
Safe Template Processing
of XML Documents

Disserta on

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informa k

eingereicht von

Dipl.-Inform. Falk Hartmann
geboren am 2. April 1973 in Freital

Betreuender Hochschullehrer:
Prof. Dr. rer. nat. habil. Uwe Aßmann, TU Dresden

Gutachter:
Prof. Dr. rer. nat. habil. Uwe Aßmann, TU Dresden

Prof. Dr. Welf Löwe, Linnaeus University

Tag der Verteidigung: 1. Juli 2011

Dresden, im September 2011

Contents

1. Preface 7
1.1. Overview . 8
1.2. Problems . 9
1.3. Mo va ng Example . 10
1.4. Goals . 13
1.5. Contribu ons . 14
1.6. Related Work . 16
1.7. Typographic Conven ons . 16
1.8. Outline . 17

2. Introduc on 19
2.1. Defini ons . 19

2.1.1. Templates and Related Terms . 20
2.1.2. Life Cycle Phases . 24
2.1.3. The Extensible Markup Language XML 25
2.1.4. XML Schema Languages . 27

2.2. Applica ons . 30
2.2.1. Web Applica ons . 30
2.2.2. Code Genera on . 30

2.3. Alterna ves to Using Templates . 31
2.3.1. Transforma ons . 31
2.3.2. Aspect-Oriented Approaches . 32
2.3.3. Unparsers . 33
2.3.4. Comparison of Templates with Alterna ve Technologies 34

2.4. Related Research Areas . 35
2.4.1. Macro Processing . 35
2.4.2. Templates as Programming Language Feature 35
2.4.3. Invasive So ware Composi on . 36
2.4.4. Frame Processing . 37

2.5. Classifica on . 38
2.5.1. Target Language Awareness of Slot Markup 39
2.5.2. Generality of the Slot Markup . 40
2.5.3. Entanglement Index . 40

3

Contents

2.5.4. Instan a on Data Access Strategy . 42
2.5.5. Query Language . 43
2.5.6. Instan a on Technique . 44
2.5.7. Reuse in Templates . 44
2.5.8. Further Features . 45

2.6. Conclusion . 46

3. Safe Template Processing 49
3.1. Goals . 49

3.1.1. Safe Authoring . 50
3.1.2. Safe Instan a on . 50
3.1.3. Separa on of Concerns . 51
3.1.4. Broad Applicability . 53
3.1.5. U liza on of Exis ng Standards . 53

3.2. Requirements . 54
3.2.1. Preserva on of Target Language Constraints 54
3.2.2. Coverage of Target Language . 55
3.2.3. Computability . 55
3.2.4. Expressiveness . 56
3.2.5. Instan a on Data Type Safety . 56
3.2.6. Independence of Query Language . 57

3.3. Proposal of an Architecture fulfilling the Requirements 57
3.4. Conclusion . 60

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language 61
4.1. General Design Decisions . 62
4.2. Crea on of Character Data . 65

4.2.1. xtl:text . 66
4.2.2. xtl:attribute . 67
4.2.3. xtl:include . 69

4.3. Condi onal and Repeated Inclusion of Template Fragments 71
4.3.1. xtl:if . 71
4.3.2. xtl:for-each . 73

4.4. Reuse of Template Fragments . 76
4.4.1. xtl:macro . 76
4.4.2. xtl:call-macro . 77

4.5. Advanced Features . 78
4.5.1. Accessing mul ple Instan a on Data Sources using Realms 78
4.5.2. Instan a on Pipelines using Bypassing 80

4.6. Defini on of the Instan a on Seman cs using XSL-T 83
4.7. Rela on to Document Valida on . 84
4.8. Conclusion . 86

5. Safe Authoring of Templates 87

4

Contents

5.1. Constraint Separa on . 87
5.1.1. Introductory Example . 89
5.1.2. The Constraint XML Schema Language CXSD 94
5.1.3. The Instan a on Data Constraint Language IDC 98
5.1.4. Constraint Separa on Process . 99
5.1.5. Proof of the Preserva on of the Target Language Constraints 103

5.1.5.1. Completeness of the Set of Required A ributes 104
5.1.5.2. Compliance to the Content Model 105

5.1.6. Visitor-based Implementa on of the Constraint Separa on 107
5.1.7. Par al Templa za on . 116

5.2. Template Valida on . 117
5.3. Conclusion . 121

6. Flexible, Efficient and Safe Template Instan a on 123
6.1. Instan a on Data Evalua on . 123

6.1.1. Design of the PHP Interface . 124
6.1.2. The Iden ty PHP . 126
6.1.3. The JXPath PHP . 127
6.1.4. The SPARQL PHP . 127
6.1.5. The System PHP . 128

6.2. Template Instan a on . 129
6.2.1. XML Access Technologies . 129
6.2.2. Opera onal Model of the XTL Engine 130
6.2.3. Pipeline Implementa on of the XTL Engine 136
6.2.4. Memory and Run me Complexity . 150

6.3. Instan a on Data Valida on . 150
6.3.1. The IDC PHP . 151
6.3.2. Template Interface Genera on . 152

6.3.2.1. Introductory Example . 153
6.3.2.2. An Algorithm for the Template Interface Genera on 155
6.3.2.3. Implementa on using a PHP and an API-based Generator . . 160

6.4. Conclusion . 163

7. Valida on 165
7.1. Implementa on of the Prototype . 165

7.1.1. The Constraint Separa on Tool xtlsc 167
7.1.2. The Template Valida on Tool cxsdvalidate 167
7.1.3. The Template Instan a on Tool xtlinstantiate 168
7.1.4. The Template Interface Genera on Tool xtltc 169

7.2. Test Suites . 170
7.2.1. Constraint Separa on Test Suite . 170
7.2.2. Template Valida on Test Suite . 170
7.2.3. Template Instan a on Test Suite . 171
7.2.4. Template Interface Genera on Test Suite 172

5

Contents

7.2.5. Round-trip Test Suite . 174
7.3. Applica ons of the Prototype . 175

7.3.1. SNOW: Use of XTL in a Staged Architecture 175
7.3.2. EMODE: Use of XTL for Model-to-Text Transforma ons 179
7.3.3. FeasiPLe: Use of XTL for Code Genera on from Ontologies 179

7.4. Proof of the Preserva on of the Target Language Constraints 180
7.5. Run me and Memory Usage Measurements 180

7.5.1. Run me Measurement of Valida on against a CXSD Schema 181
7.5.2. Run me Measurements of the Template Instan a on 182
7.5.3. Memory Usage Measurements of the Template Instan a on 184

7.6. Conclusion . 187

8. Summary, Conclusion, and Outlook 189
8.1. Summary . 189
8.2. Conclusion . 190
8.3. Suggested Improvements for XML Technologies 191
8.4. Future Research Direc ons . 192

A. Referenced XML Schemata and Instances 193
A.1. XML Schema of XTL . 193
A.2. Purchase Order Schema . 201
A.3. Purchase Order Instance . 202

B. Detailed Results of the Run me and Memory Measurements 205

List of Acronyms 211

List of Figures 216

List of Lis ngs 219

List of Tables 221

Bibliography 237

Index 239

6

1
Preface

But, how did the first template appear?

Interna onal Encyclopedia of Systems and Cyberne cs, 1997 [69]

Almost two decades a er the introduc on of the World Wide Web by Tim Berners-Lee in
1989, the automa c genera on ofWeb pages fromdynamic data is s ll suffering the same prob-
lem as in the beginning: How can one be sure that the applica on produces valid HTML code?
There have been several approaches to this problem, among them approaches that successfully
solved the problem, thereby unfortunately viola ng other well-established design rules, like the
Separa on of Concerns principle. The consequences of this viola on can hardly be managed in
large applica ons developed in a coopera on of many par cipants assigned to mul ple roles in
the development process: therefore, the problem can s ll be considered unsolved in its gener-
ality.
The goal of this thesis has been to propose a solu on that enables Safe Template Processing,

i.e., a template technique that allows to be sure about the results a Web applica on produces.
In addi on, it was required that the solu on complies to the men oned design rules like the
Separa on of Concerns principle. The solu on should furthermore be broadly applicable, i.e.,
it should not be restricted to the genera on of Web pages. Finally, the approach should u lize
exis ng standards and it should be a prac cal solu on, i.e., acceptable to a non-academic user.
This thesis presents an approach that fulfills the described goals by extending a template-

basedmechanism (as it is well-known toWeb engineers) with a valida on technique that allows
to give guarantees about the results the template is going to produce. Since these guarantees
are given at the me the template is being authored, certain assump ons about the data that

7

1. Preface

is consumed within the template must be made. Addi onal techniques have been developed
to check these assump ons.
This chapter starts with an overview of the research area in Sec on 1.1, including insights into

its history. A erwards, the problem addressed within this thesis is explained in more detail in
Sec on 1.2. Sec on 1.3 illustrates the problemwith a mo va ng example, whereas Sec on 1.4
outlines goals derived from the described problems. The contribu ons developed within this
thesis are outlined in Sec on 1.5. Related research areas are introduced in Sec on 1.6. The
chapter concludes with typographic conven ons in Sec on 1.7 and the outline in Sec on 1.8.

1.1. Overview

It is widely accepted that Edsger W. Dijkstra introduced the term Separa on of Concerns (SoC)
in his groundbreaking ar cle “On the role of scien fic thought” [48]. It was pleading for a way
of thinking about an aspect of a problem without considering other, related aspects. The idea
has been adopted in the discipline of so ware engineering in various ways, e.g., as a maxim
during system analysis or as a guideline for architectural design.
Parallel to Dijkstra, the SoC principle has been suggested by William W. Tunnicliffe as a prin-

ciple to be used for applica ons in the publishing sector. Tunnicliffe held a presenta on about
the separa on of informa on content of documents from their format at the Canadian Govern-
ment Prin ng Office in September 1967 [76, Appendix A]. This presenta on and the idea of SoC
greatly influenced the development of the Standard GeneralizedMarkup Language (SGML) and
its successor, the Extensible Markup Language (XML).
There exist a number of techniques to separate aspects of a system, and with them, at least

the same number of techniques to perform a necessary composi on of the aspects. With re-
spect to so ware, aspects typically separated from the core logic of a program include for ex-
ample func onality for monitoring, transac on handling and security, but also constant data
needed for program execu on, if the data volume exceeds the amount comfortably manage-
able in the respec ve programming language.
A very popular technique to integrate data that has been divided due to the SoC principle is

the template technology. From an unsophis cated point of view, a template is just an incom-
plete textual representa on of data. Template engines have been used for a variety of purposes,
especially in the areas of code genera on and Web engineering.
There are three reasons for the widespread use of templates: (a) the learning effort for a

par cular template language is low, as templates closely resemble the syntax of the language
that should be generated with them, (b) it is easy to keep arbitrary complex constant fragments
of the document to be generated in the template itself, and (c) the possibility to adhere to the
Separa on of Concerns principle.
The amount of research conducted on template techniques does not reflect its importance

andwidespreaduse. Research on this area is nevertheless urgently needed, as template engines
are very popular and, as it will be shown shortly, s ll suffer from the same problems as when
they were introduced, especially with the lack of guarantees that can be given about the result
of the instan a on of a template. The need for research is also indicated by the large number
of exis ng template engines: at the me of wri ng, [96] alone listed 17 open-source, Java-

8

1.2. Problems

implemented engines. Some of them differ only in minor details and reflect the users’ tendency
to be picky about the par cular syntax used, while others introduce novel concepts and designs.

Inves ga ons on this area start with the ques on on the origins of the word template in
the sense as sketched above. In general, the term seems to be in use since the early days of
computer science, designa ng for example “…a plas c or s ff paper form that is placed over
the func on keys on a keyboard to iden fy their use…” [71]. Nowadays, the term is overloaded
mul ple mes, primarily for the generic programming feature of C++ [174].

It seems to be impossible to track down who used the term template first to denote the
technique described here, but the use of it was straigh orward as the term had been in use in a
very similar way in the area of electronic form processing, with forms also being a reincarna on
of the SoC principle by drawing a border between the preprinted content of a form and the slots
to be filled.

Most probably the first implementa on of templates in the sense used here was the frame
processing approach described by Paul Basse in his landmark paper “Frame-Based So ware
Engineering” [17, also appeared in 46]. The term frame used by Basse goes back to the con-
ceptual frames introduced by Marvin Minsky [129]. It remains inscrutable who rebranded or
reinvented Basse ’s idea to the term template most widely used today.

It is possible to find even earlier related approaches. The λ-calculus introduced by Alonzo
Church [35] can be seen as an early predecessor of template techniques, as in the term λx.x+y
the bound variable x is interpretable as represen ng data coming from a data source different
from the source supplying the free variable y.

1.2. Problems

Awell-known prac cal problemwith the use of an arbitrary template technique is the possibility
to violate the SoC principle. With respect to Web engineering, this corresponds to the archi-
tectural failure of not dis nguishing clearly between view and controller (and some mes even
model) in an implementa on of the Model-View-Controller (MVC) pa ern [154]. The problem
has been pointed out clearly in Terence Parr’s remarkable paper “Enforcing strict model-view
separa on in template engines” [143].

A second problem can best be illustrated in the Java Server Pages (JSP) technology, a popular
approach to building Web frontends in the Java technological space. It is shown in Sec on 2.1,
that JSP documents are in fact templates. JSP users are o en confronted with the difficulty of
assuring the correctness of the results of the template instan a on. In the JSP world, one o en
ends upwith a template that does not produce valid the Extensible HypertextMarkup Language
(XHTML) output (at least not in all cases) or with a page that cannot be compiled by the JSP
engine at all. Even with the tool support that became available in the last years, it is s ll easy to
create such erroneous templates.

Three major categories of JSP documents producing invalid XHTML exist:

1. The page may not even produce valid XML, i.e., it may violate the requirements for well-
formedness. (viola on of wellformedness)

9

1. Preface

2. The page produces wellformed XML, but is failing to fulfill the structural constraints that
are defined by the XHTML specifica on, irrespec ve of any data to be inserted into the
template. (viola on of structural constraints)

3. A template can produce invalid XHTML because of unsa sfied constraints on the data that
should be inserted into it during the instan a on. (viola on of data constraints)

Each of the three categories have different reasons and, more important, different techniques
are applicable to deal with them. Alterna ve technologies like StringTemplate (ST) and XSL
Transforma ons (XSL-T) address some of these issues, e.g., the first men oned problem does
not occur when using XSL-T.
Especially problems of the second and third category typically produce error messages that

only state the invalidity of the document with respect to the expected target language. Unfor-
tunately, the real cause of the problem, i.e., the informa on about the instan a on data value
and its source, are missing in the error message. The loss of this informa on unnecessarily
complicates tracing back the error.
Most of the exis ng alterna ve technologies are not easy to use. Template techniques are per

se easy to use; however, this advantage is some mes eliminated by rashly added or too many
features. An example for such an impediment that severely violates the ease of use idea is the
error handling exposed by JSP if an error from the third category men oned above occurs: the
data inserted during the execu on of a JSP document is not checked by the typical JSP engine,
resul ng in XHTML errors that are shown in the users browser.

1.3. Mo va ng Example

Today’s Web applica ons o en make use of a MVC architecture that is similar to that shown in
Figure 1.1: the model is represented by a database, the controller is implemented using some
middleware like a servlet container and the view is shown to the user in form of XHTML pages
in a browser.

Figure 1.1.: A typical Web Applica on can produce both valid and invalid XHTML Documents

10

1.3. Mo va ng Example

In the Javaworld, the servlet container typically used asmiddleware delivers the XHTMLpages
by using so-called Java Server Pages (JSP, [176]). The JSP documents are translated to XHTML
in a mul -step process involving compiling them to Java classes and finally to Java class files. It
is the execu on of these class files that integrates the model data into the page finally emi ed
by the component that processes the JSP documents, the JSP engine.
As shown in Figure 1.1, there is a typical problem in the outlined scenario. The defini on of

the JSP language is quite imprecise, it is therefore not possible to check JSP documents in a way
that guarantees that the instan a on of a JSP page yields a page conforming to the XHTML (or
any other) standard. This enforces the development process that is shown in Figure 1.2.

Figure 1.2.: The current Development Process for Templates

All of the three problems with template technologies introduced above, i.e., viola on of well-
formedness, viola on of structural constraints as well as viola on of data constraints, can be
illustrated with this scenario.
An example for a JSP document causing a viola on of wellformedness, i.e., not producing

wellformedXML, is shown in Lis ng 1.1. The document yields a page containing a closing</h1>
tag without a preceding opening <h1> tag. The problem is caused by the different condi ons
used for the inclusion of the opening and the closing tag. The main cause, however, is that JSP
allows interweaving the XML syntax with its own special markup. Several approaches to the
problem are possible, e.g., the use of model checkers [66] or control- and data-flow analysis.
Interes ngly, the problemmaybe completely solved by a language design preserving syntax and
seman cs. An example for a language which guarantees wellformedness is the XML Template
Language (XTL) introduced in Chapter 4.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<%!

public boolean test1()
{

return false;
}

public boolean test2()
{

11

1. Preface

return true;
}

%>
<head>

<title>JSP not producing wellformed XHTML</title>
</head>
<body>

<% if (test1()) { %><h1><% } %>
Content
<% if (test2()) { %></h1><% } %>

</body>
</html>

Lis ng 1.1: A JSP Document failing to produce wellformed XHTML Documents

An example for a viola on of a structural constraint is shown in Lis ng 1.2. This example
produces wellformed XML but fails to fulfill the requirements set by the XHTML specifica on.
The body tag, which is required within the html tag, is included only condi onally, i.e., the
document is obviously capable of producing documents not complying to the XHTML specifica-
on. The best solu on for this type of problem is to disallow required elements to be subject

to condi onal inclusion in some way. This can be achieved by the newly developed upfront ver-
ifica on approach, which allows the verifica on of structural constraints during the authoring
of a template. This approach is based on a technique called separa on of constraints, which
aims at deriving tests that can be applied to templates (like ‘body is not allowed to be subject
to condi onal inclusion’) and which is described in Sec on 5.1.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<%!

public boolean test()
{

return false;
}

%>
<head>

<title>JSP producing invalid content (1)</title>
</head>
<% if (test()) { %>
<body>Content</body>
<% } %>

</html>
Lis ng 1.2: A JSP Document producing a Document that is not XHTML (1)

Finally, a viola on of data constraints is illustrated in Lis ng 1.3. The problem is caused by
character data not complying to a prescribed type . The lis ng produces an anchor (<a> tag)
with a name a ribute with a corresponding value ‘not an NMTOKEN’. This a ribute is re-
stricted by the XHTML specifica on to be of the type NMTOKEN, which is not allowed to contain
spaces. Thus, the document produced by the JSP file is not valid XHTML. In general, this cat-
egory of errors is in general impossible to be handled when the template is authored, as the
value subject to the typing is instan a on data, which is per defini onem only known later at

12

1.4. Goals

the point in me when the template is instan ated. Nevertheless, two improvements over the
current state of the art are possible.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<%!

public String getName()
{

return ”not an NMTOKEN”;
}

%>
<head>

<title>JSP producing invalid content (2)</title>
</head>
<body>

<a name=”<%= getName() %>”/>
</body>

</html>
Lis ng 1.3: A JSP document producing a Document that is not XHTML (2)

First, the handling of errors can be substan ally improved compared towhat is currently usual
in techniques like JSP by checking constraints imposed on the instan a on data within the tem-
plate engine. This allows for genera ng error messages of much greater value. For instance,
in the men oned case, the error message could state that the instan a on data to be used as
value for the name a ribute of the a element does not comply to the expected type NMTO-
KEN, and it could include the source of that instan a on data value. Current engines do not
perform a check at all, which may lead to an error in the user’s browser that can in the best
case state that the value is not of the expected type NMTOKEN. Unfortunately, this error would
in most cases not be recorded in the server environment, which could increase the life me of
that error considerably. An approach called Instan a on Data Valida on, which improves the
error handling, is described in Sec on 5.1 as well as in Sec on 6.3.
Second, if the template is fixed at instan a on me, i.e., can only be changed at build me

of the system employing it, the type system of the language using the template engine may be
used to assert the validity of the instan a on data. This approach called Template Interface
Genera on is described in Sec on 6.3.2. It relies on well-known XML binding approaches like
Java Architecture for XML Binding (JAXB) and XMλ, which have not been coupled with template
techniques before.

1.4. Goals

The goal of this thesis is to develop a safe template processing approach that is easy to use and
enables the user to be as safe as possible about the results produced by a par cular template.
More precisely, a list of five goals has been specified and is described in the following.
The first goal is to come up with a safe authoring approach. The approach should give a tem-

plate author as much confidence about the result of the instan a on of a par cular template
as early as possible.

13

1. Preface

There are assump ons thatmust bemade during the template authoring, as the validity of an
instan ated templatemay depend on instan a on data which is by defini on not available dur-
ing authoring. Therefore, the second goal is to design a safe instan a on process that preserves
the seman c informa on about the real cause of the invalidity of the instan ated template.
As alreadymen oned, template techniques are o en used in order to separate concerns, but

some of the exis ng approaches offer methods to overcome the separa on in order to seem-
ingly ease the use of the technique. For the approach to be developed, this is not acceptable.
Therefore, the third goal is to maintain the separa on of concerns in template processing, as
this separa on has proven to be a powerful concept to reduce the complexity of modern so -
ware architectures and to enable coopera on of different roles in the so ware development
process.
The fourth goal is broad applicability. The approach should not be restricted to a par cular

applica on domain like Web engineering, but should also be usable for code genera on. This
implies that the approach should not be restricted to a par cular XML dialect like XHTML.
Finally, the fi h goal is to maximize the u liza on of exis ng standards for the approach. This

has two major aspects: first, the techniques developed should either rely on exis ng standards
or extend them, and second, an implementa on of the core components should rely on avail-
able tools for these standards.
The first two goals address the problems introduced in Sec on 1.2, both goals together form

the base for safe template processing. The last three goals further restrict the possible ap-
proaches in a way that enables an implementa on and the prac cal use of the developed ap-
proach.

1.5. Contribu ons

First of all, an in-depth analysis of exis ng template approaches has been accomplished. This
has led to a number of insights about template techniques that are not explicitly stated in
today’s literature. A new defini on of the term template has been developed, which clearly
separates templates from related approaches (transforma on techniques, unparsers, aspect-
oriented programming). A number of classifica on criteria has been found that have been used
to evaluate exis ng approaches and to dis nguish valuable features from ques onable contri-
bu ons.
In order to assert wellformedness of the result documents, a new universal, syntax- and

seman cs-preserving template language called XTL has been developed. XTL abandons the
wide-spread use of a specific syntax for the markup of the template syntax and relies on the
XML namespace [29] concept instead, thereby preserving the syntax and the seman cs of the
language it is used to instan ate. XTL is a universal language in the sense that it allows any XML
dialect to be marked up as a template, it is not specific to a par cular XML dialect like XHTML.
In addi on to the guarantee on the wellformedness, the developed upfront verifica on ap-

proach allows guarantees about the compliance of a resul ng document with a given XML
Schema. This reduces the risk of undetected errors enormously and enables a new develop-
ment process for templates, especially in the field of Web applica on development.

14

1.5. Contribu ons

The Instan a onDataValida on has been developed to enable safe instan a on by simplify-
ing the detec on of the root causes for instan a on problems. Furthermore, even more guar-
antees about the instan a on of templates can be given if the template can only be changed
at the build me of a system, i.e., if it can be considered part of the source code of the project
using it. In this case, a deriva ve of the unparser approach called Template Interface Genera on
can be used to sta cally guarantee the correct types of the instan a on data.
The design criteria applied to XTL and the decisions made during its development are ex-

plained in detail. A seman cs of XTL has been specified that avoids typical ambigui es which
can be found in other template language specifica ons. This seman cs also enables a formal
proof of the correctness of the upfront verifica on approach. The ease of use of XTL is greatly
improved by the fact that it does not prescribe a par cular language used to describe the data to
be inserted into a template, instead, any exis ng language like the XML Path Language (XPath)
or the SPARQL Protocol and RDF Query Language (SPARQL) as well as simple names may be
used.
No new approach should fall back behind the work of Terrence Parr [143] and the principles

for SoC stated there. Among other contribu ons, Parr classifies the viola ons against SoC rules
and introduces the entanglement index of a template technique as the number of rules violated
by it. It turns out that improvements over Parr’s achievements are possible. In contradic on to
Parr’s statement that each engine has at least an entanglement index of one, it is also possible
to get an entanglement index of zero using a new technique called par al templa za on.
A prototype for an XTL engine has been developed, supported by the EU project Services for

Nomadic Workers (SNOW) and the BMBF project Enabling Model Transforma on-Based Cost
Efficient Adap ve Mul modal User Interfaces (EMODE). These projects have also been used to
validate the prac cal usability of XTL. This valida on clearly indicated that the reason for the
ease of use of template languages is the fact that templates closely resemble the documents
they are intended to be instan ated to. This resemblance, which also influenced the defini on
of the term template given in Sec on 2.1, is called the prototypical nature of templates. The ex-
tensive absence of a prototypical nature also hinders the wide-spread applica on of XSL-T even
though the XSL-T specifica on [107] knows a prototypical mode called Simplified Stylesheet
Module (SSM).
Due to the fact that the prototypical nature of template languages restricts their genera ve

power (e.g., a purely prototypical XML template language is restricted to produce documents
with a depth being a constantmul ple of the depth of the template), the introduc onof amacro
feature became inevitable. The power regained by this feature is lowering the ease of use of
the XTL but this is compensated by the shallow learning curve that results from the prototypical
approach: users can start purely prototypical and start learning the macro feature when they
need it, switching to a transforma onal style as it is used in XSL-T.
A document marked up using the XTL can also be used to validate other XML documents.

In this case, XTL is interpreted as a schema language in the sense also used by XML Schema
Defini on (XSD) [59; 180; 26]. Again, the prototypical nature of XTL eases the crea onof schema
documents. The rela onship between templates and schemas also shows a close connec on
between macros and schema types.
The major contribu ons of this thesis are the design of the universal, syntax- and seman cs-

preserving slot markup language XTL, the safe template processing technique enabled by the

15

1. Preface

upfront verifica on approach and the techniques for the safe instan a on, namely instan a on
data valida on and template interface genera on, and the unifica on of document crea on and
valida on that could be achived using XTL.

1.6. Related Work

Even for the seemingly simple problem of construc ng documents from mul ple data sources,
there is a variety of approaches. The most important and modern approaches will be described
in short below.
Template engines are o en used in Web engineering and for code genera on. JSP [176] is

the most-widely known representa ve in the Java technological space used in Web applica-
ons. One of the most advanced and scien fically backed-up template engines used for code

genera on as well as Web engineering is definitely ST [143].
An alterna ve approach is the use of a transforma on engine. This approach is in wide use

especially within the area of Web Content Management Systems (CMS). The difference to the
template technique is rather subtle, but can be summarized best by describing the transfor-
ma on approach as a more construc ve approach: it composes the data sources by a special-
ized transforma on, which has one of the data sources embedded, as opposed to the template
approach, where the composi on instruc ons can be considered as embedded into one data
source. In the XML technological space, the most popular transforma on language is XSL-T,
which has been implemented using different languages.
The use of an unparser is a further op on in use for the composi on of data sources in Web

applica ons. The technique is based on a specific compila on of one of the two data sources
into the language that is also used for the composi on program a erwards. As an example,
if one wants to compose XML documents using Java, a number of tools exist that allow the
crea on of XML documents using a Java API. The SoC principle is somehow so ened here, but
could be restrengthened using standard design pa erns [74]. Popular unparsers for XML files
in Java include XMLBeans [8] and JAXB [105].
Aspect-oriented Programming (AOP) is a paradigm used to separate concerns within so ware

engineering ar facts into a so-called core and one ormore aspects. A component called aspect-
weaver is used to compose the core and the aspects. These aspects can be seen as different data
sources that need to be combined, which makes this approach related to template techniques,
especially in the area of code genera on. Awide-spread implementa on of the Aspect-oriented
Programming (AOP) approach is AspectJ.

1.7. Typographic Conven ons

All code lis ngs shown have been shortened to improve readability even at the expense of syn-
tac c incorrectness. For example, in the XML lis ngs, the prolog, the document type declara on
as well as obvious namespace declara ons have been omi ed, even if this could cause some
XML processing applica ons to emit error messages or warnings. The same is true for the pack-
age statement in Java lis ngs.

16

1.8. Outline

In order to keep the text short and readable, fixed XML prefixes have been used throughout
the document to refer to certain XML namespace. An overview of these prefixes is shown in
Table 1.1.

Prefix
XML Dialect
Namespace URI

cxsd Constraint XSD CXSD (see Sec on 5.1.2)
http://research.sap.com/cxsd/1.0

idc Instan a on Data Constraint Language IDC (see Sec on 5.1.3)
http://research.sap.com/xtl/idc/1.0

s Namespace used for Result Spli ng (see Sec on 6.2.3)
http://research.sap.com/xtl/splitting

xhtml
or none

XHTML™1.1 [4]
http://www.w3.org/1999/xhtml

xsd XML Schema [59; 180; 26]
http://www.w3.org/2001/XMLSchema

xsl XSL Transforma ons (XSL-T) [36]
http://www.w3.org/1999/XSL/Transform

xtl XTL (see Chapter 4)
http://research.sap.com/xtl/1.0

Table 1.1.: XML Namespaces and Prefixes

In the following, no assump ons are made about the encoding of XML documents, which
can be declared by the author of the document. As the defini on of strings depends on the
set of characters available to express them, the symbol S is used to denote the set of all strings
that can be composed from the available characters, independently of the concrete encoding
chosen.
A typewriter font has been used for in-line code snippets like ContentHandler, Uniform

Resource Iden fiers (URI) like http://www.w3.org/2000/xmlns/ and file names like
XTL.xsd.
In the index, the numbers of pages containing defini ons are printed in bold.

1.8. Outline

Chapter 2 gives a defini on of the term template followed by the discussion of the two main
applica on areas of templates and alterna ve approaches. Classifica on criteria for template
techniques are given. Finally, some ways to emulate complex features with simpler ones are
shown.

17

1. Preface

The safe template processing of XML documents is described in Chapter 3. A er a mo va ng
example, the goals of the approach are discussed and requirements for the solu on are derived.
A solu on is proposed, and the building blocks of the solu on are discussed in detail.
The design of the generic slot markup language XTL is discussed in detail in Chapter 4. Its

instan a on seman cs and indica ons for the correctness of the upfront verifica on approach
are included in this chapter. An alterna ve use case for a generic slot markup language, namely
the valida on of documents, is discussed.
Chapter 5 shows the support which the proposed solu on offers to a template author. It

explains how the template technique is adapted to a par cular usage scenario and how the up-
front verifica on approach helps the template author detect mistakes in templates earlier. The
chapter gives a proof of the correctness of the safe authoring approach. A further improvement,
a technique named par al templa za on is sketched.
Chapter 6 shows how templates are instan ated in an efficient, flexible and safe way. Here,

efficiency refers to the reasonable consump on of memory and a fast execu on. Flexibility
refers to the implementa on of design decisions that enable the wide-spread use of the pro-
posed approach. Finally, safetymeans the realiza on of the adequate error handling introduced
as a goal of the proposed approach. A further possible improvement, the Template Interface
Genera on, is introduced.
The work in this thesis has been validated as described in Chapter 7. This chapter discusses

the implementa on of the prototype, its applica on in the EU project SNOWand other projects,
and shows the results of performance measurements.
In the final Chapter 8, conclusions are drawn and open research ques ons resp. direc ons

are given.

18

2
Introduc on

Why is the customer just buying from you? And it is interes ng that we had a few
examples, for example, a company that is doing drilling machines, and if they sit back and
ask themselves, ”What does the customer really need? Does he need a drilling machine?”
Then the answer is no, he needs holes. The company is now switching to sell holes, which

is an en rely different business.
Henning Kagermann, 2006 [104]

This chapter aims at introducing the area of template techniques and at establishing the nec-
essary vocabulary and formal founda ons. Therefore, defini ons of terms specific to this thesis
are given in Sec on 2.1. Sec on 2.2 shows typical applica ons of template techniques. The
Sec ons 2.3 and 2.4 introduce compe ng and related approaches. Finally, Sec on 2.5 sets up
criteria for the classifica on of template techniques.

2.1. Defini ons

Defini ons of the term template and related terms are given in Sec on 2.1.1. Sec on 2.1.2
discusses the life cycles of both template techniques and templates. Sec on 2.1.3 introduces
the formaliza on of XML documents used within this thesis. Finally, Sec on 2.1.4 gives a short
introduc on into the area of XML schema languages and defines a formaliza on of XML Schema,
themost widespread XML schema language, which has been used thoroughly within this thesis.

19

2. Introduc on

2.1.1. Templates and Related Terms

Finding a defini on for the term template is a necessary precondi on for the separa on of tem-
plate techniques from other code genera on approaches. There are mul ple ways to approach
the term: from an etymological point of view as in [189], in a syntac c way as done in [143] or
in a pragma c sense as in [150] or [197].
In the following, a number of defini onswill be given (partly newly expressed and partly taken

from exis ng research) and discussed in order to find a defini on that captures the no on of
templates as concise as necessary within this thesis. Most importantly, the defini on that is the
result of the process is well-aligned with an intui ve point of view on templates and separates
the template approach from related approaches that are not commonly considered as template
techniques. First of all, the language that should be generated using a template technique is
defined in Defini on 2.1.

Defini on 2.1 ((Expected) Target Language). The expected target language or just target lan-
guage is the language T that is intended to be produced using a template technique. �
The Defini ons 2.2 and 2.3, explaining the term template syntac cally or pragma cally, are

the star ng point for the elabora on of concise defini ons.

Defini on 2.2 (Template, unsophis cated syntac c defini on). Every incomplete textual repre-
senta on of data is a template. �
Defini on 2.3 (Template, unsophis cated pragma c defini on). A template is a means to com-
pose concerns, i.e., a tool to reverse the separa on of concerns. �
Both unsophis cated defini ons cover a lot of approaches that would not be considered as

template techniques a er a more in-depth analysis. A good example is aspect-oriented pro-
gramming (AOP, [63]), where a core program is woven together with advices from so-called
aspects. For example, the unsophis cated Defini on 2.2 would consider the core program as
the template that is incomplete and the advice as the data to be filled into the core. However,
the very nature of templates is their explicit incompleteness, i.e., the loca ons where the data
is to be inserted in the templates are explicitly marked in the template itself. The following
defini on, which is an adapted version from [143], captures this aspect very well.

Defini on 2.4 (Template according to [143]). An unrestricted template, t◦, is an alterna ng list
of output literals, ti, and ac on expressions, ei:

t0e0 . . . tieiti+1 . . . tnen
where any ti may be the empty string and ei is unrestricted computa onally and syntac cally.
If there are no ei in t◦, then t◦ is just a single literal t0. �
The last sentence in Parr’s defini on seems to try to emphasize another important property

of templates: a document in the language that the template technique is supposed to pro-
duce is also considered a template. This aspect is called the prototypical nature of templates.
Unfortunately, it is not really enforced by the defini on, so documents using transforma onal
approaches like an XSL-T stylesheet would fall under this defini on. Parr explicitly states that
XSL-T is not captured by his defini on:

Interes ngly, by this defini on of template, XSL-T style sheets are not templates at
all because style sheets specify a set of XSL-T tree transforma ons whose emer-

20

2.1. Defini ons

gent behavior is an XML or XHTML document. XSL-T style sheets are programs like
servlets, albeit declara ve in nature rather than impera ve. [143]

This ra onale is based on the seman cs of XSL-T, but the defini on relies on syntac c prop-
er es that are well sa sfied by XSL-T. For this reason, the next defini on explicitly expresses
the prototypical nature of templates, which clearly rules out XSL-T by defining templates via the
term template language. To accomplish this, the final Defini on 2.5 roots the term template
on the term template language, shi ing the responsibility to capture the prototypical nature to
the defini on of the la er term.

Defini on 2.5 (Template, final). A template t◦ is a sentence from a template language T◦. �
Prerequisites for defining the term template language are furthermore the defini ons of slots

and slot markup languages.

Defini on 2.6 (Slot). A slot is an area of variability in a document. �
It is important to note that the term document has been used in Defini on 2.6 to avoid cyclic

references between this defini on and the defini ons using it. This way of defining slots has
the addi onal benefit of also capturing slots introduced in documents for other purposes, i.e.,
the defini on also matches the incompleteness in a form intended to be filled out by humans.
Based on Defini on 2.6, it is possible to give the following defini on for a slot markup language.

Defini on 2.7 (SlotMarkup Language). A slotmarkup languageS is a non-empty set of features
to denote slots within a document. �
This defini on explicitly states that the markup of slots appears within the document itself,

thereby excluding other methods for the designa on of slots like pointcut languages used in
AOP approaches [172]. This is also the mo va on for the term non-empty in the defini on: it
prevents AOP approaches frombeing captured by the following defini ons through just defining
S = ∅. Elements from the slot markup language are also called instruc ons in the following.
The loca ons of slots and the loca ons of slot markup language sentences in a template may

differ for several reasons. First, there may be impera ve constructs in the slot markup language
(like for loops) that mark their content as repeatable in an instan ated document (and thus
define slots), but are not necessarily placed exactly at the loca on of a slot. Second, there may
be slot markup in which the loca on of the slot markup is by design different from the loca on
where the instan a on data should be inserted.
Given the defini on of slot markup languages, the following more elaborated defini on for

the term template language can be given.

Defini on 2.8 (Template Language, elaborated). A template language is the language produced
from a target language and a slot markup language such that

1. each sentence from the target language is in the template language and
2. each sequence of literals from the target language interspersed with sentences from the

slot markup language is in the template language. �
Unfortunately, the former defini on captures only the syntac cal aspect of the prototypical

nature. In order to be concise, it is necessary to include the seman cs of the prototypical nature:
if a template that is actually a sentence from the target language is instan ated, it remains
unchanged. In order to fix this problemof the defini on, it is necessary to give a defini on of the

21

2. Introduc on

term instan a on as well. This defini on also includes the defini on of the term instan a on
data.

Defini on 2.9 (Instan a on and Instan a onData). Instan a on is the applica on of a func on
instantiate with dom(instantiate) = D×T◦ that transforms a template t◦ into instantiate(d, t◦)
by replacing and thereby removing its slots. The data d ∈ D consumed during the slot replace-
ment is called instan a on data. �
Obviously, the range of the func on instantiate introduced above has remained unspecified.

This range is the so-called actual target language defined below:

Defini on 2.10 (Actual Target Language). The actual target language is the range of the instan-
a on func on instantiate, i.e., ran(instantiate). �
The rela on between actual and expected target language is discussed thoroughly in Chap-

ter 3. Given the defini ons of the expected target language and the instan a on func on, the
seman cs of the prototypical nature of templates can be captured by the following formal def-
ini on of the term template language:

Defini on 2.11 (Template Language, final). LetTT be the set of terminal symbols from the target
language T, letS be a non-empty slot markup language and let instantiate be an instan a on
func on. Then the template language T◦ is the smallest language constructed from the target
language and the slot markup languageS such that the following condi ons are sa sfied:
∀t ∈ T : t ∈ T◦ ∧ instantiate(d, t) = t for arbitrary instan a on data d
(target language documents are templates and instan ate into itself)

and
∀n ∈ N, li ∈ TT ∪ {ϵ}, bi ∈ S ∪ {ϵ}, 0 ≤ i ≤ n : l0b0 . . . libilj+1 . . . bnln ∈ T◦

(templates are constructed from target language terminal symbols and slot markup lan-
guage sentences) �
This defini on is s ll capturing a lot of approaches that include features thatwould not be con-

sidered good ideas (neither in an academic nor in a prac cal sense), however such approaches
exist and are template techniques. In Figure 2.1, a comparison of the defini ons in terms of
captured popular approaches is shown.

(1) Defini ons 2.2 and 2.3 (2) Defini on 2.4
(3) Defini on 2.8 (4) Defini on 2.11

Figure 2.1.: Comparison of the Scopes of the Defini ons of the Term Template

An important no on is also the term template engine as defined below:

Defini on 2.12 (Template Engine). The component¹ responsible for the instan a on of tem-
plates is called template engine. �
¹The term component is used here and in the following in the sense defined in [51].

22

2.1. Defini ons

The rela ons between the terms just defined are illustrated in Figure 2.2. Basically, the tran-
si on from a document in the target language into a template is done by the introduc on of
elements from the slot markup language, whereas the instan a on transforms templates into
documents in the actual target language.

Figure 2.2.: Rela ons between Template and Target Language

Most template engines do not fully use the power enabled by the Defini ons 2.11, they in-
stead restrict the template language further, most notably by constraints on the nes ng of slot
markup language instruc ons.
A slot markup language typically comprises a second language that is used to refer to in-

stan a on data, defined below. There are several ways to classify these so-called query lan-
guages—one classifica on is given in Sec on 2.5.5.

Defini on 2.13 (Query Language). The part of the slotmarkup language used to iden fy or fetch
instan a on data is called query language. �

<html xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<!-- ... -->
<body>

<xsl:for-each select=”purchaseOrder/items/item”>
<p>

<xsl:value-of select=”@partNum”/>
</p>

</xsl:for-each>
</body>

</html>

Target language Slot markup language Query language

Lis ng 2.1: Origins of Fragments in a Template

As a template language is obviously a composi on of the target languagewith the slotmarkup
language, which itself incorporates instruc ons from the query language, it is possible to show
the origin of fragments in a template as it is done in Lis ng 2.1. This lis ng shows a template

23

2. Introduc on

producing Hypertext Markup Language (HTML) as the target language, using XSL-T as the slot
markup language, which itself includes XPath as query language.
Please note that the lis ng shown is not an XSL-T stylesheet (as this would, by defini on, not

be a template), but rather an XSL-T simplified stylesheet module (SSM). These modules offer
a prototypical use of the XSL-T language by allowing to embed a subset of XSL-T into target
language documents.

2.1.2. Life Cycle Phases

Tounderstand the following discussions and the overall structure of the thesis, both the life cycle
of a template technique and the life cycle of a template as a document need to be defined and
divided into phases. As the life cycle of a template is preceded by the life cycle of the underlying
template technique, both life cycles are introduced together.
In Figure 2.3, the combined life cycles of a template technique and adhering templates is

shown. For the scope of this thesis, there is no need to introduce end-of-life phases for template
techniques or templates, so the life cycle ends with the use of the template technique or the
valida on of an instan ated template, respec vely.

Figure 2.3.: Template Technique and Template Life Cycle

The first phase in the life cycle of a template technique is typically the analysis phase in which
the goals and requirements induced by the scenario in which the technique should be used are
captured. For the technique developed within this thesis, the goals are discussed in Sec on 3.1
and the requirements are introduced in Sec on 3.2.
A er the analysis phase, the design phase typically proposes a solu on fulfilling the goals and

requirements found. This phase typically involves proposing features of the template engine
that directly influence the design of the slot markup language. In this thesis, an architecture
of a solu on is sketched in Sec on 3.3, whereas the major sub-ac vity, the design of the slot
markup language is described in detail in Chapter 4.
Obviously, the implementa on phase consists of the actual development ac vi es needed

to create the so ware that implements the design created by the preceding phase. In this
thesis, issues regarding the implementa on phase have been split up and are contained in the
Chapters 5 and 6.
For template techniques that are not fixed to support a single target language, an adapta on

phase may be necessary which occurs between the life cycles of the technique and the tem-
plates. The proposed solu on is an example for a technique that involves such an adapta on
step—it is described in detail in Sec on 5.1.
The first phase in the life cycle of a template is the authoring phase, also referred to as author-

ing me. The person playing the role of the template author creates the template using some

24

2.1. Defini ons

tool, which may be a simple text editor or a sophis cated development environment with ad-
vanced features like syntax highligh ng or text comple on. The template valida on that is part
of the proposed solu on and supports the author in crea ng correct templates is described in
Sec on 5.2.
A er the template has been authored, it is typically used within the instan a on phase to

create target language documents. The solu on elements addressing this phase are described
in the Sec ons 6.1, 6.2 and 6.3.
Finally, some engines include a post-instan a on valida on phase that checks whether the

instan ated template conforms to the target language. The proposed solu on guarantees the
conformance of the instan ated template with the target language in other ways, so no part of
this thesis is corresponding to this phase.

2.1.3. The Extensible Markup Language XML

XML is a general purposemarkup language that evolved from SGML and has been published as a
WorldWideWeb Consor um (W3C) recommenda on 1998 [28]. The term extensible highlights
the fact that XML allows the defini on of arbitrary new languages, which are typically called
XML dialects. A large number of XML dialects exist today, well-known XML dialects include,
for example, XHTML [4], the Wireless Markup Language (WML) [90] and the Scalable Vector
Graphics (SVG) language [61].
Themen oned specifica on [28] of XML defines only the concrete syntax of XML documents,

whereas its abstract syntax, the so-called XML informa on set, is defined in [42]. A very simple
XML document is shown in Lis ng 2.2.

<?xml version=”1.0” encoding=”UTF-8”?>
<address country=”US”>

<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>

</address>
Lis ng 2.2: A simple XML file

In the following, a formaliza on for XML documents is given. Some low-level restric ons that
are, for example, imposed by W3C specifica ons (e.g., the restric on that a namespace URI
must not be the empty string in [29]) or by IETF specifica on (e.g., the syntac cal structure of
a URI defined in [23]) are omi ed from the formaliza on for simplicity reasons. Thus, in the
following, NCNames (see [29]) and URIs are modeled as strings.
Furthermore, the formaliza on does not consider the namespace prefixes, as they are only

a syntac c simplifica on for the namespace binding of names. As a consequence, the term
qualified name is used to denote what is called an expanded name in [29], i.e., as a tuple of a
namespace URI and a local name.

Defini on 2.14. Assume a setE of qualified names for elements, a setA of qualified names for
a ributes and a symbol⊤ indica ng text. An XML document is defined to beD = (V, v•, label,
children, attr, value) where:

25

2. Introduc on

• V is a finite set of nodes.
• v• is a dis nguished node in V called the root node ofD.
• label : V 7→ E ∪ ⊤ is a total func on that maps each node to either the qualified name
of an element or the symbol⊤.

• children : V 7→ V ∗ is a total func on that maps a node v ∈ V to a sequence of nodes
v0, . . . , vn(v) such that
1. no node occurs twice in the sequence:

∀0 ≤ i < j ≤ n(v) : vi ̸= vj ,
2. every node besides v• has exactly one parent, whereas v• has none:

∀v ∈ V : card{v′| children(v′) = v0, . . . , v, . . . , vn(v′)} = [v = v•] and
3. no cycles exist:

∀v ∈ V : vp = parent(v) ⇒ v /∈ parent∗(vp)
where parent : V − {v•} 7→ V is the total func on defined as follows
parent(v) = v′ ⇔ children(v′) = v0, . . . , vi, v, vj , . . . , vn(v′).

• attr : V ×A 7→ String is a par al func on that is only defined for v ∈ V with label(v) ∈
E,

• value : V 7→ String is a par al func on that is only defined for v ∈ V with label(v) = ⊤.
�

The helper func on hasAttr : V × A 7→ boolean is true for a node v and a qualified name a
of an a ribute if and only if attr(v, a) is defined.
Given the XML document in Lis ng 2.2, Defini on 2.14 yields a document D = (V, v•,label,

children, attr, value) with V = {v•, v1, v2, v3, v4, v11, v21, v31, v41} and the func ons label,
children, attr and value as shown in Figure 2.4.

label(v•) = ”address”

label(v1) = ”name”

label(v2) = ”city”

label(v3) = ”street”

label(v4) = ”state”

label(v11) = . . . = label(v41) = ⊤
attr(v•,”country”) = ”US”

value(v11) = ”Alice Smith”

value(v21) = ”123 Maple Street”

value(v31) = ”Mill Valley”

value(v41) = ”CA”

children(v•) = v1, v2, v3, v4

children(v1) = v11

children(v2) = v21

children(v3) = v31

children(v4) = v41

Figure 2.4.: Formaliza on of the XML document in Lis ng 2.2

The handling of whitespace (i.e., spaces, tabs and blank lines, see the defini on of the non-
terminal S in [28]) in XML documents is a rather complicated issue. In the following, the so-

26

2.1. Defini ons

called ignorable whitespace is completely omi ed from the formal representa on of XML in-
stances. This greatly eases the readability of statements made against these formal representa-
ons. It should be clear that implementa ons of the techniques described using these formal-

iza ons must reconsider the applicability of this restric on, as such ignorable whitespace can
be meaningful, e.g., if the indenta on of the document must be considered.

2.1.4. XML Schema Languages

As XML itself can be used to create markup languages called XML dialects, there is a need to
capture vocabularies and rules of XML dialects. In the following, the term schema is used for any
documentwhich describes the permi ed names for elements and a ributes together with their
permissible structure and values in an (in most cases, infinite) set of XML documents. Typically,
a schema defines only the syntac c structure (and some sta c seman cs) on top of the common
XML grammar (as defined using EBNF in [28]).
Languages used to write schemas are called meta languages, or (more common in the XML

community) schema languages. As the number of schema languages has grown to a consider-
able amount [98], the classifica on of schema languages is the subject of several publica ons
[130; 116; 131].
One of themost important classifica on criteria is that between grammar- and pa ern-based

schema languages [116]. Grammar-based schema languages rely on tree grammars for the
specifica on of the document structure, whereas pa ern-based schema languages specify a
number of pa erns that are interpreted as proper es that must be fulfilled by complying docu-
ments.
Grammar-based schema languages can be further divided by the formalism underlying the

tree grammar. [131] classifies these formalisms to be either regular, restrained-compe on,
single-type, or local tree grammars. The expressive power of these languages is shown as a
Venn diagram in Figure 2.5.

(1) Regular tree grammars (2) Restrained-compe on tree grammars
(3) Single-type tree grammars (4) Local tree grammars

Figure 2.5.: Classifica on of Schema Languages [simplified, based on 131]

Typical schema languages are neither purely grammar- nor pa ern-based. As an example,
XML Schema [59; 180; 26], one of the most widely used schema languages defined by theW3C,
is based on a single type grammar and adds pa ern-based features for the specifica on of sta c
seman cs (so called iden ty constraints). Please note that in this thesis, the lower-case term
schema refers to a schema in some, possibly unspecified, schema language, whereas the upper-
case term Schema always refers to a schema specified using the XML Schema language.

27

2. Introduc on

Other important schema languages are Document Type Defini on (DTD), a schema language
defined along with XML in [28], the Regular Language for XML Next Genera on (RelaxNG), a
regular tree grammar-based language [39] and Schematron, a pa ern-based language [99].
A barely considered property of schema languages is their ability to express so-called at-

tribute/element constraints [132]. An example for an a ribute/element constraint is the state-
ment

”
element a must carry an a ribute named b or have a child element named c“. Con-

straints of this kind play a role in the defini on of the template language XTL. Unfortunately,
a ribute/element constraints can only be expressed by RelaxNG and Schematron, but not by
XML Schema.
A number of formaliza ons of XML Schema can be found in today’s XML literature. The intent

and completeness of these formaliza ons vary widely. The most general formaliza on of XML
Schema as a so-called XGrammar can be found in [123]. The XGrammar concept is intended
to formally capture most of the concepts in DTDs, XML Schema and RelaxNG. Other formal-
iza ons are restricted to a par cular aspect of schema languages, like content models [168].
The Model Schema Language (MSL) is a formaliza on solely intended to specify the seman cs
of XML Schema [30; 31]. As there is no need to use a feature-complete specifica on in the
following, a modifica on of the XGrammar concept is used.
In order to define the term schema, it is useful to give a formal defini on of a simple type

first. Simple types are types that can be used to validate character data, e.g., a ribute values or
text nodes [180]. The most prominent defini on of a set of simple types is the library defined
as part of XML Schema [26]. XML Schema also allows the defini on of custom simple types. For
the following, it is unnecessary to define how simple types are defined and how valida on is
performed. Therefore, Defini on 2.15 is a very simplis c defini on of simple types.

Defini on 2.15 (Simple Types). A simple type σ is a possibly infinite subset of the set of strings,
i.e., σ ⊆ S. A string s is said to be conforming to the simple type σ, if and only if s ∈ σ. �
In the following, a simple type will o en be denoted by a qualified name q. Instead of wri ng

s ∈ q, a predicate Valid(s, q) is used, which is true if and only if s ∈ q. Furthermore, string is
used to denote the XML Schema’s string type xsd:string as defined by [26, Sec on 3.2.1].
Since xsd:string is syntac cally unrestricted, Valid(s,xsd:string) is true for all s ∈ S.
A schema can be defined as in Defini on 2.16. While this defini on closely resembles the

defini on of an XGrammar [123], it differs from the la er in various ways. Most notable, the
dis nc on between hedge and tree types has been removed. This is possible because in XML
Schema, the appearance of hedge types—in XML Schema called model groups—is purely syn-
tac c, because model groups are not allowed to be circular [180, Sec on 3.8.6]). Second, the
dis nc on between element and a ribute produc on rules has been omi ed, because within
the original defini on of an XGrammar, the seman cs of a deriva on from the grammar was
insufficiently specified. Finally, the terminal symbols have been divided into qualified names
for a ribute and elements.
It is necessary to point out that this defini on of a schema is not exactly capturing the XML

Schema language. On one hand, a schema, as defined in Defini on 2.16, must fulfill further
constraints in order to represent a valid XML Schema, e.g., its content models must comply
to the Unique Par cle A ribu on (UPA) rule [180, Sec on 3.8.6]. The UPA rule demands the
unambiguousness of the content models with respect to a parser without lookahead, making

28

2.1. Defini ons

XML Schema a restrained-compe on tree grammar in the sense of [131]. On the other hand,
some XML Schema documents can not be represented by a schema as defined below, e.g., if
the XML Schema uses iden ty-constraint defini ons [180, Sec on 3.11].

Defini on 2.16 (Schema). A schema is the tuple S = (Σ, N,E,A,N•, R) where
• Σ is a set of simple data types,
• N is a set of non-terminal symbols,
• E is a set of qualified names for elements,
• A is a set of qualified names for a ributes,
• N• ⊆ N is the set of start symbols,
• R is a set of produc on rules of the form X → e(ad∗, cm) where X ∈ N , e ∈ E,
ad∗ ⊆ AD(Σ, A) is a set of a ribute declara ons as defined in Defini on 2.17 and cm ∈
CM(Σ, N,E) is a content model as defined in Defini on 2.18.

The set of XML documents valid with respect to the schema S is denoted by L(S). �
A ribute declara ons [180, Sec on 3.2] are defined in Defini on 2.17. This defini on focuses

on the essen als of a ribute declara ons: a name, a type, whether the a ribute is required or
op onal and whether it has been assigned a fixed value. All other aspects of a ribute declara-
ons have been omi ed.

Defini on 2.17 (Set of a ribute declara ons). The set of a ribute declara ons AD(Σ, A) is de-
fined for the set of qualified names for a ributes A and the set of simple data types Σ as the
set of all tupels (a, σ, i, f) consis ng of:

• a ∈ A is a qualified name of an a ribute,
• σ ∈ Σ is a simple type to which the a ribute value must comply,
• i ∈ {0, 1} is the required cardinality of the a ribute, and,
• f ∈ {true, false} defines whether a fixed value is assigned to the a ribute. �

A shorthand nota on is defined, which allows to extract all a ribute declara ons that declare
required a ributes: req(A) = {(a, σ, i, f) ∈ A|i = 1}. Analogously, all a ribute declara ons
that have been assigned a fixed value are denoted by fixed(A) = {(a, σ, i, f) ∈ A|f}.
Content models are defined in Defini on 2.18. Again, this defini on is not completely con-

gruent with the XML Schema specifica on. On the one hand, it is missing the xsd:allmodel
group [180, Sec on 3.7]. On the other hand, as this defini on basically allows regular expres-
sions as content models, it also allows content models that are not valid in XML Schema, but
would be allowed in regular schema languages like RelaxNG. An examplewould be contentmod-
els that define sequences of simple types mixed with elements, which is not specifiable in XML
Schema. The defini on s ll fulfills its goal, i.e., it allows XML Schema instances to be captured
formally.

Defini on 2.18 (Set of content models). The set of content models CM(Σ, N,E) over the set of
simple typesΣ, the set of non-terminal symbolsN and the set of qualified names for elements
E is defined recursively as follows:

• The empty sequence ϵ is a content model: ϵ ∈ CM.
• All simple types are content models: ∀σ ∈ Σ : σ ∈ CM.
• All non-terminal symbols are content models: ∀n ∈ N : n ∈ CM.
• All element names are content models: ∀e ∈ E : e ∈ CM.

29

2. Introduc on

• For two contentmodels cm1 ∈ CMand cm2 ∈ CM, the results of the following opera ons
are also content models, i.e.,

– cm1, cm2 ∈ CM, meaning a sequence consis ng of the two content models,
– cm1 | cm2 ∈ CM, meaning a choice between the two content models, and,
– cm1{i, j} ∈ CM, meaning a repe on of the content model cm1, where i ∈ N,
j ∈ N+ ∪ {∗}, and j ̸= ∗ ⇒ i ≤ j, with the special symbol ∗ meaning unrestricted
repe on. �

As shorthand nota ons, cm ? is used to denote cm{0, 1} and cm∗ to denote cm{0, ∗}.

2.2. Applica ons

Templates are ubiquitous. For reasons of simplicity, the twomost prominent applica on classes
are described in more detail below: the use within dynamic Web applica ons and for the gen-
era on of code. Other examples are easy to find on almost every desktop computer, e.g., the
inser on of fields in OpenOffice documents [141]. Templates are also frequently used as a start-
ing point for the crea on of sta c Web pages, e.g., in tools like JAlbum [92].

