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Chapter 1

Introduction

1.1 Prologue

The interaction of electrons with acoustic phonons has important consequences for
the performance of all semiconductor devices. Acoustic phonon scattering controls
the relaxation of carriers to their band bottom, which is necessary for efficient
laser action, for optical properties and for transport phenomena. At very low
temperatures, electron-impurity scattering is dominant. However, at slightly higher
temperatures the interaction of electrons with acoustic phonons is the limiting
factor of the electron mobility and thus fundamental for the application of electronic
devices. Impurity scattering can often be controlled by improved fabrication but
the electron-phonon scattering is an intrinsic effect. Therefore, the understanding
of the carrier-phonon interaction has always been a key objective of semiconductor
research.

In this work we focus our attention on the interaction of acoustic phonons with
low-dimensional electron systems. We speak of low-dimensional electron systems
“if the only states into which an electron can scatter are determined by no change
in the quantum numbers in one or more dimensions, or at most changes of one or
more” (Kelly, 1995). Or, expressed by a more descriptive definition, we are in a
low-dimensional situation if the electrons are confined in one or more spatial direc-
tions to within a few atomic layers. Such systems form the basis of a large portion
of today’s semiconductor physics and have a great practical impact on a wide range
of electronic, optical and acoustic solid state devices such as, e.g. high electron mo-
bility transistors, microwave sources and detectors, quantum well lasers, infrared
and solar devices and high frequency ultrasonic generators. There are large dif-
ferences in both the electrical and optical properties of low-dimensional systems
compared to the corresponding bulk systems. On the one hand, bulk properties
may be modified to a greater or lesser extent, on the other hand also completely
novel (quantum) effects may arise. The question is therefore how the interaction
of the electrons with acoustic phonons is altered by the reduced carrier dimension-
ality.
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Probably the simplest and most known experimental method to study the interac-
tion of low-dimensional electrons with acoustic phonons is to measure the electron
mobility. But, firstly, it is not always easy to separate the contributions of the
acoustic phonons from other scattering mechanisms and secondly, only informa-
tion averaged over the contribution of all acoustic modes is available. This is
also the case for the phonon-drag term of thermoelectric power. At low tempera-
tures, the so called phonon drag contributes significantly to the total thermoelectric
power, but here as well only averaged information about the coupling process can
be obtained. A real alternative to transport measurements and also to optical
methods is phonon spectroscopy which has been applied with increasing success to
the study of low-dimensional electron systems and devices in the past twenty years.
The value of phonon spectroscopy rests upon the direct observation of nonequilib-
rium acoustic phonon pulses that are either emitted or absorbed by the carriers in
the low-dimensional structure. The ability to isolate phonons of particular mode
and propagation direction is the decisive advantage of the phonon spectroscopy
technique over other methods. This provides direct insight into the fundamental
carrier-phonon coupling processes. It makes, for example, the distinction between
different interaction mechanisms possible. However, the importance of phonon
spectroscopy in relation to low-dimensional electron systems is not restricted to
having a direct way of studying the electron-phonon coupling. Acoustic phonon
pulses are also a most useful and unique probe for analysing the structure and the
fundamental electron properties of low-dimensional semiconductor systems. This
is due to the fact that the wavelength of acoustic phonons is comparable to the im-
portant length scales in these systems (such as the electron confinement lengths or
the Fermi wavelength) and that energy and quasimomentum of acoustic phonons
are well matched to the low-energy collective excitations of the low-dimensional
electrons allowing their simultaneous probing in energy and momentum space. For
example, the magnetoroton excitations in the fractional quantum Hall regime of
two-dimensional (2D) electron systems can be studied very efficiently by acoustic
phonon pulses since in contrast to optical experiments phonons are able to probe
excitations that have a meV energy and a nonzero wavevector.

Compared to spectroscopy with photons, electrons or neutrons the spectroscopy
with acoustic phonons is a relatively young method and less widely known. Al-
though restricted to low temperatures, because only in this case a ballistic or at
least quasi-ballistic phonon propagation over macroscopic distances is possible, the
technique has a wide field of application, which is by far not limited to semicon-
ductor nanostructures. Phonons in the energy range of 10-1000 GHz are generally
of great interest as a spectroscopic tool for many reasons. Primarily, this is a re-
gion of the spectrum in which there are almost no other suitable techniques, lying
at the upper limit of microwave capabilities and at the lower limit of far infrared
spectroscopy. Secondly, because of the larger density of states for phonons many
defects and excitations are much more strongly coupled to phonons than they are
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to photons. Thermal conductivity measurements, which were for a long time the
only method to study phonons with frequencies above 10 GHz, sample the phonon
transport averaged over all modes and propagation directions and thus do not al-
low any ‘spectroscopy’. By contrast, angle- and time-resolved phonon spectroscopy
gives more direct and unambiguous information on how the phonons travel across
a crystalline sample, since the phonon trajectories can be resolved in time and
space. Phonon spectroscopy can provide information about lattice dispersion, par-
ticularly for directions of phonon wavevectors away from symmetry axes, which
are complementary to inelastic neutron scattering. The reason is that the results
of phonon spectroscopy are extremely sensitive to the curvature of the surfaces of
constant phonon frequency. In addition, acoustic phonon beams are highly sen-
sitive to all types of lattice disorder and represent, above all, a nondestructive
measure allowing, for instance, a nondestructive evaluation of microstructures or
wafer bonds. So far, the application of phonon spectroscopy techniques is limited
due to the fact that the spectral resolution falls in general short of what is rou-
tinely achieved in conventional optical spectroscopy. However, current progress in
generating monochromatic phonon beams of very narrow spectral linewidth gives
rise to the hope that this handicap can be overcome and that, in the future, even
such interesting new fields like ‘phonon optics’ may be possible.

What is characteristic for all methods of phonon spectroscopy? They are based on
a local generation of nonequilibrium pulses of acoustic phonons and on the study
of the (ballistic) propagation of these phonons and their interaction with defects,
low-dimensional electron systems, etc. Due to the intrinsic elastic anisotropy of the
crystalline matter the phonon flux is channelled (focused) along certain crystal di-
rections leading to an extremely anisotropic phonon propagation. In addition, the
scattering of the phonons caused by defects in the crystal or by electrons is known
to be highly anisotropic, that is dependent among others on the directions of the
phonon wavevectors and their polarization. As a result, a large impact of acous-
tic anisotropy on the experimental findings is to be expected. Consequently, to
interpret experimental results quantitatively, they must be compared with theoret-
ical models and numerical simulations that take into account not only the specific
phonon scattering processes, but also the striking effects of acoustic anisotropy
in all their bearings. Despite the progress that has been made in the theoreti-
cal interpretation of phonon spectroscopy measurements over the years, a number
of questions has been outstanding, particularly in connection with the study of
low-dimensional electron systems. Problems remaining have included those of the
correct angle dependence of phonon emission by 2D electrons, the magnitude of
electron-phonon coupling constants or the detailed description of screening in a
reduced dimensional situation. Therefore the aim of the present work and of the
underlying papers published during the last years is to give an answer to some of
these open questions and to achieve a better understanding of phonon spectroscopy
experiments and of electron-phonon coupling in low-dimensional electron systems.
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1.2 Central themes of this work

The particular objective of this work on phonon spectroscopy and low-dimensional
electron systems is characterized by the subtitle ‘ The effect of acoustic anisotropy
and carrier confinement’. The choice of this subtitle stands consciously for two
different aspects. One is that it emphasizes the significance of acoustic anisotropy
and confinement in a general sense. They represent something like the foundation
pillars of phonon spectroscopy and low-dimensional systems. Without the quan-
tum confinement of the carriers no low-dimensional electron system would exist
and phonon spectroscopy measurements, particularly the phonon imaging, would
be very poor without the focusing due to acoustic anisotropy. This general aspect
will have a large influence on the theoretical modelling of phonon spectroscopy
and low-dimensional electron systems as explained in the first part of the work.
However, giving a general view and presenting a universally applicable theoretical
approach for the computer-modelled simulation of phonon spectroscopy on low-
dimensional systems are only part of the intention. The aim is as well to show the
influence of acoustic anisotropy and carrier confinement in detail and to prove that
an understanding of the experimental findings is almost exclusively possible by a
proper and exhaustive consideration of both factors in the theoretical modelling.
This aspect is the topic of the second part of the work. Therefore the subtitle
accounts for the specific goal of this study as well.

This work is organized as follows. In Chapter 2 a survey of phonon spectroscopy
is given. Different techniques like phonon imaging or time-of-flight measurement
(heat pulse method) as well as possible applications are discussed. Special at-
tention is focused on the link between phonon spectroscopy and the study of
low-dimensional semiconductor structures. This relation is particularly interest-
ing because phonon spectroscopy is not only an experimental tool to study low-
dimensional systems but low-dimensional electron systems also serve as useful
phonon sources or phonon detectors in phonon spectroscopy experiments.
Chapter 3 deals with theoretical aspects of phonon spectroscopy. The propaga-
tion of ballistic phonon pulses through a nonmetallic crystalline medium at liquid
helium temperatures is outlined and the effect of phonon focusing is explained. A
theoretical model to describe the phonon energy and quasimomentum flux is dis-
cussed in detail. It allows us to calculate the nonequilibrium phonon distribution
at a phonon detector as a function of time and of detector position for a wide range
of phonon sources including the exact geometrical arrangement and the finite spa-
tial extension of phonon source and detector as well as the phonon scattering by
isotopes. The presented kinetic model and the accompanying numerical program
package are something like a condition precedent for the theoretical interpretation
of angle- and time-resolved phonon spectroscopy. The corresponding numerical
results represent the phonon input to the computer simulation of phonon spec-
troscopy studies on low-dimensional electron systems. The chapter concludes with
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examples of our results showing the images of phonon energy and quasimomentum
focusing for typical substrate materials of low-dimensional semiconductor struc-
tures. These images demonstrate the highly anisotropic phonon propagation due
to the acoustic anisotropy of the crystalline substrates.

The electronic structure of low-dimensional semiconductor systems and the in-
teraction of low-dimensional electrons with acoustic phonons are in the center of
interest of Chapter 4. It starts with a collection of some basic facts about the bulk
electronic structure of I1I-V semiconductors like gallium arsenide, followed by the
so called envelope function concept for the theoretical description of the electronic
structure of low-dimensional semiconductor systems. Since the electron envelope
wavefunctions have a fundamental influence on the properties of electron-phonon
coupling, the modelling of electron and hole confinement in modulation-doped het-
erojunctions as well as in quantum wells and quantum wires is explained explicitly.
The second part of Chapter 4 is devoted to the theory of electron-phonon coupling.
The different coupling mechanisms in gallium arsenide structures are discussed
where we concentrate on the interaction of the low-dimensional carriers with bulk
acoustic phonons. For a detailed study of phonon confinement in semiconductor
nanostructures the reader is referred to reviews by Leburton et al. (1993), Ridley
(1997) or Stroscio and Dutta (2001). We demonstrate the large angle dependence
of the matrix elements both for deformation potential and piezoelectric electron-
phonon coupling and prove how isotropic phonon models simplify, but also falsify
the results. The most prominent example of the latter statement is the defor-
mation potential coupling of transverse acoustic (TA) phonons, which is forbidden
within the isotropic approximation, but may give relevant contributions for phonon
wavevector directions away from the symmetry axes of the crystal. Furthermore
it is shown how the carrier confinement affects the electron-phonon interaction via
the overlap integrals of the envelope functions.

By means of two very characteristic practical examples, we will verify in Chap-
ters 5 and 6 our theoretical studies about the influence of acoustic anisotropy and
carrier confinement on the results of phonon spectroscopy of low-dimensional elec-
tron systems. In the first case, the phonon induced electric current is considered
and the low-dimensional electron system serves as phonon detector recording the
quasimomentum focusing of ballistic phonons. In the second case, the energy re-
laxation of hot 2D electrons is studied and the low-dimensional electron system
acts as the phonon source. Therefore the phonon-drag images of Chapter 5 and
the time- and angle-resolved intensities of acoustic phonon emission in Chapter 6
are not only an ideal test of our theoretical models for phonon pulse propagation
and carrier confinement, they also allow a deep insight in the fundamental process
of electron-phonon coupling of low-dimensional electron systems.

A central topic of Chapter 5 is the development of a theoretical model for the
drag current induced in low-dimensional electron systems by pulses of nonequilib-
rium acoustic phonons. Our model is based on a many-body approach and involves
screening of the electron-phonon coupling by electron-electron interaction and the
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influence of carrier confinement in a consistent and natural way. We have also in-
cluded the case of a magnetic field applied to the electrons. In a typical phonon-drag
experiment the induced electric current is measured as a function of the phonon
source position. The resulting phonon-drag patterns are therefore a convolution
of the images of phonon quasimomentum focusing as discussed in Chapter 3 and
the probability that a current is induced by the phonon modes hitting the detec-
tor. Based on our theory of phonon pulse propagation and the phonon-drag model
we calculate the induced current in 2D electron and hole gases as a function of
the source-detector geometry including the characteristic features of the phonon
source term and the acoustic properties of the substrate material and compare it
with corresponding experimental results, both at zero and finite magnetic field.
The deformation potential and the piezoelectric electron-phonon interaction make
contributions to the phonon-drag signal which depend in different manner on the
phonon source position. This allows the separation of the coupling mechanisms and
the determination of the relative strength of the coupling constants. We show how
much the primary focusing images determined by the acoustic anisotropy of the
substrate material are destroyed by cutoff conditions due to conservation rules for
the electron-phonon scattering process and to carrier confinement as well as by the
acoustic anisotropy of the electron-phonon matrix elements. The influence of the
carrier confinement on the drag patterns plays an important role in the whole chap-
ter and the sensitivity to the parameters of confinement potential is demonstrated
explicitly for 2D and one-dimensional (1D) electron systems.

Chapter 6 is devoted to the important question of the energy relaxation by hot
electrons in low-dimensional systems and what we can learn about this process by
direct phonon emission experiments. A theory for the angle- and mode-resolved
acoustic phonon emission by hot 2D electrons is presented which includes the ef-
fect of acoustic anisotropy, not only on phonon propagation, but also on electron-
phonon coupling, as well as a full dynamic screening of the electron-phonon in-
teraction within the finite-temperature random-phase approximation. This is in
contrast to earlier calculations using isotropic phonon models for the coupling and
often insufficient screening. Our approach also encloses realistic models for the car-
rier confinement allowing for finite potential walls. The results of acoustic phonon
emission depend very strongly on the detector position and on the phonon polar-
ization. This makes, by angle- and time-resolved measurements, direct information
concerning the phonon wavevector and mode dependence of the emission process
possible. By comparing the experimental results with the calculations one can
identify the contributions of the different coupling mechanisms. It is also possible
to observe the effects by energy and in-plane momentum conservation as well as
by confinement, which cut off the phonon emission at certain frequencies and in
certain directions. One of the surprising experimental results was “the mystery of
the missing longitudinal mode” (Kent et al., 1997a) for acoustic phonon emission
close to the normal to the 2D electrons. This phenomenon was observed in ex-
periments on gallium arsenide heterojunctions and could not be explained by all
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existing theories. We demonstrate that acoustic anisotropy and screening of defor-
mation potential coupling account for this effect and check our theoretical results
by comparing them with experimental results for various 2D systems and different
emission angles. We also prove that commonly used approximations for the enve-
lope wavefunctions or the electron-phonon matrix elements, which work quite well
in theories of total electron relaxation or electron transport, fail in the theoretical
analysis of direct phonon emission experiments. All this will underline the central
message of this work: to show the vital importance of acoustic anisotropy and car-
rier confinement for the interpretation of phonon spectroscopy measurements on
low-dimensional semiconductor structures.

At the end of this introductory part, two comments should be made concerning
the terminology used in the present work. In a narrow sense, phonon spectroscopy
encompasses the experimental methods that resolve the frequency of nonequilib-
rium phonon pulses, whereas phonon imaging is involved with continuous scanning
over the propagation directions of the phonons and the time-of-flight technique
deals with the time resolution of phonon pulses. All these methods are founded on
the generation and detection of nonequilibrium phonon pulses and their analysis
depending on frequency and/or wavevector direction and/or polarization. There-
fore the term phonon spectroscopy will be used in a more general sense for the
whole family of methods cited above. This is also supported by the fact, that the
mentioned methods are often combined. The second comment affects the correct
characterization of the dimensionality of our low-dimensional systems. Carrier con-
finement plays a large role. Therefore it is important to emphasize that if speaking
about 2D or 1D electron systems throughout this work we always have in mind (as
long as not explicitly excluded) quasi-2D or quasi-1D systems.

Finally, the question of the concretely considered low-dimensional semiconduc-
tor systems has to be commented on. Apart from few exceptions in Chapters 2 and
3 all calculations and discussions in this work refer to gallium arsenide/aluminium
arsenide structures. Due to their high electron mobility these structures are very
interesting and are nowadays commonly used in the manufacture of advanced
electronic and optoelectronic devices for wireless communication or satellite re-
ceivers. But of course it is possible to extend theory and experiment also to other
low-dimensional semiconductor structures based for example on silicon or gallium
nitride devices and to other substrate materials than gallium arsenide (see, e.g.
Lehmann et al., 2002b; Stanton et al., 2003a).






Chapter 2

Phonon Spectroscopy and
Phonon Imaging

In this chapter an introduction in the field of phonon spectroscopy is given. We
explain the typical experimental methods like time-of-flight measurement or phonon
imaging and their applications. In addition, we refer readers to Appendiz A, where
we have collected some information about the generation and detection of nonequi-
librium phonons. The chapter concludes with a special section showing the impact
of phonon spectroscopy on the study of low-dimensional electron systems.

