Safe Template Processing
of XML Documents

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universitat Dresden
Fakultat Informatik

eingereicht von

Dipl.-Inform. Falk Hartmann
geboren am 2. April 1973 in Freital

Betreuender Hochschullehrer:
Prof. Dr. rer. nat. habil. Uwe ABmann, TU Dresden

Gutachter:
Prof. Dr. rer. nat. habil. Uwe ABmann, TU Dresden
Prof. Dr. Welf Lowe, Linnaeus University

Tag der Verteidigung: 1. Juli 2011

Dresden, im September 2011

Contents

1. Preface 7
1.1 Overview L e e e e e e e 8
1.2. Problems e 9
1.3. Motivating Example e 10
1.4. Goals e e e 13
1.5. Contributions e 14
1.6. RelatedWork e 16
1.7. TypographicConventions 16
1.8. Outline e 17

2. Introduction 19
2.1. Definitions e 19

2.1.1. TemplatesandRelatedTerms 20
2.1.2. LifeCyclePhases e 24
2.1.3. The Extensible Markup Language XML 25
2.1.4. XMLSchemalanguages o v i v i v, 27
2.2. Applications e e e e 30
2.2.1. WebApplications 30
2.2.2. CodeGeneration e 30
2.3. Alternativesto Using Templates, 31
2.3.1. Transformations 31
2.3.2. Aspect-Oriented Approaches 32
2.3.3. UNparsers o o e e e e e e e e e e e e 33
2.3.4. Comparison of Templates with Alternative Technologies 34
2.4. RelatedResearch Areas v i i i i it i e 35
2.4.1. MacroProcessing 35
2.4.2. Templates as Programming Language Feature 35
2.4.3. Invasive Software Composition, 36
244, FrameProcessing e e e e e e e e e 37
2.5. Classification e 38
2.5.1. Target Language Awareness of SlotMarkup 39
2.5.2. GeneralityoftheSlotMarkup 40
2.5.3. Entanglementindex 40

Contents

2.5.4. Instantiation Data AccessStrategy
255, Querylanguage
2.5.6. Instantiation Technique 0.
2.5.7. ReuseinTemplates
2.5.8. FurtherFeatures e
2.6. Conclusion. e e e e

3. Safe Template Processing

3.1. Goals e e e
3.1.1. SafeAuthoring
3.1.2. Safelnstantiation
3.1.3. SeparationofConcerns e
3.1.4. BroadApplicability L
3.1.5. Utilization of Existing Standards

3.2. Requirements e e e e e e
3.2.1. Preservation of Target Language Constraints
3.2.2. CoverageofTargetlanguage
3.2.3. Computability
3.2.4. EXPresSiVENEsSS v v i e e e e e e e e e e e e
3.2.5. Instantiation Data TypeSafety
3.2.6. Independence of Querylanguage

3.3. Proposal of an Architecture fulfilling the Requirements

34, Conclusion. L e

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language
4.1. GeneralDesignDecisions
4.2. CreationofCharacterData,

4.3.

4.4.

4.5.

4.6.
4.7.
4.8.

4.2.1.
4.2.2.
4.2.3.

xtletext e
xtl:attribute
xtl:include

Conditional and Repeated Inclusion of Template Fragments

4.3.1.
4.3.2.

Xtledf .o e
xtl:sfor-each

Reuse of Template Fragments,

4.4.1.
4.4.2.

Xt1l:imacro e e e e e e e e e e
xtl:call-macro i i i e e e e

Advanced Features L e

4.5.1.
4.5.2.

Accessing multiple Instantiation Data Sources using Realms
Instantiation Pipelines using Bypassing

Definition of the Instantiation Semantics using XSL-T
Relation to Document Validation
Conclusion e e e e

5. Safe Authoring of Templates

49
49
50
50
51
53
53
54
54
55
55
56
56
57
57
60

61
62
65
66
67
69
71
71
73
76
76
77
78
78
80
83
84
86

87

Contents

5.1. ConstraintSeparation e e e e 87
5.1.1. IntroductoryExample 89
5.1.2. The Constraint XML Schema Language CXSD 94
5.1.3. The Instantiation Data Constraint Language IDC 98
5.1.4. Constraint Separation Process 99
5.1.5. Proof of the Preservation of the Target Language Constraints 103

5.1.5.1. Completeness of the Set of Required Attributes 104
5.1.5.2. Compliance to the Content Model 105
5.1.6. Visitor-based Implementation of the Constraint Separation 107
5.1.7. Partial Templatization. 116

5.2. Template Validation e 117

5.3. Conclusion e e e e 121

Flexible, Efficient and Safe Template Instantiation 123

6.1. Instantiation Data Evaluation 123
6.1.1. DesignofthePHPInterface 124
6.1.2. TheldentityPHP e 126
6.1.3. ThelJXPathPHP 127
6.1.4. TheSPARQLPHP e 127
6.1.5. TheSystemPHP e 128

6.2. Template Instantiation o 129
6.2.1. XML Access Technologies 129
6.2.2. Operational Model of the XTLEngine 130
6.2.3. Pipeline Implementation of the XTLEngine 136
6.2.4. Memory and Runtime Complexity 150

6.3. Instantiation Data Validation, 150
6.3.1. ThelDCPHP. e 151
6.3.2. Template Interface Generation 152

6.3.2.1. Introductory Example 153

6.3.2.2. An Algorithm for the Template Interface Generation 155

6.3.2.3. Implementation using a PHP and an API-based Generator . . 160

6.4. Conclusion e e e 163

. Validation 165

7.1. Implementation of the Prototype, 165
7.1.1. The Constraint Separation Toolxtlsc 167
7.1.2. The Template Validation Tool cxsdvalidate 167
7.1.3. The Template Instantiation Tool xtlinstantiate 168
7.1.4. The Template Interface Generation Tool xtltc 169

7.2 TestSuites L e e 170
7.2.1. Constraint Separation TestSuite 170
7.2.2. Template Validation TestSuite 170
7.2.3. Template Instantiation TestSuite 171
7.2.4. Template Interface Generation Test Suite 172

Contents

7.2.5. Round-tripTestSuite 174

7.3. Applications of the Prototype 175
7.3.1. SNOW: Use of XTL in a Staged Architecture 175

7.3.2. EMODE: Use of XTL for Model-to-Text Transformations 179

7.3.3. FeasiPLe: Use of XTL for Code Generation from Ontologies 179

7.4. Proof of the Preservation of the Target Language Constraints 180
7.5. Runtime and Memory Usage Measurements 180
7.5.1. Runtime Measurement of Validation against a CXSD Schema 181

7.5.2. Runtime Measurements of the Template Instantiation 182

7.5.3. Memory Usage Measurements of the Template Instantiation 184

7.6. Conclusion. e e 187

8. Summary, Conclusion, and Outlook 189
8.1, SUMMArY e e e e e e e e e e e e e e 189
8.2. Conclusion. e e 190
8.3. Suggested Improvements for XML Technologies 191
8.4. Future Research Directions 192

A. Referenced XML Schemata and Instances 193
Al. XMLSchemaof XTL e e e 193
A.2. PurchaseOrderSchema 201
A.3. PurchaseOrderiInstance i 202

B. Detailed Results of the Runtime and Memory Measurements 205
List of Acronyms 211
List of Figures 216
List of Listings 219
List of Tables 221
Bibliography 237
Index 239

Preface

But, how did the first template appear?
International Encyclopedia of Systems and Cybernetics, 1997 [69]

Almost two decades after the introduction of the World Wide Web by Tim Berners-Lee in
1989, the automatic generation of Web pages from dynamic data is still suffering the same prob-
lem as in the beginning: How can one be sure that the application produces valid HTML code?
There have been several approaches to this problem, among them approaches that successfully
solved the problem, thereby unfortunately violating other well-established design rules, like the
Separation of Concerns principle. The consequences of this violation can hardly be managed in
large applications developed in a cooperation of many participants assigned to multiple roles in
the development process: therefore, the problem can still be considered unsolved in its gener-
ality.

The goal of this thesis has been to propose a solution that enables Safe Template Processing,
i.e., a template technique that allows to be sure about the results a Web application produces.
In addition, it was required that the solution complies to the mentioned design rules like the
Separation of Concerns principle. The solution should furthermore be broadly applicable, i.e.,
it should not be restricted to the generation of Web pages. Finally, the approach should utilize
existing standards and it should be a practical solution, i.e., acceptable to a non-academic user.

This thesis presents an approach that fulfills the described goals by extending a template-
based mechanism (as it is well-known to Web engineers) with a validation technique that allows
to give guarantees about the results the template is going to produce. Since these guarantees
are given at the time the template is being authored, certain assumptions about the data that

1. Preface

is consumed within the template must be made. Additional techniques have been developed
to check these assumptions.

This chapter starts with an overview of the research area in Section 1.1, including insights into
its history. Afterwards, the problem addressed within this thesis is explained in more detail in
Section 1.2. Section 1.3 illustrates the problem with a motivating example, whereas Section 1.4
outlines goals derived from the described problems. The contributions developed within this
thesis are outlined in Section 1.5. Related research areas are introduced in Section 1.6. The
chapter concludes with typographic conventions in Section 1.7 and the outline in Section 1.8.

1.1. Overview

It is widely accepted that Edsger W. Dijkstra introduced the term Separation of Concerns (SoC)
in his groundbreaking article “On the role of scientific thought” [48]. It was pleading for a way
of thinking about an aspect of a problem without considering other, related aspects. The idea
has been adopted in the discipline of software engineering in various ways, e.g., as a maxim
during system analysis or as a guideline for architectural design.

Parallel to Dijkstra, the SoC principle has been suggested by William W. Tunnicliffe as a prin-
ciple to be used for applications in the publishing sector. Tunnicliffe held a presentation about
the separation of information content of documents from their format at the Canadian Govern-
ment Printing Office in September 1967 [76, Appendix A). This presentation and the idea of SoC
greatly influenced the development of the Standard Generalized Markup Language (SGML) and
its successor, the Extensible Markup Language (XML).

There exist a number of techniques to separate aspects of a system, and with them, at least
the same number of techniques to perform a necessary composition of the aspects. With re-
spect to software, aspects typically separated from the core logic of a program include for ex-
ample functionality for monitoring, transaction handling and security, but also constant data
needed for program execution, if the data volume exceeds the amount comfortably manage-
able in the respective programming language.

A very popular technique to integrate data that has been divided due to the SoC principle is
the template technology. From an unsophisticated point of view, a template is just an incom-
plete textual representation of data. Template engines have been used for a variety of purposes,
especially in the areas of code generation and Web engineering.

There are three reasons for the widespread use of templates: (a) the learning effort for a
particular template language is low, as templates closely resemble the syntax of the language
that should be generated with them, (b) it is easy to keep arbitrary complex constant fragments
of the document to be generated in the template itself, and (c) the possibility to adhere to the
Separation of Concerns principle.

The amount of research conducted on template techniques does not reflect its importance
and widespread use. Research on this area is nevertheless urgently needed, as template engines
are very popular and, as it will be shown shortly, still suffer from the same problems as when
they were introduced, especially with the lack of guarantees that can be given about the result
of the instantiation of a template. The need for research is also indicated by the large number
of existing template engines: at the time of writing, [96] alone listed 17 open-source, Java-

1.2. Problems

implemented engines. Some of them differ only in minor details and reflect the users’ tendency
to be picky about the particular syntax used, while others introduce novel concepts and designs.

Investigations on this area start with the question on the origins of the word template in
the sense as sketched above. In general, the term seems to be in use since the early days of
computer science, designating for example “...a plastic or stiff paper form that is placed over
the function keys on a keyboard to identify their use...” [71]. Nowadays, the term is overloaded
multiple times, primarily for the generic programming feature of C++ [174].

It seems to be impossible to track down who used the term template first to denote the
technique described here, but the use of it was straightforward as the term had beenin useina
very similar way in the area of electronic form processing, with forms also being a reincarnation
of the SoC principle by drawing a border between the preprinted content of a form and the slots
to be filled.

Most probably the first implementation of templates in the sense used here was the frame
processing approach described by Paul Bassett in his landmark paper “Frame-Based Software
Engineering” [17, also appeared in 46]. The term frame used by Bassett goes back to the con-
ceptual frames introduced by Marvin Minsky [129]. It remains inscrutable who rebranded or
reinvented Bassett’s idea to the term template most widely used today.

It is possible to find even earlier related approaches. The A-calculus introduced by Alonzo
Church [35] can be seen as an early predecessor of template techniques, as in the term Az.x +y
the bound variable x is interpretable as representing data coming from a data source different
from the source supplying the free variable y.

1.2. Problems

A well-known practical problem with the use of an arbitrary template technique is the possibility
to violate the SoC principle. With respect to Web engineering, this corresponds to the archi-
tectural failure of not distinguishing clearly between view and controller (and sometimes even
model) in an implementation of the Model-View-Controller (MVC) pattern [154]. The problem
has been pointed out clearly in Terence Parr’s remarkable paper “Enforcing strict model-view
separation in template engines” [143].

A second problem can best be illustrated in the Java Server Pages (JSP) technology, a popular
approach to building Web frontends in the Java technological space. It is shown in Section 2.1,
that JSP documents are in fact templates. JSP users are often confronted with the difficulty of
assuring the correctness of the results of the template instantiation. In the JSP world, one often
ends up with a template that does not produce valid the Extensible Hypertext Markup Language
(XHTML) output (at least not in all cases) or with a page that cannot be compiled by the JSP
engine at all. Even with the tool support that became available in the last years, it is still easy to
create such erroneous templates.

Three major categories of JSP documents producing invalid XHTML exist:

1. The page may not even produce valid XML, i.e., it may violate the requirements for well-
formedness. (violation of wellformedness)

1. Preface

2. The page produces wellformed XML, but is failing to fulfill the structural constraints that
are defined by the XHTML specification, irrespective of any data to be inserted into the
template. (violation of structural constraints)

3. Atemplate can produce invalid XHTML because of unsatisfied constraints on the data that
should be inserted into it during the instantiation. (violation of data constraints)

Each of the three categories have different reasons and, more important, different techniques
are applicable to deal with them. Alternative technologies like StringTemplate (ST) and XSL
Transformations (XSL-T) address some of these issues, e.g., the first mentioned problem does
not occur when using XSL-T.

Especially problems of the second and third category typically produce error messages that
only state the invalidity of the document with respect to the expected target language. Unfor-
tunately, the real cause of the problem, i.e., the information about the instantiation data value
and its source, are missing in the error message. The loss of this information unnecessarily
complicates tracing back the error.

Most of the existing alternative technologies are not easy to use. Template techniques are per
se easy to use; however, this advantage is sometimes eliminated by rashly added or too many
features. An example for such an impediment that severely violates the ease of use idea is the
error handling exposed by JSP if an error from the third category mentioned above occurs: the
data inserted during the execution of a JSP document is not checked by the typical JSP engine,
resulting in XHTML errors that are shown in the users browser.

1.3. Motivating Example
Today’s Web applications often make use of a MVC architecture that is similar to that shown in
Figure 1.1: the model is represented by a database, the controller is implemented using some

middleware like a servlet container and the view is shown to the user in form of XHTML pages
in a browser.

«author»

Page 1 Page 2
(JSP) (JSP)

JSP Engine @
Page 2'

«user» (XHTML)

View Controller Model

Figure 1.1.: A typical Web Application can produce both valid and invalid XHTML Documents

10

1.3. Motivating Example

Inthe Java world, the servlet container typically used as middleware delivers the XHTML pages
by using so-called Java Server Pages (ISP, [176]). The JSP documents are translated to XHTML
in @ multi-step process involving compiling them to Java classes and finally to Java class files. It
is the execution of these class files that integrates the model data into the page finally emitted
by the component that processes the JSP documents, the JSP engine.

As shown in Figure 1.1, there is a typical problem in the outlined scenario. The definition of
the JSP language is quite imprecise, it is therefore not possible to check JSP documents in a way
that guarantees that the instantiation of a JSP page yields a page conforming to the XHTML (or
any other) standard. This enforces the development process that is shown in Figure 1.2.

@ (as itself)

O 1: change
@
%QQ// —p
N — Template

A

3.1: retrieve Message Flow
4>
3: request page template

7 N

Template Engine Role Change

3.3: S|gnal error
@ (as User)

Template <«
Author 3.2: evaluate template

Figure 1.2.: The current Development Process for Templates

All of the three problems with template technologies introduced above, i.e., violation of well-
formedness, violation of structural constraints as well as violation of data constraints, can be
illustrated with this scenario.

An example for a JSP document causing a violation of wellformedness, i.e., not producing
wellformed XML, is shown in Listing 1.1. The document yields a page containing a closing</h1>
tag without a preceding opening <h1> tag. The problem is caused by the different conditions
used for the inclusion of the opening and the closing tag. The main cause, however, is that JSP
allows interweaving the XML syntax with its own special markup. Several approaches to the
problem are possible, e.g., the use of model checkers [66] or control- and data-flow analysis.
Interestingly, the problem may be completely solved by a language design preserving syntax and
semantics. An example for a language which guarantees wellformedness is the XML Template
Language (XTL) introduced in Chapter 4.

<html xmlns="http://www.w3.0rg/1999/xhtml”>

<%!
public boolean testl()
{
return false;
}

public boolean test2()
{

11

1. Preface

return true;

}
%>
<head>
<title>JSP not producing wellformed XHTML</title>
</head>
<body>
<% if (testl()) { %><hl><% } &>
Content
<% if (test2()) { %></hl1><% } %>
</body>
</html>

Listing 1.1: A JSP Document failing to produce wellformed XHTML Documents

An example for a violation of a structural constraint is shown in Listing 1.2. This example
produces wellformed XML but fails to fulfill the requirements set by the XHTML specification.
The body tag, which is required within the html tag, is included only conditionally, i.e., the
document is obviously capable of producing documents not complying to the XHTML specifica-
tion. The best solution for this type of problem is to disallow required elements to be subject
to conditional inclusion in some way. This can be achieved by the newly developed upfront ver-
ification approach, which allows the verification of structural constraints during the authoring
of a template. This approach is based on a technique called separation of constraints, which
aims at deriving tests that can be applied to templates (like ‘body is not allowed to be subject
to conditional inclusion’) and which is described in Section 5.1.
<html xmlns="http://www.w3.0rg/1999/xhtml”>
<%!

public boolean test()
{

return false;

}
%>
<head>
<title>JSP producing invalid content (1l)</title>
</head>
<% if (test()) { %>
<body>Content</body>
<% } %>
</html>

Listing 1.2: A JSP Document producing a Document that is not XHTML (1)

Finally, a violation of data constraints is illustrated in Listing 1.3. The problem is caused by
character data not complying to a prescribed type . The listing produces an anchor (<a> tag)
with a name attribute with a corresponding value ‘not an NMTOKEN'. This attribute is re-
stricted by the XHTML specification to be of the type NMTOKEN, which is not allowed to contain
spaces. Thus, the document produced by the JSP file is not valid XHTML. In general, this cat-
egory of errors is in general impossible to be handled when the template is authored, as the
value subject to the typing is instantiation data, which is per definitionem only known later at

12

1.4. Goals

the point in time when the template is instantiated. Nevertheless, two improvements over the
current state of the art are possible.

<html xmlns="http://www.w3.0rg/1999/xhtml”>

<s!
public String getName()
{
return “"not an NMTOKEN";
}
%>
<head>
<title>JSP producing invalid content (2)</title>
</head>
<body>
<a name="<%= getName() %>"/>
</body>
</html>

Listing 1.3: A JSP document producing a Document that is not XHTML (2)

First, the handling of errors can be substantially improved compared to what is currently usual
in techniques like JSP by checking constraints imposed on the instantiation data within the tem-
plate engine. This allows for generating error messages of much greater value. For instance,
in the mentioned case, the error message could state that the instantiation data to be used as
value for the name attribute of the a element does not comply to the expected type NMTO-
KEN, and it could include the source of that instantiation data value. Current engines do not
perform a check at all, which may lead to an error in the user’s browser that can in the best
case state that the value is not of the expected type NMTOKEN. Unfortunately, this error would
in most cases not be recorded in the server environment, which could increase the lifetime of
that error considerably. An approach called Instantiation Data Validation, which improves the
error handling, is described in Section 5.1 as well as in Section 6.3.

Second, if the template is fixed at instantiation time, i.e., can only be changed at build time
of the system employing it, the type system of the language using the template engine may be
used to assert the validity of the instantiation data. This approach called Template Interface
Generation is described in Section 6.3.2. It relies on well-known XML binding approaches like
Java Architecture for XML Binding (JAXB) and XM\, which have not been coupled with template
techniques before.

1.4. Goals

The goal of this thesis is to develop a safe template processing approach that is easy to use and
enables the user to be as safe as possible about the results produced by a particular template.
More precisely, a list of five goals has been specified and is described in the following.

The first goal is to come up with a safe authoring approach. The approach should give a tem-
plate author as much confidence about the result of the instantiation of a particular template
as early as possible.

13

1. Preface

There are assumptions that must be made during the template authoring, as the validity of an
instantiated template may depend on instantiation data which is by definition not available dur-
ing authoring. Therefore, the second goal is to design a safe instantiation process that preserves
the semantic information about the real cause of the invalidity of the instantiated template.

As already mentioned, template techniques are often used in order to separate concerns, but
some of the existing approaches offer methods to overcome the separation in order to seem-
ingly ease the use of the technique. For the approach to be developed, this is not acceptable.
Therefore, the third goal is to maintain the separation of concerns in template processing, as
this separation has proven to be a powerful concept to reduce the complexity of modern soft-
ware architectures and to enable cooperation of different roles in the software development
process.

The fourth goal is broad applicability. The approach should not be restricted to a particular
application domain like Web engineering, but should also be usable for code generation. This
implies that the approach should not be restricted to a particular XML dialect like XHTML.

Finally, the fifth goal is to maximize the utilization of existing standards for the approach. This
has two major aspects: first, the techniques developed should either rely on existing standards
or extend them, and second, an implementation of the core components should rely on avail-
able tools for these standards.

The first two goals address the problems introduced in Section 1.2, both goals together form
the base for safe template processing. The last three goals further restrict the possible ap-
proaches in a way that enables an implementation and the practical use of the developed ap-
proach.

1.5. Contributions

First of all, an in-depth analysis of existing template approaches has been accomplished. This
has led to a number of insights about template techniques that are not explicitly stated in
today’s literature. A new definition of the term template has been developed, which clearly
separates templates from related approaches (transformation techniques, unparsers, aspect-
oriented programming). A number of classification criteria has been found that have been used
to evaluate existing approaches and to distinguish valuable features from questionable contri-
butions.

In order to assert wellformedness of the result documents, a new universal, syntax- and
semantics-preserving template language called XTL has been developed. XTL abandons the
wide-spread use of a specific syntax for the markup of the template syntax and relies on the
XML namespace [29] concept instead, thereby preserving the syntax and the semantics of the
language it is used to instantiate. XTL is a universal language in the sense that it allows any XML
dialect to be marked up as a template, it is not specific to a particular XML dialect like XHTML.

In addition to the guarantee on the wellformedness, the developed upfront verification ap-
proach allows guarantees about the compliance of a resulting document with a given XML
Schema. This reduces the risk of undetected errors enormously and enables a new develop-
ment process for templates, especially in the field of Web application development.

14

1.5. Contributions

The InstantiationDataValidation has been developed to enable safe instantiation by simplify-
ing the detection of the root causes for instantiation problems. Furthermore, even more guar-
antees about the instantiation of templates can be given if the template can only be changed
at the build time of a system, i.e., if it can be considered part of the source code of the project
using it. In this case, a derivative of the unparser approach called Template Interface Generation
can be used to statically guarantee the correct types of the instantiation data.

The design criteria applied to XTL and the decisions made during its development are ex-
plained in detail. A semantics of XTL has been specified that avoids typical ambiguities which
can be found in other template language specifications. This semantics also enables a formal
proof of the correctness of the upfront verification approach. The ease of use of XTL is greatly
improved by the fact that it does not prescribe a particular language used to describe the data to
be inserted into a template, instead, any existing language like the XML Path Language (XPath)
or the SPARQL Protocol and RDF Query Language (SPARQL) as well as simple names may be
used.

No new approach should fall back behind the work of Terrence Parr [143] and the principles
for SoC stated there. Among other contributions, Parr classifies the violations against SoC rules
and introduces the entanglement index of a template technique as the number of rules violated
by it. It turns out that improvements over Parr’s achievements are possible. In contradiction to
Parr’s statement that each engine has at least an entanglement index of one, it is also possible
to get an entanglement index of zero using a new technique called partial templatization.

A prototype for an XTL engine has been developed, supported by the EU project Services for
Nomadic Workers (SNOW) and the BMBF project Enabling Model Transformation-Based Cost
Efficient Adaptive Multimodal User Interfaces (EMODE). These projects have also been used to
validate the practical usability of XTL. This validation clearly indicated that the reason for the
ease of use of template languages is the fact that templates closely resemble the documents
they are intended to be instantiated to. This resemblance, which also influenced the definition
of the term template given in Section 2.1, is called the prototypical nature of templates. The ex-
tensive absence of a prototypical nature also hinders the wide-spread application of XSL-T even
though the XSL-T specification [107] knows a prototypical mode called Simplified Stylesheet
Module (SSM).

Due to the fact that the prototypical nature of template languages restricts their generative
power (e.g., a purely prototypical XML template language is restricted to produce documents
with a depth being a constant multiple of the depth of the template), the introduction of a macro
feature became inevitable. The power regained by this feature is lowering the ease of use of
the XTL but this is compensated by the shallow learning curve that results from the prototypical
approach: users can start purely prototypical and start learning the macro feature when they
need it, switching to a transformational style as it is used in XSL-T.

A document marked up using the XTL can also be used to validate other XML documents.
In this case, XTL is interpreted as a schema language in the sense also used by XML Schema
Definition (XSD) [59; 180; 26]. Again, the prototypical nature of XTL eases the creation of schema
documents. The relationship between templates and schemas also shows a close connection
between macros and schema types.

The major contributions of this thesis are the design of the universal, syntax- and semantics-
preserving slot markup language XTL, the safe template processing technique enabled by the

15

1. Preface

upfront verification approach and the techniques for the safe instantiation, namely instantiation
data validation and template interface generation, and the unification of document creation and
validation that could be achived using XTL.

1.6. Related Work

Even for the seemingly simple problem of constructing documents from multiple data sources,
there is a variety of approaches. The most important and modern approaches will be described
in short below.

Template engines are often used in Web engineering and for code generation. JSP [176] is
the most-widely known representative in the Java technological space used in Web applica-
tions. One of the most advanced and scientifically backed-up template engines used for code
generation as well as Web engineering is definitely ST [143].

An alternative approach is the use of a transformation engine. This approach is in wide use
especially within the area of Web Content Management Systems (CMS). The difference to the
template technique is rather subtle, but can be summarized best by describing the transfor-
mation approach as a more constructive approach: it composes the data sources by a special-
ized transformation, which has one of the data sources embedded, as opposed to the template
approach, where the composition instructions can be considered as embedded into one data
source. In the XML technological space, the most popular transformation language is XSL-T,
which has been implemented using different languages.

The use of an unparser is a further option in use for the composition of data sources in Web
applications. The technique is based on a specific compilation of one of the two data sources
into the language that is also used for the composition program afterwards. As an example,
if one wants to compose XML documents using Java, a number of tools exist that allow the
creation of XML documents using a Java API. The SoC principle is somehow softened here, but
could be restrengthened using standard design patterns [74]. Popular unparsers for XML files
in Java include XMLBeans [8] and JAXB [105].

Aspect-oriented Programming (AOP) is a paradigm used to separate concerns within software
engineering artifacts into a so-called core and one or more aspects. A component called aspect-
weaver is used to compose the core and the aspects. These aspects can be seen as different data
sources that need to be combined, which makes this approach related to template techniques,
especially in the area of code generation. A wide-spread implementation of the Aspect-oriented
Programming (AOP) approach is Aspect).

1.7. Typographic Conventions

All code listings shown have been shortened to improve readability even at the expense of syn-
tacticincorrectness. For example, in the XML listings, the prolog, the document type declaration
as well as obvious namespace declarations have been omitted, even if this could cause some
XML processing applications to emit error messages or warnings. The same is true for the pack-
age statement in Java listings.

16

1.8. Outline

In order to keep the text short and readable, fixed XML prefixes have been used throughout
the document to refer to certain XML namespace. An overview of these prefixes is shown in
Table 1.1.

Prefix XML Dialect
Namespace URI
Constraint XSD CXSD (see Section 5.1.2)
cxsd
http://research.sap.com/cxsd/1.0
ide Instantiation Data Constraint Language IDC (see Section 5.1.3)
http://research.sap.com/xtl/idc/1.0
Namespace used for Result Splitting (see Section 6.2.3)
s s
http://research.sap.com/xtl/splitting
xhtml XHTML™1.1 [4]
or none http://www.w3.0rg/1999/xhtml
xsd XML Schema [59; 180; 26]
http://www.w3.0rg/2001/XMLSchema
xs1 XSL Transformations (XSL-T) [36]
http://www.w3.0rg/1999/XSL/Transform
<t1 XTL (see Chapter 4)

http://research.sap.com/xt1/1.0

Table 1.1.: XML Namespaces and Prefixes

In the following, no assumptions are made about the encoding of XML documents, which
can be declared by the author of the document. As the definition of strings depends on the
set of characters available to express them, the symbol S is used to denote the set of all strings
that can be composed from the available characters, independently of the concrete encoding
chosen.

A typewriter font has been used for in-line code snippets like ContentHandler, Uniform
Resource Identifiers (URI) like http://www.w3.0rg/2000/xmlns/ and file names like
XTL.xsd.

In the index, the numbers of pages containing definitions are printed in bold.

1.8. Outline

Chapter 2 gives a definition of the term template followed by the discussion of the two main
application areas of templates and alternative approaches. Classification criteria for template
techniques are given. Finally, some ways to emulate complex features with simpler ones are
shown.

17

1. Preface

The safe template processing of XML documents is described in Chapter 3. After a motivating
example, the goals of the approach are discussed and requirements for the solution are derived.
A solution is proposed, and the building blocks of the solution are discussed in detail.

The design of the generic slot markup language XTL is discussed in detail in Chapter 4. Its
instantiation semantics and indications for the correctness of the upfront verification approach
are included in this chapter. An alternative use case for a generic slot markup language, namely
the validation of documents, is discussed.

Chapter 5 shows the support which the proposed solution offers to a template author. It
explains how the template technique is adapted to a particular usage scenario and how the up-
front verification approach helps the template author detect mistakes in templates earlier. The
chapter gives a proof of the correctness of the safe authoring approach. A further improvement,
a technique named partial templatization is sketched.

Chapter 6 shows how templates are instantiated in an efficient, flexible and safe way. Here,
efficiency refers to the reasonable consumption of memory and a fast execution. Flexibility
refers to the implementation of design decisions that enable the wide-spread use of the pro-
posed approach. Finally, safety means the realization of the adequate error handling introduced
as a goal of the proposed approach. A further possible improvement, the Template Interface
Generation, is introduced.

The work in this thesis has been validated as described in Chapter 7. This chapter discusses
the implementation of the prototype, its application in the EU project SNOW and other projects,
and shows the results of performance measurements.

In the final Chapter 8, conclusions are drawn and open research questions resp. directions
are given.

18

Introduction

Why is the customer just buying from you? And it is interesting that we had a few
examples, for example, a company that is doing drilling machines, and if they sit back and
ask themselves, "What does the customer really need? Does he need a drilling machine?”
Then the answer is no, he needs holes. The company is now switching to sell holes, which

is an entirely different business.
Henning Kagermann, 2006 [104]

This chapter aims at introducing the area of template techniques and at establishing the nec-
essary vocabulary and formal foundations. Therefore, definitions of terms specific to this thesis
are given in Section 2.1. Section 2.2 shows typical applications of template techniques. The
Sections 2.3 and 2.4 introduce competing and related approaches. Finally, Section 2.5 sets up
criteria for the classification of template techniques.

2.1. Definitions

Definitions of the term template and related terms are given in Section 2.1.1. Section 2.1.2
discusses the life cycles of both template techniques and templates. Section 2.1.3 introduces
the formalization of XML documents used within this thesis. Finally, Section 2.1.4 gives a short
introduction into the area of XML schema languages and defines a formalization of XML Schema,
the most widespread XML schema language, which has been used thoroughly within this thesis.

19

2. Introduction

2.1.1. Templates and Related Terms

Finding a definition for the term template is a necessary precondition for the separation of tem-
plate techniques from other code generation approaches. There are multiple ways to approach
the term: from an etymological point of view as in [189], in a syntactic way as done in [143] or
in a pragmatic sense as in [150] or [197].

In the following, a number of definitions will be given (partly newly expressed and partly taken
from existing research) and discussed in order to find a definition that captures the notion of
templates as concise as necessary within this thesis. Most importantly, the definition that is the
result of the process is well-aligned with an intuitive point of view on templates and separates
the template approach from related approaches that are not commonly considered as template
techniques. First of all, the language that should be generated using a template technique is
defined in Definition 2.1.

Definition 2.1 ((Expected) Target Language). The expected target language or just target lan-
guage is the language ¥ that is intended to be produced using a template technique. O

The Definitions 2.2 and 2.3, explaining the term template syntactically or pragmatically, are
the starting point for the elaboration of concise definitions.

Definition 2.2 (Template, unsophisticated syntactic definition). Every incomplete textual repre-
sentation of data is a template. U

Definition 2.3 (Template, unsophisticated pragmatic definition). A template is a means to com-
pose concerns, i.e., a tool to reverse the separation of concerns. O

Both unsophisticated definitions cover a lot of approaches that would not be considered as
template techniques after a more in-depth analysis. A good example is aspect-oriented pro-
gramming (AOP, [63]), where a core program is woven together with advices from so-called
aspects. For example, the unsophisticated Definition 2.2 would consider the core program as
the template that is incomplete and the advice as the data to be filled into the core. However,
the very nature of templates is their explicit incompleteness, i.e., the locations where the data
is to be inserted in the templates are explicitly marked in the template itself. The following
definition, which is an adapted version from [143], captures this aspect very well.

Definition 2.4 (Template according to [143]). An unrestricted template, t°, is an alternating list
of output literals, ¢;, and action expressions, e;:

to€oti€itis1 ... then
where any t; may be the empty string and ¢; is unrestricted computationally and syntactically.
If there are no e; in t°, then t° is just a single literal £. O

The last sentence in Parr’s definition seems to try to emphasize another important property
of templates: a document in the language that the template technique is supposed to pro-
duce is also considered a template. This aspect is called the prototypical nature of templates.
Unfortunately, it is not really enforced by the definition, so documents using transformational
approaches like an XSL-T stylesheet would fall under this definition. Parr explicitly states that
XSL-T is not captured by his definition:

Interestingly, by this definition of template, XSL-T style sheets are not templates at
all because style sheets specify a set of XSL-T tree transformations whose emer-

20

2.1. Definitions

gent behavior is an XML or XHTML document. XSL-T style sheets are programs like
servlets, albeit declarative in nature rather than imperative. [143]

This rationale is based on the semantics of XSL-T, but the definition relies on syntactic prop-
erties that are well satisfied by XSL-T. For this reason, the next definition explicitly expresses
the prototypical nature of templates, which clearly rules out XSL-T by defining templates via the
term template language. To accomplish this, the final Definition 2.5 roots the term template
on the term template language, shifting the responsibility to capture the prototypical nature to
the definition of the latter term.

Definition 2.5 (Template, final). A template t° is a sentence from a template language °. [

Prerequisites for defining the term template language are furthermore the definitions of slots
and slot markup languages.

Definition 2.6 (Slot). A slot is an area of variability in a document. O

It is important to note that the term document has been used in Definition 2.6 to avoid cyclic
references between this definition and the definitions using it. This way of defining slots has
the additional benefit of also capturing slots introduced in documents for other purposes, i.e.,
the definition also matches the incompleteness in a form intended to be filled out by humans.
Based on Definition 2.6, it is possible to give the following definition for a slot markup language.

Definition 2.7 (Slot Markup Language). A slot markup language S is a non-empty set of features
to denote slots within a document. O

This definition explicitly states that the markup of slots appears within the document itself,
thereby excluding other methods for the designation of slots like pointcut languages used in
AOP approaches [172]. This is also the motivation for the term non-empty in the definition: it
prevents AOP approaches from being captured by the following definitions through just defining
G = &. Elements from the slot markup language are also called instructions in the following.

The locations of slots and the locations of slot markup language sentences in a template may
differ for several reasons. First, there may be imperative constructs in the slot markup language
(like for loops) that mark their content as repeatable in an instantiated document (and thus
define slots), but are not necessarily placed exactly at the location of a slot. Second, there may
be slot markup in which the location of the slot markup is by design different from the location
where the instantiation data should be inserted.

Given the definition of slot markup languages, the following more elaborated definition for
the term template language can be given.

Definition 2.8 (Template Language, elaborated). A template language is the language produced
from a target language and a slot markup language such that
1. each sentence from the target language is in the template language and
2. each sequence of literals from the target language interspersed with sentences from the
slot markup language is in the template language. U

Unfortunately, the former definition captures only the syntactical aspect of the prototypical
nature. In order to be concise, itis necessary to include the semantics of the prototypical nature:
if a template that is actually a sentence from the target language is instantiated, it remains
unchanged. In order to fix this problem of the definition, it is necessary to give a definition of the

21

2. Introduction

term instantiation as well. This definition also includes the definition of the term instantiation
data.

Definition 2.9 (Instantiation and Instantiation Data). Instantiation is the application of a function
instantiate with dom(instantiate) = D x T° that transforms a template ¢° into instantiate(d, t°)
by replacing and thereby removing its slots. The data d € D consumed during the slot replace-
ment is called instantiation data. O

Obviously, the range of the function instantiate introduced above has remained unspecified.
This range is the so-called actual target language defined below:

Definition 2.10 (Actual Target Language). The actual target language is the range of the instan-
tiation function instantiate, i.e., ran(instantiate). O

The relation between actual and expected target language is discussed thoroughly in Chap-
ter 3. Given the definitions of the expected target language and the instantiation function, the
semantics of the prototypical nature of templates can be captured by the following formal def-
inition of the term template language:

Definition 2.11 (Template Language, final). Let T be the set of terminal symbols from the target
language %, let G be a non-empty slot markup language and let instantiate be an instantiation
function. Then the template language €° is the smallest language constructed from the target
language and the slot markup language G such that the following conditions are satisfied:
Vt € T :t € T° Alinstantiate(d, t) = t for arbitrary instantiation data d
(target language documents are templates and instantiate into itself)
and
VYn eN,[; € TgU{E},bi eGU {6},0 <i<n: lobo...libiljﬂ...bnln € x°
(templates are constructed from target language terminal symbols and slot markup lan-
guage sentences) O
This definition is still capturing a lot of approaches that include features that would not be con-
sidered good ideas (neither in an academic nor in a practical sense), however such approaches
exist and are template techniques. In Figure 2.1, a comparison of the definitions in terms of
captured popular approaches is shown.

2 3
) . AspectJ (). XSL-T ®)

(1) Definitions2.2and 2.3 (2) Definition 2.4
(3) Definition 2.8 (4) Definition 2.11

Figure 2.1.: Comparison of the Scopes of the Definitions of the Term Template

An important notion is also the term template engine as defined below:

Definition 2.12 (Template Engine). The component’ responsible for the instantiation of tem-
plates is called template engine. U

The term component is used here and in the following in the sense defined in [51].

22

2.1. Definitions

The relations between the terms just defined are illustrated in Figure 2.2. Basically, the tran-
sition from a document in the target language into a template is done by the introduction of
elements from the slot markup language, whereas the instantiation transforms templates into
documents in the actual target language.

Introduction of slot markup language

Template
Language

Target

Instantiation Language

Instantiated
Template

» Template Engine

Template

A

Instantiation
Data

Figure 2.2.: Relations between Template and Target Language

Most template engines do not fully use the power enabled by the Definitions 2.11, they in-
stead restrict the template language further, most notably by constraints on the nesting of slot
markup language instructions.

A slot markup language typically comprises a second language that is used to refer to in-
stantiation data, defined below. There are several ways to classify these so-called query lan-
guages—one classification is given in Section 2.5.5.

Definition 2.13 (Query Language). The part of the slot markup language used to identify or fetch
instantiation data is called query language. U

<html xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”>
<l-- ... ==
<body>
<xsl:for-each select="purchaseOrder/items/item”>
<p>
<xsl:value-of select="@partNum”/>
</p>
</xsl:for-each>
</body>
</html>

Target language Slot markup language Query language

Listing 2.1: Origins of Fragments in a Template

As atemplate language is obviously a composition of the target language with the slot markup
language, which itself incorporates instructions from the query language, it is possible to show
the origin of fragments in a template as it is done in Listing 2.1. This listing shows a template

23

2. Introduction

producing Hypertext Markup Language (HTML) as the target language, using XSL-T as the slot
markup language, which itself includes XPath as query language.

Please note that the listing shown is not an XSL-T stylesheet (as this would, by definition, not
be a template), but rather an XSL-T simplified stylesheet module (SSM). These modules offer
a prototypical use of the XSL-T language by allowing to embed a subset of XSL-T into target
language documents.

2.1.2. Life Cycle Phases

To understand the following discussions and the overall structure of the thesis, both the life cycle
of a template technique and the life cycle of a template as a document need to be defined and
divided into phases. As the life cycle of a template is preceded by the life cycle of the underlying
template technique, both life cycles are introduced together.

In Figure 2.3, the combined life cycles of a template technique and adhering templates is
shown. For the scope of this thesis, there is no need to introduce end-of-life phases for template
techniques or templates, so the life cycle ends with the use of the template technique or the
validation of an instantiated template, respectively.

Template Life Cycle
-> Design > Implementation

Adaptation

Authoring Instantiation Validation

Template Technique Life Cycle

Figure 2.3.: Template Technique and Template Life Cycle

The first phase in the life cycle of a template technique is typically the analysis phase in which
the goals and requirements induced by the scenario in which the technique should be used are
captured. For the technique developed within this thesis, the goals are discussed in Section 3.1
and the requirements are introduced in Section 3.2.

After the analysis phase, the design phase typically proposes a solution fulfilling the goals and
requirements found. This phase typically involves proposing features of the template engine
that directly influence the design of the slot markup language. In this thesis, an architecture
of a solution is sketched in Section 3.3, whereas the major sub-activity, the design of the slot
markup language is described in detail in Chapter 4.

Obviously, the implementation phase consists of the actual development activities needed
to create the software that implements the design created by the preceding phase. In this
thesis, issues regarding the implementation phase have been split up and are contained in the
Chapters 5 and 6.

For template techniques that are not fixed to support a single target language, an adaptation
phase may be necessary which occurs between the life cycles of the technique and the tem-
plates. The proposed solution is an example for a technique that involves such an adaptation
step—it is described in detail in Section 5.1.

The first phase in the life cycle of a template is the authoring phase, also referred to as author-
ing time. The person playing the role of the template author creates the template using some

24

2.1. Definitions

tool, which may be a simple text editor or a sophisticated development environment with ad-
vanced features like syntax highlighting or text completion. The template validation that is part
of the proposed solution and supports the author in creating correct templates is described in
Section 5.2.

After the template has been authored, it is typically used within the instantiation phase to
create target language documents. The solution elements addressing this phase are described
in the Sections 6.1, 6.2 and 6.3.

Finally, some engines include a post-instantiation validation phase that checks whether the
instantiated template conforms to the target language. The proposed solution guarantees the
conformance of the instantiated template with the target language in other ways, so no part of
this thesis is corresponding to this phase.

2.1.3. The Extensible Markup Language XML

XML is a general purpose markup language that evolved from SGML and has been published as a
World Wide Web Consortium (W3C) recommendation 1998 [28]. The term extensible highlights
the fact that XML allows the definition of arbitrary new languages, which are typically called
XML dialects. A large number of XML dialects exist today, well-known XML dialects include,
for example, XHTML [4], the Wireless Markup Language (WML) [90] and the Scalable Vector
Graphics (SVG) language [61].

The mentioned specification [28] of XML defines only the concrete syntax of XML documents,
whereas its abstract syntax, the so-called XML information set, is defined in [42]. A very simple
XML document is shown in Listing 2.2.

<?xml version="1.0" encoding="UTF-8"?2>

<address country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>

</address>

Listing 2.2: A simple XML file

In the following, a formalization for XML documents is given. Some low-level restrictions that
are, for example, imposed by W3C specifications (e.g., the restriction that a namespace URI
must not be the empty string in [29]) or by IETF specification (e.g., the syntactical structure of
a URI defined in [23]) are omitted from the formalization for simplicity reasons. Thus, in the
following, NCNames (see [29]) and URIs are modeled as strings.

Furthermore, the formalization does not consider the namespace prefixes, as they are only
a syntactic simplification for the namespace binding of names. As a consequence, the term
qualified name is used to denote what is called an expanded name in [29], i.e., as a tuple of a
namespace URI and a local name.

Definition 2.14. Assume a set E of qualified names for elements, a set A of qualified names for
attributes and a symbol T indicating text. An XML document is defined to be D = (V, v, label,
children, attr, value) where:

25

2. Introduction

e Vs afinite set of nodes.
® 1, is a distinguished node in V called the root node of D.
e label : V — E U T is a total function that maps each node to either the qualified name
of an element or the symbol T.
e children : V — V™ is a total function that maps a node v € V to a sequence of nodes
V0, - - - » Up(v) SUch that
1. no node occurs twice in the sequence:
VO <i<j<n(v):vFvj,
2. every node besides v, has exactly one parent, whereas v, has none:
Vv € V i card{v'| children(v’) = vo, ..., v,..., Uy} = [v = ve] and
3. no cycles exist:
Vv € V : v, = parent(v) = v ¢ parent*(v,)
where parent : V — {ve} +— V is the total function defined as follows

parent(v) = v' < children(v') = vo, . .., Vi, U, V), -+ ., Up(yr)-
e attr: V x A — Stringis a partial function that is only defined for v € V with label(v) €
E,
 value : V — Stringis a partial function that is only defined for v € V with label(v) = T.

O

The helper function hasAttr : V' x A +— boolean is true for a node v and a qualified name a
of an attribute if and only if attr(v, a) is defined.

Given the XML document in Listing 2.2, Definition 2.14 yields a document D = (V, v,,label,
children, attr, value) with V' = {v,, v1,v9,v3,v4,v11, V21,031,041 } and the functions label,
children, attr and value as shown in Figure 2.4.

label(ve) = "address” children(ve) = v1,v2, v3, V4
label(v1) = "name” children(v1) = v11
label(vy) = "city” children(vg) = va1
label(vs) = "street” children(vs) = v31
label(vy) = "state” children(vy) = vg
label(v11) = ... =label(vq) = T D

attr(v,,”country”) = "US”

value(vy1) = "Alice Smith” ‘ (Do)
)) 09 00

value(vg1) = ”123 Maple Street”
value(vsq) = "Mill Valley” Ve
o 1) a1 @) a1
value(vy;) = "CA” N
Figure 2.4.: Formalization of the XML document in Listing 2.2

The handling of whitespace (i.e., spaces, tabs and blank lines, see the definition of the non-
terminal .S in [28]) in XML documents is a rather complicated issue. In the following, the so-

26

2.1. Definitions

called ignorable whitespace is completely omitted from the formal representation of XML in-
stances. This greatly eases the readability of statements made against these formal representa-
tions. It should be clear that implementations of the techniques described using these formal-
izations must reconsider the applicability of this restriction, as such ignorable whitespace can
be meaningful, e.g., if the indentation of the document must be considered.

2.1.4. XML Schema Languages

As XML itself can be used to create markup languages called XML dialects, there is a need to
capture vocabularies and rules of XML dialects. In the following, the term schema is used for any
document which describes the permitted names for elements and attributes together with their
permissible structure and values in an (in most cases, infinite) set of XML documents. Typically,
a schema defines only the syntactic structure (and some static semantics) on top of the common
XML grammar (as defined using EBNF in [28]).

Languages used to write schemas are called meta languages, or (more common in the XML
community) schema languages. As the number of schema languages has grown to a consider-
able amount [98], the classification of schema languages is the subject of several publications
[130; 116; 131].

One of the most important classification criteria is that between grammar- and pattern-based
schema languages [116]. Grammar-based schema languages rely on tree grammars for the
specification of the document structure, whereas pattern-based schema languages specify a
number of patterns that are interpreted as properties that must be fulfilled by complying docu-
ments.

Grammar-based schema languages can be further divided by the formalism underlying the
tree grammar. [131] classifies these formalisms to be either regular, restrained-competition,
single-type, or local tree grammars. The expressive power of these languages is shown as a
Venn diagram in Figure 2.5.

. XML Schema

(1) Regular tree grammars (2) Restrained-competition tree grammars
(3) Single-type tree grammars (4) Local tree grammars

Figure 2.5.: Classification of Schema Languages [simplified, based on 131]

Typical schema languages are neither purely grammar- nor pattern-based. As an example,
XML Schema [59; 180; 26], one of the most widely used schema languages defined by the W3C,
is based on a single type grammar and adds pattern-based features for the specification of static
semantics (so called identity constraints). Please note that in this thesis, the lower-case term
schema refers to a schema in some, possibly unspecified, schema language, whereas the upper-
case term Schema always refers to a schema specified using the XML Schema language.

27

2. Introduction

Other important schema languages are Document Type Definition (DTD), a schema language
defined along with XML in [28], the Regular Language for XML Next Generation (RelaxNG), a
regular tree grammar-based language [39] and Schematron, a pattern-based language [99].

A barely considered property of schema languages is their ability to express so-called at-
tribute/element constraints [132]. An example for an attribute/element constraint is the state-
ment ,,element a must carry an attribute named b or have a child element named c“. Con-
straints of this kind play a role in the definition of the template language XTL. Unfortunately,
attribute/element constraints can only be expressed by RelaxNG and Schematron, but not by
XML Schema.

A number of formalizations of XML Schema can be found in today’s XML literature. The intent
and completeness of these formalizations vary widely. The most general formalization of XML
Schema as a so-called XGrammar can be found in [123]. The XGrammar concept is intended
to formally capture most of the concepts in DTDs, XML Schema and RelaxNG. Other formal-
izations are restricted to a particular aspect of schema languages, like content models [168].
The Model Schema Language (MSL) is a formalization solely intended to specify the semantics
of XML Schema [30; 31]. As there is no need to use a feature-complete specification in the
following, a modification of the XGrammar concept is used.

In order to define the term schema, it is useful to give a formal definition of a simple type
first. Simple types are types that can be used to validate character data, e.g., attribute values or
text nodes [180]. The most prominent definition of a set of simple types is the library defined
as part of XML Schema [26]. XML Schema also allows the definition of custom simple types. For
the following, it is unnecessary to define how simple types are defined and how validation is
performed. Therefore, Definition 2.15 is a very simplistic definition of simple types.

Definition 2.15 (Simple Types). A simple type o is a possibly infinite subset of the set of strings,
i.e., 0 C S. Astring s is said to be conforming to the simple type o, if and only if s € 0. ([

In the following, a simple type will often be denoted by a qualified name q. Instead of writing
s € g, a predicate Valid(s, q) is used, which is true if and only if s € ¢. Furthermore, string is
used to denote the XML Schema’s string type xsd:string as defined by [26, Section 3.2.1].
Since xsd:string is syntactically unrestricted, Valid(s, xsd: string) is true for all s € S.

A schema can be defined as in Definition 2.16. While this definition closely resembles the
definition of an XGrammar [123], it differs from the latter in various ways. Most notable, the
distinction between hedge and tree types has been removed. This is possible because in XML
Schema, the appearance of hedge types—in XML Schema called model groups—is purely syn-
tactic, because model groups are not allowed to be circular [180, Section 3.8.6]). Second, the
distinction between element and attribute production rules has been omitted, because within
the original definition of an XGrammar, the semantics of a derivation from the grammar was
insufficiently specified. Finally, the terminal symbols have been divided into qualified names
for attribute and elements.

It is necessary to point out that this definition of a schema is not exactly capturing the XML
Schema language. On one hand, a schema, as defined in Definition 2.16, must fulfill further
constraints in order to represent a valid XML Schema, e.g., its content models must comply
to the Unique Particle Attribution (UPA) rule [180, Section 3.8.6]. The UPA rule demands the
unambiguousness of the content models with respect to a parser without lookahead, making

28

2.1. Definitions

XML Schema a restrained-competition tree grammar in the sense of [131]. On the other hand,
some XML Schema documents can not be represented by a schema as defined below, e.g., if
the XML Schema uses identity-constraint definitions [180, Section 3.11].

Definition 2.16 (Schema). A schema is the tuple S = (X, N, E, A, N,, R) where

e > is a set of simple data types,

e N is a set of non-terminal symbols,

e Fis a set of qualified names for elements,

e Ais a set of qualified names for attributes,

e Ny C N isthe set of start symbols,

* R is a set of production rules of the form X — e(ad*,cm) where X € N, e € E,
ad® C AD(X, A) is a set of attribute declarations as defined in Definition 2.17 and cm €
CM(Z, N, E) is a content model as defined in Definition 2.18.

The set of XML documents valid with respect to the schema S is denoted by £(5). g

Attribute declarations [180, Section 3.2] are defined in Definition 2.17. This definition focuses
on the essentials of attribute declarations: a name, a type, whether the attribute is required or
optional and whether it has been assigned a fixed value. All other aspects of attribute declara-
tions have been omitted.

Definition 2.17 (Set of attribute declarations). The set of attribute declarations AD(X, A) is de-
fined for the set of qualified names for attributes A and the set of simple data types X as the
set of all tupels (a, 0,1, f) consisting of:

e a € Ais a qualified name of an attribute,

* g € X isasimple type to which the attribute value must comply,

e i € {0, 1} is the required cardinality of the attribute, and,

o f e {true, false} defines whether a fixed value is assigned to the attribute. O

A shorthand notation is defined, which allows to extract all attribute declarations that declare
required attributes: req(A4) = {(a, 0,7, f) € Ali = 1}. Analogously, all attribute declarations
that have been assigned a fixed value are denoted by fixed(A) = {(a, 0,1, f) € A|f}.

Content models are defined in Definition 2.18. Again, this definition is not completely con-
gruent with the XML Schema specification. On the one hand, it is missing the xsd:al1l model
group [180, Section 3.7]. On the other hand, as this definition basically allows regular expres-
sions as content models, it also allows content models that are not valid in XML Schema, but
would be allowed in regular schema languages like RelaxNG. An example would be content mod-
els that define sequences of simple types mixed with elements, which is not specifiable in XML
Schema. The definition still fulfills its goal, i.e., it allows XML Schema instances to be captured
formally.

Definition 2.18 (Set of content models). The set of content models CM(X, N, E') over the set of
simple types ¥, the set of non-terminal symbols IV and the set of qualified names for elements
FE is defined recursively as follows:

e The empty sequence ¢ is a content model: ¢ € CM.

e All simple types are content models: Vo € ¥ : 0 € CM.

¢ All non-terminal symbols are content models: Yn € N : n € CM.

¢ All element names are content models: Ve € E : e € CM.

29

2. Introduction

¢ Fortwo content modelscm; € CM and cmy € CM, the results of the following operations
are also content models, i.e.,
- cmq,cmy € CM, meaning a sequence consisting of the two content models,
- cmj | cmg € CM, meaning a choice between the two content models, and,
- cmi{i,j} € CM, meaning a repetition of the content model cm;, where i € N,
Jj € N*U{x},and j #* = i < j, with the special symbol x meaning unrestricted
repetition. O

As shorthand notations, cm ? is used to denote cm{0, 1} and cm* to denote cm{0, *}.

2.2. Applications

Templates are ubiquitous. For reasons of simplicity, the two most prominent application classes
are described in more detail below: the use within dynamic Web applications and for the gen-
eration of code. Other examples are easy to find on almost every desktop computer, e.g., the
insertion of fields in OpenOffice documents [141]. Templates are also frequently used as a start-
ing point for the creation of static Web pages, e.g., in tools like JAlbum [92].

2.2.1. Web Applications

Web applications are one of the major application areas where template techniques are used.
With the advent of dynamic Web applications it has become more and more obvious that the
separation of layout and content is vital for the maintenance of large and complex Web sys-
tems. This soon has lead to the creation of languages providing features that allow the easy
composition of documents for the Web (e.g., HTML or later XHTML pages). An early example
for these languages is Perl [188], which facilitates the creation of Web pages using its variable
interpolation feature.

The increasing number of Web sites containing user-generated content (paraphrased with the
term Web 2.0) also creates new challenges for template techniques. One of the most important
features today is the isolation of user-generated content from the surrounding page skeleton to
satisfy minimum security requirements that are requested by users and operators of a Web site
[101].

Template engines that can typically be found in today’s Web applications include the Java-
based engines JSP [176], Velocity [176], ST [173; 143], the PHP-based engine Smarty [165], the
Python-based engine Document Template Markup Language (DTML) [114] and the Ruby-based
engine Embedded Ruby (ERB) [50].

2.2.2. Code Generation

Code generation as a discipline started with the early work on compilers [79]. In the following,
code generation should be understood as limited to produce textual representations of code.
Template techniques have also been introduced into compiler construction—for an example see
[171].

30

2.3. Alternatives to Using Templates

A recent event that fostered the generation of code was the advent of the Model Driven
Architecture (MDA) [128], which led to an ever increasing number of models for all kinds of
domains. A definition for the term model in the sense of the MDA can be found in [24]:

A model is a simplification of a system built with an intended goal in mind[...]. The
model should be able to answer questions in place of the actual system.

A significant portion of these models is still used mainly for code generation [118]. MDA dis-
tinguishes between model-to-model transformations (M2M) and model-to-code transforma-
tions (M2C). The former typically transform higher level abstractions into each other whereas
the latter typically transform from higher level abstractions into textual models, esp. into code.
Obviously, the M2C transformations are a natural domain of template techniques.

M2M transformations are a typical domain of transformation languages (see Section 2.3.1),
but in some cases, template techniques are used for M2M transformations. For example, the
M2M transformation facility in the UML modeling tool Enterprise Architect is based on a tem-
plate approach: templates are instantiated to create a textual specification of the target model
which is afterwards parsed into some object representation of the model [166].

As already pointed out in [43], nearly all of the available MDA tools support some kind of
template-based code generation. Template techniques that are in wide-spread use for the gen-
eration of source code are the Java-based engines Java Emitter Templates (JET) [148], XPAND
[56] and ST [173; 143] as well as the Python-based Cheetah [158] engine.