2.2.1. Web Applica ons

Web applica ons are one of the major applica on areas where template techniques are used.
With the advent of dynamic Web applica ons it has become more and more obvious that the
separa on of layout and content is vital for the maintenance of large and complex Web sys-
tems. This soon has lead to the crea on of languages providing features that allow the easy
composi on of documents for the Web (e.g., HTML or later XHTML pages). An early example
for these languages is Perl [188], which facilitates the crea on of Web pages using its variable
interpola on feature.
The increasing number ofWeb sites containing user-generated content (paraphrasedwith the

termWeb 2.0) also creates new challenges for template techniques. One of themost important
features today is the isola on of user-generated content from the surrounding page skeleton to
sa sfy minimum security requirements that are requested by users and operators of aWeb site
[101].
Template engines that can typically be found in today’s Web applica ons include the Java-

based engines JSP [176], Velocity [176], ST [173; 143], the PHP-based engine Smarty [165], the
Python-based engine Document Template Markup Language (DTML) [114] and the Ruby-based
engine Embedded Ruby (ERB) [50].

2.2.2. Code Genera on

Code genera on as a discipline started with the early work on compilers [79]. In the following,
code genera on should be understood as limited to produce textual representa ons of code.
Template techniques have also been introduced into compiler construc on—for an example see
[171].

30

2.3. Alterna ves to Using Templates

A recent event that fostered the genera on of code was the advent of the Model Driven
Architecture (MDA) [128], which led to an ever increasing number of models for all kinds of
domains. A defini on for the term model in the sense of the MDA can be found in [24]:

A model is a simplifica on of a system built with an intended goal in mind[...]. The
model should be able to answer ques ons in place of the actual system.

A significant por on of these models is s ll used mainly for code genera on [118]. MDA dis-
nguishes between model-to-model transforma ons (M2M) and model-to-code transforma-
ons (M2C). The former typically transform higher level abstrac ons into each other whereas

the la er typically transform from higher level abstrac ons into textual models, esp. into code.
Obviously, the M2C transforma ons are a natural domain of template techniques.
M2M transforma ons are a typical domain of transforma on languages (see Sec on 2.3.1),

but in some cases, template techniques are used for M2M transforma ons. For example, the
M2M transforma on facility in the UML modeling tool Enterprise Architect is based on a tem-
plate approach: templates are instan ated to create a textual specifica on of the target model
which is a erwards parsed into some object representa on of the model [166].
As already pointed out in [43], nearly all of the available MDA tools support some kind of

template-based code genera on. Template techniques that are in wide-spread use for the gen-
era on of source code are the Java-based engines Java Emi er Templates (JET) [148], XPAND
[56] and ST [173; 143] as well as the Python-based Cheetah [158] engine.

2.3. Alterna ves to Using Templates

There are several alterna ves to using templates as a means for composing documents from
mul ple data sources that have been divided to achieve a separa on of concerns. In the Sec-
ons 2.3.1, 2.3.2 and 2.3.3, the most widespread alterna ves, i.e., transforma on techniques,

aspect-oriented approaches, and unparsers, are discussed.

2.3.1. Transforma ons

Transforma on techniques are an established way to adapt data from one metamodel to an-
other. This is supported by a domain-specific language used to specify a transforma on pro-
gram. Many languages that adhere to different programming paradigms have been used as a
basis for transforma on languages, e.g., SML [20], Ruby [68] and Prolog [80]. Transforma on
techniques are very popular in the Web engineering area, whereas examples for code genera-
on using transforma on technologies can hardly be found.
Themost prominent transforma on language used in the area ofWeb applica ons (especially

in Web CMSs) is XSL-T. XSL-T is capable of transforming XML documents between XML dialects,
but also into text and HTML documents. A lot of research has been performed on XSL-T. It
turned out that XSL-T is in fact a func onal programming language [135]. XSL-T has been crit-
icized for its verbosity [68] and for its ques onable usability [162]. With Xalan [10] and Saxon
[106], two mature implementa ons are available.

31

2. Introduc on

XSL-T has some mes been perceived as a template technique. As has been argued in Sec-
on 2.1, this is not true, as XSL-T stylesheets are lacking the prototypical nature that is a vital

property of template approaches. However, it is important to note that the XSL-T specifica on
defines an alterna ve mode for the use of XSL-T in so-called SSMs, which are true templates
with embedded XSL-T instruc ons.
The difference between the transforma onal and the template approach in the implemen-

ta on of the view role in the MVC pa ern is discussed in detail in [67], which introduces the
approaches as pa erns en tled transform view and template view, respec vely.
An example for code genera on using a transforma on technique can be found in [25], where

XSL-T has been used to generate Java from the XMLMetadata Interchange (XMI) representa on
generated by a Meta-Object Facility (MOF)–based modeling tool.

2.3.2. Aspect-Oriented Approaches

The idea of aspect-orienta on, which resulted in its own programming paradigm AOP, came
up in the late 1990ies [108]. The primary idea of AOP is to separate the code into a core and
several aspects. The core contains the main func onal part of the program to be built, whereas
the aspects implement several other func onal or non-func onal enhancements. Contrary to
the transforma on approaches above, aspect-oriented approaches are more o en u lized for
code genera on than in Web engineering.
Technically, the aspects are implemented as advices and introduced into the core at sets called

pointcuts of core code loca ons called join points. The introduc on process is called weaving.
There are several varia ons of this principle, that differ in the me the weaving is done, in how
join points and pointcuts are selected, and so on. The no on of pointcuts allows the modular-
iza on of cross-cu ng concerns, keeping together code fragments that are inherently related
and would otherwise be tangled with the code at several loca ons.
Aspect-oriented code genera on is very similar to template-based composi on approaches.

The core code can be seen as a template without explicit slots, and the advices can be seen as
instan a on data. The major difference is that the linking between the two inputs is reversed:
the advices are typically combinedwith the pointcuts, i.e., the instan a on data is bundledwith
the informa on where it should be inserted. This property of the core—not to contain explicit
marks for the embedding of aspect code—is called obliviousness.
One could consider aspect-orienta on as a template technique by aligning the linking direc-
ons found in aspect orienta on (i.e., from aspect to core) and template approaches (i.e., from

template to instan a on data), i.e., one could compare the aspect with the template (and the
core with the instan a on data). This point of view violates Defini on 2.11, as the core has the
prototypical nature required from templates in the defini on.
A problem with obliviousness is implemen ng repe on and condi onal inclusion of parts

of the core code. It is very easy to implement a loop with parametrized content in a template
approach, whereas with aspect-orienta on, this is typically not possible. Workarounds include
the op ons to remove parts from the core code condi onally or to add to lists of gramma cal
elements.
An advantage of aspect-orienta on over template techniques is the handling of crosscu ng

concerns. An advice can be applied implicitly against many code loca ons, e.g., using a regular

32

2.3. Alterna ves to Using Templates

expression matching method names, whereas in template approaches, the embedding of the
same instan a on data item at mul ple places must be declared explicitly in the template.

Aspect-orienta on has also been used within the area of Web engineering. An example use
case is the localiza on of Web documents. Typically, such Web documents are prepared by na-
ve speakers and then translated into different languages by others. This transla on does not

change the structure of the document, it rather replaces content (i.e., text elements or a ribute
values in an XHTML document), therefore there is no need for the condi onal or repeated in-
clusion of content. Using an aspect-oriented technique, the transla ons could be bundled with
pointcuts declaring where to put them in the original documents to replace the content. This
approach has the advantage that no templates must be created and maintained in order to
translate the Web documents [47; 149].

Another example for the use of aspect-oriented approaches for the manipula on of XML
documents are AspectXML [127] and the various approaches for XML update languages like
XUpdate [115]. Both example languages use XPath to express pointcuts.

2.3.3. Unparsers

Unparsers are another common op on for code genera on and Web applica ons. While a
parser builds an object structure from a sentence of some grammar, an unparser reverses the
process: it transforms some object structure into a sentence. The object structure can be a
Concrete Syntax Tree (CST) or an Abstract Syntax Tree (AST). Other names for unparsers are
serializers (e.g., used in Xerces [11]), API-based generators [169] or intra-level transforma ons
[113, Figure 4.1c on page 71]. In the XML technological space, unparsers are typically called
XML binding tools.

In the XML community, unparsers are also called XML binding frameworks, with JAXB [155;
105] and XMLBeans [8] being their most prominent representa ves. XML binding frameworks
typicallywork in two steps. First, there is a compila on step at build mewhich compiles an XML
Schema into a corresponding object model in a target language, leveraging the type system of
the target language as much as possible to reflect the constraints of the schema. Second, there
aremarshalling resp. unmarshalling steps at run me, which translate between XML documents
and the created target language object model (or vice versa). Please note that marshalling
corresponds to unparsing whereas unmarshalling corresponds to parsing. For more details and
an overview and comparison of exis ng approaches see [111].

Comparable binding frameworks exist for other combina on of languages, e.g., Jenerator for
the genera on of Java code from Java programs [187] and the RAP Widget Toolkit (RWT) for
HTML genera on from Java. The approach used by XMλ [125] is very similar, except for one
difference: its type system has been designed to match that of XML.

The object model needed by an unparser to generate a document is o en constructed using
the visitor pa ern [74] from another, exis ng object model. This is different from the template
approach, where the template engines (e.g., XPAND [56]) o en supply powerful mechanisms
to visit such a model.

33

2. Introduc on

2.3.4. Comparison of Templates with Alterna ve Technologies

Figure 2.6 contains a comparison of four technologies that can be used to achieve a Separa on
of Concerns. One of the technologies, JSP, represents a template technique, the other ones,
XSL-T, AspectJ, and JAXB, represent the alterna ve technologies introduced above, namely
transforma ons, aspects-oriented approaches and unparsers, respec vely. The four rightmost
columns in the figure show (from le to right): the language of the first concern, the language in
which the rela on between the concerns is expressed, the language of the second concern and
the language of the result, i.e., the language into which the concerns are combined. Obviously,
the first and the second concern are interchangeable. Therefore, the language that is more
closely related to the language of the result has been chosen as the first concern. The rectan-
gles spanning the columns indicate how the concerns resp. the rela ng language are bundled
together (typically in a file).

Figure 2.6.: Comparison of the Alterna ves with Templates

JSP is typically used to create HTML from a JSP page, which is basically an HTML document
with embedded Java instruc ons. As Java is a general-purpose language, the second concern
can be any source of data. Taken together, the fact that the Query Language is bundled with
the first concern and the fact that a standalone HTML document is a valid JSP file, make JSP a
template technique.
XSL-T combines two XML languages, XML1 and XML2 into a resul ng XML dialect. In most

cases, this dialect is one of the input XML dialects, therefore named XML1 w.l.o.g. here. How-
ever, in all cases in which XSL-T is used in its standard form (i.e., not as XSL-T SSM) and if the
XML dialects are not XSL-T itself (an unusual, but not negligable case), XSL-T is not prototypical,
i.e., no document from one of the XML dialects is itself a template.
In AspectJ, both concerns are documents or fragments in the Java language. The concern

en tled core is typically more similar to the result than the concern named advice, as the la er
concern is typically spread throughout the core concern (a phenomenon called crosscu ng).
AspectJ cannot be considered a template technique, as the concern that is typically bundled
with the query language is not prototypical for the result.
Finally, in the unparser technique JAXB, the first concern is expressed in Java, which is basically

a direct equivalent of an XML document to be augmented with the second concern using Java

34

2.4. Related Research Areas

instruc ons. The second concern can be any source of data (as it is the casewith JSP, see above).
The direct equivalent rela onship between the first concern and the result is not a prototypical
rela onship, as the concern and the result are from different technological spaces.

2.4. Related Research Areas

In the following sec ons, research areas related to the no on of templates in the sense defined
above, are discussed. Sec on 2.4.1 discusses the research in the field of macro processing. Sec-
on 2.4.2 discusses two languages in which the term template is used to denote a programming

language feature. Sec on 2.4.3 introduces the Invasive So ware Composi on (ISC) approach,
which is a compile- me composi on technique. Finally, Sec on 2.4.4 discusses frame process-
ing, a technique closely related to template techniques.

2.4.1. Macro Processing

The idea of macros was introduced by [124] in order to extend compiled languages with new
language features. As such, and contrary to the approaches just introduced, macros are not
primarily a technique for composing concerns, but are rather targe ng reuse on a syntac cal
level.
An important improvement to the macro mechanism was its li ing to a level where syntac c

constraints are preserved. An example for this li ing is the introduc on of hygienic macros in
LISP [110].
Today, the best-known example are the macros provided by C and its preprocessor. Unfor-

tunately, C macros can easily break the syntac c structure of a program or interfere with the
program in unexpected ways. The ideas from [110] were proposed to address the problems
described in [40], but the development of C++ [174] is definitely the most important a empt to
solve them. In order to make the use of the C++ preprocessor obsolete, templates (as a mean
to express generic func ons) and the inline and const specifiers (to replace constant def-
ini ons and the use of macros for repeated non-generic code fragments) have been added to
the language. Unfortunately, modern C++ programs s ll leverage the preprocessor, some mes
by mixing its features with the features introduced to abolish it.
Macros are not a typicalmeans for the composi on of concerns, but they are part of a number

of template techniques, as shown in Sec on 2.5.7.

2.4.2. Templates as Programming Language Feature

The aforemen oned C++ templates are also a mean for separa on: for example, they can be
used to separate the behavior of a container data type from the actually contained type. Ad-
di onally, a C++ template can be considered to be of prototypical nature, as the result of the
template instan a on basically yields the template with its formal type (as well as its non-type)
arguments replaced with the actual ones, even if this instan a on result is normally not mani-
fested by the C++ compilers.
A template mechanism is also the base of the modulariza on technique used in the BETA lan-

guages [112; 122]. Please note that it is strictly speaking not part of the BETA language, as the

35

2. Introduc on

language used for modulariza on, the so-called fragment language, is independent from BETA.
The fragment language is grammar-based, i.e., every correct sequence of terminal and nonter-
minal symbols from the grammar is called a form and represents amodule. Non-terminals in the
forms are called slots, as the non-terminals are openings where other forms may be inserted.
An example for a form is shown in Lis ng 2.3.

Stack:
(# Private: @<<SLOT private: descriptor>>;

Push:
(# e: @integer
enter e
do <<SLOT PushBody: descriptor>>
#);

Pop:
(# e: @integer
do <<SLOT PopBody: descriptor>>
exit e
#);

New: (# do <<SLOT NewBody: descriptor>> #);
isEmpty:

(# Result: @boolean
do <<SLOT isEmptyBody: descriptor>>
exit Result
#)

#)
Lis ng 2.3: A BETA Form

If a form is associated with a name and a syntac c category (basically, the le hand side of the
grammar rule from which the form has been derived), it is called a fragment form. Fragment
groups bundle logically related fragment forms.
A fragment group F may specify a fragment group O as its origin. In this case, the slots

of the fragment groupO are subs tuted by the corresponding fragment forms in F . The origin
fragment groupOmust have slots defined for all the fragment forms within the fragment group
F .
This subs tu on process turns out to be extremely powerful: it subsumes the power available

by C++ templates and exceeds it—for details, see [122].
Obviously, the subs tu on mechanism is a template instan a on, with the origin fragment

group O being the template, whereas the fragment forms within F are the instan a on data.
The term slot in BETA fits the Defini on 2.6 of slots introduced above. A differencewhich should
be noted, is the labeling of slots with syntac c categories, which enables (together with the syn-
tac c category assigned to forms in fragment forms) a kind of safe authoring for BETA programs.

2.4.3. Invasive So ware Composi on

The ISC approach is a compile- me composi on technique proposed in [15]. Its composi on
operators treat the components as so-called grey-box components, i.e., the components itself

36

2.4. Related Research Areas

can bemodified (a property ofwhite-box composi on techniques), but this happens using well-
defined interfaces (a property a ributed to black-box composi on techniques).
The ISC terminology has been formalized in [86], based on an extension of context-free gram-

mars, called context-free reuse-grammars. Basically, the components of ISC are fragments of
programs that correspond to senten al forms that can be derived from a non-terminal of a
context-free grammar. Non-terminals in these senten al forms are considered as varia on
points.
Ini ally, ISC knows two composi on operators called bind and extend, separa ng the set of

varia on points into slots and hooks. Slots can be bound, i.e., they can be replaced with single
fragments using the bind operator. Hooks are extensible, i.e., fragments can be added to it
repeatedly with the extend operator.
The main difference between ISC and template techniques is the handling of extensibility.

Whereas ISC allows hooks to be bound mul ple mes, this is not possible in template tech-
niques, which instead offer the possibility to iterate from within the template itself, thereby
allowing a single slot to be replicated and bound to different values in the itera ons. With a
template approach, extensibility can be emulated using slots, if the template allows to reintro-
duce the slot markup when the slot is bound. Thus, instead of binding a slot denoted by some
markup s directly to the value v, it is bound to the sequence vs, thereby reopening the slot for
further values. Obviously, this emula on requires that there is a post-processing step in which
all slots are removed, e.g., by binding them to empty values.

2.4.4. Frame Processing

Frameprocessing [17; 18; 46] can be considered as an early predecessor of template techniques.
The technique has been named a er its main source of inspira on, conceptual frames [129].
In [18], mul ple views are given on frame processing. The most comprehensive one is to

consider frames as so ware parts that should be assembled. Assembling frames is done by
invoking frames from a root frame, the so-called specifica on frame. Invoked frames may in
turn call further frames, making the assembly process a tree traversal over a set of frames.
During the assembly, some frames needs to be adapted, i.e., modified or completed. Tomod-

ify frames, two basic mechanisms are offered: the use of variables and the use of named blocks.
Whereas variables do not have default values, named blocks have their content as default value.
Variables can be set to arbitrary values by the invoking frame. Named blocks can be arbitrarily
extended at the start or the end of the named blocks or replaced or deleted during assembly.
Finally, frames can also include control statements to condi onally or repeatedly include parts
of the frame, depending on the actual values of variables.
Obviously, frame processing closely corresponds to template processing as defined above.

Frames correspond to templates. Variables correspond to slots. Named blocks are not typically
found in template techniques. Control statements for condi onal and repeated inclusion of
fragments can be found in most template approaches. However, frame assembly is much more
sophis cated than typical template instan a on, as it is possible to trigger the assembly of
the frames recursively. This is a feature that is not typically found in template techniques. An
excep on is ST [173; 143], which could easily emulate the frame assembly process using its
template applica on feature.

37

2. Introduc on

Lis ng 2.4 shows the use of the XML-based Variant Configura on Language (XVCL), a frame
processing language designed to foster reuse during the implementa on of a so ware product
line [93]. Further examples of frame processing technologies are given in [43].

Specifica on Frame

<x-frame name=”root”>
public class Root
{

public static void main(String[] args)
{

<set var=”max” value=”100”/>
<adapt x-frame=”secondary-frame”>

<insert break=”perform”>
System.out.println(”i =”+i);

</insert>
</adapt>

}
}

</x-frame>

Frame ’secondary-frame’

<x-frame name=”secondary-frame”>
for (int i = 0; i < <value-of expr=”?@max?”/>; i++)
{

<break name=”perform”/>
}

</x-frame>

Result of the Frame Assembly Process

public class Root
{

public static void main(String[] args)
{

for (int i = 0; i < 100; i++)
{

System.out.println(”i =”+i);
}

}
}

Lis ng 2.4: Frame Processing Example with XVCL

2.5. Classifica on

In this sec on, a classifica on for template techniques is given. The classifica on focuses on
template techniques and on defining orthogonal criteria. This dis nguishes it from exis ng clas-
sifica ons like [43] and [169].

38

2.5. Classifica on

2.5.1. Target Language Awareness of Slot Markup

The most basic dis nc on to be made about slot markup is how its introduc on influences the
target language syntax and seman cs. The target language syntax and seman cs may be af-
fected in several ways, which leads to the categories shown in Figure 2.7 and described in the
following. Please note that the figure also includes implicit slot markup (the technique com-
monly used in AOP, see Sec on 2.3.2) for illustra ve purposes, however, these are not marking
up slots with respect to the Defini on 2.6.

Figure 2.7.: Target Language Awareness of Slot Markup

Slot markup languages that do preserve the target language syntax are called syntax preserv-
ing slot markup languages, whereas slot markup languages changing the target language syntax
are called syntax destruc ng languages.
Syntax preserving languages may be further classified into seman cs preserving and seman-
cs abusing languages, depending on whether seman c concepts from the target language are

employed as they are intended to be or abused. The dis nc on between preserva on and
abuse is somehow fluent—an indica on for abuse is that a language element that is not in-
tended to carry any seman cs is equipped with meaning by the slot markup language. A typical
example for this is the abuse of comments for slot markup purposes.
Examples for syntax preserving slot markup languages can be found in approaches target-

ing markup languages like HTML or XML. The Template A ribute Language (TAL) [196] is using
a ributes from a dis nct XML namespace, which is clearly a valid use of a ributes and names-
paces, i.e., TAL is preserving the seman cs of the target language features.
On the other hand, XMLC [195] is using the id a ribute and the span element of XHTML as

slot markup, with the la er example clearly being an abuse of the target language seman cs.
Languages that destruct the target language syntax typically rely on some kind of special sep-

arator (or pairs of separators) for slot markup. This goes back to the $ symbol used in Unix
shell scripts for variable interpola on and has been reused by Perl and many of its successors.
A typical pair of separators that is used to bracket expressions from the query language are the
strings <% and %>, which seemingly have been introduced by JSP but can also be found in a
variety of other languages, e.g., in Tea [133] and Jxp [102].

39

2. Introduc on

The classifica on of template techniques targe ng XML documents may depend on the un-
derstanding of syntax. If syntax is understood aswellformedness, XSL-T SSM is clearly preserving
it. On the other hand, if syntax is understood as compliance to an XML Schema, XSL-T SSM de-
structs the target language syntax by embedding XSL-T elements at loca ons where they are
not allowed to be placed.

2.5.2. Generality of the Slot Markup

Template approaches can also be classified by the rela onship between the number of terminals
in the target language and the number of terminals in the slot markup language.
Some approaches introduce a corresponding terminal in the slot markup language for each

terminal in the target language [160; 156]. This approach makes the slot markup language
specific to the target language.
On the other side, approaches exist that introduce only a small number of slot markup lan-

guage terminals which allow to markup all kinds of slots possible within the target language.
Moreover, the number of terminals introduced is independent from the target language. This
typically makes this kind of approaches target language independent or generic. As an example,
consider XSL-T SSM [107], which can be used to generate arbitrary documents using a fixed set
of slot markup language instruc ons.

2.5.3. Entanglement Index

The entanglement index is a metric defined in [143] which classifies template approaches ac-
cording to the number of viola ons against a set of rules guaranteeing a clean separa on of
concerns between the template engine and the applica on using it.
These so-called separa on rules, which are formulated in [143] with respect to using tem-

plates as the view in the MVC pa ern [154], are the following:

1. (no modifica on) The view can not modify the model neither by directly altering model
data objects nor by invoking methods on the model that cause side effects.

2. (no computa ons) The view cannot perform computa ons upon dependent data values.

3. (no comparisons) The view cannot compare dependent data values.

4. (no type assump ons) The view cannot make data type assump ons.

5. (no layout) Data from the model must not contain display or layout informa on.

In order to ease the evalua on of these rules in scenarios other then Web applica ons, they
have to be reformulated. Themost specific rule (no layout)must be replaced by a rule capturing
the actual intent of using a template engine:

1. (no modifica on) The template can not modify the instan a on data, neither directly nor
by causing side effects.

40

2.5. Classifica on

2. (no computa ons) The template cannot perform computa ons upon dependent data val-
ues.

3. (no comparisons) The template cannot compare dependent data values.

4. (no type assump ons) The template cannot make data type assump ons.

5. (separa on of concerns) Instan a on data must not contain informa on that should be
separated from the applica on by the use of the template engine.

The first rule is easy to understand: the instan a on of a template should be free of side
effects. That rule is reasonable as it is clear that moving applica on code into a template for
whatever reasons is to be avoided. The rule does not prevent the instan ated template to com-
municate with the controller (as it is typically done using a Hypertext Transfer Protocol (HTTP)
request within Web applica ons), it must only be followed during the instan a on of the tem-
plate within the template engine.
The second, no computa ons rule can be subject to controversial discussions. On the one

hand, it is obvious that certain computa ons (e.g., the computa on of taxes on a basket in an
e-commerce applica on) should not be subject of a template. On the other hand, some string
computa ons like special character encoding may be performed within the template without
viola ng the separa on of concerns, especially since the encoding to be applied may depend
on the context of the special characters, e.g., a string may need to be encoded differently as
XML a ribute value or as element content.
The no comparison rule is also subject to discussion. Obviously, for the comparison of a prod-

uct price with a fixed value, the fixed value should not be part of the template. However, al-
terna ng the background colors of rows in a table requires a comparison like i mod 2 = 0 and
can well be done within a template. The ST engine solves this alterna ng colors task using a
round-robin approach specifically designed to handle exactly this class of tasks. Comparisons
can also be useful in code genera on templates. For example, the use of separators is o en
associated with a comparison of a loop index with a fixed value (e.g., i > 0). Again, ST provides
a solu on for this problem using its separator feature [144].
The fourth rule implies thatmethodswith arguments cannot be called, since type informa on

is unavailable in templates. Furthermore, indexing of array elements using instan a on data is
not possible, since this would require to assume that the data used as index is of a scalar type.
Finally, the fi h rule enforces separa on of concerns between layout and content in a tem-

plate applica on directly. The applica on logic should not be able to provide layout or display
informa on. [143] states that there is no way to enforce this rule. However, for a par cular
target language, a dis nc on between parts of the language that are allowed to be generated
from instan a on data and other parts may be possible. In this case, the par al templa za on
approach described in Sec on 5.1.7 can be used to enforce the no layout rule.
The IKAT engine from the Reasonable Server Faces (RSF) project [186] states about itself to

have an entanglement index of zero [185]. As a reason for this, IKAT’s inability to permit com-
putable control over output XML a ributes is given. This is based on the false assump on that
a ribute values can always be considered as layout. A counterexample for this is also given in
Sec on 5.1.7.

41

2. Introduc on

2.5.4. Instan a on Data Access Strategy

There are basically two ways how the data needed to instan ate a template is passed to the
template engine. The names for the strategies are taken from [143].
The first way is a pull strategy: the template engine calls the applica on using it to fetch data

on demand. The second way is a push strategy: the applica ons passes all instan a on data to
the template engine before the actual instan a on process is started. The differences between
the approaches are summarized in the sequence diagrams in Figure 2.8. The defini ons below
are versions adapted from [143] by using the introduced terminology and removing clauses not
substan ally contribu ng to their clarity.

Defini on 2.19 (Push Strategy, a er [143]). A template uses the push strategy if all data used
by the template is computed prior to template instan a on. �
Defini on 2.20 (Pull Strategy, a er [143]). A template uses the pull strategy if any data used by
the template is computed on demand by invoking applica on logic. �
The advantage of the push strategy is that it enforces the independence of the applica on

logic from the order in which the instan a on data is accessed. The disadvantage is that some
instan a on data items which may not be needed (e.g., because condi ons prevent the data
from being used) have to be calculated anyway. The pull strategy does not have this problem:
it allows the lazy evalua on of instan a on data items.

Figure 2.8.: Sequence Diagrams of Push resp. Pull Strategy

The classical example for the push strategy is ST, whereas the pull strategy is implemented
in a variety of engines like JSP or Velocity. The push strategy can be emulated using the pull
strategy—see Sec on 6.1.1.
A dis nc on between the strategies is some mes impossible. An example are the SSMs de-

fined in XSL-T. The data (i.e., the XML document addressed from the stylesheet via XPath ex-
pressions in select or other a ributes) is typically pushed upfront into the XSL-T processor,
but the evalua on of par cular XPath expressions is performed on demand. Addi onally, it is
possible to access further data sources via the document func on [36, Sec on 12.1], so the
data can partly be pulled from the engine. That is, the data from the first source document is
accessed using the push strategy (note that the evalua on within the template engine is not
explicitly prohibited by Defini on 2.19) whereas the documents retrieved via the document
func on are accessed using the pull strategy.

42

2.5. Classifica on

The discussion on the choice of strategy has not yet found a defini ve answer. [143] argues
that the pull strategy violates the separa on of concerns design rule between applica on logic
and template engine by allowing to build applica on logic that relies on a par cular evalua on
order of the instan a on data. While this argument is definitely true, it is ques onable whether
the benefits of disallowing this coupling outweighs the effort for the calcula on of instan a on
data that may not be needed during the instan a on. [117] emphasizes the problem that data
calculated to be pushed into the engine may be unnecessary, thus was ng resources. Addi on-
ally, it is argued that func onali es that belong to the presenta on layer shi into the applica-
on code. As an example, HTML/XML character escaping is men oned, which is not correct,

as the push approach itself does not prevent the engine to have features suppor ng character
encoding, e.g., via its query language.

2.5.5. Query Language

Defini on 2.13 introduces the no on of a query language that is used to refer to instan a on
data fromwithin the template. The query language used in a template can be classified in three
ways, which are illustrated in Figure 2.9.

Figure 2.9.: Categories of Query Languages

First, the query language may be opaque or significant to the template engine. If the query
language is opaque, the template engine either passes the query directly to the applica on
incorpora ng itself or uses the query to search for instan a on data in a container passed by
the applica on. In both cases, the template engine has no idea of the internal structure of
the query. On the other hand, if the query language is significant, queries are executed by the
template engine, i.e., the seman cs of a query as well as its concrete syntax must be known to
the engine.
Second, a query languagemay be declara ve or impera ve. In the first case, the instan a on

data is described by the query, but the query does not define how to actually get the data.
Differently, queries from impera ve query languages define the exact way how to fetch the
instan a on data.
Third, query languages may be general-purpose or domain-specific languages. In the first

case, the query language is a general-purpose programming language on it own, whereas in the
la er case, the query language is specific to a certain type of instan a on data source.
Two examples should clarify this classifica on: JSP is using Java as an impera ve, general-

purpose query language. Please note that Java is used in a way that makes it opaque to the JSP

43

2. Introduc on

engine, as the engine itself is not interpre ng the query language in any way. XSL-T SSM’s are
using XPath as a significant, declara ve and domain-specific (i.e., XML instan a on data source
specific) query language.

2.5.6. Instan a on Technique

Template techniques can also be classified by the way templates are instan ated. Typical in-
stan a on techniques are compilers and interpreters.
Compilers transfer the template into a persistent intermediate form that is typically exe-

cutable and emits the instan ated template during the execu on. The best known example
for this approach is JSP, which even generates mul ple intermediate forms: first, a JSP docu-
ment is typically translated into a Java source file, which is a erwards compiled into a class file
directly executable by a Java Virtual Machine (JVM).
Interpreters instan ate the template directly, i.e., without transla ng it into a persistent in-

termediate form. An example for an interpre ng template engine is ST.
The advantage of the compiling approach is an improvement of the instan a on speed, its

disadvantage is the extra me needed for the compila on. In general, the decision for one
of the two approaches depends both on the frequencies of template changes and template
instan a on and their ra o.

2.5.7. Reuse in Templates

It is an important requirement that template fragmentsmust be reusedwithin a single template.
Different approaches are in use to fulfill this requirement.
Many features suppor ng reuse within templates correspond to macros [124] in general pur-

pose languages. These macro mechanisms can be further classified by their support for pa-
rameter passing and by their support for dynamic calls (i.e., the selec on of the invoked macro
depending on instan a on data).
Macro features can be classified by their parameter passing mechanisms. Some engines only

supportmacros without parameters (like XTL, see Sec on 4.4), others allow passing arbitrary in-
stan a on data and/or variable values (like XSL-T SSM), and some engines even allow template
fragments to be passed into macros (like Tea [133]).
Another possible macro classifica on criterion is the selec on mechanism of the macro to

be called: the macro may be sta cally selected (like in Tea [133]), or it may be chosen depend-
ing on the context in which the template is applied (called template polymorphism in XPAND).
XSL-T SSM even supports both types of selec on with its sta c xsl:call-template and its
dynamic xsl:apply-templates instruc ons.
ST [173; 143] offers an efficient object-oriented reuse technique called group inheritance. The

mo va on behind this technique is the use of ST as backend in the parser generator ANTLR[6;
142], where languages as similar as Java version 1.4 and version 5 should be generated without
having to develop and maintain completely independent template sets. In ST, a template set
is called a group. Groups can inherit templates from other groups. This way, it is possible to
specify a common base group for both Java version and extract the differences between the
languages into groups that inherit from the base group.

44

2.5. Classifica on

2.5.8. Further Features

Some template approaches offer unique features, which should be men oned shortly.
Jostraca [157] offers capabili es to search and replace text within the whole template during

the instan a on process. This is clearly not a template-typical feature, but merely an addi on
of a common text processing features.
ST [143; 144] offers a feature called group interfaces which allows the specifica on of pa-

rameters a set of templates must have. Together with ST’s feature of group inheritance, this
mechanism enables an object-oriented reuse technique in templates. Please note that the term
interface here relates to the contract between the template and another template that uses it,
which is different from how the term is used in Sec on 6.3.2, where it refers to the contract
between the template and its instan a on data.
XPAND knows a special syntax to prevent newlines from being taken over from the template

into the instan ated template. For example, for the use of this feature consider Lis ng 2.5,
which shows an excerpt from an XPAND template and from the Java code produced by it. Please
note the difference between the two lines crea ng the private methods: in the second one, the
XPANDexpression is closedwith “-»”,meaning that the followingwhitespace should be omi ed
in the output.

XPAND Template

public class Test
{

«LET ’doA()’ AS method»
private void «method»
{
}

«ENDLET»
«LET ’doB()’ AS method»

private void «method-»
{
}

«ENDLET»
}

Instan a on Result

public class Test
{

private void doA()
{
}

private void doB() {
}

}

Lis ng 2.5: Suppression of Newlines in XPAND

45

2. Introduc on

Repleo [14] is a template engine that also provides syntax-safe template instan a on. In con-
trast to the approach introduced in this thesis, it proposes a restricted slot markup language
(called template meta language in this context) that destructs the syntax of the target language
(called object language). Repleo also introduces an adapta on phase, which combines the in-
put grammars in a common template grammar. Repleo validates the instan a on data only
during the instan a on me, it does not offer a technique equivalent to the Template Interface
Genera on introduced in Sec on 6.3.2. Repleo uses an XPath-like query language.
An approach to genera ng safe template languages is also proposed in [85]. The approach is

very similar to the approach proposed in this thesis, but uses a syntax-destruc ng slot markup
language. This is mo vated by the fact that the approach in [85] is not restric ng the target
language. The query language proposed in [85] is the Object Constraint Language (OCL).

2.6. Conclusion

This chapter defined the terms that are used throughout this thesis. The concise defini on of
the template term captures the intui ve meaning of this term in the context of Web applica-
ons and code genera on very well, which dis nguishes the defini on from exis ng ones like

[144], which makes the defini on a contribu on in its own right. An introduc on to the typical
applica ons of template techniques has been given. The alterna ves to using a template tech-
nique have been described, bothwith their advantages and disadvantages. The related research
areas have been introduced. Finally, classifica on criteria have been given, which allow to de-
scribe the proper es of exis ng and new template techniques concisely. The classifica on goes
beyond exis ng classifica ons like [169], as it defines orthogonal proper es and exhaus vely
covers the area of template techniques.

46

2.6. Conclusion

Cib

47

2. Introduc on

48

3
Safe Template Processing

An diesen einfachen Beispielen wird jene Eigenscha von Web-Templates deutlich, die
zugleich ihre pragma sche Stärke und formale Schwäche ist:Web-Templates können

einfach hingeschrieben werden, eine formale Validierung ist nur auf der Ebene der fer g
gestellten Web-Dokumente sinnvoll möglich.

Karsten Wendland, 2006 [189]

In this chapter, an approach for a development technique named safe template processing
is shown. Sec on 3.1 defines goals for an approach that enables safe template processing.
From these goals, requirements are derived in Sec on 3.2. Based on these requirements, an
architecture is proposed in Sec on 3.3.

3.1. Goals

The mo va ng example shown in Sec on 1.3 can be used to define a number of goals which
a design for a template technique should address. Some of the goals may contradict what is
typically expected from template approaches, others are suggested by common sense and are,
nevertheless, not respected by all exis ng techniques.
As it has already been men oned in Sec on 2.3, several other approaches exist that address

someor all issues in the scenario above. Each par cular goal is discussedwith respect to exis ng
technologies.

49

3. Safe Template Processing

3.1.1. Safe Authoring

Unfortunately, the rela on between the template and the target language shown in Figure 2.2
does not reflect today’s reality. Instead, the instan a on of a templatemay lead to a document
in the target language, but this is not guaranteed in every case. This leads to the typical trial and
error process shown in Figure 1.2, as it is executed by Web developers and designers regularly:
A template is changed, and a erwards the result of the instan a on process is checked.
As the experience with techniques like JSP and XSL-T shows, this process is error-prone for

several reasons: the execu ng person may consider a change small enough not to be worth
checking and, more important, the change may not be covered by the instan a on, e.g., be-
cause the changed part is not instan ated at all due to the used instan a on data.
The goal that can be derived from this problem is called safe authoring, reflec ng that the

fulfillment of this goal gives an author the highest safety possible that a created template will
actually instan ate into the target language. This safety is nevertheless restricted, as the in-
stan a on data has substan al influence on the instan ated template, i.e., every guarantee
given to the author is given under the presump on that the instan a on data fulfills certain
proper es (which will be explained in Sec on 3.2.5).
The term safe authoring is informally defined as follows: A template approach enables safe

authoring if it gives (under the presump on of certain instan a on data proper es) an author
a clear indica on whether a par cular template will instan ate into the target language or not.
The most popular example of an approach not targe ng the goal of safe authoring is JSP. By

its typical mixture of XHTML as target language, Java as query language and several nota ons
to dis nguish between the languages, there is a high risk of crea ng templates not instan a ng
into the target language.
On the other hand, XML binding technologies like JAXB fulfill the safe authoring goal verywell,

because they employ the type system of some programming language to guarantee instan a-
on results, making it impossible for an author to create documents that fail to instan ate into

the target language.

3.1.2. Safe Instan a on

The instan a on of a safely authored template may fail because the instan a on data used
does not fulfill the assump ons that have been made during the template authoring. These
instan a on failures must be communicated as error messages. The asynchronism of template
authoring and template instan a on complicates rela ng the omi ed error messages to the
cause of the error.
Furthermore, the person encountering the error (e.g., the user of a Web applica on) is most

probably different from the person that caused the error (e.g., the applica on developer), which
makes understandable error messages even more valuable.
The informal defini on of safe instan a on is as follows: A safe instan a on checks the in-

stan a on data and emits error messages that

1. clearly describe the problems that occurred,

2. show their root causes and

50

3.1. Goals

3. allow determining the person that is responsible to fix them.

Exis ng approaches differ widely in their error handling. JSP seems to be the worst approach
in this respect: depending on whether the error in the template leads to a compila on error
during template instan a on or just to a malformed XHTML document, different errors may
occur. For examples of error messages caused by invalid JSP pages, see Figures 3.1(a), 3.1(b)
and 3.1(c). For an unexperienced user, it is hard to decide which of the error message is due to
an invalid change of the template and which one is due to incorrect instan a on data.

(a) Compila on problem

(b) Run me excep on

(c) Parse problem

Figure 3.1.: Error Messages caused by JSP Pages

3.1.3. Separa on of Concerns

As men oned above, templates are frequently used to achieve a separa on of concerns. The
separa on typically occurs between development ar facts, responsibili es (or roles), or life cy-
cle phases. The actual concerns to be separated depend on the applica on area in which the

51

3. Safe Template Processing

approach should be used. An overview of actual concerns in the two most important usage
scenarios for template approaches is shown in Figure 3.2.

Figure 3.2.: Separa on of Concerns in Different Scenarios

Part of this goal is not only to provide means for the separa on of concerns: it is equally
important to ensure that the separa on is not circumvented by users of a template technique.
The importance of the enforcement of separa on of concerns has been described in [143].
The following informal defini on considers both parts of this goal: A template approach fulfills

the goal of Separa on of Concerns if it

1. enables the separa on of concerns, i.e., allows the distributed, asynchronous and simul-
taneous work on the concerns and

2. enforces the separa on of concerns, i.e., restricts the consequences of changing a con-
cern for related concerns as far as possible.

O en, the separated concerns are par cular documents or other storage units, but the con-
cerns to be separated may also be rather abstract views of stakeholders on a single result of
the development process. E.g., if the template technique is used in a Web applica on, the con-
cerns to be separated are typically layout and content, a separa on that has been recognized as
being essen al in the publishing sector as early as 1967 by Tunnicliffe [76] and that also holds
in the field of Web engineering. The separa on between these concerns can lead to separated
storage units, but the separa on can as well take place within a single storage unit.
An analogous separa on is desirable if the template engine is used forM2C transforma ons in

a genera ve scenario: programming language specifics should be separated from programming
language independent informa on stored in a model (described in Sec on 2.2.2).
The separa ons between concerns described above correspond to the separa on of respon-

sibili es of stakeholders (or roles). In the Web applica on scenarios, the layout concern is typi-
cally the responsibility of a Web designer, whereas the crea on of content is typically the re-
sponsibility of an editor (e.g., in a Web CMS scenario) or a so ware engineer (e.g., ac ng as the
developer of the model and the controller in a Web applica on).
For the code genera on scenario, the responsibility for the crea on of the ar facts described

above may be distributed between a programming language specialist (for the programming
language specifics) and a model developer (responsible for the model as such).
In both scenarios, the authoring of a template and its instan a on typically occur asynchro-

nously, i.e., the life cycle phases not necessarily overlap each other. It is not atypical that a

52

3.1. Goals

template s ll gets instan ated when the author of the template is no longer available to main-
tain it.
Approaches like XML binding technologies (e.g., JAXB) completely fail with regard to this goal,

both in enabling separa on as well as in enforcing it. For example, if an unparser-related library
like RWT is used to build a Web user interface, the Web designer and the applica on developer
role are unified.
On the other hand, JSP enables the separa on of concerns, but fails to enforce it (which

is indicated by its high entanglement index of 5), as the embedded access to Java allows the
template author to accomplish arbitrary tasks, including the tasks that belong to the model or
the controller in an MVC-based applica on.

3.1.4. Broad Applicability

The architecture should be applicable in a wide range of applica ons, from Web CMSs to UML
tools. Therefore, assump ons about par cular uses of the architecture and its implementa ons
have to be avoided. On the other hand, this design goal had to be restricted in order to create
a prototype implemen ng the approach, i.e., the set of target languages addressable has been
limited to XML dialects.
The defini on of broad applicability is therefore as follows: A template approach sa sfies

the goal of Broad Applicability if it is usable in different applica on scenarios and capable of
genera ng various target languages.
Velocity is an example for a broadly applicable template technique, as it has beenwidely used

for Web applica ons [77] as well as for code genera on [175]. The languages that have been
generated using Velocity include various XML dialects like XHTML, Java, C++ as well as plain text
(e.g., for the genera on of emails).
JSP is restricted in its use by its reliance on Web applica on servers. There have been ex-

periments to separately use JSP, but the coupling to Web applica on servers has proven to be
strong, which complicates the stand-alone use of JSP. Besides this restric on, JSP has been used
to generate several web-typical languages like XHTML and WML .

3.1.5. U liza on of Exis ng Standards

During the design and implementa on of the Safe Template Processing approach, the ques-
on of whether a (de facto) standard or component should be reused o en arised. Typically,

the consequences are as follows: if the standard is not reused, a completely new way of tem-
plate processing could be introduced (along with the necessary standards, tools and processes),
which leaves more design op ons at the cost of reducing the chances of the new approach to
becomewidely accepted. Alterna vely, adap ng the exis ng standards or components reduces
the degrees of freedom for the design, whereas the chances for establishing the approach are
much higher. The alterna ves can be considered as revolu onary or evolu onary trials to es-
tablish a new template processing approach.
In the following, for a design ques on that can only be decided in the described ways, the

la er alterna ve, i.e., the evolu onary improvement, is taken. Or, informally defined: A tem-

53

3. Safe Template Processing

plate technique fulfills the U liza on of Exis ng Standards goal if it minimizes the changes to
the standards, tools and processes le to users adop ng the technique.
XML binding technologies like RWT can be seen as a way to a revolu onary change to the

Web engineering process. This can also serve as an explana on, why these approaches failed
to prevail widely. Advanced JSP editors as found in modern Web development IDEs are a typ-
ical example for the evolu onary approach, as they do not try to change the process of JSP
authoring.

3.2. Requirements

From the goals introduced in Sec on 3.1, a number of requirements can be deduced, which
are described below. These requirements are to be fulfilled by the developed approach. The
requirements address different goals—a summary about these dependencies is shown in Fig-
ure 3.3¹. The dependencies for each requirement are discussed in detail in the corresponding
sec on. If possible, examples that fulfill the requirement or fail to fulfill it are given.

Figure 3.3.: Rela ons between Goals and Requirements

3.2.1. Preserva on of Target Language Constraints

In order to guarantee that the instan ated template complies to the target language, all con-
straints that are inherent to the target language (i.e., which form the schema of the target lan-
guage)must also be validwithin the template language. This does notmean that the constraints
can be mapped one-to-one from the target into the template language. Instead, every con-
straint from the target language will lead to an equivalent, maybemore complicated, constraint
in the template language.
Formally, this requirement can be defined as follows:

Defini on 3.1 (Preserva on of target language constraints). A template technique preserves
the target language constraints, if for each template t◦ the instan a on instantiate with the

¹The different styles for the lines in the Figures 3.3, 3.6 and 7.1 have been chosen to improve the perceivability of
these figures, they are not seman cally important.

54

3.2. Requirements

instan a on data d ∈ D yields a document from the target language: ∀t◦ ∈ T◦ : ∀d ∈ D :
instantiate(d, t◦) ∈ T. �
Obviously, this preserva on requirement addresses the safe authoring goal. There are several

ways to fulfill this requirement, which differ in their reuse level of exis ng standards. Therefore
the u liza on of exis ng standards is also related to this requirement.
XSL-T SSM can be seen as an example for a template language that is completely ignoring

target language constraints within the templates: it is possible to generate any XML dialect from
an XSL-T SSM. If a specific dialect defined by some XML Schema is constructed by a stylesheet,
none of the constraints from this XML Schema are checked within the stylesheet. This makes
XSL-T SSM both a powerful and an error-prone template technique.

3.2.2. Coverage of Target Language

A template enginemust be able to produce all documents of the target language. Defini ons 2.5
and 2.11 already state that the target language is covered by the templates as the set of tem-
plates is a subset of the template language, i.e., T◦ ⊂ T.
The fragments contained in the instan ated template originate, however, both from the tem-

plate as well as from the instan a on data. Thus, the requirement must be fulfilled indepen-
dently of which fragments of the instan ated template originate from the template.
The distribu on of fragments between the template and the instan a on data is itself re-

stricted by the separa on of concerns goal and has not been formalized. The following is there-
fore only a semi-formal defini on of the coverage requirement, as it relies on the unspecified
no on of a set of valid instan a on data Dt that reflects which parts of the target language
document t could originate from the instan a on data:

Defini on 3.2 (Coverage of target language). A template technique covers a target language T
if for each document t from the target language T and for any instan a on data d from the set
of valid instan a on data Dt, there exists a template t◦ that instan ates to t: ∀t ∈ T : ∀d ∈
Dt : ∃t◦ ∈ T◦ : instantiate(d, t◦) = t �
The coverage requirement clearly addresses the goal of broad applicability, as a template

engine that is not capable of crea ng the complete target language is only useful in very special
cases. Furthermore, the requirement is influenced by the separa on of concerns goal, because
this goal determines the distribu on of target language fragments between the template and
the instan a on data.

3.2.3. Computability

As the requirement preserva on in Sec on 3.2.1 indicates, constraints imposed by the target
language have to be transformed to be applicable to validate documents with respect to the
template language. The user of the template engine should not be burdened with the process
of adap ng a template technique to a par cular target language.
Thus, the template language syntax must be automa cally computable from the target lan-

guage syntax. As a side effect, this requires the target language syntax to be available in a
machine-readable form (like an XSD document or some other grammar descrip on).

55

3. Safe Template Processing

The computability requirement therefore addresses the broad applicability goal, as it enables
the use of the template technique for genera ng documents from arbitrary languages. Further-
more, it also contributes to the fulfillment of the safe authoring goal.

3.2.4. Expressiveness

In order to be actually usable, a template language and hence a slot markup language must of-
fer a well-balanced amount of expressiveness. The language must support control statements,
especially for the condi onal and repeated inclusion of template parts.
The absence of these control features typically leads to a viola on of the separa on of con-

cerns goal. Without the control features, an author basically needs to separate condi onal and
repeated parts into (sub-)templates that are instan ated condi onally or repeatedly into frag-
ments that are, in turn, used as instan a on data for the (master-)template. The effort of creat-
ing and maintaining these (sub-)templates as separate resources then leads to the embedding
of template parts into the code using the template engine.
There is a risk of exaggera ng the expressiveness of the slot markup language. This extra

amount of power available to the template developer typically leads to applica on code being
embedded in a template, a situa on which is hard to detect and even harder to eliminate.
With respect to the area of Web applica ons with their typical division between applica on

and presenta on layer (resp. controller and view in theMVC pa ern), the consequences of both
insufficient and exaggerated expressiveness are shown in Figure 3.4.

Figure 3.4.: Consequences of Insufficient or Exaggerated Expressiveness

The expressiveness requirement addresses the separa on of concerns goal, as both insuffi-
cient and exaggerated control lead to viola ons of the goal.
Almost all exis ng template techniques support the condi onal and the repeated inclusion

of template fragments.

3.2.5. Instan a on Data Type Safety

Incorrect treatment of unexpected instan a on data items is a major source for problems dur-
ing the instan a on of templates. Unfortunately, the instan a on data is, by defini on, not
available during the authoring me of a template. In order to detect problems with the instan-
a on data, it is therefore necessary to specify a contract between a template and the used

instan a on data.

56

3.3. Proposal of an Architecture fulfilling the Requirements

Such a contract consists of constraints asser ng proper es of the instan a ondata, especially
concerning the type of the data. The instan a on data type safety requirement enforces that
the type of the instan a on data items must be checked by a template technique.
This requirement addresses the safe instan a on goal: the required contract between the

template and the instan a on data can be used to clearly communicate problems with the
instan a on data to users of the technique.

3.2.6. Independence of Query Language

To be usable independently of a specific source of instan a on data, a template technique
should be designed to be capable of dealing with any query language.
This is especially important since different types of instan a on data may have completely

different access mechanisms. For example, the query language for accessing an XML document
as data source can be XPath, while a template that should directly access a rela onal database
would use the Structured Query Language (SQL) for the same purpose.
It is important to note that this requirement can only be fulfilled to a certain degree. Allowing

a query language to alter the state of the data used to fill the template seriously injures the
separa on of concerns goal. This issue was discussed in detail in [143].
The independence of query language requirement addresses the broad applicability goal.
Exis ng approaches differ in their independence of the query language. Some approaches

use a general programming language as query language, i.e., these approaches are itself strictly
bound to a par cular query language, which, however, allows employing arbitrary query lan-
guages using its own language means. For example, a JSP engine can use JXPath [9] within Java
to access XML documents using XPath.
Other approaches have a fixed query language that is capable of opera ng on different meta-

models. An example for this approach is XPAND [56]. In these approaches, the query language
itself delivers the flexibility of accessing mul ple instan a on data sources.

3.3. Proposal of an Architecture fulfilling the Requirements

Based on the outlined requirements, we propose an architecture that enables safe template
processing [82]. The architecture consists of six solu on elements, which are addressing the
various requirements described in Sec on 3.2. In the following, the meaning of each element
of the architecture is explained in detail. As the architecture itself is independent of a par cular
target language, the descrip ons can be applied to any implementa on of the architecture.
The solu on elements can be assigned to the life cycle phases introduced in Sec on 2.1.2.

Informa on is passed between the par cular solu on elements from elements in earlier life
cycle phases to la er ones. Figure 3.5 shows the solu on elements, their assignment to life
cycle phases and the flow of informa on between the elements. The rela ons between the
solu on elements and the requirements are shown in Figure 3.6.
The Slot Markup Language Design process creates the basis for the template technique: the

slot markup language itself. Both concrete syntax and seman cs must be designed carefully
to allow other solu on elements to rely on it. This process must deliver a grammar for the

57

3. Safe Template Processing

� Design � Adapta on � Authoring � Instan a on

Figure 3.5.: The Proposed Architecture

language elements in the slot markup language in a machine-readable form. The design of the
slot markup language can be considered a part of the design phase of a template technique.

The requirements Preserva on, Coverage, Expressiveness and Independence of Query Lan-
guage had substan al influence on the Slot Markup Language Design. It therefore contributes
to the goals of Safe Authoring, Separa on of Concerns, Broad Applicability, and U liza on of
Exis ng Standards.

If the target languages to be produced by the template technique are restricted to be XML
dialects, the machine-readable form of the slot markup language grammar would preferably be
an XML Schema. Chapter 4 describes the design of a slot markup language targe ng arbitrary
XML dialects in detail.

Next, we propose a Constraint Separa on component, which adapts the template technique
to a par cular target language by combining the grammars of the slot markup language and the
target language and transforming them into the grammar of the template language and a set
of instan a on data constraints. This component is part of the adapta on phase of a template
technique.

The design of the Constraint Separa on largely depends on the Preserva on requirement and
addresses the goals of Safe Authoring and U liza on of Exis ng Standards. The component is
described in more detail in Sec on 5.1.

58

3.3. Proposal of an Architecture fulfilling the Requirements

Figure 3.6.: Rela ons between Requirements and Solu on Elements

The Template Valida on component applies the template language grammar produced by
the Constraint Separa on process to check the validity of the templates created by an author. It
belongs to the authoring phase. A successful valida on asserts the author that the templatewill
instan ate into the target language as long as the instan a ondata complies to the instan a on
data constraints emi ed by the Constraint Separa on.
The component performing the Template Valida on is influenced by the requirement Preser-

va on, i.e., it addresses the goals of Safe Authoring and U liza on of Exis ng Standards. A
detailed descrip on of the component can be found in Sec on 5.2.
A validated template can be used by the Template Instan a on process to produce a docu-

ment from the target language within the instan a on phase. For the instan a on, instan a-
on data is needed, which is delivered by the Instan a on Data Evalua on process.
The template engine, the component performing the Template Instan a on process, is de-

termined by the requirements of Expressiveness, Independence of Query Language and Preser-
va on. It therefore addresses the goals of Separa on of Concerns and Broad Applicability. A
detailed descrip on of an efficient template engine design is given in Sec on 6.2.
As alreadymen oned, the instan a on data consumed by the Template Instan a on process

is delivered by the Instan a on Data Evalua on process, which is fetching the data from some
instan a on data source.
The Independence of Query Language requirement is the main determinant for the compo-

nent implemen ng this evalua on process. The component therefore contributes to the Broad
Applicability goal. A design for this component is introduced in Sec on 6.1.
The Instan a on Data Evalua on only delivers instan a on data from a data source, but is

not capable of asser ng its proper es; instead, the Instan a on Data Valida on process is re-
sponsible for these asser ons.
Obviously, the component implemen ng the Instan a on Data Valida on process depends

on the Instan a on Data Type Safety requirement and addresses the Safe Instan a on goal.
The component is described in detail in Sec on 6.3. An alterna ve approach for addressing
the same requirements and goals is the Template Interface Genera on approach described in
Sec on 6.3.2.

59

3. Safe Template Processing

3.4. Conclusion

This chapter analyzed the problems introduced in Sec on 1.3 in order to define goals for the
approach to be developed by this thesis. The goals have been used to set up a number of re-
quirements. Based on the requirements, an architecture has been proposed that is (for the
moment, presumably) fulfilling the requirements and therefore helps reaching the goals. The
rela ons between the goals, the requirements and the solu on’s elements have been discussed
in detail, which is important for understanding tradeoffs made during the design and the imple-
menta on of the approach.
The following chapters are structured as follows. Chapter 4 discusses the design of a slot

markup language. Chapter 5 describes the solu on elements of the architecture that are as-
signed to the adapta on phase or the authoring phase. Finally, Chapter 6 discusses the solu-
on elements assigned to the instan a on phase. These rela ons are illustrated in Figure 3.7.

Please note that star ng with Chapter 4, the thesis deals with XML target languages, thereby
restric ng the general discussions and proposals made so far to the XML technological space.

Figure 3.7.: Rela ons between the Solu on Elements and the Following Chapters

60

4
Design of a Universal, Syntax- and
Seman cs-Preserving Slot Markup

Language

Ein Loch ist da, wo etwas nicht ist.

Kurt Tucholsky, 1931 [184]

One of the most important steps in the implementa on of the approach proposed in Chap-
ter 3 is the design of a slot markup language. The Separa on of Concerns goal proposed in
Sec on 3.1.3 requires the slot markup language to enable the user to incorporate the template
engine without having to violate the intended separa on of concerns. Thus, the design of this
language determines whether the architecture is acceptable for a given purpose. Furthermore,
the design of the slot markup language influences the solu on elements of the approach as de-
scribed in Sec on 3.3. The template engine must be implemented depending on the features
of the slot markup language. In addi on to this, the expressive power of the grammar needed
to describe the template language also depends, besides on the target language, on the design
of the slot markup language. An example for such a language, named XML Template Language
(XTL) is shown in detail in this chapter.
Sec on 4.1 explains the decisionsmadeduring the design of the XTL. The following Sec on 4.2

introduces the language features that allow for crea ng XML document character data, whereas
Sec on 4.3 shows features for the condi onal or repeated inclusion of template fragments. Sec-
on 4.4 introduces macros, which enable reuse within XTL templates. Two special XTL features,

61

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

namely realms and bypassing, are explained in Sec on 4.5. Furthermore, Sec on 4.6 outlines
how the seman cs of XTL can be described transla onally in rela on to XSL-T. Finally, Sec-
on 4.7 discusses the applica on of XTL to a different domain, namely as a schema language

for the valida on of XML documents.