2.1 The basis of phonon spectroscopy

Due to the direction-dependent elasticity of a crystalline solid the propagation
of phonons is characterized by anisotropic phonon velocities. Even in a highly
symmetric crystal like the zinc-blende cubic GaAs the angular variation in phase
velocity, governed by the fourth-rank stiffness tensor, is nearly 30% (see e.g. Ta-
ble 3.1 on page 24). A remarkable consequence of this (yet moderate) anisotropy is
that the phonon group velocity, and with it the phonon energy propagation, are not
collinear to the phonon wavevector. An anisotropic channelling of phonons with
immense variations in ballistic heat flux is the result. By contrast, the thermal
conductivity is usually governed by a second rank tensor which for cubic crystals
implies isotropic propagation of heat. The different behaviour occurs due to the
diffusive nature of phonon propagation in the case of ordinary heat conductivity.
At room temperatures, phonons scatter frequently and the mean free path of the
phonons is much shorter than the crystal dimensions. Therefore heat flow is dif-
fusive or quasi-diffusive! instead of ballistic. However, when the temperature is
decreased, the mean free path of the phonons increases rapidly. At temperatures
of only a few degrees Kelvin, much lower than the Debye temperature, the density
of thermal (equilibrium) phonons is low and the probability of interaction of them

!Quasi-diffusive phonon propagation is realized if additionally to elastic scattering phonon
decay through anharmonic interaction is present (Kazakovtsev and Levinson, 1978; Bron et al.,

1982).
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with the (few) nonequilibrium phonons in the pulse is negligible. The resulting
mean free path is in the millimeter range and therefore comparable to crystal di-
mensions. Supposing now that the mean free path of the phonons is longer than
the distance between phonon source and detector and that the duration of the
heat pulse is much shorter than the phonon transit time, the phonon propagation
is ballistic and it is possible to resolve the phonon flux both temporally and spa-
tially. This is caused by the different propagation velocities for different phonon
polarizations and by the different propagation directions. Thus, other than estab-
lishing a steady-state heat current, as done in thermal conductivity experiments,
phonon spectroscopy is based on the generation and detection of short nonequilib-
rium phonon pulses and their highly anisotropic (nearly) ballistic propagation.

The first heat pulse experiment was performed by von Gutfeld and Nethercot
(1964) on single-crystalline quartz and sapphire rods, respectively. A short duration
(100ns) electrical current pulse was applied to a small metallic strip evaporated
on one face of the crystal. The current burst generated a heat pulse and thereby
a nonequilibrium distribution of phonons in the sample. On the opposite face of
the crystal a phonon detector in form of a thin alloyed superconducting film was
evaporated, whose resistance was sensitive to temperature changes. Fig. 2.1 shows

crystal at T~ 2K

[
[
|
' ﬂ bolometer
)
heater o1

Figure 2.1: Typical setup for a heat pulse experiment.

a typical setup for such a heat pulse experiment. At low temperatures a large part
of the generated phonons travelled ballistically and so it was possible to observe
several sharp pulses in the detector signal at times corresponding to the travel
times of the unscattered longitudinal and two transverse modes. The technique in
the experiment of von Gutfeld and Nethercot was somewhat similar to the known
pulse measurements of the attenuation of microwaves except that the phonons in
the heat pulse experiment had a much higher frequency, were incoherent and not
monochromatic. In the following decades the idea of a heat pulse experiment was
modified and extended to several new kinds of solid state spectroscopy. Never-
theless the experiments may be classified into two main types of techniques, the
time-of-flight and the phonon imaging technique, which often are also combined.
A precondition for all types of experiments of phonon spectroscopy is the ability
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to generate and detect nonequilibrium phonons. Therefore, a short review of exist-
ing and prospective phonon sources and detectors is given in Appendix A. Unlike
in other spectroscopic methods (e.g. with photons), phonons must be generated
inside the solid.

2.2 Typical experiments and their application

2.2.1 Time-of-flight spectroscopy

In time-of-flight spectroscopy short pulses of nonequilibrium phonons generated on
one side of a sample are detected as a function of time on the opposite side. The
‘time of flight’ for a phonon to traverse the sample and with it the phonon group ve-
locity can be directly measured by this technique. Typical results of time-of-flight
experiments are plotted in the Figs. 2.2 and 2.3. Sharp ballistic signals corre-

30

20

10}

Phonon Signal (arb.)

Excitation Pulse
0 100 200 300 400 500

Time (ns)

Figure 2.2: Heat pulse signal in 6H-SiC at a crystal temperature of ~ 2 K. The bolome-
ter is directly opposite the phonon source along the c—axis, the distance is 0.4 mm. The
arrival of LA and TA phonons is marked. The fast and slow TA branches here are degen-
erate. Also marked are the signals arising from multiple reflections across the substrate.
(From Stanton, Kent, and Lehmann, 2003a.)

sponding to different polarized acoustic phonon modes (LA - longitudinal acoustic,
FTA - fast transverse acoustic and STA - slow transverse acoustic) are followed by
long tails due to scattered phonons. The signal onset occurs at the time given by
the thickness of the crystal divided by the group velocity for the phonons of the
highest velocity. The amplitude of the signal is a measure for the energy carried
by the phonons incident on the detector. The relative magnitudes of the peaks
depend strongly on the crystallographic arrangement of the phonon source and the
detector as illustrated for the FTA phonon pulse in Fig. 2.3. Phonon focusing, ex-
tensively discussed in Chapter 3, and polarization-dependent scattering processes
(Shields et al., 1989; Ramsbey et al., 1992) are the reason for this behaviour.
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Figure 2.3: Heat pulse signal in InSb detected by a PbT1 tunnel junction (430 GHz onset)
for two different phonon source positions. As the phonon beam is slightly translated,
dramatic changes in the FTA signal (here marked by FT) are seen, due to phonon focusing.
A subtraction of the two traces shows only the FTA pulse with a long tail attributed to
phonons scattered in the bulk. (From Hebboul and Wolfe, 1989.)

The time-of-flight technique allows one to distinguish ballistic and diffusive heat
propagation. Furthermore, the times of flight of the arriving heat pulses permit
identification of phonons of different modes and wavevector directions due to their
different group velocities. This is in contrast to ordinary thermal conductivity ex-
periments where the phonon information is averaged over all modes and wavevector
directions.

For a given detector direction the ratios of intensities of the different modes
can be accurately determined. Such measurements have a large field of applica-
tion. They are used to research the phonon-defect and phonon-electron scattering
or to probe the electronic states of impurity ions (for a review see Wybourne and
Wigmore, 1988). Important contributions have been made by the time-of-flight
technique to the study of the electronic states and the confinement potential in
semiconductor nanostructures or to the understanding of the electron-phonon in-
teraction in low-dimensional electron systems (see the recent book by Challis, 2003,
and the examples given in Section 2.3 and Chapter 6).
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In addition to the time-dependent response of detectors sensitive to phonon en-
ergy, one can also study the time dependence of ‘phonon anemometers’, i.e. the
time-dependence of phonon quasimomentum flux (Jasiukiewicz, Lehmann, and
Paszkiewicz, 1991; Danilchenko et al., 1999). Such a time-of-flight spectrogra-
phy for phonon quasimomentum has become possible by measuring the temporal
dependence of the phonon induced electric current (Stanton et al., 2000) or of the
phonon induced drag of excitons (Akimov et al., 1994, and references therein).

2.2.2 Phonon imaging

The phonon imaging technique as implemented by Northrop and Wolfe (1979,
1980) has revolutionized phonon spectroscopy. It is based on the work of Hensel
and Dynes (1977) and visualizes directly the dramatic anisotropy in the ballistic
propagation of acoustic phonons mentioned at the beginning of this chapter. Hensel
and Dynes have introduced angular scanning to heat pulse experiments by using a
special shaped hemicylindrical Ge crystal. Heat pulses were generated by optical
excitation of a metal film on the cylindrical surface. By rotation of the sample
while the detector was fixed the angular distribution of phonon propagation could
be measured. This technique was essentially modified by Northrop and Wolfe
holding the sample in place and using a two-axis mirror deflection system for precise
scanning of a laser beam across the surface of the crystal. Combined with a (small)

crystal at T' =~ 2K

[
[
!
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Figure 2.4: Typical setup for phonon imaging.

fixed phonon detector on the opposite side of the crystal a two-dimensional map of
the phonon intensity with high angular resolution (ca. 0.5° of arc) and wide angular
coverage could be obtained. A similar technique, but applying a conventional
scanning electron microscope for phonon generation was used by Eichele et al.
(1982).

The common method to produce a phonon image (see Fig. 2.4) is therefore
to raster scan the phonon source over the front face of the chosen sample and to
record (the boxcar integrated) detector signal as a grey-tone image, where bright-
ness is proportional to the heat flux. Fig. 2.5(a) shows such a typical experimental
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image for a germanium crystal as obtained in the early experiments of Northrop
and Wolfe, whereas in Fig. 2.5(b) the corresponding pseudo three-dimensional (3D)
representation of the image is depicted. The peaks identify maxima in the ballistic

Figure 2.5: (a) Image of the ballistic phonon intensities for Ge. Bright regions indicate
a high phonon flux impinging on the (001) face of the crystal. From left to right the
picture spans 50° in propagation direction with the [001] direction at the center of the
pattern. The phonon source is at the center of the pattern on the opposing face of the
crystal. (From Northrop and Wolfe, 1979.) (b) Pseudo-3D hidden-line representation of
the image (a). (From Northrop and Wolfe, 1980.)

Figure 2.6: High-resolution phonon image of silicon. The center of the image corresponds
to the [001]| propagation direction. The width of the image is about 40° left to right. (From
Shields et al., 1993.)

phonon flux, but the absolute peak height depends, of course, also upon the solid
angle subtended by the detector. Worth mentioning is also the good agreement
with our numerical result on page 43, Fig. 3.8(a), for a cubic crystal with the same
crystal orientation. The progress in angular resolution of experimental phonon
images is demonstrated by Fig. 2.6, here for the example of ballistic phonon prop-
agation in silicon.
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Variations of the phonon imaging technique have been developed by employing
a fixed phonon source and imaging the arriving flux. This has been done by us-
ing, for example, spatially selective large area tunnel junction detectors (Schreyer
et al., 1984), spatially resolving CdS detectors (Kent et al., 1990) or superconduct-
ing strip bolometers (Kent et al., 1995) or by utilizing excitonic photoluminescence
for a time- and space-resolved optical detection of nonequilibrium phonons (Aki-
mov et al., 1977; Ramsbey et al., 1994). The problem is that in most of the
methods with spatially scannable detectors the resolution of the phonon images is
rather limited. An impressive technique was applied by Eisenmenger (1980) who
produced direct visual phonon images of Ge and Si crystals. In this technique the
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Figure 2.7: (a) Experimental setup to observe the ballistic phonon propagation in crystals
by the fountain effect of superfluid *He. (b) Phonon image obtained by a photograph of
a Si surface covered with a superfluid *He film. The center of the image corresponds to
the [111] propagation direction. The He film is thickest where the heat flux is greatest.
(From Eisenmenger, 1980.)

propagating nonequilibrium phonons are absorbed in a superfluid *He film cover-
ing the crystal surface. Along the directions of high phonon flux the local rise in
temperature leads due to the fountain effect to an increase in the He film thickness
which is imaged by a camera (Fig. 2.7).

A new field has been opened in the area of phonon imaging by using 2D semi-
conductor structures as phonon sources and phonon detectors (Karl et al., 1988;
Kent et al., 1990; see also the review of Challis and Kent, 1994, and the refer-
ences therein). An example is shown in Fig. 2.8(a), where an image of the phonon
energy flux emitted by a 2D electron gas in a Si MOSFET is depicted (Challis
et al., 1990). A qualitative extension of phonon imaging was achieved with the
imaging of the phonon-drag effect in low-dimensional electron systems first demon-
strated by Karl et al. (1988) in GaAs/Al,Ga;_As heterostructures (Fig. 2.8b).
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(a) )

Figure 2.8: Phonon images using 2D electron gases as phonon source and detector,

respectively. (a) Image of the phonon energy flux emitted from a 2D electron gas in a
Si MOSFET and obtained with an extended CdS bolometer. The phonon intensity is
largely confined to a cone around the normal to the 2D electrons. (From Challis et al.,
1990.) (b) Phonon-drag pattern, where the voltage caused in a 2D electron gas by an
incident ballistic phonon flux is measured as a function of phonon source position. Bright
and dark areas correspond to positive and negative voltages, respectively. (From Karl
et al., 1988.)

With this technique not only the imaging of the phonon energy flux but also the
imaging of phonon quasimomentum flux became possible (Jasiukiewicz, Lehmann,
and Paszkiewicz, 1991). A detailed explanation of the images in Fig. 2.8 including
a comparison with corresponding theoretical results will be given in Chapter 6 and
Chapter 5, respectively.

If one considers the application of the phonon imaging technique, then at the begin-
ning the study of phonon focusing and lattice dynamics in homogeneous materials
was dominant. It was used as a sensitive experimental probe of the fundamen-
tal surfaces of constant energy for elastic waves in crystals and as a good testing
ground for lattice dynamic models since a phonon image provides information on
the dispersion relation for a broad range of directions, which is difficult to obtain
by other methods, e.g. by inelastic neutron scattering (see the review by Wolfe,
1989). However, quite soon the experiments were also extended to investigate the
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coupling of phonons with impurities and defects, to image defect structures or to
study the interaction of phonons with surfaces and interfaces. For example, by
using several phonon detectors at different locations simultaneously stereoscopical
imaging of defects became possible and with it 3D reconstructions of the defect
distribution (Held et al., 1989b). Phonon imaging has proved to be an effective
method for the examination of phonon refraction at solid/solid interfaces (Hoss
et al., 1990) and of reflection including mode conversion at surfaces (Every et al.,
1984; Northrop and Wolfe, 1984; Wichard and Dietsche, 1992). It is used to de-
termine the frequency distribution of optically generated nonequilibrium acoustic
phonons as well as to gauge the size and lifetime of phonon sources (Shields et al.,
1993; Msall and Wolfe, 2002). Other applications are the investigation of ferroelec-
tric domain walls (Weilert et al., 1993) and of superlattices (Hurley et al., 1987,
1988; Tamura et al., 1988; Tanaka et al., 1998). An important field is the study of
low-dimensional electron systems by phonon imaging, which will be subject of the
subsequent sections and chapters.

Recently ballistic phonon images have been presented for superconducting nio-
bium and lead, i.e. for single crystals of metal (Hauser et al., 1999; Short and
Wolfe, 2000). To overcome the strong electron-phonon interaction, the principal
difficulty in observing the nonequilibrium phonon propagation in metals, phonons
with energies less than twice the superconducting gap A have been used, because
such phonons cannot break Cooper pairs. The experiments have demonstrated the
capacity of ballistic phonon imaging as an angle-sensitive probe of the supercon-
ducting state.

A relatively new application of phonon imaging with high practical relevance is
also the study of twist-bonded crystals (Msall et al., 1999, 2000; Obata et al.,
2001). This has become possible by the technique of ‘wafer direct bonding’ (for a
review see Gosele et al., 1999), which creates an interface essentially free of phonon-
scattering defects. For nonzero twist angles the resulting focusing patterns show
structures which are not simply the bulk images weighted by the relative thick-
ness of the bonded crystals. Since acoustic phonons due to their short wavelength
(=~ 10nm) are an extremely sensitive probe of the bond, unique information about
the quality of the bonded interfaces seems to be possible. In addition, phonon mea-
surements are a nondestructive method for testing the bond quality, in contrast to,
for example, electron microscopy.

When discussing the use of phonon imaging, one should also mention the exten-
sion of the phonon imaging technique to the domain of ultrasonic frequencies (for
a review see Every et al., 1994; and Wolfe, 1998) and to surface acoustic waves
(Kolomenskii and Maznev, 1993; Vines et al., 1995a,b) including real-time imaging
of coherent surface phonons (Wright et al., 2002; Sugawara et al., 2002).
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2.3 Phonon spectroscopy and low-dimensional
electron systems

Acoustic waves have an extremely low speed, about 107° of that of electromag-
netic waves. Therefore their wavelength is much smaller than the wavelength of
electromagnetic waves of the same frequency and is comparable to the important
length scales in low-dimensional electron systems such as confinement lengths or
the Fermi wavelength. Furthermore, acoustic bulk phonons couple very effectively
to low-dimensional electron systems via deformation potential interaction and (for
crystals without a center of inversion symmetry) via piezoelectric interaction (see
Section 4.2). This effective coupling, together with the fact that both energy and
wavevector of acoustic phonons are of the same order of magnitude as the typical
electronic excitations, causes the situation that, on the one hand, low-dimensional
electron systems are very useful devices for the generation and detection of ballis-
tic phonons, and that, on the other hand, phonon spectroscopy is a powerful tool
for the study of low-dimensional carrier systems. Reducing the dimensionality of
electron systems, the available phase space for electron scattering is restricted and
makes the electron-phonon interaction more sensitive to effects like the broadening
of the phonon dispersion relation (Senna and Das Sarma, 1993) or the acoustic
anisotropy (Lehmann et al., 2000, 2002a, and references therein). The latter effect
will be illustrated in detail in the following chapters. Phonon spectroscopy can
provide details about the process and the type of the electron-phonon interaction
including the angle and mode dependence. This is, as already mentioned in the
introduction, of high interest for the performance of nanostructure semiconductor
devices. However, ballistic phonons are also applied to spectroscopically probe the
electronic states in low-dimensional electron systems and to obtain information
about the electron density or the confinement potential.

