, XML Schema is not closed under composiƟonwith
the XML Schema of XTL.
There are three reasons for this: first, the composed schemamust be able to express complex

constraints between aƩributes and elements like the one above: either some element has an at-
tribute named attr or it has a child element named xtl:attribute and a name aƩribute
with the value attr. XML Schema is not capable of expressing such complex constraints. Re-
laxNG allows to express choices between aƩributes and child elements, but is not able to ex-
press the further condiƟon on the xtl:attribute element. Schematron [99] would be ca-
pable of expressing the constraint above.
Second, the composed schema must also be able to express alternaƟves for the element

content. One of such constraints occurs when the constraint separaƟon process enables the
use of xtl:text in an element that is defined to be of a simple type in the target language
(see SecƟon 5.1.4). The constraint basically states that an element’s content is either complying
to some simple type or is an xtl:text element. Such alternaƟves are also not expressible
using XML Schema (even not using mixed content elements). RelaxNG is capable of expressing
such alternaƟves, whereas Schematron cannot express this, as it has no features to check text
nodes against simple types.
Finally, the introducƟon of xtl:if and xtl:for-each statements leads to UPA viola-

Ɵons. Therefore, it is necessary to relax the UPA constraint. This makes the resulƟng schema
harder to evaluate, but validaƟon is sƟll possible—as is shown in SecƟon 5.2—because the
unique parƟcle aƩribuƟon is sƟll intact, but its applicaƟon is delayed unƟl the evaluaƟon of
further constraints.
In order to fulfill the goal of UƟlizaƟon of ExisƟng Standards, it has been decided to add a

constraint language to XML Schema. The basic idea is to use OCL [136] constraints embedded as
annotaƟons in an XML Schema in order to strengthen its expressiveness. The resulƟng schema
language is called CXSD. Technically, the embedded constraints are always invariants in the sense
defined by the specificaƟon.
There are mulƟple reasons why the use of OCL is beneficial. First, there exist powerful im-

plementaƟons like the Dresden OCL Toolkit [183] and the implementaƟon of the Model De-
velopment Tools (MDT) [53] subproject of Eclipse. Second, the OCL language allows the easy
adaptaƟon of meta-models, which allows arbitrary capabiliƟes to be built in to the language,
e.g., the capability to check simple types.
Even further, CXSD can improve the currently unsaƟsfying transformaƟon of the UnifiedMod-

eling Language (UML) models into XML Schema [34; 21]. If the UML model is enhanced using

94

5.1. Constraint SeparaƟon

OCL constraints, which is an important technique to build concise models that could be used
in MDA processes, the constraints are typically ignored when transforming into XML Schema.
With CXSD, the constraints could simply be transformed into corresponding constraints in the
schema, thereby greatly enhancing the conformity of the transformaƟon result with the UML
model.
By design, CXSD schema is unable to relax the constraints imposed on a complying document

by its underlying XML Schema, i.e., each of the OCL constraints is restricƟng the number of com-
plying instances (or leaves it unchanged). More specifically, if a document is not complying to
the underlying XML Schema, it will also not comply to the CXSD document, while the reverse
is not true. To disƟnguish between the language accepted by a CXSD schema from that of the
underlying XML Schema, the first schema is denoted by S+ and its language therefore byL(S+),
whereas the laƩer is designated by S with its accepted language being L(S). With these no-
taƟons, the fact that CXSD only restricts the constraints contained in its underlying schema can
be formally notated as L(S+

T◦) \ L(ST◦) = ∅.
To understand the meaning of the OCL constraints which are introduced by the constraint

separaƟon process, it is necessary to consider the underlyingmetamodel. AnUML class diagram
of the metamodel is shown in Figure 5.2.

Figure 5.2.: Meta-model for the CXSD constraints

The metamodel is mostly self-explaining, as it closely resembles the Document Object Model
(DOM). The node class from DOM is represented by the MMNode class. In addiƟons to DOM’s
capabiliƟes, addiƟonal relaƟons corresponding to XPath axes have been added: for example the
capability to access the ancestors of each node that has been added to the MMNode. Further-
more, a method isValidLiteral has been added to the TextNode that allows to check
whether the text of the node is compliant to a simple type denoted by a passed QName.

95

5. Safe Authoring of Templates

As already has been stated above, all constraints in the CXSD are invariants. This makes it
unnecessary to aƩach the keyword inv to the constraints, especially since the naming of con-
straints is a part of CXSD (as already described). Furthermore, the OCL specificaƟon [136] de-
fines that invariants are relaƟve to a contextual type. In the standard use of OCL as an extension
to a UML model, this context is given using the context keyword along with a textual specifi-
caƟon of the context type. In CXSD, the context is inferred from the posiƟon of the constraint
within the XML Schema. CXSD allows constraints to be aƩached to aƩributes and elements as
well as to types. In the laƩer case, the constraint must hold for all elements complying to that
type. AddiƟonally, constraints can be added to restricƟons (which fits the fact that constraints
are restricƟve by nature), but not to extensions (as no syntax for the revocaƟon of constraints
has been defined to be part of CXSD).
The embedding of the OCL constraints into XML Schema is based on XML Schema’s appinfo

feature [180, SecƟon 3.13]. Typically, the embedding is done in aCDATA secƟon to avoid having
to escape characters like <, which are quite important in OCL. The CXSD language allows the
assignment of a simple name and a message to each constraint. The simple name is intended
to be used to denote the constraint in error messages. The message should give more details
and is proposed to be shown as a detailed error descripƟon when the constraint fails.
A complete element declaraƟon with an embedded OCL constraint is shown in LisƟng 5.8.

It shows the declaraƟon of a test element. The element declaraƟon contains an xsd:an-
notation element, which in turn contains an xsd:appinfo element having its source
aƩribute set to http://research.sap.com/cxsd/1.0. This element contains the root
element of the CXSD invariant, cxsd:inv. This element has two subelements, cxsd:ocl,
containing the OCL representaƟon of the constraint as a CDATA secƟon, and cxsd:message,
a human-readable message that is reported if the constraint fails during the CXSD validaƟon
process. The evaluaƟon of the constraint takes place whenever a node in an XML document is
successfully validated against the element declaraƟon into which it has been embedded. Then,
the context of the OCL evaluaƟon is this node.

<xsd:element name=”test”>
<xsd:annotation>

<xsd:appinfo source=”http://research.sap.com/cxsd/1.0”>
<cxsd:inv name=”restricted-atribute-count”>

<cxsd:ocl>
<![CDATA[

self.attributes->size() <= 2
]]>

</cxsd:ocl>
<cxsd:message>

At maximum, 2 attributes can be present.
</cxsd:message>

</cxsd:inv>
</xsd:appinfo>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence />
<xsd:attribute name=”a” type=”xsd:string” />

96

5.1. Constraint SeparaƟon

<xsd:attribute name=”b” type=”xsd:string” />
<xsd:attribute name=”c” type=”xsd:string” />

</xsd:complexType>
</xsd:element>

LisƟng 5.8: A complete CXSD Element DeclaraƟon with an Embedded OCL Constraint

The constraint restrains the number of aƩributes allowed at the test element to two out of
three aƩributes a, b and c that are allowed by the schema itself. Therefore, the XML snippet
<test a=’1’ b=’2’/> would be valid, whereas <test a=’1’ b=’2’ c=’3’/>
would not be valid, because the OCL constraint evaluates to false.
In the following, two addiƟonal examples show how the CXSD can be leveraged to express

constraints that would not be expressible using XML Schema alone. First, an example demon-
strates how CXSD can be used to express an exclusive-or between aƩributes, which is part of
the XML Schema specificaƟon. AŌerwards, an exclusive-or relaƟon between an element and an
aƩribute is shown, which is part of the XSL-T specificaƟon. Both examples show the expressive
power and value of CXSD.

Refining the XML Schema Self DescripƟon XMLschema.xsd

XML Schema does not allow to express exclusive-or relaƟons between aƩributes. An example
for such an exclusive-or relaƟon can be found in the XML Schema specificaƟon itself: at an ele-
ment declaraƟon, either a default or a fixed aƩribute can be present [180, SecƟon 3.3.3].
Note that this lack of expressiveness makes it impossible to define an XMLSchema.xsd com-
pletely equivalent to the specificaƟon, as not all constraints given by the XML Schema specifica-
Ɵon can be expressed in it. While this is inexpressible in XML Schema, it can well be expressed
using CXSD, as is shown in LisƟng 5.9.

let
fixedPresent:Boolean =

self.attributes->select(name=’fixed’)->size() > 0,
defaultPresent:Boolean =

self.attributes->select(name=’default’)->size() > 0
in

not(fixedPresent and defaultPresent)

LisƟng 5.9: Expressing a Constraint from the XML Schema SpecificaƟon with CXSD

It is easy to see that the constraint first checks whether the fixed and default aƩributes
are present by selecƟng them from the attributes axis defined in the meta-model and
stores the result in the Boolean variables fixedPresent and defaultPresent. Af-
terwards, the constraint states that not(fixedPresent and defaultPresent)must
be true, which prevents both aƩributes from being present at the same element declaraƟon.
Another example that can be formulated in CXSD is the complex relaƟon between the at-

tributes name, ref and the text content of an xsd:element element stated in [180, SecƟon

97

5. Safe Authoring of Templates

3.3.3] (which basically states that a non-global element has either a name or a ref aƩribute,
and is empty besides the xsd:annotation element in the laƩer case).
Even the most complex restricƟon dictated by the XML Schema specificaƟon, the UPA, could

be expressed using CXSD. This could be achieved by applying the concept of Brzozowski deriva-
Ɵves [33] to XML Schema processing. This suggesƟon stems from [168], and the concept of
iniƟal determinism introduced there could easily be implemented in OCL (as the calculaƟon
mostly includes set operaƟons, which are well-supported in OCL), allowing the monitoring of
the UPA constraint in CXSD.

ImplemenƟng Constraints of the XSL-T 2.0 SpecificaƟon

XSL-T 2.0 (as well as its predecessor version) defines a lot of elements in which the existence
of mixed content implies the absence of the select aƩribute. An example for this is the
xsl:with-param element which can be used to pass parameters to a template, for ex-
ample when calling a named template with xsl:call-template. The value of the pa-
rameter is either retrieved by evaluaƟng the select aƩribute (if present) or by evaluaƟng
the so-called sequence constructor parented by the xsl:with-param element [107, SecƟon
10.1.1]. Other elements, for which a similar constraint is contained in the specificaƟon, include
xsl:attribute, xsl:comment, etc.
A constraint enforcing this syntax is shown in LisƟng 5.10. The constraint basically counts

the number of text or element nodes within the xsl:with-param element and determines
whether it carries a select aƩribute, and checks that the existence of text or element nodes
implies the absence of select.

let
selectPresent:Boolean =

self.attributes->select(name=’select’)->size() > 0,
childrenPresent:Boolean = self.children->select(

oclIsTypeOf(ElementNode) or oclIsTypeOf(TextNode)
)->size() > 0

in
childrenPresent implies not(selectPresent)

LisƟng 5.10: Expressing a Constraint from the XSL-T 2.0 SpecificaƟon with CXSD

5.1.3. The InstanƟaƟon Data Constraint Language IDC

In the previous secƟon, the validity of the instanƟaƟon data has been assumed. In order to sat-
isfy this assumpƟon, a second language called IDC has been developed. This simple language
allows to specify properƟes of the instanƟaƟon datawhich could later be validated in the instan-
ƟaƟon data validator (see SecƟon 6.3) or asserted using the alternaƟve approach of Template
Interface GeneraƟon (see SecƟon 6.3.2).
As opposed to the CXSD, the IDC language has been specifically designed to fit exactly the

needs of the constraint separaƟon process. It is therefore a very domain specific language,

98

5.1. Constraint SeparaƟon

which is not intended to be reused in other scenarios. This also explains the limited capabiliƟes
of the IDC.
Similar to the CXSD, IDC statements are embedded into an XML Schema using its appinfo

element [180, SecƟon 3.13]. An IDC statement is always embedded into the reference to an
element from the XTL.xsd. A parƟcular IDC statement starts with a single constraints
element that contains a sequence of constraint elements. Each of these constraints is itself
empty, but has the following aƩributes:

1. The type aƩribute gives the qualified name of a (simple or complex) type to which the
instanƟaƟon data item must comply. If a mulƟplicity (see below) is specified, each of the
instanƟaƟon data items must comply to that type.

2. The min and max aƩributes are used to specify the lower and the upper limit of the mul-
Ɵplicity of this instanƟaƟon data item. The aƩributes default to a value of 1, whichmeans
that exactly one single instanƟaƟon is expected. The types of the aƩributes min and max
are the same as the types of the XML Schema aƩributes minOccurs and maxOccurs.

3. The for-name aƩribute allows to specify an addiƟonal qualified name. This aƩribute
is only valid if the IDC statement is embedded into an xtl:attribute reference. It
restricts the parƟcular constraint to be valid only for the creaƟon of the aƩribute with the
specified name. This way, mulƟple IDC constraints can be formulated for a single posiƟon
at which xtl:attribute can be used to create several, differently typed, aƩributes.

Figure 5.11 shows an example of an IDC fragment. It shows an IDC statement that is em-
bedded into a reference to xtl:attribute. It contains exactly one constraint that restricts
the instanƟaƟon data value to be used for the creaƟon of the order (value of for-name)
aƩribute to be of type date (value of type).

<xsd:element ref=”xtl:attribute” minOccurs=”0” maxOccurs=”unbounded”>
<xsd:annotation>

<xsd:appinfo source=”http://research.sap.com/xtl/idc/1.0”>
<idc:constraints>

<idc:constraint type=”xsd:date”
for-name=”orderDate”/>

</idc:constraints>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>

LisƟng 5.11: An InstanƟaƟon Data Constraint in an XML Schema fragment

5.1.4. Constraint SeparaƟon Process

In order to understand the construcƟon of the template language schema, it is necessary to
consider the relaƟon between the target language schema and the template language schema
(viewed both as CXSD document and as its underlying XML Schema), which is shown in Fig-
ure 5.3. The figure assumes that the instanƟaƟon data is valid with respect to the instanƟaƟon

99

5. Safe Authoring of Templates

data constraints. Please note that the figure already reflects that the target language schema is
exactly defined by the CXSD document, i.e., T◦ = L(S+

T◦). There are four cases:

(a) This case is reflecƟng the fact that templates are prototypical by definiƟon (see Defini-
Ɵons 2.5 and 2.11): each target language document must also be part of the template
language, i.e., ∀t ∈ T : t ∈ T◦, or, in terms of languages, T ⊆ T◦.

(b) All documents which are complying to the template language must instanƟate into docu-
ments from the target language. This is reflecƟng the requirement of preservaƟon, mean-
ing that all constraints from the target language schema have been successfully trans-
ferred into the template language schema (considered as an CXSD document). Formally
∀t◦ ∈ T◦ : instantiate(d, t◦) ∈ T for valid instanƟaƟon data d.

(c) Documents that only comply to the template language schema considered as an XML
Schema but do not comply to it considered as CXSD document do not instanƟate into
the target language. As these are documents that may be constructed using an editor
that only supports XML Schema but not CXSD, the number of documents falling into this
case should be minimized. This helps creaƟng valid templates with standard tools, a goal
called approximaƟon. Formally, L(ST◦) \ L(S+

T◦) should be minimized.

(d) Documents that do not even comply to the template language schema considered as XML
Schema do not instanƟate into the target language: ∀t◦ /∈ T◦ : instantiate(d, t◦) /∈ T
independently of the instanƟaƟon data d.

Figure 5.3.: Set RelaƟons between Template and Target Language

To restrict the complexity of the Constraint SeparaƟon step while sƟll being able to present a
working soluƟon, it is necessary to restrict both the XML Schema features used in the definiƟon
of the target language as well as the complexity of the XTL itself.

100

5.1. Constraint SeparaƟon

The four most important instrucƟons of XTL are considered by the following descripƟon of
the constraint separaƟon process: xtl:attribute, xtl:text, xtl:if and xtl:for-
each. Support for xtl:include is not considered, but xtl:include could easily be en-
abled at all places in which xsd:any wildcards are used in the XML Schema. AddiƟonally,
xtl:macro and xtl:call-macro are not supported by the constraint separaƟon process
described here.
On the other side, the set of XML Schema features used to describe the target language had

to be restricted as well. Most notably, xsd:all and mixed content models and subsƟtuƟon
groups are not considered. IdenƟty-constraint definiƟons are also not considered, as their treat-
ment would require advanced XPath rewriƟng techniques.
To describe the constraint separaƟon process, an XML Schema instance as defined by Defi-

niƟon 2.16 is assumed as a target language grammar. The template language grammar is no
longer an XML Schema document, as it contains OCL constraints (expressing authoring con-
straints) as well as IDC constructs (expressing instanƟaƟon data constraints). DefiniƟon 5.1 be-
low contains extension points at which both types of constraints can be stored. The constraints
themselves will not be formalized beyond what has been said in SecƟon 5.1.2 and 5.1.3, as this
is not necessary to document the basic idea of the Constraint SeparaƟon process.

DefiniƟon 5.1 (Set of extended content models). The set of extended content models ECM(Σ,
N, E) over the set of simple typesΣ, the set of non-terminal symbolsN and the set of qualified
names for elements E is defined recursively as follows:

• The empty sequence ϵ is an extended content model: ϵ ∈ ECM.
• All simple types are extended content models: ∀σ ∈ Σ : σ ∈ ECM.
• All non-terminal symbols are extended content models: ∀n ∈ N : n ∈ ECM.
• All element names are extended content models: ∀e ∈ E : e ∈ ECM.
• All element names equipped with an authoring constraint ca and an instanƟaƟon data
constraint ci are extended content models: ∀e ∈ E : e⟨ca, ci⟩ ∈ ECM.

• For two extended content models cm1 ∈ ECM and cm2 ∈ ECM, the results of the follow-
ing operaƟons are also extended content models, i.e.,

– cm1, cm2 ∈ ECM,meaning a sequence consisƟng of the two extended contentmod-
els,

– cm1 | cm2 ∈ ECM, meaning a choice between the two extended content models,
and,

– cm1{i, j} ∈ ECM, meaning a repeƟƟon of the extended content model cm1, where
i ∈ N, j ∈ N+ ∪ {∗}, and j ̸= ∗ ⇒ i ≤ j, with the special symbol ∗ meaning
unrestricted repeƟƟon. �

ACXSD schemawith embedded IDC constructs is an XML Schemaas defined inDefiniƟon 2.16,
but with the noƟon of the content model as defined in DefiniƟon 2.18, replaced by that of an
extended content model as defined in DefiniƟon 5.1.
The Constraint SeparaƟon process transforms the target language grammar T = (Σ, N,E,A,

N•, R) into the template language grammar T ◦ = (Σ, N,E◦, A,N•, R
◦), where

• E◦ = E ∪ {xtl:attribute,xtl:text,xtl:if,xtl:for-each}, i.e., the set of
elements from the target language grammar extended by the elements xtl:attri-
bute, xtl:text, xtl:if and xtl:for-each,

101

5. Safe Authoring of Templates

• R◦ =
∪
r∈R

{X → cs(e, ad∗, cm)|r = X → e(ad∗, cm)}, with the constraint separaƟon

funcƟon cs as described below.

The constraint separaƟon funcƟon cs(e, ad∗, cm) is defined as follows: cs(e, ad∗, cm) = e
(ad∗◦, cm◦) where

• ad∗fixed = fixed(ad∗) is the set of aƩribute declaraƟons that assign a fixed value to the
declared aƩribute,

• ad∗required = req(ad∗) \ ad∗fixed is the set of aƩribute declaraƟons that declare required
aƩributes without an assigned fixed value,

• ad∗relaxed =
∪

ad∈ad∗
{(a, σ, 0, f)| ad = (a, σ, i, f)} is the a set of aƩribute declaraƟons that

corresponds to ad∗required, but has all its aƩribute declaraƟons’ required cardinaliƟes re-
laxed to opƟonal (or 0 according to DefiniƟon 2.17),

• ad∗other = ad∗ \ ad∗required \ ad∗fixed is the set of aƩribute declaraƟons that are neither
required nor have a fixed value assigned,

• ad∗◦ = ad∗fixed ∪ ad∗relaxed ∪ ad∗other is the new set of aƩribute declaraƟons aŌer the con-
straint separaƟons, which is the union of the sets of the fixed, the other and the relaxed
aƩribute declaraƟon sets,

• cm◦ =

{
cs′(cm) if n = 0,

xtl:attribute{m,n}⟨cattra (ad∗relaxed), c
attr
i ⟩, cs′(cm) otherwise

wherem = | ad∗required | and n = m + | ad∗other |.
The helper funcƟon cs′(cm) is in turn recursively defined over the structure of contentmodels

(according to DefiniƟon 2.18, as its arguments are content models from the target language
grammar) as follows:

• cs′(ϵ) = ϵ,
• cs′(σ) = (S|xtl:text)⟨ctexta (σ), ctexti ⟩
• cs′(N) = N ,
• cs′(e) = e,
• cs′(cm1, cm2) = cs′(cm1), cs′(cm2),
• cs′(cm1 | cm2) = cs′(cm1)| cs′(cm2),

• cs′(cm{i, j}) =

{
cs′′(e{i, j}) if cm = e where e ∈ E,

cs′(cm){i, j} otherwise

It should be noted that the relaxaƟon of the simple type σ to the general string type S in the
definiƟon of cs′(σ) arises from the fact that for elements with mixed content, no simple type
restricƟng the eventual text content can be specified in XML Schema [180]. The restricƟon has
therefore been moved into the corresponding authoring constraint ctexta (σ).

The funcƟon cs′ introduced above basically performs an idenƟty transformaƟon on the con-
tent model, except for the case in which a reference to an element is found within a content
model. In this case, the processing is actually done by the helper funcƟon cs′′, which is defined
as follows:

cs′′(e{i, j}) =


xtl:if⟨cifa (e), cifi ()⟩|e{0, 1} if i = 0 and j = 1,

e{1, 1} if i = j = 1,

xtl:for-each⟨cfor−each
a (e), cfor−each

i (i, j)⟩|e{i, j} otherwise

102

5.1. Constraint SeparaƟon

The construcƟon of the referenced authoring and instanƟaƟon data constraints follows be-
low. It is important to note that the authoring constraints are given as expressions over a formal
representaƟon (see SecƟon 2.1.3) of the XML instance to be validated, whereas the instanƟa-
Ɵon data constraints are given as sets of tupels (a, σ, i, j), where a is an aƩribute name, σ is
a simple type and i and j are minimum and maximum cardinaliƟes for the instanƟaƟon data.
The free variable v in the authoring constraints refers to the node against which the constraint
is validated.

cattra (ad∗relaxed) = ∀(a, σ, i, f) ∈ ad∗relaxed : c1(a, v) ⇔ c2(a, v), where

c1(a, v) = ¬ hasAttr(v, a)

c2(a, v) = ∃v′ ∈ children(v) : label(v) = xtl:attribute ∧ attr(v′,name) = a

cattri (ad∗relaxed) =
{
(a, σ,−,−)|(a, σ, i, f) ∈ ad∗relaxed

}

ctexta (σ) =


Valid(σ, ϵ) if children(v) = ϵ,

Valid(σ, value(v′)) if children(v) = v′ ∧ label(v′) = ⊤,

true if children(v) = v′ ∧ label(v′) = xtl:text,
false otherwise

ctexti (σ) = {(−, σ,−,−)}
cfor−each
a (e) = children(v) = v′ ∧ label(v′) = e

cfor−each
i (i, j) = {(−,−, i, j)}

cifa (e) = children(v) = v′ ∧ label(v′) = e

cifi () = ∅

The xtl:text authoring constraint ctexta is validaƟng the content of the xtl:text ele-
ment against the simple type σ expected at the locaƟon in the document at which xtl:text
has been allowed by the Constraint SeparaƟon process, whereas the xtl:for-each author-
ing constraint cfor−each

a is only checking for the name of the contained element. The reason for
this behavior is that the xtl:text element is declared to allow mixed content, in which case
the simple type to which the content should comply could not be specified. On the other hand,
thextl:for-each declaraƟonwithin theXTL.xsd schema enforces a strict processing (see
[180, SecƟon 3.10.1]) of the elements complying to the wildcard within the xtl:for-each
contentmodel. The strict processing allows thextl:for-each authoring constraint to check
only for the name of the element within it. The same argumentaƟon also holds for the xtl:if
authoring constraint cifa (e).

5.1.5. Proof of the PreservaƟon of the Target Language Constraints

The following argumentaƟon shows that instanƟaƟng a template which has been validated as
suggested by the mechanisms in Chapter 5 yields a document from the target language. This

103

5. Safe Authoring of Templates

argumentaƟon, together with the roundtrip test case described in SecƟon 7.2 shows the fulfill-
ment of the Safe Authoring goal.
For the argumentaƟon, the following assumpƟons are made:
• The target language should be denoted T and is described by the schema T = (Σ, N,E,
A, N•, R).

• The template language is denoted by T◦ and described by the CXSD schema T ◦ = (Σ, N,
E◦, A,N•, R

◦). This expanded schema is derived from T by applying the process de-
scribed in SecƟon 5.1.4.

• A template t◦ is an XML document (V ◦, v◦•, label
◦, children◦, attr◦, value◦) with t◦ ∈ T◦

that belongs to the template language, i.e., it belongs to the target language’s schema
t◦ ∈ L(T ◦).

• The instanƟaƟon data is denoted by d and is assumed to saƟsfy the instanƟaƟon data
constraints I .

Given these assumpƟons, it can be shown that the instanƟated template belongs to the tar-
get language, i.e., instantiate(d, t◦) ∈ T. This fact can be shown by giving two proofs for sub
statements: First, it must be shown that each node in the instanƟated template has at least
the aƩributes it is required to have and that the aƩribute values are of the correct type. Sec-
ond, it must be shown that each node saƟsfies its content model, i.e., that its children have
the exact type (simple or complex). Proving both statements is equivalent to proving the main
statement, as they define local validity against the defined XML Schema subset in the sense of
[180, SecƟon 2.1].
In the following, the instanƟated template is named t = instantiate(d, t◦) and is also a well-

formed XML document, i.e., t = (V, v•, label, children, attr, value). Furthermore, the one-to-
one relaƟonship between rules in the target and the template language grammar established
by the Constraint SeparaƟon process in SecƟon 5.1.4, is formalized by a funcƟon cr (“corre-
sponding rule”) that maps a rule r ∈ R from the target language grammar to a rule r◦ ∈ R◦ of
the template language grammar, i.e., cr(X → e(ad∗, cm)) = X → cs(e, ad∗, cm).

5.1.5.1. Completeness of the Set of Required AƩributes

The following is valid for each v ∈ V . Assume that v has been instanƟated from the node v◦,
which has been produced by a rule r◦ = X → e(ad∗◦, cm◦) ∈ R◦. Because of the one-to-one
relaƟonship between rules in the template and the target language grammarmaintained by the
constraint separaƟon process, the node v must comply to the rule r ∈ R with r◦ = cr(r).
Then it must be shown that ∀(a, σ, i, f) ∈ req(ad∗) : hasAttr(v, a). Depending on whether

the required aƩribute is or is not part of the template t◦, the following two cases must be con-
sidered:

• If the aƩribute is contained literally in the template, i.e, if hasAttr(v◦, a), the aƩribute
will also be part of the instanƟated template t, i.e., hasAttr(v, a), as the instanƟaƟon
never removes aƩributes (see Chapter 4). The aƩribute will always be contained literally
in the template if it is required and has an assigned fixed value, since this aƩribute is also
required by the template language grammar.

104

5.1. Constraint SeparaƟon

• If the aƩribute is missing in the template, i.e., if¬ hasAttr(v◦, a)), it is necessary to further
consider the rule r◦. If the rule r, from which r◦ is originaƟng, had aƩribute declaraƟons
for required aƩributes, the rule r◦ will have an extended content model on the right side,
which adds the constraint c1(a, v◦) ⇔ c2(a, v

◦) (see SecƟon 5.1.4) for each aƩribute
required by the target language grammar (butwithout a fixed value) to the right hand side
of r◦. As c1(a, v◦) = ¬ hasAttr(v◦, a) is true since it follows from¬ hasAttr(v◦, a) and the
fact, that the template instanƟaƟon is not removing aƩributes from the template, c2must
also be true to saƟsfy c1(a, v◦) ⇔ c2(a, v

◦), therefore c2(a, v◦) = ∃v′ ∈ children(v◦) :
label(v◦) = xtl:attribute ∧ attr(v′,name) = a must evaluate to true. This means
that v◦ is parent to an xtl:attribute instrucƟon which has a name aƩribute with
the value a. From the existence of this xtl:attribute child element hasAttr(v, a)
can be inferred using the semanƟcs of xtl:attribute in LisƟng 4.7.

5.1.5.2. Compliance to the Content Model

Compliance of the nodes in the instanƟated template to their proposed content model as de-
fined byT can be shown by inducƟon over the nodes in t. The inducƟon starts with nodeswhich
have simple content (i.e., the leaves of the tree formed by the XML document t). The inducƟon
step shows that a nodewhich is containing only nodes that fulfill their proposed contentmodels
also fits its own content model.

InducƟon start For each rule r ∈ R producing simple content, i.e., for each rule r = X →
e(ad∗, σ), there is a corresponding rule r◦ = cr(r) ∈ R◦. In the following it is shown that if
a node v◦ in the template is produced by the rule r◦, the node v instanƟated from v◦ will be
valid with respect to the rule r in terms of its content, i.e., the node v will have content which
complies to σ.
As r◦ is created from r using the Constraint SeparaƟon process described in SecƟon 5.1.4, it

has the form X → e(ad∗◦, (S|xtl:text)⟨ctexta (σ), ctexti ⟩). As the template t◦ is valid with
respect to T ◦ by assumpƟon, the constraint ctexta (σ) evaluates to true for v◦.
Itmust be shown that either children(v) = ϵwith Valid(σ, ϵ) or children(v) = v0with label(v0)

= ⊤ and Valid(σ, value(v0)). There are three cases depending on the number and type of the
children of v◦:

• If the node v◦ has no children, i.e., if children◦(v◦) = ϵ, then the node v in the instanƟated
templatewill also have no children (due to the semanƟcs of XTL), i.e., children(v) = ϵ. The
empty node v is valid with respect to r, as ctexta (σ) is true in this case exactly if Valid(σ, ϵ),
which has been reasoned above.

• If the node v◦ has exactly one child, which is a text node, i.e., if children(v◦) = v◦0 and
label(v◦0) = ⊤, the value of this node, value(v◦0), is literally transferred into the instan-
Ɵated template, i.e., children(v) = v0, label(v0) = ⊤ and value(v0) = value(v◦0). From
the fact that the authoring constraint Valid(σ, value(v◦0)) is true by assumpƟon, it follows
that Valid(σ, value(v0)) holds, too. The last expression means that v is valid with respect
to the rule r.

105

5. Safe Authoring of Templates

• If the node v◦ has exactly one child, i.e., children(v◦) = v◦0 , and if this child node is an
xtl:text element node, i.e., label(v◦0) = xtl:text, the instanƟated node vwill have
one child node v0with children(v) = v0, which is a text node, i.e., label(v0) = ⊤which has
a value value(v0) = d taken from the instantaƟon data. The instanƟaƟon data constraint
ctexti = (−, σ,−,−) asserts that d ∈ σ and therefore, that v complies to the rule r.

There are no other cases in which ctexta evaluates to true, therefore, there are no other se-
quences of children v◦ can have without violaƟng the assumed authoring constraint ctexta .

InducƟon step For each rule r ∈ R producing non-simple content, i.e., for each rule r =
X → e(ad∗, cm) with cm being one of ϵ,X ∈ N, e′ ∈ E, (cm1, cm2), (cm1|cm2), cm1{i, j}
with cm1, cm2 ∈ CM(Σ, N,E), there is a corresponding rule r◦ = cr(r) ∈ R◦. It must be
shown that the node v instanƟated from v◦ is valid with respect to the rule r, if v◦ is valid with
respect to r◦.
Depending on the concrete value of cm, the following cases must be considered:

• If cm = ϵ, the transformed rule r◦ will also be of the form X → e(ad∗, ϵ). Thus, the
node v◦ will have an empty child sequence children(v◦) = ϵ, which is instanƟated into
an empty child sequence on the instanƟated node v, i.e., children(v) = ϵ. Obviously, this
sequence saƟsfies the content model defined by r.

• If cm is a non-terminalX ∈ N , the rules r and r◦ are again idenƟcal. Since the instanƟa-
Ɵon of an arbitrary non-XTL node in a template yields the node itself, with the children in
the instanƟaƟon being the instanƟated children from the template, validity is not affected
in this case. Therefore, if v◦ complies to rule r◦, v complies to r as well.

• If cm is an element name e′ ∈ E, the transformed rule r◦ will be of the form X →
e(ad∗, e′), i.e., the child sequence of node v◦ will be children(v◦) = v◦0 with label(v

◦
0) = e′.

The instanƟaƟon of this node will lead to node v with the child sequence children(v)= v0
with an equally named child: label(v◦0) = e′. Therefore, v complies to r.

• If cm is the concatenaƟon cm1, cm2 of two content models cm1 and cm2, the corre-
sponding transformed rule will be of the form X → e(ad∗, (cm′

1, cm
′
2)). If the node

v◦ has the child sequence children(v◦) = v◦10v
◦
11 . . . v

◦
1nv

◦
20v

◦
21 . . . v

◦
2m, where the nodes

v◦i0v
◦
i1 . . . v

◦
in are valid with respect to the content model cm′

i for i ∈ {1, 2}, the instan-
Ɵated node v will have the child sequence children(v) = v10v11 . . . v1nv20v21 . . . v2m,
which will be valid with respect to rule r if and only if the child nodes vi0vi1 . . . vin are
valid with respect to the content model cmi for i ∈ {1, 2}. In other words, the recursive
instanƟaƟon process does not change the validity of sequences.

• For content models cm which are the alternaƟve cm1 | cm2 of two content models cm1

and cm2, the argumentaƟon for sequences above holds analogously.

• If cm is a content model with cardinaliƟes, cm1{i, j} for some content model cm1, the
argumentaƟon further depends on the content model cm1. If this is not just an element
e, the argumentaƟon for sequences and alternaƟves above can be applied. If cm1 is just

106

5.1. Constraint SeparaƟon

an element e, several cases depending on the minimum and maximum cardinality must
be considered:

◦ If i = j = 1, then this case degenerates to the case where cm is an element name e′

considered above already.

◦ If i = 0 and j = 1, the content model cm will be of the form xtl:if⟨cifa (e), cifi ()⟩|
e{0, 1}. The child sequence children(v◦) can take three forms:

- For an empty child sequence, i.e., children(v◦) = ϵ, the instanƟated node v will
also have an empty child sequence, i.e., children(v) = ϵ. This node v is valid
with respect to the rule r, as the minimum cardinality for the element e was 0.

- If the child sequence contains only one node labeled e, i.e., children(v◦) = v◦0
with label(v◦0) = e, the instanƟaƟon will give a node v with the child sequence
children(v) = v0 and label(v0) = e, which is again valid with respect to the rule
r, as the maximum cardinality for the element e is 1.

- If the child sequence consists of a single node with the label xtl:if, i.e.,
children(v◦) = v◦0 with label(v◦0) = xtl:if, the authoring constraint cifa (e)
defines the child sequence of v◦0 to be children(v◦0) = v◦1 with label(v◦1) = e.
AŌer instanƟaƟon, this yields a node v with either an empty child sequence (if
the instanƟaƟon data d used to instanƟate the xtl:if instrucƟon evaluated
to false) or a single-element child sequence children(v) = v0 with label(v0) = e
(if d evaluated to true). In both cases, the node v is valid with respect to the
rule r, as it has been shown in the two cases above.

◦ In any other case, cm will be of the form xtl:for-each⟨cfor−each
a (e),cfor−each

i

(i, j)⟩|e{i, j} and the child sequence children(v◦) can take two forms:

- If the child sequence is of the form children(v◦) = v◦0v
◦
1 . . . v

◦
n with i ≤ n ≤ j

and ∀0 ≤ k ≤ n : label(v◦k) = e, the instanƟated node v has an analogous child
sequence children(v) = v0v1 . . . vn with ∀0 ≤ k ≤ n : label(vk) = e, which is
also a valid sequence with respect to the rule r.

- If the child sequence consists of a single node labeled xtl:for-each, i.e.,
children(v◦) = v◦0 with label(v◦0) = xtl:for-each, the authoring constraint
cfor−each
a (e) restricts the child sequence of v◦0 to be children(v◦0) = v◦1 with
label(v◦1) = e. The instanƟaƟon of this gives v a child sequence children(v) =
v0v1 . . . vn with ∀0 ≤ k ≤ n : label(vk) = e. The instanƟaƟon data constraints
asserts that i ≤ n ≤ j. Taken together, this asserts that the node v complies
to the rule r.

5.1.6. Visitor-based ImplementaƟon of the Constraint SeparaƟon

An implementaƟon of the Constraint SeparaƟon process is much harder than it may look aŌer
considering the descripƟon in SecƟon 5.1.4. There are two reasons for this: first, the imple-
mentaƟon has to deal with the “syntacƟc sugar” that is removed from the descripƟon in the

107

5. Safe Authoring of Templates

previous secƟon (actually, it is hidden in the transformaƟon from an XML Schema to an XGram-
mar). Second, an implementaƟon has to choose between a number of libraries available for
XML Schema, each with their own peculiariƟes and advantages.
There is a number of libraries for themanipulaƟon of XML Schemas,most notably, the schema

manipulaƟon library built into XMLBeans [8] and the analogous library built into Xerces [11].
Furthermore, it is possible to compile the XML Schema metamodel, i.e., XMLSchema.xsd,
with JAXB, leading to another possibility for the treatment of XML Schema as an object model.
The most important difference is the level of abstracƟon of the library, e.g., the JAXB-generated
library represents the concrete schema syntax, whereas the other libraries represent a more
abstracted view on the XML Schema.
While it would be very helpful to work on the more abstract syntax level, it is necessary to

manipulate the XML Schemas on the concrete syntax level in order to introduce the CXSD and
IDC constraints. Unfortunately, the libraries providing the abstract view on the syntax encap-
sulate the concrete syntax via their ApplicaƟon Programming Interface (API). Therefore, the
Constraint SeparaƟon component has been implemented using a JAXB-generated XML Schema
object model.
As it can be seen in SecƟon 5.1.4, the Constraint SeparaƟon is a process which can easily

be separated in mulƟple steps, i.e., for enabling the use of the parƟcular XTL instrucƟons. The
Constraint SeparaƟon component is therefore implemented as a sequence of steps, where each
step operates the XML Schema object model produced by its predecessor. Figure 5.4 shows the
processing steps that implement the complete Constraint SeparaƟon process.