4.1. General Design Decisions

Asmen oned in Sec on 1.3, most template techniques available today are not guaranteeing the
wellformedness of instan ated templates. In order to fulfill the goal of safe authoring, the well-
formedness of the instan a on result must be guaranteed. There are several ways to achieve
this, which can be divided into syntax-preserving and syntax-destruc ng approaches, as intro-
duced in Sec on 2.5.1.
Syntax-destruc ng approaches have the disadvantage of being hard to implement (as most

of the tools have to be reimplemented to reflect the template language syntax) but o en offer
a template language with slightly improved readability. Syntax-preserving approaches have the
advantage of enabling the reuse of exis ng tools (i.e., incidentally also addressing the U liza on
of Exis ng Standards goal) for the syntax of the target language. The readability of these tem-
plate languages can o en be improved by lightweight changes like adjustments of the syntax
highligh ng for the slot markup parts of the template language.
It has been decided that XTL should be a syntax-preserving slot markup language. The lan-

guage feature that should be used by XTL is the XML namespace http://research.sap.
com/xtl/1.0 par cularly reserved for the XTL. Thus, XTL templates are wellformed XML
documents that contain slots designated by nodes that belong to the XTL namespace. In ad-
di on to asser ng the wellformedness of the instan a on results, using an XML namespace
and refraining from non-XML slot markup syntax enables the use of standard XML schema lan-
guages (like XML Schema [59; 180; 26]) to describe the template language grammar in the first
place.
Next, the expressiveness of XTL had to be decided. Therefore, it was necessary to define

which features should be supported by the language. Basically, these features fall into one of
three categories: features suppor ng the crea on of XML nodes, features allowing to control
the instan a on and features for the reuse of template fragments. The design of the par cular
features is described in Sec on 4.2, 4.3 and 4.4, respec vely.
Several addi ons to the XTL language have been considered. Basically, they can be grouped

into two categories: elements which may be added without injuring the safe authoring ap-
proach and elements that will seriously harm this approach.

Syntax

The norma ve defini on of XTL is the XML Schema document XTL.xsd. As the XML Schema
syntax itself is very verbose, the syntax of the elements is explained textually instead of by
showing fragments of the schema. The complete schema can be found in Appendix A.1.

62

4.1. General Design Decisions

Seman cs

For the core language elements of XTL, a denota onal seman cs for the instan a on is given
below. This seman cs is given as a Haskell [182] program. It operates on a simplified XML
model that uses the type shown in Figure 4.1 to represent XML documents. This data type
closely resembles the XML data model introduced in Sec on 2.1.3.

data Node =
Text String |
Comment String |
Element QName (Map QName String) [Node]

Lis ng 4.1: Representa on of XML documents in the Instan a on Seman cs

Please note that the QName is represen ng a triple consis ng of three strings: a prefix, a
local name and a namespace URI, i.e., it extends a qualified name in the sense of [29] with
the capability of keeping the prefix. An example for a QName would be the triple (”xtl”,
”text”, ”http://research.sap.com/xtl/1.0”).
Furthermore, the denota onal seman cs accesses instan a on data using a clearly defined

interface named IDS. The interface is defined using a Haskell class and is shown in Lis ng 4.2.
It basically consists of five func ons which are explained at the parts of the seman cs where
they are used.

type IDS a = (a -> String -> String, a -> String -> [a], a -> String
-> Bool, a -> String -> [Node], a)

evalText :: IDS a -> (a -> String -> String)
evalText (text, _, _, _, _) = text

evalForEach :: IDS a -> (a -> String -> [a])
evalForEach (_, forEach, _, _, _) = forEach

evalIf :: IDS a -> (a -> String -> Bool)
evalIf (_, _, if_, _, _) = if_

evalInclude :: IDS a -> (a -> String -> [Node])
evalInclude (_, _, _, include, _) = include

root :: IDS a -> a
root (_, _, _, _, root) = root

Lis ng 4.2: Defini on of the IDS class

The denota onal seman cs starts with the func on instantiateDocument shown in
Lis ng 4.3. This func on takes an Instan a onData Source (IDS) and a representa on of an XML
document (serving as template) and yields the instan ated template. This func on triggers the

63

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

instan a on by calling the func on instantiateNodes on the children of the root node
(which can, by defini on, never be an element defined by XTL).
The func on instantiateNodes has a quite complicated signature: it takes three argu-

ments and delivers a 3-tuple as result. The first parameter is a map of macros, which is ex-
plained in more detail in the Sec ons 4.4.1 and 4.4.2. The second parameter is the IDS needed
to evaluate instan a on data. The third parameter is the list of nodes to be instan ated. The
3-tuple returned by the func on contains a (possibly modified) map of macros, a mapping from
expanded names to strings represen ng a set of a ributes and a list of nodes created during
the instan a on. The func on takes the first element from the list of nodes to be instan ated
and processes it by calling the instantiateNode func on. A erwards, it calls itself on the
remainder of the list. The return value is created from the result of both calls by combining the
returned a ributes and concatena ng the returned children.

type AttrMap = Map QName String
type MacroMap = Map String [Node]

instantiateDocument :: IDS p -> Node -> Node
instantiateDocument ids (Element qn attributes children) =

let
(_, attributes1, children1) = instantiateNodes ids (root

ids) empty children
in

Element qn (union (transformNamespaceAttributes attributes)
attributes1) children1

instantiateNodes :: IDS p -> p -> MacroMap -> [Node] -> (MacroMap,
AttrMap, [Node])

instantiateNodes ids context macros (node:further) =
let

(macros1, attributes1, children1) = instantiateNode ids
context macros node

(macros2, attributes2, children2) = instantiateNodes ids
context macros1 further

in
(macros2, attributes1 ‘union‘ attributes2, children1 ++

children2)
instantiateNodes ids context macros [] = (macros, empty, [])

instantiateNode :: IDS p -> p -> MacroMap -> Node -> (MacroMap,
AttrMap, [Node])

Lis ng 4.3: Preamble of the Denota onal Instan a on Seman cs

The instantiateNode func on has a signature similar to that of instantiateNodes,
but takes only a single node as its third parameter. The implementa on of that func on is given
below in the Sec ons 4.2.1 to 4.5.2. The treatment of text, comment nodes and element nodes
is shown in Lis ng 4.4. Since there is a special treatment of elements assigned to the bypassing

64

4.2. Crea on of Character Data

namespace explained in Sec on 4.5.2, a boolean guard is used to restrict the element processing
by these default rules to elements not assigned to the bypassing namespace. Elements from
the XTL namespace are treated by special rules, which are shown below, but are to be found
before the default rules in the complete seman cs.

instantiateNode ids context macros (Text text) = (macros, empty,
[Text text])

instantiateNode ids context macros comment@(Comment _) = (macros,
empty, [comment])

instantiateNode ids context macros (Element qn@(QN prefix
namespaceURI localName) attributes children) | not (isBypassURI
namespaceURI) =
let

(macros1, attributes1, children1) = instantiateNodes ids
context macros children

in
(macros1, empty, [Element qn (union attributes attributes1)

children1])

Lis ng 4.4: Seman cs for Text, Comment and Element Nodes

Examples

Since XTL has been designed to fulfill the requirement of independence of the query language,
the query language is arbitrary. In the examples below, XPath is used as the query language.
As the instan a on data, the purchase order example document po.xml (from [59], see also
Sec on A.3) is used. This means that the values of the select a ributes below must be read
as XPath expressions targe ng po.xml.

4.2. Crea on of Character Data

For each XML node type (like element, comment, a ribute etc.), there could have been a corre-
sponding XTL language feature allowing to dynamically create the node from the instan a on
data insteadof sta cally including it in the template. Fully suppor ng this 1:1-rela onshipwould
violate the separa onof concerns goal, as it would allow the arbitrary crea onof element nodes
(iden fied via their names) from instan a on data.
As element nodes are not character data in the sense of [28, Sec on 2.4], but rather markup,

they should never be subject to dynamic crea on. The same is true for a ribute names. On
the other hand, text nodes and a ribute values are character data in an XML document, and
their crea on from instan a on data must therefore be supported by the XTL. Therefore, XTL
supports the dynamic crea on of text as described in Sec on 4.2.1 and the dynamic crea on of
a ribute values as described in Sec on 4.2.2, but does not offer a feature to dynamically create
elements. An excep on to this la er statement is the dynamic inclusion of XML fragments as
described in Sec on 4.2.3, where the drawbacks of this feature are explained as well.

65

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

The dynamic crea on of comments and processing instruc ons would be possible, but has
not been included in the current version of XTL.

4.2.1. xtl:text
There are basically four design op ons for an instruc on intended to create a text node. First,
an element of the target language can be used for that purpose—the instan a on data would
then be denoted via an a ribute of that element (e.g., XMLC uses HTML’s span tag with its id
a ribute for that purpose). Second, an a ribute at the parent element could theore cally be
used, but this a ribute has to denote several things: where to insert the text node, if mul ple
children exist, and where to get the instan a on data from. Third, a comment could be used to
denote the posi on of the text node to be created—the comment content could then be used
to denote the instan a on data. Finally, the slot markup language could contain an instruc on
solely designed for the purpose of crea ng text nodes.
The reuse of a target language element is not possible in a generic slot markup language,

as the target language is arbitrarily exchangeable by defini on. Furthermore, the use of an
a ribute at the parent element would severely harm the understandability of the XML tem-
plate and in addi on to that, the posi on at which the text node is to be inserted must be
updated together with the content of the element, which is a poten al source of errors. The
third op on—abusing comments for the crea on of text nodes—contradicts the requirement
of preserva on, as comments are not enforceable using XML schema languages.
Therefore, XTL follows the straigh orward approach and contains an instruc on xtl:text

that is replaced with instan a on data during the instan a on.

Syntax

The xtl:text element supports two a ributes: one for the descrip on of the instan a on
data to be used to replace the element and one for the support of realms, which is described in
detail in Sec on 4.5.1.
The select a ribute contains a string of the query language which is passed to the instan-
a on data evaluator. The string is evaluated within a certain context: if the xtl:text is not

contained in any xtl:for-each instruc on, the context is the en rety of the instan a on
data. For the treatment of xtl:text within xtl:for-each, refer to the descrip on of
xtl:for-each in Sec on 4.3.2.

Seman cs

In Lis ng 4.5, the func on evaluateText is used to determine the instan a on data item to
be used for replacing the xtl:text instruc on. In order to prevent xtl:text to be used to
create markup, the instan a on data item evaluated must be processed in the way described
in [28, Sec on 2.4], i.e., all ampersand characters & and the le angle bracket < must be re-
placed by the strings & and <, respec vely, by all valid XTL engine implementa ons.
In the denota onal seman cs, this escaping process is performed by the call to the func on
escapeText.

66

4.2. Crea on of Character Data

The evaluateTextmethod has to return a string value. The conversion of non-string val-
ues returned by the evalua on into a string value is up to the concrete implementa on of this
func on. For XPath, a natural choice would be to follow XSL-T in its use of the XPath func on
string to convert the query result into a boolean value [38, Sec on 4.2].

instantiateNode ids context macros (Element (QN _”text”
”http://research.sap.com/xtl/1.0”) attributes _) =
let

selectExpr = attributes ! (QN ”” ”select” ””)
in

(macros, empty, [Text (escapeText (evalText ids context
selectExpr))])

Lis ng 4.5: Seman cs of xtl:text

Example

Lis ng 4.6 shows howxtl:text could be used to create a text node—in this case as a subnode
to the name element literally contained in the template.

Template

<?xml version=”1.0”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<name><xtl:text select=”/purchaseOrder/shipTo/name”/></name>
</sample>

Instan a on Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<name>Alice Smith</name>
</sample>

Lis ng 4.6: Example Use of xtl:text

4.2.2. xtl:attribute
Crea ng a ributes is substan ally more complicated than crea ng text. Basically, two op ons
arise. First, the slot may be marked up using the a ribute value itself (e.g., via a special syntax
like in href=”$url”). This has the advantage of being easy to read, but the problem that
the special syntax must be encoded by the author if it is used without being meant as slot
markup. The second op on is to use an XML element to dynamically create the a ribute from
instan a on data. This refrains the user from encoding any special markup: if the a ribute
exists at the element, it has to be taken into the instan ated template as is. The decision to
make XTL use the second op on via an xtl:attribute element as defined here supports
the goal of Safe Authoring, as the author is freed from dealing with encoding special markup.

67

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

The Separa on of Concerns goal is not affected by this decision, as xtl:attribute only
allows the dynamic crea on of the a ribute value, but not of the a ribute name.
The construc on of a ributes is supported by the XTL using the element xtl:attribute,

which is adding an a ribute to its parent element. The a ribute has a fixed name (i.e., the
name is not taken from the instan a on data) and a value taken from the instan a on data. In
Lis ng 4.8, xtl:attribute is used to create a date a ribute at the order element.

Syntax

The xtl:attribute element supports four a ributes. As with xtl:text, one of the at-
tributes is for the support of realms, which is described in detail in Sec on 4.5.1.
The name a ribute defines the name of the a ribute to be created by xtl:attribute.

Its value must be a QName, which allows for inser ng qualified and unqualified a ributes. As
already men oned above, the value is sta c, i.e., it is not possible to create an a ribute with a
name taken from the instan a on data.
As xtl:text, xtl:attribute supports the select a ribute. Its value is used to get

the instan a on data to be used as the a ribute value. Again, this string is evaluated within a
certain context: if the xtl:attribute is not contained in any xtl:for-each instruc on,
the context is the en rety of the instan a on data. For the treatment of xtl:attribute
within xtl:for-each, refer to the descrip on of xtl:for-each in Sec on 4.3.2.
Finally, a mode a ribute could be used to define the precedence of an a ribute created by

xtl:attribute compared to a literally specified a ribute of the same QName. By default,
the literally contained a ribute would be overwri en. Using this a ribute, it is possible, for
example, to append the dynamically created value to the literal one. As this func onality is
possibly harming the requirement of preserva on, its use is only allowed if the a ribute to be
created is defined to be of the XML Schema type String.

Seman cs

In Lis ng 4.7, the func on evaluateText is reused to determine the instan a on data item
to be used as the value for the a ribute to be created. In order to preventxtl:attribute to
create mul ple a ributes (an a ack typically used against Web applica ons known as markup
injec on), the evaluated instan a on data must be processed in the way described in [28, Sec-
on 2.4]. This is similar to the processing in xtl:text, but in addi on to the replacements

made there, single quotes ’ and double quotes ”must also be replaced by the strings '
and ", respec vely. This escaping is performed by the call to the func on escapeAt-
trValue in Lis ng 4.7.
The processing of themode a ribute is not included in the denota onal syntax for readability

reasons.

instantiateNode ids context macros (Element (QN prefix ”attribute”
”http://research.sap.com/xtl/1.0”) attributes _) =
let

name = attributes ! (QN ”” ”name” ””)
selectExpr = attributes ! (QN ”” ”select” ””)

68

4.2. Crea on of Character Data

in
(macros, singleton (mkQName name) (escapeAttrValue (evalText

ids context selectExpr)), [])
where

mkQName :: String -> QName
mkQName s = case elemIndex ’:’ s of

Nothing -> QN ”” s ””
Just idx -> QN ”” (drop (idx+1) s) (take (idx-1) s)

Lis ng 4.7: Seman cs of xtl:attribute

Example

In Lis ng 4.8, the xtl:attribute element is used to create a data a ribute at the ele-
ment containing the xtl:attribute, namely the order element literally contained in the
template.

Template

<?xml version=”1.0”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<order>
<xtl:attribute name=”date”

select=”/purchaseOrder/@orderDate” />
</order>

</sample>

Instan a on Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<order date=”1999-10-20”/>
</sample>

Lis ng 4.8: Example Use of xtl:attribute

4.2.3. xtl:include
XTL offers an xtl:include element that can be used to dynamically include complete XML
fragments (consis ng of mul ple XML nodes) into the instan a on result.
Strictly speaking, xtl:include is also a par al viola on of the independence of query

language requirement, as it can not be asserted that every query language is capable of de-
livering an XML fragment that could be inserted by the template engine. Despite of this, the
xtl:include statement has been added for two reasons: fragment inclusion is a very pow-
erful language feature and query languages not capable of delivering XML fragments could be
adapted to create XML from query results.
Evenmore ques onable is the fact that xtl:include can be used to generate markup and

character data. This may violate the requirement of separa on of concerns. Therefore, the

69

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

xtl:include element is not included in the subset of XTL supported by the safe authoring
approach (for details, see Sec on 5.1).

Syntax

The xtl:include element supports the same two a ributes as xtl:text: a select at-
tribute for the descrip on of the instan a on data to be used to replace the element and one
for the support of realms, which is described in detail in Sec on 4.5.1.

Seman cs

In Lis ng 4.9, the func on evaluateInclude is reused to determine the instan a on data
item to be used as the value for the a ribute to be created. This func on has to return nodes of
an XML document, therefore there is no need for escaping special XML characters: they must
already have been replaced in the instan a on data.

instantiateNode ids context macros (Element (QN _ ”include”
”http://research.sap.com/xtl/1.0”) attributes _) =
let

selectExpr = attributes ! (QN ”” ”select” ””)
in

(macros, empty, evalInclude ids context selectExpr)

Lis ng 4.9: Seman cs of xtl:include

Example

In Lis ng 4.10, the xtl:include element is used to include all name elements together with
the contained text node from po.xml into the instan ated template. Please note that this
example shows that character data as well asmarkup are created using this instruc on.

Template

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:include select=”//name”/>
</sample>

Instan a on Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<name>Alice Smith</name>
<name>Robert Smith</name>

</sample>

Lis ng 4.10: Example Use of xtl:include

70

4.3. Condi onal and Repeated Inclusion of Template Fragments

4.3. Condi onal and Repeated Inclusion of Template Fragments

Following the argumenta on in Sec on 3.2.4, there is a need to support the condi onal and
repeated inclusion of template fragments in order to fulfill the expressiveness requirement.
Obviously, both features have their counterparts in general purpose programming languages
like Java.

4.3.1. xtl:if

Typical condi onal statements include simple if statements (with or without else branches),
expanded if statements (with mul ple condi ons like if...elseif...) and switch state-
ments. If one abstracts from the concrete syntax, these statements can be classified by how
many of their branches can be selected. For example, a standard if...then...else...
statement chooses exactly one of the two branches, whereas the switch statement in Java
may select none, one or more branches (mostly depending on the use of break statements
within the branches).
The independence of query language and the preserva on requirement prohibit the introduc-
on of a statement that allows the selec on ofmul ple branches into XTL. The first requirement

prevents deciding howmany branches can be selected. The second requirement would be hard
to fulfill in the presence of such a statement as all combina ons of branches must be checked
for their validity within the target language.
Therefore, XTL can only support condi onal inclusion statements that select atmost one of its

branches. This only requires that the content of each branch is valid within the target language.
From the syntac cal point of view, it must be decided whether the condi onal statement

should be implemented as an a ribute (like in TAL) or as an element (comparable to the if
statement in XSL-T). The second approach is more comfortable, but also harder to implement.
In fact, the current XTL version only supports a very simple xtl:if statement that only

allows one branch to be included or not.

Syntax

The xtl:if element supports the two a ributes also known from xtl:text: one for the
descrip on of the instan a on data to be used to replace the element and one for the support
of realms, which is described in detail in Sec on 4.5.1.
The select a ribute contains a string from the query language that is passed to the instan-
a on data evaluator. The string is evaluated within a certain context: if the xtl:if is not

contained in any xtl:for-each instruc on, the context is the en rety of the instan a on
data. For the treatment of xtl:if within xtl:for-each, refer to the descrip on of xtl:
for-each in Sec on 4.3.2.
As opposed to the XTL elements described above, the xtl:if element is not declared to be

empty, but rather allows a sequence of arbitrary elements as its content. These elements are
the content that is condi onally included in the instan ated template, depending on the result
of the evalua on of the select a ribute. The children of xtl:if are evaluated during the

71

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

instan a on, i.e., other XTL statements can be included. This also includes the use of xtl:at-
tribute, which allows the condi onal crea on of a ributes.

Seman cs

In Lis ng 4.11, the func on evaluateIf is used to determine the instan a on data item
needed to decide whether the children of the xtl:if element are processed and inserted
into the instan ated template or not.
Since this decision has two alterna ves, the evaluateIf method has to return a boolean

value. It is up to the concrete implementa on of the evaluateIf func on whether true or
false has to be returned if the query string does not evaluate into a boolean value. For XPath,
a natural choice would be to follow XSL-T in its use of the XPath func on boolean to convert
the query result into a boolean [38, Sec on 4.3].
If the evalua on of the instan a on data item into a boolean value yields true, the content

of the xtl:if element is processed by the instantiateNodes func on and the result of
this processing becomes the result of processing the xtl:if element. If the evalua on yields
false, an empty a ribute map as well as an empty child list is returned.

instantiateNode ids context macros (Element (QN _ ”if”
”http://research.sap.com/xtl/1.0”) attributes children) =
let

selectExpr = attributes ! (QN ”” ”select” ””)
in

if (evalIf ids context selectExpr)
then

instantiateNodes ids context macros children
else

(macros, empty, [])

Lis ng 4.11: Seman cs of xtl:if

Example

An example for xtl:if is shown in Lis ng 4.12, which also shows that an else branch can be
simulated with the most query languages.

Template

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:if select=”count(//items/item)=2”>
<fulfilled id=”1”/>

</xtl:if>
<xtl:if select=”not(count(//items/item)=2)”>

<fulfilled id=”2”/>
</xtl:if>

</sample>

72

4.3. Condi onal and Repeated Inclusion of Template Fragments

Instan a on Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<fulfilled id=”1”/>
</sample>

Lis ng 4.12: Example Use of xtl:if

4.3.2. xtl:for-each
In typical programming languages, especially in languages following an impera ve or object-
oriented paradigm, a variety of statements for the repeated execu on of fragments can be
found. These statements can be classified into being controlled by condi ons, by a counter
or by a collec on.
Condi on-controlled statements are typically classified by the me at which the condi on is

evaluated: at the start of the statement (in Java represented by a mere while statement) or at
its end (in Java represented by thedo...while statement). The statementsmay also support
an op on for an early exit, which allows the repe on to be immediately exited.
The condi on-controlled statements are typically used to make repe ons depend on evalu-

a on results obtained inside the statement. As there is no possibility to perform calcula ons in
XTL itself, such a statement does hardly make sense.
Count-controlled statements can be considered a special form of collec on-controlled state-

ments, if collec ons of a given size (corresponding to count) can be constructed.
Syntac cally, the situa on is similar to xtl:if: the statement for repeated inclusion can be

implemented as an a ribute (like in TAL) or as an element.
For that reasons, XTL only supports one statement for the repeated inclusion of template

fragments, namely xtl:for-each. Currently, there is no statement for an early exit. Thus,
XTL is quite similar to XSL-T in its support for repe on.

Syntax

Thextl:for-each element supports four a ributes: one for the descrip on of the instan a-
on data item to be used as the collec on for controlling the repe on, two for the specifica on

of ordering the collec on before using it and one for the support of realms, which is described
in detail in Sec on 4.5.1.
The select a ribute contains a string from the query language that is passed to the in-

stan a on data evaluator. The string is evaluated within a certain context: if the xtl:for-
each is not contained in any xtl:for-each instruc on, the context is the en rety of the
instan a on data. For the treatment ofxtl:for-eachwithinxtl:for-each, refer to the
seman cs of xtl:for-each described below.
The order-by a ribute also contains a string from the query language that is intended to

be evaluated by the instan a on data evaluator. The result is used to sort the elements of the
collec on obtained from the select a ribute. The order a ribute determines whether the
elements should be sorted in ascending or descending order.

73

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

Differently from the XTL elements described above, the xtl:for-each element is not de-
clared to be empty, but rather allows a sequence of arbitrary elements as its content. For
obvious reasons, the use of xtl:attribute as a (direct) child is prohibited, nevertheless,
xtl:attribute elements may be (indirect) descendants of xtl:for-each elements.
The children of xtl:for-each are the content that is to be repeated in the instan ated

template, depending on the result of the evalua on of the select a ribute.

Seman cs

In Lis ng 4.13, the func on evaluateForEach is used to determine an instan a on data
item collec on. If the result returned by evalua ng the query string taken from the select
a ribute is not a collec on, it is the responsibility of the concrete implementa on of evalu-
ateForEach to convert it into a list (which may be empty).
The collec on is interpreted as a list of contexts, as they are passed as an argument to the

evaluateText, evaluateInclude, evaluateIf and evaluateForEach func ons.
Thus, xtl:for-each is the only XTL element that is capable of changing the context which
determines the root for the evalua on of select a ributes.
Op onally, it may be necessary to sort the collec on returned by evaluateForEach. This

happens if an order-by a ribute has been specified. The value of this a ribute is evaluated
by calling evaluateText for each of the elements in the collec on as context and sor ng the
collec on corresponding to the returned values.
The content of the xtl:for-each element is evaluated once for each element from the

collec on by calling instantiateNodes and passing the current element from the collec-
on as the context for the instan a on.
The mechanism of establishing a new context within xtl:for-each is basically similar

to the no on of the context item in XSL-T. As a consequence, rela ve XPath expressions are
similarly evaluated in XTL and XSL-T.
Since the syntax disallows the use of xtl:attribute as a child of xtl:for-each, the

instantiateNodemethod returns always an empty a ribute map for xtl:for-each.
It is also important to note that the use of the order-by a ribute can seriously slow down

the instan a on of a template, as the whole collec on must be evaluated before sor ng can
take place. If no order-by a ribute is specified, the evalua on of the collec on can instead
take place lazily.

instantiateNode ids context macros (Element (QN _ ”for-each”
”http://research.sap.com/xtl/1.0”) attributes children) =
let

selectExpr = attributes ! (QN ”” ”select” ””)
contexts = evalForEach ids context selectExpr
orderedContexts = orderContexts ids attributes contexts
result = map (\currentContext -> instantiateNodes ids

currentContext macros children) orderedContexts
allChildren = map (\(macros, attributes, children) ->

children) result
in

74

4.3. Condi onal and Repeated Inclusion of Template Fragments

(macros, empty, concat allChildren)
where

orderContexts :: IDS p -> AttrMap -> [p] -> [p]
orderContexts ids attributes contexts =

if (QN ”” ”order-by” ””) ‘member‘ attributes
then

let
orderBy = attributes ! (QN ”” ”order-by” ””)
order = findWithDefault ”ascending” (QN ””

”order” ””) attributes
ascOrdering c1 c2 = compare (evalText ids c1

orderBy) (evalText ids c2 orderBy)
ordering = (if order == ”ascending” then id else

flip) ascOrdering
in

sortBy ordering contexts
else

contexts

Lis ng 4.13: Seman cs of xtl:for-each

Example

In Lis ng 4.14, xtl:for-each is used to create a number of empty item elements which
have an a ribute named price which has the value of the USPrice element corresponding
to the item.

Template

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:for-each select=”//items/item”>
<item>

<xtl:attribute name=”price” select=”USPrice/text()”/>
</item>

</xtl:for-each>
</sample>

Instan a on Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<item price=”148.95”/>
<item price=”39.98”/>

</sample>

Lis ng 4.14: Example Use of xtl:for-each

75

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

4.4. Reuse of Template Fragments

An important addi on is the introduc on of a macro mechanism, as this allows to use a trans-
forma onal style within the template and, as a consequence, abolishes the limita on of pure
prototypical templates, in which the depth of the instan ated template is a linear func on of
the depth of the template.

4.4.1. xtl:macro

Many of the slot markup languages support to reuse fragments of the template or target lan-
guage. As explained in Sec on 2.5.7, there is a variety of design op ons for macromechanisms.
XTL only supports the most basic no on of macros. Neither parameter passing nor other

advanced techniques are supported. Macros are defined using xtl:macro.

Syntax

xtl:macro supports only one a ribute, the name a ribute declaring the name of themacro.
This value must be a string. The content of the xtl:macro element is assigned to the name
literally. The use of xtl:macro is restricted: xtl:macro can only be used as direct child
of a template’s root element and no element nodes besides the root element and other xtl:
macro (as well as xtl:init) elements are allowed to precede it.

Seman cs

Lis ng 4.15 shows that instantiateNode evaluates the xtl:macro element by just re-
turning a modified map of macros, in which the value of the name a ribute is associated with
the list of children of the xtl:macro element. No elements or a ributes are generated by
the instan a on of xtl:macro.

instantiateNode ids context macros (Element (QN _ ”macro”
”http://research.sap.com/xtl/1.0”) attributes children) =
let

name = attributes ! (QN ”” ”name” ””)
in

(insert name children macros, empty, [])

Lis ng 4.15: Seman cs of xtl:macro

Example

As the defini on of macros does not change the instan ated template, the use of xtl:macro
is shown below in Lis ng 4.17 together with the use of xtl:call-macro to invoke the de-
fined macro.

76

4.4. Reuse of Template Fragments

4.4.2. xtl:call-macro
In order to invoke a macro defined with xtl:macro, XTL offers the xtl:call-macro ele-
ment.

Syntax

xtl:call-macro supports only one a ribute, the name a ribute declaring the name of the
macro. This value must be a string. No children are allowed in xtl:macro. The use of xtl:
call-macro is unrestricted.

Seman cs

Lis ng 4.16 shows that the instan a on of xtl:call-macro instan ates the children of the
xtl:macro with the same value of the name a ribute at the loca on of the xtl:call-
macro element. Please note that this instan a onmay occur in a different context (i.e., within
an xtl:for-each element) than the one that was ac ve at the xtl:macro.

instantiateNode ids context macros (Element (QN _ ”call-macro”
”http://research.sap.com/xtl/1.0”) attributes _) =
let

name = attributes ! (QN ”” ”name” ””)
nodes = macros ! name

in
instantiateNodes ids context macros nodes

Lis ng 4.16: Seman cs of xtl:call-macro

Example

In Lis ng 4.17, xtl:macro is used to define a macro with the name simple. A erwards,
xtl:call-macro is used to invoke the defined macro. The lis ng demonstrates that the
children of xtl:macro are instan ated at the loca on where the macro is actually invoked
using xtl:call-macro, as the a ribute created using xtl:attribute occurs at the par-
ent element of xtl:call-macro.

Template

<?xml version=”1.0”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:macro name=”simple”>
<xtl:attribute

name=”date”
select=”/purchaseOrder/@orderDate”/>

<date>
<xtl:text select=”/purchaseOrder/@orderDate”/>

</date>

77

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

</xtl:macro>
<order>

<xtl:call-macro name=”simple”/>
</order>

</sample>

Instan a on Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<order date=”1999-10-20”>
<date>1999-10-20</date>

</order>
</sample>

Lis ng 4.17: Example Use of xtl:macro and xtl:call-macro

4.5. Advanced Features

During the prac cal use of XTL in the projects SNOW and EMODE, a lot of features have been
added. Some of the features turned out to be very valuable, while others have been removed
due to unexpected problems or have been replaced by more powerful ones.
The most important advanced features are XTL’s capability to handle mul ple instan a on

data sources using realms described in Sec on 4.5.1 and the support for instan a on pipelines
using bypassing described in Sec on 4.5.2.

4.5.1. Accessing mul ple Instan a on Data Sources using Realms

It has turned out to be very beneficial to be able to access mul ple instan a on data sources
fromwithin one template. XTL supports any number of instan a on data sources. For example,
it is possible to access several XML documents using XPath in one template. Furthermore, each
source could be accessed using a different query language, allowing to access an XML document
using XPath and an ontology using SPARQL. A combina on of a data source with an instan a on
data evaluator capable of evalua ng the queries from the associated query language is called a
realm.

Syntax

XTL supports realms by two syntac cal means: a realm a ribute and an element named
xtl:init.
The realm a ribute can be used with all XTL elements that support the select a ribute.

The value of therealm a ribute is interpreted by an implementa on of an XTL template engine
in order to know which instan a on data evaluator is capable of interpre ng the value of the
select a ribute.

78

4.5. Advanced Features

The xtl:init instruc on can be used to ini alize a realm, more exactly, its assigned in-
stan a on data evaluator. xtl:init can only be used as a direct child of the template’s root
element and no elements except xtl:macro or xtl:initmay precede it.

Seman cs

The handling of realms has not been made part of the denota onal seman cs of XTL in order
to keep the seman cs short and easy to understand. Furthermore, adding realms would not
add much value to the seman cs, as it would only influence the way an IDS is chosen to call its
func ons like evaluateText etc.
The use of mul ple realms leads to mul ple contexts. Each of the realms has its own context,

i.e., the evalua on of an xtl:attribute element with a realm a ribute with a value of
a uses as its context either the context set by the innermost xtl:for-each with a realm
a ribute with the value a or the instan a on source in its en rety, if there is no suitable xtl:
for-each.
An implementa on should introduce the no on of a default realm, which is usedwhen a tem-

plate contains XTL elements with select a ributes, but without explicit realm a ributes.
The children of the xtl:init instruc on are passed to the instan a on data evaluator

responsible for the realm denoted by the value of the realm a ribute of xtl:init. An XTL
template engine implementa on must not interpret this content in any way.

Example

Lis ng 4.18 illustrates the use of two realms within a single template. The first realm is named
po and refers to the po.xml file known from the previous examples. The second realm is
named id and is assigned to an instan a on data evaluator named identity that returns
the select a ribute’s value in its evaluateText func on and a collec on of length n from
its evaluateForEach func on, if the corresponding select a ribute has a value of n.
It should be noted that the inner xtl:for-each instruc on obviously does not change the

context that is used by the xtl:text instruc on with the realm a ribute of the value po.

Template

<?xml version=”1.0”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<xtl:for-each select=”//items/item” realm=”po”>
<xtl:for-each select=”2” realm=”id”>

<item>
<xtl:text select=”productName” realm=”po”/>

</item>
<item>

<xtl:text select=”productName” realm=”id”/>
</item>

</xtl:for-each>
</xtl:for-each>

</sample>

79

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

Instan a on Result

<?xml version=”1.0” encoding=”UTF-8”?>
<sample>

<item>Lawnmower</item>
<item>productName</item>
<item>Lawnmower</item>
<item>productName</item>
<item>Baby Monitor</item>
<item>productName</item>
<item>Baby Monitor</item>
<item>productName</item>

</sample>

Lis ng 4.18: Example Use of Realms

4.5.2. Instan a on Pipelines using Bypassing

Applica ons performing complex XML transforma ons are o en arranging mul ple XML trans-
formers (like XSL-T processors) in transforma on pipelines, an architectural pa ern also known
as staged architecture [16]. There are two ways to arrange transformers into such a pipeline,
which are shown in Figure 4.1.
The first type, a horizontal pipeline, transforms a document XMLA into a second document

XMLB and a erwards into a third document XMLC. Each of the three documents can comply to
a different XML dialect, as long as none of the documents represents an XSL-T stylesheet. The
second type, the ver cal pipeline, differs exactly in the XML dialect produced by the transfor-
ma on of the first document XMLA: the result of this first transforma on is itself a stylesheet
that is then used to transform XMLB into XMLC.

Figure 4.1.: Types of XML Transforma on Pipelines

The first type corresponds to the pipelines typically used in Cocoon [7] to implement complex
XML transforma ons, whereas the second type corresponds to the ideas proposed in [65] and
[64] to implement XSL-T language extensions transparently. A ver cal XSL-T pipeline can also
be used to par ally define the seman cs of XTL. This is demonstrated in Sec on 4.6.

80

4.5. Advanced Features

Bypassing is a feature that helps wri ng templates that are intended to be instan ated using
a mul -stage (ver cal) pipeline of XTL instan a on engines.

Syntax

Syntac cally, XTL defines a special namespace URI that is parameterizable with the number of
instan a ons that should be passed un l the element associatedwith the namespace is actually
processed. This URI has the form http://research.sap.com/xtl/1.0/bypass/n
where n is the number of XTL template engines that should be passed before the element from
this namespace should actually be processed. The number n is called genera on number. If n
is omi ed, a default of 1 is assumed.

Seman cs

Lis ng 4.19 shows the denota onal seman cs of the bypassing feature. This is an extension
to the default processing of elements shown in Lis ng 4.4: the difference is that the func on
is guarded by the expression isBypassURI namespaceURI. This guard asserts that this
rule is only applied if the element is from a namespace complying to the namespace URI shown
above.
If the element is from a bypassing namespace, it is copied into the instan ated template with

a namespace with a genera on number decreased by one. If the genera on number reaches
0, the element is assigned to the standard XTL namespace. The a ributes of the element are
directly transfered to the instan ated document, whereas the content of the element is instan-
ated and the result is added as child to the element in the instan a on result.

instantiateNode ids context macros (Element (QN prefix namespaceURI
localName) attributes children) | isBypassURI namespaceURI =
let

(macros1, attributes1, children1) = instantiateNodes ids
context macros children

newNamespaceURI = transformBypassURI namespaceURI
in

(macros1, empty, [Element (QN prefix newNamespaceURI
localName) (union attributes attributes1) children1])

transformBypassURI :: String -> String
transformBypassURI uri =

if uri == ”http://research.sap.com/xtl/1.0/bypass/” ||
uri == ”http://research.sap.com/xtl/1.0/bypass/1”

then ”http://research.sap.com/xtl/1.0”
else case matchRegex (mkRegex

(”http://research.sap.com/xtl/1.0/bypass/([0-9]+)”)) uri of
Nothing ->

uri
Just nodes ->

”http://research.sap.com/xtl/1.0/bypass/” ++ show (read
(nodes !! 0) - 1)

81

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

transformNamespaceAttributes :: AttrMap -> AttrMap
transformNamespaceAttributes =

mapWithKey (\key -> \value ->
case key of

QN _ _ ”http://www.w3.org/2000/xmlns/” ->
transformBypassURI value

_ -> value)

isBypassURI :: String -> Bool
isBypassURI = isPrefixOf ”http://research.sap.com/xtl/1.0/bypass/”

Lis ng 4.19: Bypassing Seman cs

Example

Lis ng 4.20 shows the use of bypassing. In the first instan a on step, some element names are
collected from the instan a on data document. Furthermore, these names are used to dynam-
ically construct select a ributes which are evaluated in the second instan a on, where the
number of elements with that par cular name in the instan a on data document is counted.
The example shows that XTL elements within XTL elements marked for bypassing are evalu-

ated, thereby allowing the dynamic construc on of queries. This feature also works over dif-
ferent query languages and greatly enhances the expressive power of the templates. However,
care should be taken as it is easy to construct unreadable templates this way. Sec on 7.3.1
demonstrates a use case where bypassing is valuable.

Template

<?xml version=”1.0” encoding=”UTF-8”?>
<sample

xmlns:xtl=”http://research.sap.com/xtl/1.0”
xmlns:xtl-bp=”http://research.sap.com/xtl/1.0/bypass/1”>
<xtl:for-each select=”//*[starts-with(local-name(), ’item’)]”>

<count>
<xtl:attribute name=”name” select=”local-name(.)”/>
<xtl-bp:attribute name=”count”>

<xtl:attribute name=”select”
select=”concat(’count(//’,local-name(.),’)’)”/>

</xtl-bp:attribute>
</count>

</xtl:for-each>
</sample>

Instan a on Result a er First Instan a on

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<count name=”items”>
<xtl:attribute name=”count” select=”count(//items)” />

82

4.6. Defini on of the Instan a on Seman cs using XSL-T

</count>
<count name=”item”>

<xtl:attribute name=”count” select=”count(//item)” />
</count>
<count name=”item”>

<xtl:attribute name=”count” select=”count(//item)” />
</count>

</sample>

Instan a on Result a er Second Instan a on

<?xml version=”1.0” encoding=”UTF-8”?>
<sample xmlns:xtl=”http://research.sap.com/xtl/1.0”>

<count count=”1” name=”items”/>
<count count=”2” name=”item”/>
<count count=”2” name=”item”/>

</sample>

Lis ng 4.20: Bypassing Example

4.6. Defini on of the Instan a on Seman cs using XSL-T

The instan a on seman cs of XTL can also be definedusing XSL-T. Because of the fact that XSL-T
is limited to using XPath as its query language, this transla onal defini on of XTL’s seman cs is
restricted to the par cular query language XPath.
The easiest way of defining a transla onal seman cs would be to implement a single XSL-T

stylesheet that takes an XTL template and an addi onal XML document as instan a on data
source and outputs the instan ated template. Unfortunately, this is not possible as XSL-T (as
it is currently defined in [107]) is not capable of dynamically evalua ng XPath expressions em-
bedded in its source documents. It is possible to circumvent this restric on in two ways. First,
an XSL-T extension func on (like saxon:evaluate() implemented in [106]). Second, a ver-
cal two-stage transforma on process could be used to avoid the necessity of dynamic XPath

evalua on.
Such a two-stage transforma on process is shown in Figure 4.2. The le hand side shows a

template engine that transforms an XTL template using an XML instan a on data source XMLA
into an instan ated template XMLB. The right side of the figure shows the implementa on of
the same process using an XSL-T processor: first, the XSL-T processor compiles the XTL template
into an XSL-T stylesheet, which can a erwards be used to transform XMLA into the instan ated
template XMLB.
The stylesheet XSL-T1 represents the generic transla on process between XTL and XSL-T: it

writes the XPath expressions contained in the XTL template as values of select a ributes
into the stylesheet XSL-T2. As these XPath expressions are now no longer part of the source
document, but rather of the stylesheet, they can be evaluated by a standard XSL-T processor.

83

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

Figure 4.2.: Using a Ver cal XSL-T Pipeline to Emulate the XTL Engine

4.7. Rela on to Document Valida on

A generic XML slot markup language like XTL can also be used to check the validity of XML
documents, i.e., as a schema language [81]. The prototypical nature of templates in general
and of XTL templates in par cular makes this schema language easy to learn and use. Figure 4.3
illustrates the differences between template instan a on and valida on against a schema.

� Valida on � Instan a on

Figure 4.3.: Schema Valida on and Template Instan a on

Instan a on transforms an XTL document and an instan a on data source into an instan -
ated template, whereas valida on takes an XTL document and an XML document and answers
the ques on: Could this XML document be produced by the XTL document? In some specific
cases, even the reconstruc on of the instan a on data may be possible.
The valida on seman cs of XTL can be given denota onally [81]. Another op on is to give a

transla onal seman cs by transforming XTL to RelaxNG. This transforma on can easily be im-
plemented using XSL-T. XTL as a schema language allows to define the languages that can be
defined by regular tree languages (see [81]). It is even possible to express certain a ribute/ele-

84

4.7. Rela on to Document Valida on

ment interdependencies in XTL, a feature missing in many other schema languages (see Sec-
on 2.1.4).

As Figure 4.3 suggests, in most cases the result of the valida on process will only yield a
yes/no answer. This leads to the ques on whether the query language terms embedded in
the select a ributes in the XTL document used as schema are significant or opaque (see
Sec on 2.5.5) to the validator. Whereas [81] treats the select a ributes as opaque (which
makes them meaningless, as there is no instan a on data source supplied by the applica on
using the validator), they can be used for other purposes. First, the select a ributes could
be used to establish a link to simple types, allowing a ribute values or text element content
to be restricted. Second, the select a ributes could also be used to establish a mechanism
to validate sta c seman cs within the instance. For example, a simple iden fier could be used
that is bound when it is first referenced in a select a ribute. In subsequent references, the
current corresponding value is checked for equality against the bound value.

Giving the select a ributes a seman cs may also lead to the opportunity to par ally re-
construct the instan a on data source, as it has been suggested in Figure 4.3. An important
condi on that must be fulfilled by the query language is reversibility of the queries: an XPath
expression like //author/@name is clearly not reversible, as it is unclear how many nodes
have been consumed by the // operator before the author element has been found. For an
example of a reversible XPath subset, see Sec on 6.3.2.

� Valida on � Instan a on

Figure 4.4.: Similarity between Schema/Template and Instance

Comparing XTL to other schema languages like RelaxNG and XML Schema indicates a con n-
uum of XML Schema languages in terms of similarity between instance and schema. Similarity
between the instance and a schema/template ismainly violated in twoways: first, by the reifica-
on of elements or a ributes using a metaelement and second, by the introduc on of macros.

The similarity between a RelaxNG document and an instance is greater than that between an
XML Schema document and a corresponding instance, because of XML Schema’s strict dis nc-
on between element declara ons and type defini ons. Furthermore, the similarity between

an XTL document and a corresponding instance is greater than that between a RelaxNG docu-
ment and an instance, as RelaxNG enforces the reifica on of all elements and a ribute names
using rng:element and rng:attribute, whereas XTL allows to literally include elements

85

4. Design of a Universal, Syntax- and Seman cs-Preserving Slot Markup Language

and a ribute names. The similarity rela on between the men oned schema languages is illus-
trated in Figure 4.4.
This figure also illustrates the similar rela onship between transforma on languages and pro-

totypical template languages. Again, the similarity between an XSL-T SSM and an instance pro-
duced by it is greater than that between an XSL-T stylesheet and its corresponding result, be-
cause XSL-T SSM does not enforce a new top level document structure like XSL-T does.
According to the rela onships described, it should also be clear that XTL’s xtl:macro and

xtl:call-macro instruc ons correspond to RelaxNG’s rng:define and rng:ref in-
struc ons. Even further, these instruc ons also correspond to the defini on of types in XML
Schema. When considering instan a on, XTL’s macros correspond to the template rules in an
XSL-T stylesheet.

4.8. Conclusion

This chapter dealt with the design of XTL, a broadly applicable, syntax- and seman cs-preser-
ving slot markup language. Star ng with general design decisions, the various features of XTL
have been introduced by defining their syntax and seman cs and by giving examples for their
use. The seman cs has been defined denota onally. As Haskell has been used to express this
denota onal seman cs, a first implementa on of XTL is possible just based on this chapter. The
seman cs has also been given by transla ng XTL into XSL-T, which is only possible in a two-stage
process because of technical limita ons of XSL-T. Finally, the rela on of slot markup languages
to document valida on has been discussed.
The precise defini on of the seman cs is a contribu on of this thesis, as other template tech-

niques typically do not define the seman cs formally. The denota onal seman cs has also been
used to check the validity of a later Java implementa on of the XTL instan a on process (see
Sec on 6.2 and 7.2).

86

5
Safe Authoring of Templates

Be er safe than sorry.

(English proverb)

This chapter explains the processes Constraint Separa on and Template Valida on from Fig-
ure 3.5, which are the processes that support the safe authoring of templates. The Constraint
Separa on process, which adapts the template engine to a par cular target language is shown
in detail in Sec on 5.1, where it is also described formally as a transforma on based on the
XML Schema formaliza on introduced in Sec on 2.1.4. Sec on 5.2 introduces the Template
Valida on process, which checks the validity of a template with respect to the target language
to which the template engine has been adapted.
In the following, the target language is assumed to be defined by an XML Schema. XML

Schema is widely used for the defini on of XML dialects and is well-supported by a number
of tools, including validators and editors with support for both the crea on of XML Schema
documents and documents complying to a certain schema. Therefore, this decision directly
addresses the U liza on of Exis ng Standards goal.

5.1. Constraint Separa on

The Constraint Separa on component is responsible for conver ng the grammar of the target
language into grammars that can be used to validate templates, as well as into constraints on
the instan a on data. The inferred grammar is used by the template validator to perform the
authoring me valida on of the templates, whereas the instan a on data constraints are used

87

5. Safe Authoring of Templates

to check the instan a on data in the instan a on data validator. The grammar transformer is
therefore separa ng the authoring me from the instan a on me constraints.
The separa on process is designed such that the conclusion illustrated in Figure 5.1 can be

drawn: if a template conforms to the template language and the instan a on data conforms
to the instan a on data constraints (both emi ed by the Constraint Separa on), then the in-
stan ated template conforms to the target language grammar (which has been used as input
for the Constraint Separa on) process. The process is amazingly simple—for a discussion of its
correctness see Sec ons 5.1.5 and 7.2.5.

� Adapta on � Authoring � Instan a on

Figure 5.1.: Conclusion Enabled by the Constraint Separa on Process

The Constraint Separa on process described here relies on the separability of parts of a doc-
ument which could be created dynamically and parts of the documents which are always part
of the template. It is assumed that for all target languages to be created, markup is always
part of the template, whereas character data can be part of the template or subject to dynamic
crea on.
For declara ve text markup languages like XHTML, the assump on stated above is reason-

able. The template author—in this scenario a Web designer—is responsible for describing the
layout and the structure of the document, which is described in XHTML by markup and char-
acter data. The content of this document is typically delivered by the applica on that is using
the template to render its output. Therefore, it must also be possible to create character data
dynamically.
It is important to note that structural differences in documents of the target language can s ll

be expressed by using XTL. However, the stated assump on prevents the proposed template
approach to be used in scenarios, in which the elements of the markup itself are dynamic. An
example for such scenarios are applica ons that must be capable of producing arbitrary XML

88

5.1. Constraint Separa on

languages, which are not known before instan a on me. These applica ons therefore remain
the domain of transforma on techniques like XSL-T.

5.1.1. Introductory Example

In the following, the separa on of constraints is shown in an example. The XML Schema used
for the example is the purchase order schema po.xsd (see Lis ng A.3, [59]). An instance doc-
ument for this schema is shown in Lis ng 5.1. In the lis ng, four parts of the instance document
are shown that should be changed by the Constraint Separa on process in order to allow them
to be dynamically set or to be influenced by the instan a on data. The four cases are discussed
in the following.

<?xml version=”1.0” encoding=”UTF-8”?>
<purchaseOrder

orderDate=”1999-10-20”> ¬
<shipTo country=”US”>

<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country=”US”>

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<comment>Hurry, my lawn is going wild!</comment> ®
<items> ¯

<item partNum=”872-AA”>
<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
<item partNum=”926-AA”>

<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>

</purchaseOrder>

Lis ng 5.1: A Purchase Order with Poten ally Dynamic Parts Highlighted

89

5. Safe Authoring of Templates

First, the Constraint Separa on process must ensure that the value of the a ribute order-
Data ¬ in Lis ng 5.1 could be created dynamically using an xtl:attribute instruc on.
The same must be allowed by the Constraint Separa on for the content of the name ele-

ment—the XTL instruc on that could be used here is xtl:text.
Furthermore, an element declared to be op onal, like comment ®, should be replacable by

an xtl:if instruc on containing the same element: in this example, a comment element.
Op onality is declared by the underlying XML Schema, in this case po.xsd, by se ng the
minOccurs and maxOccurs a ributes to 0 and 1, respec vely.
Finally, repeatable elements, like the item elements within the items ¯ elements, should

be producable by an xtl:for-each instruc on with appropriate content. In this example,
appropriate means conforming to the rules for the item element. An element is considered
repeatable when the underlying XML Schema sets maxOccurs to a value greater than 1.
The Constraint Separa on process should produce a template language grammar that allows

the documents in both Lis ng 5.1 and Lis ng 5.2 as instances.
What are the modifica ons the Constraint Separa on process needs to execute to transform

the target language grammar into the correspondings template language grammar? In the fol-
lowing, it is just considered how an XML Schema may look like, if it allows both documents in
the Lis ngs 5.1 and 5.2 as instances.

<?xml version=”1.0” encoding=”UTF-8”?>
<purchaseOrder xmlns;xtl=”http://research.sap.com/xtl/1.0”>

<xtl:attribute name=”orderDate” select=”date”/>
<shipTo country=”US”>

<name><xtl:text select=”shipTo/name”/></name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country=”US”>

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<xtl:if select=”length(comment) > 0”>

<comment>
<xtl:text select=”comment”/>

</comment>
</xtl:if>

<items>
<xtl:for-each select=”items/item”>

<item>
<xtl:attribute name=”partNum” select=”partNum”/>
<productName>Lawnmower</productName>
<quantity>1</quantity>

90

5.1. Constraint Separa on

<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
</xtl:for-each>

</items>
</purchaseOrder>

Lis ng 5.2: A Purchase Order XTL Template

Enabling the use of xtl:attribute in order to create a ribute values is rather easy. The
a ribute orderDate is defined in the complex type PurchaseOrderType, which is shown
in Lis ng 5.3.

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>

<xsd:element name=”shipTo” type=”USAddress”/>
<xsd:element name=”billTo” type=”USAddress”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”items” type=”Items”/>

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date”/>

</xsd:complexType>

Lis ng 5.3: The PurchaseOrderType from po.xsd

Fortunately, the content model of the PurchaseOrderType is a sequence, so it is easy
to allow the use of xtl:attribute at its beginning. The resul ng modified Purchase-
OrderType is shown in Lis ng 5.4. There is no use a ribute at the defini on of the order-
Date a ribute, which makes it an op onal a ribute. If the a ribute orderDate would have
been defined as required using use=’required’, the Constraint Separa on process would
have to change this to use=’optional’ in order to allow the a ribute to be omi ed when
an xtl:attribute instruc on is present to create it.

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>

<xsd:element ref=”xtl:attribute” minOccurs=”0”
maxOccurs=”unbounded”/>

<xsd:element ref=”shipTo”/>
<xsd:element ref=”billTo”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element ref=”items”/>

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date”/>

</xsd:complexType>

Lis ng 5.4: The Modified PurchaseOrderType, Allowing the Use of xtl:attribute

91

5. Safe Authoring of Templates

The modified type allows the use of xtl:attribute as shown in Lis ng 5.2. However,
the modified type introduces a lot of inaccuracies. First, there is no rela on between the at-
tributes created using xtl:attribute instruc ons and the set of a ributes permi ed on
xtl:attribute’s parent element. Second, there is no guarantee that an orderDate at-
tribute created using xtl:attribute has a value that is, as required by the original a ribute
defini on, a valid value of the type xsd:date. Whereas the first problem can be addressed in
the template language grammar (i.e., it can be validated during the authoring phase), the la er
problem can only be addressed during the instan a on phase, as the data used to create the
a ribute is only available at this point.
The text node in Lis ng 5.1 that has been replaced by an xtl:text in Lis ng 5.2 is defined

in the type USAddress, which is shown in Lis ng 5.5.

<xsd:complexType name=”USAddress”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”country” type=”xsd:NMTOKEN”

fixed=”US”/>
</xsd:complexType>

Lis ng 5.5: The USAddress Type from po.xsd

In order to allow the replacement of the text node by an xtl:text instruc on, a complex
type with mixed content could be used. An example for such a type defini on is shown in List-
ing 5.6.

<xsd:complexType name=”USAddress”>
<xsd:sequence>

<xsd:element name=”name”>
<xsd:complexType mixed=”true”>
<xsd:sequence>

<xsd:element ref=”xtl:text” minOccurs=”0” maxOccurs=”1”>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”country” type=”xsd:NMTOKEN” fixed=”US”/>

</xsd:complexType>

Lis ng 5.6: The Modified USAddress Type, Allowing the Use of xtl:text

92

5.1. Constraint Separa on

The relaxed USAddress type allows the introduc on of xtl:text as shown in Lis ng 5.2,
but introduces similar problems like the introduc on of xtl:attribute above. First of all,
the mixed content model does not exclusively allow the use of either literal text or the xtl:
text instruc on, but rather allows a mixture of both. Second, there is again no guarantee on
the validity of the created text with respect to the originally defined type.
Allowing the use of xtl:if and xtl:for-each to surround op onal or repeatable ele-

ments requires introducing a choice between the original element and the respec ve XTL in-
struc on. For example, to allow the use of xtl:if to surround the op onal comment el-
ement (see Lis ngs 5.1 and 5.2, ®), a type defini on like the one shown in Figure 5.7 can be
used.

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>

<xsd:element name=”shipTo” type=”USAddress” />
<xsd:element name=”billTo” type=”USAddress” />
<xsd:choice minOccurs=”0”>

<xsd:sequence>
<xsd:element minOccurs=”1” ref=”comment” />

</xsd:sequence>
<xsd:sequence>

<xsd:element ref=”xtl:if” minOccurs=”1”
maxOccurs=”1” />

</xsd:sequence>
</xsd:choice>
<xsd:element name=”items” type=”Items” />

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date” />

</xsd:complexType>

Lis ng 5.7: The Modified PurchaseOrderType, Allowing the Use of xtl:if

Again, the introduc on of the XTL instruc on has opened up a number of new problems.
First of all, the syntac c defini on of xtl:if defines its content model based on an xsd:any
wildcard. Therefore, the modified type does not guarantee that the content of xtl:if is ac-
tually a comment element. For the introduc on of xtl:for-each, there is no guarantee
that the number of evalua ons of the xtl:for-each instruc on is between the values of
minOccurs and maxOccurs of the original type. Finally, if a sequence of mul ple op onal
or repeatable elements is enabled for the use of xtl:if and xtl:for-each, viola ons of
the UPA may occur.
Theproblemsopenedupby the simple relaxa onof the target language grammar just demon-

strated are adressed with the means introduced in the sec ons below. Sec on 5.1.2 introduces
the Constraint XML Schema Defini on Language (CXSD), an extension of XML Schema, which
extends XML Schema in its expressive power in a way needed by the Constraint Separa on pro-
cess. Furthermore, Sec on 5.1.3 introduces the Instan a on Data Constraint language (IDC), a
very simple XML dialect that is used by the Constraint Separa on process to express constraints
determined on the instan a on data. Based on these prerequisites, the Constraint Separa on

93

5. Safe Authoring of Templates

process is introduced in Sec on 5.1.4. Sec on 5.1.5 demonstrates that the proposed process
preserves that constraints defined by the target language. Finally, Sec on 5.1.6 describes the
implementa on of the Constraint Separa on and Sec on 5.1.7 introduces an extension of the
Constraint Separa on process called Par al Templa za on.

