
Low-Latency Hard Real-Time Communication over Switched
Ethernet

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inform. Jork Löser

geboren am 20. Oktober 1974 in Leipzig

Gutachter:

Prof. Dr. rer. nat. Hermann Härtig
Prof. Dr. Gerhard Fohler
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

Tag der Verteidigung: 31. Januar 2006

Abstract

With the upsurge in the demand for high-bandwidth networked real-time applications
in cost-sensitive environments, a key issue is to take advantage of developments of
commodity components that offer a multiple of the throughput of classical real-time
solutions.

It was the starting hypothesis of this dissertation that with fine grained traffic shap-
ing as the only means of node cooperation, it should be possible to achieve lower
guaranteed delays and higher bandwidth utilization than with traditional approaches,
even though Switched Ethernet does not support policing in the switches as other
network architectures do.

This thesis presents the application of traffic shaping to Switched Ethernet and val-
idates the hypothesis. It shows, both theoretically and practically, how commodity
Switched Ethernet technology can be used for low-latency hard real-time communi-
cation, and what operating-system support is needed for an efficient implementation.

i

Acknowledgments

First, I would like to thank my supervisor, Prof. Hermann Härtig. Despite scare
resources, he has grown the operating-systems group at TU Dresden to an interna-
tionally respected research institution and an enjoyable and inspiring place to work
at. Without his support and his wit, this thesis would not exist.

Many members of the operating-systems group at TU Dresden have contributed
work that has helped making this thesis a reality. I am indebted to Claude-Joachim
Hamann, Michael Hohmuth, and Jean Wolter, whose comments have opened my eyes
more than once; and Ronald Aigner, Adam Lackorzynski, Frank Mehnert, and Lars
Reuther, for their continuing effort to improve the group’s operating system DROPS.

I am thankful to many people who have read draft versions of this document or
parts of it. Their valuable comments have helped improving the thesis tremendously.
I thank Gerhard Fohler, Markus Fidler, Jane Liu, and Alexander Schill.

Finally, I would like to thank a person that is often forgotten, simple because it is
her job to make us feel her less: Angela Spehr, our group’s secretary. Without her, I
would not have had the time to write this thesis.

ii

Contents

Contents

1. Introduction 1

2. Background 4
2.1. Switched Ethernet — QoS at the hardware level 4
2.2. DROPS — QoS at the software level . 5

2.2.1. DROPS . 5
2.2.2. DROPS scheduling models . 6
2.2.3. Kernel scheduling model . 9

3. Related work 14

4. QoS at the hardware level 17
4.1. Network calculus . 17

4.1.1. Definitions and theorems . 17
4.1.2. Application to Switched Ethernet . 18

4.2. Bounding network delays . 19
4.2.1. Definitions . 19
4.2.2. Modeling network traffic . 20
4.2.3. Delay and burstiness increase at NICs 21
4.2.4. Delay and buffer calculation of switches 22

4.3. Burstiness increase at the switch . 24
4.3.1. Theoretical background . 24
4.3.2. Application to Switched Ethernet . 25
4.3.3. Remark . 25

4.4. Traffic reservation . 26
4.4.1. Established traffic reservation techniques 26
4.4.2. Traffic reservation technique for a Switched Ethernet network 26

4.5. Networks with multiple switches . 27

5. Traffic shaping in the nodes 29
5.1. Application network model . 29
5.2. Traffic shaping implementation aspects . 30

5.2.1. Performance of shapers . 31
5.2.2. CPU utilization . 31
5.2.3. Shaper versions . 31

5.3. Strictly periodic shaper . 32
5.4. Periodic shaper with data dependency . 33
5.5. Strictly periodic shaper with long periods . 34
5.6. Token-bucket shaper . 34
5.7. Token-bucket shaper for best-effort connections 36
5.8. Comparison . 37
5.9. Summary . 39

iii

Contents

6. Implementation 40
6.1. Local network manager . 41
6.2. Design issues . 42
6.3. Real-time send path . 44

6.3.1. Client interface abstraction . 45
6.3.2. Connection-specific TX thread . 46
6.3.3. CPU usage of the TX thread . 47

6.4. Real-time notification path . 47
6.4.1. Device-specific IRQ thread . 49
6.4.2. Software-based interrupt coalescing . 55
6.4.3. Connection-specific notifier thread . 57
6.4.4. Blocking client model . 60
6.4.5. Polling client model . 66
6.4.6. Interrupt coalescing with the polling client model 69

6.5. Summary . 73
6.5.1. Analyzed execution models . 73
6.5.2. Resource usage dependencies . 73
6.5.3. Alternative scheduling schemes . 74

6.6. Real-time connection setup . 74
6.7. Real-time client API . 76
6.8. Best-effort communication . 77

6.8.1. Best-effort send path . 78
6.8.2. Best-effort notification path . 80

6.9. Best-effort client network stacks . 81
6.9.1. L4Linux . 81
6.9.2. Flips . 82
6.9.3. Routing between multiple IP-Stacks . 83

6.10. Outlook: Offloading traffic handling to network cards 83

7. Experimental evaluation 84
7.1. Network hardware analysis . 84

7.1.1. Measurement setup . 84
7.1.2. Measuring inter-node µ-second delays 85
7.1.3. Achieving worst-case delays . 86
7.1.4. Switch multiplexing delays . 86
7.1.5. Switch buffer capacities . 87

7.2. Application-to-application effects . 88
7.2.1. Application-to-application test packet transmission delays 88
7.2.2. Fast Ethernet with DROPS . 88
7.2.3. Gigabit Ethernet with DROPS . 91

7.3. Sharing a network with non–real-time nodes . 92
7.4. Dynamic real-time system performance . 94

7.4.1. Measuring CPU costs . 94

iv

List of Figures

7.4.2. Measurement setup . 94
7.4.3. Transmit CPU costs . 95
7.4.4. Receive CPU costs . 100
7.4.5. Costs for multiple connections . 102
7.4.6. Application scenario . 104
7.4.7. L4Linux integration . 107

8. Conclusion 110
8.1. Main contributions . 110
8.2. Auxiliary contributions . 111
8.3. Suggestions for future work . 111
8.4. Concluding remarks . 112

A. Derivations A-1
A.1. Bounds for stair-case arrival curve and service curves A-1

A.1.1. Buffer bound . A-2
A.1.2. Delay bound . A-3

B. Abbreviations B-1

C. Glossary C-1

List of Figures

1. Buffering inside an output-queueing Switch . 4
2. The DROPS architecture . 6
3. Quantiles of a distribution . 7
4. Standard L4-type fixed-priority scheduling . 10
5. Capacity-reserves scheduling . 10
6. Fiaso’s thread scheduling . 11
7. Fiasco’s minimal inter-release time scheduling 12
8. Illustration of the arrival curve α(t) as the sum of two flows 23
9. Shaping the traffic at the sending nodes . 29
10. Multiplexing of multiple shaped connections to one NIC. 30
11. Maximum delay of a conforming packet at the strictly periodic traffic shaper. . . 32
12. Burstiness parameter of the flow generated by the strictly periodic shaper 33
13. Maximum delay induced by the periodic shaper with data dependency 33
14. Obtaining the burstiness parameter of the flow generated by the token-bucket shaper. 35
15. Obtaining the burstiness parameter of the flow generated by the best-effort shaper. 38
16. Setup for comparing the effect of the different traffic shapers. 39
17. Classical network node architecture. 40
18. DROPS real-time capable network node architecture 41
19. Thread structure of the network driver and real-time applications 44

v

Listings

20. Transmission: data sharing between the client and the RT-Net server 45
21. Architecture of the notification path at the RT-Net server 48
22. Interaction between the RT-Net server code and the native network Linux driver

code within an IRQ thread. 49
23. Arrival curve αi,rxring of traffic received by the IRQ thread 55
24. Reducing the IRQ thread frequency by minimal inter-release time scheduling . . 56
25. Bound Ri(t) of traffic received by the IRQ thread for a connection 56
26. Arrival curve αi,rxring of traffic received by the IRQ thread with interrupt coalesc-

ing for the receive ring of connection i. 57
27. IPC communication structure of the connection-specific notifier thread. 58
28. Arrival curve of IRQ thread with the clients service curve 64
29. Arrival curve of the coalescing IRQ thread with the blocking clients service curve

and their replacements. 66
30. Application model of the client with coalescing notifier thread. 67
31. Arrival and service curves αi,rxring and βpoll

i,client of the receive ring of connection i . 68
32. Arrival curve of the coalescing IRQ thread with the clients service curve 70
33. Client API for communication with the network driver in real-time mode. 76
34. Thread structure of the network driver and best-effort applications 78
35. General measurement setup . 85
36. Precise time synchronization . 86
37. One period of a symmetric burst. 87
38. Delay–CPU trade-off with different traffic shaping intervals 90
39. Setup for Section 7.4 . 95
40. Per-period CPU usage of the TX threads for 399-Byte packets 96
41. Per-period CPU usage of the TX threads for 1472-Byte packets 97
42. Per-period CPU usage of the TX threads for 1 ms periods 97
43. Per-period CPU usage of the IRQ thread for different packet sizes 99
44. Distribution of application-to-application packet latencies 106
45. Setup for Section 7.4.7 . 107
46. CPU usage of plain L4Linux and L4Linux with the RT-Net stub, data reception . . 108
47. CPU usage of plain L4Linux and L4Linux with the RT-Net stub, data transmission 109
48. Analysis of stair-case arrival and service curves A-1

Listings

1. Example of a strictly periodic real-time thread 13
2. Strictly periodic shaper, one packet per period 32
3. Token-bucket shaper . 35
4. Best-effort shaper . 37
5. Receive path demultiplexing pseudo code . 50
6. Connection-specific receive function that enqueues a packet into the receive ring . 50
7. Waking the notifier threads . 51

vi

Listings

8. Connection-specific notifier thread . 59
9. Waiting for data from the IRQ thread . 60
10. Transmitting data to the client . 61
11. Waiting for data from the IRQ thread . 81
12. Transmitting data to the client . 81

vii

Listings

viii

1 INTRODUCTION

1. Introduction

With the upsurge in the demand for high-bandwidth networked real-time application in cost-
sensitive environments, a key issue is to take advantage of developments of commodity compo-
nents that offer a multiple of the throughput of classical real-time solutions at competitive prices.
Ethernet as defined in the IEEE 802.3 standard is the commodity network since decades, and has
undergone a number of changes in its existence. It is used for hard real-time communication
already, and demanding applications continue to emerge.

A typical example is factory automation, where Ethernet replaces proprietary fieldbusses for per-
formance and cost reasons. In the context of professional audio mastering (audio-LAN) Ethernet
is experimented with: Multiple nodes generate samples for hundreds of instruments in parallel
and send them to a central mixer node. The process is interactively controlled and delays are ex-
pected to be less than 10 ms. The bandwidth requirement for such a scenario is ten to hundred
megabytes a second. Another application from the audio domain is DMIDI [Ker03], an attempt to
use Ethernet LANs for MIDI control commands. Although the bandwidth demands are moderate,
the delays are expected to be a few milliseconds too. The automotive industry uses Ethernet for
in-car, soft real-time multimedia communication as well as for diagnostic purposes — in addition
to CAN, LIN, and TTP networks for hard real-time control.

Ethernet originally has been defined as a bus-based protocol, using the carrier sense, multiple
access/collision detection (CSMA/CD) mechanism to achieve coordination among the connected
nodes. The CSMA/CD mechanism, however, results in nondeterministic delays caused by col-
lisions when multiple nodes access the medium at the same time. Hence, higher-level protocols
are needed to achieve an exclusive bus access for bounded communication delays. Real-time
approaches using the bus-based Ethernet basically fall in three categories: token-based medium
access control protocols, time-slot-based protocols, and statistical approaches. Time slots and to-
ken passing techniques are used by cooperating nodes to achieve both: to avoid collisions and to
obey the limit of bandwidth allocated to the participating nodes. Intuition indicates that the use of
such techniques to avoid collisions limits the achievable utilization and increases the CPU load of
the nodes much more than using more relaxed forms of cooperation that only control bandwidth
allocation. Related research supports that intuition on the high cost for collision avoidance by
node cooperation (see Section 3).

Later in its development, Ethernet has been extended by intelligent switches, forming the Switched
Ethernet technology. It is a star-based topology providing a private collision domain to each of the
ports of a switch. If only one node is connected to each port of the switch, collisions do not occur.
Consequently, node cooperation is needed only for bandwidth control, not any more to avoid
collisions. It was my starting hypothesis that with fine grained traffic shaping as the only means of
node cooperation, it should be possible to achieve lower guaranteed delays and higher bandwidth
utilization than time-slotted and token-passing approaches, even though Switched Ethernet does
not support policing in the switches as for example in ATM switches.

In this dissertation, I present the application of traffic shaping to Switched Ethernet and vali-
date the hypothesis as stated previously. I show how commodity Switched Ethernet technology
can be used for low-latency hard real-time communication, provided the right operating-system

1

1 INTRODUCTION

support is available. The main contribution of this dissertation is the identification and analysis
of this operating-system support. As a prerequisite and further contribution, I formally model the
Switched Ethernet network and the traffic flowing through it to the extent needed by the operating-
system analysis.

I apply well-established and recently developed networking scheduling theory such as the network
calculus to Switched Ethernet to obtain bounds on the characteristics of traffic as it traverses the
network. The analysis also contains intermediate worst-case delays at the network elements (net-
work interface cards, switches) and bounds on the resource needs (i.e., buffer memory) therein.
Putting aside the details unrelated to the main goal of my dissertation, the network analysis con-
centrates on networks with one switch. Once the operating-system requirements have become
clear and well understood when traffic shaping is applied to small networks, an extension to net-
works with multiple switches mainly requires extending the mathematical network model. The
principal operating-system requirements however do not change.

I propose various traffic-shaper implementations that ensure a cooperation of the nodes according
to previously acknowledged traffic contracts. I analyze the scheduling needs of these implemen-
tations and estimate their performance with respect to achievable network delays and buffer needs
and estimate the implementation costs with respect to CPU utilization.

I developed and present an implementation of Switched Ethernet-based networking that gives
guarantees for traffic handling in the network and at the attached nodes and that provides hard
application-to-application real-time communication. The implementation uses the real-time oper-
ating system DROPS that features a capacity-reserves-like CPU reservation scheme. DROPS is
a priority-based, dynamic real-time system that allows to start and execute real-time applications
and non–real-time applications in parallel. I derive the network node architecture for that dynamic
real-time system and detail the task and thread model, the real-time/non–real-time traffic classes
and the application interaction. I give a complete analysis of the DROPS-scheduler effects to the
traffic as it travels through the network, such as to scheduler-induced delays and resulting mem-
ory requirements to buffer data. I present the developed admission process and the integration of
legacy operating systems running on DROPS into the real-time communication. I further discuss
the consequences of an implementation on operating systems with different scheduling schemes.

I present elaborate measurements on the practical applicability of traffic shaping for Switched
Ethernet-based real-time networking. These measurements analyze principal characteristics of
Ethernet hardware, show the general bounds on the delays and resource requirements that can
be achieved on this hardware and provide detailed results on the costs and practical limits of the
implementation on DROPS.

This dissertation is structured as following: Section 2 presents the key concepts of real-time
communication on Switched Ethernet and introduces the DROPS real-time system. Section 3
on page 14 surveys other work in the area of real-time communication and relates it to this disser-
tation. Section 4 on page 17 reviews the theory on network calculation, defines the network-traffic
model used throughout this document, applies the general network theory to Switched Ethernet,
and derives an appropriate traffic-reservation scheme. It also outlines the main aspects of using
multi-switch networks. Section 5 on page 29 details the steps necessary to shape traffic to give
hard and tight guarantees on the achievable delays at the network system. It presents possible

2

1 INTRODUCTION

traffic-shaper implementations for a priority-based real-time system, and quantitatively analyzes
them. Section 6 on page 40 describes the implementation of Switched-Ethernet-based real-time
networking on DROPS and discusses consequences of an implementation using other scheduling
schemes. Section 7 on page 84 provides the experimental analysis, and Section 8 on page 110
summarizes this dissertation.

3

2 BACKGROUND

2. Background

Hard real-time communication means to give real-time guarantees for application-to-application
data transfer. This is to provide a certain quality of service (QoS) on the transmission of packets
from an application on one node to an application on another node. The QoS to be provided is
the assurance of data delivery, a delay bound for the delivery of data, and a guaranteed commu-
nication bandwidth. This section introduces the key concepts of fundamental infrastructures used
to provide QoS on packet transmission: The network hardware and the operating system at the
nodes.

2.1. Switched Ethernet — QoS at the hardware level

This section shows the principal operation of a typical switch of the Ethernet technology as defined
in the IEEE 802.3 standard. The section clarifies how lossless communication with bounded delays
is done, and is fundamental to the traffic-shaping approach used in this dissertation.

data from nodes

data to nodes

switching fabric

Figure 1: Buffering inside an output-queueing Switch. If queueing a frame is necessary, memory is allo-
cated from a shared memory pool and assigned to the corresponding queue.

Figure 1 shows a typical Ethernet switch. The switch has four receive ports, control logic, buffer
space and four queued transmit ports. The queues are operating in first-in first-out (FIFO) mode.
When a frame arrives at the switch, the control logic determines the transmit port and tries to
transmit the frame immediately. If the port is busy because another frame is already being sent,
the frame is stored in the transmit ports queue. The memory to store pending frames is obtained
from a shared memory pool. If no more memory is available, the received frame is dropped. In a
real-time system, this dropping must be prevented. Also, the delay of a packet at the switch must
be bounded.

Real-Time communication

If a packet needs to be queued, its delay within the switch depends on the current length of the
queue: All packets within the queue must be transmitted before the current packet. Thus, guaran-
tees on the maximum delay of packets within the switch caused by queueing can only be given if

4

2.2 DROPS — QoS at the software level 2 BACKGROUND

the length of the queues is bounded. To bound the queues in length, the input traffic to the switch
must be bounded. In Section 4 I detail how the traffic is described to allow a formal analysis of the
queue-length bounds. I also derive the packet-delay bounds and switch-buffer bounds depending
on the input traffic at the switch.

As Ethernet lacks any policing mechanism, the only way to bound the input traffic at the switch
is to bound the output traffic of all nodes connected to the switch. Therefore, these nodes must
cooperate to prevent flooding the switch with data. This cooperation means that all sending nodes
shape their traffic to conform to a previously acknowledged traffic specification, in detail described
in Sections 4 and 5.

Other Ethernet capabilities

Another class of Ethernet switches is input buffered. In these switches, packets are queued at the
input ports, and a packet is removed from the queue only if the according output port is free. Input-
buffered switches are vulnerable to the head-of-line blocking phenomenon. Head-of-line blocking
means that packets back in the input queue are blocked when the first packet in the queue must
wait for its output port to become free. Today, input buffered switches are rarely used because of
the head-of-line blocking effect, and I do not consider them in my dissertation.

The IEEE 802.3 extension 802.1p allows to assign priorities to individual network frames.
Switches supporting frame priorities map these priorities to an internal set of up to 8 priority
levels. Each transmit port is assigned a set of transmit queues, one per mapped priority level.
Upon transmission, frames from higher prioritized queues are sent before those of lower prior-
itized queues. However, the prioritized input traffic still must be bounded to prevent overload
situations and mutual interactions at the high-priority queues. Further, PEDREIRAS and others
report in [PLA03] that lower prioritized traffic may lock switch memory, which cannot be used for
higher prioritized traffic then. Thus, there is no real isolation between the different priorities, and
I do not consider prioritizing frames in my dissertation.

2.2. DROPS — QoS at the software level

To provide real-time guarantees for application-to-application data transfer, not only the network
must provide a certain QoS level. Also the operating systems executing these applications must
ensure timely execution of its drivers, intermediate network stacks, and the applications. The
target system I used to implement, analyze, and verify the real-time networking approach is the
Dresden Real-Time Operating System DROPS [HBB+98].

2.2.1. DROPS

The design objectives for DROPS are to execute real-time programs and best-effort programs in
parallel, and to start and stop these programs dynamically. Therefore real-time applications reserve
the resources they need for proper operation at resource managers. Spare resources, including

5

2.2 DROPS — QoS at the software level 2 BACKGROUND

CPU cycles, memory, network and disk bandwidth, may be consumed by non–real-time (best-
effort) applications.

DROPS is a mikrokernel-based system on top of Fiasco [HH01], an implementation of the L4
mikrokernel interface [Lie95]. The L4 mikrokernel interface defines a minimal set of kernel ab-
stractions, that is address spaces with multiple threads and synchronous IPC-based communication
between all threads. Drivers accessing hardware devices run in user space, just as resource man-
agers and normal user applications do. In addition to the standard L4 abstractions, Fiasco provides
a real-time scheduling interface [Ste04], described in Section 2.2.3.

(CPU, Memory, IRQ, Busses, I/O Ports)

RT−NETServer

Real−Time App 1 Real−Time App 2

RT Net Stack

RT Disk Driver

RT File System

RT Display Driver

RT Console

Real−Time−Environment

mozilla
make

gcc

(L4Linux)
Component

Time−Sharing

Basic Resource Management

Non Real−Time Environment

Fiasco Microkernel kernel level
user level

Figure 2: The DROPS architecture

Figure 2 shows the architecture of DROPS. Lower-level resource managers provide abstractions
such as memory, CPU, or hardware-device access. Other abstractions such as networks, disks, or
displays are provided by resource managers using the service of lower-level resource managers.
Network stacks, file systems or consoles are even higher abstractions provided by higher-level
resource managers. To guarantee a quality-of-service level of a certain resource, the correspond-
ing manager maps that resource to the required lower-level resources and reserves them at their
corresponding managers. This separated architecture provides an effective isolation of resource
usage.

2.2.2. DROPS scheduling models

To give execution time guarantees in a dynamic environment, real-time programs reserve all the
resources they need for proper operation before committing a certain quality of service. It is well
known that reservations based on worst-case assumptions achieve a 100% quality but result in poor
resource utilization. However, applications often do not need such a strong quality guarantee. If
their execution resource profile can be statistically described, an appropriate scheduling model
provides statistical guarantees to these applications.

6

2.2 DROPS — QoS at the software level 2 BACKGROUND

The CPU resource model for DROPS applications is based on tasks as the periodic execution of
jobs. Each job consists of one mandatory and a number of optional parts. While the manda-
tory parts must be executed completely under all circumstances, only a certain percentage of the
optional parts (the quality level) needs to be scheduled and needs to be executed in time. The
admission and CPU reservation uses statistical distribution data of the execution times of the job
parts to determine priorities and reservation time quantities for these parts. On execution, the parts
are scheduled by a fixed priority scheduler that enforces the reservation time quantities.

An important parameter for the DRPOS scheduling models is the quantile of a distribution of
execution times:

Definition: The quantile q(p), or p-quantile (0 ≤ p ≤ 1) of a cumulative distribution func-
tion F(x) = P(X > x) of a random variable X is that value that is assigned a probability of
p by F . In other words, part p of all values of X are less than the quantile. More formal:
q(p) = (x : P(X < x) = p). The definition for a discrete frequency distribution, or just distribu-
tion, of a series X of measured values is analogous:

q(p) = min(x : P(X < x) ≥ p).

Figure 3 illustrates the definition of the quantile:

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 5 10 15 20 25 30

F
re

qu
en

cy
 d

is
tr

ib
ut

io
n

Values of random variable X

50% Quantile
75% Quantile
90% Quantile
95% Quantile
99% Quantile

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
um

m
ul

at
iv

e
di

st
rib

ut
io

n
fu

nc
tio

n
P

(X
<

x)

Values of random variable X

50% Quantile
75% Quantile
90% Quantile
95% Quantile
99% Quantile

Figure 3: The 50%, 75%, 90%, 95% and 99% quantiles of P(X<x). The quantiles are 4.5, 10.5, 13.7, 15.5
and 20.1.

Quality-Assuring Scheduling model (QAS)

The Quality-Assuring Scheduling model (QAS) presented in [HLR+01] is one of the scheduling
models supported by DROPS. It can handle preemptible as well as nonpreemptible jobs and allows
a 100% resource utilization. However, the periods of all tasks must have the same length for the
analysis given in [HLR+01]. A newer model (not published yet) relaxes this restriction and allows
harmonic task periods.

7

2.2 DROPS — QoS at the software level 2 BACKGROUND

A task T̃i in QAS consists of periodic jobs Ji with an assigned period of Ti. A job Ji is described
by its parts Pi and a desired quality level Qi. The parts of a job Ji depend on each other, this means
part Pj

i of job Ji is only scheduled if all previous parts Pk:k< j
i were successfully executed. Each

part description Pj
i consists of an execution time distribution C̆ j

i of that part. The part execution

times described by C̆ j
i must be independent of each other.

The admission of QAS in done in two phases: The first phase assigns scheduling priorities to the
parts of all jobs, based on quality-monotonic scheduling. Therefore, mandatory parts are assigned
the highest priority and optional parts are assigned priorities corresponding to their desired quality
level: The lower the quality level is, the lower is the assigned priority. The second step verifies
that (1) all mandatory parts can be successfully executed, and (2) at least a fraction of Qi of all
optional parts Pj

i can be successfully executed in the average.

Whether or not arbitrary periods can be handled with the QAS model is an open problem at the
time of this writing. The admission processes of both the periodic and the harmonic QAS models
are currently implemented in an off-line version.

Quality Rate Monotonic Scheduling model (QRMS)

The operating system group at TU Dresden currently develops another scheduling model — the
Quality Rate Monotonic Scheduling (QRMS, not published yet). In contrast to QAS, priorities
and a CPU quantity is assigned to jobs as a whole instead of to the parts therein. Subject to the
admission process is the maximum of (1) the quantile qi of the execution time distribution C̆ i of
a job Ji that corresponds to the desired quality level Qi, and (2) the worst-case execution time
(WCET) Ci of the mandatory part therein. Priorities are assigned using the RMS scheme. The
admission can be done based on the overall CPU utilization or by using time-demand analysis.

QRMS allows arbitrary task periods, but allows no 100% resource utilization. In the presence
of multiple optional parts, it is outperformed by the QAS scheduling model — QAS achieves a
higher CPU utilization. Further, QRMS is limited to preemptible jobs. At the time of this writing,
an admission test for this model has not been implemented.

Task model for drivers

Some hardware drivers, in contrast to applications, are not allowed to miss deadlines, because
they need to respond to device activities in time. Further, for some devices it is impossible to
statistically describe the execution time profile of drivers: A variety of conditions that heavily
change with dynamic client applications and environmental influences such as incoming network
packets determine the drivers execution time. These drivers use a worst-case based scheduling
analysis. Further, drivers might need especially low execution jitters.

Therefore a driver task model consists only of mandatory parts and allows to specify priorities
and relative deadlines shorter than the length of a period. The tasks are described by classical
static priorities pi, WCET Ci, deadlines Di and periods Ti, with Di < Ti. The tasks are denoted

8

2.2 DROPS — QoS at the software level 2 BACKGROUND

by (pi, Ci, Di, Ti) quadruples. Although this model cannot guarantee other quality levels than 0%
and 100%, it is well-understood and is an appropriate abstraction for hardware drivers with strict
deadlines. An admission based on time-demand analysis can be efficiently done on-line, and has
been implemented within the work for this dissertation.

Note that a real-time driver that uses this strict task model does in general not affect, which
scheduling models are used by its client applications. Applications are free to use any of the
DROPS scheduling models, especially QAS or QRMS to achieve a better resource utilization.

Combining (pi, Ci, Di, Ti) tasks with QAS and QRMS

QRMS can directly be mapped to the (pi, Ci, Di, Ti) model once the execution time quantiles have
been identified. To combine task sets of QAS with the (pi, Ci, Di, Ti) model, the (pi, Ci, Di, Ti)
tasks must be included in the QAS analysis as additional mandatory tasks with their given WCET,
deadline and period. In this case, the periods Ti must fulfill the restrictions of the QAS model, that
is equal periods or harmonic periods. After assigning priorities with QAS, the deadlines of the (pi,
Ci, Di, Ti) tasks must be checked with time-demand analysis. If the QAS task set only contains
mandatory parts, the QAS tasks can be directly mapped to (pi, Ci, Di, Ti) quadruples and can be
admitted online using time-demand analysis.

Summary: The open discussion on which of the scheduling models QAS or QRMS is going to
be the standard model in DROPS requires applications to be flexible. If for instance drivers with
real-time guarantees are to be used with applications using the QAS model, the drivers must be
able to adapt their scheduling periods to external restrictions.

2.2.3. Kernel scheduling model

The Fiasco mikrokernel is used to execute the real-time and non–real-time applications of DROPS.
A user-level scheduler determines thread priorities, periods, and time quanta and passes these
parameters to the kernel. The actual scheduling of applications is then done by the kernel based
on these parameters.

Best-effort threads

Fiasco uses the fixed-priority scheduling scheme of L4 to schedule best-effort threads. Threads
of the highest priority level are scheduled until they voluntarily yield the CPU by blocking in a
synchronous IPC. Figure 4 shows the execution graph of three threads with different priorities.

Real-time threads

In addition this, Fiasco provides a capacity-reserves–like reservation mechanism to schedule real-
time threads. The idea of capacity reserves is to assign priority/quantum/period triples (pi,wi,Ti)
and an budget to threads. The budget is replenished to the quantum at the begin of each period.

9

2.2 DROPS — QoS at the software level 2 BACKGROUND

Become ready Yield CPU runningpreempted

Medium priority thread

High priority thread

Low priority thread

time
all threads ready

Figure 4: Standard L4-type fixed-priority scheduling. Low-priority threads run only if higher prioritized
threads voluntarily yield the CPU.

Whenever a thread is executed, its budget is charged. If the budget becomes null, the thread will
not be scheduled until the begin of its next period. Figure 5 illustrates the capacity reserves based
scheduling.

time
all threads ready

(p=medium,w= 1, T=4)

(p=low,w= 4, T=4)

(p=high,w= 1, T=4)

runningpreemptedBecome ready Yield CPU

1 2 3 4 5 6 7 8

L − Low priority thread

M − Medium priority thread

H − High priority thread

preemption

Figure 5: Capacity-reserves scheduling. Thread H yields the CPU at time 0.8. At time 4.0 it becomes ready
with a replenished quantum. At time 5.0 the quantum is over and it is preempted by the kernel.

To support the concept of optional parts in QAS, Fiasco allows to assign multiple priority/quantum
pairs (pj

i ,w
j
i) to a thread [Ste04]. Thus, each part of a QAS job corresponds to one pair, a job

corresponds to the current period the thread is executing, and a QAS task corresponds to a Fiasco
thread. Fiasco stores the thread scheduling information data in timeslices. Each timeslices consists
of a (pj

i ,w
j
i) pair and a budget holding the CPU time left in the current period for that pair.

Thread scheduling At the begin of each thread’s period, Fiasco replenishes all budgets of a
thread and activates the first timeslice. This means, the effective priority of thread i is set to p1i .

10

2.2 DROPS — QoS at the software level 2 BACKGROUND

The thread can execute on this priority for w1
i time units. After this time, the kernel activates the

next timeslice, and so on. When all timeslices are used up, the thread falls back to its best-effort
priority p0

i . Before the end of a timeslice, a thread can voluntarily yield the CPU. To do so, it
switches to the next timeslice. This may result in a lower effective priority, so the thread may be
preempted by other threads. Alternatively, the thread can wait for the begin of the next period
skipping all remaining timeslices.

A/1 A/1 A/1

B/1

A/2

B/1

A/2

B/1

L L

time
all threads ready

runningpreemptedBecome ready Yield CPU

1 2 3 4 5 6 7 8

L − Low priority thread

A − 2 Reservations, T=4:

B − 1 Reservation, T=4:
(p=H, w= 1)

(p=H, w=1), (p=M, w=1)

(p=low, w= 4, T=4)

preemption

Figure 6: Fiaso’s thread scheduling. At time 0.8, thread A voluntarily switches from timeslice 1 to timeslice
2, lowering its priority to M. Thread B is scheduled. At time 1.7 B waits for the begin of its next
period. Thread A is scheduled at its second timeslice. At time 2.7, A’s quantum is over and it is
preempted by the kernel. Thread L is scheduled.

Application use To use this kernel mechanism for QAS scheduling, the mandatory parts of
QAS are mapped to the first timeslice and are given a high priority. The optional parts are mapped
to the following timeslices with lower priorities. Best-effort threads are assigned the lowest pri-
orities. At the end of a each part, a real-time thread switches to the next timeslice, potentially
yielding the CPU to another thread (Figure 6).

The admission of (pj
i ,w

j
i) pairs is done by a user-level admission controller, which can guarantee

deadlines Dj
i using response-time analysis. This allows to implement the DROPS scheduling

models QAS and QRMS after mapping the QAS and QRMS parameters to (pj
i ,w

j
i) pairs using

the appropriate admission scheme. The (pi, Ci, Di, Ti) parameters of the driver task model can be
admitted directly.

Minimal inter-release time scheduling Using the terminology of [Liu00], best-effort
threads of Fiasco resemble aperiodic (sporadic) threads. The real-time threads of Fiasco described
so far resemble strictly periodic threads. In addition to this, Fiasco supports also periodic threads
in the terminology of LIU. While strictly periodic threads are always released at the begin of their
period, periodic threads have a minimal inter-release time, whose release is coupled to an event.
In Fiasco this event is the successful execution of a next-period IPC issued by the periodic thread.

11

2.2 DROPS — QoS at the software level 2 BACKGROUND

When the next-period IPC is successfully executed, the thread is released again, but not before
the time passed since its last release is at least its minimal inter-release time. Early wakeup events
will be buffered, as illustrated in Figure 7. From a scheduling analysis perspective, strictly periodic
threads and periodic threads are treated equally. As such, the term period is used to describe both
the period of strictly periodic threads and to describe the minimal inter-release time of periodic
threads.

NP NP NP NP
EV

NP
EV runningRelease Next−period IPC Wakeup event preempted

time
all threads ready 1 2 3 4 5 6 7 8

L − Low priority thread
(p=low, w= 4, T=4)

EV EV

H − High priority thread
(p=high, w= 1, T=2)

Figure 7: Fiasco’s minimal inter-release time scheduling. At time 0.8, thread A issues a next-period IPC.
At time 2.5, this IPC is executed, thus an event is successfully received from another thread. The
kernel sets the earliest next release time to 4.5. The event at time 4.0 is queued until time 4.5.
Analogously, the event at time 5.0 releases the thread at time 6.5.

Kernel scheduling API

As part of its real-time API the kernel provides a set of functions to control the scheduling of
threads. The most important are the following:

void l4_rt_set_period (l4_threadid_t thread , l4_kernel_clock_t period);
sets the length of the period for the given thread.

int l4_rt_add_timeslice (l4_threadid_t thread , int prio , int wcet);
adds a timeslice of the length wcet and priority prio to the given thread.

int l4_rt_begin_strictly_periodic (l4_threadid_t dest , l4_kernel_clock_t clock);
starts strictly periodic execution of the given thread at time clock.

int l4_rt_begin_minimal_periodic (l4_threadid_t dest , l4_kernel_clock_t clock);
starts periodic execution with minimal inter-release times of the given thread at time clock.

int l4_rt_next_reservation (unsigned id , l4_kernel_clock_t*clock);
voluntarily switch to the next timeslice and return the remaining CPU quantum of the current
timeslice in *clock.

int l4_rt_next_period (void);
wait for the next period, skipping all unused timeslices.