The first direct experimental phonon studies on low-dimensional electron sys-
tems were carried out by Hensel et al. (1981, 1983a). Ballistic phonons generated
by a short laser pulse propagate through a 2D electron gas and are detected by
a superconducting bolometer after reflection from the Si-SiO, interface of a Si
MOSFET (and from the 2D electron gas, see Hensel et al., 1983b). The aim of
the experiment was to observe the absorption of the ballistic phonons by the 2D
electron gas, but the result was modulated by an interference between phonon
amplitudes backscattered from the inversion layer and phonons reflected from the
Si-Si0 interface. Restricted also by the limited spectral resolution, particularities
provoked by the reduced dimensionality of the electron system could not be seen
clearly. Later Chin et al. (1984) used the 2D electron gas of a GaAs single hetero-
junction as a heater and observed an unusual temporal spectrum, which differed
from those obtained by 3D electrons. Qualitatively similar effects were also noted
in the phonon emission from a 2D hole gas (Chin et al., 1985).

The first experiment with a spectral analysis of the phonons emitted by a 2D
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electron gas was reported by Rothenfusser et al. (1986). Using superconducting
tunnel junctions as phonon detectors, the 2k cutoff in the frequency spectrum of
the emitted phonons could be observed. As a consequence of the lower dimension-
ality of the electrons Rothenfusser et al. also demonstrated the dependence of the
emitted phonon spectra on the emission angle.

A new step was taken with the study of 2D electron systems in high magnetic
fields by methods of phonon spectroscopy. It was commenced with the phonon
absorption experiment of Eisenstein et al. (1986), who measured the effect of the
phonon pulses on the conductivity of the electrons in the integral quantum Hall
regime. Besides the expected dependence of the absorption probability on the
magnetic field and the Landau level index also the drop in absorption could be
observed if the phonon wavevector (more precisely its component parallel to the
2D system) was larger than the inverse of the magnetic length (for an explanation
see also Section 5.2, page 85). Over the years the investigation of the dissipative
processes in the quantum Hall effect (QHE) regime has proved to be a very use-
ful application of phonon spectroscopy (Challis et al., 1990; Cooper et al., 1995;
Roshko et al., 1998, 1999). In the QHE state, the power is dissipated at low tem-
peratures as photons (far infrared radiation) but, primarily, as acoustic phonons.
As the infrared contribution is less than 107 (for GaAs heterostructures) and
107¢ (for Si MOSFETS) of the total emission (Roshko et al., 1998, and references
therein) the study of the acoustic phonon emission is a very preferable approach.
Phonon imaging based on the phonoconductivity technique has been applied in
the integer QHE regime to analyse the edge states and to probe the local electron
concentration in the 2D devices (McKitterick et al., 1994). With much success
phonon spectroscopy has also been used to investigate 2D systems in the incom-
pressible fractional QHE state (Mellor et al., 1995, 1999; Zeitler et al., 1999; Devitt
et al., 2000, 2002). In combination with theoretical studies concerning the ab-
sorption of nonequilibrium phonon pulses by a 2D incompressible electron liquid
(Benedict et al., 1999; Benedict and Hills, 2001; Apalkov and Portnoi, 2002), valu-
able information about the gap and the dispersion curve of the low-lying collective
excitations (magnetorotons) and the process of magnetoroton-phonon scattering
could be extracted. Similar angle-resolved (Mellor et al., 1999) and time-resolved
(Zeitler et al., 1999; Schulze-Wischeler et al., 2001) ballistic phonon studies have
been performed for systems with even denominator filling factors such as v = 1/2
and v = 3/2 where the 2D electron system can be regarded as a Fermi sea of com-
posite fermions. There is a hope that phonon spectroscopy can provide information
about phonon scattering of composite fermions, in particular about the unsolved
question of the magnitude of the phonon wavevector cutoff (see Zelakiewicz et al.,
2000; Zelakiewicz and Gramila, 2002).

In 1D or better quasi-1D electron systems the angular and frequency dependence
of the emission and absorption of (bulklike) acoustic phonons is expected to be
much different from the 3D or 2D case and should depend quite sensitively on the
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parameters of the confinement potential (Shik and Challis, 1993; Totland et al.,
1999; Lehmann et al., 2000). Phonon spectroscopy measurements using the phono-
conductivity technique have therefore been applied to nonballistic and short ballis-
tic quantum wires in GaAs to investigate directly the electron-phonon interaction
(Naylor et al., 1996; Kent et al., 1997b, 2000). In all measurements, large oscil-
lations of the phonon induced changes in conductivity have been observed if the
wire width was varied (shifting of the position of Fermi energy relative to the bot-
tom of the subbands). This is in agreement with corresponding theoretical studies
(Blencowe and Shik, 1996, 1999; Lehmann et al., 2000) and shows the ability of
the method to probe the electronic states of 1D systems.



Chapter 3

Phonon Pulse Propagation and
Phonon Images

After the introduction to the field of phonon spectroscopy we now focus our at-
tention on the theoretical basis of the discussed experiments and phenomena. We
explain the theoretical background of phonon focusing and develop a mathematical
description of the phonon pulse propagation in anisotropic media. The presented
formalism allows us to calculate focusing images of phonon energy and phonon
quasimomentum for different types of phonon sources including the realistic geo-
metrical arrangement of phonon source and detector. The resulting formulae for
the nonequilibrium phonon distribution as a function of time and of detector po-
sition, derived in this chapter, are the phonon input to theory and interpretation
of phonon spectroscopy studies on low-dimensional electron systems (as presented
in Chapters 5 and 6). The chapter concludes with a short description of the used
numerical methods and with examples of the results of focusing images for different
crystal symmetries.

3.1 Acoustic phonons in anisotropic solids

In a semi-classical picture within the harmonic approximation the crystal dynamics
is analysed in terms of a linear combination of 3p/N normal modes of vibration,
where N is the number of primitive cells and p the number of atoms per primitive
cell. In doing so a normal mode is described in the form of a travelling wave
uqei(qr*“’t), where q is the wavevector, wq is the (angular) frequency of the wave
and uq is the amplitude of vibration. There exist 3p normal mode frequencies for
each wavevector q. Three branches, the acoustic modes, have frequencies that tend
to zero for ¢ — 0, whilst 3(p— 1) branches, the optical modes, have a nonzero value
of frequency for ¢ — 0. The energies of a normal mode are quantized. The quantum
of energy hwq of a normal mode is associated with an elementary excitation called
phonon.

At low temperatures, and this is the regime we are interested in, most of the
phonons excited in a solid are confined to acoustic modes with small wavevectors
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far away from the Brillouin zone edge. Their wavelength 27 /¢ is much larger
than the atomic spacing. Therefore details of the crystal structure can be ignored
and the propagation of such long-wavelength acoustic phonons is very successfully
described by the standard elasticity theory of continuum.

Within the framework of the linear theory of elasticity the equations of motion
for a small volume element are

62 807;]-
Q@Ui = ; 8—% ’ (3.1)

where p is the mass density of the medium and wu; is the i-Cartesian component of
the displacement u(r,t) of the volume element at point r and time ¢. The right
hand side of (3.1) describes the i-component of the forces applied to the surfaces
of this volume element divided by its volume. It is expressed by the elements o
of the stress tensor. The latter is related by Hooke’s law to the strain tensor Sy,
via a set of elastic constants Cjji

045 = Zcijklskl . (3-2)
Kl

The fourth-rank tensor C' is also called the stiffness tensor.! The component Sy; of
the strain tensor is defined by the change of the displacement component wu; with
change of position r in [-direction and inversely
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Because both 0;; (due to vanishing torques) and S;; (by definition) are symmetric,
Cijw is invariant to interchange of ¢ and j or k and [. In addition, Cjji; = Chyj
holds. The number of independent elastic constants Cjj;i; is further reduced by the

crystal symmetry. For a cubic crystal there are only three independent components
of Cjjr;, namely

C'3333 = C'2222 = Cllll ) C’2233 = C’1133 = 01122 ’ 01212 = C(1313 = C'2323 (34)

or in Voigt’s notation C4y, C5 and Cyy, respectively. They are required to satisfy
the thermodynamic constraints Cyy > 0, C1; + 2C15 > 0 and Cy; > |Chs|. Using
Hooke’s law we obtain from (3.1) the elastic wave equation
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In piezoelectric media, such as GaAs, Hooke’s law has to be modified by the stiffening of
the lattice due to the piezoelectric effect. However, in GaAs the influence of this piezoelectric
stiffening can be neglected (Every and McCurdy, 1987).
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Further we assume plane-wave solutions of the form
u(r, t) = ugeq e @) (3.6)

where the wavevector q is given and the frequency wq and the polarization vector
eq are to be determined. Setting w = cq with ¢ as the phase velocity yields the
Christoffel equation
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This is a set of three equations to determine the eigenvalues of the matrix D; =
éij Cijri G; G, where ¢; = ¢;/q, i.e. ¢ denotes the direction cosines of the
wavevector q.2 The corresponding eigenvectors of the matrix D;; are the polariza-
tion vectors e. Because D;; depends only on the direction of q, the phase velocity is
independent of the magnitude of the g-vector and the dispersion relation w = c4 ¢
is linear. The secular determinant of Eq. (3.7) is a polynomial of third degree in
c2. Therefore, for a given direction ¢ three solutions exist which are associated
with three modes with mutually orthogonal polarizations eq . Here the index A
identifies the modes. One of these modes is usually quasi-longitudinal in charac-
ter and the other two are quasi-transverse. However, only under the condition
C11 — C1a = Cyy, i.e. for an elastically isotropic medium, it is always possible to
choose the eigenvectors eg4 » such that one solution is purely polarized in the direc-
tion of q and the other two are polarized perpendicular to q. For an anisotropic
crystalline solid the polarization vector is only strictly parallel or perpendicular to
the wavevector when q is directed along a symmetry axis of the crystal. In general,
for these directions the secular equation factors into a term linear in ¢? and into a
term quadratic in ¢®. For all other directions this is normally not the case. There-
fore, it is more practical to label the modes according to their phase velocity as
slow (quasi) transverse (STA), fast (quasi) transverse (FTA), and (quasi) longitu-
dinal acoustic mode (LA), where cq x—sta < cgr=rra < Cq, s=r.A-> For compactness
the adjunct quasi is usually omitted, even though the polarization vectors are not
purely longitudinal or transverse. Nevertheless, the existence of quasi transverse
and quasi longitudinal modes has large consequences for the character and the
angle dependence of electron-acoustic phonon coupling as it will be illustrated in
Section 4.2.4.

Table 3.1 shows the phase velocities of GaAs for wavevectors along the symme-
try directions, i.e. for the pure longitudinal and transverse modes. It is still clear

2Apart from a factor g2, the matrix Dy is for the continuum limit identical to the dynamical
matrix used in the microscopic theory of lattice dynamics.

3We will omit here a slightly ezotic, but thermodynamically allowed domain of the elastic
parameter space in which the transverse phase velocities may exceed the longitudinal phase
velocity in some direction. Examples are certain Sm-Y-S intermediate valence compounds and
Mn-Ni-C alloys. For details see Every and Stoddart (1985); Paszkiewicz and Pruchnik (2001).
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Table 3.1: Phase velocities for a cubic lattice of GaAs. (From Blakemore, 1982.)

Direction of q | Polarization | Phase velocity cin 103 =
_ C
[100] [100] LA =/ 3 4.7
in (100) plane || cgra = cpra = /€34 3.3

e

[110] [110] LA = \/m 3
[001] CFTA = \/7 3.3

[110] CSTA = 01122)012 2.5
[111] 111 LA = \/@ 54
in (111) plane || cypa = cpra = |/ S=GFc 2.8

from the quoted speeds that the acoustic properties of GaAs are highly anisotropic.
For an isotropic solid there should be only one constant velocity for the longitu-
dinal modes and one for all transverse modes, independent of the direction of the
wavevector. For arbitrary q it is common to present the results of the secular equa-
tion of (3.7) in form of a slowness surface, i.e. as a polar plot of the magnitude c;\
of the slowness vector

Similarly to the Fermi surface for electron transport in metals, the slowness surface
plays a central role in phonon transport phenomena like phonon focusing or surface
reflection and transmission. It contains all information about the solutions cq » for
all directions q and thereby the information about the energy spectrum. Since
the dispersion relation is linear, for long-wavelength acoustic modes the slowness
surface has the same shape like the surfaces of constant energy or frequency in
g-space (for a chosen polarization \) and differs only in a scaling factor.

For a given crystal the slowness surface is a centrosymmetric surface of three
sheets corresponding to the three different polarization modes.? In case of an elas-
tically isotropic medium all three sheets are concentric spheres. The innermost
corresponds to the longitudinal mode and the outer two being degenerate are con-
nected with the two transverse modes. For cubic symmetry all three sheets remain
separated except along the fourfold (100) axes where the transverse sheets make
smooth contact (touch tangentially), and except along the threefold (111) axes
where the transverse sheets meet canonically at a point (Every, 1981). As the

4The symmetry of the slowness surface can be higher than that of the crystal itself. For
example, all slowness surfaces are centrosymmetric, even for crystals lacking a center of inversion.
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characteristic equation for the slowness surface is of the 6-th order in s, the in-
ner sheet of the slowness surface must be completely convex. Fig. 3.1 shows the
intersection of the three sheets of the GaAs slowness surface with the (010) and
(110) plane, respectively, demonstrating the tangential (a) and canonical (b) con-
tact of the TA surfaces. A 3D plot of the slowness surface for the STA phonons

[001] [001]

G
e

[110]

STA

W
LA
FTA STA

(a) (b)

Figure 3.1: (a) Intersection of the slowness surface for GaAs with the (010) plane. (b)
Intersection with the (110) plane. The marks on the axes correspond to a slowness of
s=25-10"*s/m. (From Auld, 1973.)

in GaAs is presented in Fig. 3.2. Regions of the surface with convex, concave and
saddle topology are apparent. The boundaries of these regions are parabolic lines,
i.e. lines of vanishing Gaussian curvature. They are the reason for caustics in the
phonon images as will be discussed in the next section. As already mentioned,
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Figure 3.2: 3D plot of the STA sheet of the GaAs slowness surface showing the convex,
concave and saddle topology. (From Tamura and Harada, 1985.)
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the LA slowness surface is convex, however for GaAs it bulges out in the (100)
directions and is flattest in the (111) directions.

An important consequence of the elastic anisotropy is that the group velocity v,
which is normal to the surfaces of constant frequency (and therefore for long-
wavelength acoustic modes also to the slowness surface), is generally not parallel
to the wavevector q. It follows from the definition of the group velocity

Vq’>\ = Vq qu (39)

that for long-wavelength acoustic modes the group velocity v depends just like
the phase velocity only on q. Thus the group velocity and the slowness vector are
related by means of

Sg,x " Vga = 1. (310)

The direction of the group velocity indicates the direction of the vibrational energy
propagation. Thus, the fact that nonspherical slowness surfaces are flatter in some
directions than in others leads to concentrated energy flux along those directions.
A measure for the energy flux in a particular direction is the phonon enhancement
or focusing factor A. It is depicted as the ratio of energy flux propagating in a
given direction of an elastically anisotropic medium compared to the corresponding
energy flux in an elastically isotropic medium. The phenomena of phonon focus-
ing play a central role in the phonon spectroscopy. Therefore we will discuss this
feature in a separate section.

By standard theory of field quantization, the normal mode displacement uq ) can
be expressed in terms of the phonon annihilation and creation operators, bq » and
b, respectively. The general solution for the displacement field u(r) follows from

QA
(3.6) by a sum over all wavevectors q and all polarizations A
u(r) = Z <L>% (egrbgre’™ + €} b e ') (3.11)
~ Qqu,)\‘/C q,AYq, q,A\"q,\ ’

where V. is the volume of the crystal. Later, this form will be used when calculating
the electron-phonon coupling (cf. Section 4.2).

3.2 Phonon focusing

The study of phonon focusing in crystals dates back to 1969, when Taylor et al.
(1969) noted in their heat pulse experiments that the relative intensities of lon-
gitudinal and transverse phonon pulses in crystals depend very strongly on the
phonon propagation direction. They proposed that acoustic anisotropy accounts
for the observed differences in the phonon propagation behaviour. The simplest
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way of illustrating the basic idea of phonon focusing is by means of a hypothetical
slowness surface as presented in Fig. 3.3. The phonon energy flux is directed along
the group velocity perpendicular to the slowness surface. Thus it is evident that
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Figure 3.3: Intersection of a hypothetical slowness surface. An isotropic distribution of
wavevectors results in a highly anisotropic distribution of phonon energy flux. (Adapted

from Wolfe, 1998.)

where the curvature of the slowness surface is small or even zero (like in the figure),
the group velocity vectors are most strongly concentrated in that direction, and
consequently the vibrational energy flux in that direction is greatest. The conclu-
sion is that an isotropic distribution of wavevectors in g-space results in a strongly
anisotropic distribution of energy flux in real space. To determine the energy flux
in a given direction it is therefore necessary to calculate the phonon enhancement
in that direction, i.e. the appropriate focusing factor. In a seminal paper Maris
(1971) pointed out that the focusing factor A can be quantified by the ratio of the
solid angles in wavevector space and group velocity space

A0,
T Ao,

Aga (3.12)
Here d€q is the solid angle subtended by an infinitesimal cone of wavevectors (or
equivalent slowness vectors) about the direction q and d2, is the solid angle by
their associated group velocity vectors. An intersection of a real slowness surface
for STA modes and the intersection of the corresponding group velocity surface are
shown in Figs. 3.4(a) and 3.4(b), respectively. Inflection points (parabolic lines)
on the slowness surface, e.g. the point corresponding to the vector labelled 1 in
Fig. 3.4(a), are the reason for the folds in the group velocity surface of Fig. 3.4(b).
A constant real space solid angle A€, in Fig. 3.4(b) (as subtended for example
by a phonon detector) correlates to one or more g-space solid angles of different
magnitude and direction. The real space direction represented by the hatched area
involves a defocusing of the phonon flux (A4 < 1), while the AS), indicated by the
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[100]

Figure 3.4: (a) Intersection of the slowness surface for the STA modes of a cubic crystal.
The group velocity vg for a given ¢ is normal to this curve. (b) Corresponding group
velocity surface constructed by connecting the tails of all possible group velocity vectors.
The numbered vectors v correlate to the numbered vectors q of figure (a). We note the
cuspidal edges along the (100) directions in (b) where several wavevectors q correspond
to the same group velocity and the mathematical functions involved are many valued.
(Curves from Northrop and Wolfe, 1980.)

filled area in the v-space maps into three different g-directions leading to strong
phonon focusing (Agx > 1).