5.1.2. The Constraint XML Schema Language CXSD

As shown in the example above, valida ng a template with respect to its instan a on results
requires a powerful schema language. XML Schema itself is not powerful enough to express
the constraints that must hold in order to assert that the instan ated template conforms to the
target language XML Schema. In other words, XML Schema is not closed under composi onwith
the XML Schema of XTL.
There are three reasons for this: first, the composed schemamust be able to express complex

constraints between a ributes and elements like the one above: either some element has an at-
tribute named attr or it has a child element named xtl:attribute and a name a ribute
with the value attr. XML Schema is not capable of expressing such complex constraints. Re-
laxNG allows to express choices between a ributes and child elements, but is not able to ex-
press the further condi on on the xtl:attribute element. Schematron [99] would be ca-
pable of expressing the constraint above.
Second, the composed schema must also be able to express alterna ves for the element

content. One of such constraints occurs when the constraint separa on process enables the
use of xtl:text in an element that is defined to be of a simple type in the target language
(see Sec on 5.1.4). The constraint basically states that an element’s content is either complying
to some simple type or is an xtl:text element. Such alterna ves are also not expressible
using XML Schema (even not using mixed content elements). RelaxNG is capable of expressing
such alterna ves, whereas Schematron cannot express this, as it has no features to check text
nodes against simple types.
Finally, the introduc on of xtl:if and xtl:for-each statements leads to UPA viola-
ons. Therefore, it is necessary to relax the UPA constraint. This makes the resul ng schema

harder to evaluate, but valida on is s ll possible—as is shown in Sec on 5.2—because the
unique par cle a ribu on is s ll intact, but its applica on is delayed un l the evalua on of
further constraints.
In order to fulfill the goal of U liza on of Exis ng Standards, it has been decided to add a

constraint language to XML Schema. The basic idea is to use OCL [136] constraints embedded as
annota ons in an XML Schema in order to strengthen its expressiveness. The resul ng schema
language is called CXSD. Technically, the embedded constraints are always invariants in the sense
defined by the specifica on.
There are mul ple reasons why the use of OCL is beneficial. First, there exist powerful im-

plementa ons like the Dresden OCL Toolkit [183] and the implementa on of the Model De-
velopment Tools (MDT) [53] subproject of Eclipse. Second, the OCL language allows the easy
adapta on of meta-models, which allows arbitrary capabili es to be built in to the language,
e.g., the capability to check simple types.
Even further, CXSD can improve the currently unsa sfying transforma on of the UnifiedMod-

eling Language (UML) models into XML Schema [34; 21]. If the UML model is enhanced using

94

5.1. Constraint Separa on

OCL constraints, which is an important technique to build concise models that could be used
in MDA processes, the constraints are typically ignored when transforming into XML Schema.
With CXSD, the constraints could simply be transformed into corresponding constraints in the
schema, thereby greatly enhancing the conformity of the transforma on result with the UML
model.
By design, CXSD schema is unable to relax the constraints imposed on a complying document

by its underlying XML Schema, i.e., each of the OCL constraints is restric ng the number of com-
plying instances (or leaves it unchanged). More specifically, if a document is not complying to
the underlying XML Schema, it will also not comply to the CXSD document, while the reverse
is not true. To dis nguish between the language accepted by a CXSD schema from that of the
underlying XML Schema, the first schema is denoted by S+ and its language therefore byL(S+),
whereas the la er is designated by S with its accepted language being L(S). With these no-
ta ons, the fact that CXSD only restricts the constraints contained in its underlying schema can
be formally notated as L(S+

T◦) \ L(ST◦) = ∅.
To understand the meaning of the OCL constraints which are introduced by the constraint

separa on process, it is necessary to consider the underlyingmetamodel. AnUML class diagram
of the metamodel is shown in Figure 5.2.

Figure 5.2.: Meta-model for the CXSD constraints

The metamodel is mostly self-explaining, as it closely resembles the Document Object Model
(DOM). The node class from DOM is represented by the MMNode class. In addi ons to DOM’s
capabili es, addi onal rela ons corresponding to XPath axes have been added: for example the
capability to access the ancestors of each node that has been added to the MMNode. Further-
more, a method isValidLiteral has been added to the TextNode that allows to check
whether the text of the node is compliant to a simple type denoted by a passed QName.

95

5. Safe Authoring of Templates

As already has been stated above, all constraints in the CXSD are invariants. This makes it
unnecessary to a ach the keyword inv to the constraints, especially since the naming of con-
straints is a part of CXSD (as already described). Furthermore, the OCL specifica on [136] de-
fines that invariants are rela ve to a contextual type. In the standard use of OCL as an extension
to a UML model, this context is given using the context keyword along with a textual specifi-
ca on of the context type. In CXSD, the context is inferred from the posi on of the constraint
within the XML Schema. CXSD allows constraints to be a ached to a ributes and elements as
well as to types. In the la er case, the constraint must hold for all elements complying to that
type. Addi onally, constraints can be added to restric ons (which fits the fact that constraints
are restric ve by nature), but not to extensions (as no syntax for the revoca on of constraints
has been defined to be part of CXSD).
The embedding of the OCL constraints into XML Schema is based on XML Schema’s appinfo

feature [180, Sec on 3.13]. Typically, the embedding is done in aCDATA sec on to avoid having
to escape characters like <, which are quite important in OCL. The CXSD language allows the
assignment of a simple name and a message to each constraint. The simple name is intended
to be used to denote the constraint in error messages. The message should give more details
and is proposed to be shown as a detailed error descrip on when the constraint fails.
A complete element declara on with an embedded OCL constraint is shown in Lis ng 5.8.

It shows the declara on of a test element. The element declara on contains an xsd:an-
notation element, which in turn contains an xsd:appinfo element having its source
a ribute set to http://research.sap.com/cxsd/1.0. This element contains the root
element of the CXSD invariant, cxsd:inv. This element has two subelements, cxsd:ocl,
containing the OCL representa on of the constraint as a CDATA sec on, and cxsd:message,
a human-readable message that is reported if the constraint fails during the CXSD valida on
process. The evalua on of the constraint takes place whenever a node in an XML document is
successfully validated against the element declara on into which it has been embedded. Then,
the context of the OCL evalua on is this node.

<xsd:element name=”test”>
<xsd:annotation>

<xsd:appinfo source=”http://research.sap.com/cxsd/1.0”>
<cxsd:inv name=”restricted-atribute-count”>

<cxsd:ocl>
<![CDATA[

self.attributes->size() <= 2
]]>

</cxsd:ocl>
<cxsd:message>

At maximum, 2 attributes can be present.
</cxsd:message>

</cxsd:inv>
</xsd:appinfo>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence />
<xsd:attribute name=”a” type=”xsd:string” />

96

5.1. Constraint Separa on

<xsd:attribute name=”b” type=”xsd:string” />
<xsd:attribute name=”c” type=”xsd:string” />

</xsd:complexType>
</xsd:element>

Lis ng 5.8: A complete CXSD Element Declara on with an Embedded OCL Constraint

The constraint restrains the number of a ributes allowed at the test element to two out of
three a ributes a, b and c that are allowed by the schema itself. Therefore, the XML snippet
<test a=’1’ b=’2’/> would be valid, whereas <test a=’1’ b=’2’ c=’3’/>
would not be valid, because the OCL constraint evaluates to false.
In the following, two addi onal examples show how the CXSD can be leveraged to express

constraints that would not be expressible using XML Schema alone. First, an example demon-
strates how CXSD can be used to express an exclusive-or between a ributes, which is part of
the XML Schema specifica on. A erwards, an exclusive-or rela on between an element and an
a ribute is shown, which is part of the XSL-T specifica on. Both examples show the expressive
power and value of CXSD.

Refining the XML Schema Self Descrip on XMLschema.xsd

XML Schema does not allow to express exclusive-or rela ons between a ributes. An example
for such an exclusive-or rela on can be found in the XML Schema specifica on itself: at an ele-
ment declara on, either a default or a fixed a ribute can be present [180, Sec on 3.3.3].
Note that this lack of expressiveness makes it impossible to define an XMLSchema.xsd com-
pletely equivalent to the specifica on, as not all constraints given by the XML Schema specifica-
on can be expressed in it. While this is inexpressible in XML Schema, it can well be expressed

using CXSD, as is shown in Lis ng 5.9.

let
fixedPresent:Boolean =

self.attributes->select(name=’fixed’)->size() > 0,
defaultPresent:Boolean =

self.attributes->select(name=’default’)->size() > 0
in

not(fixedPresent and defaultPresent)

Lis ng 5.9: Expressing a Constraint from the XML Schema Specifica on with CXSD

It is easy to see that the constraint first checks whether the fixed and default a ributes
are present by selec ng them from the attributes axis defined in the meta-model and
stores the result in the Boolean variables fixedPresent and defaultPresent. Af-
terwards, the constraint states that not(fixedPresent and defaultPresent)must
be true, which prevents both a ributes from being present at the same element declara on.
Another example that can be formulated in CXSD is the complex rela on between the at-

tributes name, ref and the text content of an xsd:element element stated in [180, Sec on

97

5. Safe Authoring of Templates

3.3.3] (which basically states that a non-global element has either a name or a ref a ribute,
and is empty besides the xsd:annotation element in the la er case).
Even the most complex restric on dictated by the XML Schema specifica on, the UPA, could

be expressed using CXSD. This could be achieved by applying the concept of Brzozowski deriva-
ves [33] to XML Schema processing. This sugges on stems from [168], and the concept of

ini al determinism introduced there could easily be implemented in OCL (as the calcula on
mostly includes set opera ons, which are well-supported in OCL), allowing the monitoring of
the UPA constraint in CXSD.

Implemen ng Constraints of the XSL-T 2.0 Specifica on

XSL-T 2.0 (as well as its predecessor version) defines a lot of elements in which the existence
of mixed content implies the absence of the select a ribute. An example for this is the
xsl:with-param element which can be used to pass parameters to a template, for ex-
ample when calling a named template with xsl:call-template. The value of the pa-
rameter is either retrieved by evalua ng the select a ribute (if present) or by evalua ng
the so-called sequence constructor parented by the xsl:with-param element [107, Sec on
10.1.1]. Other elements, for which a similar constraint is contained in the specifica on, include
xsl:attribute, xsl:comment, etc.
A constraint enforcing this syntax is shown in Lis ng 5.10. The constraint basically counts

the number of text or element nodes within the xsl:with-param element and determines
whether it carries a select a ribute, and checks that the existence of text or element nodes
implies the absence of select.

let
selectPresent:Boolean =

self.attributes->select(name=’select’)->size() > 0,
childrenPresent:Boolean = self.children->select(

oclIsTypeOf(ElementNode) or oclIsTypeOf(TextNode)
)->size() > 0

in
childrenPresent implies not(selectPresent)

Lis ng 5.10: Expressing a Constraint from the XSL-T 2.0 Specifica on with CXSD

5.1.3. The Instan a on Data Constraint Language IDC

In the previous sec on, the validity of the instan a on data has been assumed. In order to sat-
isfy this assump on, a second language called IDC has been developed. This simple language
allows to specify proper es of the instan a on datawhich could later be validated in the instan-
a on data validator (see Sec on 6.3) or asserted using the alterna ve approach of Template

Interface Genera on (see Sec on 6.3.2).
As opposed to the CXSD, the IDC language has been specifically designed to fit exactly the

needs of the constraint separa on process. It is therefore a very domain specific language,

98

5.1. Constraint Separa on

which is not intended to be reused in other scenarios. This also explains the limited capabili es
of the IDC.
Similar to the CXSD, IDC statements are embedded into an XML Schema using its appinfo

element [180, Sec on 3.13]. An IDC statement is always embedded into the reference to an
element from the XTL.xsd. A par cular IDC statement starts with a single constraints
element that contains a sequence of constraint elements. Each of these constraints is itself
empty, but has the following a ributes:

1. The type a ribute gives the qualified name of a (simple or complex) type to which the
instan a on data item must comply. If a mul plicity (see below) is specified, each of the
instan a on data items must comply to that type.

2. The min and max a ributes are used to specify the lower and the upper limit of the mul-
plicity of this instan a on data item. The a ributes default to a value of 1, whichmeans

that exactly one single instan a on is expected. The types of the a ributes min and max
are the same as the types of the XML Schema a ributes minOccurs and maxOccurs.

3. The for-name a ribute allows to specify an addi onal qualified name. This a ribute
is only valid if the IDC statement is embedded into an xtl:attribute reference. It
restricts the par cular constraint to be valid only for the crea on of the a ribute with the
specified name. This way, mul ple IDC constraints can be formulated for a single posi on
at which xtl:attribute can be used to create several, differently typed, a ributes.

Figure 5.11 shows an example of an IDC fragment. It shows an IDC statement that is em-
bedded into a reference to xtl:attribute. It contains exactly one constraint that restricts
the instan a on data value to be used for the crea on of the order (value of for-name)
a ribute to be of type date (value of type).

<xsd:element ref=”xtl:attribute” minOccurs=”0” maxOccurs=”unbounded”>
<xsd:annotation>

<xsd:appinfo source=”http://research.sap.com/xtl/idc/1.0”>
<idc:constraints>

<idc:constraint type=”xsd:date”
for-name=”orderDate”/>

</idc:constraints>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>

Lis ng 5.11: An Instan a on Data Constraint in an XML Schema fragment

5.1.4. Constraint Separa on Process

In order to understand the construc on of the template language schema, it is necessary to
consider the rela on between the target language schema and the template language schema
(viewed both as CXSD document and as its underlying XML Schema), which is shown in Fig-
ure 5.3. The figure assumes that the instan a on data is valid with respect to the instan a on

99

5. Safe Authoring of Templates

data constraints. Please note that the figure already reflects that the target language schema is
exactly defined by the CXSD document, i.e., T◦ = L(S+

T◦). There are four cases:

(a) This case is reflec ng the fact that templates are prototypical by defini on (see Defini-
ons 2.5 and 2.11): each target language document must also be part of the template

language, i.e., ∀t ∈ T : t ∈ T◦, or, in terms of languages, T ⊆ T◦.

(b) All documents which are complying to the template language must instan ate into docu-
ments from the target language. This is reflec ng the requirement of preserva on, mean-
ing that all constraints from the target language schema have been successfully trans-
ferred into the template language schema (considered as an CXSD document). Formally
∀t◦ ∈ T◦ : instantiate(d, t◦) ∈ T for valid instan a on data d.

(c) Documents that only comply to the template language schema considered as an XML
Schema but do not comply to it considered as CXSD document do not instan ate into
the target language. As these are documents that may be constructed using an editor
that only supports XML Schema but not CXSD, the number of documents falling into this
case should be minimized. This helps crea ng valid templates with standard tools, a goal
called approxima on. Formally, L(ST◦) \ L(S+

T◦) should be minimized.

(d) Documents that do not even comply to the template language schema considered as XML
Schema do not instan ate into the target language: ∀t◦ /∈ T◦ : instantiate(d, t◦) /∈ T
independently of the instan a on data d.

Figure 5.3.: Set Rela ons between Template and Target Language

To restrict the complexity of the Constraint Separa on step while s ll being able to present a
working solu on, it is necessary to restrict both the XML Schema features used in the defini on
of the target language as well as the complexity of the XTL itself.

100

5.1. Constraint Separa on

The four most important instruc ons of XTL are considered by the following descrip on of
the constraint separa on process: xtl:attribute, xtl:text, xtl:if and xtl:for-
each. Support for xtl:include is not considered, but xtl:include could easily be en-
abled at all places in which xsd:any wildcards are used in the XML Schema. Addi onally,
xtl:macro and xtl:call-macro are not supported by the constraint separa on process
described here.
On the other side, the set of XML Schema features used to describe the target language had

to be restricted as well. Most notably, xsd:all and mixed content models and subs tu on
groups are not considered. Iden ty-constraint defini ons are also not considered, as their treat-
ment would require advanced XPath rewri ng techniques.
To describe the constraint separa on process, an XML Schema instance as defined by Defi-

ni on 2.16 is assumed as a target language grammar. The template language grammar is no
longer an XML Schema document, as it contains OCL constraints (expressing authoring con-
straints) as well as IDC constructs (expressing instan a on data constraints). Defini on 5.1 be-
low contains extension points at which both types of constraints can be stored. The constraints
themselves will not be formalized beyond what has been said in Sec on 5.1.2 and 5.1.3, as this
is not necessary to document the basic idea of the Constraint Separa on process.

Defini on 5.1 (Set of extended content models). The set of extended content models ECM(Σ,
N, E) over the set of simple typesΣ, the set of non-terminal symbolsN and the set of qualified
names for elements E is defined recursively as follows:

• The empty sequence ϵ is an extended content model: ϵ ∈ ECM.
• All simple types are extended content models: ∀σ ∈ Σ : σ ∈ ECM.
• All non-terminal symbols are extended content models: ∀n ∈ N : n ∈ ECM.
• All element names are extended content models: ∀e ∈ E : e ∈ ECM.
• All element names equipped with an authoring constraint ca and an instan a on data
constraint ci are extended content models: ∀e ∈ E : e⟨ca, ci⟩ ∈ ECM.

• For two extended content models cm1 ∈ ECM and cm2 ∈ ECM, the results of the follow-
ing opera ons are also extended content models, i.e.,

– cm1, cm2 ∈ ECM,meaning a sequence consis ng of the two extended contentmod-
els,

– cm1 | cm2 ∈ ECM, meaning a choice between the two extended content models,
and,

– cm1{i, j} ∈ ECM, meaning a repe on of the extended content model cm1, where
i ∈ N, j ∈ N+ ∪ {∗}, and j ̸= ∗ ⇒ i ≤ j, with the special symbol ∗ meaning
unrestricted repe on. �

ACXSD schemawith embedded IDC constructs is an XML Schemaas defined inDefini on 2.16,
but with the no on of the content model as defined in Defini on 2.18, replaced by that of an
extended content model as defined in Defini on 5.1.
The Constraint Separa on process transforms the target language grammar T = (Σ, N,E,A,

N•, R) into the template language grammar T ◦ = (Σ, N,E◦, A,N•, R
◦), where

• E◦ = E ∪ {xtl:attribute,xtl:text,xtl:if,xtl:for-each}, i.e., the set of
elements from the target language grammar extended by the elements xtl:attri-
bute, xtl:text, xtl:if and xtl:for-each,

101

5. Safe Authoring of Templates

• R◦ =
∪
r∈R

{X → cs(e, ad∗, cm)|r = X → e(ad∗, cm)}, with the constraint separa on

func on cs as described below.

The constraint separa on func on cs(e, ad∗, cm) is defined as follows: cs(e, ad∗, cm) = e
(ad∗◦, cm◦) where

• ad∗fixed = fixed(ad∗) is the set of a ribute declara ons that assign a fixed value to the
declared a ribute,

• ad∗required = req(ad∗) \ ad∗fixed is the set of a ribute declara ons that declare required
a ributes without an assigned fixed value,

• ad∗relaxed =
∪

ad∈ad∗
{(a, σ, 0, f)| ad = (a, σ, i, f)} is the a set of a ribute declara ons that

corresponds to ad∗required, but has all its a ribute declara ons’ required cardinali es re-
laxed to op onal (or 0 according to Defini on 2.17),

• ad∗other = ad∗ \ ad∗required \ ad∗fixed is the set of a ribute declara ons that are neither
required nor have a fixed value assigned,

• ad∗◦ = ad∗fixed ∪ ad∗relaxed ∪ ad∗other is the new set of a ribute declara ons a er the con-
straint separa ons, which is the union of the sets of the fixed, the other and the relaxed
a ribute declara on sets,

• cm◦ =

{
cs′(cm) if n = 0,

xtl:attribute{m,n}⟨cattra (ad∗relaxed), c
attr
i ⟩, cs′(cm) otherwise

wherem = | ad∗required | and n = m + | ad∗other |.
The helper func on cs′(cm) is in turn recursively defined over the structure of contentmodels

(according to Defini on 2.18, as its arguments are content models from the target language
grammar) as follows:

• cs′(ϵ) = ϵ,
• cs′(σ) = (S|xtl:text)⟨ctexta (σ), ctexti ⟩
• cs′(N) = N ,
• cs′(e) = e,
• cs′(cm1, cm2) = cs′(cm1), cs′(cm2),
• cs′(cm1 | cm2) = cs′(cm1)| cs′(cm2),

• cs′(cm{i, j}) =

{
cs′′(e{i, j}) if cm = e where e ∈ E,

cs′(cm){i, j} otherwise

It should be noted that the relaxa on of the simple type σ to the general string type S in the
defini on of cs′(σ) arises from the fact that for elements with mixed content, no simple type
restric ng the eventual text content can be specified in XML Schema [180]. The restric on has
therefore been moved into the corresponding authoring constraint ctexta (σ).

The func on cs′ introduced above basically performs an iden ty transforma on on the con-
tent model, except for the case in which a reference to an element is found within a content
model. In this case, the processing is actually done by the helper func on cs′′, which is defined
as follows:

cs′′(e{i, j}) =

xtl:if⟨cifa (e), cifi ()⟩|e{0, 1} if i = 0 and j = 1,

e{1, 1} if i = j = 1,

xtl:for-each⟨cfor−each
a (e), cfor−each

i (i, j)⟩|e{i, j} otherwise

102

5.1. Constraint Separa on

The construc on of the referenced authoring and instan a on data constraints follows be-
low. It is important to note that the authoring constraints are given as expressions over a formal
representa on (see Sec on 2.1.3) of the XML instance to be validated, whereas the instan a-
on data constraints are given as sets of tupels (a, σ, i, j), where a is an a ribute name, σ is

a simple type and i and j are minimum and maximum cardinali es for the instan a on data.
The free variable v in the authoring constraints refers to the node against which the constraint
is validated.

cattra (ad∗relaxed) = ∀(a, σ, i, f) ∈ ad∗relaxed : c1(a, v) ⇔ c2(a, v), where

c1(a, v) = ¬ hasAttr(v, a)

c2(a, v) = ∃v′ ∈ children(v) : label(v) = xtl:attribute ∧ attr(v′,name) = a

cattri (ad∗relaxed) =
{
(a, σ,−,−)|(a, σ, i, f) ∈ ad∗relaxed

}

ctexta (σ) =

Valid(σ, ϵ) if children(v) = ϵ,

Valid(σ, value(v′)) if children(v) = v′ ∧ label(v′) = ⊤,

true if children(v) = v′ ∧ label(v′) = xtl:text,
false otherwise

ctexti (σ) = {(−, σ,−,−)}
cfor−each
a (e) = children(v) = v′ ∧ label(v′) = e

cfor−each
i (i, j) = {(−,−, i, j)}

cifa (e) = children(v) = v′ ∧ label(v′) = e

cifi () = ∅

The xtl:text authoring constraint ctexta is valida ng the content of the xtl:text ele-
ment against the simple type σ expected at the loca on in the document at which xtl:text
has been allowed by the Constraint Separa on process, whereas the xtl:for-each author-
ing constraint cfor−each

a is only checking for the name of the contained element. The reason for
this behavior is that the xtl:text element is declared to allow mixed content, in which case
the simple type to which the content should comply could not be specified. On the other hand,
thextl:for-each declara onwithin theXTL.xsd schema enforces a strict processing (see
[180, Sec on 3.10.1]) of the elements complying to the wildcard within the xtl:for-each
contentmodel. The strict processing allows thextl:for-each authoring constraint to check
only for the name of the element within it. The same argumenta on also holds for the xtl:if
authoring constraint cifa (e).

5.1.5. Proof of the Preserva on of the Target Language Constraints

The following argumenta on shows that instan a ng a template which has been validated as
suggested by the mechanisms in Chapter 5 yields a document from the target language. This

103

5. Safe Authoring of Templates

argumenta on, together with the roundtrip test case described in Sec on 7.2 shows the fulfill-
ment of the Safe Authoring goal.
For the argumenta on, the following assump ons are made:
• The target language should be denoted T and is described by the schema T = (Σ, N,E,
A, N•, R).

• The template language is denoted by T◦ and described by the CXSD schema T ◦ = (Σ, N,
E◦, A,N•, R

◦). This expanded schema is derived from T by applying the process de-
scribed in Sec on 5.1.4.

• A template t◦ is an XML document (V ◦, v◦•, label
◦, children◦, attr◦, value◦) with t◦ ∈ T◦

that belongs to the template language, i.e., it belongs to the target language’s schema
t◦ ∈ L(T ◦).

• The instan a on data is denoted by d and is assumed to sa sfy the instan a on data
constraints I .

Given these assump ons, it can be shown that the instan ated template belongs to the tar-
get language, i.e., instantiate(d, t◦) ∈ T. This fact can be shown by giving two proofs for sub
statements: First, it must be shown that each node in the instan ated template has at least
the a ributes it is required to have and that the a ribute values are of the correct type. Sec-
ond, it must be shown that each node sa sfies its content model, i.e., that its children have
the exact type (simple or complex). Proving both statements is equivalent to proving the main
statement, as they define local validity against the defined XML Schema subset in the sense of
[180, Sec on 2.1].
In the following, the instan ated template is named t = instantiate(d, t◦) and is also a well-

formed XML document, i.e., t = (V, v•, label, children, attr, value). Furthermore, the one-to-
one rela onship between rules in the target and the template language grammar established
by the Constraint Separa on process in Sec on 5.1.4, is formalized by a func on cr (“corre-
sponding rule”) that maps a rule r ∈ R from the target language grammar to a rule r◦ ∈ R◦ of
the template language grammar, i.e., cr(X → e(ad∗, cm)) = X → cs(e, ad∗, cm).

5.1.5.1. Completeness of the Set of Required A ributes

The following is valid for each v ∈ V . Assume that v has been instan ated from the node v◦,
which has been produced by a rule r◦ = X → e(ad∗◦, cm◦) ∈ R◦. Because of the one-to-one
rela onship between rules in the template and the target language grammarmaintained by the
constraint separa on process, the node v must comply to the rule r ∈ R with r◦ = cr(r).
Then it must be shown that ∀(a, σ, i, f) ∈ req(ad∗) : hasAttr(v, a). Depending on whether

the required a ribute is or is not part of the template t◦, the following two cases must be con-
sidered:

• If the a ribute is contained literally in the template, i.e, if hasAttr(v◦, a), the a ribute
will also be part of the instan ated template t, i.e., hasAttr(v, a), as the instan a on
never removes a ributes (see Chapter 4). The a ribute will always be contained literally
in the template if it is required and has an assigned fixed value, since this a ribute is also
required by the template language grammar.

104

5.1. Constraint Separa on

• If the a ribute is missing in the template, i.e., if¬ hasAttr(v◦, a)), it is necessary to further
consider the rule r◦. If the rule r, from which r◦ is origina ng, had a ribute declara ons
for required a ributes, the rule r◦ will have an extended content model on the right side,
which adds the constraint c1(a, v◦) ⇔ c2(a, v

◦) (see Sec on 5.1.4) for each a ribute
required by the target language grammar (butwithout a fixed value) to the right hand side
of r◦. As c1(a, v◦) = ¬ hasAttr(v◦, a) is true since it follows from¬ hasAttr(v◦, a) and the
fact, that the template instan a on is not removing a ributes from the template, c2must
also be true to sa sfy c1(a, v◦) ⇔ c2(a, v

◦), therefore c2(a, v◦) = ∃v′ ∈ children(v◦) :
label(v◦) = xtl:attribute ∧ attr(v′,name) = a must evaluate to true. This means
that v◦ is parent to an xtl:attribute instruc on which has a name a ribute with
the value a. From the existence of this xtl:attribute child element hasAttr(v, a)
can be inferred using the seman cs of xtl:attribute in Lis ng 4.7.

5.1.5.2. Compliance to the Content Model

Compliance of the nodes in the instan ated template to their proposed content model as de-
fined byT can be shown by induc on over the nodes in t. The induc on starts with nodeswhich
have simple content (i.e., the leaves of the tree formed by the XML document t). The induc on
step shows that a nodewhich is containing only nodes that fulfill their proposed contentmodels
also fits its own content model.

Induc on start For each rule r ∈ R producing simple content, i.e., for each rule r = X →
e(ad∗, σ), there is a corresponding rule r◦ = cr(r) ∈ R◦. In the following it is shown that if
a node v◦ in the template is produced by the rule r◦, the node v instan ated from v◦ will be
valid with respect to the rule r in terms of its content, i.e., the node v will have content which
complies to σ.
As r◦ is created from r using the Constraint Separa on process described in Sec on 5.1.4, it

has the form X → e(ad∗◦, (S|xtl:text)⟨ctexta (σ), ctexti ⟩). As the template t◦ is valid with
respect to T ◦ by assump on, the constraint ctexta (σ) evaluates to true for v◦.
Itmust be shown that either children(v) = ϵwith Valid(σ, ϵ) or children(v) = v0with label(v0)

= ⊤ and Valid(σ, value(v0)). There are three cases depending on the number and type of the
children of v◦:

• If the node v◦ has no children, i.e., if children◦(v◦) = ϵ, then the node v in the instan ated
templatewill also have no children (due to the seman cs of XTL), i.e., children(v) = ϵ. The
empty node v is valid with respect to r, as ctexta (σ) is true in this case exactly if Valid(σ, ϵ),
which has been reasoned above.

• If the node v◦ has exactly one child, which is a text node, i.e., if children(v◦) = v◦0 and
label(v◦0) = ⊤, the value of this node, value(v◦0), is literally transferred into the instan-
ated template, i.e., children(v) = v0, label(v0) = ⊤ and value(v0) = value(v◦0). From

the fact that the authoring constraint Valid(σ, value(v◦0)) is true by assump on, it follows
that Valid(σ, value(v0)) holds, too. The last expression means that v is valid with respect
to the rule r.

105

5. Safe Authoring of Templates

• If the node v◦ has exactly one child, i.e., children(v◦) = v◦0 , and if this child node is an
xtl:text element node, i.e., label(v◦0) = xtl:text, the instan ated node vwill have
one child node v0with children(v) = v0, which is a text node, i.e., label(v0) = ⊤which has
a value value(v0) = d taken from the instanta on data. The instan a on data constraint
ctexti = (−, σ,−,−) asserts that d ∈ σ and therefore, that v complies to the rule r.

There are no other cases in which ctexta evaluates to true, therefore, there are no other se-
quences of children v◦ can have without viola ng the assumed authoring constraint ctexta .

Induc on step For each rule r ∈ R producing non-simple content, i.e., for each rule r =
X → e(ad∗, cm) with cm being one of ϵ,X ∈ N, e′ ∈ E, (cm1, cm2), (cm1|cm2), cm1{i, j}
with cm1, cm2 ∈ CM(Σ, N,E), there is a corresponding rule r◦ = cr(r) ∈ R◦. It must be
shown that the node v instan ated from v◦ is valid with respect to the rule r, if v◦ is valid with
respect to r◦.
Depending on the concrete value of cm, the following cases must be considered:

• If cm = ϵ, the transformed rule r◦ will also be of the form X → e(ad∗, ϵ). Thus, the
node v◦ will have an empty child sequence children(v◦) = ϵ, which is instan ated into
an empty child sequence on the instan ated node v, i.e., children(v) = ϵ. Obviously, this
sequence sa sfies the content model defined by r.

• If cm is a non-terminalX ∈ N , the rules r and r◦ are again iden cal. Since the instan a-
on of an arbitrary non-XTL node in a template yields the node itself, with the children in

the instan a on being the instan ated children from the template, validity is not affected
in this case. Therefore, if v◦ complies to rule r◦, v complies to r as well.

• If cm is an element name e′ ∈ E, the transformed rule r◦ will be of the form X →
e(ad∗, e′), i.e., the child sequence of node v◦ will be children(v◦) = v◦0 with label(v

◦
0) = e′.

The instan a on of this node will lead to node v with the child sequence children(v)= v0
with an equally named child: label(v◦0) = e′. Therefore, v complies to r.

• If cm is the concatena on cm1, cm2 of two content models cm1 and cm2, the corre-
sponding transformed rule will be of the form X → e(ad∗, (cm′

1, cm
′
2)). If the node

v◦ has the child sequence children(v◦) = v◦10v
◦
11 . . . v

◦
1nv

◦
20v

◦
21 . . . v

◦
2m, where the nodes

v◦i0v
◦
i1 . . . v

◦
in are valid with respect to the content model cm′

i for i ∈ {1, 2}, the instan-
ated node v will have the child sequence children(v) = v10v11 . . . v1nv20v21 . . . v2m,

which will be valid with respect to rule r if and only if the child nodes vi0vi1 . . . vin are
valid with respect to the content model cmi for i ∈ {1, 2}. In other words, the recursive
instan a on process does not change the validity of sequences.

• For content models cm which are the alterna ve cm1 | cm2 of two content models cm1

and cm2, the argumenta on for sequences above holds analogously.

• If cm is a content model with cardinali es, cm1{i, j} for some content model cm1, the
argumenta on further depends on the content model cm1. If this is not just an element
e, the argumenta on for sequences and alterna ves above can be applied. If cm1 is just

106

5.1. Constraint Separa on

an element e, several cases depending on the minimum and maximum cardinality must
be considered:

◦ If i = j = 1, then this case degenerates to the case where cm is an element name e′

considered above already.

◦ If i = 0 and j = 1, the content model cm will be of the form xtl:if⟨cifa (e), cifi ()⟩|
e{0, 1}. The child sequence children(v◦) can take three forms:

- For an empty child sequence, i.e., children(v◦) = ϵ, the instan ated node v will
also have an empty child sequence, i.e., children(v) = ϵ. This node v is valid
with respect to the rule r, as the minimum cardinality for the element e was 0.

- If the child sequence contains only one node labeled e, i.e., children(v◦) = v◦0
with label(v◦0) = e, the instan a on will give a node v with the child sequence
children(v) = v0 and label(v0) = e, which is again valid with respect to the rule
r, as the maximum cardinality for the element e is 1.

- If the child sequence consists of a single node with the label xtl:if, i.e.,
children(v◦) = v◦0 with label(v◦0) = xtl:if, the authoring constraint cifa (e)
defines the child sequence of v◦0 to be children(v◦0) = v◦1 with label(v◦1) = e.
A er instan a on, this yields a node v with either an empty child sequence (if
the instan a on data d used to instan ate the xtl:if instruc on evaluated
to false) or a single-element child sequence children(v) = v0 with label(v0) = e
(if d evaluated to true). In both cases, the node v is valid with respect to the
rule r, as it has been shown in the two cases above.

◦ In any other case, cm will be of the form xtl:for-each⟨cfor−each
a (e),cfor−each

i

(i, j)⟩|e{i, j} and the child sequence children(v◦) can take two forms:

- If the child sequence is of the form children(v◦) = v◦0v
◦
1 . . . v

◦
n with i ≤ n ≤ j

and ∀0 ≤ k ≤ n : label(v◦k) = e, the instan ated node v has an analogous child
sequence children(v) = v0v1 . . . vn with ∀0 ≤ k ≤ n : label(vk) = e, which is
also a valid sequence with respect to the rule r.

- If the child sequence consists of a single node labeled xtl:for-each, i.e.,
children(v◦) = v◦0 with label(v◦0) = xtl:for-each, the authoring constraint
cfor−each
a (e) restricts the child sequence of v◦0 to be children(v◦0) = v◦1 with
label(v◦1) = e. The instan a on of this gives v a child sequence children(v) =
v0v1 . . . vn with ∀0 ≤ k ≤ n : label(vk) = e. The instan a on data constraints
asserts that i ≤ n ≤ j. Taken together, this asserts that the node v complies
to the rule r.

5.1.6. Visitor-based Implementa on of the Constraint Separa on

An implementa on of the Constraint Separa on process is much harder than it may look a er
considering the descrip on in Sec on 5.1.4. There are two reasons for this: first, the imple-
menta on has to deal with the “syntac c sugar” that is removed from the descrip on in the

107

5. Safe Authoring of Templates

previous sec on (actually, it is hidden in the transforma on from an XML Schema to an XGram-
mar). Second, an implementa on has to choose between a number of libraries available for
XML Schema, each with their own peculiari es and advantages.
There is a number of libraries for themanipula on of XML Schemas,most notably, the schema

manipula on library built into XMLBeans [8] and the analogous library built into Xerces [11].
Furthermore, it is possible to compile the XML Schema metamodel, i.e., XMLSchema.xsd,
with JAXB, leading to another possibility for the treatment of XML Schema as an object model.
The most important difference is the level of abstrac on of the library, e.g., the JAXB-generated
library represents the concrete schema syntax, whereas the other libraries represent a more
abstracted view on the XML Schema.
While it would be very helpful to work on the more abstract syntax level, it is necessary to

manipulate the XML Schemas on the concrete syntax level in order to introduce the CXSD and
IDC constraints. Unfortunately, the libraries providing the abstract view on the syntax encap-
sulate the concrete syntax via their Applica on Programming Interface (API). Therefore, the
Constraint Separa on component has been implemented using a JAXB-generated XML Schema
object model.
As it can be seen in Sec on 5.1.4, the Constraint Separa on is a process which can easily

be separated in mul ple steps, i.e., for enabling the use of the par cular XTL instruc ons. The
Constraint Separa on component is therefore implemented as a sequence of steps, where each
step operates the XML Schema object model produced by its predecessor. Figure 5.4 shows the
processing steps that implement the complete Constraint Separa on process.

Figure 5.4.: The Constraint Separa on Processing Steps

The par cular steps are implemented using a slightlymodified visitor design pa ern [74]. The
necessary modifica ons and their ra onals are described in the following.
The first modifica on is caused by the fact that the XML Schema object model has been gen-

erated using JAXB. Therefore, the effort to add accept methods to all the classes in the ob-
ject model was too high. Instead, an org.lixlix.xtl.compiler.schema.Schema-
Acceptor has been implemented that contains the accept methods of all visitable ele-
ments.
The org.lixlix.xtl.compiler.schema.SchemaVisitorBase contains imple-

menta ons of visit methods for all visitable elements. These methods are intended to be

108

5.1. Constraint Separa on

overwri en by subclasses (i.e., Constraint Separa on process steps). Furthermore, the visit
methods are equipped with two parameters: the first is the visited object, the second its par-
ent object (in the XML document sense). This allows for easy access of the parent object, which
would otherwise not be possible because JAXB is not providing access to it by default. Fur-
thermore, it allows concrete implementa ons to visit elements depending on the context, for
example, to visit only xsd:sequence elements embedded into xsd:complexType, but
not into xsd:restriction elements.
Finally, the subclasses of org.lixlix.xtl.compiler.schema.SchemaVisitor-

Base can configure the traversal order. In the top-down configura on, the visit methods
are called before the subelements’acceptmethods are invoked; the bo om-up configura on
calls the visitmethods a er the acceptmethods of the subelements. The configura on of
the SchemaVisitorBase is passed to the SchemaAcceptor when the traversal starts.
Besides opera ng on the same XML Schema, the steps share access to an implementa on of

the interface org.lixlix.xtl.compiler.schema.ConstraintSeparationCon-
text shown in Lis ng 5.12.

public interface ConstraintSeparationContext
{

/* Lookup of types in the schema */
public ComplexType getComplexType(String name);

public SimpleType getSimpleType(String name);

/* Creation of names. */
public QName createTNSQName(String localPart);

public String createTypeName(String suggestion);

/* Information about namespaces. */
public String getOriginalTargetNamespace();

public String getTargetNamespace();

public boolean isFromOriginalTargetNamespace(QName qname);

/* Information about related schemata. */
public String getCXSDSchemaLocation();

public String getIDCSchemaLocation();

public String getXTLSchemaLocation();

/* Accessing the ConstraintFactory. */
public ConstraintFactory getConstraintFactory();

}

Lis ng 5.12: The ConstraintSeparationContext Interface

109

5. Safe Authoring of Templates

The opera ons in this interface serve one of five purposes. There are methods for the lookup
of types in the XML Schema currently processed, for the crea on of names, for retrieving infor-
ma on about namespaces, for themanagement of the loca on of related schemata and for the
retrieval of the ConstraintFactory (see below). The par cular methods are as follows:

• ThegetComplexTypemethod retrieves the object represen ng the complex typewith
the passed name or returns null if no such complex type exists.

• The getSimpleTypemethod performs the same func on as getComplexType, but
for simple types.

• The createTNSQName method creates a QName from the passed local part and the
target namespace of the XML Schema currently processed.

• The createTypeNamemethod creates a name (more exactly, its local part), such that
it is unique within the XML Schema currently processed. The method guarantees that
there is no complex type or simple type with the same name within the schema (please
note that complex and simple types share a common symbol space [180, Sec on 2.5]).
The passed sugges on is first tried as the name, if it already exists, themethod repeatedly
tries to create a unique name by concatena ng an increasing number (star ng with 0).

• The getOriginalTargetNamespacemethod returns the target namespace of the
XML Schema currently processed as it was originally set.

• The getTargetNamespacemethod returns the target namespace as it should be af-
ter processing. In order to prevent confusions, the original target namespace is prefixed
with xtl: to get the namespace that the XML Schema should have a er the process
of Constraint Separa on, if a target namespace has been defined by the schema. If no
namespace has been defined, this method returns null.

• The isFromOriginalTargetNamespacemethod can be used to check whether a
par cular QName is defined in the target namespace originally specified by the currently
processed XML Schema.

• The getCXSDSchemaLocation, getIDCSchemaLocation and getXTLSche-
maLocationmethods return the loca on of the CXSD, IDC or XTL schema, resp., if such
loca ons have been externally configured (e.g., via the command line).

• The getConstraintFactorymethod returns an implementa on of the Constraint-
Factory interface described below.

The interfaceorg.lixlix.xtl.compiler.schema.ConstraintFactory referred
to above is shown in Lis ng 5.13. Using this interface, the Constraint Separa on steps can create
both authoring and instan a on me constraints (or CXSD and IDC constraints, respec vely).

public interface ConstraintFactory
{

/* Authoring Time Constraint Construction */
public Inv getControlStatementsAuthConstraint(QName

elementQName);

public Inv getExpandedSimpleTypeAuthConstraint(QName typeQName);

public Inv getRequiredAttributesAuthConstraint(Set<QName>
attributeNames);

110

5.1. Constraint Separa on

/* Instantiation Time Constraint Construction */
public Constraints getAttributesInstConstraint(Map<QName, QName>

attributesToTypes);

public Constraints getExpandedSimpleTypeInstConstraint(QName
typeQName);

}

Lis ng 5.13: The ConstraintFactory Interface

The ConstraintFactory provides the following methods:
• The getControlStatementsAuthConstraintmethod returns an authoring me
constraint checking that the content of the context node is an element with the passed
name elementQName.

• ThegetExpandedSimpleTypeAuthConstraintmethod returns an authoring me
constraint that checks that the content of the context node is either an xtl:text in-
struc on or a text node with a value complying to the simple type named typeQName.

• ThegetRequiredAttributesAuthConstraintmethod returns an authoring me
constraintwhichmakes sure that for each of the a ribute names passed (as aSet), either
an a ribute exists at the context node or an xtl:attribute instruc on exists, which
creates the a ribute (i.e., has a name a ribute set to that par cular a ribute name).

• The getAttributesInstConstraint method returns an instan a on me con-
straint which checks for each key/value pair in the passed Map, whether the a ribute
named equal to the key is of the type indicated by the value.

• The getExpandedSimpleTypeInstConstraintmethod returns an instan a on
me constraint which checks whether the data used for the instan a on of the xtl:
text instruc on is valid with respect to the type passed by its name.

Different technologies have been used to implement the crea on of authoring and instan -
a on me constraints. The authoring me or CXSD constraints are generated from XTL tem-
plates, whereas the instan a on me or IDC constraints are constructed programma cally us-
ing an object model generated from the IDC XML Schema using JAXB.

PrepareSchemaCompilation

The first process step in the Constraint Separa on process is implemented in the class org.
lixlix.xtl.compiler.schema.steps.PrepareSchemaCompilation. This step
has two responsibili es: adding import statements for related schemas and changing the target
namespace of the schema.
As the Constraint Separa on process adds elements from the CXSD and IDC namespaces and

adds references to elements from the XTL namespace, this steps adds xsd:import instruc-
ons for these three namespaces. The namespace a ribute is automa cally set, but the lo-
cation a ribute is only set if a loca on (absolute or rela ve) has been externally configured
(e.g., via the command line). An example for the addi on of these xsd:import statements
is shown in Lis ng 5.14.

111

5. Safe Authoring of Templates

<xsd:import namespace=”http://research.sap.com/cxsd/1.0”
schemaLocation=”../../../schemas/CXSD.xsd”/>

<xsd:import namespace=”http://research.sap.com/xtl/idc/1.0”
schemaLocation=”../../../schemas/IDC.xsd”/>

<xsd:import namespace=”http://research.sap.com/xtl/1.0”
schemaLocation=”../../../schemas/XTL.xsd”/>

Lis ng 5.14: Added xsd:import Statements

ThePrepareSchemaCompilation step is also responsible for changing the target name-
space of the processed schema. If the schema to be processed has a target namespace (called
original target namespace in the following), the namespaceURI is appended to the prefixxtl:,
in order to get the namespace URI for the schema a er the Constraint Separa on process
(called just target namespace in the following). As this namespace URI is typically also as-
signed to another namespace prefix (typically tns, an abbrevia on for target namespace),
these other namespace prefixes are also assigned to the target namespace. Furthermore, all
qualified names within this schema that point to the original target namespace must be rewrit-
ten to point to the target namespace. If no original target namespace has been set, the schema
will also lack a target namespace a er processing, which makes the processing of prefixes and
qualified names obsolete.

NormalizeSchema

In order to allow the following steps to work under all circumstances, addi onal changes to
the schema being processed are necessary. The org.lixlix.xtl.compiler.schema.
steps.NormalizeSchema step is responsible for making sure that all simple types which
need to be referenced from CXSD constraints are iden fiable by name (and not anonymous
types) and for making sure that all elements which need to be able to act as content for an
xtl:if or xtl:for-each instruc on are declared at the top-level.
The first responsibility men oned is to create referencable top-level simple type declara ons

from anonymous type declara ons. This is necessary to allow the authoring me constraint
embedded during the enablement of xtl:text instruc ons to refer to the simple type (see
below). An example for an extracted simple type is shown in Lis ng 5.15.

<xsd:simpleType name=”simpleTypeOfQuantity”>
<xsd:restriction base=”xsd:positiveInteger”>

<xsd:maxExclusive value=”100”/>
</xsd:restriction>

</xsd:simpleType>

Lis ng 5.15: Top-level Declara on of a Previously Anonymous Simple Type

The second responsibility is to create top-level elements from all xsd:element elements
whichwill be enabled for the usewithin xtl:if orxtl:for-each statements later on. This
is necessary since the xtl:if and xtl:for-each defini ons within the XTL XML Schema

112

5.1. Constraint Separa on

contain a wildcard (xsd:any) with its processContents a ribute set to strict, which
requires a top-level declara on of the element to fulfill the wildcard [180, Sec on 3.10.1].
This process of promo ng local elements to top-level elements can cause name clashes, as

the element is moved from the namespace opened by a complex type or element declara on
into the single global namespace for elements within the schemas’ target namespace. The al-
terna ve to this promo on of local element declara ons is to relax the wildcard within the XTL
schema (i.e., to set its processContents a ribute to lax or skip), and to check the local
validity of the contentwith regards to its element name and its complex type fromwithin a CXSD
constraint. This variant has not been implemented, as the standard XML parsers with valida on
do not expose a simple interface to check local validity, which would make the implementa on
of the necessary extension of the CXSD metamodel much harder.

EnableControlStatements

The processing step org.lixlix.xtl.compiler.schema.steps.EnableControl-
Statements has the responsibility to enable the use ofxtl:if statements for all condi onal
elements and to enable the use of xtl:for-each statements for all repeatable elements.
Condi onal elements are defined as elements with a cardinality of 0 . . . 1, repeatable elements
as having a maximum cardinality greater than 1.
The whole schema is traversed for elements fulfilling the condi ons for condi onal or re-

peatable elements. Each occurence of such an element is replaced by a choice between the
element and a reference to the xtl:if or xtl:for-each element from the XTL schema
respec vely. The xtl:if and xtl:for-each references are further restricted by insert-
ing a CXSD constraint defining that the content of the XTL instruc on must have a par cular
qualified name. This constraint is constructed using the getControlStatementsAuth-
Constraint method from the ConstraintFactory. An example showing a processed
op onal element is shown in Lis ng 5.16.

<xsd:choice>
<xsd:element minOccurs=”0” ref=”comment”/>
<xsd:element ref=”xtl:if”>

<xsd:annotation>
<xsd:appinfo source=”http://research.sap.com/cxsd/1.0”>

<cxsd:inv name=”control-statement-constraint”>
<cxsd:ocl><![CDATA[
let

elementChildren:Sequence(ElementNode) = self.children->
select(oclIsTypeOf(ElementNode))->collect(oclAsType(
ElementNode))

in
elementChildren->size() = 1 and
elementChildren->at(0).qname = self->expandQName(’

comment’)
]]></cxsd:ocl>
<cxsd:message>
</cxsd:message>

113

5. Safe Authoring of Templates

</cxsd:inv>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>

</xsd:choice>

Lis ng 5.16: Choice between comment and xtl:if

EnableXTLAttribute

The next processing step, org.lixlix.xtl.compiler.schema.steps.EnableXTL-
Attribute, is responsible for enabling the use of the xtl:attribute instruc on. To
achieve this, four modifica ons are made to all complex types in the schema.
First, an element reference to xtl:attribute is added to the content model of the com-

plex type. If the complex type is already defined to be a sequence, the reference is just inserted
at its beginning. If the complex type is defined to be a choice, this choice is wrapped by a se-
quence that contains the reference to xtl:for-each followed by the choice. Unfortunately,
the inser on of xtl:attribute is not possible if the complex type inherits from another
complex type, as the inser on would only be possible at the end of the content model, which
is not acceptable. Therefore, inherited types are excluded from this processing (see Chapter 8
for the sugges on to change XML Schema with respect to this).
Second, the usage a ribute of all a ribute declara ons for required a ributes is relaxed to

optional, which allows the template author to omit required a ributes (and create them
via xtl:attribute instead). In the po.xsd example, the partNum a ribute is relaxed to
become an op onal a ribute.
Third, an IDC constraint is added, containing the expected types for all a ributes. In the

po.xsd example, the instan a on data used to create the partNum a ribute is bound to be
of type SKU. The result of these first three processing steps is shown in Lis ng 5.17.

<xsd:element name=”item”>
<xsd:complexType>

<xsd:annotation>
<xsd:appinfo source=”http://research.sap.com/cxsd/1.0”>

<!-- See Listing 5.18 -->
</xsd:appinfo>

</xsd:annotation>
<xsd:sequence>

<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”
xtl:attribute”>

<xsd:annotation>
<xsd:appinfo source=”http://research.sap.com/xtl/idc/1.0”>

<idc:constraints>
<idc:constraint for-name=”partNum” type=”SKU”/>

</idc:constraints>
</xsd:appinfo>

</xsd:annotation>

114

5.1. Constraint Separa on

</xsd:element>
<!-- ... -->

<xsd:attribute name=”partNum” type=”SKU” use=”optional”/>
</xsd:complexType>

</xsd:element>

Lis ng 5.17: Enabled xtl:attribute with IDC Constraints

Finally, the processing step adds an addi onal CXSD constraint which ensures that the re-
quired a ributes are either directly specified or created via an appropriate xtl:attribute
instruc on. In the po.xsd example, it is ensured that partNum is either directly specified or
created via an xtl:attribute instruc on (which therefore needs to have a name a ribute
with a value of partNum). The OCL part of the CXSD constraint is shown in Lis ng 5.18.

let
xtlAttributeChildren:Sequence(ElementNode) = self.children->select(oclIsTypeOf(

ElementNode))->collect(oclAsType(ElementNode))->select(localName=’attribute’
and namespaceURI=’http://research.sap.com/xtl/1.0’)

in
OrderedSet{

self.expandQName(’partNum’)
}->forAll(attributeQName |

let
xtlAttributeChild:ElementNode = xtlAttributeChildren->any(attributes->select(

name=’name’ and self.expandQName(value)=attributeQName)->size() > 0),
attributePresent:Boolean = self.attributes->select(qname=attributeQName)->size()

> 0
in

not(attributePresent) implies not(xtlAttributeChild->isEmpty()))

Lis ng 5.18: A CXSD Constraint for Required A ributes

EnableXTLText

The last processing step, org.lixlix.xtl.compiler.schema.steps.EnableXTL-
Text, allows the use ofxtl:text to create the text content of elements with simple content.
To this end, the processing step processes all top-level elements referencing a non-anonymous
simple type (both precondi ons are asserted by the NormalizeSchema step). The reference
to the simple type is replacedwith a reference to a complex typewithmixed content. This newly
created type allows the use ofxtl:textwithin. An IDC constraint is addedwhich restricts the
instan a on data used to replace the xtl:text instruc on during the Template Instan a on
to the simple type originally referenced by the element. In the po.xsd example, the type
xtlTextOrDecimal is created to replace elements with simple content complying to the
xsd:decimal type. The result of this processing is shown in Lis ng 5.19.

<!-- ... -->
<xsd:element name=”zip” type=”xtlTextOrDecimal”/>
<!-- ... -->
<xsd:complexType mixed=”true” name=”xtlTextOrDecimal”>

<xsd:annotation>

115

5. Safe Authoring of Templates

<xsd:appinfo source=”http://research.sap.com/cxsd/1.0”>
<!-- See Listing 5.20 -->

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element maxOccurs=”1” minOccurs=”0” ref=”xtl:text”>
<xsd:annotation>

<xsd:appinfo source=”http://research.sap.com/xtl/idc/1.0”>
<idc:constraints>

<idc:constraint type=”xsd:decimal”/>
</idc:constraints>

</xsd:appinfo>
</xsd:annotation>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

Lis ng 5.19: Enabled xtl:text for the Crea on of the Content of the zip Element

Furthermore, the processing steps add an CXSD constraint that restricts the use of text con-
tent within the newly created type to be compliant to the simple type originally referenced by
the element. In the po.xsd example, the constraint asserts that either an xtl:text ele-
ment or a text node complying to the type xsd:decimal is present. The OCL part of the
CXSD constraint is shown in Lis ng 5.20.

let
expectedQName:QName = self.expandQName(’{http://www.w3.org/2001/XMLSchema}decimal’),
textChildren:Sequence(TextNode) =

self.children->select(oclIsTypeOf(TextNode))->collect(oclAsType(TextNode)),
xtlTextChildren:Sequence(ElementNode) =

self.children->select(oclIsTypeOf(ElementNode))->collect(oclAsType(ElementNode))
->select(localName=’text’ and namespaceURI=’http://research.sap.com/xtl/1.0’)

in
if (xtlTextChildren->size() = 0)
then

textChildren->size() = 1 and
textChildren->at(1).isValidLiteral(expectedQName)

else
xtlTextChildren->size() = 1 and textChildren->size() =
textChildren->select(isIgnorableWhitespace)->size()

endif

Lis ng 5.20: A CXSD constraint for Simple Content

5.1.7. Par al Templa za on

In [143], it has been stated that every template engine has at least an entanglement index of 1,
as it is impossible for the template engine to decide whether a value which is instan ated into
a template plays a role in the content or layout of the instan ated template.
As a side effect of the safe authoring approach described above, a technique that enables an

entanglement index of 0 becomes possible. In the XHTML 1.0 document shown in Lis ng 5.21,

116

5.2. Template Valida on

two a ribute values are highlighted. First, the value of the style a ribute, which obviously
contains style informa on. Second, the value of thealt a ribute is highlighted, which contains
content, as it gives an alterna ve representa on for the img element it is assigned to.
For every well designed XML language like XHTML, there must be a way to decide whether a

par cular piece of informa on (like a text or an a ribute value) is content or layout. In general,
the use of a template engine implies that separa on of concerns is an issue, so there must be a
set of rules to decide whether an informa on is allowed to be filled from instan a on data or
whether it must be part of the template.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Sample XHTML Document</title>
</head>
<body>

<p style=”text-indent:1em;”> ¬
Some content.

</p>
</body>

</html>
Lis ng 5.21: A Simple XHTML 1.0 File

The constraint separa on process described above can be adjusted to allow the dynamic cre-
a on of only certain character data items. In contrast to the standard constraint separa on
process, par al templa za on allows the use of the XTL instruc ons only par ally. This allows
the refinement of the contract between the template author and the applica on using the tem-
plate technique: the style ¬ a ribute would not be allowed to be created dynamically from
the instan a on data by the Constraint Separa on process (as it is layout in the sense of Fig-
ure 3.2), whereas the alt a ribute would be allowed (as it is content in the sense of the
aforemen oned figure).
Technically, par al templa za on could be best configured using a language that allows to

select the XML Schema parts (a ribute and element declara ons, type defini ons etc.) which
should be subject to the constraint separa on process. A subset of the Path Language for XML
Schema (SPath) [126] would be a good choice for such a language.

5.2. Template Valida on

The Template Valida on process is the responsibility of the template validator component. The
template validator allows the change of the template development process to the one shown in
Figure 5.5. The new process is more straight-forward than the current process (cf. Figure 1.2):
the template author does not need to change its role to that of the user of the template technol-
ogy like in the tradi onal process. Instead, he gets direct feedback about the template. Further-
more, the valida on of the template does no longer depend on a par cular set of instan a on
data, since the valida on result makes a general statement about the template of the form: if
the instan a on data is as specified by the instan a on data constraints emi ed by the Con-

117

5. Safe Authoring of Templates

straint Separa on process, then the instan ated template will comply to the target language
grammar. Thus, the Template Valida on process contributes to the Safe Authoring goal stated
in Sec on 3.1.1.