Figure 5.4.: The Constraint SeparaƟon Processing Steps

The parƟcular steps are implemented using a slightlymodified visitor design paƩern [74]. The
necessary modificaƟons and their raƟonals are described in the following.
The first modificaƟon is caused by the fact that the XML Schema object model has been gen-

erated using JAXB. Therefore, the effort to add accept methods to all the classes in the ob-
ject model was too high. Instead, an org.lixlix.xtl.compiler.schema.Schema-
Acceptor has been implemented that contains the accept methods of all visitable ele-
ments.
The org.lixlix.xtl.compiler.schema.SchemaVisitorBase contains imple-

mentaƟons of visit methods for all visitable elements. These methods are intended to be

108

5.1. Constraint SeparaƟon

overwriƩen by subclasses (i.e., Constraint SeparaƟon process steps). Furthermore, the visit
methods are equipped with two parameters: the first is the visited object, the second its par-
ent object (in the XML document sense). This allows for easy access of the parent object, which
would otherwise not be possible because JAXB is not providing access to it by default. Fur-
thermore, it allows concrete implementaƟons to visit elements depending on the context, for
example, to visit only xsd:sequence elements embedded into xsd:complexType, but
not into xsd:restriction elements.
Finally, the subclasses of org.lixlix.xtl.compiler.schema.SchemaVisitor-

Base can configure the traversal order. In the top-down configuraƟon, the visit methods
are called before the subelements’acceptmethods are invoked; the boƩom-up configuraƟon
calls the visitmethods aŌer the acceptmethods of the subelements. The configuraƟon of
the SchemaVisitorBase is passed to the SchemaAcceptor when the traversal starts.
Besides operaƟng on the same XML Schema, the steps share access to an implementaƟon of

the interface org.lixlix.xtl.compiler.schema.ConstraintSeparationCon-
text shown in LisƟng 5.12.

public interface ConstraintSeparationContext
{

/* Lookup of types in the schema */
public ComplexType getComplexType(String name);

public SimpleType getSimpleType(String name);

/* Creation of names. */
public QName createTNSQName(String localPart);

public String createTypeName(String suggestion);

/* Information about namespaces. */
public String getOriginalTargetNamespace();

public String getTargetNamespace();

public boolean isFromOriginalTargetNamespace(QName qname);

/* Information about related schemata. */
public String getCXSDSchemaLocation();

public String getIDCSchemaLocation();

public String getXTLSchemaLocation();

/* Accessing the ConstraintFactory. */
public ConstraintFactory getConstraintFactory();

}

LisƟng 5.12: The ConstraintSeparationContext Interface

109

5. Safe Authoring of Templates

The operaƟons in this interface serve one of five purposes. There are methods for the lookup
of types in the XML Schema currently processed, for the creaƟon of names, for retrieving infor-
maƟon about namespaces, for themanagement of the locaƟon of related schemata and for the
retrieval of the ConstraintFactory (see below). The parƟcular methods are as follows:

• ThegetComplexTypemethod retrieves the object represenƟng the complex typewith
the passed name or returns null if no such complex type exists.

• The getSimpleTypemethod performs the same funcƟon as getComplexType, but
for simple types.

• The createTNSQName method creates a QName from the passed local part and the
target namespace of the XML Schema currently processed.

• The createTypeNamemethod creates a name (more exactly, its local part), such that
it is unique within the XML Schema currently processed. The method guarantees that
there is no complex type or simple type with the same name within the schema (please
note that complex and simple types share a common symbol space [180, SecƟon 2.5]).
The passed suggesƟon is first tried as the name, if it already exists, themethod repeatedly
tries to create a unique name by concatenaƟng an increasing number (starƟng with 0).

• The getOriginalTargetNamespacemethod returns the target namespace of the
XML Schema currently processed as it was originally set.

• The getTargetNamespacemethod returns the target namespace as it should be af-
ter processing. In order to prevent confusions, the original target namespace is prefixed
with xtl: to get the namespace that the XML Schema should have aŌer the process
of Constraint SeparaƟon, if a target namespace has been defined by the schema. If no
namespace has been defined, this method returns null.

• The isFromOriginalTargetNamespacemethod can be used to check whether a
parƟcular QName is defined in the target namespace originally specified by the currently
processed XML Schema.

• The getCXSDSchemaLocation, getIDCSchemaLocation and getXTLSche-
maLocationmethods return the locaƟon of the CXSD, IDC or XTL schema, resp., if such
locaƟons have been externally configured (e.g., via the command line).

• The getConstraintFactorymethod returns an implementaƟon of the Constraint-
Factory interface described below.

The interfaceorg.lixlix.xtl.compiler.schema.ConstraintFactory referred
to above is shown in LisƟng 5.13. Using this interface, the Constraint SeparaƟon steps can create
both authoring and instanƟaƟon Ɵme constraints (or CXSD and IDC constraints, respecƟvely).

public interface ConstraintFactory
{

/* Authoring Time Constraint Construction */
public Inv getControlStatementsAuthConstraint(QName

elementQName);

public Inv getExpandedSimpleTypeAuthConstraint(QName typeQName);

public Inv getRequiredAttributesAuthConstraint(Set<QName>
attributeNames);

110

5.1. Constraint SeparaƟon

/* Instantiation Time Constraint Construction */
public Constraints getAttributesInstConstraint(Map<QName, QName>

attributesToTypes);

public Constraints getExpandedSimpleTypeInstConstraint(QName
typeQName);

}

LisƟng 5.13: The ConstraintFactory Interface

The ConstraintFactory provides the following methods:
• The getControlStatementsAuthConstraintmethod returns an authoring Ɵme
constraint checking that the content of the context node is an element with the passed
name elementQName.

• ThegetExpandedSimpleTypeAuthConstraintmethod returns an authoring Ɵme
constraint that checks that the content of the context node is either an xtl:text in-
strucƟon or a text node with a value complying to the simple type named typeQName.

• ThegetRequiredAttributesAuthConstraintmethod returns an authoring Ɵme
constraintwhichmakes sure that for each of the aƩribute names passed (as aSet), either
an aƩribute exists at the context node or an xtl:attribute instrucƟon exists, which
creates the aƩribute (i.e., has a name aƩribute set to that parƟcular aƩribute name).

• The getAttributesInstConstraint method returns an instanƟaƟon Ɵme con-
straint which checks for each key/value pair in the passed Map, whether the aƩribute
named equal to the key is of the type indicated by the value.

• The getExpandedSimpleTypeInstConstraintmethod returns an instanƟaƟon
Ɵme constraint which checks whether the data used for the instanƟaƟon of the xtl:
text instrucƟon is valid with respect to the type passed by its name.

Different technologies have been used to implement the creaƟon of authoring and instanƟ-
aƟon Ɵme constraints. The authoring Ɵme or CXSD constraints are generated from XTL tem-
plates, whereas the instanƟaƟon Ɵme or IDC constraints are constructed programmaƟcally us-
ing an object model generated from the IDC XML Schema using JAXB.

PrepareSchemaCompilation

The first process step in the Constraint SeparaƟon process is implemented in the class org.
lixlix.xtl.compiler.schema.steps.PrepareSchemaCompilation. This step
has two responsibiliƟes: adding import statements for related schemas and changing the target
namespace of the schema.
As the Constraint SeparaƟon process adds elements from the CXSD and IDC namespaces and

adds references to elements from the XTL namespace, this steps adds xsd:import instruc-
Ɵons for these three namespaces. The namespace aƩribute is automaƟcally set, but the lo-
cation aƩribute is only set if a locaƟon (absolute or relaƟve) has been externally configured
(e.g., via the command line). An example for the addiƟon of these xsd:import statements
is shown in LisƟng 5.14.

111

5. Safe Authoring of Templates

<xsd:import namespace=”http://research.sap.com/cxsd/1.0”
schemaLocation=”../../../schemas/CXSD.xsd”/>

<xsd:import namespace=”http://research.sap.com/xtl/idc/1.0”
schemaLocation=”../../../schemas/IDC.xsd”/>

<xsd:import namespace=”http://research.sap.com/xtl/1.0”
schemaLocation=”../../../schemas/XTL.xsd”/>

LisƟng 5.14: Added xsd:import Statements

ThePrepareSchemaCompilation step is also responsible for changing the target name-
space of the processed schema. If the schema to be processed has a target namespace (called
original target namespace in the following), the namespaceURI is appended to the prefixxtl:,
in order to get the namespace URI for the schema aŌer the Constraint SeparaƟon process
(called just target namespace in the following). As this namespace URI is typically also as-
signed to another namespace prefix (typically tns, an abbreviaƟon for target namespace),
these other namespace prefixes are also assigned to the target namespace. Furthermore, all
qualified names within this schema that point to the original target namespace must be rewrit-
ten to point to the target namespace. If no original target namespace has been set, the schema
will also lack a target namespace aŌer processing, which makes the processing of prefixes and
qualified names obsolete.

NormalizeSchema

In order to allow the following steps to work under all circumstances, addiƟonal changes to
the schema being processed are necessary. The org.lixlix.xtl.compiler.schema.
steps.NormalizeSchema step is responsible for making sure that all simple types which
need to be referenced from CXSD constraints are idenƟfiable by name (and not anonymous
types) and for making sure that all elements which need to be able to act as content for an
xtl:if or xtl:for-each instrucƟon are declared at the top-level.
The first responsibility menƟoned is to create referencable top-level simple type declaraƟons

from anonymous type declaraƟons. This is necessary to allow the authoring Ɵme constraint
embedded during the enablement of xtl:text instrucƟons to refer to the simple type (see
below). An example for an extracted simple type is shown in LisƟng 5.15.

<xsd:simpleType name=”simpleTypeOfQuantity”>
<xsd:restriction base=”xsd:positiveInteger”>

<xsd:maxExclusive value=”100”/>
</xsd:restriction>

</xsd:simpleType>

LisƟng 5.15: Top-level DeclaraƟon of a Previously Anonymous Simple Type

The second responsibility is to create top-level elements from all xsd:element elements
whichwill be enabled for the usewithin xtl:if orxtl:for-each statements later on. This
is necessary since the xtl:if and xtl:for-each definiƟons within the XTL XML Schema

112

5.1. Constraint SeparaƟon

contain a wildcard (xsd:any) with its processContents aƩribute set to strict, which
requires a top-level declaraƟon of the element to fulfill the wildcard [180, SecƟon 3.10.1].
This process of promoƟng local elements to top-level elements can cause name clashes, as

the element is moved from the namespace opened by a complex type or element declaraƟon
into the single global namespace for elements within the schemas’ target namespace. The al-
ternaƟve to this promoƟon of local element declaraƟons is to relax the wildcard within the XTL
schema (i.e., to set its processContents aƩribute to lax or skip), and to check the local
validity of the contentwith regards to its element name and its complex type fromwithin a CXSD
constraint. This variant has not been implemented, as the standard XML parsers with validaƟon
do not expose a simple interface to check local validity, which would make the implementaƟon
of the necessary extension of the CXSD metamodel much harder.

EnableControlStatements

The processing step org.lixlix.xtl.compiler.schema.steps.EnableControl-
Statements has the responsibility to enable the use ofxtl:if statements for all condiƟonal
elements and to enable the use of xtl:for-each statements for all repeatable elements.
CondiƟonal elements are defined as elements with a cardinality of 0 . . . 1, repeatable elements
as having a maximum cardinality greater than 1.
The whole schema is traversed for elements fulfilling the condiƟons for condiƟonal or re-

peatable elements. Each occurence of such an element is replaced by a choice between the
element and a reference to the xtl:if or xtl:for-each element from the XTL schema
respecƟvely. The xtl:if and xtl:for-each references are further restricted by insert-
ing a CXSD constraint defining that the content of the XTL instrucƟon must have a parƟcular
qualified name. This constraint is constructed using the getControlStatementsAuth-
Constraint method from the ConstraintFactory. An example showing a processed
opƟonal element is shown in LisƟng 5.16.

<xsd:choice>
<xsd:element minOccurs=”0” ref=”comment”/>
<xsd:element ref=”xtl:if”>

<xsd:annotation>
<xsd:appinfo source=”http://research.sap.com/cxsd/1.0”>

<cxsd:inv name=”control-statement-constraint”>
<cxsd:ocl><![CDATA[
let

elementChildren:Sequence(ElementNode) = self.children->
select(oclIsTypeOf(ElementNode))->collect(oclAsType(
ElementNode))

in
elementChildren->size() = 1 and
elementChildren->at(0).qname = self->expandQName(’

comment’)
]]></cxsd:ocl>
<cxsd:message>
</cxsd:message>

113

5. Safe Authoring of Templates

</cxsd:inv>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>

</xsd:choice>

LisƟng 5.16: Choice between comment and xtl:if

EnableXTLAttribute

The next processing step, org.lixlix.xtl.compiler.schema.steps.EnableXTL-
Attribute, is responsible for enabling the use of the xtl:attribute instrucƟon. To
achieve this, four modificaƟons are made to all complex types in the schema.
First, an element reference to xtl:attribute is added to the content model of the com-

plex type. If the complex type is already defined to be a sequence, the reference is just inserted
at its beginning. If the complex type is defined to be a choice, this choice is wrapped by a se-
quence that contains the reference to xtl:for-each followed by the choice. Unfortunately,
the inserƟon of xtl:attribute is not possible if the complex type inherits from another
complex type, as the inserƟon would only be possible at the end of the content model, which
is not acceptable. Therefore, inherited types are excluded from this processing (see Chapter 8
for the suggesƟon to change XML Schema with respect to this).
Second, the usage aƩribute of all aƩribute declaraƟons for required aƩributes is relaxed to

optional, which allows the template author to omit required aƩributes (and create them
via xtl:attribute instead). In the po.xsd example, the partNum aƩribute is relaxed to
become an opƟonal aƩribute.
Third, an IDC constraint is added, containing the expected types for all aƩributes. In the

po.xsd example, the instanƟaƟon data used to create the partNum aƩribute is bound to be
of type SKU. The result of these first three processing steps is shown in LisƟng 5.17.

<xsd:element name=”item”>
<xsd:complexType>

<xsd:annotation>
<xsd:appinfo source=”http://research.sap.com/cxsd/1.0”>

<!-- See Listing 5.18 -->
</xsd:appinfo>

</xsd:annotation>
<xsd:sequence>

<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”
xtl:attribute”>

<xsd:annotation>
<xsd:appinfo source=”http://research.sap.com/xtl/idc/1.0”>

<idc:constraints>
<idc:constraint for-name=”partNum” type=”SKU”/>

</idc:constraints>
</xsd:appinfo>

</xsd:annotation>

114

5.1. Constraint SeparaƟon

</xsd:element>
<!-- ... -->

<xsd:attribute name=”partNum” type=”SKU” use=”optional”/>
</xsd:complexType>

</xsd:element>

LisƟng 5.17: Enabled xtl:attribute with IDC Constraints

Finally, the processing step adds an addiƟonal CXSD constraint which ensures that the re-
quired aƩributes are either directly specified or created via an appropriate xtl:attribute
instrucƟon. In the po.xsd example, it is ensured that partNum is either directly specified or
created via an xtl:attribute instrucƟon (which therefore needs to have a name aƩribute
with a value of partNum). The OCL part of the CXSD constraint is shown in LisƟng 5.18.

let
xtlAttributeChildren:Sequence(ElementNode) = self.children->select(oclIsTypeOf(

ElementNode))->collect(oclAsType(ElementNode))->select(localName=’attribute’
and namespaceURI=’http://research.sap.com/xtl/1.0’)

in
OrderedSet{

self.expandQName(’partNum’)
}->forAll(attributeQName |

let
xtlAttributeChild:ElementNode = xtlAttributeChildren->any(attributes->select(

name=’name’ and self.expandQName(value)=attributeQName)->size() > 0),
attributePresent:Boolean = self.attributes->select(qname=attributeQName)->size()

> 0
in

not(attributePresent) implies not(xtlAttributeChild->isEmpty()))

LisƟng 5.18: A CXSD Constraint for Required AƩributes

EnableXTLText

The last processing step, org.lixlix.xtl.compiler.schema.steps.EnableXTL-
Text, allows the use ofxtl:text to create the text content of elements with simple content.
To this end, the processing step processes all top-level elements referencing a non-anonymous
simple type (both precondiƟons are asserted by the NormalizeSchema step). The reference
to the simple type is replacedwith a reference to a complex typewithmixed content. This newly
created type allows the use ofxtl:textwithin. An IDC constraint is addedwhich restricts the
instanƟaƟon data used to replace the xtl:text instrucƟon during the Template InstanƟaƟon
to the simple type originally referenced by the element. In the po.xsd example, the type
xtlTextOrDecimal is created to replace elements with simple content complying to the
xsd:decimal type. The result of this processing is shown in LisƟng 5.19.

<!-- ... -->
<xsd:element name=”zip” type=”xtlTextOrDecimal”/>
<!-- ... -->
<xsd:complexType mixed=”true” name=”xtlTextOrDecimal”>

<xsd:annotation>

115

5. Safe Authoring of Templates

<xsd:appinfo source=”http://research.sap.com/cxsd/1.0”>
<!-- See Listing 5.20 -->

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element maxOccurs=”1” minOccurs=”0” ref=”xtl:text”>
<xsd:annotation>

<xsd:appinfo source=”http://research.sap.com/xtl/idc/1.0”>
<idc:constraints>

<idc:constraint type=”xsd:decimal”/>
</idc:constraints>

</xsd:appinfo>
</xsd:annotation>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

LisƟng 5.19: Enabled xtl:text for the CreaƟon of the Content of the zip Element

Furthermore, the processing steps add an CXSD constraint that restricts the use of text con-
tent within the newly created type to be compliant to the simple type originally referenced by
the element. In the po.xsd example, the constraint asserts that either an xtl:text ele-
ment or a text node complying to the type xsd:decimal is present. The OCL part of the
CXSD constraint is shown in LisƟng 5.20.

let
expectedQName:QName = self.expandQName(’{http://www.w3.org/2001/XMLSchema}decimal’),
textChildren:Sequence(TextNode) =

self.children->select(oclIsTypeOf(TextNode))->collect(oclAsType(TextNode)),
xtlTextChildren:Sequence(ElementNode) =

self.children->select(oclIsTypeOf(ElementNode))->collect(oclAsType(ElementNode))
->select(localName=’text’ and namespaceURI=’http://research.sap.com/xtl/1.0’)

in
if (xtlTextChildren->size() = 0)
then

textChildren->size() = 1 and
textChildren->at(1).isValidLiteral(expectedQName)

else
xtlTextChildren->size() = 1 and textChildren->size() =
textChildren->select(isIgnorableWhitespace)->size()

endif

LisƟng 5.20: A CXSD constraint for Simple Content

5.1.7. ParƟal TemplaƟzaƟon

In [143], it has been stated that every template engine has at least an entanglement index of 1,
as it is impossible for the template engine to decide whether a value which is instanƟated into
a template plays a role in the content or layout of the instanƟated template.
As a side effect of the safe authoring approach described above, a technique that enables an

entanglement index of 0 becomes possible. In the XHTML 1.0 document shown in LisƟng 5.21,

116

5.2. Template ValidaƟon

two aƩribute values are highlighted. First, the value of the style aƩribute, which obviously
contains style informaƟon. Second, the value of thealt aƩribute is highlighted, which contains
content, as it gives an alternaƟve representaƟon for the img element it is assigned to.
For every well designed XML language like XHTML, there must be a way to decide whether a

parƟcular piece of informaƟon (like a text or an aƩribute value) is content or layout. In general,
the use of a template engine implies that separaƟon of concerns is an issue, so there must be a
set of rules to decide whether an informaƟon is allowed to be filled from instanƟaƟon data or
whether it must be part of the template.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Sample XHTML Document</title>
</head>
<body>

<p style=”text-indent:1em;”> ¬
Some content.
 ­

</p>
</body>

</html>
LisƟng 5.21: A Simple XHTML 1.0 File

The constraint separaƟon process described above can be adjusted to allow the dynamic cre-
aƟon of only certain character data items. In contrast to the standard constraint separaƟon
process, parƟal templaƟzaƟon allows the use of the XTL instrucƟons only parƟally. This allows
the refinement of the contract between the template author and the applicaƟon using the tem-
plate technique: the style ¬ aƩribute would not be allowed to be created dynamically from
the instanƟaƟon data by the Constraint SeparaƟon process (as it is layout in the sense of Fig-
ure 3.2), whereas the alt ­ aƩribute would be allowed (as it is content in the sense of the
aforemenƟoned figure).
Technically, parƟal templaƟzaƟon could be best configured using a language that allows to

select the XML Schema parts (aƩribute and element declaraƟons, type definiƟons etc.) which
should be subject to the constraint separaƟon process. A subset of the Path Language for XML
Schema (SPath) [126] would be a good choice for such a language.

5.2. Template ValidaƟon

The Template ValidaƟon process is the responsibility of the template validator component. The
template validator allows the change of the template development process to the one shown in
Figure 5.5. The new process is more straight-forward than the current process (cf. Figure 1.2):
the template author does not need to change its role to that of the user of the template technol-
ogy like in the tradiƟonal process. Instead, he gets direct feedback about the template. Further-
more, the validaƟon of the template does no longer depend on a parƟcular set of instanƟaƟon
data, since the validaƟon result makes a general statement about the template of the form: if
the instanƟaƟon data is as specified by the instanƟaƟon data constraints emiƩed by the Con-

117

5. Safe Authoring of Templates

straint SeparaƟon process, then the instanƟated template will comply to the target language
grammar. Thus, the Template ValidaƟon process contributes to the Safe Authoring goal stated
in SecƟon 3.1.1.

Figure 5.5.: The Proposed Development Process for Templates

The design of the template validator has two responsibiliƟes. First, it has to check the validity
of XML documents against the CXSD schemas as emiƩed by the Constraint SeparaƟon process.
Furthermore, the template validator component is also responsible for establishing a link be-
tween the XTL instrucƟons in the template and the instanƟaƟon data constraints in the schema.
The Constraint SeparaƟon process defined the extension of XML Schemawith OCL constraints

(see 5.1.2) and relaxed the UPA rule in order to enhance the expressive power of XML Schema.
The template validatormust therefore validate XML Schemawithout the restricƟons introduced
by the UPA and evaluate the embedded OCL constraints. AŌer an analysis of exisƟng XML
parsers capable of validaƟng the XML input against a given XML Schema, it became obvious
that it is easier to reimplement a validaƟng XML parser than to extend one of the exisƟng im-
plementaƟons like Xerces. This is mostly due to the fact that the exisƟng XML parsers are not
designed to be extensible, which makes extending them a Ɵme-consuming and tedious task.
As menƟoned above, it is also the responsibility of the template validator to establish a link

between the elements of the XTL template and the instanƟaƟon data constraints. This link is
necessary to allow the InstanƟaƟon Data ValidaƟon component to evaluate the instanƟaƟon
data constraints. This link is comparable to the link between an XML document and its XML
Schema established by the Post-Schema-ValidaƟon Infoset (PSVI). The difference is that the link
between the template and its CXSD schema is more specific. It is more specific, as it links only
XTL instrucƟons to the type that the instanƟaƟon data must comply to, whereas PSVI is directly
linking every element to the corresponding type in the XML schema.
In order to enable the InstanƟaƟon Data ValidaƟon component to facilitate the established

link, it has to be persisted. There are basically two opƟons for this. First, it is possible to persist
the link in an extra document that for example maps XPath expressions poinƟng into the tem-
plate to the expected type of the instanƟaƟon data. Second, it is possible to transfer the link
data within the XTL template itself. As the link is only starƟng from XTL instrucƟons, the second
alternaƟve has been chosen. To enable this, the affected XTL instrucƟon has been extended to

118

5.2. Template ValidaƟon

allow a type aƩribute that can denote the required instanƟaƟon data type via its QName. This
approach is similar to the approach proposed to persist the PSVI in [167].
The following addiƟonal aƩributes are defined to carry the instanƟaƟon data constraint link:

for the xtl:text and xtl:attribute instrucƟons, the type aƩribute is defined, which
allows a QName as value which denotes the type that the value used to create the text or the
aƩribute value must comply to. There is no need to define the type aƩribute for xtl:if and
xtl:for-each, since the type to be delivered by the InstanƟaƟon Data Evaluator is defined
implicitly (see SecƟon 4.1). For the xtl:for-each instrucƟon, the aƩributes min and max
are defined, which are of the same type as minOccurs and maxOccurs defined in [180].
An XTL template augmented with instanƟaƟon data constraints is shown in the upper part of

LisƟng 5.22. Obviously, the xtl:for-each instrucƟon can be executed an arbitrary number
of Ɵmes¬. The partNum aƩributemust be createdwith a value complying to the SKU type­,
whereas the text content of the productName element must comply to the xsd:string
type ®. As an example for a persistent PSVI, a fragment of the po.xml document is shown in
the lower part of LisƟng 5.22. InteresƟngly, the quesƟonable use¹ of an aƩribute like psvi:
atttypes¯ is not necessary in the proposed approach, since the expected type of a parƟcular
aƩribute is aƩached to its xtl:attribute instrucƟon rather than to the element that the
aƩribute is going to be assigned to during the Template InstanƟaƟon process.
The actual Template ValidaƟon process is implemented by creaƟng a DOM of the instance to

be validated first. This DOM is used for two purposes: for the creaƟon of a Streaming API for
XML (StAX) event stream that is used for the standard XML Schema validaƟon and to build a rep-
resentaƟon of the document as an instance of the meta model introduced in SecƟon 5.1.2 (see
Figure 5.2, especially). As the UPA can be violated by a CXSD document, the validaƟon compo-
nent is implemented using a backtracking algorithm. The backtracking algorithm is in turn sup-
ported by a component implemenƟng the org.lixlix.xtl.cxsd.Transactional-
Reader interface that allows the validator to read events from the StAX stream transacƟon-
ally. The TransactionReader interface could easily be implemented by subclassing the
component that implements the org.lixlix.xtl.engine.impl.ReadWindow inter-
face described in detail in SecƟon 6.2.2.
Themere XML Schema validaƟon process of an XML document has been tested against a sub-

set of the XML Schema Test Suite [181]. This subset excludes the tests in which XML Schema
documents include features that are not supported by the Constraint SeparaƟon process. The
Template ValidaƟon component complies to 97% of the remaining subset of approx. 24000
documents. The documents in which the Template ValidaƟon component fails are mostly docu-
ments with literals that are checked against parƟcular simple types, especially with literals in
Japanese or Chinese encodings. In these tests, the validaƟon results returned by the XML
Schema Test Suite and by the Xerces simple type validaƟon facility disagree, which in turn causes
the Template ValidaƟon component to disagree with the result proposed by the XML Schema
Test Suite.

¹Sperberg-McQueen [167]: “It should be noted that I am fully aware that this soluƟon is ugly. Long meditaƟon on
this problem has convinced me that every available soluƟon to this problem is ugly: aƩributes were designed to
have atomic or simple list values, not to have aƩributes of their own, and I no longer expect to find a preƩy way
to go against the grain of XML here.”

119

5. Safe Authoring of Templates

XTL Template Augmented with InstanƟaƟon Data Constraints

<items>
<xtl:for-each select=”items” min=”0” max=”unbounded”> ¬

<item>
<xtl:attribute name=”partNum” select=”id” type=”SKU”/> ­
<productName>

<xtl:text select=”productName” type=”xsd:string”/> ®
</productName>
<!-- ... -->

</item>
</xtl:for-each>

</items>

XML Document with Embedded PSVI

<shipTo
country=”US”
psvi:type=”po:USAddress”
psvi:atttypes=”country xsd:NMTOKEN” ¯

>
<name psvi:type=”xsd:string”>Alice Smith</name>
<street psvi:type=”xsd:string”>123 Maple Street</street>
<city psvi:type=”xsd:string”>Mill Valley</city>
<state psvi:type=”xsd:string”>CA</state>
<zip psvi:type=”xsd:decimal”>90952</zip>

</shipTo>

LisƟng 5.22: Linked InstanƟaƟon Data Constraints Compared with Embedded PSVI

In addiƟon to themere XML Schema validaƟon process, the DOM instance is also used to eval-
uate the OCL expressions embedded into the CXSD document. As the foundaƟon for the evalu-
aƟon of the OCL expressions, the OCL library from the Eclipse MDT project has been used. This
OCL library operates on a model compliant to the metamodel shown in Figure 5.2. The model is
basically an Eclipse Modeling Framework (EMF)-based view on the DOM instance. The overall
validaƟon process has been validated as described in SecƟon 7.2. The extra effort needed to
evaluate theOCL constraints has beenmeasured, the results of thismeasurement are presented
in SecƟon 7.5.1.
The validaƟon algorithm is rather straighƞorward. A virtual xsd:choice between all root

level element declaraƟons in the XML Schema is created, which is used to start the validaƟon
process. The template validator reads from the StAX stream and tries to validate these events
against the alternaƟves within the choice. As an alternaƟve might turn out to be invalid, a
transacƟon is started on the StAX event stream using the TransactionReader component.
The transacƟonwill be commiƩed if an alternaƟve proves to bematching or it will be rolled back
otherwise. If an OCL constraint is aƩached to an element in the XML Schema, the constraint will
be evaluated with its context set to the element currently validated. If the constraint evaluates
to false, the validaƟon process will fail at this point, again causing a rollback of the innermost
transacƟon. The overall validaƟon process returns true if there is an assignment of element

120

5.3. Conclusion

and types in the XML Schema against the content of the document where the OCL constraints
within the CXSD schema evaluate to true at all nodes in the document where the enclosing XML
Schema instrucƟon is used to validate the instance.
In addiƟon to the boolean result of the validaƟon, during a successful validaƟon, the IDC

constraints embedded in the CXSD schema are transferred into the validated XML instance.
As the IDC constraints may be reassigned when a transacƟon is rolled back, the validaƟon pro-
cess writes the augmented XML events into an implementaƟon of the interfaceorg.lixlix.
xtl.cxsd.TransactionalWriter, which defers the further processing of the events un-
Ɵl all transacƟons are commiƩed.

5.3. Conclusion

This chapter introduced the components of the proposed architecture involved during the au-
thoring Ɵme of a template, namely the Constraint SeparaƟon and the Template ValidaƟon com-
ponent.
The Constraint SeparaƟon process, responsible for separaƟng authoring Ɵme from instanƟ-

aƟon Ɵme constraints, has been described precisely, which involved the definƟon of two sup-
porƟng languages, CXSD and IDC. The CXSD extends XML Schema in two ways: by allowing
embedded OCL constraints to more precisely specify properƟes to be fulfilled by instances that
should comply to the described language. The IDC is a helper language used to transfer instanƟ-
aƟon data constraints to the instanƟaƟon phase of the proposed process. A slight modificaƟon
of this process called ParƟal TemplaƟzaƟon has been introduced, which allows to reach an en-
tanglement index (in the sense of [144]) of 0.
The Template ValidaƟon component is responsible for validaƟng the authoring Ɵme con-

straints, i.e., for validaƟng a template against a CXSD document. Technical reasons and the
relaxaƟon of the UPA rule by the CXSD language complicated the rather elementary implemen-
taƟon of this component.

121

5. Safe Authoring of Templates

122

6
Flexible, Efficient and Safe Template

InstanƟaƟon

Hofstadter’s Law: It always takes longer than you expect,
even when you take into account Hofstadter’s Law.

Douglas Hofstadter, 1979 [87]

This chapter discusses the processes of InstanƟaƟon Data EvaluaƟon, Template InstanƟaƟon
and InstanƟaƟon Data ValidaƟon from Figure 3.5. All these processes correspond to the tem-
plate instanƟaƟon process in the same sense as used in exisƟng approaches. For each process,
a different main issue can be defined: flexibility is most important for the InstanƟaƟon Data
EvaluaƟon, efficiency is the key issue in the Template InstanƟaƟon process, and safety is guar-
anteed by the InstanƟaƟon Data ValidaƟon process. As in Chapter 5, the target language is
required to be an XML dialect defined by an XML Schema.

6.1. InstanƟaƟon Data EvaluaƟon

The evaluaƟon of the instanƟaƟon data is performed by the instanƟaƟon data evaluator com-
ponent. The architecture requires this component to decouple the template engine from a
parƟcular query language. In an implementaƟon of this architecture, the instanƟaƟon data
evaluator can be realized as a plugin of the template engine, allowing a single implementa-
Ɵon to cooperate with data sources as disƟnct as XML documents, relaƟonal databases or UML
models. The Java implementaƟon of the XTL Engine calls the plugin a Placeholder Plugin (PHP).

123

6. Flexible, Efficient and Safe Template InstanƟaƟon

Figure 6.1.: Accessing MulƟple InstanƟaƟon Data Sources Using MulƟple PHPs

6.1.1. Design of the PHP Interface

Using a plugin approach for the adaptaƟon of the template engine to a parƟcular query lan-
guage directly addresses the Independence of Query Language requirement. Besides this, the
approach turned out to have a number of addiƟonal advantages.
First of all, the XTL’s realm feature can be used together with mulƟple plugins to access data

from mulƟple instanƟaƟon data sources at once. There is no need to use the same query lan-
guage for the instanƟaƟon data sources, instead, the query language can be chosen arbitrarily
for each source. For example, an XML document, an ontology and a UML model can be ac-
cessed from within one template using the query languages XPath, SPARQL and OCL, resp., as
illustrated in Figure 6.1. It is also possible to access mulƟple XML documents as instanƟaƟon
data sources represented by realms—an approach which provides a more uniform access to
mulƟple XML documents than the approach provided by XSL-T with its document funcƟon
[107, SecƟon 16.1].
Furthermore, a plugin can also be used to build an intermediate view on the instanƟaƟon

data source. An example is the SPARQL plugin which is supplied as part of the XTL Engine. This
plugin allows to query ontologies. As an opƟon, the plugin is capable of building the transiƟve
closure on its underlying ontology. This equips SPARQL with the capability to execute transiƟve
queries, which is originally not part of the language. In general, plugins can be used for the
creaƟon of all kinds of intermediate, transient models.
A plugin can also be used to change the instanƟaƟon data access strategy (see SecƟon 2.5.4).

Due to the design of the XTL, the XTL Engine implements a pull strategy: every Ɵme an ex-
pression from the query language is found as the value of a select aƩribute, it is executed
immediately. An applicaƟon could calculate all the instanƟaƟon data before actually invoking
the XTL Engine, bundle the data into a custom PHP and pass it to the template engine. The en-
gine would sƟll pull the data from the PHP, but effecƟvely, the engine with the PHP now follows
the push strategy. This is basically an applicaƟon of theMove Copy of Data paƩern as described
in [178] (but used at design level, which is different from its descripƟon, where it is applied to
the architectural level). Such an inversion of the data access strategy can also be achieved using
the Template Interface GeneraƟon approach described in SecƟon 6.3.2.
A PHP is defined by the interface PlaceHolderPlugin shown in Figure 6.1. It mirrors

the funcƟonality of the IDS class from the denotaƟonal semanƟcs of the XTL with two minor
differences.

124

6.1. InstanƟaƟon Data EvaluaƟon

First, the IDS has been defined using Haskell’s type classes (see LisƟng 4.2), whereas the
PlaceHolderPlugin uses Java’s generic types feature. For this reason, the interface has
a type parameter named Type. An implementaƟon of the interface would use an appropriate
context type as the actual value for this parameter. As an example, a JXPath implementaƟon
would use a class that represents the concept of the current node from XSL-T.
Furthermore, thePlaceHolderPlugin interface disƟnguishes between the evaluaƟon of

the select aƩribute at an xtl:attribute and an xtl:text element, whereas the IDS
knows only one of them. This is caused by the fact that the xtl:attribute and xtl:text
instrucƟons are each represented by their own Java classes, which do not share a common
interface from which the value of the select aƩribute could be fetched.

public interface PlaceHolderPlugin<Type>
{

public String evaluateAttribute(
XTLAttribute xtlAttribute, Type argument);

public Iterator<Type> evaluateForEach(
XTLForEachStart xtlForEach, Type argument);

public boolean evaluateIf(
XTLIfStart xtlIf, Type argument);

public List<XMLEvent> evaluateInclude(
XTLInclude xtlInclude, Type argument);

public String evaluateText(
XTLText xtlText, Type argument);

public void init(List<XMLEvent> event);

public void onEndDocument();
}

LisƟng 6.1: The PlaceHolderPlugin Interface

Please note that the evaluate operaƟons all share analogous arguments. The first argu-
ment corresponds to the XTL instrucƟon for which they are responsible. The hierarchy of the
classes for these arguments is explained in SecƟon 6.2.3 (see esp. Figure 6.6). The second ar-
gument is the current value of the innermost enclosing xtl:for-each instrucƟon, which
accesses the same realm. If no such plugin exists, a null value will be passed to the PHP. The
second argument is of the generic type Type, as the actual value represenƟng an iteraƟon in
an xtl:for-each loop depends on the query language and the PHP implementaƟon.
The operaƟons of the org.lixlix.xtl.php.PlaceHolderPlugin are described be-

low:
• TheevaluateAttribute operaƟon has to be implemented by the PHP to support the
evaluaƟon of xtl:attribute instrucƟons. The corresponding funcƟon within the IDS

125

6. Flexible, Efficient and Safe Template InstanƟaƟon

is the evalText funcƟon. An implementaƟon of a PHP should not include the name of
the aƩribute into the calculaƟon of its value in any way.