12

2.2 DROPS — QoS at the software level 2 BACKGROUND

Code Example

Listing 1 shows the code of a strictly periodic real-time thread. It continuously executes a manda-
tory part work_mandatory() followed by an optional part work_optional(). To wait for the suc-
cessful start of the periodic mode, worker() issues a l4_rt_next_period() system call at the begin.
The setup of the scheduling parameters is done in init(). For the sake of a better readability, the
example performs no error handling.

void worker(){
l4_kernel_clock_t left ;
/* initial next−period call : wait for start of periodic mode*/

l4_rt_next_period ();
while(1){

work_mandatory(); /* do mandatory work */
l4_rt_next_reservation (1, &left); /* switch to the optional timeslice */
work_optional (); /* do optional work */
l4_rt_next_period (); /* wait for the begin of the next period */

}
}
void init (){

l4_threadid_t t = thread_new(worker);
l4_rt_set_period (t , 1000); /* period length is 1ms */
l4_rt_add_timeslice (t , 80, 100); /* add 100µs timeslice at priority 80 */
l4_rt_add_timeslice (t , 50, 200); /* add 200µs timeslice at priority 50 */
l4_rt_begin_strictly_periodic (t , 0); /* immediate start of periodic mode */

}

Listing 1: Example of a strictly periodic real-time thread with a period of 1 ms, an optional part of 100 µs
and a mandatory part of 200 µs.

13

3 RELATED WORK

3. Related work

Various real-time transfer solutions exist for the original CSMA/CD Ethernet. They differ in the
methods to control the access to the network. While hard real-time guarantees can only be given
with exclusive network access, statistical guarantees allow for concurrent access.

A common method to achieve hard real-time guarantees is the token-based approach, where a cir-
culating token represents the permission to transmit data. An advantage of token-based solutions
is their flexibility, as they can be used with almost any network architecture. A disadvantage is that
only one station owns the transmit right at a given time. This unnecessarily limits the performance
on modern switched networks. Also, time and network bandwidth for the token management
affects the overall performance. In [VcC94] Venkatramani and Chiueh present results from the
“RETHER” project. They simulated a 10 MBit/s CSMA/CD Ethernet with a maximum token ro-
tation time of 33 ms (thus delays bounds are ≥33 ms) and achieved a network utilization of 60%.
With 100 MBit/s Ethernet they gained only a small throughput increase, which they attribute to
the dominance of software overheads.

Another method for controlling access to the network is the time-slotted approach. Examples can
be found in [KDK+89, Sch02]. There is a fundamental problem with this approach: the longer the
time-slots, the higher is the worst-case delay of messages transferred. Therefore, time-slots should
be as short as possible. On the other side, time-slots must be long enough to prevent overlapping of
messages due to delays and jitter imposed by the network. This may lead to a severe performance
cut, as the 4% overall network utilization for Switched Gigabit Ethernet reported by SCHWARZ in
[Sch02].

A mixed approach is presented by PEDREIRAS and ALMEIDA in FTT-Ethernet [PAG02], where
a central master periodically distributes tokens that allow to send data for a specific amount of
time.

KWEON and SHIN describe in [KSZ99] a method to achieve statistical real-time guarantees. The
idea of such a statistical approach is to keep the overall network traffic below a certain limit. As
the probability of a collision is reduced with lower network load, a statistical guarantee for the
transmission time and bandwidth can be given, provided the participating nodes keep their traffic
below certain limits. In [KS00a, KS00b] KWEON and SHIN extended their work by adaptive traf-
fic smoothing that automatically adapts to the current load situation on the network. Besides the
probabilistic behavior of this approach, the overall network utilization decreases with stronger sta-
tistical guarantees. They report an experiment of 10 nodes connected by a 10 MBit/s CSMA/CD
Ethernet, exchanging real-time traffic with a total bandwidth of 53 KBit/s and non–real-time traf-
fic with a total bandwidth of 4.4 MBit/s. The deadline-miss ratio was 10−4 with a deadline of
129 msec.

LO BELLO and others extended the statistical approach by fuzzy traffic smoothing [CBM02].
They use the overall throughput together with the number of collisions as network load indicators
and feed them into fuzzy traffic smoothers. This allows them to handle sporadic traffic more
flexible.

Most of these methods developed for the shared CSMA/CD Ethernet are established today; the
token-based and time-slotted approaches could also be used for Switched Ethernet. However,

14

3 RELATED WORK

none of them makes use of a collision-free switched architecture that allows higher utilization
bounds and lower delay bounds.

Schedulability conditions for different packet scheduling methods in network switches are given
by LIEBEHERR in [LWD96]. The schedulability conditions allow to guarantee delay bounds
depending on the input traffic characteristics and the selected scheduling method in the switch.
They apply their theory in examples to token-bucket shaped (leaky-bucket shaped) traffic, but not
to the more general form of T-SPECs1. Their analytical result for FIFO scheduling coincides with
Equation 16 on page 24.

In [WJ03], WATSON and JASPERNEITE apply the Network Calculus of LE BOUDEC [BT01] to
Switched Ethernet and discuss multiple switches in a line topology. WATSON provides analytical
and simulation results of a 100 MBit/s switched Ethernet. With 50 nodes connected in a line
topology and producing bursts of 15 KByte with a high (≥90%) network utilization, the delay
bounds for message transfer are in the order of 400 ms. In contrast to the traffic model I use,
WATSON and JASPERNEITE use the simpler model of single leaky-bucket shaped streams, and
further neglect the processing time in the switch. For one switch, their results coincide with the
estimations given in Equations 14 and 16 on page 23f. Also, their work is done on a theoretical
basis only. The main aspect of my dissertation are the operating system requirements of real-
time systems. Assuming that the operating system issues have become clear and well understood
once traffic shaping is applied to Ethernet networks with one switch, an extension to networks
with multiple switches solely requires extending the mathematical model. The principal operating
system requirements however do not change.

In [JE04] JASPERNEITE and others discuss the emerging PROFINET IRT standard. Multiple
nodes are connected by switches. The approach is time-triggered with a real-time phase and a
non–real-time phase. In the real-time phase, the switches forward packets according to a time-
triggered database resident in each switch and the arrival time and input port of the packets. In
the non–real-time phase, normal MAC-based packet forwarding is used. According to [JE04],
this separation of time in real-time phases and non–real-time phases decreases the latency of the
real-time traffic considerably, especially when multiple switches are connected in a row. However,
to achieve these low latencies, PROFINET RT requires specific hardware, both for the switches
and for the end nodes.

YOSHIGOE and CHRISTENSEN propose in [YC01] a rate control mechanism for bandwidth allo-
cation on an Ethernet in the first mile (EFM) subscriber service. Their emphasis is on bandwidth
allocation, not on end-to-end delay guarantees. They propose extending the 802.3 standard, using
a leaky-bucket controller at the transmitter of each Ethernet connector. The rate control applies
uniformly to all traffic coming from one node. Therefore, it cannot help in policing different real-
time connections. Also, this proposal requires specialized hardware. The software implementation
proposed in this dissertation gives delay guarantees and uses available standard hardware.

GUÉRIN and others present in [GKPR98] a mechanism for providing quality of service (QoS)
through buffer management. The idea is to limit explicitly the amount of buffer space the switch

1In the literature, the terms token-bucket and leaky-bucket are often used interchangeably. Section 4.2.2 on page 20
clarifies this and defines the terms as used throughout this dissertation.

15

3 RELATED WORK

provides for a specific connection. With their approach bandwidth allocations can easily be man-
aged, and free bandwidth is distributed fairly among best-effort traffic. GUÉRIN reports a simula-
tion of a 48 MBit/s switched network. With a switch buffer size of 500 KByte and FIFO schedul-
ing, he achieves a network utilization of 85% without loosing data. For a 99% utilization, 5 MByte
switch buffer are needed. In contrast to the approach of this dissertation, GUÉRINs proposal re-
quires installation of a filtering instance inside the switch, thus it does not work with off-the-shelf
hardware.

Several projects aim at building QoS-enabled switches or routers from scratch [GLN+99, CL01].
Notable work is EtheReal by CHIUEH and VARADARAJAN [VC98]. They built a switch that
allows connection establishment with policing. The main feature is the integration in any OS:
They use special IP-addresses and MAC-addresses to place the communication-ID therein. This
way, they do not change the host operating system, but require elaborate switches executing their
applications.

Ethernet flow control as defined in the IEEE 802.3 extension 802.3x supports a MAC-level flow
control with special pause frames. Flow control allows a receiver to ask the sender to stop gen-
erating data. Flow control can help preventing retransmissions due to packet loss. However, the
current specification of flow control does not differentiate between multiple connections and pause
frames are sent uniformly to all ports of a switch. Further, pause frames are interpreted by the net-
work interface card at a node (NIC). The NIC has no notion of real-time and best-effort traffic and
suspends the transmission of all traffic upon the reception of pause frames. Hence, rate control
in the sending nodes is still necessary to isolate different connections and to prevent flooding the
switch.

In his PhD dissertation, BORRISS implemented a real-time ATM network stack for the DROPS
operating system [Bor99]. He solved the resource problem of concurrent real-time and non–real-
time communications by explicitly assigning resources to connections, and by separating con-
nection handling into individual threads. His work revealed that a fast demultiplexing of data
received from the network to the appropriate connection is crucial for the overall performance.
Based on this observation, DANNOWSKI implemented an ATM firmware that did the demultiplex-
ing at the network interface card [Dan99], significantly improving the overall performance. The
firmware offloading approach could also be used in the scope of this dissertation, as discussed in
Section 6.10 on page 83.

16

4 QOS AT THE HARDWARE LEVEL

4. QoS at the hardware level

In this section I review the theory on delay and buffer calculation on network elements and apply it
to the projected network configuration – a Switched Ethernet network with one switch and uniform
medium bandwidth. I start with an introduction of the general network calculus of LE BOUDEC

as the basic theoretical model to calculate network behavior. Using this calculus I (1) characterize
and quantitatively analyze traffic flows that are sent from end nodes to a switch, (2) analyze the
delays and buffer needs of an Ethernet switch by deriving formulae for safe bounds depending on
the input traffic characteristic to the switch, and (3) give bounds for the traffic flow characteristics
as they leave the switch to the destination nodes. Finally, I detail the traffic reservation scheme
needed for proper operation and outline the aspects for networks with multiple switches.

4.1. Network calculus

Obtaining the maximum queue lengths (backlog) and the maximum queueing delay in network
switches has been intensively researched in the past, especially in the context of ATM networks.
CRUZ [Cru91a] was the first who published a calculus on networking delays, and LE BOUDEC

[BT01] later developed a more elegant calculus. Based on this, numerous work was done to
calculate delays, buffer requirements and loss probabilities for statistical real-time systems [BH00,
Wat02, KS00a, LWD96, PL01, WXBZ01, WJ03].

4.1.1. Definitions and theorems

In [BT01] LE BOUDEC introduces the following terms and theorems:

Data flows R(t): Data flows are described by means of the cumulative function R(t), defined
as the number of bits seen on a flow in time interval [0,t]. By convention, R(0) = 0.

Set F of wide-sense increasing functions A function f is wide-sense increasing if and
only if f (s)≤ f (t) for all s ≤ t. F denotes the set of wide-sense increasing sequences or functions
such that f (t) = 0 for t < 0.

Arrival Curve: Given a wide-sense increasing function α defined for t ≥ 0 (namely, α ∈ F),
we say that a flow R is constrained by the arrival curve α if and only if for all s ≤ t:

R(t)−R(s) ≤ α(t − s)

min-plus convolution f ⊗g: Let f and g be two functions or sequences of F . The min-plus
convolution of f and g is the function

(f ⊗g)(t) = inf
0≤s≤t

(f (s)+ g(t − s))

17

4.1 Network calculus 4 QOS AT THE HARDWARE LEVEL

min-plus deconvolution f � g: Let f and g be two functions or sequences of F . The min-
plus deconvolution of f by g is the function

(f �g)(t) = sup
u≥0

{ f (t + u)−g(u)} (1)

Service Curve: Consider a system S and a flow through S with input and output function R
and R∗. We say that S offers to the flow a service curve β if and only if β ∈ F and R∗ ≥ R⊗β.

Backlog Bound Assume a flow, constrained by arrival curve α, traverses a system that offers
a service curve β. The backlog R(t)−R∗(t) for all t satisfies:

R(t)−R∗(t) ≤ sup
s≥0

[α(s)−β(s)] (2)

Delay Bound Assume a flow, constrained by arrival curve α, traverses a system that offers a
service curve of β. The virtual delay d(t) for all t satisfies:

d(t) ≤ h(α,β) (3)

with h(α,β) being defined as the horizontal derivation, h = sups δ(s) with δ(s) = inf{τ≥ 0 : α(s)≤
β(τ+ s)}.

Output Bound Assume a flow, constrained by arrival curve α, traverses a system that offers a
service curve of β. The output flow is constrained by the arrival curve

α∗ = α�β (4)

Minimum arrival curve Consider a flow R(t)t≥0. Then

• Function R�R is an arrival curve for the flow.
• For any arrival curve α that constraints the flow, we have: R�R ≤ α.

4.1.2. Application to Switched Ethernet

The system S in the previous section is a network element that delays data flows. In the context of
Switched Ethernet, this corresponds (1) to the NICs’ hardware FIFO queues at the sending nodes,
and, (2) to the demultiplexing logic and an output port of a switch. Both schedule aggregates of
data flows in a FIFO manner. Each such aggregate consists of a number N of flows α1≤i≤N , and is
constrained as a whole by the sum of the flows, described by∑1≤i≤N αi. Note that the data flows,
and as such the aggregate, changes its characteristics when it traverses a network element.

18

4.2 Bounding network delays 4 QOS AT THE HARDWARE LEVEL

If data is available to a NIC’s hardware FIFO queue, the NIC transmits this data the rate C of the
network medium. Thus, the service curve of a NIC is given by the rate function:

βNIC(t) = C · t

If data is available to a switch output port, the switch transmits the data with the rate C of the
network medium. The multiplexing of packets and other internal management adds a bounded
delay to the packets of a flow, which is denoted by tmux. Thus, the service curve of a switch output
port is given by the rate-latency function:

βswitch(t) = C · (t − tmux)+ (5)

with (t − tmux)+ defined to be 0 for t < tmux.

4.2. Bounding network delays

In this section, I give exact delay and buffer bounds formulae for networks with one switch. For
quick delay and buffer estimations, the section also contains the derivation of simple formulae for
bounds that are safe but not necessarily tight.

4.2.1. Definitions

Throughout this dissertation, the following terms refer to times related to frame and packet trans-
mission.

frame-transmission delay (tframe) is the time needed to transmit a frame over the Ethernet
medium. For maximum-sized frames (1514 bytes) tf rame is 121 µs for Fast Ethernet and
12 µs for Gigabit Ethernet 2.

NIC-queueing delay (tNIC) is the time a queued frame sits in the hardware FIFO queue of a
NIC plus the time needed to transmit it finally. The NIC-queueing delays solely depend on
the queue length. Bounding this length results in bounded NIC-queueing delays.

switch-multiplexing delay (tmux) is a switch-specific parameter describing the maximum de-
lay (without queueing effects) after which the switch starts to transmit a frame once it is
received.

queueing delay (tqueue) is the time a queued frame sits in the output queue of a switch plus the
time needed to transmit it finally. With first-in–first-out queues (FIFOs), queueing delays
solely depend on the queue length. Bounding this length results in bounded switch-queueing
delays.

switch delay (tswitch) is the time a frame is delayed at a switch. tswitch = tmux + tqueue.

21514 bytes at 100 MBit/s or 1000 MBit/s considering the framing overhead inter-packet gaps

19

4.2 Bounding network delays 4 QOS AT THE HARDWARE LEVEL

operating-system delay (tos) covers the delays at the nodes due to interrupt handling and
scheduling. It is the sum of the maximum delay at the sender and the maximum delay
at the receiver.

packet-transmission delay (ttrans) is the application-to-application delay of a packet sent
over the network. For two nodes connected by a switch, ttrans = tswitch + tos + tNIC.

transmission-delay bound (tmax) is the upper bound of the packet-transmission delay. This
especially requires knowledge about the maximum queueing delay.

observed transmission delay (tobs) is the measured application-to-application delay of a
packet sent over the network.

4.2.2. Modeling network traffic

For later use, I introduce the definition of a leaky-bucket controller, token-bucket controller and
derived terms as they can for instance be found in [BT01]:

Definition (Leaky-Bucket Controller): A leaky-bucket controller is a device that analyzes the
data on a flow R(t) as follows. There is a pool (bucket) of fluid of size b. The bucket is initially
empty. The bucket has a hole and leaks at a rate of r units of fluid per second when it is not empty.
Data from the flow R(t) has to pour into the bucket an amount of fluid equal to the amount of
data. Data that would cause the bucket to overflow is declared nonconformant, otherwise the data
is declared conformant.

Corollary (Conformance to a leaky-bucket): As an immediate consequence, a flow R(t) is
conformant to a leaky-bucket with parameters (r,b) if R(t) is constrained by the arrival curve
α(t) = rt + b.

It follows from the definition that for a given data flow R(t) with average rate r, Equation 6 gives
the burstiness parameter b, so that R(t) is conforming to a leaky-bucket with parameters (r,b):
The term in the braces is the difference between the amount of data being sent in the interval from
s to t and the bucket replenishment in this interval.

bi = supt>s{R(t)−R(s)− ri · (t − s)} (6)

Definition (Dual leaky-bucket): When a flow traverses two leaky-bucket controllers with param-
eters (r1,b1) and (r2,b2), b1 > b2 and r2 > r1 in a sequence, the flow becomes a dual leaky-bucket
constrained flow with parameters (r1,b1,r2,b2).

Corollary (Arrival curve of a dual leaky-bucket constrained flow): A dual leaky-bucket con-
strained flow with parameters (r1,b1,r2,b2) has the arrival curve α(t) = min(r1t + b1,r2t + b2).
The same holds for a leaky-bucket constrained flow with parameters (r2,b2,r1,b1). The proofs
can be found in [BT01].

Definition (Token-bucket Controller): A token-bucket controller is a device that analyzes the
data on a flow R(t) as follows. There is a pool (bucket) of fluid of size b. The bucket is initially

20

4.2 Bounding network delays 4 QOS AT THE HARDWARE LEVEL

full. Fluid drips into the bucket with a rate of r units of fluid per second when it is not full.
Data from the flow R(t) has to remove from the bucket an amount of fluid equal to the amount of
data. Data that finds not enough fluid in the bucket is declared nonconformant, otherwise the data
is declared conformant.

Remark: The definition of a token-bucket controller is equivalent to the definition of a leaky-
bucket controller given before. Both terms can be found in the literature describing the
same behavior. This section regularly references the work of LE BOUDEC, FIEDLER and
others preferring the term leaky-bucket, and as such uses this term. The model of a token-
bucket controller, however, is more intuitive when describing the implementation and hence
will be used in the later implementation sections. The term conformance to a token-bucket
controller shall be defined accordingly.

The concept of dual leaky-bucket constrained flows is commonly used. In the context of ATM
and the Integrated Services framework of the Internet ATM, the parameter set is called a T-SPEC
(traffic specification). T-SPECs (C,M,rk,bk) describe data flows with a long-term average rate rk,
which can be exceeded for a bounded number of bits bk to tolerate jitter. This (rk,bk) shaping is
typically done actively by a single leaky-bucket shaper. The additional (C,M) constraint is the
result of sending the (rk,bk) shaped flow over a network medium that transmits data with rate C
and has a maximum packet size M. The network medium resembles a (C,M) leaky-bucket shaper.

Note that by definition dual leaky-bucket constrained flows with parameters (r1,b1,r2,b2) are
always single leaky-bucket constrained by both (r1,b1) and (r2,b2). The constraints are upper
bounds, and thus a T-SPEC (C,M,rk,bk) describes a flow more precisely than the single leaky-
bucket constraint (rk,bk). If the T-SPECs describing flows through an Ethernet switch are tight,
tight bounds for delay and buffer usage at the switch can be derived3. Nonetheless, valid network
calculation can also be done by using the simpler form of single leaky-bucket constraints. The use
of single leaky-bucket constraints is common in the literature [LWD96, WJ03], as it easily allows
an analysis of larger networks containing multiple switches. However, omitting the restriction of
the medium results in pessimistic assumptions of the arriving traffic at the network switches, not
giving tight delay and buffer bounds therein.

Consequently, for network calculations in this dissertation I model the data flows arriving at the
switch by T-SPECs. Note that before the end nodes pass their data flows to the network medium,
they are constrained by single leaky-buckets only.

4.2.3. Delay and burstiness increase at NICs

When multiple, independently produced data flows are sent to the NIC of the producing node, the
data flows are delayed and their burstiness increases. Quantitative analyses based on the formal
description of a traffic flow must be aware of this, such as the calculation done at the bandwidth
manager described in Section 6.1 on page 41.

3For a proof see [BT01].

21

4.2 Bounding network delays 4 QOS AT THE HARDWARE LEVEL

In [CEB02], CHOLVI, ECHAGÜE and LE BOUDEC applied the network calculus to the multi-
plexing of multiple leaky-bucket shaped data flows to one physical channel. Equation 7 gives the
resulting burstiness parameters for each flow, if the original flows conform to (rk,b0

k) leaky buck-
ets. Once these flows are transmitted at the network medium, they are constrained by the T-SPECs
(C,M,rk,bk).

bk ≤ b0
k + rk ·

∑ j �=k b0
j

C
(7)

The delay bound for delaying these flows is given by Equation 8, and can be found in [BT01].

dk ≤ ∑i bi

C
(8)

4.2.4. Delay and buffer calculation of switches

Recapitulating Sections 4.1 and 4.2.2, the delay and buffer bounds of an Ethernet switch transmit
port depend

1. on the traffic arriving at the switch for that transmit port, described by its arrival curve α
2. on the availability of the switch to send that data, described by the service curve β.

The arrival curve α is the sum of the arrival curves of the traffic at the receive ports αk, with k
denoting the receive port. αk is described by T-SPEC k with αk(t) = min(Ct + M,rkt + bk).

α(t) =
N

∑
k=1

min{Ct + M,rkt + bk}. (9)

The service curve of the Ethernet switch is described by the rate-latency function:

β(t) = C · (t − tmux)+

Figure 8 shows the arrival curve of a switch with two receive ports and its service curve.

Obviously, the sum of the long term average input rates rk of traffic for one switch transmit port
must not exceed the maximum rate of the network medium, thus the following must must:

N

∑
k=1

rk ≤C (10)

According to Section 4.1, the maximum backlog B is the maximum vertical distance between the
arrival curve α and the service curve β. Let gk denote the time of the inflexion point of arrival
curve αk:

gk =
bk −M
C− rk

(11)

22

4.2 Bounding network delays 4 QOS AT THE HARDWARE LEVEL

[C+r]1

(t)α
β= muxC(t−t)+

t mux

[r +r]1 2

t

[2C]

B

tswitch

gmax

M

Figure 8: Illustration of the arrival curve α(t) (thick line) as the sum of two flows (C,M,r 1,b) and
(C,M,r2,b). The slopes of the 3 parts of α(t) are 2C, C + r1 and r1 + r2.

and let further gmax denote the maximum of all gk:

gmax = maxN
k=1(gk) (12)

As argued in [Loe03a], tmux ≤ gmax in practice. Hence, the maximum vertical distance between α
and β is at gmax and the buffer bound B is

B =
N

∑
k=1

bk +
N

∑
k=1

rk ·gmax −C · (gmax − tmux)

B =
N

∑
k=1

bk −gmax · (C−
N

∑
k=1

rk)+C · tmux (13)

If B exceeds the amount of memory the switch can use for buffering, frame loss may occur. For
reliable hard real-time communication this must be prevented.

According to Equation 10, the second addend in Equation 13 is negative or zero, and hence an
upper bound for the backlog formula is

Best =
N

∑
k=1

bk +C · tmux. (14)

This means, the memory required in the switch can be estimated by the sum of the bursts in the
T-SPECs plus a small fixed amount (C · tmux).

According to Section 4.1, the maximum delay d of a system that offers a service curve β to a flow
that is constrained by an arrival curve α and serviced in FIFO order, is given by the maximum
horizontal deviation between α and β. It is the distance between α and C · (t − tmux) at gmax,
divided by the slope of β, which is C.

Hence, the delay bound is

tswitch =
N

∑
k=1

bk

C
−gmax · (1−

N

∑
k=1

rk

C
)+ tmux (15)

23

4.3 Burstiness increase at the switch 4 QOS AT THE HARDWARE LEVEL

In analogy to Equation 14, the switch delay is also bounded by:

test =
N

∑
k=1

bk

C
+ tmux. (16)

This means, an estimation for the maximum delay of the switch is given by the time needed to
transmit the bursts of the T-SPECs with the ports maximum bandwidth plus the delay imposed by
the electronics of the switch.

LE BOUNDEC has shown in [BT01] that the buffer and delay bounds in Equation 2 and Equation 3
are tight. As I used tight arrival and service curves, Equations 13 and 15 give tight bounds.
If, however, the traffic is described by a single leaky-bucket (r,b), the results are pessimistic.
Equations 14 and 16 coincide with the results obtained in [LWD96, WJ03].

4.3. Burstiness increase at the switch

When data flows with a known T-SPEC characteristic are merged on network elements by aggre-
gate FIFO scheduling, as if they were traversing a switch output port, their burstiness increases.
In contrast to the burstiness increase at the NIC, where the data flows are single leaky-bucket
constrained, the flows at a switch are modeled with dual leaky-buckets constraints. This allows
to give tighter bounds on their scheduling delay, buffer need and burstiness increase, as shown in
the previous section. However, the calculation becomes more complex. In this section, I apply
the work of FIDLER et al [FSK05] to calculate the burstiness increase of data flows constrained
by two leaky-buckets (T-SPECs) when they traverse a switch. Section 6.4.1 uses these results for
predicting the amount of CPU needed to handle arriving data flows at a node.

4.3.1. Theoretical background

In [FSK05], Fidler proves the following theorem and concludes the corollary:

Theorem (Output Bound, Rate-Latency Case) Consider two flows 1 and 2 that are αj
1 and α j

2
upper constrained. Assume these flows are served in FIFO order and in an aggregate manner
by a node j that is characterized by a minimum service curve of the rate-latency type βj(t) =
R j · [t − T]+. Then, the output of flow 1 is αj+1

1 upper constrained according to Equation 17,
where θ is a function of t and itself and has to comply with Equation 18.

α j+1
1 (t) = α j

1(t + θ(t)) (17)

θ(t) =
supv>0[α

j
1(v+ t + θ(t))−α j

1(t + θ(t))+ α j
2(v)−R j · v]

R j + T j (18)

Corollary (Output Bound, Single Leaky Bucket Case) In case of a single leaky bucket con-
strained flow or traffic trunk 1, with rate r1 and burst size bj

1, Equation 18 can be simplified apply-
ing α j

1(v+ t +θ(t))−α j
1(t +θ(t)) = r1 ·v. As an immediate consequence, θ becomes independent

24

4.3 Burstiness increase at the switch 4 QOS AT THE HARDWARE LEVEL

of t. With Equation 17 we find that the output flow 1 is leaky bucket constrained with r1 and bj+1
1

according to Equation 19.
bj+1

1 = α j
1(θ(0)) = bj

1 + r1 ·θ(0) (19)

Equation 18 becomes Equation 20

θ(0) =
supv>0[r1 · v+ α j

2(v)−R j · v]
R j + T j (20)

4.3.2. Application to Switched Ethernet

Equation 19 can be applied immediately to data flows described by T-SPECs that are multiplexed
to an output port of a switch. The node j corresponds to the switch output port, its output rate Rj

to the medium bandwidth C, and its service curve is given by Equation 5.

When calculating the burstiness of one flow i out of N flows R1≤i≤N that are constrained by arrival
curves αk(t) and that are multiplexed together to the switch output port, flow 1 in Fidlers theorem
corresponds to Ri and flow 2 corresponds to the aggregate of all flows Rk with k �= i: α j

1(t) = αi(t)
and α j

2(t) = ∑k �=i αk(t).

Consequently, the flow Ri that traverses the switch becomes R̃i constrained by α̃i(t) = ri · t + b̃i

with b̃i given by Equation 21
b̃i = αi(θi(0)) (21)

θi(0) =
supv>0[ri · v+∑k �=i αk(v)−C · v]

C
+ tmux (22)

Using Equation 10, the sup[...] of Equation 22 is found to be at vi with vi given by the following
equation:

vi = max
k �=i

gk (23)

4.3.3. Remark

The output flow R̃i is described by a single leaky-bucket now. As arrival curves are upper bounds,
this constraint is not necessarily tight.

R̃i traverses the network medium after leaving the switch. The shaping effect of this has already
been considered in the calculation of the switch delay and the calculation of b̃i. As such, R̃i

is constrained by a (C,M) single leaky bucket as well, and the flow arriving at the destination
node conforms to a T-SPEC with parameters (C,M,ri, b̃i). If multiple flows arrive at a destination
node, their aggregate A is bounded by a (C,M) single leaky bucket as well. Consequently, their
aggregate conforms to a T-SPEC with parameters (C,M,∑ j∈A r j,∑ j∈A b̃ j).

25

4.4 Traffic reservation 4 QOS AT THE HARDWARE LEVEL

4.4. Traffic reservation

To prevent overloading the switch, a centralized traffic management is needed. In this section, I
review established traffic management techniques and briefly present the technique used in this
dissertation. Section 6.1 describes the implementation of the traffic management in detail.

4.4.1. Established traffic reservation techniques

To provide QoS guarantees in the context of the Internet, several technologies have been developed
and applied with different success. The integrated services approach IntServ [BCS94] provides
QoS guarantees to data flows based on individual reservations at every traversed router in a larger
network. Networks using the IntServ scheme require data flows to use a fixed route through
the network, once they are established. For reservation management the resource reservation
protocol RSVP [BZB+97] has been defined. The strength of RSVP is to control the admission
and management of data flows in a large network. It is based on a receiver-initiated reservation
process, which forwards reservation requests from the receiver to the direction to the sender, and
the way back. This especially means that all nodes on the path keep status information for every
individual flow. The traffic flows in RSVP are described with T-SPECs.

This dissertation targets hard real-time application-to-application guarantees on a Switched Eth-
ernet network, solving the problems at the operating system level in the end-nodes specific to
Switched Ethernet. For this, I concentrate on networks with one switch. Although the traffic flow
characteristics introduced in Section 4.2.2 fit the RSVP model, RSVP solves a problem orthog-
onal to my target. Therefore, I do not consider using RSVP for traffic flow management in this
dissertation.

Another technology developed for providing QoS guarantees in the Internet is the differentiated
services approach DiffServ [BBC+98]. Its purpose is to overcome the scalability problems related
to the per-flow state in every router in IntServ networks. In contrast to IntServ, DiffServ combines
traffic flows with similar QoS requirements to behavior aggregates, which are managed as a whole
within the network. Individual traffic flows are verified for conformance to a traffic specification
only at the entrance to a DiffServ network and assigned to a behavior aggregate then. Inside the
network, no individual flow information is kept. Thus, in its most general form, DiffServ allows
the routes for the individual packets of a flow to vary. The coarse-grained traffic description
of DiffServ and the missing per-flow state within the network result in pessimistic worst-case
assumptions for the behavior within the network [BT01]. As a consequence, DiffServ results in
lower overall QoS guarantees in comparison to IntServ networks.

As with IntServ, DiffServ solves the problem of managing large networks. DiffServ especially
targets the scalability problems related to the handling of individual flows, and as such solves
problems orthogonal to this dissertation.

4.4.2. Traffic reservation technique for a Switched Ethernet network

The networks I consider in this dissertation consist of one switch and a limited number of nodes
connected to it. As such, the management can be much simpler than the established reservation

26

4.5 Networks with multiple switches 4 QOS AT THE HARDWARE LEVEL

schemes for large distributed systems. Especially, scalability problems do not arise.

The nodes communicate with each other using traffic flows described by T-SPECs and (source-
node, target-node) pairs. Both the number of nodes and the number of traffic flows can change
dynamically. The QoS guarantee provided to real-time traffic flows consists of: the assurance of
data delivery, a delay bound for the delivery of data, and a guaranteed communication bandwidth.
Node communication without QoS needs uses non–real-time data flows. Non–real-time data flows
have traffic characteristics assigned as well, but are not guaranteed a quality of service.

To provide QoS guarantees to real-time traffic flows, the traffic on the network must be managed
by an instance that keeps track of all established flows. Before admitting a new data flow, that
instance must validate that the QoS guarantees of the established traffic flows hold also with the
addition of the new flow, and the potential QoS requirements of the new flow will be met. I will
refer this traffic management instance as bandwidth manager in the following.

The bandwidth manager runs as an application program on one of the nodes at the network. All
nodes that want to establish a new data flow so as to transmit data, connect to the bandwidth man-
ager and ask it to admit the new connection with its particular parameters. Only if the bandwidth
manager successfully verified all QoS guarantees, the node is allowed to communicate using the
new data flow. Section 6.1 describes the bandwidth manager in detail.

4.5. Networks with multiple switches

Although extending the work to networks with multiple switches is not the scope of my disserta-
tion, I will outline the main aspects here.

It is known that the burstiness of flows traversing multiple network elements (switches) increases
with the number of traversed hops and the number of flows joining along path [Cru91b, BT01].
This results in high worst-case packet delays for a moderate number of switches. For a setup of
50 switches connected in a row, WATSON found in [WJ03] an upper delay bound of 400 ms on
Fast Ethernet when a flow with 15 KByte burst size joins the network at every switch. A counter-
measure to the burstiness increase is to reshape the streams at the network elements. Although
there are Ethernet switches providing different forms of traffic shaping, it is not applicable in
general. As such, the scalability of networks solely consisting of Ethernet switches is limited.

A practical solution for larger networks is to use medium-sized Ethernet networks and connect
them by routers that reshape the streams. Reshaping at intermediate nodes has been researched
in detail in the context of ATM and IntServ already. Each medium-sized sub-network would be
managed by its own bandwidth manager then. RSVP could be used here to pass the reservation
information between the bandwidth managers.

For managing medium-sized networks with multiple switches, the formulae of Section 4.2.4 need
to be adapted. The burstiness increase of a traffic flow that is merged with other flows in a switch
must be quantized. For simpler forms of traffic description the theory has been developed many
years ago, for example by CRUZ [Cru91b] and WATSON [Wat02]. For the more complex T-SPEC
traffic description results were published recently by FIDLER [FSK05]. However, the burstiness

27

4.5 Networks with multiple switches 4 QOS AT THE HARDWARE LEVEL

increase is believed by the community to be too complex to be handled in practice. Therefore, in
multiple-router networks the traffic flows are described by single leaky-buckets typically.

With multiple switches the network management must be extended by topology information:
Knowing the exact topology, and hence the route of frames through the network, is crucial for
guaranteeing safe and tight delay bounds.

If network segments with different bandwidths are connected by switches, the formulae of Sec-
tion 4.2.4 become more complicated. The arrival and service curves do not use the same maximum
bandwidth C any more, and the delay and burstiness bounds need to be reevaluated. Recent re-
search analyzed such scenarios carefully [LMS05], although obtaining optimal results becomes
quite complex.