2.3. Alternatives to Using Templates

There are several alternatives to using templates as a means for composing documents from
multiple data sources that have been divided to achieve a separation of concerns. In the Sec-
tions 2.3.1, 2.3.2 and 2.3.3, the most widespread alternatives, i.e., transformation techniques,
aspect-oriented approaches, and unparsers, are discussed.

2.3.1. Transformations

Transformation techniques are an established way to adapt data from one metamodel to an-
other. This is supported by a domain-specific language used to specify a transformation pro-
gram. Many languages that adhere to different programming paradigms have been used as a
basis for transformation languages, e.g., SML [20], Ruby [68] and Prolog [80]. Transformation
techniques are very popular in the Web engineering area, whereas examples for code genera-
tion using transformation technologies can hardly be found.

The most prominent transformation language used in the area of Web applications (especially
in Web CMSs) is XSL-T. XSL-T is capable of transforming XML documents between XML dialects,
but also into text and HTML documents. A lot of research has been performed on XSL-T. It
turned out that XSL-T is in fact a functional programming language [135]. XSL-T has been crit-
icized for its verbosity [68] and for its questionable usability [162]. With Xalan [10] and Saxon
[106], two mature implementations are available.

31

2. Introduction

XSL-T has sometimes been perceived as a template technique. As has been argued in Sec-
tion 2.1, this is not true, as XSL-T stylesheets are lacking the prototypical nature that is a vital
property of template approaches. However, it is important to note that the XSL-T specification
defines an alternative mode for the use of XSL-T in so-called SSMs, which are true templates
with embedded XSL-T instructions.

The difference between the transformational and the template approach in the implemen-
tation of the view role in the MVC pattern is discussed in detail in [67], which introduces the
approaches as patterns entitled transform view and template view, respectively.

An example for code generation using a transformation technique can be found in [25], where
XSL-T has been used to generate Java from the XML Metadata Interchange (XMl) representation
generated by a Meta-Object Facility (MOF)—based modeling tool.

2.3.2. Aspect-Oriented Approaches

The idea of aspect-orientation, which resulted in its own programming paradigm AOP, came
up in the late 1990ies [108]. The primary idea of AOP is to separate the code into a core and
several aspects. The core contains the main functional part of the program to be built, whereas
the aspects implement several other functional or non-functional enhancements. Contrary to
the transformation approaches above, aspect-oriented approaches are more often utilized for
code generation than in Web engineering.

Technically, the aspects are implemented as advices and introduced into the core at sets called
pointcuts of core code locations called join points. The introduction process is called weaving.
There are several variations of this principle, that differ in the time the weaving is done, in how
join points and pointcuts are selected, and so on. The notion of pointcuts allows the modular-
ization of cross-cutting concerns, keeping together code fragments that are inherently related
and would otherwise be tangled with the code at several locations.

Aspect-oriented code generation is very similar to template-based composition approaches.
The core code can be seen as a template without explicit slots, and the advices can be seen as
instantiation data. The major difference is that the linking between the two inputs is reversed:
the advices are typically combined with the pointcuts, i.e., the instantiation data is bundled with
the information where it should be inserted. This property of the core—not to contain explicit
marks for the embedding of aspect code—is called obliviousness.

One could consider aspect-orientation as a template technique by aligning the linking direc-
tions found in aspect orientation (i.e., from aspect to core) and template approaches (i.e., from
template to instantiation data), i.e., one could compare the aspect with the template (and the
core with the instantiation data). This point of view violates Definition 2.11, as the core has the
prototypical nature required from templates in the definition.

A problem with obliviousness is implementing repetition and conditional inclusion of parts
of the core code. It is very easy to implement a loop with parametrized content in a template
approach, whereas with aspect-orientation, this is typically not possible. Workarounds include
the options to remove parts from the core code conditionally or to add to lists of grammatical
elements.

An advantage of aspect-orientation over template techniques is the handling of crosscutting
concerns. An advice can be applied implicitly against many code locations, e.g., using a regular

32

2.3. Alternatives to Using Templates

expression matching method names, whereas in template approaches, the embedding of the
same instantiation data item at multiple places must be declared explicitly in the template.

Aspect-orientation has also been used within the area of Web engineering. An example use
case is the localization of Web documents. Typically, such Web documents are prepared by na-
tive speakers and then translated into different languages by others. This translation does not
change the structure of the document, it rather replaces content (i.e., text elements or attribute
values in an XHTML document), therefore there is no need for the conditional or repeated in-
clusion of content. Using an aspect-oriented technique, the translations could be bundled with
pointcuts declaring where to put them in the original documents to replace the content. This
approach has the advantage that no templates must be created and maintained in order to
translate the Web documents [47; 149].

Another example for the use of aspect-oriented approaches for the manipulation of XML
documents are AspectXML [127] and the various approaches for XML update languages like
XUpdate [115]. Both example languages use XPath to express pointcuts.

2.3.3. Unparsers

Unparsers are another common option for code generation and Web applications. While a
parser builds an object structure from a sentence of some grammar, an unparser reverses the
process: it transforms some object structure into a sentence. The object structure can be a
Concrete Syntax Tree (CST) or an Abstract Syntax Tree (AST). Other names for unparsers are
serializers (e.g., used in Xerces [11]), APl-based generators [169] or intra-level transformations
[113, Figure 4.1c on page 71]. In the XML technological space, unparsers are typically called
XML binding tools.

In the XML community, unparsers are also called XML binding frameworks, with JAXB [155;
105] and XMLBeans [8] being their most prominent representatives. XML binding frameworks
typically work in two steps. First, there is a compilation step at build time which compiles an XML
Schema into a corresponding object model in a target language, leveraging the type system of
the target language as much as possible to reflect the constraints of the schema. Second, there
are marshalling resp. unmarshalling steps at run time, which translate between XML documents
and the created target language object model (or vice versa). Please note that marshalling
corresponds to unparsing whereas unmarshalling corresponds to parsing. For more details and
an overview and comparison of existing approaches see [111].

Comparable binding frameworks exist for other combination of languages, e.g., Jenerator for
the generation of Java code from Java programs [187] and the RAP Widget Toolkit (RWT) for
HTML generation from Java. The approach used by XMA [125] is very similar, except for one
difference: its type system has been designed to match that of XML.

The object model needed by an unparser to generate a document is often constructed using
the visitor pattern [74] from another, existing object model. This is different from the template
approach, where the template engines (e.g., XPAND [56]) often supply powerful mechanisms
to visit such a model.

33

2. Introduction

2.3.4. Comparison of Templates with Alternative Technologies

Figure 2.6 contains a comparison of four technologies that can be used to achieve a Separation
of Concerns. One of the technologies, ISP, represents a template technique, the other ones,
XSL-T, Aspect), and JAXB, represent the alternative technologies introduced above, namely
transformations, aspects-oriented approaches and unparsers, respectively. The four rightmost
columns in the figure show (from left to right): the language of the first concern, the language in
which the relation between the concerns is expressed, the language of the second concern and
the language of the result, i.e., the language into which the concerns are combined. Obviously,
the first and the second concern are interchangeable. Therefore, the language that is more
closely related to the language of the result has been chosen as the first concern. The rectan-
gles spanning the columns indicate how the concerns resp. the relating language are bundled
together (typically in a file).

@ e | [

A

Template Technique JSP L HTML Java J ‘ any ‘ HTML
J
e R

Transformation XSL-T ‘ XML, XSL-T + XPath } (XML, ‘ XML,
L \ J

AOP Approach AspectJ (Java »Aspect] " Ja\(a Java

«core» Language «advice»
Unparser JAXB (Java Java J [any W XML

Figure 2.6.: Comparison of the Alternatives with Templates

JSP is typically used to create HTML from a JSP page, which is basically an HTML document
with embedded Java instructions. As Java is a general-purpose language, the second concern
can be any source of data. Taken together, the fact that the Query Language is bundled with
the first concern and the fact that a standalone HTML document is a valid JSP file, make JSP a
template technique.

XSL-T combines two XML languages, XML; and XMLs into a resulting XML dialect. In most
cases, this dialect is one of the input XML dialects, therefore named XML; w.l.0.g. here. How-
ever, in all cases in which XSL-T is used in its standard form (i.e., not as XSL-T SSM) and if the
XML dialects are not XSL-T itself (an unusual, but not negligable case), XSL-T is not prototypical,
i.e., no document from one of the XML dialects is itself a template.

In Aspect], both concerns are documents or fragments in the Java language. The concern
entitled core is typically more similar to the result than the concern named advice, as the latter
concern is typically spread throughout the core concern (a phenomenon called crosscutting).
Aspect) cannot be considered a template technique, as the concern that is typically bundled
with the query language is not prototypical for the result.

Finally, in the unparser technique JAXB, the first concern is expressed in Java, which is basically
a direct equivalent of an XML document to be augmented with the second concern using Java

34

2.4. Related Research Areas

instructions. The second concern can be any source of data (as it is the case with JSP, see above).
The direct equivalent relationship between the first concern and the result is not a prototypical
relationship, as the concern and the result are from different technological spaces.

2.4. Related Research Areas

In the following sections, research areas related to the notion of templates in the sense defined
above, are discussed. Section 2.4.1 discusses the research in the field of macro processing. Sec-
tion 2.4.2 discusses two languages in which the term template is used to denote a programming
language feature. Section 2.4.3 introduces the Invasive Software Composition (ISC) approach,
which is a compile-time composition technique. Finally, Section 2.4.4 discusses frame process-
ing, a technique closely related to template techniques.

2.4.1. Macro Processing

The idea of macros was introduced by [124] in order to extend compiled languages with new
language features. As such, and contrary to the approaches just introduced, macros are not
primarily a technique for composing concerns, but are rather targeting reuse on a syntactical
level.

An important improvement to the macro mechanism was its lifting to a level where syntactic
constraints are preserved. An example for this lifting is the introduction of hygienic macros in
LISP [110].

Today, the best-known example are the macros provided by C and its preprocessor. Unfor-
tunately, C macros can easily break the syntactic structure of a program or interfere with the
program in unexpected ways. The ideas from [110] were proposed to address the problems
described in [40], but the development of C++ [174] is definitely the most important attempt to
solve them. In order to make the use of the C++ preprocessor obsolete, templates (as a mean
to express generic functions) and the inline and const specifiers (to replace constant def-
initions and the use of macros for repeated non-generic code fragments) have been added to
the language. Unfortunately, modern C++ programs still leverage the preprocessor, sometimes
by mixing its features with the features introduced to abolish it.

Macros are not a typical means for the composition of concerns, but they are part of a number
of template techniques, as shown in Section 2.5.7.

2.4.2. Templates as Programming Language Feature

The aforementioned C++ templates are also a mean for separation: for example, they can be
used to separate the behavior of a container data type from the actually contained type. Ad-
ditionally, a C++ template can be considered to be of prototypical nature, as the result of the
template instantiation basically yields the template with its formal type (as well as its non-type)
arguments replaced with the actual ones, even if this instantiation result is normally not mani-
fested by the C++ compilers.

A template mechanism is also the base of the modularization technique used in the BETA lan-
guages [112; 122]. Please note that it is strictly speaking not part of the BETA language, as the

35

2. Introduction

language used for modularization, the so-called fragment language, is independent from BETA.
The fragment language is grammar-based, i.e., every correct sequence of terminal and nonter-
minal symbols from the grammar is called a form and represents a module. Non-terminalsinthe
forms are called slots, as the non-terminals are openings where other forms may be inserted.
An example for a form is shown in Listing 2.3.

Stack:
(# Private: @<<SLOT private: descriptor>>;
Push:
(# e: @integer
enter e
do <<SLOT PushBody: descriptor>>
#) i
Pop:
(# e: @integer
do <<SLOT PopBody: descriptor>>
exit e
#);
New: (# do <<SLOT NewBody: descriptor>> #);
isEmpty:
(# Result: @boolean
do <<SLOT isEmptyBody: descriptor>>
exit Result
#)
#)

Listing 2.3: ABETA Form

If a form is associated with a name and a syntactic category (basically, the left hand side of the
grammar rule from which the form has been derived), it is called a fragment form. Fragment
groups bundle logically related fragment forms.

A fragment group I may specify a fragment group O as its origin. In this case, the slots
of the fragment group O are substituted by the corresponding fragment forms in £. The origin
fragment group O must have slots defined for all the fragment forms within the fragment group
F.

This substitution process turns out to be extremely powerful: it subsumes the power available
by C++ templates and exceeds it—for details, see [122].

Obviously, the substitution mechanism is a template instantiation, with the origin fragment
group O being the template, whereas the fragment forms within F’ are the instantiation data.
The term slot in BETA fits the Definition 2.6 of slots introduced above. A difference which should
be noted, is the labeling of slots with syntactic categories, which enables (together with the syn-
tactic category assigned to forms in fragment forms) a kind of safe authoring for BETA programs.

2.4.3. Invasive Software Composition

The ISC approach is a compile-time composition technique proposed in [15]. Its composition
operators treat the components as so-called grey-box components, i.e., the components itself

36

2.4. Related Research Areas

can be modified (a property of white-box composition techniques), but this happens using well-
defined interfaces (a property attributed to black-box composition techniques).

The ISC terminology has been formalized in [86], based on an extension of context-free gram-
mars, called context-free reuse-grammars. Basically, the components of ISC are fragments of
programs that correspond to sentential forms that can be derived from a non-terminal of a
context-free grammar. Non-terminals in these sentential forms are considered as variation
points.

Initially, ISC knows two composition operators called bind and extend, separating the set of
variation points into slots and hooks. Slots can be bound, i.e., they can be replaced with single
fragments using the bind operator. Hooks are extensible, i.e., fragments can be added to it
repeatedly with the extend operator.

The main difference between ISC and template techniques is the handling of extensibility.
Whereas ISC allows hooks to be bound multiple times, this is not possible in template tech-
niques, which instead offer the possibility to iterate from within the template itself, thereby
allowing a single slot to be replicated and bound to different values in the iterations. With a
template approach, extensibility can be emulated using slots, if the template allows to reintro-
duce the slot markup when the slot is bound. Thus, instead of binding a slot denoted by some
markup s directly to the value v, it is bound to the sequence vs, thereby reopening the slot for
further values. Obviously, this emulation requires that there is a post-processing step in which
all slots are removed, e.g., by binding them to empty values.

2.4.4. Frame Processing

Frame processing [17; 18; 46] can be considered as an early predecessor of template techniques.
The technique has been named after its main source of inspiration, conceptual frames [129].

In [18], multiple views are given on frame processing. The most comprehensive one is to
consider frames as software parts that should be assembled. Assembling frames is done by
invoking frames from a root frame, the so-called specification frame. Invoked frames may in
turn call further frames, making the assembly process a tree traversal over a set of frames.

During the assembly, some frames needs to be adapted, i.e., modified or completed. To mod-
ify frames, two basic mechanisms are offered: the use of variables and the use of named blocks.
Whereas variables do not have default values, named blocks have their content as default value.
Variables can be set to arbitrary values by the invoking frame. Named blocks can be arbitrarily
extended at the start or the end of the named blocks or replaced or deleted during assembly.
Finally, frames can also include control statements to conditionally or repeatedly include parts
of the frame, depending on the actual values of variables.

Obviously, frame processing closely corresponds to template processing as defined above.
Frames correspond to templates. Variables correspond to slots. Named blocks are not typically
found in template techniques. Control statements for conditional and repeated inclusion of
fragments can be found in most template approaches. However, frame assembly is much more
sophisticated than typical template instantiation, as it is possible to trigger the assembly of
the frames recursively. This is a feature that is not typically found in template techniques. An
exception is ST [173; 143], which could easily emulate the frame assembly process using its
template application feature.

37

2. Introduction

Listing 2.4 shows the use of the XML-based Variant Configuration Language (XVCL), a frame
processing language designed to foster reuse during the implementation of a software product

line [93]. Further examples of frame processing technologies are given in [43].

Specification Frame

<x-frame name="root”>
public class Root

{
public static void main(String[] args)
{
<set var="max” value="100"/>
<adapt x-frame="secondary-frame”>
<insert break="perform”>
System.out.println(”i ="+i);
</insert>
</adapt>
}
}

</x-frame>

Frame ‘secondary-frame’
<x-frame name="secondary-frame”>

for (int i = 0; i < <value-of expr="?@max?"/>;

{

<break name="perform”/>

}

</x-frame>

it++)

Result of the Frame Assembly Process

public class Root

{
public static void main(String[] args)
{ for (int i = 0; i < 100; i++)
{
System.out.println(”i ="+i);
}
}
}

Listing 2.4: Frame Processing Example with XVCL

2.5. Classification

In this section, a classification for template techniques is given. The classification focuses on
template techniques and on defining orthogonal criteria. This distinguishes it from existing clas-

sifications like [43] and [169].

38

2.5. Classification

2.5.1. Target Language Awareness of Slot Markup

The most basic distinction to be made about slot markup is how its introduction influences the
target language syntax and semantics. The target language syntax and semantics may be af-
fected in several ways, which leads to the categories shown in Figure 2.7 and described in the
following. Please note that the figure also includes implicit slot markup (the technique com-
monly used in AOP, see Section 2.3.2) for illustrative purposes, however, these are not marking
up slots with respect to the Definition 2.6.

Slot markup

I<I

Explicit

A4 4
Syntax preserving Syntax destructing

Perl

(Semantic preserving> (Semantic abusing)
TAL XMLC

Figure 2.7.: Target Language Awareness of Slot Markup

Slot markup languages that do preserve the target language syntax are called syntax preserv-
ing slot markup languages, whereas slot markup languages changing the target language syntax
are called syntax destructing languages.

Syntax preserving languages may be further classified into semantics preserving and seman-
tics abusing languages, depending on whether semantic concepts from the target language are
employed as they are intended to be or abused. The distinction between preservation and
abuse is somehow fluent—an indication for abuse is that a language element that is not in-
tended to carry any semantics is equipped with meaning by the slot markup language. A typical
example for this is the abuse of comments for slot markup purposes.

Examples for syntax preserving slot markup languages can be found in approaches target-
ing markup languages like HTML or XML. The Template Attribute Language (TAL) [196] is using
attributes from a distinct XML namespace, which is clearly a valid use of attributes and names-
paces, i.e., TAL is preserving the semantics of the target language features.

On the other hand, XMLC [195] is using the id attribute and the span element of XHTML as
slot markup, with the latter example clearly being an abuse of the target language semantics.

Languages that destruct the target language syntax typically rely on some kind of special sep-
arator (or pairs of separators) for slot markup. This goes back to the $ symbol used in Unix
shell scripts for variable interpolation and has been reused by Perl and many of its successors.
A typical pair of separators that is used to bracket expressions from the query language are the
strings <% and %>, which seemingly have been introduced by JSP but can also be found in a
variety of other languages, e.g., in Tea [133] and Jxp [102].

39

2. Introduction

The classification of template techniques targeting XML documents may depend on the un-
derstanding of syntax. If syntaxis understood as wellformedness, XSL-T SSM is clearly preserving
it. On the other hand, if syntax is understood as compliance to an XML Schema, XSL-T SSM de-
structs the target language syntax by embedding XSL-T elements at locations where they are
not allowed to be placed.

2.5.2. Generality of the Slot Markup

Template approaches can also be classified by the relationship between the number of terminals
in the target language and the number of terminals in the slot markup language.

Some approaches introduce a corresponding terminal in the slot markup language for each
terminal in the target language [160; 156]. This approach makes the slot markup language
specific to the target language.

On the other side, approaches exist that introduce only a small number of slot markup lan-
guage terminals which allow to markup all kinds of slots possible within the target language.
Moreover, the number of terminals introduced is independent from the target language. This
typically makes this kind of approaches target language independent or generic. As an example,
consider XSL-T SSM [107], which can be used to generate arbitrary documents using a fixed set
of slot markup language instructions.

2.5.3. Entanglement Index

The entanglement index is a metric defined in [143] which classifies template approaches ac-
cording to the number of violations against a set of rules guaranteeing a clean separation of
concerns between the template engine and the application using it.

These so-called separation rules, which are formulated in [143] with respect to using tem-
plates as the view in the MVC pattern [154], are the following:

1. (no modification) The view can not modify the model neither by directly altering model
data objects nor by invoking methods on the model that cause side effects.

2. (no computations) The view cannot perform computations upon dependent data values.
3. (no comparisons) The view cannot compare dependent data values.
4. (no type assumptions) The view cannot make data type assumptions.

5. (no layout) Data from the model must not contain display or layout information.
In order to ease the evaluation of these rules in scenarios other then Web applications, they
have to be reformulated. The most specific rule (no layout) must be replaced by a rule capturing

the actual intent of using a template engine:

1. (no modification) The template can not modify the instantiation data, neither directly nor
by causing side effects.

40

2.5. Classification

2. (no computations) The template cannot perform computations upon dependent data val-
ues.

3. (no comparisons) The template cannot compare dependent data values.
4. (no type assumptions) The template cannot make data type assumptions.

5. (separation of concerns) Instantiation data must not contain information that should be
separated from the application by the use of the template engine.

The first rule is easy to understand: the instantiation of a template should be free of side
effects. That rule is reasonable as it is clear that moving application code into a template for
whatever reasons is to be avoided. The rule does not prevent the instantiated template to com-
municate with the controller (as it is typically done using a Hypertext Transfer Protocol (HTTP)
request within Web applications), it must only be followed during the instantiation of the tem-
plate within the template engine.

The second, no computations rule can be subject to controversial discussions. On the one
hand, it is obvious that certain computations (e.g., the computation of taxes on a basket in an
e-commerce application) should not be subject of a template. On the other hand, some string
computations like special character encoding may be performed within the template without
violating the separation of concerns, especially since the encoding to be applied may depend
on the context of the special characters, e.g., a string may need to be encoded differently as
XML attribute value or as element content.

The no comparison rule is also subject to discussion. Obviously, for the comparison of a prod-
uct price with a fixed value, the fixed value should not be part of the template. However, al-
ternating the background colors of rows in a table requires a comparison like ¢ mod 2 = 0 and
can well be done within a template. The ST engine solves this alternating colors task using a
round-robin approach specifically designed to handle exactly this class of tasks. Comparisons
can also be useful in code generation templates. For example, the use of separators is often
associated with a comparison of a loop index with a fixed value (e.g., ¢ > 0). Again, ST provides
a solution for this problem using its separator feature [144].

The fourth rule implies that methods with arguments cannot be called, since type information
is unavailable in templates. Furthermore, indexing of array elements using instantiation data is
not possible, since this would require to assume that the data used as index is of a scalar type.

Finally, the fifth rule enforces separation of concerns between layout and content in a tem-
plate application directly. The application logic should not be able to provide layout or display
information. [143] states that there is no way to enforce this rule. However, for a particular
target language, a distinction between parts of the language that are allowed to be generated
from instantiation data and other parts may be possible. In this case, the partial templatization
approach described in Section 5.1.7 can be used to enforce the no layout rule.

The IKAT engine from the Reasonable Server Faces (RSF) project [186] states about itself to
have an entanglement index of zero [185]. As a reason for this, IKAT’s inability to permit com-
putable control over output XML attributes is given. This is based on the false assumption that
attribute values can always be considered as layout. A counterexample for this is also given in
Section 5.1.7.

41

2. Introduction

2.5.4. Instantiation Data Access Strategy

There are basically two ways how the data needed to instantiate a template is passed to the
template engine. The names for the strategies are taken from [143].

The first way is a pull strategy: the template engine calls the application using it to fetch data
on demand. The second way is a push strategy: the applications passes all instantiation data to
the template engine before the actual instantiation process is started. The differences between
the approaches are summarized in the sequence diagrams in Figure 2.8. The definitions below
are versions adapted from [143] by using the introduced terminology and removing clauses not
substantially contributing to their clarity.

Definition 2.19 (Push Strategy, after [143]). A template uses the push strategy if all data used
by the template is computed prior to template instantiation. U

Definition 2.20 (Pull Strategy, after [143]). A template uses the pull strategy if any data used by
the template is computed on demand by invoking application logic. U

The advantage of the push strategy is that it enforces the independence of the application
logic from the order in which the instantiation data is accessed. The disadvantage is that some
instantiation data items which may not be needed (e.g., because conditions prevent the data
from being used) have to be calculated anyway. The pull strategy does not have this problem:
it allows the lazy evaluation of instantiation data items.

Push Strategy Pull Strategy
:Application :TemplateEngine :Application :TemplateEngine
isetlnstantiationData() instantiate() !

S —— : :
i instantiate() 1 loop
i Lt ‘J evaluate()
loop J :
3 evaluate()
[

Figure 2.8.: Sequence Diagrams of Push resp. Pull Strategy

The classical example for the push strategy is ST, whereas the pull strategy is implemented
in a variety of engines like JSP or Velocity. The push strategy can be emulated using the pull
strategy—see Section 6.1.1.

A distinction between the strategies is sometimes impossible. An example are the SSMs de-
fined in XSL-T. The data (i.e., the XML document addressed from the stylesheet via XPath ex-
pressions in select or other attributes) is typically pushed upfront into the XSL-T processor,
but the evaluation of particular XPath expressions is performed on demand. Additionally, it is
possible to access further data sources via the document function [36, Section 12.1], so the
data can partly be pulled from the engine. That is, the data from the first source document is
accessed using the push strategy (note that the evaluation within the template engine is not
explicitly prohibited by Definition 2.19) whereas the documents retrieved via the document
function are accessed using the pull strategy.

42

2.5. Classification

The discussion on the choice of strategy has not yet found a definitive answer. [143] argues
that the pull strategy violates the separation of concerns design rule between application logic
and template engine by allowing to build application logic that relies on a particular evaluation
order of the instantiation data. While this argument is definitely true, it is questionable whether
the benefits of disallowing this coupling outweighs the effort for the calculation of instantiation
data that may not be needed during the instantiation. [117] emphasizes the problem that data
calculated to be pushed into the engine may be unnecessary, thus wasting resources. Addition-
ally, it is argued that functionalities that belong to the presentation layer shift into the applica-
tion code. As an example, HTML/XML character escaping is mentioned, which is not correct,
as the push approach itself does not prevent the engine to have features supporting character
encoding, e.g., via its query language.

2.5.5. Query Language

Definition 2.13 introduces the notion of a query language that is used to refer to instantiation
data from within the template. The query language used in a template can be classified in three
ways, which are illustrated in Figure 2.9.

Query Language

< Opaque) < Slgnlf icant > CDecIaratwe) (Imperatlve) (Domaln -specifi c> (General purpose)

JSP XSL-T SSM XSL-T SSM JSP XSL-T SSM JSP

Figure 2.9.: Categories of Query Languages

First, the query language may be opaque or significant to the template engine. If the query
language is opaque, the template engine either passes the query directly to the application
incorporating itself or uses the query to search for instantiation data in a container passed by
the application. In both cases, the template engine has no idea of the internal structure of
the query. On the other hand, if the query language is significant, queries are executed by the
template engine, i.e., the semantics of a query as well as its concrete syntax must be known to
the engine.

Second, a query language may be declarative or imperative. In the first case, the instantiation
data is described by the query, but the query does not define how to actually get the data.
Differently, queries from imperative query languages define the exact way how to fetch the
instantiation data.

Third, query languages may be general-purpose or domain-specific languages. In the first
case, the query language is a general-purpose programming language on it own, whereas in the
latter case, the query language is specific to a certain type of instantiation data source.

Two examples should clarify this classification: JSP is using Java as an imperative, general-
purpose query language. Please note that Java is used in a way that makes it opaque to the JSP

43

2. Introduction

engine, as the engine itself is not interpreting the query language in any way. XSL-T SSM'’s are
using XPath as a significant, declarative and domain-specific (i.e., XML instantiation data source
specific) query language.

2.5.6. Instantiation Technique

Template techniques can also be classified by the way templates are instantiated. Typical in-
stantiation techniques are compilers and interpreters.

Compilers transfer the template into a persistent intermediate form that is typically exe-
cutable and emits the instantiated template during the execution. The best known example
for this approach is JSP, which even generates multiple intermediate forms: first, a JSP docu-
ment is typically translated into a Java source file, which is afterwards compiled into a class file
directly executable by a Java Virtual Machine (JVM).

Interpreters instantiate the template directly, i.e., without translating it into a persistent in-
termediate form. An example for an interpreting template engine is ST.

The advantage of the compiling approach is an improvement of the instantiation speed, its
disadvantage is the extra time needed for the compilation. In general, the decision for one
of the two approaches depends both on the frequencies of template changes and template
instantiation and their ratio.

2.5.7. Reuse in Templates

Itis an important requirement that template fragments must be reused within a single template.
Different approaches are in use to fulfill this requirement.

Many features supporting reuse within templates correspond to macros [124] in general pur-
pose languages. These macro mechanisms can be further classified by their support for pa-
rameter passing and by their support for dynamic calls (i.e., the selection of the invoked macro
depending on instantiation data).

Macro features can be classified by their parameter passing mechanisms. Some engines only
support macros without parameters (like XTL, see Section 4.4), others allow passing arbitrary in-
stantiation data and/or variable values (like XSL-T SSM), and some engines even allow template
fragments to be passed into macros (like Tea [133]).

Another possible macro classification criterion is the selection mechanism of the macro to
be called: the macro may be statically selected (like in Tea [133]), or it may be chosen depend-
ing on the context in which the template is applied (called template polymorphism in XPAND).
XSL-T SSM even supports both types of selection with its static xs1:call-template and its
dynamic xsl:apply-templates instructions.

ST [173; 143] offers an efficient object-oriented reuse technique called group inheritance. The
motivation behind this technique is the use of ST as backend in the parser generator ANTLR[6;
142], where languages as similar as Java version 1.4 and version 5 should be generated without
having to develop and maintain completely independent template sets. In ST, a template set
is called a group. Groups can inherit templates from other groups. This way, it is possible to
specify a common base group for both Java version and extract the differences between the
languages into groups that inherit from the base group.

44

2.5. Classification

2.5.8. Further Features

Some template approaches offer unique features, which should be mentioned shortly.

Jostraca [157] offers capabilities to search and replace text within the whole template during
the instantiation process. This is clearly not a template-typical feature, but merely an addition
of a common text processing features.

ST [143; 144] offers a feature called group interfaces which allows the specification of pa-
rameters a set of templates must have. Together with ST’s feature of group inheritance, this
mechanism enables an object-oriented reuse technique in templates. Please note that the term
interface here relates to the contract between the template and another template that uses it,
which is different from how the term is used in Section 6.3.2, where it refers to the contract
between the template and its instantiation data.

XPAND knows a special syntax to prevent newlines from being taken over from the template
into the instantiated template. For example, for the use of this feature consider Listing 2.5,
which shows an excerpt from an XPAND template and from the Java code produced by it. Please
note the difference between the two lines creating the private methods: in the second one, the
XPAND expression is closed with “=»”, meaning that the following whitespace should be omitted
in the output.

XPAND Template

public class Test
{
«LET 'doA()’ AS method»
private void «method»
{

}
«ENDLET »

«LET 'doB()’ AS method»
private void «method-»
{

}
«ENDLET »

Instantiation Result

public class Test

{
private void doA()
{
}
private void doB() {
}
}

Listing 2.5: Suppression of Newlines in XPAND

45

2. Introduction

Repleo [14] is a template engine that also provides syntax-safe template instantiation. In con-
trast to the approach introduced in this thesis, it proposes a restricted slot markup language
(called template meta language in this context) that destructs the syntax of the target language
(called object language). Repleo also introduces an adaptation phase, which combines the in-
put grammars in a common template grammar. Repleo validates the instantiation data only
during the instantiation time, it does not offer a technique equivalent to the Template Interface
Generation introduced in Section 6.3.2. Repleo uses an XPath-like query language.

An approach to generating safe template languages is also proposed in [85]. The approach is
very similar to the approach proposed in this thesis, but uses a syntax-destructing slot markup
language. This is motivated by the fact that the approach in [85] is not restricting the target
language. The query language proposed in [85] is the Object Constraint Language (OCL).

2.6. Conclusion

This chapter defined the terms that are used throughout this thesis. The concise definition of
the template term captures the intuitive meaning of this term in the context of Web applica-
tions and code generation very well, which distinguishes the definition from existing ones like
[144], which makes the definition a contribution in its own right. An introduction to the typical
applications of template techniques has been given. The alternatives to using a template tech-
nique have been described, both with their advantages and disadvantages. The related research
areas have been introduced. Finally, classification criteria have been given, which allow to de-
scribe the properties of existing and new template techniques concisely. The classification goes
beyond existing classifications like [169], as it defines orthogonal properties and exhaustively
covers the area of template techniques.

46

2.6. Conclusion

Cib

47

2. Introduction

48

Safe Template Processing

An diesen einfachen Beispielen wird jene Eigenschaft von Web-Templates deutlich, die
zugleich ihre pragmatische Stdrke und formale Schwdiche ist: Web-Templates kénnen
einfach hingeschrieben werden, eine formale Validierung ist nur auf der Ebene der fertig
gestellten Web-Dokumente sinnvoll moglich.

Karsten Wendland, 2006 [189]

In this chapter, an approach for a development technique named safe template processing
is shown. Section 3.1 defines goals for an approach that enables safe template processing.
From these goals, requirements are derived in Section 3.2. Based on these requirements, an
architecture is proposed in Section 3.3.

3.1. Goals

The motivating example shown in Section 1.3 can be used to define a number of goals which
a design for a template technique should address. Some of the goals may contradict what is
typically expected from template approaches, others are suggested by common sense and are,
nevertheless, not respected by all existing techniques.

As it has already been mentioned in Section 2.3, several other approaches exist that address
some or all issues in the scenario above. Each particular goal is discussed with respect to existing
technologies.

49

3. Safe Template Processing

3.1.1. Safe Authoring

Unfortunately, the relation between the template and the target language shown in Figure 2.2
does not reflect today’s reality. Instead, the instantiation of a template may lead to a document
in the target language, but this is not guaranteed in every case. This leads to the typical trial and
error process shown in Figure 1.2, as it is executed by Web developers and designers regularly:
A template is changed, and afterwards the result of the instantiation process is checked.

As the experience with techniques like JSP and XSL-T shows, this process is error-prone for
several reasons: the executing person may consider a change small enough not to be worth
checking and, more important, the change may not be covered by the instantiation, e.g., be-
cause the changed part is not instantiated at all due to the used instantiation data.

The goal that can be derived from this problem is called safe authoring, reflecting that the
fulfillment of this goal gives an author the highest safety possible that a created template will
actually instantiate into the target language. This safety is nevertheless restricted, as the in-
stantiation data has substantial influence on the instantiated template, i.e., every guarantee
given to the author is given under the presumption that the instantiation data fulfills certain
properties (which will be explained in Section 3.2.5).

The term safe authoring is informally defined as follows: A template approach enables safe
authoring if it gives (under the presumption of certain instantiation data properties) an author
a clear indication whether a particular template will instantiate into the target language or not.

The most popular example of an approach not targeting the goal of safe authoring is JSP. By
its typical mixture of XHTML as target language, Java as query language and several notations
to distinguish between the languages, there is a high risk of creating templates not instantiating
into the target language.

On the other hand, XML binding technologies like JAXB fulfill the safe authoring goal very well,
because they employ the type system of some programming language to guarantee instantia-
tion results, making it impossible for an author to create documents that fail to instantiate into
the target language.

3.1.2. Safe Instantiation

The instantiation of a safely authored template may fail because the instantiation data used
does not fulfill the assumptions that have been made during the template authoring. These
instantiation failures must be communicated as error messages. The asynchronism of template
authoring and template instantiation complicates relating the omitted error messages to the
cause of the error.

Furthermore, the person encountering the error (e.g., the user of a Web application) is most
probably different from the person that caused the error (e.g., the application developer), which
makes understandable error messages even more valuable.

The informal definition of safe instantiation is as follows: A safe instantiation checks the in-
stantiation data and emits error messages that

1. clearly describe the problems that occurred,

2. show their root causes and

50

3.1. Goals

3. allow determining the person that is responsible to fix them.

Existing approaches differ widely in their error handling. JSP seems to be the worst approach
in this respect: depending on whether the error in the template leads to a compilation error
during template instantiation or just to a malformed XHTML document, different errors may
occur. For examples of error messages caused by invalid JSP pages, see Figures 3.1(a), 3.1(b)
and 3.1(c). For an unexperienced user, it is hard to decide which of the error message is due to
an invalid change of the template and which one is due to incorrect instantiation data.

org.apache.jasper.JasperException: Unable to compile class for JSP

An error occurred at line: & in the jsp file: /randomdivbyzero.jsp

Generated servlet error:

C:\Java\jakarta-tomcat-5.0.28\work\Catalina\localhost\jsp-examples\orghapache\jsp\randomdivbyzero j=p.java:18:
return Math. ((float) (2*Math.random()))

1 error

org.apache.jasper.compiler.DefaultErrorHandler.javacError (DefaultErrorHandler.java:84)
org.apache.jasper.compiler.ErrorDispatcher.javacError (ErrorDispatcher.java:332)
org.apache.jasper.compiler.Compiler.generateClass (Compiler.java:4l2
org.apache.jasper.compiler.Compiler.compile (Compiler.java:472)
org.apache.jasper.compiler.Compiler.compile (Compiler.java:451
org.apache.jasper.compiler.Compiler.compile (Compiler.java:439)
org.apache.jasper.JspCompilationContext.compile (JspCompilationContext.java:511)
org.apache.jasper.servlet.JspServletWrapper.service (JspServletWrapper.java:2%95)
org.apache.jasper.servlet.JspServlet.serviceJapFile (JspServlet.java:292)
org.apache.jasper.servlet.JspServlet.service (JaspServlet.java:236)
javax.3servlet.http.HttpServlet.service (HotpServlet.java:802)

(a) Compilation problem

org.apache.jasper.JasperException: / by zero
org.apache. jasper.servlet.JspServletWrapper.service (JspServletWrapper.java:372)
org.apache. jasper.servlet.JspServlet.serviceJspFile (JspServlet.java:292)
org.apache. jasper.servlet.Jsp3ervlet.service (JspServlet.java:236)
javax.servlet.http.HttpServlet.service (HttpServlet.java:802)

oot causd

java.lang.ArithmeticException: / by zero
org.apache.jsp.randondivbyvzero_jsp._jspService (randomdivbyvzero_jsp.java:6d)
org.apache.jasper.runtime.HttpJapBase.service (HttpJapBase.java:94)
javax.servlet.http.HttpServlet.service (HttpServlet.java: 802
org.apache. jasper.=servlet.JzpServlietlrapper.service (JepServletWrapper.java:324
org.apache. jasper.servlet.JspServlet.serviceJspFile (JspServlet.java:292)
org.apache. jasper.servlet.JspServlet.service (JspServlet.java:236)
javax.servlet.http.HttpServlet.service (HttpServlet.java:802)

(b) Runtime exception

XML Parsing Error: mismatched tag. Expected: </html>.
Location: http://localhost:4040/jsp-examples/randomdivbyzero.jsp
Line Number 6, Column 3:

</invalid>
A

(c) Parse problem

Figure 3.1.: Error Messages caused by JSP Pages

3.1.3. Separation of Concerns

As mentioned above, templates are frequently used to achieve a separation of concerns. The
separation typically occurs between development artifacts, responsibilities (or roles), or life cy-
cle phases. The actual concerns to be separated depend on the application area in which the

51

3. Safe Template Processing

approach should be used. An overview of actual concerns in the two most important usage
scenarios for template approaches is shown in Figure 3.2.

Web Applications Code Generation
Development Artifacts Layout | Content Model | Programming Language
Roles Web Designer | Application Engineer Modeler | Application Engineer
Life Cycle Phases Authoring Time | Instantiation Time

Figure 3.2.: Separation of Concerns in Different Scenarios

Part of this goal is not only to provide means for the separation of concerns: it is equally
important to ensure that the separation is not circumvented by users of a template technique.
The importance of the enforcement of separation of concerns has been described in [143].

The following informal definition considers both parts of this goal: Atemplate approach fulfills
the goal of Separation of Concerns if it

1. enables the separation of concerns, i.e., allows the distributed, asynchronous and simul-
taneous work on the concerns and

2. enforces the separation of concerns, i.e., restricts the consequences of changing a con-
cern for related concerns as far as possible.

Often, the separated concerns are particular documents or other storage units, but the con-
cerns to be separated may also be rather abstract views of stakeholders on a single result of
the development process. E.g., if the template technique is used in a Web application, the con-
cerns to be separated are typically layout and content, a separation that has been recognized as
being essential in the publishing sector as early as 1967 by Tunnicliffe [76] and that also holds
in the field of Web engineering. The separation between these concerns can lead to separated
storage units, but the separation can as well take place within a single storage unit.

An analogous separation is desirable if the template engine is used for M2C transformations in
a generative scenario: programming language specifics should be separated from programming
language independent information stored in a model (described in Section 2.2.2).

The separations between concerns described above correspond to the separation of respon-
sibilities of stakeholders (or roles). In the Web application scenarios, the layout concern is typi-
cally the responsibility of a Web designer, whereas the creation of content is typically the re-
sponsibility of an editor (e.g., in a Web CMS scenario) or a software engineer (e.g., acting as the
developer of the model and the controller in a Web application).

For the code generation scenario, the responsibility for the creation of the artifacts described
above may be distributed between a programming language specialist (for the programming
language specifics) and a model developer (responsible for the model as such).

In both scenarios, the authoring of a template and its instantiation typically occur asynchro-
nously, i.e., the life cycle phases not necessarily overlap each other. It is not atypical that a

52

3.1. Goals

template still gets instantiated when the author of the template is no longer available to main-
tain it.

Approaches like XML binding technologies (e.g., JAXB) completely fail with regard to this goal,
both in enabling separation as well as in enforcing it. For example, if an unparser-related library
like RWT is used to build a Web user interface, the Web designer and the application developer
role are unified.

On the other hand, JSP enables the separation of concerns, but fails to enforce it (which
is indicated by its high entanglement index of 5), as the embedded access to Java allows the
template author to accomplish arbitrary tasks, including the tasks that belong to the model or
the controller in an MVC-based application.

3.1.4. Broad Applicability

The architecture should be applicable in a wide range of applications, from Web CMSs to UML
tools. Therefore, assumptions about particular uses of the architecture and its implementations
have to be avoided. On the other hand, this design goal had to be restricted in order to create
a prototype implementing the approach, i.e., the set of target languages addressable has been
limited to XML dialects.

The definition of broad applicability is therefore as follows: A template approach satisfies
the goal of Broad Applicability if it is usable in different application scenarios and capable of
generating various target languages.

Velocity is an example for a broadly applicable template technique, as it has been widely used
for Web applications [77] as well as for code generation [175]. The languages that have been
generated using Velocity include various XML dialects like XHTML, Java, C++ as well as plain text
(e.g., for the generation of emails).

JSP is restricted in its use by its reliance on Web application servers. There have been ex-
periments to separately use JSP, but the coupling to Web application servers has proven to be
strong, which complicates the stand-alone use of JSP. Besides this restriction, JSP has been used
to generate several web-typical languages like XHTML and WML .

3.1.5. Utilization of Existing Standards

During the design and implementation of the Safe Template Processing approach, the ques-
tion of whether a (de facto) standard or component should be reused often arised. Typically,
the consequences are as follows: if the standard is not reused, a completely new way of tem-
plate processing could be introduced (along with the necessary standards, tools and processes),
which leaves more design options at the cost of reducing the chances of the new approach to
become widely accepted. Alternatively, adapting the existing standards or components reduces
the degrees of freedom for the design, whereas the chances for establishing the approach are
much higher. The alternatives can be considered as revolutionary or evolutionary trials to es-
tablish a new template processing approach.

In the following, for a design question that can only be decided in the described ways, the
latter alternative, i.e., the evolutionary improvement, is taken. Or, informally defined: A tem-

53

3. Safe Template Processing

plate technique fulfills the Utilization of Existing Standards goal if it minimizes the changes to
the standards, tools and processes left to users adopting the technique.

XML binding technologies like RWT can be seen as a way to a revolutionary change to the
Web engineering process. This can also serve as an explanation, why these approaches failed
to prevail widely. Advanced JSP editors as found in modern Web development IDEs are a typ-
ical example for the evolutionary approach, as they do not try to change the process of JSP
authoring.

3.2. Requirements

From the goals introduced in Section 3.1, a number of requirements can be deduced, which
are described below. These requirements are to be fulfilled by the developed approach. The
requirements address different goals—a summary about these dependencies is shown in Fig-
ure 3.3". The dependencies for each requirement are discussed in detail in the corresponding
section. If possible, examples that fulfill the requirement or fail to fulfill it are given.

Preservation

Utilization of Existing Standards O—/ T @ Independence of Query Language

Figure 3.3.: Relations between Goals and Requirements

3.2.1. Preservation of Target Language Constraints

In order to guarantee that the instantiated template complies to the target language, all con-
straints that are inherent to the target language (i.e., which form the schema of the target lan-
guage) must also be valid within the template language. This does not mean that the constraints
can be mapped one-to-one from the target into the template language. Instead, every con-
straint from the target language will lead to an equivalent, maybe more complicated, constraint
in the template language.

Formally, this requirement can be defined as follows:

Definition 3.1 (Preservation of target language constraints). A template technique preserves
the target language constraints, if for each template t° the instantiation instantiate with the

The different styles for the lines in the Figures 3.3, 3.6 and 7.1 have been chosen to improve the perceivability of
these figures, they are not semantically important.

54

3.2. Requirements

instantiation data d € D yields a document from the target language: Vi® € ¥° : Vd € D :
instantiate(d, t°) € <. O

Obviously, this preservation requirement addresses the safe authoring goal. There are several
ways to fulfill this requirement, which differ in their reuse level of existing standards. Therefore
the utilization of existing standards is also related to this requirement.

XSL-T SSM can be seen as an example for a template language that is completely ignoring
target language constraints within the templates: itis possible to generate any XML dialect from
an XSL-T SSM. If a specific dialect defined by some XML Schema is constructed by a stylesheet,
none of the constraints from this XML Schema are checked within the stylesheet. This makes
XSL-T SSM both a powerful and an error-prone template technique.

3.2.2. Coverage of Target Language

Atemplate engine must be able to produce all documents of the target language. Definitions 2.5
and 2.11 already state that the target language is covered by the templates as the set of tem-
plates is a subset of the template language, i.e., T° C %.

The fragments contained in the instantiated template originate, however, both from the tem-
plate as well as from the instantiation data. Thus, the requirement must be fulfilled indepen-
dently of which fragments of the instantiated template originate from the template.

The distribution of fragments between the template and the instantiation data is itself re-
stricted by the separation of concerns goal and has not been formalized. The following is there-
fore only a semi-formal definition of the coverage requirement, as it relies on the unspecified
notion of a set of valid instantiation data D; that reflects which parts of the target language
document ¢ could originate from the instantiation data:

Definition 3.2 (Coverage of target language). A template technique covers a target language ¥
if for each document ¢ from the target language ¥ and for any instantiation data d from the set
of valid instantiation data Dy, there exists a template ¢° that instantiatesto ¢t: Vt € T : Vd €
Dy : 3t° € T° :instantiate(d,t°) = ¢ O

The coverage requirement clearly addresses the goal of broad applicability, as a template
engine that is not capable of creating the complete target language is only useful in very special
cases. Furthermore, the requirement is influenced by the separation of concerns goal, because
this goal determines the distribution of target language fragments between the template and
the instantiation data.

3.2.3. Computability

As the requirement preservation in Section 3.2.1 indicates, constraints imposed by the target
language have to be transformed to be applicable to validate documents with respect to the
template language. The user of the template engine should not be burdened with the process
of adapting a template technique to a particular target language.

Thus, the template language syntax must be automatically computable from the target lan-
guage syntax. As a side effect, this requires the target language syntax to be available in a
machine-readable form (like an XSD document or some other grammar description).

55

3. Safe Template Processing

The computability requirement therefore addresses the broad applicability goal, as it enables
the use of the template technique for generating documents from arbitrary languages. Further-
more, it also contributes to the fulfillment of the safe authoring goal.

3.2.4. Expressiveness

In order to be actually usable, a template language and hence a slot markup language must of-
fer a well-balanced amount of expressiveness. The language must support control statements,
especially for the conditional and repeated inclusion of template parts.

The absence of these control features typically leads to a violation of the separation of con-
cerns goal. Without the control features, an author basically needs to separate conditional and
repeated parts into (sub-)templates that are instantiated conditionally or repeatedly into frag-
ments that are, in turn, used as instantiation data for the (master-)template. The effort of creat-
ing and maintaining these (sub-)templates as separate resources then leads to the embedding
of template parts into the code using the template engine.

There is a risk of exaggerating the expressiveness of the slot markup language. This extra
amount of power available to the template developer typically leads to application code being
embedded in a template, a situation which is hard to detect and even harder to eliminate.

With respect to the area of Web applications with their typical division between application
and presentation layer (resp. controller and view in the MVC pattern), the consequences of both
insufficient and exaggerated expressiveness are shown in Figure 3.4.

Application Layer

Presentation Layer

e
Insufficient expressiveness: Exaggerated expressiveness:
Presentation Layer code ends up in Application Layer code ends up in
the Application Layer the Presentation Layer

Figure 3.4.: Consequences of Insufficient or Exaggerated Expressiveness

The expressiveness requirement addresses the separation of concerns goal, as both insuffi-
cient and exaggerated control lead to violations of the goal.

Almost all existing template techniques support the conditional and the repeated inclusion
of template fragments.

3.2.5. Instantiation Data Type Safety

Incorrect treatment of unexpected instantiation data items is a major source for problems dur-
ing the instantiation of templates. Unfortunately, the instantiation data is, by definition, not
available during the authoring time of a template. In order to detect problems with the instan-
tiation data, it is therefore necessary to specify a contract between a template and the used
instantiation data.

56

3.3. Proposal of an Architecture fulfilling the Requirements

Such a contract consists of constraints asserting properties of the instantiation data, especially
concerning the type of the data. The instantiation data type safety requirement enforces that
the type of the instantiation data items must be checked by a template technique.

This requirement addresses the safe instantiation goal: the required contract between the
template and the instantiation data can be used to clearly communicate problems with the
instantiation data to users of the technique.

3.2.6. Independence of Query Language

To be usable independently of a specific source of instantiation data, a template technique
should be designed to be capable of dealing with any query language.

This is especially important since different types of instantiation data may have completely
different access mechanisms. For example, the query language for accessing an XML document
as data source can be XPath, while a template that should directly access a relational database
would use the Structured Query Language (SQL) for the same purpose.

Itis important to note that this requirement can only be fulfilled to a certain degree. Allowing
a query language to alter the state of the data used to fill the template seriously injures the
separation of concerns goal. This issue was discussed in detail in [143].

The independence of query language requirement addresses the broad applicability goal.

Existing approaches differ in their independence of the query language. Some approaches
use a general programming language as query language, i.e., these approaches are itself strictly
bound to a particular query language, which, however, allows employing arbitrary query lan-
guages using its own language means. For example, a JSP engine can use JXPath [9] within Java
to access XML documents using XPath.

Other approaches have a fixed query language that is capable of operating on different meta-
models. An example for this approach is XPAND [56]. In these approaches, the query language
itself delivers the flexibility of accessing multiple instantiation data sources.

3.3. Proposal of an Architecture fulfilling the Requirements

Based on the outlined requirements, we propose an architecture that enables safe template
processing [82]. The architecture consists of six solution elements, which are addressing the
various requirements described in Section 3.2. In the following, the meaning of each element
of the architecture is explained in detail. As the architecture itself is independent of a particular
target language, the descriptions can be applied to any implementation of the architecture.

The solution elements can be assigned to the life cycle phases introduced in Section 2.1.2.
Information is passed between the particular solution elements from elements in earlier life
cycle phases to latter ones. Figure 3.5 shows the solution elements, their assignment to life
cycle phases and the flow of information between the elements. The relations between the
solution elements and the requirements are shown in Figure 3.6.

The Slot Markup Language Design process creates the basis for the template technique: the
slot markup language itself. Both concrete syntax and semantics must be designed carefully
to allow other solution elements to rely on it. This process must deliver a grammar for the

57

3. Safe Template Processing

Target Language - Gl Instantiatiqn Data
Grammar - Separation Constraints

Template Lan-
guage Grammar

-

B Design Adaptation M Authoring M Instantiation

Figure 3.5.: The Proposed Architecture

language elements in the slot markup language in a machine-readable form. The design of the
slot markup language can be considered a part of the design phase of a template technique.

The requirements Preservation, Coverage, Expressiveness and Independence of Query Lan-
guage had substantial influence on the Slot Markup Language Design. It therefore contributes
to the goals of Safe Authoring, Separation of Concerns, Broad Applicability, and Utilization of
Existing Standards.

If the target languages to be produced by the template technique are restricted to be XML
dialects, the machine-readable form of the slot markup language grammar would preferably be
an XML Schema. Chapter 4 describes the design of a slot markup language targeting arbitrary
XML dialects in detail.

Next, we propose a Constraint Separation component, which adapts the template technique
to a particular target language by combining the grammars of the slot markup language and the
target language and transforming them into the grammar of the template language and a set
of instantiation data constraints. This component is part of the adaptation phase of a template
technique.

The design of the Constraint Separation largely depends on the Preservation requirement and
addresses the goals of Safe Authoring and Utilization of Existing Standards. The component is
described in more detail in Section 5.1.

58

3.3. Proposal of an Architecture fulfilling the Requirements

Preservation Q { — \@ Slot Markup Language Design
Coverage Q—J : 'T) Constraint Separation

Computability @ L@ Template Validation

Expressiveness EERREERRR Template Instantiation

Instantiation Data Type Safety ---------- Q Instantiation Data Evaluation

Independence of Query Language @ ---------------- : @ Instantiation Data Validation

Figure 3.6.: Relations between Requirements and Solution Elements

The Template Validation component applies the template language grammar produced by
the Constraint Separation process to check the validity of the templates created by an author. It
belongs to the authoring phase. A successful validation asserts the author that the template will
instantiate into the target language as long as the instantiation data complies to the instantiation
data constraints emitted by the Constraint Separation.

The component performing the Template Validation is influenced by the requirement Preser-
vation, i.e., it addresses the goals of Safe Authoring and Utilization of Existing Standards. A
detailed description of the component can be found in Section 5.2.

A validated template can be used by the Template Instantiation process to produce a docu-
ment from the target language within the instantiation phase. For the instantiation, instantia-
tion data is needed, which is delivered by the Instantiation Data Evaluation process.

The template engine, the component performing the Template Instantiation process, is de-
termined by the requirements of Expressiveness, Independence of Query Language and Preser-
vation. It therefore addresses the goals of Separation of Concerns and Broad Applicability. A
detailed description of an efficient template engine design is given in Section 6.2.

As already mentioned, the instantiation data consumed by the Template Instantiation process
is delivered by the Instantiation Data Evaluation process, which is fetching the data from some
instantiation data source.

The Independence of Query Language requirement is the main determinant for the compo-
nent implementing this evaluation process. The component therefore contributes to the Broad
Applicability goal. A design for this component is introduced in Section 6.1.

The Instantiation Data Evaluation only delivers instantiation data from a data source, but is
not capable of asserting its properties; instead, the Instantiation Data Validation process is re-
sponsible for these assertions.

Obviously, the component implementing the Instantiation Data Validation process depends
on the Instantiation Data Type Safety requirement and addresses the Safe Instantiation goal.
The component is described in detail in Section 6.3. An alternative approach for addressing
the same requirements and goals is the Template Interface Generation approach described in
Section 6.3.2.

59

3. Safe Template Processing

3.4. Conclusion

This chapter analyzed the problems introduced in Section 1.3 in order to define goals for the
approach to be developed by this thesis. The goals have been used to set up a number of re-
quirements. Based on the requirements, an architecture has been proposed that is (for the
moment, presumably) fulfilling the requirements and therefore helps reaching the goals. The
relations between the goals, the requirements and the solution’s elements have been discussed
in detail, which is important for understanding tradeoffs made during the design and the imple-
mentation of the approach.

The following chapters are structured as follows. Chapter 4 discusses the design of a slot
markup language. Chapter 5 describes the solution elements of the architecture that are as-
signed to the adaptation phase or the authoring phase. Finally, Chapter 6 discusses the solu-
tion elements assigned to the instantiation phase. These relations are illustrated in Figure 3.7.
Please note that starting with Chapter 4, the thesis deals with XML target languages, thereby
restricting the general discussions and proposals made so far to the XML technological space.

— Chapter 4

A

Target Language Constraint Instantiation Data
Grammar | P Separation Constraints
Chapter 5 Template Lan-
guage Grammar

Chapter 6

Figure 3.7.: Relations between the Solution Elements and the Following Chapters

60

Design of a Universal, Syntax- and
Semantics-Preserving Slot Markup
Language

Ein Loch ist da, wo etwas nicht ist.

Kurt Tucholsky, 1931 [184]

One of the most important steps in the implementation of the approach proposed in Chap-
ter 3 is the design of a slot markup language. The Separation of Concerns goal proposed in
Section 3.1.3 requires the slot markup language to enable the user to incorporate the template
engine without having to violate the intended separation of concerns. Thus, the design of this
language determines whether the architecture is acceptable for a given purpose. Furthermore,
the design of the slot markup language influences the solution elements of the approach as de-
scribed in Section 3.3. The template engine must be implemented depending on the features
of the slot markup language. In addition to this, the expressive power of the grammar needed
to describe the template language also depends, besides on the target language, on the design
of the slot markup language. An example for such a language, named XML Template Language
(XTL) is shown in detail in this chapter.

Section 4.1 explains the decisions made during the design of the XTL. The following Section 4.2
introduces the language features that allow for creating XML document character data, whereas
Section 4.3 shows features for the conditional or repeated inclusion of template fragments. Sec-
tion 4.4 introduces macros, which enable reuse within XTL templates. Two special XTL features,

61

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

namely realms and bypassing, are explained in Section 4.5. Furthermore, Section 4.6 outlines
how the semantics of XTL can be described translationally in relation to XSL-T. Finally, Sec-
tion 4.7 discusses the application of XTL to a different domain, namely as a schema language
for the validation of XML documents.

4.1. General Design Decisions

As mentioned in Section 1.3, most template techniques available today are not guaranteeing the
wellformedness of instantiated templates. In order to fulfill the goal of safe authoring, the well-
formedness of the instantiation result must be guaranteed. There are several ways to achieve
this, which can be divided into syntax-preserving and syntax-destructing approaches, as intro-
duced in Section 2.5.1.