• The evaluateForEach operaƟon has to be implemented by the PHP to support the
evaluaƟon of xtl:for-each instrucƟons. In order to allow nested xtl:for-each
instrucƟons, this operaƟon also gets the current value of the innermost enclosing xtl:
for-each instrucƟon as described above. The implementaƟon of this operaƟon must
return an Iterator over values of the generic type Type, as a value from this oper-
ator will be passed to other evaluate methods as second argument (see above). The
corresponding funcƟon within the IDS is the evalForEach funcƟon.

• The evaluateIf operaƟon has to be implemented by the PHP to support the evalu-
aƟon of xtl:if instrucƟons. The corresponding funcƟon within the IDS is the evalIf
funcƟon.

• The evaluateInclude operaƟon has to be implemented by the PHP to support the
evaluaƟon of xtl:include instrucƟons. The corresponding funcƟon within the IDS
is the evalInclude funcƟon. The implementaƟon of this operaƟon must return a
java.util.List of javax.xml.stream.XMLEvents. For the raƟonale of this
return type see SecƟon 6.2.1.

• The evaluateText operaƟon has to be implemented by the PHP to support the evalu-
aƟonofxtl:text instrucƟons. The corresponding funcƟonwithin the IDS is theeval-
Text funcƟon.

• The init operaƟon has to be implemented by the PHP to support the evaluaƟon of
xtl:init instrucƟons. There is no corresponding funcƟon in the IDS, as the denota-
Ɵonal semanƟcs for XTL does not include realms. The only argument of this operaƟon is
a java.util.List of javax.xml.stream.XMLEvents. For the raƟonale of this
type see again SecƟon 6.2.1.

• TheonEndDocument operaƟon has to be implemented by the PHP to get noƟfiedwhen
the XTL template to be instanƟated has been completely processed. This can be used by
the PHP to perform cleanup operaƟons or to conclude diagnosƟcal informaƟon.

Tomake implemenƟng a new PHP as easy as possible, an abstract base implementaƟon of the
PlaceHolderPlugin interface is provided via the class org.lixlix.xtl.php.impl.
PlaceHolderPluginImpl, whichmainly provides default implementaƟons formost of the
methods and aggregates the processing of xtl:attribute and xtl:text methods via a
common evaluateSelectmethod.

6.1.2. The IdenƟty PHP

The IdenƟty PHP serves mulƟple purposes. It can be used for tesƟng, to explain the concept of
a PHP, and it can be used for syntacƟcal reasons, e.g., to create an xtl:for-each instrucƟon
which repeats its content exactly n Ɵmes for an arbitrary but fixed n.
The IdenƟty PHP got its name from its easy implementaƟon of the evaluateText and

evaluateAttribute operaƟons described above: it just returns the value of the select
aƩribute of the xtl:text or xtl:attribute instrucƟon evaluated. The evaluateIf
operaƟon is implemented in a similarly easy way: if the select aƩribute has a (text) value of
true, it returns the (boolean) value true, and false otherwise. The evaluateForEach

126

6.1. InstanƟaƟon Data EvaluaƟon

operaƟon parses its select aƩribute as an integer and returns an iterator containing the in-
tegers from 1 to the parsed value or an empty iterator if no value could be parsed or the parsed
value was 0.
From the implementaƟon of the evaluateForEach operaƟon, which is returning an iter-

ator over integers, it is clear that the type parameter Type has the actual value java.lang.
Integer for the IdenƟty PHP.

6.1.3. The JXPath PHP

The JXPath PHP allows the XTL to use XPath expressions in order to access the instanƟaƟon data
source. As JXPath [9] is used for the implementaƟon of the PHP, the instanƟaƟon data source
does not neccessarily have to be an XML document, as JXPath allows the evaluaƟon of XPath
expressions against any object model using a well-defined mapping between the XPath syntax
and Java object properƟes and associaƟons.
The JXPath PHPmakes XTL comparable to XSL-T and therefore enables the definiƟon of the in-

stanƟaƟon semanƟcs in SecƟon 4.6 and the Ɵme comparison with JSP and XSL-T in SecƟon 7.5.
Furthermore, as XPath is well supported by Haskell (more specifically, by the Haskell XML Tool-
box [163]), it also enables the direct comparison of the Java implementaƟon of the Template
InstanƟaƟon component with the denotaƟonal semanƟcs given in Chapter 4.
The evaluateAttribute and evaluateText operaƟons work exactly as they would

do in XSL-T. The noƟon of the context item [107, SecƟon 5.4.3.1] is reused, the context item
corresponds to the noƟon of a context introduced in SecƟon 4.3. The evaluateForEach
operaƟon establishes a new context. The evaluateIf method follows the suggesƟon from
SecƟon 4.3 and uses the XPath funcƟon boolean to determine the boolean value from the
result of the evaluaƟon of the select aƩribute. The JXPath PHP also implements the evalu-
ateInclude method—the result is similar to the result returned by xsl:copy-of [107,
SecƟon 11.9.2], when applied to the current context.
The type parameter named Type of the PlaceHolderPlugin interface is assigned the

actual valueorg.apache.commons.jxpath.Pointer by the JXPath PHP. ThisPointer
class is an implementaƟon of the context item from XPath in JXPath, which perfectly matches
the use of it as the context in the PHP implementaƟon.
The XPath PHP implementaƟon is an alternaƟve implementaƟon for using XPath expressions

using the XPath implementaƟon of Xalan. The XPath PHP is only usable to evaluate XPath ex-
pression on XML documents represented as DOM. Therefore, the type parameterType has the
actual value org.w3c.dom.Node.

6.1.4. The SPARQL PHP

The SPARQL PHP enables the use of SPARQL expressions to fetch instanƟaƟon data from within
XTL templates. The moƟvaƟon for this plugin came from the Feature-getriebene, aspektorien-
Ɵerte undmodellgetriebene Produktlinienentwicklung (FeasiPLe) project (see SecƟon 7.3). The
handling of XML namespaces within SPARQL alsomoƟvated the introducƟon of the xtl:init
instrucƟon.

127

6. Flexible, Efficient and Safe Template InstanƟaƟon

In contrast to the JXPath plugin, the SPARQL PHP can not process xtl:attribute, xtl:
text or xtl:if instrucƟons which are not enclosed in an xtl:for-each instrucƟon. This
is a design decision caused by the fact that SPARQL queries return a relaƟon, whereas XPath
queries return a node. Therefore, there has to be a disƟncƟon between the building of a rela-
Ɵon (selecƟon) and the access to parƟcular values (projecƟon). This disƟncƟon is mapped to
the PHP operaƟons by using the xtl:for-each instrucƟon in order to retrieve the relaƟon
by selecƟon, and by leƫng xtl:attribute, xtl:text and xtl:if access parƟcular at-
tributes from the result. The retrieval of the relaƟon is performed by the SELECT statement of
SPARQL, whereas the access to a parƟcular aƩribute is performed using a subset of the SPARQL
syntax, namely its query variable syntax [151, SecƟon 4.1.3]. As the existence of a relaƟon is a
prerequisite for the projecƟon, an xtl:for-each is required around all xtl:attribute,
xtl:text and xtl:if instrucƟons.

As SPARQL itself has a restricted expressive power, the SPARQL PHP supports the execuƟon of
an inference process on the ontology before it is queried. The inference process is parametrized
by a set of rules that can be specified in any rule language supported by the underlying ontology
processing framework. The framework being used to implement the SPARQL PHP is Jena [100].
The class com.hp.hpl.jena.query.QuerySolution is the actual value of the Type
type parameter of the PlaceHolderPlugin interface.

6.1.5. The System PHP

The System PHP is a PHP implementaƟon that supports special funcƟons that are someƟmes
useful but are not supported by some query languages. This PHP supports only xtl:attri-
bute, xtl:text and xtl:if instrucƟons—it cannot be used as the realm for xtl:for-
each and xtl:include instrucƟons. Its query language syntax is based on XPath, but as no
context node exists, only a fixed set of predefined funcƟons can be used. The funcƟons are as
follows:

• Thebuild-number funcƟon can be used to retrieve the build number of the XTL Engine
currently in use.

• The file-exists funcƟon can be used to check whether there exists a file with the
passed path.

• The last funcƟon can be used to check whether the innermost enclosing xtl:for-
each instrucƟon is currently processed for the last Ɵme.

• The position funcƟon can be used to retrieve the current index of the control variable
value in the sequence of control variable values for the innermost enclosing xtl:for-
each instrucƟon.

• The version funcƟon can be used to return the version of the XTL Engine currently in
use.

The System PHP is a subclass of the JXPath PHP, but as it does not support xtl:for-each,
the actual value of the Type parameter of the PlaceHolderPlugin interface does not
maƩer.

128

6.2. Template InstanƟaƟon

6.2. Template InstanƟaƟon

The template engine is the component performing the Template InstanƟaƟon process. It is
therefore influenced by the required expressiveness offered by the slot markup language. Fur-
thermore, the template engine invokes the InstanƟaƟon Data EvaluaƟon and InstanƟaƟon Data
ValidaƟon processes in order to retrieve and verify the instanƟaƟon data.

6.2.1. XML Access Technologies

The technology used to read the templates and to emit the instanƟaƟon result has the greatest
influence on the efficiency of an XML template engine implementaƟon. This is especially true if
the template engine interprets the templates rather than compiling them (see SecƟon 2.5.6).
Typically, XML access technologies are classified in event-driven approaches and object-ori-

ented XML representaƟons. Event-driven approaches are typically efficient (both with respect
to memory and Ɵme) and provide a sequenƟal access to XML documents. The most prominent
example for an event-driven technology is the Simple API for XML (SAX). SAX has been originally
designed for read-only access. Other event-driven approaches like StAX have been designed to
also support the creaƟon of XML documents.
Object-oriented approaches provide a complete, random-access view on an XML document.

The abstracƟon level of this view depends on the actual technology. The most prominent ex-
ample for an object-oriented access technology is DOM, which provides a viewwhich closely re-
sembles the XML structures as defined in [28]. XML binding tools like JAXB and XMLBeans (see
also SecƟon 2.3.3) can also be considered object-oriented access technologies with a higher
level of abstracƟon. Object-oriented approaches are typically designed to support both reading
and wriƟng XML documents. The higher level of abstracƟon provided by these technologies
typically slows down reading, whereas the provided random-access view typically causes signif-
icantly higher memory consumpƟon.
Typically, a template engine produces arbitrary large documents from relaƟvely small ones.

The necessity to create arbitrary large documents leads to the decision for an event-driven ap-
proach. This decision was eased by the fact that the constructed document is not changed aŌer
its creaƟon, i.e., there is no need for random access to the document under construcƟon.
For reasons of simplicity, it has been decided to use the same XML access technology for both

reading the template and creaƟng the output document. The first evaluaƟon of SAX for reading
XML documents exposed one of its major weaknesses. SAX dictates the user to structure its
algorithm along its ContentHandler interface, which obscures the algorithm. Furthermore,
if look-ahead is necessary to complete the processing of a parƟcular XML structure, the interface
enforces the implementaƟon of addiƟonal data structures which have to be examined in all of
its methods. This problem has also been described in [152].
In contrast to the statements in [152], a soluƟon for this problem exists with the StAX tech-

nology since 2003 [94; 145]. StAX is an event-driven XML access technology which is designed
to read and write XML documents and which incorporates ideas from the object-oriented ap-
proaches by providing an object model for its events. StAX does not prescribe a fixed structure
for the XML processing algorithm. While SAX pushes events into the processing logic, a StAX
implementaƟon is pulled by the processing logic when it is ready to conƟnue. For this reason,

129

6. Flexible, Efficient and Safe Template InstanƟaƟon

StAX belongs to the family of so-called pull parsers (in contrast to the push parsing approach in
SAX). The difference between both types of parsers is shown in Figure 6.2.
The choice of StAX allowed the uniform treatment of reading and wriƟng XML documents

and fulfilled the requirement of being able to implement lookahead efficiently.

Figure 6.2.: Push- and Pull-Parser

6.2.2. OperaƟonal Model of the XTL Engine

The denotaƟonal semanƟcs of the XTL given in Chapter 4 has been valuable in the implemen-
taƟon of the engine, as a working prototype could easily be compiled. Unfortunately, imple-
menƟng a Java-based variant of a template engine for XTL from its denotaƟonal semanƟcs is
non-trivial. It turns out that a Java implementaƟon is more complicated than one would expect
from the semanƟcs. Therefore, an operaƟonal model has been developed that forms the basis
for a maintainable and efficient implementaƟon of the Template InstanƟaƟon process. The XTL
instrucƟons can easily be implemented on the operaƟons supplied by the operaƟonal model.
The abstract machine used by the operaƟonal model of the XTL Engine is shown in Figure 6.3.

The template engine basically reads from the input XTL document (the template) and writes to
the output document (the instanƟated template). The component responsible for the evalu-
aƟon of the instanƟaƟon data is called PHP here, for more details on the underlying plugin
mechanism refer to SecƟon 6.1.1. To fulfill its task, the engine sets up four helper components:

• a read window, which is easing access to the template input stream,
• a loop stack, which keeps track of the nesƟng of loop statements (i.e., xtl:for-each
instrucƟons) during the instanƟaƟon process,

• a map of macros, which is used to store macro definiƟons made by xtl:macro state-
ments, and finally

• a number of PHPs, maintained in a map indexed by their realm names.
.

130

6.2. Template InstanƟaƟon

The operaƟonal model will be shown using excerpts from the Java implementaƟon of the
XTL Engine. First, the four helper components are discussed. AŌerwards, the implementaƟons
of the parƟcular XTL instrucƟons using the four helper components of the XTL Engine will be
described.

Figure 6.3.: XTL Engine with Input and Output Streams

Read Window

The read window allows the template engine to look at a certain fragment of the template
instead of a parƟcular element. Parts of the template which are located before the content of
the readwindow (in document order) are no longer accessible by the template engine, whereas
parts that are behind the content of the read window are not yet read. Thus, the end of the
read windowmarks the current read posiƟon within the template input stream. The evaluaƟon
posiƟon is the locaƟon of the template that the engine is currently evaluaƟng and that must
necessarily be within the read window.
The read window is, for example, of importance during the processing of xtl:for-each

statements. As the content of xtl:for-each statements can potenƟally be instanƟated sev-
eral Ɵmes, it must be kept inside the read window unƟl the xtl:for-each has been fully
evaluated.

public interface ReadWindow
{

/* Marker management. */
public void markReadPosition(Object marker);

public void returnTo(Object marker);

public void removeMarker(Object marker);

/* Read and skip. */

131

6. Flexible, Efficient and Safe Template InstanƟaƟon

public List<XMLEvent> readUntilBeforeAndSkipOnce()
throws XMLStreamException;

public void skipUntilAfter() throws XMLStreamException;

/* Content modification. */
public void replaceLastRead(List<XMLEvent> events);

}

LisƟng 6.2: The ReadWindow Interface

The operaƟons shown in LisƟng 6.2 basically fall in three categories: operaƟons for the man-
agement of markers within the template input stream, operaƟons for reading from or skipping
in the stream and operaƟons that modify the stream by replacing or inserƟng XMLEvents. A
visualizaƟon of all operaƟons supplied by the ReadWindow implementaƟon is shown in Fig-
ure 6.4.

• The markReadPosition(marker) operaƟon marks the current posiƟon within the
read window with some marker object marker. The read window ensures by itself that
a return to the marked posiƟon is always possible, i.e., the start of the read window will
not be moved behind the first marked posiƟon (in document order).

• The returnTo(marker) operaƟon changes the read posiƟon within the read window
to the read posiƟon which has been stored by a preceding call to markReadPosition
with the same argument marker.

• TheremoveMarker(marker) operaƟon removes themarked posiƟon associatedwith
the marker object marker. If the marked posiƟon to be removed is the first marked
posiƟon in document order, the read window will shrink itself by moving its beginning to
the next marked posiƟon.

• The skipUntilAfter() operaƟon moves the read posiƟon within the read window
to aŌer the element closing the last read start element. The end of the read window will
be extended by the read window itself if the end element is not part of the current read
window content.

• The readUntilBeforeAndSkipOnce() operaƟon reads from the current read po-
siƟon to the posiƟon before the element closing the last read start element and aŌer-
wards skips the closing element. The end of the read window will be extended by the
read window itself if the end element is not part of the current read window content.
The part of the read window content read will be returned.

• The replaceLastRead(events) operaƟon removes the last element read from the
readwindowand replaces it with the passed XML eventsevents. Furthermore, the read
posiƟon is set back to the beginning of the events that has been used to replace the last
read event.

The read window implementaƟon is designed to keep the content of the read window as
small as possible, while sƟll allowing all described operaƟons to be performed at any Ɵme. This
is described by two contracts. First, the read windowwill be empty if neither a marker has been
set nor an insert operaƟon has filled the read window with some content. Second, all marked
posiƟonswill always be part of the readwindow. While the first contractminimizes thememory

132

6.2. Template InstanƟaƟon

used by the read window, the second one guarantees that elements within the read window,
which could be required at some Ɵme in the future, are sƟll available.

Figure 6.4.: Examples of Read Window OperaƟons’ ExecuƟon

Loop Stack

In order to keep track of nested loop statements, the engine maintains a stack of them. Cur-
rently, as the XTL language design only supports one type of loop statement, the loop stack
is used to keep track of xtl:for-each statements only. The topmost stack frame always
corresponds to the innermost acƟve xtl:for-each statement. In this stack, the execuƟon
informaƟon for each xtl:for-each statement is saved, i.e., the following informaƟon is
stored per xtl:for-each:

• an iterator of objects, which is used to retrieve all values that the control variable of the
xtl:for-each statement takes during the execuƟon of the xtl:for-each loop,

• an object represenƟng the value of the control variable of the surrounding xtl:for-
each (or null, if there is no such xtl:for-each statement),

• the current posiƟon of the control variable value within the iterator of all values,
• the InstanƟaƟon Data Evaluator which has been used to retrieve the iterator for the con-
trol variable values, and finally

• the name of the realm which has been assigned to the xtl:for-each statement.
LisƟng 6.3 shows the operaƟons supplied by the loop stack.

public interface LoopStack
{

/* Loop lifecycle management. */
public <T> void openLoop(Iterator<T> iterator,

PlaceHolderPlugin<T> php, String realm);

public void reenterLoop();

133

6. Flexible, Efficient and Safe Template InstanƟaƟon

public void closeLoop();

/* Information about the innermost loop. */
public Iterator<?> getActiveIterator();

public int getPosition();

/* Information about an arbitrary loop. */
public Object getControlVariableValue(String realm);

public PlaceHolderPlugin<?> getPlaceHolderPlugin(String realm);
}

LisƟng 6.3: The LoopStack Interface

As indicated in the lisƟng, three categories of operaƟons exist: first, operaƟons for managing
the loop lifecycle, second, operaƟons for giving access to informaƟon about the innermost loop
and, finally, operaƟons which return informaƟon about an arbitrary loop on the stack. The
parƟcular operaƟons are described below.

• The openLoop(iterator, php, realm) operaƟon adds a new stack frame with
the sequence of upcoming control variable values iterator, the PHP php and the
realm name realm. The first value of the control variable is taken from iterator
immediately—thus, the passed iterator must not be empty. The posiƟon of the current
value of the control variable is iniƟalized to 0.

• The closeLoop() operaƟon removes the topmost stack frame from the loop stack.
• The reenterLoop() operaƟon updates the topmost stack frame by retrieving a new
value for the control variable from the sequence of control variable values passed to
openLoop. As a side effect, the stored posiƟon of the control variable within the it-
erator of possible control variable values is also increased.

• The getActiveIterator() operaƟon returns the iterator which is contained in the
topmost entry of the xtl:for-each stack. This so-called acƟve iterator is the one
which should be used to retrieve the next element when the next xtl:for-each end
element is encountered.

• The getPosition() operaƟon returns the posiƟon of the current control variable’s
value within the sequence of control variable values for the innermost loop. Obviously,
this always corresponds to the number of completed evaluaƟons of the loop’s content.

• The getControlVariableValue(realm) operaƟon returns the value of the con-
trol variable in the innermost xtl:for-each statement which has been assigned to
the realm realm during a call to the openLoop operaƟon. This is needed to supply
evaluaƟons of context-dependent XTL statements like xtl:text with the current con-
text value as described in SecƟon 4.2.1.

• The getPlaceHolderPlugin(realm) operaƟon returns the PHP of the topmost
stackframe which has been assigned to the realm realm during the openLoop call.
This operaƟon is only used internally for the implementaƟon of the System PHP (see Sec-
Ɵon 6.1.5).

134

6.2. Template InstanƟaƟon

Map of Macros

The use of macros in XTL templates involves two instrucƟons: xtl:macro and xtl:call-
macro. While the first instrucƟon assigns a sequence of XTL instrucƟons to a macro name, the
laƩer calls the macro by execuƟng all XTL instrucƟons which have been assigned a parƟcular
name by a preceding xtl:macro instrucƟon.

public interface MacroMap
{

public List<XMLEvent> get(String name);

public void put(String name, List<XMLEvent> events);
}

LisƟng 6.4: The MacroMap Interface

In order to implement this transfer of XTL instrucƟons with a name from the xtl:macro
instrucƟons to corresponding xtl:call-macro instrucƟons, the map of macros as shown
in LisƟng 6.4 is used. It supports the following operaƟons:

• The put(name, events) operaƟon assigns the name name to the sequence of
events events.

• The get(name) operaƟon retrieves the sequence of events which has been assigned
for the name name.

Map of PHPs

The engine uses a number of instanƟaƟon data evaluators to evaluate select aƩributes. For
details of these instanƟaƟon data evaluators, see SecƟon 6.1. The selecƟon of an appropriate
instanƟaƟon data evaluator may depend on realm aƩributes—for details see SecƟon 4.5.1.

public interface PlaceHolderPluginMap extends
Iterable<PlaceHolderPlugin<?>>

{
public PlaceHolderPlugin<?> get(String realm);

}

LisƟng 6.5: The PlaceHolderPluginMap Interface

The PlaceHolderPluginMap interface shown in LisƟng 6.5 contains only a single opera-
Ɵon. This get(realm) operaƟon returns the PHP instance responsible for the realm with the
name realm.
The operaƟons exposed by the PHPs itself closely correspond to the IDS interface which

has been defined as part of the denotaƟonal semanƟcs of XTL (see LisƟng 4.2). For a detailed
discussion of the PHP operaƟons, refer to SecƟon 6.1.1.

135

6. Flexible, Efficient and Safe Template InstanƟaƟon

6.2.3. Pipeline ImplementaƟon of the XTL Engine

The XTL Engine itself is implemented as a pipeline composed of separate processing steps, which
will be discussed in the following. The chaining of the parƟcular steps is shown in Figure 6.5. The
steps interact by reading or wriƟng XTLEvents for its predecessor or to its successor, respec-
Ɵvely. The pipeline is driven by the XMLPipelineDriver, which merely reads events from
its predecessor and writes these events directly to its successor. The actual instanƟaƟon is per-
formed by the XTLProcessingReader. The other components prepare the event stream
(like the XTLEventReader), perform opƟonal features of the XTL processing (like the By-
passingProcessingReader or the IndentingXMLEventWriter) or solve technical
issues (like the ReassigningAttributesWriter).

Figure 6.5.: The XTLEngine’s Processing Pipeline

A great simplificaƟon in the implementaƟon of the XTL Engine has been achieved by intro-
ducing XMLEvent subclasses for the parƟcular XTL instrucƟons. The object model formed by
these subclasses is shown in Figure 6.6. There are three categories of subclasses: representa-
Ɵons of start elements of XTL instrucƟons (like XTLForEachStart, leŌ column in Figure 6.6),
representaƟons of end elements of XTL instrucƟons (like XTLForEachEnd, right column) and
representaƟons of empty XTL instrucƟons (like XTLAttribute, center column). All classes
inherit from a common base class XTLEventImpl, which implements the javax.xml.
stream.event.XMLEvent interface and can therefore be handled by XMLEventReader
andXMLEventWriter implementaƟons. This common base class implements basicmethods
enforced by theXMLEvent interface and declares abstractmethods like theprocessmethod
which must be implemented by subclasses (see below for details).
For the non-empty XTL instrucƟons, there are addiƟonal base classes in the hierarchy in-

heriƟng from XTLEventImpl: XTLStartElementImpl and XTLEndElementImpl for
start and end elements, respecƟvely. These base classes implement the methods enforced by
theStartElement andEndElement interfaces from the packagejavax.xml.stream.
events.
The leaf classes basically implement the processmethod, which is used in the main part in

the XTL processing pipeline, theXTLProcessingReader. Via this method, the XTL Engine is
easily extendable with new XTL instrucƟons: the actual interpretaƟon of the instrucƟon is kept

136

6.2. Template InstanƟaƟon

Figure 6.6.: The XTLEvent Hierarchy

137

6. Flexible, Efficient and Safe Template InstanƟaƟon

together with its representaƟon in the object model, which makes it unnecessary to change the
XTLProcessingReader class when new funcƟonaliƟes are added.

It can easily be seen from the operaƟonal model and from the descripƟon of the parƟcular
processing steps below, that the implementaƟon of the XTL Engine, while being possible in a
well-structured and easilymaintainable design, ismuchmore complex than the implementaƟon
of the denotaƟonal semanƟcs as a Haskell program. InteresƟngly, it seems that reimplemenƟng
Haskell-based XMLprocessing applicaƟons in Java always leads to programswhich are larger and
very differently structured. This insight also seems to be true for other reimplementaƟons, e.g.,
for the reimplementaƟon of the RelaxNG validaƟon given by [37]:

The Relax NG derivaƟve algorithm is implemented in a few hundred elegant declar-
aƟve funcƟonal lines of Haskell, and also in tens of thousands of lines and hundreds
of classes of highly abstract complex Java code. [89, spelling corrected]

XTLEventReader

The first step in the instanƟaƟon process is the replacement of all StAX XML events that cor-
respond to XTL elements with specific XTL events. The implementaƟon is really simple. Dur-
ing the construcƟon of the XTLEventReader, all classes registered as representaƟons of XTL
events are retrieved. This is achieved via the service provider mechanism [177, SecƟon “Service
Provider”], i.e., by inspecƟng all files named ’/META-INF/services/org.lixlix.xtl.engine.XTLEvent’
in the classpath. All of these classes are inspected for their constructors via reflecƟon. If a
class provides a constructor with a single javax.xml.stream.events.StartElement
argument, it is considered a representaƟon of an XTL start element. If the class provides a
constructor with a single javax.xml.stream.events.EndElement, it is considered a
representaƟon of an end element, respecƟvely. Classes providing none of these constructors
are invalid implementaƟons and are excluded from further processing.

Figure 6.7.: AcƟviƟes during a Call to XTLEventReader.getNextEvent

Each class must denote a local element name by using the Java annotaƟon org.lixlix.
xtl.engine.XTLEventDescription. If no such annotaƟon is aƩached to the class, the
class is considered an illegal implementaƟon and is excluded from further processing. If an

138

6.2. Template InstanƟaƟon

annotaƟon is aƩached, its localName aƩribute is used to store the constructor in either a
start element or an end element constructor map.
During the template instanƟaƟon process, the getNextElement method prescribed by

the javax.xml.stream.XMLEventReader interface is invoked. An example of such an
invocaƟon is shown in Figure 6.7. The implementaƟon of getNextElement first fetches an
element from the XTLEventReaders predecessor in the processing chain ¬. If the element
is not from the XTL XML namespace, it is simply returned to the caller. If the element has the
XTL namespace URI, its local name is used to look up a constructor from either the start ele-
ment or the end element constructor map, depending on whether the element is a start or an
end element ­. This constructor is then called with the element from the predecessor ®. If
the construcƟon succeeds, its result is returned to the caller, i.e., the successor in the process-
ing chain ¯. If construcƟon fails, a warning message is emiƩed, staƟng that an unprocessable
element from the XTL namespace has been encountered and the predecessor is asked for a
new element, which is then processed in the described way. This process conƟnues unƟl an
element can be returned or the predecessor fails to deliver further elements. In that case an
javax.xml.stream.XMLStreamException is thrown.

BypassProcessingReader

The next step in the processing chain is the BypassProcessingReader, which is respon-
sible for implemenƟng the bypassing feature as described in SecƟon 4.5.2. An example of the
operaƟons executed by the BypassProcessingReader is shown in Figure 6.8.

Figure 6.8.: AcƟviƟes during a Call to BypassProcessingReader.getNextEvent

When the getNextEventmethod of the BypassProcessingReader is called, it first
fetches an element from its predecessor in the processing chain ¬. If the element is not from
one of the bypassing namespaces, i.e., if its namespace URI is not http://research.sap.
com/xtl/1.0/bypass/n, the element is simply returned to the caller. Please note that this
is also true for elements from the XTL namespace itself. If the element is from one of the by-
passing namespaces, its generaƟon number is decreased. Then, a new start element is created
using the javax.xml.stream.XMLEventFactory ­. This element is either from the
XTL namespace, if the decreased generaƟon number is 0, or from the bypassing namespace

139

6. Flexible, Efficient and Safe Template InstanƟaƟon

with the decreased generaƟon number. It is important to note that elements read from the
bypassing namespace with the generaƟon number 1 are converted to mere start elements, not
to specific XTL events. This prevents the elements from this namespace from being processed
in the following processing chain, and this is also the reason why the XTLEventReader pre-
cedes the BypassProcessingReader in the processing chain. Finally, the newly created
element is returned to the caller ®.

XTLProcessingReader

The XTLProcessingReader is the core of the XTL engine. This is the part of the XML pro-
cessing pipeline in which the XTL instrucƟons are actually executed. To grant the components
performing the actual processing of XTL events access to the operaƟons of the abstract ma-
chine described in SecƟon 6.2.2, the XTLProcessingReader implements the Instan-
tiationContext interface shown in LisƟng 6.6.

public interface InstantiationContext
{

public LoopStack getContextStack();

public MacroMap getMacroMap();

public PlaceHolderPluginMap getPlaceHolderPluginMap();

public ReadWindow getReadWindow();
}

LisƟng 6.6: The InstantiationContext Interface

An example of the operaƟon of the XTLProcessingReader is shown in Figure 6.9.

Figure 6.9.: AcƟviƟes during a Call to XTLProcessingReader.getNextEvent

TheXTLProcessingReader’sgetNextEventmethod operates in a loop. First, it fetch-
es an XMLEvent from its predecessor ¬. If the fetched event is an instance of java.xml.

140

6.2. Template InstanƟaƟon

stream.events.Comment, the loop is reentered, i.e., XML comments from the template
are omiƩed from the output. If the fetched event is an XTL instrucƟon, itsprocess(Instan-
tiationContext):XMLEvent method is called ­. As the InstantiationContext
parameter, the XTLProcessingReader passes itself.
The process method of the XTLText class invoked by the XTLProcessingReader,

which is shown in LisƟng 6.7, uses the passed InstantiationContext interface to re-
trieve the PlaceHolderPlugin responsible for evaluaƟng the expression in the select
aƩribute of the xtl:text instrucƟon ®. AŌerwards, this PHP’s evaluateText method is
called to actually evaluate the select expression ¯. The string value returned by the PHP is
used to construct an javax.xml.stream.events.Text object, which is returned to the
XTLProcessingReader’s getNextEventmethod, which returns it to its invoker °.
If the process method of the XTLEvent would have returned null, the getNext-

Event’s loop would have been reentered.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLText.”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

String result = php.evaluateText(this,
context.getContextStack().getControlVariableValue(realm));

return eventFactory.createCharacters(result);
}

LisƟng 6.7: The processMethod in XTLText

The processing of xtl:attribute instrucƟons is very similar to the processing just ex-
plained, i.e., the processmethod of XTLAttribute is almost idenƟcal to the one in XTL-
Text.
The implementaƟon of the process method in XTLIfStart is shown in LisƟng 6.8. The

processing starts similarly to the processing of an xtl:text instrucƟon, but the evalu-
ateIf method from the PHP returns a boolean value rather than a string. If this boolean is
false, the processing of the preceding stream is skipped unƟl aŌer the xtl:if end element
that corresponds to the current start element using the method skipUntilAfter from the
ReadWindow class. The process method returns null to signal the XTLProcessing-
Reader that it has not produced anything that should be part of the instanƟated template.
The XTLIfEnd class itself has an empty process method, as no acƟon has to be executed
when a closing xtl:if element is encountered.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLIf select=’”+select+”’.”);

141

6. Flexible, Efficient and Safe Template InstanƟaƟon

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

boolean conditionFullfilled = php.evaluateIf(this,
context.getContextStack().getControlVariableValue(realm));

if (!conditionFullfilled)
{

// Fast forward.
context.getReadWindow().skipUntilAfter();

}

return null;
}

LisƟng 6.8: The processMethod in XTLIfStart

The implementaƟon of the process method of the XTLForEachStart and XTLFor-
EachEnd classes are shown in the Figures 6.9 and 6.10, respecƟvely.
An xtl:for-each start element is processed as follows. First, a PHP is retrieved using the

realm aƩribute value. Then, the method evaluateForEach is called to get an iterator
over all control values for which the xtl:for-each instrucƟon content should be instanƟ-
ated. If the iterator is empty, the xtl:for-each instrucƟon is skipped completely using the
skipUntilAfter method from the ReadWindow class. Otherwise, the current read posi-
Ɵon is marked with the iterator in the read window using the markReadPositon method,
and an entry on the ContextStack is made. This entry contains the iterator itself, its first
element as current value of the control variable, 0 as current posiƟon within the xtl:for-
each, the PHP used to evaluate the xtl:for-each and the value of the realm aƩribute.
The processmethod returns null in both cases, as xtl:for-each itself does not directly
contribute to the instanƟated template.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLForEachStart

select=’”+select+”’”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

Iterator<?> it = php.evaluateForEach(this,
context.getContextStack().getControlVariableValue(realm));

if (it.hasNext())
{

// Mark the current read position.
context.getReadWindow().markReadPosition(it);

// Register the execution of a loop on the context stack.
context.getContextStack().openLoop(it, php, realm);

}

142

6.2. Template InstanƟaƟon

else
{

// Fast forward.
context.getReadWindow().skipUntilAfter();

}

return null;
}

LisƟng 6.9: The processMethod in XTLForEachStart

If an xtl:for-each end element is encountered, its process method first retrieves
the iterator of the innermost xtl:for-each instrucƟon from the ContextStack using
its getActiveIterator method. The iterator’s hasNext method is then called to de-
termine whether the xtl:for-each instrucƟon’s content should be executed once more.
If hasNext returns false, the topmost entry on the ContextStack and the posiƟon in
the ReadWindow marked with the iterator are removed. Otherwise, if hasNext returns
true, the next value for the control variable is retrieved and the topmost entry on the Con-
textStack is updated. Finally, the read posiƟon in the ReadWindow is reset to the posiƟon
marked with the iterator, i.e., to the posiƟon directly aŌer the corresponding xtl:for-each
start element. In either case, the processmethod returns null.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLForEachEnd.”);

// Get the context stack.
LoopStack contextStack = context.getContextStack();

// Get the active iterator.
Iterator<?> it = contextStack.getActiveIterator();

// Do we have a new context object?
if (it.hasNext())
{

// Reenter the loop.
contextStack.reenterLoop();

// Jump to the event following the for-each start.
context.getReadWindow().returnTo(it);

}
else
{

// Remove the context.
contextStack.closeLoop();

// Allow the read window to compact itself.

143

6. Flexible, Efficient and Safe Template InstanƟaƟon

context.getReadWindow().removeMarker(it);
}

return null;
}

LisƟng 6.10: The processMethod in XTLForEachEnd

The macro handling is also very easy to implement: the processing of the xtl:macro start
element is shown in LisƟng 6.11, the process method of the xtl:macro end element is
empty and the processing of xtl:call-macro is shown in LisƟng 6.12.
Theprocessmethod of XTLMacroStart uses thereadUntilBeforeAndSkipOnce

method to get its content and stores it under the name given by the value of its name aƩribute
in the macro map. Nothing is returned from the process method, since the xtl:macro
instrucƟon does not directly contribute to the instanƟated template.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLMacroStart name=’”+name+”’.”);

// Get content of the macro until the closing element.
List<XMLEvent> content =

context.getReadWindow().readUntilBeforeAndSkipOnce();

// Store this macro.
context.getMacroMap().put(name, content);

return null;
}

LisƟng 6.11: The processMethod in XTLMacroStart

When an xtl:call-macro instrucƟon is encountered, the macro map is used to retrieve
the events stored by an xtl:macro instrucƟon with a name aƩribute of the same value.
This content is then used to replace xtl:call-macro instrucƟons using the replace-
LastRead() method of the read window. Nothing is returned from the process method,
so the XTLProcessingReader is going to fetch the next element from the read window,
which will be the first element from the currently inserted macro definiƟon.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLCallMacro name=’”+name+”’.”);

// Get the content of the macro definition.
List<XMLEvent> events = context.getMacroMap().get(name);

144

6.2. Template InstanƟaƟon

// Replace xtl:call-macro with the macro content.
context.getReadWindow().replaceLastRead(events);

return null;
}

LisƟng 6.12: The processMethod in XTLCallMacro

The processing of the xtl:include instrucƟon is shown in LisƟng 6.13. The process
method determines the events to be included using the evaluateInclude method of the
PHP and uses the retrieved events to replace the last read event in the readwindow. AŌerwards,
the method returns null to force the XTLProcessingReader to fetch the first event from
the read window, which will now be the first element evaluated by the PHP.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLInclude.”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

// Get events to be included.
List<XMLEvent> events = php.evaluateInclude(this,

context.getContextStack().getControlVariableValue(realm));

// Insert ourself with the new events.
context.getReadWindow().replaceLastRead(events);

return null;
}

LisƟng 6.13: The processMethod in XTLInclude

The processing of xtl:init is implemented as shown in LisƟng 6.14. The processmeth-
od fetches the content of the xtl:init instrucƟon using readUntilBeforeAndSkip-
Once from the read window and passes the retrieved events to the PHP denoted by its realm
aƩribute. Asxtl:init does not contribute to the instanƟated template, theprocessmeth-
od returns null.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLInitStart.”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

145

6. Flexible, Efficient and Safe Template InstanƟaƟon

List<XMLEvent> content =
context.getReadWindow().readUntilBeforeAndSkipOnce();

php.init(content);

return null;
}

LisƟng 6.14: The processMethod in XTLInit

XMLPipelineDriver

The XMLPipelineDriver is a very simple component responsible for driving the XML pro-
cessing pipeline by reading XMLEvents from its predecessor and wriƟng them to its successor.
This mechanism is implemented in its execute method. As soon as no more events can be
read from its predecessor, the executemethod returns.