The direct relation of Ag  to the local geometric characteristics of the slowness
surface (Lax and Narayanamurti, 1980) is an elegant way to calculate the focusing
factor. For this purpose a small area element dA = du;duy on the slowness sur-
face is treated, where the two length elements du; and dus are chosen along two
(perpendicular) directions of principal curvature of the slowness surface. Since the
group velocity v is normal to the slowness surface, dA subtends a solid angle in
the v-space

40, — dA

— , 3.13
Pui Pus ( )

where p,, and p,, are the principal radii of curvature associated with the curved
segments du; and duy of the slowness surface. On the other hand dA subtends a
solid angle in the g-space

_dA(-q)

52

dQq : (3.14)
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where (V - q) takes the projection of dA (which is directed along v) along q. The
ratio of Eq. (3.14) to Eq. (3.13) yields the focusing factor (3.12)

(Vg - 4) A
A7)\ = 2 — ) , (315>
) s2, T2 van [Ta

where ng\ and Fgl are the principal curvatures (inverse radii) of the slowness

surface, which can be positive or negative, and I'q » = Fé{lfg\ is the corresponding
Gaussian curvature. This Gaussian curvature can be directly determined from the
second-order derivatives of the phase velocity (Every and McCurdy, 1987).

If we consider once more the STA slowness of Fig. 3.2 then a closed line [,
obtained by a central section of this surface has a fourfold geometry. The line [,
contains several inflection points (points on parabolic lines). At these points the
Gaussian curvature of the slowness surface vanishes, thus it follows from (3.15) that
the focusing factor Ag » is mathematically infinitive (yet integrable) and corollary
sharp singularities in phonon flux (caustics) occur along these directions. There-
fore, parabolic lines on the slowness surface produce folds in the group velocity
surface and the projection of these folds onto the experimental plane causes the
caustics in the phonon images. A systematic study of slowness surface topology of
cubic crystals, the associated caustic patterns and its impact on heat pulse images is
given by Paszkiewicz and Pruchnik (1996) and Wolfe (1998) and references therein.

The determination of the phonon flux intensity for all real space directions is not
trivial. The reason is that there is no one to one mapping from the directions in the
slowness surface to the directions in real space. All points on the slowness surface
which contribute to the flux in a particular direction have to be found numerically
and the respective focusing factor has to be calculated for each of them. And this
procedure has to be repeated for each individual real space direction. Our method
of calculation and the resultant energy and quasimomentum focusing patterns will
be illustrated in the next sections.

3.3 Kinetic description of phonon pulses

3.3.1 Kinetic equation for phonon pulses

In the typical experiments of phonon spectroscopy pulsed beams of nonequilibrium
phonons are used. The pulse is generated on one face of the crystal or as in the case
of phonons emitted by low-dimensional electron systems in a small crystal region.
The emanated phonons, which for spatially inhomogeneous states are represented
by wave packets, move through the crystalline media with the group velocity vq .
They carry the energy hwqy and the quasimomentum hq. The experiments are
performed at ambient temperatures much below the Debye temperature ©p (for
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GaAs: ©p ~ 345K) and on massive perfect specimens. As thermal phonons are
practically frozen out, the injected phonons propagate almost ballistically. Using
the suitable boxcar time-gate one can eliminate the contributions of boundary
scattering or separate the contribution of a given phonon polarization. For most
experiments the relevant phonon frequencies, f = w/2w, are below 1 THz, i.e. in
the nondispersive, long-wavelength acoustic regime.

Under the conditions described above one can assume that the phonons propagate
in a half-space filled with an anisotropic medium. The nonequilibrium state of the
phonon gas at time ¢ may be described by the deviation dn(q, A, r, t) of the phonon
density distribution function from the equilibrium (Planck) distribution function
no(hw/kgT). This deviation function obeys the Boltzmann-Peierls kinetic equation
with a source term Z(q, A, r,t) (cf. Jasiukiewicz, Lehmann, and Paszkiewicz, 1992;
Jasiukiewicz, Paszkiewicz, and Lehmann, 1994)

% + vV + 7 Hwgn) | nla, A, v, t) = Z(q, A\, 1, t) . (3.16)
The even in very pure crystals remaining low probability of phonon scattering
events, e.g. by isotopes, we take (in lowest order) into account by the relax-
ation time 7(w). Paszkiewicz and Wilczynski (1995) have studied the influence
of isotopic disorder on the phonon pulse propagation in detail. For isotope scat-
tering in GaAs the relaxation time is given in the low frequency limit by 77(w) =
7.38:107*%(w/27)*s7! (Tamura, 1984). The source term Z can be generally written
in the form

@(t)@é?t —t) /d37~s 0e(r) 5(r — 1) To(@ wan, €qn) - (3.17)

Here we assume that at time ¢ = 0 a short phonon pulse of duration At will be
generated at point rg. The geometrical arrangement and the extension of the
phonon source are described by the function g¢s(rs). The phonon distribution
Js(Q, wq.r, €q.0) of the source term may depend on the wavevector direction, the
frequency (or equivalently the phase velocity) and the polarization vector. This is
for example the case with a hot 2D electron gas as phonon source (as described in
Chapter 6) where the emitted phonon flux depends not only on phonon wavevector
and frequency but by the electron-phonon matrix elements also on the polarization
vector.

Z(q,\r,t) =

For a point source at point ry emitting in the upper half-space (z > 0) with uniform
angular distribution of phonon wavevectors it holds

gs(rs) = 0(rs —1g) and Iy (q, wqnr, €qn) = Js(War, €q0) O((vgn):) - (3.18)
For a monochromatic point source the function 3. reduces further to
N 42l |

Js(War, €a.0) ~ d
S( q,\) q,)\) 3‘/Cw(217>\

dwgr —wo) , (3.19)
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while for a Planckian source

< 1
:ls(wq,)\aefL/\) ~ m ) (32())

where Ty is the source temperature. The choice of the functions (3.18) and (3.20)
is equivalent to assuming a point heat source which has been used in most of the
published calculations of focusing images, drag patterns etc. However, in reality
the phonon sources are for example a locally heated planar metal film, a supercon-
ducting tunnel junction or a hot 2D electron gas. Therefore we have to take into
account the finite dimensions of the phonon source by an appropriate choice of the
function gs(rs).

A more realistic model of a phonon source in form of a locally heated metal over-
layer is discussed in Appendix A.3. For a heater of temperature T} located at z = 0
with surface area Ay and pulse duration At the phonon distribution of the source
term is (cf. Eq. (A.13))

~ As (VA,A)z C4 A\ .
Js(q, wq,,\,eq,)\) = At VC ehwq,/\/(liBTs 1 @( g)s\ — S1n 19(1) @((V@)\)z) s (321)

where c3 is the phonon phase velocity in the (polycristalline) heater film and ¥4
is the phonon wavevector angle in the crystal measured from the normal of the
interface. Eq. (3.21) shows clearly that even in the case of an isotropic crystal, the
incident phonon wavevector distribution in the crystal has by the z-component of
the group velocity a cosine-dependence. In other words, not the phonon wavevec-
tors are uniformly distributed, but rather their components parallel to the interface
have a uniform distribution in the plane of the interface.

Furthermore we see from Appendix A.3, Eq. (A.11), that for a metal film ra-
diator as phonon source the ratio of emitted LA to emitted TA phonons into the
same crystal solid angle depends on the phonon phase velocities in the crystal (for
the limiting case of an isotropic solid inversely proportional to the square of the
corresponding velocities). This is caused by the fact that the size of the contribut-
ing solid angles in the heater is different for different modes. In contrast, the ratio
of the total number of LA to TA phonons emitted into the crystal depends on
the phonon phase velocities in the heater material because the critical angles for
phonon transmission into the crystal, equal to arcsin(cg /c}), are mode dependent.

The kinetic equation (3.16) can be readily solved using Green’s function technique.
For the universal source term (3.17) the solution which satisfies the boundary con-
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ditions is

dt'O(t ¢t/
5n(q7 )\,I',t) - J q7 Wa,\s €4\ / - lea)
0

X /d?’rs gs(rs) 5(r — 1 — vt — t')) (3.22)

= J:(d, wgnr, €qn) /d37”8 ae(r) @(t — ‘:};";‘) @ﬁ?ﬁ:sl AL - t)

_ |[r—rg|
e T(wq,x)vgn

X , 0 (Vv Ur—r.) O (v Pr—r) - (3.23)

r — ry[2vgasindy,

In the last step we have expressed the vectors v4, and (r — rg) by their polar
coordinates. Finally, we have to replace the polar angles dy,_, and py,, of the
group velocity by the corresponding angles of the wavevector q

Uy
8 (Vvgr— Vrr.) 0(Pvg— Pror,) = S0 Vv Aq,Azcs (9q— 9) 6(pq—¢7)

sin Uq

(3.24)
where we have made use of the definition of the phonon focusing factor Aga (cf.
Eq. (3.12)). Here 9}, ¢} are the polar angles of the solutions ¢} of the equation
Vgr = (r —r5)/|r — rg]. That is, all phonon wavevectors q) possessing a phonon
group velocity Vara directed along (r —rg) contribute to the sum over i. In general
the solutions q} and their number will be different for each polarization .

The nature of solution (3.23) is obvious. It describes the collimated propagation
of a phonon pulse in which the initial pulse shape remains unchanged. Kwok (1968)
was the first who introduced a heating source (prescribing a phonon production
rate) in the Boltzmann equation for heat pulse propagation and studied the phonon
propagation far from thermal equilibrium and before the distribution relaxes to
one which can be characterized by local thermodynamic variables like temperature
and phonon drift velocity and their derivatives. In a series of papers we have
extended this theory to finite linear dimensions and different types of phonon source
and, most notably, have included the effects of acoustic anisotropy (Jasiukiewicz,
Paszkiewicz, and Lehmann, 1994 and references therein). The phonon density
distribution function in the form of (3.23) together with (3.24) allows a very global
discussion of phonon pulse propagation for arbitrary phonon sources including the
study of energy and quasimomentum focusing, phonon absorption, phonon drag
etc.
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3.3.2 Phonon energy and quasimomentum flux

From the phonon density distribution function we obtain the density of phonon
energy flux

P t) = hwgavanron(a, A1, t) (3.25)

q

and the tensorial components of quasimomentum current density

Tag(r,t) = Y Pga(Van)son(a, A r,t) . (3.26)

q

For a small detector surface at point r with surface area AA4 and normal ng the
energy per unit time of phonons with polarization A falling onto it is

PMr,t) = AMq Y hwg s vas - adn(q, A r,t) . (3.27)
q

For a small strip of area A4y and normal ny directed along €, (see Fig. 3.5), the

anisotropic
medium

Figure 3.5: Geometrical arrangement of the detector surface for the phonon quasimo-
mentum flux.

n-component of quasimomentum of all phonons with polarization A falling onto the
strip is
H;;(r, t) = AAy Z hay v - a on(q, A, r,t) . (3.28)

q

In the phonon imaging experiments one is often interested in the time-integrated
projections of the density currents measuring the total energy E(r) and the total
quasimomentum component @, (r) falling onto the surface of a suitable detector at
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position r

E(r) = > [dt PA(r,t), (3.29)

Qu(r) = ) /dt T)(r,t) . (3.30)

For a monochromatic point source at r = 0 it follows directly from the above
equations that

AA f]. * f‘ 1 —T/U. T (W
B() = hun =55 53030 Agae T (331)
A 7
AAd ﬁd T 1 ~ —r/vgn \T(wo)
@(r) = hwo — —5— 52 Do (€ sgra) Apae T (3.32)
N

(Jasiukiewicz, Lehmann, and Paszkiewicz, 1992), where the g} are the solutions
of the equation v4, = & = r/r. Both functions, E(r) and @Q,(r), contain the
information about the local Gaussian curvature of the slowness surface via the fo-
cusing factor Ag . Additionally, the function @, (r) measures, by its dependence
on s,, the linear dimensions of the slowness surface. To illustrate the sensitivity
of E(r) and @,(r) on the detector position r and to show the strong anisotropy
of the phonon fluxes, the numerical results of Eqs. (3.31) and (3.32), the so called
energy and quasimomentum focusing images, will be presented at the end of this
chapter (Figs. 3.8-3.11). Energy focusing patterns can be directly measured by
detectors sensitive to energy, i.e. bolometers, but also by low-dimensional electron
systems as detector. Quasimomentum focusing patterns play the key role in the
interpretation of the phonon-drag patterns of low-dimensional electron systems (Ja-
siukiewicz, Lehmann, and Paszkiewicz, 1991, 1992). The latter will be discussed in
detail in Chapter 5. It is also very interesting that there exist crystalline directions
for which the quasimomentum flux on the surface II)(r,t) changes its sign with
time (Danilchenko et al., 1999).

For a quantitative comparison with experimental results, the assumptions of an
isotropic point-like monochromatic phonon source and a point detector used in the
derivation of (3.31) and (3.32) are insufficient. Therefore, we have included in our
theory and in the numerical programs the effects of finite source and detector size
as well as different frequency and wavevector dependencies of the phonon emitter.
In the case of a locally heated metal film as the phonon source, see Eq. (3.21),
we obtain for the power incident on a detector surface in a plane at distance d
from the crystal/source interface and with z-coordinates (y-coordinates) between
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x1 and x5 (y; and ys)

Pi(t) = //dwdy/dzé(z —d) jMr,t) e,
Agq
(ks To) e _yd:c’dy d2 Vgp
dagdys :
1208 // e / / A‘*? * egn)?
T1—Ts Y1—Ys
Car . r! /
x 022 —sindg ) O +At—t>@(t— ). (333)
X ’ Vg Vg A
where v = r — ry (see Fig. 3.6). For simplicity we have neglected the isotope

I's

Figure 3.6: Phonons are generated at a point rg inside the source area As. They prop-
agate ballistically and are detected at a point r = r’ + ry with z between x; and x9, y
between y; and y2 and z = d. The solid angle €, is subtended by the vectors of the
corners of the detector surface.

scattering in the above expression. From (3.33) it follows for the normalized total
energy of phonons with polarization A falling onto the detector surface

Eé 1 drgdys 1 /
- dQ2,.r cos Uy
PbAt (CS )2+(s)2// AS ﬂ-
As

Qcl,'rs, (334)

Car

Vg ;A
X E Aq : ( —— —sind, )
z’ C)S\ q;

C/\)\

As normalization constant we have used here the whole phonon energy coming from
inside the heater and falling onto the source/crystal interface. Deriving (3.34) we
have applied the identity

T2—Ts Y2—Ys

/ /
/ dx/dzy cos Vs = /er/, (3.35)

r
T1—Ts Y1—Ys Q4 rg
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where 14, is the solid angle corresponding to the detector surface seen from a point
re = (25, ¥s, 0) of the source/substrate interface. The result for the n-component
of quasimomentum per unit time I1}(¢) of all phonons with polarization A falling
at time t onto the detector surface follows from (3.33) by multiplying each term
in the sum over i by the appropriate value of the n-component of the slowness
vector S -

3.3.3 Phonon mode distribution in the detector

For calculating such quantities like phonon induced drag or phonon absorption in a
detector of finite volume Vg, we need the density or the number of nonequilibrium
phonons with a particular wavevector q and polarization A inside the detector at
time ¢ as input data. We assume that the acoustic properties of the detector mate-

s b5,

T,

Figure 3.7: Phonon detector of finite volume Vg (surface area Aq, thickness Az) in a
plane at distance d from the crystal/source interface.

rial are identical to the substrate, as it is the case for the imbedded low-dimensional
electron systems used as phonon detector. This also means that phonon scattering
at the substrate/detector interface can be neglected. For a detector in shape of a
layer of finite thickness Az and with surface area A4 located at a distance d from
the crystal/source interface (see Fig. 3.7) the number of nonequilibrium phonons
at time ¢ can be directly expressed by the solution dn(q, A, r,t) of the kinetic equa-
tion (3.16)

d+Az
Naalt) = / /dxdy / dzdn(q, A, r,t) (3.36)
Aq d

or by the phonon density current falling onto the detector plane. Therefore for a
planar phonon source and a emitted phonon pulse of duration At the number of



3.3 Kinetic description of phonon pulses

phonons N ,(t) inside V at time ¢ is by means of Eq.(3.23)

JS((ALW 2 €4 /\> —d/T(w Vg
Ng)\<t> = Aqt k! e d/T(wq,x) (vg,n)=

d+Az

% / dz e(zd)/r(wq,wq,uz@(t_ z )@( : - At))
(vg)- (va)- (vgr)=

T2—Ts Y2—Y

dxgdys da’ dy’ cos Uy
T T o

T1—Ts Y1—Ys

(3.37)

where the allowed ¥} and ¢} are again determined by the equation V4, = ' with
r’ = r—r; . The right hand side of Eq. (3.37) is the product of three terms. The first
factor is the number of phonons of mode (g, \) emitted per unit time and reduced
by isotope scattering en route to the detector. The second term is a measure for the
transit time of the phonon through the detector. It is only nonzero, if ¢ is equal to
the time necessary for the phonon to pass the distance between source and detector.
Lastly the third term describes the probability, that a phonon (g, A) emitted by the
source will hit the detector. Using identity (3.35) the above expression for N ,(t)

simplifies under the conditions d > Az and Az/vg, < 7(wqx) (Which are usually
fulfilled)

1.5 ) (d+A2)/(vg,x)=

s\, Wq,\;s €4,1 —d/m(w Ve )z ~ ~ ~

Naat) = s e Tan) a) / dt Ot —He(i — (t — At))
d/(vq A)z

dxsdys A
a0, 2 5(9 o).
/ [t [ an S o i, o)

Qd TS

(3.38)

To calculate the time-integrated phonon drag in Chapter 5 we still need another
phonon quantity as input data, namely the time-integrated phonon number in a
detector of volume Vj or, equivalently, the Fourier transform of Ni \(t) withw =0

o0

Naa(0) = / dt N \(t)

—00

_ Vdjs(fl,wq,meq,x) o= 4/T(@q,2) (va,)= //dx;ldys

(Uq,)\>z sin 19q

x /dQ“’ AQAZ(MS‘ —9)) O(pq — ©)) - (3.39)

Qd \Ts
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Expression (3.39) is a quite powerful tool for obtaining the phonon input for the
calculation of the time-integrated phonon drag or the time-integrated phonon ab-
sorption as a function of the detector position. It contains the focusing effects
and isotope scattering as well as the full dependence from source and detector ge-
ometry and by an appropriate choice of J5(q, wqa, €q.1), see Egs. (3.18-3.21), the
right frequency and wavevector distribution of the phonon source. Because of the
fact that in the considered experiments the duration of the phonon heater pulse
is much larger than the transit time of a phonon through the detector, the above
equation allows as well a reasonable approximation of the amplitudes of absorption
and drag. This is done by dividing the final results by the pulse duration At.