Syntax-destructing approaches have the disadvantage of being hard to implement (as most
of the tools have to be reimplemented to reflect the template language syntax) but often offer
a template language with slightly improved readability. Syntax-preserving approaches have the
advantage of enabling the reuse of existing tools (i.e., incidentally also addressing the Utilization
of Existing Standards goal) for the syntax of the target language. The readability of these tem-
plate languages can often be improved by lightweight changes like adjustments of the syntax
highlighting for the slot markup parts of the template language.

It has been decided that XTL should be a syntax-preserving slot markup language. The lan-
guage feature that should be used by XTL is the XML namespace http://research.sap.
com/xt1l/1.0 particularly reserved for the XTL. Thus, XTL templates are wellformed XML
documents that contain slots designated by nodes that belong to the XTL namespace. In ad-
dition to asserting the wellformedness of the instantiation results, using an XML namespace
and refraining from non-XML slot markup syntax enables the use of standard XML schema lan-
guages (like XML Schema [59; 180; 26]) to describe the template language grammar in the first
place.

Next, the expressiveness of XTL had to be decided. Therefore, it was necessary to define
which features should be supported by the language. Basically, these features fall into one of
three categories: features supporting the creation of XML nodes, features allowing to control
the instantiation and features for the reuse of template fragments. The design of the particular
features is described in Section 4.2, 4.3 and 4.4, respectively.

Several additions to the XTL language have been considered. Basically, they can be grouped
into two categories: elements which may be added without injuring the safe authoring ap-
proach and elements that will seriously harm this approach.

Syntax

The normative definition of XTL is the XML Schema document XTL . xsd. As the XML Schema
syntax itself is very verbose, the syntax of the elements is explained textually instead of by
showing fragments of the schema. The complete schema can be found in Appendix A.1.

62

4.1. General Design Decisions

Semantics

For the core language elements of XTL, a denotational semantics for the instantiation is given
below. This semantics is given as a Haskell [182] program. It operates on a simplified XML
model that uses the type shown in Figure 4.1 to represent XML documents. This data type
closely resembles the XML data model introduced in Section 2.1.3.

data Node =
Text String |
Comment String |
Element OName (Map QName String) [Node]

Listing 4.1: Representation of XML documents in the Instantiation Semantics

Please note that the QName is representing a triple consisting of three strings: a prefix, a
local name and a namespace URI, i.e., it extends a qualified name in the sense of [29] with
the capability of keeping the prefix. An example for a QName would be the triple (”xtl1”,
"text”, "http://research.sap.com/xtl/1.0").

Furthermore, the denotational semantics accesses instantiation data using a clearly defined
interface named IDS. The interface is defined using a Haskell class and is shown in Listing 4.2.
It basically consists of five functions which are explained at the parts of the semantics where
they are used.

type IDS a = (a -> String -> String, a -> String -> [a], a -> String
-> Bool, a -> String -> [Node], a)

evalText :: IDS a -> (a -> String -> String)
evalText (text, , , _,) = text

evalForEach :: IDS a -> (a -> String -> [a])
evalForEach (_, forEach, _, _, _) = forEach

evallf :: IDS a -> (a -> String -> Bool)
evallf (, , if , ,) = if_

evalInclude :: IDS a -> (a -> String -> [Node])
evalInclude (_, _, _, include,) = include

root :: IDS a -> a
root (_, _, _, _, root) = root

Listing 4.2: Definition of the IDS class
The denotational semantics starts with the function instantiateDocument shown in

Listing 4.3. This function takes an Instantiation Data Source (IDS) and a representation of an XML
document (serving as template) and yields the instantiated template. This function triggers the

63

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

instantiation by calling the function instantiateNodes on the children of the root node
(which can, by definition, never be an element defined by XTL).

The function instantiateNodes has a quite complicated signature: it takes three argu-
ments and delivers a 3-tuple as result. The first parameter is a map of macros, which is ex-
plained in more detail in the Sections 4.4.1 and 4.4.2. The second parameter is the IDS needed
to evaluate instantiation data. The third parameter is the list of nodes to be instantiated. The
3-tuple returned by the function contains a (possibly modified) map of macros, a mapping from
expanded names to strings representing a set of attributes and a list of nodes created during
the instantiation. The function takes the first element from the list of nodes to be instantiated
and processes it by calling the instantiateNode function. Afterwards, it calls itself on the
remainder of the list. The return value is created from the result of both calls by combining the
returned attributes and concatenating the returned children.

type AttrMap = Map QName String
type MacroMap = Map String [Node]

instantiateDocument :: IDS p -> Node -> Node
instantiateDocument ids (Element gqn attributes children) =
let
(_, attributesl, childrenl) = instantiateNodes ids (root
ids) empty children
in
Element gn (union (transformNamespaceAttributes attributes)
attributesl) childrenl

instantiateNodes :: IDS p -> p -> MacroMap -> [Node] -> (MacroMap,
AttrMap, [Node])
instantiateNodes ids context macros (node:further) =

let
(macrosl, attributesl, childrenl) = instantiateNode ids
context macros node
(macros2, attributes2, children2) = instantiateNodes ids
context macrosl further
in

(macros2, attributesl ‘union‘’ attributes2, childrenl ++
children2)
instantiateNodes ids context macros [] = (macros, empty, [])

instantiateNode :: IDS p -> p -> MacroMap -> Node -> (MacroMap,
AttrMap, [Node])

Listing 4.3: Preamble of the Denotational Instantiation Semantics

The instantiateNode function has a signature similar to that of instantiateNodes,
but takes only a single node as its third parameter. The implementation of that function is given
below in the Sections 4.2.1 to 4.5.2. The treatment of text, comment nodes and element nodes
is shown in Listing 4.4. Since there is a special treatment of elements assigned to the bypassing

64

4.2. Creation of Character Data

namespace explainedin Section 4.5.2, aboolean guard is used to restrict the element processing
by these default rules to elements not assigned to the bypassing namespace. Elements from
the XTL namespace are treated by special rules, which are shown below, but are to be found
before the default rules in the complete semantics.

instantiateNode ids context macros (Text text) = (macros, empty,
[Text text])
instantiateNode ids context macros comment@(Comment) = (macros,

empty, [comment])
instantiateNode ids context macros (Element gn@(QN prefix

namespaceURI localName) attributes children) | not (isBypassURI
namespaceURI) =
let
(macrosl, attributesl, childrenl) = instantiateNodes ids
context macros children
in
(macrosl, empty, [Element gn (union attributes attributesl)
childrenl])
Listing 4.4: Semantics for Text, Comment and Element Nodes
Examples

Since XTL has been designed to fulfill the requirement of independence of the query language,
the query language is arbitrary. In the examples below, XPath is used as the query language.
As the instantiation data, the purchase order example document po . xml (from [59], see also
Section A.3) is used. This means that the values of the select attributes below must be read
as XPath expressions targeting po . xml.

4.2. Creation of Character Data

For each XML node type (like element, comment, attribute etc.), there could have been a corre-
sponding XTL language feature allowing to dynamically create the node from the instantiation
datainstead of statically including it in the template. Fully supporting this 1:1-relationship would
violate the separation of concerns goal, as it would allow the arbitrary creation of element nodes
(identified via their names) from instantiation data.

As element nodes are not character data in the sense of [28, Section 2.4], but rather markup,
they should never be subject to dynamic creation. The same is true for attribute names. On
the other hand, text nodes and attribute values are character data in an XML document, and
their creation from instantiation data must therefore be supported by the XTL. Therefore, XTL
supports the dynamic creation of text as described in Section 4.2.1 and the dynamic creation of
attribute values as described in Section 4.2.2, but does not offer a feature to dynamically create
elements. An exception to this latter statement is the dynamic inclusion of XML fragments as
described in Section 4.2.3, where the drawbacks of this feature are explained as well.

65

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

The dynamic creation of comments and processing instructions would be possible, but has
not been included in the current version of XTL.

4.2.1. xtl:text

There are basically four design options for an instruction intended to create a text node. First,
an element of the target language can be used for that purpose—the instantiation data would
then be denoted via an attribute of that element (e.g., XMLC uses HTML’s span tag with its id
attribute for that purpose). Second, an attribute at the parent element could theoretically be
used, but this attribute has to denote several things: where to insert the text node, if multiple
children exist, and where to get the instantiation data from. Third, a comment could be used to
denote the position of the text node to be created—the comment content could then be used
to denote the instantiation data. Finally, the slot markup language could contain an instruction
solely designed for the purpose of creating text nodes.

The reuse of a target language element is not possible in a generic slot markup language,
as the target language is arbitrarily exchangeable by definition. Furthermore, the use of an
attribute at the parent element would severely harm the understandability of the XML tem-
plate and in addition to that, the position at which the text node is to be inserted must be
updated together with the content of the element, which is a potential source of errors. The
third option—abusing comments for the creation of text nodes—contradicts the requirement
of preservation, as comments are not enforceable using XML schema languages.

Therefore, XTL follows the straightforward approach and contains an instruction xt1:text
that is replaced with instantiation data during the instantiation.

Syntax

The xt1l:text element supports two attributes: one for the description of the instantiation
data to be used to replace the element and one for the support of realms, which is described in
detail in Section 4.5.1.

The select attribute contains a string of the query language which is passed to the instan-
tiation data evaluator. The string is evaluated within a certain context: if the xt1:text is not
contained in any xt1: for-each instruction, the context is the entirety of the instantiation
data. For the treatment of xt1l:text within xt1l: for-each, refer to the description of
xtl:for-each in Section 4.3.2.

Semantics

In Listing 4.5, the function evaluateText is used to determine the instantiation data item to
be used for replacing the xt1:text instruction. In order to prevent xt1:text to be used to
create markup, the instantiation data item evaluated must be processed in the way described
in [28, Section 2.4], i.e., all ampersand characters & and the left angle bracket < must be re-
placed by the strings & and &1t ;, respectively, by all valid XTL engine implementations.
In the denotational semantics, this escaping process is performed by the call to the function
escapeText.

66

4.2. Creation of Character Data

The evaluateText method has to return a string value. The conversion of non-string val-
ues returned by the evaluation into a string value is up to the concrete implementation of this
function. For XPath, a natural choice would be to follow XSL-T in its use of the XPath function
string to convert the query result into a boolean value [38, Section 4.2].

instantiateNode ids context macros (Element (ON _"text”
"http://research.sap.com/xt1l/1.0”) attributes) =
let
selectExpr = attributes ! (QN ”” ”select” "")

in
(macros, empty, [Text (escapeText (evalText ids context
selectExpr))])
Listing 4.5: Semantics of xt1:text
Example

Listing 4.6 shows how xt 1 : text could be used to create a text node—in this case as a subnode
to the name element literally contained in the template.

Template

<?xml version="1.0"?>

<sample xmlns:xtl="http://research.sap.com/xtl/1.0">
<name><xtl:text select="/purchaseOrder/shipTo/name”/></name>

</sample>

Instantiation Result

<?xml version="1.0" encoding="UTF-8"?>
<sample>

<name>Alice Smith</name>
</sample>

Listing 4.6: Example Use of xt1:text

4.2.2. xtl:attribute

Creating attributes is substantially more complicated than creating text. Basically, two options
arise. First, the slot may be marked up using the attribute value itself (e.g., via a special syntax
like in href="S$url”). This has the advantage of being easy to read, but the problem that
the special syntax must be encoded by the author if it is used without being meant as slot
markup. The second option is to use an XML element to dynamically create the attribute from
instantiation data. This refrains the user from encoding any special markup: if the attribute
exists at the element, it has to be taken into the instantiated template as is. The decision to
make XTL use the second option via an xtl:attribute element as defined here supports
the goal of Safe Authoring, as the author is freed from dealing with encoding special markup.

67

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

The Separation of Concerns goal is not affected by this decision, as xtl:attribute only
allows the dynamic creation of the attribute value, but not of the attribute name.

The construction of attributes is supported by the XTL using the element xt1l:attribute,
which is adding an attribute to its parent element. The attribute has a fixed name (i.e., the
name is not taken from the instantiation data) and a value taken from the instantiation data. In
Listing 4.8, xt1l:attribute is used to create a date attribute at the order element.

Syntax

The xtl:attribute element supports four attributes. As with xt1:text, one of the at-
tributes is for the support of realms, which is described in detail in Section 4.5.1.

The name attribute defines the name of the attribute to be created by xt1l:attribute.
Its value must be a QName, which allows for inserting qualified and unqualified attributes. As
already mentioned above, the value is static, i.e., it is not possible to create an attribute with a
name taken from the instantiation data.

As xtl:text, xtl:attribute supports the select attribute. Its value is used to get
the instantiation data to be used as the attribute value. Again, this string is evaluated within a
certain context: if the xt1l:attribute is not contained in any xt1: for-each instruction,
the context is the entirety of the instantiation data. For the treatment of xtl:attribute
within xt1: for-each, refer to the description of xt1: for-each in Section 4.3.2.

Finally, a mode attribute could be used to define the precedence of an attribute created by
xtl:attribute compared to a literally specified attribute of the same QName. By default,
the literally contained attribute would be overwritten. Using this attribute, it is possible, for
example, to append the dynamically created value to the literal one. As this functionality is
possibly harming the requirement of preservation, its use is only allowed if the attribute to be
created is defined to be of the XML Schema type String.

Semantics

In Listing 4.7, the function evaluateText is reused to determine the instantiation data item
to be used as the value for the attribute to be created. In order to prevent xt1l:attributeto
create multiple attributes (an attack typically used against Web applications known as markup
injection), the evaluated instantiation data must be processed in the way described in [28, Sec-
tion 2.4]. This is similar to the processing in xt1:text, but in addition to the replacements
made there, single quotes ’ and double quotes ” must also be replaced by the strings '
and ", respectively. This escaping is performed by the call to the function escapeAt-
trValue in Listing 4.7.

The processing of the mode attribute is not included in the denotational syntax for readability
reasons.

instantiateNode ids context macros (Element (QN prefix "attribute”
"http://research.sap.com/xtl/1.0”) attributes) =
let
name = attributes ! (QN ”” “name” "")
selectExpr = attributes ! (QN ”” ”select” "")

68

4.2. Creation of Character Data

in
(macros, singleton (mkQName name) (escapeAttrValue (evalText
ids context selectExpr)), [1])
where
mkQName :: String -> QName
mkQName s = case elemIndex ':' s of
Nothlng _-> QN "n s mn
Just idx -> QN ”” (drop (idx+1l) s) (take (idx-1) s)
Listing 4.7: Semantics of xt1l:attribute
Example

In Listing 4.8, the xtl:attribute element is used to create a data attribute at the ele-
ment containing the xt1l:attribute, namely the order element literally contained in the
template.

Template

<?xml version="1.0"2?2>
<sample xmlns:xtl="http://research.sap.com/xtl/1.0">
<order>
<xtl:attribute name="date”
select="/purchaseOrder/QorderDate” />
</order>
</sample>

Instantiation Result

<?xml version="1.0" encoding="UTF-8"?2>
<sample>

<order date="1999-10-20"/>
</sample>

Listing 4.8: Example Use of xt1l:attribute

4.2.3. xtl:include

XTL offers an xt1: include element that can be used to dynamically include complete XML
fragments (consisting of multiple XML nodes) into the instantiation result.

Strictly speaking, xt1:include is also a partial violation of the independence of query
language requirement, as it can not be asserted that every query language is capable of de-
livering an XML fragment that could be inserted by the template engine. Despite of this, the
xtl:include statement has been added for two reasons: fragment inclusion is a very pow-
erful language feature and query languages not capable of delivering XML fragments could be
adapted to create XML from query results.

Even more questionable is the fact that xt 1 : include can be used to generate markup and
character data. This may violate the requirement of separation of concerns. Therefore, the

69

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

xtl:include element is not included in the subset of XTL supported by the safe authoring
approach (for details, see Section 5.1).

Syntax

The xt1l:include element supports the same two attributes as xt1l:text: a select at-
tribute for the description of the instantiation data to be used to replace the element and one
for the support of realms, which is described in detail in Section 4.5.1.

Semantics

In Listing 4.9, the function evaluateInclude is reused to determine the instantiation data
item to be used as the value for the attribute to be created. This function has to return nodes of
an XML document, therefore there is no need for escaping special XML characters: they must
already have been replaced in the instantiation data.

instantiateNode ids context macros (Element (QN _ ”include”
"http://research.sap.com/xt1/1.0”) attributes) =
let
selectExpr = attributes ! (QN ”"” "select” "")
in

(macros, empty, evalInclude ids context selectExpr)

Listing 4.9: Semantics of xt1l:include

Example

In Listing 4.10, the xt1:include elementis used to include all name elements together with
the contained text node from po.xml into the instantiated template. Please note that this
example shows that character data as well as markup are created using this instruction.

Template

<?xml version="1.0" encoding="UTF-8"?2>

<sample xmlns:xtl="http://research.sap.com/xtl/1.0">
<xtl:include select="//name”/>

</sample>

Instantiation Result

<?xml version="1.0" encoding="UTF-8"?>
<sample>
<name>Alice Smith</name>
<name>Robert Smith</name>
</sample>

Listing 4.10: Example Use of xt1:include

70

4.3. Conditional and Repeated Inclusion of Template Fragments

4.3. Conditional and Repeated Inclusion of Template Fragments

Following the argumentation in Section 3.2.4, there is a need to support the conditional and
repeated inclusion of template fragments in order to fulfill the expressiveness requirement.
Obviously, both features have their counterparts in general purpose programming languages
like Java.

43.1. xtl:if

Typical conditional statements include simple if statements (with or without else branches),
expanded if statements (with multiple conditions like if...elseif...) and switch state-
ments. If one abstracts from the concrete syntax, these statements can be classified by how
many of their branches can be selected. For example, a standard if...then...else...
statement chooses exactly one of the two branches, whereas the switch statement in Java
may select none, one or more branches (mostly depending on the use of break statements
within the branches).

The independence of query language and the preservation requirement prohibit the introduc-
tion of a statement that allows the selection of multiple branches into XTL. The first requirement
prevents deciding how many branches can be selected. The second requirement would be hard
to fulfill in the presence of such a statement as all combinations of branches must be checked
for their validity within the target language.

Therefore, XTL can only support conditional inclusion statements that select at most one of its
branches. This only requires that the content of each branch is valid within the target language.

From the syntactical point of view, it must be decided whether the conditional statement
should be implemented as an attribute (like in TAL) or as an element (comparable to the if
statement in XSL-T). The second approach is more comfortable, but also harder to implement.

In fact, the current XTL version only supports a very simple xt1:if statement that only
allows one branch to be included or not.

Syntax

The xt1l:if element supports the two attributes also known from xt1l:text: one for the
description of the instantiation data to be used to replace the element and one for the support
of realms, which is described in detail in Section 4.5.1.

The select attribute contains a string from the query language that is passed to the instan-
tiation data evaluator. The string is evaluated within a certain context: if the xt1:1if is not
contained in any xt1: for-each instruction, the context is the entirety of the instantiation
data. For the treatment of xt1:if within xt1l: for-each, refer to the description of xt1:
for-each in Section 4.3.2.

As opposed to the XTL elements described above, the xt1:if elementis not declared to be
empty, but rather allows a sequence of arbitrary elements as its content. These elements are
the content that is conditionally included in the instantiated template, depending on the result
of the evaluation of the select attribute. The children of xt1:if are evaluated during the

71

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

instantiation, i.e., other XTL statements can be included. This also includes the use of xt1:at-
tribute, which allows the conditional creation of attributes.

Semantics

In Listing 4.11, the function evaluateIf is used to determine the instantiation data item
needed to decide whether the children of the xt1:if element are processed and inserted
into the instantiated template or not.

Since this decision has two alternatives, the evaluateIf method has to return a boolean
value. It is up to the concrete implementation of the evaluateIf function whether true or
false has to be returned if the query string does not evaluate into a boolean value. For XPath,
a natural choice would be to follow XSL-T in its use of the XPath function boolean to convert
the query result into a boolean [38, Section 4.3].

If the evaluation of the instantiation data item into a boolean value yields true, the content
of the xt1:if elementis processed by the instantiateNodes function and the result of
this processing becomes the result of processing the xt1: if element. If the evaluation yields
false, an empty attribute map as well as an empty child list is returned.

instantiateNode ids context macros (Element (QN _ ”if”
"http://research.sap.com/xtl1/1.0”) attributes children) =
let
selectExpr = attributes ! (QN ”” "select” "")
in
if (evalIf ids context selectExpr)
then
instantiateNodes ids context macros children
else

(macros, empty, [])
Listing 4.11: Semanticsof xt1:if

Example

An example for xt1:if is shown in Listing 4.12, which also shows that an else branch can be
simulated with the most query languages.

Template

<?xml version="1.0" encoding="UTF-8"?>
<sample xmlns:xtl="http://research.sap.com/xtl/1.0">
<xtl:if select="count(//items/item)=2">
<fulfilled id="1"/>
</xtl:if>
<xtl:if select="not(count(//items/item)=2)">
<fulfilled id="2"/>
</xtl:if>
</sample>

72

4.3. Conditional and Repeated Inclusion of Template Fragments

Instantiation Result

<?xml version="1.0" encoding="UTF-8"2>
<sample>

<fulfilled id="1"/>
</sample>

Listing 4.12: Example Use of xt1:if

43.2. xtl:for-each

In typical programming languages, especially in languages following an imperative or object-
oriented paradigm, a variety of statements for the repeated execution of fragments can be
found. These statements can be classified into being controlled by conditions, by a counter
or by a collection.

Condition-controlled statements are typically classified by the time at which the condition is
evaluated: at the start of the statement (in Java represented by a mere while statement) or at
its end (in Java represented by the do. . . while statement). The statements may also support
an option for an early exit, which allows the repetition to be immediately exited.

The condition-controlled statements are typically used to make repetitions depend on evalu-
ation results obtained inside the statement. As there is no possibility to perform calculations in
XTL itself, such a statement does hardly make sense.

Count-controlled statements can be considered a special form of collection-controlled state-
ments, if collections of a given size (corresponding to count) can be constructed.

Syntactically, the situation is similar to xt1: i f: the statement for repeated inclusion can be
implemented as an attribute (like in TAL) or as an element.

For that reasons, XTL only supports one statement for the repeated inclusion of template
fragments, namely xt1: for-each. Currently, there is no statement for an early exit. Thus,
XTL is quite similar to XSL-T in its support for repetition.

Syntax

The xt1: for-each element supports four attributes: one for the description of the instantia-
tion data item to be used as the collection for controlling the repetition, two for the specification
of ordering the collection before using it and one for the support of realms, which is described
in detail in Section 4.5.1.

The select attribute contains a string from the query language that is passed to the in-
stantiation data evaluator. The string is evaluated within a certain context: if the xt1:for-
each is not contained in any xt1: for-each instruction, the context is the entirety of the
instantiation data. For the treatment of xt1 : for-each within xt1: for-each, refer to the
semantics of xt1: for-each described below.

The order-by attribute also contains a string from the query language that is intended to
be evaluated by the instantiation data evaluator. The result is used to sort the elements of the
collection obtained from the select attribute. The order attribute determines whether the
elements should be sorted in ascending or descending order.

73

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

Differently from the XTL elements described above, the xt1: for-each element is not de-
clared to be empty, but rather allows a sequence of arbitrary elements as its content. For
obvious reasons, the use of xtl:attribute as a (direct) child is prohibited, nevertheless,
xtl:attribute elements may be (indirect) descendants of xt1: for-each elements.

The children of xt1:for-each are the content that is to be repeated in the instantiated
template, depending on the result of the evaluation of the select attribute.

Semantics

In Listing 4.13, the function evaluateForEach is used to determine an instantiation data
item collection. If the result returned by evaluating the query string taken from the select
attribute is not a collection, it is the responsibility of the concrete implementation of evalu-
ateForEach to convert it into a list (which may be empty).

The collection is interpreted as a list of contexts, as they are passed as an argument to the
evaluateText, evaluateInclude, evaluateIf and evaluateForEach functions.
Thus, xt1: for-each is the only XTL element that is capable of changing the context which
determines the root for the evaluation of select attributes.

Optionally, it may be necessary to sort the collection returned by evaluateForEach. This
happens if an order-by attribute has been specified. The value of this attribute is evaluated
by calling evaluateText for each of the elements in the collection as context and sorting the
collection corresponding to the returned values.

The content of the xt1: for-each element is evaluated once for each element from the
collection by calling instantiateNodes and passing the current element from the collec-
tion as the context for the instantiation.

The mechanism of establishing a new context within xt1:for-each is basically similar
to the notion of the context item in XSL-T. As a consequence, relative XPath expressions are
similarly evaluated in XTL and XSL-T.

Since the syntax disallows the use of xt1l:attribute as a child of xt1:for-each, the
instantiateNode method returns always an empty attribute map for xt1: for-each.

It is also important to note that the use of the order-by attribute can seriously slow down
the instantiation of a template, as the whole collection must be evaluated before sorting can
take place. If no order-by attribute is specified, the evaluation of the collection can instead
take place lazily.

instantiateNode ids context macros (Element (QON _ ”for-each”
"http://research.sap.com/xt1l/1.0”) attributes children) =
let
selectExpr = attributes ! (QN ”"” "select” "")

contexts = evalForEach ids context selectExpr
orderedContexts = orderContexts ids attributes contexts
result = map (\currentContext -> instantiateNodes ids
currentContext macros children) orderedContexts
allChildren = map (\(macros, attributes, children) ->
children) result
in

74

4.3. Conditional and Repeated Inclusion of Template Fragments

(macros, empty, concat allChildren)

where
orderContexts :: IDS p -> AttrMap -> [p] -> [p]
orderContexts ids attributes contexts =
if (QON ”"” "order-by” ”") ‘member’ attributes
then
let
orderBy = attributes ! (QN ”” "order-by” "")
order = findWithDefault ”ascending” (QN ””
"order” "") attributes
ascOrdering cl c2 = compare (evalText ids cl
orderBy) (evalText ids c2 orderBy)
ordering = (if order == "ascending” then id else
flip) ascOrdering
in
sortBy ordering contexts
else
contexts
Listing 4.13: Semantics of xt1: for-each
Example

In Listing 4.14, xt1: for-each is used to create a number of empty item elements which
have an attribute named price which has the value of the USPrice element corresponding

to the item.

Template

<?xml version="1.0" encoding="UTF-8"?2>
<sample xmlns:xtl="http://research.sap.com/xtl/1.0">
<xtl:for-each select="//items/item"”>
<item>
<xtl:attribute name="price” select="USPrice/text()"/>
</item>
</xtl:for-each>
</sample>

Instantiation Result

<?xml version="1.0" encoding="UTF-8"?>
<sample>

<item price="148.95"/>

<item price="39.98"/>
</sample>

Listing 4.14: Example Use of xt1: for-each

75

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

4.4. Reuse of Template Fragments

An important addition is the introduction of a macro mechanism, as this allows to use a trans-
formational style within the template and, as a consequence, abolishes the limitation of pure
prototypical templates, in which the depth of the instantiated template is a linear function of
the depth of the template.

44.1. xtl:macro

Many of the slot markup languages support to reuse fragments of the template or target lan-
guage. As explained in Section 2.5.7, there is a variety of design options for macro mechanisms.

XTL only supports the most basic notion of macros. Neither parameter passing nor other
advanced techniques are supported. Macros are defined using xt1 :macro.

Syntax

xt1l:macro supports only one attribute, the name attribute declaring the name of the macro.
This value must be a string. The content of the xt1 :macro element is assigned to the name
literally. The use of xtl:macro is restricted: xtl:macro can only be used as direct child
of a template’s root element and no element nodes besides the root element and other xt1:
macro (as well as xt1l:init) elements are allowed to precede it.

Semantics

Listing 4.15 shows that instantiateNode evaluates the xt1 :macro element by just re-
turning a modified map of macros, in which the value of the name attribute is associated with
the list of children of the xt1:macro element. No elements or attributes are generated by
the instantiation of xt1 :macro.

instantiateNode ids context macros (Element (QN _ "macro”
"http://research.sap.com/xt1/1.0”) attributes children) =
let
name = attributes ! (QN ”” "name” "")
in

(insert name children macros, empty, [])

Listing 4.15: Semantics of xt1 :macro

Example

As the definition of macros does not change the instantiated template, the use of xt1 :macro
is shown below in Listing 4.17 together with the use of xt1l:call-macro to invoke the de-
fined macro.

76

4.4. Reuse of Template Fragments

44.2. xtl:call-macro

In order to invoke a macro defined with xt1 :macro, XTL offers the xtl:call-macro ele-
ment.

Syntax

xtl:call-macro supports only one attribute, the name attribute declaring the name of the
macro. This value must be a string. No children are allowed in xt1:macro. The use of xt1l:
call-macro is unrestricted.

Semantics

Listing 4.16 shows that the instantiation of xt1: call-macro instantiates the children of the
xtl:macro with the same value of the name attribute at the location of the xtl:call-
macro element. Please note that this instantiation may occur in a different context (i.e., within
an xtl: for-each element) than the one that was active at the xt1:macro.

instantiateNode ids context macros (Element (QON _ “call-macro”
"http://research.sap.com/xt1l/1.0”) attributes) =
let
name = attributes ! (QN ”” "name” "")
nodes = macros ! name
in
instantiateNodes ids context macros nodes

Listing 4.16: Semantics of xtl:call-macro

Example

In Listing 4.17, xt1:macro is used to define a macro with the name simple. Afterwards,
xtl:call-macro is used to invoke the defined macro. The listing demonstrates that the
children of xt1:macro are instantiated at the location where the macro is actually invoked
using xtl:call-macro, as the attribute created using xt1:attribute occurs at the par-
ent element of xtl:call-macro.

Template

<?xml version="1.0"?2>
<sample xmlns:xtl="http://research.sap.com/xtl/1.0">
<xtl:macro name="simple”>
<xtl:attribute
name="date”
select="/purchaseOrder/@orderDate” />
<date>
<xtl:text select="/purchaseOrder/@orderDate” />
</date>

77

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

</xtl:macro>
<order>
<xtl:call-macro name="simple”/>
</order>
</sample>

Instantiation Result

<?xml version="1.0" encoding="UTF-8"2>
<sample>
<order date="1999-10-20">
<date>1999-10-20</date>
</order>
</sample>

Listing 4.17: Example Use of xt1l :macro and xtl:call-macro

4.5. Advanced Features

During the practical use of XTL in the projects SNOW and EMODE, a lot of features have been
added. Some of the features turned out to be very valuable, while others have been removed
due to unexpected problems or have been replaced by more powerful ones.

The most important advanced features are XTL’s capability to handle multiple instantiation
data sources using realms described in Section 4.5.1 and the support for instantiation pipelines
using bypassing described in Section 4.5.2.

4.5.1. Accessing multiple Instantiation Data Sources using Realms

It has turned out to be very beneficial to be able to access multiple instantiation data sources
from within one template. XTL supports any number of instantiation data sources. For example,
it is possible to access several XML documents using XPath in one template. Furthermore, each
source could be accessed using a different query language, allowing to access an XML document
using XPath and an ontology using SPARQL. A combination of a data source with an instantiation
data evaluator capable of evaluating the queries from the associated query language is called a
realm.

Syntax

XTL supports realms by two syntactical means: a realm attribute and an element named
xtl:init.

The realm attribute can be used with all XTL elements that support the select attribute.
The value of the realmattribute is interpreted by an implementation of an XTL template engine
in order to know which instantiation data evaluator is capable of interpreting the value of the
select attribute.

78

4.5. Advanced Features

The xt1l:init instruction can be used to initialize a realm, more exactly, its assigned in-
stantiation data evaluator. xt1:init can only be used as a direct child of the template’s root
element and no elements except xt1l:macro or xtl:init may precede it.

Semantics

The handling of realms has not been made part of the denotational semantics of XTL in order
to keep the semantics short and easy to understand. Furthermore, adding realms would not
add much value to the semantics, as it would only influence the way an IDS is chosen to call its
functions like evaluateText etc.

The use of multiple realms leads to multiple contexts. Each of the realms has its own context,
i.e., the evaluation of an xtl:attribute element with a realm attribute with a value of
a uses as its context either the context set by the innermost xt1: for-each with a realm
attribute with the value a or the instantiation source in its entirety, if there is no suitable xt1:
for-each.

An implementation should introduce the notion of a default realm, which is used when a tem-
plate contains XTL elements with select attributes, but without explicit realm attributes.

The children of the xt1l:init instruction are passed to the instantiation data evaluator
responsible for the realm denoted by the value of the realm attribute of xt1:init. An XTL
template engine implementation must not interpret this content in any way.

Example

Listing 4.18 illustrates the use of two realms within a single template. The first realm is named
po and refers to the po.xml file known from the previous examples. The second realm is
named id and is assigned to an instantiation data evaluator named identity that returns
the select attribute’s value in its evaluateText function and a collection of length n from
its evaluateForEach function, if the corresponding select attribute has a value of n.

It should be noted that the inner xt1 : for-each instruction obviously does not change the
context that is used by the xt1:text instruction with the realm attribute of the value po.

Template

<?xml version="1.0"2?>
<sample xmlns:xtl="http://research.sap.com/xtl/1.0">
<xtl:for-each select="//items/item” realm="po”>
<xtl:for-each select="2" realm="id"”>
<item>
<xtl:text select="productName” realm="po”/>
</item>
<item>
<xtl:text select="productName” realm="id”/>
</item>
</xtl:for-each>
</xtl:for-each>
</sample>

79

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

Instantiation Result

<?xml version="1.0" encoding="UTF-8"?2>

<sample>
<item>Lawnmower</item>
<item>productName</item>
<item>Lawnmower</item>
<item>productName</item>
<item>Baby Monitor</item>
<item>productName</item>
<item>Baby Monitor</item>
<item>productName</item>

</sample>

Listing 4.18: Example Use of Realms

4.5.2. Instantiation Pipelines using Bypassing

Applications performing complex XML transformations are often arranging multiple XML trans-
formers (like XSL-T processors) in transformation pipelines, an architectural pattern also known
as staged architecture [16]. There are two ways to arrange transformers into such a pipeline,
which are shown in Figure 4.1.

The first type, a horizontal pipeline, transforms a document XML, into a second document
XML and afterwards into a third document XMLc. Each of the three documents can comply to
a different XML dialect, as long as none of the documents represents an XSL-T stylesheet. The
second type, the vertical pipeline, differs exactly in the XML dialect produced by the transfor-
mation of the first document XML,: the result of this first transformation is itself a stylesheet
that is then used to transform XMLg into XMLc.

Horizontal Pipeline Vertical Pipeline

0 XMLg XMLc

Figure 4.1.: Types of XML Transformation Pipelines

The first type corresponds to the pipelines typically used in Cocoon [7] to implement complex
XML transformations, whereas the second type corresponds to the ideas proposed in [65] and
[64] to implement XSL-T language extensions transparently. A vertical XSL-T pipeline can also
be used to partially define the semantics of XTL. This is demonstrated in Section 4.6.

80

4.5. Advanced Features

Bypassing is a feature that helps writing templates that are intended to be instantiated using
a multi-stage (vertical) pipeline of XTL instantiation engines.

Syntax

Syntactically, XTL defines a special namespace URI that is parameterizable with the number of
instantiations that should be passed until the element associated with the namespace is actually
processed. This URI has the form http://research.sap.com/xtl/1.0/bypass/n
where n is the number of XTL template engines that should be passed before the element from
this namespace should actually be processed. The number n is called generation number. If n
is omitted, a default of 1 is assumed.

Semantics

Listing 4.19 shows the denotational semantics of the bypassing feature. This is an extension
to the default processing of elements shown in Listing 4.4: the difference is that the function
is guarded by the expression isBypassURI namespaceURI. This guard asserts that this
rule is only applied if the element is from a namespace complying to the namespace URI shown
above.

If the element is from a bypassing namespace, it is copied into the instantiated template with
a namespace with a generation number decreased by one. If the generation number reaches
0, the element is assigned to the standard XTL namespace. The attributes of the element are
directly transfered to the instantiated document, whereas the content of the element is instan-
tiated and the result is added as child to the element in the instantiation result.

instantiateNode ids context macros (Element (QN prefix namespaceURI
localName) attributes children) | isBypassURI namespaceURI =
let
(macrosl, attributesl, childrenl) = instantiateNodes ids
context macros children
newNamespaceURI = transformBypassURI namespaceURI
in
(macrosl, empty, [Element (QN prefix newNamespaceURI
localName) (union attributes attributesl) childrenl])

transformBypassURI :: String -> String
transformBypassURI uri =
if uri == "http://research.sap.com/xtl/1.0/bypass/" ||
uri == "http://research.sap.com/xt1l/1.0/bypass/1"
then "http://research.sap.com/xt1l/1.0"
else case matchRegex (mkRegex
("http://research.sap.com/xtl/1.0/bypass/([0-9]+)")) uri of
Nothing ->
uri
Just nodes ->
"http://research.sap.com/xtl/1.0/bypass/” ++ show (read
(nodes !! 0) - 1)

81

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

transformNamespaceAttributes :

transformNamespaceAttributes =

mapWithKey (\key -> \value ->
case key of

: AttrMap -> AttrMap

ON "http://www.w3.0rg/2000/xmlns/" ->
transformBypassURI value
_ => value)
isBypassURI :: String -> Bool
isBypassURI = isPrefixOf "http://research.sap.com/xtl/1.0/bypass/"
Listing 4.19: Bypassing Semantics
Example

Listing 4.20 shows the use of bypassing. In the first instantiation step, some element names are
collected from the instantiation data document. Furthermore, these names are used to dynam-
ically construct select attributes which are evaluated in the second instantiation, where the
number of elements with that particular name in the instantiation data document is counted.

The example shows that XTL elements within XTL elements marked for bypassing are evalu-
ated, thereby allowing the dynamic construction of queries. This feature also works over dif-
ferent query languages and greatly enhances the expressive power of the templates. However,
care should be taken as it is easy to construct unreadable templates this way. Section 7.3.1
demonstrates a use case where bypassing is valuable.

Template

<?xml version="1.0" encoding="UTF-8"?>
<sample
xmlns:xtl="http://research.sap.com/xt1l/1.0"
xmlns:xtl-bp="http://research.sap.com/xtl/1.0/bypass/1">
<xtl:for-each select="//*[starts-with(local-name(), ’'item’)]”>
<count>
<xtl:attribute name="name” select="local-name(.)"”/>
<xtl-bp:attribute name="count”>
<xtl:attribute name="select”
select="concat(’'count(//’,local-name(.),")")"/>
</xtl-bp:attribute>
</count>
</xtl:for-each>
</sample>

Instantiation Result after First Instantiation

<?xml version="1.0" encoding="UTF-8"?>
<sample xmlns:xtl="http://research.sap.com/xt1l/1.0">
<count name="items”>
<xtl:attribute name="count” select="count(//items)” />

82

4.6. Definition of the Instantiation Semantics using XSL-T

</count>
<count name="item”>
<xtl:attribute name="count” select="count(//item)"” />
</count>
<count name="item”>
<xtl:attribute name="count” select="count(//item)” />
</count>
</sample>

Instantiation Result after Second Instantiation

<?xml version="1.0" encoding="UTF-8"?>

<sample xmlns:xtl="http://research.sap.com/xtl/1.0">
<count count="1" name="items"”/>
<count count="2" name="item”/>
<count count="2" name="item”/>

</sample>

Listing 4.20: Bypassing Example

4.6. Definition of the Instantiation Semantics using XSL-T

The instantiation semantics of XTL can also be defined using XSL-T. Because of the fact that XSL-T
is limited to using XPath as its query language, this translational definition of XTL’s semantics is
restricted to the particular query language XPath.

The easiest way of defining a translational semantics would be to implement a single XSL-T
stylesheet that takes an XTL template and an additional XML document as instantiation data
source and outputs the instantiated template. Unfortunately, this is not possible as XSL-T (as
it is currently defined in [107]) is not capable of dynamically evaluating XPath expressions em-
bedded in its source documents. It is possible to circumvent this restriction in two ways. First,
an XSL-T extension function (like saxon:evaluate () implemented in [106]). Second, a ver-
tical two-stage transformation process could be used to avoid the necessity of dynamic XPath
evaluation.

Such a two-stage transformation process is shown in Figure 4.2. The left hand side shows a
template engine that transforms an XTL template using an XML instantiation data source XML,
into an instantiated template XMLg. The right side of the figure shows the implementation of
the same process using an XSL-T processor: first, the XSL-T processor compiles the XTL template
into an XSL-T stylesheet, which can afterwards be used to transform XML, into the instantiated
template XMLg.

The stylesheet XSL-T; represents the generic translation process between XTL and XSL-T: it
writes the XPath expressions contained in the XTL template as values of select attributes
into the stylesheet XSL-T,. As these XPath expressions are now no longer part of the source
document, but rather of the stylesheet, they can be evaluated by a standard XSL-T processor.

83

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

Instantiation using XTL Engine Instantiation using vertical XSL-T pipeline

Xw

Figure 4.2.: Using a Vertical XSL-T Pipeline to Emulate the XTL Engine

4.7. Relation to Document Validation

A generic XML slot markup language like XTL can also be used to check the validity of XML
documents, i.e., as a schema language [81]. The prototypical nature of templates in general
and of XTL templates in particular makes this schema language easy to learn and use. Figure 4.3
illustrates the differences between template instantiation and validation against a schema.

«validation o
result») ’

«scheman - «instance»
XTL p «schema validator» | XML
«template» p «template engine» p| «instantiated»
XTL XML
w w
[Validation Instantiation

Figure 4.3.: Schema Validation and Template Instantiation

Instantiation transforms an XTL document and an instantiation data source into an instanti-
ated template, whereas validation takes an XTL document and an XML document and answers
the question: Could this XML document be produced by the XTL document? In some specific
cases, even the reconstruction of the instantiation data may be possible.

The validation semantics of XTL can be given denotationally [81]. Another option is to give a
translational semantics by transforming XTL to RelaxNG. This transformation can easily be im-
plemented using XSL-T. XTL as a schema language allows to define the languages that can be
defined by regular tree languages (see [81]). It is even possible to express certain attribute/ele-

84

4.7. Relation to Document Validation

ment interdependencies in XTL, a feature missing in many other schema languages (see Sec-
tion 2.1.4).

As Figure 4.3 suggests, in most cases the result of the validation process will only yield a
yes/no answer. This leads to the question whether the query language terms embedded in
the select attributes in the XTL document used as schema are significant or opaque (see
Section 2.5.5) to the validator. Whereas [81] treats the select attributes as opaque (which
makes them meaningless, as there is no instantiation data source supplied by the application
using the validator), they can be used for other purposes. First, the select attributes could
be used to establish a link to simple types, allowing attribute values or text element content
to be restricted. Second, the select attributes could also be used to establish a mechanism
to validate static semantics within the instance. For example, a simple identifier could be used
that is bound when it is first referenced in a select attribute. In subsequent references, the
current corresponding value is checked for equality against the bound value.

Giving the select attributes a semantics may also lead to the opportunity to partially re-
construct the instantiation data source, as it has been suggested in Figure 4.3. An important
condition that must be fulfilled by the query language is reversibility of the queries: an XPath
expression like //author/@name is clearly not reversible, as it is unclear how many nodes
have been consumed by the // operator before the author element has been found. For an
example of a reversible XPath subset, see Section 6.3.2.

Increasing Similarity

0 Validation Instantiation

Figure 4.4.: Similarity between Schema/Template and Instance

Comparing XTL to other schema languages like RelaxNG and XML Schema indicates a contin-
uum of XML Schema languages in terms of similarity between instance and schema. Similarity
between the instance and a schema/template is mainly violated in two ways: first, by the reifica-
tion of elements or attributes using a metaelement and second, by the introduction of macros.
The similarity between a RelaxNG document and an instance is greater than that between an
XML Schema document and a corresponding instance, because of XML Schema’s strict distinc-
tion between element declarations and type definitions. Furthermore, the similarity between
an XTL document and a corresponding instance is greater than that between a RelaxNG docu-
ment and an instance, as RelaxNG enforces the reification of all elements and attribute names
using rng:element and rng:attribute, whereas XTL allows to literally include elements

85

4. Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language

and attribute names. The similarity relation between the mentioned schema languages is illus-
trated in Figure 4.4.

This figure also illustrates the similar relationship between transformation languages and pro-
totypical template languages. Again, the similarity between an XSL-T SSM and an instance pro-
duced by it is greater than that between an XSL-T stylesheet and its corresponding result, be-
cause XSL-T SSM does not enforce a new top level document structure like XSL-T does.

According to the relationships described, it should also be clear that XTL’s xt1 :macro and
xtl:call-macro instructions correspond to RelaxNG’s rng:define and rng:ref in-
structions. Even further, these instructions also correspond to the definition of types in XML
Schema. When considering instantiation, XTL’s macros correspond to the template rules in an
XSL-T stylesheet.

4.8. Conclusion

This chapter dealt with the design of XTL, a broadly applicable, syntax- and semantics-preser-
ving slot markup language. Starting with general design decisions, the various features of XTL
have been introduced by defining their syntax and semantics and by giving examples for their
use. The semantics has been defined denotationally. As Haskell has been used to express this
denotational semantics, a first implementation of XTL is possible just based on this chapter. The
semantics has also been given by translating XTL into XSL-T, which is only possible in a two-stage
process because of technical limitations of XSL-T. Finally, the relation of slot markup languages
to document validation has been discussed.

The precise definition of the semantics is a contribution of this thesis, as other template tech-
niques typically do not define the semantics formally. The denotational semantics has also been
used to check the validity of a later Java implementation of the XTL instantiation process (see
Section 6.2 and 7.2).

86

Safe Authoring of Templates

Better safe than sorry.
(English proverb)

This chapter explains the processes Constraint Separation and Template Validation from Fig-
ure 3.5, which are the processes that support the safe authoring of templates. The Constraint
Separation process, which adapts the template engine to a particular target language is shown
in detail in Section 5.1, where it is also described formally as a transformation based on the
XML Schema formalization introduced in Section 2.1.4. Section 5.2 introduces the Template
Validation process, which checks the validity of a template with respect to the target language
to which the template engine has been adapted.

In the following, the target language is assumed to be defined by an XML Schema. XML
Schema is widely used for the definition of XML dialects and is well-supported by a number
of tools, including validators and editors with support for both the creation of XML Schema
documents and documents complying to a certain schema. Therefore, this decision directly
addresses the Utilization of Existing Standards goal.

5.1. Constraint Separation

The Constraint Separation component is responsible for converting the grammar of the target
language into grammars that can be used to validate templates, as well as into constraints on
the instantiation data. The inferred grammar is used by the template validator to perform the
authoring time validation of the templates, whereas the instantiation data constraints are used

87

5. Safe Authoring of Templates

to check the instantiation data in the instantiation data validator. The grammar transformer is
therefore separating the authoring time from the instantiation time constraints.

The separation process is designed such that the conclusion illustrated in Figure 5.1 can be
drawn: if a template conforms to the template language and the instantiation data conforms
to the instantiation data constraints (both emitted by the Constraint Separation), then the in-
stantiated template conforms to the target language grammar (which has been used as input
for the Constraint Separation) process. The process is amazingly simple—for a discussion of its
correctness see Sections 5.1.5 and 7.2.5.

STirget N Constraint 'Iéergplate
chema v Separation chema
\ 4
Instantiation Data
Constraints
«conforms to» «satisfies»
Assertion Prequisite 2

Instantiation

Data
Instantiated y Temolate
Template Instantiation |« P
Adaptation M Authoring Instantiation

Figure 5.1.: Conclusion Enabled by the Constraint Separation Process

The Constraint Separation process described here relies on the separability of parts of a doc-
ument which could be created dynamically and parts of the documents which are always part
of the template. It is assumed that for all target languages to be created, markup is always
part of the template, whereas character data can be part of the template or subject to dynamic
creation.

For declarative text markup languages like XHTML, the assumption stated above is reason-
able. The template author—in this scenario a Web designer—is responsible for describing the
layout and the structure of the document, which is described in XHTML by markup and char-
acter data. The content of this document is typically delivered by the application that is using
the template to render its output. Therefore, it must also be possible to create character data
dynamically.

Itis important to note that structural differences in documents of the target language can still
be expressed by using XTL. However, the stated assumption prevents the proposed template
approach to be used in scenarios, in which the elements of the markup itself are dynamic. An
example for such scenarios are applications that must be capable of producing arbitrary XML

88

5.1. Constraint Separation

languages, which are not known before instantiation time. These applications therefore remain
the domain of transformation techniques like XSL-T.

5.1.1. Introductory Example

In the following, the separation of constraints is shown in an example. The XML Schema used
for the example is the purchase order schema po . xsd (see Listing A.3, [59]). An instance doc-
ument for this schema is shown in Listing 5.1. In the listing, four parts of the instance document
are shown that should be changed by the Constraint Separation process in order to allow them
to be dynamically set or to be influenced by the instantiation data. The four cases are discussed
in the following.

<?xml version="1.0" encoding="UTF-8"?>
<purchaseOrder
orderDate="1999-10-20"> @
<shipTo country="US">
<name>Alice Smith</name> @
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>
</shipTo>
<billTo country="US">
<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>0ld Town</city>
<state>PA</state>
<zip>95819</zip>
</billTo>
<comment>Hurry, my lawn is going wild!</comment> ®
<items> @
<item partNum="872-AA">
<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>
</item>
<item partNum="926-AA">
<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>
</item>
</items>
</purchaseOrder>

Listing 5.1: A Purchase Order with Potentially Dynamic Parts Highlighted

89

5. Safe Authoring of Templates

First, the Constraint Separation process must ensure that the value of the attribute order-
Data @ in Listing 5.1 could be created dynamically using an xt1:attribute instruction.

The same must be allowed by the Constraint Separation for the content of the name @ ele-
ment—the XTL instruction that could be used here is xt1:text.

Furthermore, an element declared to be optional, like comment @, should be replacable by
an xtl:if instruction containing the same element: in this example, a comment element.
Optionality is declared by the underlying XML Schema, in this case po.xsd, by setting the
minOccurs and maxOccurs attributes to 0 and 1, respectively.

Finally, repeatable elements, like the item elements within the items @ elements, should
be producable by an xt1: for-each instruction with appropriate content. In this example,
appropriate means conforming to the rules for the item element. An element is considered
repeatable when the underlying XML Schema sets maxOccurs to a value greater than 1.

The Constraint Separation process should produce a template language grammar that allows
the documents in both Listing 5.1 and Listing 5.2 as instances.

What are the modifications the Constraint Separation process needs to execute to transform
the target language grammar into the correspondings template language grammar? In the fol-
lowing, it is just considered how an XML Schema may look like, if it allows both documents in
the Listings 5.1 and 5.2 as instances.

<?xml version="1.0" encoding="UTF-8"?>
<purchaseOrder xmlns;xtl="http://research.sap.com/xtl/1.0">
<xtl:attribute name="orderDate” select="date”/>
<shipTo country="US">
<name><xtl:text select="shipTo/name”/></name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>
</shipTo>
<billTo country="US">
<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>0ld Town</city>
<state>PA</state>
<zip>95819</zip>
</billTo>
<xtl:if select="length(comment) > 0">
<comment>
<xtl:text select="comment”/>
</comment>
</xtl:if>
<items>
<xtl:for-each select="items/item”>
<item>
<xtl:attribute name="partNum” select="partNum”/>
<productName>Lawnmower</productName>
<quantity>1</quantity>

90

5.1. Constraint Separation

<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>
</item>
</xtl:for-each>
</items>
</purchaseOrder>

Listing 5.2: A Purchase Order XTL Template

Enabling the use of xt1:attribute in order to create attribute values is rather easy. The
attribute orderDate is defined in the complex type PurchaseOrderType, which is shown
in Listing 5.3.

<xsd:complexType name="PurchaseOrderType"”>
<xsd:sequence>
<xsd:element name="shipTo” type="USAddress”/>
<xsd:element name="billTo” type="USAddress”/>
<xsd:element ref="comment” minOccurs="0"/>
<xsd:element name="items” type="Items”/>
</xsd:sequence>
<xsd:attribute name="orderDate” type="xsd:date”/>
</xsd:complexType>

Listing 5.3: The PurchaseOrderType from po.xsd

Fortunately, the content model of the PurchaseOrderType is a sequence, so it is easy
to allow the use of xtl:attribute at its beginning. The resulting modified Purchase-
OrderType is shown in Listing 5.4. There is no use attribute at the definition of the order-
Date attribute, which makes it an optional attribute. If the attribute orderDate would have
been defined as required using use='required’, the Constraint Separation process would
have to change this to use='optional’ in order to allow the attribute to be omitted when
an xtl:attribute instruction is present to create it.

<xsd:complexType name="PurchaseOrderType"”>
<xsd:sequence>
<xsd:element ref="xtl:attribute” minOccurs="0"
maxOccurs="unbounded” />
<xsd:element ref="shipTo”/>
<xsd:element ref="billTo"”/>
<xsd:element ref="comment” minOccurs="0"/>
<xsd:element ref="items” />
</xsd:sequence>
<xsd:attribute name="orderDate” type="xsd:date”/>
</xsd:complexType>

Listing 5.4: The Modified PurchaseOrderType, Allowing the Use of xt1l:attribute

91

5. Safe Authoring of Templates

The modified type allows the use of xtl:attribute as shown in Listing 5.2. However,
the modified type introduces a lot of inaccuracies. First, there is no relation between the at-
tributes created using xt1l:attribute instructions and the set of attributes permitted on
xtl:attribute’s parent element. Second, there is no guarantee that an orderDate at-
tribute created using xt1 :attribute hasavalue thatis, as required by the original attribute
definition, a valid value of the type xsd : date. Whereas the first problem can be addressed in
the template language grammar (i.e., it can be validated during the authoring phase), the latter
problem can only be addressed during the instantiation phase, as the data used to create the
attribute is only available at this point.

The text node in Listing 5.1 that has been replaced by an xt1:text in Listing 5.2 is defined
in the type USAddress, which is shown in Listing 5.5.

<xsd:complexType name="USAddress”>

<xsd:sequence>
<xsd:element name="name” type="xsd:string” />
<xsd:element name="street” type="xsd:string”/>
<xsd:element name="city” type="xsd:string” />
<xsd:element name="state” type="xsd:string”/>
<xsd:element name="zip"” type="xsd:decimal” />
</xsd:sequence>

<xsd:attribute name="country” type="xsd:NMTOKEN"
fixed="UsS" />
</xsd:complexType>

Listing 5.5: The USAddress Type from po.xsd

In order to allow the replacement of the text node by an xt1 :text instruction, a complex
type with mixed content could be used. An example for such a type definition is shown in List-
ing 5.6.

<xsd:complexType name="USAddress”>
<xsd:sequence>
<xsd:element name="name”>
<xsd:complexType mixed="true”>
<xsd:sequence>
<xsd:element ref="xtl:text” minOccurs="0" maxOccurs="1">
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="street” type="xsd:string”/>
<xsd:element name="city” type="xsd:string” />
<xsd:element name="state” type="xsd:string”/>
<xsd:element name="zip” type="xsd:decimal” />
</xsd:sequence>
<xsd:attribute name="country” type="xsd:NMTOKEN” fixed="US"/>
</xsd:complexType>

Listing 5.6: The Modified USAddress Type, Allowing the Use of xt1:text

92

5.1. Constraint Separation

The relaxed USAddress type allows the introduction of xt1: text as shown in Listing 5.2,
but introduces similar problems like the introduction of xt1:attribute above. First of all,
the mixed content model does not exclusively allow the use of either literal text or the xt1:
text instruction, but rather allows a mixture of both. Second, there is again no guarantee on
the validity of the created text with respect to the originally defined type.

Allowing the use of xt1:if and xt1:for-each to surround optional or repeatable ele-
ments requires introducing a choice between the original element and the respective XTL in-
struction. For example, to allow the use of xt1:if to surround the optional comment el-
ement (see Listings 5.1 and 5.2, ®), a type definition like the one shown in Figure 5.7 can be
used.

<xsd:complexType name="PurchaseOrderType”>
<xsd:sequence>
<xsd:element name="shipTo” type="USAddress” />
<xsd:element name="billTo” type="USAddress” />
<xsd:choice minOccurs="0">
<xsd:sequence>
<xsd:element minOccurs="1" ref="comment” />
</xsd:sequence>
<xsd:sequence>
<xsd:element ref="xtl:if” minOccurs="1"
maxOccurs="1" />
</xsd:sequence>
</xsd:choice>
<xsd:element name="items” type="Items” />
</xsd:sequence>
<xsd:attribute name="orderDate” type="xsd:date” />
</xsd:complexType>

Listing 5.7: The Modified PurchaseOrderType, Allowing the Use of xt1:if

Again, the introduction of the XTL instruction has opened up a number of new problems.
First of all, the syntactic definition of xt1: i f defines its content model based on an xsd: any
wildcard. Therefore, the modified type does not guarantee that the content of xt1:if is ac-
tually a comment element. For the introduction of xt1: for-each, there is no guarantee
that the number of evaluations of the xt1: for-each instruction is between the values of
minOccurs and maxOccurs of the original type. Finally, if a sequence of multiple optional
or repeatable elements is enabled for the use of xt1:if and xtl: for-each, violations of
the UPA may occur.

The problems opened up by the simple relaxation of the target language grammar just demon-
strated are adressed with the means introduced in the sections below. Section 5.1.2 introduces
the Constraint XML Schema Definition Language (CXSD), an extension of XML Schema, which
extends XML Schema in its expressive power in a way needed by the Constraint Separation pro-
cess. Furthermore, Section 5.1.3 introduces the Instantiation Data Constraint language (IDC), a
very simple XML dialect that is used by the Constraint Separation process to express constraints
determined on the instantiation data. Based on these prerequisites, the Constraint Separation

93

5. Safe Authoring of Templates

process is introduced in Section 5.1.4. Section 5.1.5 demonstrates that the proposed process
preserves that constraints defined by the target language. Finally, Section 5.1.6 describes the
implementation of the Constraint Separation and Section 5.1.7 introduces an extension of the
Constraint Separation process called Partial Templatization.

5.1.2. The Constraint XML Schema Language CXSD

As shown in the example above, validating a template with respect to its instantiation results
requires a powerful schema language. XML Schema itself is not powerful enough to express
the constraints that must hold in order to assert that the instantiated template conforms to the
target language XML Schema. In other words, XML Schema is not closed under composition with
the XML Schema of XTL.