ReassigningAttributesWriter

The ReassigningAttributesWriter solves a purely technical problem: some StAX im-
plementaƟons cannot handle standalone java.xml.stream.events.Attribute in-
stances, i.e., instances which are directly embedded into the StAX event stream. These im-
plementaƟons expect all Attribute instances to be assigned to javax.xml.stream.
events.StartElement instances. Since the processing of xtl:attribute instrucƟons
creates such standalone instances, the ReassigningAttributesWriter has been intro-
duced to keep the implementaƟon of the XTL engine’s core components as clean and clear as
possible.
The ReassigningAttributesWriter performs the assignment of standalone At-

tribute instances to their preceding start element. To achieve this, the wriƟng of the last
StartElement is deferred unƟl a new StartElement or an EndElement is encoun-
tered. During deferral, all Attribute instances in the stream are removed from the stream
and assigned to the deferred start element.

IndentingXMLEventWriter

In order to produce a human readable XML output, the IndentingXMLEventWriter com-
ponent can be inserted into the processing pipeline. IndentaƟon of XML can be implemented in
many ways. In order to keep the memory consumpƟon low, a streaming indentaƟon algorithm
has been implemented. The indentaƟon process has been subdivided into two components, the
actual IndentingXMLEventWriter and an inner class called PostProcessor. There-
fore, the indentaƟon step in the processing pipeline shown in Figure 6.5 is shown in more detail
in Figure 6.10. The IndentingXMLEventWriter itself is responsible for keeping track of
the element nesƟng in the XMLEvent stream, whereas the PostProcessor is responsible
for performing the actual indentaƟon (i.e., the indentaƟon on the syntacƟcal level).

146

6.2. Template InstanƟaƟon

Figure 6.10.: IndentaƟon Parts of the XTL Processing Pipeline

The PostProcessor provides the following operaƟons to the IndentingXMLEvent-
Writer:

• increaseIndent increases the indentaƟon for all following elements by one tabula-
tor.

• decreaseIndent decreases the indentaƟon for all following elements by one tabula-
tor.

• indent inserts the number of tabulators currently set as a Text event into the target
XMLEvent stream.

• assertNewLine ensures that the target event stream is on a newline. If this is not the
case, the PostProcessor inserts a newline.

• add adds a parƟcular XMLEvent to the event stream.
The IndentingXMLEventWriter obeys the state chart shown in Figure 6.11. The fol-

lowing acƟons are performed on the transiƟons between the states:

¬ The only valid event in the iniƟal state is the StartDocument event, which causes a
transiƟon into the corresponding state. The event itself is added to the PostProces-
sor.

­ Text events occuring in the START_DOCUMENT state are ignored.

® A StartElement event makes sure that the target stream is on a newline, adds the
event to the PostProcessor and increases the indent level. Furthermore, a transiƟon
to the START_ELEMENT state is performed.

¯ If Text events occur in the START_ELEMENT state, their content is aggregated in a text
buffer.

° If another StartElement event occurs, the content of the text buffer is flushed (see
below). AŌerwards, indent is called on the PostProcessor, the StartElement
event is added to the PostProcessor and the indentaƟon is increased.

147

6. Flexible, Efficient and Safe Template InstanƟaƟon

± If an EndElement event occurs, the content of the text buffer is flushed, the indenta-
Ɵon is decreased, indent is called and the event is added to the PostProcessor. A
transiƟon to the END_ELEMENT state is performed.

² If a StartElement occurs in the END_ELEMENT state, the text buffer content is flush-
ed, indent is called, the event is added to the PostProcessor and the indentaƟon
is increased. A transiƟon to the START_ELEMENT state is performed.

³ If Text events occur in the END_ELEMENT state, their content is aggregated in a text
buffer.

´ If another EndElement event occurs, the content of the text buffer is flushed. The
indentaƟon is decreased, indent is called and the event is added to the PostPro-
cessor.

µ If an EndDocument event occurs, the event is added to the PostProcessor. The
final state of the start model has been reached.

All transiƟons not shown in Figure 6.11 are considered illegal and cause an error message.
This also includes events which will never occur in the XMLEvent stream originaƟng from the
XTLEventProcessingReader, like Comment or ProcessingInstruction events.

Figure 6.11.: State Chart of the IndentingXMLEventWriter

The treatment of the content of the text buffer during flushing to the successor XMLEvent-
Writer, which occurs in the transiƟons °, ±, ² and ´, depends on the text which has been
collected in the text buffer. If the text to be flushed consists of a single line and is not longer
than a configurable size, it is emiƩed as is. This results in an XML snippet like the following:

<a>text

If the text is longer or contains newlines, it is tokenized and its parts are emiƩed with indenta-
Ɵon, resulƟng in XML like the following:

<a>
text
more text

148

6.2. Template InstanƟaƟon

SplittingOutputStream

A special feature of the XTL Engine is its capability to split the instanƟaƟon result into mulƟple
result documents. This feature roughly corresponds to the result-document instrucƟon of
XSL-T 2.0. SyntacƟcally, this feature is based on an XML Schema which defines elements that al-
low bundling mulƟple XML documents into one. An example document is shown in LisƟng 6.15.

<?xml version=”1.0” encoding=”UTF-8”?>
<s:files xmlns:s=”http://research.sap.com/xtl/splitting”>

<s:file name=”simple1_1.xml”>
<a>This is simple1_1.xml!

</s:file>
<s:file name=”simple1_2.xml” encoding=”iso-8859-1”>

<a>This is simple1_2.xml!
</s:file>
<s:file name=”simple1_3.xml” encoding=”utf-8”>

<a>This is simple1_3.xml!
</s:file>
<s:file name=”simple1/simple1_4.xml”>

<a>This is simple1/simple1_4.xml!
</s:file>

</s:files>
LisƟng 6.15: A Template InstanƟaƟon Result before Spliƫng

The root element of a template instanƟaƟon result which should be split into mulƟple files
must be files from the spliƫng namespace (here prefixed with s, the namespace URI is
http://research.sap.com/xtl/splitting). Within this root element, mulƟple s:
file elements are allowed. Each s:file element must have a name aƩribute that declares
the file name into which all content parented by this s:file element should be wriƩen. The
s:file element can also carry an encoding aƩribute which sets the encoding of this par-
Ɵcular file to be generated.

Figure 6.12.: State Chart of the SplittingOutputStream

The implementaƟon of the SplittingOutputStream is simple and follows the state
chart shown in Figure 6.12. From the iniƟal state, the only valid transiƟon is to the IN_FILES
state via an s:files element ¬. From the IN_FILES state, an s:file element causes the
creaƟon of a file and a transiƟon into the IN_FILE state ­, in which basically all occuring el-
ements are wriƩen to the file created ®. The IN_FILE is only leŌ when a closing s:file or
s:files tag is encountered. The first case causes a transiƟon back to the IN_FILES state¯,

149

6. Flexible, Efficient and Safe Template InstanƟaƟon

whereas the laƩer case is obviously an error, which causes the SplittingOutputStream
to enter a final ERROR state °. From the IN_FILES state, an occuring closing s:files tag
causes the transiƟon to the final SUCCESS state ±, whereas a closing s:file is an error and
leads to the final ERROR state ².

6.2.4. Memory and RunƟme Complexity

From the operaƟonal view on the XTL Engine, the limits for the memory and Ɵme consumpƟon
shown below can be derived. The underlined parts of the equaƟons are to be interpreted as
XPath expressions.
The memory consumpƟon limit of the XTL Engine is determined by the size of the read win-

dow. As explained above, the readwindowmust be capable of holding the content of the largest
xtl:for-each statement of a template, i.e., thememory is limited by themaximumnumber
of nodes contained in an xtl:for-each statement in the template t◦.

memory(t◦) = O

(
max

x∈t◦//xtl:for−each

∣∣∣x//node()∣∣∣)
A limit for the Ɵme consumpƟon can only be given by abstracƟng from the Ɵme needed for

the evaluaƟon of the expressions from the query language. Under this restricƟon, the Ɵme
needed for the instanƟaƟon of the template is linear in the size of the instanƟated template.
Obviously, the size of the instanƟated template can not be esƟmated from the template, as this
size depends on the result of the evaluaƟon of the instanƟaƟon data.

time(t◦) = O
(∣∣∣instantiate(t◦)//node()∣∣∣)

Measurements of the implementaƟon show the correctness of these esƟmaƟons, for details
see SecƟon 7.5.

6.3. InstanƟaƟon Data ValidaƟon

The instanƟaƟon data validaƟon process is responsible for the validaƟon of the instanƟaƟon
data. The instanƟaƟon data validator component verifies the data supplied by the instanƟaƟon
data evaluator against the constraints determined during the Constraint SeparaƟon process.
Non-compliance of the instanƟaƟon data has to be reported by this component.
As Figure 3.5 shows, the instanƟaƟon data validator gets acƟvated during the instanƟaƟon

phase. This means that no correcƟve acƟons can be taken anymore if a problem is detected
with respect to the instanƟaƟon data. The component is beneficial nonetheless, because it is
able to deliver the exact reason why the instanƟated template will not comply to the target
language. Furthermore, the error is detected within the applicaƟon which incorporates the
template engine, and not, as for example in a classical Web applicaƟon, in some user’s browser
(see Figure 1.1). Thus, validaƟng the instanƟaƟon data constraints contributes to the safe in-
stanƟaƟon goal.

150

6.3. InstanƟaƟon Data ValidaƟon

6.3.1. The IDC PHP

The process of validaƟng the parƟcular instanƟaƟon data constraints is simple. The constraints
are simply taken from the template into which they have been augmented by the Template
ValidaƟon process as shown in SecƟon 5.2. AŌerwards, the values returned by the instanƟaƟon
data validaƟon process are validated against these constraints. This process is implemented by
the IDC PHP, which is a PHP that wraps another PHP and validates its return values as shown
in Figure 6.13 (see SecƟon 6.2.3 for the process without involvement of the IDC PHP). The IDC
PHP is a decorator [73]. If mulƟple PHPs are in use during XTL instanƟaƟon (see SecƟon 4.5.1
for details), each PHP is wrapped with its own IDC PHP.

Figure 6.13.: XTL InstanƟaƟon with enabled InstanƟaƟon Data ValidaƟon

When the XTLProcessingReader encounters an xtl:text instrucƟon ¬, it calls the
process method of the XTLText event implementaƟon ­. This implementaƟon now no
longer retrieves the instanƟaƟon data directly from the responsible PHP (as in Figure 6.9), but
rather calls the evaluateTextmethod of the IDC PHP to evaluate it ®. The IDC PHP in turn
calls the evaluateText method of the responsible PHP ¯ to actually get the instanƟaƟon
data value, which it validates using the type aƩribute augmented to the xtl:text instruc-
Ɵon. If the instanƟaƟon data is valid with respect to the instanƟaƟon data constraint, the pro-
cessing method returns ° and the XTLProcessingReader creates a text element ±. If the
instanƟaƟon data is not valid, the instanƟaƟon fails, thereby producing an error message telling
which instanƟaƟon data constraint has been validated.
The actual processing of the value returned by the wrapped PHP depends on the affected XTL

instrucƟon:
1. If an xtl:text or xtl:attribute instrucƟon is processed, the instanƟaƟon data is

validated against the XML Schema simple type denoted by the type aƩribute of the XTL
instrucƟon. This validaƟon is performed using the validate method from the corre-
sponding org.apache.xerces.impl.dv.XSSimpleType instance, which is re-
trieved based on the type aƩribute.

2. If an xtl:if instrucƟon is processed, no validaƟon is performed as the PHP interface
already restricts the return value to be of boolean type (see LisƟng 6.1), which makes it
impossible to retrieve an invalid instanƟaƟon data value here.

151

6. Flexible, Efficient and Safe Template InstanƟaƟon

3. If an xtl:for-each instrucƟon is processed, the wrapped PHP returns an iterator
over elements of some type determined by a generic parameter of the PHP interface.
It must be checked that this iterator returns a number of elements between the values
of the min and the max aƩribute of the xtl:for-each instrucƟon (the laƩer value
may be unbounded, which makes the interval of allowed values for the number leŌ-
bound). As the retrieval of elements from the iterator does not take place in the PHP
itself, but rather in the process methods of the XTLForEachStart and XTLFor-
EachEnd event classes, the iterator is wrapped in aorg.lixlix.xtl.util.Size-
CheckingIterator. This decorator class just delegates calls to its next and has-
Next methods to the decorated iterator, and counts the number of elements already
retrieved and adds an addiƟonal check that is executed when the hasNext method of
the decorated iterator returns false for the first Ɵme. The check ensures that the num-
ber of elements retrieved from the decorated iterator is within the interval specified by
the min and max aƩributes of the xtl:for-each instrucƟon.

6.3.2. Template Interface GeneraƟon

There is an alternaƟve approach to ensure that the instanƟaƟon data saƟsfies its constraints.
Assuming that the frequency of template modificaƟons is low (or that the modificaƟons are of
a special type, see below), an interface to the template that asserts the instanƟaƟon data con-
straints can be generated. This interface ensures the instanƟaƟon data constraints by mapping
them to the type system of the language that is using the template engine.
This technique is called Template InterfaceGeneraƟon and slightly changes the template tech-

nique as proposed in Figure 3.5. The changed architecture is shown in Figure 6.14. The differ-
ence to the previously proposed architecture is the extension of the adaptaƟon phase: the
adaptaƟon of the template technique now also includes an adaptaƟon to the authored tem-
plate. AŌer the template has been authored and validated, it is compiled in the Template Inter-
face GeneraƟon step.
This step yields a template interface that fulfills the funcƟons of both instanƟaƟon data evalu-

aƟonand instanƟaƟondata validaƟon. For that reason, the template interface is connectedwith
the Template InstanƟaƟon bidirecƟonally. Strictly speaking, the generated template interface
appears in two life cycle phases. It is generated in the adaptaƟon phase and used in the instan-
ƟaƟon phase, which is indicated in Figure 6.14 by the bicolour box used for it. Furthermore, it
is important to note that the aforemenƟoned adaptaƟon phase is different from the one intro-
duced in SecƟon 2.1.2, since it is adapƟng the template engine to a parƟcular template rather
than to a parƟcular target language.
Template Interface GeneraƟon combines the best features of both XML binding tools and

template techniques. XML binding tools guarantee that a generated document complies to a
given schema by translaƟng the constraints contained in the schema to the type system of the
programming language using the XML binding tool (see SecƟon 2.3.3 and [155]). This principle
has also been called intra-level transformaƟon between technological spaces [113]. The disad-
vantage of XML binding tools is that the enƟre document must be created in the host language.
On the other hand, template techniques offer an easyway to generate a document only parƟally
using a programming language: the remainder of the target document is literally contained in

152

6.3. InstanƟaƟon Data ValidaƟon

� Design � AdaptaƟon � Authoring � InstanƟaƟon

Figure 6.14.: Architecture with Template Interface GeneraƟon

the template. Template Interface GeneraƟon allows to generate target language documents
parƟally using a programming language, parƟally from a template using a generated API which
ensures the validity of the instanƟaƟon data.
A difference between the originally proposed architecture in Figure 3.5 and the architecture in

Figure 6.14 is the missing instanƟaƟon data source component in the laƩer architecture. It has
been replaced by the applicaƟon employing the template engine. The applicaƟon is connected
bidirecƟonally to the template interface and the direcƟons correspond to the push and the pull
strategy introduced in SecƟon 2.5.4.
If the pull strategy is used, Template Interface GeneraƟon just generates an interface which

must be implemented by the applicaƟon that is using the template. In this case, the instanƟ-
aƟon data is queried from the applicaƟon when it is needed. On the other hand, if the push
strategy is used, the Template Interface GeneraƟon process will generate a data model which is
instanƟated aŌerwards and populated by the applicaƟon, and that is passed to the template en-
gine upon invocaƟon. Obviously, the datamodel corresponds to theMove Copy of Data paƩern
also menƟoned in SecƟon 6.1.1.

6.3.2.1. Introductory Example

As an introductory example, consider the XTL template shown in LisƟng 6.16. The template is
obviously intended to generate an XHTML document. The template is augmented with instanƟ-
aƟon data constraints, e.g., with type aƩributes at the xtl:text instrucƟons. The Template

153

6. Flexible, Efficient and Safe Template InstanƟaƟon

Interface GeneraƟon process interprets the select aƩributes in this lisƟng as XPath expres-
sions and tries to build an object model which can be accessed using these select aƩributes.

<?xml version=”1.0” encoding=”UTF-8”?>
<html

xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xtl=”http://research.sap.com/xtl/1.0”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

>
<body>

<xtl:for-each select=”books” min=”1” max=”unbounded”>

<xtl:for-each select=”authors” min=”1” max=”unbounded”>
<xtl:text select=”name” type=”xsd:string”/>

</xtl:for-each>
<xtl:text select=”name” type=”xsd:string”/>
(publ. <xtl:text select=”publicationDate” type=”xsd:date”/>)
<xtl:if select=”instock”>Buy</xtl:if>

</xtl:for-each>

</body>
</html>

LisƟng 6.16: Example Template for Template Interface GeneraƟon

As the root for the XPath expressionswithin the documents, the root class of the objectmodel
to be generated will be used. As this usage is implicit (as opposed to being declared using some
XPath expression), a name for the root class can not be deduced from the XTL template. As a
convenƟon, the Template Interface GeneraƟon process names the root class ObjectModel-
Root.
Since the outermost xtl:for-each instrucƟon has a select aƩribute with a value of

books, the ObjectModelRoot class must have a property named books. As the mulƟplic-
ity of the xtl:for-each instrucƟon is restricted by min and max aƩributes deduced during
the Template ValidaƟon process, the books property must have a mulƟplicity of 1 . . . n. There
is no type aƩribute at the xtl:for-each instrucƟon, since this instrucƟon merely changes
the context of the PHP during the Template InstanƟaƟon. The Template Interface GeneraƟon
process therefore generates a new class Book for this property—the name is put into singular
in order to make the object model more human readable.
The Book class is used as the context for the xtl:text instrucƟons with the select at-

tribute values name and publicationDate. Therefore, the Book class has properƟes with
these names and the types String and Date, respecƟvely. The Java type is deduced from
the XML Schema type in the same way JAXB maps XML Schema types to Java types (see below
for the details). AddiƟonally, there is an xtl:if instrucƟon with a select aƩribute with the
value instock, which is turned into a boolean property of the same name at the Book class.
Finally, the outermost xtl:for-each statement contains a further xtl:for-each state-
ment carrying a select aƩribute with the value authors. Analogously to what has been

154

6.3. InstanƟaƟon Data ValidaƟon

described above, this statement adds an authors property to the Books class typed by the
newly introduced Author class.
The xtl:for-each statement refering to the authors property of the Book class con-

tains only a single xtl:text instrucƟon, which causes the Template Interface GeneraƟon pro-
cess to add a name property to the Author class. This aƩribute has the type String. The
overall object model which can be deduced from the template is shown in Figure 6.15.

Figure 6.15.: The Object Model Deduced from the Template in LisƟng 6.16

It is important to note that the InstanƟaƟon Data Type Safety can not only be guaranteed by
the Java types of the properƟes within the generated object model. The problem is that the
XML Schema type model is much more fine-grained than the Java type model, e.g., there is no
exact equivalent of the xsd:nonNegativeInteger type. The soluƟon is to select the Java
type which has the smallest value range including all the values from the XML Schema type,
and to check the value for its correctness with respect to the XML Schema type either when
the value changes (i.e., within the set method) or when the object model is passed into the
Template InstanƟaƟon process.

6.3.2.2. An Algorithm for the Template Interface GeneraƟon

It is important to note that the Template Interface GeneraƟon process restricts the syntax of
XPath expressions usedwithin the template. For example, the XPath axisdescendant can not
be allowed in the XPath expressions in a template for which an interface should be generated,
since this axis allows an XPath to evaluate to a node arbitrarily deep within the context node.
There is no equivalent to such an arbitrary descent within an object model.
The syntax accepted by the Template Interface GeneraƟon is shown in Figure 6.16. The figure

contains a subset of the syntacƟcal producƟons in the XPath specificaƟon [38]. The first column
in the figure contains the number of the producƟon rule within the specificaƟon. On the right
hand side of the rules, terminal and non-terminal symbols have been greyed out if they are not
allowed within the XPath expressions. If a non-terminal has been greyed out, its corresponding
producƟon rule has been omiƩed. The rule has also been omiƩed if its leŌ-hand side is not from
the XPath specificaƟon—this is the case for the QName non-terminal symbol, which is actually
defined in [29].

155

6. Flexible, Efficient and Safe Template InstanƟaƟon

[1] LocaƟonPath ::= RelaƟveLocaƟonPath | AbsoluteLocaƟonPath
[2] AbsoluteLocaƟonPath ::= ’/’ RelaƟveLocaƟonPath?

| AbbrAbsoluteLocaƟonPath
[3] RelaƟveLocaƟonPath ::= Step

| RelaƟveLocaƟonPath ’/’ Step
| AbbrRelaƟveLocaƟonPath

[4] Step ::= AxisSpecifier NodeTest Predicate*
| AbbrStep

[5] AxisSpecifier ::= AxisName ’::’ | AbbrAxisSpecifier
[6] AxisName ::= ’ancestor’ | ’ancestor-or-self’ | ’aƩribute’

| ’child’ | ’descendant’ | ’descendant-or-self’
| ’following’ | ’following-sibling’ | ’namespace’
| ’parent’ | ’preceding’ | ’preceding-sibling’ | ’self’

[7] NodeTest ::= NameTest | NodeType ’(’ ’)’
| ’processing-instrucƟon’ ’(’ Literal ’)’

[12] AbbrStep ::= ’.’ | ’..’
[13] AbbrAxisSpecifier ::= ’@’?
[37] NameTest ::= ’*’ | NCName ’:’ ’*’ | QName

Figure 6.16.: The XPath Syntax Accepted by the Template Interface GeneraƟon Process

There are several reasons why a part of the right-hand side of a producƟon rule has been
greyed out. First of all, all axes that allow an arbitrary depth selecƟon within an XML document
have been omiƩed (ancestor, ancestor-or-self, descendant, descendant-or-
self, preceding, following). The namespace axis has been disallowed as its use does
not make any sense when accessing an object model. Furthermore, the use of predicates to
further classify the selected nodes has been disallowed in order to simplify the actual imple-
mentaƟon of the Template Interface GeneraƟon algorithm, although it would be possible to
include predicates in the allowed XPath subset. The abbreviated locaƟon paths have been dis-
allowed since they are refering to the disallowed descendant-or-self axis. Finally, node
tests have been restricted to name tests, since this is the only node test applicable to an object
model.

The Template Interface GeneraƟon also slightly changes the semanƟcs typically assigned to
these expressions. Typically, a conversion from the node selected by an XPath expression de-
pending on the context of the expression is applied. Anxsl:if instrucƟonwill convert anull
value returned by an XPath expression into the boolean value false, and an arbitrary non-null
value into the boolean value true. AdapƟng the Template Interface GeneraƟon process to this
behaviour would mean that no type informaƟon could be deduced from xtl:if statements
at all, which would complicate the type deducƟon during the generaƟon process.

In order to understand how an XML Schema type is mapped to a Java type, it is necessary
to look at the type mapping defined in [105]. The mapping used during the Template Interface
GeneraƟon process is analogous, with the excepƟon that the xsd:IDREF type is also mapped
to the Java type java.lang.String, i.e., the IDREF value is represented textually within

156

6.3. InstanƟaƟon Data ValidaƟon

the documentmodel (as it wouldwithin the XML document represenƟng the documentmodel),
and not by resolving the referenced object (which would require the type to be mapped to the
java.lang.Object type).
The Template InterfaceGeneraƟon algorithmbasically tries to construct an objectmodel from

the set of XPath expressions contained in an XTL template. As an intermediate step, an in-
memory model similar to a UML model is constructed (which is later used to generated the
actual template interface code using an M2C transformaƟon). The intermediate model is a
tree of instances of a data structure called property descriptor. A property descriptor has the
following properƟes:

• A parent, which may also be absent.
• A list of children. Each of the child property descriptors of property descriptor A has A
as its parent.

• A name, which is a String.
• A type, which is a QName. The type may also be absent.
• A minimum and maximum cardinality. The laƩer one may also take a value of −1 to
denote unrestricted cardinality.

The construcƟon of the property descriptor tree works as follows. A current and a root prop-
erty descriptor are maintained. IniƟally, they are both iniƟalized with a single property descrip-
tor that forms the root of the property descriptor tree (and, thus, is the only property descriptor
without parent).
If an XPath expression complying to the syntax shown in Figure 6.16 is given, a property de-

scriptor is retrieved using the current and root property descriptor as described below. In order
to compute the result, a result property descriptor is introduced, which may be reassigned dur-
ing the process.

1. The XPath expression is interpreted using rule [1] from Figure 6.16. If it is an absolute
locaƟon, the root property descriptor is used to iniƟalize the result property descriptor,
otherwise, the current property descriptor is used as iniƟalizaƟon value.

2. For each abbreviated step (AbbrStep)within RelaƟveLocaƟonPath (see rules [3], [4], [12]),
the result property descriptor is either unchanged (for the abbreviated step .) or the
parent of the current property descriptor is assigned as its new value (for the abbreviated
step ..). It is an error if this parent property result descriptor is absent.

3. For a non-abbreviated step, i.e., a combinaƟon of an AxisName or an AbbrAxisSpecifier
with a QName (see rules [4]…[7], [37]), the following happens, depending on the type of
the axis:

a) If the axis is the attribute axis (which may also be denoted using the AbbrAxis-
Specifier @), the QName is used to search for an equally named property descriptor
within the children of the current result property descriptor. If such a property de-
scriptor exists, it becomes the new result property descriptor. It is an error if the
property descriptor found has an absent type. If no such property descriptor exists,
a new one is created, a parent-child relaƟonship between it and the current prop-
erty descriptor is created and the newly created property descriptor becomes the
new result property descriptor.

157

6. Flexible, Efficient and Safe Template InstanƟaƟon

b) If the axis is the child axis, the calculaƟon of the result property descriptor hap-
pens exactly as with an attribute axis, with the only difference that it is an error
if an exisƟng property descriptor has a non-null type.

c) If the axis is self, following-sibling or preceding-sibling, the re-
sult property descriptor is unchanged. However, it is an error if the current result
property descriptor has a name disƟnct from the QName in the NameTest.

d) If the axis is parent, the result property descriptor is assigned to the parent of the
current property descriptor. It is an error if the result property descriptor becomes
null during this operaƟon or if the new property descriptor has a name disƟnct from
the QName in the NameTest.

The XTL document is then processed in its document order. Non-XTL parts of the template are
ignored. If an XTL instrucƟon is encountered, it is interpreted depending on its type as described
below:

1. If anxtl:for-each instrucƟon is encountered, a property descriptor is retrieved using
the XPath expression from the XTL instrucƟonwith the algorithm described above. It is an
error if the retrieved property descriptor has a non-null type. If the property descriptor
has just been created by the retrieval algorithm described above, the last NameTest is
assigned to its name aƩribute, and the type, min and max aƩributes are transferred to
its respecƟve properƟes. Otherwise, the following operaƟons are performed:

a) The minimum cardinality of the property descriptor is set to be the maximum of its
previous value and the min aƩribute value of the xtl:for-each instrucƟon.

b) The maximum cardinality of the property descriptor is set to be the minimum of its
previous value and the max aƩribute value of the xtl:for-each instrucƟon.

c) The previous value of the type aƩribute of the property descriptor and the type
denoted by the type aƩribute of the xtl:for-each instrucƟon are compared
with regard to their lexical spaces (in the sense of [26]). It is an error if these lexical
spaces are incomparable (i.e., when denoƟng the spaces with A and B, A \ B ̸=
∅ ∧ B \ A ̸= ∅ is true). If the lexical spaces are comparable, the type with the
smaller lexical space is stored as the type value of the property descriptor.

Finally, the newly retrieved property descriptor is set to be the new current property
descriptor. It is an error if the minimum cardinality of this property descriptor is greater
than its maximum cardinality (this is the case if the template declares two cardinality
intervals a . . . b and c . . . dwith either b < c or d < a, i.e., two non-overlapping intervals).

2. If an xtl:if instrucƟon is encountered, a property descriptor is retrieved using the
XPath expression from the XTL instrucƟon with the algorithm described above. If the
property descriptor has been newly created, it is assigned the type xsd:boolean. If
an exisƟng property descriptor has been retrieved, it is an error if the retrieved property
descriptor has a type different from xsd:boolean.

158

6.3. InstanƟaƟon Data ValidaƟon

3. If either an xtl:attribute or an xtl:text instrucƟon is encountered, a property
descriptor is retrieved using the XPath expression from the XTL instrucƟon with the algo-
rithm described above. If the property descriptor has just been created by the retrieval
algorithm, its name aƩribute is set to the latest NameTest in the XPath expression of the
select aƩribute and its type aƩribute is set to the value of the type aƩribute of the
XTL instrucƟon. If the property descriptor is not newly created, it is an error if the com-
mon super class of the Java mappings of both types is not equal to one of the mapped
classes (as with the xtl:for-each instrucƟon, see above). The most specific type in
the sense of derivaƟon by restricƟon [180] is stored as the type value of the property
descriptor.

If the algorithm described above is applied to the template in LisƟng 6.16, the property de-
scriptor tree shown in Figure 6.17 is created.

Figure 6.17.: The Tree of Property Descriptors Built from the Template Shown in LisƟng 6.16

This property descriptor tree can easily be transformed into a Java object model using the
following mapping:

1. For property descriptors with an absent type, a class is createdwith the name determined
by the name value of the property descriptor. If there is no such name, i.e., if the property
descriptor is the root property descriptor, the class is named ObjectModelRoot. The
name (as described in SecƟon 6.3.2.1) is chosen as a convenƟon, since the template itself
contains no informaƟon about the naming of this root class.

2. For each of the children of a property descriptor, a property at the generated class is
added. If the child property descriptor has a mulƟplicity, a collecƟon class is used to

159

6. Flexible, Efficient and Safe Template InstanƟaƟon

type the property; otherwise, the value of the type aƩribute of the property descriptor
is mapped to a Java type which is then used to type the property.

This simplemapping schema transforms the property descriptor tree in Figure 6.17 into the Java
object model shown in Figure 6.15. Obviously, the type safety given by the Java object model
does not completely ensure that the instanƟaƟon data constraints are fulfilled. There are two
reasons for this. First, there are no exact counterparts for some of the XML Schema types. For
example, there is no Java type with exactly the value range provided by xsd:nonNegative-
Integer. Second, the cardinaliƟes of the collecƟons determined from the template are not
checked by the Java collecƟon types. In order to close these gaps and to enforce the instanƟ-
aƟon data constraints, an addiƟonal validatemethod is generated for all classes within the
object model. This validate method ensures the correct types and cardinaliƟes of all prop-
erty valueswithin the object itself and subsequently calls thevalidatemethod on all children
within the objectmodel. Thevalidatemethodmust be called by the template engine before
starƟng with the actual instanƟaƟon process.

6.3.2.3. ImplementaƟon using a PHP and an API-based Generator

The implementaƟon of the Template Interface GeneraƟon process is straighƞorward and con-
sists of two steps: the analysis step, which constructs the property descriptor tree, and the
generaƟon step, in which the property descriptor tree is transformed into a Java object model.
The analysis step has been implemented using a PHP named org.lixlix.xtl.com-

piler.template.AnalyzerPHP. This approach makes it easy to iterate over the tem-
plate and to react to the embedded XTL instrucƟons. The property descriptor implementaƟon
is the class org.lixlix.xtl.compiler.template.PropertyDescriptor. This is
also the actual value for the Type type parameter of the PlaceHolderPlugin interface.
The context mechanism of the PHP is used to keep track of the current property descriptor (in
the sense described above), whereas the root property descriptor is kept in a private field root
in the PHP.
The algorithm for retrieving a property descriptor from an XPath expression is implemented

in the method retrievePropertyDescriptor as shown in LisƟng 6.17. The method
first determines whether to use the root or the current property descriptor as the base for
the retrieval of the new property descriptor. AŌerwards, the XPath expression is parsed and
the method iterates over its steps. It is checked that the steps do not contain predicates, since
the use of predicates has been excluded from the accepted XPath syntax (see Figure 6.16), if the
check fails, an excepƟon is thrown. Depending on the axis referenced in the step, a newproperty
descriptor is retrieved. In case a forbidden axis or a forbidden node test is encountered, the
method also throws an excepƟon. If all steps are processed, the resulƟng property descriptor
is returned.

private PropertyDescriptor retrievePropertyDescriptor(PropertyDescriptor current,
String xpathExpression)
throws XPathExpressionException

{
PropertyDescriptor result;
LocationPath locationPath = parse(xpathExpression);

160

6.3. InstanƟaƟon Data ValidaƟon

result = locationPath.isAbsolute() || current == null ? root : current;
for (Step step : locationPath.getSteps())
{

assertTrue(step.getPredicates().length==0, ”Predicated are not allowed.”);

switch (step.getAxis())
{

case Compiler.AXIS_ANCESTOR:
case Compiler.AXIS_ANCESTOR_OR_SELF:
case Compiler.AXIS_DESCENDANT:
case Compiler.AXIS_DESCENDANT_OR_SELF:
case Compiler.AXIS_FOLLOWING:
case Compiler.AXIS_NAMESPACE:
case Compiler.AXIS_PRECEDING:

String axisName = Step.axisToString(step.getAxis());
fail(”Use of axis ’”+axisName+”’ not allowed.”);
break;

case Compiler.AXIS_ATTRIBUTE:
case Compiler.AXIS_CHILD:

assertTrue(step.getNodeTest() instanceof NodeNameTest,
”Only NameTests are allowed as NodeTests.”);

NodeNameTest nodeNameTest = (NodeNameTest)step.getNodeTest();
assertTrue(nodeNameTest.getNodeName().getPrefix() == null,

”Prefixes are forbidden.”);
assertFalse(nodeNameTest.isWildcard(),

”The ’*’ NameTest is not an allowed.”);
String name = nodeNameTest.getNodeName().getName();
PropertyDescriptor newResult = result.getChild(name);
if (newResult == null)
{

newResult = new PropertyDescriptor(name, result);
}
result = newResult;
break;

case Compiler.AXIS_PARENT:
assertFalse(result.isRoot(),

”Use of parent axis at root node is forbidden.”);
result = result.getParent();
break;

case Compiler.AXIS_SELF:
case Compiler.AXIS_FOLLOWING_SIBLING:
case Compiler.AXIS_PRECEDING_SIBLING:

// Do nothing.
break;

}
}

return result;
}

LisƟng 6.17: The retrievePropertyDescriptorMethod in the AnalyzerPHP

The retrievePropertyDescriptor method is called by the implementaƟons of the
various evaluate methods of the PHP. As an example, the implementaƟon of the evalu-
ateForEach method is shown in LisƟng 6.18. The method uses the retrieveProper-
tyDescriptormethod to get a property descriptor and aŌerwards transfers the cardinality
and type informaƟon to the property descriptor (which is responsible formonitoring the restric-
Ɵons put on the cardinality and the type). The method returns an iterator containing only the

161

6. Flexible, Efficient and Safe Template InstanƟaƟon

retrieved property descriptor, thereby causing the elements contained within the xtl:for-
each instrucƟon to be evaluated once with this property descriptor as context argument.

public Iterator<PropertyDescriptor> evaluateForEach(XTLForEachStart xtlForEach,
PropertyDescriptor context)

{
try
{

String select = xtlForEach.getSelect();

logger.debug(”evaluateForEach(...) called with select=’”+select+”’.”);

PropertyDescriptor propertyDescriptor =
retrievePropertyDescriptor(context, select);

propertyDescriptor.setType(UNKNOWN);
propertyDescriptor.setMinOccurs(xtlForEach.getMin());
propertyDescriptor.setMaxOccurs(xtlForEach.getMax());

return Collections.singletonList(propertyDescriptor).iterator();
}
catch (XPathExpressionException xpe)
{

log(xpe);
return Collections.<PropertyDescriptor>emptyList().iterator();

}
}

LisƟng 6.18: The evaluateForEachMethod in the AnalyzerPHP

AŌer the AnalyzerPHP has completed processing the XTL template, its root property de-
scriptor is taken and the tree of property descriptors is transformed into a Java object model
starƟng from the root property descriptor. The Java code itself is constructed using an API-
based Java generator [97]. The transformaƟon process also generates the validatemethod
described above. An example for such a method, in which a cardinality of 2…4 is assumed to be
allowed for the authors property, is shown in LisƟng 6.19. In addiƟon to the classes from the
objectmodel, a PHP namedObjectModelRootPHP is generated, which serves as an adapter
between the generated object model and the Template InstanƟaƟon component. This PHP can
be created with an instance of the ObjectModelRoot class as argument. The PHP calls the
validate method on the passed instance immediately, causing the complete validaƟon of
the passed object model.

public void validate() {
if (authors == null) {

throw new IllegalStateException(”Missing required
attribute/element ’authors’.”);

}
if (authors.size()< 2) {

throw new IllegalStateException(”Number of elements
’authors’ is less than expected minimum 2.”);

}
if (authors.size()> 4) {

162

6.4. Conclusion

throw new IllegalStateException(”Number of elements
’authors’ is greater than expected maximum 4.”);

}
for (Author current: authors) {

current.validate();
}
/* ... */

}

LisƟng 6.19: An Example for a validateMethod ImplementaƟon

The implementaƟon of the Template Interface GeneraƟon process (see SecƟon 7.1.4) also
supports the immediate compilaƟon of the Java code model. In order to enable unit tesƟng
of the implementaƟon, the implementaƟon also supports the direct introducƟon of JAXB an-
notaƟons into the generated object model. This allows the direct use of XML documents as
instanƟaƟon data source for the generated ObjectModelRootPHP, which in turn greatly
simplifies the test process (see SecƟon 7.2).