Figure 5.5.: The Proposed Development Process for Templates

The design of the template validator has two responsibili es. First, it has to check the validity
of XML documents against the CXSD schemas as emi ed by the Constraint Separa on process.
Furthermore, the template validator component is also responsible for establishing a link be-
tween the XTL instruc ons in the template and the instan a on data constraints in the schema.
The Constraint Separa on process defined the extension of XML Schemawith OCL constraints

(see 5.1.2) and relaxed the UPA rule in order to enhance the expressive power of XML Schema.
The template validatormust therefore validate XML Schemawithout the restric ons introduced
by the UPA and evaluate the embedded OCL constraints. A er an analysis of exis ng XML
parsers capable of valida ng the XML input against a given XML Schema, it became obvious
that it is easier to reimplement a valida ng XML parser than to extend one of the exis ng im-
plementa ons like Xerces. This is mostly due to the fact that the exis ng XML parsers are not
designed to be extensible, which makes extending them a me-consuming and tedious task.
As men oned above, it is also the responsibility of the template validator to establish a link

between the elements of the XTL template and the instan a on data constraints. This link is
necessary to allow the Instan a on Data Valida on component to evaluate the instan a on
data constraints. This link is comparable to the link between an XML document and its XML
Schema established by the Post-Schema-Valida on Infoset (PSVI). The difference is that the link
between the template and its CXSD schema is more specific. It is more specific, as it links only
XTL instruc ons to the type that the instan a on data must comply to, whereas PSVI is directly
linking every element to the corresponding type in the XML schema.
In order to enable the Instan a on Data Valida on component to facilitate the established

link, it has to be persisted. There are basically two op ons for this. First, it is possible to persist
the link in an extra document that for example maps XPath expressions poin ng into the tem-
plate to the expected type of the instan a on data. Second, it is possible to transfer the link
data within the XTL template itself. As the link is only star ng from XTL instruc ons, the second
alterna ve has been chosen. To enable this, the affected XTL instruc on has been extended to

118

5.2. Template Valida on

allow a type a ribute that can denote the required instan a on data type via its QName. This
approach is similar to the approach proposed to persist the PSVI in [167].
The following addi onal a ributes are defined to carry the instan a on data constraint link:

for the xtl:text and xtl:attribute instruc ons, the type a ribute is defined, which
allows a QName as value which denotes the type that the value used to create the text or the
a ribute value must comply to. There is no need to define the type a ribute for xtl:if and
xtl:for-each, since the type to be delivered by the Instan a on Data Evaluator is defined
implicitly (see Sec on 4.1). For the xtl:for-each instruc on, the a ributes min and max
are defined, which are of the same type as minOccurs and maxOccurs defined in [180].
An XTL template augmented with instan a on data constraints is shown in the upper part of

Lis ng 5.22. Obviously, the xtl:for-each instruc on can be executed an arbitrary number
of mes¬. The partNum a ributemust be createdwith a value complying to the SKU type,
whereas the text content of the productName element must comply to the xsd:string
type ®. As an example for a persistent PSVI, a fragment of the po.xml document is shown in
the lower part of Lis ng 5.22. Interes ngly, the ques onable use¹ of an a ribute like psvi:
atttypes¯ is not necessary in the proposed approach, since the expected type of a par cular
a ribute is a ached to its xtl:attribute instruc on rather than to the element that the
a ribute is going to be assigned to during the Template Instan a on process.
The actual Template Valida on process is implemented by crea ng a DOM of the instance to

be validated first. This DOM is used for two purposes: for the crea on of a Streaming API for
XML (StAX) event stream that is used for the standard XML Schema valida on and to build a rep-
resenta on of the document as an instance of the meta model introduced in Sec on 5.1.2 (see
Figure 5.2, especially). As the UPA can be violated by a CXSD document, the valida on compo-
nent is implemented using a backtracking algorithm. The backtracking algorithm is in turn sup-
ported by a component implemen ng the org.lixlix.xtl.cxsd.Transactional-
Reader interface that allows the validator to read events from the StAX stream transac on-
ally. The TransactionReader interface could easily be implemented by subclassing the
component that implements the org.lixlix.xtl.engine.impl.ReadWindow inter-
face described in detail in Sec on 6.2.2.
Themere XML Schema valida on process of an XML document has been tested against a sub-

set of the XML Schema Test Suite [181]. This subset excludes the tests in which XML Schema
documents include features that are not supported by the Constraint Separa on process. The
Template Valida on component complies to 97% of the remaining subset of approx. 24000
documents. The documents in which the Template Valida on component fails are mostly docu-
ments with literals that are checked against par cular simple types, especially with literals in
Japanese or Chinese encodings. In these tests, the valida on results returned by the XML
Schema Test Suite and by the Xerces simple type valida on facility disagree, which in turn causes
the Template Valida on component to disagree with the result proposed by the XML Schema
Test Suite.

¹Sperberg-McQueen [167]: “It should be noted that I am fully aware that this solu on is ugly. Long medita on on
this problem has convinced me that every available solu on to this problem is ugly: a ributes were designed to
have atomic or simple list values, not to have a ributes of their own, and I no longer expect to find a pre y way
to go against the grain of XML here.”

119

5. Safe Authoring of Templates

XTL Template Augmented with Instan a on Data Constraints

<items>
<xtl:for-each select=”items” min=”0” max=”unbounded”> ¬

<item>
<xtl:attribute name=”partNum” select=”id” type=”SKU”/>
<productName>

<xtl:text select=”productName” type=”xsd:string”/> ®
</productName>
<!-- ... -->

</item>
</xtl:for-each>

</items>

XML Document with Embedded PSVI

<shipTo
country=”US”
psvi:type=”po:USAddress”
psvi:atttypes=”country xsd:NMTOKEN” ¯

>
<name psvi:type=”xsd:string”>Alice Smith</name>
<street psvi:type=”xsd:string”>123 Maple Street</street>
<city psvi:type=”xsd:string”>Mill Valley</city>
<state psvi:type=”xsd:string”>CA</state>
<zip psvi:type=”xsd:decimal”>90952</zip>

</shipTo>

Lis ng 5.22: Linked Instan a on Data Constraints Compared with Embedded PSVI

In addi on to themere XML Schema valida on process, the DOM instance is also used to eval-
uate the OCL expressions embedded into the CXSD document. As the founda on for the evalu-
a on of the OCL expressions, the OCL library from the Eclipse MDT project has been used. This
OCL library operates on a model compliant to the metamodel shown in Figure 5.2. The model is
basically an Eclipse Modeling Framework (EMF)-based view on the DOM instance. The overall
valida on process has been validated as described in Sec on 7.2. The extra effort needed to
evaluate theOCL constraints has beenmeasured, the results of thismeasurement are presented
in Sec on 7.5.1.
The valida on algorithm is rather straigh orward. A virtual xsd:choice between all root

level element declara ons in the XML Schema is created, which is used to start the valida on
process. The template validator reads from the StAX stream and tries to validate these events
against the alterna ves within the choice. As an alterna ve might turn out to be invalid, a
transac on is started on the StAX event stream using the TransactionReader component.
The transac onwill be commi ed if an alterna ve proves to bematching or it will be rolled back
otherwise. If an OCL constraint is a ached to an element in the XML Schema, the constraint will
be evaluated with its context set to the element currently validated. If the constraint evaluates
to false, the valida on process will fail at this point, again causing a rollback of the innermost
transac on. The overall valida on process returns true if there is an assignment of element

120

5.3. Conclusion

and types in the XML Schema against the content of the document where the OCL constraints
within the CXSD schema evaluate to true at all nodes in the document where the enclosing XML
Schema instruc on is used to validate the instance.
In addi on to the boolean result of the valida on, during a successful valida on, the IDC

constraints embedded in the CXSD schema are transferred into the validated XML instance.
As the IDC constraints may be reassigned when a transac on is rolled back, the valida on pro-
cess writes the augmented XML events into an implementa on of the interfaceorg.lixlix.
xtl.cxsd.TransactionalWriter, which defers the further processing of the events un-
l all transac ons are commi ed.

5.3. Conclusion

This chapter introduced the components of the proposed architecture involved during the au-
thoring me of a template, namely the Constraint Separa on and the Template Valida on com-
ponent.
The Constraint Separa on process, responsible for separa ng authoring me from instan -

a on me constraints, has been described precisely, which involved the defin on of two sup-
por ng languages, CXSD and IDC. The CXSD extends XML Schema in two ways: by allowing
embedded OCL constraints to more precisely specify proper es to be fulfilled by instances that
should comply to the described language. The IDC is a helper language used to transfer instan -
a on data constraints to the instan a on phase of the proposed process. A slight modifica on
of this process called Par al Templa za on has been introduced, which allows to reach an en-
tanglement index (in the sense of [144]) of 0.
The Template Valida on component is responsible for valida ng the authoring me con-

straints, i.e., for valida ng a template against a CXSD document. Technical reasons and the
relaxa on of the UPA rule by the CXSD language complicated the rather elementary implemen-
ta on of this component.

121

5. Safe Authoring of Templates

122

6
Flexible, Efficient and Safe Template

Instan a on

Hofstadter’s Law: It always takes longer than you expect,
even when you take into account Hofstadter’s Law.

Douglas Hofstadter, 1979 [87]

This chapter discusses the processes of Instan a on Data Evalua on, Template Instan a on
and Instan a on Data Valida on from Figure 3.5. All these processes correspond to the tem-
plate instan a on process in the same sense as used in exis ng approaches. For each process,
a different main issue can be defined: flexibility is most important for the Instan a on Data
Evalua on, efficiency is the key issue in the Template Instan a on process, and safety is guar-
anteed by the Instan a on Data Valida on process. As in Chapter 5, the target language is
required to be an XML dialect defined by an XML Schema.

6.1. Instan a on Data Evalua on

The evalua on of the instan a on data is performed by the instan a on data evaluator com-
ponent. The architecture requires this component to decouple the template engine from a
par cular query language. In an implementa on of this architecture, the instan a on data
evaluator can be realized as a plugin of the template engine, allowing a single implementa-
on to cooperate with data sources as dis nct as XML documents, rela onal databases or UML

models. The Java implementa on of the XTL Engine calls the plugin a Placeholder Plugin (PHP).

123

6. Flexible, Efficient and Safe Template Instan a on

Figure 6.1.: Accessing Mul ple Instan a on Data Sources Using Mul ple PHPs

6.1.1. Design of the PHP Interface

Using a plugin approach for the adapta on of the template engine to a par cular query lan-
guage directly addresses the Independence of Query Language requirement. Besides this, the
approach turned out to have a number of addi onal advantages.
First of all, the XTL’s realm feature can be used together with mul ple plugins to access data

from mul ple instan a on data sources at once. There is no need to use the same query lan-
guage for the instan a on data sources, instead, the query language can be chosen arbitrarily
for each source. For example, an XML document, an ontology and a UML model can be ac-
cessed from within one template using the query languages XPath, SPARQL and OCL, resp., as
illustrated in Figure 6.1. It is also possible to access mul ple XML documents as instan a on
data sources represented by realms—an approach which provides a more uniform access to
mul ple XML documents than the approach provided by XSL-T with its document func on
[107, Sec on 16.1].
Furthermore, a plugin can also be used to build an intermediate view on the instan a on

data source. An example is the SPARQL plugin which is supplied as part of the XTL Engine. This
plugin allows to query ontologies. As an op on, the plugin is capable of building the transi ve
closure on its underlying ontology. This equips SPARQL with the capability to execute transi ve
queries, which is originally not part of the language. In general, plugins can be used for the
crea on of all kinds of intermediate, transient models.
A plugin can also be used to change the instan a on data access strategy (see Sec on 2.5.4).

Due to the design of the XTL, the XTL Engine implements a pull strategy: every me an ex-
pression from the query language is found as the value of a select a ribute, it is executed
immediately. An applica on could calculate all the instan a on data before actually invoking
the XTL Engine, bundle the data into a custom PHP and pass it to the template engine. The en-
gine would s ll pull the data from the PHP, but effec vely, the engine with the PHP now follows
the push strategy. This is basically an applica on of theMove Copy of Data pa ern as described
in [178] (but used at design level, which is different from its descrip on, where it is applied to
the architectural level). Such an inversion of the data access strategy can also be achieved using
the Template Interface Genera on approach described in Sec on 6.3.2.
A PHP is defined by the interface PlaceHolderPlugin shown in Figure 6.1. It mirrors

the func onality of the IDS class from the denota onal seman cs of the XTL with two minor
differences.

124

6.1. Instan a on Data Evalua on

First, the IDS has been defined using Haskell’s type classes (see Lis ng 4.2), whereas the
PlaceHolderPlugin uses Java’s generic types feature. For this reason, the interface has
a type parameter named Type. An implementa on of the interface would use an appropriate
context type as the actual value for this parameter. As an example, a JXPath implementa on
would use a class that represents the concept of the current node from XSL-T.
Furthermore, thePlaceHolderPlugin interface dis nguishes between the evalua on of

the select a ribute at an xtl:attribute and an xtl:text element, whereas the IDS
knows only one of them. This is caused by the fact that the xtl:attribute and xtl:text
instruc ons are each represented by their own Java classes, which do not share a common
interface from which the value of the select a ribute could be fetched.

public interface PlaceHolderPlugin<Type>
{

public String evaluateAttribute(
XTLAttribute xtlAttribute, Type argument);

public Iterator<Type> evaluateForEach(
XTLForEachStart xtlForEach, Type argument);

public boolean evaluateIf(
XTLIfStart xtlIf, Type argument);

public List<XMLEvent> evaluateInclude(
XTLInclude xtlInclude, Type argument);

public String evaluateText(
XTLText xtlText, Type argument);

public void init(List<XMLEvent> event);

public void onEndDocument();
}

Lis ng 6.1: The PlaceHolderPlugin Interface

Please note that the evaluate opera ons all share analogous arguments. The first argu-
ment corresponds to the XTL instruc on for which they are responsible. The hierarchy of the
classes for these arguments is explained in Sec on 6.2.3 (see esp. Figure 6.6). The second ar-
gument is the current value of the innermost enclosing xtl:for-each instruc on, which
accesses the same realm. If no such plugin exists, a null value will be passed to the PHP. The
second argument is of the generic type Type, as the actual value represen ng an itera on in
an xtl:for-each loop depends on the query language and the PHP implementa on.
The opera ons of the org.lixlix.xtl.php.PlaceHolderPlugin are described be-

low:
• TheevaluateAttribute opera on has to be implemented by the PHP to support the
evalua on of xtl:attribute instruc ons. The corresponding func on within the IDS

125

6. Flexible, Efficient and Safe Template Instan a on

is the evalText func on. An implementa on of a PHP should not include the name of
the a ribute into the calcula on of its value in any way.

• The evaluateForEach opera on has to be implemented by the PHP to support the
evalua on of xtl:for-each instruc ons. In order to allow nested xtl:for-each
instruc ons, this opera on also gets the current value of the innermost enclosing xtl:
for-each instruc on as described above. The implementa on of this opera on must
return an Iterator over values of the generic type Type, as a value from this oper-
ator will be passed to other evaluate methods as second argument (see above). The
corresponding func on within the IDS is the evalForEach func on.

• The evaluateIf opera on has to be implemented by the PHP to support the evalu-
a on of xtl:if instruc ons. The corresponding func on within the IDS is the evalIf
func on.

• The evaluateInclude opera on has to be implemented by the PHP to support the
evalua on of xtl:include instruc ons. The corresponding func on within the IDS
is the evalInclude func on. The implementa on of this opera on must return a
java.util.List of javax.xml.stream.XMLEvents. For the ra onale of this
return type see Sec on 6.2.1.

• The evaluateText opera on has to be implemented by the PHP to support the evalu-
a on ofxtl:text instruc ons. The corresponding func onwithin the IDS is theeval-
Text func on.

• The init opera on has to be implemented by the PHP to support the evalua on of
xtl:init instruc ons. There is no corresponding func on in the IDS, as the denota-
onal seman cs for XTL does not include realms. The only argument of this opera on is

a java.util.List of javax.xml.stream.XMLEvents. For the ra onale of this
type see again Sec on 6.2.1.

• TheonEndDocument opera on has to be implemented by the PHP to get no fiedwhen
the XTL template to be instan ated has been completely processed. This can be used by
the PHP to perform cleanup opera ons or to conclude diagnos cal informa on.

Tomake implemen ng a new PHP as easy as possible, an abstract base implementa on of the
PlaceHolderPlugin interface is provided via the class org.lixlix.xtl.php.impl.
PlaceHolderPluginImpl, whichmainly provides default implementa ons formost of the
methods and aggregates the processing of xtl:attribute and xtl:text methods via a
common evaluateSelectmethod.

6.1.2. The Iden ty PHP

The Iden ty PHP serves mul ple purposes. It can be used for tes ng, to explain the concept of
a PHP, and it can be used for syntac cal reasons, e.g., to create an xtl:for-each instruc on
which repeats its content exactly n mes for an arbitrary but fixed n.
The Iden ty PHP got its name from its easy implementa on of the evaluateText and

evaluateAttribute opera ons described above: it just returns the value of the select
a ribute of the xtl:text or xtl:attribute instruc on evaluated. The evaluateIf
opera on is implemented in a similarly easy way: if the select a ribute has a (text) value of
true, it returns the (boolean) value true, and false otherwise. The evaluateForEach

126

6.1. Instan a on Data Evalua on

opera on parses its select a ribute as an integer and returns an iterator containing the in-
tegers from 1 to the parsed value or an empty iterator if no value could be parsed or the parsed
value was 0.
From the implementa on of the evaluateForEach opera on, which is returning an iter-

ator over integers, it is clear that the type parameter Type has the actual value java.lang.
Integer for the Iden ty PHP.

6.1.3. The JXPath PHP

The JXPath PHP allows the XTL to use XPath expressions in order to access the instan a on data
source. As JXPath [9] is used for the implementa on of the PHP, the instan a on data source
does not neccessarily have to be an XML document, as JXPath allows the evalua on of XPath
expressions against any object model using a well-defined mapping between the XPath syntax
and Java object proper es and associa ons.
The JXPath PHPmakes XTL comparable to XSL-T and therefore enables the defini on of the in-

stan a on seman cs in Sec on 4.6 and the me comparison with JSP and XSL-T in Sec on 7.5.
Furthermore, as XPath is well supported by Haskell (more specifically, by the Haskell XML Tool-
box [163]), it also enables the direct comparison of the Java implementa on of the Template
Instan a on component with the denota onal seman cs given in Chapter 4.
The evaluateAttribute and evaluateText opera ons work exactly as they would

do in XSL-T. The no on of the context item [107, Sec on 5.4.3.1] is reused, the context item
corresponds to the no on of a context introduced in Sec on 4.3. The evaluateForEach
opera on establishes a new context. The evaluateIf method follows the sugges on from
Sec on 4.3 and uses the XPath func on boolean to determine the boolean value from the
result of the evalua on of the select a ribute. The JXPath PHP also implements the evalu-
ateInclude method—the result is similar to the result returned by xsl:copy-of [107,
Sec on 11.9.2], when applied to the current context.
The type parameter named Type of the PlaceHolderPlugin interface is assigned the

actual valueorg.apache.commons.jxpath.Pointer by the JXPath PHP. ThisPointer
class is an implementa on of the context item from XPath in JXPath, which perfectly matches
the use of it as the context in the PHP implementa on.
The XPath PHP implementa on is an alterna ve implementa on for using XPath expressions

using the XPath implementa on of Xalan. The XPath PHP is only usable to evaluate XPath ex-
pression on XML documents represented as DOM. Therefore, the type parameterType has the
actual value org.w3c.dom.Node.

6.1.4. The SPARQL PHP

The SPARQL PHP enables the use of SPARQL expressions to fetch instan a on data from within
XTL templates. The mo va on for this plugin came from the Feature-getriebene, aspektorien-
erte undmodellgetriebene Produktlinienentwicklung (FeasiPLe) project (see Sec on 7.3). The

handling of XML namespaces within SPARQL alsomo vated the introduc on of the xtl:init
instruc on.

127

6. Flexible, Efficient and Safe Template Instan a on

In contrast to the JXPath plugin, the SPARQL PHP can not process xtl:attribute, xtl:
text or xtl:if instruc ons which are not enclosed in an xtl:for-each instruc on. This
is a design decision caused by the fact that SPARQL queries return a rela on, whereas XPath
queries return a node. Therefore, there has to be a dis nc on between the building of a rela-
on (selec on) and the access to par cular values (projec on). This dis nc on is mapped to

the PHP opera ons by using the xtl:for-each instruc on in order to retrieve the rela on
by selec on, and by le ng xtl:attribute, xtl:text and xtl:if access par cular at-
tributes from the result. The retrieval of the rela on is performed by the SELECT statement of
SPARQL, whereas the access to a par cular a ribute is performed using a subset of the SPARQL
syntax, namely its query variable syntax [151, Sec on 4.1.3]. As the existence of a rela on is a
prerequisite for the projec on, an xtl:for-each is required around all xtl:attribute,
xtl:text and xtl:if instruc ons.

As SPARQL itself has a restricted expressive power, the SPARQL PHP supports the execu on of
an inference process on the ontology before it is queried. The inference process is parametrized
by a set of rules that can be specified in any rule language supported by the underlying ontology
processing framework. The framework being used to implement the SPARQL PHP is Jena [100].
The class com.hp.hpl.jena.query.QuerySolution is the actual value of the Type
type parameter of the PlaceHolderPlugin interface.

6.1.5. The System PHP

The System PHP is a PHP implementa on that supports special func ons that are some mes
useful but are not supported by some query languages. This PHP supports only xtl:attri-
bute, xtl:text and xtl:if instruc ons—it cannot be used as the realm for xtl:for-
each and xtl:include instruc ons. Its query language syntax is based on XPath, but as no
context node exists, only a fixed set of predefined func ons can be used. The func ons are as
follows:

• Thebuild-number func on can be used to retrieve the build number of the XTL Engine
currently in use.

• The file-exists func on can be used to check whether there exists a file with the
passed path.

• The last func on can be used to check whether the innermost enclosing xtl:for-
each instruc on is currently processed for the last me.

• The position func on can be used to retrieve the current index of the control variable
value in the sequence of control variable values for the innermost enclosing xtl:for-
each instruc on.

• The version func on can be used to return the version of the XTL Engine currently in
use.

The System PHP is a subclass of the JXPath PHP, but as it does not support xtl:for-each,
the actual value of the Type parameter of the PlaceHolderPlugin interface does not
ma er.

128

6.2. Template Instan a on

6.2. Template Instan a on

The template engine is the component performing the Template Instan a on process. It is
therefore influenced by the required expressiveness offered by the slot markup language. Fur-
thermore, the template engine invokes the Instan a on Data Evalua on and Instan a on Data
Valida on processes in order to retrieve and verify the instan a on data.

6.2.1. XML Access Technologies

The technology used to read the templates and to emit the instan a on result has the greatest
influence on the efficiency of an XML template engine implementa on. This is especially true if
the template engine interprets the templates rather than compiling them (see Sec on 2.5.6).
Typically, XML access technologies are classified in event-driven approaches and object-ori-

ented XML representa ons. Event-driven approaches are typically efficient (both with respect
to memory and me) and provide a sequen al access to XML documents. The most prominent
example for an event-driven technology is the Simple API for XML (SAX). SAX has been originally
designed for read-only access. Other event-driven approaches like StAX have been designed to
also support the crea on of XML documents.
Object-oriented approaches provide a complete, random-access view on an XML document.

The abstrac on level of this view depends on the actual technology. The most prominent ex-
ample for an object-oriented access technology is DOM, which provides a viewwhich closely re-
sembles the XML structures as defined in [28]. XML binding tools like JAXB and XMLBeans (see
also Sec on 2.3.3) can also be considered object-oriented access technologies with a higher
level of abstrac on. Object-oriented approaches are typically designed to support both reading
and wri ng XML documents. The higher level of abstrac on provided by these technologies
typically slows down reading, whereas the provided random-access view typically causes signif-
icantly higher memory consump on.
Typically, a template engine produces arbitrary large documents from rela vely small ones.

The necessity to create arbitrary large documents leads to the decision for an event-driven ap-
proach. This decision was eased by the fact that the constructed document is not changed a er
its crea on, i.e., there is no need for random access to the document under construc on.
For reasons of simplicity, it has been decided to use the same XML access technology for both

reading the template and crea ng the output document. The first evalua on of SAX for reading
XML documents exposed one of its major weaknesses. SAX dictates the user to structure its
algorithm along its ContentHandler interface, which obscures the algorithm. Furthermore,
if look-ahead is necessary to complete the processing of a par cular XML structure, the interface
enforces the implementa on of addi onal data structures which have to be examined in all of
its methods. This problem has also been described in [152].
In contrast to the statements in [152], a solu on for this problem exists with the StAX tech-

nology since 2003 [94; 145]. StAX is an event-driven XML access technology which is designed
to read and write XML documents and which incorporates ideas from the object-oriented ap-
proaches by providing an object model for its events. StAX does not prescribe a fixed structure
for the XML processing algorithm. While SAX pushes events into the processing logic, a StAX
implementa on is pulled by the processing logic when it is ready to con nue. For this reason,

129

6. Flexible, Efficient and Safe Template Instan a on

StAX belongs to the family of so-called pull parsers (in contrast to the push parsing approach in
SAX). The difference between both types of parsers is shown in Figure 6.2.
The choice of StAX allowed the uniform treatment of reading and wri ng XML documents

and fulfilled the requirement of being able to implement lookahead efficiently.

Figure 6.2.: Push- and Pull-Parser

6.2.2. Opera onal Model of the XTL Engine

The denota onal seman cs of the XTL given in Chapter 4 has been valuable in the implemen-
ta on of the engine, as a working prototype could easily be compiled. Unfortunately, imple-
men ng a Java-based variant of a template engine for XTL from its denota onal seman cs is
non-trivial. It turns out that a Java implementa on is more complicated than one would expect
from the seman cs. Therefore, an opera onal model has been developed that forms the basis
for a maintainable and efficient implementa on of the Template Instan a on process. The XTL
instruc ons can easily be implemented on the opera ons supplied by the opera onal model.
The abstract machine used by the opera onal model of the XTL Engine is shown in Figure 6.3.

The template engine basically reads from the input XTL document (the template) and writes to
the output document (the instan ated template). The component responsible for the evalu-
a on of the instan a on data is called PHP here, for more details on the underlying plugin
mechanism refer to Sec on 6.1.1. To fulfill its task, the engine sets up four helper components:

• a read window, which is easing access to the template input stream,
• a loop stack, which keeps track of the nes ng of loop statements (i.e., xtl:for-each
instruc ons) during the instan a on process,

• a map of macros, which is used to store macro defini ons made by xtl:macro state-
ments, and finally

• a number of PHPs, maintained in a map indexed by their realm names.
.

130

6.2. Template Instan a on

The opera onal model will be shown using excerpts from the Java implementa on of the
XTL Engine. First, the four helper components are discussed. A erwards, the implementa ons
of the par cular XTL instruc ons using the four helper components of the XTL Engine will be
described.

Figure 6.3.: XTL Engine with Input and Output Streams

Read Window

The read window allows the template engine to look at a certain fragment of the template
instead of a par cular element. Parts of the template which are located before the content of
the readwindow (in document order) are no longer accessible by the template engine, whereas
parts that are behind the content of the read window are not yet read. Thus, the end of the
read windowmarks the current read posi on within the template input stream. The evalua on
posi on is the loca on of the template that the engine is currently evalua ng and that must
necessarily be within the read window.
The read window is, for example, of importance during the processing of xtl:for-each

statements. As the content of xtl:for-each statements can poten ally be instan ated sev-
eral mes, it must be kept inside the read window un l the xtl:for-each has been fully
evaluated.

public interface ReadWindow
{

/* Marker management. */
public void markReadPosition(Object marker);

public void returnTo(Object marker);

public void removeMarker(Object marker);

/* Read and skip. */

131

6. Flexible, Efficient and Safe Template Instan a on

public List<XMLEvent> readUntilBeforeAndSkipOnce()
throws XMLStreamException;

public void skipUntilAfter() throws XMLStreamException;

/* Content modification. */
public void replaceLastRead(List<XMLEvent> events);

}

Lis ng 6.2: The ReadWindow Interface

The opera ons shown in Lis ng 6.2 basically fall in three categories: opera ons for the man-
agement of markers within the template input stream, opera ons for reading from or skipping
in the stream and opera ons that modify the stream by replacing or inser ng XMLEvents. A
visualiza on of all opera ons supplied by the ReadWindow implementa on is shown in Fig-
ure 6.4.

• The markReadPosition(marker) opera on marks the current posi on within the
read window with some marker object marker. The read window ensures by itself that
a return to the marked posi on is always possible, i.e., the start of the read window will
not be moved behind the first marked posi on (in document order).

• The returnTo(marker) opera on changes the read posi on within the read window
to the read posi on which has been stored by a preceding call to markReadPosition
with the same argument marker.

• TheremoveMarker(marker) opera on removes themarked posi on associatedwith
the marker object marker. If the marked posi on to be removed is the first marked
posi on in document order, the read window will shrink itself by moving its beginning to
the next marked posi on.

• The skipUntilAfter() opera on moves the read posi on within the read window
to a er the element closing the last read start element. The end of the read window will
be extended by the read window itself if the end element is not part of the current read
window content.

• The readUntilBeforeAndSkipOnce() opera on reads from the current read po-
si on to the posi on before the element closing the last read start element and a er-
wards skips the closing element. The end of the read window will be extended by the
read window itself if the end element is not part of the current read window content.
The part of the read window content read will be returned.

• The replaceLastRead(events) opera on removes the last element read from the
readwindowand replaces it with the passed XML eventsevents. Furthermore, the read
posi on is set back to the beginning of the events that has been used to replace the last
read event.

The read window implementa on is designed to keep the content of the read window as
small as possible, while s ll allowing all described opera ons to be performed at any me. This
is described by two contracts. First, the read windowwill be empty if neither a marker has been
set nor an insert opera on has filled the read window with some content. Second, all marked
posi ons will always be part of the readwindow. While the first contractminimizes thememory

132

6.2. Template Instan a on

used by the read window, the second one guarantees that elements within the read window,
which could be required at some me in the future, are s ll available.

Figure 6.4.: Examples of Read Window Opera ons’ Execu on

Loop Stack

In order to keep track of nested loop statements, the engine maintains a stack of them. Cur-
rently, as the XTL language design only supports one type of loop statement, the loop stack
is used to keep track of xtl:for-each statements only. The topmost stack frame always
corresponds to the innermost ac ve xtl:for-each statement. In this stack, the execu on
informa on for each xtl:for-each statement is saved, i.e., the following informa on is
stored per xtl:for-each:

• an iterator of objects, which is used to retrieve all values that the control variable of the
xtl:for-each statement takes during the execu on of the xtl:for-each loop,

• an object represen ng the value of the control variable of the surrounding xtl:for-
each (or null, if there is no such xtl:for-each statement),

• the current posi on of the control variable value within the iterator of all values,
• the Instan a on Data Evaluator which has been used to retrieve the iterator for the con-
trol variable values, and finally

• the name of the realm which has been assigned to the xtl:for-each statement.
Lis ng 6.3 shows the opera ons supplied by the loop stack.

public interface LoopStack
{

/* Loop lifecycle management. */
public <T> void openLoop(Iterator<T> iterator,

PlaceHolderPlugin<T> php, String realm);

public void reenterLoop();

133

6. Flexible, Efficient and Safe Template Instan a on

public void closeLoop();

/* Information about the innermost loop. */
public Iterator<?> getActiveIterator();

public int getPosition();

/* Information about an arbitrary loop. */
public Object getControlVariableValue(String realm);

public PlaceHolderPlugin<?> getPlaceHolderPlugin(String realm);
}

Lis ng 6.3: The LoopStack Interface

As indicated in the lis ng, three categories of opera ons exist: first, opera ons for managing
the loop lifecycle, second, opera ons for giving access to informa on about the innermost loop
and, finally, opera ons which return informa on about an arbitrary loop on the stack. The
par cular opera ons are described below.

• The openLoop(iterator, php, realm) opera on adds a new stack frame with
the sequence of upcoming control variable values iterator, the PHP php and the
realm name realm. The first value of the control variable is taken from iterator
immediately—thus, the passed iterator must not be empty. The posi on of the current
value of the control variable is ini alized to 0.

• The closeLoop() opera on removes the topmost stack frame from the loop stack.
• The reenterLoop() opera on updates the topmost stack frame by retrieving a new
value for the control variable from the sequence of control variable values passed to
openLoop. As a side effect, the stored posi on of the control variable within the it-
erator of possible control variable values is also increased.

• The getActiveIterator() opera on returns the iterator which is contained in the
topmost entry of the xtl:for-each stack. This so-called ac ve iterator is the one
which should be used to retrieve the next element when the next xtl:for-each end
element is encountered.

• The getPosition() opera on returns the posi on of the current control variable’s
value within the sequence of control variable values for the innermost loop. Obviously,
this always corresponds to the number of completed evalua ons of the loop’s content.

• The getControlVariableValue(realm) opera on returns the value of the con-
trol variable in the innermost xtl:for-each statement which has been assigned to
the realm realm during a call to the openLoop opera on. This is needed to supply
evalua ons of context-dependent XTL statements like xtl:text with the current con-
text value as described in Sec on 4.2.1.

• The getPlaceHolderPlugin(realm) opera on returns the PHP of the topmost
stackframe which has been assigned to the realm realm during the openLoop call.
This opera on is only used internally for the implementa on of the System PHP (see Sec-
on 6.1.5).

134

6.2. Template Instan a on

Map of Macros

The use of macros in XTL templates involves two instruc ons: xtl:macro and xtl:call-
macro. While the first instruc on assigns a sequence of XTL instruc ons to a macro name, the
la er calls the macro by execu ng all XTL instruc ons which have been assigned a par cular
name by a preceding xtl:macro instruc on.

public interface MacroMap
{

public List<XMLEvent> get(String name);

public void put(String name, List<XMLEvent> events);
}

Lis ng 6.4: The MacroMap Interface

In order to implement this transfer of XTL instruc ons with a name from the xtl:macro
instruc ons to corresponding xtl:call-macro instruc ons, the map of macros as shown
in Lis ng 6.4 is used. It supports the following opera ons:

• The put(name, events) opera on assigns the name name to the sequence of
events events.

• The get(name) opera on retrieves the sequence of events which has been assigned
for the name name.

Map of PHPs

The engine uses a number of instan a on data evaluators to evaluate select a ributes. For
details of these instan a on data evaluators, see Sec on 6.1. The selec on of an appropriate
instan a on data evaluator may depend on realm a ributes—for details see Sec on 4.5.1.

public interface PlaceHolderPluginMap extends
Iterable<PlaceHolderPlugin<?>>

{
public PlaceHolderPlugin<?> get(String realm);

}

Lis ng 6.5: The PlaceHolderPluginMap Interface

The PlaceHolderPluginMap interface shown in Lis ng 6.5 contains only a single opera-
on. This get(realm) opera on returns the PHP instance responsible for the realm with the

name realm.
The opera ons exposed by the PHPs itself closely correspond to the IDS interface which

has been defined as part of the denota onal seman cs of XTL (see Lis ng 4.2). For a detailed
discussion of the PHP opera ons, refer to Sec on 6.1.1.

135

6. Flexible, Efficient and Safe Template Instan a on

6.2.3. Pipeline Implementa on of the XTL Engine

The XTL Engine itself is implemented as a pipeline composed of separate processing steps, which
will be discussed in the following. The chaining of the par cular steps is shown in Figure 6.5. The
steps interact by reading or wri ng XTLEvents for its predecessor or to its successor, respec-
vely. The pipeline is driven by the XMLPipelineDriver, which merely reads events from

its predecessor and writes these events directly to its successor. The actual instan a on is per-
formed by the XTLProcessingReader. The other components prepare the event stream
(like the XTLEventReader), perform op onal features of the XTL processing (like the By-
passingProcessingReader or the IndentingXMLEventWriter) or solve technical
issues (like the ReassigningAttributesWriter).

Figure 6.5.: The XTLEngine’s Processing Pipeline

A great simplifica on in the implementa on of the XTL Engine has been achieved by intro-
ducing XMLEvent subclasses for the par cular XTL instruc ons. The object model formed by
these subclasses is shown in Figure 6.6. There are three categories of subclasses: representa-
ons of start elements of XTL instruc ons (like XTLForEachStart, le column in Figure 6.6),

representa ons of end elements of XTL instruc ons (like XTLForEachEnd, right column) and
representa ons of empty XTL instruc ons (like XTLAttribute, center column). All classes
inherit from a common base class XTLEventImpl, which implements the javax.xml.
stream.event.XMLEvent interface and can therefore be handled by XMLEventReader
andXMLEventWriter implementa ons. This common base class implements basicmethods
enforced by theXMLEvent interface and declares abstractmethods like theprocessmethod
which must be implemented by subclasses (see below for details).
For the non-empty XTL instruc ons, there are addi onal base classes in the hierarchy in-

heri ng from XTLEventImpl: XTLStartElementImpl and XTLEndElementImpl for
start and end elements, respec vely. These base classes implement the methods enforced by
theStartElement andEndElement interfaces from the packagejavax.xml.stream.
events.
The leaf classes basically implement the processmethod, which is used in the main part in

the XTL processing pipeline, theXTLProcessingReader. Via this method, the XTL Engine is
easily extendable with new XTL instruc ons: the actual interpreta on of the instruc on is kept

136

6.2. Template Instan a on

Figure 6.6.: The XTLEvent Hierarchy

137

6. Flexible, Efficient and Safe Template Instan a on

together with its representa on in the object model, which makes it unnecessary to change the
XTLProcessingReader class when new func onali es are added.

It can easily be seen from the opera onal model and from the descrip on of the par cular
processing steps below, that the implementa on of the XTL Engine, while being possible in a
well-structured and easilymaintainable design, ismuchmore complex than the implementa on
of the denota onal seman cs as a Haskell program. Interes ngly, it seems that reimplemen ng
Haskell-based XMLprocessing applica ons in Java always leads to programswhich are larger and
very differently structured. This insight also seems to be true for other reimplementa ons, e.g.,
for the reimplementa on of the RelaxNG valida on given by [37]:

The Relax NG deriva ve algorithm is implemented in a few hundred elegant declar-
a ve func onal lines of Haskell, and also in tens of thousands of lines and hundreds
of classes of highly abstract complex Java code. [89, spelling corrected]

XTLEventReader

The first step in the instan a on process is the replacement of all StAX XML events that cor-
respond to XTL elements with specific XTL events. The implementa on is really simple. Dur-
ing the construc on of the XTLEventReader, all classes registered as representa ons of XTL
events are retrieved. This is achieved via the service provider mechanism [177, Sec on “Service
Provider”], i.e., by inspec ng all files named ’/META-INF/services/org.lixlix.xtl.engine.XTLEvent’
in the classpath. All of these classes are inspected for their constructors via reflec on. If a
class provides a constructor with a single javax.xml.stream.events.StartElement
argument, it is considered a representa on of an XTL start element. If the class provides a
constructor with a single javax.xml.stream.events.EndElement, it is considered a
representa on of an end element, respec vely. Classes providing none of these constructors
are invalid implementa ons and are excluded from further processing.

Figure 6.7.: Ac vi es during a Call to XTLEventReader.getNextEvent

Each class must denote a local element name by using the Java annota on org.lixlix.
xtl.engine.XTLEventDescription. If no such annota on is a ached to the class, the
class is considered an illegal implementa on and is excluded from further processing. If an

138

6.2. Template Instan a on

annota on is a ached, its localName a ribute is used to store the constructor in either a
start element or an end element constructor map.
During the template instan a on process, the getNextElement method prescribed by

the javax.xml.stream.XMLEventReader interface is invoked. An example of such an
invoca on is shown in Figure 6.7. The implementa on of getNextElement first fetches an
element from the XTLEventReaders predecessor in the processing chain ¬. If the element
is not from the XTL XML namespace, it is simply returned to the caller. If the element has the
XTL namespace URI, its local name is used to look up a constructor from either the start ele-
ment or the end element constructor map, depending on whether the element is a start or an
end element . This constructor is then called with the element from the predecessor ®. If
the construc on succeeds, its result is returned to the caller, i.e., the successor in the process-
ing chain ¯. If construc on fails, a warning message is emi ed, sta ng that an unprocessable
element from the XTL namespace has been encountered and the predecessor is asked for a
new element, which is then processed in the described way. This process con nues un l an
element can be returned or the predecessor fails to deliver further elements. In that case an
javax.xml.stream.XMLStreamException is thrown.

BypassProcessingReader

The next step in the processing chain is the BypassProcessingReader, which is respon-
sible for implemen ng the bypassing feature as described in Sec on 4.5.2. An example of the
opera ons executed by the BypassProcessingReader is shown in Figure 6.8.

Figure 6.8.: Ac vi es during a Call to BypassProcessingReader.getNextEvent

When the getNextEventmethod of the BypassProcessingReader is called, it first
fetches an element from its predecessor in the processing chain ¬. If the element is not from
one of the bypassing namespaces, i.e., if its namespace URI is not http://research.sap.
com/xtl/1.0/bypass/n, the element is simply returned to the caller. Please note that this
is also true for elements from the XTL namespace itself. If the element is from one of the by-
passing namespaces, its genera on number is decreased. Then, a new start element is created
using the javax.xml.stream.XMLEventFactory . This element is either from the
XTL namespace, if the decreased genera on number is 0, or from the bypassing namespace

139

6. Flexible, Efficient and Safe Template Instan a on

with the decreased genera on number. It is important to note that elements read from the
bypassing namespace with the genera on number 1 are converted to mere start elements, not
to specific XTL events. This prevents the elements from this namespace from being processed
in the following processing chain, and this is also the reason why the XTLEventReader pre-
cedes the BypassProcessingReader in the processing chain. Finally, the newly created
element is returned to the caller ®.

XTLProcessingReader

The XTLProcessingReader is the core of the XTL engine. This is the part of the XML pro-
cessing pipeline in which the XTL instruc ons are actually executed. To grant the components
performing the actual processing of XTL events access to the opera ons of the abstract ma-
chine described in Sec on 6.2.2, the XTLProcessingReader implements the Instan-
tiationContext interface shown in Lis ng 6.6.

public interface InstantiationContext
{

public LoopStack getContextStack();

public MacroMap getMacroMap();

public PlaceHolderPluginMap getPlaceHolderPluginMap();

public ReadWindow getReadWindow();
}

Lis ng 6.6: The InstantiationContext Interface

An example of the opera on of the XTLProcessingReader is shown in Figure 6.9.

Figure 6.9.: Ac vi es during a Call to XTLProcessingReader.getNextEvent

TheXTLProcessingReader’sgetNextEventmethod operates in a loop. First, it fetch-
es an XMLEvent from its predecessor ¬. If the fetched event is an instance of java.xml.

140

6.2. Template Instan a on

stream.events.Comment, the loop is reentered, i.e., XML comments from the template
are omi ed from the output. If the fetched event is an XTL instruc on, itsprocess(Instan-
tiationContext):XMLEvent method is called . As the InstantiationContext
parameter, the XTLProcessingReader passes itself.
The process method of the XTLText class invoked by the XTLProcessingReader,

which is shown in Lis ng 6.7, uses the passed InstantiationContext interface to re-
trieve the PlaceHolderPlugin responsible for evalua ng the expression in the select
a ribute of the xtl:text instruc on ®. A erwards, this PHP’s evaluateText method is
called to actually evaluate the select expression ¯. The string value returned by the PHP is
used to construct an javax.xml.stream.events.Text object, which is returned to the
XTLProcessingReader’s getNextEventmethod, which returns it to its invoker °.
If the process method of the XTLEvent would have returned null, the getNext-

Event’s loop would have been reentered.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLText.”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

String result = php.evaluateText(this,
context.getContextStack().getControlVariableValue(realm));

return eventFactory.createCharacters(result);
}

Lis ng 6.7: The processMethod in XTLText

The processing of xtl:attribute instruc ons is very similar to the processing just ex-
plained, i.e., the processmethod of XTLAttribute is almost iden cal to the one in XTL-
Text.
The implementa on of the process method in XTLIfStart is shown in Lis ng 6.8. The

processing starts similarly to the processing of an xtl:text instruc on, but the evalu-
ateIf method from the PHP returns a boolean value rather than a string. If this boolean is
false, the processing of the preceding stream is skipped un l a er the xtl:if end element
that corresponds to the current start element using the method skipUntilAfter from the
ReadWindow class. The process method returns null to signal the XTLProcessing-
Reader that it has not produced anything that should be part of the instan ated template.
The XTLIfEnd class itself has an empty process method, as no ac on has to be executed
when a closing xtl:if element is encountered.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLIf select=’”+select+”’.”);

141

6. Flexible, Efficient and Safe Template Instan a on

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

boolean conditionFullfilled = php.evaluateIf(this,
context.getContextStack().getControlVariableValue(realm));

if (!conditionFullfilled)
{

// Fast forward.
context.getReadWindow().skipUntilAfter();

}

return null;
}

Lis ng 6.8: The processMethod in XTLIfStart

The implementa on of the process method of the XTLForEachStart and XTLFor-
EachEnd classes are shown in the Figures 6.9 and 6.10, respec vely.
An xtl:for-each start element is processed as follows. First, a PHP is retrieved using the

realm a ribute value. Then, the method evaluateForEach is called to get an iterator
over all control values for which the xtl:for-each instruc on content should be instan -
ated. If the iterator is empty, the xtl:for-each instruc on is skipped completely using the
skipUntilAfter method from the ReadWindow class. Otherwise, the current read posi-
on is marked with the iterator in the read window using the markReadPositon method,

and an entry on the ContextStack is made. This entry contains the iterator itself, its first
element as current value of the control variable, 0 as current posi on within the xtl:for-
each, the PHP used to evaluate the xtl:for-each and the value of the realm a ribute.
The processmethod returns null in both cases, as xtl:for-each itself does not directly
contribute to the instan ated template.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLForEachStart

select=’”+select+”’”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

Iterator<?> it = php.evaluateForEach(this,
context.getContextStack().getControlVariableValue(realm));

if (it.hasNext())
{

// Mark the current read position.
context.getReadWindow().markReadPosition(it);

// Register the execution of a loop on the context stack.
context.getContextStack().openLoop(it, php, realm);

}

142

6.2. Template Instan a on

else
{

// Fast forward.
context.getReadWindow().skipUntilAfter();

}

return null;
}

Lis ng 6.9: The processMethod in XTLForEachStart

If an xtl:for-each end element is encountered, its process method first retrieves
the iterator of the innermost xtl:for-each instruc on from the ContextStack using
its getActiveIterator method. The iterator’s hasNext method is then called to de-
termine whether the xtl:for-each instruc on’s content should be executed once more.
If hasNext returns false, the topmost entry on the ContextStack and the posi on in
the ReadWindow marked with the iterator are removed. Otherwise, if hasNext returns
true, the next value for the control variable is retrieved and the topmost entry on the Con-
textStack is updated. Finally, the read posi on in the ReadWindow is reset to the posi on
marked with the iterator, i.e., to the posi on directly a er the corresponding xtl:for-each
start element. In either case, the processmethod returns null.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLForEachEnd.”);

// Get the context stack.
LoopStack contextStack = context.getContextStack();

// Get the active iterator.
Iterator<?> it = contextStack.getActiveIterator();

// Do we have a new context object?
if (it.hasNext())
{

// Reenter the loop.
contextStack.reenterLoop();

// Jump to the event following the for-each start.
context.getReadWindow().returnTo(it);

}
else
{

// Remove the context.
contextStack.closeLoop();

// Allow the read window to compact itself.

143

6. Flexible, Efficient and Safe Template Instan a on

context.getReadWindow().removeMarker(it);
}

return null;
}

Lis ng 6.10: The processMethod in XTLForEachEnd

The macro handling is also very easy to implement: the processing of the xtl:macro start
element is shown in Lis ng 6.11, the process method of the xtl:macro end element is
empty and the processing of xtl:call-macro is shown in Lis ng 6.12.
Theprocessmethod of XTLMacroStart uses thereadUntilBeforeAndSkipOnce

method to get its content and stores it under the name given by the value of its name a ribute
in the macro map. Nothing is returned from the process method, since the xtl:macro
instruc on does not directly contribute to the instan ated template.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLMacroStart name=’”+name+”’.”);

// Get content of the macro until the closing element.
List<XMLEvent> content =

context.getReadWindow().readUntilBeforeAndSkipOnce();

// Store this macro.
context.getMacroMap().put(name, content);

return null;
}

Lis ng 6.11: The processMethod in XTLMacroStart

When an xtl:call-macro instruc on is encountered, the macro map is used to retrieve
the events stored by an xtl:macro instruc on with a name a ribute of the same value.
This content is then used to replace xtl:call-macro instruc ons using the replace-
LastRead() method of the read window. Nothing is returned from the process method,
so the XTLProcessingReader is going to fetch the next element from the read window,
which will be the first element from the currently inserted macro defini on.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLCallMacro name=’”+name+”’.”);

// Get the content of the macro definition.
List<XMLEvent> events = context.getMacroMap().get(name);

144

6.2. Template Instan a on

// Replace xtl:call-macro with the macro content.
context.getReadWindow().replaceLastRead(events);

return null;
}

Lis ng 6.12: The processMethod in XTLCallMacro

The processing of the xtl:include instruc on is shown in Lis ng 6.13. The process
method determines the events to be included using the evaluateInclude method of the
PHP and uses the retrieved events to replace the last read event in the readwindow. A erwards,
the method returns null to force the XTLProcessingReader to fetch the first event from
the read window, which will now be the first element evaluated by the PHP.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLInclude.”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

// Get events to be included.
List<XMLEvent> events = php.evaluateInclude(this,

context.getContextStack().getControlVariableValue(realm));

// Insert ourself with the new events.
context.getReadWindow().replaceLastRead(events);

return null;
}

Lis ng 6.13: The processMethod in XTLInclude

The processing of xtl:init is implemented as shown in Lis ng 6.14. The processmeth-
od fetches the content of the xtl:init instruc on using readUntilBeforeAndSkip-
Once from the read window and passes the retrieved events to the PHP denoted by its realm
a ribute. Asxtl:init does not contribute to the instan ated template, theprocessmeth-
od returns null.

public XMLEvent process(InstantiationContext context) throws
XMLStreamException

{
logger.debug(”Processing XTLInitStart.”);

PlaceHolderPlugin php =
context.getPlaceHolderPluginMap().get(realm);

145

6. Flexible, Efficient and Safe Template Instan a on

List<XMLEvent> content =
context.getReadWindow().readUntilBeforeAndSkipOnce();

php.init(content);

return null;
}

Lis ng 6.14: The processMethod in XTLInit

XMLPipelineDriver

The XMLPipelineDriver is a very simple component responsible for driving the XML pro-
cessing pipeline by reading XMLEvents from its predecessor and wri ng them to its successor.
This mechanism is implemented in its execute method. As soon as no more events can be
read from its predecessor, the executemethod returns.

ReassigningAttributesWriter

The ReassigningAttributesWriter solves a purely technical problem: some StAX im-
plementa ons cannot handle standalone java.xml.stream.events.Attribute in-
stances, i.e., instances which are directly embedded into the StAX event stream. These im-
plementa ons expect all Attribute instances to be assigned to javax.xml.stream.
events.StartElement instances. Since the processing of xtl:attribute instruc ons
creates such standalone instances, the ReassigningAttributesWriter has been intro-
duced to keep the implementa on of the XTL engine’s core components as clean and clear as
possible.
The ReassigningAttributesWriter performs the assignment of standalone At-

tribute instances to their preceding start element. To achieve this, the wri ng of the last
StartElement is deferred un l a new StartElement or an EndElement is encoun-
tered. During deferral, all Attribute instances in the stream are removed from the stream
and assigned to the deferred start element.

IndentingXMLEventWriter

In order to produce a human readable XML output, the IndentingXMLEventWriter com-
ponent can be inserted into the processing pipeline. Indenta on of XML can be implemented in
many ways. In order to keep the memory consump on low, a streaming indenta on algorithm
has been implemented. The indenta on process has been subdivided into two components, the
actual IndentingXMLEventWriter and an inner class called PostProcessor. There-
fore, the indenta on step in the processing pipeline shown in Figure 6.5 is shown in more detail
in Figure 6.10. The IndentingXMLEventWriter itself is responsible for keeping track of
the element nes ng in the XMLEvent stream, whereas the PostProcessor is responsible
for performing the actual indenta on (i.e., the indenta on on the syntac cal level).

146

6.2. Template Instan a on

Figure 6.10.: Indenta on Parts of the XTL Processing Pipeline

The PostProcessor provides the following opera ons to the IndentingXMLEvent-
Writer:

• increaseIndent increases the indenta on for all following elements by one tabula-
tor.

• decreaseIndent decreases the indenta on for all following elements by one tabula-
tor.

• indent inserts the number of tabulators currently set as a Text event into the target
XMLEvent stream.

• assertNewLine ensures that the target event stream is on a newline. If this is not the
case, the PostProcessor inserts a newline.

• add adds a par cular XMLEvent to the event stream.
The IndentingXMLEventWriter obeys the state chart shown in Figure 6.11. The fol-

lowing ac ons are performed on the transi ons between the states:

¬ The only valid event in the ini al state is the StartDocument event, which causes a
transi on into the corresponding state. The event itself is added to the PostProces-
sor.

 Text events occuring in the START_DOCUMENT state are ignored.

® A StartElement event makes sure that the target stream is on a newline, adds the
event to the PostProcessor and increases the indent level. Furthermore, a transi on
to the START_ELEMENT state is performed.

¯ If Text events occur in the START_ELEMENT state, their content is aggregated in a text
buffer.

° If another StartElement event occurs, the content of the text buffer is flushed (see
below). A erwards, indent is called on the PostProcessor, the StartElement
event is added to the PostProcessor and the indenta on is increased.

147

6. Flexible, Efficient and Safe Template Instan a on

± If an EndElement event occurs, the content of the text buffer is flushed, the indenta-
on is decreased, indent is called and the event is added to the PostProcessor. A

transi on to the END_ELEMENT state is performed.

² If a StartElement occurs in the END_ELEMENT state, the text buffer content is flush-
ed, indent is called, the event is added to the PostProcessor and the indenta on
is increased. A transi on to the START_ELEMENT state is performed.

³ If Text events occur in the END_ELEMENT state, their content is aggregated in a text
buffer.

´ If another EndElement event occurs, the content of the text buffer is flushed. The
indenta on is decreased, indent is called and the event is added to the PostPro-
cessor.

µ If an EndDocument event occurs, the event is added to the PostProcessor. The
final state of the start model has been reached.

All transi ons not shown in Figure 6.11 are considered illegal and cause an error message.
This also includes events which will never occur in the XMLEvent stream origina ng from the
XTLEventProcessingReader, like Comment or ProcessingInstruction events.

Figure 6.11.: State Chart of the IndentingXMLEventWriter

The treatment of the content of the text buffer during flushing to the successor XMLEvent-
Writer, which occurs in the transi ons °, ±, ² and ´, depends on the text which has been
collected in the text buffer. If the text to be flushed consists of a single line and is not longer
than a configurable size, it is emi ed as is. This results in an XML snippet like the following:

<a>text

If the text is longer or contains newlines, it is tokenized and its parts are emi ed with indenta-
on, resul ng in XML like the following:

<a>
text
more text

148

6.2. Template Instan a on

SplittingOutputStream

A special feature of the XTL Engine is its capability to split the instan a on result into mul ple
result documents. This feature roughly corresponds to the result-document instruc on of
XSL-T 2.0. Syntac cally, this feature is based on an XML Schema which defines elements that al-
low bundling mul ple XML documents into one. An example document is shown in Lis ng 6.15.

<?xml version=”1.0” encoding=”UTF-8”?>
<s:files xmlns:s=”http://research.sap.com/xtl/splitting”>

<s:file name=”simple1_1.xml”>
<a>This is simple1_1.xml!

</s:file>
<s:file name=”simple1_2.xml” encoding=”iso-8859-1”>

<a>This is simple1_2.xml!
</s:file>
<s:file name=”simple1_3.xml” encoding=”utf-8”>

<a>This is simple1_3.xml!
</s:file>
<s:file name=”simple1/simple1_4.xml”>

<a>This is simple1/simple1_4.xml!
</s:file>

</s:files>
Lis ng 6.15: A Template Instan a on Result before Spli ng

The root element of a template instan a on result which should be split into mul ple files
must be files from the spli ng namespace (here prefixed with s, the namespace URI is
http://research.sap.com/xtl/splitting). Within this root element, mul ple s:
file elements are allowed. Each s:file element must have a name a ribute that declares
the file name into which all content parented by this s:file element should be wri en. The
s:file element can also carry an encoding a ribute which sets the encoding of this par-
cular file to be generated.

Figure 6.12.: State Chart of the SplittingOutputStream

The implementa on of the SplittingOutputStream is simple and follows the state
chart shown in Figure 6.12. From the ini al state, the only valid transi on is to the IN_FILES
state via an s:files element ¬. From the IN_FILES state, an s:file element causes the
crea on of a file and a transi on into the IN_FILE state , in which basically all occuring el-
ements are wri en to the file created ®. The IN_FILE is only le when a closing s:file or
s:files tag is encountered. The first case causes a transi on back to the IN_FILES state¯,

149

6. Flexible, Efficient and Safe Template Instan a on

whereas the la er case is obviously an error, which causes the SplittingOutputStream
to enter a final ERROR state °. From the IN_FILES state, an occuring closing s:files tag
causes the transi on to the final SUCCESS state ±, whereas a closing s:file is an error and
leads to the final ERROR state ².