There are three reasons for this: first, the composed schema must be able to express complex
constraints between attributes and elements like the one above: either some element has an at-
tribute named attr or it has a child element named xt1l:attribute and a name attribute
with the value attr. XML Schema is not capable of expressing such complex constraints. Re-
laxNG allows to express choices between attributes and child elements, but is not able to ex-
press the further condition on the xt1:attribute element. Schematron [99] would be ca-
pable of expressing the constraint above.

Second, the composed schema must also be able to express alternatives for the element
content. One of such constraints occurs when the constraint separation process enables the
use of xt1l:text in an element that is defined to be of a simple type in the target language
(see Section 5.1.4). The constraint basically states that an element’s content is either complying
to some simple type or is an xt1:text element. Such alternatives are also not expressible
using XML Schema (even not using mixed content elements). RelaxNG is capable of expressing
such alternatives, whereas Schematron cannot express this, as it has no features to check text
nodes against simple types.

Finally, the introduction of xt1l:if and xt1l:for-each statements leads to UPA viola-
tions. Therefore, it is necessary to relax the UPA constraint. This makes the resulting schema
harder to evaluate, but validation is still possible—as is shown in Section 5.2—because the
unique particle attribution is still intact, but its application is delayed until the evaluation of
further constraints.

In order to fulfill the goal of Utilization of Existing Standards, it has been decided to add a
constraint language to XML Schema. The basicidea is to use OCL [136] constraints embedded as
annotations in an XML Schema in order to strengthen its expressiveness. The resulting schema
language is called CXSD. Technically, the embedded constraints are always invariants in the sense
defined by the specification.

There are multiple reasons why the use of OCL is beneficial. First, there exist powerful im-
plementations like the Dresden OCL Toolkit [183] and the implementation of the Model De-
velopment Tools (MDT) [53] subproject of Eclipse. Second, the OCL language allows the easy
adaptation of meta-models, which allows arbitrary capabilities to be built in to the language,
e.g., the capability to check simple types.

Even further, CXSD can improve the currently unsatisfying transformation of the Unified Mod-
eling Language (UML) models into XML Schema [34; 21]. If the UML model is enhanced using

94

5.1. Constraint Separation

OCL constraints, which is an important technique to build concise models that could be used
in MDA processes, the constraints are typically ignored when transforming into XML Schema.
With CXSD, the constraints could simply be transformed into corresponding constraints in the
schema, thereby greatly enhancing the conformity of the transformation result with the UML
model.

By design, CXSD schema is unable to relax the constraints imposed on a complying document
by its underlying XML Schema, i.e., each of the OCL constraints is restricting the number of com-
plying instances (or leaves it unchanged). More specifically, if a document is not complying to
the underlying XML Schema, it will also not comply to the CXSD document, while the reverse
is not true. To distinguish between the language accepted by a CXSD schema from that of the
underlying XML Schema, the first schema is denoted by S* and its language therefore by £(5%),
whereas the latter is designated by .S with its accepted language being £(S). With these no-
tations, the fact that CXSD only restricts the constraints contained in its underlying schema can
be formally notated as £(S5%.) \ £(S%0) = @.

To understand the meaning of the OCL constraints which are introduced by the constraint
separation process, it is necessary to consider the underlying metamodel. An UML class diagram
of the metamodel is shown in Figure 5.2.

H AttributeNode H MMNode H DocumentNode
= namespacellRI - EString ' name : EString
= gname : QName O category : EString
= value : EString = domNode : DOMNade
T localName : EString
attributes [0. D @ log(EString) : EBoolean
parent | 0.1 0.* ancestors
0.1
E ElementNode
E ChildNode 0.x = namespacellRI : EString root
children T gname : QName
A @ valid(QMame) : EBoolean
@ expandQName(EString) : QName
precedingSibling| 0..* 0..7| followingSibling
<<datatype>>
& QName
[<<javaclass>> javax.xml.namespace.QNameg
H TextNode
= content : EString
E CommentNode SRS b g - EBool <<datatype>>
islgnor pace : & DOMNode
@ isValidLiteral(QName) : EBoolean <<javaclass>> org.wic.dom.Node

Figure 5.2.: Meta-model for the CXSD constraints

The metamodel is mostly self-explaining, as it closely resembles the Document Object Model
(DOM). The node class from DOM is represented by the MMNode class. In additions to DOM’s
capabilities, additional relations corresponding to XPath axes have been added: for example the
capability to access the ancestors of each node that has been added to the MMNode. Further-
more, a method isvValidLiteral has been added to the TextNode that allows to check
whether the text of the node is compliant to a simple type denoted by a passed QName.

95

5. Safe Authoring of Templates

As already has been stated above, all constraints in the CXSD are invariants. This makes it
unnecessary to attach the keyword inv to the constraints, especially since the naming of con-
straints is a part of CXSD (as already described). Furthermore, the OCL specification [136] de-
fines that invariants are relative to a contextual type. In the standard use of OCL as an extension
to a UML model, this context is given using the context keyword along with a textual specifi-
cation of the context type. In CXSD, the context is inferred from the position of the constraint
within the XML Schema. CXSD allows constraints to be attached to attributes and elements as
well as to types. In the latter case, the constraint must hold for all elements complying to that
type. Additionally, constraints can be added to restrictions (which fits the fact that constraints
are restrictive by nature), but not to extensions (as no syntax for the revocation of constraints
has been defined to be part of CXSD).

The embedding of the OCL constraints into XML Schema is based on XML Schema’s appinfo
feature [180, Section 3.13]. Typically, the embedding is done in a CDATA section to avoid having
to escape characters like <, which are quite important in OCL. The CXSD language allows the
assignment of a simple name and a message to each constraint. The simple name is intended
to be used to denote the constraint in error messages. The message should give more details
and is proposed to be shown as a detailed error description when the constraint fails.

A complete element declaration with an embedded OCL constraint is shown in Listing 5.8.
It shows the declaration of a test element. The element declaration contains an xsd:an-
notation element, which in turn contains an xsd:appinfo element having its source
attribute settohttp://research.sap.com/cxsd/1.0. This element contains the root
element of the CXSD invariant, cxsd: inv. This element has two subelements, cxsd:ocl,
containing the OCL representation of the constraint as a CDATA section, and cxsd:message,
a human-readable message that is reported if the constraint fails during the CXSD validation
process. The evaluation of the constraint takes place whenever a node in an XML document is
successfully validated against the element declaration into which it has been embedded. Then,
the context of the OCL evaluation is this node.

<xsd:element name="test”>
<xsd:annotation>
<xsd:appinfo source="http://research.sap.com/cxsd/1.0">
<cxsd:inv name="restricted-atribute-count”>
<cxsd:ocl>
<! [CDATA[
self.attributes->size() <= 2
11>
</cxsd:ocl>
<cxsd:message>
At maximum, 2 attributes can be present.
</cxsd:message>
</cxsd:inv>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence />
<xsd:attribute name="a"” type="xsd:string” />

96

5.1. Constraint Separation

<xsd:attribute name="b"” type="xsd:string” />
<xsd:attribute name="c” type="xsd:string” />
</xsd:complexType>
</xsd:element>

Listing 5.8: A complete CXSD Element Declaration with an Embedded OCL Constraint

The constraint restrains the number of attributes allowed at the test element to two out of
three attributes a, b and c that are allowed by the schema itself. Therefore, the XML snippet
<test a=’'1l’ b='2’/> would be valid, whereas <test a=’'1’ b='2' c¢='3"'/>
would not be valid, because the OCL constraint evaluates to false.

In the following, two additional examples show how the CXSD can be leveraged to express
constraints that would not be expressible using XML Schema alone. First, an example demon-
strates how CXSD can be used to express an exclusive-or between attributes, which is part of
the XML Schema specification. Afterwards, an exclusive-or relation between an element and an
attribute is shown, which is part of the XSL-T specification. Both examples show the expressive
power and value of CXSD.

Refining the XML Schema Self Description XMLschema . xsd

XML Schema does not allow to express exclusive-or relations between attributes. An example
for such an exclusive-or relation can be found in the XML Schema specification itself: at an ele-
ment declaration, either a default or a fixed attribute can be present [180, Section 3.3.3].
Note that this lack of expressiveness makes it impossible to define an XMLSchema .xsd com-
pletely equivalent to the specification, as not all constraints given by the XML Schema specifica-
tion can be expressed in it. While this is inexpressible in XML Schema, it can well be expressed
using CXSD, as is shown in Listing 5.9.

let
fixedPresent:Boolean =
self.attributes->select(name='fixed’)->size() > 0,
defaultPresent:Boolean =
self.attributes->select (name='default’)->size() > 0
in
not(fixedPresent and defaultPresent)

Listing 5.9: Expressing a Constraint from the XML Schema Specification with CXSD

It is easy to see that the constraint first checks whether the fixed and default attributes
are present by selecting them from the attributes axis defined in the meta-model and
stores the result in the Boolean variables fixedPresent and defaultPresent. Af-
terwards, the constraint states that not (fixedPresent and defaultPresent) must
be true, which prevents both attributes from being present at the same element declaration.

Another example that can be formulated in CXSD is the complex relation between the at-
tributes name, ref and the text content of an xsd: element element stated in [180, Section

97

5. Safe Authoring of Templates

3.3.3] (which basically states that a non-global element has either a name or a ref attribute,
and is empty besides the xsd: annotation element in the latter case).

Even the most complex restriction dictated by the XML Schema specification, the UPA, could
be expressed using CXSD. This could be achieved by applying the concept of Brzozowski deriva-
tives [33] to XML Schema processing. This suggestion stems from [168], and the concept of
initial determinism introduced there could easily be implemented in OCL (as the calculation
mostly includes set operations, which are well-supported in OCL), allowing the monitoring of
the UPA constraint in CXSD.

Implementing Constraints of the XSL-T 2.0 Specification

XSL-T 2.0 (as well as its predecessor version) defines a lot of elements in which the existence
of mixed content implies the absence of the select attribute. An example for this is the
xsl:with-param element which can be used to pass parameters to a template, for ex-
ample when calling a named template with xsl:call-template. The value of the pa-
rameter is either retrieved by evaluating the select attribute (if present) or by evaluating
the so-called sequence constructor parented by the xs1:with-paramelement [107, Section
10.1.1]. Other elements, for which a similar constraint is contained in the specification, include
xsl:attribute, xsl:comment, etc.

A constraint enforcing this syntax is shown in Listing 5.10. The constraint basically counts
the number of text or element nodes within the xs1:with-param element and determines
whether it carries a select attribute, and checks that the existence of text or element nodes
implies the absence of select.

let
selectPresent:Boolean =
self.attributes->select(name='select’)->size() > 0,
childrenPresent:Boolean = self.children->select(
oclIsTypeOf (ElementNode) or oclIsTypeOf (TextNode)
)->size() > 0
in

childrenPresent implies not(selectPresent)

Listing 5.10: Expressing a Constraint from the XSL-T 2.0 Specification with CXSD

5.1.3. The Instantiation Data Constraint Language IDC

In the previous section, the validity of the instantiation data has been assumed. In order to sat-
isfy this assumption, a second language called IDC has been developed. This simple language
allows to specify properties of the instantiation data which could later be validated in the instan-
tiation data validator (see Section 6.3) or asserted using the alternative approach of Template
Interface Generation (see Section 6.3.2).

As opposed to the CXSD, the IDC language has been specifically designed to fit exactly the
needs of the constraint separation process. It is therefore a very domain specific language,

98

5.1. Constraint Separation

which is not intended to be reused in other scenarios. This also explains the limited capabilities
of the IDC.

Similar to the CXSD, IDC statements are embedded into an XML Schema using its appinfo
element [180, Section 3.13]. An IDC statement is always embedded into the reference to an
element from the XTL.xsd. A particular IDC statement starts with a single constraints
element that contains a sequence of constraint elements. Each of these constraints is itself
empty, but has the following attributes:

1. The type attribute gives the qualified name of a (simple or complex) type to which the
instantiation data item must comply. If a multiplicity (see below) is specified, each of the
instantiation data items must comply to that type.

2. Themin and max attributes are used to specify the lower and the upper limit of the mul-
tiplicity of this instantiation data item. The attributes default to a value of 1, which means
that exactly one single instantiation is expected. The types of the attributes min and max
are the same as the types of the XML Schema attributes minOccurs and maxOccurs.

3. The for-name attribute allows to specify an additional qualified name. This attribute
is only valid if the IDC statement is embedded into an xtl:attribute reference. It
restricts the particular constraint to be valid only for the creation of the attribute with the
specified name. This way, multiple IDC constraints can be formulated for a single position
at which xt1l:attribute can be used to create several, differently typed, attributes.

Figure 5.11 shows an example of an IDC fragment. It shows an IDC statement that is em-
bedded into a reference to xt1l:attribute. It contains exactly one constraint that restricts
the instantiation data value to be used for the creation of the order (value of for-name)
attribute to be of type date (value of type).

<xsd:element ref="xtl:attribute” minOccurs="0" maxOccurs="unbounded”>
<xsd:annotation>
<xsd:appinfo source="http://research.sap.com/xtl/idc/1.0">
<idc:constraints>
<idc:constraint type="xsd:date”
for-name="orderDate” />
</idc:constraints>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

Listing 5.11: An Instantiation Data Constraint in an XML Schema fragment

5.1.4. Constraint Separation Process

In order to understand the construction of the template language schema, it is necessary to
consider the relation between the target language schema and the template language schema
(viewed both as CXSD document and as its underlying XML Schema), which is shown in Fig-
ure 5.3. The figure assumes that the instantiation data is valid with respect to the instantiation

99

5. Safe Authoring of Templates

data constraints. Please note that the figure already reflects that the target language schema is
exactly defined by the CXSD document, i.e., ° = £(S5%.). There are four cases:

(a)

(b)

(c)

This case is reflecting the fact that templates are prototypical by definition (see Defini-
tions 2.5 and 2.11): each target language document must also be part of the template
language, i.e., Vt € T : t € €°, or, in terms of languages, ¥ C <°.

All documents which are complying to the template language must instantiate into docu-
ments from the target language. This is reflecting the requirement of preservation, mean-
ing that all constraints from the target language schema have been successfully trans-
ferred into the template language schema (considered as an CXSD document). Formally
Vt® € T° : instantiate(d, t°) € ¥ for valid instantiation data d.

Documents that only comply to the template language schema considered as an XML
Schema but do not comply to it considered as CXSD document do not instantiate into
the target language. As these are documents that may be constructed using an editor
that only supports XML Schema but not CXSD, the number of documents falling into this
case should be minimized. This helps creating valid templates with standard tools, a goal
called approximation. Formally, £(Sz) \ £(5%.) should be minimized.

Documents that do not even comply to the template language schema considered as XML
Schema do not instantiate into the target language: Vt° ¢ T° : instantiate(d,t°) ¢ ¥
independently of the instantiation data d.

Instantiation

Figure 5.3.: Set Relations between Template and Target Language

To restrict the complexity of the Constraint Separation step while still being able to present a
working solution, it is necessary to restrict both the XML Schema features used in the definition
of the target language as well as the complexity of the XTL itself.

100

5.1. Constraint Separation

The four most important instructions of XTL are considered by the following description of
the constraint separation process: xtl:attribute, xtl:text, xt1l:if and xtl:for-
each. Support for xt1:include is not considered, but xt1: include could easily be en-
abled at all places in which xsd:any wildcards are used in the XML Schema. Additionally,
xtl:macro and xtl:call-macro are not supported by the constraint separation process
described here.

On the other side, the set of XML Schema features used to describe the target language had
to be restricted as well. Most notably, xsd:all and mixed content models and substitution
groups are not considered. Identity-constraint definitions are also not considered, as their treat-
ment would require advanced XPath rewriting techniques.

To describe the constraint separation process, an XML Schema instance as defined by Defi-
nition 2.16 is assumed as a target language grammar. The template language grammar is no
longer an XML Schema document, as it contains OCL constraints (expressing authoring con-
straints) as well as IDC constructs (expressing instantiation data constraints). Definition 5.1 be-
low contains extension points at which both types of constraints can be stored. The constraints
themselves will not be formalized beyond what has been said in Section 5.1.2 and 5.1.3, as this
is not necessary to document the basic idea of the Constraint Separation process.

Definition 5.1 (Set of extended content models). The set of extended content models ECM(X,
N, E) over the set of simple types ¥, the set of non-terminal symbols N and the set of qualified
names for elements F is defined recursively as follows:
e The empty sequence ¢ is an extended content model: ¢ € ECM.
e All simple types are extended content models: Vo € 3 : ¢ € ECM.
¢ All non-terminal symbols are extended content models: Vn € N : n € ECM.
¢ All element names are extended content models: Ve € E : e € ECM.
¢ All element names equipped with an authoring constraint ¢, and an instantiation data
constraint ¢; are extended content models: Ve € E : e{cq, ¢;) € ECM.
e For two extended content models cm; € ECM and cmy € ECM, the results of the follow-
ing operations are also extended content models, i.e.,
- cmq,cmy € ECM, meaning a sequence consisting of the two extended content mod-
els,
- cm;|cme € ECM, meaning a choice between the two extended content models,
and,
- cmi{i, j} € ECM, meaning a repetition of the extended content model cm;, where
i €N, jeNU{x}andj #* = i < j, with the special symbol * meaning
unrestricted repetition. O

A CXSD schema with embedded IDC constructs is an XML Schema as defined in Definition 2.16,
but with the notion of the content model as defined in Definition 2.18, replaced by that of an
extended content model as defined in Definition 5.1.

The Constraint Separation process transforms the target language grammar T = (X, N, E, A,
N,, R) into the template language grammar 7° = (X, N, E°, A, No, R°), where

e F°= FU{xtl:attribute,xtl:text,xtl:if,xtl:for-each},i.e., the set of
elements from the target language grammar extended by the elements xtl:attri-
bute, xtl:text,xtl:if and xtl:for-each,

101

5. Safe Authoring of Templates

R° = |J{X — cs(e,ad*,cm)|r = X — e(ad*,cm)}, with the constraint separation
reR
function cs as described below.

The constraint separation function cs(e,ad”, cm) is defined as follows: cs(e,ad*,cm) = e
(ad*®, cm®) where

ad};,.q = fixed(ad”) is the set of attribute declarations that assign a fixed value to the
declared attribute,

ad; . uirea = rea(ad®) \ ad};,., is the set of attribute declarations that declare required
attributes without an assigned fixed value,

ad’ jea = U {(a,0,0,f)|ad = (a,0,1, f)} is the a set of attribute declarations that
adcad”
corresponds to ady. ;.4 but has all its attribute declarations’ required cardinalities re-

laxed to optional (or 0 according to Definition 2.17),
adyiner = ad™\ady, yireq \ @dFeq i the set of attribute declarations that are neither
required nor have a fixed value assigned,

ad™ = ad};,.qUad; p,eq Uady,,, is the new set of attribute declarations after the con-
straint separations, which is the union of the sets of the fixed, the other and the relaxed
attribute declaration sets,
cs’(cm) ifn =0,
xtl:attribute{m,n}{(c¥" (ad c#try cs/(cm) otherwise
where m = | adrequzred ‘ andn =m+ | adother |

o

cm

relaxed) ’

The helper function cs’(cm) isin turn recursively defined over the structure of content models
(according to Definition 2.18, as its arguments are content models from the target language
grammar) as follows:

cs'(€) = ¢,
cs'(o) = (S\th text)(c; ™ (0), i)
cs'(N) =
cs'(e) =
cs’(emy, cmg) =c¢s'(emy), cs’'(cmy),
cs’(emy | ecmg) = cs’(cmy)| cs’'(cmo),
s/ (cm{i, j}) = cs”(e{i,j}) if cm=ewheree € F,

cs’(em){i,j} otherwise

It should be noted that the relaxation of the simple type o to the general string type S in the
definition of cs’(o) arises from the fact that for elements with mixed content, no simple type
restricting the eventual text content can be specified in XML Schema [180]. The restriction has
therefore been moved into the corresponding authoring constraint c/** (o).

The function cs’ introduced above basically performs an identity transformation on the con-
tent model, except for the case in which a reference to an element is found within a content
model. In this case, the processing is actually done by the helper function cs”, which is defined
as follows:

xt1:if(c (e), ¢ ())]e]0,1} ifi=0andj=1,

s"(e{i,j}) = { ef1,1} ifi=j=1,

102

xt1:for-each(ci %" (e), S (i j))|e{i,j} otherwise

’

5.1. Constraint Separation

The construction of the referenced authoring and instantiation data constraints follows be-
low. Itis important to note that the authoring constraints are given as expressions over a formal
representation (see Section 2.1.3) of the XML instance to be validated, whereas the instantia-
tion data constraints are given as sets of tupels (a, 0,1, j), where a is an attribute name, o is
a simple type and ¢ and j are minimum and maximum cardinalities for the instantiation data.
The free variable v in the authoring constraints refers to the node against which the constraint
is validated.

Cattr(adrelaxed) V(CL a, i f) € adrelaxed Cl(a U) And CQ(a U) where
c1(a,v) = = hasAttr(v, a)
ca(a,v) = ' € children(v) : label(v) = xt1l:attribute A attr(v’, name) =
C(zlttr(adrelaxed) {(B _) | (CL, g, i’ f) € a’d:elaa:ed}
Valid(a, €) if children(v) = ¢,
(et () = Valid(o, value(v’)) if children(v) = v’ A label(v') = T,
¢ true if children(v) = v' A label(v) = xt1:text,
false otherwise
et (o) = {(=, 7,)}

= children(v) = v A label(v’) =

The xt1l:text authoring constraint cff“ is validating the content of the xt1:text ele-
ment against the simple type o expected at the location in the document at which xt1:text
has been allowed by the Constraint Separation process, whereas the xt1: for-each author-
ing constraint c¢1°" %" is only checking for the name of the contained element. The reason for
this behavior is that the xt1 : text element is declared to allow mixed content, in which case
the simple type to which the content should comply could not be specified. On the other hand,
the xt1: for-each declaration within the XTL . xsd schema enforces a strict processing (see
[180, Section 3.10.1]) of the elements complying to the wildcard within the xt1: for-each
content model. The strict processing allows the xt 1 : for-each authoring constraint to check
only for the name of the element within it. The same argumentation also holds for the xt1:if
authoring constraint ci/ (e).

5.1.5. Proof of the Preservation of the Target Language Constraints

The following argumentation shows that instantiating a template which has been validated as
suggested by the mechanisms in Chapter 5 yields a document from the target language. This

103

5. Safe Authoring of Templates

argumentation, together with the roundtrip test case described in Section 7.2 shows the fulfill-
ment of the Safe Authoring goal.

For the argumentation, the following assumptions are made:

* The target language should be denoted T and is described by the schema 7' = (X, N, E,
A, N, R).

* The template language is denoted by T° and described by the CXSD schema T° = (X, N,
E°, A, No, R°). This expanded schema is derived from 7' by applying the process de-
scribed in Section 5.1.4.

e Atemplate ¢t° is an XML document (V°, vg, label®, children®, attr®, value®) with t° € T°
that belongs to the template language, i.e., it belongs to the target language’s schema
t° e £(1°).

e The instantiation data is denoted by d and is assumed to satisfy the instantiation data
constraints 1.

Given these assumptions, it can be shown that the instantiated template belongs to the tar-
get language, i.e., instantiate(d, t°) € <. This fact can be shown by giving two proofs for sub
statements: First, it must be shown that each node in the instantiated template has at least
the attributes it is required to have and that the attribute values are of the correct type. Sec-
ond, it must be shown that each node satisfies its content model, i.e., that its children have
the exact type (simple or complex). Proving both statements is equivalent to proving the main
statement, as they define local validity against the defined XML Schema subset in the sense of
[180, Section 2.1].

In the following, the instantiated template is named ¢ = instantiate(d, t°) and is also a well-
formed XML document, i.e., t = (V, v,, label, children, attr, value). Furthermore, the one-to-
one relationship between rules in the target and the template language grammar established
by the Constraint Separation process in Section 5.1.4, is formalized by a function cr (“corre-
sponding rule”) that maps a rule r € R from the target language grammar to arule r° € R° of
the template language grammar, i.e., cr(X — e(ad*,cm)) = X — cs(e, ad*, cm).

5.1.5.1. Completeness of the Set of Required Attributes

The following is valid for each v € V. Assume that v has been instantiated from the node v°,
which has been produced by a rule r° = X — e(ad*®,cm®) € R°. Because of the one-to-one
relationship between rules in the template and the target language grammar maintained by the
constraint separation process, the node v must comply to the rule » € R with r° = cr(r).

Then it must be shown that V(a, 0,1, f) € req(ad™) : hasAttr(v, a). Depending on whether
the required attribute is or is not part of the template t°, the following two cases must be con-
sidered:

o If the attribute is contained literally in the template, i.e, if hasAttr(v°, a), the attribute
will also be part of the instantiated template ¢, i.e., hasAttr(v, a), as the instantiation
never removes attributes (see Chapter 4). The attribute will always be contained literally
in the template if it is required and has an assigned fixed value, since this attribute is also
required by the template language grammar.

104

5.1. Constraint Separation

e If the attribute is missing in the template, i.e., if— hasAttr(v°, a)), it is necessary to further
consider the rule r°. If the rule r, from which r° is originating, had attribute declarations
for required attributes, the rule r° will have an extended content model on the right side,
which adds the constraint ¢;(a,v°) < ca(a,v°) (see Section 5.1.4) for each attribute
required by the target language grammar (but without a fixed value) to the right hand side
of r°. As ¢ (a,v°®) = —hasAttr(v°, a) is true since it follows from — hasAttr(v°, a) and the
fact, that the template instantiation is not removing attributes from the template, co must
also be true to satisfy c¢1(a, v°) < ca(a,v°), therefore ca(a,v°) = Fv’ € children(v®) :
label(v°) = xt1l:attribute A attr(v/,name) = a must evaluate to ¢rue. This means
that v° is parent to an xtl:attribute instruction which has a name attribute with
the value a. From the existence of this xt1:attribute child element hasAttr(v, a)
can be inferred using the semantics of xt1l:attribute in Listing 4.7.

5.1.5.2. Compliance to the Content Model

Compliance of the nodes in the instantiated template to their proposed content model as de-
fined by T" can be shown by induction over the nodes in t. The induction starts with nodes which
have simple content (i.e., the leaves of the tree formed by the XML document ¢). The induction
step shows that a node which is containing only nodes that fulfill their proposed content models
also fits its own content model.

Induction start For each rule » € R producing simple content, i.e., foreachruler = X —
e(ad*, o), there is a corresponding rule ° = cr(r) € R°. In the following it is shown that if
a node v° in the template is produced by the rule r°, the node v instantiated from v° will be
valid with respect to the rule r in terms of its content, i.e., the node v will have content which
complies to o.

As r° is created from r using the Constraint Separation process described in Section 5.1.4, it
has the form X — e(ad™, (S|xt1l:text)(cl (o), c*")). As the template ¢° is valid with
respect to 7° by assumption, the constraint ct*! (o) evaluates to true for v°.

It must be shown that either children(v) = e with Valid(o, €) or children(v) = vg with label(vg)
= T and Valid(o, value(vg)). There are three cases depending on the number and type of the

children of v,:

* Ifthe node v° has no children, i.e., if children®(v°) = ¢, then the node v in the instantiated
template will also have no children (due to the semantics of XTL), i.e., children(v) = €. The
empty node v is valid with respect to 7, as c!“! () is true in this case exactly if Valid(o, €),
which has been reasoned above.

* If the node v° has exactly one child, which is a text node, i.e., if children(v°®) = v§ and
label(vg) = T, the value of this node, value(vg), is literally transferred into the instan-
tiated template, i.e., children(v) = vy, label(vp) = T and value(vg) = value(vg). From
the fact that the authoring constraint Valid(o, value(vg)) is true by assumption, it follows
that Valid(o, value(uvg)) holds, too. The last expression means that v is valid with respect
to therule r.

105

5. Safe Authoring of Templates

There are no other cases in which ¢

* If the node v° has exactly one child, i.e., children(v°) = v, and if this child node is an

xtl:text elementnode,i.e., label(vg) = xt1:text, the instantiated node v will have
one child node vy with children(v) = vy, whichis atextnode, i.e., label(vy) = T which has
a value value(vp) = d taken from the instantation data. The instantiation data constraint
clert = (— o, —, —) asserts that d € o and therefore, that v complies to the rule 7.

text

et evaluates to true, therefore, there are no other se-

quences of children vo can have without violating the assumed authoring constraint cL¢%t.

Induction step For each rule r € R producing non-simple content, i.e., for each rule r =
X — e(ad*,cm) with cm beingone of ¢, X € N, e’ € E, (cmy, cma), (cmq|ema), ecmq{i, j}
with cmy,eme € CM(X, N, E), there is a corresponding rule r° = cr(r) € R°. It must be
shown that the node v instantiated from v, is valid with respect to the rule r, if v, is valid with
respect to r°.

Depending on the concrete value of cm, the following cases must be considered:

106

e If cm = ¢, the transformed rule 7° will also be of the form X — e(ad*,¢€). Thus, the

node v, will have an empty child sequence children(v°®) = ¢, which is instantiated into
an empty child sequence on the instantiated node v, i.e., children(v) = €. Obviously, this
sequence satisfies the content model defined by r.

If cm is a non-terminal X € N, the rules r and r° are again identical. Since the instantia-
tion of an arbitrary non-XTL node in a template yields the node itself, with the children in
the instantiation being the instantiated children from the template, validity is not affected
in this case. Therefore, if v° complies to rule r°, v complies to r as well.

If cm is an element name ¢/ € E, the transformed rule r° will be of the form X —
e(ad*, ¢’), i.e., the child sequence of node v° will be children(v°®) = v§ with label(vg) = €.
The instantiation of this node will lead to node v with the child sequence children(v)= vy
with an equally named child: label(v§) = ¢’. Therefore, v complies to r.

If cm is the concatenation ¢mq, cmo of two content models ¢cmq and c¢mo, the corre-
sponding transformed rule will be of the form X — e(ad*, (em/, em})). If the node
v° has the child sequence children(v°) = v3,v7; ... v],V505; - . - V5,,, Where the nodes
v5Hvs - - . v5, are valid with respect to the content model cm/, for i € {1, 2}, the instan-
tiated node v will have the child sequence children(v) = vigv11 ... V1,V20V21 - - . Vo,
which will be valid with respect to rule r if and only if the child nodes v;gv;1 .. . v, are
valid with respect to the content model ¢m; for i € {1,2}. In other words, the recursive
instantiation process does not change the validity of sequences.

For content models cm which are the alternative cm; | cmy of two content models cm;
and cmy, the argumentation for sequences above holds analogously.

If cm is a content model with cardinalities, ¢cmq{i, j} for some content model cmy, the
argumentation further depends on the content model cmj. If this is not just an element
e, the argumentation for sequences and alternatives above can be applied. If cmy is just

5.1. Constraint Separation

an element ¢, several cases depending on the minimum and maximum cardinality must
be considered:

o Ifi = 7 = 1, then this case degenerates to the case where cm is an element name ¢’
considered above already.

o Ifi=0andj = 1, the content model cm will be of the form xt1: if(cflf(e), czf()>|
e{0, 1}. The child sequence children(v°) can take three forms:

- For an empty child sequence, i.e., children(v°) = ¢, the instantiated node v will
also have an empty child sequence, i.e., children(v) = e. This node v is valid
with respect to the rule r, as the minimum cardinality for the element e was 0.

- If the child sequence contains only one node labeled ¢, i.e., children(v°) = vg
with label(vg) = e, the instantiation will give a node v with the child sequence
children(v) = vo and label(vg) = e, which is again valid with respect to the rule
r, as the maximum cardinality for the element e is 1.

- If the child sequence consists of a single node with the label xt1:if, i.e,
children(v°®) = v§ with label(vj) = xt1:1if, the authoring constraint il (e)
defines the child sequence of v to be children(vg) = v{ with label(v]) = e.
After instantiation, this yields a node v with either an empty child sequence (if
the instantiation data d used to instantiate the xt1: if instruction evaluated
to false) or a single-element child sequence children(v) = vg with label(vg) = e
(if d evaluated to true). In both cases, the node v is valid with respect to the
rule r, as it has been shown in the two cases above.

o In any other case, cm will be of the form xt1: for-each(c” " (e), e/ —*h
(,7))|e{7, 7} and the child sequence children(v°) can take two forms:

- If the child sequence is of the form children(v°) = v§vy ... v5 withi < n < j
andV0<k<n: Iabel(v,‘;) = ¢, the instantiated node v has an analogous child
sequence children(v) = vov; ... v, With VO < k < n : label(vg) = e, which is
also a valid sequence with respect to the rule r.

- If the child sequence consists of a single node labeled xt1:for-each, i.e.,
children(v®) = v§ with label(vg) = xt1: for-each, the authoring constraint
i7" (¢) restricts the child sequence of v§ to be children(vg) = v¢ with

label(v$) = e. The instantiation of this gives v a child sequence children(v) =

Vo1 - . . Uy With VO < k < n : label(vg) = e. The instantiation data constraints

asserts that © < n < j. Taken together, this asserts that the node v complies

to therule r.

5.1.6. Visitor-based Implementation of the Constraint Separation

An implementation of the Constraint Separation process is much harder than it may look after
considering the description in Section 5.1.4. There are two reasons for this: first, the imple-
mentation has to deal with the “syntactic sugar” that is removed from the description in the

107

5. Safe Authoring of Templates

previous section (actually, it is hidden in the transformation from an XML Schema to an XGram-
mar). Second, an implementation has to choose between a number of libraries available for
XML Schema, each with their own peculiarities and advantages.

There is a number of libraries for the manipulation of XML Schemas, most notably, the schema
manipulation library built into XMLBeans [8] and the analogous library built into Xerces [11].
Furthermore, it is possible to compile the XML Schema metamodel, i.e., XMLSchema.xsd,
with JAXB, leading to another possibility for the treatment of XML Schema as an object model.
The most important difference is the level of abstraction of the library, e.g., the JAXB-generated
library represents the concrete schema syntax, whereas the other libraries represent a more
abstracted view on the XML Schema.

While it would be very helpful to work on the more abstract syntax level, it is necessary to
manipulate the XML Schemas on the concrete syntax level in order to introduce the CXSD and
IDC constraints. Unfortunately, the libraries providing the abstract view on the syntax encap-
sulate the concrete syntax via their Application Programming Interface (API). Therefore, the
Constraint Separation component has been implemented using a JAXB-generated XML Schema
object model.

As it can be seen in Section 5.1.4, the Constraint Separation is a process which can easily
be separated in multiple steps, i.e., for enabling the use of the particular XTL instructions. The
Constraint Separation component is therefore implemented as a sequence of steps, where each
step operates the XML Schema object model produced by its predecessor. Figure 5.4 shows the
processing steps that implement the complete Constraint Separation process.

 BY U B

PrepareSchemaCompilation
NormalizeSchema
EnableControlStatements
EnableXTLAttribute
EnableXTLText

q Operates on the results of

Figure 5.4.: The Constraint Separation Processing Steps

The particular steps are implemented using a slightly modified visitor design pattern [74]. The
necessary modifications and their rationals are described in the following.

The first modification is caused by the fact that the XML Schema object model has been gen-
erated using JAXB. Therefore, the effort to add accept methods to all the classes in the ob-
ject model was too high. Instead, an org.lixlix.xtl.compiler.schema.Schema-
Acceptor has been implemented that contains the accept methods of all visitable ele-
ments.

The org.lixlix.xtl.compiler.schema.SchemaVisitorBase contains imple-
mentations of visit methods for all visitable elements. These methods are intended to be

108

5.1. Constraint Separation

overwritten by subclasses (i.e., Constraint Separation process steps). Furthermore, the visit
methods are equipped with two parameters: the first is the visited object, the second its par-
ent object (in the XML document sense). This allows for easy access of the parent object, which
would otherwise not be possible because JAXB is not providing access to it by default. Fur-
thermore, it allows concrete implementations to visit elements depending on the context, for
example, to visit only xsd: sequence elements embedded into xsd:complexType, but
not into xsd:restriction elements.

Finally, the subclasses of org.lixlix.xtl.compiler.schema.SchemavVisitor-
Base can configure the traversal order. In the top-down configuration, the visit methods
are called before the subelements’ accept methods are invoked; the bottom-up configuration
calls the visit methods after the accept methods of the subelements. The configuration of
the SchemaVisitorBase is passed to the SchemaAcceptor when the traversal starts.

Besides operating on the same XML Schema, the steps share access to an implementation of
the interface org.lixlix.xtl.compiler.schema.ConstraintSeparationCon-
text shown in Listing 5.12.

public interface ConstraintSeparationContext

{
/* Lookup of types in the schema */

public ComplexType getComplexType(String name);
public SimpleType getSimpleType(String name);

/* Creation of names. */
public QName createTNSQName(String localPart);

public String createTypeName(String suggestion);

/* Information about namespaces. */
public String getOriginalTargetNamespace();

public String getTargetNamespace();
public boolean isFromOriginalTargetNamespace (QName gname);

/* Information about related schemata. */
public String getCXSDSchemalocation();

public String getIDCSchemalLocation();
public String getXTLSchemaLocation();

/* Accessing the ConstraintFactory. */
public ConstraintFactory getConstraintFactory();

Listing 5.12: The ConstraintSeparationContext Interface

109

5. Safe Authoring of Templates

The operations in this interface serve one of five purposes. There are methods for the lookup
of types in the XML Schema currently processed, for the creation of names, for retrieving infor-
mation about namespaces, for the management of the location of related schemata and for the
retrieval of the ConstraintFactory (see below). The particular methods are as follows:

The getComplexType method retrieves the object representing the complex type with
the passed name or returns null if no such complex type exists.

The getSimpleType method performs the same function as getComplexType, but
for simple types.

The createTNSQName method creates a QName from the passed local part and the
target namespace of the XML Schema currently processed.

The createTypeName method creates a name (more exactly, its local part), such that
it is unique within the XML Schema currently processed. The method guarantees that
there is no complex type or simple type with the same name within the schema (please
note that complex and simple types share a common symbol space [180, Section 2.5]).
The passed suggestion is first tried as the name, if it already exists, the method repeatedly
tries to create a unigue name by concatenating an increasing number (starting with 0).
The getOriginalTargetNamespace method returns the target namespace of the
XML Schema currently processed as it was originally set.

The getTargetNamespace method returns the target namespace as it should be af-
ter processing. In order to prevent confusions, the original target namespace is prefixed
with xt1: to get the namespace that the XML Schema should have after the process
of Constraint Separation, if a target namespace has been defined by the schema. If no
namespace has been defined, this method returns null.

The isFromOriginalTargetNamespace method can be used to check whether a
particular QName is defined in the target namespace originally specified by the currently
processed XML Schema.

The getCXSDSchemaLocation, getIDCSchemaLocation and getXTLSche-
maLocation methods return the location of the CXSD, IDC or XTL schema, resp., if such
locations have been externally configured (e.g., via the command line).

The getConstraintFactory method returns an implementation of the Constraint-
Factory interface described below.

Theinterfaceorg.lixlix.xtl.compiler.schema.ConstraintFactory referred
to above is shown in Listing 5.13. Using this interface, the Constraint Separation steps can create
both authoring and instantiation time constraints (or CXSD and IDC constraints, respectively).

public interface ConstraintFactory

{

110

/* Authoring Time Constraint Construction */
public Inv getControlStatementsAuthConstraint (QName
elementQName) ;

public Inv getExpandedSimpleTypeAuthConstraint(QName typeQName) ;

public Inv getRequiredAttributesAuthConstraint (Set<QName>
attributeNames) ;

5.1. Constraint Separation

/* Instantiation Time Constraint Construction */
public Constraints getAttributesInstConstraint(Map<QName, QName>
attributesToTypes) ;

public Constraints getExpandedSimpleTypeInstConstraint (QName
typeQName) ;

Listing 5.13: The ConstraintFactory Interface

The ConstraintFactory provides the following methods:

* The getControlStatementsAuthConstraint method returnsanauthoring time
constraint checking that the content of the context node is an element with the passed
name elementQName.

* The getExpandedSimpleTypeAuthConstraint method returns an authoring time
constraint that checks that the content of the context node is either an xt1:text in-
struction or a text node with a value complying to the simple type named typeQName.

* The getRequiredAttributesAuthConstraint method returnsanauthoring time
constraint which makes sure that for each of the attribute names passed (as a Set), either
an attribute exists at the context node or an xt1:attribute instruction exists, which
creates the attribute (i.e., has a name attribute set to that particular attribute name).

* The getAttributesInstConstraint method returns an instantiation time con-
straint which checks for each key/value pair in the passed Map, whether the attribute
named equal to the key is of the type indicated by the value.

* The getExpandedSimpleTypeInstConstraint method returnsan instantiation
time constraint which checks whether the data used for the instantiation of the xt1:
text instruction is valid with respect to the type passed by its name.

Different technologies have been used to implement the creation of authoring and instanti-
ation time constraints. The authoring time or CXSD constraints are generated from XTL tem-
plates, whereas the instantiation time or IDC constraints are constructed programmatically us-
ing an object model generated from the IDC XML Schema using JAXB.

PrepareSchemaCompilation

The first process step in the Constraint Separation process is implemented in the class org.
lixlix.xtl.compiler.schema.steps.PrepareSchemaCompilation. This step
has two responsibilities: adding import statements for related schemas and changing the target
namespace of the schema.

As the Constraint Separation process adds elements from the CXSD and IDC namespaces and
adds references to elements from the XTL namespace, this steps adds xsd : import instruc-
tions for these three namespaces. The namespace attribute is automatically set, but the 1o-
cation attribute is only set if a location (absolute or relative) has been externally configured
(e.g., via the command line). An example for the addition of these xsd: import statements
is shown in Listing 5.14.

111

5. Safe Authoring of Templates

<xsd:import namespace="http://research.sap.com/cxsd/1.0"
schemalocation="../../../schemas/CXSD.xsd" />

<xsd:import namespace="http://research.sap.com/xtl/idc/1.0"
schemaLocation="../../../schemas/IDC.xsd" />

<xsd:import namespace="http://research.sap.com/xtl/1.0"”
schemalocation="../../../schemas/XTL.xsd" />

Listing 5.14: Added xsd: import Statements

The PrepareSchemaCompilation stepisalsoresponsible for changing the target name-
space of the processed schema. If the schema to be processed has a target namespace (called
original target namespace in the following), the namespace URl is appended to the prefixxt1:,
in order to get the namespace URI for the schema after the Constraint Separation process
(called just target namespace in the following). As this namespace URI is typically also as-
signed to another namespace prefix (typically tns, an abbreviation for target namespace),
these other namespace prefixes are also assigned to the target namespace. Furthermore, all
qualified names within this schema that point to the original target namespace must be rewrit-
ten to point to the target namespace. If no original target namespace has been set, the schema
will also lack a target namespace after processing, which makes the processing of prefixes and
gualified names obsolete.

NormalizeSchema

In order to allow the following steps to work under all circumstances, additional changes to
the schema being processed are necessary. The org.lixlix.xtl.compiler.schema.
steps.NormalizeSchema step is responsible for making sure that all simple types which
need to be referenced from CXSD constraints are identifiable by name (and not anonymous
types) and for making sure that all elements which need to be able to act as content for an
xtl:if or xtl:for-each instruction are declared at the top-level.

The first responsibility mentioned is to create referencable top-level simple type declarations
from anonymous type declarations. This is necessary to allow the authoring time constraint
embedded during the enablement of xt1:text instructions to refer to the simple type (see
below). An example for an extracted simple type is shown in Listing 5.15.

<xsd:simpleType name="simpleTypeOfQuantity”>
<xsd:restriction base="xsd:positiveInteger”>
<xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>

Listing 5.15: Top-level Declaration of a Previously Anonymous Simple Type
The second responsibility is to create top-level elements from all xsd:element elements

which will be enabled for the use within xt1:if or xt1l: for-each statements later on. This
is necessary since the xt1:if and xt1l:for-each definitions within the XTL XML Schema

112

5.1. Constraint Separation

contain a wildcard (xsd: any) with its processContents attribute set to strict, which
requires a top-level declaration of the element to fulfill the wildcard [180, Section 3.10.1].

This process of promoting local elements to top-level elements can cause name clashes, as
the element is moved from the namespace opened by a complex type or element declaration
into the single global namespace for elements within the schemas’ target namespace. The al-
ternative to this promotion of local element declarations is to relax the wildcard within the XTL
schema (i.e., to set its processContents attribute to 1ax or skip), and to check the local
validity of the content with regards to its element name and its complex type from within a CXSD
constraint. This variant has not been implemented, as the standard XML parsers with validation
do not expose a simple interface to check local validity, which would make the implementation
of the necessary extension of the CXSD metamodel much harder.

EnableControlStatements

The processing step org.lixlix.xtl.compiler.schema.steps.EnableControl-
Statements has the responsibility to enable the use of xt 1 : i f statements for all conditional
elements and to enable the use of xt1:for-each statements for all repeatable elements.
Conditional elements are defined as elements with a cardinality of 0. . . 1, repeatable elements
as having a maximum cardinality greater than 1.

The whole schema is traversed for elements fulfilling the conditions for conditional or re-
peatable elements. Each occurence of such an element is replaced by a choice between the
element and a reference to the xt1:1if or xt1l:for-each element from the XTL schema
respectively. The xtl:if and xt1l:for-each references are further restricted by insert-
ing a CXSD constraint defining that the content of the XTL instruction must have a particular
qualified name. This constraint is constructed using the getControlStatementsAuth-
Constraint method from the ConstraintFactory. An example showing a processed
optional element is shown in Listing 5.16.

<xsd:choice>
<xsd:element minOccurs="0" ref="comment”/>
<xsd:element ref="xtl:if">
<xsd:annotation>
<xsd:appinfo source="http://research.sap.com/cxsd/1.0">
<cxsd:inv name="control-statement-constraint”>
<cxsd:ocl><![CDATA[

let
elementChildren:Sequence(ElementNode) = self.children->
select (oclIsTypeOf (ElementNode))->collect (oclAsType (
ElementNode))
in
elementChildren->size() = 1 and

elementChildren->at(0).gname = self->expandQName('
comment’)
]11></cxsd:ocl>
<cxsd:message>
</cxsd:message>

113

5. Safe Authoring of Templates

</cxsd:inv>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
</xsd:choice>

Listing 5.16: Choice between comment and xtl:if

EnableXTLAttribute

The next processing step, org.lixlix.xtl.compiler.schema.steps.EnableXTL-
Attribute, is responsible for enabling the use of the xtl:attribute instruction. To
achieve this, four modifications are made to all complex types in the schema.

First, an element reference to xt1l:attribute is added to the content model of the com-
plex type. If the complex type is already defined to be a sequence, the reference is just inserted
at its beginning. If the complex type is defined to be a choice, this choice is wrapped by a se-
guence that contains the reference to xt1: for-each followed by the choice. Unfortunately,
the insertion of xtl:attribute is not possible if the complex type inherits from another
complex type, as the insertion would only be possible at the end of the content model, which
is not acceptable. Therefore, inherited types are excluded from this processing (see Chapter 8
for the suggestion to change XML Schema with respect to this).

Second, the usage attribute of all attribute declarations for required attributes is relaxed to
optional, which allows the template author to omit required attributes (and create them
via xtl:attribute instead). In the po.xsd example, the partNum attribute is relaxed to
become an optional attribute.

Third, an IDC constraint is added, containing the expected types for all attributes. In the
po . xsd example, the instantiation data used to create the partNum attribute is bound to be
of type SKU. The result of these first three processing steps is shown in Listing 5.17.

<xsd:element name="item">
<xsd:complexType>
<xsd:annotation>
<xsd:appinfo source="http://research.sap.com/cxsd/1.0">
<!-- See Listing 5.18 -->
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element maxOccurs="unbounded” minOccurs="0" ref="
xtl:attribute”>
<xsd:annotation>
<xsd:appinfo source="http://research.sap.com/xtl/idc/1.0">
<idc:constraints>
<idc:constraint for-name="partNum” type="SKU"/>
</idc:constraints>
</xsd:appinfo>
</xsd:annotation>

114

5.1. Constraint Separation

</xsd:element>
<l—- ... =-=>
<xsd:attribute name="partNum” type="SKU” use="optional”/>
</xsd:complexType>
</xsd:element>

Listing 5.17: Enabled xt1:attribute with IDC Constraints

Finally, the processing step adds an additional CXSD constraint which ensures that the re-
quired attributes are either directly specified or created via an appropriate xt1l:attribute
instruction. In the po.xsd example, it is ensured that partNum is either directly specified or
created via an xt1l:attribute instruction (which therefore needs to have a name attribute
with a value of partNum). The OCL part of the CXSD constraint is shown in Listing 5.18.

let
xtlAttributeChildren:Sequence (ElementNode) = self.children->select(oclIsTypeOf (
ElementNode))->collect (oclAsType(ElementNode))->select(localName='attribute’
and namespaceURI='http://research.sap.com/xt1/1.0")
in
OrderedSet{
self.expandQName (’'partNum’)
}->forAll(attributeQName |
let
xtlAttributeChild:ElementNode = xtlAttributeChildren->any(attributes->select(
name='name’ and self.expandQName(value)=attributeQName)->size() > 0),
attributePresent:Boolean = self.attributes->select(gname=attributeQName)->size()
>0
in
not (attributePresent) implies not(xtlAttributeChild->isEmpty()))

Listing 5.18: A CXSD Constraint for Required Attributes

EnableXTLText

The last processing step, org.lixlix.xtl.compiler.schema.steps.EnableXTL-
Text, allows the use of xt 1 : text to create the text content of elements with simple content.
To this end, the processing step processes all top-level elements referencing a non-anonymous
simple type (both preconditions are asserted by the NormalizeSchema step). The reference
to the simple type is replaced with a reference to a complex type with mixed content. This newly
created type allows the use of xt 1 : text within. An IDC constraint is added which restricts the
instantiation data used to replace the xt1 : text instruction during the Template Instantiation
to the simple type originally referenced by the element. In the po.xsd example, the type
xt1TextOrDecimal is created to replace elements with simple content complying to the
xsd:decimal type. The result of this processing is shown in Listing 5.19.

<l—— ... ==>
<xsd:element name="zip” type="xtlTextOrDecimal”/>
<l—— ... -=>

<xsd:complexType mixed="true” name="xtlTextOrDecimal”>
<xsd:annotation>

115

5. Safe Authoring of Templates

<xsd:appinfo source="http://research.sap.com/cxsd/1.0">
<!-- See Listing 5.20 -->
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" ref="xtl:text”>
<xsd:annotation>
<xsd:appinfo source="http://research.sap.com/xtl/idc/1.0">
<idc:constraints>
<idc:constraint type="xsd:decimal”/>
</idc:constraints>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

Listing 5.19: Enabled xt1: text for the Creation of the Content of the zip Element

Furthermore, the processing steps add an CXSD constraint that restricts the use of text con-
tent within the newly created type to be compliant to the simple type originally referenced by
the element. In the po.xsd example, the constraint asserts that either an xt1:text ele-
ment or a text node complying to the type xsd:decimal is present. The OCL part of the
CXSD constraint is shown in Listing 5.20.

let
expectedQName:QName = self.expandQName(’{http://www.w3.0rg/2001/XMLSchema}decimal’),
textChildren:Sequence (TextNode) =
self.children->select (oclIsTypeOf (TextNode))->collect (oclAsType(TextNode)),
xtlTextChildren:Sequence (ElementNode) =
self.children->select(oclIsTypeOf (ElementNode))->collect (oclAsType(ElementNode))
->select(localName='text’ and namespaceURI='http://research.sap.com/xtl1/1.0")
in
if (xtlTextChildren->size() = 0)

then
textChildren->size() = 1 and
textChildren->at(1l).isValidLiteral (expectedQName)
else
xtlTextChildren->size() = 1 and textChildren->size() =
textChildren->select(isIgnorableWhitespace)->size()
endif

Listing 5.20: A CXSD constraint for Simple Content

5.1.7. Partial Templatization

In [143], it has been stated that every template engine has at least an entanglement index of 1,
as it is impossible for the template engine to decide whether a value which is instantiated into
a template plays a role in the content or layout of the instantiated template.

As a side effect of the safe authoring approach described above, a technique that enables an
entanglement index of 0 becomes possible. In the XHTML 1.0 document shown in Listing 5.21,

116

5.2. Template Validation

two attribute values are highlighted. First, the value of the style attribute, which obviously
contains style information. Second, the value of the alt attribute is highlighted, which contains
content, as it gives an alternative representation for the img element it is assigned to.

For every well designed XML language like XHTML, there must be a way to decide whether a
particular piece of information (like a text or an attribute value) is content or layout. In general,
the use of a template engine implies that separation of concerns is an issue, so there must be a
set of rules to decide whether an information is allowed to be filled from instantiation data or
whether it must be part of the template.

<html xmlns="http://www.w3.0rg/1999/xhtml”>
<head>
<title>Sample XHTML Document</title>
</head>
<body>
<p style="text-indent:lem;"”> @
Some content.
 @
</p>
</body>
</html>

Listing 5.21: A Simple XHTML 1.0 File

The constraint separation process described above can be adjusted to allow the dynamic cre-
ation of only certain character data items. In contrast to the standard constraint separation
process, partial templatization allows the use of the XTL instructions only partially. This allows
the refinement of the contract between the template author and the application using the tem-
plate technique: the style @ attribute would not be allowed to be created dynamically from
the instantiation data by the Constraint Separation process (as it is layout in the sense of Fig-
ure 3.2), whereas the alt @ attribute would be allowed (as it is content in the sense of the
aforementioned figure).

Technically, partial templatization could be best configured using a language that allows to
select the XML Schema parts (attribute and element declarations, type definitions etc.) which
should be subject to the constraint separation process. A subset of the Path Language for XML
Schema (SPath) [126] would be a good choice for such a language.

5.2. Template Validation

The Template Validation process is the responsibility of the template validator component. The
template validator allows the change of the template development process to the one shown in
Figure 5.5. The new process is more straight-forward than the current process (cf. Figure 1.2):
the template author does not need to change its role to that of the user of the template technol-
ogy like in the traditional process. Instead, he gets direct feedback about the template. Further-
more, the validation of the template does no longer depend on a particular set of instantiation
data, since the validation result makes a general statement about the template of the form: if
the instantiation data is as specified by the instantiation data constraints emitted by the Con-

117

5. Safe Authoring of Templates

straint Separation process, then the instantiated template will comply to the target language
grammar. Thus, the Template Validation process contributes to the Safe Authoring goal stated
in Section 3.1.1.

1: change
4>
Template
(as itself)
1.1: request
validation
Message Flow
Template —_—
. Validator
1.3: signal error
Template -«
Author 1.2: validate template

Figure 5.5.: The Proposed Development Process for Templates

The design of the template validator has two responsibilities. First, it has to check the validity
of XML documents against the CXSD schemas as emitted by the Constraint Separation process.
Furthermore, the template validator component is also responsible for establishing a link be-
tween the XTL instructions in the template and the instantiation data constraints in the schema.

The Constraint Separation process defined the extension of XML Schema with OCL constraints
(see 5.1.2) and relaxed the UPA rule in order to enhance the expressive power of XML Schema.
The template validator must therefore validate XML Schema without the restrictions introduced
by the UPA and evaluate the embedded OCL constraints. After an analysis of existing XML
parsers capable of validating the XML input against a given XML Schema, it became obvious
that it is easier to reimplement a validating XML parser than to extend one of the existing im-
plementations like Xerces. This is mostly due to the fact that the existing XML parsers are not
designed to be extensible, which makes extending them a time-consuming and tedious task.

As mentioned above, it is also the responsibility of the template validator to establish a link
between the elements of the XTL template and the instantiation data constraints. This link is
necessary to allow the Instantiation Data Validation component to evaluate the instantiation
data constraints. This link is comparable to the link between an XML document and its XML
Schema established by the Post-Schema-Validation Infoset (PSVI). The difference is that the link
between the template and its CXSD schema is more specific. It is more specific, as it links only
XTL instructions to the type that the instantiation data must comply to, whereas PSVI is directly
linking every element to the corresponding type in the XML schema.

In order to enable the Instantiation Data Validation component to facilitate the established
link, it has to be persisted. There are basically two options for this. First, it is possible to persist
the link in an extra document that for example maps XPath expressions pointing into the tem-
plate to the expected type of the instantiation data. Second, it is possible to transfer the link
data within the XTL template itself. As the link is only starting from XTL instructions, the second
alternative has been chosen. To enable this, the affected XTL instruction has been extended to

118

5.2. Template Validation

allow a type attribute that can denote the required instantiation data type via its QName. This
approach is similar to the approach proposed to persist the PSVI in [167].

The following additional attributes are defined to carry the instantiation data constraint link:
for the xt1l:text and xtl:attribute instructions, the type attribute is defined, which
allows a QName as value which denotes the type that the value used to create the text or the
attribute value must comply to. There is no need to define the type attribute for xt1:if and
xtl:for-each, since the type to be delivered by the Instantiation Data Evaluator is defined
implicitly (see Section 4.1). For the xt1:for-each instruction, the attributes min and max
are defined, which are of the same type as minOccurs and maxOccurs defined in [180].

An XTL template augmented with instantiation data constraints is shown in the upper part of
Listing 5.22. Obviously, the xt1: for-each instruction can be executed an arbitrary number
of times @. The partNum attribute must be created with a value complying to the SKU type @,
whereas the text content of the productName element must comply to the xsd:string
type @. As an example for a persistent PSVI, a fragment of the po.xml document is shown in
the lower part of Listing 5.22. Interestingly, the questionable use' of an attribute like psvi:
atttypes @is not necessary in the proposed approach, since the expected type of a particular
attribute is attached to its xt1:attribute instruction rather than to the element that the
attribute is going to be assigned to during the Template Instantiation process.

The actual Template Validation process is implemented by creating a DOM of the instance to
be validated first. This DOM is used for two purposes: for the creation of a Streaming API for
XML (StAX) event stream that is used for the standard XML Schema validation and to build a rep-
resentation of the document as an instance of the meta model introduced in Section 5.1.2 (see
Figure 5.2, especially). As the UPA can be violated by a CXSD document, the validation compo-
nent is implemented using a backtracking algorithm. The backtracking algorithm is in turn sup-
ported by a component implementing the org.lixlix.xtl.cxsd.Transactional-
Reader interface that allows the validator to read events from the StAX stream transaction-
ally. The TransactionReader interface could easily be implemented by subclassing the
component that implements the org.lixlix.xtl.engine.impl.ReadWindow inter-
face described in detail in Section 6.2.2.