28

5 TRAFFIC SHAPING IN THE NODES

5. Traffic shaping in the nodes

As described in Section 2.1, Ethernet switches have no notion of connections and do no traffic
policing on their own. Hence, nodes connected to a switch must cooperate to ensure that traffic
leaving a node conforms to previously defined T-SPECs. Therefore, all sending nodes apply traffic
shaping to convert potentially highly bursty flows into flows satisfying a desired average data rate
and maximum burstiness the switch can handle (Figure 9).

Shaper

Shaper

Shaper

Shaper

Shaper

Shaper

Switch

Figure 9: Shaping the traffic at the sending nodes.

Traffic shaping is an established technique in networks providing quality of service. It is a common
feature in Internet routers to provide first-class services, mainly for participating in the emerg-
ing voice-over-IP market. Linux provides several traffic shaping algorithms as part of its net-
work QoS framework [LxQ]. Surprisingly, a thorough analysis of deployed routers reveals that
their performance-optimized implementations often fail to produce flows with specified burstiness
bounds [FSK05, LH04a]. This might be caused by the principal trade-off between execution per-
formance and achievable smoothness of the generated flows. In large systems, where first-class
traffic only presents a small fraction of the overall traffic and where many flows are multiplexed to-
gether, rare and short traffic violations are likely to average out. Thus, they are tolerated to achieve
a high overall performance. Furthermore, designing traffic shapers on systems with coarse-grained
timers is a challenging task, and scheduling-related problems are easily overlooked [CKPW99].

This section details the steps necessary to shape traffic on a priority-based, real-time operating
system so as to give hard and tight guarantees on the achievable delays at the network. This section
argues about possible implementations and their integration in the scheduling model of DROPS.
Special care is taken on the quantitative analysis of the generated flows, taking the granularity
of timers and possible scheduling jitters into account. As a result, different traffic shapers are
compared regarding their scheduling needs, the delay induced at the send node and the delay at
the network. Section 6 derives the delay at the destination node.

5.1. Application network model

Applications in a real-time networked environment use the abstraction of a leased line, as this
approach is called in the network community, to describe their communication needs: A leased
line i is a channel with a guaranteed bandwidth ri and a guaranteed maximum delay di, capable of

29

5.2 Traffic shaping implementation aspects 5 TRAFFIC SHAPING IN THE NODES

NIC

data from applications

Connection buffers

Shapers

NIC buffer

(input buffers)

(output buffers)

Figure 10: Multiplexing of multiple shaped connections to one NIC.

transporting messages up to a certain size M. The real-time environment must offer mechanisms
for creating (ri,di,M)-leased lines, and guarantee their properties until they are closed down. As
a consequence, the real-time environment may throttle the data flows of an application: Packets
exceeding the bandwidth of a leased line might be queued and being sent later instead of being
sent immediately.

In the following, I will use the term connection to describe the instance of a leased line inside
an operating system. A connection relates to the operating system internal management data,
end-to-end reservation state and operating system internal resources such as threads handling the
connection.

5.2. Traffic shaping implementation aspects

Figure 10 gives a general idea of traffic shaping at a node: Multiple applications with potentially
different bandwidth requirements and traffic destination nodes put packets into connection buffers
and signal the availability of the packets to connection-specific traffic shapers. After shaping
the data of the individual connections, they multiplex the resulting flows to the network interface
card. Depending on the scheduling model the shapers either periodically look into their connection
buffers or wake up after the client submitted a packet. If packets are available a shaper takes some
of them and moves them to the output buffer of the network card.

Definition: A packet of size ≤ M that is sent by the client of connection i with bandwidth bi is
called conforming if its temporal distance to the previous sent packet is at least M/bi.

Applications in a real-time environment typically experience a scheduling jitter, denoted by Ji. If
a periodic client produces a packet per period, it may produce a packet Ji time units late in one
period, and may produce a packet on time in the next period. It may produce nonconforming
packets accidentally. These nonconforming packets will experience an additional delay of up to Ji
to fit to the leased line model. Thus, a client experiencing a certain scheduling jitter must expect

30

5.2 Traffic shaping implementation aspects 5 TRAFFIC SHAPING IN THE NODES

this scheduling jitter to be added to the delay guaranteed by the network environment. In the
following, I will not consider this client-induced delay any longer, but assume that packets are
conform.

5.2.1. Performance of shapers

There are multiple ways to implement traffic shapers that generate a leaky-bucket–shaped flow of
rate ri. However, the flows may differ in their burstiness bi as a result of the particular shaper
implementation. As outlined in Section 4.2.3f, the burstiness parameter influences the delays of
the other flows at the NIC and at the switch, and hence it is an important performance measure.
Another performance measure is the maximum delay of conforming packets at the shaper.

5.2.2. CPU utilization

Another important parameter of the shaper implementation is its CPU usage and scheduling re-
quirements. As the shaper is run in its own operating-system context (thread), frequent changes
between the applications and the shaper severely influence the CPU usage. As shown in [LH04a],
the CPU utilization is dominated by the number of shaper invocations: A node sending with a
bandwidth of 32 MBit/s used its CPU to 9% with a shaper invoked every 1 ms, but only to 2.9%
when the shaper was called every 10 ms to send larger chunks.

The scheduling priority of a shaper thread derived from its maximum deadline is of importance,
too. When the shaper thread is assigned a high priority to achieve low scheduling delays, other
threads in the system may suffer high scheduling delays.

5.2.3. Shaper versions

In the following sections I will analyze five traffic shaper implementations:

Strictly periodic shaper This most basic form of a traffic shaper runs strictly periodically and
allows one packet to pass in each period.

Periodic shaper with data dependency Similar to the strictly periodic shaper this shaper sends
one packet per invocation. But, instead of a strict period it has a minimal inter-release time.
Whenever a packet is ready in the connection buffer, and the minimal inter-release time has elapsed
since the last invocation, the shaper is started and sends a packet.

Periodic shaper with long periods A straight-forward extension of the periodic shaper that
sends multiple packets per period.

Token-bucket shaper This shaper runs strictly periodically while managing a bucket containing
tokens for sending packets. The bucket is replenished on each invocation by some amount and the
shaper sends up to as much data as there are tokens in the bucket.

Token-bucket shaper for best-effort connections This shaper is similar to the token-bucket
shaper, but waits for packets to decrease the delay the shaper adds to conforming packets.

For each shaper, I will analyze (1) the maximum delay it adds to a conforming packet, and (2) the
burstiness parameter bi of the generated flow.

31

5.3 Strictly periodic shaper 5 TRAFFIC SHAPING IN THE NODES

5.3. Strictly periodic shaper

The straight-forward shaper implementation is a strictly periodic thread that sends up to one packet
per invocation. Listing 2 shows its pseudo-code. Ti denotes the period of the thread and Di denotes
its deadline (Di ≤ Ti).

strictly_periodic_shaper (Ti, Di, M) {
set_periodic (Ti)
while(1) {

p = next_packet () /* nonblocking , returns 0 if no packet available */
if (p!=0) send_packet (p)
next_period ();

}
}

Listing 2: Strictly periodic shaper, one packet per period

To generate a flow with rate ri and packet size M, Ti must be set to

Ti = M/ri (24)

Figure 11 illustrates the maximum delay that is induced by the traffic shaper to a conforming
packet: The traffic shaper is activated early in the first period, and the packet is sent just after this.
In the next period, the traffic shaper is activated as late as possible to just meet the deadline. Thus,
the maximum delay is:

di = Ti + Di (25)

DiiT time
packet injection

traffic shaper activation

Figure 11: Maximum delay of a conforming packet at the strictly periodic traffic shaper.

The maximum burst of the generated flow corresponds to two consecutive packets sent in their
minimum distance. The thread can send a packet up to Di time units after the begin of one period.
The following packet can be send at the beginning of the next period. The minimum distance of
two packets is thus Ti −Di, as illustrated in Figure 12.

32

5.4 Periodic shaper with data dependency 5 TRAFFIC SHAPING IN THE NODES

iT iT
Di iTDi − time

traffic shaper activation

Figure 12: Obtaining the burstiness parameter of the flow generated by the strictly periodic shaper.

According to Equation 6 on page 20, the burstiness parameter of the generated flow can be calcu-
lated as

bi = 2 ·M− (Ti −Di) · ri = 2 ·M−Ti · ri+ Di · ri

bi = M + Di · ri (26)

Thus, the generated flow conforms to a (ri,M+Di ·ri) token-bucket shaper (leaky-bucket shaper).

5.4. Periodic shaper with data dependency

If an application is not executed in-phase with the shaper and thus cannot guarantee that a data
packet is generated immediately before the shaper is activated, the worst-case delay of the strictly
periodic shaper is more than one period. Modifying the shaper to wait until data is available avoids
an out-of-phase client to miss the send operation of the current period (Figure 13). Ti now denotes
the minimal inter-release time of the thread.

Di

iT

Di time

traffic shaper activation

Figure 13: Maximum delay induced by the periodic shaper with data dependency to a conforming packet.

To implement the shaping with data dependency, Fiasco’s minimal inter-release time scheduling
as described at page 11 is used: The shaper waits for a data packet using a next-period IPC.
Whenever a client application sends a packet, and thus answers the next-period IPC of the shaper,
Fiasco releases the shaper thread as soon as possible, but not earlier than Ti time units after the
previous packet transmission to the shaper.

As the traffic shaper thread is guaranteed to be finished within Di time units after getting a con-
forming packet from its client, the maximum delay di that is induced by the traffic shaper is

33

5.5 Strictly periodic shaper with long periods 5 TRAFFIC SHAPING IN THE NODES

di = Di (27)

The burstiness parameter of the generated flow is calculated the same way as for the strictly peri-
odic shaper.

5.5. Strictly periodic shaper with long periods

To lower the CPU load caused by context switches, the period of the traffic-shaper thread can be
increased at the cost of larger bursts and thus larger delays. This modification also favors systems
were the thread period lengths are fixed or harmonic, such as that implementing the current QAS
scheduling model of DROPS.

The naive approach is to modify the strictly periodic shaper to send not just one but up to a certain
number of packets on each invocation. The input parameters to this shaper are the application-
requested rate ri, the desired period Ti and the relative deadline Di. The number of packets that are
allowed to be sent per period is thus

ni = �ri ·Ti/M)	 (28)

It is easy to see that this shaper results in a coarse granularity of possible bandwidth reservations:
The bandwidth granularity is given by one packet that is sent every period:

gi = M/Ti (29)

For Fast Ethernet and a period of Ti=1 ms, the difference between sending n packets of 1514 bytes
per 1ms period and sending n + 1 packets per period accumulates to 12.1 MBit/s or 1/8 of the
overall bandwidth. One way to decrease the coarse bandwidth granularity is to extend the pe-
riod lengths. However, this increases the delay and burstiness bounds obversely. Given these
properties, I do not consider this type of traffic shaper to be used in a dynamic, multi-application
environment.

5.6. Token-bucket shaper

A token-bucket shaper avoids the coarse bandwidth granularity problem identified in the previous
section.

The input parameters to the algorithm are the rate ri, the packet size M, the bucket size Bi, the
deadline Di and the period Ti. The Ti selected for the token-bucket shaper is typically larger than
it is for the shapers from Sections 5.3 and 5.4.

Obtaining the worst-case delay of a conforming packet is done the same way as in Section 5.3,
and thus it is calculated as:

di = Ti + Di (30)

34

5.6 Token-bucket shaper 5 TRAFFIC SHAPING IN THE NODES

token_bucket_shaper (Bi, ri, Ti, Di, M) {
set_periodic (Ti)
level = Bi

while(1) {
p = next_packet () /* nonblocking , returns 0 if no packet available */
if (level < M || p==0) do

{ next_period (); level = min(level + ri*Ti, Bi); }
while (level <M)

if (p)
{ send_packet (p) ; level −= M; }

}
}

Listing 3: Token-bucket shaper

Figure 14 illustrates the burstiness bound of the generated flow: In the first period the maximum
amount of data is sent as late as possible, thus Bi bytes are sent at offset Di within the period. The
following transmission occurs as early as possible in the period, thus at offset 0 Ti · ri bytes are
sent. Consequently, the burstiness parameter is calculated as

bi = Bi + Ti · ri − ri · (Ti −Di)
bi = Bi + ri ·Di (31)

Bi

Ti * ri

Ti * ri

DiBi ri+ *

Di DiTi −
iT iT

time

Figure 14: Obtaining the burstiness parameter of the flow generated by the token-bucket shaper.

Minimum bucket size for the Token-bucket shaper

Apparently, the token bucket must have a minimum size to work properly. If the bucket is too
small, tokens will be thrown away in the replenishment process, although packets for sending are

35

5.7 Token-bucket shaper for best-effort connections 5 TRAFFIC SHAPING IN THE NODES

available. Lost tokens correspond to lost bandwidth, but as long as the input buffer has enough
packets, no tokens must be thrown away.

The bucket must have at least a size that all tokens that may arrive between the blocking of the
shaper (due to missing tokens) and its next activation fit into it. When the shaper blocks, at most
M tokens are in the bucket. At the next period the bucket is replenished by ri ·Ti and this must fit
into it. Thus, the minimum bucket size is

Bi = ri ·Ti + M (32)

5.7. Token-bucket shaper for best-effort connections

The token-bucket shaper discussed in the previous section guarantees an upper bound for packet
delays. This property is sufficient for real-time applications that are more concerned about the
worst case than about the average case. Best-effort applications, however, prefer a good average
case behavior: Considering synchronous protocols such as TFTP, a latency in the order of a mil-
lisecond results in the transfer of about 500 packets per second, limiting the effective bandwidth
to 750 KByte/second independently of the medium capacity. Thus, best-effort applications have a
need for low delays in the average.

A shaper combining the data dependency approach with a token-bucket attains both low delays
in the average and a low CPU consumption for peak load. The shaper waits until client data is
available, replenishes the bucket and transmits this data as long as the bucket contains enough
tokens. If the bucket becomes empty, the shaper waits for a specific amount of time and then
refreshes the bucket.

A shaper for best-effort connections should not rely on CPU reservations, and as such must be
designed to be preemptible. This especially means that the shaper cannot make any assumption
about the actual transmission start times of consecutively send packets, unless it takes timestamps
between the send operations. As a consequence, the best-effort shaper needs to refresh its bucket
after each send packet, in contrast to the real-time token-bucket shaper that can send short packet
bursts and refresh the bucket at the end. The overhead of the best-effort shaper is moderate as long
as the clock for bucket replenishment can efficiently be read.

Listing 4 gives the pseudo-code of the resulting best-effort shaper. The algorithm works periodi-
cally too, but in contrast to the real-time shaper no CPU reservation is done at the kernel. Instead,
the period is used to update the bucket state.

The worst-case delay of a conforming packet is only influenced by the scheduling delay. Thus on
an unloaded system, the delay is small. However, if higher-prioritized threads are ready, they will
be executed by the scheduler, and consequently no upper delay bound can be guaranteed.

Figure 15 illustrates the burstiness bound of the generated flow: Due to scheduling issues, one
packet may be delayed from a previous send operation to point ‘X’. At point ‘X’, the shaper is
scheduled again and realizes that enough time has passed to refill the bucket completely. An
amount of Bi can be sent immediately by the shaper. The following transmissions occur as early
as possible. Thus, the burstiness parameter is calculated as

bi = Bi + M (33)

36

5.8 Comparison 5 TRAFFIC SHAPING IN THE NODES

replenish () {
time = now()
level = min (level + ri * (time − replenish_time), Bi)
replenish_time = time

}
best_effort_shaper (Bi, ri, Ti, M) {

level = Bi

replenish_time = now()
wakeup = replenish_time + Ti

while(1) {
p = next_packet_blocking ()
replenish ()
while (level <M) do

{ wait_until (wakeup); wakeup += Ti; replenish (); }
send_packet (p); level −= M;

}
}

Listing 4: Best-effort shaper

Minimum bucket size for the best-effort shaper

In contrast to the token-bucket shaper for real-time connections, the best-effort shaper is not guar-
anteed to be scheduled within finite time. As such, there is no minimum bucket size ensuring
proper operation, instead there is a tradeoff between the bucket size and the probability of lost
bandwidth. On an unloaded system, the bucket size can be set as with the token-bucket shaper:
Bi = ri ·Ti + M. As the system load increases, the scheduling jitter for the best-effort shaper be-
comes larger, and thus the probability for lost bandwidth. As a countermeasure the bucket can be
enlarged. Unfortunately, a theoretical analysis of the minimum bucket size is near to impossible,
as it heavily depends on the actual behavior of all threads in the system. In practice, however,
this is hardly a problem, as indicated by the evaluation of the L4Linux network-driver stub in
Section 7.4.7.

5.8. Comparison

Table 1 compares the different traffic shapers with respect to scheduling needs—that is, period
and delay—and their resulting burstiness and maximum delay added to conforming packets. An
experimental analysis including the resulting CPU usage is given in Section 7 on page 84ff.

The numerical analysis of example setups using different traffic shapers gives an idea of the influ-
ence of the shapers to the application-to-application delay. Figure 16 shows the assumed network.
All setups consists of five identical nodes sending traffic with 16 MBit/s to a sixth node over Fast

37

5.8 Comparison 5 TRAFFIC SHAPING IN THE NODES

iT

Bi

iT

Ti * ri

Ti * ri

time5 packets sent

M

(1 deferred)
’X’

Figure 15: Obtaining the burstiness parameter of the flow generated by the best-effort shaper.

Shaper Period Deadline TBF: bucket burstiness delay
Ti Di size Bi parameter bi di

strictly periodic M/ri < Ti – M + Di · ri Ti + Di

strictly periodic with data
dependency

≥ M/ri < Ti – M + Di · ri Di

token-bucket arbitrary Ti or less ri ·Ti + M (Ti + Di) · ri + M Ti + Di

best-effort token-bucket arbitrary – ≥ ri ·Ti + M ≥ Ti · ri + 2M (small)

Table 1: Comparison of the traffic-shaper implementations.

Ethernet. tmux is 45 µs as measured in Section 7 for the Fast Ethernet switch. C is 12325 bytes/ms
considering the framing overhead with 1514 byte frames.

Table 2 displays the maximum time needed for a conforming packet to be processed by the spec-
ified traffic shaper, to be sent to the switch, and to be processed by the switch and forwarded to
the destination node. The token-bucket shaper is evaluated with periods of Ti=1 ms and Ti=10 ms
for comparison. The periods of the other shapers are calculated by Equation 24. To compare the
shapers with respect their scheduling demand, they are evaluated with deadlines of Di=200 µs and
Di=Ti.

The resulting numbers illustrate that low scheduling delays and high invocation frequencies result
in moderate networking delays. However, if the scheduling delays increase, for instance due to
other high-priority tasks in the system, or if the invocation frequency of the shapers is decreased
to lower the CPU consumption, the application-to-application delay increases significantly.

Moreover, the traffic shaping on one node also influences the network delay of traffic originating
from other nodes. The tswitch column of Table 2 shows the significant share of the switch delay on
the overall delay. Even if a connection on one node would be shaped with the best possible shaper,
its traffic would still suffer the switch delay induced by the other nodes.

38

5.9 Summary 5 TRAFFIC SHAPING IN THE NODES

Node 1

Node 2

Node 4

Node 3

Node 5
Switch

Node 6

16 MBit/s

16 MBit/s16 MBit/s

16 MBit/s

80 MBit/s

16 MBit/s

Figure 16: Setup for comparing the effect of the different traffic shapers.

Shaper Ti Di bi tswitch di + t f rame + tswitch

Strictly periodic shaper 0.76 ms 0.2 ms 1914 0.81 ms 1.89 ms
0.76 ms 3034 1.25 ms 2.89 ms

Periodic with data dependency 0.76 ms 0.2 ms 1914 0.81 ms 1.13 ms
0.76 ms 3034 1.25 ms 2.12 ms

Token-bucket shaper 1.00 ms 0.2 ms 3914 1.59 ms 2.91 ms
1.0 ms 5514 2.21 ms 4.33 ms

10.00 ms 0.2 ms 21914 8.56 ms 18.88 ms
10.0 ms 41514 16.16 ms 36.28 ms

Table 2: Comparison of the application-to-application delays on Fast Ethernet depending on the traffic
shaper used. C=12325 bytes/ms, M=1514, tmux=45 µs, t f rame=121 µs.

5.9. Summary

The DROPS scheduling models restrict the period lengths of real-time applications to certain val-
ues. The restriction depends on the actual scheduling model used, but it is discrete in all currently
implemented models. This section presented different traffic shaper implementations suited for
DROPS and carefully analyzed the properties of the generated flows. This section also discussed
and compared the scheduling requirements and performance of the shaper implementations. As a
general result, there is a trade-off between a low CPU usage by to the traffic shaping process on
the one hand, and low delays at the Ethernet switch due to smoothly shaped traffic flows on the
other hand.

The token-bucket shaper presented in Section 5.6 was constructed to be used for real-time connec-
tions. The periodic shaper with data dependency, presented in Section 5.4, achieves lower delays
at the cost of increased CPU utilization. It will be used for demanding real-time connections that
require a low delay. Best-effort connections will use the modified version presented in Section 5.7
to meet their need for low delays in the average case.

39

6 IMPLEMENTATION

6. Implementation

This section describes the implementation of Switched-Ethernet–based real-time networking on
DROPS. After deriving the network node architecture I detail the task and thread model, the real-
time and non–real-time traffic classes, the client communication, best-effort send traffic, and the
admission process.

Figure 17 shows the classic network stack architecture. A network device driver is responsible for
the communication with the hardware device. Its API allows to exchange packets of the data link
layer with the IP stack or another network layer protocol. The IP stack is used by applications,
for instance by web servers for TCP/IP communication. In monolithic operating systems both the
device driver and the network stack reside within the kernel. Only one network stack exists in the
whole system.

IP stack

Application

Network Device
Driver

ApplicationApplication session layer

transport layer
network layer

data link layer

Figure 17: Classical network node architecture.

In contrast to this, multi-server operating systems such as DROPS split the network driver and
the network stack into separate entities. L4Linux as one of the DROPS applications uses its own
IP stack but should be able to share the network device with real-time and best-effort DROPS
applications that do not use Linux. As a consequence, there must be a support for multiple IP
stacks in the system, all of them using the same network device.

Further, the real-time guarantees at the network require that all transmitted data conforms to spe-
cific traffic characteristics. To ensure these characteristics, a trustworthy instances at each node
must shape the outgoing traffic of that node.

Figure 18 shows the resulting real-time–capable network-stack architecture.

The RT-Net server is an extended network driver that demultiplexes the network device to mul-
tiple network layer clients. The RT-Net server directly interacts with the network interface card
(NIC). It is responsible for shaping the outgoing traffic accordingly and for policing incoming
traffic to avoid overload situations. It offers connection-oriented packet-based interfaces to its
clients. This allows accounting of transmit traffic and early demultiplexing of received traffic,
for real-time traffic as well as for non–real-time traffic. In detail, the RT-Net Server performs the
following tasks:

• Manage multiple clients and their traffic reservations

40

6.1 Local network manager 6 IMPLEMENTATION

DROPS
IP stack

best−effort
application

DROPS
real−time stack

RT Net server

application
real−time

local network
manager

application
Linux

L4Linux
incl. IP stack

transport layer

Figure 18: DROPS real-time capable network node architecture providing multiple clients of the device
driver. The device driver is extended in its functionality and called a server in DROPS.

• Dispatch received packets to the correct client according to filter criteria
• Shape outgoing traffic according to a prior reservation

The local network manager is a proxy that handles reservation requests of the RT-Net server. The
reservation for the switch must be coordinated among the nodes on the network. This coordination
uses higher-level communication protocols and is therefore separated from the network driver.

The real-time stack is a minimal IP stack providing the UDP/IP transport layer protocol to real-
time applications.

The remainder of this section is organized as follows: After a description of the local network
manager, Section 6.2 on page 42 highlights important design issues for a real-time network stack
for mikrokernel-based systems. Section 6.3 on page 44 describes the send process of the client
and the RT-Net server. The section contains a quantitative CPU analysis of the send path needed
for a CPU reservation. Section 6.4 on page 47 describes how the RT-Net server receives data and
sent packet notifications from the NIC and communicates them to client applications. A quantita-
tive analysis of CPU costs, memory requirements and delay guarantees accompanies the section.
Section 6.5 on page 73 summarizes the quantitative analyses and Table 3 on page 71 recapitulates
the relevant obtained results and their assigned symbols. Section 6.6 on page 74 describes the
process of establishing a new real-time network connection and Section 6.7 on page 76 presents
the resulting real-time client API. Section 6.8 describes the implementation of the non–real-time
paths, that do not give any QoS guarantees, but nonetheless must not block the parallel running
real-time paths.

6.1. Local network manager

The local network manager serves multiple purposes:

It acts as the bandwidth manager described in Section 4.4.2 on page 26 to manage the traffic
flows on the network. Therefore, it keeps track of all established flows specifications and admits
new flows. Each traffic flow is described by a T-SPEC, a (source-node, target-node) pair and a
maximum acceptable network delay. As motivated in Section 6.5.2 on page 73, each traffic flow
is also assigned a maximum burstiness at the switch output. Before admitting a new flow, the

41

6.2 Design issues 6 IMPLEMENTATION

bandwidth manager verifies that the delay and burstiness requirements of the established traffic
flows and the new traffic flow can be met, and that the buffer needs do not exceed the capacity of
the switch. Therefore, the bandwidth manager applies the delay and buffer calculations described
in Section 4. If multiple flows originate from one node, the burstiness parameters in their T-SPECs
are adapted as described in Section 4.2.3 on page 21 before the delay and buffer calculations.
If multiple flows target to the same destination node, their burstiness parameters at the switch
output used for comparing with the maximum tolerated burstiness are increased as described in
Section 4.3.3 on page 25.

The bandwidth management is only activated on one node in the network. I refer to this node
as the master node. At the master node, the local network manager also manages a network-
wide MAC address pool for non–real-time network stacks. As described earlier in this section,
multiple network stacks share the same network device. To demultiplex arriving network packets
to a network stack, each network stack has its own MAC address assigned. For details on multiple
network stacks sharing one NIC, see Section 6.8 on page 77. For details on demultiplexing, see
Section 6.4.1 on page 49.

On all non–master nodes, the local network manager acts as a proxy to the master node. The proxy
forwards bandwidth reservation requests and MAC address requests. For client applications, this
proxy functionality is fully transparent.

Further, the local network manager implements a part of the DROPS real-time stack by manag-
ing the UDP ports used for real-time communication (Section 6.2). Therefore, the local network
manager obtains its own IP address, either by using the DHCP protocol or by explicit configura-
tion. This IP address is used for the proxy communication as well. As part of its real-time stack
functionality, the local network manager also provides an ARP translation of IP addresses to MAC
addresses. This ARP translation is used by the RT-Net server on real-time connection setup. For
details on connection setup, see Section 6.6 on page 74.

A general problem of distributed reservation techniques is the bootstrap problem: For their first
reservation, the non–master nodes need to communicate with the master node. However, this
communication requires an appropriate reservation as well. The bandwidth manager solves this
problem pragmatically by initially reserving a small amount of bandwidth for this first contact.

6.2. Design issues

Before describing the transmission and reception of data in detail, this section discusses main
design issues for implementing a reservation-based, high-performance real-time network stack on
a mikrokernel-based system.

UDP as real-time communication protocol Real-time traffic requires bounded transfer times.
In Section 4.2 I described how this can be achieved at the hardware level using Switched Eth-
ernet technology. The result was reliable packet transmission with bounded transfer times. The
operating system has to perform two tasks: Ensuring that a node does not send more data than
its quantum, and ensuring timeliness in the execution of the applications and of the transfer of
data to the NIC. The higher-level network protocol of real-time applications has to be efficient

42

6.2 Design issues 6 IMPLEMENTATION

and predictable in its execution time. Retransmission because of memory shortage in one of the
network elements or a dynamic bandwidth adaption is not needed in the protocol to guarantee
reliable packet transmission. As such, IP-based UDP is an appropriate communication protocol
upon which real-time applications can build their own application protocol.

Fixed addresses on connection establishment For a proper reservation of switch resources as
described in Section 4, the target node of a connection must be known. For IP-based commu-
nication, the target node is determined by the target IP address. Thus, IP address binding of a
real-time connection must be done at connection establishment. To uniquely identify a connection
at a node, the real-time stack uses its local UDP port. Hence, for reservation purposes at the net-
work stack, the local UDP port is bound at connection establishment as well. As with the BSD
socket interface, the UDP remote port is not specified at connection establishment.

UDP protocol handling at the network driver Encapsulating application data into UDP pack-
ets is a simple and fast operation. It merely requires adding a header and performing a checksum.
Encapsulation is a fast operation too, as the header information is mostly static for packets of one
connection. Extracting the payload of a UDP packet also is fast: verifying the checksum and
stripping the header. Therefore, both encapsulating and extracting of application data can easily
be done within the network driver. No additional IP stack server is needed for client-network
communication. As the consequence, real-time applications communicate directly with the RT-
Net server. For data transmission and reception, they exchange application payload data with the
server, not containing any UDP, IP or MAC headers. As with the BSD socket interface, the UDP
remote port is optionally passed as an additional argument.

Multi-threaded traffic processing For each established real-time connection, the RT-Net
server assures a timely delivery of data within the traffic specifications of the connection. This
especially holds if misbehaving clients try to overuse their respective network connection or try
to hamper the server in other ways. To isolate the network connections with respect to their CPU
usage, they are processed in separate threads at the RT-Net server. By reserving appropriate CPU
quanta for each thread at the kernel, CPU-related interferences between different connections are
avoided as far as possible. Further, the multi-threaded approach permits threads to block indepen-
dently of each other, for instance to wait for client-requests or to apply traffic shaping.

Thread-safe memory management Due to the multi-threaded processing, care must be taken
on the memory management. The parallel threads allocate and deallocate memory for network
packets, and hence the memory management must be thread-safe. To avoid mutual blocking,
the threads use specific memory pools with nonblocking, thread-safe allocator and deallocator
functions, similar to those presented in [Ber93].

Copy avoidance It is widely accepted and shown by multiple publications on inter-address-
space communication interfaces that copy-avoidance is essential for a reasonable throughput be-
tween components [DP93, PDZ00, MKT98]. Using shared memory for communication between
the components is an established technique here. As shown by Pai and Druschel in [PDZ00],
mapping and un-mapping of memory pages are costly operations and zero-copy implementations
using dynamic mappings suffer from performance penalties. On x86-based L4 implementations,
dynamic mapping and un-mapping outperforms copying of data only for block-sizes larger than

43

6.3 Real-time send path 6 IMPLEMENTATION

2–4 KByte, depending on the actual hardware used. In either case, dynamic mapping is no ade-
quate solution for transferring single Ethernet packets with a maximum size of 1.5 KByte between
address spaces.

Event coalescing The costs for transmitting information between address spaces are typically
dominated by the address-space switches, the necessary crossing of kernel/user-level boundaries
and the resulting flushing of the various memory caches.4 By coalescing multiple events, the
overall performance can be increased, although sometimes at the expense of increased delays in
the processing of individual data.

Figure 19 shows the resulting thread structure of the RT-Net server and its communication relations
to relevant real-time components.

threads
application

threads
application

threads
application

service
thread

threads
notifier

− one per connection −

threads
IRQ

− one per interrupt line −

threads
TX

− one per connection − thread
service

Local network manager

thread
network

real−time application real−time application real−time application

RT Net server, including DROPS RT stack

thread
IRQ helper

 interface card
Network

Figure 19: Thread structure of the network driver and real-time applications. The IRQ threads are de-
vice (IRQ-line) specific. The TX-threads perform the per-connection traffic shaping. The per-
connection notifier threads signal their particular clients any received packets and successfully
sent packets.

6.3. Real-time send path

The send path performs the following tasks:

• Reservation of send traffic and CPU resources
• Shaping of the send traffic according to the reservation
• Enqueueing of transmit packets at the NIC
• Isolating connections with respect to their CPU usage

4L1-, L2-, trace-cache, TLB

44

6.3 Real-time send path 6 IMPLEMENTATION

The reservation of send traffic uses the local network manager described in Section 6.1 on con-
nection setup. In this section, I describe the data transmission on an established connection, and
come back to the traffic reservation when detailing the connection setup in Section 6.6.

To isolate connections with respect to their CPU usage, traffic shaping and management is per-
formed in separate threads at the RT-Net server. The send path involves an application thread
within the client application and a per-connection TX thread within the RT-Net server. Each TX
thread shapes the traffic of its connection and enqueues the corresponding network packets at the
NIC.

For transporting the data from the application’s address space to the address space of the RT-Net
server, the application and the server use a connection-specific shared memory region, called the
data area. The data area is managed by a connection-specific ring-buffer shared between the two
instances as well (Figure 20). As the RT-Net server can transmit packets directly out of the data
area, zero-copying is provided for the send path.

payload

payload offset, size
UDP target port

tail

head

offset, size
UDP target port

ring−bufferdata area

payload

payload offset, size
UDP target port

tail

head

offset, size
UDP target port

ring−bufferdata area

RT Net server, including DROPS RT stack

real−time application

Figure 20: Data sharing between the client and the RT-Net server. Each send connection has a shared data
area and a shared ring-buffer attached. The ring-buffer addresses the payload chunks in the data
area.

The following sections describe the client interface and the TX thread in detail. Section 6.3.3
analyzes the TX thread quantitatively to obtain bounds on its resource usage.

6.3.1. Client interface abstraction

The RT-Net library provides multiple functions for the communication between the client and the
RT-Net server. To send a data, the client calls the rt_txdesc(int size) function.5 This function

i) allocates an entry in the shared ring-buffer

5The actual library names are different and prefixed appropriately. To focus on their functionality, I use abbreviated
names throughout this dissertation.

45

6.3 Real-time send path 6 IMPLEMENTATION

ii) allocates a piece of memory of the appropriate size in the data area
iii) writes a descriptor to the piece of memory into the ring-buffer entry
iv) returns a pointer to the descriptor

The client generates its data into the piece of memory and calls the rt_send(desc_t d, int16 port)
function. rt_send() writes the destination UDP port number in the descriptor and marks the de-
scriptor as ready for transmission. Optionally, it notifies the TX thread at the RT-Net server with
an IPC.

rt_txdesc() fails if the client produces its data too fast and all entries of the shared ring-buffer are
occupied. If this happens, the client must wait until some data has been sent by the RT-Net server.
Therefore, the client can use the rt_wait() function, which is described in detail in Section 6.4.3
on page 57. An alternative is to wait for some time, which is appropriate for specific time-driven
client implementations.

If the clients needs to use a write() -like interface, which allows to specify an arbitrary address
for the data to be sent, it can use the rt_write() function. This function combines rt_txdesc() and
rt_send() at the expense of an additional data copy.

6.3.2. Connection-specific TX thread

The actual data transmission is done at the TX thread of the RT-Net server. It examines the ring-
buffer, encapsulates data by prepending the necessary UDP, IP, and MAC headers, performs the
traffic shaping and enqueues the network packets at the NIC. The traffic shaping uses one of the
two algorithms for real-time connections presented in Section 5.9. Which one, will be determined
as part of the connection setup, described in Section 6.6.