We now consider the limits for the implementation of the above derived phonon
quantities in our calculations of phonon induced current or phonon absorption by
electrons. The theoretical methods used for the description of the response of the
electron gas to pulses of nonequilibrium phonons are based on the assumption of
a homogeneous phonon distribution inside the detector. The consequential restric-
tion for the detector size can be avoided for the detector area by splitting the whole
detector area Ay into smaller segments AAg, but it remains a limitation for the
detector thickness.

Another question is the restriction to nondispersive phonons. Focusing of dis-
persive phonons was first observed by Dietsche et al. (1981). Constant-energy
surfaces in the limit of high phonon frequencies have been constructed by Tamura
and Harada (1985). For dispersive phonons the phase and group velocity do not
depend only on the direction of the wavevector and we cannot use Eq. (3.10).
However, the expressions (3.31) and (3.32) can be easily generalized (Jasiukiewicz,
Paszkiewicz, and Lehmann, 1994). Similar formulae have also been derived by
Northrop (1982) and Paszkiewicz and Wilczynski (1995) and there exist a num-
ber of theoretical and experimental papers on the ballistic propagation of large-
wavevector acoustic phonons (see Wolfe, 1998 and references therein). However,
the group velocities of dispersive phonons are small in comparison to the group
velocities of long-wavelength acoustic phonons. So the detector of phonons placed
at a macroscopic distance from the source registers mostly dispersionless acoustic
phonons. Additionally, the high probability for scattering and decay processes will
further reduce the number of dispersive phonons.
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3.4 Method and results of numerical calculation
of phonon focusing

With the help of the solutions for the incidence of phonon energy and quasi-
momentum onto a detector surface given by the Egs. (3.31-3.34), including the
modifications for quasimomentum of the latter two, we are able to calculate the
phonon energy and quasimomentum focusing. Together with the expressions (3.38)
and (3.39) for the phonon mode distribution inside a detector these solutions also
serve as the essential input for the study of other quantities dominated by the
acoustic anisotropy of phonon pulse propagation like angle-resolved phonon drag
or phonon emission. In each case one needs the phase and group velocities for all
long-wavelength acoustic phonon modes, i.e. for all values of (g, \). Additionally,
in the cases where the interaction with electrons plays a role the phonon polariza-
tion vector has to be obtained for each phonon mode as well. For this purpose we
have used the general closed-form expressions for the phase and group velocities
and the polarization vector in elastically anisotropic solids derived by Every (1980,
1981). The focusing coefficient Ag4 ) has been calculated in conformity with the ex-
pressions obtained by Lax and Narayanamurti (1980). The advantage in doing so
is that all mentioned quantities can be written in algebraic form. As input param-
eters for all our calculations concerning GaAs we have used the low-temperature
values of density and elastic constants® given in Table 3.2.

Table 3.2: Values of crystal density and elastic constants for GaAs. (From Cottam and
Saunders, 1973.)

Material | Density C11 Cia Cus
|g/cm?| [10"" N/m?|

GaAs 5.3169  1.2107 0.5477 0.6036

Having determined the phonon velocities the further procedure would be the fol-
lowing. For a given detector position r, one has to find all phonon modes (q, )
with a group velocity v, in direction of r. Then for these modes one has to
calculate the corresponding focusing factor Ag x and the contributions to energy
or quasimomentum and finally one has to sum over all involved phonon modes.
However, there are at least two major problems. First, for focusing images or drag
patterns we need the phonon signal as a function of (x,y), i.e. we have to rerun the
procedure for a large number of different detector positions. And more important,
for all points corresponding to parabolic points of the phonon slowness surface the

5We should mention here that the shape of the slowness surface depends only on the ratio of

it o+ tanta ; . C11—=Caa C11—C12—2Cu4
its elastic constants, e.g. for cubic crystals on FHa- and =H—=37"=4.
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Gaussian curvature vanishes and the focusing factor Ag » is singular. Therefore, for
numerical calculations one has to modify the expressions derived in the previous
section. A detailed description of the method used in our calculations is published
in the paper by Jasiukiewicz, Paszkiewicz, and Lehmann (1994). Thus only the
basic idea will be outlined here. As a case in point, an expression for anisotropic
phonon pulse propagation as given in Eq. (3.34) will be used

//dxdys /dQ thz,)\r Agr s

AQd’V‘
o (3.40)
_// ys/dQ /dQ h(d, A\, 1) AqAZcSﬁ — IS (pq — )
Ay dr AQq.,

where h(g}, A\, 1) is an arbitrary smooth function and the ¥ and ¢} are again the
polar angles of the solutions @ of the equation V4, = t’. This expression describes
the realistic situation of a phonon source with finite surface area Ay and of a small
phonon detector seen under a solid angle AQy,. from a point ry of the phonon
source. Now the total solid angle of the g-space on the right hand side of (3.40) is

divided into a finite set of n, non-overlapping solid angles AQS{ )

D AQY =4r . AQYNAQY =0forj #1. (3.41)

The sufficiently small solid angle ng )is spanned by three noncoplanar unit vectors

q(] ), qgj ), qgj ). There exists a triple of directions of group velocity vectors Vc(;l)/\,

\732) A 51]3) , to each triple of q—vectors (for each polarization A). The solid angle

corresponding to the triple of Vq \-vectors in the real space (v-space) is AQ(VJ/\
Changing the variables of integration in (3.40) and applying the definition (3.12)
of the focusing factor yield

//dxsdys / dQ , Zh qz)\’)\ I_/) Aql?\,)\

AQq g
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In (3.43) the function 2(¥, A, 1) is replaced by its average value 29)(\, ry) for the
corresponding solid angles. For sufficiently large n, this is always possible. In the
last step we have made use of the fact that the two-fold integral over the two solid
angles in (3.43) is equal to the magnitude of the common part of AQE,JQ and AQq,..

For each chosen solid angle Ang ) one simultaneously calculates the contribution
to different detector positions (different €1, ). Therefore the phonon signal as a
function of detector position can be obtained after a single scan over a complete
set of {AQ&J)}. Moreover, it is usually enough to calculate only a subset of the
set {AQE{ )} due to symmetry properties of the crystal and of the detector plane.
Thus the described method is a very effective approach for any type of calculations
where the anisotropic propagation of phonon beams or pulses plays a dominant role
and it is faster than corresponding Monte Carlo simulations (see, e.g. Danilchenko
et al., 1994a; Gancza and Paszkiewicz, 1995).

To illustrate the theoretical approach discussed so far we will now present some
of our numerical results for phonon energy and quasimomentum focusing. In all
images we keep the source fixed and move the detector to obtain a phonon signal
as a function of the detector position r = (z,y,d), where d is constant. This is
opposite but equivalent to the situation in most experiments (cf. Chapter 2) where
the phonon source is movable and the detector remains fixed.

Fig. 3.8(a) shows the relative intensity of the total ballistic phonon flux from
a point source impinging on the (001) face of a GaAs crystal as a function of
detector position. In Fig. 3.8(b) the same is displayed for the (311) face of GaAs.
These plots are obtained on the basis of Eq. (3.31). They reveal all anisotropic
features originating from the local symmetry of the slowness surface. The plot of
Fig. 3.8(a) has the fourfold symmetry of the [001] axis. Both the ramps formed by
the STA mode caustics and the diagonal ridges formed by the FTA mode caustics
are clearly apparent. The four peaks represent the corners near the outer square
of the box originating from the high STA phonon flux close to the (100) direction
(cf. also Fig. 3.11(b)). Due to the cubic symmetry this 3D representation of energy
focusing is similar to the relief in Fig. 2.5(b) obtained experimentally by Northrop
and Wolfe for germanium. For comparison in Fig. 3.9 the anisotropy of the ballistic
phonon flux for a trigonal sapphire crystal (a) and a hexagonal 6H-silicon carbide
crystal (b) is presented. Both materials are currently very interesting for phonon
imaging due to their application as substrate material for gallium nitride epilayers
(Lehmann et al., 2002b; Stanton et al., 2003a).

The plot in Fig. 3.10 for the quasimomentum focusing is the visualization of
the result of Eq. (3.32). The geometrical arrangement is for this computer ex-
periment identical to the one for Fig. 3.8(a). Compared to the image of phonon

6The advantage of Monte Carlo simulation programs for phonon propagation is the possibility
to include in detail phonon scattering and phonon decay processes (Maris, 1990; Tamura, 1993;
Msall and Wolfe, 1997; Gancza et al., 2001).
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intensity of Fig. 3.8(a) the lower symmetry in the observed features is evident. The
quasimomentum flux vanishes along the mirror line in [110] direction. Neverthe-
less, the caustics are also clearly visible in the quasimomentum image. Due to the
increased sensitivity on scattering events the analysis of focusing images for the
quasimomentum should be ideal for the study of phonon scattering.

Fig. 3.11 demonstrates the influence of the detector size on the phonon images
for GaAs. In (a) and (b) the time-integrated phonon intensity for the sum over
all three polarization modes is calculated for a point phonon source and a point
detector. Similar as in Fig. 3.8(a) the detector is moved in the plane perpendicular
to the [001] direction of the crystal. The crystal thickness is 1.35 mm and with
exception of pattern (b) the selected image section is 3.2mm x 3.2mm. Bright
regions in the patterns indicate detector positions with high phonon energy flux.
Figure (b) shows the enlarged box structure of (a) with the two squares formed
by the STA modes. Compared to (a) the pattern in Fig. 3.11(c) is obtained for a
phonon source and a detector of finite size. It is rather close to the experimental
findings of Hiibener and coworkers (Held et al., 1989a) displayed in Fig. 3.11(d).
The calculation for (c) is based on the source term given by Eq. (3.21) and the
used parameters correspond to the ones of the experimental pattern.
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(b)

Figure 3.8: Pseudo-3D representation of phonon focusing for a GaAs crystal. The in-
tensity of phonon flux is plotted as a function of detector position. (a) The detector is
moved in the (001) face of the crystal and the scan from left to right (in [110] direc-
tion) corresponds to an angular range in phonon propagation direction of —45° ...+ 45°.
(b) The detector is moved in the (311) face and the angular range from left to right (in
[233] direction) is —51°... 4 51°. In both cases the (point) phonon source is located in
the center on the opposing face of the crystal.
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Figure 3.9: Pseudo-3D representation of phonon focusing for (a) sapphire and
(b) 6H-SiC. The intensity of phonon flux is plotted as a function of detector position
parallel to the (0001) plane. In (a) the image represents a +60° horizontal scan, where
the center point of the xy-surface corresponds to a phonon propagation in [0001] direction
(along the c-axis). In (b) the image is a £56° horizontal scan. The circular symmetry
in the phonon image (b) arises because of the requirement that focusing should be inde
pendent of direction in the xy-plane due to the six-fold screw axis being parallel to the
c-axis. Sharp focusing occurs for TA phonons at an angle of ¥ ~ 45°.
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Figure 3.10: Pseudo-3D plot of quasimomentum focusing for a GaAs crystal. The detec-
tor measuring the [110] component of phonon quasimomentum is moved parallel to the
(001) plane. The geometrical arrangement of phonon source and detector is identical to
Fig. 3.8(a).
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(c) (d)

Figure 3.11: (a)-(c) Calculated phonon intensities for a phonon detector moved parallel

to the (001) plane. Pattern (a) and (b) are for point source and detector, in pattern
(c) the source diameter (28 um) and the size of the detector (10 ym x 10 um) correspond
to the parameters of image (d). (d) Measured intensity of ballistic phonon flux using
low-temperature scanning electron microscopy for imaging. (Experimental image from

Held et al., 1989a.)



Chapter 4

Acoustic Phonon Scattering in
Low-Dimensional Electron Systems

Having treated of the phonon pulse propagation and the resulting nonequilibrium
phonon distribution in the foregoing chapter, we now analyse the interaction of
the phonon pulses with low-dimensional electron systems formed in semiconductor
nanostructures. We start with a description of the electronic states of GaAs/AlGaAs
heterostructures on the basis of the so called envelope function concept and discuss
several models for the electron confinement. Then we examine the different mech-
anisms for the coupling of the low-dimensional electrons with the acoustic phonons
and survey the influence of electron confinement and acoustic anisotropy on the
interaction process.

4.1 Basic properties of quasi low-dimensional
electron systems

Two main systems have driven research into low-dimensional systems over the
last decades. The metal-oxide-semiconductor field-effect-transistor (MOSFET) was
patented in 1930 but was first successfully demonstrated and perfected in the 1960s.
The modulated semiconductor structures, namely modulation-doped heterojunc-
tions, quantum wells and superlattices, were proposed later (Esaki and Tsu, 1970),
but their study has developed very rapidly, from the point of view of basic physics
as well as applications. In both the Si MOSFET and the modulation-doped het-
erostructure a 2D electron gas is formed.

To discuss the interaction of acoustic phonons with such systems we have to
know the electronic properties and in particular the electron eigenfunctions. There-
fore, in the following we will recapitulate the basic properties, starting with the
characteristics of the corresponding bulk system, and describe the theoretical mod-
els we use. In accordance to the scope of this paper we will restrict ourselves on
modulation-doped GaAs/Al;Ga;_(As heterostructures.
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4.1.1 Bulk electronic structure — A short resumé

A TII-V semiconductor like GaAs crystallizes in the zinc-blende structure and each
atom is tetrahedrally coordinated. The orbitals of one kind of atoms (s- or p-like)
hybridize with the orbitals of its four nearest neighbours forming bonding and an-
tibonding orbitals which broaden into bands in a solid. Because there are 8 outer
electrons per unit cell (3 from Ga and 5 from As) the 4 binding orbitals are fully oc-
cupied and become the valence bands, while the antibonding orbitals are all empty
and become the conduction bands. The gap between the filled valence band states
and the lowest conduction band is of the order of a few eV (1.42eV for GaAs;
2.23 eV for AlAs at room temperature). The top of the valence bands occurs at the
center of the Brillouin zone (I'-point) and, neglecting spin-orbit coupling, the upper
three valence bands (originating from the bonding p orbitals) are degenerate at T'.
The lowest conduction band is singly degenerate and is a result of the antibonding
s orbitals.

To simplify the many-ion many-electron problem the Schrédinger equation is con-
sidered in the mean field approximation. In this case the electron experiences a
potential formed by the rigidly fixed ions and by an average over all the other elec-
trons. The resulting effective one-electron potential V' (r) is periodic with the peri-
odicity of the underlying lattice. Therefore the eigenfunctions of the one-electron
Schrodinger equation including spin-orbit coupling (o is the vector of electron spin)

{25%1 +V(r) + Wf;(/g[a x VV(r)] - p}¢(r) = Ey(r) (4.1)

are Bloch functions

Yo (r) = e™u(r) | (4.2)
where m, is the free electron mass and the function u,,(r) shares the same peri-
odicity as the underlying lattice. The Bloch state is labelled by the band index v
and the wavevector k, which can be restricted to the first Brillouin zone.

It should be mentioned that in the case of solid solutions between III-V binary
compounds, like Al,Ga;_,As, the potential felt by the electrons has in the strict
sense no translational invariance. This is due to the random distribution of the Al
and Ga atoms at the sites of one of the two fcc lattices forming the zinc-blende
structure. However, in the virtual crystal approximation the random potential
created by the Al and Ga atoms in the alloy is replaced by a periodic one whose
strength is the weighted average.