The mere XML Schema validation process of an XML document has been tested against a sub-
set of the XML Schema Test Suite [181]. This subset excludes the tests in which XML Schema
documents include features that are not supported by the Constraint Separation process. The
Template Validation component complies to 97% of the remaining subset of approx. 24000
documents. The documents in which the Template Validation component fails are mostly docu-
ments with literals that are checked against particular simple types, especially with literals in
Japanese or Chinese encodings. In these tests, the validation results returned by the XML
Schema Test Suite and by the Xerces simple type validation facility disagree, which in turn causes
the Template Validation component to disagree with the result proposed by the XML Schema
Test Suite.

'Sperberg-McQueen [167]: “It should be noted that | am fully aware that this solution is ugly. Long meditation on
this problem has convinced me that every available solution to this problem is ugly: attributes were designed to
have atomic or simple list values, not to have attributes of their own, and I no longer expect to find a pretty way
to go against the grain of XML here.”

119

5. Safe Authoring of Templates

XTL Template Augmented with Instantiation Data Constraints

<items>
<xtl:for-each select="items” min="0" max="unbounded”> @
<item>
<xtl:attribute name="partNum” select="id” type="SKU”/> @
<productName>
<xtl:text select="productName” type="xsd:string”/> ©
</productName>
<l— ... ==>
</item>
</xtl:for-each>
</items>
XML Document with Embedded PSVI
<shipTo

country="US"
psvi:type="po:USAddress"”
psvi:atttypes="country xsd:NMTOKEN” @

<name psvi:type="xsd:string”>Alice Smith</name>
<street psvi:type="xsd:string”>123 Maple Street</street>
<city psvi:type="xsd:string”>Mill Valley</city>
<state psvi:type="xsd:string”>CA</state>
<zip psvi:type="xsd:decimal”>90952</zip>
</shipTo>

Listing 5.22: Linked Instantiation Data Constraints Compared with Embedded PSVI

In addition to the mere XML Schema validation process, the DOM instance is also used to eval-
uate the OCL expressions embedded into the CXSD document. As the foundation for the evalu-
ation of the OCL expressions, the OCL library from the Eclipse MDT project has been used. This
OCL library operates on a model compliant to the metamodel shown in Figure 5.2. The model is
basically an Eclipse Modeling Framework (EMF)-based view on the DOM instance. The overall
validation process has been validated as described in Section 7.2. The extra effort needed to
evaluate the OCL constraints has been measured, the results of this measurement are presented
in Section 7.5.1.

The validation algorithm is rather straightforward. A virtual xsd:choice between all root
level element declarations in the XML Schema is created, which is used to start the validation
process. The template validator reads from the StAX stream and tries to validate these events
against the alternatives within the choice. As an alternative might turn out to be invalid, a
transaction is started on the StAX event stream using the TransactionReader component.
The transaction will be committed if an alternative proves to be matching or it will be rolled back
otherwise. If an OCL constraint is attached to an element in the XML Schema, the constraint will
be evaluated with its context set to the element currently validated. If the constraint evaluates
to false, the validation process will fail at this point, again causing a rollback of the innermost
transaction. The overall validation process returns true if there is an assignment of element

120

5.3. Conclusion

and types in the XML Schema against the content of the document where the OCL constraints
within the CXSD schema evaluate to true at all nodes in the document where the enclosing XML
Schema instruction is used to validate the instance.

In addition to the boolean result of the validation, during a successful validation, the IDC
constraints embedded in the CXSD schema are transferred into the validated XML instance.
As the IDC constraints may be reassigned when a transaction is rolled back, the validation pro-
cess writes the augmented XML events into an implementation of the interfaceorg.lix1lix.
xtl.cxsd.TransactionalWriter, which defersthe further processing of the events un-
til all transactions are committed.

5.3. Conclusion

This chapter introduced the components of the proposed architecture involved during the au-
thoring time of a template, namely the Constraint Separation and the Template Validation com-
ponent.

The Constraint Separation process, responsible for separating authoring time from instanti-
ation time constraints, has been described precisely, which involved the defintion of two sup-
porting languages, CXSD and IDC. The CXSD extends XML Schema in two ways: by allowing
embedded OCL constraints to more precisely specify properties to be fulfilled by instances that
should comply to the described language. The IDC s a helper language used to transfer instanti-
ation data constraints to the instantiation phase of the proposed process. A slight modification
of this process called Partial Templatization has been introduced, which allows to reach an en-
tanglement index (in the sense of [144]) of 0.

The Template Validation component is responsible for validating the authoring time con-
straints, i.e., for validating a template against a CXSD document. Technical reasons and the
relaxation of the UPA rule by the CXSD language complicated the rather elementary implemen-
tation of this component.

121

5. Safe Authoring of Templates

122

Flexible, Efficient and Safe Template
Instantiation

Hofstadter’s Law: It always takes longer than you expect,
even when you take into account Hofstadter’s Law.
Douglas Hofstadter, 1979 [87]

This chapter discusses the processes of Instantiation Data Evaluation, Template Instantiation
and Instantiation Data Validation from Figure 3.5. All these processes correspond to the tem-
plate instantiation process in the same sense as used in existing approaches. For each process,
a different main issue can be defined: flexibility is most important for the Instantiation Data
Evaluation, efficiency is the key issue in the Template Instantiation process, and safety is guar-
anteed by the Instantiation Data Validation process. As in Chapter 5, the target language is
required to be an XML dialect defined by an XML Schema.

6.1. Instantiation Data Evaluation

The evaluation of the instantiation data is performed by the instantiation data evaluator com-
ponent. The architecture requires this component to decouple the template engine from a
particular query language. In an implementation of this architecture, the instantiation data
evaluator can be realized as a plugin of the template engine, allowing a single implementa-
tion to cooperate with data sources as distinct as XML documents, relational databases or UML
models. The Java implementation of the XTL Engine calls the plugin a Placeholder Plugin (PHP).

123

6. Flexible, Efficient and Safe Template Instantiation

Template Instantiation Instantiated
Template L Template
ogo P
—~_ JXPath- SPARQL- | UML20OCL-
PHP PHP PHP

O XPath [SPARQL QOCL\\
v
XML
Lf’\mﬂ Ontology UML Model
/_/

Figure 6.1.: Accessing Multiple Instantiation Data Sources Using Multiple PHPs

<

i

6.1.1. Design of the PHP Interface

Using a plugin approach for the adaptation of the template engine to a particular query lan-
guage directly addresses the Independence of Query Language requirement. Besides this, the
approach turned out to have a number of additional advantages.

First of all, the XTL’s realm feature can be used together with multiple plugins to access data
from multiple instantiation data sources at once. There is no need to use the same query lan-
guage for the instantiation data sources, instead, the query language can be chosen arbitrarily
for each source. For example, an XML document, an ontology and a UML model can be ac-
cessed from within one template using the query languages XPath, SPARQL and OCL, resp., as
illustrated in Figure 6.1. It is also possible to access multiple XML documents as instantiation
data sources represented by realms—an approach which provides a more uniform access to
multiple XML documents than the approach provided by XSL-T with its document function
[107, Section 16.1].

Furthermore, a plugin can also be used to build an intermediate view on the instantiation
data source. An example is the SPARQL plugin which is supplied as part of the XTL Engine. This
plugin allows to query ontologies. As an option, the plugin is capable of building the transitive
closure on its underlying ontology. This equips SPARQL with the capability to execute transitive
queries, which is originally not part of the language. In general, plugins can be used for the
creation of all kinds of intermediate, transient models.

A plugin can also be used to change the instantiation data access strategy (see Section 2.5.4).
Due to the design of the XTL, the XTL Engine implements a pull strategy: every time an ex-
pression from the query language is found as the value of a select attribute, it is executed
immediately. An application could calculate all the instantiation data before actually invoking
the XTL Engine, bundle the data into a custom PHP and pass it to the template engine. The en-
gine would still pull the data from the PHP, but effectively, the engine with the PHP now follows
the push strategy. This is basically an application of the Move Copy of Data pattern as described
in [178] (but used at design level, which is different from its description, where it is applied to
the architectural level). Such an inversion of the data access strategy can also be achieved using
the Template Interface Generation approach described in Section 6.3.2.

A PHP is defined by the interface PlaceHolderPlugin shown in Figure 6.1. It mirrors
the functionality of the IDS class from the denotational semantics of the XTL with two minor
differences.

124

6.1. Instantiation Data Evaluation

First, the IDS has been defined using Haskell’s type classes (see Listing 4.2), whereas the
PlaceHolderPlugin uses Java’s generic types feature. For this reason, the interface has
a type parameter named Type. An implementation of the interface would use an appropriate
context type as the actual value for this parameter. As an example, a JXPath implementation
would use a class that represents the concept of the current node from XSL-T.

Furthermore, the PlaceHolderPlugin interface distinguishes between the evaluation of
the select attribute at an xtl:attribute and an xt1l:text element, whereas the IDS
knows only one of them. This is caused by the fact thatthe xt1:attributeand xtl:text
instructions are each represented by their own Java classes, which do not share a common
interface from which the value of the select attribute could be fetched.

public interface PlaceHolderPlugin<Type>

{
public String evaluateAttribute(

XTLAttribute xtlAttribute, Type argument);

public Iterator<Type> evaluateForEach (
XTLForEachStart xtlForEach, Type argument);

public boolean evaluateIf (
XTLIfStart xtlIf, Type argument);

public List<XMLEvent> evaluateInclude(
XTLInclude xtlInclude, Type argument);

public String evaluateText(
XTLText xtlText, Type argument);

public void init(List<XMLEvent> event);

public void onEndDocument () ;

Listing 6.1: The PlaceHolderPlugin Interface

Please note that the evaluate operations all share analogous arguments. The first argu-
ment corresponds to the XTL instruction for which they are responsible. The hierarchy of the
classes for these arguments is explained in Section 6.2.3 (see esp. Figure 6.6). The second ar-
gument is the current value of the innermost enclosing xt1: for-each instruction, which
accesses the same realm. If no such plugin exists, a null value will be passed to the PHP. The
second argument is of the generic type Type, as the actual value representing an iteration in
an xt1l:for-each loop depends on the query language and the PHP implementation.

The operations of the org.1lixlix.xtl.php.PlaceHolderPlugin are described be-
low:

e TheevaluateAttribute operation hasto beimplemented by the PHP to support the
evaluation of xt1l:attribute instructions. The corresponding function within the IDS

125

6. Flexible, Efficient and Safe Template Instantiation

is the evalText function. An implementation of a PHP should not include the name of
the attribute into the calculation of its value in any way.

e The evaluateForEach operation has to be implemented by the PHP to support the
evaluation of xt1: for-each instructions. In order to allow nested xt1:for-each
instructions, this operation also gets the current value of the innermost enclosing xt1:
for-each instruction as described above. The implementation of this operation must
return an Iterator over values of the generic type Type, as a value from this oper-
ator will be passed to other evaluate methods as second argument (see above). The
corresponding function within the IDS is the evalForEach function.

e The evaluateIf operation has to be implemented by the PHP to support the evalu-
ation of xt1:if instructions. The corresponding function within the IDS is the evalIf
function.

e The evaluateInclude operation has to be implemented by the PHP to support the
evaluation of xt1:include instructions. The corresponding function within the IDS
is the evalInclude function. The implementation of this operation must return a
java.util.List of javax.xml.stream.XMLEvents. For the rationale of this
return type see Section 6.2.1.

e The evaluateText operation has to be implemented by the PHP to support the evalu-
ationof xt1:text instructions. The corresponding function within the IDS is the eval-
Text function.

e The init operation has to be implemented by the PHP to support the evaluation of
xtl:init instructions. There is no corresponding function in the IDS, as the denota-
tional semantics for XTL does not include realms. The only argument of this operation is
a java.util.List of javax.xml.stream.XMLEvents. For the rationale of this
type see again Section 6.2.1.

¢ The onEndDocument operation has to be implemented by the PHP to get notified when
the XTL template to be instantiated has been completely processed. This can be used by
the PHP to perform cleanup operations or to conclude diagnostical information.

To make implementing a new PHP as easy as possible, an abstract base implementation of the
PlaceHolderPlugin interfaceis provided viatheclassorg.lixlix.xtl.php.impl.
PlaceHolderPluginImpl, which mainly provides default implementations for most of the
methods and aggregates the processing of xtl:attribute and xt1l:text methods via a
common evaluateSelect method.

6.1.2. The Identity PHP

The Identity PHP serves multiple purposes. It can be used for testing, to explain the concept of
a PHP, and it can be used for syntactical reasons, e.g., to create an xt1: for-each instruction
which repeats its content exactly n times for an arbitrary but fixed n.

The Identity PHP got its name from its easy implementation of the evaluateText and
evaluateAttribute operations described above: it just returns the value of the select
attribute of the xtl:text or xtl:attribute instruction evaluated. The evaluateIf
operation is implemented in a similarly easy way: if the select attribute has a (text) value of
true, it returns the (boolean) value true, and false otherwise. The evaluateForEach

126

6.1. Instantiation Data Evaluation

operation parses its select attribute as an integer and returns an iterator containing the in-
tegers from 1 to the parsed value or an empty iterator if no value could be parsed or the parsed
value was 0.

From the implementation of the evaluateForEach operation, which is returning an iter-
ator over integers, it is clear that the type parameter Type has the actual value java.lang.
Integer for the Identity PHP.

6.1.3. The JXPath PHP

The JXPath PHP allows the XTL to use XPath expressions in order to access the instantiation data
source. As JXPath [9] is used for the implementation of the PHP, the instantiation data source
does not neccessarily have to be an XML document, as JXPath allows the evaluation of XPath
expressions against any object model using a well-defined mapping between the XPath syntax
and Java object properties and associations.

The JXPath PHP makes XTL comparable to XSL-T and therefore enables the definition of the in-
stantiation semantics in Section 4.6 and the time comparison with JSP and XSL-T in Section 7.5.
Furthermore, as XPath is well supported by Haskell (more specifically, by the Haskell XML Tool-
box [163]), it also enables the direct comparison of the Java implementation of the Template
Instantiation component with the denotational semantics given in Chapter 4.

The evaluateAttribute and evaluateText operations work exactly as they would
do in XSL-T. The notion of the context item [107, Section 5.4.3.1] is reused, the context item
corresponds to the notion of a context introduced in Section 4.3. The evaluateForEach
operation establishes a new context. The evaluateIf method follows the suggestion from
Section 4.3 and uses the XPath function boolean to determine the boolean value from the
result of the evaluation of the select attribute. The JXPath PHP also implements the evalu-
ateInclude method—the result is similar to the result returned by xs1:copy-of [107,
Section 11.9.2], when applied to the current context.

The type parameter named Type of the PlaceHolderPlugin interface is assigned the
actualvalue org.apache.commons. jxpath.Pointer by the JXPath PHP. ThisPointer
class is an implementation of the context item from XPath in JXPath, which perfectly matches
the use of it as the context in the PHP implementation.

The XPath PHP implementation is an alternative implementation for using XPath expressions
using the XPath implementation of Xalan. The XPath PHP is only usable to evaluate XPath ex-
pression on XML documents represented as DOM. Therefore, the type parameter Type has the
actual value org.w3c.dom.Node.

6.1.4. The SPARQL PHP

The SPARQL PHP enables the use of SPARQL expressions to fetch instantiation data from within
XTL templates. The motivation for this plugin came from the Feature-getriebene, aspektorien-
tierte und modellgetriebene Produktlinienentwicklung (FeasiPLe) project (see Section 7.3). The
handling of XML namespaces within SPARQL also motivated the introduction of the xt1:init
instruction.

127

6. Flexible, Efficient and Safe Template Instantiation

In contrast to the JXPath plugin, the SPARQL PHP can not process xtl:attribute, xtl:
text or xt1l:if instructions which are not enclosed in an xt1: for-each instruction. This
is a design decision caused by the fact that SPARQL queries return a relation, whereas XPath
queries return a node. Therefore, there has to be a distinction between the building of a rela-
tion (selection) and the access to particular values (projection). This distinction is mapped to
the PHP operations by using the xt1: for-each instruction in order to retrieve the relation
by selection, and by letting xt1l:attribute, xt1l:text and xt1:if access particular at-
tributes from the result. The retrieval of the relation is performed by the SELECT statement of
SPARQL, whereas the access to a particular attribute is performed using a subset of the SPARQL
syntax, namely its query variable syntax [151, Section 4.1.3]. As the existence of a relation is a
prerequisite for the projection, an xt1: for-each is required around all xt1:attribute,
xtl:text and xt1l:if instructions.

As SPARQL itself has a restricted expressive power, the SPARQL PHP supports the execution of
aninference process on the ontology before it is queried. The inference process is parametrized
by a set of rules that can be specified in any rule language supported by the underlying ontology
processing framework. The framework being used to implement the SPARQL PHP is Jena [100].
The class com.hp.hpl. jena.query.QuerySolution is the actual value of the Type
type parameter of the PlaceHolderPlugin interface.

6.1.5. The System PHP

The System PHP is a PHP implementation that supports special functions that are sometimes
useful but are not supported by some query languages. This PHP supports only xtl:attri-
bute, xt1l:text and xtl:if instructions—it cannot be used as the realm for xt1l:for-
each and xtl:include instructions. Its query language syntax is based on XPath, but as no
context node exists, only a fixed set of predefined functions can be used. The functions are as
follows:

e Thebuild-number function can be used to retrieve the build number of the XTL Engine
currently in use.

e The file-exists function can be used to check whether there exists a file with the
passed path.

e The last function can be used to check whether the innermost enclosing xt1: for-
each instruction is currently processed for the last time.

e The position function can be used to retrieve the current index of the control variable
value in the sequence of control variable values for the innermost enclosing xt1: for-
each instruction.

e The version function can be used to return the version of the XTL Engine currently in
use.

The System PHP is a subclass of the JXPath PHP, but as it does not support xt1: for-each,
the actual value of the Type parameter of the PlaceHolderPlugin interface does not
matter.

128

6.2. Template Instantiation

6.2. Template Instantiation

The template engine is the component performing the Template Instantiation process. It is
therefore influenced by the required expressiveness offered by the slot markup language. Fur-
thermore, the template engine invokes the Instantiation Data Evaluation and Instantiation Data
Validation processes in order to retrieve and verify the instantiation data.

6.2.1. XML Access Technologies

The technology used to read the templates and to emit the instantiation result has the greatest
influence on the efficiency of an XML template engine implementation. This is especially true if
the template engine interprets the templates rather than compiling them (see Section 2.5.6).

Typically, XML access technologies are classified in event-driven approaches and object-ori-
ented XML representations. Event-driven approaches are typically efficient (both with respect
to memory and time) and provide a sequential access to XML documents. The most prominent
example for an event-driven technology is the Simple API for XML (SAX). SAX has been originally
designed for read-only access. Other event-driven approaches like StAX have been designed to
also support the creation of XML documents.

Object-oriented approaches provide a complete, random-access view on an XML document.
The abstraction level of this view depends on the actual technology. The most prominent ex-
ample for an object-oriented access technology is DOM, which provides a view which closely re-
sembles the XML structures as defined in [28]. XML binding tools like JAXB and XMLBeans (see
also Section 2.3.3) can also be considered object-oriented access technologies with a higher
level of abstraction. Object-oriented approaches are typically designed to support both reading
and writing XML documents. The higher level of abstraction provided by these technologies
typically slows down reading, whereas the provided random-access view typically causes signif-
icantly higher memory consumption.

Typically, a template engine produces arbitrary large documents from relatively small ones.
The necessity to create arbitrary large documents leads to the decision for an event-driven ap-
proach. This decision was eased by the fact that the constructed document is not changed after
its creation, i.e., there is no need for random access to the document under construction.

For reasons of simplicity, it has been decided to use the same XML access technology for both
reading the template and creating the output document. The first evaluation of SAX for reading
XML documents exposed one of its major weaknesses. SAX dictates the user to structure its
algorithm along its ContentHandler interface, which obscures the algorithm. Furthermore,
if look-ahead is necessary to complete the processing of a particular XML structure, the interface
enforces the implementation of additional data structures which have to be examined in all of
its methods. This problem has also been described in [152].

In contrast to the statements in [152], a solution for this problem exists with the StAX tech-
nology since 2003 [94; 145]. StAX is an event-driven XML access technology which is designed
to read and write XML documents and which incorporates ideas from the object-oriented ap-
proaches by providing an object model for its events. StAX does not prescribe a fixed structure
for the XML processing algorithm. While SAX pushes events into the processing logic, a StAX
implementation is pulled by the processing logic when it is ready to continue. For this reason,

129

6. Flexible, Efficient and Safe Template Instantiation

StAX belongs to the family of so-called pull parsers (in contrast to the push parsing approach in
SAX). The difference between both types of parsers is shown in Figure 6.2.

The choice of StAX allowed the uniform treatment of reading and writing XML documents
and fulfilled the requirement of being able to implement lookahead efficiently.

(Push-Parser) (Pull-Parser)
the Application :XMLReader the Application :XMLInputFactory
| | | I
| | | |
! new ! createXMLEventReader(xmlInstance)
—> :ContentHandler | b > new
: i } : ’L :XMLEventReader
| | | |
: setContentHandlér(contentHandIer) } : nextElvent() :
I t > 1 :) |
| | | |
! ! ‘ | a StartDocument event U
| parse(xmlinstance) I [i it T
I ' L | | |
| I | nextEvent() |
: | startDocument() , !
‘7
| I ! a StartElement event U
! ! startElementy...) K mmm oo ,
' ' ' nextEvent '
| ., _endElement() : i >
: : } : an EndDoclument event U
| | I K m e — D
| | |

Figure 6.2.: Push- and Pull-Parser

6.2.2. Operational Model of the XTL Engine

The denotational semantics of the XTL given in Chapter 4 has been valuable in the implemen-
tation of the engine, as a working prototype could easily be compiled. Unfortunately, imple-
menting a Java-based variant of a template engine for XTL from its denotational semantics is
non-trivial. It turns out that a Java implementation is more complicated than one would expect
from the semantics. Therefore, an operational model has been developed that forms the basis
for a maintainable and efficient implementation of the Template Instantiation process. The XTL
instructions can easily be implemented on the operations supplied by the operational model.
The abstract machine used by the operational model of the XTL Engine is shown in Figure 6.3.

The template engine basically reads from the input XTL document (the template) and writes to
the output document (the instantiated template). The component responsible for the evalu-
ation of the instantiation data is called PHP here, for more details on the underlying plugin
mechanism refer to Section 6.1.1. To fulfill its task, the engine sets up four helper components:

¢ aread window, which is easing access to the template input stream,

e aloop stack, which keeps track of the nesting of loop statements (i.e., xt1: for-each

instructions) during the instantiation process,

* a map of macros, which is used to store macro definitions made by xt1 :macro state-
ments, and finally
a number of PHPs, maintained in a map indexed by their realm names.

130

6.2. Template Instantiation

The operational model will be shown using excerpts from the Java implementation of the
XTL Engine. First, the four helper components are discussed. Afterwards, the implementations
of the particular XTL instructions using the four helper components of the XTL Engine will be

described.

Evaluation position e Stream Position

Read Window

@ i / Loop Stack

Template

Instantiation

Inst. Data I
Evaluator '

\ mi
@ Macro Map M2
ms
my
e 1 [[[[|
Figure 6.3.: XTL Engine with Input and Output Streams
Read Window

The read window allows the template engine to look at a certain fragment of the template
instead of a particular element. Parts of the template which are located before the content of
the read window (in document order) are no longer accessible by the template engine, whereas
parts that are behind the content of the read window are not yet read. Thus, the end of the
read window marks the current read position within the template input stream. The evaluation
position is the location of the template that the engine is currently evaluating and that must

necessarily be within the read window.

The read window is, for example, of importance during the processing of xt1:for-each
statements. As the content of xt 1 : for-each statements can potentially be instantiated sev-
eral times, it must be kept inside the read window until the xt1: for-each has been fully

evaluated.

public interface ReadWindow

{

/* Marker management. */
public void markReadPosition(Object marker);

public void returnTo(Object marker);
public void removeMarker (Object marker);

/* Read and skip. */

131

6. Flexible, Efficient and Safe Template Instantiation

public List<XMLEvent> readUntilBeforeAndSkipOnce/()
throws XMLStreamException;

public void skipUntilAfter() throws XMLStreamException;

/* Content modification. */
public void replacelastRead(List<XMLEvent> events);

Listing 6.2: The ReadWindow Interface

The operations shown in Listing 6.2 basically fall in three categories: operations for the man-
agement of markers within the template input stream, operations for reading from or skipping
in the stream and operations that modify the stream by replacing or inserting XMLEvents. A
visualization of all operations supplied by the ReadWindow implementation is shown in Fig-
ure 6.4.

The markReadPosition(marker) operation marks the current position within the
read window with some marker object marker. The read window ensures by itself that
a return to the marked position is always possible, i.e., the start of the read window will
not be moved behind the first marked position (in document order).

The returnTo (marker) operation changes the read position within the read window
to the read position which has been stored by a preceding call to markReadPosition
with the same argument marker.

The removeMarker (marker) operation removes the marked position associated with
the marker object marker. If the marked position to be removed is the first marked
position in document order, the read window will shrink itself by moving its beginning to
the next marked position.

The skipUntilAfter () operation moves the read position within the read window
to after the element closing the last read start element. The end of the read window will
be extended by the read window itself if the end element is not part of the current read
window content.

The readUntilBeforeAndSkipOnce () operation reads from the current read po-
sition to the position before the element closing the last read start element and after-
wards skips the closing element. The end of the read window will be extended by the
read window itself if the end element is not part of the current read window content.
The part of the read window content read will be returned.

The replaceLastRead(events) operation removes the last element read from the
read window and replaces it with the passed XML events events. Furthermore, the read
position is set back to the beginning of the events that has been used to replace the last
read event.

The read window implementation is designed to keep the content of the read window as
small as possible, while still allowing all described operations to be performed at any time. This
is described by two contracts. First, the read window will be empty if neither a marker has been
set nor an insert operation has filled the read window with some content. Second, all marked
positions will always be part of the read window. While the first contract minimizes the memory

132

6.2. Template Instantiation

used by the read window, the second one guarantees that elements within the read window,
which could be required at some time in the future, are still available.

4 mark(m) h 4 skipUntilAfter() 4
— <a> | | | F—o"—Pp <a> | | |
E A dUntilBef
readUntilBefore-
returnTo(m) , 4 : andSkipOnce() ——.oo1ooos A 4
—_— <a> | | | ——— P <a> ! | }
m m’ m’ m m
:l :l replacelLast-
remove(m) Read(eq,ez)
——> P €2
mnl ew | ! .
v o
Marker Evaluation Read Win- Empty Read Return
position dow Size Window Value
Figure 6.4.: Examples of Read Window Operations’ Execution
Loop Stack

In order to keep track of nested loop statements, the engine maintains a stack of them. Cur-
rently, as the XTL language design only supports one type of loop statement, the loop stack
is used to keep track of xt1l:for-each statements only. The topmost stack frame always
corresponds to the innermost active xt1: for-each statement. In this stack, the execution
information for each xt1:for-each statement is saved, i.e., the following information is
stored per xt1l: for-each:
e an iterator of objects, which is used to retrieve all values that the control variable of the
xtl: for-each statement takes during the execution of the xt1: for-each loop,
* an object representing the value of the control variable of the surrounding xt1:for-
each (ornull, if there is no such xt1: for-each statement),
e the current position of the control variable value within the iterator of all values,
¢ the Instantiation Data Evaluator which has been used to retrieve the iterator for the con-
trol variable values, and finally
¢ the name of the realm which has been assigned to the xt1: for-each statement.
Listing 6.3 shows the operations supplied by the loop stack.

public interface LoopStack

{

/* Loop lifecycle management. */
public <T> void openLoop(Iterator<T> iterator,
PlaceHolderPlugin<T> php, String realm);

public void reenterLoop();

133

6. Flexible, Efficient and Safe Template Instantiation

As

public void closeLoop();

/* Information about the innermost loop. */
public Iterator<?> getActiveIterator();

public int getPosition();

/* Information about an arbitrary loop. */
public Object getControlVariableValue(String realm);

public PlaceHolderPlugin<?> getPlaceHolderPlugin(String realm);

Listing 6.3: The LoopStack Interface

indicated in the listing, three categories of operations exist: first, operations for managing

the loop lifecycle, second, operations for giving access to information about the innermost loop
and, finally, operations which return information about an arbitrary loop on the stack. The
particular operations are described below.

134

The openLoop(iterator, php, realm) operation adds a new stack frame with
the sequence of upcoming control variable values iterator, the PHP php and the
realm name realm. The first value of the control variable is taken from iterator
immediately—thus, the passed iterator must not be empty. The position of the current
value of the control variable is initialized to 0.

The closeLoop () operation removes the topmost stack frame from the loop stack.
The reenterLoop () operation updates the topmost stack frame by retrieving a new
value for the control variable from the sequence of control variable values passed to
openLoop. As a side effect, the stored position of the control variable within the it-
erator of possible control variable values is also increased.

The getActivelterator () operation returns the iterator which is contained in the
topmost entry of the xt1l: for-each stack. This so-called active iterator is the one
which should be used to retrieve the next element when the next xt1: for-each end
element is encountered.

The getPosition() operation returns the position of the current control variable’s
value within the sequence of control variable values for the innermost loop. Obviously,
this always corresponds to the number of completed evaluations of the loop’s content.
The getControlvVariableValue (realm) operation returns the value of the con-
trol variable in the innermost xt1: for-each statement which has been assigned to
the realm realm during a call to the openLoop operation. This is needed to supply
evaluations of context-dependent XTL statements like xt1:text with the current con-
text value as described in Section 4.2.1.

The getPlaceHolderPlugin(realm) operation returns the PHP of the topmost
stackframe which has been assigned to the realm realm during the openLoop call.
This operation is only used internally for the implementation of the System PHP (see Sec-
tion 6.1.5).

6.2. Template Instantiation

Map of Macros

The use of macros in XTL templates involves two instructions: xt1l:macro and xtl:call-
macro. While the first instruction assigns a sequence of XTL instructions to a macro name, the
latter calls the macro by executing all XTL instructions which have been assigned a particular
name by a preceding xt1 :macro instruction.

public interface MacroMap

{
public List<XMLEvent> get(String name);

public void put(String name, List<XMLEvent> events);

Listing 6.4: The MacroMap Interface

In order to implement this transfer of XTL instructions with a name from the xt1:macro
instructions to corresponding xt1l:call-macro instructions, the map of macros as shown
in Listing 6.4 is used. It supports the following operations:

e The put (name, events) operation assigns the name name to the sequence of
events events.

* The get (name) operation retrieves the sequence of events which has been assigned
for the name name.

Map of PHPs

The engine uses a number of instantiation data evaluators to evaluate select attributes. For
details of these instantiation data evaluators, see Section 6.1. The selection of an appropriate
instantiation data evaluator may depend on realm attributes—for details see Section 4.5.1.

public interface PlaceHolderPluginMap extends
Iterable<PlaceHolderPlugin<?>>

{
public PlaceHolderPlugin<?> get(String realm);

}
Listing 6.5: The PlaceHolderPluginMap Interface

The PlaceHolderPluginMap interface shown in Listing 6.5 contains only a single opera-
tion. This get (realm) operation returns the PHP instance responsible for the realm with the
name realm.

The operations exposed by the PHPs itself closely correspond to the IDS interface which
has been defined as part of the denotational semantics of XTL (see Listing 4.2). For a detailed
discussion of the PHP operations, refer to Section 6.1.1.

135

6. Flexible, Efficient and Safe Template Instantiation

6.2.3. Pipeline Implementation of the XTL Engine

The XTL Engine itself isimplemented as a pipeline composed of separate processing steps, which
will be discussed in the following. The chaining of the particular steps is shown in Figure 6.5. The
steps interact by reading or writing XTLEvents for its predecessor or to its successor, respec-
tively. The pipeline is driven by the XMLPipelineDriver, which merely reads events from
its predecessor and writes these events directly to its successor. The actual instantiation is per-
formed by the XTLProcessingReader. The other components prepare the event stream
(like the XTLEventReader), perform optional features of the XTL processing (like the By -
passingProcessingReader or the IndentingXMLEventWriter) or solve technical
issues (like the ReassigningAttributesWriter).

2 B1 Bl Es

XTLEventReader
BypassProcessingReader
XTLProcessingReader
XMLPipelineDriver

ReassigningAttributesWriter
IndentingXMLEventWriter
SplittingOutputStream

@ Reads from W>> Writes to

Figure 6.5.: The XTLEngine’s Processing Pipeline

A great simplification in the implementation of the XTL Engine has been achieved by intro-
ducing XMLEvent subclasses for the particular XTL instructions. The object model formed by
these subclasses is shown in Figure 6.6. There are three categories of subclasses: representa-
tions of start elements of XTL instructions (like XTLForEachStart, left column in Figure 6.6),
representations of end elements of XTL instructions (like XTLForEachEnd, right column) and
representations of empty XTL instructions (like XTLAttribute, center column). All classes
inherit from a common base class XTLEventImpl, which implements the javax.xml.
stream.event.XMLEvent interface and can therefore be handled by XMLEventReader
and XMLEventWriter implementations. This common base class implements basic methods
enforced by the XMLEvent interface and declares abstract methods like the process method
which must be implemented by subclasses (see below for details).

For the non-empty XTL instructions, there are additional base classes in the hierarchy in-
heriting from XTLEventImpl: XTLStartElementImpl and XTLEndElementImpl for
start and end elements, respectively. These base classes implement the methods enforced by
the StartElement and EndElement interfaces from the package javax.xml.stream.
events.

The leaf classes basically implement the process method, which is used in the main partin
the XTL processing pipeline, the XTLProcessingReader. Via this method, the XTL Engine is
easily extendable with new XTL instructions: the actual interpretation of the instruction is kept

136

,—D

[T +

HMLE vent
il XTLEvenrf

6.2. Template Instantiation

R

impl KTL S fariBlerment

T

EnrdElement
inl: X TLEndElenmenf

%/—?

N

events:: XTLMacro Start

events: XTLAHMbute

events:: XTLMacro End

logger: Logger= Logger.getlogge. ..
name: String = null

logger: Logger= Logger.getlogge...
name: QName = null
select: String = null

logger: Logger= Logger.getlogge...

ATLMacroEnd(EndElement)

+ ATLMacroStart(StanElement) realm: String = null validated : woid
+ gethdacroMamer): String type: QHame = null
+ walidate) : woid made: String = null
+ procesginstantiationContesd) : XMLEwent result: String = null
+ XTLAthibute(StanElement)
+ getSelect] : String
+ getType(): QHame
ewents:: XTLInit Start + walidate) : woid ewvents::XTLINitEnd
+ processinstantiationContest) : XMLEvent
logger: Lo.gger= Logger.getlogge... ATLIniEnd(EndElemant)
realm: String = null walidate) : woid
+ XTLInitStat(StartElement) T C=ll Ao
+ walidate) : void " =
+ process(instantiationCantexd) : XMLEvant L°agr§::" S"t?if‘gge; n;fgge"geﬂ'°gge"'
+ XTLCallMacrofStatElement)
+ gethdacroMame) : String
+ walidate) : woid
events: XTLForEach Start + processinstantiationContexd) : XMLEvent events:: XTLFor EachEnd
logger Logger= Logger.getlogge... logger: Logger= Loggergetlogge...
select: String = null
realm: String = null eventsKTLText ATLForEachEndiEndElement)
type: QMame = null walidated) : waid
orderBy: String = null logger: Logger= Logger.getlogge... processinstantiationContest) : XMLEvent
order: String = null select: String = null
realm: String = null
+ ATLForEachStat(StanElement) type: QHame = null
+ getSelect] : String
+ getRealm() : String + ATLText(StanElement)
+ getType : javaxxml.namespace.QName + ATLText(String, String, QHame)
+ getOrderBy) : String + getSelect] : Sting
+ getOrder) : String + getRealm : String
+ validate) : void + getType(): QHame
+ processinstantiationContesd) : XMLEvent + walidate) : woid
+ processinstantiationContesd) : XMLEvent
events: KTLKStart events:XTLInclude ewvents: XTLFEnd
logger: Logger= Loggergetlogge... logger: Logger= Logger.getLogge... ATLHWERA(EndElement)
select: String = null selact: Str?ng = null walidate) : woid
realm: String = null realm: String = null
type: QMame = null type: QHame = null
+ ATLIfStar(StanElement) + XTLinclude(StartElement)
+ getSelect] : String + getSelech] : String
+ getRealm: String + getRealm) : String
+ getType(: javaxxmlnamespace QName + getType(): QHame
+ walidated) : void + walidate() : void
+ procesginstantiationContesd) : XMLEwent + processinstantiationContexd) : XMLEvent

Figure 6.6.: The XTLEvent Hierarchy

137

6. Flexible, Efficient and Safe Template Instantiation

together with its representation in the object model, which makes it unnecessary to change the
XTLProcessingReader class when new functionalities are added.

It can easily be seen from the operational model and from the description of the particular
processing steps below, that the implementation of the XTL Engine, while being possible in a
well-structured and easily maintainable design, is much more complex than the implementation
of the denotational semantics as a Haskell program. Interestingly, it seems that reimplementing
Haskell-based XML processing applications in Java always leads to programs which are larger and
very differently structured. This insight also seems to be true for other reimplementations, e.g.,
for the reimplementation of the RelaxNG validation given by [37]:

The Relax NG derivative algorithm is implemented in a few hundred elegant declar-
ative functional lines of Haskell, and also in tens of thousands of lines and hundreds
of classes of highly abstract complex Java code. [89, spelling corrected]

XTLEventReader

The first step in the instantiation process is the replacement of all StAX XML events that cor-
respond to XTL elements with specific XTL events. The implementation is really simple. Dur-
ing the construction of the XTLEventReader, all classes registered as representations of XTL
events are retrieved. This is achieved via the service provider mechanism [177, Section “Service
Provider”], i.e., by inspecting all files named ’/META-INF/services/org.lixlix.xtl.engine. XTLEvent’
in the classpath. All of these classes are inspected for their constructors via reflection. If a
class provides a constructor with a single javax.xml.stream.events.StartElement
argument, it is considered a representation of an XTL start element. If the class provides a
constructor with a single javax.xml.stream.events.EndElement, it is considered a
representation of an end element, respectively. Classes providing none of these constructors
are invalid implementations and are excluded from further processing.

Predecessor StartElement StartElement
Stream <a> <xtl:attribute>
XTLEventReader XTLAttributeEvent
- startElementCtors : Map<String, Constructor> + XTLAttributeEvent(StartElement)

* + getNextEvent() : XMLEvent

L (3) }
@ Y

Successor ’ StartElement XTLAttributeEvent

Stream <a> <xtl:attribute>

Figure 6.7.: Activities during a Call to XTLEventReader.getNextEvent
Each class must denote a local element name by using the Java annotation org.lixlix.

xtl.engine.XTLEventDescription. If nosuch annotation is attached to the class, the
class is considered an illegal implementation and is excluded from further processing. If an

138

6.2. Template Instantiation

annotation is attached, its localName attribute is used to store the constructor in either a
start element or an end element constructor map.

During the template instantiation process, the getNextElement method prescribed by
the javax.xml.stream.XMLEventReader interface is invoked. An example of such an
invocation is shown in Figure 6.7. The implementation of getNextElement first fetches an
element from the XTLEventReaders predecessor in the processing chain @. If the element
is not from the XTL XML namespace, it is simply returned to the caller. If the element has the
XTL namespace URI, its local name is used to look up a constructor from either the start ele-
ment or the end element constructor map, depending on whether the element is a start or an
end element @. This constructor is then called with the element from the predecessor ®. If
the construction succeeds, its result is returned to the caller, i.e., the successor in the process-
ing chain @. If construction fails, a warning message is emitted, stating that an unprocessable
element from the XTL namespace has been encountered and the predecessor is asked for a
new element, which is then processed in the described way. This process continues until an
element can be returned or the predecessor fails to deliver further elements. In that case an
javax.xml.stream.XMLStreamException is thrown.

BypassProcessingReader

The next step in the processing chain is the BypassProcessingReader, which is respon-
sible for implementing the bypassing feature as described in Section 4.5.2. An example of the
operations executed by the BypassProcessingReader is shown in Figure 6.8.

Predecessor XTLAttributeEvent StartElement
Stream <xtl:attribute> <xtl-bp:attribute>
BypassProcessingReader XMLEventFactory
- startElementCtors : Map<String, Constructor> + createStartElement(String,
+ getNextEvent() : XMLEvent Iterator, Iterator)
|| A
K\ (2) >
@ \/w

Successor XTLAttributeEvent StartElement
Stream <xtl:attribute> <xtl:attribute>

Figure 6.8.: Activities during a Call to BypassProcessingReader.getNextEvent

When the getNextEvent method of the BypassProcessingReader is called, it first
fetches an element from its predecessor in the processing chain @©. If the element is not from
one of the bypassing namespaces, i.e., if its namespace URlisnothttp://research.sap.
com/xtl/1.0/bypass/n,the elementissimply returned to the caller. Please note that this
is also true for elements from the XTL namespace itself. If the element is from one of the by-
passing namespaces, its generation number is decreased. Then, a new start element is created
using the javax.xml.stream.XMLEventFactory @. This element is either from the
XTL namespace, if the decreased generation number is 0, or from the bypassing namespace

139

6. Flexible, Efficient and Safe Template Instantiation

with the decreased generation number. It is important to note that elements read from the
bypassing namespace with the generation number 1 are converted to mere start elements, not
to specific XTL events. This prevents the elements from this namespace from being processed
in the following processing chain, and this is also the reason why the XTLEventReader pre-
cedes the BypassProcessingReader in the processing chain. Finally, the newly created
element is returned to the caller ®.

XTLProcessingReader

The XTLProcessingReader is the core of the XTL engine. This is the part of the XML pro-
cessing pipeline in which the XTL instructions are actually executed. To grant the components
performing the actual processing of XTL events access to the operations of the abstract ma-
chine described in Section 6.2.2, the XTLProcessingReader implements the Instan-
tiationContext interface shown in Listing 6.6.

public interface InstantiationContext

{ public LoopStack getContextStack();
public MacroMap getMacroMap();
public PlaceHolderPluginMap getPlaceHolderPluginMap();
public ReadWindow getReadWindow() ;

}

Listing 6.6: The InstantiationContext Interface

An example of the operation of the XTLProcessingReader is shown in Figure 6.9.

Predecessor XTLAttributeEvent XTLText
Stream <xtl:attribute> <xtl:text>
XTLText
+ process(InstantiationContext) : XMLEvent
XTLProcessingReader | * |
+ getNextEvent() : XMLEvent
|| A 2
O @
G) PlaceHolderPlugin
V - +evaluateText(XTLText, Object):String
Successor XTLAttributeEvent Text
Stream <xtl:attribute> some text

Figure 6.9.: Activities during a Call to XTLProcessingReader.getNextEvent

The XTLProcessingReader’s getNextEvent method operatesin aloop. First, it fetch-
es an XMLEvent from its predecessor @. If the fetched event is an instance of java.xml.

140

6.2. Template Instantiation

stream.events.Comment, the loop is reentered, i.e., XML comments from the template
are omitted from the output. If the fetched eventis an XTL instruction, its process (Instan-
tiationContext) : XMLEvent method is called @. As the InstantiationContext
parameter, the XTLProcessingReader passes itself.

The process method of the XTLText class invoked by the XTLProcessingReader,
which is shown in Listing 6.7, uses the passed InstantiationContext interface to re-
trieve the PlaceHolderPlugin responsible for evaluating the expression in the select
attribute of the xt1: text instruction ®. Afterwards, this PHP’s evaluateText method is
called to actually evaluate the select expression @. The string value returned by the PHP is
used to construct an javax.xml.stream.events.Text object, which is returned to the
XTLProcessingReader’s getNextEvent method, which returns it to its invoker ®.

If the process method of the XTLEvent would have returned null, the getNext-
Event’s loop would have been reentered.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLText."”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

String result = php.evaluateText(this,
context.getContextStack().getControlVariableValue(realm));

return eventFactory.createCharacters(result);

Listing 6.7: The process Method in XTLText

The processing of xt1l:attribute instructions is very similar to the processing just ex-
plained, i.e., the process method of XTLAttribute is almost identical to the one in XTL-
Text.

The implementation of the process method in XTLIfStart is shown in Listing 6.8. The
processing starts similarly to the processing of an xt1:text instruction, but the evalu-
ateIf method from the PHP returns a boolean value rather than a string. If this boolean is
false, the processing of the preceding stream is skipped until after the xt1:if end element
that corresponds to the current start element using the method skipUntilAfter from the
ReadWindow class. The process method returns null to signal the XTLProcessing-
Reader that it has not produced anything that should be part of the instantiated template.
The XTLIfEnd class itself has an empty process method, as no action has to be executed
when a closing xt1:if element is encountered.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{

logger.debug(”Processing XTLIf select='"+select+"’'.");

141

6. Flexible, Efficient and Safe Template Instantiation

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

boolean conditionFullfilled = php.evaluateIf(this,
context.getContextStack().getControlvVariableValue(realm));

if (!conditionFullfilled)

{
// Fast forward.

context.getReadWindow() .skipUntilAfter();
}

return null;

Listing 6.8: The process Method in XTLIfStart

The implementation of the process method of the XTLForEachStart and XTLFor-
EachEnd classes are shown in the Figures 6.9 and 6.10, respectively.

An xt1:for-each start element is processed as follows. First, a PHP is retrieved using the
realm attribute value. Then, the method evaluateForEach is called to get an iterator
over all control values for which the xt1: for-each instruction content should be instanti-
ated. If the iterator is empty, the xt1: for-each instruction is skipped completely using the
skipUntilAfter method from the ReadWindow class. Otherwise, the current read posi-
tion is marked with the iterator in the read window using the markReadPositon method,
and an entry on the ContextStack is made. This entry contains the iterator itself, its first
element as current value of the control variable, 0 as current position within the xt1:for-
each, the PHP used to evaluate the xt1: for-each and the value of the realm attribute.
The process method returns null in both cases, as xt1: for-each itself does not directly
contribute to the instantiated template.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException
{
logger.debug(”Processing XTLForEachStart
select='"+select+”'");

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

Iterator<?> it = php.evaluateForEach(this,
context.getContextStack().getControlVariableValue(realm));

if (it.hasNext())

{
// Mark the current read position.
context.getReadWindow() .markReadPosition(it);
// Register the execution of a loop on the context stack.
context.getContextStack().openLoop(it, php, realm);

}

142

6.2. Template Instantiation

else

{
// Fast forward.

context.getReadWindow() .skipUntilAfter();
}

return null;

Listing 6.9: The process Method in XTLForEachStart

If an xt1l:for-each end element is encountered, its process method first retrieves
the iterator of the innermost xt1: for-each instruction from the ContextStack using
its getActiveIterator method. The iterator’s hasNext method is then called to de-
termine whether the xt1: for-each instruction’s content should be executed once more.
If hasNext returns false, the topmost entry on the ContextStack and the position in
the ReadWindow marked with the iterator are removed. Otherwise, if hasNext returns
true, the next value for the control variable is retrieved and the topmost entry on the Con-
textStack is updated. Finally, the read position in the ReadWindow is reset to the position
marked with the iterator, i.e., to the position directly after the corresponding xt1: for-each
start element. In either case, the process method returns null.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLForEachEnd."”);

// Get the context stack.
LoopStack contextStack = context.getContextStack();

// Get the active iterator.
Iterator<?> it = contextStack.getActivelterator();

// Do we have a new context object?
if (it.hasNext())

{
// Reenter the loop.
contextStack.reenterLoop();
// Jump to the event following the for-each start.
context.getReadWindow().returnTo(it);
}
else
{

// Remove the context.
contextStack.closeLoop();

// Allow the read window to compact itself.

143

6. Flexible, Efficient and Safe Template Instantiation

context.getReadWindow() .removeMarker (it);

}

return null;

Listing 6.10: The process Method in XTLForEachEnd

The macro handling is also very easy to implement: the processing of the xt1 :macro start
element is shown in Listing 6.11, the process method of the xt1:macro end element is
empty and the processing of xt1l:call-macro is shown in Listing 6.12.

The process method of XTLMacroStart uses the readUntilBeforeAndSkipOnce
method to get its content and stores it under the name given by the value of its name attribute
in the macro map. Nothing is returned from the process method, since the xtl:macro
instruction does not directly contribute to the instantiated template.

public XMLEvent process(InstantiationContext context) throws

XMLStreamException

{
logger.debug(”Processing XTLMacroStart name='"+name+"'.");
// Get content of the macro until the closing element.
List<XMLEvent> content =

context.getReadWindow() .readUntilBeforeAndSkipOnce();

// Store this macro.
context.getMacroMap() .put(name, content);
return null;

}

Listing 6.11: The process Method in XTLMacroStart

When an xt1l:call-macro instruction is encountered, the macro map is used to retrieve
the events stored by an xtl:macro instruction with a name attribute of the same value.
This content is then used to replace xtl:call-macro instructions using the replace-
LastRead () method of the read window. Nothing is returned from the process method,
so the XTLProcessingReader is going to fetch the next element from the read window,
which will be the first element from the currently inserted macro definition.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException
{

logger.debug(”Processing XTLCallMacro name='"+name+"”’'.");

// Get the content of the macro definition.
List<XMLEvent> events = context.getMacroMap().get(name);

144

6.2. Template Instantiation

// Replace xtl:call-macro with the macro content.
context.getReadWindow() .replaceLastRead(events);

return null;

Listing 6.12: The process Method in XTLCallMacro

The processing of the xt1:include instruction is shown in Listing 6.13. The process
method determines the events to be included using the evaluateInclude method of the
PHP and uses the retrieved events to replace the last read event in the read window. Afterwards,
the method returns null to force the XTLProcessingReader to fetch the first event from
the read window, which will now be the first element evaluated by the PHP.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLInclude.”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

// Get events to be included.
List<XMLEvent> events = php.evaluateInclude(this,
context.getContextStack().getControlVariableValue(realm));

// Insert ourself with the new events.
context.getReadWindow() .replacelLastRead(events);

return null;

Listing 6.13: The process Method in XTLInclude

The processing of xt1:init isimplemented as shown in Listing 6.14. The process meth-
od fetches the content of the xt1:init instruction using readUntilBeforeAndSkip-
Once from the read window and passes the retrieved events to the PHP denoted by its realm
attribute. Asxtl:init does not contribute to the instantiated template, the process meth-
od returns null.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLInitStart.”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

145

6. Flexible, Efficient and Safe Template Instantiation

List<XMLEvent> content =
context.getReadWindow() .readUntilBeforeAndSkipOnce();

php.init(content);

return null;

Listing 6.14: The process Method in XTLInit

XMLPipelineDriver

The XMLPipelineDriver is a very simple component responsible for driving the XML pro-
cessing pipeline by reading XMLEvents from its predecessor and writing them to its successor.
This mechanism is implemented in its execute method. As soon as no more events can be
read from its predecessor, the execute method returns.

ReassigningAttributesWriter

The ReassigningAttributesWriter solves a purely technical problem: some StAX im-
plementations cannot handle standalone java.xml.stream.events.Attribute in-
stances, i.e., instances which are directly embedded into the StAX event stream. These im-
plementations expect all Attribute instances to be assigned to javax.xml.stream.
events.StartElement instances. Since the processing of xt1:attribute instructions
creates such standalone instances, the ReassigningAttributesWriter has been intro-
duced to keep the implementation of the XTL engine’s core components as clean and clear as
possible.

The ReassigningAttributesWriter performs the assignment of standalone At-
tribute instances to their preceding start element. To achieve this, the writing of the last
StartElement is deferred until a new StartElement or an EndElement is encoun-
tered. During deferral, all Attribute instances in the stream are removed from the stream
and assigned to the deferred start element.

IndentingXMLEventWriter

In order to produce a human readable XML output, the IndentingXMLEventWriter com-
ponent can be inserted into the processing pipeline. Indentation of XML can be implemented in
many ways. In order to keep the memory consumption low, a streaming indentation algorithm
has beenimplemented. The indentation process has been subdivided into two components, the
actual IndentingXMLEventWriter and an inner class called PostProcessor. There-
fore, the indentation step in the processing pipeline shown in Figure 6.5 is shown in more detail
in Figure 6.10. The IndentingXMLEventWriter itself is responsible for keeping track of
the element nesting in the XMLEvent stream, whereas the PostProcessor is responsible
for performing the actual indentation (i.e., the indentation on the syntactical level).

146

6.2. Template Instantiation

>

PostProcessor

IndentingXMLEventWriter
IndentingXMLEventWriter$

@ Writes to

Figure 6.10.: Indentation Parts of the XTL Processing Pipeline

The PostProcessor provides the following operations to the IndentingXMLEvent-
Writer:

increaseIndent increases the indentation for all following elements by one tabula-
tor.

decreaseIndent decreases the indentation for all following elements by one tabula-
tor.

indent inserts the number of tabulators currently set as a Text event into the target
XMLEvent stream.

assertNewLine ensures that the target event stream is on a newline. If this is not the
case, the PostProcessor inserts a newline.

add adds a particular XMLEvent to the event stream.

The IndentingXMLEventWriter obeys the state chart shown in Figure 6.11. The fol-
lowing actions are performed on the transitions between the states:

@

The only valid event in the initial state is the StartDocument event, which causes a
transition into the corresponding state. The event itself is added to the PostProces-
sor.

Text events occuring in the START DOCUMENT state are ignored.
A StartElement event makes sure that the target stream is on a newline, adds the
event to the PostProcessor and increases the indent level. Furthermore, a transition

to the START ELEMENT state is performed.

If Text events occur in the START ELEMENT state, their content is aggregated in a text
buffer.

If another StartElement event occurs, the content of the text buffer is flushed (see
below). Afterwards, indent is called on the PostProcessor, the StartElement
event is added to the PostProcessor and the indentation is increased.

147

6. Flexible, Efficient and Safe Template Instantiation

® If an EndElement event occurs, the content of the text buffer is flushed, the indenta-
tion is decreased, indent is called and the event is added to the PostProcessor. A
transition to the END ELEMENT state is performed.

@ IfaStartElement occursinthe END ELEMENT state, the text buffer content is flush-
ed, indent is called, the event is added to the PostProcessor and the indentation
is increased. A transition to the START ELEMENT state is performed.

If Text events occur in the END ELEMENT state, their content is aggregated in a text
buffer.

@ If another EndElement event occurs, the content of the text buffer is flushed. The
indentation is decreased, indent is called and the event is added to the PostPro-
cessor.

® If an EndDocument event occurs, the event is added to the PostProcessor. The
final state of the start model has been reached.

All transitions not shown in Figure 6.11 are considered illegal and cause an error message.
This also includes events which will never occur in the XMLEvent stream originating from the
XTLEventProcessingReader, like Comment or ProcessingInstruction events.

START_DOCUMENT

START_ELEMENT @ END_ELEMENT

Figure 6.11.: State Chart of the IndentingXMLEventWriter

The treatment of the content of the text buffer during flushing to the successor XMLEvent-
Writer, which occurs in the transitions ®, ®, @ and @, depends on the text which has been
collected in the text buffer. If the text to be flushed consists of a single line and is not longer
than a configurable size, it is emitted as is. This results in an XML snippet like the following:

<a>text

If the text is longer or contains newlines, it is tokenized and its parts are emitted with indenta-
tion, resulting in XML like the following:

<a>
text
more text

148

6.2. Template Instantiation

SplittingOutputStream

A special feature of the XTL Engine is its capability to split the instantiation result into multiple
result documents. This feature roughly corresponds to the result-document instruction of
XSL-T 2.0. Syntactically, this feature is based on an XML Schema which defines elements that al-
low bundling multiple XML documents into one. An example document is shown in Listing 6.15.

<?xml version="1.0" encoding="UTF-8"?>
<s:files xmlns:s="http://research.sap.com/xtl/splitting”>
<s:file name="simplel 1.xml”>
<a>This is simplel 1l.xml!
</s:file>
<s:file name="simplel 2.xml” encoding="iso-8859-1">
<a>This is simplel 2.xml!
</s:file>
<s:file name="simplel 3.xml” encoding="utf-8">
<a>This is simplel 3.xml!
</s:file>
<s:file name="simplel/simplel 4.xml”>
<a>This is simplel/simplel 4.xml!
</s:file>
</s:files>

Listing 6.15: A Template Instantiation Result before Splitting

The root element of a template instantiation result which should be split into multiple files
must be £iles from the splitting namespace (here prefixed with s, the namespace URI is
http://research.sap.com/xtl/splitting). Within this root element, multiple s :
file elements are allowed. Each s: £ile element must have a name attribute that declares
the file name into which all content parented by this s : £i1e element should be written. The
s:file element can also carry an encoding attribute which sets the encoding of this par-
ticular file to be generated.

@ .. O

IN_FILES |_ "1 IN_FILE

@ </file>
|
<files> @

SUCCESS

<files>

</files>

<file>

FAILURE

Figure 6.12.: State Chart of the SplittingOutputStream

The implementation of the SplittingOutputStream is simple and follows the state
chart shown in Figure 6.12. From the initial state, the only valid transition is to the IN_FILES
stateviaans:files element ®. Fromthe IN FILES state, an s:file element causes the
creation of a file and a transition into the IN_FILE state @, in which basically all occuring el-
ements are written to the file created ®. The IN_FILE is only left when a closings:file or
s:files tagis encountered. The first case causes a transition back to the IN_FILES state @,

149

6. Flexible, Efficient and Safe Template Instantiation

whereas the latter case is obviously an error, which causes the SplittingOutputStream
to enter a final ERROR state ®. From the IN_FILES state, an occuring closing s: files tag
causes the transition to the final SUCCESS state ®, whereas a closing s: £ile is an error and
leads to the final ERROR state @.

6.2.4. Memory and Runtime Complexity

From the operational view on the XTL Engine, the limits for the memory and time consumption
shown below can be derived. The underlined parts of the equations are to be interpreted as
XPath expressions.

The memory consumption limit of the XTL Engine is determined by the size of the read win-
dow. As explained above, the read window must be capable of holding the content of the largest
xt1l:for-each statement of a template, i.e., the memory is limited by the maximum number
of nodes contained in an xt1: for-each statement in the template ¢°.

memory(t°) = O < max ‘x//nOde()D

xz€t® /xtl:for—each

A limit for the time consumption can only be given by abstracting from the time needed for
the evaluation of the expressions from the query language. Under this restriction, the time
needed for the instantiation of the template is linear in the size of the instantiated template.
Obviously, the size of the instantiated template can not be estimated from the template, as this
size depends on the result of the evaluation of the instantiation data.

time(t°) = O (‘instantiate(to)w‘)

Measurements of the implementation show the correctness of these estimations, for details
see Section 7.5.