Token-bucket shaper When the connection is shaped by a token-bucket shaper, the TX thread
at the RT-Net server periodically checks its ring-buffer for descriptors provided by the client.
If one is found, the data is encapsulated and the token-bucket traffic-shaping is applied: If the
connection’s traffic pattern would exceed the negotiated traffic characteristics, the TX thread waits
for the next period. Immediately after this, the packet is enqueued at the NIC. Note that the client
application can throttle its send traffic by examining the ring-buffer and adapting to the shaping of
the TX thread.

Periodic shaper with data dependency When the connection is shaped with the periodic
shaper with data dependency, the TX thread waits for a wakeup notification from the client. The
waiting is implemented by a next-period receive IPC (Section 2.2.3). The according send IPC is
submitted by the client as part of its rt_send() function. If this IPC is sent too early, the mikroker-
nel delays its delivery according to the scheduling parameters of the TX thread. Once the IPC is
seen by the TX thread, it immediately encapsulates the payload data found using the ring-buffer
and enqueues it at the NIC.

To enqueue data at the NIC, the TX thread calls native Linux driver code that is included in
the RT-Net server. This driver code accesses the NICs hardware registers and must be protected
against concurrent accesses from other threads. Typically, mutual exclusion is achieved by a user-
level semaphore or mutex implementation using L4 IPC between threads. However, as the L4

46

6.4 Real-time notification path 6 IMPLEMENTATION

IPC mechanism is specified and implemented today, it sacrifices the running real-time reservation
of a thread: Under specific priority constellations, IPC send- and call-operations hand the active
timeslice of a thread to the receiver of that IPC. Finally, it is not guaranteed that the receiver has a
chance to hand the timeslice back to the original sender. Therefore, the RT-Net server uses another
approach to avoid concurrent access to the NIC – it disables the processor’s hardware interrupts
during calls to Linux driver code. To ensure a correct response time analysis despite the interrupt
locking, the worst-case execution time of the locked code section is reserved as a uninterruptible
time interval at the user-level CPU admission controller when the RT-Net server is started.

6.3.3. CPU usage of the TX thread

The worst-case per-period CPU usage of the TX thread mainly depends on the number of packets
that can be sent in a period. For the token-bucket shaper, this number is bounded by the bucket
size Bi divided by the packet size Mi. To calculate the actual CPU reservation, a parameter set
cpu is used, which describes the amount of CPU needed to various network-related operations.
This parameter set is obtained by measurements. In detail, the components of cpu relevant for
transmitting a number of packets of a specific size to a given network interface are cpu.tx_base
and cpu.tx_packet. cpu.tx_base quantifies the base amount of CPU needed to schedule the TX
thread and to start it processing the packets. cpu.tx_packet quantifies the per packet costs. As
the TX thread does not access the data, the CPU costs are independent of the size of the packets.
Equation 34 quantifies the amount of CPU for the token-bucket shaper.

CPUtb f
i,tx = cpu.tx_base+ cpu.tx_packet ·

⌈
Bi

Mi

⌉
(34)

The strictly periodic shaper with data dependency sends no more than one packet per period. As
such, the equation simplifies to:

CPU sp
i,tx = cpu.tx_base+ cpu.tx_packet (35)

6.4. Real-time notification path

The notification path performs the following tasks:

1. Demultiplexing of sent packet-events from the NIC to the according connection

2. Notification of successfully sent packets to the client applications

3. Demultiplexing of received packets from the NIC to the according connection

4. Transmission of received payload to the client applications

47

6.4 Real-time notification path 6 IMPLEMENTATION

To isolate connections with respect to their CPU usage, the notification path uses multiple threads
as well. At the RT-Net server the execution of the notification path is distributed to the following
threads:

• A NIC-specific IRQ thread
• A connection-specific notifier thread

The demultiplexing (1 and 3) is done within the NIC-specific IRQ thread. The other tasks (2 and
4) use the connection-specific notifier thread that directly communicates with the corresponding
client applications. Figure 21 shows the architecture of the notification path and the communica-
tion structures between the involved threads.

thread
IRQ

communicates with NIC

thread
IRQ helper

real−time application real−time application

notifier
thread

communicates with client

notifier
thread

communicates with client

packet
empty

packet
empty

packet
received

packet
empty

packet
received

packet
empty

packet
received

RT Net server, including DROPS RT stack

offset, size

offset, size

receive ring−buffer

offset, size

receive ring−buffer

receive data area

 interface card
Network

Figure 21: Architecture of the notification path at the RT-Net server. The receive ring buffers hold the
packets received from the IRQ thread until their data is transmitted to the clients by the notifier
threads.

In contrast to the send path, the receive path cannot be implemented without copying the network
data at least once. As described at the begin of Section 6, each NIC in the system is connected to
multiple network stacks, and consequently receives data for multiple stacks. As todays NICs do
not provide a separation of received data according to higher-level filtering criteria (IP addresses
or UDP/TCP ports), this filtering must be done in software. At the time the host CPU is able to
inspect the data, it has already been copied to the hosts main memory by the NIC. As the client
network stacks use different address spaces, the data must be copied to them.

With the RT-Net server architecture, the NIC places received packets into a data area that is shared
by all connections. The IRQ thread de-multiplexes the packets to the connections and puts ref-
erences to the packets into connection-specific receive rings. The notifier thread finally transmits
the data to the clients and frees the data memory for later reuse.

48

6.4 Real-time notification path 6 IMPLEMENTATION

The following sections describe the IRQ thread and the notifier threads in detail. They analyze the
work of the threads quantitatively to obtain bounds on their resource usage and delay guarantees.

6.4.1. Device-specific IRQ thread

NIC_interrupt(){

flags=NIC_irq_flags();

netif_rx(packet);
if(flags && NIC_RX){

...

}
if(flags && NIC_TX){
dev_kfree_skb(packet);
...

...

Native Linux driver code

RX−callback
netif_rx(){...}

TX−callback
commit_skb(){...}

call IRQ handler
wait for IRQ

IRQ main loop

call deferred IRQ handler

Embedding glue code

while(1)

Figure 22: Interaction between the RT-Net server code and the native network Linux driver code within an
IRQ thread.

In general, interrupt requests (IRQs) are issued by a network device if either a network packet was
received or a network packet scheduled for transmission was successfully sent. Some of the recent
network devices coalesce interrupts, so that an interrupt is raised only if a specific threshold of
sent or received packets is reached or a certain timeout is over.

The IRQ thread handles interrupt requests of its associated network device. Each interrupt re-
quest is passed to native Linux driver code that controls the NIC. This native code determines
the causing event and performs the necessary device-specific operations. Using callbacks to the
embedding glue code, the appropriate RT-Net server code is activated to dispatch the event to the
corresponding connection (Figure 22). After returning from the native Linux driver code, the IRQ
thread calls a deferred interrupt handler. Its purpose is to signal the notifier thread, described in
detail in Section 6.4.3 on page 57.

As with the TX thread, the access to the NIC needs to be synchronized between the threads. The
interrupt locking mechanism is used here as well.

Packets received from the network

In the case of a receive-event the Linux driver code calls a function named netif_rx() with a
pointer to the received packet as argument. The netif_rx() function, still executed in the IRQ
thread of the device, tries to demultiplex the received packet to one of the real-time or best-effort
connections. Listing 5 shows its pseudo-code.

For finding the corresponding real-time connection of a packet, the MAC address of the received
packet is verified, the level 3 protocol type in the MAC header is checked against the IP proto-
col, the level 4 protocol type in the IP header is checked against the UDP protocol and then the

49

6.4 Real-time notification path 6 IMPLEMENTATION

void netif_rx (struct sk_buff *skb){
...
if (memcmp(skb−>data, nic−>mac, ETH_ALEN)!=0 && /* check for MAC address */

memcmp(skb−>data, MAC_BROADCAST, ETH_ALEN)!=0) return;
if (skb−>protocol != htons (ETH_P_IP)) return; /* check for IP protocol */
if (skb−>nh.iph−>protocol != IPPROTO_UDP) return;

/* check for UDP protocol */

for (conn=rx_conns. first (); conn; conn=conn−>next()){ /* lookup connection */
if (skb−>nh.iph−>daddr != conn−>local_ip || /* check for IP address */

skb−>h.uh−>dest !=conn −>local_udp_port){ /* check for UDP address */
continue;

}
conn−>receive(skb);

}

Listing 5: Receive path demultiplexing pseudo code

connection is looked up using the UDP port number. When a connection is found, the packet is
enqueued in the driver-internal connection-specific RX ring by conn->receive(), depicted in
Listing 6.

void Conn:: receive (struct sk_buff *skb){
if (rx_ring_len ==rx_ring_size){ /* RX ring full , drop the packet */

dropped++; return;
}
atomic_inc(&skb−>users); /* increase reference −count of skb */
... put skb into the rx−ring ...

flush_rx_wake_queued(this); /* don’t forget to wakeup the notifier thread */
}

Listing 6: Connection-specific receive function that enqueues a packet into the receive ring

Conn::receive() tries to put the received packet into the connection-specific receive ring.
If this succeeds, the connection calls flush_rx_wake_queued() to add itself to a list of
connections whose notifier thread needs to be signalled. flush_rx_wake_queued() takes
care no to add a connection twice, and it does not add it at all if no client is waiting for received
packets on that connection.

50

6.4 Real-time notification path 6 IMPLEMENTATION

Packets sent to the network

In case of a sent-event, the Linux driver code deletes the structure holding the network packet,
called an sk_buff. Using a delete-callback of that structure, the RT-Net server is notified of the
sent packet. The callback function obtains the connection of the packet from the sk_buff, and adds
it to the list of connections to be signalled, similarly to the receive path.

Signalling the notifier thread

When the native Linux driver code returns from the IRQ handler, a deferred interrupt han-
dler traverses the list of connections to be signalled. For each connection in the list, it calls
flush_rxtx_wake(), whose pseudo-code is given in Listing 7. At the end, the connection
list is cleared.

1 void Conn::flush_rxtx_wake (void){
2 if (flush_waiting && /* avoid other tests if notifier is not waiting */
3 (! timeout || thresholds_over ()) &&
4 test_and_clear_bit (0, &flush_waiting)){
5 l4_ipc_send (flush_thread_id , TIMEOUT_NONE);
6 } }

Listing 7: Waking the notifier threads

Once per IRQ flush_rxtx_wake()wakes the connection-specific notifier thread, if the latter
is waiting for notification (flush_waiting tests at lines 2 and 4). Often, multiple events are
processed in one IRQ handler call, especially if the CPU scheduler defers the IRQ handler exe-
cution. The time needed for managing the list of connections to be notified is significantly less
expensive than a wakeup that includes IPC operations. As such, the reduction to one wakeup per
IRQ reduces the execution time compared to one wakeup per received and sent packet. Setting
flush_waiting is triggered by the notifier thread of a connection, described in Section 6.4.3.

The condition in line 3 of Listing 7 takes care of a potential event coalescing requested by best-
effort clients (described in Section 6.8.2 on page 80). If the client requested a coalescing, the
wakeup is only done if the thresholds of received or sent packets have been crossed.

As the final condition, the flush_waiting flag is checked again and atomically reset. The test
is necessary, as the notifier thread might reset the flag in between, for instance due to an expired
coalescing timeout. In that case, the notifier thread takes care of the necessary tests before waiting
for an update again.

Only if the flush_waiting flag was set, an IPC to the notifier thread is sent that wakes it up.
The timeout of the IPC is 0, thus the IRQ thread cannot block in the case that the notifier thread
just fall out of its IPC but did not reset the flag yet.

51

6.4 Real-time notification path 6 IMPLEMENTATION

CPU usage of the IRQ thread

In contrast to the TX thread, a worst-case CPU bound cannot that easily be derived for the IRQ
thread. For scheduling reasons, the IRQ thread has a period assigned, denoted by TIRQ, and a
relative scheduling deadline, denoted by DIRQ. As with the other real-time threads, the kernel
refreshes the time quantum of the IRQ thread once every TIRQ. To predict the amount of CPU
time needed by the IRQ thread within TIRQ, the number of interrupts within TIRQ must be known
in advance. With no further assumptions to the NIC, one interrupt per received and sent packet
must be assumed.

The maximum number of packets sent within TIRQ results from the transmit reservations. Due to
the scheduling jitter of the TX threads and the a priori unknown ordering of the send packets in the
NIC’s output FIFO, the sent IRQs are not generated in equidistant time intervals but in bursts. The
burstiness of the data flows, and thus the burstiness of the interrupts, has been derived in Section 5
and in Equation 7 at page 22. Equation 36 gives the bound for the number of transmitted bytes
as they are seen by the IRQ thread within TIRQ. The min(C · (TIRQ + DIRQ)+ M, . . .) reflects the
bandwidth limitation by the network medium. Due to scheduling jitter, the IRQ handler may be
deferred by DIRQ, and thus the relevant interval is TIRQ + DIRQ. btx

i is the burstiness of the data
flow i after it is multiplexed to the NIC’s FIFO, as described by Equation 7 at page 22. connstx
denotes the number of transmit connections.

txIRQ = min

[
C · (TIRQ + DIRQ)+ M,

connstx

∑
i=0

rtx
i · (TIRQ + DIRQ)+ btx

i

]
(36)

Assuming that all transmitted packets of connection i have the maximum packet size Mi, the
maximum number of sent notifications the IRQ thread sees in each period is the maximum of all
combinations of sent packets that fit into their connection-specific bound and in the min[C · ...]
bound. The maximum can be calculated as following: Let the connections be ordered, so that
Mi ≤ M j for i < j. Let further t = TIRQ + DIRQ. Connection 0, having the smallest packets, can
cause sent notifications for up to min[C · t +M,rtx0 · t +btx

0] bytes within t, thus the IRQ thread sees
no more than

n0 =
⌈

min[C · t + M,rtx
0 · t + btx

0]
M0

⌉
notifications for connection 0 per period. If connection 0 actually causes that many notifications,
connection 1 can cause notifications for up to min[(C · t + M−n0 ·M0)+,rtx

1 · t + btx
1] bytes, corre-

sponding to n1 packets:

n1 =
⌈

min[(C · t + M−n0 ·M0)+,rtx
1 · t + btx

1]
M1

⌉

Generalized, the number of sent notifications the IRQ thread sees in each period is bound by txIRQ,
given by Equation 37.

txIRQ =
connstx

∑
i=0

ntx
i with ntx

i given by the following equation (37)

52

6.4 Real-time notification path 6 IMPLEMENTATION

ntx
i =

⌈
min[(C · t + M−∑ j<i

j=0 ntx
j ·M j)+,rtx

i · t + btx
i]

Mi

⌉
and t = TIRQ + DIRQ

If the C ·TIRQ + DIRQ term in Equation 36 is neglected, the arrival curve is still valid, though not
tight. The computation however simplifies to

txIRQ =
connstx

∑
i=0

⌊
rtx

i · (TIRQ + DIRQ)+ btx
i

Mi

⌋
+ 1 (38)

If the min in Equation 36 is determined by the ∑connstx
i=0 rtx

i · (TIRQ + DIRQ)+ btx
i term, the bound in

Equation 38 is tight.

Note that in either case a useful upper bound for the number of transmitted packets cannot be
given, if the transmitted packets are arbitrarily small.

For receive interrupts, the situation is similar: The jitter introduced at the switch allows no reliable
prediction of the arrival times of packets at the NIC. It cannot be assumed, that the packets arrive in
equidistant time intervals, but instead they arrive in bursts. Let αNIC denote the arrival curve of the
aggregate A of the flows arriving at the NIC. Section 4.3 at page 24f derived αNIC already – a T-
SPEC with parameters (C,M,∑i∈A rrx

i ,∑i∈A b̃rx
i). rrx

i denotes the average bandwidth of connection
i, and b̃rx

i denotes its burstiness parameter. It was derived by Equation 21 at page 25.

The IRQ thread puts a received packet into the receive ring of the according connection no later
than DIRQ. This means, it adds a delay of up to DIRQ to received packets. Let αIRQ denote the
arrival curve of data as it is seen by the IRQ thread: It is the result of a flow with arrival curve
αNIC that is delayed by up to DIRQ. According to [BT01], αIRQ is thus given by Equation 39.

αIRQ(t) = αNIC(t + DIRQ) (39)

The resulting bound for the number of received bytes that the IRQ thread gets from the NIC within
a time interval of length TIRQ is given by Equation 40.

rxIRQ = min

[
C · (TIRQ + DIRQ)+ M,

connsrx

∑
i=0

rrx
i · (TIRQ + DIRQ)+ b̃rx

i

]
(40)

Analogously to sent notifications, the number of receive notifications the IRQ thread sees in each
period is bound by rxIRQ, given by Equation 41.

rxIRQ =
connsrx

∑
i=0

nrx
i with nrx

i given by the following equation (41)

nrx
i =

⌈
min[(C · t + M−∑ j<i

j=0 nrx
j ·M j)+,rrx

i · t + b̃rx
i]

Mi

⌉
and t = TIRQ + DIRQ

As with the transmit notifications, a simpler bound for the number of received packets by the IRQ
can be derived (42). If the min in Equation 40 is determined by the∑connsrx

i=0 rrx
i ·(TIRQ +DIRQ)+ b̃rx

i ,
the bound is tight.

rxIRQ =
connsrx

∑
i=0

⌊
b̃rx

i + rrx
i · (TIRQ + DIRQ)

Mrx
i

⌋
(42)

53

6.4 Real-time notification path 6 IMPLEMENTATION

To calculate the CPU usage bound, cpu contains components describing the amount of CPU
needed to handle a number of packets by the IRQ thread. In detail, cpu.irq_base quantifies the base
CPU costs needed to schedule the IRQ thread and to start it processing the packets. cpu.irq_tx
quantifies the costs to handle one sent-notification in the IRQ thread. cpu.irq_rx quantifies the
costs to demultiplex one received packet in the IRQ thread. Equation 43 gives the CPU usage
bound of the IRQ thread per period of length TIRQ, denoted by CPUIRQ.

CPUIRQ = (cpu.irq_base+ cpu.irq_tx) · txIRQ +
(cpu.irq_base+ cpu.irq_rx) · rxIRQ (43)

However, this CPU bound has two weaknesses:

(1) It is pessimistic, as it assumes the worst-base burstiness of both received and sent traffic.
In practice, these worst cases are extremely unlikely to happen. As shown in the experimental
evaluation section, the IRQ related base CPU costs are significantly higher than the costs related to
packet handling. If the number of IRQs could be reduced by IRQ coalescing, the CPU reservation
could be reduced significantly. Section 6.4.2 describes the according approach and its costs.

(2) It is optimistic in the sense that all packets send on a connection have the maximum size.
Especially for best-effort connections this does not always hold. Relaxing this assumption, how-
ever, results in an practically unbound number of sent and received packets. The only solution to
this problem is an engineering approach: Reducing the number of IRQs by IRQ coalescing and
obtaining CPU usage bounds by measurements.

Quantitative analysis of the IRQ thread

For a later calculation of the CPU usage and delay at the notifier threads, this section derives the
amount of data that the IRQ thread receives for a specific connection. Let αi,NIC denote the arrival
curve of traffic received for connection i at the NIC. Section 4.3 at page 24f derived αi,NIC already
– a T-SPEC with parameters (C,M,rrx

i , b̃rx
i). Let further αdual

i,rxring denote the arrival curve of the
flow of data that is put into the receive ring of connection i by the IRQ thread: It is the result of a
flow with arrival curve αi,NIC that is delayed by up to DIRQ. Equation 44 gives the result.

αdual
i,rxring(t) = αi,NIC(t + DIRQ) (44)

=
{

min
[
M +C · (t + DIRQ), b̃rx

i + rrx
i · (t + DIRQ)

]
for t > 0

0 for t = 0
(45)

In practice, Equation 45 can be simplified by using a single leaky-bucket arrival curve instead
of αdual

i,rxring(t). This means to neglect the M +C · (...) term in αi,NIC(t). The resulting bound is
still valid, even though it is not tight. Typically however, b̃rx

i is small enough, and the relevant
interval t of the notifier thread is large enough, so that the bounds achieved with the second term
of the min(...) only are sufficiently tight. Equation 46 gives the simplified arrival curve, denoted
by αi,rxring(t), and Figure 23 illustrates it.

54

6.4 Real-time notification path 6 IMPLEMENTATION

αi,rxring(t) ≥ αi,NIC(t + DIRQ)

=
{

b̃rx
i + rrx

i · (t + DIRQ) for t > 0
0 for t = 0

(46)

2*TIRQTIRQ0 time

i
rx+bi

rx~
*rIRQD

T *rIRQ i

Figure 23: Arrival curve αi,rxring of traffic received by the IRQ thread for connection i.

6.4.2. Software-based interrupt coalescing

The IRQ-related context switching costs dominate the CPU costs related to packet reception and
sent packet handing. Reducing the number of interrupts per transmitted and received packets
significantly reduces the worst-case CPU costs related to packet handling.

Although some modern NICs support a interrupt coalescing in hardware, it is not reliable enough
for obtaining tight CPU execution time boundaries: Hardware-based interrupt coalescing has been
implemented to lower the average-case CPU usage, and as thus most implementations do not
guarantee a minimal inter-arrival time of interrupts or guarantee a maximum interrupt load in any
other way. Further, the configuration of the coalescing features differs to a high degree between the
NICs of different vendors, and there is no common interface to control hardware-based interrupt
coalescing.

Instead, I propose a software-based interrupt coalescing by using the minimal inter-release time
scheduling of Fiasco. With this, interrupts are only received and handled at certain minimal timely
distances, the “period” of the IRQ thread TIRQ. Figure 24 shows the relevant changes in the
IRQ main loop. Note that common NICs do not need the IRQ handler to be executed for every
packet. Arriving packets are enqueued into the hardware receive rings further, and packets from
the hardware send ring are send further. As long as these rings do not overflow, the NIC works as
expected. At most NICs these rings are software-controlled, so they can be resized as needed.

The CPU usage bound of the IRQ thread with interrupt coalescing, denoted by CPU
IRQ

IRQ , is given

by Equation 47.

CPU
IRQ

IRQ = cpu.irq_base + cpu.irq_tx · txIRQ + cpu.irq_rx · rxIRQ (47)

The most costly part, the cpu.irq_base only counts once now, as the activation of the IRQ thread
only happens once per period of length TIRQ. A disadvantage of coalescing interrupts however is
that notifications of received and sent packets are deferred additionally by up to one period, TIRQ.

55

6.4 Real-time notification path 6 IMPLEMENTATION

void IRQ_main_loop(int nr){
l4_rt_begin_strictly_periodic (...);

while(1){
l4_ipc_receive (irq_kernel_id (nr),

TIMEOUT_INF);

irq_handler (nr);
irq_def_handler (nr);

} }

⇒

void IRQ_main_loop_coal(int nr){
l4_rt_begin_minimal_periodic (...);
while(1){

l4_ipc_receive (l4_nirq_kernel_id (nr),
TIMEOUT_INF,
NEXT_PERIOD);

irq_handler (nr);
irq_def_handler (nr);

} }

Figure 24: Using minimal inter-release time scheduling for the IRQ thread to lower its invocation fre-
quency. The NEXT_PERIOD flag given to the IPC operation by IRQ_main_loop_coal makes
the IPC a next-period IPC. For the concept of next-period IPCs, see Section 2.2.3.

Quantitative analysis of the IRQ thread with software-based interrupt coalescing

With the software-based interrupt coalescing, the IRQ thread signals the notifier up to once per
TIRQ. Figure 25 shows the worst-case, with respect to burstiness, of the amount of data that is put
into the receive ring of the connection by the IRQ thread.

DIRQ
TIRQ 2*TIRQ 3*TIRQ

+D(TIRQ IRQ i
rx)*r +bi

rx~

time

T *r

T *r

IRQ

IRQ

0

i

i

Figure 25: Bound Ri(t) of traffic received by the IRQ thread for connection i: At the first time, the IRQ
thread is activated as early as possible, at time 0. Due to scheduling jitter, its next invocation is
at time TIRQ +DIRQ. At time TIRQ +DIRQ, it receives up to (TIRQ +DIRQ ·ri)+ b̃i) bytes from the
NIC. At later invocations, not earlier than (n + 2) ·TIRQ, the amount of data received is bound
by TIRQ · r.

Let α
IRQ

i,rxring(t) denote the arrival curve of the flow Ri(t) of data that is put into the receive ring

of connection i by the IRQ thread using interrupt coalescing. By applying self-deconvolution
as described in Section 4.1 on page 17 to Ri(t), α
IRQ

i,rxring(t) is obtained as α
IRQ

i,rxring(t) = R(t)�

R(t). Equation 48 gives the bound for the amount of data that can be put into the receive ring of
connection i by the IRQ thread within a time interval of length t. Figure 26 shows the resulting
arrival curve.

α
IRQ

i,rxring(t) =

{
rx
IRQ

i,IRQ +
⌊

t+DIRQ

TIRQ

⌋
· rrx

i ·TIRQ t > 0

0 t = 0
(48)

56

6.4 Real-time notification path 6 IMPLEMENTATION

+D(TIRQ IRQ i
rx)*r +bi

rx~

T *r

T *r

IRQ

IRQ

i

i

time0 IRQ−D2TTIRQ−DIRQ IRQ

Figure 26: Arrival curve αi,rxring of traffic received by the IRQ thread with interrupt coalescing for the
receive ring of connection i.

with rx
IRQ

i,IRQ given by:

rx
IRQ

i,IRQ = (TIRQ + DIRQ) · rrx

i + b̃rx
i (49)

Summarizing, the minimal inter-release time scheduling provides an effective method to bound
the interrupt-related CPU load, without the need of specific hardware support. The CPU cost is
dominated by the IRQ handler activation, whereas the actual number of transmitted or received
packets is less important to the overall CPU time. Measurements quantifying the CPU usage of
both IRQ scheduling methods depending on the offered load are presented in Section 7.4.3 on
page 95ff and Section 7.4.4 on page 100ff.

6.4.3. Connection-specific notifier thread

Each connection has its own notifier thread that performs the operations that do not need to be done
in the IRQ thread. This mainly includes the client interaction and connection-related memory
management. As with the send threads, the multi-threaded architecture avoids a CPU-related
interference of different connections as far as possible.

Client interface

The notification path, from a client side view, offers the functionality to receive data on a connec-
tion and to get notified about any packets that were successfully sent to the network. As argued
in Section 6.4 on page 47, data received from the network must be copied to the client. The most
flexible copying solution for the client is an interface that allows it to specify memory locations in
its own address space for the placement of received network data. With indirect string IPCs the L4
IPC mechanisms provide an appropriate solution: Indirect string IPCs copy data from one address
space into another to locations specified by the receiver of the IPC. This allows a read() -like inter-
face that offers the biggest flexibility for client-program construction. As such, the notifier thread
uses indirect string IPCs to transmit received network data from the RT-Net server to a client.

In the following, I use the term event to describe received data packets (receive event) and sent
packets (sent event) to be signalled to the client by the notifier thread. To obtain events, the client
calls the rt_wait() function. This function sends an request IPC to the notifier thread and waits for
a reply IPC.

57

6.4 Real-time notification path 6 IMPLEMENTATION

The request contains the following information:

• if the client is interested in sent events
• the maximum number of received packets the client is going to accept in the requests answer.

If the does not want to receive data, for example because it is not interested in receive events,
it specifies 0 here.

• if the client is willing to wait (block) for any of the requested events if none of them are
available at the time of the request

If the client specified not to block on events, or if any of the requested events are available, the
notifier thread replies immediately with an IPC. Otherwise, it delays the reply until at least one of
the requested events becomes available.

The number of received network packets in each reply IPC is limited to 31 by the current L4 API.
The client may limit this number further, for instance to keep its own request processing simple.
Note that a reply may contain no received packets at all, albeit the client requested receive events
in blocking mode, if sent events are to be signalled.

Sent events are coalesced by the notifier thread in the sense that a client only receives information
whether any packets have been sent since its previous request or not. The client can obtain detailed
information about which packets have been sent by inspecting the send ring of the connection.

IRQ
thread

notifier
thread

thread
IRQ helper

application
thread

1. Client request

3. IRQ wakeup 2. notifier waiting

real−time application

RT Net server

contains received data
4. Request reply

Figure 27: IPC communication structure of the connection-specific notifier thread.

Outer server loop of the notifier thread

Listing 8 shows the pseudo-code of the notifier threads outer client request processing loop. It is a
classical server-loop that tries to combine replies to requests and the reception of new requests into
one system call (line 6). If the current request requires to wait for the arrival of new events, thus
it is a blocking operation, new events are obtained by calling flush_wait_data() in line 5.

58

6.4 Real-time notification path 6 IMPLEMENTATION

For nonblocking requests, the reply in line 6 may contain neither received data packets nor sent
notifications.

1 void Conn:: notifier (void){
2 while(1){
3 flush_wait_client (& client , &request); /* await client request */
4 do{
5 if (request . wait) flush_wait_data (); /* obtain data */
6 }while(flush_wake_client (& client , &request)==0); /* answer & get new request */
7 } }

Listing 8: Connection-specific notifier thread

Waiting for events from the IRQ thread

flush_wait_data() waits for new events from the IRQ thread, or, if events are present al-
ready, returns immediately. Its pseudo-code is given in Listing 9.

Line 4 waits for a notification from the IRQ thread. Therefore, flush_wait_data() atom-
ically sends an IPC to the IRQ helper thread and waits for a reply. The helper thread isolates
the notifier thread and the IRQ thread with respect to real-time reservations and allows an asyn-
chronous signalling between the two. As its need is very specific to the L4 mikrokernel and the
used Fiasco implementation, a discussion would be out of scope here. The main arguments are
described in [LRH01].

Line 9 of flush_wait_data() tests whether the received IPC is a wakeup-IPC from either
the IRQ thread or the IRQ helper thread. Line 10 checks for a new client request that might have
been received instead of an IPC from the IRQ thread. Clients may abort and resend their requests
anytime, and this must be taken care of by notifier thread whenever it blocks in an IPC.

Notifying the client

When data has to be delivered to the client, or the client has to be informed that no data is avail-
able, the notifier thread calls flush_wake_client(). Its pseudo-code is given in Listing 10.
flush_wake_client)() replies to the current client request and, within the same system
call, waits for the next request.

Line 3 resets the counter holding the number of successfully transmitted packets to be signalled
to the client. This counter is increased by the IRQ thread and used by the data_avail()
and thresholds_over() functions. The fill_client_msgbuffer() function called
at line 4 fills a message buffer structure. At line 5, this message buffer is used to transfer up to
31 received network packets from the address space of the RT-Net server into the address space
of the client. If no messages are to be delivered, the IPC at line 5 becomes a short IPC, which is

59

6.4 Real-time notification path 6 IMPLEMENTATION

1 void Conn:: flush_wait_data (void){
2 while(1){
3 if ((avail = data_avail ())) { return; }
4 err = ipc_reply_and_wait (irq_signal_thread , /* IRQ helper thread */
5 this , /* pass connection */
6 &sender, &dw0, /* sender & param of new request */
7 TIMEOUT_SEND_RECV); /* blocking IPC */
8 if (is_no_error (err) &&
9 l4_task_equal (sender , irq_thread)) continue;

10 if (is_no_error (err) && l4_task_equal(sender , client)){
11 client_req .v=dw0; /* new client −request. */
12 } } }

Listing 9: Waiting for data from the IRQ thread

processed faster than a long IPC containing messages by the Fiasco mikrokernel. The reply is sent
nonblocking to prevent a starvation of the notifier thread due to an aborted client request.

The IPC system call also waits for incoming new requests. Line 9 verifies that the new request
was sent from the task of the client to avoid misusing the connection by other applications.

Line 13 removes the packets that have been successfully transmitted to the client from the receive
ring shared between the IRQ thread and the notifier thread. This involves basic FIFO operations
and thread-safe, nonblocking memory de-allocation. I implemented both with lock-free linked
lists as described in [Val95].

Client models

The following sections quantitatively analyze the resource usage of the notifier thread. Therefore,
they discriminate two client models: (1) the blocking client model, where clients are assumed to
issue blocking requests, and (2) the polling client model, where clients regularly poll for events
using nonblocking requests.

6.4.4. Blocking client model

The blocking client model assumes a client that receives data from the notifier thread in the fol-
lowing manner: The client receives up to ni,client bytes from the notifier thread no later than Di,client

time units after the IRQ thread has put a packet into the receive ring. As long as the receive ring
of the connection is not empty, the client sends further requests and receives up to ni,client bytes
from the notifier thread at least every Di,client time units. In addition to this, the client may request
for sent events.

60

6.4 Real-time notification path 6 IMPLEMENTATION

1 int Conn:: flush_wake_client (l4_threadid_t * client , request_t *request){
2 ...
3 tx_committed = 0; /* reset committed tx counter */
4 len = fill_client_msgbuffer (&msg); /* create msg−buffer to be sent to client */
5 err = l4_ipc_reply_and_wait (* client , msg, /* send message to client */
6 &thread, request , /* receive new request */
7 TIMEOUT_RECV); /* do not block in reply */
8 if (is_send_error (err)) return err ;
9 if (is_no_error (err) && l4_task_equal(thread , * client)){

10 * client = thread ; /* store client thread for later response */
11 } else err = 1;
12

13 ... remove len packets from the rx ring−buffer ...
14 return err ; /* 0 if no error */
15 }

Listing 10: Transmitting data to the client

To implement this model, a real-time thread with a relative scheduling deadline of Di,client (the
client thread) and a priority lower than that of the RT-Net server periodically sends blocking re-
ceive requests to the notifier thread. Optionally, it combines these requests with sent requests. The
client threads scheduling period Ti,client is somewhat arbitrary, although it determines the CPU
reservation Ci,client , and therefore influences Di,client as well: Ci,client results from the amount of
traffic the client thread needs to request and process within Ti,client : rtx

i ·Ti,client for transmit data
and rrx

i ·Ti,client for receive data. Due to response-time analysis, it is ensured that within Di,client the
client (1) is scheduled, and (2) can request and process all traffic it made its CPU reservation for,
given that enough data is available at the RT-Net server. If less data is available, the client thread
has enough CPU time left to start a next iteration to wait for and to process the further data that
may be signalled in the current period. Again, it will execute its request processing within Di,client .
A lower bound for ni,client is given by Equation 50.

ni,client ≥
⌈

rrx
i ·Di,client

Mi

⌉
·Mi (50)

As long as the receive ring is not empty, the client receives ni,client bytes at least every Di,client time
units, corresponding to a rate of at least rrx

i .

CPU usage of the notifier thread with blocking client model

The CPU usage bound of the notifier thread depends
i) on the number of signalled events and the amount of data to be transmitted to the client per

scheduling period of the notifier thread, and
ii) on the number of invocations due to the client application.

61

6.4 Real-time notification path 6 IMPLEMENTATION

The worst-case scenario with respect to CPU usage of the notifier thread is given by a client
issuing one request per sent packet and one request per received packet. For scheduling reasons,
the notifier thread has a period assigned, denoted by Ti,noti f y, and a relative scheduling deadline,
denoted by Di,noti f y.

The amount of sent and received traffic signalled by the notifier thread to a client within Ti,noti f y is
calculated analogously to Section 6.4.1 (non–IRQ coalescing) and Section 6.4.2 (IRQ coalescing).