When 1, is inserted into Eq. (4.1) we obtain an equation for the periodic part
of the Bloch function

{ P V) - — o x VV()] p+

Qmel 4mzlcz
R2k*  hk
2me| * Mel (p+ A c2 o x VV(r)]) }ka(r) = Epu(r) . (4.3)
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In most of the common situations only the knowledge of the states close to the
zone center is needed. Therefore a global description of the dispersion relation
over the whole Brillouin zone is unnecessary and a local description of the band
structure can be applied, the k - p method (Luttinger and Kohn, 1955). Here,
the terms h k. and Ik (p + 4m (o x VV (r)]) are treated as perturbations of the
k=0 solutlons U0 and E, using either degenerate or nondegenerate perturbation
theory. By the k-p method one can obtain analytic expressions for band dispersion,
wavefunctions and effective masses around high symmetry points. For small & the
dispersion relation of a nondegenerate band is (see e.g. Bastard, 1992)

Ep=Ep+ — Z kg ——— (4.4)
ua,@

where m;, 5 1s the effective mass tensor

*1 = aﬁ+ Z E (4.5)

mu,aﬂ Mel v0

and the vector 7, is defined as

Tt = / &ty (r) (p n o x VV]> o () . (4.6)

unit cell

4mec?
The corresponding wavefunctions are to first order in k - p theory

h k- Tu'y
u,,k(r) = ’U,V(](I‘) el Vl%:y m Uylo(r) . (47)

Eq. (4.5) demonstrates the difference of the effective electron mass from the free
electron mass because of the coupling between electronic states in different bands.
It exhibits the fact that the electron experiences in reality a periodic crystal poten-
tial instead of moving in a constant potential. For the conduction band edge m; 4
simplifies and is approximately a scalar. For larger k one has to go beyond the
isotropic parabolic approximation as described e.g. by Mayer and Rossler (1991).
Much different is the situation for the upper valence bands. The spin-orbit coupling
lifts the sixfold (including spin) degeneracy at k = 0 and gives rise to a quadruplet
corresponding to total angular momentum j = %, and to a twofold degenerate level
with j = % (see Fig. 4.1). These latter are the so called spin split-off (so) states
while the former ones are associated with light hole (lh, m; = j:%) and heavy hole
states (hh, m; = j:%) Away from the zone center the bands couple via k - p in-
teraction resulting in band warping, i.e. in anisotropic surfaces of constant energy,
for the light and heavy hole bands as depicted in Fig. 4.2.



50 Acoustic Phonon Scattering in Low-Dimensional Electron Systems

vk

(010)
A

N D
/TN A

SO

hh

Figure 4.1: Schematic band structure of a Figure 4.2: Surfaces of constant energy
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direct gap III-V compound in the vicinity of for the j = 5 bands.

the zone center. Only the states near the

Fermi energy are presented.

4.1.2 Electronic states of heterostructures — The envelope
function concept

The complexity of the band structure is increased once the symmetry of the bulk
lattice is reduced and we are interested in the electronic properties of a heterojunc-
tion or a quantum well. A heterojunction is formed between two lattice matched
semiconductors with different band gaps while a quantum well is like a sandwich
structure consisting of a thin layer of a semiconductor material between two layers
of another semiconductor. The fabrication of such interfaces which are flat up to
one atomic monolayer became possible with the development of advanced epitaxial
techniques like molecular beam epitaxy or metal-organic chemical vapour deposi-
tion. In a layered structure that is lattice matched there is still the periodicity
of the lattice but with discontinuities in the electron potential, which is set up
by the conduction and valence band discontinuities between the different materi-
als. The approximation of perfect lattice matching is relatively well justified for
GaAs/Al Gay_4As heterostructures where the relative lattice mismatch between
the two host materials is smaller than 0.1%.

There exists a wide range of theoretical methods to calculate the electronic struc-
ture of heterostructures which can be divided into two main classes, the supercell
approaches and the boundary-condition approaches. While in the supercell ap-
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proaches the heterostructure is treated as a bulk material with a very large unit
cell and the eigenfunctions of the hamiltonian are found by conventional band-
structure methods, in the boundary-condition approach the eigenfunctions of the
heterostructure hamiltonian are found by matching the wavefunctions in each of
the constituent materials at the interfaces. We will consider here only a par-
ticularly simple and effective method where the boundary-condition approach is
combined with the k - p theory, usually called the envelope function model. First
BenDaniel and Duke (1966) applied this method in a simple one-band model to the
case of a heterojunction. Later on it was extended by Bastard (1981), White and
Sham (1981) and Ekenberg and Altarelli (1984) to the two-band envelope function
model (mixing between the conduction and light hole bands or between the upper
spin-orbit-split valence bands, respectively) and to the more general multi-band
case (Altarelli, 1983). The envelope function method allows a comprehensive de-
scription of electron and hole states. It masters different geometries of quantum
structures as well as perturbations by external or built-in potentials or strain. Like
all boundary-condition approaches the envelope function method is restricted to
the vicinity of the high symmetry points in the host Brillouin zone, but this is an
adequate assumption for our applications. The method can be obtained by expand-
ing the heterostructure wavefunction ¢ into a complete set of periodic functions
with a period equal to the lattice periodicity or, more precise, by writing ¢ as a
sum of products of rapidly varying zone center Bloch functions u,q(r) and slowly
varying envelope functions &, (r)

Z &,(r) uyo(r (4.8)

In a good approximation the periodic zone center eigenfunctions u,q are similar for
all materials of which the heterostructure is composed. The latter is true because
the constituent crystals are assumed to have a similar electronic structure. If one
considers only states near the zone center, the envelope functions &,(r) will be
slowly varying on an atomic scale and will fulfill the following equation (Burt,

1988a,b)

h? Vi, (r _ih

V& (r) = (B — Eu(2)) &(r) - (4.9)

27nel

Here we have chosen the interfaces between the different materials normal to the z-
direction. The p,, are the matrix elements of momentum with respect to the zone
center Bloch functions (see Eq. (4.6), but neglecting spin-orbit coupling) and E,(z)
is the energy of the v-th zone center state of the material occupying the point z.
Thus E,q(z) changes discontinuously at abrupt interfaces. If we are interested in
eigenstates with energy F much closer to the zone center energy E,o of the p-th
band than to any other zone center energy then for v # pu
ih Py

) B) — Bate) ) (10
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holds to leading order. Substitution of (4.10) in (4.9) gives an effective mass equa-
tion for the envelope function &,(r)

—h—QZ ’ [ L2 f(f)}+E (2) Eulr) = E€u(r) (4.11)
2 Oxo Lm3, 5(2) Oz K KO pAT) T SR :
Oé,ﬂ 22187
According to the definition in (4.5) the factor
L p/wpl/u
= —0up + — 4.12
@) ma ; Eoal?) 412

approximates a position dependent effective mass tensor. Since the lattice con-
stants of the host layers are assumed to be the same, the heterostructure becomes
translational invariant in the zy-plane (parallel to the interfaces). Thus the func-
tions £, (r) can be factorized

€u(r) ~ MM, (2) . (4.13)
Substituting (4.13) into Eq. (4.11) and assuming an isotropic band we obtain a
Schrédinger-like equation for the z-component of the envelope function

2 R?K
(@ g P = Bas) . (@)

1 d‘Pu
be continuous. The latter condition ensures that the particle flux is contmuous
across the interface. In the case where an external potential V'(z), e.g. a band
bending potential arising from charges, slowly varying at the scale of the host unit
cell is superimposed on the heterostructure potential, Eq. (4.14) is modified by the
adjunction of the potential term

<_h_2£ 1L d . K
2 dzmi(z)dz - 2m5(2)

Integration across the interfaces leads to the necessity for ¢, (z) and to

+ V() + Buol2) ) oul2) = Bpu(z) . (4.15)

Considering the assumptions made, the envelope function for a conduction band
can be calculated from (4.14) or (4.15) provided that all the other host bands
are remote for the conduction edge under consideration. This condition works
quite well for the lowest conduction band we are interested in, but usually fails for
hole bands. In the hole case coupling between the conduction and valence bands
occurs and the envelope functions are the solutions of a differential equation system
following with (4.13) from (4.9)

- 9> R 5 r
; { <2Tnel @ + Qmeﬂl + EVO(Z) o E) (sVV/ + m | S <k|| _Zez£> }(,01/(2)

el

(4.16)
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In practice the summation over v’ has to be restricted. In the two-band envelope
function model usually only the lowest conduction and the light hole bands are
considered. In the multi-band envelope function models the heavy hole bands,
partly also the split-off bands or further valence band and conduction band states
are additionally included in the summation over v’. To the extent that the other
host states are far from the edges of the explicitly included bands their effect on
the related envelope functions is neglected or taken into account by a perturbation
mixing to first order in the wavefunctions (for an overview see Smith and Mailhiot,
1990; Bastard, 1992).

In the next subsection we will apply the general formalism derived so far to typical
models of low-dimensional electron systems.

4.1.3 Simple models of confinement
Confinement in modulation-doped heterojunctions

Thanks to the modulation doping technique, which was first applied by Dingle et al.
(1978) to GaAs heterostructures, high mobility 2D electron gases can be realized.
When a selectively n-doped wide gap material ‘B’ (AlyGa;_(As with x typically
between 0.2 and 0.3) and a narrow gap material ‘A’ (GaAs) are brought together,
electrons from the donor levels of Al,Ga;_,As are transferred to the GaAs layer to
create a uniform Fermi energy throughout the sample. Thus a spontaneous and ir-
reversible charge transfer occurs and a band bending takes place due to the dipole
formed between the positive charges (ionized donors) and the negative charges
(electrons). Averaging the donor distribution in the layer plane, the band bending
depends only on the growth direction (z-axis). The resulting self-consistent poten-
tial felt by the electrons has therefore a quasi triangular shape near the interface
and is limited by the conduction band discontinuity at the interface z = 0 and the
z-dependent conduction band edge at z > 0 as schematically displayed in Fig. 4.3.
The consequence is that the electrons in the GaAs layer are confined close to the

E A
conduction band edge

l
|
|
|
|

1 Fermi energy
e s — -—.}-——-——- ———————————
n-doped Iundoped
Al,Ga, , As
— >
0 z

Figure 4.3: Schematic band diagram for a GaAs/Al,Gaj_xAs heterojunction.
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interface and bound states E; with [ = 1,2, ... are formed for the z motion. To
distinguish these electron energy levels from the electron energy levels of the cor-
responding bulk crystal, the energy bands of the confined electrons are known as
subbands. If the energy spacings between the levels Ey — Fy, E3— FEs, ... are much
larger than the thermal or collisional broadenings, the electron motion becomes ef-
fectively two-dimensional. For an electron density of 5 - 10 m~2 the first excited
state E5 of the confining potential is about 50 meV above the bottom of the ground
subband (Stern and Das Sarma, 1984) and the Fermi energy (Er ~ 18 meV) lo-
cates well below F5. By separating the ionized donors in the Al,Ga;_,As from the
interface with a spacer layer as shown in Fig. 4.3, the electron scattering can be
dramatically reduced and very high mobilities of the electron gas are achieved.

Within the framework of the effective mass approximation the envelope wavefunc-
tions for the electrons and the energy levels of the corresponding subbands can be
easily obtained. Starting with Eq. (4.15) for the lowest conduction band (= (c))
we only have to substitute E,(z) by Eé)o + Vi) ©(—2)

RrRd 1 d K,
- + EA Vi O(—2) + =F
< 2 dz mi, (z)dz 2m, (2) (c)0 ©O(=2) V<Z)) () ()

(4.17)
with V) as the conduction band discontinuity at the interface. The position de-
pendent effective mass is now

. fmi i 2>0
mio)(2) = { my if 2<0 (4.18)
where m} = mg,as = 0.067me and mi = My qa,  as = (0.067 + 0.083z)m,
(Zachau et al., 1986). To decouple the electron motion perpendicular and parallel

to the z-axis the factor m*(_c;(z) in the ki-term of (4.17) can be approximated by

a new (parallel) effective mass m; defined by

00 0
1 1 1
= [ dz|e. 2 dz|pe — 4.19
== [l P+ [ dsle P (4.19)
0 —00

The error made by this substitution is of the fourth order in k;, i.e. of the same order
like the nonparabolic corrections to the host conduction bands, and is negligible
for small .

The shape of the electrostatic potential V(z) in (4.17) depends on the presence
of free carriers and ionized impurities. It has to be self-consistently determined
from the Poisson equation

% =—— (Z ey, (2)Pr — Np(2) + NA(z)> , (4.20)

Eolr
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where n; is the areal concentration of the (transferred) electrons in the I-th subband,
Np(z) and Nu(z) are the concentrations of the ionized donors in the barrier-acting
material B and the ionized (residual) acceptors in the well-acting material A, re-
spectively. The z-dependence of Np and N occurs due to the selective doping and
the presence of the heterojunction (charge transfer). Charge balance causes the
condition

i”l 7d2|90<c)l(2)|2= /OdzND(Z)—fdzNA(Z). (4.21)

The self-consistency requirement for the electrostatic potential is a special feature
of energy level and wavefunction calculation in doped heterostructures, which is
absent in undoped ones, where the confining potentials are fixed.

In the region of interest (2 g 0) and for not too high doping the solution of the
Poisson equation (4.20) can be approximated by an expression linear in z

Viz) =7z, (4.22)

where
2

v = 68 {Ndepl + inl@ - /Odz |<p(c)l(z)|2>} (4.23)

€or

—00

(Takada and Uemura, 1977). Here Ngep = [;dz Na(z) is the (2D) density of
charges in the GaAs depletion layer and )", n; = nop is the total electron density
in the 2D channel. As already qualitatively discussed a triangular-like confine-
ment potential for the electrons (see Fig. 4.3) is the consequence of the result for
V(2) (Eq. 4.22) and the band discontinuity at z = 0. The situation is quite sim-
ilar to inversion layers in Si MOSFETs reviewed by Ando et al. (1982), but with
the exception of the barrier height. For the Si/SiO, interface the SiOs barrier is
usually assumed to be infinite which implicates vanishing electron wavefunctions
inside the barrier. However, the discontinuity in the conduction band edges at
GaAs/Al Ga;_,As interfaces (with z < 0.45) is less than 360 meV (Adachi, 1994)
in contrast to approximately 3eV for a Si/SiO; interface (Williams, 1977). There-
fore one has to consider the finite barrier height in the calculations, particularly
for applications, where the confinement length of the (quasi-)2D electrons plays
an important role (as in the case of angle-resolved phonon emission described in
Chapter 6).

With the implementations made above, the equation for the envelope function
(4.17) becomes

K,

2mj

(El — By ) P, (2) =

(— k f—;—l—vz)go(c)l(z) for z>0

P
2my

{ (— ﬁ—?f— + Vi) pey(2) for 2 <0

(4.24)
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valid in the vicinity of z = 0. Its solutions are Airy functions Ai(z) (see, e.g.
Abramowitz and Stegun, 1972) and particularly for the ground substate (I = 1) we
end up with

, 2mpVie) _ mphk?
90(/2)11(2) _ By exp (\/ ~h2 e z> for z <0 (4.25)
Ay Ai(z /5 — k*5?) for z >0
IR L 8

E1 = ElkH = E(C)O + 2 (426)

* x
my  2m]

where 7 = (h?/2m%~)"/3. The constants A, By and k have to be calculated
from the continuity conditions at z = 0 and the normalization condition. At low
temperatures, in almost all practical cases only the lowest electron subband is
occupied in GaAs/Al,Ga;_yAs heterojunctions. Therefore our restriction on the
ground subband is totally adequate. For V() — oo the above solution reduces to
the result obtained by Stern (1972) for an n-type Si inversion layer with infinite
barrier.

It is more convenient and therefore widely used to approximate the ground state
solution by a trial function introduced by Fang and Howard (1966) for Si inversion
layers with infinite barrier

ra, v ) O for z < 0
Pren(2) = { (206%) 12z exp(—2/2b) for z >0 (4.27)

or by a so called modified Fang-Howard function (Ando et al., 1982)

Bl ex mB—%z) for z < 0
pili(z) = TP (V n (4.28)

Al - (2 — 29) exp(—2/2b) for z >0

in the case of finite V(). The constants z,, Aj and Bj follow again from nor-
malization and boundary conditions. In (4.27) and (4.28) b is a trial parameter
chosen to minimize the energy and thus only determined by the electron den-
sity mop in the 2D electron channel and the depletion charge density Ngep. How-
ever, b is also a measure of the spatial extent of |g0(€§(z)|2 and with it of the

characteristic ‘thickness’ (2Az) of the quasi-2D system. It results from (4.27) that

Az = /(22 — ()2 = /3.

For energy levels calculation and many applications the approximation by the
trial functions (4.27) or (4.28) is sufficient, but we have shown (Lehmann and
Jasiukiewicz, 2002, see also Section 6.3.3) that using envelope functions of Fang-
Howard type there are large discrepancies in the results of angle-resolved acoustic
phonon emission calculations. The reason is the much slower decline for large z
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Figure 4.4: Spatial dependence of the squared wavefunction for the Airy and the Fang-
Howard solution. Solid lines for V) = oo, dashed lines for V() = 300 meV.

in the case of Fang-Howard type trial functions compared to the more exact Airy
solution as shown in Fig. 4.4.

A better asymptotic behaviour is obtained by a more adjusted variational wave-
function proposed by Takada and Uemura (1977)

0 for z <0
TU (L) _ ) 4.29
A= Loty tor 220 e

However, this function does not allow simple analytic expressions of the over-
lap integral and the form factor (necessary for calculation of electron-phonon and
electron-electron interaction in low-dimensional systems) and has therefore for our
purpose hardly any practical advantages over the direct solution by Airy functions.