6.3. Instantiation Data Validation

The instantiation data validation process is responsible for the validation of the instantiation
data. The instantiation data validator component verifies the data supplied by the instantiation
data evaluator against the constraints determined during the Constraint Separation process.
Non-compliance of the instantiation data has to be reported by this component.

As Figure 3.5 shows, the instantiation data validator gets activated during the instantiation
phase. This means that no corrective actions can be taken anymore if a problem is detected
with respect to the instantiation data. The component is beneficial nonetheless, because it is
able to deliver the exact reason why the instantiated template will not comply to the target
language. Furthermore, the error is detected within the application which incorporates the
template engine, and not, as for example in a classical Web application, in some user’s browser
(see Figure 1.1). Thus, validating the instantiation data constraints contributes to the safe in-
stantiation goal.

150

6.3. Instantiation Data Validation

6.3.1. The IDC PHP

The process of validating the particular instantiation data constraints is simple. The constraints
are simply taken from the template into which they have been augmented by the Template
Validation process as shown in Section 5.2. Afterwards, the values returned by the instantiation
data validation process are validated against these constraints. This process is implemented by
the IDC PHP, which is a PHP that wraps another PHP and validates its return values as shown
in Figure 6.13 (see Section 6.2.3 for the process without involvement of the IDC PHP). The IDC
PHP is a decorator [73]. If multiple PHPs are in use during XTL instantiation (see Section 4.5.1
for details), each PHP is wrapped with its own IDC PHP.

Predecessor XTLAttributeEvent XTLText
Stream <xtl:attribute> <xtl:text>
XTLText
+ process(InstantiationContext) : XMLEvent
XTLProcessingReader | 4 'L
+ getNextEvent() : XMLEvent 3
IDCPHP
| I k 5 +evaluateText(XTLText, Object):String
S o)
®) \&J
~ V PlaceHolderPlugin
Successor XTLAttributeEvent Text +evaluateText(XTLText, Object):String
Stream <xtl:attribute> some text

Figure 6.13.: XTL Instantiation with enabled Instantiation Data Validation

When the XTLProcessingReader encounters an xt1:text instruction @, it calls the
process method of the XTLText event implementation @. This implementation now no
longer retrieves the instantiation data directly from the responsible PHP (as in Figure 6.9), but
rather calls the evaluateText method of the IDC PHP to evaluate it ®. The IDC PHP in turn
calls the evaluateText method of the responsible PHP @ to actually get the instantiation
data value, which it validates using the type attribute augmented to the xt1:text instruc-
tion. If the instantiation data is valid with respect to the instantiation data constraint, the pro-
cessing method returns ® and the XTLProcessingReader creates a text element ®. If the
instantiation data is not valid, the instantiation fails, thereby producing an error message telling
which instantiation data constraint has been validated.

The actual processing of the value returned by the wrapped PHP depends on the affected XTL
instruction:

1. Ifanxtl:text orxtl:attribute instruction is processed, the instantiation data is
validated against the XML Schema simple type denoted by the type attribute of the XTL
instruction. This validation is performed using the validate method from the corre-
sponding org.apache.xerces.impl.dv.XSSimpleType instance, which is re-
trieved based on the type attribute.

2. If an xt1:if instruction is processed, no validation is performed as the PHP interface
already restricts the return value to be of boolean type (see Listing 6.1), which makes it
impossible to retrieve an invalid instantiation data value here.

151

6. Flexible, Efficient and Safe Template Instantiation

3. If an xt1l:for-each instruction is processed, the wrapped PHP returns an iterator
over elements of some type determined by a generic parameter of the PHP interface.
It must be checked that this iterator returns a number of elements between the values
of the min and the max attribute of the xt1: for-each instruction (the latter value
may be unbounded, which makes the interval of allowed values for the number left-
bound). As the retrieval of elements from the iterator does not take place in the PHP
itself, but rather in the process methods of the XTLForEachStart and XTLFor-
EachEnd event classes, the iteratoriswrappedinaorg.lixlix.xtl.util.Size-
CheckingIterator. This decorator class just delegates calls to its next and has-
Next methods to the decorated iterator, and counts the number of elements already
retrieved and adds an additional check that is executed when the hasNext method of
the decorated iterator returns f£alse for the first time. The check ensures that the num-
ber of elements retrieved from the decorated iterator is within the interval specified by
the min and max attributes of the xt1: for-each instruction.

6.3.2. Template Interface Generation

There is an alternative approach to ensure that the instantiation data satisfies its constraints.
Assuming that the frequency of template modifications is low (or that the modifications are of
a special type, see below), an interface to the template that asserts the instantiation data con-
straints can be generated. This interface ensures the instantiation data constraints by mapping
them to the type system of the language that is using the template engine.

This technique is called Template Interface Generation and slightly changes the template tech-
nique as proposed in Figure 3.5. The changed architecture is shown in Figure 6.14. The differ-
ence to the previously proposed architecture is the extension of the adaptation phase: the
adaptation of the template technique now also includes an adaptation to the authored tem-
plate. After the template has been authored and validated, it is compiled in the Template Inter-
face Generation step.

This step yields a template interface that fulfills the functions of both instantiation data evalu-
ation and instantiation data validation. For that reason, the template interface is connected with
the Template Instantiation bidirectionally. Strictly speaking, the generated template interface
appears in two life cycle phases. It is generated in the adaptation phase and used in the instan-
tiation phase, which is indicated in Figure 6.14 by the bicolour box used for it. Furthermore, it
is important to note that the aforementioned adaptation phase is different from the one intro-
duced in Section 2.1.2, since it is adapting the template engine to a particular template rather
than to a particular target language.

Template Interface Generation combines the best features of both XML binding tools and
template techniques. XML binding tools guarantee that a generated document complies to a
given schema by translating the constraints contained in the schema to the type system of the
programming language using the XML binding tool (see Section 2.3.3 and [155]). This principle
has also been called intra-level transformation between technological spaces [113]. The disad-
vantage of XML binding tools is that the entire document must be created in the host language.
Onthe other hand, template techniques offer an easy way to generate a document only partially
using a programming language: the remainder of the target document is literally contained in

152

6.3. Instantiation Data Validation

Instantiatiop Data P Constraint P Target Language
Constraints < Separation < Grammar

A
Template Lan-
guage Grammar

v

Y

Template Interface
Generation

B Design Adaptation M Authoring M Instantiation

Figure 6.14.: Architecture with Template Interface Generation

the template. Template Interface Generation allows to generate target language documents
partially using a programming language, partially from a template using a generated APl which
ensures the validity of the instantiation data.

Adifference between the originally proposed architecture in Figure 3.5 and the architecture in
Figure 6.14 is the missing instantiation data source component in the latter architecture. It has
been replaced by the application employing the template engine. The application is connected
bidirectionally to the template interface and the directions correspond to the push and the pull
strategy introduced in Section 2.5.4.

If the pull strategy is used, Template Interface Generation just generates an interface which
must be implemented by the application that is using the template. In this case, the instanti-
ation data is queried from the application when it is needed. On the other hand, if the push
strategy is used, the Template Interface Generation process will generate a data model which is
instantiated afterwards and populated by the application, and that is passed to the template en-
gine upon invocation. Obviously, the data model corresponds to the Move Copy of Data pattern
also mentioned in Section 6.1.1.

6.3.2.1. Introductory Example

As an introductory example, consider the XTL template shown in Listing 6.16. The template is
obviously intended to generate an XHTML document. The template is augmented with instanti-
ation data constraints, e.g., with type attributes at the xt1: text instructions. The Template

153

6. Flexible, Efficient and Safe Template Instantiation

Interface Generation process interprets the select attributes in this listing as XPath expres-
sions and tries to build an object model which can be accessed using these select attributes.

<?xml version="1.0" encoding="UTF-8"?>

<html
xmlns="http://www.w3.0rg/1999/xhtml”
xmlns:xtl="http://research.sap.com/xtl/1.0"”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”

>
<body>

<xtl:for-each select="books” min="1" max="unbounded”>
<xtl:for-each select="authors” min="1" max="unbounded”>
<xtl:text select="name” type="xsd:string”/>
</xtl:for-each>
<xtl:text select="name” type="xsd:string”/>
(publ. <xtl:text select="publicationDate” type="xsd:date”/>)
<xtl:if select="instock”>Buy</xtl:if>
</xtl:for-each>

</body>
</html>

Listing 6.16: Example Template for Template Interface Generation

As the root for the XPath expressions within the documents, the root class of the object model
to be generated will be used. As this usage is implicit (as opposed to being declared using some
XPath expression), a name for the root class can not be deduced from the XTL template. As a
convention, the Template Interface Generation process names the root class ObjectModel-
Root.

Since the outermost xt1: for-each instruction has a select attribute with a value of
books, the ObjectModelRoot class must have a property named books. As the multiplic-
ity of the xt1: for-each instruction is restricted by min and max attributes deduced during
the Template Validation process, the books property must have a multiplicity of 1...n. There
is no type attribute at the xt1: for-each instruction, since this instruction merely changes
the context of the PHP during the Template Instantiation. The Template Interface Generation
process therefore generates a new class Book for this property—the name is put into singular
in order to make the object model more human readable.

The Book class is used as the context for the xt1:text instructions with the select at-
tribute values name and publicationDate. Therefore, the Book class has properties with
these names and the types String and Date, respectively. The Java type is deduced from
the XML Schema type in the same way JAXB maps XML Schema types to Java types (see below
for the details). Additionally, there is an xt1:if instruction with a select attribute with the
value instock, which is turned into a boolean property of the same name at the Book class.
Finally, the outermost xt1: for-each statement contains a further xt1: for-each state-
ment carrying a select attribute with the value authors. Analogously to what has been

154

6.3. Instantiation Data Validation

described above, this statement adds an authors property to the Books class typed by the
newly introduced Author class.

The xt1l: for-each statement refering to the authors property of the Book class con-
tains only a single xt 1 : text instruction, which causes the Template Interface Generation pro-
cess to add a name property to the Author class. This attribute has the type String. The
overall object model which can be deduced from the template is shown in Figure 6.15.

EBook

name: String
publicationlate: [ate
- instock boolean Auathaor
Object MModel Root +baoks +authars
getfuthors) : List<Author: - name: String
zetduthorgList<Author=) : woid 1.7
getMamer): String + getMamel): String
setHamerString) @ woid + =etMamelSting) : void
getPublicationD ater) : Date
setPublicationDatelD ate) : woid
islnstock) : boolean
setlnstoddboolean) : woid

+ getBooks]) : ListzBook> 1.7
+ =zetBooksList<Books=): void

+ o+ F o+ o+ o+ o+

Figure 6.15.: The Object Model Deduced from the Template in Listing 6.16

It is important to note that the Instantiation Data Type Safety can not only be guaranteed by
the Java types of the properties within the generated object model. The problem is that the
XML Schema type model is much more fine-grained than the Java type model, e.g., there is no
exact equivalent of the xsd: nonNegativeInteger type. The solution is to select the Java
type which has the smallest value range including all the values from the XML Schema type,
and to check the value for its correctness with respect to the XML Schema type either when
the value changes (i.e., within the set method) or when the object model is passed into the
Template Instantiation process.

6.3.2.2. An Algorithm for the Template Interface Generation

It is important to note that the Template Interface Generation process restricts the syntax of
XPath expressions used within the template. For example, the XPath axis descendant can not
be allowed in the XPath expressions in a template for which an interface should be generated,
since this axis allows an XPath to evaluate to a node arbitrarily deep within the context node.
There is no equivalent to such an arbitrary descent within an object model.

The syntax accepted by the Template Interface Generation is shown in Figure 6.16. The figure
contains a subset of the syntactical productions in the XPath specification [38]. The first column
in the figure contains the number of the production rule within the specification. On the right
hand side of the rules, terminal and non-terminal symbols have been greyed out if they are not
allowed within the XPath expressions. If a non-terminal has been greyed out, its corresponding
production rule has been omitted. The rule has also been omitted if its left-hand side is not from
the XPath specification—this is the case for the QName non-terminal symbol, which is actually
defined in [29].

155

6. Flexible, Efficient and Safe Template Instantiation

[1] LocationPath ::= RelativelLocationPath | AbsolutelLocationPath
[2] AbsoluteLocationPath ::= ’/’ RelativeLocationPath?
[3] RelativeLocationPath ::= Step
| RelativeLocationPath '/’ Step
(4] Step ::= AxisSpecifier NodeTest
| AbbrStep
[5] AxisSpecifier ::= AxisName’::’" | AbbrAxisSpecifier
[6] AxisName ::= | | ‘attribute’
| ’child” | |
| | ‘following-sibling’ |
| ’parent’ | | ‘preceding-sibling’ | 'self’
[7] NodeTest ::= NameTest
[12] AbbrStep = V|
[13] AbbrAxisSpecifier = ‘@’?
[37] NameTest ::= QName

Figure 6.16.: The XPath Syntax Accepted by the Template Interface Generation Process

There are several reasons why a part of the right-hand side of a production rule has been
greyed out. First of all, all axes that allow an arbitrary depth selection within an XML document
have been omitted (ancestor, ancestor-or-self, descendant, descendant-or-
self, preceding, following). The namespace axis has been disallowed as its use does
not make any sense when accessing an object model. Furthermore, the use of predicates to
further classify the selected nodes has been disallowed in order to simplify the actual imple-
mentation of the Template Interface Generation algorithm, although it would be possible to
include predicates in the allowed XPath subset. The abbreviated location paths have been dis-
allowed since they are refering to the disallowed descendant-or-self axis. Finally, node
tests have been restricted to name tests, since this is the only node test applicable to an object
model.

The Template Interface Generation also slightly changes the semantics typically assigned to
these expressions. Typically, a conversion from the node selected by an XPath expression de-
pending on the context of the expressionis applied. An xs1 : if instruction will convertanull
value returned by an XPath expression into the boolean value false, and an arbitrary non-null
value into the boolean value true. Adapting the Template Interface Generation process to this
behaviour would mean that no type information could be deduced from xt1:if statements
at all, which would complicate the type deduction during the generation process.

In order to understand how an XML Schema type is mapped to a Java type, it is necessary
to look at the type mapping defined in [105]. The mapping used during the Template Interface
Generation process is analogous, with the exception that the xsd : IDREF type is also mapped
to the Java type java.lang.String, i.e., the IDREF value is represented textually within

156

6.3. Instantiation Data Validation

the document model (as it would within the XML document representing the document model),
and not by resolving the referenced object (which would require the type to be mapped to the
java.lang.Object type).

The Template Interface Generation algorithm basically tries to construct an object model from
the set of XPath expressions contained in an XTL template. As an intermediate step, an in-
memory model similar to a UML model is constructed (which is later used to generated the
actual template interface code using an M2C transformation). The intermediate model is a
tree of instances of a data structure called property descriptor. A property descriptor has the
following properties:

e A parent, which may also be absent.

e A list of children. Each of the child property descriptors of property descriptor A has A
as its parent.

e A name, which is a String.

e A type, which is a QName. The type may also be absent.

e A minimum and maximum cardinality. The latter one may also take a value of —1 to
denote unrestricted cardinality.

The construction of the property descriptor tree works as follows. A current and a root prop-
erty descriptor are maintained. Initially, they are both initialized with a single property descrip-
tor that forms the root of the property descriptor tree (and, thus, is the only property descriptor
without parent).

If an XPath expression complying to the syntax shown in Figure 6.16 is given, a property de-
scriptor is retrieved using the current and root property descriptor as described below. In order
to compute the result, a result property descriptor is introduced, which may be reassigned dur-
ing the process.

1. The XPath expression is interpreted using rule [1] from Figure 6.16. If it is an absolute
location, the root property descriptor is used to initialize the result property descriptor,
otherwise, the current property descriptor is used as initialization value.

2. Foreach abbreviated step (AbbrStep) within RelativeLocationPath (see rules [3], [4], [12]),
the result property descriptor is either unchanged (for the abbreviated step .) or the
parent of the current property descriptor is assigned as its new value (for the abbreviated
step . .). Itis an error if this parent property result descriptor is absent.

3. For a non-abbreviated step, i.e., a combination of an AxisName or an AbbrAxisSpecifier
with a QName (see rules [4]...[7], [37]), the following happens, depending on the type of
the axis:

a) If the axis is the attribute axis (which may also be denoted using the AbbrAxis-
Specifier @), the QName is used to search for an equally named property descriptor
within the children of the current result property descriptor. If such a property de-
scriptor exists, it becomes the new result property descriptor. It is an error if the
property descriptor found has an absent type. If no such property descriptor exists,
a new one is created, a parent-child relationship between it and the current prop-
erty descriptor is created and the newly created property descriptor becomes the
new result property descriptor.

157

6. Flexible, Efficient and Safe Template Instantiation

b) If the axis is the child axis, the calculation of the result property descriptor hap-
pens exactly as with an attribute axis, with the only difference that it is an error
if an existing property descriptor has a non-null type.

c) If the axis is self, following-sibling or preceding-sibling, the re-
sult property descriptor is unchanged. However, it is an error if the current result
property descriptor has a name distinct from the QName in the NameTest.

d) Ifthe axis is parent, the result property descriptor is assigned to the parent of the
current property descriptor. It is an error if the result property descriptor becomes
null during this operation or if the new property descriptor has a name distinct from
the QName in the NameTest.

The XTL document is then processed in its document order. Non-XTL parts of the template are
ignored. If an XTL instruction is encountered, it is interpreted depending on its type as described
below:

1.

158

Ifan xt1l: for-each instructionis encountered, a property descriptor is retrieved using
the XPath expression from the XTL instruction with the algorithm described above. Itis an
error if the retrieved property descriptor has a non-null type. If the property descriptor
has just been created by the retrieval algorithm described above, the last NameTest is
assigned to its name attribute, and the type, min and max attributes are transferred to
its respective properties. Otherwise, the following operations are performed:

a) The minimum cardinality of the property descriptor is set to be the maximum of its
previous value and the min attribute value of the xt1: for-each instruction.

b) The maximum cardinality of the property descriptor is set to be the minimum of its
previous value and the max attribute value of the xt1: for-each instruction.

c) The previous value of the type attribute of the property descriptor and the type
denoted by the type attribute of the xt1: for-each instruction are compared
with regard to their lexical spaces (in the sense of [26]). It is an error if these lexical
spaces are incomparable (i.e., when denoting the spaces with A and B, A\ B #
@ N B\ A # & is true). If the lexical spaces are comparable, the type with the
smaller lexical space is stored as the type value of the property descriptor.

Finally, the newly retrieved property descriptor is set to be the new current property
descriptor. It is an error if the minimum cardinality of this property descriptor is greater
than its maximum cardinality (this is the case if the template declares two cardinality
intervalsa...bandc...dwitheitherb < cord < q, i.e., two non-overlapping intervals).

If an xt1:if instruction is encountered, a property descriptor is retrieved using the
XPath expression from the XTL instruction with the algorithm described above. If the
property descriptor has been newly created, it is assigned the type xsd:boolean. If
an existing property descriptor has been retrieved, it is an error if the retrieved property
descriptor has a type different from xsd:boolean.

6.3. Instantiation Data Validation

3. If eitheran xtl:attribute or an xtl:text instruction is encountered, a property
descriptor is retrieved using the XPath expression from the XTL instruction with the algo-
rithm described above. If the property descriptor has just been created by the retrieval
algorithm, its name attribute is set to the latest NameTest in the XPath expression of the
select attribute and its type attribute is set to the value of the type attribute of the
XTL instruction. If the property descriptor is not newly created, it is an error if the com-
mon super class of the Java mappings of both types is not equal to one of the mapped
classes (as with the xt1: for-each instruction, see above). The most specific type in
the sense of derivation by restriction [180] is stored as the type value of the property
descriptor.

If the algorithm described above is applied to the template in Listing 6.16, the property de-
scriptor tree shown in Figure 6.17 is created.

roct :FropertyDe=criptor
name = null
type = null

+parent

bocoks :PropertyDescriptor

name = "books"

tupe = null
minOecurs= 1
+parent| maxbeours = unbounded *tparent
/ +parent +parent

authors :PropertyDescriptor
e = Uy bookMame :PropertyDescriptar publicationDate :FropertyDescriptar instock :PropertyDescriptor
type = null name ="name" name ="publicationlate" name = "instock!
mindocurs = 1 type = "xzd:sting" type = "x=d:date” type = "x=d:boolean”
maxDecurs = unbounded

+parent

author Name :PropertyDescriptor

name ="name"
type = Mesd:sting"

Figure 6.17.: The Tree of Property Descriptors Built from the Template Shown in Listing 6.16

This property descriptor tree can easily be transformed into a Java object model using the
following mapping:

1. For property descriptors with an absent type, a class is created with the name determined
by the name value of the property descriptor. If there is no such name, i.e., if the property
descriptor is the root property descriptor, the class is named ObjectModelRoot. The
name (as described in Section 6.3.2.1) is chosen as a convention, since the template itself
contains no information about the naming of this root class.

2. For each of the children of a property descriptor, a property at the generated class is
added. If the child property descriptor has a multiplicity, a collection class is used to

159

6. Flexible, Efficient and Safe Template Instantiation

type the property; otherwise, the value of the type attribute of the property descriptor
is mapped to a Java type which is then used to type the property.

This simple mapping schema transforms the property descriptor tree in Figure 6.17 into the Java
object model shown in Figure 6.15. Obviously, the type safety given by the Java object model
does not completely ensure that the instantiation data constraints are fulfilled. There are two
reasons for this. First, there are no exact counterparts for some of the XML Schema types. For
example, there is no Java type with exactly the value range provided by xsd : nonNegative-
Integer. Second, the cardinalities of the collections determined from the template are not
checked by the Java collection types. In order to close these gaps and to enforce the instanti-
ation data constraints, an additional validate method is generated for all classes within the
object model. This validate method ensures the correct types and cardinalities of all prop-
erty values within the object itself and subsequently calls the validate method onall children
within the object model. The validate method must be called by the template engine before
starting with the actual instantiation process.

6.3.2.3. Implementation using a PHP and an API-based Generator

The implementation of the Template Interface Generation process is straightforward and con-
sists of two steps: the analysis step, which constructs the property descriptor tree, and the
generation step, in which the property descriptor tree is transformed into a Java object model.

The analysis step has been implemented using a PHP named org.lixlix.xtl.com-
piler.template.AnalyzerPHP. This approach makes it easy to iterate over the tem-
plate and to react to the embedded XTL instructions. The property descriptor implementation
istheclassorg.lixlix.xtl.compiler.template.PropertyDescriptor. Thisis
also the actual value for the Type type parameter of the PlaceHolderPlugin interface.
The context mechanism of the PHP is used to keep track of the current property descriptor (in
the sense described above), whereas the root property descriptor is kept in a private field root
in the PHP.

The algorithm for retrieving a property descriptor from an XPath expression is implemented
in the method retrievePropertyDescriptor as shown in Listing 6.17. The method
first determines whether to use the root or the current property descriptor as the base for
the retrieval of the new property descriptor. Afterwards, the XPath expression is parsed and
the method iterates over its steps. It is checked that the steps do not contain predicates, since
the use of predicates has been excluded from the accepted XPath syntax (see Figure 6.16), if the
check fails, an exception is thrown. Depending on the axis referenced in the step, a new property
descriptor is retrieved. In case a forbidden axis or a forbidden node test is encountered, the
method also throws an exception. If all steps are processed, the resulting property descriptor
is returned.

private PropertyDescriptor retrievePropertyDescriptor (PropertyDescriptor current,
String xpathExpression)
throws XPathExpressionException

PropertyDescriptor result;
LocationPath locationPath = parse(xpathExpression);

160

6.3. Instantiation Data Validation

result = locationPath.isAbsolute() || current == null ? root : current;
for (Step step : locationPath.getSteps())
{

assertTrue(step.getPredicates().length==0, ”"Predicated are not allowed.”);

switch (step.getAxis())
{
case Compiler.AXIS_ ANCESTOR:
case Compiler.AXIS_ANCESTOR OR_SELF:
case Compiler.AXIS DESCENDANT:
case Compiler.AXIS_DESCENDANT OR_SELF:
case Compiler.AXIS FOLLOWING:
case Compiler.AXIS NAMESPACE:
case Compiler.AXIS PRECEDING:
String axisName = Step.axisToString(step.getAxis());
fail(”Use of axis ’”+axisName+”’ not allowed.”);
break;
case Compiler.AXIS ATTRIBUTE:
case Compiler.AXIS CHILD:
assertTrue(step.getNodeTest() instanceof NodeNameTest,

"Only NameTests are allowed as NodeTests.”);
NodeNameTest nodeNameTest = (NodeNameTest)step.getNodeTest();
assertTrue (nodeNameTest.getNodeName () .getPrefix() == null,

"Prefixes are forbidden.”);
assertFalse(nodeNameTest.isWildcard(),

"The ’'*’ NameTest is not an allowed.”);
String name = nodeNameTest.getNodeName().getName();
PropertyDescriptor newResult = result.getChild(name);

if (newResult == null)
{
newResult = new PropertyDescriptor (name, result);
}
result = newResult;
break;

case Compiler.AXIS PARENT:
assertFalse(result.isRoot(),
"Use of parent axis at root node is forbidden.”);
result = result.getParent();
break;
case Compiler.AXIS_SELF:
case Compiler.AXIS FOLLOWING SIBLING:
case Compiler.AXIS_PRECEDING_SIBLING:
// Do nothing.
break;

}

return result;

Listing 6.17: The retrievePropertyDescriptor Method in the AnalyzerPHP

The retrievePropertyDescriptor method is called by the implementations of the
various evaluate methods of the PHP. As an example, the implementation of the evalu-
ateForEach method is shown in Listing 6.18. The method uses the retrieveProper-
tyDescriptor method to get a property descriptor and afterwards transfers the cardinality
and type information to the property descriptor (which is responsible for monitoring the restric-
tions put on the cardinality and the type). The method returns an iterator containing only the

161

6. Flexible, Efficient and Safe Template Instantiation

retrieved property descriptor, thereby causing the elements contained within the xt1: for-
each instruction to be evaluated once with this property descriptor as context argument.

public Iterator<PropertyDescriptor> evaluateForEach(XTLForEachStart xtlForEach,
PropertyDescriptor context)

{
try

{
String select = xtlForEach.getSelect();

logger.debug(”evaluateForEach(...) called with select=’"+select+”’'.");

PropertyDescriptor propertyDescriptor =
retrievePropertyDescriptor (context, select);

propertyDescriptor.setType (UNKNOWN) ;
propertyDescriptor.setMinOccurs (xtlForEach.getMin());
propertyDescriptor.setMaxOccurs (xtlForEach.getMax());

return Collections.singletonList (propertyDescriptor).iterator();

}

catch (XPathExpressionException xpe)

{
log(xpe);
return Collections.<PropertyDescriptor>emptyList().iterator();

Listing 6.18: The evaluateForEach Method in the AnalyzerPHP

After the AnalyzerPHP has completed processing the XTL template, its root property de-
scriptor is taken and the tree of property descriptors is transformed into a Java object model
starting from the root property descriptor. The Java code itself is constructed using an API-
based Java generator [97]. The transformation process also generates the validate method
described above. An example for such a method, in which a cardinality of 2...4 is assumed to be
allowed for the authors property, is shown in Listing 6.19. In addition to the classes from the
object model, a PHP named ObjectModelRootPHP is generated, which serves as an adapter
between the generated object model and the Template Instantiation component. This PHP can
be created with an instance of the ObjectModelRoot class as argument. The PHP calls the
validate method on the passed instance immediately, causing the complete validation of
the passed object model.

public void validate() {
if (authors == null) {
throw new IllegalStateException(”Missing required
attribute/element ’‘authors’.”);
}
if (authors.size()< 2) {
throw new IllegalStateException(”Number of elements
"authors’ is less than expected minimum 2.");

}

if (authors.size()> 4) {

162

6.4. Conclusion

throw new IllegalStateException(”Number of elements
"authors’ is greater than expected maximum 4.7);

}

for (Author current: authors) {
current.validate();

}
/% oo %/

Listing 6.19: An Example for a validate Method Implementation

The implementation of the Template Interface Generation process (see Section 7.1.4) also
supports the immediate compilation of the Java code model. In order to enable unit testing
of the implementation, the implementation also supports the direct introduction of JAXB an-
notations into the generated object model. This allows the direct use of XML documents as
instantiation data source for the generated ObjectModelRootPHP, which in turn greatly
simplifies the test process (see Section 7.2).

6.4. Conclusion

In this chapter, the components involved during the instantiation time of the proposed pro-
cess have been discussed: the Instantiation Data Evaluation, the Template Instantiation and the
Instantiation Data Validation components.

The Instantiation Data Evaluation component is invoked by the Template Instantiation com-
ponents to retrieve the instantiation data in order to instantiate a particular template. A plugin
mechanism has been introduced that allows different query languages to be used in conjunction
with the proposed approach. This plugin mechanism distinguishes the approach from existing
techniques, which typically use a fixed special or general purpose language (like XPath or Java).
Several Instantiation Data Evaluation plugins have been presented.

The Template Instantiation is a core component within the proposed approach. In order to
create an implementation which can compete with existing approaches like JSP and XSL-T, ma-
jor effort has been invested into the design of this component. The best-suited XML access
technology, StAX, and its advantages have been described. An operational model has been de-
veloped that has been used to implement the component. This implementation as a pipeline of
components has been described in detail. An estimation for the memory and time complexity
of this component has been given.

The Instantiation Data Validation component is responsible for validating the instantiation
data retrieved from the Instantiation Data Evaluation component against the instantiation data
constraints emitted by the Constraint Separation component. The design and implementation
of this component turned out to be straightforward.

An interesting alternative approach to the Instantiation Data Validation component has been
introduced: the Template Interface Generation. This is a slight modification of the proposed
architecture that elevates the process of the instantiation data validation into the application
using the Template Instantiation component. This has been achieved by generating an interface

163

6. Flexible, Efficient and Safe Template Instantiation

for a particular template, which guarantees the correctness of the instantiation data. This ap-
proach for guaranteeing the instantiation data’s types has never been used in conjunction with
a template approach before.

164

Validation

Es ist leicht, Vorschriften iber die Theorie des Beweises aufzustellen, aber der Beweis

selbst ist schwer zu fihren.
Giordano Bruno [32]

In order to verify the design decisions and to scrutinize the statements which have been made
in the previous chapters, a number of validation steps have been executed. Most notably, the
implementation of a prototype, illustrating most of the concepts developed in this thesis, de-
livered a proof of concept for many design decisions.

The prototype implementation is revisited with respect to validation in Section 7.1. The de-
veloped prototype has been used and improved in various research projects. These applications
are described in Section 7.3. Furthermore, the formal proof given in Section 5.1.5 for the ful-
fillment of the preservation requirement referenced in Section 7.4 is also a validation means.
Measurements have been made in order to evaluate the performance of the template engine in
comparison to other, established techniques. The results of the measurements are described
in Section 7.5.

Figure 7.1 shows which goals (as defined in Section 3.1) are addressed by the particular vali-
dation means described in this chapter.

7.1. Implementation of the Prototype

The most important validation tool is the implementation of a prototype called XTLEngine. This
prototype implements the proposed approach as far as possible within the restrictions of the

165

7. Validation

Prototype Implementation Qﬁ JRPTS— Safe Authoring
Test Suite Q o Q Safe Instantiation
Applications of the Prototype @ IEREEE IEEERERY . ---------- Q Separation of Concerns
Proof of Preservation Q -------------- 'S e Q Broad Applicability
Performance Measurements Q—j \ O Utilization of Existing Standards

Figure 7.1.: Relations between Validation Means and Goals

underlying base technologies. In the following, the prototype version 2.0, build 607 is described.
The prototype consists of approximately 15.500 lines of code comprising 195 classes organized
in 35 packages. The prototype includes the following artifacts:

* The XTLEngine. jar and all required libraries.

e Command line tools for Windows and Mac OS X (described below).

¢ Test suites containing examples for the use of the included tools (see Section 7.2).
The XTL, CXSD and IDC schemas.

¢ The documentation of the source code.

An overview of the tools supplied with the prototype is given in Figure 7.2. The figure should
be compared with the Figures 3.5 and 6.14, since it closely resembles and aggregates their struc-
tures. The four tools shown are implementations of the Constraint Separation process (xt1sc,
see Section 7.1.1), the Template Validation process (cxsdvalidate, see Section 7.1.2), the
Template Instantiation process (xtlinstantiate, see Section 7.1.3) and the Template In-
terface Generation process (xt1tc, see Section 7.1.4).

Target Language
Grammar xtlsc
_—

Template Lang-
uage Grammar

T lat Augmented
emplate cxsdvalidate > Template

— e
i

xtltc —P>

Instantiated
xtlinstantiate Template
_—

Template

Interface il IDC PHP @ Standard PHPs

Figure 7.2.: The Prototype’s Tool Architecture

166

7.1. Implementation of the Prototype

7.1.1. The Constraint Separation Tool xt1lsc

The Constraint Separation component is supplied as a command line tool named xt1lsc (XTL
Schema Compiler, as shell script and Windows batch file) in the bin directory of the proto-
type. The tool is also available as an ANT task via the class org.lixlix.xtl.compiler.
schema.XTLSchemaCompilerTaskorviaitsAPlclassorg.lixlix.xtl.compiler.
schema.XTLSchemaCompilerImpl. Figure 7.3 shows the command line options of the
xtlsc tool.

Terminal — bash — 150x14
bash

java -classpath <...> org.lixlix.xtl.compiler.schema.XTLSchemaCompilerImplMain {-overwrite | -indent | -cdata | (-importCxXsDSchema <cxsdSchema>) | (-i B
mportIDCSchema <idcSchema>) | (-importXTLSchema <xtlSchema>)} <schemaFile> [<targetFile>]
General options:
-indent Whether to indent the XSD output.
-overwrite Whether to overwrite existing files.
-cdata Whether to enclose OCL constraints in CDATA sections.
Location hints:
-importCXSDSchema <cxsdSchema> Generates an import statement for the CXSD schema with the passed location.
-importIDCSchema <idecSchema> Generates an import statement for the IDC schema with the passed location.
-importXTLSchema <xtlSchema> Generates an import statement for the XTL schema with the passed location.
Input/Output:)
<schemaFile> The target language grammar file subject to constraint separation. e
<targetFile> Write into the passed file(*).
(*) If omitted, the result is written to stdout.

Figure 7.3.: Console Help of the xt1sc.sh Command

The xt1sc arguments possible here fall into three categories: general options, location hints
and input/output arguments.

The first category contains the option —indent, which defines whether the generated tar-
get language grammar should be indented, the option —overwrite, which defines whether
an already existing target file should be overwritten, and —cdata, which defines whether the
generated CXSD constraints should be wrapped in CDATA sections to improve their readability.

The location hints category allows to specify locations for the CXSD, the IDC and the XTL
schema, which will be imported using xsd : import in the generated schema. The names of
the options are —importCXSDSchema, —-importIDCSchema, and —importXTLSchema,
respectively. If such options are given, their arguments will be used for the schemaLocation
attribute of the xsd : import statements, which will allow other tools to locate the imported
schemas.

The final category is formed by the arguments, pointing to the XML Schema file to be pro-
cessed, and an optional target file. If the target file is omitted, the result of the Constraint
Separation process is written to the standard output.

7.1.2. The Template Validation Tool cxsdvalidate

The Template Validation component is supplied as a command line tool named cxsdvali-
date (as shell script and Windows batch file) in the bin directory of the prototype. The tool is
also available as an ANT task via the class org.lixlix.xtl.cxsd.CXSDValidator-
Task or via its API class org.lixlix.xtl.cxsd.CXSDValidatorImpl. Figure 7.4
shows the command line options of the cxsdvalidate tool.

cxsdvalidate knowsonly one option: —-noconstraints can be used to validate against
a CXSD schema as if it would be an XML Schema, i.e., all embedded OCL constraints are ignored
during validation. The only required argument is the name of the XML document to be validated

167

7. Validation

Terminal — bash — 150x7
bash

java -cl <...> org.lixlix.xtl.cxsd.CXSDValidatorImplMain <general options> <xmlFile> [<cxsdFile>] [
General options:
-noconstraints Whether to evaluate embedded OCL constraints or not.

Input: J
<xmlFile> The XML file to be validated.
<exsdFile> The CXSD file to validate against.(*)

(*) If this is missing, the schema is deduced from the XML file, if possible.

Figure 7.4.: Console Help of the cxsdvalidate.sh Command

against the CXSD schema, which can be passed as second argument. If the second argument is
missing, cxsdvalidate tries to find the CXSD schema using the xsd: schemaLocation
or xsd:noNamespaceSchemaLocation attributes from within the XML document.

7.1.3. The Template Instantiation Tool xtlinstantiate

The Template Instantiation component is accessible as a command line tool named xtlin-
stantiate (asshell script and Windows batch file) in the bin directory of the prototype. The
tool is also available as an ANT task via the class org.1ixlix.xtl.engine.impl.XTL-
EngineTask or via it APl class org.lixlix.xtl.engine.impl.XTLEngineImpl.
The command line options of the xtlinstantiate tool are shown in Figure 7.5.

ano Terminal — bash — 150x24

java -classpath <...> org.lixlix.xtl.engine.impl.XTLEngineImplMain <general options> <php options> <xtlFile> [-split <targetDirectory> | <targetFile>] B
General options:
~-indent wWhether to indent the XML output (ignored with -split).
-overwrite wWhether to overwrite existing files.
-idc wWhether to validate instantiation data constraints.
PHP options:
-schema <schemaDocument> Use the XMLBean plugin with the passed schema.
<schemaDocument> The schema to be accessed via the XMLBeans schema API (URL/file).
-jxpath <xmlFile> Use the JXPath plugin with the passed XML source.
<xmlFile> The XML document which should be accessed via XPath (URL/file).
-identity Invoke the Identity plugin.
-system A PHP which delivers PHP independent functions.
-uml2 <modelsource> Access an UMLZ model using OCL.
<modelsource> The UMLZ model which should be accessed.
-xpath <xmlFile> Use the Xalan XPath plugin with the passed XML source.
<xmlFile> The XML document which should be accessed via XPath (URL/file).
-spargl <ontology> [--rules <rules>] Invoke the SPARQL plugin.
<ontology> The ontology which should be accessed via SPARQL (URL/file).
—-rules <rules> A rule set to be applied to the ontology before it is processed by the plugin.
Input/Output:
<xtlFile> The template to be instantiated.
-split <targetDirectory> Split the instantiated template into the passed directory.(*)
<targetFile> Write into the passed file.(*)
(*) If none of these are given, the result is written to stdout.

RN

Figure 7.5.: Console Help of the xtlinstantiate.sh Command

The arguments for xtlinstantiate fall in three categories: general options, options to
enable a PHP and to pass arguments to it, and input/output arguments.

The first category contains the option —indent, which defines whether the instantiated tem-
plate should be indented, the option —overwrite, which defines whether an existing target
file should be overwritten, and the option —idc, which defines whether the instantiation data
constraints should be evaluated. The evaluation of the IDC constraints is obviously only possible
if the template correctly links to an CXSD schema with embedded IDC constraints.

The second category contains options that can be used to enable and configure a particular
PHP. As opposed to what is possible with the ANT task or via the API, the command line tool
only allows to activate one plugin.

168

7.1. Implementation of the Prototype

The —schema option with a file parameter activates the XMLBean PHP which parses the
passed file as XML Schema. The -jxPath option activates the JXPath PHP with the passed file
being parsed as an XML document. The —identity option activates the Identity PHP. The
-system option activates the System PHP. The —um12 option enables the UML PHP, which
loads the passed file as XMl representation of an UML model. The —xpath option activates the
XPath PHP, which interprets the passed file as an XML document. Finally, the —sparqgl option
activates the SPARQL PHP with the passed file as an ontology. —sparqgl allows the sub option
—-rules with a file parameter: if such a rule file is present, it is applied to the ontology before
the first query is executed on it.

The final category is formed by the input/output arguments. xtlinstantiate requires a
file argument which denotes the XTL template to be instantiated. As the output argument, a file
or the option —split followed by a directory are allowed. In the latter case, the result is split
as described in Section 6.2.3 and the results of the splitting are written to the passed directory.
If none of the output arguments are given, the output is written to the standard output.

7.1.4. The Template Interface Generation Tool xt1ltc

The Template Interface Generation Tool xt 1tc implements the ideas described in Section 6.3.2.
The tool is available as shell script and Windows batch file in the bin directory of the pro-
totype, as an ANT task class org.1lixlix.xtl.compiler.template.XTLTemplate-
CompilerTaskorviaits APlclassorg.lixlix.xtl.compiler.template.XTLTem—
plateCompilerImpl. The command line options of the xt1tc tool are shownin Figure 7.6.

ano Terminal — bash — 150x10

java -classpath <...> org.lixlix.xtl.compiler.template.XTLTemplateCompilerImplMain <xtlTemplate> {(-targetDirectory <targetDirectory>) | (-rootPackage B

<rootPackage>) | (-rootClass <rootClass>) | (-classpath <classpathz)}

General options:

-rootPackage <rootPackage> Java package in which the generate code should reside.

-rootClass <rootClass> Class name for the root class of the generated object model.

-classpath <classpath> Classpath to be used when compiling the generated object model.

Input/output: O

<xtlTemplate> The template to be compiled.

-targetDirectory <targetDirectory> Write into the passed directory(?*). 3
(*) If omitted, the result is written to the current directory. 4

Figure 7.6.: Console Help of the xt1tc.sh Command

The xt1tc tool accepts options from two categories: general options and input/output ar-
guments. In the first category, the option —~-rootPackage can be used to define the package
into which the generated Java source code should be placed. The option —-rootClass de-
fines the name of the root class within the generated object model, since this name can not
be inferred from the select attribute expressions in the compiled XTL template. The option
—classpath supplies the Java compiler used to compile the generated Java source files with
a class path to compile against.

The input/output argument category contains the name of the XTL template to be compiled as
arequired argument and an optional —-targetDirectory option with an argument denoting
the directory to which the created Java sources should be written.

169

7. Validation

7.2. Test Suites

The test suites are the main tools to validate the fulfillment of the goals Safe Authoring and Safe
Instantiation. All important aspects of the prototype as well as statements made in Chapter 4
are subject to test suites. There are five test suites, which are described in detail below.

All test suites either test a single tool or a particular combination of tools and operate on
a number of input documents like schemas or templates, and produce other documents from
them. After the tool under test has been executed and results have been produced, the results
are compared to the expected results. This is done either textually or via an XML comparison
tool (XMLUnit, [194]). The use of XMLUnit allows to compare XML documents with respect to
the XML specification [28]. For example, XMLUnit ignores the order of attributes during com-
parison.

The test fixture, i.e., the input documents for the various test suites, and the expected results,
i.e., the instantiated templates, are also part of the prototype. The execution of all test suites is
done via ANT.

7.2.1. Constraint Separation Test Suite

The Constraint Separation test suite tests the Constraint Separation step (see Section 5.1) by
invoking the xt1sc tool described in Section 7.1. The test suite operates over an input set
of 18 different XML Schema documents, which test the XML Schema features supported by the
Constraint Separation process like choices, sequences, required and optional attributes. The
test process, which is illustrated in Figure 7.7, consists of the following steps:

® The xtlsc tool is invoked with each of the target language grammars as input. The
generated result template language grammar is saved.

@ The generated result is compared against the stored expected template language gram-
mar. The comparison is done as described above, i.e., semantically irrelevant differences
like whitespaces are ignored.

Target Language 4@' Template Language Expected Template
Grammar — xtlsc Grammar --@-" Language Grammar

Figure 7.7.: Constraint Separation Test Suite

7.2.2. Template Validation Test Suite

The Template Validation test suite tests the Template Validation process by checking the validity
of XTL documents with respect to CXSD schemas. The Template Validation tool cxsdvali-
date produces one of two possible results: it either outputs an augmented (in the sense of
Section 5.2) XTL template if the validation has succeeded, or it outputs a validation report with

170

7.2. Test Suites

a list of detected errors if the validation has failed. The test process is illustrated in Figure 7.8
and consists of the following steps:

® The cxsdvalidate tool is invoked with a pair of an XML document (which is in most
cases an XTL template as well, see below) and a corresponding template language gram-
mar (which is a valid CXSD document). The result, which is either an augmented XTL
template or a validation report, is stored.

@ For each test case, either an expected augmented XTL template or an expected validation
report has been stored, which is compared to the actual output of the cxsdvalidate
invocation. Itis an error if the types of the actual and the expected document differ, since
this means that the overall validation result is wrong.

XTL Template/ Augmented XTL Expected Augment-
XML Document Template €--====---) ed XTL Template
\7/\\ \/\ \7/\

cxsdvalidate @
Template Language / Validation Failure Expected Validation
Grammar Report €=---======> Failure Report

Figure 7.8.: Template Validation Test Suite

The set of input documents is divided into two categories. First, the test suite checks special
documents against CXSD schemas in order to check the CXSD validation as such (i.e., the XML
Schema validation as well as the construction of the XML model underlying the OCL constraint
evaluation). Second, the test suite tests instance documents against the template language
grammars produced by the Constraint Separation Test Suite described above. This latter test
ensures that the Constraint Separation process works together with the Template Validation
process in order to allow the Safe Authoring of templates. In both cases, valid and invalid docu-
ments are tested.

7.2.3. Template Instantiation Test Suite

The Template Instantiation test suite tests the Template Instantiation component described in
Section 6.2 as well as the Instantiation Data Evaluation components described in Section 6.1.

The test suite tests the xt1linstantiate tool with 72 templates as input documents. The
instantiation data comes from 44 documents. The PHPs for the evaluation of XPath, OCL, and
SPARQL as well as the Identity PHP are tested. All XTL instructions and XTL features like by-
passing and realms are included in the tests. For 8 augmented templates, the instantiation
data validation feature is enabled to also check the Instantiation Data Validation component
described in Section 6.3.1.

The test suite also tests that the XTL Engine, i.e., the Java implementation of the Template In-
stantiation component, adheres to the denotational XTL semantics given in Chapter 4. For this

171

7. Validation

reason, the XTL semantics (which is described in Haskell) has been compiled into an executable
using the Glasgow Haskell Compiler (GHC). This compiled version is also part of the prototype
andisnamed hsxt1. As the Haskell version of the Template Instantiation component only sup-
ports instantiation data sources that are accessible using XPath and is not supporting multiple
realms, this test only checks 30 XTL templates against 39 instantiation data files. This restriction
aside, all XTL instructions have been tested.

Finally, the test suite tests that the XTL Engine and the translational semantics described in
Section 4.6 yield equal results. This test is a two-stage process, as the XTL templates are first
transformed into XSL-T stylesheets using the xt1-to-xs1t stylesheet, an then used to trans-
form the instantiation data XML documents. Again, the set of instantiation data sources had to
be restricted, since the XSL-T stylesheets generated from the XTL documents can only evaluate
XPath expressions. Thus, the set of input documents is the same as used for the hsxt1 test.

The test process is illustrated in Figure 7.9 and consists of the followings steps:

@ The instantiation tool, i.e., either xtlinstantiate, hsxtl, or xsl-to-xslt, is
invoked with a combination of an XTL template and single or multiple instantiation data
sources. The result, be it an instantiation result or a failure report (if an instantiation data
constraint has been violated), is saved.

@ For each test case, either an expected instantiation result or an expected instantiation
failure report has been stored, which is compared to the actual output of the instantiation
tool. It is an error if the types of the actual and the expected document differ, since this
means that the evaluation of the instantiation data constraints failed.

Y

XTL Templates > XEl—
Lf instantiate E ted
Instantiation Result xpecte

(-------------) Instantiation Result

hsxtl {xor} @
\ Instantiation Expected Instantia-
Failure Report ~ €----=-------3 tion Failure Report

Instantiation Data - -~
Sources ([------- 4 xtl-to-xslt

Figure 7.9.: Template Instantiation Test Suite

7.2.4. Template Interface Generation Test Suite

This test suite checks the Template Interface Generation component described in Section 6.3.2
via invocation of the xt1tc tool described in Section 7.1. The test case compiles 27 XTL tem-
plates into Java sources.

172

7.2. Test Suites

An invocation of the xt 1tc tool not only produces Java sources, but also compiled class files
and a Java Archive (JAR)-file [177] containing the compiled files. This JAR file would afterwards
typically be used to programmatically construct an instantiation data source to be used in con-
junction with the template engine itself. To allow for testing the generated Java classes without
having to manually code individual test cases for each XTL template compiled within this test
suite, the xt 1tc adds JAXB annotations [105] to the classes within the generated object model.
This allows the whole object model to be created from a single XML document without having
to deal with that particular model in the code. Therefore, the ANT-based variant of the xt1in-
stantiate tool has been extended to accept a JAR file as generated by the xt1tc tool and
a single XML document, which is in turn used to create and initiate an ObjectModelPHP (as
described in Section 6.3.2) to be used to instantiate the passed XTL template.

Using this mechanism, the test suite illustrated in Figure 7.10 could be constructed, which
consists of the following steps:

@ The xtltc toolis invoked with XTL templates containing select attribute values that
comply to the restrictions introduced in Section 6.3.2. The resulting artifacts, namely the
Java source code, the compiled classes and the JAR-file are stored.

@ The generated Java source code is compared textually to the stored expected source code.

@ The generated JAR-file is used with a stored XML document (acting as instantiation data
source) to instantiate the template originally processed by the xt1tc tool into an XML
document, which is stored as the instantiation result.

@ The instantiation result is compared to the stored expected instantiation result, which
assures that the generated object model is indeed suitable for and working with the input
XTL template.

(:) Java Sources g-- R Expseglge;gerava
XTL Template > xtlte _>@
—
\ Java Class Files

- Expected
Instantiation Result
Instantiation Data
-------- > PHP JAR

.

— (3 N
> xtl- Instantiation Result
instantiate

Figure 7.10.: Template Interface Generation Test Suite

173

7. Validation

7.2.5. Round-trip Test Suite

The last test suite, named Round-trip Test Suite, tests the overall template authoring and instan-
tiation process as a whole. In other words, it tests whether the conclusion stated to be enabled
by the Constraint Separation process (see Figure 5.1) is valid. This test suite calls three tools and
checks their collaboration as illustrated in Figure 7.11, by executing the following steps:

@

@

In the first step, the xt1sc tool is invoked on a particular target language grammar. The
generated template language grammar is stored.

The stored template language grammar is used to validate XTL templates associated with
the target language grammar currently processed. The results, each being either an aug-
mented XTL template or a validation report, are stored for the final comparison step
within this test suite.

Each XTL template is also instantiated using the xt1linstantiate tool with an associ-
ated instantiation data source (which fulfills all instantiation data constraints).

The instantiation result from the last step is validated using the cxsdvalidate tool
against the original target language grammar, resulting in either an augmented instantia-
tion result (which equals to the instantiation result, as the original target language gram-
mar contains no authoring or instantiation data constraints) or a validation failure report.

The last step compares the output of both invocations of the cxsdvalidate tool: the
test succeeds if either both invocations report validity of its input document and schema
or both invocations report invalidity, thereby validating the conclusion which is proposed
to be enabled by the Constraint Separation process.

Target Language 4@'

Template Language
Grammar xtlsc Grammar
Augmented Augmented XTL
Instantiation Result €==============z-" >, Template
/_/ /__/
cxsdvalidate | {xor} @ {xor} | cxsdvalidate
Validation Failure Validation Failure /
Report | GITTEEEEETTTLEEEED > Report
/\/ /\—/

Instantiation Result

174

xtl-
instantiate

XTL Template

Instantiation Data

Sources

Figure 7.11.: Round-trip Test Suite

7.3. Applications of the Prototype
7.3. Applications of the Prototype

The prototype has been in use in three scenarios: first, in the SNOW project (as described in
Section 7.3.1), second, in the EMODE project (desribed in Section 7.3.2), and, finally, in the
FeasiPLe project (as described in Section 7.3.3).

7.3.1. SNOW: Use of XTL in a Staged Architecture

The XTL template engine has been developed along with the XTL language in the EU project
SNOW. In order to understand the motivations that lead to the described language and to un-
derstand the validation results SNOW delivered, the project is introduced in short.

SNOW [179] was an EU-founded two-year project executed by seven partners, namely ACV
[1], FIRST [70], EADS [58], Loquendo [121], Siemens Business Services’ C-LAB [41], SAP Research
Dresden [159] and TU Graz [78]. SNOW'’s main goal was the large-scale industrial diffusion of
multimodal mobile documentation for maintenance operations.

SNOW was primarily intended to solve a real-world problem in today’s aircraft maintenance
asdescribed by the partner EADS. The current maintenance scenario is entirely paper-based, i.e.,
a maintenance worker executes instructions from a so-called maintenance procedure printed
out on paper. Unexpected situations may force the worker to return to an office and print out a
different procedure. Furthermore, in some situations the worker needs a co-worker who reads
the procedure if the first worker is unable to look at the printed procedure himself. Both facts
slow down maintenance and increase the maintenance costs.

The idea of replacing this access to the procedures by an electronic device like a PDA was
obvious. Unfortunately, the situation in the aircraft to be maintained complicates the scenario.
First, there is no permanent network connection in the aircraft. Second, the worker sometimes
needs to have both hands available to perform a procedure, which makes it necessary to enable
the use of speech commands to scroll within the procedure. Since the use of speech as input
modality is sometimes prevented by the situation in the aircraft (as the environment can be too
noisy), an additional gesture recognition coupled to a head-mounted camera became necessary.
Finally, the need for a co-worker described above can be removed by using speech synthesis to
read the procedure.

From the main goal, two research directions have been derived. First, it has been questioned
how to author multimodal mobile maintenance documentation. Second, methods and tech-
niques for the exploitation of the authored documentation through robust interaction modali-
ties had to be developed.

SNOW made a number of contributions in both research directions. For the first direction,
the development of the XML Topic Maps for Procedures (XTM-P) [103], a topic-map based for-
mat for the storage of maintenance procedures has to be mentioned. With respect to the sec-
ond research direction, two languages, the Device-Independent Multimodal Mark-up Language
(D3ML) [75] and XTL, as well as an architecture [146; 147] along with a prototype have been
developed.

175

7. Validation

The SNOW Architecture

The SNOW architecture has been developed with respect to a number of requirements outlined
in a number of deliverables [179]. As already mentioned, the first major requirement of the
SNOW project was that the resulting software had to be accessible in a multimodal fashion.
In the standard use case, this includes speech input and output as well as gesture recognition
as input. But beyond that, the architecture should not restrict the number or type of usable
modalities.

The second major requirement was to design an architecture which is as domain-neutral as
possible, i.e., the number of parts to be exchanged when switching to another domain had to
be minimized. A second domain which has been considered during the design of the SNOW
architecture was the area of healthcare, where hands-free operation also plays an important
role.

In addition to these major requirements, some minor issues had to be considered. First, the
number of available devices that are usable in a harsh environment and capable of delivering
input for gesture recognition (via built-in or extra camera) were limited. Moreover, the process-
ing power of available devices is restricted, forcing gesture and voice recognition components
to be located on a server with extensive processing capabilities.

Lastly, it was required that the documentation is always at least as good as paper, which
means that even with interruptions of the network connection, the application’s user must
have access to (prefetched) procedures. The missing network connection may thereby affect
accessibility of the application by restricting the use of modalities due to their server-based
processing.

The architecture finally designed and implemented by the SNOW consortium is shown in Fig-
ure 7.12 as an FMC block diagram. This type of diagram allows a concise high-level view even at
sophisticated software architectures. The SNOW architecture is subdivided into multiple servers
and a client part. The most important server is the application server which is responsible for
implementing the modality-independent processing of maintenance procedures. This server
is explained in more detail below. Another important server-side component is the modality
server consisting of a text-to-speech engine and gesture- and speech-recognition components.
The number of contained components can be different in other scenarios—the subset shown
here represents the set used within the SNOW project.

The application server accesses three data sources: first, a set of maintenance procedures
stored as XTM-P documents, second, a set of XTL templates and finally a number of annotations
created by maintenance workers and stored in a relational database.

On the client side, a multimodality-enabled browser application has been designed and im-
plemented. This application aggregates a standard XHTML browser with components for the
control of the keyboard, the speakers, the microphone and the camera as well as, most impor-
tantly, the integration manager, which is responsible for the synchronization and composition
of the input and output modalities. The components within the client-side application commu-
nicate using standard protocols and data formats like XML Remote Procedure Call (XML-RPC),
the Media Resource Control Protocol (MRCP), the Extensible MultiModal Annotation Markup
Language (EMMA), and the Speech Synthesis Markup Language (SSML).

176

7.3. Applications of the Prototype

Client
Keyboard Control Integration Speaker Control Camera Control Microphone
Manager Control
EMMA . EMMA
b - A
EMMA
\ 4
Browser »o RomMRrep R o0 XML-RPC R o MRcP
v v v
SSML
HTTP o R
v
Application Server _
Adaptation Text To Speech Gesture Speech
Manager p Recognition Recognition
HTTP o0 R Modality Servers
| Dialog Manager |

RS HTTP o R
v \4
Annotation Documentation
Accessor Application
A A

Figure 7.12.: The SNOW Architecture

As described in [146], the SNOW architecture is an instantiation of the Multimodal Interac-
tion Framework (MMI-F), or—precisely—an implementation of the role model proposed by the
MMI-F specification [191]. Details about the implementation of the SNOW architecture can be
found in [147], a more detailed look into a particular issue of the implementation of the dialog
manager can be found in [5].

Template Processing in Staged Architectures

The XTL template engine is used in two components. The documentation application uses the
template engine just once in order to instantiate a domain-specific template with data from the
procedures stored as XTM-P files. The utilization of the template engine by the dialog manager
is more interesting because it is used two times: first, a presentation template is transformed,
augmenting the output from the documentation application with presentational content (like
links for navigation); second, the obtained intermediate document still has some evaluateable
XTL tags (which bypassed the first transformation) for evaluation with data from the annotation
accessor.

It has also been verified that it would be possible to use the XTL engine in the adaptation man-
ager, as the processing performed by this component is basically an XML transformation that
could be expressed as an XTL template as well. Unfortunately, because of technical preferences,

177

7. Validation

the SNOW partner responsible for implementing the adaptation manager decided against the
use of the XTL template engine.