For the noncoalescing IRQ thread, the signalled transmit traffic is derived from Equation 36 on
page 52. The time interval however changes from TIRQ to Ti,noti f y. Further, the “history” from a
previous period, expressed by DIRQ · rtx

i in Equation 36 on page 52, is additionally bounded by
Mtx

i : Multiple packets that were sent in the past are only signalled once as a whole by the notifier
thread. Equation 51 gives the bound of the amount of sent traffic signalled by the notifier thread
to a client within Ti,noti f y. txi,noti f y denotes the bound.

txi,noti f y = Ti,noti f y · rtx
i + min(Mtx

i ,DIRQ · rtx
i)+ b̃tx

i (51)

The corresponding number of packets, denoted by txi,noti f y, is given by Equation 52. Note that as
with the IRQ thread, a useful bound cannot be given, if the packets of the connection are arbitrarily
small.

txi,noti f y =
⌊

txi,noti f y

Mtx
i

⌋
(52)

The amount of received traffic signalled by the notifier thread to a client within Ti,noti f y depends
on the data in the receive ring at the begin of the time interval and the amount of traffic the
IRQ thread puts into the receive ring within Ti,noti f y. The data in the receive ring at the begin
is bound by the length of the receive ring rxringi itself. The data additionally put in is bounded
by αi,rxring(Ti,noti f y), given by Equation 46 on page 55. Equation 53 gives the resulting bound,
denoted by rxi,noti f y.

rxi,noti f y = rxringi + αi,rxring(Ti,noti f y)
= rxringi + b̃rx

i + rrx
i · (Ti,noti f y + DIRQ) (53)

The corresponding number of packets, denoted by rxi,noti f y is given by Equation 54.

rxi,noti f y =
⌊

rxi,noti f y

Mrx
i

⌋
(54)

With cpu.noti f y_base denoting the base CPU costs of a client request, cpu.noti f y_rx denoting
the base CPU costs per received packet, cpu.noti f y_rx_byte denoting the CPU costs per byte to
copy a received packet to the client and cpu.noti f y_tx denoting the CPU costs per sent packet, the
bound for CPU reservation at the kernel is given by Equation 55.

CPUi,noti f y = cpu.noti f y_base · (txi,noti f y + rxi,noti f y)+
cpu.noti f y_tx · txi,noti f y +
(cpu.noti f y_rx+ cpu.noti f y_rx_bytes ·Mrx

i) · rxi,noti f y (55)

62

6.4 Real-time notification path 6 IMPLEMENTATION

Although the client could cause a higher CPU consumption at the notifier thread through endless
polling, it is of no practical use: The notifications would not be received any faster. Nonetheless,
the CPU usage of the notifier thread is bounded by the kernel according to the CPU reservation at
connection setup. As such, a demanding client only effects its own connection.

The bounds for the coalescing IRQ thread reflect the larger bursts introduced by the IRQ thread
due to its changed scheduling policy. For signalled transmit traffic, there is no real difference in
practice: Multiple packets sent in the past are only signalled once as a whole. Equation 56 gives
the bound, denoted by tx
IRQ

i,noti f y, of the amount of sent traffic signalled by the notifier thread to a

client within Ti,noti f y. The corresponding bound for the number of packets, denoted by tx
IRQ

i,noti f y, is

given by Equation 57.

tx
IRQ

i,noti f y = Ti,noti f y · rtx

i + min(Mtx
i ,(TIRQ + DIRQ) · rtx

i)+ b̃tx
i (56)

tx
IRQ

i,noti f y =

⌊
tx
IRQ

i,noti f y

Mtx
i

⌋
(57)

The calculation of the bound for the amount of signalled received traffic uses α
IRQ

i,rxring instead of

αi,rxring. The calculation also takes a changed receive ring size into account, which is calculated

later in this section. The traffic bound, denoted by rx
IRQ

i,noti f y, is given by Equation 58. The corre-

sponding number of packets, denoted by rx
IRQ

i,noti f y if given by Equation 59.

rx
IRQ

i,noti f y = rxring
IRQ

i + α
IRQ

i,rxring(Ti,noti f y)

= rxring
IRQ

i + b̃rx

i + rrx
i · (TIRQ + DIRQ)+

⌊
Ti,noti f y + DIRQ

TIRQ

⌋
· rrx

i ·TIRQ

= rxring
IRQ

i + b̃rx

i + rrx
i ·

(⌊
Ti,noti f y + TIRQ + DIRQ

TIRQ

⌋
·TIRQ + DIRQ

)
(58)

rx
IRQ

i,noti f y =

⌊
rx
IRQ

i,noti f y

Mrx
i

⌋
(59)

The bound for CPU reservation at the kernel, denoted by CPU
IRQ

i,noti f y is given by Equation 60.

CPU
IRQ

i,noti f y = cpu.noti f y_base · (tx
IRQ

i,noti f y + rx
IRQ

i,noti f y)+

cpu.noti f y_tx · tx
IRQ

i,noti f y +

(cpu.noti f y_rx+ cpu.noti f y_rx_bytes ·Mrx
i) · rx
IRQ

i,noti f y (60)

63

6.4 Real-time notification path 6 IMPLEMENTATION

Receive ring size and notifier delay with the blocking client model

The receive ring of a connection i must be large enough to compensate the jitter of the received
traffic and the scheduling jitter of the threads of the receive path – the IRQ thread, the notifier
thread and the client thread. With the exception of the client thread, all relevant behavior has been
defined so far.

At the begin of this section on page 60 the client behavior has been defined. To formally describe
the client, I apply the concept of a service curve and model the data received by the client with a
service curve, denoted by βblock

i,client . Its derivation is done analogously to [BT01]. Equation 61 gives
the service curve.

βblock
i,client(t) =

⌊
t

Di,client

⌋
·ni,client (61)

Using the arrival and the service curves of the receive ring, its worst-case size bound can be
calculated. The delay due to buffering and processing by the notifier thread and the client thread
can be calculated as well. The arrival curve is given by αi,rxring(t) and αcoal

i,rxring(t), respectively.
The service curve is βblock

i,client(t).

For the noncoalescing IRQ thread, the arrival curve is given by αi,rxring(t), defined by Equa-
tion 46 on page 55. This curve conforms to a leaky bucket with bucket size b̃rx

i + rrx
i ·DIRQ and

rate rrx
i . Figure 28 shows the arrival and service curves of a connection i.

0

~

2DD

replacement service curve

time

service curve
receive ring size bound

arrival curve

n

delay bound
*r

i,clienti,client

i,client

i
rx

IRQD i
rx+b

Figure 28: Arrival curve of IRQ thread with the clients service curve. To obtain the delay and receive ring
size bound, the service curve is replaced by a rate-latency function.

According to Equation 2 on page 18, the buffer bound of a system with service curve βblock
i,client(t)

being traversed by a flow with arrival curve αi,rxring(t) is given by sups≥0[αi,rxring(s)−βblock
i,client(s)].

Thus the receive ring size is given by Equation 62.

rxringi = b̃rx
i + rrx

i · (DIRQ + Di,client) (62)

According to Equation 3 on page 18, the delay bound of a system with service curve βblock
i,client(t)

being traversed by a flow with arrival curve αi,rxring(t) is given by sups[inf{τ ≥ 0 : αi,rxring(τ) ≤

64

6.4 Real-time notification path 6 IMPLEMENTATION

βblock
i,client(τ+ s)}]. Let drx,n>

i,client denote the delay bound for the case that ni,client > αi,rxring(Di,client). It

is given by Equation 63 6.
drx,n>

i,client = Di,client (63)

If ni,client ≤ αi,rxring(Di,client), finding the bound is more complicated. To ease the calculation,
I replace the service curve βblock

i,client(t) by its lower-bound rate-latency curve βR,T with rate R =
ni,client/Di,client and latency T = Di,client . This replacement is valid, as a system that offers a service
curve γ offers a service curve γ′ ≤ γ also. If, however, βblock

i,client(t) is larger than αi,rxring(t) for some
t, the replacement increases the delay bound. To obtain a result that can be expressed by a simple
formula, I use the rate-latency service curve to obtain a result that is a safe but not necessarily tight
bound.

The delay bound d of a system with service curve β(t) = R · (t −T)+ traversed by a flow with a
leaky-bucket arrival curve α(t) = b + r · t is given in [BT01] as d = T + b/R. Let drx,n<

i,client denote
the delay bound for packets until they are processed by the client after being put into the receive
ring if ni,client ≤ αi,rxring(Di,client). The bound is given by Equation 64.

drx,n<
i,client = Di,client +

(
b̃rx

i + rrx
i ·DIRQ

) Di,client

ni,client
(64)

In the pathological case, the delay bound as given by Equation 64 is too pessimistic by Di,client

due to the service curve replacement. In the typical case, where rrx
i is in the same order as

ni,client/Di,client , the difference is much smaller. If rrx
i = ni,client/Di,client , the bound given by Equa-

tion 64 is even tight.

With the coalescing IRQ thread, the arrival curve is given by α
IRQ

i,rxring(t), defined by Equation 48

on page 56. In contrast to αi,rxring(t), α
IRQ

i,rxring(t) is not a leaky-bucket constraint, which aggravates

the calculation of tight bounds. If ni,client ≥ α
IRQ

i,rxring(Di,client), the derivation in Section A.1 on

page A-1 can be used and the following buffer and delay bounds, denoted by rxring
IRQ
,n>
i and

drx,
IRQ
,n>
i,client , are found:

rxring
IRQ
,n>
i = b̃rx

i + rrx
i ·

(
TIRQ + DIRQ +

⌊
Di,client + DIRQ

TIRQ

⌋
·TIRQ

)
(65)

≤ b̃rx
i + rrx

i · (TIRQ + 2 ·DIRQ + Di,client)

drx,
IRQ
,n>
i,client = Di,client (66)

To obtain results that can be expressed by simple formulas for the case that ni,client <

α
IRQ

i,rxring(Di,client), I replace the arrival curve α
IRQ

i,rxring(t) by its upper-bound leaky-bucket curve αb,rrx
i

with the same long-term average rate rrx
i . This replacement is valid, as a flow that has an arrival

curve α(t) has also an arrival curve α′(t) ≥ α(t). To obtain b, it must especially hold:

αb,rrx
i
(TIRQ −DIRQ) = α
IRQ

i,rxring(TIRQ −DIRQ)

b+ rrx
i · (TIRQ −DIRQ) = (TIRQ + DIRQ) · rrx

i + b̃rx
i + rrx

i ·TIRQ

b = (TIRQ + 2 ·DIRQ) · rrx
i + b̃rx

i

6The proof uses the fact that ∀t > 0 : αi,rxring(t +Di,client) ≤ αi,rxring(t)+ni,client with ni,client ≥ rrx
i ·Di,client .

65

6.4 Real-time notification path 6 IMPLEMENTATION

As with the noncoalescing IRQ thread, I replace the service curve βblock
i,client(t) by its lower-bound

rate-latency curve βR,T with rate R = ni,client/Di,client and latency T = Di,client . Figure 29 shows
the arrival curve, the service curve and their replacements for a connection i if the IRQ thread
coalesces interrupts.

0

i i
~

IRQ IRQIRQIRQ

i,client

IRQ
rx
i

rxrx
IRQ

i,client i,client

IRQ

replacenent arrival curve

arrival curve
receive ring size bound

replacement service curve

service curve

time

delay bound

n

T −D 2T −D

D 2D

T *r

+b(T +D)*r

Figure 29: Arrival curve of the coalescing IRQ thread with the blocking clients service curve and their
replacements.

According to [BT01], the buffer bound for a system with service curve β(t) = R ·(r−T)+ traversed
by a flow with a leaky-bucket arrival curve α(t) = b+ r · t is B = b+ r ·T . Hence, the buffer bound
for the receive ring, denoted by rxring
IRQ
,n<

i is given by Equation 67.

rxring
IRQ
,n<
i = b̃rx

i + rrx
i · (TIRQ + 2 ·DIRQ + Di,client) (67)

The derivation of the delay bound for the coalescing IRQ thread, denoted by drx,
IRQ
,n<
i,client , is similar

to that of the noncoalescing IRQ thread. Equation 68 gives the result.

drx,
IRQ
,n<
i,client = Di,client +

(
b̃rx

i + rrx
i · (TIRQ + 2 ·DIRQ)

) Di,client

ni,client
(68)

6.4.5. Polling client model

The application model of a polling client is a strictly periodic client that receives packets from
the notifier thread but does not block if no data is available. Let Ti,client denote its period length
and Di,client its relative scheduling deadline, Di,client <Ti,client . Figure 30 illustrates the application
model: Once in each period, the client issues a burst of requests to receive packets from the notifier
thread.

In contrast to receive notifications, sent notifications are not needed with a periodic client: If the
client produces its data according to the negotiated rate, its transmit buffer is guaranteed to be
emptied in time. If, however, the client tries to transmit more data, it will notify a full transmit
ring, and has to poll for an empty transmit ring element in the next period.

66

6.4 Real-time notification path 6 IMPLEMENTATION

time
0

Request burst by the client

2T 3TT Di,client i,client i,client i,client

Figure 30: Application model of the client with coalescing notifier thread.

The advantage of the polling client in comparison to the blocking client model as described in
Section 6.4.4 is the reduced upper bound on the number of requests a client issues in a given
time interval. The sent events are not requested at all, and the receive events are reduced: The
nonblocking requests allow a client to wait for a small time before it issues its next requests. As
the result, the CPU reservation needed is reduced by the polling client model.

The remainder of this section quantitatively analyzes the notifier thread, if the IRQ thread does
not coalesce interrupts. Section 6.4.6 on page 69 does the analysis for the coalescing IRQ thread.

The number of bytes the noncoalescing IRQ thread puts into the receive ring of connection within
a time interval of length Ti,client is bounded by αi,rxring(Ti,client), with αi,rxring(t) given by Equa-
tion 46 on page 55.

Considering the receive ring of connection i as a network element, αi,rxring(t) corresponds to its
arrival curve. The client that receives the packets defines the service curve, that is the minimum
amount of traffic the client removes from the receive ring in any time interval of length t. If the
client receives up to αi,IRQ(Ti,client) bytes in each of its periods, Equation 69 gives its service curve.
Figure 31 illustrates the scenario.

βpoll
i,client(t) = αi,IRQ(Ti,client) ·

⌊
(t −Di,client)+

Ti,client

⌋
(69)

Figure 31 shows also the maximum required receive ring size rxringpoll
i of connection i: it is the

maximum vertical distance between the arrival and the service curve:

rxringpoll
i = αi,IRQ(Ti,client + Di,client) (70)

The time a packet is stored in the receive ring of connection i is its delay due to the notifier thread
and the client application. Its bound di,client is given by the maximum horizontal deviation of the
arrival and the service curve, defined by Equation 3 at page 18. It is given by Equation 71.

dpoll
i,client = Ti,client + Di,client (71)

CPU usage of the notifier thread with polling client model

The amount of CPU needed by the notifier thread per period results (1) from the amount of data it
has to transmit to the client, and (2) from the number of requests it has to answer. A discussion of
the bound of the amount of data needs to consider the following aspects:

67

6.4 Real-time notification path 6 IMPLEMENTATION

b i,IRQ

time [ms]

receive ring size bound

delay bound

0 11106

rx (Tbytes
i,IRQ

5
D

arrival curve

service curve

Ti,client

i,client

i,client)

Figure 31: Receive ring of connection i: Arrival and service curves α i,rxring and βpoll
i,client . The client has a

period of Ti,client = 5 and a relative scheduling deadline of Di,client = 1. The delay bound for
packets in the receive ring is 6 and can be found twice in the graph: Once at α i,rxring(0), and
another time at αi,rxring(5).

1. The notifier thread does not implement any form of traffic shaping. Doing so would require
either to read fine-granular timers or to apply strictly periodic scheduling. The periodic
scheduling would result in scheduling delays, and the timers would add additional CPU
costs.

2. The notifier thread must not be preempted when servicing a clients request. The clients op-
erate in periodic mode, and expect the notifier thread to answer their requests nonblocking.

3. A safe bound for the amount of data that can arrive within a period of the notifier thread is
given by αi,IRQ(Ti,noti f y). However, a client might want to read all data queued in the receive
ring first, and then αi,IRQ(Ti,noti f y). If the CPU bound would be based on αi,IRQ(Ti,noti f y), the
notifier thread might be preempted due to CPU shortage while servicing a client request.

4. Using the network calculus’ output flow concept, a bound for the amount of data that can
be transmitted to the client within Ti,noti f y is given by the output flow α∗(Ti,noti f y), with

α∗ = αi,IRQ � βpoll
i,client , as described in Section 4.1 on page 17. This bound corresponds to

reading all data queued at the receive ring first, and αi,IRQ(Ti,noti f y) bytes then. However,
this amount of traffic is more than what the client interface specifies. As such, this bound is
a safe bound for the notifier thread, but it is not tight.

5. The client model assumes a periodic client witch receives up to αi,rxring(Ti,client) bytes per
period of length Ti,client . Thus, within Ti,noti f y, a client can receive this amount up to 1 +
�Tnoti f y/Tclient� times, which gives a bound for the data that needs to be transferred to the
client within Ti,noti f y. However, it is not a tight bound, as it counts the bursts implicitly in
αi,rxring multiple times.

Which of the bounds given in 4. and 5. is better depends on the length of the periods, and of the
characteristics of the arriving data flows. It cannot be determined in general which one is the better
bound. Thus, using the minimum of both is reasonable.

With αi,IRQ and βpoll
i,client given as previously defined, the output flow α∗(t) is given by α∗(t) =

αi,IRQ(t)+rxringpoll
i . The resulting bound for the amount of data the notifier thread has to transmit

68

6.4 Real-time notification path 6 IMPLEMENTATION

to the client per period Ti,noti f y is given by Equation 72. The corresponding number of packets,

denoted by rxpoll
i,noti f y, is given in Equation 72.

rxpoll
i,noti f y = min

[
αi,rxring(Ti,client) ·

(
1+

⌊
Ti,noti f y

Ti,client

⌋)
, αi,rxring(Ti,noti f y)+ rxringpoll

i

]
(72)

rxpoll
i,noti f y =

⌊
rxpoll

i,noti f y

Mrx
i

⌋
(73)

At connection setup, the client specifies how many packets it is going to receive per request.
nrrx denotes this number. Due to kernel interface-limitations, no more than 31 packets can be
transmitted per request. The resulting number of requests the notifier thread needs to handle per
period is given by Equation 74.

řxpoll
i,noti f y =

⌊
rxpoll

i,noti f y

min(nrrx,31) ·Mrx
i

⌋
(74)

As a result, the CPU bound of the coalescing notifier thread to handle client requests are reduced
in comparison to the noncoalescing notifier: First, the number of client requests for receiving data
is reduced, and second, the sent-notifications are not sent at all. Equation 75 gives the resulting
CPU bound, as needed for the CPU reservation.

CPU poll
i,noti f y = cpu.noti f y_base · řxpoll

i,noti f y + cpu.noti f y_rx · rxpoll
i,noti f y +

cpu.noti f y_rx_bytes · rxpoll
i,noti f y (75)

6.4.6. Interrupt coalescing with the polling client model

If, in addition to the scenario analyzed in Section 6.4.5, the IRQ thread applies interrupt coalesc-
ing, the bounds derived in Section 6.4.5 change due to the difference of the arrival curve α
IRQ

i,rxring
compared to αi,rxring.

Using the same argumentation as in Section 6.4.5 on page 66, the client needs to receive at least
α
IRQ

i,rxring bytes in each of its period. Equation 76 gives the corresponding service curve.

β
IRQ
,poll
i,client (t) = α
IRQ

i,rxring(Ti,client) ·
⌊

(t −Di,client)+

Ti,client

⌋
(76)

Figure 32 shows the arrival curve α
IRQ

i,rxring due to the IRQ thread and the clients service curve

β
IRQ
,poll
i,client .

Figure 32 shows also the maximum required receive ring size rxring
IRQ
,poll
i of connection i: it

is the maximum vertical distance between the arrival and the service curve, which is at Ti,client +
Di,client . The receive ring size is given by Equation 77.

rxring
IRQ
,poll
i = α
IRQ

i,rxring(Ti,client + Di,client) (77)

69

6.5 Summary 6 IMPLEMENTATION

b i,IRQ

time [ms]0 11106

rx (Tbytes
i,IRQ

5
D

Ti,client

i,client

i,client) service curve

arrival curve

Figure 32: Arrival curve of the coalescing IRQ thread with the clients service curve. Both are step curves.

The time a packet is stored in the receive ring of connection i is its delay due to the notifier thread
and the client application. Its bound d
IRQ
,poll

i,client is given by the maximum horizontal deviation of
the arrival and the service curve, defined by Equation 3 at page 18. It is given by Equation 78.

d
IRQ
,poll
i,client = Ti,client + Di,client (78)

The prove for both bounds is given in Section A.1 on page A-1.

With α
IRQ

i,rxring and β
IRQ
,poll

i,client given as previously defined, the output flow αpoll,∗
i (t) is given by

αpoll,∗
i (t) = α
IRQ

i,rxring(t + rxring
IRQ
,poll
i). The resulting bound for the amount of data the notifier

thread has to transmit to the client per period Ti,noti f y, denoted by rx
IRQ
,poll
i,noti f y , is given by Equa-

tion 79. The corresponding number of packets, denoted by rx
IRQ
,poll
i,noti f y , is given in Equation 80.

rx
IRQ
,poll
i,noti f y = min

[
α
IRQ

i,rxring(Ti,client) ·
(

1+
⌊

Ti,noti f y

Ti,client

⌋)
,

α
IRQ

i,rxring (Ti,noti f y)+ rxring
IRQ
,poll

i

]
(79)

rx
IRQ
,poll
i,noti f y =

⌊
rx
IRQ
,poll

i,noti f y

Mrx
i

⌋
(80)

The resulting number of requests the notifier thread needs to handle per period, denoted by
řx
IRQ
,poll

i,noti f y , is given by Equation 81.

řx
IRQ
,poll
i,noti f y =

⌊
rx
IRQ
,poll

i,noti f y

min(nrrx,31) ·Mrx
i

⌋
(81)

Equation 82 gives the resulting CPU bound, as needed for the CPU reservation.

CPU
IRQ
,poll
i,noti f y = cpu.noti f y_base · řx
IRQ
,poll

i,noti f y + cpu.noti f y_rx · rx
IRQ
,poll
i,noti f y +

cpu.noti f y_rx_bytes · rx
IRQ
,poll
i,noti f y (82)

70

6.5 Summary 6 IMPLEMENTATION

Table 3: Symbols used in Sections 6.3 and 6.4.3 to denote derived results.
Symbol Meaning Reference

Connection-specific transmit thread TX thread
CPUtb f

i,tx CPU bound for the TX thread using the token-
bucket shaper

Equation 34 on page 47

CPUtb f
i,sp CPU bound for the TX thread using the strictly

periodic shaper with data dependency
Equation 35 on page 47

Device-specific Interrupt thread IRQ thread
TIRQ scheduling period of the IRQ thread Section 6.4.1 on page 52
DIRQ scheduling deadline of the IRQ thread Section 6.4.1 on page 52
αi,rxring(t) arrival curve of received data for connection i in

its receive ring
Equation 46 on page 55

α
IRQ

i,rxring(t) arrival curve of received data for connection i in

its receive ring with software-based interrupt co-
alescing of the IRQ thread

Equation 48 on page 56

CPUIRQ CPU bound for the IRQ thread Equation 43 on page 54

CPU
IRQ

IRQ CPU bound for the IRQ thread with software-

based interrupt coalescing
Equation 47 on page 55

Connection-specific notifier thread, blocking client model
Ti,noti f y Scheduling period of the notifier thread for con-

nection i
Section 6.4.4 on page 61

Di,client Scheduling deadline of a blocking client. Section 6.4.4 on page 60
ni,client Lower bout for the amount of data a blocking

client receives every Ti,client time units
Equation 50 on page 61

CPUi,noti f y CPU bound for the notifier thread with a nonco-
alescing IRQ thread

Equation 55 on page 62

CPU
IRQ

i,noti f y CPU bound for the notifier thread with an

interrupt-coalescing IRQ thread
Equation 60 on page 63

βblock
i,client(t) Service curve of a blocking client Equation 61 on page 64

rxringi Receive ring size bound with a noncoalescing
IRQ thread

Equation 62 on page 64

drx,n>
i,client Delay bound for packets in the receive ring for a

greedy client and a noncoalescing IRQ thread
Equation 63 on page 65

drx,n<
i,client Delay bound for packets in the receive ring for a

slow client and a noncoalescing IRQ thread
Equation 64 on page 65

rxring
IRQ
,n>
i Receive ring size bound for a greedy client and

an interrupt-coalescing IRQ thread
Equation 65 on page 65

drx,
IRQ
,n>
i,client Delay bound for packets in the receive ring for a

greedy client and a coalescing IRQ thread
Equation 66 on page 65

rxring
IRQ
,n<
i Receive ring size bound for a slow client and an

interrupt-coalescing IRQ thread
Equation 67 on page 66

drx,
IRQ
,n<
i,client Delay bound for packets in the receive ring for a

slow client and a coalescing IRQ thread
Equation 68 on page 66

71

6.5 Summary 6 IMPLEMENTATION

Table 4: Continued: Symbols used in Sections 6.3 and 6.4.3 to denote derived results.
Connection-specific notifier thread, polling client model
Symbol Meaning Reference

Ti,noti f y Scheduling period of the notifier thread for con-
nection i

Section 6.4.4 on page 61

Ti,client Scheduling period of a polling client. Section 6.4.5 on page 66
Di,client Scheduling deadline of a polling client. Section 6.4.5 on page 66

βpoll
i,client(t) Service curve of a polling client Equation 69 on page 67

rxringpoll
i Receive ring size bound with a noncoalescing

IRQ thread
Equation 70 on page 67

dpoll
i,client Delay bound for packets in the receive ring for a

a noncoalescing IRQ thread
Equation 71 on page 67

β
IRQ
,poll
i,client (t) Service curve of a polling client with an

interrupt-coalescing IRQ thread
Equation 76 on page 69

rxring
IRQ
,poll
i Receive ring size bound for a polling client and

an interrupt-coalescing IRQ thread
Equation 77 on page 69

d
IRQ
,poll
i,client Delay bound for packets in the receive ring for a

polling client and a coalescing IRQ thread
Equation 78 on page 70

CPU poll
i,noti f y CPU bound for the notifier thread of a polling

client with a noncoalescing IRQ thread
Equation 75 on page 69

CPU
IRQ
,poll
i,noti f y CPU bound for the notifier thread of a polling

client with an interrupt-coalescing IRQ thread
Equation 82 on page 70

72

6.5 Summary 6 IMPLEMENTATION

6.5. Summary

Sections 6.3 and 6.4 described the implementation to send and receive packets with the RT-Net
server. The sections also quantitatively analyzed the resource needs to handle traffic flows of given
characteristics, and calculated resulting delays at the involved components.

6.5.1. Analyzed execution models

Section 6.3 analyzed two different models to send data. One model uses Fiasco’s minimal inter–
release-time scheduling to achieve low delays at sending and to generate flows with a small bursti-
ness. As this model has a high CPU demand, it can only be used for connections with a small
bandwidth. The other model uses a token-bucket traffic shaper and is suitable for higher band-
widths at the expense of an increased worst-case delay at the sender and an increased burstiness
of the generated flow.

Sections 6.4.1 and 6.4.2 analyzed two different models to process interrupt requests from the NIC.
The straight-forward approach executes the interrupt handler whenever the NIC signals an event.
This results in a low event processing delay but a high CPU demand. In contrast to this, the
software coalescing approach executes the interrupt handler not more often than a certain minimal
time interval. This reduces the CPU utilization, but increases the event processing delays and the
memory needed to buffer the received data flows. While the first approach is appropriate for nodes
with stringent needs for low delays, the latter approach can cope with high bandwidths.

Finally, Sections 6.4.3 to 6.4.6 analyzed the connection-specific event processing and the interac-
tion with client applications. Two client models with different delay and CPU usage characteristics
were defined: The blocking client model achieves low delays for signalling received data to client
applications, but requires clients to wait, that is block, for newly arrived data. The polling client
model allows clients to synchronize to other, periodic, events, and to poll for data regularly. In
contrast to the blocking model, the polling model guarantees a minimal timely distance between
client requests. Consequently, it achieves a lower CPU utilization bound at the RT-Net server
at the expense of (1) higher delays for signalling received data to client applications, and (2) an
increased memory requirement to buffer the received data flows. The analysis revealed that the re-
source consumption of the connection-specific event processing does not only depend on the client
model used but depends also on which interrupt processing model is used, and how the client is
going receive data from the RT-Net server.

6.5.2. Resource usage dependencies

As another result of the previous sections, it turned out that the resource usage for handling a
specific flow at the receiving node not only depends on the flow characteristic at the send node.
It also is influenced by other flows sharing resources along the path of the specific flow: Other
flows transmitted from the same send node have an influence as well as flows originating from
other nodes but targeting to the considered receiving node. Moreover, even flows from other
nodes to other nodes might influence the resource usage at the receiving node, as they increase the

73

6.6 Real-time connection setup 6 IMPLEMENTATION

burstiness of flows originating at those other nodes but targeting to the considered receiving node,
which in turn increases the burstiness of all flows to the receiving node.

This implies that each newly established traffic flow potentially influences the CPU requirements,
buffer needs and delays at all attached nodes. In a dynamic environment this dependency is not
desirable: Once resources are allocated for a connection and the connection is established, these
resources should not need to be changed. Especially, the behavior at the client interface should not
change.

To achieve this, a maximum allowed burstiness is specified for each flow on its creation. This
maximum allowed burstiness corresponds to the b̃i in the previous sections, and is used for re-
source allocation at the receiving nodes. It is the responsibility of the bandwidth manager to only
admit new flows if the actual burstiness bounds of established flows do not exceed their maximum
allowed burstiness. Although this may result in a resource over-reservation, it is the concession
to a network architecture that does not reshape its traffic along the network path. If, however, the
application scenario is known in advance, and as such all network flows, no over-reservation is
needed.

6.5.3. Alternative scheduling schemes

According to the traffic shaper analysis in Section 5 on page 29, the burstiness of the flows gener-
ated at the sending nodes, and therefore the delays at the network, heavily depends on the schedul-
ing jitter due to CPU scheduling. The scheduling jitter at the receive nodes increase this bursti-
ness further, resulting in increased resource reservation needs (Sections 6.4.3 to 6.4.6). However,
achieving a low scheduling jitter is costly on priority-based systems: As a prize for their flexibility,
priority-driven systems can guarantee low scheduling jitters only to their highest-priority threads.
The lower the priority of a thread becomes, the higher its scheduling jitter is.

There are other scheduling schemes that achieve low scheduling jitters for more than a few threads
in the system. Time-triggered systems for instance have a predictable scheduling scheme, and
as such guarantee a lower scheduling jitter to all their scheduled threads. Consequently, time-
triggered systems are likely to achieve even lower network delay bounds than priority-based sys-
tems. However, time-triggered systems require a careful design of their scheduling tables, which
reduces their flexibility regarding the dynamic creation of new connections or scheduling threads
with different periods.

As a conclusion, costly high-priority CPU reservations made to achieve low delays at the net-
work are not a problem inherent to Switched Ethernet communication with software-based traffic
shaping. Instead, they are an artifact of the implementation on top of a priority-driven system.

6.6. Real-time connection setup

The connection setup is triggered by a real-time client that sends an rt-open request to the service
thread of the RT-Net server. The request contains the following parameters:

74

6.6 Real-time connection setup 6 IMPLEMENTATION

• The address of the remote node, encoded in an IP address
• Optionally the desired local address and UDP port
• The transmit stream description: the transmit mode, the bandwidth, the maximum packet

size, the maximum tolerated delay at the local node and at the switch, the maximum toler-
ated burstiness at the switch and the maximum number of parallel outstanding send-requests

• The receive stream description: the receive mode, the bandwidth, the maximum packet size,
the maximum tolerated delay at the local node and the maximum burstiness

After receiving an rt-open request, the RT-Net server performs the following actions:

Address translation It asks the local network manager to translate the remote IP address into
their corresponding MAC address. Then the local address of the connection is determined with the
help of the local network manager. If the client specified a local address, it is verified and marked
as in-use. Otherwise, the local network manager returns its own IP address together with a newly
allocated UDP port.

Network traffic reservation Next, the RT-Net server asks the local network manager to do
a reservation for a send-connection. The bandwidth is specified by the client. The destination
node is determined by a MAC lookup using ARP. The burstiness parameter of the generated flow
is determined by the RT-Net server according to the traffic shaping algorithm used and the cor-
responding scheduling parameters. The local network manager contacts the bandwidth manager
that knows about all the flows in the network. It calculates and verifies the effective burstiness
parameters that apply after merging multiple flows at the send nodes and at the switch.

Thread creation The RT-Net server creates the local threads to handle the connection: the TX
thread and the notifier thread.

CPU reservation Using the CPU model obtained from earlier measurements, the RT-Net server
determines the amount of CPU time it needs to properly handle the desired network traffic and
reserves that amount at the CPU reservation server.

Memory allocation The RT-Net server allocates memory for the receive ring from its own
memory pool and the shared transmit ring from the memory manager in the system. To allow the
client accessing the transmit ring, the memory manager is asked to allow the client to map the
corresponding data space.

Filter rules The local receive-filtering rules are setup, connecting the MAC address used for
real-time communication, the IP address and the UDP port of the connection with the receive-
buffer and the notifier thread of the connection.

Finally, the connection is established. A handle to uniquely identify the connection together with
an ID to the data space of the transmit ring are returned to the client that can start transmitting and
receiving data on this connection.

If any of the operations fails due to missing resources or exceeded limits, the previous operations
are completely unrolled in reverse order.