So far we have discussed the envelope functions for a quasi-2D system of elec-
trons formed at the interface of a modulation-doped heterojunction. However, it
is also possible to generate a quasi-2D hole gas if the narrow gap GaAs is joined
with a p-doped Al,Ga;_ As. Now the discontinuity in the valence bands at the
GaAs/Al,Ga;_,As interface and the band bending near the interface cause a 2D
channel for holes. Compared to the electron system important new features ap-
pear. The degeneracy of the valence bands and the electric field near the interface
combine to couple strongly the parallel and perpendicular motion of the holes. As
a consequence of the interaction between the valence bands one has to solve the
coupled differential equations (4.16) with simultaneous addition of the electrostatic
potential V(z) describing the band bending. A possible approach is to approximate
the z-dependent part of the envelope functions for the upper heavy and light hole
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levels by Fang-Howard trial functions

Pany, (2) = (265,) 712z exp(—2/2by,) O(2)
wam,(2) = (26%) 22 exp(—z/201) O(2) (4.30)

as it was used, e.g. by Broido and Sham (1985) in a model where only the upper
four bulk valence bands (light and heavy holes) were taken into account. Due to
the interplay of the spin-orbit coupling and the lack of inversion symmetry at the
interface the resulting subbands exhibit a lifting of the twofold spin degeneracy for
k, # 0. This feature was first demonstrated by Eisenstein et al. (1984) in magne-
totransport measurements. The smaller barrier height of the hole potential at the
interface is a further characteristic in determining the hole envelope functions in
modulation-doped heterojunctions. Only about 35% of the band gap discontinuity
at a GaAs/Al,Ga;_,As interface is in the valence band (Adachi, 1994).

Figs. 4.5 and 4.6 show the result of self-consistent calculations based on the en-
velope function approach of Winkler and Réssler (1993) for two different geometries
of p-type GaAs/Al,Ga;_,As heterojunctions. As already discussed, in both cases
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Figure 4.5: Hole subbands for a (001) Figure 4.6: Hole subbands for a (311)A
GaAs/AlGaAs heterojunction with 2D hole GaAs/AlGaAs heterojunction with 2D
density nop = 3.3- 10" m~2. Solid lines are hole density nop = 1.3 - 10" m~2. Solid

for wavevectors in [100] direction, dashed  lines are for wavevectors in [233] direc-
lines for wavevectors in [110] direction. Dif-  tion, dashed lines for wavevectors in [011]
ferent spin subbands are denoted by ‘4’ and direction. (From Réssler and Winkler,
‘—’. (From Réssler and Winkler, 1997.) 1997.)

the hole sublevels consist of two distinct subbands (‘spin subbands’) with different
effective masses. It is noticeable that both for the (001) and (311) 2D hole system
at least one subband of the second pair (the original light hole bands) bends up as
k, is increased from zero, i.e. these hole bands have electron-like effective masses.
However, it is also apparent, that for the considered (typical) hole densities only
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the top subband pair has filled levels. It has been found that for a (001) 2D hole
system with a total hole density of nsp = 3.8 10 m~2 more than 73% of the holes
are in the uppermost spin subband (Mendez, 1986).

Compared to the (001) hole system the absolute values of the effective masses are
smaller for the (311) heterojunction and, as depicted in Fig. 4.7, the anisotropy of
the subband dispersion is less. All in all, the results of Figs. 4.5-4.7 document that
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Figure 4.7: Constant energy contours for the upper two hole subbands (solid and
dashed lines, respectively). The difference between two solid (dashed) lines corresponds
to 0.5meV. Figure (a) is for the (001) GaAs/AlyGa;_xAs heterojunction described in
Fig. 4.5, figure (b) for the (311)A GaAs/AliGa;_xAs heterojunction of Fig. 4.6. (From
Rossler and Winkler, 1997.)

for not too high carrier densities and for wavevectors k < kg the use of an isotropic
and parabolic approximation for the occupied hole bands seems to be an acceptable
starting point for phonon-drag calculations (as performed in Chapter 5).

Confinement in quantum wells

Now we consider a heterostructure consisting of two heterojunctions. An undoped
GaAs layer ‘A’ of thickness L, is imbedded between two n-doped Al Ga;_ As
layers ‘B’ as shown in Fig. 4.8. For large L, we have the situation of two sepa-
rated single heterojunctions. However, below some critical value of L the neutral
barrier in the center disappears and the free space charges spread over the whole
width of the GaAs layer. Assuming a homogenous distribution of the transferred
electrons the band bending caused by the transferred electrons can be qualitatively
estimated. The corresponding electrostatic potential V' (z) follows from the Poisson
equation with nop/La as the averaged electron density in layer A

V(s)— V(0) = —_© 2D > 4.31
(Z) ()_ 2808 LAZ * ( )

Therefore the amplitude of the bending potential [V (0) — V(£2)| is proportional
to the width L4 of the A layer. For small enough L, the amplitude decreases and
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n-doped AlGaAs GaAs n-doped AlGaAs

_/ LEC(Z)

+ ++
L i ————F-t-g-0—0-F_

g

42 0 Ly z

Figure 4.8: Schematic band diagram of a modulation-doped quantum well.

the band bending can be neglected or treated only as a small perturbation of the
undoped quantum well. As a consequence a nearly perpendicular potential well
exists for the conduction band with a depth corresponding to the conduction band
discontinuity V(¢ at the interface. A similar well but with different (smaller) band
discontinuity exists for the valence band.

Thus Eq. (4.15) for the envelope function of the conduction band (i.e. u = (c))
takes the form

B2d 1 d R Ly
(St a e + Ebe oo =5 Jeute) = ool
(4.32)
with | | L
c oy Joma i e <%
Mig(2) = { my i |z > B (433

Except for the fact that the effective masses mj and mj may be different or
negative, Eq. (4.32) at k; = 0 is identical to the quantum mechanics textbook case
of a particle confined in a 1D square well with finite barrier height. In our case
My = Maps a0 Mp = My, as are positive, but slightly different. Because of
the inversion symmetry around the midplane of the well, the wave functions have
either even or odd parity, and so the bound state solutions are given by

Acos(kaz) if |z|] < La/2
D) (2) = { Ber@U==Lal?) if 2] > Ly /2 (4.34)
" (k2) 2] < La/
Asin(kaz if |z| < La/2
with 2 F2,2 2
h’k? R Ky N
E-Ely=5—2+52=Vg— 52+ (4.36)
2my - 2mi 2my - 2mg
The continuity conditions at the interfaces yield
kaL o) M kaL k .
tan <M) SO . tan( A A) — A Ts ; (4.37)
2 kA mE 2 /i(c) mj;
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respectively, whose roots are the bound state solutions of the quantum well prob-
lem. In general, there is no analytical solution for the problem except of the limiting
case where V) is infinite and hence mf becomes irrelevant. In this case the carriers
are completely confined inside the well and

2 { cos(Imz/La) [=1,3,5,...

v (2) = ¢@,(2) = (4.38)

La | sin(lmz/Ly) [ =2,4,6,... °
where [ denotes again the subband levels. The corresponding energy eigenvalues
are
R 2x? Bk

2my LA 2m}
These subband energies are usually considerably different from those of a finitely
deep well. However, in many applications the solutions for the envelope function
(4.38) describing the confinement of the electrons in an infinitely deep well are
sufficiently accurate for the finite barrier case as well. For higher precision one has
to solve numerically the equation

m 2wy Py iy [t () even
mp h2k% © 2m’ my’ 2mi/ | —cot kaLy o odd PO
(4.40)
in order to obtain ku; (I numerates the different solutions) and with it via (4.34-
4.37) also the envelope functions ¢(.,(2) and the energy eigenvalues Ly . Note,
that the confining potential V(. of the well is reduced in Eq. (4.40) by the effective

B = Ejgo + (4.39)

R?k3
mass mismatch by an amount of T“(mL — T; ), which depends on the electron
A B

motion perpendicular to the well growth direction. Therefore, the solutions of
(4.40) are kj-dependent and with them the envelope functions ¢, as well. A
similar approximation as for the heterojunction, see Eq. (4.19), can be made to
decouple parallel and perpendicular electron motion in the quantum well. For
small quantization energies and small kinetic energies of the electrons (compared
to the fundamental gap) the position dependent effective mass mZ‘C)(z) in the in-

2R
% of (4.32) can be replaced by an averaged effective

plane dispersion term B,

in-plane mass m; with

11 T 9 T
=—|1—-2 [d 2 d 2 4.41
. /Z\sO(CN(Z)I +m*B/Z’<P(c)l(Z')\ (4.41)
LA/2 LA/2

Then Eq. (4.32) simplifies to

Ly A K,
-2+ = _ A (B - A _
2 dz m*c)(z) dz + V(C)@(M 2 ))(’D(C)l(2> ( ! (c)0 omy 90(0)1(2)
(4.42)
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and the resulting equation corresponding to (4.40) becomes independent of k. In
this way ka; and the envelope functions ¢(),(z) will be equivalent to the k; = 0
solutions of Eq. (4.32) and the energy eigenstates are

Rk, | K]
2my  2m;

E = Ey, = Efyo + (4.43)
Zheng Yisong et al. (1997) have discussed in detail the influence of the finite barrier
height and the effective mass mismatch on the electron-acoustic phonon scattering
rate for GaAs/Aly3Gag7As quantum wells. Particularly for narrow well widths
below 10 nm the scattering rate calculated within the model of an infinitely high
potential well is highly overestimated. On the other hand the effective mass mis-
match has a significant effect only for higher electron energies. For narrow quantum

wells additional corrections due to the conduction band nonparabolicity are impor-
tant (Ekenberg, 1989).

Just like in the case of modulation-doped heterojunctions, the states for holes
in quantum wells are much more complex than in the electron case. The set of
functions which diagonalize the bulk k - p Hamiltonian is not a basis set for the
quantum well potential symmetry. Strong mixing of the j = % states with m; = :I:%
and m; = i% is required to satisfy the boundary conditions at the interfaces. Thus,
to deduce the valence band structure in a quantum well, one has once again to solve
the differential equation system (4.16) numerically. In Fig. 4.9 the result of such a
calculation is displayed for a GaAs/Aly3GagrAs quantum well. The reduced sym-
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Figure 4.9:  In-plane dispersion relations of valence subbands for a (100)
GaAs/Alg3Gag7As quantum well of 100 A width (solid lines). Dashed lines correspond
to a diagonal approximation, when coupling is neglected. (From Bastard, 1992.)

metry lifts the degeneracy between the light and heavy hole bulk states for k = 0.
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Then the k- p interaction term causes even in a simple-minded successive perturba-
tion theory (considering only the diagonal terms) a mass reversal of the m; = :i:%
and m; = j:% states as exposed by the dashed lines in Fig. 4.9. The bulk heavy
hole band (m; = +2) has now a light in-plane mass (and a heavy mass along the
z-direction), whereas the light hole band (m; = £3) now has a heavy in-plane mass
(and a light mass in z-direction). Therefore the labelling arising from the original
light hole (lh,) and heavy hole bulk bands (hh,,) is only symbolic. The mass re-
versal effect causes hh; to cross lh;, as the k; = 0 lh; state is below the k; = 0 hh;
state. The coupling via the k/-dependent off-diagonal terms replaces this crossing
by anticrossing. The mixing between the k = 0 levels is very strong, resulting
in highly nonparabolic subband dispersions (solid lines in Fig. 4.9). Due to the
coupling between lh; and hhy (and other states of lower energies) this fact becomes
most apparent in the electron-like behaviour of the lh; subband near k; = 0. Fig-
ure 4.10 shows the considerable differences in the hole band structure of quantum
wells with different orientations (growth directions) as obtained by Houng et al.
(1988). For the (001) and (111) quantum wells the in-plane dispersions are nearly
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Figure 4.10: Calculated valence subbands for a GaAs/Aly3Gag7As quantum well of
width Ly = 85 A for three different growth directions. (From Houng et al., 1988.)

spherically symmetric (in contrast to the (110) quantum well). We see that the
effective hole masses and the spacing between the subbands strongly depend on the
orientation of the quantum well as it was also verified by the calculations of Meney
(1992). For a (311) GaAs/Al,Ga;_As quantum well the uppermost hole state
is again nearly isotropic, but lower hole subbands exhibit significant anisotropy
(Valadares, 1992; Hayden et al., 1994).
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Confinement in quantum wires

If a lateral confinement is added to a 2D electron system, the electronic states are
quantized in two directions and the carrier transport is one-dimensional. Following
a suggestion of Sakaki (1980) such (quasi-)1D carrier systems in GaAs heterostruc-
tures were first studied by Petroff et al. (1982). In practice, the 1D systems are
realized with the help of electron beam lithography forming patterned gates on
the top of a sample with a 2D electron gas. If one puts a negative voltage on
parallel gates, the electrons are repelled from the regions directly under the gates
to the regions between them. And, if the potential is large enough, the 2D electron
gas breaks up into independent strips with quasi-1D behaviour. A self-consistent
modelling of the electrostatic fields in these so called quantum wires is complicated
and the exact shape is hardly known. Therefore simpler analytic models have been
invoked to explain the experimental data. Because the electrons move freely (in
the effective mass sense) only in one direction (here in the y-direction) and are
confined in the other two, the following ansatz for the electron envelope function
is made

£(r) ~ eMp(z) ¢(a) . (4.44)

This particular choice results in a complete separation of the electron motion in
the three spatial directions and seems to be a fairly good approximation (Lai and
Das Sarma, 1986; Bastard et al., 1991) for the systems of interest to us.! For the
z-direction, solutions of the modulation-doped heterojunction (4.25,4.27) or of the
quantum well (4.38) are used, depending on the system which serves as the 2D ba-
sis. The potential confining the electrons in x-direction can be approximated either
by a ‘particle-in-a-box’ rectangular well (Wheeler et al., 1982) or by a ‘harmonic-
oscillator-like” parabolic well. Detailed self-consistent numerical results by Laux
et al. (1988), as displayed in Fig. 4.11, show that the actual confining potential
is somewhat in between. In respect of uncertainties in the experimental geometry
and in the diverse parameters entering the theory, both models are a reasonable
approximation to real quasi-1D systems and offer the demanded analytical simplic-
ity. Thus the function ¢(x) is given in the first case by harmonic wave functions
restricted to the confined region of —w < x < w

1 { cos(nmz/2w) n=13.5,... (4.45)

$(@) = fnlz) = w | sin(nmz/2w) n=2,4,6,...
For the case of a parabolic confinement potential in z-direction, namely V(x)

2’;1”—2*5—1, with a characteristic channel ‘width’ of the order of 2w, the function ¢(z)

'Due to the usually narrower well width in the growth direction (2) than in the lateral di-
rection (z), the energy spacing between different z-sublevels is large compared to the lateral
confinement energies. In this case, the separation of the carrier motion in z-direction from the
lateral motion should be a reasonable approximation.
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Figure 4.11: Self-consistent potential profile in a line at 5.6 nm below a GaAs/AlGaAs
heterojunction across a quasi-1D channel defined in a 2D electron gas by a gate separation
of 400 nm with different biases applied to the gates. (From Laux et al., 1988.)

is equal to the oscillator eigenfunctions

1 2 2
= — - /2 j—
o(z) = pu(z) = \/7T1/2(7’L i e e T Hy o (x/w) n=1,2,3,....
(4.46)
Here, H, (z) denotes the Hermite polynomials
H,(z) = (—1)ne™ 0 e=s? (4.47)
S dan ' '
The one-electron energy is
2/{32
By = Ee E+FE,+—, 4.48
Ink (c)o T Lo + + o ( )
where E; and FE,, are the appropriate solutions for the bound state energy levels in
the z- and z-direction, respectively. For the square well potential it is £, = %%
and for the parabolic well E, = 275 _ 22}51. Due to the fact that the well width in

the growth direction (z) is typically narrower than in the lateral direction (x), the
energy spacing AFE; between different z-sublevels is large compared to the lateral
confinement energies F,,. Therefore, relating to the confinement in z-direction only
the lowest substate is occupied, whereas due to the confinement in z-direction sev-
eral subbands may be occupied simultaneously.
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4.2 The electron-acoustic phonon scattering

In this section we discuss the scattering between low dimensionality confined elec-
trons and acoustic bulk phonons. In using the bulk phonons we neglect all confine-
ment effects on the phonons like the modification of the extended acoustic modes
due to the presence of interfaces or the existence of confined and interface acoustic
modes (Wendler and Grigoryan, 1988; Nishiguchi, 1994, 1995; Stroscio and Dutta,
2001). This approach is approved by the large ratio of electron and phonon con-
finement energies, which scales like the ratio of the ion and electron mass. The
derived results are mostly not very different from that of calculations including
confined acoustic and interface acoustic phonon modes (see, e.g. Das Sarma et al.,
1992, and references therein). Confined phonon modes play a quantitative role
only for confinement lengths less than 5nm. Interface phonon contributions are
not significant unless the well width is below 3nm. The reason for the latter fact
is that the electron wavefunction is usually very small at the interface where the
interface phonon amplitude peaks.

Two principal mechanisms account for electron-acoustic phonon interaction in GaAs:
deformation potential scattering, and piezoelectric scattering. Both interaction
mechanisms will be discussed in the following subsections. In addition we will
shortly review the so called macroscopic deformation coupling or ripple mechanism,
intrinsic for systems with interfaces but significant only for small-size nanostruc-
tures.