6.4. Conclusion

In this chapter, the components involved during the instanƟaƟon Ɵme of the proposed pro-
cess have been discussed: the InstanƟaƟon Data EvaluaƟon, the Template InstanƟaƟon and the
InstanƟaƟon Data ValidaƟon components.
The InstanƟaƟon Data EvaluaƟon component is invoked by the Template InstanƟaƟon com-

ponents to retrieve the instanƟaƟon data in order to instanƟate a parƟcular template. A plugin
mechanismhas been introduced that allows different query languages to be used in conjuncƟon
with the proposed approach. This plugin mechanism disƟnguishes the approach from exisƟng
techniques, which typically use a fixed special or general purpose language (like XPath or Java).
Several InstanƟaƟon Data EvaluaƟon plugins have been presented.
The Template InstanƟaƟon is a core component within the proposed approach. In order to

create an implementaƟon which can compete with exisƟng approaches like JSP and XSL-T, ma-
jor effort has been invested into the design of this component. The best-suited XML access
technology, StAX, and its advantages have been described. An operaƟonal model has been de-
veloped that has been used to implement the component. This implementaƟon as a pipeline of
components has been described in detail. An esƟmaƟon for the memory and Ɵme complexity
of this component has been given.
The InstanƟaƟon Data ValidaƟon component is responsible for validaƟng the instanƟaƟon

data retrieved from the InstanƟaƟon Data EvaluaƟon component against the instanƟaƟon data
constraints emiƩed by the Constraint SeparaƟon component. The design and implementaƟon
of this component turned out to be straighƞorward.
An interesƟng alternaƟve approach to the InstanƟaƟon Data ValidaƟon component has been

introduced: the Template Interface GeneraƟon. This is a slight modificaƟon of the proposed
architecture that elevates the process of the instanƟaƟon data validaƟon into the applicaƟon
using the Template InstanƟaƟon component. This has been achieved by generaƟng an interface

163

6. Flexible, Efficient and Safe Template InstanƟaƟon

for a parƟcular template, which guarantees the correctness of the instanƟaƟon data. This ap-
proach for guaranteeing the instanƟaƟon data’s types has never been used in conjuncƟon with
a template approach before.

164

7
ValidaƟon

Es ist leicht, VorschriŌen über die Theorie des Beweises aufzustellen, aber der Beweis
selbst ist schwer zu führen.

Giordano Bruno [32]

In order to verify the design decisions and to scruƟnize the statements which have beenmade
in the previous chapters, a number of validaƟon steps have been executed. Most notably, the
implementaƟon of a prototype, illustraƟng most of the concepts developed in this thesis, de-
livered a proof of concept for many design decisions.
The prototype implementaƟon is revisited with respect to validaƟon in SecƟon 7.1. The de-

veloped prototype has been used and improved in various research projects. These applicaƟons
are described in SecƟon 7.3. Furthermore, the formal proof given in SecƟon 5.1.5 for the ful-
fillment of the preservaƟon requirement referenced in SecƟon 7.4 is also a validaƟon means.
Measurements have beenmade in order to evaluate the performance of the template engine in
comparison to other, established techniques. The results of the measurements are described
in SecƟon 7.5.
Figure 7.1 shows which goals (as defined in SecƟon 3.1) are addressed by the parƟcular vali-

daƟon means described in this chapter.

7.1. ImplementaƟon of the Prototype

The most important validaƟon tool is the implementaƟon of a prototype called XTLEngine. This
prototype implements the proposed approach as far as possible within the restricƟons of the

165

7. ValidaƟon

Figure 7.1.: RelaƟons between ValidaƟon Means and Goals

underlying base technologies. In the following, the prototype version 2.0, build 607 is described.
The prototype consists of approximately 15.500 lines of code comprising 195 classes organized
in 35 packages. The prototype includes the following arƟfacts:

• The XTLEngine.jar and all required libraries.
• Command line tools for Windows and Mac OS X (described below).
• Test suites containing examples for the use of the included tools (see SecƟon 7.2).
• The XTL, CXSD and IDC schemas.
• The documentaƟon of the source code.

An overview of the tools supplied with the prototype is given in Figure 7.2. The figure should
be comparedwith the Figures 3.5 and 6.14, since it closely resembles and aggregates their struc-
tures. The four tools shown are implementaƟons of the Constraint SeparaƟon process (xtlsc,
see SecƟon 7.1.1), the Template ValidaƟon process (cxsdvalidate, see SecƟon 7.1.2), the
Template InstanƟaƟon process (xtlinstantiate, see SecƟon 7.1.3) and the Template In-
terface GeneraƟon process (xtltc, see SecƟon 7.1.4).

Figure 7.2.: The Prototype’s Tool Architecture

166

7.1. ImplementaƟon of the Prototype

7.1.1. The Constraint SeparaƟon Tool xtlsc
The Constraint SeparaƟon component is supplied as a command line tool named xtlsc (XTL
Schema Compiler, as shell script and Windows batch file) in the bin directory of the proto-
type. The tool is also available as an ANT task via the class org.lixlix.xtl.compiler.
schema.XTLSchemaCompilerTask or via its API classorg.lixlix.xtl.compiler.
schema.XTLSchemaCompilerImpl. Figure 7.3 shows the command line opƟons of the
xtlsc tool.

Figure 7.3.: Console Help of the xtlsc.sh Command

Thextlsc arguments possible here fall into three categories: general opƟons, locaƟon hints
and input/output arguments.
The first category contains the opƟon -indent, which defines whether the generated tar-

get language grammar should be indented, the opƟon -overwrite, which defines whether
an already exisƟng target file should be overwriƩen, and -cdata, which defines whether the
generated CXSD constraints should be wrapped in CDATA secƟons to improve their readability.
The locaƟon hints category allows to specify locaƟons for the CXSD, the IDC and the XTL

schema, which will be imported using xsd:import in the generated schema. The names of
the opƟons are -importCXSDSchema, -importIDCSchema, and -importXTLSchema,
respecƟvely. If such opƟons are given, their arguments will be used for theschemaLocation
aƩribute of the xsd:import statements, which will allow other tools to locate the imported
schemas.
The final category is formed by the arguments, poinƟng to the XML Schema file to be pro-

cessed, and an opƟonal target file. If the target file is omiƩed, the result of the Constraint
SeparaƟon process is wriƩen to the standard output.

7.1.2. The Template ValidaƟon Tool cxsdvalidate
The Template ValidaƟon component is supplied as a command line tool named cxsdvali-
date (as shell script andWindows batch file) in the bin directory of the prototype. The tool is
also available as an ANT task via the class org.lixlix.xtl.cxsd.CXSDValidator-
Task or via its API class org.lixlix.xtl.cxsd.CXSDValidatorImpl. Figure 7.4
shows the command line opƟons of the cxsdvalidate tool.
cxsdvalidate knowsonly one opƟon: -noconstraints can beused to validate against

a CXSD schema as if it would be an XML Schema, i.e., all embedded OCL constraints are ignored
during validaƟon. The only required argument is the name of the XML document to be validated

167

7. ValidaƟon

Figure 7.4.: Console Help of the cxsdvalidate.sh Command

against the CXSD schema, which can be passed as second argument. If the second argument is
missing, cxsdvalidate tries to find the CXSD schema using the xsd:schemaLocation
or xsd:noNamespaceSchemaLocation aƩributes from within the XML document.

7.1.3. The Template InstanƟaƟon Tool xtlinstantiate
The Template InstanƟaƟon component is accessible as a command line tool named xtlin-
stantiate (as shell script andWindows batch file) in the bin directory of the prototype. The
tool is also available as an ANT task via the class org.lixlix.xtl.engine.impl.XTL-
EngineTask or via it API class org.lixlix.xtl.engine.impl.XTLEngineImpl.
The command line opƟons of the xtlinstantiate tool are shown in Figure 7.5.

Figure 7.5.: Console Help of the xtlinstantiate.sh Command

The arguments for xtlinstantiate fall in three categories: general opƟons, opƟons to
enable a PHP and to pass arguments to it, and input/output arguments.
The first category contains the opƟon-indent, which defineswhether the instanƟated tem-

plate should be indented, the opƟon -overwrite, which defines whether an exisƟng target
file should be overwriƩen, and the opƟon -idc, which defines whether the instanƟaƟon data
constraints should be evaluated. The evaluaƟon of the IDC constraints is obviously only possible
if the template correctly links to an CXSD schema with embedded IDC constraints.
The second category contains opƟons that can be used to enable and configure a parƟcular

PHP. As opposed to what is possible with the ANT task or via the API, the command line tool
only allows to acƟvate one plugin.

168

7.1. ImplementaƟon of the Prototype

The -schema opƟon with a file parameter acƟvates the XMLBean PHP which parses the
passed file as XML Schema. The -jxPath opƟon acƟvates the JXPath PHP with the passed file
being parsed as an XML document. The -identity opƟon acƟvates the IdenƟty PHP. The
-system opƟon acƟvates the System PHP. The -uml2 opƟon enables the UML PHP, which
loads the passed file as XMI representaƟon of an UMLmodel. The -xpath opƟon acƟvates the
XPath PHP, which interprets the passed file as an XML document. Finally, the -sparql opƟon
acƟvates the SPARQL PHP with the passed file as an ontology. -sparql allows the sub opƟon
--ruleswith a file parameter: if such a rule file is present, it is applied to the ontology before
the first query is executed on it.

The final category is formed by the input/output arguments. xtlinstantiate requires a
file argument which denotes the XTL template to be instanƟated. As the output argument, a file
or the opƟon -split followed by a directory are allowed. In the laƩer case, the result is split
as described in SecƟon 6.2.3 and the results of the spliƫng are wriƩen to the passed directory.
If none of the output arguments are given, the output is wriƩen to the standard output.

7.1.4. The Template Interface GeneraƟon Tool xtltc

The Template InterfaceGeneraƟonToolxtltc implements the ideas described in SecƟon 6.3.2.
The tool is available as shell script and Windows batch file in the bin directory of the pro-
totype, as an ANT task class org.lixlix.xtl.compiler.template.XTLTemplate-
CompilerTask or via its API class org.lixlix.xtl.compiler.template.XTLTem-
plateCompilerImpl. The command line opƟons of thextltc tool are shown in Figure 7.6.

Figure 7.6.: Console Help of the xtltc.sh Command

The xtltc tool accepts opƟons from two categories: general opƟons and input/output ar-
guments. In the first category, the opƟon -rootPackage can be used to define the package
into which the generated Java source code should be placed. The opƟon -rootClass de-
fines the name of the root class within the generated object model, since this name can not
be inferred from the select aƩribute expressions in the compiled XTL template. The opƟon
-classpath supplies the Java compiler used to compile the generated Java source files with
a class path to compile against.

The input/output argument category contains the nameof the XTL template to be compiled as
a required argument and an opƟonal-targetDirectory opƟonwith an argument denoƟng
the directory to which the created Java sources should be wriƩen.

169

7. ValidaƟon

7.2. Test Suites

The test suites are themain tools to validate the fulfillment of the goals Safe Authoring and Safe
InstanƟaƟon. All important aspects of the prototype as well as statements made in Chapter 4
are subject to test suites. There are five test suites, which are described in detail below.
All test suites either test a single tool or a parƟcular combinaƟon of tools and operate on

a number of input documents like schemas or templates, and produce other documents from
them. AŌer the tool under test has been executed and results have been produced, the results
are compared to the expected results. This is done either textually or via an XML comparison
tool (XMLUnit, [194]). The use of XMLUnit allows to compare XML documents with respect to
the XML specificaƟon [28]. For example, XMLUnit ignores the order of aƩributes during com-
parison.
The test fixture, i.e., the input documents for the various test suites, and the expected results,

i.e., the instanƟated templates, are also part of the prototype. The execuƟon of all test suites is
done via ANT.

7.2.1. Constraint SeparaƟon Test Suite

The Constraint SeparaƟon test suite tests the Constraint SeparaƟon step (see SecƟon 5.1) by
invoking the xtlsc tool described in SecƟon 7.1. The test suite operates over an input set
of 18 different XML Schema documents, which test the XML Schema features supported by the
Constraint SeparaƟon process like choices, sequences, required and opƟonal aƩributes. The
test process, which is illustrated in Figure 7.7, consists of the following steps:

¬ The xtlsc tool is invoked with each of the target language grammars as input. The
generated result template language grammar is saved.

­ The generated result is compared against the stored expected template language gram-
mar. The comparison is done as described above, i.e., semanƟcally irrelevant differences
like whitespaces are ignored.

Figure 7.7.: Constraint SeparaƟon Test Suite

7.2.2. Template ValidaƟon Test Suite

The Template ValidaƟon test suite tests the Template ValidaƟon process by checking the validity
of XTL documents with respect to CXSD schemas. The Template ValidaƟon tool cxsdvali-
date produces one of two possible results: it either outputs an augmented (in the sense of
SecƟon 5.2) XTL template if the validaƟon has succeeded, or it outputs a validaƟon report with

170

7.2. Test Suites

a list of detected errors if the validaƟon has failed. The test process is illustrated in Figure 7.8
and consists of the following steps:

¬ The cxsdvalidate tool is invoked with a pair of an XML document (which is in most
cases an XTL template as well, see below) and a corresponding template language gram-
mar (which is a valid CXSD document). The result, which is either an augmented XTL
template or a validaƟon report, is stored.

­ For each test case, either an expected augmented XTL template or an expected validaƟon
report has been stored, which is compared to the actual output of the cxsdvalidate
invocaƟon. It is an error if the types of the actual and the expected document differ, since
this means that the overall validaƟon result is wrong.

Figure 7.8.: Template ValidaƟon Test Suite

The set of input documents is divided into two categories. First, the test suite checks special
documents against CXSD schemas in order to check the CXSD validaƟon as such (i.e., the XML
Schema validaƟon as well as the construcƟon of the XML model underlying the OCL constraint
evaluaƟon). Second, the test suite tests instance documents against the template language
grammars produced by the Constraint SeparaƟon Test Suite described above. This laƩer test
ensures that the Constraint SeparaƟon process works together with the Template ValidaƟon
process in order to allow the Safe Authoring of templates. In both cases, valid and invalid docu-
ments are tested.

7.2.3. Template InstanƟaƟon Test Suite

The Template InstanƟaƟon test suite tests the Template InstanƟaƟon component described in
SecƟon 6.2 as well as the InstanƟaƟon Data EvaluaƟon components described in SecƟon 6.1.
The test suite tests the xtlinstantiate tool with 72 templates as input documents. The

instanƟaƟon data comes from 44 documents. The PHPs for the evaluaƟon of XPath, OCL, and
SPARQL as well as the IdenƟty PHP are tested. All XTL instrucƟons and XTL features like by-
passing and realms are included in the tests. For 8 augmented templates, the instanƟaƟon
data validaƟon feature is enabled to also check the InstanƟaƟon Data ValidaƟon component
described in SecƟon 6.3.1.
The test suite also tests that the XTL Engine, i.e., the Java implementaƟon of the Template In-

stanƟaƟon component, adheres to the denotaƟonal XTL semanƟcs given in Chapter 4. For this

171

7. ValidaƟon

reason, the XTL semanƟcs (which is described in Haskell) has been compiled into an executable
using the Glasgow Haskell Compiler (GHC). This compiled version is also part of the prototype
and is named hsxtl. As the Haskell version of the Template InstanƟaƟon component only sup-
ports instanƟaƟon data sources that are accessible using XPath and is not supporƟng mulƟple
realms, this test only checks 30 XTL templates against 39 instanƟaƟon data files. This restricƟon
aside, all XTL instrucƟons have been tested.
Finally, the test suite tests that the XTL Engine and the translaƟonal semanƟcs described in

SecƟon 4.6 yield equal results. This test is a two-stage process, as the XTL templates are first
transformed into XSL-T stylesheets using the xtl-to-xslt stylesheet, an then used to trans-
form the instanƟaƟon data XML documents. Again, the set of instanƟaƟon data sources had to
be restricted, since the XSL-T stylesheets generated from the XTL documents can only evaluate
XPath expressions. Thus, the set of input documents is the same as used for the hsxtl test.
The test process is illustrated in Figure 7.9 and consists of the followings steps:

¬ The instanƟaƟon tool, i.e., either xtlinstantiate, hsxtl, or xsl-to-xslt, is
invoked with a combinaƟon of an XTL template and single or mulƟple instanƟaƟon data
sources. The result, be it an instanƟaƟon result or a failure report (if an instanƟaƟon data
constraint has been violated), is saved.

­ For each test case, either an expected instanƟaƟon result or an expected instanƟaƟon
failure report has been stored, which is compared to the actual output of the instanƟaƟon
tool. It is an error if the types of the actual and the expected document differ, since this
means that the evaluaƟon of the instanƟaƟon data constraints failed.

Figure 7.9.: Template InstanƟaƟon Test Suite

7.2.4. Template Interface GeneraƟon Test Suite

This test suite checks the Template Interface GeneraƟon component described in SecƟon 6.3.2
via invocaƟon of the xtltc tool described in SecƟon 7.1. The test case compiles 27 XTL tem-
plates into Java sources.

172

7.2. Test Suites

An invocaƟon of the xtltc tool not only produces Java sources, but also compiled class files
and a Java Archive (JAR)–file [177] containing the compiled files. This JAR file would aŌerwards
typically be used to programmaƟcally construct an instanƟaƟon data source to be used in con-
juncƟon with the template engine itself. To allow for tesƟng the generated Java classes without
having to manually code individual test cases for each XTL template compiled within this test
suite, thextltc adds JAXB annotaƟons [105] to the classeswithin the generated objectmodel.
This allows the whole object model to be created from a single XML document without having
to deal with that parƟcularmodel in the code. Therefore, the ANT-based variant of the xtlin-
stantiate tool has been extended to accept a JAR file as generated by the xtltc tool and
a single XML document, which is in turn used to create and iniƟate an ObjectModelPHP (as
described in SecƟon 6.3.2) to be used to instanƟate the passed XTL template.
Using this mechanism, the test suite illustrated in Figure 7.10 could be constructed, which

consists of the following steps:

¬ The xtltc tool is invoked with XTL templates containing select aƩribute values that
comply to the restricƟons introduced in SecƟon 6.3.2. The resulƟng arƟfacts, namely the
Java source code, the compiled classes and the JAR-file are stored.

­ The generated Java source code is compared textually to the stored expected source code.

® The generated JAR-file is used with a stored XML document (acƟng as instanƟaƟon data
source) to instanƟate the template originally processed by the xtltc tool into an XML
document, which is stored as the instanƟaƟon result.

¯ The instanƟaƟon result is compared to the stored expected instanƟaƟon result, which
assures that the generated object model is indeed suitable for andworking with the input
XTL template.

Figure 7.10.: Template Interface GeneraƟon Test Suite

173

7. ValidaƟon

7.2.5. Round-trip Test Suite

The last test suite, named Round-trip Test Suite, tests the overall template authoring and instan-
ƟaƟon process as a whole. In other words, it tests whether the conclusion stated to be enabled
by the Constraint SeparaƟon process (see Figure 5.1) is valid. This test suite calls three tools and
checks their collaboraƟon as illustrated in Figure 7.11, by execuƟng the following steps:

¬ In the first step, the xtlsc tool is invoked on a parƟcular target language grammar. The
generated template language grammar is stored.

­ The stored template language grammar is used to validate XTL templates associated with
the target language grammar currently processed. The results, each being either an aug-
mented XTL template or a validaƟon report, are stored for the final comparison step
within this test suite.

® Each XTL template is also instanƟated using the xtlinstantiate tool with an associ-
ated instanƟaƟon data source (which fulfills all instanƟaƟon data constraints).

¯ The instanƟaƟon result from the last step is validated using the cxsdvalidate tool
against the original target language grammar, resulƟng in either an augmented instanƟa-
Ɵon result (which equals to the instanƟaƟon result, as the original target language gram-
mar contains no authoring or instanƟaƟon data constraints) or a validaƟon failure report.

° The last step compares the output of both invocaƟons of the cxsdvalidate tool: the
test succeeds if either both invocaƟons report validity of its input document and schema
or both invocaƟons report invalidity, thereby validaƟng the conclusion which is proposed
to be enabled by the Constraint SeparaƟon process.

Figure 7.11.: Round-trip Test Suite

174

7.3. ApplicaƟons of the Prototype

7.3. ApplicaƟons of the Prototype

The prototype has been in use in three scenarios: first, in the SNOW project (as described in
SecƟon 7.3.1), second, in the EMODE project (desribed in SecƟon 7.3.2), and, finally, in the
FeasiPLe project (as described in SecƟon 7.3.3).

7.3.1. SNOW: Use of XTL in a Staged Architecture

The XTL template engine has been developed along with the XTL language in the EU project
SNOW. In order to understand the moƟvaƟons that lead to the described language and to un-
derstand the validaƟon results SNOW delivered, the project is introduced in short.

SNOW [179] was an EU-founded two-year project executed by seven partners, namely ACV
[1], FIRST [70], EADS [58], Loquendo [121], Siemens Business Services’ C-LAB [41], SAP Research
Dresden [159] and TU Graz [78]. SNOW’s main goal was the large-scale industrial diffusion of
mulƟmodal mobile documentaƟon for maintenance operaƟons.

SNOW was primarily intended to solve a real-world problem in today’s aircraŌ maintenance
asdescribed by the partner EADS. The currentmaintenance scenario is enƟrely paper-based, i.e.,
a maintenance worker executes instrucƟons from a so-called maintenance procedure printed
out on paper. Unexpected situaƟons may force the worker to return to an office and print out a
different procedure. Furthermore, in some situaƟons the worker needs a co-worker who reads
the procedure if the first worker is unable to look at the printed procedure himself. Both facts
slow down maintenance and increase the maintenance costs.

The idea of replacing this access to the procedures by an electronic device like a PDA was
obvious. Unfortunately, the situaƟon in the aircraŌ to be maintained complicates the scenario.
First, there is no permanent network connecƟon in the aircraŌ. Second, the worker someƟmes
needs to have both hands available to perform a procedure, whichmakes it necessary to enable
the use of speech commands to scroll within the procedure. Since the use of speech as input
modality is someƟmes prevented by the situaƟon in the aircraŌ (as the environment can be too
noisy), an addiƟonal gesture recogniƟon coupled to a head-mounted camera becamenecessary.
Finally, the need for a co-worker described above can be removed by using speech synthesis to
read the procedure.

From the main goal, two research direcƟons have been derived. First, it has been quesƟoned
how to author mulƟmodal mobile maintenance documentaƟon. Second, methods and tech-
niques for the exploitaƟon of the authored documentaƟon through robust interacƟon modali-
Ɵes had to be developed.

SNOW made a number of contribuƟons in both research direcƟons. For the first direcƟon,
the development of the XML Topic Maps for Procedures (XTM-P) [103], a topic-map based for-
mat for the storage of maintenance procedures has to be menƟoned. With respect to the sec-
ond research direcƟon, two languages, the Device-IndependentMulƟmodal Mark-up Language
(D3ML) [75] and XTL, as well as an architecture [146; 147] along with a prototype have been
developed.

175

7. ValidaƟon

The SNOW Architecture

The SNOWarchitecture has been developedwith respect to a number of requirements outlined
in a number of deliverables [179]. As already menƟoned, the first major requirement of the
SNOW project was that the resulƟng soŌware had to be accessible in a mulƟmodal fashion.
In the standard use case, this includes speech input and output as well as gesture recogniƟon
as input. But beyond that, the architecture should not restrict the number or type of usable
modaliƟes.

The second major requirement was to design an architecture which is as domain-neutral as
possible, i.e., the number of parts to be exchanged when switching to another domain had to
be minimized. A second domain which has been considered during the design of the SNOW
architecture was the area of healthcare, where hands-free operaƟon also plays an important
role.

In addiƟon to these major requirements, some minor issues had to be considered. First, the
number of available devices that are usable in a harsh environment and capable of delivering
input for gesture recogniƟon (via built-in or extra camera) were limited. Moreover, the process-
ing power of available devices is restricted, forcing gesture and voice recogniƟon components
to be located on a server with extensive processing capabiliƟes.

Lastly, it was required that the documentaƟon is always at least as good as paper, which
means that even with interrupƟons of the network connecƟon, the applicaƟon’s user must
have access to (prefetched) procedures. The missing network connecƟon may thereby affect
accessibility of the applicaƟon by restricƟng the use of modaliƟes due to their server-based
processing.

The architecture finally designed and implemented by the SNOW consorƟum is shown in Fig-
ure 7.12 as an FMC block diagram. This type of diagram allows a concise high-level view even at
sophisƟcated soŌware architectures. The SNOWarchitecture is subdivided intomulƟple servers
and a client part. The most important server is the applicaƟon server which is responsible for
implemenƟng the modality-independent processing of maintenance procedures. This server
is explained in more detail below. Another important server-side component is the modality
server consisƟng of a text-to-speech engine and gesture- and speech-recogniƟon components.
The number of contained components can be different in other scenarios—the subset shown
here represents the set used within the SNOW project.

The applicaƟon server accesses three data sources: first, a set of maintenance procedures
stored as XTM-P documents, second, a set of XTL templates and finally a number of annotaƟons
created by maintenance workers and stored in a relaƟonal database.

On the client side, a mulƟmodality-enabled browser applicaƟon has been designed and im-
plemented. This applicaƟon aggregates a standard XHTML browser with components for the
control of the keyboard, the speakers, the microphone and the camera as well as, most impor-
tantly, the integraƟon manager, which is responsible for the synchronizaƟon and composiƟon
of the input and output modaliƟes. The components within the client-side applicaƟon commu-
nicate using standard protocols and data formats like XML Remote Procedure Call (XML-RPC),
the Media Resource Control Protocol (MRCP), the Extensible MulƟModal AnnotaƟon Markup
Language (EMMA), and the Speech Synthesis Markup Language (SSML).

176

7.3. ApplicaƟons of the Prototype

Figure 7.12.: The SNOW Architecture

As described in [146], the SNOW architecture is an instanƟaƟon of the MulƟmodal Interac-
Ɵon Framework (MMI-F), or—precisely—an implementaƟon of the role model proposed by the
MMI-F specificaƟon [191]. Details about the implementaƟon of the SNOW architecture can be
found in [147], a more detailed look into a parƟcular issue of the implementaƟon of the dialog
manager can be found in [5].

Template Processing in Staged Architectures

The XTL template engine is used in two components. The documentaƟon applicaƟon uses the
template engine just once in order to instanƟate a domain-specific template with data from the
procedures stored as XTM-P files. The uƟlizaƟon of the template engine by the dialog manager
is more interesƟng because it is used two Ɵmes: first, a presentaƟon template is transformed,
augmenƟng the output from the documentaƟon applicaƟon with presentaƟonal content (like
links for navigaƟon); second, the obtained intermediate document sƟll has some evaluateable
XTL tags (which bypassed the first transformaƟon) for evaluaƟon with data from the annotaƟon
accessor.
It has also been verified that it would be possible to use the XTL engine in the adaptaƟonman-

ager, as the processing performed by this component is basically an XML transformaƟon that
could be expressed as an XTL template as well. Unfortunately, because of technical preferences,

177

7. ValidaƟon

the SNOW partner responsible for implemenƟng the adaptaƟon manager decided against the
use of the XTL template engine.
Both the concepts of realms (see SecƟon 4.5.1) and bypassing (see SecƟon 4.5.2) have been

developed as a reacƟon to actual requirements from the SNOW architecture. The concept of
realms represenƟng instanƟaƟon data sources that must be accessed using different query lan-
guages has been moƟvated by the mulƟple data sources in SNOW’s Dialog Maanger: XTM-
P documents, which had to be accessed using an XPath-like path language, and annotaƟons,
which had to be accessed by simple string-based idenƟfiers.
The bypassing feature is moƟvated by a special dependency between components in the

SNOW architecture. The inclusion of annotaƟons in the D3ML output is done in two com-
ponents: in the first, the documentaƟon applicaƟon, only a placeholder for the rendering of
annotaƟons can be generated. Only the second component, the dialog manager, has actually
access to the annotaƟon content. It was impossible to move the processing of the annotaƟons
to one component without violaƟng the contracts defined for the interacƟon of the compo-
nents. Using the bypassing feature, this division of responsibilites in the annotaƟon processing
could easily be implemented: the D3ML template contains an xtl:attribute instrucƟon
from the bypassing namespace that is augmented via an xtl:attribute expression from
the XTL namespace. The laƩer instrucƟon generated the select statement for the first state-
ment, thereby leƫng the parƟcipaƟng components cooperate.
Generally, it can be stated that bypassing is a valuable feature in all kinds of staged architec-

tures, as it allows to elegently aggregate data accessible only during parƟcular stages.
The relaƟvely short runƟme of the project made it impossible to research the interacƟon

between the proposed Safe Authoring process and the staged architecture within SNOW. The
process as described here is only capable of handling the iniƟal stage of the architecture. The
main reason for this limitaƟon is the fact that XML Schema is not closed under the composiƟon
with the XTL schema, which causes the introducƟon of CXSD. CXSD-described languages are,
however, not considered as input for the described authoring process. This situaƟon can only
be changed by using regular tree languages to describe the target language grammar, since
those languages are closed under the composiƟon with the XTL schema. Unfortunately, the
low disseminaƟon of languages like RelaxNG violates the stated goal of Broad Applicability.

Usability of the XTL

The most valuable result of the SNOW project with respect to the development of the XTL tem-
plate language was the feedback from the users of the SNOW architecture, which had to author
XTL templates for rendering maintenance procedures into D3ML.
These users were experts from themaintenance department of EADS, with a strong technical

background in terms of aircraŌ maintenance processes and mid-level computer skills, which
doesn’t include a deep knowledge of markup languages. Therefore, these users had first been
introduced into the concepts of the XML dialect D3ML.
AŌer understanding the concepts of a markup language like D3ML, the learning curve of a

second, overlying concept like XTL was amazingly flat. The users were immediately capable of
dynamically creaƟng aƩributes or text in D3ML templates using xtl:attribute and xtl:

178

7.3. ApplicaƟons of the Prototype

text. The same is true for the use of xtl:if and xtl:for-each, which were also under-
stood within days.
Two addiƟonal observaƟons had been made. First, the structure of the query language em-

bedded in the select aƩributes of the XTL instrucƟons plays a very important role in the
learning process and can cause the authoring process to become error-prone and very hard
to understand. Unfortunately, this was the case with the proprietary query language used to
access the XTM-P documents.
Second, it has been observed that the concept of reuse, which is well-understood by com-

puter scienƟsts, has not been accepted by the users of the SNOW architecture. Instead of using
the xtl:macro and xtl:call-macro mechanism supplied by XTL, the users tended to
copy and paste repeated parts of the templates. The quesƟon on the moƟvaƟon of this ap-
proach was typically answered by a hint to small modificaƟons made to different copies of the
reusedmaterial. The argument that themaintenance ofmulƟple copies of almost idenƟcal doc-
ument parts is expensive had been rejected—the users were of the opinion that the effort of
learning a reuse concept is much higher than to maintain different copies.

7.3.2. EMODE: Use of XTL for Model-to-Text TransformaƟons

The EMODE project was a BMBF-founded project which tried to solve some of the issues oc-
curing when trying to build large-scale mulƟmodal applicaƟons by applying a Model Driven
SoŌware Development (MDSD) approach. EMODE defined a stack of models that describe the
interacƟon with a mulƟmodel system in increasing levels of detail, starƟng with a goal model,
which is refined into an abstract user interface, and a funcƟonal core adapter model [44]. The
transformaƟon of models within the model stack are implemented as QVT transformaƟons.
EMODE implemented two target plaƞorms. EMODE reused the D3ML language developed

within SNOW and addiƟonally supported Java Abstract Window Toolkit (AWT) as a second tar-
get. Different M2C transformaƟon techniques have been used for both targets: D3ML has been
generated using the XTL template engine, whereas AWT has been generated using JET. Unfor-
tunately, no comparison between these very different techniques has been published.

7.3.3. FeasiPLe: Use of XTL for Code GeneraƟon from Ontologies

The FeasiPLe project was another BMBF-founded project which tried to eventually implement
soŌware product lines as a cost-efficient mean for industrial soŌware development. In order to
do so, FeasiPLe tried to evaluate the exisƟng approaches and to combine them with promising
new techniqiues like AOP and MDSD. The central validaƟon case of FeasiPLe was a large-scale
SalesScenario, an example for a Web applicaƟon dealing with sales processes and including a
product, customer and customer order management as well as payment and communicaƟon
features.
As a part of this project, the HybridMDSD approach has been developed—an approachwhich

tries to facilitate the use of mulƟple DSLs. This is done by using ontologies to capture the se-
manƟcs of the DSLs [120]. The XTL template engine has been used to generate code from these
ontologies using its SPARQL PHP [119]. As a transiƟve closure was needed, which is beyond

179

7. ValidaƟon

the expressive power of SPARQL, the possibility to execute rule sets on the ontology before it is
queried using SPARQL was added.
During experiments with the querying of ontologies, it became also apparent that a transiƟve

closure missing from a query language could also easily be added by using mulƟple template
instanƟaƟons. For this emulaƟon, the reintroducƟon of XTL markup via XTL instrucƟons had
to be allowed. AŌerwards, a query could easily create a further query which performs a query
based on the results of the first, which results, if an appropriate stop condiƟon is applied, in the
calculaƟon of a transiƟve closure.
The development of the SPARQL plugin within FeasiPLe also moƟvated the introducƟon of

xtl:init, since SPARQL queries typically involve a lot of XML namespaces. xtl:init can
be used to refactor the XML namespace assignments into a single, central part of the template.
The queries themselves then only use the prefixes assigned to the namespaces.
The PHP mechanism made it easy to extend the XTL template engine to support SPARQL for

the querying of instanƟaƟon data sources. This unique extension mechanism of XTL enables
the Broad Applicability of the approach.

7.4. Proof of the PreservaƟon of the Target Language Constraints

The proof demonstraƟng that the target language constraints are preserved by the Constraint
SeparaƟon process given in SecƟon 5.1.5 addresses the Safe Authoring goal introduced in Sec-
Ɵon 3.1.1. Therefore, it is a very important validaƟon means, but due to its central importance
in the Safe Template Processing approach, it has been placed in Chapter 5.

7.5. RunƟme and Memory Usage Measurements

RunƟme andmemory usagemeasurements have been conducted to validate the broad usability
of the aproach. All soluƟon elements proposed in SecƟon 3.3 could in priniciple be subject to
runƟme and memory usage measurement. Here, only the most important components, for
which runƟme andmemory usage are crucial for the broad applicability of the approach, will be
considered. Thesemost important components are the components acƟve during the authoring
phase and the instanƟaƟon phase.
During the authoring phase, the acceptance of the approach is determinedby theƟmeneeded

for a complete validaƟon of a document. If a validaƟon takes too much Ɵme, the validaƟon will
not be used, causingmost of the advantages of the approach to vanish. The faster the validaƟon
completes, the more oŌen it will be invoked by the author, making the validaƟon a real benefit.
For this reason, SecƟon 7.5.1 compares the runƟme of a validaƟon against a CXSD schema with
the runƟme of the validaƟon against a comparable plain XML Schema document.
In the instanƟaƟon phase, both runƟme and memory usage are of importance to the ac-

ceptance of the approach. Long lasƟng instanƟaƟons or exhausƟve memory consumpƟon are
inacceptable, especially if the template technique should be used within Web applicaƟons. In
this area, XTL must keep up with compeƟtors like JSP and XSL-T. Therefore, a comparison be-
tween XTL and these compeƟtors has been made. Furthermore, the memory and Ɵme com-
plexity statements from SecƟon 6.2 have been subject to correspondingmeasurements in order

180

7.5. RunƟme and Memory Usage Measurements

to prove their correctness. The runƟme measurements concerning the Template InstanƟaƟon
component itself are described in SecƟon 7.5.2. The corresponding memory usage measure-
ments are described in SecƟon 7.5.3.
All measurements have taken place on the same hardware and soŌware: an Intel-basedMac-

Book Pro with a 2.8 GHz Intel Core Duo CPU and 4 GB RAM. The operaƟng system was Mac OS
X 10.6.3, the Java version used to execute the components was Java 1.6.

7.5.1. RunƟme Measurement of ValidaƟon against a CXSD Schema

The process of validaƟng a template against a CXSD schema in order to determine whether the
template is going to produce a valid result in terms of the target language schema is of crucial
importance to the template author. Unfortunately, an analysis of the evaluaƟon complexity of
OCL constraints in terms of runƟme and memory usage does not seem to exist.
For this reason, amere benchmark comparisonof validaƟng a template against a CXSD schema

with validaƟng against an XML Schema has been produced. As the comparison tries to deter-
mine the extra effort caused on the author’s side by the more sophisƟcated validaƟon, docu-
ments with a parameterizable size indicated by the parameter n have been created.
An example document is shown in LisƟng 7.1. The document starts with a number n of per-

fectly valid content elements with an aƩribute named attribute. The document further
contains a number of n − 1 valid elements (which are different in that they don’t carry the
aƩribute attribute, but rather contain a further element with the name attribute), fol-
lowed by a content element that is neither carrying an aƩribute nor containing an element.
Only this last element is causing a violaƟon of the OCL constraints in the CXSD document.