75

6.7 Real-time client API 6 IMPLEMENTATION

6.7. Real-time client API

The real-time communication API of the RT-Net server results in the following: Client communi-
cation is based on UDP/IP connections. Data exchange between the client and the network driver
is restricted to UDP payloads and the target UDP port.

rt_open ([in , out] local_ip , [in , out] local_port , [in] remote_ip ,
[in] tx_bandwidth, [in] tx_packet_size , [in] tx_packets ,
[in] tx_mode, [in] tx_period , [in] tx_max_burstiness , [in] tx_max_delay,
[in] rx_bandwidth, [in] rx_packet_size , [in] rx_mode], [in] rx_burstiness ,
[in] rx_amount, [in] rx_notify_period , [in] rx_client_period ,
[in] rx_client_delay , [in] rx_max_delay,
[out] err , [out] connection_handle , [out] tx_ring_id);

rt_tx_desc ([in] connection_handle , [in] size ,
[out] err , [out] tx_desc);

rt_send ([in] connection_handle , [in] tx_desc , [in] tx_udp_dest_port ,
[out] err);

rt_wait ([in] connection_handle , [in] max_rx_events, [in] wait_flag ,
[out] err , [out] rx_count , [out] rx_data []);

rt_close ([in] connection_handle ,
[out] err);

Figure 33: Client API for communication with the network driver in real-time mode.

rt_open() The tx_packets parameter indicates the maximum number of packets in the TX ring
and is used to calculate the TX ring size. The tx_mode parameter determines which traffic shaper
the TX thread should use – the token-bucket shaper or the periodic shaper with data dependency.
If the client requested the token-bucket shaper, tx_period specifies the scheduling period of the TX
thread. tx_max_burstiness is the maximum burstiness of the generated data flow at the switch. It
will be verified by the bandwidth manager during the lifetime of the connection. tx_max_delay is
the upper bound for the delay at the node plus the delay at the switch the client is going to accept.
It includes the delays due to actual transmission at the network.

rx_mode specifies the client mode of operation – blocking or polling client model. rx_burstiness
gives the maximum burstiness of the flow as it enters the node. This parameter should be the same
as tx_max_burstiness at the sending side of the connection. rx_amount specifies the amount of
data the client receives at least every rx_client_period time units. As argued in Sections 6.4.4 and
6.4.5, in the blocking client mode the number of receive-requests per rx_notify_period is upper-
bounded approximately by the maximum number of packets received within rx_notify_period. In
the polling client mode however, the number of receive-requests can be upper-bounded approx-
imately by the amount of traffic received within rx_notify_period divided by 31. In the polling
model, both the CPU reservation and the ring buffer size are influenced by the relative scheduling
deadline rx_client_delay of the client. Further, the rx_max_delay specifies the upper bound for
the delay at the node the client is going to accept. Thus, the end-to-end-delay of packets sent

76

6.8 Best-effort communication 6 IMPLEMENTATION

over an established connection is bounded by the tx_max_delay parameter at the sender plus the
rx_max_delay parameter at the receiver, increased by the potential scheduling jitter of the sending
client application.

rt_tx_desc() This function returns a send descriptor containing a pointer to a memory area of
at least size bytes. The client puts its data to the address in the descriptor and calls rt_send() then.
If the TX ring is full, the function returns an error. In this case, the client should call rt_tx_desc()
at a later time, for instance after waiting for sent events using rt_wait().

rt_send() The tx_desc parameter contains the descriptor returned by rt_tx_desc().
tx_udp_dest_port contains the destination UDP port number.

rt_wait() The max_rx_events specifies the maximum number of receive events the client is
going to accept in the reply to this rt_wait() request. After successful return, rx_data[] contains
rx_count received packets. Each packet contains the UDP source port and the UDP payload data.

rt_close() After receiving the rt_close() request from its client, the RT-Net server deallocates
all resources assigned to the connection specified by connection_handle. This includes resources
at local network manager, the bandwidth manager, the CPU reservation server, the memory server
and local resources.

6.8. Best-effort communication

In contrast to the real-time communication path, the best-effort path guarantees no upper delays
on packet transmission or a bandwidth thereof. As both architectures are nonetheless similar, I
only highlight the differences between the best-effort path and the real-time path in this section.

The best-effort communication is intended to be used by whole network stacks, such as IP stacks,
Appletalk stacks or other OSI layer 3 protocol stacks. These different stacks share a NIC together
with the DROPS real-time stack. The RT-Net server, the only instance directly accessing the
NICs, does not know all the possible layer 3 protocol stacks. Consequently, the best-effort clients
and the RT-Net server exchange complete Ethernet frames including layer 2 MAC headers and
layer 3 headers according to the protocols used by the clients. To these clients, the RT-Net driver
resembles a virtual NIC. This virtual NIC requires its own client driver, but behaves like a normal
NIC otherwise.

To allow a demultiplexing of received network data to the different clients, each best-effort client
uses its own MAC address. A client obtains its MAC address as part of the connection setup
process with the RT-Net server. The RT-Net server in turn contacts the local network manager
(Section 6.1 on page 41) for MAC address management.

To receive network packets for arbitrary MAC addresses, the RT-Net server enables the promis-
cuous mode of its NICs. Note that the promiscuous mode adds no computational overhead, as
all nodes are connected to a switch. As soon as the switch learns about a MAC address, it routes
packets targeted to that MAC address only to the corresponding node.

77

6.8 Best-effort communication 6 IMPLEMENTATION

service
thread

thread
service

Local network manager

thread
network

threads
sync

threads
application

best−effort network stack

− one per connection −

threads
sync

threads
application

best−effort IP Stack

− one per connection −

threads
IRQ

− one per interrupt line −

threads
best−effort notifier

− one per connection −

thread
IRQ helper

RT Net server

threads
− one per connection −

best−effort TX

 interface card
Network

Figure 34: Thread structure of the network driver and best-effort applications. Compared to real-time
clients, the best-effort clients have additional synchronization threads.

6.8.1. Best-effort send path

The TX thread for a best-effort connection uses the token-bucket traffic shaper for best-effort
connections presented in Section 5.7 on page 36. In contrast to the token-bucket shaper for real-
time connections, the best-effort shaper does not poll for packets to be transmitted. Instead, it
waits for packets to achieve low delays in the average case. This synchronization process uses the
DROPS streaming interface (DSI), described in [LRH01]. It establishes a shared data area and
a shared ring-buffer similar to the real-time send path. But in addition, the TX thread blocks if
it finds no packets in the ring-buffer. As described in [LRH01], the blocking uses an additional
synchronization thread at the clients address space. If the client inserts a packet into the ring-
buffer, it notifies the synchronization thread that in turn de-blocks the TX thread by sending it an
IPC.

As the send path does not give any delay guarantees, the TX thread does no CPU reservation at
the kernel. It runs at a lower priority than all real-time threads and is scheduled if CPU time is
available.

The best-effort token-bucket shapers share a common bucket for all best-effort connections. This
increases a nodes transmit capacity in comparison to separated buckets if any of the best-effort
connections do not transmit data or transmit data only at a low rate.

The use of a shared bucket also means that the best-effort data flows are shaped as an aggregated
flow. As a result, the accumulated burstiness of the generated flows is reduced: Instead of multiple
independently shaped flows that can all transmit their burst at the same time, the burst can only
be sent once. However, due to scheduling jitter, each TX thread can delay one packet arbitrarily
long. As such, the analysis of Section 5.7 must be adapted. The length of each delayed packet is

78

6.8 Best-effort communication 6 IMPLEMENTATION

bounded by the maximum Ethernet frame length, 1415 bytes. The burstiness bi of the aggregated
flow is thus

bi = Bi + nbe ·M
if Bi is the bucket size of the common token-bucket, nbe is the number of established best-effort
connections and M is 1514.

To illustrate this, assume two best-effort connections with a rate of ri = 8MBit/s each and a
TX thread scheduling period of Ti = 1ms. If they use a common bucket, its minimum size is
Ti · 2 · ri + M = 3514 according to Section 5.7. The burstiness parameter of the generated leaky-
bucket constrained flow is 3514 + 2 ∗M = 6542. If the best-effort connections would use sep-
arated buckets, each bucket had a minimum size of Ti · r + M = 2514. The burstiness param-
eter of each generated leaky-bucket constrained flow would be 2514 + 1514 = 4028. When
the two flows are multiplexed at the NIC, their burstiness increases. Neglecting the Ether-
net framing overhead, this individual resulting burstiness parameter on Fast Ethernet would be
4028 + 8MBit/s · 4028/100MBit/s = 4350 according to Equation 7 on page 22. Their accumu-
lated burstiness hence would be 2 ·4350 = 8700, which is a 33% increase compared to the shared
leaky-bucket approach.

Traffic reservation

Like real-time connections, best-effort connections need a traffic reservation as well. For a trans-
parent network connectivity, the RT-Net server takes care of the traffic reservation for best-effort
connections. As such, it contacts the local network manager on the first best-effort connection
establishment to reserve a low bandwidth (200 KByte/s) with the corresponding burstiness pa-
rameter. When establishing further connections, or tearing connections down, the RT-Net server
adapts the burstiness parameter. On the tear-down of the last best-effort connection, the RT-Net
server revokes the reservation.

As best-effort clients can use their connection to transmit data to any node of the network, best-
effort traffic reservations do not relate to a specific target node. Instead, the bandwidth manager
treats their reservations as reservations of broadcast traffic and applies the traffic specifications for
all target nodes on the network. As a consequence, the accumulated bandwidth reservation of all
best-effort clients on a network cannot exceed the medium capacity of a single link.

If, during the lifetime of a best-effort connection, the RT-Net server notices that the connection
has a demand for a higher bandwidth, it transparently tries to boost the reservation. Therefore,
it contacts the local network manager to increase the bandwidth/burstiness reservation. After a
configurable amount of time (typically 100 ms–500 ms), the bandwidth need is reevaluated and
adapted at the local network manager if necessary.

Section 7.4.7 on page 107 analyzes the performance that best-effort connections can achieve using
this adaptive approach.

79

6.8 Best-effort communication 6 IMPLEMENTATION

6.8.2. Best-effort notification path

To demultiplex received network packets to their corresponding client connections, the IRQ thread
applies additional MAC-based filtering. If no real-time connection is found for a received packet,
the IRQ thread tries to find a best-effort connection that has the target MAC address of the received
packet assigned. Broadcast packets are enqueued at each best-effort connections receive ring.

The CPU analysis for the IRQ thread in Section 6.4.1 on page 49ff requires that all traffic arriving
at a node is known in advance. While this assumption is reasonable for real-time traffic, it is
questionable for best-effort traffic: First, the bandwidth of best-effort traffic is likely to vary to
a high degree over time, especially when the one-shot reservations are used. Second, the packet
sizes of best-effort traffic can hardly be predicted. Consequently, there is a huge gap between the
predictable worst-case CPU consumption of the IRQ thread and the average case. Although the
one-shot reservations could be combined to CPU reservations at all potential target nodes on the
network, it would hardly reflect the actual load situation.

Therefore, application scenarios that require frequent and spontaneous high-bandwidth best-effort
communication use the software-based interrupt coalescing approach presented in Section 6.4.2.
This reduces the influence of network traffic to the CPU consumption of the IRQ thread already.
Another, pragmatic, step is to obtain the worst-case CPU consumption by experimentally ana-
lyzing the CPU consumption of a node under network pressure, instead of doing a theoretical
worst-case analysis based on micro-benchmarks.

Coalescing of receive events

As with the real-time connections, multiple received packets can be transmitted to a best-effort
client in the reply to its event-request be_wait(), and multiple sent-notifications can be signalled
per request. However, best-effort clients normally have no periodic execution model, but post one
blocking request after the other as soon as possible. This can end up in a situation where just one
event is signalled per request, resulting in a high CPU consumption due to rapid context switches.
To coalesce events, client can add a coalescing timeout to their requests. New events are signalled
by the RT-Net server only if that timeout passed since the previous client request or the number of
outstanding events exceeds a certain threshold.

Otherwise, the notifier threads for best-effort connections do not differ much from the real-time
version. The best-effort notifier threads pass received networks packets unmodified to their clients,
including all lower-layer headers. Further, the notifier threads have no CPU reservation and run at
a lower priority than all real-time threads.

Listing 11 shows the modified version of flush_wait_data() implementing the event coa-
lescing. Line 3 looks for present events, taking care of an optional event coalescing a client might
have requested. If the client requested event coalescing and the coalescing timer has not been
started yet, it is started at line 6. Line 7 waits for a notification from the IRQ thread. In contrast to
the real-time version, the best-effort version of flush_wait_data() uses a timeout value to
the IPC to abort the IPC when the coalescing timer expires.

80

6.9 Best-effort client network stacks 6 IMPLEMENTATION

1 void Conn:: flush_wait_data (void){
2 while(1){
3 if (((avail = data_avail ()) && !client_req .d. coal_timeout) || thresholds_over ())
4 { return; }
5 if (avail && timeout==0)
6 { timeout = clock_value_us () + client_req .d. coal_timeout ; }
7 err = ipc_reply_and_wait (irq_signal_thread , /* IRQ helper thread */
8 this , /* pass connection */
9 &sender, &dw0, /* sender & param of new request */

10 timeout); /* timeout for event coalescing */
11 if (is_no_error (err) &&
12 l4_task_equal (sender , irq_thread)) continue;
13 if (is_timeout_error (err)) return; /* timer hit , notify client now. */
14 if (is_no_error (err) && l4_task_equal(sender , client)){
15 client_req .v=dw0; /* new client −request. */
16 } } } }

Listing 11: Waiting for data from the IRQ thread

The client notification, implemented in flush_wake_client() is also modified to additionally resets
a potentially running event coalescing timer. Its pseudo-code is given in Listing 12.

1 int Conn:: flush_wake_client (l4_threadid_t * client , request_t *request){
2 ...
3 timeout = 0; /* reset potentially running timer */
4 tx_committed = 0; /* reset committed tx counter */
5 len = fill_client_msgbuffer (&msg); /* create msg−buffer to be sent to client */
6

7 ... continues as the real−time version ...

Listing 12: Transmitting data to the client

6.9. Best-effort client network stacks

The DROPS project contains multiple network stacks that use the RT-Net server: L4Linux 2.2,
L4Linux 2.6 and Flips.

6.9.1. L4Linux

L4Linux [HHL+97, HHW98, Lac04] is the reference application of DROPS for non–real-time
applications. L4Linux is a modified version of the Linux operating system that runs atop the L4

81

6.9 Best-effort client network stacks 6 IMPLEMENTATION

mikrokernel family. This approach allows to execute unmodified Linux programs in parallel to L4
programs, such as real-time programs or a real-time network stack. Linux has been ported to L4
beginning with the Linux 2.0 kernel version. The currently maintained versions of Linux for L4
are L4Linux 2.2 and L4Linux 2.6.

Control flow

To give L4Linux access to the network using the RT-Net server, an appropriate driver stub must
be integrated into the L4Linux kernel. The implementation in general follows the design rules
of network drivers for Linux. Care must be taken on IPC-based communication with the RT-Net
server however. When submitting data to a network driver, Linux does not expect to block, and so
the L4Linux network driver stub also must not block. As described in Section 6.8.1, the best-effort
RT-Net server client interface uses DSI for its send path. Nonblocking communication was one
of the main design goals of DSI, and hence it solves the problem of the send path. The notifi-
cation path in the original Linux kernel is executed in an interrupt context whenever a hardware
interrupt occurs. L4-based driver stubs that rely on specific IPC-based driver protocols require an-
other mechanism. Therefore, a virtual-interrupt extension has been implemented in L4Linux. The
virtual-interrupt mechanism allows a driver stub to actively enter the interrupt context in reaction
to an event, instead of being called in an interrupt context.

During the development of RT-Net, I implemented the driver stub for L4Linux 2.2. Based on this,
the driver stub for L4Linux 2.6 has been implemented by Adam Lackorzynski.

Data flow

The main focus of L4Linux 2.2 was to provide the Linux API on DROPS. In contrast to recent
Linux ports, it makes no use of the data-space concept, a generic abstraction of memory containers
[APJ+01, L4E]. The RT-Net server relies on data-spaces for sharing the memory areas on its send
path. However, L4Linux 2.2 can be configured to use a pinned, physically contiguous piece of
memory as kernel memory. As such, it can easily obtain the physical addresses of data it wants
to transmit to the network. As an extension, the RT-Net server allows L4Linux 2.2 to pass these
physical addresses to reference its transmit data. The RT-Net server verifies that the referenced
memory belongs to L4Linux and passes the physical addresses directly to the NIC. As a result,
the send path of the L4Linux 2.2 driver stub requires no copy of the transmitted data. If, however,
L4Linux 2.2 is not configured to use a physically contiguous piece of memory as kernel memory,
data needs to be copied once on the network send path. The L4Linux 2.6 RT-Net driver stub is an
adaption of the version 2.2 stub to the modified L4Linux 2.6 API.

6.9.2. Flips

The flexible IP stack (FLIPS) is a server for DROPS that provides an TCP/IP protocol stack. It
has been implemented as part of the MikroSina project [HWF05] and is still under development.
During the development of RT-Net, I implemented an RT-Net stub for an earlier versions of FLIPS.

82

6.10 Outlook: Offloading traffic handling to network cards 6 IMPLEMENTATION

It is now maintained by the former MikroSina group members, and an adaption to current FLIPS
versions is ongoing work.

6.9.3. Routing between multiple IP-Stacks

A problem related to multiple IP stacks that are executed at one node without knowing each other
is the routing of data between them: If one stack sends a packet to the other, it would be up to the
NIC to forward the packet to the other stack. However, the real-time architecture of the RT-Net
server does not support this routing.

This problem can be addressed by adding an additional network driver stub to each IP stack. This
additional stub is connected to a central instance that applies the routing to the other IP stacks.

An alternative solution is to add one additional driver stub to each IP stack per other stack and
to connect these stubs pairwise. By adding routing entries for theses additional interfaces and
IP-addresses, the routing is entirely based on the IP stacks, and no additional instance is needed to
route the traffic thru.

The central router approach has been implemented as part of the MikroSina project [HWF05] at
TU Dresden and can be used with the IP stack implementations for DROPS independently of the
RT-Net server.

6.10. Outlook: Offloading traffic handling to network cards

The measurements in Section 7 show that the traffic handling at the real-time network stack
consumes a substantial amount of CPU cycles. This motivates a technology that has been
applied successfully to lower the CPU utilization of network processes – firmware offloading
[BBVvE95, DH00, Myr]. The idea is to instruct an intelligent network interface card (NIC) to
perform some of the resource critical tasks, disburdening the host CPU.

While the U-Net project [BBVvE95] and the Myrinet GM protocol [Myr] used firmware offload-
ing for performance reasons, Dannowski implemented the policing of incoming network traffic
at an ATM NIC [DH00] to bound the CPU utilization in a real-time system. A side-effect of the
offloaded policing was an offloaded demultiplexing of received traffic, allowing a real zero-copy
receive process. As copying of network data is known to seriously influence the performance of
network processing, zero-copy implementations should be favored whenever possible.

Regarding traffic shaping on Switched Ethernet, firmware offloading can be used for early de-
multiplexing in the receive path and for accelerating the traffic shaping process in the transmit
path. Furthermore, an interaction with the NIC driver for normal transmit operations might even
be circumvented at all, meaning that no context switch to the driver is needed for sending data.

In [LH04b] Härtig and I analyzed the additional requirements to Ethernet cards allowing to offload
the traffic shaping for sending data and to offload the early demultiplexing for receiving data. We
found the changes required to currently established Ethernet chips to be moderate, resulting in
production costs comparable to those of normal Ethernet cards.

83

7 EXPERIMENTAL EVALUATION

7. Experimental evaluation

This section validates the practical applicability of the theory developed in this dissertation. Three
basic measurement subsections and a detailed application measurement subsection analyze differ-
ent aspects of hard real-time communication on Switched Ethernet:

Section 7.1 first introduces fundamental measurement methods used throughout the experiments
of Section 7. Then it provides an analysis to reliably identify characteristics of Ethernet switches
to be used for later shaping decisions. The analysis uses a basic version of the RT-Net server that
is given the highest priority in the system; thus, it does not suffer from scheduling jitter and effects
of other software-components are minimized.

Section 7.2 uses the basic version of the RT-Net driver to find out safe network utilization bounds
and to identify bounds for delay guarantees that can be achieved by software-controlled traffic
shaping on Switched Ethernet. A fundamental result of this section is a CPU–delay trade-off,
where lower delays at the network can be achieved in exchange for a higher CPU usage at the
attached nodes.

Section 7.3 analyzes to what extend a Switched Ethernet network can be shared by non–real-time
nodes and nodes doing real-time communication.

Section 7.4 provides detailed measurements of a dynamic real-time system, in particular, mea-
surements of the DROPS real-time network stack as described in Section 6 on page 40ff. It aims
to guarantee end-to-end delay bounds when the network stacks are scheduled together with other
real-time applications. Therefore, Section 7.4 provides the parameter sets for predicting the CPU
usage, investigates into performance numbers and CPU usage of different application configura-
tions, and measures the performance of the L4Linux integration of the RT-Net server.

7.1. Network hardware analysis

This section presents basic measurements to find out the delays of switches and their effective
queueing buffer capacities. Therefore, it first describes the setup used in the basic measurement
subsections and introduces the approach to measure network delays with microsecond resolution.

7.1.1. Measurement setup

Figure 35 depicts the general measurement setup: a single switch was connected to five nodes.
Node A periodically generated test packets and sent them to node B. Nodes C, D and E sent traffic
of different characteristics to node B. An additional “black cable” connected the nodes A and
B for a precise clock synchronization (detailed in Section 7.1.2). By testing for packet loss and
measuring the packet transmission delays from A to B with different traffic patters and different
software configurations at the nodes, results on the hardware and software behavior were obtained.

The measurements analyzed three different 8-port Ethernet switches: a Fast Ethernet Level-One
“FSW-2108TX” switch, a Fast Ethernet 3Com “OfficeConnect Dual Speed Switch 8” switch and
a Gigabit Ethernet Intel “Netstructure 470F” optical switch.

84

7.1 Network hardware analysis 7 EXPERIMENTAL EVALUATION

256 MByte RAM)

Node C
(AMD Duron 800MHz,

256 MByte RAM)

Node E
(Intel Celeron 900MHz,

Node B
(Intel Celeron 1.7GHz,

256 MByte RAM)

Node A

128 MByte RAM)
(Intel Celeron 900MHz,

Node D
(Intel Celeron 1.7Ghz,

256 MByte RAM)

"black cable"

Switch

Figure 35: General measurement setup: five nodes are connected to a switch. Nodes A and B are addition-
ally connected by the “black cable” for precise time synchronization.

Node CPU type CPU clock Memory

A Intel Celeron 900 MHz 128 MByte
B Intel Celeron 1.7 GHz 256 MByte
C AMD Duron 800 MHz 256 MByte
D Intel Celeron 1.7 GHz 256 MByte
E Intel Celeron 900 MHz 256 MByte

Table 5: Nodes used for measurements in Section 7.1 to Section 7.3.

Table 5 shows the hardware configuration of the nodes used in Section 7.1 to Section 7.3. For
Fast Ethernet measurements, all nodes were equipped with Intel EEPro/100 Fast Ethernet network
cards. For Gigabit measurements, all nodes used 3Com 3C985B-SX type optical network cards
(AceNIC II).

7.1.2. Measuring inter-node µ-second delays

To measure transmission delays, a send application at node A generated test packets carrying time-
stamps and sequence numbers. At node B, a receiving application compared the timestamps with
its local clock and calculated the transmission delay (observed transmission delay).

To calculate the delay based on node A’s timestamps and node B’s time, a clock synchronization
mechanism mapped node A’s local time to node B’s local time. The expected network delays
are in the order of microseconds to a few milliseconds, and thus nodes A and B must have been
be synchronized with an accuracy of a few microseconds. Therefore, a parallel cable (the “black
cable” in Figure 35) connected A and B. The synchronization mechanism worked similar to that of
NTP as defined in RFC 1305: Using the black cable, node B periodically raised an interrupt at A
to start the synchronization process (Figure 36). In reaction, A sent a ready-signal and both nodes

85

7.1 Network hardware analysis 7 EXPERIMENTAL EVALUATION

Node B

Node A timestamp 2

timestamp 1 timestamp 3

(IRQ)

gostart

ready time (A)

time (B)

done

Figure 36: Resynchronization process. The signalling is done using the black cable, time-stamp 2 is sent
over the network.

simultaneously took time-stamps.7 Later, node A sent its time-stamp to B that used it to calculate
the clock difference and the clock drift. After 20 µs the process was aborted, and it started again
after some time. In the meantime, old measurement values were used. A detailed description of
the synchronization process as well as the derivation of its accuracy can be found in [Loe03b]. In
the experiments presented in this dissertation, the achieved clock accuracy between nodes A and
B was better than 10 µs. The resynchronization run not more often than once every second, and
less often in most cases. A resynchronization procedure took 10 µs in the average.

In all measurements in Sections 7.1 to 7.3, node A generated the test packets the same way. It
used the basic version of the RT-Net driver to generate UDP-packets in minimum-sized Ethernet
frames (64 bytes including all headers, 22 bytes UDP payload) every millisecond. At node B the
RT-Net driver dispatched the test packets based on their UDP port and handed them over to the
test application. As the test traffic was very regular and had only a small bandwidth, the results of
the experiments were mainly influenced by the traffic generated additionally at the other hosts.

7.1.3. Achieving worst-case delays

Oechslin [Oec97] reported the difficulties of reliably reproducing worst-case queueing delays and
buffer usage with traffic that is shaped according to a given set of T-SPECs. He found periodic
traffic patterns, symmetric bursts, that lead to maximum queue lengths with a high probability.
Figure 37 shows the general pattern of symmetric bursts. The experiments in Section 7.2 use these
symmetric bursts to achieve a worst-case behavior at the network switch.

7.1.4. Switch multiplexing delays

The equations in Section 4.2.4 for calculating switching delay and buffer bounds use the tmux

parameter. tmux expresses the time it takes for a switch to start sending a packet after it received it,
given the packet is not enqueued. This time was measured by comparing the maximum observed
transmission delay of a maximum sized Ethernet frame from nodes A to B, once directly connected

7In detail, A signalled ready on the black cable; B took time-stamp1, signalled; A took time-stamp2, signalled; B took
time-stamp3. The precision of one measurement point is given by (time-stamp3 - time-stamp1).

86

7.1 Network hardware analysis 7 EXPERIMENTAL EVALUATION

Pause

Burst

time

rate

C

r

Figure 37: One period of a symmetric burst.

and once connected by a switch. In the latter case, the three other nodes (C, D, E) mutually
exchanged traffic to put load on the switching fabric, but prevented queueing in the switch.

Node B collected one million samples for each test. As the result, the Fast Ethernet switches add
45 µs to the transmission delay. The Gigabit switch adds 25 µs.

7.1.5. Switch buffer capacities

To use the traffic shaping approach for real-time transfer, the switches must have enough buffer
capacity for queueing packets. The experiments in this section analyzed which switches can be
used by determining their buffer capacities available for queueing. Based on the general setup of
Figure 35, node A sent 64-byte test packets to node C and nodes C and D sent two bursty traffic
flows to node B. Node E did not send any data. The flows generated by C and D had a rate slightly
under half of the maximum medium bandwidth (100 MBit/s and 1000 MBit/s) each. They were
shaped in an on-off form, thus a burst of an adjustable length b was followed by a pause. The
maximum switch backlog required by these two flows is b [Loe03a].

During the experiments, nodes C and D started to generate flows with small burst lengths and
increased the burst lengths until packet loss occurred. Table 6 shows the maximum burst lengths
where no packet loss occurred.

Switch (in 1514 Byte-frames) (in KByte)

100 MBit, 3Com 14 20.5 KByte
100 MBit, Level-One 87 127.4 KByte
1000 MBit Intel 200 293 KByte

Table 6: Maximum burst lengths without packet loss.

Although the documentation of the 3Com switch states a memory capacity of 256 KByte, it reli-
ably buffers only 20 KByte. Reasons for the low effective buffer capacity are most probably an
implemented early-dropping algorithm intended to throttle best-effort connections in high-load
situations, fixed buffer memory pools per switch port, a large memory pool reserved for the MAC
table, or a combination thereof. Thus, the 3Com switch is ineligible for the traffic-shaping ap-
proach and consequently was not used in further experiments.

87

7.2 Application-to-application effects 7 EXPERIMENTAL EVALUATION

The documentation of the Intel Gigabit states that it can store up to 2 MByte of data per output
port. It turned out that memory bus and PCI bus limitations at node B prevented a successful
reception of bursts of this size with Gigabit bandwidth.

7.2. Application-to-application effects

This section verifies the theory on the effects of traffic shaping to packet transmission in practice
using the basic version of the RT-Net server. The purpose is to obtain fundamental results about
delay bounds, utilization bounds and CPU usage that can be achieved with software-based traffic
shaping on Switched Ethernet. The basic version of the RT-Net server uses no CPU reservation,
but is given the highest priority in the system. The TX threads use the token-bucket traffic shaper
with data dependency as described in Section 5.7 on page 36. In the following, I will use the term
traffic-shaping interval to refer to the waiting time of the shaper. The IRQ threads and the notifier
threads have no strictly periodic scheduling enforced but are granted the CPU whenever they need
it and the CPU is available. As such, this setup resembles the best-case from the network point of
view: The obtained results represent general bounds for a broader range of scheduling approaches,
such as dynamic-priority-based and time-triggered scheduling.

7.2.1. Application-to-application test packet transmission delays

In the first experiment node B measured the maximum packet transmission delays of 64-byte test
packets sent by node A under the condition that the switch had not to queue any packets. As in
Section 7.1.4, nodes C, D and E loaded the switching fabric with parallel load. Table 7 shows the
maximum observed transmission delays.

Switch maximum observed
transmission delay

100 MBit, Level-One “FSW-2108TX” 80 µs
1000 MBit, AceNIC interrupt coalescing disabled 175 µs
1000 MBit, AceNIC interrupt coalescing enabled 238 µs

Table 7: Maximum application-to-application packet transmission delays with different switches and driver
features.

The AceNIC Gigabit Ethernet cards provide a sophisticated interrupt coalescing feature. While
this interrupts coalescing reduces the interrupt load on the one hand, it possibly increases the
packet reception delay on the other hand. For later comparison, the table contains the values for
both configurations.

7.2.2. Fast Ethernet with DROPS

In the next experiment, all nodes were connected to the Fast Ethernet Level-One switch. Nodes C,
D and E sent data to node B. During the experiment, they varied the period of the TX thread, but

88

7.2 Application-to-application effects 7 EXPERIMENTAL EVALUATION

kept the bandwidth reservation constant. This resulted in different bucket sizes and, consequently,
in different burstiness parameters of the generated flows. The bucket size of each node was cal-
culated as b = r ·Ti + M with r being the reserved bandwidth of that node and M the length of a
maximum-sized Ethernet frame, which is 1514 Bytes. Each node only sent one flow, and thus the
bucket size did not increase due to NIC multiplexing at the send nodes. Table 8 lists the reserved
gross bandwidths and bucket sizes.

Node C D E
(40 MBit/s) (32 MBit/s) (20 MBit/s)

Ti=10 ms 51514 bytes 41514 bytes 26514 bytes
Ti=1 ms 6515 bytes 5514 bytes 4014 bytes

Ti=100 µs 2014 bytes 1914 bytes 1764 bytes

Table 8: Bucket sizes depending on the traffic shaping interval Ti.

Buffer bounds and worst-case delays Table 9 shows the resulting buffer bounds and de-
lays of the three configurations. The buffer bound is calculated from Equation 13 on page 23. tmax

is calculated from Equation 15, increased by the 80 µs from Table 7. test results from the delay
estimations given in Equation 16. tobs is the maximum transmission delay node B has observed in
the experiments. In each experiment B collected 350,000 samples. No packets were lost.

buffer bound tmax test tobs ≤
Ti=10 ms 111.8 KByte 9357 µs 9731 µs 8759 µs
Ti=1 ms 15.7 KByte 1380 µs 1345 µs 1300 µs

Ti=100 µs 6.1 KByte 582 µs 506 µs 438 µs

Table 9: Buffer bounds in the switch and delay bounds for packet transmission from node A to node B
depending on the traffic shaping interval Ti.

The observed transmission delays are actually smaller than the theoretical bounds. This can be
explained by the observation that, even with symmetric bursts, the maximum queue length is only
achieved in extremely rare situations at the switch. These situations just did not happen in the
experiments.

CPU usage To measure the CPU requirement of traffic shaping, the experiments were repeated
with modified send applications: Instead of generating symmetric bursts, they generate the traffic
as fast as possible. The symmetric burst generation requires fine and therefore expensive timers
that would have affected the CPU measurements.

The CPU usage is the ratio of how many CPU cycles are consumed by the system to the CPU
cycles available during a time interval. It was measured by a low-priority looper that consumed
and counted all idle CPU cycles. Table 10 shows the CPU usage at nodes C, D and E with the
modified send applications.

89

7.2 Application-to-application effects 7 EXPERIMENTAL EVALUATION

Node C D E
(40MBit/s) (32MBit/s) (20MBit/s)

Ti=10 ms 4.1% 2.9% 2.3%
Ti=1 ms 11% 9% 7.2%

Ti=100 µs 21.2% 17.2% 11.9%

Table 10: CPU load depending on the traffic shaping interval.

The delay–CPU trade-off is demonstrated in Figure 38. It clearly shows the influence of the
decreased shaping intervals to the CPU usage. Thus, there is another trade-off between traffic
shaping accuracy, and hence transmission delay bounds, and CPU usage in the nodes connected
to the network.

 1000

 10000

de
la

y
in

 m
ic

ro
se

co
nd

s

delay bound
estimated delay bound

observed maximum delay

2.9

9

17.2

0.1ms 1ms 10ms

C
P

U
 lo

ad
 in

 %

traffic shaping interval

CPU load at node D

Figure 38: Delay–CPU trade-off with different traffic shaping intervals. The depicted CPU load is obtained
from node D.

Interpretation of results With maximum sized frames of 1514 Bytes on Fast Ethernet the
achievable bandwidth is limited to 98.6 MBit/s due to framing overhead and inter-packet gaps
(corresponding to 8 + 12.5 Bytes). Nodes A, C, D and E actually sent slightly over 92 MBit/s to
node B, thus utilized its link to 93%. With this utilization, delay bounds of 9.4 ms, 1.4 ms and
0.582 µs, can be guaranteed, depending on the amount of CPU cycles one is willing to spend.

90

7.2 Application-to-application effects 7 EXPERIMENTAL EVALUATION

Equation 16 derived in Section 4.2.4 on page 22 gives an estimation for the switch queueing delay
that can be calculated easily. Table 9 shows that the error by this delay estimation was less than
16% in the experiments of this section.

With a traffic shaping interval of 10 ms, nearly all the buffer capacity of the switch is needed for
a single output port. In another experiment, nodes C and E tried to send two additional 30 MBit-
flows to node D, which immediately resulted in lost packets. With a traffic shaping interval of
1 ms no packet loss occurred.

7.2.3. Gigabit Ethernet with DROPS

Although Gigabit Ethernet is similar to Fast Ethernet at the hardware level, the increased band-
width is a challenge for the communicating nodes: The bandwidth of Gigabit Ethernet is higher
than a standard PCI bus can transfer in practice. As the maximum packet size of Gigabit Ethernet
is the same as that of Fast Ethernet, the amount of CPU required to handle the higher bandwidth
increases as well. This section presents experiments to analyze to what extend the software-based
traffic shaping approach can benefit from Gigabit Ethernet.

The experimental setup was similar to that Section 7.2.2. The network switch was replaced by
the Intel Netstructure optical Switch, and the nodes used the AceNIC network cards instead of the
Intel EEPro/100.

In the first experiment, each one of the nodes C, D and E sent traffic with 160 MBit/s to node
B. The nodes used a traffic shaping interval of Ti=1 ms. The interrupt coalescing feature of the
AceNIC cards was enabled. Table 11 shows the bucket sizes and the CPU load at the sending
nodes. According to Equation 13, 64 KByte of switch buffer were needed. The delay bound of
this configuration was expected to be 687 µs: the switch delay according to Equation 15 plus the
238 µs maximum transmission delay at the non–queued switch from Table 7. Node B actually
observed a maximum packet transmission delay of 906 µs with no packet loss.

Node C D E

bandwidth 160 MBit/s 160 MBit/s 160 MBit/s
bucket size 21514 bytes 21514 bytes 21514 bytes
CPU load 48 % 30 % 39 %

Table 11: Bucket sizes and CPU load for the Gigabit Ethernet experiment with a traffic shaping interval
Ti=1 ms.