Both the concepts of realms (see Section 4.5.1) and bypassing (see Section 4.5.2) have been
developed as a reaction to actual requirements from the SNOW architecture. The concept of
realms representing instantiation data sources that must be accessed using different query lan-
guages has been motivated by the multiple data sources in SNOW’s Dialog Maanger: XTM-
P documents, which had to be accessed using an XPath-like path language, and annotations,
which had to be accessed by simple string-based identifiers.

The bypassing feature is motivated by a special dependency between components in the
SNOW architecture. The inclusion of annotations in the D3ML output is done in two com-
ponents: in the first, the documentation application, only a placeholder for the rendering of
annotations can be generated. Only the second component, the dialog manager, has actually
access to the annotation content. It was impossible to move the processing of the annotations
to one component without violating the contracts defined for the interaction of the compo-
nents. Using the bypassing feature, this division of responsibilites in the annotation processing
could easily be implemented: the D3ML template contains an xtl:attribute instruction
from the bypassing namespace that is augmented via an xtl:attribute expression from
the XTL namespace. The latter instruction generated the select statement for the first state-
ment, thereby letting the participating components cooperate.

Generally, it can be stated that bypassing is a valuable feature in all kinds of staged architec-
tures, as it allows to elegently aggregate data accessible only during particular stages.

The relatively short runtime of the project made it impossible to research the interaction
between the proposed Safe Authoring process and the staged architecture within SNOW. The
process as described here is only capable of handling the initial stage of the architecture. The
main reason for this limitation is the fact that XML Schema is not closed under the composition
with the XTL schema, which causes the introduction of CXSD. CXSD-described languages are,
however, not considered as input for the described authoring process. This situation can only
be changed by using regular tree languages to describe the target language grammar, since
those languages are closed under the composition with the XTL schema. Unfortunately, the
low dissemination of languages like RelaxNG violates the stated goal of Broad Applicability.

Usability of the XTL

The most valuable result of the SNOW project with respect to the development of the XTL tem-
plate language was the feedback from the users of the SNOW architecture, which had to author
XTL templates for rendering maintenance procedures into D3ML.

These users were experts from the maintenance department of EADS, with a strong technical
background in terms of aircraft maintenance processes and mid-level computer skills, which
doesn’t include a deep knowledge of markup languages. Therefore, these users had first been
introduced into the concepts of the XML dialect D3MIL.

After understanding the concepts of a markup language like D3ML, the learning curve of a
second, overlying concept like XTL was amazingly flat. The users were immediately capable of
dynamically creating attributes or text in D3ML templates using xtl:attribute and xt1l:

178

7.3. Applications of the Prototype

text. The same is true for the use of xt1:1if and xt1l: for-each, which were also under-
stood within days.

Two additional observations had been made. First, the structure of the query language em-
bedded in the select attributes of the XTL instructions plays a very important role in the
learning process and can cause the authoring process to become error-prone and very hard
to understand. Unfortunately, this was the case with the proprietary query language used to
access the XTM-P documents.

Second, it has been observed that the concept of reuse, which is well-understood by com-
puter scientists, has not been accepted by the users of the SNOW architecture. Instead of using
the xt1l:macro and xtl:call-macro mechanism supplied by XTL, the users tended to
copy and paste repeated parts of the templates. The question on the motivation of this ap-
proach was typically answered by a hint to small modifications made to different copies of the
reused material. The argument that the maintenance of multiple copies of almost identical doc-
ument parts is expensive had been rejected—the users were of the opinion that the effort of
learning a reuse concept is much higher than to maintain different copies.

7.3.2. EMODE: Use of XTL for Model-to-Text Transformations

The EMODE project was a BMBF-founded project which tried to solve some of the issues oc-
curing when trying to build large-scale multimodal applications by applying a Model Driven
Software Development (MDSD) approach. EMODE defined a stack of models that describe the
interaction with a multimodel system in increasing levels of detail, starting with a goal model,
which is refined into an abstract user interface, and a functional core adapter model [44]. The
transformation of models within the model stack are implemented as QVT transformations.
EMODE implemented two target platforms. EMODE reused the D3ML language developed
within SNOW and additionally supported Java Abstract Window Toolkit (AWT) as a second tar-
get. Different M2C transformation techniques have been used for both targets: D3ML has been
generated using the XTL template engine, whereas AWT has been generated using JET. Unfor-
tunately, no comparison between these very different techniques has been published.

7.3.3. FeasiPLe: Use of XTL for Code Generation from Ontologies

The FeasiPLe project was another BMBF-founded project which tried to eventually implement
software product lines as a cost-efficient mean for industrial software development. In order to
do so, FeasiPLe tried to evaluate the existing approaches and to combine them with promising
new technigiues like AOP and MDSD. The central validation case of FeasiPLe was a large-scale
SalesScenario, an example for a Web application dealing with sales processes and including a
product, customer and customer order management as well as payment and communication
features.

As a part of this project, the Hybrid MDSD approach has been developed—an approach which
tries to facilitate the use of multiple DSLs. This is done by using ontologies to capture the se-
mantics of the DSLs [120]. The XTL template engine has been used to generate code from these
ontologies using its SPARQL PHP [119]. As a transitive closure was needed, which is beyond

179

7. Validation

the expressive power of SPARQL, the possibility to execute rule sets on the ontology before it is
queried using SPARQL was added.

During experiments with the querying of ontologies, it became also apparent that a transitive
closure missing from a query language could also easily be added by using multiple template
instantiations. For this emulation, the reintroduction of XTL markup via XTL instructions had
to be allowed. Afterwards, a query could easily create a further query which performs a query
based on the results of the first, which results, if an appropriate stop condition is applied, in the
calculation of a transitive closure.

The development of the SPARQL plugin within FeasiPLe also motivated the introduction of
xtl:init, since SPARQL queries typically involve a lot of XML namespaces. xt1l:init can
be used to refactor the XML namespace assignments into a single, central part of the template.
The queries themselves then only use the prefixes assigned to the namespaces.

The PHP mechanism made it easy to extend the XTL template engine to support SPARQL for
the querying of instantiation data sources. This unique extension mechanism of XTL enables
the Broad Applicability of the approach.

7.4. Proof of the Preservation of the Target Language Constraints

The proof demonstrating that the target language constraints are preserved by the Constraint
Separation process given in Section 5.1.5 addresses the Safe Authoring goal introduced in Sec-
tion 3.1.1. Therefore, it is a very important validation means, but due to its central importance
in the Safe Template Processing approach, it has been placed in Chapter 5.

7.5. Runtime and Memory Usage Measurements

Runtime and memory usage measurements have been conducted to validate the broad usability
of the aproach. All solution elements proposed in Section 3.3 could in priniciple be subject to
runtime and memory usage measurement. Here, only the most important components, for
which runtime and memory usage are crucial for the broad applicability of the approach, will be
considered. These mostimportant components are the components active during the authoring
phase and the instantiation phase.

During the authoring phase, the acceptance of the approach is determined by the time needed
for a complete validation of a document. If a validation takes too much time, the validation will
not be used, causing most of the advantages of the approach to vanish. The faster the validation
completes, the more often it will be invoked by the author, making the validation a real benefit.
For this reason, Section 7.5.1 compares the runtime of a validation against a CXSD schema with
the runtime of the validation against a comparable plain XML Schema document.

In the instantiation phase, both runtime and memory usage are of importance to the ac-
ceptance of the approach. Long lasting instantiations or exhaustive memory consumption are
inacceptable, especially if the template technique should be used within Web applications. In
this area, XTL must keep up with competitors like JSP and XSL-T. Therefore, a comparison be-
tween XTL and these competitors has been made. Furthermore, the memory and time com-
plexity statements from Section 6.2 have been subject to corresponding measurements in order

180

7.5. Runtime and Memory Usage Measurements

to prove their correctness. The runtime measurements concerning the Template Instantiation
component itself are described in Section 7.5.2. The corresponding memory usage measure-
ments are described in Section 7.5.3.

All measurements have taken place on the same hardware and software: an Intel-based Mac-
Book Pro with a 2.8 GHz Intel Core Duo CPU and 4 GB RAM. The operating system was Mac OS
X 10.6.3, the Java version used to execute the components was Java 1.6.

7.5.1. Runtime Measurement of Validation against a CXSD Schema

The process of validating a template against a CXSD schema in order to determine whether the
template is going to produce a valid result in terms of the target language schema is of crucial
importance to the template author. Unfortunately, an analysis of the evaluation complexity of
OCL constraints in terms of runtime and memory usage does not seem to exist.

For this reason, a mere benchmark comparison of validating a template against a CXSD schema
with validating against an XML Schema has been produced. As the comparison tries to deter-
mine the extra effort caused on the author’s side by the more sophisticated validation, docu-
ments with a parameterizable size indicated by the parameter n have been created.

An example document is shown in Listing 7.1. The document starts with a number n of per-
fectly valid content elements with an attribute named attribute. The document further
contains a number of n — 1 valid elements (which are different in that they don’t carry the
attribute attribute, but rather contain a further element with the name attribute), fol-
lowed by a content element that is neither carrying an attribute nor containing an element.
Only this last element is causing a violation of the OCL constraints in the CXSD document.

<?xml version="1.0" encoding="UTF-8"?>

<test>
<!l-- n valid elements. -->
<content a="text"”/>
<lee ... ==>
<!-- n—1 elements. -->
<content>

<attribute name="a">text</attribute>

</content>
<lee ... =-=>
<!-- 1 invalid element. -->
<content/>

</test>

Listing 7.1: An Example Instance Document for Runtime Measurements

Figure 7.13 shows the comparison between the validation time of the example document
with the parameter n against the CXSD schema and the corresponding XML Schema. The mea-
surements have been executed by a Perl script which executed the CXSD validation tool de-
scribed in Section 7.1 with and without the —-noconstraints parameter. For each size of
the document to be validated, the validation time has been measured 300 times. The figure
shows the average validation time over these 300 measurements.

181

7. Validation

3000

2500

2000

1500 |

Validation Time [ms]

1000 r

XSD (R? = 0.986)
CXSD (R*=0.988) o

500 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Parameter n of Instance Document [1]

Figure 7.13.: Time Consumption during Document Validation

It can easily be seen that the evaluation of the OCL constraints embedded within the CXSD
schema contributes significantly to the validation time. However, the time complexity order is
not changed: validation is still completed in linear time. The additional time needed could be
decreased by several measures, most of all by an incremental validation approach as it would
be enabled by an impact analysis as proposed in [3].

Even without optimizations like this, the validation speed is still acceptable, because there
is no reason to interrupt the user in his workflow, since the validation feedback can be given
in the background while the user is continuing his work. Even if the user is forced to wait for
the validation result, he is probably accepting a delay of up to 10 seconds before he is going to
perform other tasks [134]. Within this 10 seconds interval, it will be possible to validate even
complex documents against CXSD schemas.

7.5.2. Runtime Measurements of the Template Instantiation

For all runtime measurements of the Template Instantiation component, the XTL Engine has
been embedded within a servlet in an Apache Tomcat 6.0.26 Servlet Container [12], in order
to enable the comparison of the instantiation times of XTL documents with the competing ap-
proaches JSP and XSL-T.

For the mere measurement of the time complexity of the instantiation process, i.e., to validate
the complexity expression stated in Section 6.2, an XTL servlet has been implemented which
renders a simple HTML representation from the XML representation of the plays of Shakespeare
[27]. The servlet accesses the XML representation of a play using the JXPath PHP. A Perl script
invokes this servlet using its Uniform Resource Locator (URL) and passing the name of the play

182

7.5. Runtime and Memory Usage Measurements

to be rendered. For each play, the URL is first invoked once, only to prepare the ground for the
following instantiations, then 1000 times in order to determine the average instantiation time.

Figure 7.14 shows the result of this measurement of instantiation times, plotted against the
size of the instantiation result. The linear dependency is easy to see and is confirmed by the
coefficient of determination R2. The measurement proves the time complexity proposed in
Section 6.2 very well.

350 T T T T T T T
300 8

250 r

200

Instantiation Time [ms]

150

an+b (R2 = 0.954)
100 1 1 1 1 1 1
6000 7000 8000 9000 10000 11000 12000 13000 14000

Number of Nodes in Instantiation Result n [1]

Figure 7.14.: Time Consumption during Template Instantiation

Unfortunately, the instantiation time measurement just presented does not say very much
about the applicability of the Template Instantiation component in general. In order to validate
this aspect, a comparison of the instantiation time with its most popular competitors, JSP and
XSL-T, has been made. For this measurement, an XSL-T servlet and a JSP page have been im-
plemented, which create the same HTML presentation from the plays of Shakespeare like the
XTL servlet. In order to keep the influence of the Instantiation Data Evaluation process as low as
possible, the JSP page closely resembles the XML access performed by the JXPath PHP. In XSL-T,
the XPath expression used to access the XML representation from the XTL servlet and the JSP
page has been reused.

The JSP engine is the engine built into Tomcat 6.0.26, whereas the XSL-T engine used relies
on the transformer API of the underlying Java Development Kit (JDK), which is a version of the
Xalan XSL-T transformer.

A Perl script has been used to invoke the URL of each of the three rendering mechanisms.
For each mechanism, the first retrieval of the HTML representation is only made to prepare
the system for further measurements, followed by 1500 invocations to determine an average
instantiation time.

183

7. Validation

Figure 7.15 plots the instantiation times needed by JSP, XSL-T and XTL against the size (in
kbyte') of the XML representation of a particular play. Again, the plot shows a linear depen-
dency, which is simply caused by the fact that the dependency between the number of nodes
of the instantiated template used as X axis in Figure 7.14 and the size in kbyte of the XML rep-
resentation used as X axis here is itself linear.

300 : | . .
XSL-T (R? =0.956) o

JSP (R? = 0.922)

250 XTL (R? = 0.899)

200

150

100 8

Instantiation Time [ms]

50

120 140 160 180 200 220 240 260 280
Instantiation Data Size n [kbyte]

Figure 7.15.: Time Consumption Comparison between XTL, JSP, and XSL-T

The comparison shows that the XTL instantiation is in the same order of magnitude as the
ones of JSP and XSL-T, even if XTL is obviously the slowest engine. The main reason for the
difference in the instantiation time is that XTL templates are interpreted, whereas JSP pages as
well as XSL-T stylesheets are compiled. The implementation of a compiling XTL engine would
help closing this gap to the competing techniques.

7.5.3. Memory Usage Measurements of the Template Instantiation

For the memory usage, a special command line application has been constructed which outputs
the maximum memory consumption during the instantiation. For this purpose, the application
uses a thread which samples the heap memory usage every time a configurable amount of
the instantiated template has been created. Both maximum and minimum memory usage are
recorded. For each instantiation, the difference between maximum and minimum memory con-
sumption is calculated. The heap memory usage is recorded using the MemoryMXBean mech-
anism of the JVM. Before the memory usage value is requested, the method System.gc () is
invoked twice to give the JVM the chance to run the garbage collector in order to reclaim heap
space that is not longer used and would severly influence the measurement results.

The unit kbyte denotes 1024 bytes here and in the following.

184

7.5. Runtime and Memory Usage Measurements

In order to validate the memory complexity proposed in Section 6.2, special XTL templates
have been constructed in a way that they can be parametrized in two ways. Each template con-
sists of an xt1: for-each statement, executing three times and containing a parametrizable
size n of xt1:text statements, which are creating a random text of 1024 characters using the
Identity PHP. This xt1: for-each statement is prefixed and postfixed by a number p of ele-
ments, each of them containing a random text of between 0 and 1024 characters. An example
template with the values n = 3 and p = 2 is shown in Listing 7.2 — the random text has been
replaced by . . . for better readability.

<?xml version='1.0’2?>
<template xmlns:xtl='http://research.sap.com/xtl/1.0’>
<text>...</text>
<text>...</text>
<xtl:for-each select='3'>
<xtl:text select='...’ />
<xtl:text select='...’' />
<xtl:text select='...' />
</xtl:for-each>
<text>...</text>
<text>...</text>
</template>

Listing 7.2: An Example Template for Memory Measurement (n = 3,p = 2)

Using these parametrizable templates, the memory complexity is measured using a Perl| script
which calls the application 100 times for different values of n and 100 times for different values
of p. The first invocation is only made to prepare the ground for the following instantiations, its
memory consumption is ignored. The average of the following three instantiations is considered
the memory consumption of this template.

In order to record only the amount of memory needed by the Template Instantiation it-
self, the template creation as well as the target of the Template Instantiation process had to
be implemented in special ways. For the template creation, a special implementation of the
javax.xml.stream.XMLEventReader interface has been created. Thisimplementation
delivers the next XMLEvent of the template without constructing the entire template upfront,
thus saving the memory which would otherwise be needed to hold the template. For the target
of the Template Instantiation process, a special subclass of the java.io.OutputStream
has been used which immediately discards all bytes making up the instantiated template.

First, a measurement has been made with a fixed value of p = 10000 and 7 ranging from
1000 to 20000. The result of this measurement is shown in Figure 7.16(a). The coefficient of
determination R2 clearly shows the linear dependency of the memory usage from n. Therefore,
the implementation follows the memory complexity expression proposed in Section 6.2, with n
being the maximum number of nodes in an xt1: for-each in the template t°, or, formally

n = max z/node ‘
xeto//xtl:for—each’ u

185

7. Validation

70000 T T T T T T T T T

60000 r

50000 r

40000

30000

Memory [kbyte]

20000

10000

an +b (a = 2.834, R% = 0.993)
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Maximum Number of Descendants in xt1: for-eachn [1]

0 1 1 1

(a) Variable xt1: for-each Size

70000 T T T T T T T T T

60000 r 8

50000 r 1

40000 1

30000 8

Memory [kbyte]

"
[
—}—

20000 8

10000 | 1
0 ap+b(a=-0.073, R? = 0.480)
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Elements surrounding xt1: for-each p [1]

(b) Variable Prefix and Postfix Size

Figure 7.16.: Results of the Memory Consumption Measurements

186

7.6. Conclusion

As a crosscheck, it has been measured how the memory consumption depends on the value
of p, i.e., the number of elements containing random text prefixing and postfixing the xt1:
for-each statement in the constructed templates. Figure 7.16(b)? shows a measurement for
n = 10000 and p varying from 1000 to 20000. There is no linear correlation between p and the
memory consumption, as indicated by the slope close to 0. In other words, the memory usage
does not depend on the number of elements surrounding xt1: for-each in the template: it
is rather constant.

Taken together, these measurements empirically prove the correctness of the memory usage
estimation given in Section 6.2.

7.6. Conclusion

This chapter introduced the means used for validating the results of this thesis. First, the valida-
tion means have been put into relation to the goals. Each goal has been validated using one or
two validation means. The most basic validation means was the implementation of a prototype,
which has been described in detail. Based on the prototype, a test suite has been presented
which validates the particular components of the prototype as well as the overall process. Ap-
plications of the prototype in various research projects has been discussed. The correctness of
the Constraint Separation process has been proved. Finally, a set of measurements has been
made in order to validate the correctness of the time and memory complexity estimations given
in Section 6.2.4.

2The scale in this figure has been set to the scale used in Figure 7.16(a) to achieve a better comparability. The reason
for the (negligible) negative slope is that the memory consumption has been measured with a fixed sample rate
for technical reasons. As the highest memory consumption occurs for a relatively smaller amount of time in
larger templates, the peak is less closely approximated with larger p.

187

7. Validation

188

Summary, Conclusion, and Outlook

Die Zukunft soll man nicht voraussehen wollen, sondern moéglich machen.

Antoine de Saint-Exupery [45]

This chapter summarizes the results of this thesis in Section 8.1. A conclusion of the thesis
follows in Section 8.2: this conclusion summarizes the main contributions made by this thesis.
Section 8.3 contains suggestions for improvements which could be applied to the XML tech-
nological space. The final Section 8.4 shows future research directions, i.e., minor and major
research questions or standardization efforts which could help advance the proposed approach
into a state-of-the-art technology.

8.1. Summary

The main objective of this thesis was to create a technique, a process and tools which allow the
use of templates to generate documents that belong to a particular, predefined target language.
The results of this thesis are of use for all areas of applications where templates are used today,
especially for code generation and for Web applications.

The preface in Chapter 1 is basically an outline of the thesis. It relates the use of templates
to the SoC principle and discusses the problems of using templates in the way we use them
today. These problems are illustrated using a motivating example. Based on this, the goals of
the thesis are outlined. The contributions made by the thesis are described comprehensively.
The chapter concludes with a short summary of related work and a description of typographic
conventions used within the thesis.

189

8. Summary, Conclusion, and Outlook

Chapter 2 sets the foundations for the thesis: it defines the notion of a template, discusses the
areas where templates in the defined sense are typically used as well as alternatives to using
templates, and lists related research areas. Finally, a classification of template approaches is
given. Chapter 3 proposes an approach to the problems found when using templates today.
It defines the goals of the thesis and derives requirements from them. Afterwards, a proposal
for an architecture and a process fulfilling the requirements is made. Based on this proposal,
the following part of the thesis has been structured into three main chapters, dealing with the
design of a suitable template language, with the support that can be given to the template
author and with the components which are involved during the instantiation of a template.

Chapter 4 discusses the design of the universal, syntax- and semantics-preserving Slot Markup
Language XTL. In its first part, general design discussion are described, followed by a description
of the features of the XTL. Each instruction of the XTL is described by showing its syntax, its
semantics and giving an example. The chapter concludes with some words about a translational
semantics definition of the XTL and the use of the XTL as schema language.

Chapter 5 introduces the two components in the proposed architecture and process which
support the template author. The first of these components is the Constraint Separation pro-
cess, which combines the target language grammar with the slot markup language grammar
and separates the constraints from this combined template language grammar into constraints
which can be verified during authoring time of the template and constraints which must be
checked during the instantiation time of the template. The second component is the Template
Validation component, which actually validates a template against the template language gram-
mar and verifies the authoring time constraints.

Chapter 6 discusses the three components involved in the actual instantiation of a template.
The first component is the Instantiation Data Evaluation component which is responsible for
evaluating the instantiation data referred to by the template. The second component is the
Template Instantiation component itself, which is described in detail and for which a complexity
estimation is given. Finally, the Instantiation Data Validation component is discussed, which is
responsible for verifying the instantiation data constraints with the actual instantiation data.

Chapter 7 validates the proposed architecture and process using several means. First, the
prototype implemented in order to demonstrate the feasibility of the approach is described.
Furthermore, the test suite established for validating the prototype with respect to its various
subcomponents is described. Applications of the prototype in various research projects are
shown. The chapter concludes with a discussion of the correctness of the Constraint Separation
process and with a summary of the measurements which have been conducted in order to
verify the complexity statements given in Chapter 6 and to compare the XTL instantiation with
competing approaches like XSL-T and JSP.

8.2. Conclusion

This thesis made several major contributions to today’s use of the template approach. The first
contribution is the definition of the XTL slot markup language itself. The language is universally
usable to create templates for all XML dialects. It is syntax-preserving, i.e., it refrains from in-
troducing a special slot markup syntax. It is also semantics-preserving, as it does not redefine

190

8.3. Suggested Improvements for XML Technologies

the semantics of its target language in any way. The preservation of the syntax as well as the
semantics is achieved by relying on XML namespaces for the slot markup. The denotationally
defined semantics of the XTL itself is also a novelty in the area of template languages, which are
typically only described informally. By its clean design, the XTL already eliminates a typical prob-
lem occuring when XML documents are created using typical template approaches: as opposed
to the existing approaches, an XTL template will always produce well-formed XML documents.

The Safe Authoring goal has been achieved with the thesis. The author of a template gets the
highest possible safety that its template will actually instantiate into the target language. This is
inherent to the design of the XTL and the design of the Constraint Separation component. The
Constraint Separation process can also be parameterized to facilitate a Partial Templatization,
which allows achieving an entanglement index of 0, which has been stated impossible in [143].

It has been shown that the Safe Instantiation goal can be achieved in two different ways. First,
the Instantiation Data Validation can be executed as part of the template instantiation, i.e., by
checking the instantiation data constraints after the instantiation data has been fetched from an
instantiation data source. Second, a modification of the proposed architecture is possible that
allows for creating interfaces for templates, which makes it basically impossible to pass invalid
data into the templates.

Furthermore, the thesis formulated a new and concrete definition of the notion of a template
and gave a new classification of template techniques. The definition is different from existing
definitions and captures the intuitive use of the template term in the areas of code genera-
tion and Web applications more closely. This conformity with the intuitive meaning is primarily
achieved by basing the definition on the prototypical nature of templates. The classification of
template techniques is unique in the orthogonality of the introduced classification properties
while it still exhaustively classifies every approach which is captured by the introduced template
definition.

8.3. Suggested Improvements for XML Technologies

As this thesis has been set up with the goal of utilizing exisiting standards, some parts of the
design and the implementation of the approach become very sophisticated. In order to make
things easier, some improvements to the existing XML technology stack should be made. In the
following, such suggestions are described shortly.

An XML schema language that supports regular languages is absolutely necessary in order
to implement the proposed approach. There are two candidates for such a language: RelaxNG
and—as has been shown through the work in Section 5.2—XML Schema itself. RelaxNG is a
well-designed language that would fit nicely with the proposed approach, but its tool support is
still (after 9 years of standardization) very poor. Furthermore, the complex transformation rules
that have to be applied to validate documents against a RelaxNG schema make the construction
of a JAXB-like binding framework difficult [88]. For these reasons, a further dissemination seems
unlikely.

The approach to develop XML Schema into a full-featured regular tree grammar language is
preferable. XML Schema has already a sufficient syntax to capture regular tree grammars. Only
the UPA rule (inherited from SGML) prevents it to be used in such a way. The main motiva-

191

8. Summary, Conclusion, and Outlook

tion for the UPA—simple validation because of the minimal lookahead required—could still be
considered in an advanced XML Schema version by introducing language profiles. Such profiles
could easily allow distinct expressive powers of XML Schema based on the well-known syntax.
The profiles suggested here are a legacy profile which leaves the UPA rule as is, a more pow-
erful profile which allows defering the particle attribution to extensions established using the
xsd:appinfo mechanism, and a full profile that abandons the UPA. The second profile would
be well-suited for XML Schema extensions like the CXSD or Schematron.

A problem which caused the exclusion of the substitution group feature from the list of XML
schema features supported in target language schemas is the impossibility to extend content
models during an extension of an complex type at the beginning of the content model. This
problem occurs when a complex type without attributes is extended to a complex type with
attributes: it is impossible to allow the use of the xt1:attribute instruction directly after
the element which is declared using the inheriting complex type.

A minor improvement which could be made to XML Schema would be a feature that allows
it to express attribute/element or content/attribute relationships as they are described in Sec-
tion 5.1.2. While these relationships can be expressed well in CXSD, their description as a con-
straint does not allow a syntax-aware editor to offer features like code completion. A declarative
solution within XML Schema would fix this problem and allow better editors to be built.

8.4. Future Research Directions

The developed tool chain supporting the introduced approach for Safe XML Processing could be
extended to support a larger subset of XML Schema, e.g., the al1l content model and substitu-
tion groups (as far as this is not prevented by the fact that content models could not be extended
at the beginning, see above). Such an extension should be considered a minor research issue,
as no further general insights are to be expected from these extensions.

A more challenging and promising research question is the unification of document validation
and generation using a single language, like it could be done using XTL (see Section 4.7). Inter-
esting questions involve the expressive power achievable by such a combined language and the
acceptance by users for both validating and generating documents.

There also exist similarities between (electronic) form processing and templates. A form can
be considered a template to be filled by a human. It would be interesting to elaborate on the
requirements a generic slot markup language has to fulfill in order to allow it to be used to
express forms and whether the implemented prototype could easily be extended into a form
processing engine. A possible approach would be to allow XTL instructions in XHTML documents
to be rendered as input elements (within a Web browser or by server-side processing).

A generic slot markup language like the XTL should be an integral part of the XML technolog-
ical space. A standardization by the W3C would be the method of choice to achieve this. This
process would also allow to review the related specifications like XML Schema with respect to
the requirements of Safe Template Processing, which is the only way to elegantly and lastingly
implement the proposed approach and to help its dissemination as a state-of-the-art technol-

ogy.

192

Referenced XML Schemata and
Instances

Umgangssprachlich wird von Schema F gesprochen, wenn etwas
blrokratisch-routinemaRig, stereotyp, mechanisch oder gedankenlos ablduft. Der
Ausdruck geht zurlick auf die Vordrucke fiir die im preuBischen Heer seit 1861
vorgeschriebenen so genannten Frontrapporte, auszufiillende Berichte tiber den
Bestandsnachweis der vollen Kriegsstarke. Diese Vordrucke waren mit dem Buchstaben F
gekennzeichnet. Bei der Kontrolle der Truppenstiarke musste diese genau mit den
Angaben im Vordruck ibereinstimmen.

Wikipedia [190]

A.1. XML Schema of XTL

<?xml version="1.0" encoding="UTF-8"?2>

<xsd:schema
targetNamespace="http://research.sap.com/xt1l/1.0"
xmlns="http://www.w3.0rg/1999/xhtml”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
xmlns:xtl="http://research.sap.com/xt1l/1.0"

<xsd:annotation>
<xsd:documentation>
<p>
This schema describes the XML Template
Language (abbreviated XTL), a collection
of elements which can be used to markup slots in an XML document,

193

A. Referenced XML Schemata and Instances

194

thereby making the XML document a template.

</p>

<p>
Besides relying on XML, XTL is language independent: the same
constructs can be used to markup slots in an XHTML, an SVG or some
other XML-based document.

</p>

<p>
XTL is independent of particular mechanisms used to fetch the data into
a template. XTL engines typically achieve this independence by
implementing a plugin mechanism: for each mechanism used to fetch data,
a corresponding plugin is needed. These plugins are called
placeholder processors. In order to allow multiple plugins to
be used within a single template, the
realm attribute might be used.

</p>

<p>
XTL supports a mechanism called bypassing which allows
deferring the evaluation of XTL language constructs.

</p>

<p>
The XTL language is intended to serve as a proof for the statement that
a generic slot markup language is not only usable as a template
language, but is also useful for schema validation, semi-static
API-based generators and as part of an abstract UI language. Some of
these use cases might redefine the semantics of XTL language elements.
For example, in case of a semi-static API-based generator, the
select attribute is no longer
interpreted as the hint where to get the data for the slot from, but
rather as a hint on how to structure the API for the template.

</p>

</xsd:documentation>
</xsd:annotation>

<xsd:element name="attribute”>
<xsd:annotation>

<xsd:documentation>

<p>
This element can be used to create or overwrite an attribute at an
element.

</p>

<p>
The attribute is created or overwritten at the next element along
the ancestor axis which does not belong to the XTL namespace.
Attributes can be created at elements that are assigned to an
XTL-bypass namespace.

</p>

<p>
Between an attribute element and its direct parent element, only
whitespaces, comments or other
attribute
elements are allowed.

</p>

<p>
The name of the element to be created is taken from the
name attribute of this element. The
value is fetched from the placeholder processor which is designated
by the realm attribute by passing it the
value of the select attribute.

</p>

</xsd:documentation>

</xsd:annotation>

A.1. XML Schema of XTL

<xsd:complexType>
<xsd:attribute name="name” type="xsd:QName” use="required”>
<xsd:annotation>
<xsd:documentation>
<p>
The value of this attribute defines the name of the
attribute to be created or overwritten. The attribute name
might be prefixed in order to create a qualified attribute.
</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attributeGroup ref="xtl:selectAttributeGroup” />
<xsd:attributeGroup ref="xtl:realmAttributeGroup” />
<xsd:attributeGroup ref="xtl:typeAttributeGroup” />
<xsd:attribute name="mode” type="xtl:attributeModeType”>
<xsd:annotation>
<xsd:documentation>
<p>
The mode defines the behaviour of the xtl:attribute, if
the attribute to be created already exists or if multiple
xtl:attribute commands with the same value of the name
attribute exist.
</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="result” type="xsd:string”>
<xsd:annotation>
<xsd:documentation>
<p>
The result attribute exists for technical reasons and must
not be used in an XTL template.
</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

<xsd:element name="text”>
<xsd:annotation>
<xsd:documentation>
<p>
This element can be used to create text.
</p>
<p>
If the element is used in a template, the element is replaced
by the value which is returned by the placeholder processor
for the value of its select
attribute. The returned value is encoded, i.e., if markup is
returned by the placeholder processor, it will be converted to text
in the template. It is therefore (by intention) not possible to
change the template structure using this element.
</p>
</xsd:documentation>
</xsd:annotation>

<xsd:complexType>

<xsd:attributeGroup ref="xtl:selectAttributeGroup” />
<xsd:attributeGroup ref="xtl:realmAttributeGroup” />

195

A. Referenced XML Schemata and Instances

<xsd:attributeGroup ref="xtl:typeAttributeGroup” />
</xsd:complexType>
</xsd:element>

<xsd:element name="if">
<xsd:annotation>
<xsd:documentation>
<p>
This element allows the conditional inclusion of template parts.
</p>
<p>
During expansion of the template, the
select attribute is
evaluated. For this element, the evaluation
MUST return a boolean value. If the value is true, the
content of the if element is included, if it is false, the content
is not expanded.
</p>
</xsd:documentation>
</xsd:annotation>

<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:any minOccurs="1" maxOccurs="1" processContents="strict”/>
</xsd:sequence>
<xsd:attributeGroup ref="xtl:selectAttributeGroup” />
<xsd:attributeGroup ref="xtl:realmAttributeGroup” />
</xsd:complexType>
</xsd:element>

<xsd:element name="for-each”>
<xsd:annotation>
<xsd:documentation>

<p>
This element allows the repeated inclusion of a part of the
template.

</p>

<p>
During the expansion process, the
select attribute is
evaluated. If the evaluation of this attribute yields null or an
empty collection, the content of the for-each element is not
expanded. If the evaluation yields a single object, the content
of the for-each element is evaluated once. if the evaluation yields
a non-empty collection, the content of this element is evaluated
once for each element in the collection.

</p>

<p>
It is important to note that placeholder processors might implement
a context which captures the position of
select expressions with
respect to surrounding for-each elements. This way, the expansion
of the content of the for-each element might yield different
results for different elements in the collection mentioned above.
An example for this behaviour is the XPath placeholder processor
which implements a context similar to the XSL-T context, thereby
allowing
select expressions to be
absolute or relative to the current position within the for-each
collection.

</p>

</xsd:documentation>

196

A.1. XML Schema of XTL

</xsd:annotation>

<xsd:complexType mixed="true”>
<xsd:sequence>
<xsd:any minOccurs="1" maxOccurs="1" processContents="strict”/>
</xsd:sequence>
<xsd:attributeGroup ref="xtl:selectAttributeGroup” />
<xsd:attributeGroup ref="xtl:realmAttributeGroup” />
<xsd:attributeGroup ref="xtl:minMaxAttributeGroup” />
<xsd:attribute name="order-by” type="xsd:string” use="optional”>
<xsd:annotation>
<xsd:documentation>
<p>
This attribute can be used to specify a subquery which is
used to sort the result of the query.
</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="order” type="xtl:orderType” use="optional”>
<xsd:annotation>
<xsd:documentation>
<p>
This attribute specifies the sorting order
(ascending/descending).
</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

<xsd:element name="include”>
<xsd:annotation>
<xsd:documentation>
<p>
This element can be used to include arbitrary markup.
</p>
<p>
During the expansion of the template, the
select expression is
evaluated. It must return a single DOM node which replaces the
include element. In contrast to the
text element, the result of the
evaluation is not encoded.
</p>
</xsd:documentation>
</xsd:annotation>

<xsd:complexType>
<xsd:attributeGroup ref="xtl:selectAttributeGroup” />
<xsd:attributeGroup ref="xtl:realmAttributeGroup” />
</xsd:complexType>
</xsd:element>

<xsd:element name="macro”>
<xsd:annotation>
<xsd:documentation>
<p>
This element allows the definition of reusable template parts,
so-called macros.
</p>

197

A. Referenced XML Schemata and Instances

<p>
During evaluation, the content of the element is associated with
the value of its name attribute. No processing
of the content is performed during this association.
</p>
</xsd:documentation>
</xsd:annotation>

<xsd:complexType>
<xsd:sequence>
<xsd:any />
</xsd:sequence>
<xsd:attribute name="name” type="xsd:NCName” use="required”>
<xsd:annotation>
<xsd:documentation>

<p>
This attribute uniquely identifies the macro for later use
with the
call-macro
element.

</p>

</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>

<xsd:key name="macroName'">
<xsd:selector xpath=".//macro” />
<xsd:field xpath="@name” />
</xsd:key>
</xsd:element>

<xsd:element name="call-macro”>
<xsd:annotation>
<xsd:documentation>
<p>
This element allows the invocation of reusable template parts
called macros.
</p>
<p>
The stored content of a macro
definition is looked up, embedded into the template and afterwards
expanded by the template engine. Thus, the expansion of the macro
does not influence the semantics of the instantiation in any way:
it makes no difference whether a macro is used or whether the
content of the macro is copied into all the places where it is
called.
</p>
</xsd:documentation>
</xsd:annotation>

<xsd:complexType>
<xsd:attribute name="name” type="xsd:NCName” use="required”>
<xsd:annotation>
<xsd:documentation>
<p>
The value of this attribute identifies the macro which
should replace this call-macro element.
</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>

198

A.1. XML Schema of XTL

</xsd:complexType>

<xsd:keyref name="macroNameRef” refer="xtl:macroName”>
<xsd:selector xpath=".//call-macro” />
<xsd:field xpath="@name” />
</xsd:keyref>
</xsd:element>

<xsd:element name="init”>
<xsd:annotation>
<xsd:documentation>
<p>
This element allows to initialize a placeholder plugin with
plugin-dependent data.
</p>
<p>
The evaluation of this element yields nothing.
</p>
</xsd:documentation>
</xsd:annotation>

<xsd:complexType mixed="true”>
<xsd:sequence>
<xsd:any />
</xsd:sequence>
<xsd:attributeGroup ref="xtl:realmAttributeGroup” />
</xsd:complexType>
</xsd:element>

<xsd:simpleType name="attributeModeType”>
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xsd:string”>
<xsd:enumeration value="create” />
<xsd:enumeration value="append” />
<xsd:enumeration value="set” />
</xsd:restriction>
</xsd:simpleType>
</xsd:1list>
</xsd:simpleType>

<xsd:simpleType name="orderType"”>
<xsd:1list>
<xsd:simpleType>
<xsd:restriction base="xsd:string”>
<xsd:enumeration value="ascending” />
<xsd:enumeration value="descending” />
</xsd:restriction>
</xsd:simpleType>
</xsd:list>
</xsd:simpleType>

<xsd:attributeGroup name="selectAttributeGroup”>
<xsd:attribute name="select” type="xsd:string” use="required”
form="unqualified”>
<xsd:annotation>
<xsd:documentation>
<p>
The value of this attribute is used by a placeholder processor
to acquire data for an element.
</p>
<p>

199

A. Referenced XML Schemata and Instances

This data could either be used to fill a slot (e.g., for the
attribute element) or
to control the expansion of a template (e.g., for the
if
and the for-each
elements).
</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>

<xsd:attributeGroup name="realmAttributeGroup”>
<xsd:attribute name="realm” type="xsd:NCName” use="optional”
form="unqualified”>
<xsd:annotation>
<xsd:documentation>
<p>
This attribute is used by XTL to distinguish different
placeholder processors which might be used within a single
template.
</p>
<p>

Unfortunately, no mechanism is defined yet to map from the
realm attribute value to a placeholder processor (which
might, for example, be defined by a Java class name). In
addition to this, the placeholder processors might need
some additional configuration (like the XML source for an
XPath placeholder processor).

</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>

<xsd:attributeGroup name="typeAttributeGroup”>
<xsd:attribute name="type” type="xsd:QName” use="prohibited”
form="unqualified”>
<xsd:annotation>
<xsd:documentation>
<p>
This is a helper attribute which may be used to define the
type that is needed in order to fill a slot.
</p>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>

<xsd:attributeGroup name="minMaxAttributeGroup”>
<xsd:attribute name="min” type="xsd:nonNegativeInteger” use="prohibited”
form="unqualified”>
<xsd:annotation>
<xsd:documentation>
<p>
This is a helper attribute which may be used to classify
the number of times a for-each instruction must be executed
at minimum.
</p>
</xsd:documentation>

200

A.2. Purchase Order Schema

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="max” type="xsd:allNNI” use="prohibited”
form="unqualified”>
<xsd:annotation>
<xsd:documentation>

<p>
This is a helper attribute which may be used to classify
the number of times a for-each instruction may be executed
at maximum.

</p>

</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>
</xsd:schema>

Listing A.1: XTL Schema xt1.xsd

A.2. Purchase Order Schema

<?xml version="1.0" encoding="UTF-8"?>
<purchaseOrder xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:noNamespaceSchemalocation="po.xsd"”
orderDate="1999-10-20">
<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>
</shipTo>
<billTo country="US">
<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>0ld Town</city>
<state>PA</state>
<zip>95819</zip>
</billTo>
<comment>Hurry, my lawn is going wild!</comment>
<items>
<item partNum="872-AA">
<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>
</item>
<item partNum="926-AA">
<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>
</item>
</items>
</purchaseOrder>

Listing A.2: Purchase order XML instance po . xm1

201

A. Referenced XML Schemata and Instances

A.3. Purchase Order Instance

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”>

<xsd:annotation>
<xsd:documentation xml:lang="en">
Purchase order schema for Example.com.
Copyright 2000 Example.com. All rights reserved.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="purchaseOrder” type="PurchaseOrderType” />
<xsd:element name="comment” type="xsd:string”/>

<xsd:complexType name="PurchaseOrderType”>
<xsd:sequence>
<xsd:element name="shipTo” type="USAddress”/>
<xsd:element name="billTo” type="USAddress”/>
<xsd:element ref="comment” minOccurs="0"/>
<xsd:element name="items” type="Items”/>
</xsd:sequence>
<xsd:attribute name="orderDate” type="xsd:date”/>
</xsd:complexType>

<xsd:complexType name="USAddress”>
<xsd:sequence>

<xsd:element name="name"” type="xsd:string” />

<xsd:element name="street” type="xsd:string”/>

<xsd:element name="city” type="xsd:string” />

<xsd:element name="state” type="xsd:string”/>

<xsd:element name="zip” type="xsd:decimal” />
</xsd:sequence>

<xsd:attribute name="country” type="xsd:NMTOKEN”"
fixed="US"/>
</xsd:complexType>

<xsd:complexType name="Items"”>
<xsd:sequence>
<xsd:element name="item” minOccurs="0" maxOccurs="unbounded”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName” type="xsd:string”/>
<xsd:element name="quantity”>
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger”>
<xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice” type="xsd:decimal”/>

<xsd:element ref="comment” minOccurs="0"/>
<xsd:element name="shipDate” type="xsd:date” minOccurs="0"/>
</xsd:sequence>

<xsd:attribute name="partNum” type="SKU” use="required”/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">

202

A.3. Purchase Order Instance

<xsd:restriction base="xsd:string”>
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Listing A.3: Purchase order XML Schema po.xsd

203

A. Referenced XML Schemata and Instances

204

Detailed Results of the Runtime and
Memory Measurements

Traue keiner Statistik, die du nicht selbst gefalscht hast.

(Origin unknown)

205

B. Detailed Results of the Runtime and Memory Measurements

Parameter n of Validation Times [ms]
Instance Document [1] XSD CXSD
%) o %) o
100 757,3 35,3 | 1208,2 36,5
200 781,1 38,5 | 1288,6 28,9
300 795,5 27,5 | 1353,0 29,7
400 815,6 32,9 | 1420,6 28,0
500 837,2 23,1 | 15134 56,5
600 858,9 21,8 | 1574,3 35,6
700 897,7 31,8 | 1729,6 54,5
800 945,3 32,3 | 1862,8 73,3
900 967,5 31,7 | 1961,3 68,5
1000 990,5 41,3 | 2069,9 80,0
1100 | 1009,1 32,9 | 2169,2 95,0
1200 | 1063,5 176,3 | 2281,8 97,5
1300 | 1051,4 31,9 | 2310,1 103,0
1400 | 1062,7 33,2 | 2463,9 77,5
1500 | 1158,6 41,6 | 2582,4 82,1
1600 | 1189,7 39,5 | 2595,6 123,2
1700 | 1229,0 45,6 | 2641,8 107,9
1800 | 1253,2 48,3 | 2677,1 94,6
1900 | 1257,6 37,0 | 2710,7 97,3
2000 | 1273,0 40,5 | 2932,4 89,8
Number of measurements per line: 300

Table B.1.: Runtime Measurement of Validation against a CXSD document

206

IDS Source File

Number of Nodes

Instantiation Time [ms]

in the IDS Source File [1]) o
a_and_c.xml 12720 244,48 88,35
all_well.xml 10042 192,04 22,30
as_you.xml 8972 172,67 21,94
com_err.xml 6294 124,07 13,35
coriolan.xml 12632 237,39 16,58
cymbelin.xml 11532 214,47 16,52
dream.xml 6772 136,35 16,45
hamlet.xml 13224 268,69 22,10
hen_iv_1.xml 9680 200,26 19,93
hen_iv_2.xml 10278 214,04 22,49
hen_v.xml 9432 196,91 20,21
hen_vi_1.xml 8736 182,21 19,21
hen_vi_2.xml 10092 208,92 19,69
hen_vi_3.xml 9742 202,89 23,20
hen_viii.xml 9684 200,27 23,25
j_caesar.xml 83880 184,69 22,36
john.xml 7 858 162,71 18,79
lear.xml 11980 246,34 15,59
Il.xml 10074 210,23 18,43
m_for_m.xml 9698 215,42 21,02
m_wives.xml| 9970 209,41 20,34
macbeth.xml 7938 166,47 18,27
merchant.xml 8286 173,56 23,51
much_ado.xml 9474 198,83 23,22
othello.xml 12410 255,90 16,30
pericles.xml 7508 159,45 22,42
r_and_j.xml 10150 211,30 21,62
rich_ii.xml 8226 171,59 19,44
rich_iii.xml 12410 256,53 21,09
t_night.xml 9148 193,19 23,67
taming.xml| 8438 181,13 23,89
tempest.xml 7 396 156,99 22,26
timon.xml| 8694 183,97 23,61
titus.xml 7872 164,95 19,28
troilus.xml 12216 252,22 20,93
two_gent.xml 8298 176,50 19,93
win_tale.xml 10048 206,53 21,71

Number of measurements per line: 1000

Table B.2.: Analysis of the Time Complexity

207

B. Detailed Results of the Runtime and Memory Measurements

208

IDS Source File | Size of IDS Source File Instantiation Time [ms]
[kbyte] @ ISP | @ XSL-T | @ XTL
a_and_c.xml 245,96 57,6 33,3 268,1
all_well.xml 204,78 43,2 25,1 195,2
as_you.xml| 187,60 36,2 24,3 173,4
com_err.xml 133,60 23,1 18,3 136,8
coriolan.xml 253,97 66,1 32,1 266,8
cymbelin.xml 241,53 62,0 30,2 245,8
dream.xml 141,61 25,3 18,9 146,0
hamlet.xml 273,07 67,2 33,8 280,5
hen_iv_1.xml 209,90 50,4 25,9 209,2
hen_iv_2.xml 228,66 56,0 27,8 219,8
hen_v.xml 220,93 50,3 25,9 206,2
hen_vi_1.xml 191,82 40,3 23,8 189,4
hen_vi_2.xml 220,68 54,1 27,4 | 2194
hen_vi_3.xml 215,01 52,5 26,2 212,3
hen_viii.xml 212,68 52,1 26,4 | 2113
j_caesar.xml 179,20 40,7 23,5 194,3
john.xml 173,88 33,6 22,1 171,6
lear.xml 240,05 67,6 30,7 256,3
Il.xml 202,06 53,0 259 | 2226
m_for_m.xml 197,94 48,8 25,6 222,5
m_wives.xml 202,28 50,9 25,8 220,5
macbeth.xml 159,22 32,8 21,5 171,5
merchant.xml 177,74 37,9 22,7 181,9
much_ado.xml 190,60 46,8 25,0 210,3
othello.xml 242,91 68,3 31,6 269,7
pericles.xml 165,29 34,4 20,9 168,1
r_and_j.xml 213,35 54,5 27,0 222,5
rich_ii.xml 188,29 38,4 23,1 180,3
rich_iii.xml 265,02 70,9 32,1 264,8
t_night.xml 181,68 43,2 23,8 203,3
taming.xml 189,71 44,5 22,9 188,9
tempest.xml 150,99 29,1 20,2 163,9
timon.xml 173,27 40,2 22,9 192,3
titus.xml 176,28 33,2 22,0 175,4
troilus.xml 243,54 66,9 30,9 263,5
two_gent.xml 160,73 39,0 22,1 185,6
win_tale.xml 212,01 54,6 27,1 218,3

Number of measurements per line: 1500

Table B.3.: Comparison between JSP, XSL-T and XTL

Parameter n of | Memory Usage [kbyte]
Template [1] 1] o
1000 | 3437,8 | 1550,2
2000 | 72549 | 33158
3000 | 10734,2 | 42454
4000 | 14026,9 | 43252
5000 | 16056,6 | 3660,7
6000 | 173339 | 2230,3
7000 | 20167,5 | 2479,0
8000 | 23489,1 | 3113,0
9000 | 26176,8 | 3152,7
10000 | 28438,9 | 3388,5
11000 | 31134,3 | 32309
12000 | 33222,6 | 3023,8
13000 | 41440,3 | 4455,6
14000 | 44474,1 | 44735
15000 | 44174,7 | 4180,5
16000 | 46378,1 | 4415,0
17000 | 48214,3 | 40089
18000 | 51319,2 | 39814
19000 | 55630,1 | 4577,3
20000 | 57872,8 | 5350,7
Value of p: 10000
Number of measurements per line: 100

Table B.4.: Memory measurement with constant parameter p

209

B. Detailed Results of the Runtime and Memory Measurements

Parameter p of | Memory Usage [kbyte]
Template [1] 1] o
1000 | 25450,1 | 2952,3
2000 | 25783,6 | 3420,2
3000 | 25199,4 | 29328
4000 | 24574,0 955,9
5000 | 25435,9 | 2887,1
6000 | 25756,8 | 3481,0
7000 | 25929,7 | 3389,2
8000 | 24930,2 | 2704,6
9000 | 25112,7 | 2655,6
10000 | 25184,4 | 2588,3
11000 | 25483,8 | 3625,3
12000 | 25772,9 | 3590,0
13000 | 25594,1 | 3663,7
14000 | 24910,8 | 2679,5
15000 | 24334,7 928,8
16000 | 24398,6 | 1717,7
17000 | 24139,6 196,7
18000 | 24 140,3 230,2
19000 | 24225,1 743,7
20000 | 24221,7 471,3
Value of n: 10000
Number of measurements per line: 100

Table B.5.: Memory measurement with constant parameter n

210

List of Acronyms

ACV Advanced Computer Vision [1]

AOP Aspect-oriented Programming [63]

APl Application Programming Interface

AST Abstract Syntax Tree [2]

AWT Abstract Window Toolkit, a Java GUI framework

BMBF Bundesministerium fiir Bildung und Forschung

CMS Content Management System

CST Concrete Syntax Tree (see parse tree in [2])

CXSD Constraint XML Schema Definition Language [83]

DOM Document Object Model [13]

DSL Domain Specific Language

DTD Document Type Definition [28]

D3ML Device-Independent Multimodal Mark-up Language [75]
DTML Document Template Markup Language [114]

EADS European Aeronautic Defence and Space Company [58]
EMF Eclipse Modeling Framework [57]

EMMA Extensible MultiModal Annotation Markup Language [193]

EMODE Enabling Model Transformation-Based Cost Efficient Adaptive Multi-modal User Inter-

faces
ERB Embedded Ruby [50]

EU European Union

211

List of Acronyms

FeasiPLe Feature-getriebene, aspektorientierte und modellgetriebene Produktlinienentwick-
lung (German for Feature-driven, Aspect-oriented Product Line Development) [60]

FIRST Fraunhofer Institut fiir Rechnerarchitektur und Softwaretechnik [70]

FMC Fundamental Modeling Concepts [72; 109]

GHC Glasgow Haskell Compiler [84]

GUI Graphical User Interface

HTML Extensible Hypertext Markup Language [153]

HTTP Hypertext Transfer Protocol [62]

IDC Instantiation Data Constraint language

IDE Integrated Development Environment

IDS Instantiation Data Source (see Section 4.1)

ISC Invasive Software Composition [15]

JAR Java ARrchive[177]

JAXB Java Architecture for XML Binding [155; 105]

JDK Java Development Kit

JET Java Emitter Templates [52]

JSP Java Server Pages [176]

JSR Java Specification Request

JVM Java Virtual Machine

LISP LISt Processing [170]

MDA Model Driven Architecture [128]

MDSD Model Driven Software Development

MDT Model Development Tools [54]

MMI-F Multimodal Interaction Framework [191]

MOF Meta-Obiject Facility [138]

MRCP Media Resource Control Protocol [91]

MSL Model Schema Language [31; 30]

212

M2C Model-to-Code transformation [43]

M2M Model-to-Model transformation [43]

MVC Model-View-Controller [154]

OCL Object Constraint Language [136]

PDA Personal Digital Assistent

PHP Placeholder Plugin (see Section 6.1)

PSVI Post-Schema-Validation Infoset [180]

QVT Query View Transformation [140]

RAP Rich Application Platform [55]

RelaxNG Regular Language for XML Next Generation [39]
RSF Reasonable Server Faces [186]

RWT Rich Application Platform (RAP) Widget Toolkit
SAX Simple API for XML [161]

SGML Standard Generalized Markup Language [76]
SNOW Services for Nomadic Workers [179]

SoC Separation of Concerns [48]

SPARQL SPARQL Protocol and RDF Query Language [151]
SPath Path Language for XML Schema [126]

SQL Structured Query Language

SSM Simplified Stylesheet Module [107] (called simplified syntax in [36])
SSML Speech Synthesis Markup Language [192]

ST StringTemplate [143]

StAX Streaming API for XML [95; 145]

SVG Scalable Vector Graphics [61]

TAL Template Attribute Language [196]

UML Unified Modeling Language [139]

UPA Unique Particle Attribution [180, Section 3.8.6]

List of Acronyms

213

List of Acronyms

URI Uniform Resource Identifier [23]

URL Uniform Resource Locator [22]

WML Wireless Markup Language [90]

W3C World Wide Web Consortium http://www.w3.0rg
XHTML Extensible Hypertext Markup Language [4]

XMI XML Metadata Interchange [137]

XML Extensible Markup Language [28]

XML-RPC XML Remote Procedure Call [164]

XPath XML Path Language [38]

XSD XML Schema Definition [59; 180; 26]

XSL Extensible Stylesheet Language [19]

XSL-T Extensible Stylesheet Language (XSL) Transformations [36]
XTL XML Template Language

XTM-P XML Topic Maps for Procedures [103]

XVCL XML-based Variant Configuration Language [93]

214

http://www.w3.org

1.1.
1.2.

2.1
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

4.1.
4.2.
4.3.
4.4.

5.1.
5.2.
5.3.
5.4.
5.5.

6.1.
6.2.
6.3.

List of Figures

A typical Web Application can produce both valid and invalid XHTML Documents 10

The current Development Process for Templates 11
Comparison of the Scopes of the Definitions of the Term Template 22
Relations between Template and Target Language 23
Template Technique and Template LifeCycle 24
Formalization of the XML document in Listing2.2 26
Classification of Schema Languages [simplified, basedon 131] 27
Comparison of the Alternatives with Templates 34
Target Language Awareness of Slot Markup 39
Sequence Diagrams of Push resp. Pull Strategy 42
Categories of Query Languages o i e 43
Error Messages caused by JSPPages 51
Separation of Concerns in Different Scenarios 52
Relations between Goals and Requirements 54
Consequences of Insufficient or Exaggerated Expressiveness 56
The Proposed Architecture e 58
Relations between Requirements and Solution Elements 59
Relations between the Solution Elements and the Following Chapters 60
Types of XML Transformation Pipelines 80
Using a Vertical XSL-T Pipeline to Emulate the XTLEngine 84
Schema Validation and Template Instantiation 84
Similarity between Schema/Template and Instance 85
Conclusion Enabled by the Constraint Separation Process 88
Meta-model for the CXSD constraints 95
Set Relations between Template and Target Language 100
The Constraint Separation ProcessingSteps 108
The Proposed Development Process for Templates 118
Accessing Multiple Instantiation Data Sources Using Multiple PHPs 124
Push-and Pull-Parser 130
XTL Engine with Input and Qutput Streams 131

215

List of Figures

216

6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

7.10.
7.11.
7.12.
7.13.
7.14.
7.15.
7.16.

Examples of Read Window Operations’ Execution 133
The XTLEngine’s Processing Pipeline 136
The XTLEvent Hierarchy 137
Activities during a Call to XTLEventReader.getNextEvent 138
Activities during a Call to BypassProcessingReader.getNextEvent . 139
Activities during a Call to XTLProcessingReader.getNextEvent ... 140
Indentation Parts of the XTL Processing Pipeline 147
State Chart of the IndentingXMLEventWriter 148
State Chart of the SplittingOutputStream 149
XTL Instantiation with enabled Instantiation Data Validation. 151
Architecture with Template Interface Generation 153
The Object Model Deduced from the Template in Listing6.16 155
The XPath Syntax Accepted by the Template Interface Generation Process . . . 156

The Tree of Property Descriptors Built from the Template Shown in Listing 6.16 159

Relations between Validation Meansand Goals 166
The Prototype’s Tool Architecture 166
Console Help of the xt1sc.shCommand 167
Console Help of the cxsdvalidate.shCommand 168
Console Help of the xtlinstantiate.shCommand 168
Console Help of the xt1tc.shCommand 169
Constraint Separation TestSuite 170
Template Validation Test Suite, 171
Template Instantiation Test Suite 172
Template Interface Generation TestSuite 173
Round-trip TestSuite e 174
The SNOW Architecture e 177
Time Consumption during Document Validation 182
Time Consumption during Template Instantiation 183
Time Consumption Comparison between XTL, JSP,and XSL-T 184
Results of the Memory Consumption Measurements 186

1.1.
1.2.
1.3.

2.1
2.2.
2.3.
2.4.
2.5.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

5.1.
5.2.
5.3.