<?xml version=”1.0” encoding=”UTF-8”?>
<test>

<!-- n valid elements. -->
<content a=”text”/>
<!-- ... -->
<!-- n− 1 elements. -->

<content>
<attribute name=”a”>text</attribute>

</content>
<!-- ... -->
<!-- 1 invalid element. -->
<content/>

</test>
LisƟng 7.1: An Example Instance Document for RunƟme Measurements

Figure 7.13 shows the comparison between the validaƟon Ɵme of the example document
with the parameter n against the CXSD schema and the corresponding XML Schema. The mea-
surements have been executed by a Perl script which executed the CXSD validaƟon tool de-
scribed in SecƟon 7.1 with and without the -noconstraints parameter. For each size of
the document to be validated, the validaƟon Ɵme has been measured 300 Ɵmes. The figure
shows the average validaƟon Ɵme over these 300 measurements.

181

7. ValidaƟon

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Va
lid
aƟ

on
Ti
m
e
[m

s]

Parameter n of Instance Document [1]

XSD (R2 = 0.986)
CXSD (R2 = 0.988)

Figure 7.13.: Time ConsumpƟon during Document ValidaƟon

It can easily be seen that the evaluaƟon of the OCL constraints embedded within the CXSD
schema contributes significantly to the validaƟon Ɵme. However, the Ɵme complexity order is
not changed: validaƟon is sƟll completed in linear Ɵme. The addiƟonal Ɵme needed could be
decreased by several measures, most of all by an incremental validaƟon approach as it would
be enabled by an impact analysis as proposed in [3].
Even without opƟmizaƟons like this, the validaƟon speed is sƟll acceptable, because there

is no reason to interrupt the user in his workflow, since the validaƟon feedback can be given
in the background while the user is conƟnuing his work. Even if the user is forced to wait for
the validaƟon result, he is probably accepƟng a delay of up to 10 seconds before he is going to
perform other tasks [134]. Within this 10 seconds interval, it will be possible to validate even
complex documents against CXSD schemas.

7.5.2. RunƟme Measurements of the Template InstanƟaƟon

For all runƟme measurements of the Template InstanƟaƟon component, the XTL Engine has
been embedded within a servlet in an Apache Tomcat 6.0.26 Servlet Container [12], in order
to enable the comparison of the instanƟaƟon Ɵmes of XTL documents with the compeƟng ap-
proaches JSP and XSL-T.
For themeremeasurement of theƟme complexity of the instanƟaƟonprocess, i.e., to validate

the complexity expression stated in SecƟon 6.2, an XTL servlet has been implemented which
renders a simple HTML representaƟon from the XML representaƟon of the plays of Shakespeare
[27]. The servlet accesses the XML representaƟon of a play using the JXPath PHP. A Perl script
invokes this servlet using its Uniform Resource Locator (URL) and passing the name of the play

182

7.5. RunƟme and Memory Usage Measurements

to be rendered. For each play, the URL is first invoked once, only to prepare the ground for the
following instanƟaƟons, then 1000 Ɵmes in order to determine the average instanƟaƟon Ɵme.

Figure 7.14 shows the result of this measurement of instanƟaƟon Ɵmes, ploƩed against the
size of the instanƟaƟon result. The linear dependency is easy to see and is confirmed by the
coefficient of determinaƟon R2. The measurement proves the Ɵme complexity proposed in
SecƟon 6.2 very well.

100

150

200

250

300

350

6000 7000 8000 9000 10000 11000 12000 13000 14000

In
st
an
Ɵa

Ɵo
n
Ti
m
e
[m

s]

Number of Nodes in InstanƟaƟon Result n [1]

an + b (R2 = 0.954)

Figure 7.14.: Time ConsumpƟon during Template InstanƟaƟon

Unfortunately, the instanƟaƟon Ɵme measurement just presented does not say very much
about the applicability of the Template InstanƟaƟon component in general. In order to validate
this aspect, a comparison of the instanƟaƟon Ɵme with its most popular compeƟtors, JSP and
XSL-T, has been made. For this measurement, an XSL-T servlet and a JSP page have been im-
plemented, which create the same HTML presentaƟon from the plays of Shakespeare like the
XTL servlet. In order to keep the influence of the InstanƟaƟon Data EvaluaƟon process as low as
possible, the JSP page closely resembles the XML access performed by the JXPath PHP. In XSL-T,
the XPath expression used to access the XML representaƟon from the XTL servlet and the JSP
page has been reused.

The JSP engine is the engine built into Tomcat 6.0.26, whereas the XSL-T engine used relies
on the transformer API of the underlying Java Development Kit (JDK), which is a version of the
Xalan XSL-T transformer.

A Perl script has been used to invoke the URL of each of the three rendering mechanisms.
For each mechanism, the first retrieval of the HTML representaƟon is only made to prepare
the system for further measurements, followed by 1500 invocaƟons to determine an average
instanƟaƟon Ɵme.

183

7. ValidaƟon

Figure 7.15 plots the instanƟaƟon Ɵmes needed by JSP, XSL-T and XTL against the size (in
kbyte¹) of the XML representaƟon of a parƟcular play. Again, the plot shows a linear depen-
dency, which is simply caused by the fact that the dependency between the number of nodes
of the instanƟated template used as X axis in Figure 7.14 and the size in kbyte of the XML rep-
resentaƟon used as X axis here is itself linear.

0

50

100

150

200

250

300

120 140 160 180 200 220 240 260 280

In
st
an
Ɵa

Ɵo
n
Ti
m
e
[m

s]

InstanƟaƟon Data Size n [kbyte]

XSL-T (R2 = 0.956)
JSP (R2 = 0.922)
XTL (R2 = 0.899)

Figure 7.15.: Time ConsumpƟon Comparison between XTL, JSP, and XSL-T

The comparison shows that the XTL instanƟaƟon is in the same order of magnitude as the
ones of JSP and XSL-T, even if XTL is obviously the slowest engine. The main reason for the
difference in the instanƟaƟon Ɵme is that XTL templates are interpreted, whereas JSP pages as
well as XSL-T stylesheets are compiled. The implementaƟon of a compiling XTL engine would
help closing this gap to the compeƟng techniques.

7.5.3. Memory Usage Measurements of the Template InstanƟaƟon

For thememory usage, a special command line applicaƟon has been constructedwhich outputs
the maximummemory consumpƟon during the instanƟaƟon. For this purpose, the applicaƟon
uses a thread which samples the heap memory usage every Ɵme a configurable amount of
the instanƟated template has been created. Both maximum and minimum memory usage are
recorded. For each instanƟaƟon, the difference betweenmaximumandminimummemory con-
sumpƟon is calculated. The heap memory usage is recorded using the MemoryMXBeanmech-
anism of the JVM. Before the memory usage value is requested, the method System.gc() is
invoked twice to give the JVM the chance to run the garbage collector in order to reclaim heap
space that is not longer used and would severly influence the measurement results.

¹The unit kbyte denotes 1024 bytes here and in the following.

184

7.5. RunƟme and Memory Usage Measurements

In order to validate the memory complexity proposed in SecƟon 6.2, special XTL templates
have been constructed in a way that they can be parametrized in two ways. Each template con-
sists of an xtl:for-each statement, execuƟng three Ɵmes and containing a parametrizable
size n of xtl:text statements, which are creaƟng a random text of 1024 characters using the
IdenƟty PHP. This xtl:for-each statement is prefixed and posƞixed by a number p of ele-
ments, each of them containing a random text of between 0 and 1024 characters. An example
template with the values n = 3 and p = 2 is shown in LisƟng 7.2 – the random text has been
replaced by ... for beƩer readability.

<?xml version=’1.0’?>
<template xmlns:xtl=’http://research.sap.com/xtl/1.0’>

<text>...</text>
<text>...</text>
<xtl:for-each select=’3’>

<xtl:text select=’...’ />
<xtl:text select=’...’ />
<xtl:text select=’...’ />

</xtl:for-each>
<text>...</text>
<text>...</text>

</template>
LisƟng 7.2: An Example Template for Memory Measurement (n = 3, p = 2)

Using these parametrizable templates, thememory complexity ismeasured using a Perl script
which calls the applicaƟon 100 Ɵmes for different values of n and 100 Ɵmes for different values
of p. The first invocaƟon is only made to prepare the ground for the following instanƟaƟons, its
memory consumpƟon is ignored. The average of the following three instanƟaƟons is considered
the memory consumpƟon of this template.
In order to record only the amount of memory needed by the Template InstanƟaƟon it-

self, the template creaƟon as well as the target of the Template InstanƟaƟon process had to
be implemented in special ways. For the template creaƟon, a special implementaƟon of the
javax.xml.stream.XMLEventReader interface has been created. This implementaƟon
delivers the next XMLEvent of the template without construcƟng the enƟre template upfront,
thus saving thememory which would otherwise be needed to hold the template. For the target
of the Template InstanƟaƟon process, a special subclass of the java.io.OutputStream
has been used which immediately discards all bytes making up the instanƟated template.
First, a measurement has been made with a fixed value of p = 10000 and n ranging from

1000 to 20000. The result of this measurement is shown in Figure 7.16(a). The coefficient of
determinaƟonR2 clearly shows the linear dependency of thememory usage fromn. Therefore,
the implementaƟon follows the memory complexity expression proposed in SecƟon 6.2, with n
being the maximum number of nodes in an xtl:for-each in the template t◦, or, formally

n = max
x∈t◦//xtl:for−each

∣∣∣x//node()∣∣∣

185

7. ValidaƟon

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
em

or
y
[k
by
te
]

Maximum Number of Descendants in xtl:for-each n [1]

an + b (a = 2.834, R2 = 0.993)

(a) Variable xtl:for-each Size

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
em

or
y
[k
by
te
]

Elements surrounding xtl:for-each p [1]

ap + b (a = −0.073, R2 = 0.480)

(b) Variable Prefix and Posƞix Size

Figure 7.16.: Results of the Memory ConsumpƟon Measurements

186

7.6. Conclusion

As a crosscheck, it has been measured how the memory consumpƟon depends on the value
of p, i.e., the number of elements containing random text prefixing and posƞixing the xtl:
for-each statement in the constructed templates. Figure 7.16(b)² shows a measurement for
n = 10000 and p varying from 1000 to 20000. There is no linear correlaƟon between p and the
memory consumpƟon, as indicated by the slope close to 0. In other words, the memory usage
does not depend on the number of elements surrounding xtl:for-each in the template: it
is rather constant.
Taken together, these measurements empirically prove the correctness of the memory usage

esƟmaƟon given in SecƟon 6.2.

7.6. Conclusion

This chapter introduced themeans used for validaƟng the results of this thesis. First, the valida-
Ɵon means have been put into relaƟon to the goals. Each goal has been validated using one or
two validaƟonmeans. Themost basic validaƟonmeanswas the implementaƟon of a prototype,
which has been described in detail. Based on the prototype, a test suite has been presented
which validates the parƟcular components of the prototype as well as the overall process. Ap-
plicaƟons of the prototype in various research projects has been discussed. The correctness of
the Constraint SeparaƟon process has been proved. Finally, a set of measurements has been
made in order to validate the correctness of the Ɵme andmemory complexity esƟmaƟons given
in SecƟon 6.2.4.

²The scale in this figure has been set to the scale used in Figure 7.16(a) to achieve a beƩer comparability. The reason
for the (negligible) negaƟve slope is that the memory consumpƟon has been measured with a fixed sample rate
for technical reasons. As the highest memory consumpƟon occurs for a relaƟvely smaller amount of Ɵme in
larger templates, the peak is less closely approximated with larger p.

187

7. ValidaƟon

188

8
Summary, Conclusion, and Outlook

Die ZukunŌ soll man nicht voraussehen wollen, sondern möglich machen.

Antoine de Saint-Exupery [45]

This chapter summarizes the results of this thesis in SecƟon 8.1. A conclusion of the thesis
follows in SecƟon 8.2: this conclusion summarizes the main contribuƟons made by this thesis.
SecƟon 8.3 contains suggesƟons for improvements which could be applied to the XML tech-
nological space. The final SecƟon 8.4 shows future research direcƟons, i.e., minor and major
research quesƟons or standardizaƟon efforts which could help advance the proposed approach
into a state-of-the-art technology.

8.1. Summary

The main objecƟve of this thesis was to create a technique, a process and tools which allow the
use of templates to generate documents that belong to a parƟcular, predefined target language.
The results of this thesis are of use for all areas of applicaƟons where templates are used today,
especially for code generaƟon and for Web applicaƟons.
The preface in Chapter 1 is basically an outline of the thesis. It relates the use of templates

to the SoC principle and discusses the problems of using templates in the way we use them
today. These problems are illustrated using a moƟvaƟng example. Based on this, the goals of
the thesis are outlined. The contribuƟons made by the thesis are described comprehensively.
The chapter concludes with a short summary of related work and a descripƟon of typographic
convenƟons used within the thesis.

189

8. Summary, Conclusion, and Outlook

Chapter 2 sets the foundaƟons for the thesis: it defines the noƟon of a template, discusses the
areas where templates in the defined sense are typically used as well as alternaƟves to using
templates, and lists related research areas. Finally, a classificaƟon of template approaches is
given. Chapter 3 proposes an approach to the problems found when using templates today.
It defines the goals of the thesis and derives requirements from them. AŌerwards, a proposal
for an architecture and a process fulfilling the requirements is made. Based on this proposal,
the following part of the thesis has been structured into three main chapters, dealing with the
design of a suitable template language, with the support that can be given to the template
author and with the components which are involved during the instanƟaƟon of a template.
Chapter 4 discusses the design of the universal, syntax- and semanƟcs-preserving SlotMarkup

Language XTL. In its first part, general design discussion are described, followed by a descripƟon
of the features of the XTL. Each instrucƟon of the XTL is described by showing its syntax, its
semanƟcs and giving an example. The chapter concludes with somewords about a translaƟonal
semanƟcs definiƟon of the XTL and the use of the XTL as schema language.
Chapter 5 introduces the two components in the proposed architecture and process which

support the template author. The first of these components is the Constraint SeparaƟon pro-
cess, which combines the target language grammar with the slot markup language grammar
and separates the constraints from this combined template language grammar into constraints
which can be verified during authoring Ɵme of the template and constraints which must be
checked during the instanƟaƟon Ɵme of the template. The second component is the Template
ValidaƟon component, which actually validates a template against the template language gram-
mar and verifies the authoring Ɵme constraints.
Chapter 6 discusses the three components involved in the actual instanƟaƟon of a template.

The first component is the InstanƟaƟon Data EvaluaƟon component which is responsible for
evaluaƟng the instanƟaƟon data referred to by the template. The second component is the
Template InstanƟaƟon component itself, which is described in detail and for which a complexity
esƟmaƟon is given. Finally, the InstanƟaƟon Data ValidaƟon component is discussed, which is
responsible for verifying the instanƟaƟon data constraints with the actual instanƟaƟon data.
Chapter 7 validates the proposed architecture and process using several means. First, the

prototype implemented in order to demonstrate the feasibility of the approach is described.
Furthermore, the test suite established for validaƟng the prototype with respect to its various
subcomponents is described. ApplicaƟons of the prototype in various research projects are
shown. The chapter concludes with a discussion of the correctness of the Constraint SeparaƟon
process and with a summary of the measurements which have been conducted in order to
verify the complexity statements given in Chapter 6 and to compare the XTL instanƟaƟon with
compeƟng approaches like XSL-T and JSP.

8.2. Conclusion

This thesis made several major contribuƟons to today’s use of the template approach. The first
contribuƟon is the definiƟon of the XTL slot markup language itself. The language is universally
usable to create templates for all XML dialects. It is syntax-preserving, i.e., it refrains from in-
troducing a special slot markup syntax. It is also semanƟcs-preserving, as it does not redefine

190

8.3. Suggested Improvements for XML Technologies

the semanƟcs of its target language in any way. The preservaƟon of the syntax as well as the
semanƟcs is achieved by relying on XML namespaces for the slot markup. The denotaƟonally
defined semanƟcs of the XTL itself is also a novelty in the area of template languages, which are
typically only described informally. By its clean design, the XTL already eliminates a typical prob-
lem occuring when XML documents are created using typical template approaches: as opposed
to the exisƟng approaches, an XTL template will always produce well-formed XML documents.
The Safe Authoring goal has been achieved with the thesis. The author of a template gets the

highest possible safety that its template will actually instanƟate into the target language. This is
inherent to the design of the XTL and the design of the Constraint SeparaƟon component. The
Constraint SeparaƟon process can also be parameterized to facilitate a ParƟal TemplaƟzaƟon,
which allows achieving an entanglement index of 0, which has been stated impossible in [143].
It has been shown that the Safe InstanƟaƟon goal can be achieved in two different ways. First,

the InstanƟaƟon Data ValidaƟon can be executed as part of the template instanƟaƟon, i.e., by
checking the instanƟaƟon data constraints aŌer the instanƟaƟon data has been fetched from an
instanƟaƟon data source. Second, a modificaƟon of the proposed architecture is possible that
allows for creaƟng interfaces for templates, which makes it basically impossible to pass invalid
data into the templates.
Furthermore, the thesis formulated a new and concrete definiƟon of the noƟon of a template

and gave a new classificaƟon of template techniques. The definiƟon is different from exisƟng
definiƟons and captures the intuiƟve use of the template term in the areas of code genera-
Ɵon and Web applicaƟons more closely. This conformity with the intuiƟve meaning is primarily
achieved by basing the definiƟon on the prototypical nature of templates. The classificaƟon of
template techniques is unique in the orthogonality of the introduced classificaƟon properƟes
while it sƟll exhausƟvely classifies every approachwhich is captured by the introduced template
definiƟon.

8.3. Suggested Improvements for XML Technologies

As this thesis has been set up with the goal of uƟlizing exisiƟng standards, some parts of the
design and the implementaƟon of the approach become very sophisƟcated. In order to make
things easier, some improvements to the exisƟng XML technology stack should be made. In the
following, such suggesƟons are described shortly.
An XML schema language that supports regular languages is absolutely necessary in order

to implement the proposed approach. There are two candidates for such a language: RelaxNG
and—as has been shown through the work in SecƟon 5.2—XML Schema itself. RelaxNG is a
well-designed language that would fit nicely with the proposed approach, but its tool support is
sƟll (aŌer 9 years of standardizaƟon) very poor. Furthermore, the complex transformaƟon rules
that have to be applied to validate documents against a RelaxNG schemamake the construcƟon
of a JAXB-like binding framework difficult [88]. For these reasons, a further disseminaƟon seems
unlikely.
The approach to develop XML Schema into a full-featured regular tree grammar language is

preferable. XML Schema has already a sufficient syntax to capture regular tree grammars. Only
the UPA rule (inherited from SGML) prevents it to be used in such a way. The main moƟva-

191

8. Summary, Conclusion, and Outlook

Ɵon for the UPA—simple validaƟon because of the minimal lookahead required—could sƟll be
considered in an advanced XML Schema version by introducing language profiles. Such profiles
could easily allow disƟnct expressive powers of XML Schema based on the well-known syntax.
The profiles suggested here are a legacy profile which leaves the UPA rule as is, a more pow-
erful profile which allows defering the parƟcle aƩribuƟon to extensions established using the
xsd:appinfomechanism, and a full profile that abandons the UPA. The second profile would
be well-suited for XML Schema extensions like the CXSD or Schematron.
A problem which caused the exclusion of the subsƟtuƟon group feature from the list of XML

schema features supported in target language schemas is the impossibility to extend content
models during an extension of an complex type at the beginning of the content model. This
problem occurs when a complex type without aƩributes is extended to a complex type with
aƩributes: it is impossible to allow the use of the xtl:attribute instrucƟon directly aŌer
the element which is declared using the inheriƟng complex type.
A minor improvement which could be made to XML Schema would be a feature that allows

it to express aƩribute/element or content/aƩribute relaƟonships as they are described in Sec-
Ɵon 5.1.2. While these relaƟonships can be expressed well in CXSD, their descripƟon as a con-
straint does not allow a syntax-aware editor to offer features like code compleƟon. A declaraƟve
soluƟon within XML Schema would fix this problem and allow beƩer editors to be built.

8.4. Future Research DirecƟons

The developed tool chain supporƟng the introduced approach for Safe XML Processing could be
extended to support a larger subset of XML Schema, e.g., the all content model and subsƟtu-
Ɵon groups (as far as this is not prevented by the fact that contentmodels could not be extended
at the beginning, see above). Such an extension should be considered a minor research issue,
as no further general insights are to be expected from these extensions.
Amore challenging and promising research quesƟon is the unificaƟon of document validaƟon

and generaƟon using a single language, like it could be done using XTL (see SecƟon 4.7). Inter-
esƟng quesƟons involve the expressive power achievable by such a combined language and the
acceptance by users for both validaƟng and generaƟng documents.
There also exist similariƟes between (electronic) form processing and templates. A form can

be considered a template to be filled by a human. It would be interesƟng to elaborate on the
requirements a generic slot markup language has to fulfill in order to allow it to be used to
express forms and whether the implemented prototype could easily be extended into a form
processing engine. A possible approachwould be to allow XTL instrucƟons in XHTML documents
to be rendered as input elements (within a Web browser or by server-side processing).
A generic slot markup language like the XTL should be an integral part of the XML technolog-

ical space. A standardizaƟon by the W3C would be the method of choice to achieve this. This
process would also allow to review the related specificaƟons like XML Schema with respect to
the requirements of Safe Template Processing, which is the only way to elegantly and lasƟngly
implement the proposed approach and to help its disseminaƟon as a state-of-the-art technol-
ogy.

192

A
Referenced XML Schemata and

Instances

Umgangssprachlich wird von Schema F gesprochen, wenn etwas
bürokraƟsch-rouƟnemäßig, stereotyp, mechanisch oder gedankenlos abläuŌ. Der

Ausdruck geht zurück auf die Vordrucke für die im preußischen Heer seit 1861
vorgeschriebenen so genannten Frontrapporte, auszufüllende Berichte über den

Bestandsnachweis der vollen Kriegsstärke. Diese Vordrucke waren mit dem Buchstaben F
gekennzeichnet. Bei der Kontrolle der Truppenstärke musste diese genau mit den

Angaben im Vordruck übereinsƟmmen.
Wikipedia [190]

A.1. XML Schema of XTL

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema

targetNamespace=”http://research.sap.com/xtl/1.0”
xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xtl=”http://research.sap.com/xtl/1.0”

>
<xsd:annotation>

<xsd:documentation>
<p>

This schema describes the XML Template
Language (abbreviated XTL), a collection
of elements which can be used to markup slots in an XML document,

193

A. Referenced XML Schemata and Instances

thereby making the XML document a template.
</p>
<p>

Besides relying on XML, XTL is language independent: the same
constructs can be used to markup slots in an XHTML, an SVG or some
other XML-based document.

</p>
<p>

XTL is independent of particular mechanisms used to fetch the data into
a template. XTL engines typically achieve this independence by
implementing a plugin mechanism: for each mechanism used to fetch data,
a corresponding plugin is needed. These plugins are called
placeholder processors. In order to allow multiple plugins to
be used within a single template, the
realm attribute might be used.

</p>
<p>

XTL supports a mechanism called bypassing which allows
deferring the evaluation of XTL language constructs.

</p>
<p>

The XTL language is intended to serve as a proof for the statement that
a generic slot markup language is not only usable as a template
language, but is also useful for schema validation, semi-static
API-based generators and as part of an abstract UI language. Some of
these use cases might redefine the semantics of XTL language elements.
For example, in case of a semi-static API-based generator, the
select attribute is no longer
interpreted as the hint where to get the data for the slot from, but
rather as a hint on how to structure the API for the template.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:element name=”attribute”>
<xsd:annotation>

<xsd:documentation>
<p>

This element can be used to create or overwrite an attribute at an
element.

</p>
<p>

The attribute is created or overwritten at the next element along
the ancestor axis which does not belong to the XTL namespace.
Attributes can be created at elements that are assigned to an
XTL-bypass namespace.

</p>
<p>

Between an attribute element and its direct parent element, only
whitespaces, comments or other
attribute
elements are allowed.

</p>
<p>

The name of the element to be created is taken from the
name attribute of this element. The
value is fetched from the placeholder processor which is designated
by the realm attribute by passing it the
value of the select attribute.

</p>
</xsd:documentation>

</xsd:annotation>

194

A.1. XML Schema of XTL

<xsd:complexType>
<xsd:attribute name=”name” type=”xsd:QName” use=”required”>

<xsd:annotation>
<xsd:documentation>

<p>
The value of this attribute defines the name of the
attribute to be created or overwritten. The attribute name
might be prefixed in order to create a qualified attribute.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />
<xsd:attributeGroup ref=”xtl:typeAttributeGroup” />
<xsd:attribute name=”mode” type=”xtl:attributeModeType”>

<xsd:annotation>
<xsd:documentation>

<p>
The mode defines the behaviour of the xtl:attribute, if
the attribute to be created already exists or if multiple
xtl:attribute commands with the same value of the name
attribute exist.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name=”result” type=”xsd:string”>

<xsd:annotation>
<xsd:documentation>

<p>
The result attribute exists for technical reasons and must
not be used in an XTL template.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>
</xsd:element>

<xsd:element name=”text”>
<xsd:annotation>

<xsd:documentation>
<p>

This element can be used to create text.
</p>
<p>

If the element is used in a template, the element is replaced
by the value which is returned by the placeholder processor
for the value of its select
attribute. The returned value is encoded, i.e., if markup is
returned by the placeholder processor, it will be converted to text
in the template. It is therefore (by intention) not possible to
change the template structure using this element.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />

195

A. Referenced XML Schemata and Instances

<xsd:attributeGroup ref=”xtl:typeAttributeGroup” />
</xsd:complexType>

</xsd:element>

<xsd:element name=”if”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows the conditional inclusion of template parts.
</p>
<p>

During expansion of the template, the
select attribute is
evaluated. For this element, the evaluation
MUST return a boolean value. If the value is true, the
content of the if element is included, if it is false, the content
is not expanded.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType mixed=”true”>
<xsd:sequence>

<xsd:any minOccurs=”1” maxOccurs=”1” processContents=”strict”/>
</xsd:sequence>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />

</xsd:complexType>
</xsd:element>

<xsd:element name=”for-each”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows the repeated inclusion of a part of the
template.

</p>
<p>

During the expansion process, the
select attribute is
evaluated. If the evaluation of this attribute yields null or an
empty collection, the content of the for-each element is not
expanded. If the evaluation yields a single object, the content
of the for-each element is evaluated once. if the evaluation yields
a non-empty collection, the content of this element is evaluated
once for each element in the collection.

</p>
<p>

It is important to note that placeholder processors might implement
a context which captures the position of
select expressions with
respect to surrounding for-each elements. This way, the expansion
of the content of the for-each element might yield different
results for different elements in the collection mentioned above.
An example for this behaviour is the XPath placeholder processor
which implements a context similar to the XSL-T context, thereby
allowing
select expressions to be
absolute or relative to the current position within the for-each
collection.

</p>
</xsd:documentation>

196

A.1. XML Schema of XTL

</xsd:annotation>

<xsd:complexType mixed=”true”>
<xsd:sequence>

<xsd:any minOccurs=”1” maxOccurs=”1” processContents=”strict”/>
</xsd:sequence>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />
<xsd:attributeGroup ref=”xtl:minMaxAttributeGroup” />
<xsd:attribute name=”order-by” type=”xsd:string” use=”optional”>

<xsd:annotation>
<xsd:documentation>

<p>
This attribute can be used to specify a subquery which is
used to sort the result of the query.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name=”order” type=”xtl:orderType” use=”optional”>

<xsd:annotation>
<xsd:documentation>

<p>
This attribute specifies the sorting order
(ascending/descending).

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>
</xsd:element>

<xsd:element name=”include”>
<xsd:annotation>

<xsd:documentation>
<p>

This element can be used to include arbitrary markup.
</p>
<p>

During the expansion of the template, the
select expression is
evaluated. It must return a single DOM node which replaces the
include element. In contrast to the
text element, the result of the
evaluation is not encoded.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />

</xsd:complexType>
</xsd:element>

<xsd:element name=”macro”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows the definition of reusable template parts,
so-called macros.

</p>

197

A. Referenced XML Schemata and Instances

<p>
During evaluation, the content of the element is associated with
the value of its name attribute. No processing
of the content is performed during this association.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:sequence>

<xsd:any />
</xsd:sequence>
<xsd:attribute name=”name” type=”xsd:NCName” use=”required”>

<xsd:annotation>
<xsd:documentation>

<p>
This attribute uniquely identifies the macro for later use
with the
call-macro
element.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>

<xsd:key name=”macroName”>
<xsd:selector xpath=”.//macro” />
<xsd:field xpath=”@name” />

</xsd:key>
</xsd:element>

<xsd:element name=”call-macro”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows the invocation of reusable template parts
called macros.

</p>
<p>

The stored content of a macro
definition is looked up, embedded into the template and afterwards
expanded by the template engine. Thus, the expansion of the macro
does not influence the semantics of the instantiation in any way:
it makes no difference whether a macro is used or whether the
content of the macro is copied into all the places where it is
called.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:attribute name=”name” type=”xsd:NCName” use=”required”>

<xsd:annotation>
<xsd:documentation>

<p>
The value of this attribute identifies the macro which
should replace this call-macro element.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

198

A.1. XML Schema of XTL

</xsd:complexType>

<xsd:keyref name=”macroNameRef” refer=”xtl:macroName”>
<xsd:selector xpath=”.//call-macro” />
<xsd:field xpath=”@name” />

</xsd:keyref>
</xsd:element>

<xsd:element name=”init”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows to initialize a placeholder plugin with
plugin-dependent data.

</p>
<p>

The evaluation of this element yields nothing.
</p>

</xsd:documentation>
</xsd:annotation>

<xsd:complexType mixed=”true”>
<xsd:sequence>

<xsd:any />
</xsd:sequence>
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />

</xsd:complexType>
</xsd:element>

<xsd:simpleType name=”attributeModeType”>
<xsd:list>

<xsd:simpleType>
<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”create” />
<xsd:enumeration value=”append” />
<xsd:enumeration value=”set” />

</xsd:restriction>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

<xsd:simpleType name=”orderType”>
<xsd:list>

<xsd:simpleType>
<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”ascending” />
<xsd:enumeration value=”descending” />

</xsd:restriction>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

<xsd:attributeGroup name=”selectAttributeGroup”>
<xsd:attribute name=”select” type=”xsd:string” use=”required”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

The value of this attribute is used by a placeholder processor
to acquire data for an element.

</p>
<p>

199

A. Referenced XML Schemata and Instances

This data could either be used to fill a slot (e.g., for the
attribute element) or
to control the expansion of a template (e.g., for the
if
and the for-each
elements).

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>

<xsd:attributeGroup name=”realmAttributeGroup”>
<xsd:attribute name=”realm” type=”xsd:NCName” use=”optional”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

This attribute is used by XTL to distinguish different
placeholder processors which might be used within a single
template.

</p>
<p>

Unfortunately, no mechanism is defined yet to map from the
realm attribute value to a placeholder processor (which
might, for example, be defined by a Java class name). In
addition to this, the placeholder processors might need
some additional configuration (like the XML source for an
XPath placeholder processor).

</p>

</xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:attributeGroup>

<xsd:attributeGroup name=”typeAttributeGroup”>
<xsd:attribute name=”type” type=”xsd:QName” use=”prohibited”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

This is a helper attribute which may be used to define the
type that is needed in order to fill a slot.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>

<xsd:attributeGroup name=”minMaxAttributeGroup”>
<xsd:attribute name=”min” type=”xsd:nonNegativeInteger” use=”prohibited”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

This is a helper attribute which may be used to classify
the number of times a for-each instruction must be executed
at minimum.

</p>
</xsd:documentation>

200

A.2. Purchase Order Schema

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name=”max” type=”xsd:allNNI” use=”prohibited”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

This is a helper attribute which may be used to classify
the number of times a for-each instruction may be executed
at maximum.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>
</xsd:schema>

LisƟng A.1: XTL Schema xtl.xsd

A.2. Purchase Order Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<purchaseOrder xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”po.xsd”
orderDate=”1999-10-20”>

<shipTo country=”US”>
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country=”US”>

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<comment>Hurry, my lawn is going wild!</comment>
<items>

<item partNum=”872-AA”>
<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
<item partNum=”926-AA”>

<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>

</purchaseOrder>

LisƟng A.2: Purchase order XML instance po.xml

201

A. Referenced XML Schemata and Instances

A.3. Purchase Order Instance

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:annotation>
<xsd:documentation xml:lang=”en”>
Purchase order schema for Example.com.
Copyright 2000 Example.com. All rights reserved.

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”purchaseOrder” type=”PurchaseOrderType”/>

<xsd:element name=”comment” type=”xsd:string”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>

<xsd:element name=”shipTo” type=”USAddress”/>
<xsd:element name=”billTo” type=”USAddress”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”items” type=”Items”/>

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date”/>

</xsd:complexType>

<xsd:complexType name=”USAddress”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”country” type=”xsd:NMTOKEN”

fixed=”US”/>
</xsd:complexType>

<xsd:complexType name=”Items”>
<xsd:sequence>

<xsd:element name=”item” minOccurs=”0” maxOccurs=”unbounded”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”productName” type=”xsd:string”/>
<xsd:element name=”quantity”>

<xsd:simpleType>
<xsd:restriction base=”xsd:positiveInteger”>

<xsd:maxExclusive value=”100”/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”USPrice” type=”xsd:decimal”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”shipDate” type=”xsd:date” minOccurs=”0”/>

</xsd:sequence>
<xsd:attribute name=”partNum” type=”SKU” use=”required”/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name=”SKU”>

202

A.3. Purchase Order Instance

<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\d{3}-[A-Z]{2}”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

LisƟng A.3: Purchase order XML Schema po.xsd

203

A. Referenced XML Schemata and Instances

204

B
Detailed Results of the RunƟme and

Memory Measurements

Traue keiner StaƟsƟk, die du nicht selbst gefälscht hast.