In a second experiment, nodes C, D and E used a traffic shaping interval of 100 µs. To measure
the expected small transmission delays with a better accuracy, the nodes disabled the interrupt
coalescing features of the AceNIC network cards. This resulted in lower delays on packet trans-
mission and reception, but it increased the interrupt load at all nodes. To prevent packet loss,
nodes C, D and E sent with a reduced bandwidth of 80 MBit/s each. Nonetheless, the CPU load
increased significantly. The bucket size in all nodes was selected to 2114 Bytes. The resulting
theoretical delay bound was 247 µs (72 µs switch delay and 175 µs according to Table 7). Node B
observed a maximum packet transmission delay of 341 µs with no packet loss.

91

7.3 Sharing a network with non–real-time nodes 7 EXPERIMENTAL EVALUATION

Node C D E tmax ≤ tobs ≤
(40M Bit/s) (32 MBit/s) (20M Bit/s)

Linux 2.4.22, HTB, 10 ms 54022 bytes 43536 bytes 27810 bytes 9807 µs 6928 µs
Linux 2.6.0-test9, TBF, 1 ms 6450 bytes 5495 bytes 4000 bytes 1372 µs 995 µs

Table 12: Bucket sizes (in bytes), delay bound and observed delays for the Linux experiments.

Interpretation of results The observed packet delays are longer than the expected delays.
Additional experiments revealed that the receiving node B was just overloaded and it deferred the
packet delivery to the test application.

This shows a general problem at the receiver: the demultiplexer has to spend CPU cycles for
demultiplexing each packet, sometimes just to find out that no application is waiting for them. A
solution to this was already given by Dannowski [DH00]. He applied early demultiplexing at the
firmware level of an ATM card, and successfully removed load from the CPU.

With a maximum delay of 906 µs the switch output connected to node B can be utilized to 49%.
The limitation are the attached nodes, not the network switch. The buffer requirement of the one
output port would allow for higher bandwidths on more output ports.

This result compares favorable to time-slotted approaches, which are very sensitive to the network
jitter and delays inherent to switches. Schwarz reports in [Sch02] about an implementation of the
time triggered TTP/C protocol on Gigabit Ethernet. The delay and jitter of the network he analyzed
result in a maximum overall utilization of 37 MBit/s, corresponding to a 3.7% utilization.

7.3. Sharing a network with non–real-time nodes

This section presents experiments to find out to what extend the network can be shared between
non–real-time nodes and nodes doing real-time communication. Of course, the non–real-time
nodes must obey some sort of traffic shaping, otherwise they could easily flood the buffers in
the switch. Beginning with kernel version 2.4 Linux includes an QoS subsystem and provides
a number of queueing disciplines for this [LxQ]. Among them are a token-bucket traffic shaper
(TBF) and a hierarchical token-bucket traffic shaper (HTB).

The experiments were executed on Fast Ethernet hardware with two Linux versions: the Linux-
2.4.22 kernel and the Linux-2.6.0-test9 kernel. For traffic shaping both Linux kernel versions use
the periodic clock interrupt. Linux-2.4 kernels on the x86 architecture generate the clock interrupt
with a frequency of 100 Hz. With Linux-2.6 the frequency is 1kHz. Thus with Linux-2.4.22
the expected shaping interval is 10 ms resulting in switching delays in the order of 10 ms. With
Linux-2.6.0-test9 one can expect a 1 ms traffic shaping interval and delays in the order of 1 ms.

Linux-2.4.22 with HTB traffic shaper Instead of DROPS, Nodes C, D and E executed the
Linux-2.4.22 kernel and used its hierarchical token-bucket traffic shaper HTB [LxH]. The HTB is
often used in conjunction with DSL- and cable modems to minimize queueing delays inside the
modems. The experimental analysis of the HTB from the standard kernel however revealed that

92

7.3 Sharing a network with non–real-time nodes 7 EXPERIMENTAL EVALUATION

it sometimes shapes the traffic in intervals of 20 ms, not in intervals of 10 ms. After contacting
the HTB author and tuning the kernel8, it finally shaped the traffic periodically with an interval of
10 ms, for both kernel versions 2.4 and 2.6.

Nodes C, D and E configured their HTB with the same bandwidths as in the previous experiments:
40 MBit/s, 32 MBit/s and 20 MBit/s. HTB determined the token buffer sizes for itself, Table 12
shows the resulting values. The table also contains the transmission delay bound according to
Equation 15, increased by the 80 µs from Table 7 for packet transmission delay without queueing.

For reasons I was unable to find out, the generation of symmetric bursts as with the DROPS setup
did not work – the HTB traffic shaper sooner or later delayed the traffic for 10 ms preventing any
useful results. This should not happen, as the traffic was generated conforming to the reservation.
Thus, the nodes randomly generated bursts with lengths according to the bucket size and breaks in
between.

During the experiment node A sent 3 million test packets to node B. No packets were lost. The
maximum observed packet transmission delay for the test packets was 7 ms (last column in Ta-
ble 12). The bigger difference to the theoretical bound compared to the DROPS experiments can
be explained by the on-off shape of the bursts used.

Linux 2.6.0-test9 with TBF traffic shaper In the second experiment nodes C, D and E exe-
cuted the Linux-2.6.0-test9 with its 1kHz timer. The traffic was shaped by the token-bucket traffic
shaper TBF. The bandwidth configured at the TBF was the same as in the previous experiments:
40 MBit/s, 32 MBit/s and 20 MBit/s. In contrast to HTB the TBF traffic shaper requires the user
to additionally specify the bucket sizes. By experiments the lowest bucket sizes were found that
achieve the desired bandwidths. Table 12 shows the obtained numbers. As with the Linux 2.4
experiment, the client applications did not send symmetric bursts but generated bursts randomly.

During the experiment node A sent half a million test packets to node B. Again, node B observed
no packet loss, and the maximum packet transmission delay was slightly under 1 ms.

Robustness of a shared network I repeated both experiments and tried to distort the traffic
shaping process so that it generate a higher network load than allowed. The idea was to use high
interrupt load to force the system into a state where the shaper cannot send packets for a while.
As a potential consequence, the shaper might catch up this lag later on and might generate larger
bursts. The experiments however showed that the traffic shaper cannot be influenced to generate
longer bursts or higher traffic than expected.

Interpretation of results The experiments showed that Linux nodes can share a network with
real-time nodes, although the different Linux kernel versions lead to different transmission delays
and switch buffer requirements. With the 2.4 series Linux, the 127 KByte buffer need in the switch
do not allow for more than one fully utilized switch output port. For the 2.6 series Linux with its
1 kHz timer, there is no such limitation.

8changing defines: net/sched/sch_htb.c: HTB_HYSTERESIS=0, and include/net/pkt_sched.h:
PSCHED_CLOCK_SOURCE=PSCHED_CPU

93

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

7.4. Dynamic real-time system performance

This section provides a detailed analysis of the DROPS real-time network stack as described in
Section 6 on page 40ff. Therefore, an approach for detailed CPU usage measurement on DROPS
is introduced first. Then, elaborated measurements are used to derive the parameter sets needed
for the CPU usage prediction in Section 6. A complete application scenario shows the achievable
end-to-end of the complete DROPS real-time network stack under various configurations. Finally,
this section provides performance numbers of the L4Linux integration of the RT-Net server.

7.4.1. Measuring CPU costs

Fiasco and DROPS provide a couple of mechanisms to obtain information about the per-thread
CPU usage. The most straight-forward approach is to sample the consumed time of a thread using
the l4_thread_schedule() system call. l4_thread_schedule() returns the accumulated time that has
been consumed by a thread so far. However, to obtain the worst-case per-period CPU consumption
of a real-time thread, this mechanism is not sufficient.

Fiasco’s CPU usage reporting extension

Other established approaches on DROPS either require to modify the control flow of an applica-
tion or to add an additional system call per period of a real-time thread. For sole measurement
purposes, a transparent mechanism is preferable. An unpublished extension of Fiasco provides
such a mechanism: Each thread can be assigned a user thread control block (UTCB) that holds
a ring-buffer for scheduling notification events. Each time a thread switches to another timeslice
or to another period, Fiasco writes a new entry in the ring-buffer. The entries contain information
about the current timeslice and the CPU time consumed by this timeslice.

To obtain the per-period CPU usage of a real-time thread, a sample thread periodically traverses
the ring-buffer in the UTCB of that real-time thread. As the ring-buffer can hold multiple entries,
the sample thread does not need to traverse it in every period of the real-time thread, but instead
can be activated in longer time intervals. Especially, the sample thread can be executed without
a CPU reservation in many relevant measurement scenarios, not influencing the CPU scheduling
of real-time threads. As such, the UTCB extension provides an efficient, nonintrusive CPU usage
measurement mechanism. The CPU usage numbers presented in the following sections were all
measured with the Fiasco UTCB extension.

7.4.2. Measurement setup

The measurements presented in Section 7.4 used a similar setup as the experiments in the previous
sections: Five nodes were connected to the Level-One Fast Ethernet Switch. Figure 39 depicts
the installation and shows the individual hardware configuration of the nodes. For the delay mea-
surements in Section 7.4.6, nodes F and J were connected by a parallel cable for synchronization
purposes.

94

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

256 MByte RAM)

256 MByte RAM)

Level−One

Switch
Fast Ethernet

Node F Node G

Node H

Node J

Node K

(AMD Duron 800MHz,
256 MByte RAM)

(AMD Duron 800MHz,

(AMD Sempron 2200+,
512 MByte RAM)

(Intel Celeron 1.7GHz,

(AMD Sempron 2500+,
512 MByte RAM)

Figure 39: Setup for Section 7.4: five nodes (F, G, H, J and K) are connected to a Fast Ethernet switch.

In contrast to the previous measurements, each node executed the complete DROPS real-time sys-
tem and the real-time network stack as described in Section 6 on page 40. The measurements were
executed by dedicated measurement applications, which are described in detail in the following
sections. In addition to the real-time network stack and the test applications, the nodes executed
the DoPE window manager to visualize the measured data and a cache flooder to achieve a worst-
case behavior of the network stack. The cache flooder continuously accessed the memory to flush
the TLB, L1 instruction cache (trace-cache), L1 data cache and the L2 unified cache.

7.4.3. Transmit CPU costs

Equations 34 and 35 on page 47 define a model for the per-period CPU usage of the transmit
thread of a real-time connection. The equations depend on the following node-specific and NIC-
specific parameters:

cpu.tx_base – a base CPU usage that has to be paid for every periodic invocation. It is mainly
determined by context switches and TLB and cache misses for the code pages and the data
pages.

cpu.tx_packet – a cost to be paid for every sent packet. This mainly covers the access to the NIC.
Sending a packet to the NIC involves putting a descriptor into the send ring of the NIC and
trigger a new send operation at the NIC.

This section refines the CPU usage model by presenting measurements and determines parameter
sets for predicting the CPU usage, depending on the host hardware at the nodes. To obtain the
CPU usage parameters, one node after the other executed a client application that sent data over
a real-time connection. In these experiments, the clients send their data using the blocking client
model, the TX threads used the token-bucket shaper and the interrupt coalescing of the IRQ thread
was enabled. A measurement instance at the nodes obtained

i) the per-period CPU usage of the according TX threads, together with the number of packets
the TX threads transmitted per period

95

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

ii) the per-period CPU usage of the IRQ thread, together with the number of packets the IRQ
thread acknowledged per period

iii) the per-period CPU usage of the according notifier threads, together with the number of
packets the notifier threads acknowledged per period and the number of client-request per
period

iv) the per-period CPU usage of the client threads

The applications executed multiple measurement series, with each series having a fixed set of
connection parameters. For each measurement series, the applications systematically varied one
of the following parameters:

a) the transmission bandwidth of the connections,
b) the period length of the TX threads at the RT-Net server, and
c) the packet sizes the applications send data with

The applications selected the connection parameters as follows: 20 different bandwidths ranging
from 8 MBit/s to 89 MBit/s per connection, three different TX thread periods ranging from 1 ms
to 5 ms, 5 different packet sizes ranging from 300 byte UDP payload to 1472 byte UDP payload.
Each individual measurement series consisted of at least 100,000 individual measurements. From
the potentially 300 different parameter combinations, each of the five nodes executed at least 20
measurement series to obtain its CPU usage parameter set. In the following, I will discuss selected
measurements in detail and will summarize the obtained results then.

Figure 40 shows the per-period CPU usage of the TX threads at node J for a packet size of
399 bytes. The graphs are linear in both the number of bandwidth and in the number of packets,
with minor measurement deviations.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 2000 4000 6000 8000 10000 12000

pe
r-

pe
rio

d
C

P
U

 u
sa

ge
 o

f t
he

 T
X

 th
re

ad
 in

 u
s

transmit bandwidth in KByte/s

Packet size: 399 byte
linear approximation

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 5 10 15 20 25 30

pe
r-

pe
rio

d
C

P
U

 u
sa

ge
 o

f t
he

 T
X

 th
re

ad
 in

 u
s

Number of packets per TX thread period

Packet size: 399 byte
linear approximation

Figure 40: Per-period CPU usage of the TX threads at node J depending on the bandwidth (left figure) and
the number of packets the TX thread sends to the NIC per period (right figure). The packet size
was 399 bytes.

Figure 41 depicts the results of a more elaborate setup aimed to find out whether the TX thread
CPU usage is more bandwidth- or packet-count dependent. In three experiment series the TX

96

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2000 4000 6000 8000 10000 12000

pe
r-

pe
rio

d
C

P
U

 u
sa

ge
 o

f t
he

 T
X

 th
re

ad
 in

 u
s

transmit bandwidth in KByte/s

TX thread period: 5ms
TX thread period: 2ms
TX thread period: 1ms

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

pe
r-

pe
rio

d
C

P
U

 u
sa

ge
 o

f t
he

 T
X

 th
re

ad
 in

 u
s

Number of packets per TX thread period

TX thread period: 5ms
TX thread period: 2ms
TX thread period: 1ms

Figure 41: Per-period CPU usage of the TX threads at node J depending on the bandwidth (left figure) and
the number of packets the TX thread sends to the NIC per period (right figure). The packet size
was 1472 bytes.

threads were given different period lengths, and the packet size was set to 1472 bytes. Clearly,
the right sub-figure demonstrates the dependency of the CPU usage on the number of packets
instead of the bandwidth. Ignoring the steep gradient to the left of the graphs for the moment, the
per-period CPU usage of the TX threads can be upper-bounded by a function that is linear in the
number of packets to be transmitted per TX thread period.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 2000 4000 6000 8000 10000 12000

pe
r-

pe
rio

d
C

P
U

 u
sa

ge
 o

f t
he

 T
X

 th
re

ad
 in

 u
s

transmit bandwidth in KByte/s

UDP payload: 1472 bytes
UDP payload: 980 bytes
UDP payload: 750 bytes
UDP payload: 600 bytes
UDP payload: 399 bytes

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 5 10 15 20 25 30

pe
r-

pe
rio

d
C

P
U

 u
sa

ge
 o

f t
he

 T
X

 th
re

ad
 in

 u
s

Number of packets per TX thread period

UDP payload: 1472 bytes
UDP payload: 980 bytes
UDP payload: 750 bytes
UDP payload: 600 bytes
UDP payload: 399 bytes

Figure 42: Per-period CPU usage of the TX threads at node J depending on the bandwidth (left figure)
and the number of packets the TX thread sends to the NIC per period (right figure). The period
length of the TX threads was 1 ms.

Figure 42 depicts the results of measurement series with varying packet sizes but constant TX
thread periods of 1 ms. The figure shows that the TX threads consume less CPU with smaller
packet sizes. However, the graphs of the right sub-figure approach each other for higher number
of packets. Detailed measurements of the TX thread’s code-path revealed a phenomenon of the

97

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

used Intel EEPro100 NICs: For reasons most likely related to internal resource shortage of the
NICs, the hardware access to enqueue a packet in a series of successively transmitted packets
sometimes took significantly more time than the transmission of the other packets. For packet
sizes of 1472 bytes, it was always the 4th packet. For smaller packets, the access times increased
beginning with the 4th packet and approached that of the 1472 byte-packets later. The other nodes
(F, G, H and K) showed a similar behavior. The gradient, however, is less significant for the
slower nodes, and the actual CPU usage more resembles the linear model. As such, the worst-case
per-period CPU usage of the TX threads indeed can be described by a function that is linear in the
number of packets to be transmitted per TX thread period. Table 13 gives the resulting parameters
for nodes F to K suitable for Equations 34 and 35 of Section 6.3.3 on page 47.

Node IP CPU Model cpu.tx_base cpu.tx_packet
F 100 AMD Athlon 800 Mhz 68 µs 3.4 µs
G 21 AMD Athlon 800 Mhz 68 µs 3.4 µs
H 53 AMD Sempron 2200+ 77 µs 2.2 µs
J 118 AMD Sempron 2500+ 73 µs 2.3 µs
K 21 Intel P4 Celeron 1700MHz 60 µs 3.4 µs

Table 13: CPU usage parameter set for the TX threads when transmitting data

In the experiments, nodes F and G showed an unexpected behavior: The NIC / memory bus /
PCI bus infrastructure of F and G was incapable of transmitting the send data with a sufficiently
high bandwidth from the main memory while the cache flooder at the host CPU was saturating the
memory bus. Both nodes could not send data with bandwidths higher than 8000 KByte/s. Further,
the NICs took up to 5 ms to transmit a single full-size packet after it had been enqueued into the
empty hardware TX ring9. When the cache-flooder was disabled, no such delays and limitations
could be observed. As such, the memory bus of both nodes is considered ineligible to support the
DROPS real-time network stack for higher bandwidths.

The experiments were repeated with the strictly periodic shaper with data dependency. Due to
the increased number of TX thread activations, the overall CPU consumption was significantly
increased. Nonetheless, it was consistent with the parameters of Table 13, once the changed
number of TX thread invocations were taken into account.

IRQ thread CPU costs Figure 43 shows the IRQ thread CPU usage for node J depending
on the bandwidth and the number of packets the thread had to process per period in the previous
experiment. Again, the linear model depending on the number of processed packets is more ap-
propriate to predict the CPU usage than a model depending on the bandwidth. Table 14 shows the
derived values to predict the IRQ thread CPU usage when transmitting data according to Equa-
tion 43 on page 54 and Equation 47 on page 55. Note that the table cpu.irq_tx_base to denote the
constant (base) part of an IRQ activation. As Section 7.4.4 and Section 7.4.5 will show, that base
part depends on whether data was only sent, whether data was only received or if data was both
sent and received. Section 7.4.5 will refine the CPU usage model then.

9The bare medium-transmission time is about 123 µs.

98

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

 55

 60

 65

 70

 75

 80

 0 2000 4000 6000 8000 10000 12000pe
r-

pe
rio

d
C

P
U

 u
sa

ge
 o

f t
he

 IR
Q

 th
re

ad
 in

 u
s

transmit bandwidth in KByte/s

Packet size: 399 byte
Packet size: 600 byte
Packet size: 750 byte
Packet size: 980 byte
Packet size: 1472 byte

 55

 60

 65

 70

 75

 80

 0 5 10 15 20 25 30pe
r-

pe
rio

d
C

P
U

 u
sa

ge
 o

f t
he

 IR
Q

 th
re

ad
 in

 u
s

Number of packets per IRQ thread period

Packet size: 399 byte
Packet size: 600 byte
Packet size: 750 byte
Packet size: 980 byte
Packet size: 1472 byte

Figure 43: Per-period CPU usage of the IRQ thread at node J depending on the bandwidth (left figure) and
the number of packets the IRQ thread processed per period (right figure) for different packet
sizes.

Node CPU Model cpu.irq_tx_base cpu.irq_tx
F AMD Athlon 800 Mhz 90 µs 3.1 µs
G AMD Athlon 800 Mhz 90 µs 3.1 µs
H AMD Sempron 2200+ 59 µs 0.8 µs
J AMD Sempron 2500+ 59 µs 0.7 µs
K Intel P4 Celeron 1700MHz 73 µs 1.0 µs

Table 14: CPU usage paramete set for the IRQ thread when transmitting data

The experiments were repeated with interrupt coalescing disabled. As expected, the overall CPU
usage of the IRQ thread increased due to the increased number of IRQ thread invocations. How-
ever, taking the increased number of invocations and the decreased number of sent notifications
into account, the CPU usage was consistent with the obtained CPU usage parameter set.

Notifier thread CPU costs The experiments also confirmed, that the CPU usage of the no-
tifier thread solely depended on the number of client wake-ups. As expected, it was especially
independent on the number of packets that were signalled to the client per wake-up. Table 15
gives the according numbers10.

Client thread CPU costs The CPU costs of the client application were measured too. In
addition to the client threads CPU usage, the CPU cycles needed for filling the test-packets with
data were measured and subtracted from the thread CPU usage.

However, the main purpose of the clients was to drive the RT-Net server and to gather and display
the results. Naturally, the time needed to generate the data and submit it to the network stack

10The average CPU usage was between 30% and 60% of the given worst-case numbers.

99

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

Node CPU Model cpu.notify_base
F AMD Athlon 800 Mhz 44 µs
G AMD Athlon 800 Mhz 44 µs
H AMD Sempron 2200+ 28 µs
J AMD Sempron 2500+ 24 µs
K Intel P4 Celeron 1700MHz 39 µs

Table 15: Per-client wakeup CPU usage for the notifier threads when sending data.

greatly depends on the actual application: It differs with the algorithms used to generate the data
and their mutual interference to the numerous caches on modern host architectures. As such, the
obtained worst-case numbers merely give a hint to the CPU usage of other client applications
rather than a sound base for CPU usage prediction.

Table 16 presents the obtained results: cpu.client_tx_packet denotes the CPU time needed to
generate a packet and submit it to the RT-Net server. cpu.client_tx_wait denotes the client threads
CPU time consumed when waiting for free entries in the transmit ring buffer.

Node CPU Model cpu.client_tx_packet cpu.client_tx_wait
F AMD Athlon 800 Mhz 1.4 µs 46 µs
G AMD Athlon 800 Mhz 1.4 µs 46 µs
H AMD Sempron 2200+ 1.0 µs 19 µs
J AMD Sempron 2500+ 0.6 µs 18 µs
K Intel P4 Celeron 1700MHz 1.1 µs 23 µs

Table 16: Client thread CPU usage parameter set for data transmission.

7.4.4. Receive CPU costs

This section obtains the CPU usage parameters for the data reception path. In experiments, one
node after the other executed a client application that received data on real-time connections. In
most of the experiments, the data was generated by node J. For the measurement of the receive
costs at node J, the data was generated by node K. For communication with the RT-Net server, the
receiving clients used the blocking client model, and the interrupt coalescing of the IRQ threads
was enabled. A measurement instance at the nodes obtained

i) the per-period CPU usage of the IRQ thread, together with the number of packets the IRQ
thread received per period

ii) the per-period CPU usage of the according notifier threads, together with the number of
packets the notifier threads copied per period and the number of client-request per period

iii) the per-period CPU usage of the client threads

As with the transmit path experiments, the nodes executed multiple measurement series, with
varying connection parameters and varying incoming traffic characteristics. In detail, the follow-
ing parameters were systematically modified:

100

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

a) the bandwidth offered to the nodes,
b) the size of the packet sent to the nodes, and
c) the period length of the IRQ threads at the RT-Net server.

Again, the memory infrastructure of nodes F and G turned out to be a bottleneck. Both nodes were
incapable of transmitting the received data with a sufficiently high bandwidth to the main memory
while the cache flooder at the host CPU was saturating the memory bus. Both nodes showed a
substantial packet loss at moderate bandwidths11. Consequently, the following discussion only
considers the results for nodes H, J and K.

IRQ thread CPU costs The CPU costs for the IRQ threads when receiving data behave sim-
ilar to the CPU costs when transmitting data. They can be upper-bounded by a function linear in
the number of packets. Table 17 gives the parameter sets suitable for Equation 43 on page 54 and
Equation 47 on page 55. As described in the previous section, the base CPU part of an IRQ thread
depends on whether data was sent or received. As such, the table uses cpu.irq_rx_base to denote
the base CPU part when receiving data.

Node CPU Model cpu.irq_rx_base cpu.irq_rx_packet
H AMD Sempron 2200+ 65 µs 1.7 µs
J AMD Sempron 2500+ 62 µs 1.4 µs
K Intel P4 Celeron 1700MHz 80 µs 2.3 µs

Table 17: CPU usage parameter set for the IRQ thread when receiving data

Again, the experiments were repeated with interrupt coalescing disabled. The overall CPU usage
of the IRQ thread increased due to the increased number of IRQ thread invocations. However,
taking the changed number of IRQ thread invocations and the changed number of received packets
into account, the results were consistent with the obtained CPU usage parameter set.

Notifier thread CPU costs In contrast to the IRQ thread, the notifier threads access the re-
ceived data to transmit it to the client applications. As such, the CPU costs for the notifier threads
are expected to depend both on the number of packets and the amount of data to be transmitted per
thread period. Table 18 shows the CPU usage parameter set suitable for Equation 55 on page 62,
Equation 57 on page 63, Equation 75 on page 69 and Equation 82 on page 70.

Node CPU Model cpu.notify_base cpu.notify_packet cpu.notify_byte
H AMD Sempron 2200+ 28 µs 1.5 µs 4.2 ns
J AMD Sempron 2500+ 24 µs 1.2 µs 4.1 ns
K Intel P4 Celeron 1700MHz 39 µs 2.1 µs 4.6 ns

Table 18: CPU usage parameter set for notify threads when receiving data

11Packet loss occurred for bandwidths over 3 MByte/s.

101

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

Additional experiments with the clients operating in polling mode showed no difference in the
CPU costs of the notifier threads once the changed number of client notifications and signalled
packets were taken into account.

Client thread CPU costs When data was received by the client applications, they only ac-
cessed the first bytes of the data packets to check for lost packets. As such, the CPU costs for the
client applications should depend on the number of packets they received rather than the packet
size. This expectation was verified by the results obtained at nodes H, J and K: the client thread
CPU usage for receiving data was nearly linear in the number of packets received, and did not
depend on the packet size. Table 19 shows the resulting numbers. The actual CPU reservation
cpu_client to be done can be calculated as

cpu_client = cpu.client_base+ n · cpu.client_packet

with n denoting the expected number of packets per client thread period.

Node CPU Model cpu.client_base cpu.client_packet
H AMD Sempron 2200+ 37 µs 1.1 µs
J AMD Sempron 2500+ 31 µs 1.0 µs
K Intel P4 Celeron 1700MHz 44 µs 2.1 µs

Table 19: CPU usage parameter set for the client threads when receiving data

7.4.5. Costs for multiple connections

Using an experimental setup similar to that of the previous section, the actual CPU usage parameter
sets applicable to the theory in Section 6.3 on page 44 and Section 6.4 on page 47 were obtained:
Instead of just one connection, the nodes now sent and received data on multiple connections.
Therefore, the experiments were repeated (1) with multiple send connections, (2) with multiple
receive connections, and (3) a combination of multiple send and receive connections. The number
of send and receive connections was between one and three.

In the experiments, the token-bucket traffic shaper was used, the IRQ threads enabled the interrupt
coalescing, and the notification path used the blocking client mode.

For sole data transmission, the number of connections had no measurable influence on the CPU
usage: The worst-case CPU usage of the client threads, the TX threads and the notifier threads of
the individual connections was the same as that measured for a single connection with the same
parameters (bandwidth, packet size, period length). The IRQ thread’s CPU usage was consistent
with the accumulated number of packets of the individual connections. The wakeup of the notifier
threads by the IRQ thread had no measurable influence to its worst-case CPU usage.

For sole data reception, the same behavior could be observed: The worst-case CPU usage of the
client threads and the notifier threads corresponded to the setup with just one receive connection
of the appropriate parameters. The IRQ thread’s CPU usage was consistent with the accumulated

102

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

number of packets of the individual connections. As with the data transmission, the wakeup of the
notifier threads by the IRQ thread had no measurable influence to its worst-case CPU usage.

For a combined transmission and reception, the IRQ thread’s CPU usage was higher than the
CPU usage for transmission and reception alone, but lower than the sum of both. The observed
CPU usage can be expressed by the following formula:

CPUIRQ = cpu.irq_base + cpu.irq_base_tx+ cpu.irq_tx · txIRQ

+ cpu.irq_base_rx+ cpu.irq_rx · rxIRQ (83)

cpu.irq_base covers the base cost for activating the IRQ thread, and results from the CPU cycles
needed to execute the common code-path, and to handle the most TLB and cache misses.

cpu.irq_base_tx represents the additional constant costs to execute the transmit-specific path,
which are mostly determined by the additional TLB and cache misses on that path. The
irq_base_tx values in Table 14 correspond to cpu.irq_base+ cpu.irq_base_tx of Equation 83.

cpu.irq_base_tx represents those constant costs for the receive path. The irq_base_rx values in
Table 17 correspond to cpu.irq_base+ cpu.irq_base_rx of Equation 83.

As such, the CPU usage calculation of Equation 43 on page 54 and Equation 47 on page 55 must
be adapted as follows:

CPUIRQ = (cpu.irq_base+ cpu.irq_base_tx+ cpu.irq_tx) · txIRQ +
(cpu.irq_base+ cpu.irq_base_rx+ cpu.irq_rx) · rxIRQ (84)

CPU
IRQ

IRQ = cpu.irq_base + cpu.irq_base_tx ·1cpu.irq_tx + cpu.irq_tx · txIRQ

+ cpu.irq_base_rx ·1cpu.irq_tx + cpu.irq_rx · rxIRQ (85)

with 1x defined to be 1 for x �= 0 and 0 for x = 0.

Table 20 shows the derived values for cpu.irq_base, cpu.irq_base_tx and cpu.irq_base_rx for
nodes H, J and K.

Node CPU Model cpu.irq_base cpu.irq_base_tx cpu.irq_base_rx
H AMD Sempron 2200+ 42 µs 17 µs 23 µs
J AMD Sempron 2500+ 42 µs 17 µs 20 µs
K Intel P4 Celeron 1700MHz 51 µs 22 µs 29 µs

Table 20: CPU usage parameter set for the IRQ threads when sending and receiving data

103

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

7.4.6. Application scenario

The application scenario in this section shows the end-to-end latency that can be achieved in
practice with different server configurations. Node F periodically generated test packets and sent
them to node J. To achieve low delays at F, it used the strictly periodic traffic shaper with data
dependency. Nodes G, H and K generated bulk traffic using the token-bucket shaper. The bulk
traffic was sent to node J as well and used a common destination UDP port different from the port
for the data from F. Table 21 shows the connection parameters of the sending nodes.

For comparison, Node J’s IRQ thread was scheduled with interrupt coalescing disabled once and
in another experiment with interrupt coalescing enabled. The client application at J receiving the
traffic from F used the blocking client mode to achieve low delays on that connection. The client
application receiving the bulk data from G, H and K used the polling client mode with a polling
interval of 1 ms.

Node CPU Model M bandwidth Ti Di burstiness bi

F AMD Athlon 800MHz 86 Bytes 62 kbyte/s – 0.3 ms 104 bytes
G AMD Athlon 800MHz 1514 Bytes 2500 kbyte/s 2.07 ms 0.5 ms 7939 bytes
H AMD Sempron 2200+ 1514 Bytes 4891 kbyte/s 2.09 ms 0.5 ms 14181 bytes
K Intel P4 Celeron 1700MHz 1514 Bytes 3865 kbyte/s 2.05 ms 0.5 ms 11369 bytes

Table 21: Connection parameters of the transmitting nodes. Ti denotes the period length of the TX threads
of the connections, and Di their scheduling deadline. The burstiness parameter b i results from
Table 1.

Each node only sent on one connection. According to Equation 7 on page 22, the burstiness
parameter of the individual connections thus did not increase at the sending nodes. According to
Table 1 on page 38, the worst-case delay increase due to the traffic shaper at node F was 300 µs.
The network latency from node F to the switch was 7 µs. Applying Equation 15 on page 23, the
worst-case delay at the network switch resulted in 2575 µs.

To calculate the resource requirements for node J, the traffic parameters of the flows entering J
must be known. As the data of G, H and K was received by one connection at J, the burstiness of
that data could be calculated from the aggregate of these flows at the switch: Instead of increasing
the burstiness of the three flows separated and summing them up afterwards, the flow specifications
were added first and that aggregate was subject to burstiness increase by the flow from F and
tmux at the switch output then. This aggregation results in a lower burstiness bound compared to
the separated calculation. According to Equation 21 on page 25, the burstines parameter of the
connection from node F to J was 263 Bytes when entering J. The burstiness parameter of the
aggregate of the connections from nodes G, H and K calculated to 34104 Bytes.

To calculate the CPU reservation for the IRQ thread at J, the maximum number of packets that
may arrive in a time interval must be calculated. As argued in Section 6.4.1, the relevant time
interval is its scheduling period plus its deadline. denoted by TIRQ +DIRQ. During the experiment,
TIRQ was 1 ms. According to Equation 41 on page 53, the IRQ thread had to receive no more than
11 packets per millisecond (3 packets from F, and up to 8 packets from G, H and K).

104

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

With the IRQ coalescing scheme, this resulted in a worst-case execution time of 77 µs for the IRQ
thread. As it was the highest priority thread in the system, 77 µs also was its scheduling deadline.
Using Equation 41 again with TIRQ + DIRQ=1.077 ms verifies the maximum number of packets to
be 11. The CPU reservation for the notifier thread of the connection from F resulted in 28 µs per
ms, the CPU reservation for the client thread in 34 µs. The notifier thread for the data from G,
H and K needed 83 µs in the worst case, and the corresponding client thread needs up to 39 µs.
For the test packets from F this resulted in a worst-case scheduling delay of 222 µs, increased by
TIRQ=1 ms caused by the IRQ coalescing, giving 1222 µs. The application-to-application delay
bound for packets from node F to J thus was 4104 µs.

With the noncoalescing scheme, the IRQ thread was activated whenever a packet was received.
Per activation, no more than 4 packets needed to be handled then (3 from F and 1 from G, H
and K), taking up 68 µs in the worst case. The IRQ thread could be activated up to 11 times per
millisecond, resulting in a worst-case CPU reservation of 697 µs per ms. The notifier thread for
the test packets could be activated up to 3 times per ms taking up to 25 µs each. The corresponding
client thread consumed up to 32 µs per activation. This resulted in a CPU-reservation of 75 µs for
the notifier thread and in 96 µs for the client thread. The notifier thread of the other connection
worked in the polling mode and was activated only once per millisecond. Its worst-case CPU usage
resulted in 83 µs per ms, and the corresponding client thread needed not more than 39 µs per ms.
The overall CPU reservation utilization is thus 99%. A time-demand analysis for the test packet’s
client thread gives a worst-case scheduling delay for the test packets of 887 µs.12 However, the
IRQ thread did not execute for 697 µs in a row, and applying this knowledge gives tighter bounds:
Once a 1514 byte-packet arrived at the NIC, the next 1514 byte-packet could arrive not earlier than
123 µs later. The 86-byte packets arrived in intervals of 7 µs. Thus, after a 86-byte test packet was
seen by the IRQ thread, no more than 2 further IRQ thread activations could happen until the
client thread received the packet. This results in a worst-case scheduling delay for the test packets
of 394 µs, giving an application-to-application delay bound of 3276 µs when IRQ coalescing is not
used.

To measure the actual transmission delays, nodes F and J where synchronized with a parallel
cable as described in Section 7.1.2 on page 85. Further, node F put two time-stamps into each test
packet:

i) at the client application before it sent it to the TX thread
ii) at the TX thread when it removed the packet from the connection-specific send-ring and put

it to send-ring of the NIC.