6.2.4. Memory and Run me Complexity

From the opera onal view on the XTL Engine, the limits for the memory and me consump on
shown below can be derived. The underlined parts of the equa ons are to be interpreted as
XPath expressions.
The memory consump on limit of the XTL Engine is determined by the size of the read win-

dow. As explained above, the readwindowmust be capable of holding the content of the largest
xtl:for-each statement of a template, i.e., thememory is limited by themaximumnumber
of nodes contained in an xtl:for-each statement in the template t◦.

memory(t◦) = O

(
max

x∈t◦//xtl:for−each

∣∣∣x//node()∣∣∣)
A limit for the me consump on can only be given by abstrac ng from the me needed for

the evalua on of the expressions from the query language. Under this restric on, the me
needed for the instan a on of the template is linear in the size of the instan ated template.
Obviously, the size of the instan ated template can not be es mated from the template, as this
size depends on the result of the evalua on of the instan a on data.

time(t◦) = O
(∣∣∣instantiate(t◦)//node()∣∣∣)

Measurements of the implementa on show the correctness of these es ma ons, for details
see Sec on 7.5.

6.3. Instan a on Data Valida on

The instan a on data valida on process is responsible for the valida on of the instan a on
data. The instan a on data validator component verifies the data supplied by the instan a on
data evaluator against the constraints determined during the Constraint Separa on process.
Non-compliance of the instan a on data has to be reported by this component.
As Figure 3.5 shows, the instan a on data validator gets ac vated during the instan a on

phase. This means that no correc ve ac ons can be taken anymore if a problem is detected
with respect to the instan a on data. The component is beneficial nonetheless, because it is
able to deliver the exact reason why the instan ated template will not comply to the target
language. Furthermore, the error is detected within the applica on which incorporates the
template engine, and not, as for example in a classical Web applica on, in some user’s browser
(see Figure 1.1). Thus, valida ng the instan a on data constraints contributes to the safe in-
stan a on goal.

150

6.3. Instan a on Data Valida on

6.3.1. The IDC PHP

The process of valida ng the par cular instan a on data constraints is simple. The constraints
are simply taken from the template into which they have been augmented by the Template
Valida on process as shown in Sec on 5.2. A erwards, the values returned by the instan a on
data valida on process are validated against these constraints. This process is implemented by
the IDC PHP, which is a PHP that wraps another PHP and validates its return values as shown
in Figure 6.13 (see Sec on 6.2.3 for the process without involvement of the IDC PHP). The IDC
PHP is a decorator [73]. If mul ple PHPs are in use during XTL instan a on (see Sec on 4.5.1
for details), each PHP is wrapped with its own IDC PHP.

Figure 6.13.: XTL Instan a on with enabled Instan a on Data Valida on

When the XTLProcessingReader encounters an xtl:text instruc on ¬, it calls the
process method of the XTLText event implementa on . This implementa on now no
longer retrieves the instan a on data directly from the responsible PHP (as in Figure 6.9), but
rather calls the evaluateTextmethod of the IDC PHP to evaluate it ®. The IDC PHP in turn
calls the evaluateText method of the responsible PHP ¯ to actually get the instan a on
data value, which it validates using the type a ribute augmented to the xtl:text instruc-
on. If the instan a on data is valid with respect to the instan a on data constraint, the pro-

cessing method returns ° and the XTLProcessingReader creates a text element ±. If the
instan a on data is not valid, the instan a on fails, thereby producing an error message telling
which instan a on data constraint has been validated.
The actual processing of the value returned by the wrapped PHP depends on the affected XTL

instruc on:
1. If an xtl:text or xtl:attribute instruc on is processed, the instan a on data is

validated against the XML Schema simple type denoted by the type a ribute of the XTL
instruc on. This valida on is performed using the validate method from the corre-
sponding org.apache.xerces.impl.dv.XSSimpleType instance, which is re-
trieved based on the type a ribute.

2. If an xtl:if instruc on is processed, no valida on is performed as the PHP interface
already restricts the return value to be of boolean type (see Lis ng 6.1), which makes it
impossible to retrieve an invalid instan a on data value here.

151

6. Flexible, Efficient and Safe Template Instan a on

3. If an xtl:for-each instruc on is processed, the wrapped PHP returns an iterator
over elements of some type determined by a generic parameter of the PHP interface.
It must be checked that this iterator returns a number of elements between the values
of the min and the max a ribute of the xtl:for-each instruc on (the la er value
may be unbounded, which makes the interval of allowed values for the number le -
bound). As the retrieval of elements from the iterator does not take place in the PHP
itself, but rather in the process methods of the XTLForEachStart and XTLFor-
EachEnd event classes, the iterator is wrapped in aorg.lixlix.xtl.util.Size-
CheckingIterator. This decorator class just delegates calls to its next and has-
Next methods to the decorated iterator, and counts the number of elements already
retrieved and adds an addi onal check that is executed when the hasNext method of
the decorated iterator returns false for the first me. The check ensures that the num-
ber of elements retrieved from the decorated iterator is within the interval specified by
the min and max a ributes of the xtl:for-each instruc on.

6.3.2. Template Interface Genera on

There is an alterna ve approach to ensure that the instan a on data sa sfies its constraints.
Assuming that the frequency of template modifica ons is low (or that the modifica ons are of
a special type, see below), an interface to the template that asserts the instan a on data con-
straints can be generated. This interface ensures the instan a on data constraints by mapping
them to the type system of the language that is using the template engine.
This technique is called Template InterfaceGenera on and slightly changes the template tech-

nique as proposed in Figure 3.5. The changed architecture is shown in Figure 6.14. The differ-
ence to the previously proposed architecture is the extension of the adapta on phase: the
adapta on of the template technique now also includes an adapta on to the authored tem-
plate. A er the template has been authored and validated, it is compiled in the Template Inter-
face Genera on step.
This step yields a template interface that fulfills the func ons of both instan a on data evalu-

a onand instan a ondata valida on. For that reason, the template interface is connectedwith
the Template Instan a on bidirec onally. Strictly speaking, the generated template interface
appears in two life cycle phases. It is generated in the adapta on phase and used in the instan-
a on phase, which is indicated in Figure 6.14 by the bicolour box used for it. Furthermore, it

is important to note that the aforemen oned adapta on phase is different from the one intro-
duced in Sec on 2.1.2, since it is adap ng the template engine to a par cular template rather
than to a par cular target language.
Template Interface Genera on combines the best features of both XML binding tools and

template techniques. XML binding tools guarantee that a generated document complies to a
given schema by transla ng the constraints contained in the schema to the type system of the
programming language using the XML binding tool (see Sec on 2.3.3 and [155]). This principle
has also been called intra-level transforma on between technological spaces [113]. The disad-
vantage of XML binding tools is that the en re document must be created in the host language.
On the other hand, template techniques offer an easyway to generate a document only par ally
using a programming language: the remainder of the target document is literally contained in

152

6.3. Instan a on Data Valida on

� Design � Adapta on � Authoring � Instan a on

Figure 6.14.: Architecture with Template Interface Genera on

the template. Template Interface Genera on allows to generate target language documents
par ally using a programming language, par ally from a template using a generated API which
ensures the validity of the instan a on data.
A difference between the originally proposed architecture in Figure 3.5 and the architecture in

Figure 6.14 is the missing instan a on data source component in the la er architecture. It has
been replaced by the applica on employing the template engine. The applica on is connected
bidirec onally to the template interface and the direc ons correspond to the push and the pull
strategy introduced in Sec on 2.5.4.
If the pull strategy is used, Template Interface Genera on just generates an interface which

must be implemented by the applica on that is using the template. In this case, the instan -
a on data is queried from the applica on when it is needed. On the other hand, if the push
strategy is used, the Template Interface Genera on process will generate a data model which is
instan ated a erwards and populated by the applica on, and that is passed to the template en-
gine upon invoca on. Obviously, the datamodel corresponds to theMove Copy of Data pa ern
also men oned in Sec on 6.1.1.

6.3.2.1. Introductory Example

As an introductory example, consider the XTL template shown in Lis ng 6.16. The template is
obviously intended to generate an XHTML document. The template is augmented with instan -
a on data constraints, e.g., with type a ributes at the xtl:text instruc ons. The Template

153

6. Flexible, Efficient and Safe Template Instan a on

Interface Genera on process interprets the select a ributes in this lis ng as XPath expres-
sions and tries to build an object model which can be accessed using these select a ributes.

<?xml version=”1.0” encoding=”UTF-8”?>
<html

xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xtl=”http://research.sap.com/xtl/1.0”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

>
<body>

<xtl:for-each select=”books” min=”1” max=”unbounded”>

<xtl:for-each select=”authors” min=”1” max=”unbounded”>
<xtl:text select=”name” type=”xsd:string”/>

</xtl:for-each>
<xtl:text select=”name” type=”xsd:string”/>
(publ. <xtl:text select=”publicationDate” type=”xsd:date”/>)
<xtl:if select=”instock”>Buy</xtl:if>

</xtl:for-each>

</body>
</html>

Lis ng 6.16: Example Template for Template Interface Genera on

As the root for the XPath expressionswithin the documents, the root class of the objectmodel
to be generated will be used. As this usage is implicit (as opposed to being declared using some
XPath expression), a name for the root class can not be deduced from the XTL template. As a
conven on, the Template Interface Genera on process names the root class ObjectModel-
Root.
Since the outermost xtl:for-each instruc on has a select a ribute with a value of

books, the ObjectModelRoot class must have a property named books. As the mul plic-
ity of the xtl:for-each instruc on is restricted by min and max a ributes deduced during
the Template Valida on process, the books property must have a mul plicity of 1 . . . n. There
is no type a ribute at the xtl:for-each instruc on, since this instruc on merely changes
the context of the PHP during the Template Instan a on. The Template Interface Genera on
process therefore generates a new class Book for this property—the name is put into singular
in order to make the object model more human readable.
The Book class is used as the context for the xtl:text instruc ons with the select at-

tribute values name and publicationDate. Therefore, the Book class has proper es with
these names and the types String and Date, respec vely. The Java type is deduced from
the XML Schema type in the same way JAXB maps XML Schema types to Java types (see below
for the details). Addi onally, there is an xtl:if instruc on with a select a ribute with the
value instock, which is turned into a boolean property of the same name at the Book class.
Finally, the outermost xtl:for-each statement contains a further xtl:for-each state-
ment carrying a select a ribute with the value authors. Analogously to what has been

154

6.3. Instan a on Data Valida on

described above, this statement adds an authors property to the Books class typed by the
newly introduced Author class.
The xtl:for-each statement refering to the authors property of the Book class con-

tains only a single xtl:text instruc on, which causes the Template Interface Genera on pro-
cess to add a name property to the Author class. This a ribute has the type String. The
overall object model which can be deduced from the template is shown in Figure 6.15.

Figure 6.15.: The Object Model Deduced from the Template in Lis ng 6.16

It is important to note that the Instan a on Data Type Safety can not only be guaranteed by
the Java types of the proper es within the generated object model. The problem is that the
XML Schema type model is much more fine-grained than the Java type model, e.g., there is no
exact equivalent of the xsd:nonNegativeInteger type. The solu on is to select the Java
type which has the smallest value range including all the values from the XML Schema type,
and to check the value for its correctness with respect to the XML Schema type either when
the value changes (i.e., within the set method) or when the object model is passed into the
Template Instan a on process.

6.3.2.2. An Algorithm for the Template Interface Genera on

It is important to note that the Template Interface Genera on process restricts the syntax of
XPath expressions usedwithin the template. For example, the XPath axisdescendant can not
be allowed in the XPath expressions in a template for which an interface should be generated,
since this axis allows an XPath to evaluate to a node arbitrarily deep within the context node.
There is no equivalent to such an arbitrary descent within an object model.
The syntax accepted by the Template Interface Genera on is shown in Figure 6.16. The figure

contains a subset of the syntac cal produc ons in the XPath specifica on [38]. The first column
in the figure contains the number of the produc on rule within the specifica on. On the right
hand side of the rules, terminal and non-terminal symbols have been greyed out if they are not
allowed within the XPath expressions. If a non-terminal has been greyed out, its corresponding
produc on rule has been omi ed. The rule has also been omi ed if its le -hand side is not from
the XPath specifica on—this is the case for the QName non-terminal symbol, which is actually
defined in [29].

155

6. Flexible, Efficient and Safe Template Instan a on

[1] Loca onPath ::= Rela veLoca onPath | AbsoluteLoca onPath
[2] AbsoluteLoca onPath ::= ’/’ Rela veLoca onPath?

| AbbrAbsoluteLoca onPath
[3] Rela veLoca onPath ::= Step

| Rela veLoca onPath ’/’ Step
| AbbrRela veLoca onPath

[4] Step ::= AxisSpecifier NodeTest Predicate*
| AbbrStep

[5] AxisSpecifier ::= AxisName ’::’ | AbbrAxisSpecifier
[6] AxisName ::= ’ancestor’ | ’ancestor-or-self’ | ’a ribute’

| ’child’ | ’descendant’ | ’descendant-or-self’
| ’following’ | ’following-sibling’ | ’namespace’
| ’parent’ | ’preceding’ | ’preceding-sibling’ | ’self’

[7] NodeTest ::= NameTest | NodeType ’(’ ’)’
| ’processing-instruc on’ ’(’ Literal ’)’

[12] AbbrStep ::= ’.’ | ’..’
[13] AbbrAxisSpecifier ::= ’@’?
[37] NameTest ::= ’*’ | NCName ’:’ ’*’ | QName

Figure 6.16.: The XPath Syntax Accepted by the Template Interface Genera on Process

There are several reasons why a part of the right-hand side of a produc on rule has been
greyed out. First of all, all axes that allow an arbitrary depth selec on within an XML document
have been omi ed (ancestor, ancestor-or-self, descendant, descendant-or-
self, preceding, following). The namespace axis has been disallowed as its use does
not make any sense when accessing an object model. Furthermore, the use of predicates to
further classify the selected nodes has been disallowed in order to simplify the actual imple-
menta on of the Template Interface Genera on algorithm, although it would be possible to
include predicates in the allowed XPath subset. The abbreviated loca on paths have been dis-
allowed since they are refering to the disallowed descendant-or-self axis. Finally, node
tests have been restricted to name tests, since this is the only node test applicable to an object
model.

The Template Interface Genera on also slightly changes the seman cs typically assigned to
these expressions. Typically, a conversion from the node selected by an XPath expression de-
pending on the context of the expression is applied. Anxsl:if instruc onwill convert anull
value returned by an XPath expression into the boolean value false, and an arbitrary non-null
value into the boolean value true. Adap ng the Template Interface Genera on process to this
behaviour would mean that no type informa on could be deduced from xtl:if statements
at all, which would complicate the type deduc on during the genera on process.

In order to understand how an XML Schema type is mapped to a Java type, it is necessary
to look at the type mapping defined in [105]. The mapping used during the Template Interface
Genera on process is analogous, with the excep on that the xsd:IDREF type is also mapped
to the Java type java.lang.String, i.e., the IDREF value is represented textually within

156

6.3. Instan a on Data Valida on

the documentmodel (as it wouldwithin the XML document represen ng the documentmodel),
and not by resolving the referenced object (which would require the type to be mapped to the
java.lang.Object type).
The Template InterfaceGenera on algorithmbasically tries to construct an objectmodel from

the set of XPath expressions contained in an XTL template. As an intermediate step, an in-
memory model similar to a UML model is constructed (which is later used to generated the
actual template interface code using an M2C transforma on). The intermediate model is a
tree of instances of a data structure called property descriptor. A property descriptor has the
following proper es:

• A parent, which may also be absent.
• A list of children. Each of the child property descriptors of property descriptor A has A
as its parent.

• A name, which is a String.
• A type, which is a QName. The type may also be absent.
• A minimum and maximum cardinality. The la er one may also take a value of −1 to
denote unrestricted cardinality.

The construc on of the property descriptor tree works as follows. A current and a root prop-
erty descriptor are maintained. Ini ally, they are both ini alized with a single property descrip-
tor that forms the root of the property descriptor tree (and, thus, is the only property descriptor
without parent).
If an XPath expression complying to the syntax shown in Figure 6.16 is given, a property de-

scriptor is retrieved using the current and root property descriptor as described below. In order
to compute the result, a result property descriptor is introduced, which may be reassigned dur-
ing the process.

1. The XPath expression is interpreted using rule [1] from Figure 6.16. If it is an absolute
loca on, the root property descriptor is used to ini alize the result property descriptor,
otherwise, the current property descriptor is used as ini aliza on value.

2. For each abbreviated step (AbbrStep)within Rela veLoca onPath (see rules [3], [4], [12]),
the result property descriptor is either unchanged (for the abbreviated step .) or the
parent of the current property descriptor is assigned as its new value (for the abbreviated
step ..). It is an error if this parent property result descriptor is absent.

3. For a non-abbreviated step, i.e., a combina on of an AxisName or an AbbrAxisSpecifier
with a QName (see rules [4]…[7], [37]), the following happens, depending on the type of
the axis:

a) If the axis is the attribute axis (which may also be denoted using the AbbrAxis-
Specifier @), the QName is used to search for an equally named property descriptor
within the children of the current result property descriptor. If such a property de-
scriptor exists, it becomes the new result property descriptor. It is an error if the
property descriptor found has an absent type. If no such property descriptor exists,
a new one is created, a parent-child rela onship between it and the current prop-
erty descriptor is created and the newly created property descriptor becomes the
new result property descriptor.

157

6. Flexible, Efficient and Safe Template Instan a on

b) If the axis is the child axis, the calcula on of the result property descriptor hap-
pens exactly as with an attribute axis, with the only difference that it is an error
if an exis ng property descriptor has a non-null type.

c) If the axis is self, following-sibling or preceding-sibling, the re-
sult property descriptor is unchanged. However, it is an error if the current result
property descriptor has a name dis nct from the QName in the NameTest.

d) If the axis is parent, the result property descriptor is assigned to the parent of the
current property descriptor. It is an error if the result property descriptor becomes
null during this opera on or if the new property descriptor has a name dis nct from
the QName in the NameTest.

The XTL document is then processed in its document order. Non-XTL parts of the template are
ignored. If an XTL instruc on is encountered, it is interpreted depending on its type as described
below:

1. If anxtl:for-each instruc on is encountered, a property descriptor is retrieved using
the XPath expression from the XTL instruc onwith the algorithm described above. It is an
error if the retrieved property descriptor has a non-null type. If the property descriptor
has just been created by the retrieval algorithm described above, the last NameTest is
assigned to its name a ribute, and the type, min and max a ributes are transferred to
its respec ve proper es. Otherwise, the following opera ons are performed:

a) The minimum cardinality of the property descriptor is set to be the maximum of its
previous value and the min a ribute value of the xtl:for-each instruc on.

b) The maximum cardinality of the property descriptor is set to be the minimum of its
previous value and the max a ribute value of the xtl:for-each instruc on.

c) The previous value of the type a ribute of the property descriptor and the type
denoted by the type a ribute of the xtl:for-each instruc on are compared
with regard to their lexical spaces (in the sense of [26]). It is an error if these lexical
spaces are incomparable (i.e., when deno ng the spaces with A and B, A \ B ̸=
∅ ∧ B \ A ̸= ∅ is true). If the lexical spaces are comparable, the type with the
smaller lexical space is stored as the type value of the property descriptor.

Finally, the newly retrieved property descriptor is set to be the new current property
descriptor. It is an error if the minimum cardinality of this property descriptor is greater
than its maximum cardinality (this is the case if the template declares two cardinality
intervals a . . . b and c . . . dwith either b < c or d < a, i.e., two non-overlapping intervals).

2. If an xtl:if instruc on is encountered, a property descriptor is retrieved using the
XPath expression from the XTL instruc on with the algorithm described above. If the
property descriptor has been newly created, it is assigned the type xsd:boolean. If
an exis ng property descriptor has been retrieved, it is an error if the retrieved property
descriptor has a type different from xsd:boolean.

158

6.3. Instan a on Data Valida on

3. If either an xtl:attribute or an xtl:text instruc on is encountered, a property
descriptor is retrieved using the XPath expression from the XTL instruc on with the algo-
rithm described above. If the property descriptor has just been created by the retrieval
algorithm, its name a ribute is set to the latest NameTest in the XPath expression of the
select a ribute and its type a ribute is set to the value of the type a ribute of the
XTL instruc on. If the property descriptor is not newly created, it is an error if the com-
mon super class of the Java mappings of both types is not equal to one of the mapped
classes (as with the xtl:for-each instruc on, see above). The most specific type in
the sense of deriva on by restric on [180] is stored as the type value of the property
descriptor.

If the algorithm described above is applied to the template in Lis ng 6.16, the property de-
scriptor tree shown in Figure 6.17 is created.

Figure 6.17.: The Tree of Property Descriptors Built from the Template Shown in Lis ng 6.16

This property descriptor tree can easily be transformed into a Java object model using the
following mapping:

1. For property descriptors with an absent type, a class is createdwith the name determined
by the name value of the property descriptor. If there is no such name, i.e., if the property
descriptor is the root property descriptor, the class is named ObjectModelRoot. The
name (as described in Sec on 6.3.2.1) is chosen as a conven on, since the template itself
contains no informa on about the naming of this root class.

2. For each of the children of a property descriptor, a property at the generated class is
added. If the child property descriptor has a mul plicity, a collec on class is used to

159

6. Flexible, Efficient and Safe Template Instan a on

type the property; otherwise, the value of the type a ribute of the property descriptor
is mapped to a Java type which is then used to type the property.

This simplemapping schema transforms the property descriptor tree in Figure 6.17 into the Java
object model shown in Figure 6.15. Obviously, the type safety given by the Java object model
does not completely ensure that the instan a on data constraints are fulfilled. There are two
reasons for this. First, there are no exact counterparts for some of the XML Schema types. For
example, there is no Java type with exactly the value range provided by xsd:nonNegative-
Integer. Second, the cardinali es of the collec ons determined from the template are not
checked by the Java collec on types. In order to close these gaps and to enforce the instan -
a on data constraints, an addi onal validatemethod is generated for all classes within the
object model. This validate method ensures the correct types and cardinali es of all prop-
erty valueswithin the object itself and subsequently calls thevalidatemethod on all children
within the objectmodel. Thevalidatemethodmust be called by the template engine before
star ng with the actual instan a on process.

6.3.2.3. Implementa on using a PHP and an API-based Generator

The implementa on of the Template Interface Genera on process is straigh orward and con-
sists of two steps: the analysis step, which constructs the property descriptor tree, and the
genera on step, in which the property descriptor tree is transformed into a Java object model.
The analysis step has been implemented using a PHP named org.lixlix.xtl.com-

piler.template.AnalyzerPHP. This approach makes it easy to iterate over the tem-
plate and to react to the embedded XTL instruc ons. The property descriptor implementa on
is the class org.lixlix.xtl.compiler.template.PropertyDescriptor. This is
also the actual value for the Type type parameter of the PlaceHolderPlugin interface.
The context mechanism of the PHP is used to keep track of the current property descriptor (in
the sense described above), whereas the root property descriptor is kept in a private field root
in the PHP.
The algorithm for retrieving a property descriptor from an XPath expression is implemented

in the method retrievePropertyDescriptor as shown in Lis ng 6.17. The method
first determines whether to use the root or the current property descriptor as the base for
the retrieval of the new property descriptor. A erwards, the XPath expression is parsed and
the method iterates over its steps. It is checked that the steps do not contain predicates, since
the use of predicates has been excluded from the accepted XPath syntax (see Figure 6.16), if the
check fails, an excep on is thrown. Depending on the axis referenced in the step, a newproperty
descriptor is retrieved. In case a forbidden axis or a forbidden node test is encountered, the
method also throws an excep on. If all steps are processed, the resul ng property descriptor
is returned.

private PropertyDescriptor retrievePropertyDescriptor(PropertyDescriptor current,
String xpathExpression)
throws XPathExpressionException

{
PropertyDescriptor result;
LocationPath locationPath = parse(xpathExpression);

160

6.3. Instan a on Data Valida on

result = locationPath.isAbsolute() || current == null ? root : current;
for (Step step : locationPath.getSteps())
{

assertTrue(step.getPredicates().length==0, ”Predicated are not allowed.”);

switch (step.getAxis())
{

case Compiler.AXIS_ANCESTOR:
case Compiler.AXIS_ANCESTOR_OR_SELF:
case Compiler.AXIS_DESCENDANT:
case Compiler.AXIS_DESCENDANT_OR_SELF:
case Compiler.AXIS_FOLLOWING:
case Compiler.AXIS_NAMESPACE:
case Compiler.AXIS_PRECEDING:

String axisName = Step.axisToString(step.getAxis());
fail(”Use of axis ’”+axisName+”’ not allowed.”);
break;

case Compiler.AXIS_ATTRIBUTE:
case Compiler.AXIS_CHILD:

assertTrue(step.getNodeTest() instanceof NodeNameTest,
”Only NameTests are allowed as NodeTests.”);

NodeNameTest nodeNameTest = (NodeNameTest)step.getNodeTest();
assertTrue(nodeNameTest.getNodeName().getPrefix() == null,

”Prefixes are forbidden.”);
assertFalse(nodeNameTest.isWildcard(),

”The ’*’ NameTest is not an allowed.”);
String name = nodeNameTest.getNodeName().getName();
PropertyDescriptor newResult = result.getChild(name);
if (newResult == null)
{

newResult = new PropertyDescriptor(name, result);
}
result = newResult;
break;

case Compiler.AXIS_PARENT:
assertFalse(result.isRoot(),

”Use of parent axis at root node is forbidden.”);
result = result.getParent();
break;

case Compiler.AXIS_SELF:
case Compiler.AXIS_FOLLOWING_SIBLING:
case Compiler.AXIS_PRECEDING_SIBLING:

// Do nothing.
break;

}
}

return result;
}

Lis ng 6.17: The retrievePropertyDescriptorMethod in the AnalyzerPHP

The retrievePropertyDescriptor method is called by the implementa ons of the
various evaluate methods of the PHP. As an example, the implementa on of the evalu-
ateForEach method is shown in Lis ng 6.18. The method uses the retrieveProper-
tyDescriptormethod to get a property descriptor and a erwards transfers the cardinality
and type informa on to the property descriptor (which is responsible formonitoring the restric-
ons put on the cardinality and the type). The method returns an iterator containing only the

161

6. Flexible, Efficient and Safe Template Instan a on

retrieved property descriptor, thereby causing the elements contained within the xtl:for-
each instruc on to be evaluated once with this property descriptor as context argument.

public Iterator<PropertyDescriptor> evaluateForEach(XTLForEachStart xtlForEach,
PropertyDescriptor context)

{
try
{

String select = xtlForEach.getSelect();

logger.debug(”evaluateForEach(...) called with select=’”+select+”’.”);

PropertyDescriptor propertyDescriptor =
retrievePropertyDescriptor(context, select);

propertyDescriptor.setType(UNKNOWN);
propertyDescriptor.setMinOccurs(xtlForEach.getMin());
propertyDescriptor.setMaxOccurs(xtlForEach.getMax());

return Collections.singletonList(propertyDescriptor).iterator();
}
catch (XPathExpressionException xpe)
{

log(xpe);
return Collections.<PropertyDescriptor>emptyList().iterator();

}
}

Lis ng 6.18: The evaluateForEachMethod in the AnalyzerPHP

A er the AnalyzerPHP has completed processing the XTL template, its root property de-
scriptor is taken and the tree of property descriptors is transformed into a Java object model
star ng from the root property descriptor. The Java code itself is constructed using an API-
based Java generator [97]. The transforma on process also generates the validatemethod
described above. An example for such a method, in which a cardinality of 2…4 is assumed to be
allowed for the authors property, is shown in Lis ng 6.19. In addi on to the classes from the
objectmodel, a PHP namedObjectModelRootPHP is generated, which serves as an adapter
between the generated object model and the Template Instan a on component. This PHP can
be created with an instance of the ObjectModelRoot class as argument. The PHP calls the
validate method on the passed instance immediately, causing the complete valida on of
the passed object model.

public void validate() {
if (authors == null) {

throw new IllegalStateException(”Missing required
attribute/element ’authors’.”);

}
if (authors.size()< 2) {

throw new IllegalStateException(”Number of elements
’authors’ is less than expected minimum 2.”);

}
if (authors.size()> 4) {

162

6.4. Conclusion

throw new IllegalStateException(”Number of elements
’authors’ is greater than expected maximum 4.”);

}
for (Author current: authors) {

current.validate();
}
/* ... */

}

Lis ng 6.19: An Example for a validateMethod Implementa on

The implementa on of the Template Interface Genera on process (see Sec on 7.1.4) also
supports the immediate compila on of the Java code model. In order to enable unit tes ng
of the implementa on, the implementa on also supports the direct introduc on of JAXB an-
nota ons into the generated object model. This allows the direct use of XML documents as
instan a on data source for the generated ObjectModelRootPHP, which in turn greatly
simplifies the test process (see Sec on 7.2).

6.4. Conclusion

In this chapter, the components involved during the instan a on me of the proposed pro-
cess have been discussed: the Instan a on Data Evalua on, the Template Instan a on and the
Instan a on Data Valida on components.
The Instan a on Data Evalua on component is invoked by the Template Instan a on com-

ponents to retrieve the instan a on data in order to instan ate a par cular template. A plugin
mechanismhas been introduced that allows different query languages to be used in conjunc on
with the proposed approach. This plugin mechanism dis nguishes the approach from exis ng
techniques, which typically use a fixed special or general purpose language (like XPath or Java).
Several Instan a on Data Evalua on plugins have been presented.
The Template Instan a on is a core component within the proposed approach. In order to

create an implementa on which can compete with exis ng approaches like JSP and XSL-T, ma-
jor effort has been invested into the design of this component. The best-suited XML access
technology, StAX, and its advantages have been described. An opera onal model has been de-
veloped that has been used to implement the component. This implementa on as a pipeline of
components has been described in detail. An es ma on for the memory and me complexity
of this component has been given.
The Instan a on Data Valida on component is responsible for valida ng the instan a on

data retrieved from the Instan a on Data Evalua on component against the instan a on data
constraints emi ed by the Constraint Separa on component. The design and implementa on
of this component turned out to be straigh orward.
An interes ng alterna ve approach to the Instan a on Data Valida on component has been

introduced: the Template Interface Genera on. This is a slight modifica on of the proposed
architecture that elevates the process of the instan a on data valida on into the applica on
using the Template Instan a on component. This has been achieved by genera ng an interface

163

6. Flexible, Efficient and Safe Template Instan a on

for a par cular template, which guarantees the correctness of the instan a on data. This ap-
proach for guaranteeing the instan a on data’s types has never been used in conjunc on with
a template approach before.

164

7
Valida on

Es ist leicht, Vorschri en über die Theorie des Beweises aufzustellen, aber der Beweis
selbst ist schwer zu führen.

Giordano Bruno [32]

In order to verify the design decisions and to scru nize the statements which have beenmade
in the previous chapters, a number of valida on steps have been executed. Most notably, the
implementa on of a prototype, illustra ng most of the concepts developed in this thesis, de-
livered a proof of concept for many design decisions.
The prototype implementa on is revisited with respect to valida on in Sec on 7.1. The de-

veloped prototype has been used and improved in various research projects. These applica ons
are described in Sec on 7.3. Furthermore, the formal proof given in Sec on 5.1.5 for the ful-
fillment of the preserva on requirement referenced in Sec on 7.4 is also a valida on means.
Measurements have beenmade in order to evaluate the performance of the template engine in
comparison to other, established techniques. The results of the measurements are described
in Sec on 7.5.
Figure 7.1 shows which goals (as defined in Sec on 3.1) are addressed by the par cular vali-

da on means described in this chapter.

7.1. Implementa on of the Prototype

The most important valida on tool is the implementa on of a prototype called XTLEngine. This
prototype implements the proposed approach as far as possible within the restric ons of the

165

7. Valida on

Figure 7.1.: Rela ons between Valida on Means and Goals

underlying base technologies. In the following, the prototype version 2.0, build 607 is described.
The prototype consists of approximately 15.500 lines of code comprising 195 classes organized
in 35 packages. The prototype includes the following ar facts:

• The XTLEngine.jar and all required libraries.
• Command line tools for Windows and Mac OS X (described below).
• Test suites containing examples for the use of the included tools (see Sec on 7.2).
• The XTL, CXSD and IDC schemas.
• The documenta on of the source code.

An overview of the tools supplied with the prototype is given in Figure 7.2. The figure should
be comparedwith the Figures 3.5 and 6.14, since it closely resembles and aggregates their struc-
tures. The four tools shown are implementa ons of the Constraint Separa on process (xtlsc,
see Sec on 7.1.1), the Template Valida on process (cxsdvalidate, see Sec on 7.1.2), the
Template Instan a on process (xtlinstantiate, see Sec on 7.1.3) and the Template In-
terface Genera on process (xtltc, see Sec on 7.1.4).

Figure 7.2.: The Prototype’s Tool Architecture

166

7.1. Implementa on of the Prototype

7.1.1. The Constraint Separa on Tool xtlsc
The Constraint Separa on component is supplied as a command line tool named xtlsc (XTL
Schema Compiler, as shell script and Windows batch file) in the bin directory of the proto-
type. The tool is also available as an ANT task via the class org.lixlix.xtl.compiler.
schema.XTLSchemaCompilerTask or via its API classorg.lixlix.xtl.compiler.
schema.XTLSchemaCompilerImpl. Figure 7.3 shows the command line op ons of the
xtlsc tool.

Figure 7.3.: Console Help of the xtlsc.sh Command

Thextlsc arguments possible here fall into three categories: general op ons, loca on hints
and input/output arguments.
The first category contains the op on -indent, which defines whether the generated tar-

get language grammar should be indented, the op on -overwrite, which defines whether
an already exis ng target file should be overwri en, and -cdata, which defines whether the
generated CXSD constraints should be wrapped in CDATA sec ons to improve their readability.
The loca on hints category allows to specify loca ons for the CXSD, the IDC and the XTL

schema, which will be imported using xsd:import in the generated schema. The names of
the op ons are -importCXSDSchema, -importIDCSchema, and -importXTLSchema,
respec vely. If such op ons are given, their arguments will be used for theschemaLocation
a ribute of the xsd:import statements, which will allow other tools to locate the imported
schemas.
The final category is formed by the arguments, poin ng to the XML Schema file to be pro-

cessed, and an op onal target file. If the target file is omi ed, the result of the Constraint
Separa on process is wri en to the standard output.

7.1.2. The Template Valida on Tool cxsdvalidate
The Template Valida on component is supplied as a command line tool named cxsdvali-
date (as shell script andWindows batch file) in the bin directory of the prototype. The tool is
also available as an ANT task via the class org.lixlix.xtl.cxsd.CXSDValidator-
Task or via its API class org.lixlix.xtl.cxsd.CXSDValidatorImpl. Figure 7.4
shows the command line op ons of the cxsdvalidate tool.
cxsdvalidate knowsonly one op on: -noconstraints can beused to validate against

a CXSD schema as if it would be an XML Schema, i.e., all embedded OCL constraints are ignored
during valida on. The only required argument is the name of the XML document to be validated

167

7. Valida on

Figure 7.4.: Console Help of the cxsdvalidate.sh Command

against the CXSD schema, which can be passed as second argument. If the second argument is
missing, cxsdvalidate tries to find the CXSD schema using the xsd:schemaLocation
or xsd:noNamespaceSchemaLocation a ributes from within the XML document.

7.1.3. The Template Instan a on Tool xtlinstantiate
The Template Instan a on component is accessible as a command line tool named xtlin-
stantiate (as shell script andWindows batch file) in the bin directory of the prototype. The
tool is also available as an ANT task via the class org.lixlix.xtl.engine.impl.XTL-
EngineTask or via it API class org.lixlix.xtl.engine.impl.XTLEngineImpl.
The command line op ons of the xtlinstantiate tool are shown in Figure 7.5.

Figure 7.5.: Console Help of the xtlinstantiate.sh Command

The arguments for xtlinstantiate fall in three categories: general op ons, op ons to
enable a PHP and to pass arguments to it, and input/output arguments.
The first category contains the op on-indent, which defineswhether the instan ated tem-

plate should be indented, the op on -overwrite, which defines whether an exis ng target
file should be overwri en, and the op on -idc, which defines whether the instan a on data
constraints should be evaluated. The evalua on of the IDC constraints is obviously only possible
if the template correctly links to an CXSD schema with embedded IDC constraints.
The second category contains op ons that can be used to enable and configure a par cular

PHP. As opposed to what is possible with the ANT task or via the API, the command line tool
only allows to ac vate one plugin.

168

7.1. Implementa on of the Prototype

The -schema op on with a file parameter ac vates the XMLBean PHP which parses the
passed file as XML Schema. The -jxPath op on ac vates the JXPath PHP with the passed file
being parsed as an XML document. The -identity op on ac vates the Iden ty PHP. The
-system op on ac vates the System PHP. The -uml2 op on enables the UML PHP, which
loads the passed file as XMI representa on of an UMLmodel. The -xpath op on ac vates the
XPath PHP, which interprets the passed file as an XML document. Finally, the -sparql op on
ac vates the SPARQL PHP with the passed file as an ontology. -sparql allows the sub op on
--ruleswith a file parameter: if such a rule file is present, it is applied to the ontology before
the first query is executed on it.

The final category is formed by the input/output arguments. xtlinstantiate requires a
file argument which denotes the XTL template to be instan ated. As the output argument, a file
or the op on -split followed by a directory are allowed. In the la er case, the result is split
as described in Sec on 6.2.3 and the results of the spli ng are wri en to the passed directory.
If none of the output arguments are given, the output is wri en to the standard output.

7.1.4. The Template Interface Genera on Tool xtltc

The Template InterfaceGenera on Toolxtltc implements the ideas described in Sec on 6.3.2.
The tool is available as shell script and Windows batch file in the bin directory of the pro-
totype, as an ANT task class org.lixlix.xtl.compiler.template.XTLTemplate-
CompilerTask or via its API class org.lixlix.xtl.compiler.template.XTLTem-
plateCompilerImpl. The command line op ons of thextltc tool are shown in Figure 7.6.

Figure 7.6.: Console Help of the xtltc.sh Command

The xtltc tool accepts op ons from two categories: general op ons and input/output ar-
guments. In the first category, the op on -rootPackage can be used to define the package
into which the generated Java source code should be placed. The op on -rootClass de-
fines the name of the root class within the generated object model, since this name can not
be inferred from the select a ribute expressions in the compiled XTL template. The op on
-classpath supplies the Java compiler used to compile the generated Java source files with
a class path to compile against.

The input/output argument category contains the nameof the XTL template to be compiled as
a required argument and an op onal-targetDirectory op onwith an argument deno ng
the directory to which the created Java sources should be wri en.

169

7. Valida on

7.2. Test Suites

The test suites are themain tools to validate the fulfillment of the goals Safe Authoring and Safe
Instan a on. All important aspects of the prototype as well as statements made in Chapter 4
are subject to test suites. There are five test suites, which are described in detail below.
All test suites either test a single tool or a par cular combina on of tools and operate on

a number of input documents like schemas or templates, and produce other documents from
them. A er the tool under test has been executed and results have been produced, the results
are compared to the expected results. This is done either textually or via an XML comparison
tool (XMLUnit, [194]). The use of XMLUnit allows to compare XML documents with respect to
the XML specifica on [28]. For example, XMLUnit ignores the order of a ributes during com-
parison.
The test fixture, i.e., the input documents for the various test suites, and the expected results,

i.e., the instan ated templates, are also part of the prototype. The execu on of all test suites is
done via ANT.

7.2.1. Constraint Separa on Test Suite

The Constraint Separa on test suite tests the Constraint Separa on step (see Sec on 5.1) by
invoking the xtlsc tool described in Sec on 7.1. The test suite operates over an input set
of 18 different XML Schema documents, which test the XML Schema features supported by the
Constraint Separa on process like choices, sequences, required and op onal a ributes. The
test process, which is illustrated in Figure 7.7, consists of the following steps:

¬ The xtlsc tool is invoked with each of the target language grammars as input. The
generated result template language grammar is saved.

 The generated result is compared against the stored expected template language gram-
mar. The comparison is done as described above, i.e., seman cally irrelevant differences
like whitespaces are ignored.

Figure 7.7.: Constraint Separa on Test Suite

7.2.2. Template Valida on Test Suite

The Template Valida on test suite tests the Template Valida on process by checking the validity
of XTL documents with respect to CXSD schemas. The Template Valida on tool cxsdvali-
date produces one of two possible results: it either outputs an augmented (in the sense of
Sec on 5.2) XTL template if the valida on has succeeded, or it outputs a valida on report with

170

7.2. Test Suites

a list of detected errors if the valida on has failed. The test process is illustrated in Figure 7.8
and consists of the following steps:

¬ The cxsdvalidate tool is invoked with a pair of an XML document (which is in most
cases an XTL template as well, see below) and a corresponding template language gram-
mar (which is a valid CXSD document). The result, which is either an augmented XTL
template or a valida on report, is stored.

 For each test case, either an expected augmented XTL template or an expected valida on
report has been stored, which is compared to the actual output of the cxsdvalidate
invoca on. It is an error if the types of the actual and the expected document differ, since
this means that the overall valida on result is wrong.

Figure 7.8.: Template Valida on Test Suite

The set of input documents is divided into two categories. First, the test suite checks special
documents against CXSD schemas in order to check the CXSD valida on as such (i.e., the XML
Schema valida on as well as the construc on of the XML model underlying the OCL constraint
evalua on). Second, the test suite tests instance documents against the template language
grammars produced by the Constraint Separa on Test Suite described above. This la er test
ensures that the Constraint Separa on process works together with the Template Valida on
process in order to allow the Safe Authoring of templates. In both cases, valid and invalid docu-
ments are tested.

7.2.3. Template Instan a on Test Suite

The Template Instan a on test suite tests the Template Instan a on component described in
Sec on 6.2 as well as the Instan a on Data Evalua on components described in Sec on 6.1.
The test suite tests the xtlinstantiate tool with 72 templates as input documents. The

instan a on data comes from 44 documents. The PHPs for the evalua on of XPath, OCL, and
SPARQL as well as the Iden ty PHP are tested. All XTL instruc ons and XTL features like by-
passing and realms are included in the tests. For 8 augmented templates, the instan a on
data valida on feature is enabled to also check the Instan a on Data Valida on component
described in Sec on 6.3.1.
The test suite also tests that the XTL Engine, i.e., the Java implementa on of the Template In-

stan a on component, adheres to the denota onal XTL seman cs given in Chapter 4. For this

171

7. Valida on

reason, the XTL seman cs (which is described in Haskell) has been compiled into an executable
using the Glasgow Haskell Compiler (GHC). This compiled version is also part of the prototype
and is named hsxtl. As the Haskell version of the Template Instan a on component only sup-
ports instan a on data sources that are accessible using XPath and is not suppor ng mul ple
realms, this test only checks 30 XTL templates against 39 instan a on data files. This restric on
aside, all XTL instruc ons have been tested.
Finally, the test suite tests that the XTL Engine and the transla onal seman cs described in

Sec on 4.6 yield equal results. This test is a two-stage process, as the XTL templates are first
transformed into XSL-T stylesheets using the xtl-to-xslt stylesheet, an then used to trans-
form the instan a on data XML documents. Again, the set of instan a on data sources had to
be restricted, since the XSL-T stylesheets generated from the XTL documents can only evaluate
XPath expressions. Thus, the set of input documents is the same as used for the hsxtl test.
The test process is illustrated in Figure 7.9 and consists of the followings steps:

¬ The instan a on tool, i.e., either xtlinstantiate, hsxtl, or xsl-to-xslt, is
invoked with a combina on of an XTL template and single or mul ple instan a on data
sources. The result, be it an instan a on result or a failure report (if an instan a on data
constraint has been violated), is saved.

 For each test case, either an expected instan a on result or an expected instan a on
failure report has been stored, which is compared to the actual output of the instan a on
tool. It is an error if the types of the actual and the expected document differ, since this
means that the evalua on of the instan a on data constraints failed.

Figure 7.9.: Template Instan a on Test Suite

7.2.4. Template Interface Genera on Test Suite

This test suite checks the Template Interface Genera on component described in Sec on 6.3.2
via invoca on of the xtltc tool described in Sec on 7.1. The test case compiles 27 XTL tem-
plates into Java sources.

172

7.2. Test Suites

An invoca on of the xtltc tool not only produces Java sources, but also compiled class files
and a Java Archive (JAR)–file [177] containing the compiled files. This JAR file would a erwards
typically be used to programma cally construct an instan a on data source to be used in con-
junc on with the template engine itself. To allow for tes ng the generated Java classes without
having to manually code individual test cases for each XTL template compiled within this test
suite, thextltc adds JAXB annota ons [105] to the classeswithin the generated objectmodel.
This allows the whole object model to be created from a single XML document without having
to deal with that par cularmodel in the code. Therefore, the ANT-based variant of the xtlin-
stantiate tool has been extended to accept a JAR file as generated by the xtltc tool and
a single XML document, which is in turn used to create and ini ate an ObjectModelPHP (as
described in Sec on 6.3.2) to be used to instan ate the passed XTL template.
Using this mechanism, the test suite illustrated in Figure 7.10 could be constructed, which

consists of the following steps:

¬ The xtltc tool is invoked with XTL templates containing select a ribute values that
comply to the restric ons introduced in Sec on 6.3.2. The resul ng ar facts, namely the
Java source code, the compiled classes and the JAR-file are stored.

 The generated Java source code is compared textually to the stored expected source code.

® The generated JAR-file is used with a stored XML document (ac ng as instan a on data
source) to instan ate the template originally processed by the xtltc tool into an XML
document, which is stored as the instan a on result.

¯ The instan a on result is compared to the stored expected instan a on result, which
assures that the generated object model is indeed suitable for andworking with the input
XTL template.

Figure 7.10.: Template Interface Genera on Test Suite

173

7. Valida on

7.2.5. Round-trip Test Suite

The last test suite, named Round-trip Test Suite, tests the overall template authoring and instan-
a on process as a whole. In other words, it tests whether the conclusion stated to be enabled

by the Constraint Separa on process (see Figure 5.1) is valid. This test suite calls three tools and
checks their collabora on as illustrated in Figure 7.11, by execu ng the following steps:

¬ In the first step, the xtlsc tool is invoked on a par cular target language grammar. The
generated template language grammar is stored.

 The stored template language grammar is used to validate XTL templates associated with
the target language grammar currently processed. The results, each being either an aug-
mented XTL template or a valida on report, are stored for the final comparison step
within this test suite.

® Each XTL template is also instan ated using the xtlinstantiate tool with an associ-
ated instan a on data source (which fulfills all instan a on data constraints).

¯ The instan a on result from the last step is validated using the cxsdvalidate tool
against the original target language grammar, resul ng in either an augmented instan a-
on result (which equals to the instan a on result, as the original target language gram-

mar contains no authoring or instan a on data constraints) or a valida on failure report.

° The last step compares the output of both invoca ons of the cxsdvalidate tool: the
test succeeds if either both invoca ons report validity of its input document and schema
or both invoca ons report invalidity, thereby valida ng the conclusion which is proposed
to be enabled by the Constraint Separa on process.

Figure 7.11.: Round-trip Test Suite

174

7.3. Applica ons of the Prototype

7.3. Applica ons of the Prototype

The prototype has been in use in three scenarios: first, in the SNOW project (as described in
Sec on 7.3.1), second, in the EMODE project (desribed in Sec on 7.3.2), and, finally, in the
FeasiPLe project (as described in Sec on 7.3.3).

7.3.1. SNOW: Use of XTL in a Staged Architecture

The XTL template engine has been developed along with the XTL language in the EU project
SNOW. In order to understand the mo va ons that lead to the described language and to un-
derstand the valida on results SNOW delivered, the project is introduced in short.

SNOW [179] was an EU-founded two-year project executed by seven partners, namely ACV
[1], FIRST [70], EADS [58], Loquendo [121], Siemens Business Services’ C-LAB [41], SAP Research
Dresden [159] and TU Graz [78]. SNOW’s main goal was the large-scale industrial diffusion of
mul modal mobile documenta on for maintenance opera ons.

SNOW was primarily intended to solve a real-world problem in today’s aircra maintenance
asdescribed by the partner EADS. The currentmaintenance scenario is en rely paper-based, i.e.,
a maintenance worker executes instruc ons from a so-called maintenance procedure printed
out on paper. Unexpected situa ons may force the worker to return to an office and print out a
different procedure. Furthermore, in some situa ons the worker needs a co-worker who reads
the procedure if the first worker is unable to look at the printed procedure himself. Both facts
slow down maintenance and increase the maintenance costs.

The idea of replacing this access to the procedures by an electronic device like a PDA was
obvious. Unfortunately, the situa on in the aircra to be maintained complicates the scenario.
First, there is no permanent network connec on in the aircra . Second, the worker some mes
needs to have both hands available to perform a procedure, whichmakes it necessary to enable
the use of speech commands to scroll within the procedure. Since the use of speech as input
modality is some mes prevented by the situa on in the aircra (as the environment can be too
noisy), an addi onal gesture recogni on coupled to a head-mounted camera becamenecessary.
Finally, the need for a co-worker described above can be removed by using speech synthesis to
read the procedure.

From the main goal, two research direc ons have been derived. First, it has been ques oned
how to author mul modal mobile maintenance documenta on. Second, methods and tech-
niques for the exploita on of the authored documenta on through robust interac on modali-
es had to be developed.

SNOW made a number of contribu ons in both research direc ons. For the first direc on,
the development of the XML Topic Maps for Procedures (XTM-P) [103], a topic-map based for-
mat for the storage of maintenance procedures has to be men oned. With respect to the sec-
ond research direc on, two languages, the Device-IndependentMul modal Mark-up Language
(D3ML) [75] and XTL, as well as an architecture [146; 147] along with a prototype have been
developed.

175

7. Valida on

The SNOW Architecture

The SNOWarchitecture has been developedwith respect to a number of requirements outlined
in a number of deliverables [179]. As already men oned, the first major requirement of the
SNOW project was that the resul ng so ware had to be accessible in a mul modal fashion.
In the standard use case, this includes speech input and output as well as gesture recogni on
as input. But beyond that, the architecture should not restrict the number or type of usable
modali es.

The second major requirement was to design an architecture which is as domain-neutral as
possible, i.e., the number of parts to be exchanged when switching to another domain had to
be minimized. A second domain which has been considered during the design of the SNOW
architecture was the area of healthcare, where hands-free opera on also plays an important
role.

In addi on to these major requirements, some minor issues had to be considered. First, the
number of available devices that are usable in a harsh environment and capable of delivering
input for gesture recogni on (via built-in or extra camera) were limited. Moreover, the process-
ing power of available devices is restricted, forcing gesture and voice recogni on components
to be located on a server with extensive processing capabili es.

Lastly, it was required that the documenta on is always at least as good as paper, which
means that even with interrup ons of the network connec on, the applica on’s user must
have access to (prefetched) procedures. The missing network connec on may thereby affect
accessibility of the applica on by restric ng the use of modali es due to their server-based
processing.

The architecture finally designed and implemented by the SNOW consor um is shown in Fig-
ure 7.12 as an FMC block diagram. This type of diagram allows a concise high-level view even at
sophis cated so ware architectures. The SNOWarchitecture is subdivided intomul ple servers
and a client part. The most important server is the applica on server which is responsible for
implemen ng the modality-independent processing of maintenance procedures. This server
is explained in more detail below. Another important server-side component is the modality
server consis ng of a text-to-speech engine and gesture- and speech-recogni on components.
The number of contained components can be different in other scenarios—the subset shown
here represents the set used within the SNOW project.

The applica on server accesses three data sources: first, a set of maintenance procedures
stored as XTM-P documents, second, a set of XTL templates and finally a number of annota ons
created by maintenance workers and stored in a rela onal database.

On the client side, a mul modality-enabled browser applica on has been designed and im-
plemented. This applica on aggregates a standard XHTML browser with components for the
control of the keyboard, the speakers, the microphone and the camera as well as, most impor-
tantly, the integra on manager, which is responsible for the synchroniza on and composi on
of the input and output modali es. The components within the client-side applica on commu-
nicate using standard protocols and data formats like XML Remote Procedure Call (XML-RPC),
the Media Resource Control Protocol (MRCP), the Extensible Mul Modal Annota on Markup
Language (EMMA), and the Speech Synthesis Markup Language (SSML).

176

7.3. Applica ons of the Prototype

Figure 7.12.: The SNOW Architecture

As described in [146], the SNOW architecture is an instan a on of the Mul modal Interac-
on Framework (MMI-F), or—precisely—an implementa on of the role model proposed by the

MMI-F specifica on [191]. Details about the implementa on of the SNOW architecture can be
found in [147], a more detailed look into a par cular issue of the implementa on of the dialog
manager can be found in [5].

Template Processing in Staged Architectures

The XTL template engine is used in two components. The documenta on applica on uses the
template engine just once in order to instan ate a domain-specific template with data from the
procedures stored as XTM-P files. The u liza on of the template engine by the dialog manager
is more interes ng because it is used two mes: first, a presenta on template is transformed,
augmen ng the output from the documenta on applica on with presenta onal content (like
links for naviga on); second, the obtained intermediate document s ll has some evaluateable
XTL tags (which bypassed the first transforma on) for evalua on with data from the annota on
accessor.
It has also been verified that it would be possible to use the XTL engine in the adapta onman-

ager, as the processing performed by this component is basically an XML transforma on that
could be expressed as an XTL template as well. Unfortunately, because of technical preferences,

177

7. Valida on

the SNOW partner responsible for implemen ng the adapta on manager decided against the
use of the XTL template engine.
Both the concepts of realms (see Sec on 4.5.1) and bypassing (see Sec on 4.5.2) have been

developed as a reac on to actual requirements from the SNOW architecture. The concept of
realms represen ng instan a on data sources that must be accessed using different query lan-
guages has been mo vated by the mul ple data sources in SNOW’s Dialog Maanger: XTM-
P documents, which had to be accessed using an XPath-like path language, and annota ons,
which had to be accessed by simple string-based iden fiers.
The bypassing feature is mo vated by a special dependency between components in the

SNOW architecture. The inclusion of annota ons in the D3ML output is done in two com-
ponents: in the first, the documenta on applica on, only a placeholder for the rendering of
annota ons can be generated. Only the second component, the dialog manager, has actually
access to the annota on content. It was impossible to move the processing of the annota ons
to one component without viola ng the contracts defined for the interac on of the compo-
nents. Using the bypassing feature, this division of responsibilites in the annota on processing
could easily be implemented: the D3ML template contains an xtl:attribute instruc on
from the bypassing namespace that is augmented via an xtl:attribute expression from
the XTL namespace. The la er instruc on generated the select statement for the first state-
ment, thereby le ng the par cipa ng components cooperate.
Generally, it can be stated that bypassing is a valuable feature in all kinds of staged architec-

tures, as it allows to elegently aggregate data accessible only during par cular stages.
The rela vely short run me of the project made it impossible to research the interac on

between the proposed Safe Authoring process and the staged architecture within SNOW. The
process as described here is only capable of handling the ini al stage of the architecture. The
main reason for this limita on is the fact that XML Schema is not closed under the composi on
with the XTL schema, which causes the introduc on of CXSD. CXSD-described languages are,
however, not considered as input for the described authoring process. This situa on can only
be changed by using regular tree languages to describe the target language grammar, since
those languages are closed under the composi on with the XTL schema. Unfortunately, the
low dissemina on of languages like RelaxNG violates the stated goal of Broad Applicability.

Usability of the XTL

The most valuable result of the SNOW project with respect to the development of the XTL tem-
plate language was the feedback from the users of the SNOW architecture, which had to author
XTL templates for rendering maintenance procedures into D3ML.
These users were experts from themaintenance department of EADS, with a strong technical

background in terms of aircra maintenance processes and mid-level computer skills, which
doesn’t include a deep knowledge of markup languages. Therefore, these users had first been
introduced into the concepts of the XML dialect D3ML.
A er understanding the concepts of a markup language like D3ML, the learning curve of a

second, overlying concept like XTL was amazingly flat. The users were immediately capable of
dynamically crea ng a ributes or text in D3ML templates using xtl:attribute and xtl:

178

7.3. Applica ons of the Prototype

text. The same is true for the use of xtl:if and xtl:for-each, which were also under-
stood within days.
Two addi onal observa ons had been made. First, the structure of the query language em-

bedded in the select a ributes of the XTL instruc ons plays a very important role in the
learning process and can cause the authoring process to become error-prone and very hard
to understand. Unfortunately, this was the case with the proprietary query language used to
access the XTM-P documents.
Second, it has been observed that the concept of reuse, which is well-understood by com-

puter scien sts, has not been accepted by the users of the SNOW architecture. Instead of using
the xtl:macro and xtl:call-macro mechanism supplied by XTL, the users tended to
copy and paste repeated parts of the templates. The ques on on the mo va on of this ap-
proach was typically answered by a hint to small modifica ons made to different copies of the
reusedmaterial. The argument that themaintenance ofmul ple copies of almost iden cal doc-
ument parts is expensive had been rejected—the users were of the opinion that the effort of
learning a reuse concept is much higher than to maintain different copies.

7.3.2. EMODE: Use of XTL for Model-to-Text Transforma ons

The EMODE project was a BMBF-founded project which tried to solve some of the issues oc-
curing when trying to build large-scale mul modal applica ons by applying a Model Driven
So ware Development (MDSD) approach. EMODE defined a stack of models that describe the
interac on with a mul model system in increasing levels of detail, star ng with a goal model,
which is refined into an abstract user interface, and a func onal core adapter model [44]. The
transforma on of models within the model stack are implemented as QVT transforma ons.
EMODE implemented two target pla orms. EMODE reused the D3ML language developed

within SNOW and addi onally supported Java Abstract Window Toolkit (AWT) as a second tar-
get. Different M2C transforma on techniques have been used for both targets: D3ML has been
generated using the XTL template engine, whereas AWT has been generated using JET. Unfor-
tunately, no comparison between these very different techniques has been published.