(Origin unknown)

205

B. Detailed Results of the RunƟme and Memory Measurements

Parameter n of ValidaƟon Times [ms]
Instance Document [1] XSD CXSD

∅ σ ∅ σ

100 757,3 35,3 1 208,2 36,5
200 781,1 38,5 1 288,6 28,9
300 795,5 27,5 1 353,0 29,7
400 815,6 32,9 1 420,6 28,0
500 837,2 23,1 1 513,4 56,5
600 858,9 21,8 1 574,3 35,6
700 897,7 31,8 1 729,6 54,5
800 945,3 32,3 1 862,8 73,3
900 967,5 31,7 1 961,3 68,5

1000 990,5 41,3 2 069,9 80,0
1100 1 009,1 32,9 2 169,2 95,0
1200 1 063,5 176,3 2 281,8 97,5
1300 1 051,4 31,9 2 310,1 103,0
1400 1 062,7 33,2 2 463,9 77,5
1500 1 158,6 41,6 2 582,4 82,1
1600 1 189,7 39,5 2 595,6 123,2
1700 1 229,0 45,6 2 641,8 107,9
1800 1 253,2 48,3 2 677,1 94,6
1900 1 257,6 37,0 2 710,7 97,3
2000 1 273,0 40,5 2 932,4 89,8

Number of measurements per line: 300

Table B.1.: RunƟme Measurement of ValidaƟon against a CXSD document

206

IDS Source File Number of Nodes InstanƟaƟon Time [ms]
in the IDS Source File [1] ∅ σ

a_and_c.xml 12 720 244,48 88,35
all_well.xml 10 042 192,04 22,30
as_you.xml 8 972 172,67 21,94
com_err.xml 6 294 124,07 13,35
coriolan.xml 12 632 237,39 16,58
cymbelin.xml 11 532 214,47 16,52
dream.xml 6 772 136,35 16,45
hamlet.xml 13 224 268,69 22,10
hen_iv_1.xml 9 680 200,26 19,93
hen_iv_2.xml 10 278 214,04 22,49
hen_v.xml 9 432 196,91 20,21
hen_vi_1.xml 8 736 182,21 19,21
hen_vi_2.xml 10 092 208,92 19,69
hen_vi_3.xml 9 742 202,89 23,20
hen_viii.xml 9 684 200,27 23,25
j_caesar.xml 8 880 184,69 22,36
john.xml 7 858 162,71 18,79
lear.xml 11 980 246,34 15,59
lll.xml 10 074 210,23 18,43
m_for_m.xml 9 698 215,42 21,02
m_wives.xml 9 970 209,41 20,34
macbeth.xml 7 938 166,47 18,27
merchant.xml 8 286 173,56 23,51
much_ado.xml 9 474 198,83 23,22
othello.xml 12 410 255,90 16,30
pericles.xml 7 508 159,45 22,42
r_and_j.xml 10 150 211,30 21,62
rich_ii.xml 8 226 171,59 19,44
rich_iii.xml 12 410 256,53 21,09
t_night.xml 9 148 193,19 23,67
taming.xml 8 438 181,13 23,89
tempest.xml 7 396 156,99 22,26
Ɵmon.xml 8 694 183,97 23,61
Ɵtus.xml 7 872 164,95 19,28
troilus.xml 12 216 252,22 20,93
two_gent.xml 8 298 176,50 19,93
win_tale.xml 10 048 206,53 21,71
Number of measurements per line: 1000

Table B.2.: Analysis of the Time Complexity

207

B. Detailed Results of the RunƟme and Memory Measurements

IDS Source File Size of IDS Source File InstanƟaƟon Time [ms]
[kbyte] ∅ JSP ∅ XSL-T ∅ XTL

a_and_c.xml 245,96 57,6 33,3 268,1
all_well.xml 204,78 43,2 25,1 195,2
as_you.xml 187,60 36,2 24,3 173,4
com_err.xml 133,60 23,1 18,3 136,8
coriolan.xml 253,97 66,1 32,1 266,8
cymbelin.xml 241,53 62,0 30,2 245,8
dream.xml 141,61 25,3 18,9 146,0
hamlet.xml 273,07 67,2 33,8 280,5
hen_iv_1.xml 209,90 50,4 25,9 209,2
hen_iv_2.xml 228,66 56,0 27,8 219,8
hen_v.xml 220,93 50,3 25,9 206,2
hen_vi_1.xml 191,82 40,3 23,8 189,4
hen_vi_2.xml 220,68 54,1 27,4 219,4
hen_vi_3.xml 215,01 52,5 26,2 212,3
hen_viii.xml 212,68 52,1 26,4 211,3
j_caesar.xml 179,20 40,7 23,5 194,3
john.xml 173,88 33,6 22,1 171,6
lear.xml 240,05 67,6 30,7 256,3
lll.xml 202,06 53,0 25,9 222,6
m_for_m.xml 197,94 48,8 25,6 222,5
m_wives.xml 202,28 50,9 25,8 220,5
macbeth.xml 159,22 32,8 21,5 171,5
merchant.xml 177,74 37,9 22,7 181,9
much_ado.xml 190,60 46,8 25,0 210,3
othello.xml 242,91 68,3 31,6 269,7
pericles.xml 165,29 34,4 20,9 168,1
r_and_j.xml 213,35 54,5 27,0 222,5
rich_ii.xml 188,29 38,4 23,1 180,3
rich_iii.xml 265,02 70,9 32,1 264,8
t_night.xml 181,68 43,2 23,8 203,3
taming.xml 189,71 44,5 22,9 188,9
tempest.xml 150,99 29,1 20,2 163,9
Ɵmon.xml 173,27 40,2 22,9 192,3
Ɵtus.xml 176,28 33,2 22,0 175,4
troilus.xml 243,54 66,9 30,9 263,5
two_gent.xml 160,73 39,0 22,1 185,6
win_tale.xml 212,01 54,6 27,1 218,3
Number of measurements per line: 1500

Table B.3.: Comparison between JSP, XSL-T and XTL

208

Parameter n of Memory Usage [kbyte]
Template [1] ∅ σ

1000 3 437,8 1 550,2
2000 7 254,9 3 315,8
3000 10 734,2 4 245,4
4000 14 026,9 4 325,2
5000 16 056,6 3 660,7
6000 17 333,9 2 230,3
7000 20 167,5 2 479,0
8000 23 489,1 3 113,0
9000 26 176,8 3 152,7

10000 28 438,9 3 388,5
11000 31 134,3 3 230,9
12000 33 222,6 3 023,8
13000 41 440,3 4 455,6
14000 44 474,1 4 473,5
15000 44 174,7 4 180,5
16000 46 378,1 4 415,0
17000 48 214,3 4 008,9
18000 51 319,2 3 981,4
19000 55 630,1 4 577,3
20000 57 872,8 5 350,7

Value of p: 10000
Number of measurements per line: 100

Table B.4.: Memory measurement with constant parameter p

209

B. Detailed Results of the RunƟme and Memory Measurements

Parameter p of Memory Usage [kbyte]
Template [1] ∅ σ

1000 25 450,1 2 952,3
2000 25 783,6 3 420,2
3000 25 199,4 2 932,8
4000 24 574,0 955,9
5000 25 435,9 2 887,1
6000 25 756,8 3 481,0
7000 25 929,7 3 389,2
8000 24 930,2 2 704,6
9000 25 112,7 2 655,6

10000 25 184,4 2 588,3
11000 25 483,8 3 625,3
12000 25 772,9 3 590,0
13000 25 594,1 3 663,7
14000 24 910,8 2 679,5
15000 24 334,7 928,8
16000 24 398,6 1 717,7
17000 24 139,6 196,7
18000 24 140,3 230,2
19000 24 225,1 743,7
20000 24 221,7 471,3

Value of n: 10000
Number of measurements per line: 100

Table B.5.: Memory measurement with constant parameter n

210

List of Acronyms

ACV Advanced Computer Vision [1]

AOP Aspect-oriented Programming [63]

API ApplicaƟon Programming Interface

AST Abstract Syntax Tree [2]

AWT Abstract Window Toolkit, a Java GUI framework

BMBF Bundesministerium für Bildung und Forschung

CMS Content Management System

CST Concrete Syntax Tree (see parse tree in [2])

CXSD Constraint XML Schema DefiniƟon Language [83]

DOM Document Object Model [13]

DSL Domain Specific Language

DTD Document Type DefiniƟon [28]

D3ML Device-Independent MulƟmodal Mark-up Language [75]

DTML Document Template Markup Language [114]

EADS European AeronauƟc Defence and Space Company [58]

EMF Eclipse Modeling Framework [57]

EMMA Extensible MulƟModal AnnotaƟon Markup Language [193]

EMODE Enabling Model TransformaƟon-Based Cost Efficient AdapƟve MulƟ-modal User Inter-
faces

ERB Embedded Ruby [50]

EU European Union

211

List of Acronyms

FeasiPLe Feature-getriebene, aspektorienƟerte und modellgetriebene Produktlinienentwick-
lung (German for Feature-driven, Aspect-oriented Product Line Development) [60]

FIRST Fraunhofer InsƟtut für Rechnerarchitektur und SoŌwaretechnik [70]

FMC Fundamental Modeling Concepts [72; 109]

GHC Glasgow Haskell Compiler [84]

GUI Graphical User Interface

HTML Extensible Hypertext Markup Language [153]

HTTP Hypertext Transfer Protocol [62]

IDC InstanƟaƟon Data Constraint language

IDE Integrated Development Environment

IDS InstanƟaƟon Data Source (see SecƟon 4.1)

ISC Invasive SoŌware ComposiƟon [15]

JAR Java ARrchive[177]

JAXB Java Architecture for XML Binding [155; 105]

JDK Java Development Kit

JET Java EmiƩer Templates [52]

JSP Java Server Pages [176]

JSR Java SpecificaƟon Request

JVM Java Virtual Machine

LISP LISt Processing [170]

MDA Model Driven Architecture [128]

MDSD Model Driven SoŌware Development

MDT Model Development Tools [54]

MMI-F MulƟmodal InteracƟon Framework [191]

MOF Meta-Object Facility [138]

MRCP Media Resource Control Protocol [91]

MSL Model Schema Language [31; 30]

212

List of Acronyms

M2C Model-to-Code transformaƟon [43]

M2M Model-to-Model transformaƟon [43]

MVC Model-View-Controller [154]

OCL Object Constraint Language [136]

PDA Personal Digital Assistent

PHP Placeholder Plugin (see SecƟon 6.1)

PSVI Post-Schema-ValidaƟon Infoset [180]

QVT Query View TransformaƟon [140]

RAP Rich ApplicaƟon Plaƞorm [55]

RelaxNG Regular Language for XML Next GeneraƟon [39]

RSF Reasonable Server Faces [186]

RWT Rich ApplicaƟon Plaƞorm (RAP) Widget Toolkit

SAX Simple API for XML [161]

SGML Standard Generalized Markup Language [76]

SNOW Services for Nomadic Workers [179]

SoC SeparaƟon of Concerns [48]

SPARQL SPARQL Protocol and RDF Query Language [151]

SPath Path Language for XML Schema [126]

SQL Structured Query Language

SSM Simplified Stylesheet Module [107] (called simplified syntax in [36])

SSML Speech Synthesis Markup Language [192]

ST StringTemplate [143]

StAX Streaming API for XML [95; 145]

SVG Scalable Vector Graphics [61]

TAL Template AƩribute Language [196]

UML Unified Modeling Language [139]

UPA Unique ParƟcle AƩribuƟon [180, SecƟon 3.8.6]

213

List of Acronyms

URI Uniform Resource IdenƟfier [23]

URL Uniform Resource Locator [22]

WML Wireless Markup Language [90]

W3C World Wide Web ConsorƟum http://www.w3.org

XHTML Extensible Hypertext Markup Language [4]

XMI XML Metadata Interchange [137]

XML Extensible Markup Language [28]

XML-RPC XML Remote Procedure Call [164]

XPath XML Path Language [38]

XSD XML Schema DefiniƟon [59; 180; 26]

XSL Extensible Stylesheet Language [19]

XSL-T Extensible Stylesheet Language (XSL) TransformaƟons [36]

XTL XML Template Language

XTM-P XML Topic Maps for Procedures [103]

XVCL XML-based Variant ConfiguraƟon Language [93]

214

http://www.w3.org

List of Figures

1.1. A typical Web ApplicaƟon can produce both valid and invalid XHTML Documents 10
1.2. The current Development Process for Templates 11

2.1. Comparison of the Scopes of the DefiniƟons of the Term Template 22
2.2. RelaƟons between Template and Target Language 23
2.3. Template Technique and Template Life Cycle 24
2.4. FormalizaƟon of the XML document in LisƟng 2.2 26
2.5. ClassificaƟon of Schema Languages [simplified, based on 131] 27
2.6. Comparison of the AlternaƟves with Templates 34
2.7. Target Language Awareness of Slot Markup 39
2.8. Sequence Diagrams of Push resp. Pull Strategy 42
2.9. Categories of Query Languages . 43

3.1. Error Messages caused by JSP Pages . 51
3.2. SeparaƟon of Concerns in Different Scenarios 52
3.3. RelaƟons between Goals and Requirements 54
3.4. Consequences of Insufficient or Exaggerated Expressiveness 56
3.5. The Proposed Architecture . 58
3.6. RelaƟons between Requirements and SoluƟon Elements 59
3.7. RelaƟons between the SoluƟon Elements and the Following Chapters 60

4.1. Types of XML TransformaƟon Pipelines . 80
4.2. Using a VerƟcal XSL-T Pipeline to Emulate the XTL Engine 84
4.3. Schema ValidaƟon and Template InstanƟaƟon 84
4.4. Similarity between Schema/Template and Instance 85

5.1. Conclusion Enabled by the Constraint SeparaƟon Process 88
5.2. Meta-model for the CXSD constraints . 95
5.3. Set RelaƟons between Template and Target Language 100
5.4. The Constraint SeparaƟon Processing Steps 108
5.5. The Proposed Development Process for Templates 118

6.1. Accessing MulƟple InstanƟaƟon Data Sources Using MulƟple PHPs 124
6.2. Push- and Pull-Parser . 130
6.3. XTL Engine with Input and Output Streams . 131

215

List of Figures

6.4. Examples of Read Window OperaƟons’ ExecuƟon 133
6.5. The XTLEngine’s Processing Pipeline . 136
6.6. The XTLEvent Hierarchy . 137
6.7. AcƟviƟes during a Call to XTLEventReader.getNextEvent 138
6.8. AcƟviƟes during a Call to BypassProcessingReader.getNextEvent . 139
6.9. AcƟviƟes during a Call to XTLProcessingReader.getNextEvent . . . 140
6.10. IndentaƟon Parts of the XTL Processing Pipeline 147
6.11. State Chart of the IndentingXMLEventWriter 148
6.12. State Chart of the SplittingOutputStream 149
6.13. XTL InstanƟaƟon with enabled InstanƟaƟon Data ValidaƟon 151
6.14. Architecture with Template Interface GeneraƟon 153
6.15. The Object Model Deduced from the Template in LisƟng 6.16 155
6.16. The XPath Syntax Accepted by the Template Interface GeneraƟon Process . . . 156
6.17. The Tree of Property Descriptors Built from the Template Shown in LisƟng 6.16 159

7.1. RelaƟons between ValidaƟon Means and Goals 166
7.2. The Prototype’s Tool Architecture . 166
7.3. Console Help of the xtlsc.sh Command 167
7.4. Console Help of the cxsdvalidate.sh Command 168
7.5. Console Help of the xtlinstantiate.sh Command 168
7.6. Console Help of the xtltc.sh Command 169
7.7. Constraint SeparaƟon Test Suite . 170
7.8. Template ValidaƟon Test Suite . 171
7.9. Template InstanƟaƟon Test Suite . 172
7.10. Template Interface GeneraƟon Test Suite . 173
7.11. Round-trip Test Suite . 174
7.12. The SNOW Architecture . 177
7.13. Time ConsumpƟon during Document ValidaƟon 182
7.14. Time ConsumpƟon during Template InstanƟaƟon 183
7.15. Time ConsumpƟon Comparison between XTL, JSP, and XSL-T 184
7.16. Results of the Memory ConsumpƟon Measurements 186

216

List of LisƟngs

1.1. A JSP Document failing to produce wellformed XHTML Documents 11
1.2. A JSP Document producing a Document that is not XHTML (1) 12
1.3. A JSP document producing a Document that is not XHTML (2) 13

2.1. Origins of Fragments in a Template . 23
2.2. A simple XML file . 25
2.3. A BETA Form . 36
2.4. Frame Processing Example with XVCL . 38
2.5. Suppression of Newlines in XPAND . 45

4.1. RepresentaƟon of XML documents in the InstanƟaƟon SemanƟcs 63
4.2. DefiniƟon of the IDS class . 63
4.3. Preamble of the DenotaƟonal InstanƟaƟon SemanƟcs 64
4.4. SemanƟcs for Text, Comment and Element Nodes 65
4.5. SemanƟcs of xtl:text . 67
4.6. Example Use of xtl:text . 67
4.7. SemanƟcs of xtl:attribute . 69
4.8. Example Use of xtl:attribute . 69
4.9. SemanƟcs of xtl:include . 70
4.10. Example Use of xtl:include . 70
4.11. SemanƟcs of xtl:if . 72
4.12. Example Use of xtl:if . 73
4.13. SemanƟcs of xtl:for-each . 75
4.14. Example Use of xtl:for-each . 75
4.15. SemanƟcs of xtl:macro . 76
4.16. SemanƟcs of xtl:call-macro . 77
4.17. Example Use of xtl:macro and xtl:call-macro 78
4.18. Example Use of Realms . 80
4.19. Bypassing SemanƟcs . 82
4.20. Bypassing Example . 83

5.1. A Purchase Order with PotenƟally Dynamic Parts Highlighted 89
5.2. A Purchase Order XTL Template . 91
5.3. The PurchaseOrderType from po.xsd 91

217

List of LisƟngs

5.4. The Modified PurchaseOrderType, Allowing the Use of xtl:attribute 91
5.5. The USAddress Type from po.xsd . 92
5.6. The Modified USAddress Type, Allowing the Use of xtl:text 92
5.7. The Modified PurchaseOrderType, Allowing the Use of xtl:if 93
5.8. A complete CXSD Element DeclaraƟon with an Embedded OCL Constraint . . . 97
5.9. Expressing a Constraint from the XML Schema SpecificaƟon with CXSD 97
5.10. Expressing a Constraint from the XSL-T 2.0 SpecificaƟon with CXSD 98
5.11. An InstanƟaƟon Data Constraint in an XML Schema fragment 99
5.12. The ConstraintSeparationContext Interface 109
5.13. The ConstraintFactory Interface . 111
5.14. Added xsd:import Statements . 112
5.15. Top-level DeclaraƟon of a Previously Anonymous Simple Type 112
5.16. Choice between comment and xtl:if . 114
5.17. Enabled xtl:attribute with IDC Constraints 115
5.18. A CXSD Constraint for Required AƩributes . 115
5.19. Enabled xtl:text for the CreaƟon of the Content of the zip Element . . . 116
5.20. A CXSD constraint for Simple Content . 116
5.21. A Simple XHTML 1.0 File . 117
5.22. Linked InstanƟaƟon Data Constraints Compared with Embedded PSVI 120

6.1. The PlaceHolderPlugin Interface . 125
6.2. The ReadWindow Interface . 132
6.3. The LoopStack Interface . 134
6.4. The MacroMap Interface . 135
6.5. The PlaceHolderPluginMap Interface 135
6.6. The InstantiationContext Interface 140
6.7. The processMethod in XTLText . 141
6.8. The processMethod in XTLIfStart . 142
6.9. The processMethod in XTLForEachStart 143
6.10. The processMethod in XTLForEachEnd 144
6.11. The processMethod in XTLMacroStart 144
6.12. The processMethod in XTLCallMacro 145
6.13. The processMethod in XTLInclude . 145
6.14. The processMethod in XTLInit . 146
6.15. A Template InstanƟaƟon Result before Spliƫng 149
6.16. Example Template for Template Interface GeneraƟon 154
6.17. The retrievePropertyDescriptorMethod in the AnalyzerPHP . . 161
6.18. The evaluateForEachMethod in the AnalyzerPHP 162
6.19. An Example for a validateMethod ImplementaƟon 163

7.1. An Example Instance Document for RunƟme Measurements 181
7.2. An Example Template for Memory Measurement (n = 3, p = 2) 185

A.1. XTL Schema xtl.xsd . 201

218

List of LisƟngs

A.2. Purchase order XML instance po.xml . 201
A.3. Purchase order XML Schema po.xsd . 203

219

List of LisƟngs

220

List of Tables

1.1. XML Namespaces and Prefixes . 17

B.1. RunƟme Measurement of ValidaƟon against a CXSD document 206
B.2. Analysis of the Time Complexity . 207
B.3. Comparison between JSP, XSL-T and XTL . 208
B.4. Memory measurement with constant parameter p 209
B.5. Memory measurement with constant parameter n 210

221

List of Tables

222

Bibliography

[1] ACV – Advanced Computer Vision. Advanced Computer Vision GmbH – ACV, 2007. URL
http://www.acv.ac.at/start.html.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools (2nd EdiƟon). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

[3] Michael Altenhofen, Thomas HeƩel, and Stefan Kusterer. OCL support in an industrial
environment. InMoDELS’06: Proceedings of the 2003 internaƟonal conference onModels
in soŌware engineering, pages 169–178, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
978-3-540-69488-5.

[4] Murray Altheim and ShaneMcCarron, editors. XHTML™1.1 - Module-based XHTML,W3C
RecommendaƟon 31 May 2001. The World Wide Web ConsorƟum, 2001. URL http:
//www.w3.org/TR/2001/REC-xhtml11-20010531/.

[5] Frank Anke and Falk Hartmann. Cocoon mit StAX – Pull-Parsing in einem SAX-basierten
Framework. JavaSPEKTRUM, (3), 2006.

[6] ANTLR Parser Generator. The ANTLR Project, 2008. URL http://www.antlr.org/.

[7] Apache Cocoon. Apache SoŌware FoundaƟon, 2003. URLhttp://cocoon.apache.
org/2.1/.

[8] XMLBeans. Apache SoŌware FoundaƟon, 2004. URL http://xmlbeans.apache.
org/.

[9] The JXPath Component. Apache SoŌware FoundaƟon, 2007. URL http://commons.
apache.org/jxpath/index.html.

[10] XSLT-processor Xalan. Apache SoŌware FoundaƟon, 2007. URL http://xml.
apache.org/xalan-j/index.html.

[11] XML parser Xerces. Apache SoŌware FoundaƟon, 2007. URL http://xerces.
apache.org/.

[12] Apache Tomcat. Apache SoŌware FoundaƟon, 2010. URLhttp://tomcat.apache.
org/.

223

http://www.acv.ac.at/start.html
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.antlr.org/
http://cocoon.apache.org/2.1/
http://cocoon.apache.org/2.1/
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/
http://commons.apache.org/jxpath/index.html
http://commons.apache.org/jxpath/index.html
http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/xalan-j/index.html
http://xerces.apache.org/
http://xerces.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Bibliography

[13] Vidur Apparao, Steve Byrne, Mike Champion, ScoƩ Isaacs, Ian Jacobs, Arnaud Le Hors,
Gavin Nicol, Jonathan Robie, Robert Sutor, Chris Wilson, and LaurenWood, editors. Doc-
ument Object Model (DOM) Level 1 SpecificaƟon, Version 1.0, W3C RecommendaƟon 1
October 1998. The World Wide Web ConsorƟum, 1998. URL http://www.w3.org/
TR/1998/REC-DOM-Level-1-19981001/.

[14] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a Syntax-Safe Tem-
plate Engine. In Charles Consel and Julia L. Lawall, editors, GeneraƟve Programming
and Component Engineering, 6th InternaƟonal Conference, GPCE 2007, pages 25–32,
Salzburg, Austria, 2007. ACM. ISBN 978-1-59593-855-8. doi: http://doi.acm.org/10.
1145/1289971.1289977.

[15] Uwe Aßmann. Invasive SoŌware ComposiƟon. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2003. ISBN 3540443851.

[16] Uwe Aßmann. Architectural styles for acƟve documents. Science of Computer Program-
ming, 56(1-2):79–98, 2005. ISSN 0167-6423.

[17] Paul BasseƩ. Frame-Based SoŌware Engineering. IEEE SoŌware, 4(4):9–16, 1987.

[18] Paul G. BasseƩ. Framing soŌware reuse: lessons from the real world. PrenƟce-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997. ISBN 0-13-327859-X.

[19] Anders Berglund, editor. Extensible Stylesheet Language (XSL) Version 1.1, W3C Rec-
ommendaƟon 5 December 2006. 2006. URL http://www.w3.org/TR/2006/
REC-xsl11-20061205/.

[20] Alexandru Berlea and Helmut Seidl. fxt – A TransformaƟon Language for XMLDocuments.
Journal of CompuƟng and InformaƟon Technology (CIT), Special Issue on Domain-Specific
Languages, 2001.

[21] MarƟn Bernauer, GerƟ Kappel, and Gerhard Kramler. RepresenƟng xml schema in uml -
a comparison of approaches. In Nora Koch, Piero Fraternali, and MarƟnWirsing, editors,
ICWE, volume 3140 of Lecture Notes in Computer Science, pages 440–444. Springer, 2004.
ISBN 3-540-22511-0.

[22] T. Berners-Lee, L.Masinter, andM.McCahill. RFC 1738, Uniform Resource Locators (URL),
1994. URL http://www.ietf.org/rfc/rfc1738.txt.

[23] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uniform Resource IdenƟfier (URI):
Generic Syntax, 2005. URL http://www.ietf.org/rfc/rfc3986.txt.

[24] Jean Bézivin and Olivier Gerbé. Towards a precise definiƟon of the omg/mda framework.
In ASE, pages 273–280. IEEE Computer Society, 2001. ISBN 0-7695-1426-X.

[25] Lutz Bichler. Tool support for generaƟng implementaƟons of MOF-based modeling lan-
guages. 2003.

224

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc3986.txt

Bibliography

[26] Paul V. Biron and Ashok Malhotra, editors. XML Schema Part 2: Datatypes Second Edi-
Ɵon, W3C RecommendaƟon 28 October 2004. 2004. URL http://www.w3.org/TR/
2004/REC-xmlschema-2-20041028/.

[27] Jon Bosak. The Plays of Shakespeare in XML, 2000. URL http://xml.coverpages.
org/bosakShakespeare200.html.

[28] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen, editors. ExtensibleMarkup Language
(XML) 1.0, W3C RecommendaƟon 10 February 1998. The World Wide Web ConsorƟum,
1998. URL http://www.w3.org/TR/1998/REC-xml-19980210.

[29] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin, editors. Name-
spaces in XML 1.0 (Second EdiƟon), W3C RecommendaƟon 16 August 2006. The
World Wide Web ConsorƟum, 2006. URL http://www.w3.org/TR/2006/
REC-xml-names-20060816/.

[30] Allen Brown, MaƩhew Fuchs, Jonathan Robie, and Philip Wadler. MSL - a model for W3C
XML schema. In WWW ’01: Proceedings of the 10th internaƟonal conference on World
Wide Web, pages 191–200, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-348-0.

[31] Allen Brown, MaƩhew Fuchs, Jonathan Robie, and Philip Wadler, editors. XML Schema:
Formal DescripƟon, W3CWorking DraŌ, 25 September 2001. 2001. URL http://www.
w3.org/TR/xmlschema-formal/.

[32] Giordano Bruno. Über die Ursache, das Prinzip und das Eine. Reklam, Ditzingen, 1986.
ISBN 3150051134.

[33] Janusz A. Brzozowski. DerivaƟves of regular expressions. J. ACM, 11(4):481–494, 1964.
ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321239.321249.

[34] David Carlson. Modeling XML applicaƟons with UML: pracƟcal e-business applicaƟons.
AddisonWesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2001. ISBN 0-201-
70915-5.

[35] Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.

[36] James Clark, editor. XSL TransformaƟons (XSLT), Version 1.0, W3C RecommendaƟon 16
November 1999. The World Wide Web ConsorƟum, 1999. URL http://www.w3.
org/TR/1999/REC-xslt-19991116.

[37] James Clark. An algorithm for RELAX NG validaƟon. Web page, 2002. URL http://
thaiopensource.com/relaxng/derivative.html.

[38] James Clark and Steve DeRose, editors. XML Path Language (XPath), Version 1.0, W3C
RecommendaƟon 16 November 1999. The World Wide Web ConsorƟum, 1999. URL
http://www.w3.org/TR/1999/REC-xpath-19991116.

225

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://xml.coverpages.org/bosakShakespeare200.html
http://xml.coverpages.org/bosakShakespeare200.html
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://thaiopensource.com/relaxng/derivative.html
http://thaiopensource.com/relaxng/derivative.html
http://www.w3.org/TR/1999/REC-xpath-19991116

Bibliography

[39] James Clark and Murata Makoto, editors. RELAX NG SpecificaƟon, Commit-
tee SpecificaƟon 3 December 2001. OrganizaƟon for the Advancement of Struc-
tured InformaƟon Standards, 2001. URL http://www.w3.org/TR/2004/
REC-xmlschema-1-20041028/.

[40] William Clinger and Jonathan Rees. Macros that work. In POPL ’91: Proceedings of the
18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
155–162, New York, NY, USA, 1991. ACM Press. ISBN 0-89791-419-8.

[41] C-Lab Homepage. CooperaƟve CompuƟng & CommunicaƟon Laboratory, 2007. URL
http://www.c-lab.de/.

[42] John Cowan and Richard Tobin, editors. XML InformaƟon Set (Second EdiƟon), W3C
RecommendaƟon 4 February 2004. The World Wide Web ConsorƟum, 2004. URL
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

[43] Krzysztof Czarnecki and Simon Helsen. ClassificaƟon of Model TransformaƟon Ap-
proaches. In OOPSLA 2003 Workshop on GeneraƟve Techniques in the context of Model
Driven Architecture, oct 2003.

[44] Waltenegus Dargie, Anja Strunk, MaƩhias Winkler, Bernd Mrohs, Sunil Thakar, and Wil-
fried Enkelmann. A Model-Based Approach for Developing AdapƟve MulƟmodal Inter-
acƟve Systems. In Proceedings of ICSoŌ 2007, 2nd InternaƟonal Conference on SoŌware
and Data Technologies, pages 73–79, Barcelona, Spain, 2007. INSTICC Press.

[45] Antoine de Saint-Exupéry. Die Stadt in der Wüste. Rauch Verlag, 2009.

[46] Tom DeMarco and Timothy R. Lister, editors. SoŌware State of the Art: Selected Papers.
Dorset House Publishing Co., Inc., New York, NY, USA, 2000. ISBN 0932633145.

[47] Andreas Diel. Lokalisierung internaƟonaler SoŌware am Beispiel der E-Business-
Plaƪorm enfinity der INTERSHOP AG: Modellierung der Daten und GeschäŌsprozesse.
Master’s thesis, FH Jena, 2001.

[48] Edsger W. Dijkstra. On the role of scienƟfic thought. Published as [49], August 1974. URL
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF.

[49] Edsger W. Dijkstra. On the role of scienƟfic thought. In Selected WriƟngs on CompuƟng:
A Personal PerspecƟve, pages 60–66. Springer-Verlag, 1982.

[50] Class: ERB. DocumenƟng the Ruby Language, 2008. URL http://www.ruby-doc.
org/stdlib/libdoc/erb/rdoc/classes/ERB.html.

[51] Desmond D’Souza and Alan Cameron Wills. Objects, Components and Frameworks With
UML: The Catalysis Approach. Addison-Wesley, 1998. ISBN 0201310120.

[52] Java EmiƩer Templates. Eclipse FoundaƟon, 2007. URL http://www.eclipse.
org/modeling/m2t/?project=jet.

226

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.c-lab.de/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet

Bibliography

[53] Model Development Tools, OCL subproject. Eclipse FoundaƟon, 2007. URL http://
www.eclipse.org/modeling/mdt/?project=ocl.

[54] Model Development Tools. Eclipse FoundaƟon, 2007. URL http://www.eclipse.
org/modeling/mdt/.

[55] Rich ApplicaƟon Plaƞorm. Eclipse FoundaƟon, 2007. URL http://www.eclipse.
org/rap/.

[56] Xpand Code GeneraƟon Language. Eclipse FoundaƟon, 2007. URL http://www.
eclipse.org/modeling/m2t/?project=xpand.

[57] Eclipse Modeling Framework Project (EMF). Eclipse FoundaƟon, 2010. URL http://
www.eclipse.org/modeling/emf/.

[58] EADS. EADS N.V. European AeronauƟc Defence and Space Company, 2007. URL http:
//eads.com.

[59] David C. Fallside and Priscilla Walmsley, editors. XML Schema Part 0: Primer Second
EdiƟon, W3C RecommendaƟon 28 October 2004. 2004. URL http://www.w3.org/
TR/2004/REC-xmlschema-0-20041028/.

[60] Forschungsprojekt FeasiPLe - Feature-getriebene, aspektorienƟerte und mod-
ellgetriebene Produktlinienentwicklung. FeasiPLe KonsorƟum. URL http:
//www.feasiple.de.

[61] Jon Ferraiolo, Jun Fujisawa, and Dean Jackson, editors. Scalable Vector Graphics (SVG) 1.1
SpecificaƟon,W3C RecommendaƟon 14 January 2003. TheWorldWideWebConsorƟum,
2003. URL http://www.w3.org/TR/SVG11/.

[62] R. Fielding, J. GeƩys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC
2616, Hypertext Transfer Protocol – HTTP/1.1, 1999. URL http://www.ietf.org/
rfc/rfc2616.txt.

[63] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, andMehmet Aksit, editors. Aspect-Oriented
SoŌware Development. Addison-Wesley, Boston, 2005. ISBN 0-321-21976-7.

[64] Daniel Fötsch and Andreas Speck. XTC - The XML TransformaƟon Coordinator for XML
Document TransformaƟon Technologies. In DEXA ’06: Proceedings of the 17th Interna-
Ɵonal Conference on Database and Expert Systems ApplicaƟons, pages 507–511, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[65] Daniel Fötsch, Andreas Speck, and Peter Hänsgen. The operator hierarchy concept for xml
document transformaƟon technologies. In Rainer Eckstein and Robert Tolksdorf, editors,
Berliner XML Tage, pages 59–70, 2005. ISBN 3-9810105-2-3.

[66] Daniel Fötsch, Andreas Speck, Wilhelm Rossak, and Jörg Krumbiegel. A concept for mod-
elling and validaƟon of web based presentaƟon templates. In OƩo K. Ferstl, Elmar J.

227

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/
http://www.eclipse.org/modeling/mdt/
http://www.eclipse.org/rap/
http://www.eclipse.org/rap/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://eads.com
http://eads.com
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.feasiple.de
http://www.feasiple.de
http://www.w3.org/TR/SVG11/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

Bibliography

Sinz, Sven Eckert, and Tilman Isselhorst, editors, WirtschaŌsinformaƟk, pages 391–406.
Physica-Verlag, 2005. ISBN 3-7908-1574-8.

[67] MarƟn Fowler. PaƩerns of Enterprise ApplicaƟon Architecture. Addison Wesley, Boston,
MA, USA, 2002. ISBN 0321127420.

[68] MarƟn Fowler. Moving away from XSL-T, 2003. URL http://www.martinfowler.
com/bliki/MovingAwayFromXslt.html.

[69] Charles François. InternaƟonal Encyclopedia of Systems and CyberneƟcs. K.G.Saur,
München, 1997.

[70] Fraunhofer InsƟtut Rechnerarchitektur und SoŌwaretechnik. Fraunhofer-GesellschaŌ,
2007. URL http://www.first.fraunhofer.de/.

[71] Alan Freedman. The computer glossary: the complete illustrated desk reference (4th ed.).
American Management Assoc., Inc., New York, NY, USA, 1989. ISBN 0-8144-7709-7.

[72] Fundamental Modeling Concepts. The Fundamental Modeling Concepts ConsorƟum,
2003. http://www.f-m-c.org/ (visited 2006, May 29th).

[73] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design paƩerns: Ab-
stracƟon and reuse of object-oriented design. Lecture Notes in Computer Science, 707:
406–431, 1993.

[74] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design PaƩerns. Addison
Wesley, Reading, MA, 1995.

[75] Steffen Göbel, Falk Hartmann, Kay Kadner, and Christoph Pohl. A device-independent
mulƟmodal mark-up language. In INFORMATIK 2006: InformaƟk für Menschen, Band 2,
pages 170–177, 2006.

[76] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990. ISBN 0-198-
53737-9.

[77] Joseph D. Gradecki and Jim Cole. Mastering Apache Velocity. Wiley Technology Publish-
ing, New York, 2003.

[78] TU Graz. GRAZ UNIVERSITY OF TECHNOLOGY, 2007. URL http://www.tugraz.at/.

[79] DeniseGürer. Pioneeringwomen in computer science. SIGCSEBull., 34(2):175–180, 2002.
ISSN 0097-8418.

[80] René Haberland. TransformaƟon von XML-DokumentenmiƩels Prolog. Großer Beleg, TU
Dresden, 2006.

[81] René Haberland. Vereinheitlichung von XML-Template-Expansion und Schema-Validier-
ung. Master’s thesis, TU Dresden, July 2007.

228

http://www.martinfowler.com/bliki/MovingAwayFromXslt.html
http://www.martinfowler.com/bliki/MovingAwayFromXslt.html
http://www.first.fraunhofer.de/
http://www.f-m-c.org/
http://www.tugraz.at/

Bibliography

[82] Falk Hartmann. An Architecture for an XML-Template Engine Enabling Safe Authoring. In
DEXA ’06: Proceedings of the 17th InternaƟonal Conference on Database and Expert Sys-
tems ApplicaƟons, pages 502–507, Washington, DC, USA, 2006. IEEE Computer Society.

[83] Falk Hartmann. Ensuring the InstanƟaƟon Results of XML Templates. In Pedro Isaías,
Miguel Nunes, and Joao Barroso, editors, 6th IADIS InternaƟonal Conference WWW/In-
ternet, pages 269–276, Vila Real, Portugal, 2007. InternaƟonal AssociaƟon for Develop-
ment of the InformaƟon Society. ISBN 978-972-8924-44-7.

[84] The GlasgowHaskell Compiler. Haskell.org, 2010. URL http://www.haskell.org/
ghc/.

[85] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, ChrisƟan Wende, and Marcel
Böhme. GeneraƟng safe template languages. In Proceedings of the eighth interna-
Ɵonal conference on GeneraƟve programming and component engineering, GPCE ’09,
pages 99–108, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-494-2. doi: http:
//doi.acm.org/10.1145/1621607.1621624. URL http://doi.acm.org/10.1145/
1621607.1621624.

[86] Jakob Henriksson, Jendrik Johannes, Steffen Zschaler, and Uwe Aßmann. Reuseware
— Adding Modularity to Your Language of Choice. Journal of Object Technology, 6(9):
127–146, October 2007. Special Issue. TOOLS EUROPE 2007.

[87] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid (20th-anniversary
EdiƟon). Penguin Books, 1999.

[88] Carsten Holzmüller. Entwicklung eines Java-XML-Binding-Frameworks auf der Basis al-
ternaƟver XML-Metasprachen. Master’s thesis, TU Dresden, July 2007.

[89] Don Hopkins. Maximizing Composability and Relax NG Trivia. Blog entry, 2005. URL
http://www.donhopkins.com/drupal/node/117.

[90] Open Mobile Alliance Homepage. hƩp://www.openmobilealliance.org, 2007. URL
http://www.openmobilealliance.org/.

[91] IETF. A Media Resource Control Protocol (MRCP). The Internet Engineering Task Force,
2006. http://www.apps.ietf.org/rfc/rfc4463.html (visited 2006, Octo-
ber 4th).

[92] JAlbum. JAlbum - the free web photo album soŌware and photo gallery soŌware, 2007.
URL http://jalbum.net/.

[93] Stan Jarzabek, Paul BasseƩ, Hongyu Zhang, and Weishan Zhang. Xvcl: Xml-based variant
configuraƟon language. In ICSE ’03: Proceedings of the 25th InternaƟonal Conference
on SoŌware Engineering, pages 810–811, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-1877-X.

[94] Java SpecificaƟon Request JSR 173: Streaming API for XML. Java Community Process,
2003. URL http://www.jcp.org/en/jsr/detail?id=173.

229

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://doi.acm.org/10.1145/1621607.1621624
http://doi.acm.org/10.1145/1621607.1621624
http://www.donhopkins.com/drupal/node/117
http://www.openmobilealliance.org/
http://www.apps.ietf.org/rfc/rfc4463.html
http://jalbum.net/
http://www.jcp.org/en/jsr/detail?id=173

Bibliography

[95] Java SpecificaƟon Request (JSR) 173: Streaming API for XML. Java Community Process,
2004. URL http://www.jcp.org/en/jsr/detail?id=173.

[96] java-source.net. Open Source Template Engines in Java, 2007. URL http://
java-source.net/open-source/template-engines.

[97] CodeModel. java.net, 2010. URL https://codemodel.dev.java.net/.

[98] Rick Jeliffe. Family tree of schema languages for xml. Blog, 2007. URL http://www.
oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf.

[99] Rick Jelliffe, editor. The Schematron AsserƟon Language 1.6. 2002. URL http://xml.
ascc.net/resource/schematron/Schematron2000.html.

[100] Jena—A SemanƟc Web Framework for Java. The Jena Community, 2010. URL http:
//jena.sourceforge.net/.

[101] MarƟn Johns. Towards pracƟcal prevenƟon of code injecƟon vulnerabiliƟes on the pro-
gramming language level, 2007.

[102] JXP. Jxp introducƟon, 2006. URL http://jxp.sourceforge.net.

[103] Kay Kadner and David Roussel. DocumentaƟon for AircraŌ Maintenance based on Topic
Maps. In Leveraging the SemanƟcs of Topic Maps, pages 56–61, 2007.

[104] Henning Kagermann. Transcript of SAPPHIRE’06 KeynoteMaking IT Strategic to the Busi-
ness, 2006. URL http://www.sap.com/community/pub/webcast/2006_
05_SAPPHIRE_US/2006_05_sapphire_us_OR1186_transcript.pdf.