List of Listings

A JSP Document failing to produce wellformed XHTML Documents 11
A JSP Document producing a Document thatis not XHTML (1) 12
A JSP document producing a Document thatis not XHTML(2) 13
Origins of FragmentsinaTemplate 23
Asimple XMLfile e 25
ABETAFOrm o e e e e e e e e 36
Frame Processing Examplewith XVCL 38
Suppression of Newlinesin XPAND 45
Representation of XML documents in the Instantiation Semantics 63
Definitionof theIDSclass 63
Preamble of the Denotational Instantiation Semantics 64
Semantics for Text, Comment and ElementNodes 65
Semanticsof xtl:text e 67
Example Useof xtl:text 67
Semantics of xtl:attribute 69
Example Use of xtl:attribute 69
Semanticsof xtl:include 70
.Example Useof xtl:include 70
.Semanticsof xt1l:if e 72
.ExampleUseof xtl:if e 73
.Semanticsof xtl:for-each, 75
.Example Useof xtl:for-each 75
.Semanticsof xtl:macro e e 76
.Semanticsof xtl:call-macro i 77
. Example Use of xtl:macroand xtl:call-macro 78
.ExampleUseofRealms 80
. Bypassing Semantics 82
. Bypassing Example 83
A Purchase Order with Potentially Dynamic Parts Highlighted 89
A Purchase Order XTLTemplate 91
The PurchaseOrderType frompo.xsd 91

217

List of Listings

218

5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.
5.19.
5.20.
5.21.
5.22.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.
6.18.
6.19.

7.1.
7.2.

Al

The Modified PurchaseOrderType, Allowing the Use of xtl:attribute 91

The USAddress Typefrompo.xsd 92
The Modified USAddress Type, Allowing the Use of xtl:text 92
The Modified PurchaseOrderType, Allowing the Use of xt1:if 93
A complete CXSD Element Declaration with an Embedded OCL Constraint . . . 97
Expressing a Constraint from the XML Schema Specification with CXSD 97
Expressing a Constraint from the XSL-T 2.0 Specification withCXSD 98
An Instantiation Data Constraint in an XML Schema fragment 99
The ConstraintSeparationContext Interface 109
The ConstraintFactorylinterface 111
Added xsd:import Statements, 112
Top-level Declaration of a Previously Anonymous Simple Type 112
Choice between comment and xtl:if 114
Enabled xt1l:attribute with IDC Constraints 115
A CXSD Constraint for Required Attributes 115
Enabled xt1:text for the Creation of the Content of the zip Element . . . 116
A CXSD constraint for SimpleContent 116
ASimple XHTML1.0File it 117
Linked Instantiation Data Constraints Compared with Embedded PSVI 120
The PlaceHolderPlugininterface 125
The ReadWindowlInterface 132
The LoopStackinterface 134
TheMacroMaplinterface 135
The PlaceHolderPluginMap Interface 135
The InstantiationContextinterface 140
The process Method in XTLText 141
The process Method in XTLIfStart 142
The process Method in XTLForEachStart 143
The process Method in XTLForEachEnd 144
The process Method in XTLMacroStart 144
The process Method in XTLCallMacro v v v v v v v v v v 145
The process Method in XTLInclude 145
The process Method in XTLInit 146
A Template Instantiation Result before Splitting 149
Example Template for Template Interface Generation 154
The retrievePropertyDescriptor Methodin the AnalyzerPHP . . 161
The evaluateForEach Method in the AnalyzerPHP 162
An Example for a validate Method Implementation 163
An Example Instance Document for Runtime Measurements 181
An Example Template for Memory Measurement (n=3,p=2) 185
XTLSchemaxtl.xsd i i it i e e e 201

List of Listings

A.2. Purchase order XMLinstancepo.xml 201
A.3. Purchase order XMLSchemapo.xsd 203

219

List of Listings

220

1.1.

B.1.
B.2.
B.3.
B.4.
B.5.

List of Tables

XML Namespaces and Prefixes 17
Runtime Measurement of Validation against a CXSD document 206
Analysis of the Time Complexity 207
Comparison between JSP, XSL-Tand XTL 208
Memory measurement with constant parameterp 209
Memory measurement with constant parametern 210

221

List of Tables

222

Bibliography

[1] ACV — Advanced Computer Vision. Advanced Computer Vision GmbH — ACV, 2007. URL
http://www.acv.ac.at/start.html.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

[3] Michael Altenhofen, Thomas Hettel, and Stefan Kusterer. OCL support in an industrial
environment. In MoDELS’06: Proceedings of the 2003 international conference on Models
in software engineering, pages 169—178, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
978-3-540-69488-5.

[4] Murray Altheim and Shane McCarron, editors. XHTML™1.1 - Module-based XHTML, W3C
Recommendation 31 May 2001. The World Wide Web Consortium, 2001. URL http:
//www.w3.0rg/TR/2001/REC-xhtml11-20010531/.

[5] Frank Anke and Falk Hartmann. Cocoon mit StAX — Pull-Parsing in einem SAX-basierten
Framework. JavaSPEKTRUM, (3), 2006.

[6] ANTLR Parser Generator. The ANTLR Project, 2008. URLhttp://www.antlr.org/.

[7]1 Apache Cocoon. Apache Software Foundation, 2003. URLhttp://cocoon.apache.
org/2.1/.

[8] XMLBeans. Apache Software Foundation, 2004. URL http://xmlbeans.apache.
org/.

[9] The JXPath Component. Apache Software Foundation, 2007. URL http://commons.
apache.org/jxpath/index.html.

[10] XSLT-processor Xalan. Apache Software Foundation, 2007. URL http://xml.
apache.org/xalan-j/index.html.

[11] XML parser Xerces. Apache Software Foundation, 2007. URL http://xerces.
apache.org/.

[12] Apache Tomcat. Apache Software Foundation, 2010. URLhttp://tomcat.apache.
org/.

223

http://www.acv.ac.at/start.html
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.antlr.org/
http://cocoon.apache.org/2.1/
http://cocoon.apache.org/2.1/
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/
http://commons.apache.org/jxpath/index.html
http://commons.apache.org/jxpath/index.html
http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/xalan-j/index.html
http://xerces.apache.org/
http://xerces.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Bibliography

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

224

Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, lan Jacobs, Arnaud Le Hors,
Gavin Nicol, Jonathan Robie, Robert Sutor, Chris Wilson, and Lauren Wood, editors. Doc-
ument Object Model (DOM) Level 1 Specification, Version 1.0, W3C Recommendation 1
October 1998. The World Wide Web Consortium, 1998. URL http://www.w3.0org/
TR/1998/REC-DOM-Level-1-19981001/.

Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a Syntax-Safe Tem-
plate Engine. In Charles Consel and Julia L. Lawall, editors, Generative Programming
and Component Engineering, 6th International Conference, GPCE 2007, pages 25-32,
Salzburg, Austria, 2007. ACM. ISBN 978-1-59593-855-8. doi: http://doi.acm.org/10.
1145/1289971.1289977.

Uwe ABmann. Invasive Software Composition. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2003. ISBN 3540443851.

Uwe ABmann. Architectural styles for active documents. Science of Computer Program-
ming, 56(1-2):79-98, 2005. ISSN 0167-6423.

Paul Bassett. Frame-Based Software Engineering. IEEE Software, 4(4):9-16, 1987.

Paul G. Bassett. Framing software reuse: lessons from the real world. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997. ISBN 0-13-327859-X.

Anders Berglund, editor. Extensible Stylesheet Language (XSL) Version 1.1, W3C Rec-
ommendation 5 December 2006. 2006. URL http://www.w3.0rg/TR/2006/
REC-xs111-20061205/.

Alexandru Berlea and Helmut Seidl. fxt — A Transformation Language for XML Documents.
Journal of Computing and Information Technology (CIT), Special Issue on Domain-Specific
Languages, 2001.

Martin Bernauer, Gerti Kappel, and Gerhard Kramler. Representing xml schema in uml -
a comparison of approaches. In Nora Koch, Piero Fraternali, and Martin Wirsing, editors,
ICWE, volume 3140 of Lecture Notes in Computer Science, pages 440—-444. Springer, 2004.
ISBN 3-540-22511-0.

T. Berners-Lee, L. Masinter, and M. McCahill. RFC 1738, Uniform Resource Locators (URL),
1994. URLhttp://www.ietf.org/rfc/rfcl738.txt.

T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uniform Resource Identifier (URI):
Generic Syntax, 2005. URLhttp://www.ietf.org/rfc/rfc3986.txt.

Jean Bézivin and Olivier Gerbé. Towards a precise definition of the omg/mda framework.
In ASE, pages 273-280. IEEE Computer Society, 2001. ISBN 0-7695-1426-X.

Lutz Bichler. Tool support for generating implementations of MOF-based modeling lan-
guages. 2003.

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc3986.txt

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Bibliography

Paul V. Biron and Ashok Malhotra, editors. XML Schema Part 2: Datatypes Second Edi-
tion, W3C Recommendation 28 October 2004. 2004. URLhttp://www.w3.0rg/TR/
2004 /REC-xmlschema-2-20041028/.

Jon Bosak. The Plays of Shakespeare in XML, 2000. URLhttp://xml.coverpages.
org/bosakShakespeare200.html.

Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, editors. Extensible Markup Language
(XML) 1.0, W3C Recommendation 10 February 1998. The World Wide Web Consortium,
1998. URLhttp://www.w3.0rg/TR/1998/REC-xm1-19980210.

Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin, editors. @ Name-
spaces in XML 1.0 (Second Edition), W3C Recommendation 16 August 2006. The
World Wide Web Consortium, 2006. URL http://www.w3.0rg/TR/2006/
REC-xml-names-20060816/.

Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler. MSL - a model for W3C
XML schema. In WWW ‘01: Proceedings of the 10th international conference on World
Wide Web, pages 191-200, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-348-0.

Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler, editors. XML Schema:
Formal Description, W3C Working Draft, 25 September 2001. 2001. URLhttp://www.
w3.0rg/TR/xmlschema-formal/.

Giordano Bruno. Uber die Ursache, das Prinzip und das Eine. Reklam, Ditzingen, 1986.
ISBN 3150051134.

Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481-494, 1964.
ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321239.321249.

David Carlson. Modeling XML applications with UML: practical e-business applications.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2001. ISBN 0-201-
70915-5.

Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.

James Clark, editor. XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16
November 1999. The World Wide Web Consortium, 1999. URL http://www.w3.
org/TR/1999/REC-xslt-19991116.

James Clark. An algorithm for RELAX NG validation. Web page, 2002. URL http://
thaiopensource.com/relaxng/derivative.html.

James Clark and Steve DeRose, editors. XML Path Language (XPath), Version 1.0, W3C
Recommendation 16 November 1999. The World Wide Web Consortium, 1999. URL
http://www.w3.0rg/TR/1999/REC-xpath-19991116.

225

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://xml.coverpages.org/bosakShakespeare200.html
http://xml.coverpages.org/bosakShakespeare200.html
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://thaiopensource.com/relaxng/derivative.html
http://thaiopensource.com/relaxng/derivative.html
http://www.w3.org/TR/1999/REC-xpath-19991116

Bibliography

(39]

(40]

[41]

[42]

(43]

[44]

(45]

(46]

[47]

(48]

(49]

(50]

(51]

James Clark and Murata Makoto, editors. RELAX NG Specification, Commit-
tee Specification 3 December 2001. Organization for the Advancement of Struc-
tured Information Standards, 2001. URL http://www.w3.0rg/TR/2004/
REC-xmlschema-1-20041028/.

William Clinger and Jonathan Rees. Macros that work. In POPL ‘91: Proceedings of the
18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
155-162, New York, NY, USA, 1991. ACM Press. ISBN 0-89791-419-8.

C-Lab Homepage. Cooperative Computing & Communication Laboratory, 2007. URL
http://www.c-lab.de/.

John Cowan and Richard Tobin, editors. XML Information Set (Second Edition), W3C
Recommendation 4 February 2004. The World Wide Web Consortium, 2004. URL
http://www.w3.0rg/TR/2004/REC-xml-infoset-20040204/.

Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Ap-
proaches. In OOPSLA 2003 Workshop on Generative Techniques in the context of Model
Driven Architecture, oct 2003.

Waltenegus Dargie, Anja Strunk, Matthias Winkler, Bernd Mrohs, Sunil Thakar, and Wil-
fried Enkelmann. A Model-Based Approach for Developing Adaptive Multimodal Inter-
active Systems. In Proceedings of ICSoft 2007, 2nd International Conference on Software
and Data Technologies, pages 73—79, Barcelona, Spain, 2007. INSTICC Press.

Antoine de Saint-Exupéry. Die Stadt in der Wiiste. Rauch Verlag, 2009.

Tom DeMarco and Timothy R. Lister, editors. Software State of the Art: Selected Papers.
Dorset House Publishing Co., Inc., New York, NY, USA, 2000. ISBN 0932633145.

Andreas Diel. Lokalisierung internationaler Software am Beispiel der E-Business-
Plattform enfinity der INTERSHOP AG: Modellierung der Daten und Geschéftsprozesse.
Master’s thesis, FH Jena, 2001.

Edsger W. Dijkstra. On the role of scientific thought. Published as [49], August 1974. URL
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447 . PDF.

Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on Computing:
A Personal Perspective, pages 60—66. Springer-Verlag, 1982.

Class: ERB. Documenting the Ruby Language, 2008. URL http://www.ruby-doc.
org/stdlib/libdoc/erb/rdoc/classes/ERB.html.

Desmond D’Souza and Alan Cameron Wills. Objects, Components and Frameworks With
UML: The Catalysis Approach. Addison-Wesley, 1998. ISBN 0201310120.

[52] Java Emitter Templates. Eclipse Foundation, 2007. URL http://www.eclipse.

226

org/modeling/m2t/?project=jet.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.c-lab.de/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet

(53]

(54]

(55]

(56]

(57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

Bibliography

Model Development Tools, OCL subproject. Eclipse Foundation, 2007. URL http://
www.eclipse.org/modeling/mdt/?project=ocl.

Model Development Tools. Eclipse Foundation, 2007. URL http://www.eclipse.
org/modeling/mdt/.

Rich Application Platform. Eclipse Foundation, 2007. URL http://www.eclipse.
org/rap/.

Xpand Code Generation Language. Eclipse Foundation, 2007. URL http://www.
eclipse.org/modeling/m2t/?project=xpand.

Eclipse Modeling Framework Project (EMF). Eclipse Foundation, 2010. URL http://
www.eclipse.org/modeling/emf/.

EADS. EADS N.V. European Aeronautic Defence and Space Company, 2007. URL http:
//eads.com.

David C. Fallside and Priscilla Walmsley, editors. XML Schema Part 0: Primer Second
Edition, W3C Recommendation 28 October 2004. 2004. URL http://www.w3.0rg/
TR/2004/REC-xmlschema-0-20041028/.

Forschungsprojekt FeasiPLe - Feature-getriebene, aspektorientierte und mod-
ellgetriebene Produktlinienentwicklung. FeasiPLe Konsortium. URL http:
//www.feasiple.de.

Jon Ferraiolo, Jun Fujisawa, and Dean Jackson, editors. Scalable Vector Graphics (SVG) 1.1
Specification, W3C Recommendation 14 January 2003. The World Wide Web Consortium,
2003. URLhttp://www.w3.0rg/TR/SVG11l/.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC
2616, Hypertext Transfer Protocol — HTTP/1.1, 1999. URL http://www.ietf.org/
rfc/rfc2616.txt.

Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit, editors. Aspect-Oriented
Software Development. Addison-Wesley, Boston, 2005. ISBN 0-321-21976-7.

Daniel Fotsch and Andreas Speck. XTC - The XML Transformation Coordinator for XML
Document Transformation Technologies. In DEXA ‘06: Proceedings of the 17th Interna-
tional Conference on Database and Expert Systems Applications, pages 507-511, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

Daniel Fotsch, Andreas Speck, and Peter Hiansgen. The operator hierarchy concept for xml
document transformation technologies. In Rainer Eckstein and Robert Tolksdorf, editors,
Berliner XML Tage, pages 59-70, 2005. ISBN 3-9810105-2-3.

Daniel Fotsch, Andreas Speck, Wilhelm Rossak, and Jérg Krumbiegel. A concept for mod-
elling and validation of web based presentation templates. In Otto K. Ferstl, EImar J.

227

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/
http://www.eclipse.org/modeling/mdt/
http://www.eclipse.org/rap/
http://www.eclipse.org/rap/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://eads.com
http://eads.com
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.feasiple.de
http://www.feasiple.de
http://www.w3.org/TR/SVG11/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

Bibliography

(67]

(68]

(69]

[70]

[71]

[72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

228

Sinz, Sven Eckert, and Tilman Isselhorst, editors, Wirtschaftsinformatik, pages 391-406.
Physica-Verlag, 2005. ISBN 3-7908-1574-8.

Martin Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, Boston,
MA, USA, 2002. ISBN 0321127420.

Martin Fowler. Moving away from XSL-T, 2003. URL http://www.martinfowler.
com/bliki/MovingAwayFromXslt.html.

Charles Francgois. International Encyclopedia of Systems and Cybernetics. K.G.Saur,
Miinchen, 1997.

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik. Fraunhofer-Gesellschaft,
2007. URLhttp://www.first.fraunhofer.de/.

Alan Freedman. The computer glossary: the complete illustrated desk reference (4th ed.).
American Management Assoc., Inc., New York, NY, USA, 1989. ISBN 0-8144-7709-7.

Fundamental Modeling Concepts. The Fundamental Modeling Concepts Consortium,
2003. http://www.f-m-c.org/ (visited 2006, May 29th).

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Ab-
straction and reuse of object-oriented design. Lecture Notes in Computer Science, 707:
406-431, 1993.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison
Wesley, Reading, MA, 1995.

Steffen Gobel, Falk Hartmann, Kay Kadner, and Christoph Pohl. A device-independent
multimodal mark-up language. In INFORMATIK 2006: Informatik fiir Menschen, Band 2,
pages 170-177, 2006.

Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990. ISBN 0-198-
53737-9.

Joseph D. Gradecki and Jim Cole. Mastering Apache Velocity. Wiley Technology Publish-
ing, New York, 2003.

TU Graz. GRAZ UNIVERSITY OF TECHNOLOGY, 2007. URLhttp://www.tugraz.at/.

Denise Girer. Pioneering women in computer science. SIGCSE Bull., 34(2):175-180, 2002.
ISSN 0097-8418.

René Haberland. Transformation von XML-Dokumenten mittels Prolog. GroRer Beleg, TU
Dresden, 2006.

René Haberland. Vereinheitlichung von XML-Template-Expansion und Schema-Validier-
ung. Master’s thesis, TU Dresden, July 2007.

http://www.martinfowler.com/bliki/MovingAwayFromXslt.html
http://www.martinfowler.com/bliki/MovingAwayFromXslt.html
http://www.first.fraunhofer.de/
http://www.f-m-c.org/
http://www.tugraz.at/

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

(94]

Bibliography

Falk Hartmann. An Architecture for an XML-Template Engine Enabling Safe Authoring. In
DEXA '06: Proceedings of the 17th International Conference on Database and Expert Sys-
tems Applications, pages 502—-507, Washington, DC, USA, 2006. IEEE Computer Society.

Falk Hartmann. Ensuring the Instantiation Results of XML Templates. In Pedro Isaias,
Miguel Nunes, and Joao Barroso, editors, 6th IADIS International Conference WWW/In-
ternet, pages 269-276, Vila Real, Portugal, 2007. International Association for Develop-
ment of the Information Society. ISBN 978-972-8924-44-7.

The Glasgow Haskell Compiler. Haskell.org, 2010. URLhttp://www.haskell.org/
ghc/.

Florian Heidenreich, Jendrik Johannes, Mirko Seifert, Christian Wende, and Marcel
Bohme. Generating safe template languages. In Proceedings of the eighth interna-
tional conference on Generative programming and component engineering, GPCE ‘09,
pages 99-108, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-494-2. doi: http:
//doi.acm.org/10.1145/1621607.1621624. URLhttp://doi.acm.org/10.1145/
1621607.1621624.

Jakob Henriksson, Jendrik Johannes, Steffen Zschaler, and Uwe ABmann. Reuseware
— Adding Modularity to Your Language of Choice. Journal of Object Technology, 6(9):
127-146, October 2007. Special Issue. TOOLS EUROPE 2007.

Douglas R. Hofstadter. Gédel, Escher, Bach: An Eternal Golden Braid (20th-anniversary
Edition). Penguin Books, 1999.

Carsten Holzmiller. Entwicklung eines Java-XML-Binding-Frameworks auf der Basis al-
ternativer XML-Metasprachen. Master’s thesis, TU Dresden, July 2007.

Don Hopkins. Maximizing Composability and Relax NG Trivia. Blog entry, 2005. URL
http://www.donhopkins.com/drupal/node/117.

Open Mobile Alliance Homepage. http://www.openmobilealliance.org, 2007. URL
http://www.openmobilealliance.org/.

IETF. A Media Resource Control Protocol (MRCP). The Internet Engineering Task Force,
2006. http://www.apps.ietf.org/rfc/rfc4463.html (visited 2006, Octo-
ber 4th).

JAIbum. JAlbum - the free web photo album software and photo gallery software, 2007.
URLhttp://jalbum.net/.

Stan Jarzabek, Paul Bassett, Hongyu Zhang, and Weishan Zhang. Xvcl: Xml-based variant
configuration language. In ICSE ‘03: Proceedings of the 25th International Conference
on Software Engineering, pages 810-811, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-1877-X.

Java Specification Request JSR 173: Streaming API for XML. Java Community Process,
2003. URLhttp://www.jcp.org/en/jsr/detail?id=173.

229

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://doi.acm.org/10.1145/1621607.1621624
http://doi.acm.org/10.1145/1621607.1621624
http://www.donhopkins.com/drupal/node/117
http://www.openmobilealliance.org/
http://www.apps.ietf.org/rfc/rfc4463.html
http://jalbum.net/
http://www.jcp.org/en/jsr/detail?id=173

Bibliography

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

230

Java Specification Request (JSR) 173: Streaming API for XML. Java Community Process,
2004. URLhttp://www.jcp.org/en/jsr/detail?id=173.

java-source.net. Open Source Template Engines in Java, 2007. URL http://
java-source.net/open-source/template-engines.

CodeModel. java.net, 2010. URLhttps://codemodel.dev. java.net/.

Rick Jeliffe. Family tree of schema languages for xml. Blog, 2007. URL http://www.
oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf.

Rick Jelliffe, editor. The Schematron Assertion Language 1.6. 2002. URLhttp://xml.
ascc.net/resource/schematron/Schematron2000.html.

Jena—A Semantic Web Framework for Java. The Jena Community, 2010. URL http:
//jena.sourceforge.net/.

Martin Johns. Towards practical prevention of code injection vulnerabilities on the pro-
gramming language level, 2007.

JXP. Jxp introduction, 2006. URL http://jxp.sourceforge.net.

Kay Kadner and David Roussel. Documentation for Aircraft Maintenance based on Topic
Maps. In Leveraging the Semantics of Topic Maps, pages 56—61, 2007.

Henning Kagermann. Transcript of SAPPHIRE’06 Keynote Making IT Strategic to the Busi-
ness, 2006. URL http://www.sap.com/community/pub/webcast/2006
05 SAPPHIRE US/2006 05 sapphire us OR1186 transcript.pdf.

Kohsuke Kawaguchi, Sekhar Vajjhala, and Joe Fialli, editors. The JavaTM Architecture for
XML Binding (JAXB) 2.1. 2006. URLhttp://www.jcp.org/en/jsr/detail?id=
222.

Michael Kay. SAXON - The XSL-T and XQuery Processor, 2007. URL http://saxon.
sourceforge.net/.

Michael Kay, editor. XSL Transformations (XSLT) Version 2.0, W3C Recommendation 23
January 2007. The World Wide Web Consortium, 2007. URLhttp://www.w3.0org/
TR/2007/REC-xs1t20-20070123/.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), 1997.

Andreas Knopfel. FMC quick introduction. FMC Publication, 2003. URLhttp://www.
f-m-c.org/.

http://www.jcp.org/en/jsr/detail?id=173
http://java-source.net/open-source/template-engines
http://java-source.net/open-source/template-engines
https://codemodel.dev.java.net/
http://www.oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf
http://www.oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://jxp.sourceforge.net
http://www.sap.com/community/pub/webcast/2006_05_SAPPHIRE_US/2006_05_sapphire_us_OR1186_transcript.pdf
http://www.sap.com/community/pub/webcast/2006_05_SAPPHIRE_US/2006_05_sapphire_us_OR1186_transcript.pdf
http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=222
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.f-m-c.org/
http://www.f-m-c.org/

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Bibliography

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic
macro expansion. In LFP ‘86: Proceedings of the 1986 ACM conference on LISP and
functional programming, pages 151-161, New York, NY, USA, 1986. ACM Press. ISBN
0-89791-200-4.

Christian KrauR. Vergleich verschiedener Java/XML Binding Tools im Hinblick auf die
Moglichkeit der Erzeugung halbdynamischer Dokumente. Master’s thesis, TU Dresden,
September 2007.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Mgller-Pedersen, and Kristen Ny-
gaard. Abstraction mechanisms in the BETA programming language. In POPL ‘83: Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 285-298, New York, NY, USA, 1983. ACM. ISBN 0-89791-090-7. doi:
http://doi.acm.org/10.1145/567067.567094.

Ivan Kurtev. Adaptability of Model Transformations. PhD thesis, IPA, 2005. ISBN 90-365-
2184-X.

Amos Latteier and Michael Pellatier. The Zope Book. New Riders Publishing, Thousand
Oaks, CA, USA, 2001. ISBN 0735711372.

Andreas Laux and Lars Martin. XUpdate - XML Update Language, Working Draft
14th September 2000. 2000. URL http://xmldb-org.sourceforge.net/
xupdate/xupdate-wd.html.

Dongwon Lee and Wesley W. Chu. Comparative analysis of six XML schema languages.
SIGMOD Record (ACM Special Interest Group on Management of Data), 29(3):76-87,
2000.

Christopher Lenz. Push-Strategy Web Templating. Blog entry, 2005. URLhttp://www.
cmlenz.net/blog/2005/01/pushstrategy we.html.

Diego Lo Giudice. The State Of Model-Driven Development (Market Overview). Technical
report, Forrester Research, Inc., 2007.

Henrik Lochmann. Towards Connecting Application Parts for Reduced Effort in Feature
Implementations. In Proceedings of 2nd IFIP Central and East European Conference on
Software Engineering Techniques (CEE-SET 2007), Posen, Poland, October 2007.

Henrik Lochmann. HybridMDSD: Multi-Domain Engineering with Model-Driven Software
Development using Ontological Foundations. PhD thesis, TU Dresden, 2009.

Loquendo Vocal Technology and Services. Loquendo, S.p.A., 2007. URL http://www.
loquendo.com.

Ole Lehrmann Madsen, Birger Mgller-Pedersen, and Kristen Nygaard. Object-oriented
programming in the BETA programming language. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 1993. ISBN 0-201-62430-3.

231

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://www.cmlenz.net/blog/2005/01/pushstrategy_we.html
http://www.cmlenz.net/blog/2005/01/pushstrategy_we.html
http://www.loquendo.com
http://www.loquendo.com

Bibliography

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

232

Murali Mani, Dongwon Lee, and Richard R. Muntz. Semantic data modeling using XML
schemas. Lecture Notes in Computer Science, 2224:149-163, 2001.

M. D. Mcllroy. Macro instruction extension of compiler languages. Comm. Assoc. Comp.
Mach., 3:214-220, April 1960. Reprinted as pp. 560-571 in Programming Systems and
Languages, ed. S. Rosen, McGraw-Hill, 1967 and as pp. 512-528 in Compiler Techniques,
ed. Bary W. Pollack, Auerbach, 1972.

Erik Meijer and Mark Shields. XMA\: A functional language for constructing and manipu-
lating XML documents. (Draft), 1999.

Felix Michel. Representation of XML Schema Components. Master’s thesis, Computer
Engineering and Networks Laboratory, ETH Zirich, Zirich, Switzerland, March 2007.

Russell Miles. An Introduction to the AspectXML Concept, 2004.

Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Technical report, Object
Management Group, 2003. URL http://www.omg.org/docs/omg/03-06-01.
pdf.

Marvin Minsky. A Framework for Representing Knowledge. Technical report, Cambridge,
MA, USA, 1974.

M. Murata. Hedge Automata: a Formal Model for XML Schemata. Web page, 2000.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal lan-
guage theory. In Extreme Markup Languages, Montreal, Canada, 2001.

Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy of xml
schema languages using formal language theory. ACM Trans. Inter. Tech., 5(4):660-704,
November 2005. ISSN 1533-5399. doi: http://dx.doi.org/10.1145/1111627.1111631.
URLhttp://dx.doi.org/10.1145/1111627.1111631.

Brian S O. Neill and Michael Rathjen. Tea template language. Technical report, Walt
Disney Internet Group, 2001.

Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers, San Francisco, Cali-
fornia, October 1994. ISBN 0125184069.

Dimitre Novatchev. Functional programming in XSLT using the FXSL library. In Extreme
Markup Languages. 2003. URL http://www.mulberrytech.com/Extreme/
Proceedings/html/2003/Novatchev01l/EML2003Novatchev01l.html.

UML 2.0 OCL specification. Object Management Group, 2003. URLhttp://www.omg.
org/cgi-bin/doc?ptc/03-10-14.

MOF 2.0/XMI Mapping Specification, v2.1. Object Management Group, 2005. URL
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf.

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://dx.doi.org/10.1145/1111627.1111631
http://www.mulberrytech.com/Extreme/Proceedings/html/ 2003/Novatchev01/EML2003Novatchev01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/ 2003/Novatchev01/EML2003Novatchev01.html
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Bibliography

Meta Object Facility (MOF) Core Specification, v2.0. Object Management Group, 2006.
URLhttp://www.omg.org/docs/formal/06-01-01.pdf.

Unified Modeling Language. Object Management Group, 2007. URL http://www.
uml.org/.

Meta Object Facility (MOF) 2.0 Query/View/ Transformation Specification. Object Man-
agement Group, 2008. URLhttp://www.omg.org/spec/QVT/1.0/PDF/.

OpenOffice. The OpenOffice Homepage. OpenOffice.org, 2007. URL http://www.
openoffice.org/.

Terence Parr. The Complete ANTLR Reference Guide. Pragmatic, Lewisville, 2007. ISBN
0978739256.

Terence John Parr. Enforcing strict model-view separation in template engines. In
WWW ‘04: Proceedings of the 13th international conference on World Wide Web, pages
224-233, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-844-X.

Terence John Parr. A functional language for generating structured text. Public Draft,
2006. URLhttp://www.cs.usfca.edu/~parrt/papers/ST.pdf.

Alessandro Costa Pereira and Falk Hartmann. Der Mittelweg - Lesen und Schreiben von
XML-Dokumenten mit dem Streaming APl For XML (StAX). Java Magazin, (7), 2006.

Alessandro Costa Pereira, Falk Hartmann, and Kay Kadner. A Distributed Staged Archi-
tecture for Multimodal Applications (Extended Abstract). In Software Engineering 2007
(SE 2007). Lecture Notes in Informatics (LNI) 105. Copyright Gesellschaft fiir Informatik,
pages 255—-256. Kollen Verlag, Bonn, March 2007.

Alessandro Costa Pereira, Falk Hartmann, and Kay Kadner. A Distributed Staged Archi-
tecture for Multimodal Applications. In Flavio Oquendo, editor, ECSA, volume 4758 of
Lecture Notes in Computer Science, pages 195-206. Springer, 2007. ISBN 978-3-540-
75131-1.

Remko Popma. Introduction to JET. 2004. URL http://www.eclipse.org/
articles/Article-JET/jet tutoriall.html.

Dirk Preising. Entwurf und Entwicklung eines Systems zur Unterstiitzung der Lokalisier-
ung von Software fir internationale Markte. Master’s thesis, HTWK Leipzig, 2001.

Oxford University Press. Dictionary of computing (3rd ed.). Oxford University Press, Inc.,
New York, NY, USA, 1990. ISBN 0-19-853825-1.

Eric Prud’hommeaux and Andy Seaborne, editors. SPARQL Query Language for RDF, W3C
Recommendation 15 January 2008. The World Wide Web Consortium, 2008. URLhttp:
//www.w3.0rg/TR/rdf-spargl-query/.

233

http://www.omg.org/docs/formal/06-01-01.pdf
http://www.uml.org/
http://www.uml.org/
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.openoffice.org/
http://www.openoffice.org/
http://www.cs.usfca.edu/~parrt/papers/ST.pdf
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

Bibliography

[152]

[153]

[154]
[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

234

Giuseppe Psaila. On the Problem of Coupling Java Algorithms and XML Parsers (Invited
Paper). In DEXA “06: Proceedings of the 17th International Conference on Database and
Expert Systems Applications, pages 487—491, Washington, DC, USA, 2006. IEEE Computer
Society.

Dave Raggett, Arnaud Le Hors, and lan Jacobs, editors. HTML 4.01 Specification, W3C
Recommendation 24 December 1999. The World Wide Web Consortium, 1999. URL
http://www.w3.0rg/TR/1999/REC-htm1401-19991224/.

Trygve M. H. Reenskaug. Models - Views - Controllers. Technical note, Xerox PARC, 1979.
Mark Reinhold. An XML DataBinding Facility for the Java™Platform, 1999.

Reuseware. The Reuseware Composition Framework, 2007. URL http://www.
reuseware.org/.

R. J. Rodger. Jostraca: a template engine for generative programming, 2002. Position
paper for the ECOOP2002 Workshop on Generative Programming.

Tavis Rudd, Mike Orr, and lan Bicking. Cheetah: The python-powered template engine.
The Tenth International Python Conference, 2001.

SAP - SAP Research Centers: CEC Dresden, Germany. SAP AG, 2007. URLhttp://www.
sap.com/about/company/research/centers/dresden.epx.

llie Savga, Charlie Abela, and Uwe ABmann. Report on the design of component
model and composition technology for the Datalog and Prolog variants of the REWERSE
languages. Research report IST506779/Linkdping/13-D1/D/PP/al, Linkdping University,
2004. URLhttp://rewerse.net/deliverables/i3-d1l.pdf. REWERSE De-
liverable.

Simple API for XML. The SAX project, 2007. URLhttp://www.saxproject.org/.

Nikita Schmidt and Corina Sas. Software usability: a comparison between two tree-
structured data transformation languages. In NordiCHI ‘04: Proceedings of the third
Nordic conference on Human-computer interaction, pages 145-148, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-857-1.

Uwe Schmidt et al. Haskell XML Toolbox 8.5.0. FH Wedel, 2010. URL http://www.
fh-wedel.de/~si/HXmlToolbox/.

XML-RPC Home Page. Scripting News, Inc., 2007. URLhttp://www.xmlrpc.com/.

Smarty Template Engine. The Smarty Project, 2008. URL http://www.smarty.
net/.

Sparx. MDA Overview — Whitepaper on using Enterprise Architect for MDA. Technical
report, Sparx Systems, 2007. URL http://www.sparxsystems.com.au/bin/
MDA~20Tool.pdf.

http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.reuseware.org/
http://www.reuseware.org/
http://www.sap.com/about/company/research/centers/dresden.epx
http://www.sap.com/about/company/research/centers/dresden.epx
http://rewerse.net/deliverables/i3-d1.pdf
http://www.saxproject.org/
http://www.fh-wedel.de/~si/HXmlToolbox/
http://www.fh-wedel.de/~si/HXmlToolbox/
http://www.xmlrpc.com/
http://www.smarty.net/
http://www.smarty.net/
http://www.sparxsystems.com.au/bin/MDA~20Tool.pdf
http://www.sparxsystems.com.au/bin/MDA~20Tool.pdf

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

Bibliography

C. M. Sperberg-McQueen. Canonical XML forms for post-schema-validation infosets: A
preliminary reconnaissance, 2002. URL http://www.w3.0rg/2002/04/
xmlschema-psvi-in-xml.

C. M. Sperberg-McQueen. Applications of Brzozowski derivatives to XML Schema pro-
cessing. In Extreme Markup Languages®, 2005.

Thomas Stahl and Markus Volter. Modellgetriebene Softwareentwicklung. dpunkt Verlag,
March 2005. ISBN 3898643107.

Guy L. Steele. COMMON LISP: the language. Digital Press, 12 Crosby Drive, Bedford,
MA 01730, USA, 1984. ISBN 0-932376-41-X (paperback). With contributions by Scott E.
Fahlman and Richard P. Gabriel and David A. Moon and Daniel L. Weinreb.

James Stichnoth. Generating Code for High-Level Operations through Code Composition.
PhD thesis, School of Computer Science, Carnegie Mellon University, August 1997.

Maximilan Stoerzer and Stefan Hanenberg. A classification of pointcut language con-
structs. In Lodewijk Bergmans, Kris Gybels, Peri Tarr, and Erik Ernst, editors, Software
Engineering Properties of Languages and Aspect Technologies, March 2005.

StringTemplate Template Engine. The StringTemplate Project, 2008. URLhttp://www.
stringtemplate.org/.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2000. ISBN 0201700735.

Thorsten Sturm, Jesco von Voss, and Marko Boger. Generating code from uml with ve-
locity templates. In Jean-Marc Jézéquel, Heinrich HuBmann, and Stephen Cook, editors,
UML, volume 2460 of Lecture Notes in Computer Science, pages 150-161. Springer, 2002.
ISBN 3-540-44254-5.

JavaServer Pages Technology. Sun Microsystems, 1999. URL http://Jjava.sun.
com/products/jsp/.

JAR File Specification. Sun Microsystems, 2008. URL http://java.sun.com/
javase/6/docs/technotes/guides/jar/jar.html.

Philip Teale, Christopher Etz, and Michael Kiel. Data Patterns (Patterns & Practices). Mi-
crosoft Press, Redmond, WA, USA, 2005. ISBN 0735622000.

SNOW. SNOW: Services for Nomadic Workers. The SNOW Consortium, 2007. URLhttp:
/ /www.snow-project.org/.

Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn, editors. XML
Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2004. 2004.
URLhttp://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028/.

235

http://www.w3.org/2002/04/xmlschema-psvi-in-xml
http://www.w3.org/2002/04/xmlschema-psvi-in-xml
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://java.sun.com/products/jsp/
http://java.sun.com/products/jsp/
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://www.snow-project.org/
http://www.snow-project.org/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

Bibliography

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

236

Henry S. Thompson, John Tebbutt, and Tony Cincotta, editors. XML Schema Test
Suite, Version 20 June 2007. 2004. URL http://www.w3.0rg/XML/2004/
xml-schema-test-suite/.

Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999. ISBN 0201342758.

Dresden OCL — OCL support for your modeling language. TU Dresden, 2007. URL http:
//www.reuseware.org/index.php/DresdenOCL.

Kurt Tucholsky. Zur soziologischen Psychologie der Lécher. 1931. URL http://www.
textlog.de/tucholsky-psychologie-1931.html.

What is IKAT? University of Cambridge, Centre for Applied Research in Educational Tech-
nologies, 2007. URL http://www2.caret.cam.ac.uk/rsfwiki/Wiki. jsp?
page=IKAT.

The RSF Framework. University of Cambridge, Centre for Applied Research in Educational
Technologies, 2007. URL http://www2.caret.cam.ac.uk/rsfwiki/wiki.
jsp?page=Main.

Markus Vélter. Jenerator - Generative Programming for Java. 2001.

Larry Wall. Programming Perl. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2000.
ISBN 0596000278.

Karsten Wendland. Der Template-Zyklus: Web-Templates im Spannungsfeld von schépfer-
ischem Gestalten und einschrinkender Zumutung. PhD thesis, TU Darmstadt, Aachen,
Germany, 2006.

Schema F. Wikipedia — Die freie Enzyklopadie, 2010. URL http://de.wikipedia.
org/wiki/Schema_F.

W3C. W3C Multimodal Interaction Framework. The World Wide Web Consortium,
2003. http://www.w3.0rg/TR/2003/NOTE-mmi-framework-20030506/
(visited 2006, May 29th).

W3C. Speech Synthesis Markup Language (SSML) Version 1.0. The World Wide Web Con-
sortium, 2004. http://www.w3.org/TR/speech-synthesis/ (visited 2006,
October 4th).

W3C. EMMA: Extensible MultiModal Annotation markup language. The World Wide Web
Consortium, 2005. http://www.w3.0rg/TR/emma/ (visited 2006, June 2nd).

XMLUnit - JUnit and NUnit testing for XML. XMLUnit Community, 2009. URL http:
//xmlunit.sourceforge.net/.

David H. Young. Enhydra XMLC Java Presentation Development. Sams Publishing, Indi-
anapolis, IN, USA, 2002.

http://www.w3.org/XML/2004/xml-schema-test-suite/
http://www.w3.org/XML/2004/xml-schema-test-suite/
http://www.reuseware.org/index.php/DresdenOCL
http://www.reuseware.org/index.php/DresdenOCL
http://www.textlog.de/tucholsky-psychologie-1931.html
http://www.textlog.de/tucholsky-psychologie-1931.html
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=IKAT
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=IKAT
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=Main
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=Main
http://de.wikipedia.org/wiki/Schema_F
http://de.wikipedia.org/wiki/Schema_F
http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/emma/
http://xmlunit.sourceforge.net/
http://xmlunit.sourceforge.net/

Bibliography

[196] Template Attribute Language. The ZOPE Community, 2007. URLhttp://wiki. zope.
org/ZPT/TAL.

[197] Oliver Zschau. Glossar http://www.contentmanager.de/, 2007. URL http:
//www.contentmanager.de/ressourcen/glossar 8 template.html.

237

http://wiki.zope.org/ZPT/TAL
http://wiki.zope.org/ZPT/TAL
http://www.contentmanager.de/
http://www.contentmanager.de/ressourcen/glossar_8_template.html
http://www.contentmanager.de/ressourcen/glossar_8_template.html

Bibliography

238

abstract syntax, 25

adaptation phase, 24, 46, 58, 60, 152
advice, 32

analysis phase, 24

ANLTR, 44

AOP, 16, 20f., 32,39, 179
approximation, 100

aspect, 32

Aspect), 16, 34

AspectXML, 33

AST, 33

authoring constraint, 103
authoring phase, 24, 59f.,, 92, 180
authoring time, 24, 56, 87 f.

Bassett, Paul, 9
BETA, 351, 240f.
bind
composition operator, 37
broad applicability, 14, 53, 55-59, 178, 180
Brzozowski derivatives, 98
build time, 13, 33
bypassing, 62, 64f., 78, 80, 82 f.

C 35

C+,9,35f,53

character data, 28, 88

Cheetah, 31

CMS, 16, 31, 52f.

Cocoon, 80

computability, 55 f.

concerns
crosscutting, 32

concrete syntax, 25

Index

constraint separation, 58f., 87-91, 93f,
100f., 103 ff.,, 107-112, 117 ff,, 121,
150, 163, 166f, 170f, 174, 180,
187, 190f.

ContentHandler, 17, 129

contract, 56 f.

core, 32

coverage

requirement, 55, 58

CST, 33

CXsD, 17, 93-101, 104, 108, 110-113, 1151,
118-121, 166ff., 170f., 178, 180 ff.,
192, 206, 215

design phase, 24, 58
Dijkstra, Edsger W., 8
DOM, 95, 1191,, 127,129
DTML, 30

ease of use, 10, 15
EMODE, 15, 78, 175, 179
entanglement index, 15, 40, 53
ERB, 30
evaluateForEach, 74,79
evaluatelIf, 72,74
evaluateInclude, 70,74
evaluateText, 66, 74, 79
expressiveness

requirement, 56, 58f., 62, 71, 129
extend

composition operator, 37
extensibility

ISC, 37

form

239

Bibliography

BETA, 36
fragment

ISC, 37
fragment form, 36
fragment group, 36
fragment language, 36
frame, 37f.
frame processing, 37 f.

generation number, 81

Haskell, 63, 86, 172
hook
ISC, 37
HTML, 24, 30f., 33f,, 39, 43, 66, 182f.
HTTP, 41

IDC, 17,93, 98f.,, 101, 108, 110f., 114f,, 121,
151, 166 ff.

IKAT, 41

implementation phase, 24

independence of query language

requirement, 57 ff., 65, 69, 71, 124

instantiation, 22, 43, 50f., 54, 56, 62, 69, 72,
81, 84

instantiation data, 12-15, 22, 32f, 41, 43,
45f, 50f., 55ff, 59, 63, 65-68,
70-74, 78, 82, 84, 88, 93, 98f,
103f.,114f,117ff, 123,129, 150f,,
153, 163f, 172

instantiation data constraint, 58f., 87f., 99,
103f.,, 117ff, 121, 150-153, 160,
163, 172,174

instantiation data evaluation, 59, 123, 129,
152,163,171, 183, 190

instantiation data evaluator, 66, 71, 73, 78f.,
119, 123, 133, 135, 150

instantiation data source, 43f., 59, 63f., 79,
83ff.,, 125f., 153, 163, 1731, 207 f.

instantiation data type safety

requirement, 56 f., 59, 155

instantiation data validation, 13, 16, 59, 118,
123, 129, 150ff., 163, 171, 190f.

instantiation data validator, 88, 98, 150

240

instantiation phase, 25, 59f., 92, 150, 152,
180

instantiation time, 13, 88 f.

ISC, 35 ff., 239 ff.

JAR, 173

Java, 16, 34, 441, 86, 127, 131, 154 ff., 1591,
1621, 169, 171, 173

JAXB, 13, 16, 33f., 50, 53, 108f., 111, 129,
154,163,173, 191

Jenerator, 33

JET, 31,179

join point, 32

Jostraca, 45

JSP, 9-13, 16, 30, 34f,, 39, 42 ff.,, 50f, 53f,
57,127, 163, 180, 182 ff., 190, 208

JSR 173, see StAX

Ixp, 39

JXPath, 57, 125, 127 1., 182f.

LISP, 35
localization, 33

macro, 15, 35
hygienic, 35
markup, 88
marshalling, 33
MDA, 31, 95
MDT, 94, 120
meta language, see schema language
mode (attribute), 68
MOF, 32
move copy of data, 124, 153
M2C, 31, 52, 157, 179
M2M, 31
MVC, 9f., 32, 40, 53, 56

name (attribute), 68, 76f., 94
named block

frame processing, 37
NMTOKEN, 12f.

obliviousness, 32
OCL, 46, 94-98, 101, 115f, 118, 120f., 124,
167,171, 181f.

order (attribute), 73
order-by (attribute), 73 f.
origin, 36

partial templatization, 15, 18, 41, 94, 116f,,
121, 191
Perl, 30, 39, 181 ff.
PHP, 123-128, 130, 134f.,, 141f,, 145, 1511,
154,160ff, 168f.,171,179f, 1821,
185
Identity, 126f.,, 169, 171, 185
JXPath, 1271, 169
SPARQL, 127f., 169, 179
System, 128, 134, 169
UML, 169
XMLBean, 169
XPath, 127, 169
pipeline, 78, 80f.
pointcut, 21, 32f.
pointcut languages, 21
preprocessor, 35
preservation
requirement, 54, 58f., 66, 68, 71, 100,
165
PSVI, 118f.
pull parser, 130
pull strategy, 42, 124, 153
push parser, 130
push strategy, 42, 124, 153

QName, 68, 95, 119, 157f.

query language, 23f., 34, 39, 43f,, 46, 50, 57,
65f., 69, 71ff., 78, 82f., 85, 1231,
150, 163

realm, 62, 66, 68, 70f., 73, 78 ff., 124, 133
realm (attribute), 78f., 135

RelaxNG, 28 1., 84 ff., 94, 138, 178, 191
Repleo, 46

RSF, 41

run time, 33

RWT, 33, 53f.

Bibliography

safe authoring, 13, 18, 36, 50, 55f, 58f,
62,67,70,87,104, 116, 118, 170f,,
178, 180, 191
safe instantiation, 14 ff., 50, 51, 57, 59, 150,
170, 191
safe template processing, 7, 13 ff., 18, 49, 53,
57, 180, 192
SAX, 1291,
Saxon, 31
schema language, 15, 27f.
grammar-based, 27 f.
pattern-based, 27 f.
schema type, 15
Schematron, 28, 94, 192
select (attribute), 65f., 68, 70f,, 73 f., 78f,,
82f., 85, 124-127, 135, 154, 159,
173
separation
of concerns, 8f., 14 ff., 31, 34, 43, 52f1.,
55-59, 61, 65, 68f., 117, 189
of constraints, 12
separation rules, 40
SGML, 8, 25, 191
shell, 39
slot, 21, 37, 67
BETA, 36
ISC, 37
slot markup, 21f., 39, 62, 67, 190f.
slot markup language, 15, 18, 21ff., 24, 40,
46, 56 ff., 60 ff., 66, 76, 84, 86, 129,
190, 192
design, 61
slot markup language design, 57 f.
Smarty, 30
SNOW, 15, 18, 78, 175-179
SPARQL, 15, 78, 124, 127 1., 171, 180
SPath, 117
sQlL, 57
SSM, 15, 24, 32, 34, 40, 42, 44, 55, 86
ST, 10, 16, 30f., 37, 411, 44 1.
staged architecture, 80
StAX, 119f., 129f.,, 138, 146, 163
stylesheet, 24, 32, 42, 55, 80, 83, 86

241

Bibliography

TAL, 39, 71, 73

target language, 20f., 22, 23ff, 39ff, 46,
50, 53 ff,, 58f., 61, 66, 71, 87f.,, 94,
99ff, 104, 118, 123, 150, 152f,
170, 174, 180f.

Tea, 39, 44

technological space, 16, 33, 35, 60, 152

template, 9, 13, 15, 17, 20f., 24, 32f, 37,
40f., 43 1., 46, 50, 53-59, 61 ff.,, 65f,,
73,76, 78f., 831, 86 ff., 104 ff., 117,
135, 150, 152 1., 158, 165, 170, 185

validation, 59, 87, 117 ff,, 121, 151, 154,

166f., 170f., 190

template author, 24, 88, 117

template engine, 13, 22, 43f, 46, 55, 59,
61, 781, 81, 87, 123f.,, 129ff,, 150,
1521, 160

template instantiation, 59, 115, 119, 123,
127, 129f, 152, 154f.,, 162f, 166,
168, 171f., 181 ff,, 185, 190

template interface, 152 f.

template interface generation, 13, 15f,, 18,
46, 59, 98, 124, 152-157, 160, 163,
166, 172

template language, 21, 21f., 23, 54 ff., 58f,,
61f., 88,99f, 104, 170f, 174

template validator, 87, 117f.,, 120

template view, 32

test suite, 166, 170-174

transform view, 32

Tunnicliffe, William W., 8, 52

type (attribute), 119, 159

UML, 94 ff,, 1231, 157

Unix, 39

unmarshalling, 33

unparser, 14 ff., 53

UPA, 28,931, 98,1181, 121, 191f1.

upfront verification, 12, 14 ff,, 18

URI, 17, 25, 63, 81, 112, 139, 149

URL, 182f.

use of existing standards, 54

utilization of existing standards, 14, 53ff.,
58f., 62,87,94

242

validation phase, 25
variable

frame processing, 37
variable interpolation, 30
Velocity, 30, 42, 53

W3(C, 25, 27,192

weaving, 32

Web 2.0, 30

wellformedness, 9-12, 14, 40, 62, 104
WML, 25, 53

Xalan, 31, 127, 183

Xerces, 33, 108, 118f.

XGrammar, 28, 108

XHTML, 9-12, 14, 21, 25, 30, 33, 39, 50f., 53,
88, 1161, 153, 176, 192

XMl, 32, 169

XML, 8f, 11ff, 15ff, 19, 21, 25-29, 31,
33f, 39f., 42ff, 53f, 57, 60-63,
65 ff., 69 f., 78, 80, 83 f., 88,93, 96 .,
103 ff., 109, 113, 117 ff., 121, 1231,
127, 1291, 138, 140f., 146, 149,
156 f., 163, 167-173, 176f., 182ff,,
190ff., 213 f.

dialect, 14, 25, 27, 31, 34, 53, 55, 58, 80,
87,123,178
namespace, 14, 16 f., 25, 39,62 f., 65, 81,

110-113, 127, 139f,, 149, 178, 180,
191

XM, 13, 33

XML binding tool, 33, 129, 152

XML information set, 25

XML Schema, see XSD

XMLBeans, 16, 33, 108, 129

XMLC, 39, 66

XPAND, 31, 33, 441, 57

XPath, 15, 24, 33, 42, 44, 46, 57, 65, 67, 72,
74, 78, 83, 85, 95, 101, 118, 124,
127f., 150, 154-160, 163, 171f,
178,183

XSD, 141, 17, 19, 27 ff., 33, 40, 55, 58, 62, 68,
85 ff., 89f., 93-102, 104, 108-112,
114,117-121, 123, 149, 151, 154 ff,,

160, 167, 169ff,, 178, 180f., 191 ff,,
203, 206, 213

XSL-T, 10, 151, 201, 24, 311, 34, 40, 42, 44,
50, 55, 62, 67, 71-74, 80, 83f., 86,
89, 97f., 1241, 127, 149, 163, 172,
180, 182 ff., 190, 208, 228

XTL

XML Schema, 17, 62, 99, 103

XTL, 11, 14-18, 28, 44, 61-86, 88, 90, 93f,,
100f., 105f.,, 108, 110-113, 117 ff,,
124-127,130f., 133-136, 138-141,
146, 151, 153f, 157-160, 162,
166f., 169-180, 182-185, 190ff,,
208

engine, 123f, 128, 130f, 136, 138,

149f,171f, 182

xtl:attribute, 67ff, 72, 74, 77, 79,
90-94, 99, 101 ff,, 105, 111, 114f,
119, 125f, 128, 141, 146, 151, 159,
178, 192

xtl

xtl:

xtl:

xtl:
xtl:

xtl

xtl:

Bibliography

:call-macro, 76ff, 86, 101, 135,

144, 179

for-each, 66, 68, 71, 73ff., 77, 79,
90, 93f.,, 101ff, 107, 112ff., 119,
1251, 128, 1301, 133 f,, 1421, 150,
152, 154f., 158f., 162, 179, 185 ff.

if, 71ff, 90, 93f, 101ff, 107, 112f,
119, 126, 128, 141, 151, 154, 156,
158, 179

include, 691,101, 126, 128, 145

init, 76, 78f., 126f., 145, 180

:macro, 76-79, 86, 101, 130, 135, 144,

179

text, 66ff, 701, 79, 90, 92 ff., 101ff,,
105f, 111f, 115f,, 119, 125f.,, 128,
134,141, 151, 153ff,, 159, 178, 185

XUpdate, 33
XVCL, 38

243

	Contents
	Preface
	Overview
	Problems
	Motivating Example
	Goals
	Contributions
	Related Work
	Typographic Conventions
	Outline

	Introduction
	Definitions
	Templates and Related Terms
	Life Cycle Phases
	The Extensible Markup Language XML
	XML Schema Languages

	Applications
	Web Applications
	Code Generation

	Alternatives to Using Templates
	Transformations
	Aspect-Oriented Approaches
	Unparsers
	Comparison of Templates with Alternative Technologies

	Related Research Areas
	Macro Processing
	Templates as Programming Language Feature
	Invasive Software Composition
	Frame Processing

	Classification
	Target Language Awareness of Slot Markup
	Generality of the Slot Markup
	Entanglement Index
	Instantiation Data Access Strategy
	Query Language
	Instantiation Technique
	Reuse in Templates
	Further Features

	Conclusion

	Safe Template Processing
	Goals
	Safe Authoring
	Safe Instantiation
	Separation of Concerns
	Broad Applicability
	Utilization of Existing Standards

	Requirements
	Preservation of Target Language Constraints
	Coverage of Target Language
	Computability
	Expressiveness
	Instantiation Data Type Safety
	Independence of Query Language

	Proposal of an Architecture fulfilling the Requirements
	Conclusion

	Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language
	General Design Decisions
	Creation of Character Data
	xtl:text
	xtl:attribute
	xtl:include

	Conditional and Repeated Inclusion of Template Fragments
	xtl:if
	xtl:for-each

	Reuse of Template Fragments
	xtl:macro
	xtl:call-macro

	Advanced Features
	Accessing multiple Instantiation Data Sources using Realms
	Instantiation Pipelines using Bypassing

	Definition of the Instantiation Semantics using XSL-T
	Relation to Document Validation
	Conclusion

	Safe Authoring of Templates
	Constraint Separation
	Introductory Example
	The Constraint XML Schema Language CXSD
	The Instantiation Data Constraint Language IDC
	Constraint Separation Process
	Proof of the Preservation of the Target Language Constraints
	Completeness of the Set of Required Attributes
	Compliance to the Content Model

	Visitor-based Implementation of the Constraint Separation
	Partial Templatization

	Template Validation
	Conclusion

	Flexible, Efficient and Safe Template Instantiation
	Instantiation Data Evaluation
	Design of the PHP Interface
	The Identity PHP
	The JXPath PHP
	The SPARQL PHP
	The System PHP

	Template Instantiation
	XML Access Technologies
	Operational Model of the XTL Engine
	Pipeline Implementation of the XTL Engine
	Memory and Runtime Complexity

	Instantiation Data Validation
	The IDC PHP
	Template Interface Generation
	Introductory Example
	An Algorithm for the Template Interface Generation
	Implementation using a PHP and an API-based Generator

	Conclusion

	Validation
	Implementation of the Prototype
	The Constraint Separation Tool xtlsc
	The Template Validation Tool cxsdvalidate
	The Template Instantiation Tool xtlinstantiate
	The Template Interface Generation Tool xtltc

	Test Suites
	Constraint Separation Test Suite
	Template Validation Test Suite
	Template Instantiation Test Suite
	Template Interface Generation Test Suite
	Round-trip Test Suite

	Applications of the Prototype
	SNOW: Use of XTL in a Staged Architecture
	EMODE: Use of XTL for Model-to-Text Transformations
	FeasiPLe: Use of XTL for Code Generation from Ontologies

	Proof of the Preservation of the Target Language Constraints
	Runtime and Memory Usage Measurements
	Runtime Measurement of Validation against a CXSD Schema
	Runtime Measurements of the Template Instantiation
	Memory Usage Measurements of the Template Instantiation

	Conclusion

	Summary, Conclusion, and Outlook
	Summary
	Conclusion
	Suggested Improvements for XML Technologies
	Future Research Directions

	Referenced XML Schemata and Instances
	XML Schema of XTL
	Purchase Order Schema
	Purchase Order Instance

	Detailed Results of the Runtime and Memory Measurements
	List of Acronyms
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Index