7.3.3. FeasiPLe: Use of XTL for Code Genera on from Ontologies

The FeasiPLe project was another BMBF-founded project which tried to eventually implement
so ware product lines as a cost-efficient mean for industrial so ware development. In order to
do so, FeasiPLe tried to evaluate the exis ng approaches and to combine them with promising
new techniqiues like AOP and MDSD. The central valida on case of FeasiPLe was a large-scale
SalesScenario, an example for a Web applica on dealing with sales processes and including a
product, customer and customer order management as well as payment and communica on
features.
As a part of this project, the HybridMDSD approach has been developed—an approachwhich

tries to facilitate the use of mul ple DSLs. This is done by using ontologies to capture the se-
man cs of the DSLs [120]. The XTL template engine has been used to generate code from these
ontologies using its SPARQL PHP [119]. As a transi ve closure was needed, which is beyond

179

7. Valida on

the expressive power of SPARQL, the possibility to execute rule sets on the ontology before it is
queried using SPARQL was added.
During experiments with the querying of ontologies, it became also apparent that a transi ve

closure missing from a query language could also easily be added by using mul ple template
instan a ons. For this emula on, the reintroduc on of XTL markup via XTL instruc ons had
to be allowed. A erwards, a query could easily create a further query which performs a query
based on the results of the first, which results, if an appropriate stop condi on is applied, in the
calcula on of a transi ve closure.
The development of the SPARQL plugin within FeasiPLe also mo vated the introduc on of

xtl:init, since SPARQL queries typically involve a lot of XML namespaces. xtl:init can
be used to refactor the XML namespace assignments into a single, central part of the template.
The queries themselves then only use the prefixes assigned to the namespaces.
The PHP mechanism made it easy to extend the XTL template engine to support SPARQL for

the querying of instan a on data sources. This unique extension mechanism of XTL enables
the Broad Applicability of the approach.

7.4. Proof of the Preserva on of the Target Language Constraints

The proof demonstra ng that the target language constraints are preserved by the Constraint
Separa on process given in Sec on 5.1.5 addresses the Safe Authoring goal introduced in Sec-
on 3.1.1. Therefore, it is a very important valida on means, but due to its central importance

in the Safe Template Processing approach, it has been placed in Chapter 5.

7.5. Run me and Memory Usage Measurements

Run me andmemory usagemeasurements have been conducted to validate the broad usability
of the aproach. All solu on elements proposed in Sec on 3.3 could in priniciple be subject to
run me and memory usage measurement. Here, only the most important components, for
which run me andmemory usage are crucial for the broad applicability of the approach, will be
considered. Thesemost important components are the components ac ve during the authoring
phase and the instan a on phase.
During the authoring phase, the acceptance of the approach is determinedby the meneeded

for a complete valida on of a document. If a valida on takes too much me, the valida on will
not be used, causingmost of the advantages of the approach to vanish. The faster the valida on
completes, the more o en it will be invoked by the author, making the valida on a real benefit.
For this reason, Sec on 7.5.1 compares the run me of a valida on against a CXSD schema with
the run me of the valida on against a comparable plain XML Schema document.
In the instan a on phase, both run me and memory usage are of importance to the ac-

ceptance of the approach. Long las ng instan a ons or exhaus ve memory consump on are
inacceptable, especially if the template technique should be used within Web applica ons. In
this area, XTL must keep up with compe tors like JSP and XSL-T. Therefore, a comparison be-
tween XTL and these compe tors has been made. Furthermore, the memory and me com-
plexity statements from Sec on 6.2 have been subject to correspondingmeasurements in order

180

7.5. Run me and Memory Usage Measurements

to prove their correctness. The run me measurements concerning the Template Instan a on
component itself are described in Sec on 7.5.2. The corresponding memory usage measure-
ments are described in Sec on 7.5.3.
All measurements have taken place on the same hardware and so ware: an Intel-basedMac-

Book Pro with a 2.8 GHz Intel Core Duo CPU and 4 GB RAM. The opera ng system was Mac OS
X 10.6.3, the Java version used to execute the components was Java 1.6.

7.5.1. Run me Measurement of Valida on against a CXSD Schema

The process of valida ng a template against a CXSD schema in order to determine whether the
template is going to produce a valid result in terms of the target language schema is of crucial
importance to the template author. Unfortunately, an analysis of the evalua on complexity of
OCL constraints in terms of run me and memory usage does not seem to exist.
For this reason, amere benchmark comparisonof valida ng a template against a CXSD schema

with valida ng against an XML Schema has been produced. As the comparison tries to deter-
mine the extra effort caused on the author’s side by the more sophis cated valida on, docu-
ments with a parameterizable size indicated by the parameter n have been created.
An example document is shown in Lis ng 7.1. The document starts with a number n of per-

fectly valid content elements with an a ribute named attribute. The document further
contains a number of n − 1 valid elements (which are different in that they don’t carry the
a ribute attribute, but rather contain a further element with the name attribute), fol-
lowed by a content element that is neither carrying an a ribute nor containing an element.
Only this last element is causing a viola on of the OCL constraints in the CXSD document.

<?xml version=”1.0” encoding=”UTF-8”?>
<test>

<!-- n valid elements. -->
<content a=”text”/>
<!-- ... -->
<!-- n− 1 elements. -->

<content>
<attribute name=”a”>text</attribute>

</content>
<!-- ... -->
<!-- 1 invalid element. -->
<content/>

</test>
Lis ng 7.1: An Example Instance Document for Run me Measurements

Figure 7.13 shows the comparison between the valida on me of the example document
with the parameter n against the CXSD schema and the corresponding XML Schema. The mea-
surements have been executed by a Perl script which executed the CXSD valida on tool de-
scribed in Sec on 7.1 with and without the -noconstraints parameter. For each size of
the document to be validated, the valida on me has been measured 300 mes. The figure
shows the average valida on me over these 300 measurements.

181

7. Valida on

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Va
lid
a

on
Ti
m
e
[m

s]

Parameter n of Instance Document [1]

XSD (R2 = 0.986)
CXSD (R2 = 0.988)

Figure 7.13.: Time Consump on during Document Valida on

It can easily be seen that the evalua on of the OCL constraints embedded within the CXSD
schema contributes significantly to the valida on me. However, the me complexity order is
not changed: valida on is s ll completed in linear me. The addi onal me needed could be
decreased by several measures, most of all by an incremental valida on approach as it would
be enabled by an impact analysis as proposed in [3].
Even without op miza ons like this, the valida on speed is s ll acceptable, because there

is no reason to interrupt the user in his workflow, since the valida on feedback can be given
in the background while the user is con nuing his work. Even if the user is forced to wait for
the valida on result, he is probably accep ng a delay of up to 10 seconds before he is going to
perform other tasks [134]. Within this 10 seconds interval, it will be possible to validate even
complex documents against CXSD schemas.

7.5.2. Run me Measurements of the Template Instan a on

For all run me measurements of the Template Instan a on component, the XTL Engine has
been embedded within a servlet in an Apache Tomcat 6.0.26 Servlet Container [12], in order
to enable the comparison of the instan a on mes of XTL documents with the compe ng ap-
proaches JSP and XSL-T.
For themeremeasurement of the me complexity of the instan a onprocess, i.e., to validate

the complexity expression stated in Sec on 6.2, an XTL servlet has been implemented which
renders a simple HTML representa on from the XML representa on of the plays of Shakespeare
[27]. The servlet accesses the XML representa on of a play using the JXPath PHP. A Perl script
invokes this servlet using its Uniform Resource Locator (URL) and passing the name of the play

182

7.5. Run me and Memory Usage Measurements

to be rendered. For each play, the URL is first invoked once, only to prepare the ground for the
following instan a ons, then 1000 mes in order to determine the average instan a on me.

Figure 7.14 shows the result of this measurement of instan a on mes, plo ed against the
size of the instan a on result. The linear dependency is easy to see and is confirmed by the
coefficient of determina on R2. The measurement proves the me complexity proposed in
Sec on 6.2 very well.

100

150

200

250

300

350

6000 7000 8000 9000 10000 11000 12000 13000 14000

In
st
an

a
on

Ti
m
e
[m

s]

Number of Nodes in Instan a on Result n [1]

an + b (R2 = 0.954)

Figure 7.14.: Time Consump on during Template Instan a on

Unfortunately, the instan a on me measurement just presented does not say very much
about the applicability of the Template Instan a on component in general. In order to validate
this aspect, a comparison of the instan a on me with its most popular compe tors, JSP and
XSL-T, has been made. For this measurement, an XSL-T servlet and a JSP page have been im-
plemented, which create the same HTML presenta on from the plays of Shakespeare like the
XTL servlet. In order to keep the influence of the Instan a on Data Evalua on process as low as
possible, the JSP page closely resembles the XML access performed by the JXPath PHP. In XSL-T,
the XPath expression used to access the XML representa on from the XTL servlet and the JSP
page has been reused.

The JSP engine is the engine built into Tomcat 6.0.26, whereas the XSL-T engine used relies
on the transformer API of the underlying Java Development Kit (JDK), which is a version of the
Xalan XSL-T transformer.

A Perl script has been used to invoke the URL of each of the three rendering mechanisms.
For each mechanism, the first retrieval of the HTML representa on is only made to prepare
the system for further measurements, followed by 1500 invoca ons to determine an average
instan a on me.

183

7. Valida on

Figure 7.15 plots the instan a on mes needed by JSP, XSL-T and XTL against the size (in
kbyte¹) of the XML representa on of a par cular play. Again, the plot shows a linear depen-
dency, which is simply caused by the fact that the dependency between the number of nodes
of the instan ated template used as X axis in Figure 7.14 and the size in kbyte of the XML rep-
resenta on used as X axis here is itself linear.

0

50

100

150

200

250

300

120 140 160 180 200 220 240 260 280

In
st
an

a
on

Ti
m
e
[m

s]

Instan a on Data Size n [kbyte]

XSL-T (R2 = 0.956)
JSP (R2 = 0.922)
XTL (R2 = 0.899)

Figure 7.15.: Time Consump on Comparison between XTL, JSP, and XSL-T

The comparison shows that the XTL instan a on is in the same order of magnitude as the
ones of JSP and XSL-T, even if XTL is obviously the slowest engine. The main reason for the
difference in the instan a on me is that XTL templates are interpreted, whereas JSP pages as
well as XSL-T stylesheets are compiled. The implementa on of a compiling XTL engine would
help closing this gap to the compe ng techniques.

7.5.3. Memory Usage Measurements of the Template Instan a on

For thememory usage, a special command line applica on has been constructedwhich outputs
the maximummemory consump on during the instan a on. For this purpose, the applica on
uses a thread which samples the heap memory usage every me a configurable amount of
the instan ated template has been created. Both maximum and minimum memory usage are
recorded. For each instan a on, the difference betweenmaximumandminimummemory con-
sump on is calculated. The heap memory usage is recorded using the MemoryMXBeanmech-
anism of the JVM. Before the memory usage value is requested, the method System.gc() is
invoked twice to give the JVM the chance to run the garbage collector in order to reclaim heap
space that is not longer used and would severly influence the measurement results.

¹The unit kbyte denotes 1024 bytes here and in the following.

184

7.5. Run me and Memory Usage Measurements

In order to validate the memory complexity proposed in Sec on 6.2, special XTL templates
have been constructed in a way that they can be parametrized in two ways. Each template con-
sists of an xtl:for-each statement, execu ng three mes and containing a parametrizable
size n of xtl:text statements, which are crea ng a random text of 1024 characters using the
Iden ty PHP. This xtl:for-each statement is prefixed and pos ixed by a number p of ele-
ments, each of them containing a random text of between 0 and 1024 characters. An example
template with the values n = 3 and p = 2 is shown in Lis ng 7.2 – the random text has been
replaced by ... for be er readability.

<?xml version=’1.0’?>
<template xmlns:xtl=’http://research.sap.com/xtl/1.0’>

<text>...</text>
<text>...</text>
<xtl:for-each select=’3’>

<xtl:text select=’...’ />
<xtl:text select=’...’ />
<xtl:text select=’...’ />

</xtl:for-each>
<text>...</text>
<text>...</text>

</template>
Lis ng 7.2: An Example Template for Memory Measurement (n = 3, p = 2)

Using these parametrizable templates, thememory complexity ismeasured using a Perl script
which calls the applica on 100 mes for different values of n and 100 mes for different values
of p. The first invoca on is only made to prepare the ground for the following instan a ons, its
memory consump on is ignored. The average of the following three instan a ons is considered
the memory consump on of this template.
In order to record only the amount of memory needed by the Template Instan a on it-

self, the template crea on as well as the target of the Template Instan a on process had to
be implemented in special ways. For the template crea on, a special implementa on of the
javax.xml.stream.XMLEventReader interface has been created. This implementa on
delivers the next XMLEvent of the template without construc ng the en re template upfront,
thus saving thememory which would otherwise be needed to hold the template. For the target
of the Template Instan a on process, a special subclass of the java.io.OutputStream
has been used which immediately discards all bytes making up the instan ated template.
First, a measurement has been made with a fixed value of p = 10000 and n ranging from

1000 to 20000. The result of this measurement is shown in Figure 7.16(a). The coefficient of
determina onR2 clearly shows the linear dependency of thememory usage fromn. Therefore,
the implementa on follows the memory complexity expression proposed in Sec on 6.2, with n
being the maximum number of nodes in an xtl:for-each in the template t◦, or, formally

n = max
x∈t◦//xtl:for−each

∣∣∣x//node()∣∣∣

185

7. Valida on

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
em

or
y
[k
by
te
]

Maximum Number of Descendants in xtl:for-each n [1]

an + b (a = 2.834, R2 = 0.993)

(a) Variable xtl:for-each Size

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
em

or
y
[k
by
te
]

Elements surrounding xtl:for-each p [1]

ap + b (a = −0.073, R2 = 0.480)

(b) Variable Prefix and Pos ix Size

Figure 7.16.: Results of the Memory Consump on Measurements

186

7.6. Conclusion

As a crosscheck, it has been measured how the memory consump on depends on the value
of p, i.e., the number of elements containing random text prefixing and pos ixing the xtl:
for-each statement in the constructed templates. Figure 7.16(b)² shows a measurement for
n = 10000 and p varying from 1000 to 20000. There is no linear correla on between p and the
memory consump on, as indicated by the slope close to 0. In other words, the memory usage
does not depend on the number of elements surrounding xtl:for-each in the template: it
is rather constant.
Taken together, these measurements empirically prove the correctness of the memory usage

es ma on given in Sec on 6.2.

7.6. Conclusion

This chapter introduced themeans used for valida ng the results of this thesis. First, the valida-
on means have been put into rela on to the goals. Each goal has been validated using one or

two valida onmeans. Themost basic valida onmeanswas the implementa on of a prototype,
which has been described in detail. Based on the prototype, a test suite has been presented
which validates the par cular components of the prototype as well as the overall process. Ap-
plica ons of the prototype in various research projects has been discussed. The correctness of
the Constraint Separa on process has been proved. Finally, a set of measurements has been
made in order to validate the correctness of the me andmemory complexity es ma ons given
in Sec on 6.2.4.

²The scale in this figure has been set to the scale used in Figure 7.16(a) to achieve a be er comparability. The reason
for the (negligible) nega ve slope is that the memory consump on has been measured with a fixed sample rate
for technical reasons. As the highest memory consump on occurs for a rela vely smaller amount of me in
larger templates, the peak is less closely approximated with larger p.

187

7. Valida on

188

8
Summary, Conclusion, and Outlook

Die Zukun soll man nicht voraussehen wollen, sondern möglich machen.

Antoine de Saint-Exupery [45]

This chapter summarizes the results of this thesis in Sec on 8.1. A conclusion of the thesis
follows in Sec on 8.2: this conclusion summarizes the main contribu ons made by this thesis.
Sec on 8.3 contains sugges ons for improvements which could be applied to the XML tech-
nological space. The final Sec on 8.4 shows future research direc ons, i.e., minor and major
research ques ons or standardiza on efforts which could help advance the proposed approach
into a state-of-the-art technology.

8.1. Summary

The main objec ve of this thesis was to create a technique, a process and tools which allow the
use of templates to generate documents that belong to a par cular, predefined target language.
The results of this thesis are of use for all areas of applica ons where templates are used today,
especially for code genera on and for Web applica ons.
The preface in Chapter 1 is basically an outline of the thesis. It relates the use of templates

to the SoC principle and discusses the problems of using templates in the way we use them
today. These problems are illustrated using a mo va ng example. Based on this, the goals of
the thesis are outlined. The contribu ons made by the thesis are described comprehensively.
The chapter concludes with a short summary of related work and a descrip on of typographic
conven ons used within the thesis.

189

8. Summary, Conclusion, and Outlook

Chapter 2 sets the founda ons for the thesis: it defines the no on of a template, discusses the
areas where templates in the defined sense are typically used as well as alterna ves to using
templates, and lists related research areas. Finally, a classifica on of template approaches is
given. Chapter 3 proposes an approach to the problems found when using templates today.
It defines the goals of the thesis and derives requirements from them. A erwards, a proposal
for an architecture and a process fulfilling the requirements is made. Based on this proposal,
the following part of the thesis has been structured into three main chapters, dealing with the
design of a suitable template language, with the support that can be given to the template
author and with the components which are involved during the instan a on of a template.
Chapter 4 discusses the design of the universal, syntax- and seman cs-preserving SlotMarkup

Language XTL. In its first part, general design discussion are described, followed by a descrip on
of the features of the XTL. Each instruc on of the XTL is described by showing its syntax, its
seman cs and giving an example. The chapter concludes with somewords about a transla onal
seman cs defini on of the XTL and the use of the XTL as schema language.
Chapter 5 introduces the two components in the proposed architecture and process which

support the template author. The first of these components is the Constraint Separa on pro-
cess, which combines the target language grammar with the slot markup language grammar
and separates the constraints from this combined template language grammar into constraints
which can be verified during authoring me of the template and constraints which must be
checked during the instan a on me of the template. The second component is the Template
Valida on component, which actually validates a template against the template language gram-
mar and verifies the authoring me constraints.
Chapter 6 discusses the three components involved in the actual instan a on of a template.

The first component is the Instan a on Data Evalua on component which is responsible for
evalua ng the instan a on data referred to by the template. The second component is the
Template Instan a on component itself, which is described in detail and for which a complexity
es ma on is given. Finally, the Instan a on Data Valida on component is discussed, which is
responsible for verifying the instan a on data constraints with the actual instan a on data.
Chapter 7 validates the proposed architecture and process using several means. First, the

prototype implemented in order to demonstrate the feasibility of the approach is described.
Furthermore, the test suite established for valida ng the prototype with respect to its various
subcomponents is described. Applica ons of the prototype in various research projects are
shown. The chapter concludes with a discussion of the correctness of the Constraint Separa on
process and with a summary of the measurements which have been conducted in order to
verify the complexity statements given in Chapter 6 and to compare the XTL instan a on with
compe ng approaches like XSL-T and JSP.

8.2. Conclusion

This thesis made several major contribu ons to today’s use of the template approach. The first
contribu on is the defini on of the XTL slot markup language itself. The language is universally
usable to create templates for all XML dialects. It is syntax-preserving, i.e., it refrains from in-
troducing a special slot markup syntax. It is also seman cs-preserving, as it does not redefine

190

8.3. Suggested Improvements for XML Technologies

the seman cs of its target language in any way. The preserva on of the syntax as well as the
seman cs is achieved by relying on XML namespaces for the slot markup. The denota onally
defined seman cs of the XTL itself is also a novelty in the area of template languages, which are
typically only described informally. By its clean design, the XTL already eliminates a typical prob-
lem occuring when XML documents are created using typical template approaches: as opposed
to the exis ng approaches, an XTL template will always produce well-formed XML documents.
The Safe Authoring goal has been achieved with the thesis. The author of a template gets the

highest possible safety that its template will actually instan ate into the target language. This is
inherent to the design of the XTL and the design of the Constraint Separa on component. The
Constraint Separa on process can also be parameterized to facilitate a Par al Templa za on,
which allows achieving an entanglement index of 0, which has been stated impossible in [143].
It has been shown that the Safe Instan a on goal can be achieved in two different ways. First,

the Instan a on Data Valida on can be executed as part of the template instan a on, i.e., by
checking the instan a on data constraints a er the instan a on data has been fetched from an
instan a on data source. Second, a modifica on of the proposed architecture is possible that
allows for crea ng interfaces for templates, which makes it basically impossible to pass invalid
data into the templates.
Furthermore, the thesis formulated a new and concrete defini on of the no on of a template

and gave a new classifica on of template techniques. The defini on is different from exis ng
defini ons and captures the intui ve use of the template term in the areas of code genera-
on and Web applica ons more closely. This conformity with the intui ve meaning is primarily

achieved by basing the defini on on the prototypical nature of templates. The classifica on of
template techniques is unique in the orthogonality of the introduced classifica on proper es
while it s ll exhaus vely classifies every approachwhich is captured by the introduced template
defini on.

8.3. Suggested Improvements for XML Technologies

As this thesis has been set up with the goal of u lizing exisi ng standards, some parts of the
design and the implementa on of the approach become very sophis cated. In order to make
things easier, some improvements to the exis ng XML technology stack should be made. In the
following, such sugges ons are described shortly.
An XML schema language that supports regular languages is absolutely necessary in order

to implement the proposed approach. There are two candidates for such a language: RelaxNG
and—as has been shown through the work in Sec on 5.2—XML Schema itself. RelaxNG is a
well-designed language that would fit nicely with the proposed approach, but its tool support is
s ll (a er 9 years of standardiza on) very poor. Furthermore, the complex transforma on rules
that have to be applied to validate documents against a RelaxNG schemamake the construc on
of a JAXB-like binding framework difficult [88]. For these reasons, a further dissemina on seems
unlikely.
The approach to develop XML Schema into a full-featured regular tree grammar language is

preferable. XML Schema has already a sufficient syntax to capture regular tree grammars. Only
the UPA rule (inherited from SGML) prevents it to be used in such a way. The main mo va-

191

8. Summary, Conclusion, and Outlook

on for the UPA—simple valida on because of the minimal lookahead required—could s ll be
considered in an advanced XML Schema version by introducing language profiles. Such profiles
could easily allow dis nct expressive powers of XML Schema based on the well-known syntax.
The profiles suggested here are a legacy profile which leaves the UPA rule as is, a more pow-
erful profile which allows defering the par cle a ribu on to extensions established using the
xsd:appinfomechanism, and a full profile that abandons the UPA. The second profile would
be well-suited for XML Schema extensions like the CXSD or Schematron.
A problem which caused the exclusion of the subs tu on group feature from the list of XML

schema features supported in target language schemas is the impossibility to extend content
models during an extension of an complex type at the beginning of the content model. This
problem occurs when a complex type without a ributes is extended to a complex type with
a ributes: it is impossible to allow the use of the xtl:attribute instruc on directly a er
the element which is declared using the inheri ng complex type.
A minor improvement which could be made to XML Schema would be a feature that allows

it to express a ribute/element or content/a ribute rela onships as they are described in Sec-
on 5.1.2. While these rela onships can be expressed well in CXSD, their descrip on as a con-

straint does not allow a syntax-aware editor to offer features like code comple on. A declara ve
solu on within XML Schema would fix this problem and allow be er editors to be built.

8.4. Future Research Direc ons

The developed tool chain suppor ng the introduced approach for Safe XML Processing could be
extended to support a larger subset of XML Schema, e.g., the all content model and subs tu-
on groups (as far as this is not prevented by the fact that contentmodels could not be extended

at the beginning, see above). Such an extension should be considered a minor research issue,
as no further general insights are to be expected from these extensions.
Amore challenging and promising research ques on is the unifica on of document valida on

and genera on using a single language, like it could be done using XTL (see Sec on 4.7). Inter-
es ng ques ons involve the expressive power achievable by such a combined language and the
acceptance by users for both valida ng and genera ng documents.
There also exist similari es between (electronic) form processing and templates. A form can

be considered a template to be filled by a human. It would be interes ng to elaborate on the
requirements a generic slot markup language has to fulfill in order to allow it to be used to
express forms and whether the implemented prototype could easily be extended into a form
processing engine. A possible approachwould be to allow XTL instruc ons in XHTML documents
to be rendered as input elements (within a Web browser or by server-side processing).
A generic slot markup language like the XTL should be an integral part of the XML technolog-

ical space. A standardiza on by the W3C would be the method of choice to achieve this. This
process would also allow to review the related specifica ons like XML Schema with respect to
the requirements of Safe Template Processing, which is the only way to elegantly and las ngly
implement the proposed approach and to help its dissemina on as a state-of-the-art technol-
ogy.

192

A
Referenced XML Schemata and

Instances

Umgangssprachlich wird von Schema F gesprochen, wenn etwas
bürokra sch-rou nemäßig, stereotyp, mechanisch oder gedankenlos abläu . Der

Ausdruck geht zurück auf die Vordrucke für die im preußischen Heer seit 1861
vorgeschriebenen so genannten Frontrapporte, auszufüllende Berichte über den

Bestandsnachweis der vollen Kriegsstärke. Diese Vordrucke waren mit dem Buchstaben F
gekennzeichnet. Bei der Kontrolle der Truppenstärke musste diese genau mit den

Angaben im Vordruck übereins mmen.
Wikipedia [190]

A.1. XML Schema of XTL

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema

targetNamespace=”http://research.sap.com/xtl/1.0”
xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xtl=”http://research.sap.com/xtl/1.0”

>
<xsd:annotation>

<xsd:documentation>
<p>

This schema describes the XML Template
Language (abbreviated XTL), a collection
of elements which can be used to markup slots in an XML document,

193

A. Referenced XML Schemata and Instances

thereby making the XML document a template.
</p>
<p>

Besides relying on XML, XTL is language independent: the same
constructs can be used to markup slots in an XHTML, an SVG or some
other XML-based document.

</p>
<p>

XTL is independent of particular mechanisms used to fetch the data into
a template. XTL engines typically achieve this independence by
implementing a plugin mechanism: for each mechanism used to fetch data,
a corresponding plugin is needed. These plugins are called
placeholder processors. In order to allow multiple plugins to
be used within a single template, the
realm attribute might be used.

</p>
<p>

XTL supports a mechanism called bypassing which allows
deferring the evaluation of XTL language constructs.

</p>
<p>

The XTL language is intended to serve as a proof for the statement that
a generic slot markup language is not only usable as a template
language, but is also useful for schema validation, semi-static
API-based generators and as part of an abstract UI language. Some of
these use cases might redefine the semantics of XTL language elements.
For example, in case of a semi-static API-based generator, the
select attribute is no longer
interpreted as the hint where to get the data for the slot from, but
rather as a hint on how to structure the API for the template.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:element name=”attribute”>
<xsd:annotation>

<xsd:documentation>
<p>

This element can be used to create or overwrite an attribute at an
element.

</p>
<p>

The attribute is created or overwritten at the next element along
the ancestor axis which does not belong to the XTL namespace.
Attributes can be created at elements that are assigned to an
XTL-bypass namespace.

</p>
<p>

Between an attribute element and its direct parent element, only
whitespaces, comments or other
attribute
elements are allowed.

</p>
<p>

The name of the element to be created is taken from the
name attribute of this element. The
value is fetched from the placeholder processor which is designated
by the realm attribute by passing it the
value of the select attribute.

</p>
</xsd:documentation>

</xsd:annotation>

194

A.1. XML Schema of XTL

<xsd:complexType>
<xsd:attribute name=”name” type=”xsd:QName” use=”required”>

<xsd:annotation>
<xsd:documentation>

<p>
The value of this attribute defines the name of the
attribute to be created or overwritten. The attribute name
might be prefixed in order to create a qualified attribute.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />
<xsd:attributeGroup ref=”xtl:typeAttributeGroup” />
<xsd:attribute name=”mode” type=”xtl:attributeModeType”>

<xsd:annotation>
<xsd:documentation>

<p>
The mode defines the behaviour of the xtl:attribute, if
the attribute to be created already exists or if multiple
xtl:attribute commands with the same value of the name
attribute exist.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name=”result” type=”xsd:string”>

<xsd:annotation>
<xsd:documentation>

<p>
The result attribute exists for technical reasons and must
not be used in an XTL template.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>
</xsd:element>

<xsd:element name=”text”>
<xsd:annotation>

<xsd:documentation>
<p>

This element can be used to create text.
</p>
<p>

If the element is used in a template, the element is replaced
by the value which is returned by the placeholder processor
for the value of its select
attribute. The returned value is encoded, i.e., if markup is
returned by the placeholder processor, it will be converted to text
in the template. It is therefore (by intention) not possible to
change the template structure using this element.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />

195

A. Referenced XML Schemata and Instances

<xsd:attributeGroup ref=”xtl:typeAttributeGroup” />
</xsd:complexType>

</xsd:element>

<xsd:element name=”if”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows the conditional inclusion of template parts.
</p>
<p>

During expansion of the template, the
select attribute is
evaluated. For this element, the evaluation
MUST return a boolean value. If the value is true, the
content of the if element is included, if it is false, the content
is not expanded.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType mixed=”true”>
<xsd:sequence>

<xsd:any minOccurs=”1” maxOccurs=”1” processContents=”strict”/>
</xsd:sequence>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />

</xsd:complexType>
</xsd:element>

<xsd:element name=”for-each”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows the repeated inclusion of a part of the
template.

</p>
<p>

During the expansion process, the
select attribute is
evaluated. If the evaluation of this attribute yields null or an
empty collection, the content of the for-each element is not
expanded. If the evaluation yields a single object, the content
of the for-each element is evaluated once. if the evaluation yields
a non-empty collection, the content of this element is evaluated
once for each element in the collection.

</p>
<p>

It is important to note that placeholder processors might implement
a context which captures the position of
select expressions with
respect to surrounding for-each elements. This way, the expansion
of the content of the for-each element might yield different
results for different elements in the collection mentioned above.
An example for this behaviour is the XPath placeholder processor
which implements a context similar to the XSL-T context, thereby
allowing
select expressions to be
absolute or relative to the current position within the for-each
collection.

</p>
</xsd:documentation>

196

A.1. XML Schema of XTL

</xsd:annotation>

<xsd:complexType mixed=”true”>
<xsd:sequence>

<xsd:any minOccurs=”1” maxOccurs=”1” processContents=”strict”/>
</xsd:sequence>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />
<xsd:attributeGroup ref=”xtl:minMaxAttributeGroup” />
<xsd:attribute name=”order-by” type=”xsd:string” use=”optional”>

<xsd:annotation>
<xsd:documentation>

<p>
This attribute can be used to specify a subquery which is
used to sort the result of the query.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name=”order” type=”xtl:orderType” use=”optional”>

<xsd:annotation>
<xsd:documentation>

<p>
This attribute specifies the sorting order
(ascending/descending).

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>
</xsd:element>

<xsd:element name=”include”>
<xsd:annotation>

<xsd:documentation>
<p>

This element can be used to include arbitrary markup.
</p>
<p>

During the expansion of the template, the
select expression is
evaluated. It must return a single DOM node which replaces the
include element. In contrast to the
text element, the result of the
evaluation is not encoded.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:attributeGroup ref=”xtl:selectAttributeGroup” />
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />

</xsd:complexType>
</xsd:element>

<xsd:element name=”macro”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows the definition of reusable template parts,
so-called macros.

</p>

197

A. Referenced XML Schemata and Instances

<p>
During evaluation, the content of the element is associated with
the value of its name attribute. No processing
of the content is performed during this association.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:sequence>

<xsd:any />
</xsd:sequence>
<xsd:attribute name=”name” type=”xsd:NCName” use=”required”>

<xsd:annotation>
<xsd:documentation>

<p>
This attribute uniquely identifies the macro for later use
with the
call-macro
element.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>

<xsd:key name=”macroName”>
<xsd:selector xpath=”.//macro” />
<xsd:field xpath=”@name” />

</xsd:key>
</xsd:element>

<xsd:element name=”call-macro”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows the invocation of reusable template parts
called macros.

</p>
<p>

The stored content of a macro
definition is looked up, embedded into the template and afterwards
expanded by the template engine. Thus, the expansion of the macro
does not influence the semantics of the instantiation in any way:
it makes no difference whether a macro is used or whether the
content of the macro is copied into all the places where it is
called.

</p>
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:attribute name=”name” type=”xsd:NCName” use=”required”>

<xsd:annotation>
<xsd:documentation>

<p>
The value of this attribute identifies the macro which
should replace this call-macro element.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

198

A.1. XML Schema of XTL

</xsd:complexType>

<xsd:keyref name=”macroNameRef” refer=”xtl:macroName”>
<xsd:selector xpath=”.//call-macro” />
<xsd:field xpath=”@name” />

</xsd:keyref>
</xsd:element>

<xsd:element name=”init”>
<xsd:annotation>

<xsd:documentation>
<p>

This element allows to initialize a placeholder plugin with
plugin-dependent data.

</p>
<p>

The evaluation of this element yields nothing.
</p>

</xsd:documentation>
</xsd:annotation>

<xsd:complexType mixed=”true”>
<xsd:sequence>

<xsd:any />
</xsd:sequence>
<xsd:attributeGroup ref=”xtl:realmAttributeGroup” />

</xsd:complexType>
</xsd:element>

<xsd:simpleType name=”attributeModeType”>
<xsd:list>

<xsd:simpleType>
<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”create” />
<xsd:enumeration value=”append” />
<xsd:enumeration value=”set” />

</xsd:restriction>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

<xsd:simpleType name=”orderType”>
<xsd:list>

<xsd:simpleType>
<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”ascending” />
<xsd:enumeration value=”descending” />

</xsd:restriction>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

<xsd:attributeGroup name=”selectAttributeGroup”>
<xsd:attribute name=”select” type=”xsd:string” use=”required”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

The value of this attribute is used by a placeholder processor
to acquire data for an element.

</p>
<p>

199

A. Referenced XML Schemata and Instances

This data could either be used to fill a slot (e.g., for the
attribute element) or
to control the expansion of a template (e.g., for the
if
and the for-each
elements).

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>

<xsd:attributeGroup name=”realmAttributeGroup”>
<xsd:attribute name=”realm” type=”xsd:NCName” use=”optional”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

This attribute is used by XTL to distinguish different
placeholder processors which might be used within a single
template.

</p>
<p>

Unfortunately, no mechanism is defined yet to map from the
realm attribute value to a placeholder processor (which
might, for example, be defined by a Java class name). In
addition to this, the placeholder processors might need
some additional configuration (like the XML source for an
XPath placeholder processor).

</p>

</xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:attributeGroup>

<xsd:attributeGroup name=”typeAttributeGroup”>
<xsd:attribute name=”type” type=”xsd:QName” use=”prohibited”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

This is a helper attribute which may be used to define the
type that is needed in order to fill a slot.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>

<xsd:attributeGroup name=”minMaxAttributeGroup”>
<xsd:attribute name=”min” type=”xsd:nonNegativeInteger” use=”prohibited”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

This is a helper attribute which may be used to classify
the number of times a for-each instruction must be executed
at minimum.

</p>
</xsd:documentation>

200

A.2. Purchase Order Schema

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name=”max” type=”xsd:allNNI” use=”prohibited”

form=”unqualified”>
<xsd:annotation>

<xsd:documentation>
<p>

This is a helper attribute which may be used to classify
the number of times a for-each instruction may be executed
at maximum.

</p>
</xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>
</xsd:schema>

Lis ng A.1: XTL Schema xtl.xsd

A.2. Purchase Order Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<purchaseOrder xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”po.xsd”
orderDate=”1999-10-20”>

<shipTo country=”US”>
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country=”US”>

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<comment>Hurry, my lawn is going wild!</comment>
<items>

<item partNum=”872-AA”>
<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
<item partNum=”926-AA”>

<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>

</purchaseOrder>

Lis ng A.2: Purchase order XML instance po.xml

201

A. Referenced XML Schemata and Instances

A.3. Purchase Order Instance

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:annotation>
<xsd:documentation xml:lang=”en”>
Purchase order schema for Example.com.
Copyright 2000 Example.com. All rights reserved.

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”purchaseOrder” type=”PurchaseOrderType”/>

<xsd:element name=”comment” type=”xsd:string”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>

<xsd:element name=”shipTo” type=”USAddress”/>
<xsd:element name=”billTo” type=”USAddress”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”items” type=”Items”/>

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date”/>

</xsd:complexType>

<xsd:complexType name=”USAddress”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”country” type=”xsd:NMTOKEN”

fixed=”US”/>
</xsd:complexType>

<xsd:complexType name=”Items”>
<xsd:sequence>

<xsd:element name=”item” minOccurs=”0” maxOccurs=”unbounded”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”productName” type=”xsd:string”/>
<xsd:element name=”quantity”>

<xsd:simpleType>
<xsd:restriction base=”xsd:positiveInteger”>

<xsd:maxExclusive value=”100”/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”USPrice” type=”xsd:decimal”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”shipDate” type=”xsd:date” minOccurs=”0”/>

</xsd:sequence>
<xsd:attribute name=”partNum” type=”SKU” use=”required”/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name=”SKU”>

202

A.3. Purchase Order Instance

<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\d{3}-[A-Z]{2}”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Lis ng A.3: Purchase order XML Schema po.xsd

203

A. Referenced XML Schemata and Instances

204

B
Detailed Results of the Run me and

Memory Measurements

Traue keiner Sta s k, die du nicht selbst gefälscht hast.

(Origin unknown)

205

B. Detailed Results of the Run me and Memory Measurements

Parameter n of Valida on Times [ms]
Instance Document [1] XSD CXSD

∅ σ ∅ σ

100 757,3 35,3 1 208,2 36,5
200 781,1 38,5 1 288,6 28,9
300 795,5 27,5 1 353,0 29,7
400 815,6 32,9 1 420,6 28,0
500 837,2 23,1 1 513,4 56,5
600 858,9 21,8 1 574,3 35,6
700 897,7 31,8 1 729,6 54,5
800 945,3 32,3 1 862,8 73,3
900 967,5 31,7 1 961,3 68,5

1000 990,5 41,3 2 069,9 80,0
1100 1 009,1 32,9 2 169,2 95,0
1200 1 063,5 176,3 2 281,8 97,5
1300 1 051,4 31,9 2 310,1 103,0
1400 1 062,7 33,2 2 463,9 77,5
1500 1 158,6 41,6 2 582,4 82,1
1600 1 189,7 39,5 2 595,6 123,2
1700 1 229,0 45,6 2 641,8 107,9
1800 1 253,2 48,3 2 677,1 94,6
1900 1 257,6 37,0 2 710,7 97,3
2000 1 273,0 40,5 2 932,4 89,8

Number of measurements per line: 300

Table B.1.: Run me Measurement of Valida on against a CXSD document

206

IDS Source File Number of Nodes Instan a on Time [ms]
in the IDS Source File [1] ∅ σ

a_and_c.xml 12 720 244,48 88,35
all_well.xml 10 042 192,04 22,30
as_you.xml 8 972 172,67 21,94
com_err.xml 6 294 124,07 13,35
coriolan.xml 12 632 237,39 16,58
cymbelin.xml 11 532 214,47 16,52
dream.xml 6 772 136,35 16,45
hamlet.xml 13 224 268,69 22,10
hen_iv_1.xml 9 680 200,26 19,93
hen_iv_2.xml 10 278 214,04 22,49
hen_v.xml 9 432 196,91 20,21
hen_vi_1.xml 8 736 182,21 19,21
hen_vi_2.xml 10 092 208,92 19,69
hen_vi_3.xml 9 742 202,89 23,20
hen_viii.xml 9 684 200,27 23,25
j_caesar.xml 8 880 184,69 22,36
john.xml 7 858 162,71 18,79
lear.xml 11 980 246,34 15,59
lll.xml 10 074 210,23 18,43
m_for_m.xml 9 698 215,42 21,02
m_wives.xml 9 970 209,41 20,34
macbeth.xml 7 938 166,47 18,27
merchant.xml 8 286 173,56 23,51
much_ado.xml 9 474 198,83 23,22
othello.xml 12 410 255,90 16,30
pericles.xml 7 508 159,45 22,42
r_and_j.xml 10 150 211,30 21,62
rich_ii.xml 8 226 171,59 19,44
rich_iii.xml 12 410 256,53 21,09
t_night.xml 9 148 193,19 23,67
taming.xml 8 438 181,13 23,89
tempest.xml 7 396 156,99 22,26
mon.xml 8 694 183,97 23,61
tus.xml 7 872 164,95 19,28

troilus.xml 12 216 252,22 20,93
two_gent.xml 8 298 176,50 19,93
win_tale.xml 10 048 206,53 21,71
Number of measurements per line: 1000

Table B.2.: Analysis of the Time Complexity

207

B. Detailed Results of the Run me and Memory Measurements

IDS Source File Size of IDS Source File Instan a on Time [ms]
[kbyte] ∅ JSP ∅ XSL-T ∅ XTL

a_and_c.xml 245,96 57,6 33,3 268,1
all_well.xml 204,78 43,2 25,1 195,2
as_you.xml 187,60 36,2 24,3 173,4
com_err.xml 133,60 23,1 18,3 136,8
coriolan.xml 253,97 66,1 32,1 266,8
cymbelin.xml 241,53 62,0 30,2 245,8
dream.xml 141,61 25,3 18,9 146,0
hamlet.xml 273,07 67,2 33,8 280,5
hen_iv_1.xml 209,90 50,4 25,9 209,2
hen_iv_2.xml 228,66 56,0 27,8 219,8
hen_v.xml 220,93 50,3 25,9 206,2
hen_vi_1.xml 191,82 40,3 23,8 189,4
hen_vi_2.xml 220,68 54,1 27,4 219,4
hen_vi_3.xml 215,01 52,5 26,2 212,3
hen_viii.xml 212,68 52,1 26,4 211,3
j_caesar.xml 179,20 40,7 23,5 194,3
john.xml 173,88 33,6 22,1 171,6
lear.xml 240,05 67,6 30,7 256,3
lll.xml 202,06 53,0 25,9 222,6
m_for_m.xml 197,94 48,8 25,6 222,5
m_wives.xml 202,28 50,9 25,8 220,5
macbeth.xml 159,22 32,8 21,5 171,5
merchant.xml 177,74 37,9 22,7 181,9
much_ado.xml 190,60 46,8 25,0 210,3
othello.xml 242,91 68,3 31,6 269,7
pericles.xml 165,29 34,4 20,9 168,1
r_and_j.xml 213,35 54,5 27,0 222,5
rich_ii.xml 188,29 38,4 23,1 180,3
rich_iii.xml 265,02 70,9 32,1 264,8
t_night.xml 181,68 43,2 23,8 203,3
taming.xml 189,71 44,5 22,9 188,9
tempest.xml 150,99 29,1 20,2 163,9
mon.xml 173,27 40,2 22,9 192,3
tus.xml 176,28 33,2 22,0 175,4

troilus.xml 243,54 66,9 30,9 263,5
two_gent.xml 160,73 39,0 22,1 185,6
win_tale.xml 212,01 54,6 27,1 218,3
Number of measurements per line: 1500

Table B.3.: Comparison between JSP, XSL-T and XTL

208

Parameter n of Memory Usage [kbyte]
Template [1] ∅ σ

1000 3 437,8 1 550,2
2000 7 254,9 3 315,8
3000 10 734,2 4 245,4
4000 14 026,9 4 325,2
5000 16 056,6 3 660,7
6000 17 333,9 2 230,3
7000 20 167,5 2 479,0
8000 23 489,1 3 113,0
9000 26 176,8 3 152,7

10000 28 438,9 3 388,5
11000 31 134,3 3 230,9
12000 33 222,6 3 023,8
13000 41 440,3 4 455,6
14000 44 474,1 4 473,5
15000 44 174,7 4 180,5
16000 46 378,1 4 415,0
17000 48 214,3 4 008,9
18000 51 319,2 3 981,4
19000 55 630,1 4 577,3
20000 57 872,8 5 350,7

Value of p: 10000
Number of measurements per line: 100

Table B.4.: Memory measurement with constant parameter p

209

B. Detailed Results of the Run me and Memory Measurements

Parameter p of Memory Usage [kbyte]
Template [1] ∅ σ

1000 25 450,1 2 952,3
2000 25 783,6 3 420,2
3000 25 199,4 2 932,8
4000 24 574,0 955,9
5000 25 435,9 2 887,1
6000 25 756,8 3 481,0
7000 25 929,7 3 389,2
8000 24 930,2 2 704,6
9000 25 112,7 2 655,6

10000 25 184,4 2 588,3
11000 25 483,8 3 625,3
12000 25 772,9 3 590,0
13000 25 594,1 3 663,7
14000 24 910,8 2 679,5
15000 24 334,7 928,8
16000 24 398,6 1 717,7
17000 24 139,6 196,7
18000 24 140,3 230,2
19000 24 225,1 743,7
20000 24 221,7 471,3

Value of n: 10000
Number of measurements per line: 100

Table B.5.: Memory measurement with constant parameter n

210

List of Acronyms

ACV Advanced Computer Vision [1]

AOP Aspect-oriented Programming [63]

API Applica on Programming Interface

AST Abstract Syntax Tree [2]

AWT Abstract Window Toolkit, a Java GUI framework

BMBF Bundesministerium für Bildung und Forschung

CMS Content Management System

CST Concrete Syntax Tree (see parse tree in [2])

CXSD Constraint XML Schema Defini on Language [83]

DOM Document Object Model [13]

DSL Domain Specific Language

DTD Document Type Defini on [28]

D3ML Device-Independent Mul modal Mark-up Language [75]

DTML Document Template Markup Language [114]

EADS European Aeronau c Defence and Space Company [58]

EMF Eclipse Modeling Framework [57]

EMMA Extensible Mul Modal Annota on Markup Language [193]

EMODE Enabling Model Transforma on-Based Cost Efficient Adap ve Mul -modal User Inter-
faces

ERB Embedded Ruby [50]

EU European Union

211

List of Acronyms

FeasiPLe Feature-getriebene, aspektorien erte und modellgetriebene Produktlinienentwick-
lung (German for Feature-driven, Aspect-oriented Product Line Development) [60]

FIRST Fraunhofer Ins tut für Rechnerarchitektur und So waretechnik [70]

FMC Fundamental Modeling Concepts [72; 109]

GHC Glasgow Haskell Compiler [84]

GUI Graphical User Interface

HTML Extensible Hypertext Markup Language [153]

HTTP Hypertext Transfer Protocol [62]

IDC Instan a on Data Constraint language

IDE Integrated Development Environment

IDS Instan a on Data Source (see Sec on 4.1)

ISC Invasive So ware Composi on [15]

JAR Java ARrchive[177]

JAXB Java Architecture for XML Binding [155; 105]

JDK Java Development Kit

JET Java Emi er Templates [52]

JSP Java Server Pages [176]

JSR Java Specifica on Request

JVM Java Virtual Machine

LISP LISt Processing [170]

MDA Model Driven Architecture [128]

MDSD Model Driven So ware Development

MDT Model Development Tools [54]

MMI-F Mul modal Interac on Framework [191]

MOF Meta-Object Facility [138]

MRCP Media Resource Control Protocol [91]

MSL Model Schema Language [31; 30]

212

List of Acronyms

M2C Model-to-Code transforma on [43]

M2M Model-to-Model transforma on [43]

MVC Model-View-Controller [154]

OCL Object Constraint Language [136]

PDA Personal Digital Assistent

PHP Placeholder Plugin (see Sec on 6.1)

PSVI Post-Schema-Valida on Infoset [180]

QVT Query View Transforma on [140]

RAP Rich Applica on Pla orm [55]

RelaxNG Regular Language for XML Next Genera on [39]

RSF Reasonable Server Faces [186]

RWT Rich Applica on Pla orm (RAP) Widget Toolkit

SAX Simple API for XML [161]

SGML Standard Generalized Markup Language [76]

SNOW Services for Nomadic Workers [179]

SoC Separa on of Concerns [48]

SPARQL SPARQL Protocol and RDF Query Language [151]

SPath Path Language for XML Schema [126]

SQL Structured Query Language

SSM Simplified Stylesheet Module [107] (called simplified syntax in [36])

SSML Speech Synthesis Markup Language [192]

ST StringTemplate [143]

StAX Streaming API for XML [95; 145]

SVG Scalable Vector Graphics [61]

TAL Template A ribute Language [196]

UML Unified Modeling Language [139]

UPA Unique Par cle A ribu on [180, Sec on 3.8.6]

213

List of Acronyms

URI Uniform Resource Iden fier [23]

URL Uniform Resource Locator [22]

WML Wireless Markup Language [90]

W3C World Wide Web Consor um http://www.w3.org

XHTML Extensible Hypertext Markup Language [4]

XMI XML Metadata Interchange [137]

XML Extensible Markup Language [28]

XML-RPC XML Remote Procedure Call [164]

XPath XML Path Language [38]

XSD XML Schema Defini on [59; 180; 26]

XSL Extensible Stylesheet Language [19]

XSL-T Extensible Stylesheet Language (XSL) Transforma ons [36]

XTL XML Template Language

XTM-P XML Topic Maps for Procedures [103]

XVCL XML-based Variant Configura on Language [93]

214

http://www.w3.org

List of Figures

1.1. A typical Web Applica on can produce both valid and invalid XHTML Documents 10
1.2. The current Development Process for Templates 11

2.1. Comparison of the Scopes of the Defini ons of the Term Template 22
2.2. Rela ons between Template and Target Language 23
2.3. Template Technique and Template Life Cycle 24
2.4. Formaliza on of the XML document in Lis ng 2.2 26
2.5. Classifica on of Schema Languages [simplified, based on 131] 27
2.6. Comparison of the Alterna ves with Templates 34
2.7. Target Language Awareness of Slot Markup 39
2.8. Sequence Diagrams of Push resp. Pull Strategy 42
2.9. Categories of Query Languages . 43

3.1. Error Messages caused by JSP Pages . 51
3.2. Separa on of Concerns in Different Scenarios 52
3.3. Rela ons between Goals and Requirements 54
3.4. Consequences of Insufficient or Exaggerated Expressiveness 56
3.5. The Proposed Architecture . 58
3.6. Rela ons between Requirements and Solu on Elements 59
3.7. Rela ons between the Solu on Elements and the Following Chapters 60

4.1. Types of XML Transforma on Pipelines . 80
4.2. Using a Ver cal XSL-T Pipeline to Emulate the XTL Engine 84
4.3. Schema Valida on and Template Instan a on 84
4.4. Similarity between Schema/Template and Instance 85

5.1. Conclusion Enabled by the Constraint Separa on Process 88
5.2. Meta-model for the CXSD constraints . 95
5.3. Set Rela ons between Template and Target Language 100
5.4. The Constraint Separa on Processing Steps 108
5.5. The Proposed Development Process for Templates 118

6.1. Accessing Mul ple Instan a on Data Sources Using Mul ple PHPs 124
6.2. Push- and Pull-Parser . 130
6.3. XTL Engine with Input and Output Streams . 131

215

List of Figures

6.4. Examples of Read Window Opera ons’ Execu on 133
6.5. The XTLEngine’s Processing Pipeline . 136
6.6. The XTLEvent Hierarchy . 137
6.7. Ac vi es during a Call to XTLEventReader.getNextEvent 138
6.8. Ac vi es during a Call to BypassProcessingReader.getNextEvent . 139
6.9. Ac vi es during a Call to XTLProcessingReader.getNextEvent . . . 140
6.10. Indenta on Parts of the XTL Processing Pipeline 147
6.11. State Chart of the IndentingXMLEventWriter 148
6.12. State Chart of the SplittingOutputStream 149
6.13. XTL Instan a on with enabled Instan a on Data Valida on 151
6.14. Architecture with Template Interface Genera on 153
6.15. The Object Model Deduced from the Template in Lis ng 6.16 155
6.16. The XPath Syntax Accepted by the Template Interface Genera on Process . . . 156
6.17. The Tree of Property Descriptors Built from the Template Shown in Lis ng 6.16 159

7.1. Rela ons between Valida on Means and Goals 166
7.2. The Prototype’s Tool Architecture . 166
7.3. Console Help of the xtlsc.sh Command 167
7.4. Console Help of the cxsdvalidate.sh Command 168
7.5. Console Help of the xtlinstantiate.sh Command 168
7.6. Console Help of the xtltc.sh Command 169
7.7. Constraint Separa on Test Suite . 170
7.8. Template Valida on Test Suite . 171
7.9. Template Instan a on Test Suite . 172
7.10. Template Interface Genera on Test Suite . 173
7.11. Round-trip Test Suite . 174
7.12. The SNOW Architecture . 177
7.13. Time Consump on during Document Valida on 182
7.14. Time Consump on during Template Instan a on 183
7.15. Time Consump on Comparison between XTL, JSP, and XSL-T 184
7.16. Results of the Memory Consump on Measurements 186

216

List of Lis ngs

1.1. A JSP Document failing to produce wellformed XHTML Documents 11
1.2. A JSP Document producing a Document that is not XHTML (1) 12
1.3. A JSP document producing a Document that is not XHTML (2) 13

2.1. Origins of Fragments in a Template . 23
2.2. A simple XML file . 25
2.3. A BETA Form . 36
2.4. Frame Processing Example with XVCL . 38
2.5. Suppression of Newlines in XPAND . 45

4.1. Representa on of XML documents in the Instan a on Seman cs 63
4.2. Defini on of the IDS class . 63
4.3. Preamble of the Denota onal Instan a on Seman cs 64
4.4. Seman cs for Text, Comment and Element Nodes 65
4.5. Seman cs of xtl:text . 67
4.6. Example Use of xtl:text . 67
4.7. Seman cs of xtl:attribute . 69
4.8. Example Use of xtl:attribute . 69
4.9. Seman cs of xtl:include . 70
4.10. Example Use of xtl:include . 70
4.11. Seman cs of xtl:if . 72
4.12. Example Use of xtl:if . 73
4.13. Seman cs of xtl:for-each . 75
4.14. Example Use of xtl:for-each . 75
4.15. Seman cs of xtl:macro . 76
4.16. Seman cs of xtl:call-macro . 77
4.17. Example Use of xtl:macro and xtl:call-macro 78
4.18. Example Use of Realms . 80
4.19. Bypassing Seman cs . 82
4.20. Bypassing Example . 83

5.1. A Purchase Order with Poten ally Dynamic Parts Highlighted 89
5.2. A Purchase Order XTL Template . 91
5.3. The PurchaseOrderType from po.xsd 91

217

List of Lis ngs

5.4. The Modified PurchaseOrderType, Allowing the Use of xtl:attribute 91
5.5. The USAddress Type from po.xsd . 92
5.6. The Modified USAddress Type, Allowing the Use of xtl:text 92
5.7. The Modified PurchaseOrderType, Allowing the Use of xtl:if 93
5.8. A complete CXSD Element Declara on with an Embedded OCL Constraint . . . 97
5.9. Expressing a Constraint from the XML Schema Specifica on with CXSD 97
5.10. Expressing a Constraint from the XSL-T 2.0 Specifica on with CXSD 98
5.11. An Instan a on Data Constraint in an XML Schema fragment 99
5.12. The ConstraintSeparationContext Interface 109
5.13. The ConstraintFactory Interface . 111
5.14. Added xsd:import Statements . 112
5.15. Top-level Declara on of a Previously Anonymous Simple Type 112
5.16. Choice between comment and xtl:if . 114
5.17. Enabled xtl:attribute with IDC Constraints 115
5.18. A CXSD Constraint for Required A ributes . 115
5.19. Enabled xtl:text for the Crea on of the Content of the zip Element . . . 116
5.20. A CXSD constraint for Simple Content . 116
5.21. A Simple XHTML 1.0 File . 117
5.22. Linked Instan a on Data Constraints Compared with Embedded PSVI 120

6.1. The PlaceHolderPlugin Interface . 125
6.2. The ReadWindow Interface . 132
6.3. The LoopStack Interface . 134
6.4. The MacroMap Interface . 135
6.5. The PlaceHolderPluginMap Interface 135
6.6. The InstantiationContext Interface 140
6.7. The processMethod in XTLText . 141
6.8. The processMethod in XTLIfStart . 142
6.9. The processMethod in XTLForEachStart 143
6.10. The processMethod in XTLForEachEnd 144
6.11. The processMethod in XTLMacroStart 144
6.12. The processMethod in XTLCallMacro 145
6.13. The processMethod in XTLInclude . 145
6.14. The processMethod in XTLInit . 146
6.15. A Template Instan a on Result before Spli ng 149
6.16. Example Template for Template Interface Genera on 154
6.17. The retrievePropertyDescriptorMethod in the AnalyzerPHP . . 161
6.18. The evaluateForEachMethod in the AnalyzerPHP 162
6.19. An Example for a validateMethod Implementa on 163

7.1. An Example Instance Document for Run me Measurements 181
7.2. An Example Template for Memory Measurement (n = 3, p = 2) 185

A.1. XTL Schema xtl.xsd . 201

218

List of Lis ngs

A.2. Purchase order XML instance po.xml . 201
A.3. Purchase order XML Schema po.xsd . 203

219

List of Lis ngs

220

List of Tables

1.1. XML Namespaces and Prefixes . 17

B.1. Run me Measurement of Valida on against a CXSD document 206
B.2. Analysis of the Time Complexity . 207
B.3. Comparison between JSP, XSL-T and XTL . 208
B.4. Memory measurement with constant parameter p 209
B.5. Memory measurement with constant parameter n 210

221

List of Tables

222

Bibliography

[1] ACV – Advanced Computer Vision. Advanced Computer Vision GmbH – ACV, 2007. URL
http://www.acv.ac.at/start.html.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools (2nd Edi on). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

[3] Michael Altenhofen, Thomas He el, and Stefan Kusterer. OCL support in an industrial
environment. InMoDELS’06: Proceedings of the 2003 interna onal conference onModels
in so ware engineering, pages 169–178, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
978-3-540-69488-5.