[105] Kohsuke Kawaguchi, Sekhar Vajjhala, and Joe Fialli, editors. The JavaTM Architecture for
XML Binding (JAXB) 2.1. 2006. URLhttp://www.jcp.org/en/jsr/detail?id=
222.

[106] Michael Kay. SAXON - The XSL-T and XQuery Processor, 2007. URL http://saxon.
sourceforge.net/.

[107] Michael Kay, editor. XSL TransformaƟons (XSLT) Version 2.0, W3C RecommendaƟon 23
January 2007. The World Wide Web ConsorƟum, 2007. URL http://www.w3.org/
TR/2007/REC-xslt20-20070123/.

[108] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, CrisƟna Videira Lopes,
Jean-Marc LoingƟer, and John Irwin. Aspect-Oriented Programming. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), 1997.

[109] Andreas Knöpfel. FMC quick introducƟon. FMC PublicaƟon, 2003. URL http://www.
f-m-c.org/.

230

http://www.jcp.org/en/jsr/detail?id=173
http://java-source.net/open-source/template-engines
http://java-source.net/open-source/template-engines
https://codemodel.dev.java.net/
http://www.oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf
http://www.oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://jxp.sourceforge.net
http://www.sap.com/community/pub/webcast/2006_05_SAPPHIRE_US/2006_05_sapphire_us_OR1186_transcript.pdf
http://www.sap.com/community/pub/webcast/2006_05_SAPPHIRE_US/2006_05_sapphire_us_OR1186_transcript.pdf
http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=222
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.f-m-c.org/
http://www.f-m-c.org/

Bibliography

[110] Eugene Kohlbecker, Daniel P. Friedman, MaƩhias Felleisen, and Bruce Duba. Hygienic
macro expansion. In LFP ’86: Proceedings of the 1986 ACM conference on LISP and
funcƟonal programming, pages 151–161, New York, NY, USA, 1986. ACM Press. ISBN
0-89791-200-4.

[111] ChrisƟan Krauß. Vergleich verschiedener Java/XML Binding Tools im Hinblick auf die
Möglichkeit der Erzeugung halbdynamischer Dokumente. Master’s thesis, TU Dresden,
September 2007.

[112] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Ny-
gaard. AbstracƟon mechanisms in the BETA programming language. In POPL ’83: Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 285–298, New York, NY, USA, 1983. ACM. ISBN 0-89791-090-7. doi:
http://doi.acm.org/10.1145/567067.567094.

[113] Ivan Kurtev. Adaptability of Model TransformaƟons. PhD thesis, IPA, 2005. ISBN 90-365-
2184-X.

[114] Amos LaƩeier and Michael PellaƟer. The Zope Book. New Riders Publishing, Thousand
Oaks, CA, USA, 2001. ISBN 0735711372.

[115] Andreas Laux and Lars MarƟn. XUpdate - XML Update Language, Working DraŌ
14th September 2000. 2000. URL http://xmldb-org.sourceforge.net/
xupdate/xupdate-wd.html.

[116] Dongwon Lee and Wesley W. Chu. ComparaƟve analysis of six XML schema languages.
SIGMOD Record (ACM Special Interest Group on Management of Data), 29(3):76–87,
2000.

[117] Christopher Lenz. Push-StrategyWeb TemplaƟng. Blog entry, 2005. URL http://www.
cmlenz.net/blog/2005/01/pushstrategy_we.html.

[118] Diego Lo Giudice. The State OfModel-Driven Development (Market Overview). Technical
report, Forrester Research, Inc., 2007.

[119] Henrik Lochmann. Towards ConnecƟng ApplicaƟon Parts for Reduced Effort in Feature
ImplementaƟons. In Proceedings of 2nd IFIP Central and East European Conference on
SoŌware Engineering Techniques (CEE-SET 2007), Posen, Poland, October 2007.

[120] Henrik Lochmann. HybridMDSD: MulƟ-Domain Engineering with Model-Driven SoŌware
Development using Ontological FoundaƟons. PhD thesis, TU Dresden, 2009.

[121] Loquendo Vocal Technology and Services. Loquendo, S.p.A., 2007. URL http://www.
loquendo.com.

[122] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-oriented
programming in the BETA programming language. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 1993. ISBN 0-201-62430-3.

231

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://www.cmlenz.net/blog/2005/01/pushstrategy_we.html
http://www.cmlenz.net/blog/2005/01/pushstrategy_we.html
http://www.loquendo.com
http://www.loquendo.com

Bibliography

[123] Murali Mani, Dongwon Lee, and Richard R. Muntz. SemanƟc data modeling using XML
schemas. Lecture Notes in Computer Science, 2224:149–163, 2001.

[124] M. D. McIlroy. Macro instrucƟon extension of compiler languages. Comm. Assoc. Comp.
Mach., 3:214–220, April 1960. Reprinted as pp. 560-571 in Programming Systems and
Languages, ed. S. Rosen, McGraw-Hill, 1967 and as pp. 512-528 in Compiler Techniques,
ed. Bary W. Pollack, Auerbach, 1972.

[125] Erik Meijer and Mark Shields. XMλ: A funcƟonal language for construcƟng and manipu-
laƟng XML documents. (DraŌ), 1999.

[126] Felix Michel. RepresentaƟon of XML Schema Components. Master’s thesis, Computer
Engineering and Networks Laboratory, ETH Zürich, Zürich, Switzerland, March 2007.

[127] Russell Miles. An IntroducƟon to the AspectXML Concept, 2004.

[128] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Technical report, Object
Management Group, 2003. URL http://www.omg.org/docs/omg/03-06-01.
pdf.

[129] Marvin Minsky. A Framework for RepresenƟng Knowledge. Technical report, Cambridge,
MA, USA, 1974.

[130] M. Murata. Hedge Automata: a Formal Model for XML Schemata. Web page, 2000.

[131] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal lan-
guage theory. In Extreme Markup Languages, Montreal, Canada, 2001.

[132] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy of xml
schema languages using formal language theory. ACM Trans. Inter. Tech., 5(4):660–704,
November 2005. ISSN 1533-5399. doi: http://dx.doi.org/10.1145/1111627.1111631.
URL http://dx.doi.org/10.1145/1111627.1111631.

[133] Brian S O. Neill and Michael Rathjen. Tea template language. Technical report, Walt
Disney Internet Group, 2001.

[134] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers, San Francisco, Cali-
fornia, October 1994. ISBN 0125184069.

[135] Dimitre Novatchev. FuncƟonal programming in XSLT using the FXSL library. In Extreme
Markup Languages. 2003. URL http://www.mulberrytech.com/Extreme/
Proceedings/html/2003/Novatchev01/EML2003Novatchev01.html.

[136] UML 2.0 OCL specificaƟon. ObjectManagement Group, 2003. URLhttp://www.omg.
org/cgi-bin/doc?ptc/03-10-14.

[137] MOF 2.0/XMI Mapping SpecificaƟon, v2.1. Object Management Group, 2005. URL
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf.

232

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://dx.doi.org/10.1145/1111627.1111631
http://www.mulberrytech.com/Extreme/Proceedings/html/ 2003/Novatchev01/EML2003Novatchev01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/ 2003/Novatchev01/EML2003Novatchev01.html
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf

Bibliography

[138] Meta Object Facility (MOF) Core SpecificaƟon, v2.0. Object Management Group, 2006.
URL http://www.omg.org/docs/formal/06-01-01.pdf.

[139] Unified Modeling Language. Object Management Group, 2007. URL http://www.
uml.org/.

[140] Meta Object Facility (MOF) 2.0 Query/View/ TransformaƟon SpecificaƟon. Object Man-
agement Group, 2008. URL http://www.omg.org/spec/QVT/1.0/PDF/.

[141] OpenOffice. The OpenOffice Homepage. OpenOffice.org, 2007. URL http://www.
openoffice.org/.

[142] Terence Parr. The Complete ANTLR Reference Guide. PragmaƟc, Lewisville, 2007. ISBN
0978739256.

[143] Terence John Parr. Enforcing strict model-view separaƟon in template engines. In
WWW ’04: Proceedings of the 13th internaƟonal conference on World Wide Web, pages
224–233, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-844-X.

[144] Terence John Parr. A funcƟonal language for generaƟng structured text. Public DraŌ,
2006. URL http://www.cs.usfca.edu/~parrt/papers/ST.pdf.

[145] Alessandro Costa Pereira and Falk Hartmann. Der MiƩelweg - Lesen und Schreiben von
XML-Dokumenten mit dem Streaming API For XML (StAX). Java Magazin, (7), 2006.

[146] Alessandro Costa Pereira, Falk Hartmann, and Kay Kadner. A Distributed Staged Archi-
tecture for MulƟmodal ApplicaƟons (Extended Abstract). In SoŌware Engineering 2007
(SE 2007). Lecture Notes in InformaƟcs (LNI) 105. Copyright GesellschaŌ für InformaƟk,
pages 255–256. Köllen Verlag, Bonn, March 2007.

[147] Alessandro Costa Pereira, Falk Hartmann, and Kay Kadner. A Distributed Staged Archi-
tecture for MulƟmodal ApplicaƟons. In Flávio Oquendo, editor, ECSA, volume 4758 of
Lecture Notes in Computer Science, pages 195–206. Springer, 2007. ISBN 978-3-540-
75131-1.

[148] Remko Popma. IntroducƟon to JET. 2004. URL http://www.eclipse.org/
articles/Article-JET/jet_tutorial1.html.

[149] Dirk Preising. Entwurf und Entwicklung eines Systems zur Unterstützung der Lokalisier-
ung von SoŌware für internaƟonale Märkte. Master’s thesis, HTWK Leipzig, 2001.

[150] Oxford University Press. DicƟonary of compuƟng (3rd ed.). Oxford University Press, Inc.,
New York, NY, USA, 1990. ISBN 0-19-853825-1.

[151] Eric Prud’hommeaux and Andy Seaborne, editors. SPARQL Query Language for RDF,W3C
RecommendaƟon 15 January 2008. TheWorldWideWeb ConsorƟum, 2008. URL http:
//www.w3.org/TR/rdf-sparql-query/.

233

http://www.omg.org/docs/formal/06-01-01.pdf
http://www.uml.org/
http://www.uml.org/
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.openoffice.org/
http://www.openoffice.org/
http://www.cs.usfca.edu/~parrt/papers/ST.pdf
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

Bibliography

[152] Giuseppe Psaila. On the Problem of Coupling Java Algorithms and XML Parsers (Invited
Paper). In DEXA ’06: Proceedings of the 17th InternaƟonal Conference on Database and
Expert Systems ApplicaƟons, pages 487–491, Washington, DC, USA, 2006. IEEE Computer
Society.

[153] Dave RaggeƩ, Arnaud Le Hors, and Ian Jacobs, editors. HTML 4.01 SpecificaƟon, W3C
RecommendaƟon 24 December 1999. The World Wide Web ConsorƟum, 1999. URL
http://www.w3.org/TR/1999/REC-html401-19991224/.

[154] Trygve M. H. Reenskaug. Models - Views - Controllers. Technical note, Xerox PARC, 1979.

[155] Mark Reinhold. An XML DataBinding Facility for the Java™Plaƞorm, 1999.

[156] Reuseware. The Reuseware ComposiƟon Framework, 2007. URL http://www.
reuseware.org/.

[157] R. J. Rodger. Jostraca: a template engine for generaƟve programming, 2002. PosiƟon
paper for the ECOOP2002 Workshop on GeneraƟve Programming.

[158] Tavis Rudd, Mike Orr, and Ian Bicking. Cheetah: The python-powered template engine.
The Tenth InternaƟonal Python Conference, 2001.

[159] SAP - SAP Research Centers: CEC Dresden, Germany. SAP AG, 2007. URL http://www.
sap.com/about/company/research/centers/dresden.epx.

[160] Ilie Savga, Charlie Abela, and Uwe Aßmann. Report on the design of component
model and composiƟon technology for the Datalog and Prolog variants of the REWERSE
languages. Research report IST506779/Linköping/I3-D1/D/PP/a1, Linköping University,
2004. URL http://rewerse.net/deliverables/i3-d1.pdf. REWERSE De-
liverable.

[161] Simple API for XML. The SAX project, 2007. URL http://www.saxproject.org/.

[162] Nikita Schmidt and Corina Sas. SoŌware usability: a comparison between two tree-
structured data transformaƟon languages. In NordiCHI ’04: Proceedings of the third
Nordic conference on Human-computer interacƟon, pages 145–148, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-857-1.

[163] Uwe Schmidt et al. Haskell XML Toolbox 8.5.0. FH Wedel, 2010. URL http://www.
fh-wedel.de/~si/HXmlToolbox/.

[164] XML-RPC Home Page. ScripƟng News, Inc., 2007. URL http://www.xmlrpc.com/.

[165] Smarty Template Engine. The Smarty Project, 2008. URL http://www.smarty.
net/.

[166] Sparx. MDA Overview – Whitepaper on using Enterprise Architect for MDA. Technical
report, Sparx Systems, 2007. URL http://www.sparxsystems.com.au/bin/
MDA~20Tool.pdf.

234

http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.reuseware.org/
http://www.reuseware.org/
http://www.sap.com/about/company/research/centers/dresden.epx
http://www.sap.com/about/company/research/centers/dresden.epx
http://rewerse.net/deliverables/i3-d1.pdf
http://www.saxproject.org/
http://www.fh-wedel.de/~si/HXmlToolbox/
http://www.fh-wedel.de/~si/HXmlToolbox/
http://www.xmlrpc.com/
http://www.smarty.net/
http://www.smarty.net/
http://www.sparxsystems.com.au/bin/MDA~20Tool.pdf
http://www.sparxsystems.com.au/bin/MDA~20Tool.pdf

Bibliography

[167] C. M. Sperberg-McQueen. Canonical XML forms for post-schema-validaƟon infosets: A
preliminary reconnaissance, 2002. URL http://www.w3.org/2002/04/
xmlschema-psvi-in-xml.

[168] C. M. Sperberg-McQueen. ApplicaƟons of Brzozowski derivaƟves to XML Schema pro-
cessing. In Extreme Markup Languages®, 2005.

[169] Thomas Stahl andMarkus Völter.Modellgetriebene SoŌwareentwicklung. dpunkt Verlag,
March 2005. ISBN 3898643107.

[170] Guy L. Steele. COMMON LISP: the language. Digital Press, 12 Crosby Drive, Bedford,
MA 01730, USA, 1984. ISBN 0-932376-41-X (paperback). With contribuƟons by ScoƩ E.
Fahlman and Richard P. Gabriel and David A. Moon and Daniel L. Weinreb.

[171] James SƟchnoth. GeneraƟng Code for High-Level OperaƟons through Code ComposiƟon.
PhD thesis, School of Computer Science, Carnegie Mellon University, August 1997.

[172] Maximilan Stoerzer and Stefan Hanenberg. A classificaƟon of pointcut language con-
structs. In Lodewijk Bergmans, Kris Gybels, Peri Tarr, and Erik Ernst, editors, SoŌware
Engineering ProperƟes of Languages and Aspect Technologies, March 2005.

[173] StringTemplate Template Engine. The StringTemplate Project, 2008. URLhttp://www.
stringtemplate.org/.

[174] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2000. ISBN 0201700735.

[175] Thorsten Sturm, Jesco von Voss, and Marko Boger. GeneraƟng code from uml with ve-
locity templates. In Jean-Marc Jézéquel, Heinrich Hußmann, and Stephen Cook, editors,
UML, volume 2460 of Lecture Notes in Computer Science, pages 150–161. Springer, 2002.
ISBN 3-540-44254-5.

[176] JavaServer Pages Technology. Sun Microsystems, 1999. URL http://java.sun.
com/products/jsp/.

[177] JAR File SpecificaƟon. Sun Microsystems, 2008. URL http://java.sun.com/
javase/6/docs/technotes/guides/jar/jar.html.

[178] Philip Teale, Christopher Etz, and Michael Kiel. Data PaƩerns (PaƩerns & PracƟces). Mi-
crosoŌ Press, Redmond, WA, USA, 2005. ISBN 0735622000.

[179] SNOW. SNOW: Services for NomadicWorkers. The SNOWConsorƟum, 2007. URL http:
//www.snow-project.org/.

[180] Henry S. Thompson, David Beech, MurrayMaloney, and NoahMendelsohn, editors. XML
Schema Part 1: Structures Second EdiƟon,W3C RecommendaƟon 28October 2004. 2004.
URL http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

235

http://www.w3.org/2002/04/xmlschema-psvi-in-xml
http://www.w3.org/2002/04/xmlschema-psvi-in-xml
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://java.sun.com/products/jsp/
http://java.sun.com/products/jsp/
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://www.snow-project.org/
http://www.snow-project.org/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

Bibliography

[181] Henry S. Thompson, John TebbuƩ, and Tony CincoƩa, editors. XML Schema Test
Suite, Version 20 June 2007. 2004. URL http://www.w3.org/XML/2004/
xml-schema-test-suite/.

[182] Simon Thompson. Haskell: The CraŌ of FuncƟonal Programming. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd ediƟon, 1999. ISBN 0201342758.

[183] Dresden OCL – OCL support for your modeling language. TU Dresden, 2007. URL http:
//www.reuseware.org/index.php/DresdenOCL.

[184] Kurt Tucholsky. Zur soziologischen Psychologie der Löcher. 1931. URL http://www.
textlog.de/tucholsky-psychologie-1931.html.

[185] What is IKAT? University of Cambridge, Centre for Applied Research in EducaƟonal Tech-
nologies, 2007. URL http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?
page=IKAT.

[186] The RSF Framework. University of Cambridge, Centre for Applied Research in EducaƟonal
Technologies, 2007. URL http://www2.caret.cam.ac.uk/rsfwiki/Wiki.
jsp?page=Main.

[187] Markus Völter. Jenerator - GeneraƟve Programming for Java. 2001.

[188] Larry Wall. Programming Perl. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2000.
ISBN 0596000278.

[189] KarstenWendland. Der Template-Zyklus: Web-Templates im Spannungsfeld von schöpfer-
ischem Gestalten und einschränkender Zumutung. PhD thesis, TU Darmstadt, Aachen,
Germany, 2006.

[190] Schema F. Wikipedia – Die freie Enzyklopädie, 2010. URL http://de.wikipedia.
org/wiki/Schema_F.

[191] W3C. W3C MulƟmodal InteracƟon Framework. The World Wide Web ConsorƟum,
2003. http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/
(visited 2006, May 29th).

[192] W3C. Speech Synthesis Markup Language (SSML) Version 1.0. TheWorldWideWeb Con-
sorƟum, 2004. http://www.w3.org/TR/speech-synthesis/ (visited 2006,
October 4th).

[193] W3C. EMMA: ExtensibleMulƟModal AnnotaƟonmarkup language. TheWorldWideWeb
ConsorƟum, 2005. http://www.w3.org/TR/emma/ (visited 2006, June 2nd).

[194] XMLUnit - JUnit and NUnit tesƟng for XML. XMLUnit Community, 2009. URL http:
//xmlunit.sourceforge.net/.

[195] David H. Young. Enhydra XMLC Java PresentaƟon Development. Sams Publishing, Indi-
anapolis, IN, USA, 2002.

236

http://www.w3.org/XML/2004/xml-schema-test-suite/
http://www.w3.org/XML/2004/xml-schema-test-suite/
http://www.reuseware.org/index.php/DresdenOCL
http://www.reuseware.org/index.php/DresdenOCL
http://www.textlog.de/tucholsky-psychologie-1931.html
http://www.textlog.de/tucholsky-psychologie-1931.html
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=IKAT
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=IKAT
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=Main
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=Main
http://de.wikipedia.org/wiki/Schema_F
http://de.wikipedia.org/wiki/Schema_F
http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/emma/
http://xmlunit.sourceforge.net/
http://xmlunit.sourceforge.net/

Bibliography

[196] Template AƩribute Language. The ZOPE Community, 2007. URLhttp://wiki.zope.
org/ZPT/TAL.

[197] Oliver Zschau. Glossar http://www.contentmanager.de/, 2007. URL http:
//www.contentmanager.de/ressourcen/glossar_8_template.html.

237

http://wiki.zope.org/ZPT/TAL
http://wiki.zope.org/ZPT/TAL
http://www.contentmanager.de/
http://www.contentmanager.de/ressourcen/glossar_8_template.html
http://www.contentmanager.de/ressourcen/glossar_8_template.html

Bibliography

238

Index

abstract syntax, 25
adaptaƟon phase, 24, 46, 58, 60, 152
advice, 32
analysis phase, 24
ANLTR, 44
AOP, 16, 20 f., 32, 39, 179
approximaƟon, 100
aspect, 32
AspectJ, 16, 34
AspectXML, 33
AST, 33
authoring constraint, 103
authoring phase, 24, 59 f., 92, 180
authoring Ɵme, 24, 56, 87 f.

BasseƩ, Paul, 9
BETA, 35 f., 240 f.
bind

composiƟon operator, 37
broad applicability, 14, 53, 55–59, 178, 180
Brzozowski derivaƟves, 98
build Ɵme, 13, 33
bypassing, 62, 64 f., 78, 80, 82 f.

C, 35
C+, 9, 35 f., 53
character data, 28, 88
Cheetah, 31
CMS, 16, 31, 52 f.
Cocoon, 80
computability, 55 f.
concerns

crosscuƫng, 32
concrete syntax, 25

constraint separaƟon, 58 f., 87–91, 93 f.,
100 f., 103 ff., 107–112, 117 ff., 121,
150, 163, 166 f., 170 f., 174, 180,
187, 190 f.

ContentHandler, 17, 129
contract, 56 f.
core, 32
coverage

requirement, 55, 58
CST, 33
CXSD, 17, 93–101, 104, 108, 110–113, 115 f.,

118–121, 166 ff., 170 f., 178, 180 ff.,
192, 206, 215

design phase, 24, 58
Dijkstra, Edsger W., 8
DOM, 95, 119 f., 127, 129
DTML, 30

ease of use, 10, 15
EMODE, 15, 78, 175, 179
entanglement index, 15, 40, 53
ERB, 30
evaluateForEach, 74, 79
evaluateIf, 72, 74
evaluateInclude, 70, 74
evaluateText, 66, 74, 79
expressiveness

requirement, 56, 58 f., 62, 71, 129
extend

composiƟon operator, 37
extensibility

ISC, 37

form

239

Bibliography

BETA, 36
fragment

ISC, 37
fragment form, 36
fragment group, 36
fragment language, 36
frame, 37 f.
frame processing, 37 f.

generaƟon number, 81

Haskell, 63, 86, 172
hook

ISC, 37
HTML, 24, 30 f., 33 f., 39, 43, 66, 182 f.
HTTP, 41

IDC, 17, 93, 98 f., 101, 108, 110 f., 114 f., 121,
151, 166 ff.

IKAT, 41
implementaƟon phase, 24
independence of query language

requirement, 57 ff., 65, 69, 71, 124
instanƟaƟon, 22, 43, 50 f., 54, 56, 62, 69, 72,

81, 84
instanƟaƟon data, 12–15, 22, 32 f., 41, 43,

45 f., 50 f., 55 ff., 59, 63, 65–68,
70–74, 78, 82, 84, 88, 93, 98 f.,
103 f., 114 f., 117 ff., 123, 129, 150 f.,
153, 163 f., 172

instanƟaƟon data constraint, 58 f., 87 f., 99,
103 f., 117 ff., 121, 150–153, 160,
163, 172, 174

instanƟaƟon data evaluaƟon, 59, 123, 129,
152, 163, 171, 183, 190

instanƟaƟon data evaluator, 66, 71, 73, 78 f.,
119, 123, 133, 135, 150

instanƟaƟon data source, 43 f., 59, 63 f., 79,
83 ff., 125 f., 153, 163, 173 f., 207 f.

instanƟaƟon data type safety
requirement, 56 f., 59, 155

instanƟaƟon data validaƟon, 13, 16, 59, 118,
123, 129, 150 ff., 163, 171, 190 f.

instanƟaƟon data validator, 88, 98, 150

instanƟaƟon phase, 25, 59 f., 92, 150, 152,
180

instanƟaƟon Ɵme, 13, 88 f.
ISC, 35 ff., 239 ff.

JAR, 173
Java, 16, 34, 44 f., 86, 127, 131, 154 ff., 159 f.,

162 f., 169, 171, 173
JAXB, 13, 16, 33 f., 50, 53, 108 f., 111, 129,

154, 163, 173, 191
Jenerator, 33
JET, 31, 179
join point, 32
Jostraca, 45
JSP, 9–13, 16, 30, 34 f., 39, 42 ff., 50 f., 53 f.,

57, 127, 163, 180, 182 ff., 190, 208
JSR 173, see StAX
Jxp, 39
JXPath, 57, 125, 127 f., 182 f.

LISP, 35
localizaƟon, 33

macro, 15, 35
hygienic, 35

markup, 88
marshalling, 33
MDA, 31, 95
MDT, 94, 120
meta language, see schema language
mode (aƩribute), 68
MOF, 32
move copy of data, 124, 153
M2C, 31, 52, 157, 179
M2M, 31
MVC, 9 f., 32, 40, 53, 56

name (aƩribute), 68, 76 f., 94
named block

frame processing, 37
NMTOKEN, 12 f.

obliviousness, 32
OCL, 46, 94–98, 101, 115 f., 118, 120 f., 124,

167, 171, 181 f.

240

Bibliography

order (aƩribute), 73
order-by (aƩribute), 73 f.
origin, 36

parƟal templaƟzaƟon, 15, 18, 41, 94, 116 f.,
121, 191

Perl, 30, 39, 181 ff.
PHP, 123–128, 130, 134 f., 141 f., 145, 151 f.,

154, 160 ff., 168 f., 171, 179 f., 182 f.,
185

IdenƟty, 126 f., 169, 171, 185
JXPath, 127 f., 169
SPARQL, 127 f., 169, 179
System, 128, 134, 169
UML, 169
XMLBean, 169
XPath, 127, 169

pipeline, 78, 80 f.
pointcut, 21, 32 f.
pointcut languages, 21
preprocessor, 35
preservaƟon

requirement, 54, 58 f., 66, 68, 71, 100,
165

PSVI, 118 f.
pull parser, 130
pull strategy, 42, 124, 153
push parser, 130
push strategy, 42, 124, 153

QName, 68, 95, 119, 157 f.
query language, 23 f., 34, 39, 43 f., 46, 50, 57,

65 f., 69, 71 ff., 78, 82 f., 85, 123 f.,
150, 163

realm, 62, 66, 68, 70 f., 73, 78 ff., 124, 133
realm (aƩribute), 78 f., 135
RelaxNG, 28 f., 84 ff., 94, 138, 178, 191
Repleo, 46
RSF, 41
run Ɵme, 33
RWT, 33, 53 f.

safe authoring, 13, 18, 36, 50, 55 f., 58 f.,
62, 67, 70, 87, 104, 116, 118, 170 f.,
178, 180, 191

safe instanƟaƟon, 14 ff., 50, 51, 57, 59, 150,
170, 191

safe template processing, 7, 13 ff., 18, 49, 53,
57, 180, 192

SAX, 129 f.
Saxon, 31
schema language, 15, 27 f.

grammar-based, 27 f.
paƩern-based, 27 f.

schema type, 15
Schematron, 28, 94, 192
select (aƩribute), 65 f., 68, 70 f., 73 f., 78 f.,

82 f., 85, 124–127, 135, 154, 159,
173

separaƟon
of concerns, 8 f., 14 ff., 31, 34, 43, 52 f.,

55–59, 61, 65, 68 f., 117, 189
of constraints, 12

separaƟon rules, 40
SGML, 8, 25, 191
shell, 39
slot, 21, 37, 67

BETA, 36
ISC, 37

slot markup, 21 f., 39, 62, 67, 190 f.
slot markup language, 15, 18, 21ff., 24, 40,

46, 56 ff., 60 ff., 66, 76, 84, 86, 129,
190, 192

design, 61
slot markup language design, 57 f.
Smarty, 30
SNOW, 15, 18, 78, 175–179
SPARQL, 15, 78, 124, 127 f., 171, 180
SPath, 117
SQL, 57
SSM, 15, 24, 32, 34, 40, 42, 44, 55, 86
ST, 10, 16, 30 f., 37, 41 f., 44 f.
staged architecture, 80
StAX, 119 f., 129 f., 138, 146, 163
stylesheet, 24, 32, 42, 55, 80, 83, 86

241

Bibliography

TAL, 39, 71, 73
target language, 20 f., 22, 23 ff., 39 ff., 46,

50, 53 ff., 58 f., 61, 66, 71, 87 f., 94,
99 ff., 104, 118, 123, 150, 152 f.,
170, 174, 180 f.

Tea, 39, 44
technological space, 16, 33, 35, 60, 152
template, 9, 13, 15, 17, 20 f., 24, 32 f., 37,

40 f., 43 f., 46, 50, 53–59, 61 ff., 65 f.,
73, 76, 78 f., 83 f., 86 ff., 104 ff., 117,
135, 150, 152 f., 158, 165, 170, 185

validaƟon, 59, 87, 117 ff., 121, 151, 154,
166 f., 170 f., 190

template author, 24, 88, 117
template engine, 13, 22, 43 f., 46, 55, 59,

61, 78 f., 81, 87, 123 f., 129 ff., 150,
152 f., 160

template instanƟaƟon, 59, 115, 119, 123,
127, 129 f., 152, 154 f., 162 f., 166,
168, 171 f., 181 ff., 185, 190

template interface, 152 f.
template interface generaƟon, 13, 15 f., 18,

46, 59, 98, 124, 152–157, 160, 163,
166, 172

template language, 21, 21 f., 23, 54 ff., 58 f.,
61 f., 88, 99 f., 104, 170 f., 174

template validator, 87, 117 f., 120
template view, 32
test suite, 166, 170–174
transform view, 32
Tunnicliffe, William W., 8, 52
type (aƩribute), 119, 159

UML, 94 ff., 123 f., 157
Unix, 39
unmarshalling, 33
unparser, 14 ff., 53
UPA, 28, 93 f., 98, 118 f., 121, 191 f.
upfront verificaƟon, 12, 14 ff., 18
URI, 17, 25, 63, 81, 112, 139, 149
URL, 182 f.
use of exisƟng standards, 54
uƟlizaƟon of exisƟng standards, 14, 53 ff.,

58 f., 62, 87, 94

validaƟon phase, 25
variable

frame processing, 37
variable interpolaƟon, 30
Velocity, 30, 42, 53

W3C, 25, 27, 192
weaving, 32
Web 2.0, 30
wellformedness, 9–12, 14, 40, 62, 104
WML, 25, 53

Xalan, 31, 127, 183
Xerces, 33, 108, 118 f.
XGrammar, 28, 108
XHTML, 9–12, 14, 21, 25, 30, 33, 39, 50 f., 53,

88, 116 f., 153, 176, 192
XMI, 32, 169
XML, 8 f., 11 ff., 15 ff., 19, 21, 25–29, 31,

33 f., 39 f., 42 ff., 53 f., 57, 60–63,
65 ff., 69 f., 78, 80, 83 f., 88, 93, 96 f.,
103 ff., 109, 113, 117 ff., 121, 123 f.,
127, 129 f., 138, 140 f., 146, 149,
156 f., 163, 167–173, 176 f., 182 ff.,
190 ff., 213 f.

dialect, 14, 25, 27, 31, 34, 53, 55, 58, 80,
87, 123, 178

namespace, 14, 16 f., 25, 39, 62 f., 65, 81,
110–113, 127, 139 f., 149, 178, 180,
191

XMλ, 13, 33
XML binding tool, 33, 129, 152
XML informaƟon set, 25
XML Schema, see XSD
XMLBeans, 16, 33, 108, 129
XMLC, 39, 66
XPAND, 31, 33, 44 f., 57
XPath, 15, 24, 33, 42, 44, 46, 57, 65, 67, 72,

74, 78, 83, 85, 95, 101, 118, 124,
127 f., 150, 154–160, 163, 171 f.,
178, 183

XSD, 14 f., 17, 19, 27 ff., 33, 40, 55, 58, 62, 68,
85 ff., 89 f., 93–102, 104, 108–112,
114, 117–121, 123, 149, 151, 154 ff.,

242

Bibliography

160, 167, 169 ff., 178, 180 f., 191 ff.,
203, 206, 213

XSL-T, 10, 15 f., 20 f., 24, 31 f., 34, 40, 42, 44,
50, 55, 62, 67, 71–74, 80, 83 f., 86,
89, 97 f., 124 f., 127, 149, 163, 172,
180, 182 ff., 190, 208, 228

XTL
XML Schema, 17, 62, 99, 103

XTL, 11, 14–18, 28, 44, 61–86, 88, 90, 93 f.,
100 f., 105 f., 108, 110–113, 117 ff.,
124–127, 130 f., 133–136, 138–141,
146, 151, 153 f., 157–160, 162,
166 f., 169–180, 182–185, 190 ff.,
208

engine, 123 f., 128, 130 f., 136, 138,
149 f., 171 f., 182

xtl:attribute, 67 ff., 72, 74, 77, 79,
90–94, 99, 101 ff., 105, 111, 114 f.,
119, 125 f., 128, 141, 146, 151, 159,
178, 192

xtl:call-macro, 76 ff., 86, 101, 135,
144, 179

xtl:for-each, 66, 68, 71, 73 ff., 77, 79,
90, 93 f., 101 ff., 107, 112 ff., 119,
125 f., 128, 130 f., 133 f., 142 f., 150,
152, 154 f., 158 f., 162, 179, 185 ff.

xtl:if, 71 ff., 90, 93 f., 101 ff., 107, 112 f.,
119, 126, 128, 141, 151, 154, 156,
158, 179

xtl:include, 69 f., 101, 126, 128, 145
xtl:init, 76, 78 f., 126 f., 145, 180
xtl:macro, 76–79, 86, 101, 130, 135, 144,

179
xtl:text, 66 ff., 70 f., 79, 90, 92 ff., 101 ff.,

105 f., 111 f., 115 f., 119, 125 f., 128,
134, 141, 151, 153 ff., 159, 178, 185

XUpdate, 33
XVCL, 38

243

	Contents
	Preface
	Overview
	Problems
	Motivating Example
	Goals
	Contributions
	Related Work
	Typographic Conventions
	Outline

	Introduction
	Definitions
	Templates and Related Terms
	Life Cycle Phases
	The Extensible Markup Language XML
	XML Schema Languages

	Applications
	Web Applications
	Code Generation

	Alternatives to Using Templates
	Transformations
	Aspect-Oriented Approaches
	Unparsers
	Comparison of Templates with Alternative Technologies

	Related Research Areas
	Macro Processing
	Templates as Programming Language Feature
	Invasive Software Composition
	Frame Processing

	Classification
	Target Language Awareness of Slot Markup
	Generality of the Slot Markup
	Entanglement Index
	Instantiation Data Access Strategy
	Query Language
	Instantiation Technique
	Reuse in Templates
	Further Features

	Conclusion

	Safe Template Processing
	Goals
	Safe Authoring
	Safe Instantiation
	Separation of Concerns
	Broad Applicability
	Utilization of Existing Standards

	Requirements
	Preservation of Target Language Constraints
	Coverage of Target Language
	Computability
	Expressiveness
	Instantiation Data Type Safety
	Independence of Query Language

	Proposal of an Architecture fulfilling the Requirements
	Conclusion

	Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language
	General Design Decisions
	Creation of Character Data
	xtl:text
	xtl:attribute
	xtl:include

	Conditional and Repeated Inclusion of Template Fragments
	xtl:if
	xtl:for-each

	Reuse of Template Fragments
	xtl:macro
	xtl:call-macro

	Advanced Features
	Accessing multiple Instantiation Data Sources using Realms
	Instantiation Pipelines using Bypassing

	Definition of the Instantiation Semantics using XSL-T
	Relation to Document Validation
	Conclusion

	Safe Authoring of Templates
	Constraint Separation
	Introductory Example
	The Constraint XML Schema Language CXSD
	The Instantiation Data Constraint Language IDC
	Constraint Separation Process
	Proof of the Preservation of the Target Language Constraints
	Completeness of the Set of Required Attributes
	Compliance to the Content Model

	Visitor-based Implementation of the Constraint Separation
	Partial Templatization

	Template Validation
	Conclusion

	Flexible, Efficient and Safe Template Instantiation
	Instantiation Data Evaluation
	Design of the PHP Interface
	The Identity PHP
	The JXPath PHP
	The SPARQL PHP
	The System PHP

	Template Instantiation
	XML Access Technologies
	Operational Model of the XTL Engine
	Pipeline Implementation of the XTL Engine
	Memory and Runtime Complexity

	Instantiation Data Validation
	The IDC PHP
	Template Interface Generation
	Introductory Example
	An Algorithm for the Template Interface Generation
	Implementation using a PHP and an API-based Generator

	Conclusion

	Validation
	Implementation of the Prototype
	The Constraint Separation Tool xtlsc
	The Template Validation Tool cxsdvalidate
	The Template Instantiation Tool xtlinstantiate
	The Template Interface Generation Tool xtltc

	Test Suites
	Constraint Separation Test Suite
	Template Validation Test Suite
	Template Instantiation Test Suite
	Template Interface Generation Test Suite
	Round-trip Test Suite

	Applications of the Prototype
	SNOW: Use of XTL in a Staged Architecture
	EMODE: Use of XTL for Model-to-Text Transformations
	FeasiPLe: Use of XTL for Code Generation from Ontologies

	Proof of the Preservation of the Target Language Constraints
	Runtime and Memory Usage Measurements
	Runtime Measurement of Validation against a CXSD Schema
	Runtime Measurements of the Template Instantiation
	Memory Usage Measurements of the Template Instantiation

	Conclusion

	Summary, Conclusion, and Outlook
	Summary
	Conclusion
	Suggested Improvements for XML Technologies
	Future Research Directions

	Referenced XML Schemata and Instances
	XML Schema of XTL
	Purchase Order Schema
	Purchase Order Instance

	Detailed Results of the Runtime and Memory Measurements
	List of Acronyms
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Index