Upon reception, node J put another two time-stamps into the packet:

iii) when the IRQ thread got the packet from the NIC
iv) when the client thread finally received the packet.

The difference of time-stamps i) and iv) is the application-to-application delay, the difference of
time-stamps ii) and iii) gives a hint on the actual network delay. The latter time difference does
not include the delay of the traffic shaper and the scheduling delay of the notifier and the client
thread. Although, it contains the time to enqueue a packet at the NIC and to schedule the IRQ
thread after packet reception.

12priorities: IRQ > notify threads > test client thread > other client threads

105

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0 200 400 600 800 1000 1200 1400 1600

fr
eq

ue
nc

y

latency in microseconds

tx period ca. 2ms

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0 100 200 300 400 500 600 700 800 900 1000

fr
eq

ue
nc

y

latency in microseconds

tx period ca. 1ms

Figure 44: Distribution of app-to-app packet latencies from node F to J. The y-axis is in logarithmic scale.

The left part of Figure 44 shows the distribution of the measured test-packet application-to-
application delays, without interrupt coalescing at node J. The maximum observed delay was
1441 ms, which is much less than the worst-case bound of 3276 µs. There are two reasons for
this: First, the assumed network traffic model is overly pessimistic. The TX threads at nodes F,
G, H and K suffered nearly no scheduling jitter, and as such their produced streams had a lower
burstiness than expressed by the flow specifications. Second, the worst-case scheduling delays
are pessimistic. This is caused by the deep and numerous caches of the x86 architecture, which
almost always allow to execute a series of operations in a shorter time than the sum of their individ-
ual measured worst-case execution times. The parameter set for the linear CPU usage prediction
model was obtained as the upper bound of many individual measurement results, and as such is
pessimistic by nature.

The accumulated delay between the time-stamps i) and ii) and between time-stamps iii) to iv) was
about 30 µs, thus the actual scheduling delays were much shorter than the theoretical worst-case
bounds. The overall CPU consumption by the network stack and its clients at node J was about
50%, which is the half of the predicted worst-case CPU usage. The worst-case CPU consumption
of the IRQ thread was 221 µs per ms, which is about a third of the CPU amount reserved. With
the cache-flooder disabled, the overall CPU consumption at node J dropped to 25%.

In a second experiment, the IRQ thread at node J used the software interrupt coalescing feature.
As expected, the application-to-application delays increased by TIRQ=1 ms.

The right part of Figure 44 shows the end-to-end delays of another experiment: The period lengths
of the TX threads at nodes G, H and K were reduced to 1.07 ms, 1.09 ms and 1.05 ms, and node
J received the packets without interrupt coalescing. Due to the fine-granular traffic-shaping, the
observed application-to-application delays of the test-packets were below 905 µs. In another ex-
periment, with TX thread period lengths of 5.07 ms, 5.09 ms and 5.05 ms. In that experiment, the
observed worst-case application-to-application-delay was 3082 µs.

Finally, the IRQ thread at node J enabled the IRQ coalescing feature again, but used a coalescing
time of 10 ms. The application receiving the bulk data used a polling interval of 10 ms. Conse-

106

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

Switch
Fast Ethernet

Level−One

512 MByte RAM)
(AMD Sempron 2200+,(Intel Celeron 1.7GHz,

256 MByte RAM)

Node MNode L: L4Linux 2.2

Figure 45: Setup for Section 7.4.7: two nodes (L, M) are connected to a Fast Ethernet switch. Node
L executed L4Linux: Once the standard L4Linux with its native network stack ad NIC driver,
another one it executed L4Linux with the RT-Net driver stub. Node M generated test traffic to
and received test traffic from L. For the RT-Net setup, it executed the bandwidth manager.

quently, the application-to-application delay was increased by another 10 ms, but the overall CPU
reservation at node J was only 10%.

7.4.7. L4Linux integration

To measure the performance of the L4Linux stub described in Section 6.9.1 on page 81 and the
performance of the one-shot reservation approach described in Section 6.8.1 on page 78, two nodes
were connected two a switch as depicted in Figure 45.

In four measurement series, (1) the performance of the RT-Net stub was compared to the perfor-
mance of standard L4Linux for data reception, and (2) the performance of the once-shot reservation
approach for data transmission as described in Section 6.8.1 on page 78 was analyzed and com-
pared to that of standard L4Linux. Therefore, node L executed L4Linux version 2.2: Once the
standard L4Linux with its native network stack and standard NIC driver, another one L executed
L4Linux with the RT-Net driver stub. Node M generated test traffic to and received test traffic from
L. For the RT-Net setup, M executed the bandwidth manager.

Data reception

For the data reception experiments, node M generated traffic with different bandwidths. Once M
sent UDP packets, and in another series it sent TCP packets. At L, all packets were received by a
Linux application. During the experiments, L measured its overall CPU load.

The left part of Figure 46 shows the CPU utilization of node L for both L4Linux variants under dif-
ferent incoming TCP network loads. The depicted bandwidths are the effective TCP throughputs
observed by the applications. As expected, the CPU usage with RT-Net stub is higher than those
of standard L4Linux for lower bandwidths. This can be explained by the increased overhead due to
additional context switching and data copying. However, for higher bandwidths, the RT-Net stub
outperforms the standard L4Linux implementation. This can be explained by the packet coalescing
of the RT-Net server at the notifier thread when communicating with L4Linux. In contrast to the
EEpro100 NIC driver in standard L4Linux, the RT-Net server coalesced more packets in the case
of higher load at L4Linux. This resulted in fewer context switches to L4Linux.

The right part of Figure 46 shows the CPU utilization of node L for both L4Linux variants under
different incoming UDP network loads. The depicted bandwidths are the effective UDP through-
puts observed by the applications, which is nearly the overall network throughput as packet loss

107

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000

C
P

U
 u

sa
ge

 in
 %

offered TCP bandwidth

plain L4Linux
L4Linux with RT-Net

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000

C
P

U
 u

sa
ge

 in
 %

offered UDP bandwidth

plain L4Linux
L4Linux with RT-Net

Figure 46: CPU usage of plain L4Linux and L4Linux with the RT-Net stub and when receiving data.

only happened occasionally. As with the TCP experiment, standard L4Linux outperformed the
RT-Net stub for lower bandwidths, but required more CPU with higher bandwidths.

Data transmission

For the data transmission experiments, a Linux application at node L transmitted TCP data with
different TCP packet sizes as fast as possible to node M. The RT-Net server at L used one-shot
reservations to adapt the bandwidth reservation to its best-effort clients needs. Therefore, the best-
effort traffic shapers set a flag whenever they had to wait because of an empty bucket. A periodic
thread polled this flag every 100 ms. If the flag was set, it asked the local network manager to
increase the reserved bandwidth by a factor of 1.3. If the flag was not set, the bandwidth was
decreased by a factor of 2.0, up to a minimum reservation of 200 Bytes/ms. Thus, a greedy sender
could achieve the maximum Fast Ethernet throughput after 1.5 seconds, and the reservation fall
back to its minimum value after 0.6 seconds of silence.

With these adaption parameters, L4Linux achieved a TCP throughput of 9.7 MByte/s. The band-
width requirement for the reservation traffic to node M was 2.5 KByte/s.

Section 5.7 on page 36 discussed the minimum bucket size for the best-effort shaper to achieve
a full network utilization. The experiments however showed, that bucket sizes greater than Bi =
rt ∗Ti + M do not result in a higher throughput.

The left part of Figure 47 shows the CPU usage of node L for different TCP packet sizes. Clearly,
the communication between the Linux client application and the L4Linux significantly determines
the overall CPU usage of the system. For comparison, the measurement was repeated with stan-
dard L4Linux. With standard L4Linux, the measurement application achieved a throughput of
10.5ṀByte/s. The overall CPU usage of node L is depicted in the right part of Figure 47. The
higher CPU usage compared to the RT-Net experiment has two reasons: First, the transmitted
bandwidth was increased by 8%. Second, the interrupt and packet coalescing of the RT-Net server

108

7.4 Dynamic real-time system performance 7 EXPERIMENTAL EVALUATION

 26

 28

 30

 32

 34

 36

 38

 40

 0 10000 20000 30000 40000 50000

C
P

U
 u

sa
ge

 in
 %

TCP packet size

L4Linux with RT-Net

 26

 28

 30

 32

 34

 36

 38

 40

 0 10000 20000 30000 40000 50000

C
P

U
 u

sa
ge

 in
 %

TCP packet size

plain L4Linux

Figure 47: CPU usage of L4Linux with the RT-Net stub and standard L4Linux stub and when sending data.

resulted in in fewer context switches, and therefore in fewer cache-misses compared to the stan-
dard L4Linux implementation.

109

8 CONCLUSION

8. Conclusion

This dissertation shows, both theoretically and in experiments, how traffic shaping can be used
to achieve reliable application-to-application communication with bounded transmission delays
on Switched Ethernet. The thesis comprises four main contributions and a number of auxiliary
contributions.

8.1. Main contributions

Formal network model The dissertation applies network scheduling theory to Switched Eth-
ernet and provides the model to calculate exact delay and buffer bounds for the switch and its
attached nodes.

Dedicated traffic shapers To ensure that the nodes do not flood the network and obey previ-
ously acknowledged traffic contracts, they must shape their traffic accordingly. Different delay
requirements and scheduling needs demand for dedicated shaper solutions. They differ in the
properties of the generated data flows and in their implementation costs with respect to CPU uti-
lization and requirement to the underlying CPU scheduler. As a general result, there is a trade-off
between a low CPU usage by the traffic-shaping process on the one hand, and low delays at the
Ethernet due to smoothly-shaped traffic flows on the other hand.

Operating-system requirements Section 6 identifies and analyzes the necessary operating sys-
tem support for hard real-time communication on Switched Ethernet. It presents the design and
implementation of a real-time network stack for the priority-based, dynamic real-time operating
system DROPS. The network stack has the following properties:

• To meet different application QoS requirements, the network stack provides traffic models
that differ in their used traffic shapers, achievable communication delays, guarantees on data
delivery, and resource and scheduling requirements.

• It features a multi-threaded architectures to isolate connections with respect to CPU usage.
The CPU reservation is based on an overall control- and data-flow analysis that takes the
burstiness increase due to the inherent scheduling jitter into account.

• To reduce and bound the IRQ-related CPU consumption, the network drivers use software-
based interrupt coalescing. Event-coalescing techniques reduce the CPU consumption for
the coordination inside the network stack and the application interaction. Copying of data
is avoided using zero-copying techniques, although data reception from the network needs
to copy data once unless further hardware support is available.

Experimental verification Detailed measurements validated the starting hypothesis that with
fine grained traffic shaping as only means of node cooperation, it is possible to achieve lower
guaranteed delays and higher bandwidth utilization than with time-slotted and token-passing ap-
proaches:

• A special version of the network stack—having the highest priority in the system— demon-
strated that sub-millisecond application-to-application delays can be guaranteed for both
Fast and Gigabit Ethernet. The network utilization was 93% on Fast Ethernet and 49% on
Gigabit Ethernet.

110

8.2 Auxiliary contributions 8 CONCLUSION

• The full version of the network stack—doing appropriate CPU reservation— requires a 10%
CPU utilization to receive data with Fast Ethernet speed while giving a 10 ms application-
to-application delay guarantee to a small fraction of the data and a 20 ms delay guarantee to
the rest.

• With less aggressive interrupt and event coalescing, even modern and fast CPUs can be
flooded with network traffic. With a 3 ms and 4 ms application-to-application delay guaran-
tee, the previous setup resulted in a 99% CPU utilization.

• Slower nodes do not provide the memory bandwidth that is necessary for low-delay real-
time communication on Fast Ethernet.

8.2. Auxiliary contributions

Nodes executing all-purpose operating systems such as Linux can also share a real-time network.
Although no delay guarantees can be given to their applications, implemented traffic shapers pre-
vent a flooding of the switches and allow these nodes to communicate with the network. Nonethe-
less, these traffic shapers sometimes generate data flows exceeding the specified parameters and
advise to carefully analyze the traffic actually generated.

L4Linux, a modified Linux kernel that allows to execute legacy Linux applications on DROPS, is
one of the most important best-effort applications of that real-time system. I integrated L4Linux
into the real-time network stack to provide L4Linux access to the real-time network and to show
how best-effort network stacks can be layered on top of the real-time stack. Experiments demon-
strated (1) that the one-shot reservation mechanism satisfies the changing bandwidth needs of
best-effort network stacks, and (2) that the coalescing mechanisms are a sensible approach for
layering network stacks on external network drivers in general and for providing L4Linux access
to the real-time network in particular. The performance and CPU usage are comparable to that of
a standard L4Linux implementation with integrated network drivers.

Operating systems with low scheduling jitters, such as time-triggered systems, allow a very reg-
ular application execution. Even in the presence of many jitter-sensitive tasks, these systems can
schedule software-implemented traffic shapers in fixed time intervals. In comparison to the pri-
ority based system used in this dissertation, these systems allow to generate streams with lower
burstiness, and thus can help to reduce the worst-case queueing delays in the network switches.

8.3. Suggestions for future work

This dissertation applies network scheduling theory to Switched Ethernet to formally describe the
network traffic and to derive a model of a network with one switch and the nodes connected to it.
Networks with multiple switches were not discussed as they are out of the scope of this thesis. An
extension to multi-switched networks would open new application fields, and the steps necessary
are outlined in Section 4.5.

The communicating nodes used in this thesis are modern workstations. Although even this sophis-
ticated hardware experienced performance bottlenecks, an implementation on embedded systems

111

8.4 Concluding remarks 8 CONCLUSION

is very appealing, especially in environments with only moderate bandwidth requirements: Pro-
cessors for embedded systems often apply only few performance enhancing technologies such as
caches or deep pipelines. Hence their context-switching costs, the main source of the performance
bottlenecks, are typically small or even negligible. Further, embedded systems often use specif-
ically manufactured hardware, including the main processor and adapted communication devices
on one chip (SoC). Using intelligent network adapters at these SoCs that disburden the main CPUs
by offloading the traffic shaping of send data, and the demultiplexing of received data seems an
obvious conclusion.

8.4. Concluding remarks

Traffic shaping on Switched Ethernet is a general approach that works with commodity hardware
and requires no traffic monitoring or traffic control inside the network switches. The nodes must
shape their traffic, but otherwise can send data whenever they want. During the doctorate process
for this dissertation, I successfully filed an according patent [Loe02] on the principles of real-time
communication on switched networks.

112

A DERIVATIONS

A. Derivations

A.1. Bounds for stair-case arrival curve and service curves

This section derives the backlog bounds (buffer bounds) and delay bounds for a system with a
service curve in the form of a stair-case that is traversed by an arrival curve in the form of a
stair-case, as given in Section 6.4.6 on page 69.

The arrival curve is denoted by α(t) and given by Equation 86. The service curve is denoted by
β(t) and given by Equation 87. Figure 48 shows the arrival and service curves.

α(t) =
{

b+
⌊

t+m
P

⌋ · b̄ t > 0
0 t = 0

(86)

β(t) =
⌊

(t −D)+
T

⌋
·C (87)

It holds especially:
b̄ < b m ≤ P D ≤ T C = α(T)

T

time [ms]0 111065

service curve

arrival curve

D

b C

C

b
_

P−m 2P−m

Figure 48: Arrival curve in the form of a stair-case and a service curve in the form of a stair-case.

Lemma A.1 α is sub-additive, thus for all x ≥ 0, y ≥ 0 it is α(x)+ α(y) ≥ α(x+ y).

Proof of Lemma A.1:

If x = 0 or y = 0, α(x)+ α(y) ≥ α(x+ y) follows immediately.

Let x > 0 and y > 0 hold. Further, let nx and ny be appropriate integer numbers and dx and dy be
appropriate real numbers with 0 ≤ dx < 1, 0 ≤ dy < 1, so that

x = nx ·P+ dx

y = ny ·P+ dy

A-1

A.1 Bounds for stair-case arrival curve and service curves A DERIVATIONS

Then, for α(x)+ α(y) holds:

α(x)+ α(y) = 2b+ b̄ ·
(⌊

nx ·P+ dx + m
P

⌋
+

⌊
ny ·P+ dy + m

P

⌋)

= 2b+ b̄ · (nx + ny)+ b̄ ·
(⌊

dx + m
P

⌋
+

⌊
dy + m

P

⌋)

Prove for dx + m < P,dy + m < P:

If dx + m < P and dy + m < P, it is �dx+m
P � = �dy+m

P � = 0. Further, it is dx + dy + m < 2P, and

therefore �dx+dy+m
P � ≤ 1.Thus,

α(x)+ α(y) = 2b+ b̄ · (nx + ny)

≥ b+ b̄ · (nx + ny)+ b̄ ·
⌊

dx + dy + m
P

⌋

≥ b+ b̄ ·
⌊

nx ·P+ dx + ny ·P+ dy + m
P

⌋
≥ α(x+ y)

Prove for dx + m ≥ P:

If dx +m ≥ P, it is �dx+m
P � ≥ 1. Further, it is dx +dy +m < 3P, and therefore �dx+dy+m

P � ≤ 2.Thus,

α(x)+ α(y) ≥ 2b+ b̄ · (nx + ny)+ b̄

≥ b+ b̄ · (nx + ny)+ 2b̄

≥ b+ b̄ · (nx + ny)+ b̄ ·
⌊

dx + dy + m
P

⌋
≥ α(x+ y)

q.e.d.

A.1.1. Buffer bound

The backlog bound B for the considered system is given by Equation 2 on page 18:

B = sup
s≥0

(α(s)−β(s)) (88)

With B̃(t) defined as B̃(t) = α(s)−β(s), B can also be written as B = sups≥0 B̃(t).

Lemma A.2 B is given by B = α(D+ T).

A-2

A.1 Bounds for stair-case arrival curve and service curves A DERIVATIONS

Proof of Lemma A.2:

As α is wide-sense increasing, it follows from β(t) = 0 for all t < D+T that B̃(t) ≤ α(D+T) for
all t < D+ T .

β is constant in the interval [T + D,T + 2 ·D) and has the value C = α(T). α is sub-additive,
thus α(T + D + x) ≤ α(T + D)+ α(x) for all x ≤ 0. Thus, α(T + 2 ·D) ≤ α(T + D)+ α(T) =
α(T + D)+C. Consequently, B̃(t) ≤ α(T + D) for all T + D ≤ T < T + 2 ·D.

In further intervals [T ·n+D,T ·(n+1)+D), with n=2,3,4,.... . . , β has the value n ·C. α is at most
α(T + D)+ n ·C due to its sub-additivity. q.e.d.

A.1.2. Delay bound

The delay bound d for the considered system is given by Equation 3 on page 18:

d = sup
s

δ(s)

with δ(s) = inf{τ ≥ 0 : α(s) ≤ β(τ+ s)}

Lemma A.3 d is given by d = D+ T.

Proof of Lemma A.3:

As α is wide-sense increasing, it follows for all 0 ≤ t ≤ T that α(t) ≤ α(T) = β(D+ T). As β is
wide-sense increasing, it holds α(t) ≤ β(D+ T + t). Thus, δ(t) ≤ D+ T for all 0 ≤ t ≤ T .

Further, it holds for all 0 ≤ t ≤ T that α(t + n ·T) ≤ α(T + n ·T) for n=1,2,3. . . . Due the sub-
additivity of α, it is α(T + n · T) ≤ α(T) + n ·α(T). It further holds that β(T + D + n · T) =
α(T)+n ·C = α(T)+n ·α(T). Thus, α(t +n ·T)≤ β(T +D+n ·T). As β is wide-sense increasing,
α(t + n · T) ≤ β(t + T + D + n · T) holds. Thus, δ(t + n · T) ≤ D + T for all n=1,2,3. . . and all
0 ≤ t ≤ T . q.e.d.

A-3

B ABBREVIATIONS

B. Abbreviations

API Application programming interface – an interface to be used by applications to communicate
with a specific server application.

DDE Device Driver Environment – the driver environment used with DROPS. DDE provides
abstractions and an according API to be used by device drivers such as interrupts, I/O ports
and PCI memory. It is targeted to reuse Linux drivers in DROPS.

DROPS Dresden Real-time Operating System – a mikrokernel based real-time system developed
at the Technische Universität Dresden. For details see Section 2.2.1.

DSI DROPS Streaming Interface – an asynchronous inter-task communication protocol for
DROPS. It provides buffered communication between address spaces, and allows the com-
munication between and among real-time and non–real-time applications [LRH01].

IP Internet protocol – a network communication protocol at layer 3 of the OSI network model. An
IP address is a 32bit address identifying a node on the network. Actual network transmission
at the MAC level requires a prior MAC lookup – the translation of an IP address into the
MAC address of the corresponding node.

IPC Interprocess communication – in the context of L4 this is a mikrokernel abstraction of a
synchronous message between two threads.

IRQ Interrupt request – an interrupt issued by some hardware device to asynchronously signal
some event.

MAC Medium access control – the hardware level of network communication. A MAC address
is an address than can be interpreted by network hardware such as switches and NICs.

NIC Network interface card – the network device at a node that sends network frames to and
receives network frames from the physical network.

PCI Peripheral Controller Interface – a hardware bus specification used by hardware devices on
many platforms, such as the Intel x86-based PC architecture.

QAS Quality assuring scheduling – one of the DROPS scheduling models. For details, see Sec-
tion 2.2.2 at page 6.

QRMS Quality rate monotonic scheduling – one of the DROPS scheduling models. For details,
see Section 2.2.2 at page 6.

TFTP Trivial file transfer protocol – an easy-to-implement, synchronous, IP-based protocol to
obtain files from a TFTP file server. Standardized in RFC 783.

WCET worst-case execution time – the upper time bound of the execution of a specific piece of
code

B-1

C GLOSSARY

C. Glossary

leased line A theoretical model to describe a communication channel. A leased line i is a chan-
nel with a guaranteed bandwidth ri and a guaranteed maximum delay di, capable of trans-
porting messages up to size Mi.

leaky-bucket shaper, conforming to A theoretical model to describe traffic flows in a net-
work. For details, see Section 4.2.2 at page 20.

task In the terminology of L4, a task is an address space containing virtual memory mappings,
and, on the Intel x86 architecture, port I/O mappings. A task typically contains at least one
thread.

thread In the terminology of L4, a thread is an activity inside an address space. A thread executes
code and communicates with other threads using IPCs.

token-bucket shaper, conforming to A theoretical model to describe traffic flows in a net-
work. For details, see Section 4.2.2 at page 20.

C-1

References References

References

[APJ+01] Mohit Aron, Yoonho Park, Trent Jaeger, Jochen Liedtke, Kevin Elphinstone, and
Luke Deller. The SawMill Framework for VM Diversity. In Proc. 6th Aus-
tralasian Computer Architecture Conference, January 2001. Available at ftp://
ftp.cse.unsw.edu.au/pub/users/disypapersAron_PJLED_01.ps.gz.

[BBC+98] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture
for differentiated services. RFC 2475, December 1998.

[BBVvE95] A. Basu, V. Buch, W. Vogels, and T. von Eicken. U-net: A user-level network inter-
face for parallel and distributed computing. In Proc. of the 15th ACM Symposium on
Operating Systems Principles, Copper Mountain, Colorado, December 1995.

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture:
An overview. RFC 1633, June 1994.

[Ber93] B. N. Bershad. Practical considerations for non-blocking concurrent objects. In
Robert Werner, editor, Proceedings of the 13th International Conference on Dis-
tributed Computing Systems, pages 264–274, Pittsburgh, PA, May 1993. IEEE Com-
puter Society Press.

[BH00] J.-Y. Le Boudec and G. Hebuterne. Comment on a deterministic approach to the
end-to-end analysis of packet flows in connection oriented network. . IEEE/ACM
transactions on networking, February 2000.

[Bor99] Martin Borriss. Operating System Support for Predictable High-Speed Communica-
tion. PhD thesis, TU Dresden, Dresden, Germany, January 1999.

[BT01] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag Lecture Notes in
Computer Science volume 2050, July 2001.

[BZB+97] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource Reservation
Protocol (RSVP) - Version 1 Functional Specification. RFC 2205, September 1997.

[CBM02] R. Caponetto, L. Lo Bello, and O. Mirabella. Fuzzy Traffic Smoothing: Another Step
towards Real-Time Communication over Ethernet Networks. In 1st Intl Workshop on
Real-Time LANs in the Internet Age, Vienna, Austria, June 2002.

[CEB02] V. Cholvi, J. Echagüe, and J.-Y. Le Boudec. Worst Case Burstiness Increase due to
FIFO multiplexing . Performance Evaulation, 49(1-4), November 2002.

[CKPW99] Dah Ming Chiu, Miriam Kadansky, Joe Provino, and Joseph Wesley. Experiences in
Programming a Traffic Shaper. Technical Report SMLI TR-99-77, SUN microsys-
tems, September 1999.

D-1

References References

[CL01] N. Christin and J. Liebeherr. The QoSbox: A PC-Router for Quantitative Service
Differentiation. Technical Report CS-2001-28, University of Virginia, November
2001.

[Cru91a] Rene L. Cruz. A calculus for network delay, part i: Network elements in isolation.
IEEE Transactions on Information Theory, 37(1):114–131, January 1991.

[Cru91b] Rene L. Cruz. A calculus for network delay, part ii: Network analysis. IEEE Trans-
actions on Information Theory, 37(1):132–141, January 1991.

[Dan99] Uwe Dannowski. ATM Firmware for DROPS. Master’s thesis, TU
Dresden, July 1999. Available from URL: http://os.inf.tu-dres-
den.de/∼ud3/papers/atm_firmware_for_drops.ps.

[DH00] U. Dannowski and H. Härtig. Policing offloaded. In Proceedings of the Sixth IEEE
Real-Time Technology and Application Symposium, Washington D.C., May 2000.

[DP93] Peter Druschel and Larry L. Peterson. Fbufs: A high-bandwidth cross-domain trans-
fer facility. In Proceedings of the 14th ACM Symposium on Operating System Prin-
ciples (SOSP), pages 189–202, Asheville, NC, December 1993.

[FSK05] M. Fidler, V. Sander, and W. Klimala. Traffic-shaping in aggregate-based networks:
implementation and analysis. volume 28 of Computer Communications. Elsevier,
March 2005.

[GKPR98] R. Guérin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS Provision Trough Buffer
Management. In Proceedings of ACM SIGCOMM98, Vancouver, Canada, August
1998.

[GLN+99] R. Guerin, L. Li, S. Nadas, P. Pan, and V. Peris. The Cost of QoS Support in Edge
Devices: An Experimental Study. In Proceedings of the IEEE Infocom, New York,
March 1999.

[HBB+98] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann, M. Hohmuth, F. Mehnert,
L. Reuther, S. Schönberg, and J. Wolter. DROPS: OS support for distributed multi-
media applications. In Proceedings of the Eighth ACM SIGOPS European Workshop,
Sintra, Portugal, September 1998.

[HH01] M. Hohmuth and H. Härtig. Pragmatic nonblocking synchronization for real-time
systems. In USENIX Annual Technical Conference, Boston, MA, June 2001.

[HHL+97] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The performance of
µ-kernel-based systems. In Proceedings of the 16th ACM Symposium on Operating
System Principles (SOSP), pages 66–77, Saint-Malo, France, October 1997.

[HHW98] Hermann Härtig, Michael Hohmuth, and Jean Wolter. Taming Linux. In Proceedings
of the 5th Annual Australasian Conference on Parallel And Real-Time Systems (PART
’98), Adelaide, Australia, September 1998.

D-2

References References

[HLR+01] C.-J. Hamann, J. Löser, L. Reuther, S. Schönberg, J. Wolter, and H. Härtig. Quality
Assuring Scheduling - Deploying Stochastic Behavior to Improve Resource Utiliza-
tion. In 22nd IEEE Real-Time Systems Symposium (RTSS), London, UK, December
2001.

[HWF05] Christian Helmuth, Alexander Warg, and Norman Feske. Mikro-SINA—Hands-on
Experiences with the Nizza Security Architecture. In Proceedings of the D.A.CH
Security 2005, Darmstadt, Germany, March 2005.

[JE04] J. Jasperneite and E. Elsayed. Investigations on a Distributed Time-triggered Ethernet
Realtime Protocol Used by Profinet. In Proceedings of RTN’04, Catania, Italy, June
2004.

[KDK+89] Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani, Wolfgang
Schwabl, Christoph Senft, and Ralph Zainlinger. Distributed fault-tolerant real-time
systems: the Mars approach. IEEE Micro, 9(1):25–40, February 1989.

[Ker03] Phill Kerr. Start of Distrubuted MIDI Stanard to Open Creative Possibilities for Mu-
sical Composition and Performance, 2003. http://standards.ieee.org/
announcements/p1639app.html.

[KS00a] S.-K. Kweon and K. G. Shin. Achieving Real-Time Communication over Ether-
net with Adaptive Traffic Smoothing . In Proceedings of the Sixth IEEE Real-Time
Technology and Application Symposium, Washington D.C., May 2000.

[KS00b] S.-K. Kweon and K. G. Shin. Ethernet-Based Real-Time Control Networks for Man-
ufacturing Automation Systems . In Proceedings of the Seventh International Sym-
posium on Manufacturing with Applications (WAC), 2000.

[KSZ99] Seok-Kyu Kweon, Kang G. Shin, and Qin Zheng. Statistical real-time communica-
tion over ethernet for manufacturing automation systems. In Fifth IEEE Real-Time
Technology and Applications Symposium (RTAS), Vancouver, Canada, June 1999.

[L4E] L4Env — an environment for l4 applications. Available at http://os.inf.
tu-dresden.de/l4env.

[Lac04] Adam Lackorzynski. L4Linux Porting Optimizations. Master’s thesis, TU Dresden,
March 2004.

[LH04a] J. Loeser and H. Haertig. Low-Latency Hard Real-Time Communication over
Switched Ethernet. In Proceedings of ECRTS’04, Euromicro Conference on Real-
Time Systems, Catania, Italy, June 2004.

[LH04b] J. Loeser and H. Haertig. Using Switched Ethernet for Hard Real-Time Communica-
tion. In Proceedings of International Conference on Parallel Computing in Electrical
Engineering Real-Time Systems (PARELEC), Dresden, Germany, September 2004.

D-3

References References

[Lie95] J. Liedtke. On µ-kernel construction. In Proceedings of the 15th ACM Symposium
on Operating System Principles (SOSP), pages 237–250, Copper Mountain Resort,
CO, December 1995.

[Liu00] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[LMS05] Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. Delay bounds for fifo aggre-
gates: a case study. volume 28 of Computer Communications. Elsevier, March 2005.

[Loe02] J. Loeser. Verfahren zur verlustfreien Übertragung von Nachrichten in einem
geswitchten Übertragungsnetzwerk. Deutsches Patent- und Markenamt, Munich,
Germany, February 2002. Patent no DE-10209787.

[Loe03a] J. Loeser. Buffer Bounds of a FIFO Multiplexer . Technical Report TUD-FI03-15,
Technische Universität Dresden, November 2003.

[Loe03b] J. Loeser. Measuring Microsecond Delays . Technical Report TUD-FI03-16, Tech-
nische Universität Dresden, November 2003.

[LRH01] Jork Löser, Lars Reuther, and Hermann Härtig. A streaming interface for real-
time interprocess communication. Technical Report TUD-FI01-09-August-2001,
TU Dresden, August 2001. Available from URL: http://os.inf.tu-dres-
den.de/˜jork/dsi_tech_200108.ps.

[LWD96] J. Liebeherr, D. E. Wrege, and Ferrari D. Exact Admission Control for Networks with
a Bounded Delay Service. IEEE/ACM Transactions on Networking, 4(6), November
1996.

[LxH] http://www.luxik.cdi.cz/˜devik/qos/htb.

[LxQ] http://www.lartc.org.

[MKT98] Frank W. Miller, Pete Keleher, and Satish K. Tripathi. General data streaming. In
19th IEEE Real-Time Systems Symposium (RTSS), Madrid, Spain, December 1998.

[Myr] Myricom Inc., 325 N. Santa Anita Ave, Arcadia, CA 91024. The GM message
passing system. Available from http://www.myri.com.

[Oec97] P. Oechslin. Worst Case Arrivals of Leaky Bucket Constrained Sources: The Myth
of the On-Off source . In Proceedings of the IFIP Fifth International Workshop on
Quality of Service, New York, May 1997.

[PAG02] P. Pedreiras, L. Almeida, and P. Gai. The ftt-ethernet protocol: Merging flexibility,
timeliness and efficiency. In Proceedings of ECRTS’02, Euromicro Conference on
Real-Time Systems. IEEE Press, June 2002.

[PDZ00] Vivek S. Pai, Peter Druschel, and Willy Zwanenpoel. IO-Lite: A unified I/O buffer-
ing and caching system. ACM Transactions on Computer Systems, 18(1):37–66,
February 2000.

D-4

References References

[PL01] S. D. Patek and J. Liebeherr. Position Paper on Networs with Aggregate Qualitiy-of-
Service . In Proceedings of the SPIE Conference #4526, October 2001.

[PLA03] P. Pedreiras, R. Leite, and L. Almeida. Characterizing the Real-Time Behavior of
Prioritized Switched-Ethernet . In 2nd Intl Workshop on Real-Time LANs in the
Internet Age, Porto, Portugal, June 2003.

[Sch02] Martin Schwarz. Implementation of a ttp/c cluster based on commer-
cial gigabit ethernet components. Master’s thesis, Technische Universität
Wien, 2002. Available from: http://www.vmars.tuwien.ac.at/php/
pserver/extern/docdetail.php?ID=1122&viewmode=thesis.

[Ste04] Udo Steinberg. Quality-Assuring Scheduling in the Fiasco Microkernel. Master’s
thesis, TU Dresden, March 2004.

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Distributed Comput-
ing, pages 214–222, Ottawa, Ontario, Canada, August 1995. Erratum available at
ftp://ftp.cs.rpi.edu/pub/valoisj/podc95-errata.ps.gz.

[VC98] S. Varadarajan and T. Chiueh. EtheReal: A Host-Transparent Real-Time Fast Ether-
net Switch. In Proceedings of the Sixth International Conference on Network Proto-
cols, Austin, TX, October 1998.

[VcC94] Chitra Venkatramani and Tzi cker Chiueh. Supporting real-time traffic on ethernet. In
15th IEEE Real-Time Systems Symposium (RTSS), San Juan, Puerto Rico, December
1994.

[Wat02] Kym S. Watson. Network calculus in star and line networks with centralized commu-
nication. Technical Report IITB Report Number 10573, Fraunhofer IITB, Karlsruhe,
Germany, April 2002.

[WJ03] Kym Watson and Jürgen Jasperneite. Determining end-to-end delays using network
calculus. In Proceedings of IFAC FET, Aveiro, Portugal, 2003.

[WXBZ01] S. Wang, D. Xuang, R. Bettati, and W. Zhao. Providing Absolute Differentiated
Services for Real-Time Applications in Static-Priority Scheduling Networks . In
Proceedings of the IEEE Infocom, Anchorage, Alaska, April 2001.

[YC01] K. Yoshigoe and K. Christensen. Rate control for bandwidth allocated services in
ieee 802.3 ethernet. In IEEE 26th Conference on Local Computer Networks (LCN),
Tampa, Florida, November 2001.

D-5