[4] Murray Altheim and ShaneMcCarron, editors. XHTML™1.1 - Module-based XHTML,W3C
Recommenda on 31 May 2001. The World Wide Web Consor um, 2001. URL http:
//www.w3.org/TR/2001/REC-xhtml11-20010531/.

[5] Frank Anke and Falk Hartmann. Cocoon mit StAX – Pull-Parsing in einem SAX-basierten
Framework. JavaSPEKTRUM, (3), 2006.

[6] ANTLR Parser Generator. The ANTLR Project, 2008. URL http://www.antlr.org/.

[7] Apache Cocoon. Apache So ware Founda on, 2003. URLhttp://cocoon.apache.
org/2.1/.

[8] XMLBeans. Apache So ware Founda on, 2004. URL http://xmlbeans.apache.
org/.

[9] The JXPath Component. Apache So ware Founda on, 2007. URL http://commons.
apache.org/jxpath/index.html.

[10] XSLT-processor Xalan. Apache So ware Founda on, 2007. URL http://xml.
apache.org/xalan-j/index.html.

[11] XML parser Xerces. Apache So ware Founda on, 2007. URL http://xerces.
apache.org/.

[12] Apache Tomcat. Apache So ware Founda on, 2010. URLhttp://tomcat.apache.
org/.

223

http://www.acv.ac.at/start.html
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.antlr.org/
http://cocoon.apache.org/2.1/
http://cocoon.apache.org/2.1/
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/
http://commons.apache.org/jxpath/index.html
http://commons.apache.org/jxpath/index.html
http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/xalan-j/index.html
http://xerces.apache.org/
http://xerces.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Bibliography

[13] Vidur Apparao, Steve Byrne, Mike Champion, Sco Isaacs, Ian Jacobs, Arnaud Le Hors,
Gavin Nicol, Jonathan Robie, Robert Sutor, Chris Wilson, and LaurenWood, editors. Doc-
ument Object Model (DOM) Level 1 Specifica on, Version 1.0, W3C Recommenda on 1
October 1998. The World Wide Web Consor um, 1998. URL http://www.w3.org/
TR/1998/REC-DOM-Level-1-19981001/.

[14] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a Syntax-Safe Tem-
plate Engine. In Charles Consel and Julia L. Lawall, editors, Genera ve Programming
and Component Engineering, 6th Interna onal Conference, GPCE 2007, pages 25–32,
Salzburg, Austria, 2007. ACM. ISBN 978-1-59593-855-8. doi: http://doi.acm.org/10.
1145/1289971.1289977.

[15] Uwe Aßmann. Invasive So ware Composi on. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2003. ISBN 3540443851.

[16] Uwe Aßmann. Architectural styles for ac ve documents. Science of Computer Program-
ming, 56(1-2):79–98, 2005. ISSN 0167-6423.

[17] Paul Basse . Frame-Based So ware Engineering. IEEE So ware, 4(4):9–16, 1987.

[18] Paul G. Basse . Framing so ware reuse: lessons from the real world. Pren ce-Hall, Inc.,
Upper Saddle River, NJ, USA, 1997. ISBN 0-13-327859-X.

[19] Anders Berglund, editor. Extensible Stylesheet Language (XSL) Version 1.1, W3C Rec-
ommenda on 5 December 2006. 2006. URL http://www.w3.org/TR/2006/
REC-xsl11-20061205/.

[20] Alexandru Berlea and Helmut Seidl. fxt – A Transforma on Language for XMLDocuments.
Journal of Compu ng and Informa on Technology (CIT), Special Issue on Domain-Specific
Languages, 2001.

[21] Mar n Bernauer, Ger Kappel, and Gerhard Kramler. Represen ng xml schema in uml -
a comparison of approaches. In Nora Koch, Piero Fraternali, and Mar nWirsing, editors,
ICWE, volume 3140 of Lecture Notes in Computer Science, pages 440–444. Springer, 2004.
ISBN 3-540-22511-0.

[22] T. Berners-Lee, L.Masinter, andM.McCahill. RFC 1738, Uniform Resource Locators (URL),
1994. URL http://www.ietf.org/rfc/rfc1738.txt.

[23] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uniform Resource Iden fier (URI):
Generic Syntax, 2005. URL http://www.ietf.org/rfc/rfc3986.txt.

[24] Jean Bézivin and Olivier Gerbé. Towards a precise defini on of the omg/mda framework.
In ASE, pages 273–280. IEEE Computer Society, 2001. ISBN 0-7695-1426-X.

[25] Lutz Bichler. Tool support for genera ng implementa ons of MOF-based modeling lan-
guages. 2003.

224

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc3986.txt

Bibliography

[26] Paul V. Biron and Ashok Malhotra, editors. XML Schema Part 2: Datatypes Second Edi-
on, W3C Recommenda on 28 October 2004. 2004. URL http://www.w3.org/TR/
2004/REC-xmlschema-2-20041028/.

[27] Jon Bosak. The Plays of Shakespeare in XML, 2000. URL http://xml.coverpages.
org/bosakShakespeare200.html.

[28] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen, editors. ExtensibleMarkup Language
(XML) 1.0, W3C Recommenda on 10 February 1998. The World Wide Web Consor um,
1998. URL http://www.w3.org/TR/1998/REC-xml-19980210.

[29] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin, editors. Name-
spaces in XML 1.0 (Second Edi on), W3C Recommenda on 16 August 2006. The
World Wide Web Consor um, 2006. URL http://www.w3.org/TR/2006/
REC-xml-names-20060816/.

[30] Allen Brown, Ma hew Fuchs, Jonathan Robie, and Philip Wadler. MSL - a model for W3C
XML schema. In WWW ’01: Proceedings of the 10th interna onal conference on World
Wide Web, pages 191–200, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-348-0.

[31] Allen Brown, Ma hew Fuchs, Jonathan Robie, and Philip Wadler, editors. XML Schema:
Formal Descrip on, W3CWorking Dra , 25 September 2001. 2001. URL http://www.
w3.org/TR/xmlschema-formal/.

[32] Giordano Bruno. Über die Ursache, das Prinzip und das Eine. Reklam, Ditzingen, 1986.
ISBN 3150051134.

[33] Janusz A. Brzozowski. Deriva ves of regular expressions. J. ACM, 11(4):481–494, 1964.
ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321239.321249.

[34] David Carlson. Modeling XML applica ons with UML: prac cal e-business applica ons.
AddisonWesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2001. ISBN 0-201-
70915-5.

[35] Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.

[36] James Clark, editor. XSL Transforma ons (XSLT), Version 1.0, W3C Recommenda on 16
November 1999. The World Wide Web Consor um, 1999. URL http://www.w3.
org/TR/1999/REC-xslt-19991116.

[37] James Clark. An algorithm for RELAX NG valida on. Web page, 2002. URL http://
thaiopensource.com/relaxng/derivative.html.

[38] James Clark and Steve DeRose, editors. XML Path Language (XPath), Version 1.0, W3C
Recommenda on 16 November 1999. The World Wide Web Consor um, 1999. URL
http://www.w3.org/TR/1999/REC-xpath-19991116.

225

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://xml.coverpages.org/bosakShakespeare200.html
http://xml.coverpages.org/bosakShakespeare200.html
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://thaiopensource.com/relaxng/derivative.html
http://thaiopensource.com/relaxng/derivative.html
http://www.w3.org/TR/1999/REC-xpath-19991116

Bibliography

[39] James Clark and Murata Makoto, editors. RELAX NG Specifica on, Commit-
tee Specifica on 3 December 2001. Organiza on for the Advancement of Struc-
tured Informa on Standards, 2001. URL http://www.w3.org/TR/2004/
REC-xmlschema-1-20041028/.

[40] William Clinger and Jonathan Rees. Macros that work. In POPL ’91: Proceedings of the
18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
155–162, New York, NY, USA, 1991. ACM Press. ISBN 0-89791-419-8.

[41] C-Lab Homepage. Coopera ve Compu ng & Communica on Laboratory, 2007. URL
http://www.c-lab.de/.

[42] John Cowan and Richard Tobin, editors. XML Informa on Set (Second Edi on), W3C
Recommenda on 4 February 2004. The World Wide Web Consor um, 2004. URL
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

[43] Krzysztof Czarnecki and Simon Helsen. Classifica on of Model Transforma on Ap-
proaches. In OOPSLA 2003 Workshop on Genera ve Techniques in the context of Model
Driven Architecture, oct 2003.

[44] Waltenegus Dargie, Anja Strunk, Ma hias Winkler, Bernd Mrohs, Sunil Thakar, and Wil-
fried Enkelmann. A Model-Based Approach for Developing Adap ve Mul modal Inter-
ac ve Systems. In Proceedings of ICSo 2007, 2nd Interna onal Conference on So ware
and Data Technologies, pages 73–79, Barcelona, Spain, 2007. INSTICC Press.

[45] Antoine de Saint-Exupéry. Die Stadt in der Wüste. Rauch Verlag, 2009.

[46] Tom DeMarco and Timothy R. Lister, editors. So ware State of the Art: Selected Papers.
Dorset House Publishing Co., Inc., New York, NY, USA, 2000. ISBN 0932633145.

[47] Andreas Diel. Lokalisierung interna onaler So ware am Beispiel der E-Business-
Pla orm enfinity der INTERSHOP AG: Modellierung der Daten und Geschä sprozesse.
Master’s thesis, FH Jena, 2001.

[48] Edsger W. Dijkstra. On the role of scien fic thought. Published as [49], August 1974. URL
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF.

[49] Edsger W. Dijkstra. On the role of scien fic thought. In Selected Wri ngs on Compu ng:
A Personal Perspec ve, pages 60–66. Springer-Verlag, 1982.

[50] Class: ERB. Documen ng the Ruby Language, 2008. URL http://www.ruby-doc.
org/stdlib/libdoc/erb/rdoc/classes/ERB.html.

[51] Desmond D’Souza and Alan Cameron Wills. Objects, Components and Frameworks With
UML: The Catalysis Approach. Addison-Wesley, 1998. ISBN 0201310120.

[52] Java Emi er Templates. Eclipse Founda on, 2007. URL http://www.eclipse.
org/modeling/m2t/?project=jet.

226

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.c-lab.de/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet

Bibliography

[53] Model Development Tools, OCL subproject. Eclipse Founda on, 2007. URL http://
www.eclipse.org/modeling/mdt/?project=ocl.

[54] Model Development Tools. Eclipse Founda on, 2007. URL http://www.eclipse.
org/modeling/mdt/.

[55] Rich Applica on Pla orm. Eclipse Founda on, 2007. URL http://www.eclipse.
org/rap/.

[56] Xpand Code Genera on Language. Eclipse Founda on, 2007. URL http://www.
eclipse.org/modeling/m2t/?project=xpand.

[57] Eclipse Modeling Framework Project (EMF). Eclipse Founda on, 2010. URL http://
www.eclipse.org/modeling/emf/.

[58] EADS. EADS N.V. European Aeronau c Defence and Space Company, 2007. URL http:
//eads.com.

[59] David C. Fallside and Priscilla Walmsley, editors. XML Schema Part 0: Primer Second
Edi on, W3C Recommenda on 28 October 2004. 2004. URL http://www.w3.org/
TR/2004/REC-xmlschema-0-20041028/.

[60] Forschungsprojekt FeasiPLe - Feature-getriebene, aspektorien erte und mod-
ellgetriebene Produktlinienentwicklung. FeasiPLe Konsor um. URL http:
//www.feasiple.de.

[61] Jon Ferraiolo, Jun Fujisawa, and Dean Jackson, editors. Scalable Vector Graphics (SVG) 1.1
Specifica on,W3C Recommenda on 14 January 2003. TheWorldWideWebConsor um,
2003. URL http://www.w3.org/TR/SVG11/.

[62] R. Fielding, J. Ge ys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC
2616, Hypertext Transfer Protocol – HTTP/1.1, 1999. URL http://www.ietf.org/
rfc/rfc2616.txt.

[63] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, andMehmet Aksit, editors. Aspect-Oriented
So ware Development. Addison-Wesley, Boston, 2005. ISBN 0-321-21976-7.

[64] Daniel Fötsch and Andreas Speck. XTC - The XML Transforma on Coordinator for XML
Document Transforma on Technologies. In DEXA ’06: Proceedings of the 17th Interna-
onal Conference on Database and Expert Systems Applica ons, pages 507–511, Wash-

ington, DC, USA, 2006. IEEE Computer Society.

[65] Daniel Fötsch, Andreas Speck, and Peter Hänsgen. The operator hierarchy concept for xml
document transforma on technologies. In Rainer Eckstein and Robert Tolksdorf, editors,
Berliner XML Tage, pages 59–70, 2005. ISBN 3-9810105-2-3.

[66] Daniel Fötsch, Andreas Speck, Wilhelm Rossak, and Jörg Krumbiegel. A concept for mod-
elling and valida on of web based presenta on templates. In O o K. Ferstl, Elmar J.

227

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/
http://www.eclipse.org/modeling/mdt/
http://www.eclipse.org/rap/
http://www.eclipse.org/rap/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://eads.com
http://eads.com
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.feasiple.de
http://www.feasiple.de
http://www.w3.org/TR/SVG11/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

Bibliography

Sinz, Sven Eckert, and Tilman Isselhorst, editors, Wirtscha sinforma k, pages 391–406.
Physica-Verlag, 2005. ISBN 3-7908-1574-8.

[67] Mar n Fowler. Pa erns of Enterprise Applica on Architecture. Addison Wesley, Boston,
MA, USA, 2002. ISBN 0321127420.

[68] Mar n Fowler. Moving away from XSL-T, 2003. URL http://www.martinfowler.
com/bliki/MovingAwayFromXslt.html.

[69] Charles François. Interna onal Encyclopedia of Systems and Cyberne cs. K.G.Saur,
München, 1997.

[70] Fraunhofer Ins tut Rechnerarchitektur und So waretechnik. Fraunhofer-Gesellscha ,
2007. URL http://www.first.fraunhofer.de/.

[71] Alan Freedman. The computer glossary: the complete illustrated desk reference (4th ed.).
American Management Assoc., Inc., New York, NY, USA, 1989. ISBN 0-8144-7709-7.

[72] Fundamental Modeling Concepts. The Fundamental Modeling Concepts Consor um,
2003. http://www.f-m-c.org/ (visited 2006, May 29th).

[73] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pa erns: Ab-
strac on and reuse of object-oriented design. Lecture Notes in Computer Science, 707:
406–431, 1993.

[74] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pa erns. Addison
Wesley, Reading, MA, 1995.

[75] Steffen Göbel, Falk Hartmann, Kay Kadner, and Christoph Pohl. A device-independent
mul modal mark-up language. In INFORMATIK 2006: Informa k für Menschen, Band 2,
pages 170–177, 2006.

[76] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990. ISBN 0-198-
53737-9.

[77] Joseph D. Gradecki and Jim Cole. Mastering Apache Velocity. Wiley Technology Publish-
ing, New York, 2003.

[78] TU Graz. GRAZ UNIVERSITY OF TECHNOLOGY, 2007. URL http://www.tugraz.at/.

[79] DeniseGürer. Pioneeringwomen in computer science. SIGCSEBull., 34(2):175–180, 2002.
ISSN 0097-8418.

[80] René Haberland. Transforma on von XML-Dokumentenmi els Prolog. Großer Beleg, TU
Dresden, 2006.

[81] René Haberland. Vereinheitlichung von XML-Template-Expansion und Schema-Validier-
ung. Master’s thesis, TU Dresden, July 2007.

228

http://www.martinfowler.com/bliki/MovingAwayFromXslt.html
http://www.martinfowler.com/bliki/MovingAwayFromXslt.html
http://www.first.fraunhofer.de/
http://www.f-m-c.org/
http://www.tugraz.at/

Bibliography

[82] Falk Hartmann. An Architecture for an XML-Template Engine Enabling Safe Authoring. In
DEXA ’06: Proceedings of the 17th Interna onal Conference on Database and Expert Sys-
tems Applica ons, pages 502–507, Washington, DC, USA, 2006. IEEE Computer Society.

[83] Falk Hartmann. Ensuring the Instan a on Results of XML Templates. In Pedro Isaías,
Miguel Nunes, and Joao Barroso, editors, 6th IADIS Interna onal Conference WWW/In-
ternet, pages 269–276, Vila Real, Portugal, 2007. Interna onal Associa on for Develop-
ment of the Informa on Society. ISBN 978-972-8924-44-7.

[84] The GlasgowHaskell Compiler. Haskell.org, 2010. URL http://www.haskell.org/
ghc/.

[85] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, Chris an Wende, and Marcel
Böhme. Genera ng safe template languages. In Proceedings of the eighth interna-
onal conference on Genera ve programming and component engineering, GPCE ’09,

pages 99–108, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-494-2. doi: http:
//doi.acm.org/10.1145/1621607.1621624. URL http://doi.acm.org/10.1145/
1621607.1621624.

[86] Jakob Henriksson, Jendrik Johannes, Steffen Zschaler, and Uwe Aßmann. Reuseware
— Adding Modularity to Your Language of Choice. Journal of Object Technology, 6(9):
127–146, October 2007. Special Issue. TOOLS EUROPE 2007.

[87] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid (20th-anniversary
Edi on). Penguin Books, 1999.

[88] Carsten Holzmüller. Entwicklung eines Java-XML-Binding-Frameworks auf der Basis al-
terna ver XML-Metasprachen. Master’s thesis, TU Dresden, July 2007.

[89] Don Hopkins. Maximizing Composability and Relax NG Trivia. Blog entry, 2005. URL
http://www.donhopkins.com/drupal/node/117.

[90] Open Mobile Alliance Homepage. h p://www.openmobilealliance.org, 2007. URL
http://www.openmobilealliance.org/.

[91] IETF. A Media Resource Control Protocol (MRCP). The Internet Engineering Task Force,
2006. http://www.apps.ietf.org/rfc/rfc4463.html (visited 2006, Octo-
ber 4th).

[92] JAlbum. JAlbum - the free web photo album so ware and photo gallery so ware, 2007.
URL http://jalbum.net/.

[93] Stan Jarzabek, Paul Basse , Hongyu Zhang, and Weishan Zhang. Xvcl: Xml-based variant
configura on language. In ICSE ’03: Proceedings of the 25th Interna onal Conference
on So ware Engineering, pages 810–811, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-1877-X.

[94] Java Specifica on Request JSR 173: Streaming API for XML. Java Community Process,
2003. URL http://www.jcp.org/en/jsr/detail?id=173.

229

http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://doi.acm.org/10.1145/1621607.1621624
http://doi.acm.org/10.1145/1621607.1621624
http://www.donhopkins.com/drupal/node/117
http://www.openmobilealliance.org/
http://www.apps.ietf.org/rfc/rfc4463.html
http://jalbum.net/
http://www.jcp.org/en/jsr/detail?id=173

Bibliography

[95] Java Specifica on Request (JSR) 173: Streaming API for XML. Java Community Process,
2004. URL http://www.jcp.org/en/jsr/detail?id=173.

[96] java-source.net. Open Source Template Engines in Java, 2007. URL http://
java-source.net/open-source/template-engines.

[97] CodeModel. java.net, 2010. URL https://codemodel.dev.java.net/.

[98] Rick Jeliffe. Family tree of schema languages for xml. Blog, 2007. URL http://www.
oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf.

[99] Rick Jelliffe, editor. The Schematron Asser on Language 1.6. 2002. URL http://xml.
ascc.net/resource/schematron/Schematron2000.html.

[100] Jena—A Seman c Web Framework for Java. The Jena Community, 2010. URL http:
//jena.sourceforge.net/.

[101] Mar n Johns. Towards prac cal preven on of code injec on vulnerabili es on the pro-
gramming language level, 2007.

[102] JXP. Jxp introduc on, 2006. URL http://jxp.sourceforge.net.

[103] Kay Kadner and David Roussel. Documenta on for Aircra Maintenance based on Topic
Maps. In Leveraging the Seman cs of Topic Maps, pages 56–61, 2007.

[104] Henning Kagermann. Transcript of SAPPHIRE’06 KeynoteMaking IT Strategic to the Busi-
ness, 2006. URL http://www.sap.com/community/pub/webcast/2006_
05_SAPPHIRE_US/2006_05_sapphire_us_OR1186_transcript.pdf.

[105] Kohsuke Kawaguchi, Sekhar Vajjhala, and Joe Fialli, editors. The JavaTM Architecture for
XML Binding (JAXB) 2.1. 2006. URLhttp://www.jcp.org/en/jsr/detail?id=
222.

[106] Michael Kay. SAXON - The XSL-T and XQuery Processor, 2007. URL http://saxon.
sourceforge.net/.

[107] Michael Kay, editor. XSL Transforma ons (XSLT) Version 2.0, W3C Recommenda on 23
January 2007. The World Wide Web Consor um, 2007. URL http://www.w3.org/
TR/2007/REC-xslt20-20070123/.

[108] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cris na Videira Lopes,
Jean-Marc Loing er, and John Irwin. Aspect-Oriented Programming. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), 1997.

[109] Andreas Knöpfel. FMC quick introduc on. FMC Publica on, 2003. URL http://www.
f-m-c.org/.

230

http://www.jcp.org/en/jsr/detail?id=173
http://java-source.net/open-source/template-engines
http://java-source.net/open-source/template-engines
https://codemodel.dev.java.net/
http://www.oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf
http://www.oreillynet.com/xml/blog/images/SchemaFamilyTree.pdf
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://xml.ascc.net/resource/schematron/Schematron2000.html
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://jxp.sourceforge.net
http://www.sap.com/community/pub/webcast/2006_05_SAPPHIRE_US/2006_05_sapphire_us_OR1186_transcript.pdf
http://www.sap.com/community/pub/webcast/2006_05_SAPPHIRE_US/2006_05_sapphire_us_OR1186_transcript.pdf
http://www.jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=222
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.f-m-c.org/
http://www.f-m-c.org/

Bibliography

[110] Eugene Kohlbecker, Daniel P. Friedman, Ma hias Felleisen, and Bruce Duba. Hygienic
macro expansion. In LFP ’86: Proceedings of the 1986 ACM conference on LISP and
func onal programming, pages 151–161, New York, NY, USA, 1986. ACM Press. ISBN
0-89791-200-4.

[111] Chris an Krauß. Vergleich verschiedener Java/XML Binding Tools im Hinblick auf die
Möglichkeit der Erzeugung halbdynamischer Dokumente. Master’s thesis, TU Dresden,
September 2007.

[112] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Ny-
gaard. Abstrac on mechanisms in the BETA programming language. In POPL ’83: Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 285–298, New York, NY, USA, 1983. ACM. ISBN 0-89791-090-7. doi:
http://doi.acm.org/10.1145/567067.567094.

[113] Ivan Kurtev. Adaptability of Model Transforma ons. PhD thesis, IPA, 2005. ISBN 90-365-
2184-X.

[114] Amos La eier and Michael Pella er. The Zope Book. New Riders Publishing, Thousand
Oaks, CA, USA, 2001. ISBN 0735711372.

[115] Andreas Laux and Lars Mar n. XUpdate - XML Update Language, Working Dra
14th September 2000. 2000. URL http://xmldb-org.sourceforge.net/
xupdate/xupdate-wd.html.

[116] Dongwon Lee and Wesley W. Chu. Compara ve analysis of six XML schema languages.
SIGMOD Record (ACM Special Interest Group on Management of Data), 29(3):76–87,
2000.

[117] Christopher Lenz. Push-StrategyWeb Templa ng. Blog entry, 2005. URL http://www.
cmlenz.net/blog/2005/01/pushstrategy_we.html.

[118] Diego Lo Giudice. The State OfModel-Driven Development (Market Overview). Technical
report, Forrester Research, Inc., 2007.

[119] Henrik Lochmann. Towards Connec ng Applica on Parts for Reduced Effort in Feature
Implementa ons. In Proceedings of 2nd IFIP Central and East European Conference on
So ware Engineering Techniques (CEE-SET 2007), Posen, Poland, October 2007.

[120] Henrik Lochmann. HybridMDSD: Mul -Domain Engineering with Model-Driven So ware
Development using Ontological Founda ons. PhD thesis, TU Dresden, 2009.

[121] Loquendo Vocal Technology and Services. Loquendo, S.p.A., 2007. URL http://www.
loquendo.com.

[122] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-oriented
programming in the BETA programming language. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 1993. ISBN 0-201-62430-3.

231

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://www.cmlenz.net/blog/2005/01/pushstrategy_we.html
http://www.cmlenz.net/blog/2005/01/pushstrategy_we.html
http://www.loquendo.com
http://www.loquendo.com

Bibliography

[123] Murali Mani, Dongwon Lee, and Richard R. Muntz. Seman c data modeling using XML
schemas. Lecture Notes in Computer Science, 2224:149–163, 2001.

[124] M. D. McIlroy. Macro instruc on extension of compiler languages. Comm. Assoc. Comp.
Mach., 3:214–220, April 1960. Reprinted as pp. 560-571 in Programming Systems and
Languages, ed. S. Rosen, McGraw-Hill, 1967 and as pp. 512-528 in Compiler Techniques,
ed. Bary W. Pollack, Auerbach, 1972.

[125] Erik Meijer and Mark Shields. XMλ: A func onal language for construc ng and manipu-
la ng XML documents. (Dra), 1999.

[126] Felix Michel. Representa on of XML Schema Components. Master’s thesis, Computer
Engineering and Networks Laboratory, ETH Zürich, Zürich, Switzerland, March 2007.

[127] Russell Miles. An Introduc on to the AspectXML Concept, 2004.

[128] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Technical report, Object
Management Group, 2003. URL http://www.omg.org/docs/omg/03-06-01.
pdf.

[129] Marvin Minsky. A Framework for Represen ng Knowledge. Technical report, Cambridge,
MA, USA, 1974.

[130] M. Murata. Hedge Automata: a Formal Model for XML Schemata. Web page, 2000.

[131] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal lan-
guage theory. In Extreme Markup Languages, Montreal, Canada, 2001.

[132] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy of xml
schema languages using formal language theory. ACM Trans. Inter. Tech., 5(4):660–704,
November 2005. ISSN 1533-5399. doi: http://dx.doi.org/10.1145/1111627.1111631.
URL http://dx.doi.org/10.1145/1111627.1111631.

[133] Brian S O. Neill and Michael Rathjen. Tea template language. Technical report, Walt
Disney Internet Group, 2001.

[134] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers, San Francisco, Cali-
fornia, October 1994. ISBN 0125184069.

[135] Dimitre Novatchev. Func onal programming in XSLT using the FXSL library. In Extreme
Markup Languages. 2003. URL http://www.mulberrytech.com/Extreme/
Proceedings/html/2003/Novatchev01/EML2003Novatchev01.html.

[136] UML 2.0 OCL specifica on. ObjectManagement Group, 2003. URLhttp://www.omg.
org/cgi-bin/doc?ptc/03-10-14.

[137] MOF 2.0/XMI Mapping Specifica on, v2.1. Object Management Group, 2005. URL
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf.

232

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://dx.doi.org/10.1145/1111627.1111631
http://www.mulberrytech.com/Extreme/Proceedings/html/ 2003/Novatchev01/EML2003Novatchev01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/ 2003/Novatchev01/EML2003Novatchev01.html
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf

Bibliography

[138] Meta Object Facility (MOF) Core Specifica on, v2.0. Object Management Group, 2006.
URL http://www.omg.org/docs/formal/06-01-01.pdf.

[139] Unified Modeling Language. Object Management Group, 2007. URL http://www.
uml.org/.

[140] Meta Object Facility (MOF) 2.0 Query/View/ Transforma on Specifica on. Object Man-
agement Group, 2008. URL http://www.omg.org/spec/QVT/1.0/PDF/.

[141] OpenOffice. The OpenOffice Homepage. OpenOffice.org, 2007. URL http://www.
openoffice.org/.

[142] Terence Parr. The Complete ANTLR Reference Guide. Pragma c, Lewisville, 2007. ISBN
0978739256.

[143] Terence John Parr. Enforcing strict model-view separa on in template engines. In
WWW ’04: Proceedings of the 13th interna onal conference on World Wide Web, pages
224–233, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-844-X.

[144] Terence John Parr. A func onal language for genera ng structured text. Public Dra ,
2006. URL http://www.cs.usfca.edu/~parrt/papers/ST.pdf.

[145] Alessandro Costa Pereira and Falk Hartmann. Der Mi elweg - Lesen und Schreiben von
XML-Dokumenten mit dem Streaming API For XML (StAX). Java Magazin, (7), 2006.

[146] Alessandro Costa Pereira, Falk Hartmann, and Kay Kadner. A Distributed Staged Archi-
tecture for Mul modal Applica ons (Extended Abstract). In So ware Engineering 2007
(SE 2007). Lecture Notes in Informa cs (LNI) 105. Copyright Gesellscha für Informa k,
pages 255–256. Köllen Verlag, Bonn, March 2007.

[147] Alessandro Costa Pereira, Falk Hartmann, and Kay Kadner. A Distributed Staged Archi-
tecture for Mul modal Applica ons. In Flávio Oquendo, editor, ECSA, volume 4758 of
Lecture Notes in Computer Science, pages 195–206. Springer, 2007. ISBN 978-3-540-
75131-1.

[148] Remko Popma. Introduc on to JET. 2004. URL http://www.eclipse.org/
articles/Article-JET/jet_tutorial1.html.

[149] Dirk Preising. Entwurf und Entwicklung eines Systems zur Unterstützung der Lokalisier-
ung von So ware für interna onale Märkte. Master’s thesis, HTWK Leipzig, 2001.

[150] Oxford University Press. Dic onary of compu ng (3rd ed.). Oxford University Press, Inc.,
New York, NY, USA, 1990. ISBN 0-19-853825-1.

[151] Eric Prud’hommeaux and Andy Seaborne, editors. SPARQL Query Language for RDF,W3C
Recommenda on 15 January 2008. TheWorldWideWeb Consor um, 2008. URL http:
//www.w3.org/TR/rdf-sparql-query/.

233

http://www.omg.org/docs/formal/06-01-01.pdf
http://www.uml.org/
http://www.uml.org/
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.openoffice.org/
http://www.openoffice.org/
http://www.cs.usfca.edu/~parrt/papers/ST.pdf
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

Bibliography

[152] Giuseppe Psaila. On the Problem of Coupling Java Algorithms and XML Parsers (Invited
Paper). In DEXA ’06: Proceedings of the 17th Interna onal Conference on Database and
Expert Systems Applica ons, pages 487–491, Washington, DC, USA, 2006. IEEE Computer
Society.

[153] Dave Ragge , Arnaud Le Hors, and Ian Jacobs, editors. HTML 4.01 Specifica on, W3C
Recommenda on 24 December 1999. The World Wide Web Consor um, 1999. URL
http://www.w3.org/TR/1999/REC-html401-19991224/.

[154] Trygve M. H. Reenskaug. Models - Views - Controllers. Technical note, Xerox PARC, 1979.

[155] Mark Reinhold. An XML DataBinding Facility for the Java™Pla orm, 1999.

[156] Reuseware. The Reuseware Composi on Framework, 2007. URL http://www.
reuseware.org/.

[157] R. J. Rodger. Jostraca: a template engine for genera ve programming, 2002. Posi on
paper for the ECOOP2002 Workshop on Genera ve Programming.

[158] Tavis Rudd, Mike Orr, and Ian Bicking. Cheetah: The python-powered template engine.
The Tenth Interna onal Python Conference, 2001.

[159] SAP - SAP Research Centers: CEC Dresden, Germany. SAP AG, 2007. URL http://www.
sap.com/about/company/research/centers/dresden.epx.

[160] Ilie Savga, Charlie Abela, and Uwe Aßmann. Report on the design of component
model and composi on technology for the Datalog and Prolog variants of the REWERSE
languages. Research report IST506779/Linköping/I3-D1/D/PP/a1, Linköping University,
2004. URL http://rewerse.net/deliverables/i3-d1.pdf. REWERSE De-
liverable.

[161] Simple API for XML. The SAX project, 2007. URL http://www.saxproject.org/.

[162] Nikita Schmidt and Corina Sas. So ware usability: a comparison between two tree-
structured data transforma on languages. In NordiCHI ’04: Proceedings of the third
Nordic conference on Human-computer interac on, pages 145–148, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-857-1.

[163] Uwe Schmidt et al. Haskell XML Toolbox 8.5.0. FH Wedel, 2010. URL http://www.
fh-wedel.de/~si/HXmlToolbox/.

[164] XML-RPC Home Page. Scrip ng News, Inc., 2007. URL http://www.xmlrpc.com/.

[165] Smarty Template Engine. The Smarty Project, 2008. URL http://www.smarty.
net/.

[166] Sparx. MDA Overview – Whitepaper on using Enterprise Architect for MDA. Technical
report, Sparx Systems, 2007. URL http://www.sparxsystems.com.au/bin/
MDA~20Tool.pdf.

234

http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.reuseware.org/
http://www.reuseware.org/
http://www.sap.com/about/company/research/centers/dresden.epx
http://www.sap.com/about/company/research/centers/dresden.epx
http://rewerse.net/deliverables/i3-d1.pdf
http://www.saxproject.org/
http://www.fh-wedel.de/~si/HXmlToolbox/
http://www.fh-wedel.de/~si/HXmlToolbox/
http://www.xmlrpc.com/
http://www.smarty.net/
http://www.smarty.net/
http://www.sparxsystems.com.au/bin/MDA~20Tool.pdf
http://www.sparxsystems.com.au/bin/MDA~20Tool.pdf

Bibliography

[167] C. M. Sperberg-McQueen. Canonical XML forms for post-schema-valida on infosets: A
preliminary reconnaissance, 2002. URL http://www.w3.org/2002/04/
xmlschema-psvi-in-xml.

[168] C. M. Sperberg-McQueen. Applica ons of Brzozowski deriva ves to XML Schema pro-
cessing. In Extreme Markup Languages®, 2005.

[169] Thomas Stahl andMarkus Völter.Modellgetriebene So wareentwicklung. dpunkt Verlag,
March 2005. ISBN 3898643107.

[170] Guy L. Steele. COMMON LISP: the language. Digital Press, 12 Crosby Drive, Bedford,
MA 01730, USA, 1984. ISBN 0-932376-41-X (paperback). With contribu ons by Sco E.
Fahlman and Richard P. Gabriel and David A. Moon and Daniel L. Weinreb.

[171] James S chnoth. Genera ng Code for High-Level Opera ons through Code Composi on.
PhD thesis, School of Computer Science, Carnegie Mellon University, August 1997.

[172] Maximilan Stoerzer and Stefan Hanenberg. A classifica on of pointcut language con-
structs. In Lodewijk Bergmans, Kris Gybels, Peri Tarr, and Erik Ernst, editors, So ware
Engineering Proper es of Languages and Aspect Technologies, March 2005.

[173] StringTemplate Template Engine. The StringTemplate Project, 2008. URLhttp://www.
stringtemplate.org/.

[174] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2000. ISBN 0201700735.

[175] Thorsten Sturm, Jesco von Voss, and Marko Boger. Genera ng code from uml with ve-
locity templates. In Jean-Marc Jézéquel, Heinrich Hußmann, and Stephen Cook, editors,
UML, volume 2460 of Lecture Notes in Computer Science, pages 150–161. Springer, 2002.
ISBN 3-540-44254-5.

[176] JavaServer Pages Technology. Sun Microsystems, 1999. URL http://java.sun.
com/products/jsp/.

[177] JAR File Specifica on. Sun Microsystems, 2008. URL http://java.sun.com/
javase/6/docs/technotes/guides/jar/jar.html.

[178] Philip Teale, Christopher Etz, and Michael Kiel. Data Pa erns (Pa erns & Prac ces). Mi-
croso Press, Redmond, WA, USA, 2005. ISBN 0735622000.

[179] SNOW. SNOW: Services for NomadicWorkers. The SNOWConsor um, 2007. URL http:
//www.snow-project.org/.

[180] Henry S. Thompson, David Beech, MurrayMaloney, and NoahMendelsohn, editors. XML
Schema Part 1: Structures Second Edi on,W3C Recommenda on 28October 2004. 2004.
URL http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

235

http://www.w3.org/2002/04/xmlschema-psvi-in-xml
http://www.w3.org/2002/04/xmlschema-psvi-in-xml
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://java.sun.com/products/jsp/
http://java.sun.com/products/jsp/
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://www.snow-project.org/
http://www.snow-project.org/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

Bibliography

[181] Henry S. Thompson, John Tebbu , and Tony Cinco a, editors. XML Schema Test
Suite, Version 20 June 2007. 2004. URL http://www.w3.org/XML/2004/
xml-schema-test-suite/.

[182] Simon Thompson. Haskell: The Cra of Func onal Programming. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edi on, 1999. ISBN 0201342758.

[183] Dresden OCL – OCL support for your modeling language. TU Dresden, 2007. URL http:
//www.reuseware.org/index.php/DresdenOCL.

[184] Kurt Tucholsky. Zur soziologischen Psychologie der Löcher. 1931. URL http://www.
textlog.de/tucholsky-psychologie-1931.html.

[185] What is IKAT? University of Cambridge, Centre for Applied Research in Educa onal Tech-
nologies, 2007. URL http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?
page=IKAT.

[186] The RSF Framework. University of Cambridge, Centre for Applied Research in Educa onal
Technologies, 2007. URL http://www2.caret.cam.ac.uk/rsfwiki/Wiki.
jsp?page=Main.

[187] Markus Völter. Jenerator - Genera ve Programming for Java. 2001.

[188] Larry Wall. Programming Perl. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2000.
ISBN 0596000278.

[189] KarstenWendland. Der Template-Zyklus: Web-Templates im Spannungsfeld von schöpfer-
ischem Gestalten und einschränkender Zumutung. PhD thesis, TU Darmstadt, Aachen,
Germany, 2006.

[190] Schema F. Wikipedia – Die freie Enzyklopädie, 2010. URL http://de.wikipedia.
org/wiki/Schema_F.

[191] W3C. W3C Mul modal Interac on Framework. The World Wide Web Consor um,
2003. http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/
(visited 2006, May 29th).

[192] W3C. Speech Synthesis Markup Language (SSML) Version 1.0. TheWorldWideWeb Con-
sor um, 2004. http://www.w3.org/TR/speech-synthesis/ (visited 2006,
October 4th).

[193] W3C. EMMA: ExtensibleMul Modal Annota onmarkup language. TheWorldWideWeb
Consor um, 2005. http://www.w3.org/TR/emma/ (visited 2006, June 2nd).

[194] XMLUnit - JUnit and NUnit tes ng for XML. XMLUnit Community, 2009. URL http:
//xmlunit.sourceforge.net/.

[195] David H. Young. Enhydra XMLC Java Presenta on Development. Sams Publishing, Indi-
anapolis, IN, USA, 2002.

236

http://www.w3.org/XML/2004/xml-schema-test-suite/
http://www.w3.org/XML/2004/xml-schema-test-suite/
http://www.reuseware.org/index.php/DresdenOCL
http://www.reuseware.org/index.php/DresdenOCL
http://www.textlog.de/tucholsky-psychologie-1931.html
http://www.textlog.de/tucholsky-psychologie-1931.html
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=IKAT
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=IKAT
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=Main
http://www2.caret.cam.ac.uk/rsfwiki/Wiki.jsp?page=Main
http://de.wikipedia.org/wiki/Schema_F
http://de.wikipedia.org/wiki/Schema_F
http://www.w3.org/TR/2003/NOTE-mmi-framework-20030506/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/emma/
http://xmlunit.sourceforge.net/
http://xmlunit.sourceforge.net/

Bibliography

[196] Template A ribute Language. The ZOPE Community, 2007. URLhttp://wiki.zope.
org/ZPT/TAL.

[197] Oliver Zschau. Glossar http://www.contentmanager.de/, 2007. URL http:
//www.contentmanager.de/ressourcen/glossar_8_template.html.

237

http://wiki.zope.org/ZPT/TAL
http://wiki.zope.org/ZPT/TAL
http://www.contentmanager.de/
http://www.contentmanager.de/ressourcen/glossar_8_template.html
http://www.contentmanager.de/ressourcen/glossar_8_template.html

Bibliography

238

Index

abstract syntax, 25
adapta on phase, 24, 46, 58, 60, 152
advice, 32
analysis phase, 24
ANLTR, 44
AOP, 16, 20 f., 32, 39, 179
approxima on, 100
aspect, 32
AspectJ, 16, 34
AspectXML, 33
AST, 33
authoring constraint, 103
authoring phase, 24, 59 f., 92, 180
authoring me, 24, 56, 87 f.

Basse , Paul, 9
BETA, 35 f., 240 f.
bind

composi on operator, 37
broad applicability, 14, 53, 55–59, 178, 180
Brzozowski deriva ves, 98
build me, 13, 33
bypassing, 62, 64 f., 78, 80, 82 f.

C, 35
C+, 9, 35 f., 53
character data, 28, 88
Cheetah, 31
CMS, 16, 31, 52 f.
Cocoon, 80
computability, 55 f.
concerns

crosscu ng, 32
concrete syntax, 25

constraint separa on, 58 f., 87–91, 93 f.,
100 f., 103 ff., 107–112, 117 ff., 121,
150, 163, 166 f., 170 f., 174, 180,
187, 190 f.

ContentHandler, 17, 129
contract, 56 f.
core, 32
coverage

requirement, 55, 58
CST, 33
CXSD, 17, 93–101, 104, 108, 110–113, 115 f.,

118–121, 166 ff., 170 f., 178, 180 ff.,
192, 206, 215

design phase, 24, 58
Dijkstra, Edsger W., 8
DOM, 95, 119 f., 127, 129
DTML, 30

ease of use, 10, 15
EMODE, 15, 78, 175, 179
entanglement index, 15, 40, 53
ERB, 30
evaluateForEach, 74, 79
evaluateIf, 72, 74
evaluateInclude, 70, 74
evaluateText, 66, 74, 79
expressiveness

requirement, 56, 58 f., 62, 71, 129
extend

composi on operator, 37
extensibility

ISC, 37

form

239

Bibliography

BETA, 36
fragment

ISC, 37
fragment form, 36
fragment group, 36
fragment language, 36
frame, 37 f.
frame processing, 37 f.

genera on number, 81

Haskell, 63, 86, 172
hook

ISC, 37
HTML, 24, 30 f., 33 f., 39, 43, 66, 182 f.
HTTP, 41

IDC, 17, 93, 98 f., 101, 108, 110 f., 114 f., 121,
151, 166 ff.

IKAT, 41
implementa on phase, 24
independence of query language

requirement, 57 ff., 65, 69, 71, 124
instan a on, 22, 43, 50 f., 54, 56, 62, 69, 72,

81, 84
instan a on data, 12–15, 22, 32 f., 41, 43,

45 f., 50 f., 55 ff., 59, 63, 65–68,
70–74, 78, 82, 84, 88, 93, 98 f.,
103 f., 114 f., 117 ff., 123, 129, 150 f.,
153, 163 f., 172

instan a on data constraint, 58 f., 87 f., 99,
103 f., 117 ff., 121, 150–153, 160,
163, 172, 174

instan a on data evalua on, 59, 123, 129,
152, 163, 171, 183, 190

instan a on data evaluator, 66, 71, 73, 78 f.,
119, 123, 133, 135, 150

instan a on data source, 43 f., 59, 63 f., 79,
83 ff., 125 f., 153, 163, 173 f., 207 f.

instan a on data type safety
requirement, 56 f., 59, 155

instan a on data valida on, 13, 16, 59, 118,
123, 129, 150 ff., 163, 171, 190 f.

instan a on data validator, 88, 98, 150

instan a on phase, 25, 59 f., 92, 150, 152,
180

instan a on me, 13, 88 f.
ISC, 35 ff., 239 ff.

JAR, 173
Java, 16, 34, 44 f., 86, 127, 131, 154 ff., 159 f.,

162 f., 169, 171, 173
JAXB, 13, 16, 33 f., 50, 53, 108 f., 111, 129,

154, 163, 173, 191
Jenerator, 33
JET, 31, 179
join point, 32
Jostraca, 45
JSP, 9–13, 16, 30, 34 f., 39, 42 ff., 50 f., 53 f.,

57, 127, 163, 180, 182 ff., 190, 208
JSR 173, see StAX
Jxp, 39
JXPath, 57, 125, 127 f., 182 f.

LISP, 35
localiza on, 33

macro, 15, 35
hygienic, 35

markup, 88
marshalling, 33
MDA, 31, 95
MDT, 94, 120
meta language, see schema language
mode (a ribute), 68
MOF, 32
move copy of data, 124, 153
M2C, 31, 52, 157, 179
M2M, 31
MVC, 9 f., 32, 40, 53, 56

name (a ribute), 68, 76 f., 94
named block

frame processing, 37
NMTOKEN, 12 f.

obliviousness, 32
OCL, 46, 94–98, 101, 115 f., 118, 120 f., 124,

167, 171, 181 f.

240

Bibliography

order (a ribute), 73
order-by (a ribute), 73 f.
origin, 36

par al templa za on, 15, 18, 41, 94, 116 f.,
121, 191

Perl, 30, 39, 181 ff.
PHP, 123–128, 130, 134 f., 141 f., 145, 151 f.,

154, 160 ff., 168 f., 171, 179 f., 182 f.,
185

Iden ty, 126 f., 169, 171, 185
JXPath, 127 f., 169
SPARQL, 127 f., 169, 179
System, 128, 134, 169
UML, 169
XMLBean, 169
XPath, 127, 169

pipeline, 78, 80 f.
pointcut, 21, 32 f.
pointcut languages, 21
preprocessor, 35
preserva on

requirement, 54, 58 f., 66, 68, 71, 100,
165

PSVI, 118 f.
pull parser, 130
pull strategy, 42, 124, 153
push parser, 130
push strategy, 42, 124, 153

QName, 68, 95, 119, 157 f.
query language, 23 f., 34, 39, 43 f., 46, 50, 57,

65 f., 69, 71 ff., 78, 82 f., 85, 123 f.,
150, 163

realm, 62, 66, 68, 70 f., 73, 78 ff., 124, 133
realm (a ribute), 78 f., 135
RelaxNG, 28 f., 84 ff., 94, 138, 178, 191
Repleo, 46
RSF, 41
run me, 33
RWT, 33, 53 f.

safe authoring, 13, 18, 36, 50, 55 f., 58 f.,
62, 67, 70, 87, 104, 116, 118, 170 f.,
178, 180, 191

safe instan a on, 14 ff., 50, 51, 57, 59, 150,
170, 191

safe template processing, 7, 13 ff., 18, 49, 53,
57, 180, 192

SAX, 129 f.
Saxon, 31
schema language, 15, 27 f.

grammar-based, 27 f.
pa ern-based, 27 f.

schema type, 15
Schematron, 28, 94, 192
select (a ribute), 65 f., 68, 70 f., 73 f., 78 f.,

82 f., 85, 124–127, 135, 154, 159,
173

separa on
of concerns, 8 f., 14 ff., 31, 34, 43, 52 f.,

55–59, 61, 65, 68 f., 117, 189
of constraints, 12

separa on rules, 40
SGML, 8, 25, 191
shell, 39
slot, 21, 37, 67

BETA, 36
ISC, 37

slot markup, 21 f., 39, 62, 67, 190 f.
slot markup language, 15, 18, 21ff., 24, 40,

46, 56 ff., 60 ff., 66, 76, 84, 86, 129,
190, 192

design, 61
slot markup language design, 57 f.
Smarty, 30
SNOW, 15, 18, 78, 175–179
SPARQL, 15, 78, 124, 127 f., 171, 180
SPath, 117
SQL, 57
SSM, 15, 24, 32, 34, 40, 42, 44, 55, 86
ST, 10, 16, 30 f., 37, 41 f., 44 f.
staged architecture, 80
StAX, 119 f., 129 f., 138, 146, 163
stylesheet, 24, 32, 42, 55, 80, 83, 86

241

Bibliography

TAL, 39, 71, 73
target language, 20 f., 22, 23 ff., 39 ff., 46,

50, 53 ff., 58 f., 61, 66, 71, 87 f., 94,
99 ff., 104, 118, 123, 150, 152 f.,
170, 174, 180 f.

Tea, 39, 44
technological space, 16, 33, 35, 60, 152
template, 9, 13, 15, 17, 20 f., 24, 32 f., 37,

40 f., 43 f., 46, 50, 53–59, 61 ff., 65 f.,
73, 76, 78 f., 83 f., 86 ff., 104 ff., 117,
135, 150, 152 f., 158, 165, 170, 185

valida on, 59, 87, 117 ff., 121, 151, 154,
166 f., 170 f., 190

template author, 24, 88, 117
template engine, 13, 22, 43 f., 46, 55, 59,

61, 78 f., 81, 87, 123 f., 129 ff., 150,
152 f., 160

template instan a on, 59, 115, 119, 123,
127, 129 f., 152, 154 f., 162 f., 166,
168, 171 f., 181 ff., 185, 190

template interface, 152 f.
template interface genera on, 13, 15 f., 18,

46, 59, 98, 124, 152–157, 160, 163,
166, 172

template language, 21, 21 f., 23, 54 ff., 58 f.,
61 f., 88, 99 f., 104, 170 f., 174

template validator, 87, 117 f., 120
template view, 32
test suite, 166, 170–174
transform view, 32
Tunnicliffe, William W., 8, 52
type (a ribute), 119, 159

UML, 94 ff., 123 f., 157
Unix, 39
unmarshalling, 33
unparser, 14 ff., 53
UPA, 28, 93 f., 98, 118 f., 121, 191 f.
upfront verifica on, 12, 14 ff., 18
URI, 17, 25, 63, 81, 112, 139, 149
URL, 182 f.
use of exis ng standards, 54
u liza on of exis ng standards, 14, 53 ff.,

58 f., 62, 87, 94

valida on phase, 25
variable

frame processing, 37
variable interpola on, 30
Velocity, 30, 42, 53

W3C, 25, 27, 192
weaving, 32
Web 2.0, 30
wellformedness, 9–12, 14, 40, 62, 104
WML, 25, 53

Xalan, 31, 127, 183
Xerces, 33, 108, 118 f.
XGrammar, 28, 108
XHTML, 9–12, 14, 21, 25, 30, 33, 39, 50 f., 53,

88, 116 f., 153, 176, 192
XMI, 32, 169
XML, 8 f., 11 ff., 15 ff., 19, 21, 25–29, 31,

33 f., 39 f., 42 ff., 53 f., 57, 60–63,
65 ff., 69 f., 78, 80, 83 f., 88, 93, 96 f.,
103 ff., 109, 113, 117 ff., 121, 123 f.,
127, 129 f., 138, 140 f., 146, 149,
156 f., 163, 167–173, 176 f., 182 ff.,
190 ff., 213 f.

dialect, 14, 25, 27, 31, 34, 53, 55, 58, 80,
87, 123, 178

namespace, 14, 16 f., 25, 39, 62 f., 65, 81,
110–113, 127, 139 f., 149, 178, 180,
191

XMλ, 13, 33
XML binding tool, 33, 129, 152
XML informa on set, 25
XML Schema, see XSD
XMLBeans, 16, 33, 108, 129
XMLC, 39, 66
XPAND, 31, 33, 44 f., 57
XPath, 15, 24, 33, 42, 44, 46, 57, 65, 67, 72,

74, 78, 83, 85, 95, 101, 118, 124,
127 f., 150, 154–160, 163, 171 f.,
178, 183

XSD, 14 f., 17, 19, 27 ff., 33, 40, 55, 58, 62, 68,
85 ff., 89 f., 93–102, 104, 108–112,
114, 117–121, 123, 149, 151, 154 ff.,

242

Bibliography

160, 167, 169 ff., 178, 180 f., 191 ff.,
203, 206, 213

XSL-T, 10, 15 f., 20 f., 24, 31 f., 34, 40, 42, 44,
50, 55, 62, 67, 71–74, 80, 83 f., 86,
89, 97 f., 124 f., 127, 149, 163, 172,
180, 182 ff., 190, 208, 228

XTL
XML Schema, 17, 62, 99, 103

XTL, 11, 14–18, 28, 44, 61–86, 88, 90, 93 f.,
100 f., 105 f., 108, 110–113, 117 ff.,
124–127, 130 f., 133–136, 138–141,
146, 151, 153 f., 157–160, 162,
166 f., 169–180, 182–185, 190 ff.,
208

engine, 123 f., 128, 130 f., 136, 138,
149 f., 171 f., 182

xtl:attribute, 67 ff., 72, 74, 77, 79,
90–94, 99, 101 ff., 105, 111, 114 f.,
119, 125 f., 128, 141, 146, 151, 159,
178, 192

xtl:call-macro, 76 ff., 86, 101, 135,
144, 179

xtl:for-each, 66, 68, 71, 73 ff., 77, 79,
90, 93 f., 101 ff., 107, 112 ff., 119,
125 f., 128, 130 f., 133 f., 142 f., 150,
152, 154 f., 158 f., 162, 179, 185 ff.

xtl:if, 71 ff., 90, 93 f., 101 ff., 107, 112 f.,
119, 126, 128, 141, 151, 154, 156,
158, 179

xtl:include, 69 f., 101, 126, 128, 145
xtl:init, 76, 78 f., 126 f., 145, 180
xtl:macro, 76–79, 86, 101, 130, 135, 144,

179
xtl:text, 66 ff., 70 f., 79, 90, 92 ff., 101 ff.,

105 f., 111 f., 115 f., 119, 125 f., 128,
134, 141, 151, 153 ff., 159, 178, 185

XUpdate, 33
XVCL, 38

243

	Contents
	Preface
	Overview
	Problems
	Motivating Example
	Goals
	Contributions
	Related Work
	Typographic Conventions
	Outline

	Introduction
	Definitions
	Templates and Related Terms
	Life Cycle Phases
	The Extensible Markup Language XML
	XML Schema Languages

	Applications
	Web Applications
	Code Generation

	Alternatives to Using Templates
	Transformations
	Aspect-Oriented Approaches
	Unparsers
	Comparison of Templates with Alternative Technologies

	Related Research Areas
	Macro Processing
	Templates as Programming Language Feature
	Invasive Software Composition
	Frame Processing

	Classification
	Target Language Awareness of Slot Markup
	Generality of the Slot Markup
	Entanglement Index
	Instantiation Data Access Strategy
	Query Language
	Instantiation Technique
	Reuse in Templates
	Further Features

	Conclusion

	Safe Template Processing
	Goals
	Safe Authoring
	Safe Instantiation
	Separation of Concerns
	Broad Applicability
	Utilization of Existing Standards

	Requirements
	Preservation of Target Language Constraints
	Coverage of Target Language
	Computability
	Expressiveness
	Instantiation Data Type Safety
	Independence of Query Language

	Proposal of an Architecture fulfilling the Requirements
	Conclusion

	Design of a Universal, Syntax- and Semantics-Preserving Slot Markup Language
	General Design Decisions
	Creation of Character Data
	xtl:text
	xtl:attribute
	xtl:include

	Conditional and Repeated Inclusion of Template Fragments
	xtl:if
	xtl:for-each

	Reuse of Template Fragments
	xtl:macro
	xtl:call-macro

	Advanced Features
	Accessing multiple Instantiation Data Sources using Realms
	Instantiation Pipelines using Bypassing

	Definition of the Instantiation Semantics using XSL-T
	Relation to Document Validation
	Conclusion

	Safe Authoring of Templates
	Constraint Separation
	Introductory Example
	The Constraint XML Schema Language CXSD
	The Instantiation Data Constraint Language IDC
	Constraint Separation Process
	Proof of the Preservation of the Target Language Constraints
	Completeness of the Set of Required Attributes
	Compliance to the Content Model

	Visitor-based Implementation of the Constraint Separation
	Partial Templatization

	Template Validation
	Conclusion

	Flexible, Efficient and Safe Template Instantiation
	Instantiation Data Evaluation
	Design of the PHP Interface
	The Identity PHP
	The JXPath PHP
	The SPARQL PHP
	The System PHP

	Template Instantiation
	XML Access Technologies
	Operational Model of the XTL Engine
	Pipeline Implementation of the XTL Engine
	Memory and Runtime Complexity

	Instantiation Data Validation
	The IDC PHP
	Template Interface Generation
	Introductory Example
	An Algorithm for the Template Interface Generation
	Implementation using a PHP and an API-based Generator

	Conclusion

	Validation
	Implementation of the Prototype
	The Constraint Separation Tool xtlsc
	The Template Validation Tool cxsdvalidate
	The Template Instantiation Tool xtlinstantiate
	The Template Interface Generation Tool xtltc

	Test Suites
	Constraint Separation Test Suite
	Template Validation Test Suite
	Template Instantiation Test Suite
	Template Interface Generation Test Suite
	Round-trip Test Suite

	Applications of the Prototype
	SNOW: Use of XTL in a Staged Architecture
	EMODE: Use of XTL for Model-to-Text Transformations
	FeasiPLe: Use of XTL for Code Generation from Ontologies

	Proof of the Preservation of the Target Language Constraints
	Runtime and Memory Usage Measurements
	Runtime Measurement of Validation against a CXSD Schema
	Runtime Measurements of the Template Instantiation
	Memory Usage Measurements of the Template Instantiation

	Conclusion

	Summary, Conclusion, and Outlook
	Summary
	Conclusion
	Suggested Improvements for XML Technologies
	Future Research Directions

	Referenced XML Schemata and Instances
	XML Schema of XTL
	Purchase Order Schema
	Purchase Order Instance

	Detailed Results of the Runtime and Memory Measurements
	List of Acronyms
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Index