4.2.1 Deformation potential scattering

The deformation potential (DP) theorem of Bardeen and Shockley (1950) states
for long-wavelength acoustic modes, that the electron-phonon interaction potential
can be taken as

A > O . (4.49)
¥

where Sy, is the strain tensor defined in Eq. (3.3) and 6y, is the so called deforma-
tion potential tensor. The fundamentals of the deformation potential method are as
follows: When an elastic wave propagates in a crystal the elementary cells change
their volume or, more general, are deformed. Thus the position of the electron
bands is shifted because of its dependence on the lattice constants. Since in semi-
conductors the electron states of interest are usually those near a band extremum
this variation of electron band bottom is just the interaction energy between an
electron and an acoustic phonon. Its value must be related to the local displacement
u(r) in the crystal and/or its derivatives. Since for long-wave acoustic oscillations
neighbouring atoms or unit cells move by almost the same amount, the interaction
energy cannot be proportional to the displacement itself. Therefore, in lowest or-
der only the differential displacement, namely the strain S, is of importance. In
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general, the deformation potential tensor ©; has 6 independent components since
Sk is symmetrical and O must have the same property. For cubic crystals this
number reduces to three independent components. If the extremum of the band is
in the Brillouin zone center (like for the lowest conduction band in GaAs), Oy is
simply a scalar

O = 01Oq (4.50)
and relates to pure dilatation. Then
Veﬁ?ﬁﬁl =04V -u(r) (4.51)

and a shear deformation that does not alter the relative change in volume (V - u)
sets up no deformation potential. In spite of a large number of calculations and
measurements there is no absolutely reliable numerical value for the parameter ©g.
Its value for GaAs varies from —6 to —18 eV (Adachi, 1994), but the most probable
value should be between —7 and —11eV.

When u(r) is expanded into terms of travelling plane waves, see Eq. (3.11), it is

. h 2 iqr —iqr
V10X (o) e (hase )
a\ aAre

O e (b1, s
q,\

where we have introduced the notations

FL 1

hy =i 6a( ) Vi (eanr- ) (4.53)

20Vecq
and q = q/q. Note, that the appearance of the scalar product between the polar-
ization vector eq  and the direction of the phonon wavevector q does not mean
that only longitudinal acoustic phonons interact with electrons via deformation
potential scattering. The opposite statement, found in many textbooks and pa-
pers about electron-phonon coupling in semiconductors, is true only for phonon
wavevectors in direction of high crystal symmetry, where the polarization vector of
the transverse phonon modes is really perpendicular to q.

In the case of the degenerate valence bands, uniaxial strains tend to remove the
degeneracy. According to Bir and Pikus (1960, 1972) the deformation potential
scattering of holes with acoustic phonons is described by three deformation po-
tentials a, b and d. The constant a is associated with pure dilatation produced
by hydrostatic pressure and describes the shift of the band edge, whereas b and d
give the splitting of the heavy and light hole bands at k = 0 due to uniaxial shear
strains in the (100) and (111) directions, respectively. Lawaetz (1968) has shown
that within the scope of an isotropic phonon model (as discussed in Section 4.2.4)
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an approximate description by a single effective deformation potential GO.¢ can at
least fit some details of the hole-acoustic phonon interaction with sufficient accu-
racy. For GaAs, this value of O is reported as 6.7eV (Adachi, 1994).

4.2.2 Piezoelectric coupling

In polar crystals the vibrations of oppositely charged ions induce long range macro-
scopic fields and the interaction of the electrons with these fields produces con-
tributions to the electron-phonon scattering. First order polarization occurs in
connection with the contrary displacement of two atoms in the primitive cell.
This electron-optical phonon interaction is known as Frohlich interaction (Froh-
lich, 1937) and is the dominant scattering mechanism of pure I1I-V semiconductors
at room temperature. In polar crystals with no inversion symmetry there exists
still an additional, second order polarization proportional to acoustic strain. The
resulting scattering mechanism, the piezoelectric (PE) electron-acoustic phonon in-
teraction was first investigated by Meijer and Polder (1953) and is very important
in the low temperature range, in which we are interested.

In the presence of the piezoelectric effect the components of the polarization vec-
tor P are given by

by = Z ok Bx + Z B, 1Sk (4.54)
k Kl

where E is the electric field, li?k is the polarizability tensor, and (3; 1; is the piezo-
electric tensor. Consequently the components of the electric displacement D are

Dj = Z 80/€jkEk + Z ﬁj7 K15k (455)
k k,l

with kj, = 1—1—&% as the dielectric permittivity tensor. On the other hand, V-D = p
and E = —V, where p is the free charge density and ¢ the electrostatic potential.
Thus we derive the equation

82@ OSh
Zfoﬁjkm - Zﬁj, kl (9—% =0, (4-56)
Jk k.l

VELD)

from which we can find the electrostatic potential ¢ and finally the interaction

potential Ve(ififl = —le| ¢. Assuming bare lattice polarization (¢ = 0) and inserting

(3.11) into (3.3) we get from Eq. (4.56) the relation

0% h 5 . .
cakip ————— = — e — b, e'dr + b+ eilqr> . ex .
Ejk: - qEA: <2qu’AVC) (q,A @A >~ B xi(€q)igka;

7.kl
(4.57)
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This equation can be solved by expanding ¢ into a Fourier series and we obtain

h 3 Z-Mﬂj kl (eqx)l%% -
v = —1el > ( e U (bgr + b ,) . (458
N e d B s LSO

For cubic crystals of zinc-blende type the dielectric permittivity tensor is a scalar
Kjk = &0k, while the piezoelectric tensor has only one independent constant:
By, wz = Bz oy = Bu, y-(= Pra in reduced notation) and 3; j; = 0 if only two in-
dices coincide. Thus the piezoelectric electron-phonon interaction potential can be
written in the form

FL %2|6|ﬁ14 .
i = =Y ( ) 9 (b + b

« QLqu(eq,)\)z + Qsz(eq,/\)x + qz4z (eq,k)y
2

q
= YR e (b + b, (4.59)

QA

with

(4.60)

h >% QzQy<eq,A)z + (jy(jz(eq,)\)z + (ijjz (eq,x)y
QA .

20Vecq V4

The value of the constant hiy = —[f14/c0e; ranges for GaAs between 1.4 and
1.6 - 10° V/m taking (14 = —0.16 C/m? (Adachi, 1994).
The above equations show that even with the symmetry properties of the piezo-

electric tensor the interaction potential remains highly anisotropic (for details see
Section 4.2.4).

n = 2lelhua

4.2.3 Macroscopic deformation coupling

Vasko and Mitin (1995) and Knipp and Reinecke (1995a,b) have shown that there
is an additional coupling mechanism between electrons and acoustic phonons in
semiconductor heterostructures. Contrary to the mechanisms discussed before, it
is intrinsic to systems that have interfaces. Both longitudinal and transverse acous-
tic phonons induce vibrations of the heterointerfaces and thereby time variations
of the confining potential of the electrons. Perturbations of the electron wavefunc-
tions are the consequence. Therefore, the associated interaction between electrons
and acoustic phonons is due to macroscopic deformations of the nanostructure and
does not depend on the microscopic deformation potential tensor (as in the case
of the ordinary deformation potential interaction described in Section 4.2.1). It is
called macroscopic deformation acoustic coupling or following Knipp and Reinecke
(1995b) also ripple (RI) mechanism. The latter is in analogy to the inelastic scat-
tering of photons or electrons from a vibrating free surface (Marvin et al., 1980, and
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Martin et al., 1988, respectively), but now we have to deal with buried interfaces.

Let V(r) be the potential governing the envelope functions of the electronic state.
Then the ripple potential is
Al

el

o= V() = Vi) = u(r) - VV(r) (4.61)

If we assume a nanostructure of material ‘A’ embedded in material ‘B’ and take
the potential in the conduction band to be higher in material ‘B’ and if we assume
a piecewise uniform potential V(r) (cf. Eq. (4.42) for the example of a quantum
well), it holds

VV(r) =V /dzrs d(r —rg) Ny . (4.62)

5

Here S is the interface between the inner and outer material, ry is a position on
this interface, ng is the outwardly pointing surface normal, and V() is the potential
barrier between the inner and outside media for the conduction band. Using in a
first approximation the bulklike expression for the displacement operator u(r) we

obtain the operator of the ripple electron-phonon interaction in a form similar to
(4.52) and (4.59)

RI RI) iar
V;e(l—p)h = Z hﬂm) e (bq,/\ + bfq7,\) (4.63)
q,A\
with " ) A
RRD _ Vie (—)5 /d27"s O(r — rq B Can . 4.64
q,\ (c) 2@‘/(3061,)\ ( ) \/a ( )

The J-function in (4.64) makes sure that, in the corresponding electron-phonon
matrix elements, the integral over the electron wavefunctions is restricted to the
interfaces.

Following Knipp and Reinecke (1995a), there exists still another term contribut-
ing to the ripple interaction which is connected with the spatial dependence of the
effective mass. Variations of the effective mass caused by vibrations of the inter-
faces induce changes of the kinetic term in the envelope function equation (see,
e.g. Eq. (4.42)) and therefore account for modulations of the electron quantization
energy. The resulting electron-phonon interaction potential is proportional to the
difference of the effective masses on both sides of the interface and leads to matrix
elements which contain the derivatives of the electron envelope functions taken ex-
clusively at the position of the interfaces.

Normally the ripple interaction is weak compared to ordinary deformation potential
or piezoelectric coupling. A very rough estimation shows that for a quantum well
of thickness L, the relative strength of ripple and deformation potential is of the
order of V()/©qqLa and for ripple and piezoelectric potential of Vcy/|e|hi4La, re-
spectively. Therefore, this additional mechanism gives relevant contributions only
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for very narrow quantum wells. The fact that it is significant for small size nanos-
tructures can also be qualitatively understood in a way that, for narrow quantum
wells, the position of the energy levels is more affected by the change in the well
width than by a change in the band gap. Recent results of Alcalde et al. (2000) for
quantum dots and of Nishiguchi (2002) for quantum wires, including also the effect
of confinement on the phonon modes, have supported the qualitative predictions
made by the assumption of pure bulk phonon modes. Both calculations demon-
strate that the ripple mechanism should be considered for dot radii or lateral wire
dimensions typically less than 3 nm.

4.2.4 The influence of acoustic anisotropy

As shown in Figs. 4.12(d-f) piezoelectric electron-phonon coupling has a compli-
cated directional dependence. The interaction disappears both for longitudinal and
transverse phonons travelling along a principal crystal axis. Only TA phonons in-
teract when the phonon direction lies in a cube face (e.g.: ¢, #0, ¢, # 0, ¢ = 0)
whereas only LA phonons couple for phonon wavevectors along a cube diagonal
(qgc =(qy = Qz)-

The exact determination of the wavevector and polarization dependence of the
electron-phonon coupling coefficients for the piezoelectric interaction (4.60) is diffi-
cult and requires the knowledge of the polarization vector eq ) for each phonon
mode g, A (the same also holds for the deformation potential interaction, see
Eq. (4.53)). Therefore, most of the calculations have involved only averaging over
direction. Meijer and Polder (1953) simply took an average of the phonons prop-
agating in (100), (110) and (111) directions, whereas Hutson (1961) and, more
general, Zook (1964) calculated a spherical average of h((ff ) over the longitudinal
and the combined transverse (STA + FTA) phonon modes. To date, the most
frequently applied method in calculation of the electron-acoustic phonon coupling
is an approximation which disregards the acoustic anisotropy of the phonons. If
the elastic anisotropy of the crystal is only small, the polarization vector of the
three normal modes will lie approximately along the axes of the phonon coordinate

system
s | |la forLA

Car = { 1q forTA ° (4.65)
In this case the (squared) coupling coefficients of Eq. (4.60) reduce to
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(0.012)
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Figure 4.12: (a)-(c) Angular dependence of the function [62’; q] for the deformation
q,A
potential coupling in a zinc-blende type crystal. (d)—(f) Angular dependence of the
dody(eq,2)z+dyd-(eq,))o+dodz(egq,0)y
Cq,\

2
function [ for the piezoelectric coupling. The edges of
q,
each cube are parallel to the fourfold axes of the cubic symmetry. The numbers in brackets
are the relative linear dimensions of the respective cube. Plots (a,d) are for LA, (b,e) for

STA and (c,f) for FTA phonons. (From Jasiukiewicz, 1998.)

for transverse phonons (Zook, 1964). Also the (squared) coupling coefficients for the
deformation potential coupling (Eq. (4.53)) simplify in this isotropic approzimation

. 2 1 for LA
[h(DP_IS)]Q . h (@d) { (468)

@ ~ 20Vecga | 0 for STA, FTA

It is quite obvious by (4.68) that no deformation potential coupling occurs for
transverse phonons within the acoustic isotropic approximation.

The above isotropic approximation for the coupling coefficients (formulae (4.66)—
(4.68)) is reasonable as long as we are interested in quantities containing a sum over
phonons with many different propagation directions (as it is the case in transport
measurements). Nevertheless, it is used in most of the calculations performed for
phonon emission or drag. However, even a glance at Fig. 4.12 presenting the plot of
the anisotropic coupling coefficients documents the shortcomings of the isotropic
approximation. Not only the complete neglect of deformation potential coupled
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TA phonons but also the smearing out of the characteristic angular dependence
of the piezoelectric interaction lead to wrong results and interpretations. An ex-
tensive discussion of this fact is given for the case of acoustic phonon emission in
Section 6.3.2.

4.2.5 Electron-phonon interaction and electron confinement

Having determined the coupling coefficients it is now advisable to write the electron-
phonon interaction of the many-particle electron system in second quantized form.
For this purpose we introduce electron field operators ¥ (r) and obtain

Hepn = /d37“ @EJ“(r)V'el_ph(r)ﬂ}(r)
= Z/d?’r V() Varph (1)t (v) e car - (4.69)

In the second step of (4.69) the electron field operator has been expanded into terms
of a single-electron basis 1, (1), ie. h(r) = Yo Yalr) co, with ¢,, ¢} as electron
annihilation and creation operators. Following the arguments of Section 4.1.2 the
wavefunction ¢, (r) for a heterostructure is presented as a sum of products of

slowly varying envelope functions f,ga)(r) and rapidly varying zone center Bloch
functions u%) (r). For the interesting case of large phonon wavelengths the variation
in the disturbance potential Vi_p,(r) is very small within one elementary cell and
the integral over the volume V' of the whole electron system can be written in the

form (see, e.g. Askerov, 1994)

/df‘wz(r)v;l_ph(rmf(r)

14

%Z/d?’r (E2(1))" Var—pn(r) ¢ (r) Qio /dgr' (u%) (r'))*ul(ffg(r’) :
v,v’ v

Qo

where € is the elementary cell volume. Approximation (4.70) is based on the fact
that when expanding v}, (r)u,o(r) as a Fourier series over reciprocal lattice vectors
G, only the term with G = 0 will give a significant contribution to the integral
over V. All allowed nonzero values of G are much larger than the typical values of
carrier and phonon wavevectors.

Thus in a one-band model valid mainly for electron-phonon scattering in the
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conduction band only the overlap integral over the envelope functions remains and

Hepn =~ Z/dg Vel—pn(r )f( ( )C Co/

OZOé 4

= 2 halbar £, 2 / dr (£(r)) e () ¢ cor
aA a,a! v

= ) haalbar + b7 )p—a .
q,A

As the envelope function £(®)(r) is identical to the wavefunction of an (ideal) quasi
low-dimensional electron gas, the operator

Z:/d3 femiare@)(r) ¢ty (4.72)

aaV

introduced in (4.71) is equal to the Fourier transform of the density operator
of a quasi low-dimensional electron gas. For a quasi-2D electron system in a
modulation-doped heterojunction or quantum well the envelope function is £(®)(r) ~
e®iTlg(2) with o = {l,k;,0} and ¢;(z) as the solution of the respective 1D
Schrodinger equation for the given confinement potential (Eq. (4.24) and Eq. (4.42),
respectively). Therefore it holds

=> Gulg chku ay o Clkjo > (4.73)

w k|0

where
Gurla) = [z (e () (@.74

is the so called overlap integral. Thus the information about the influence of elec-
tron confinement on the electron interaction with bulk acoustic phonons is com-
prised in the electron density operator or, more precise, in the particular form of
the corresponding overlap integral. For typical 1D and 2D confinement potentials
in GaAs/Al,Ga;_xAs heterostructures the overlap integral is determined in Ap-
pendix C.

The electron-phonon interaction operator in the form of Eq. (4.71) was derived
for the single-band case. For a confined hole system a mixing between different
valence states usually occurs as it was described in the Sections 4.1.2 and 4.1.3. A
detailed study of electron-hole coupling requires therefore the application of multi-
band models. Corresponding matrix elements have been calculated on the basis
of a four-band k - p scheme by Kelsall et al. (1990) for the case of a GaAs/AlAs
quantum well.



Chapter 5

Phonon Induced Electric Current

Now we apply our theoretical concepts of phonon pulse propagation and electron-
phonon interaction in low-dimensional systems to a typical experiment of phonon
spectroscopy: phonon-drag imaging. In this case, the low-dimensional electrons act
as a detector of the phonon quasimomentum flux. We develop a many-body theory
for the electric current induced by nonequilibrium phonons in quasi-2D and 1D
electron systems, valid also in nonzero magnetic fields. On this basis and using
explicitly the results of the phonon focusing calculations of Chapter 3 we then study
the phonon induced current as a function of the detector position and the phonon
source characteristics. The chapter concludes with detailed analyses of the influence
of carrier confinement and acoustic anisotropy on the drag images. These give
insights into the properties of low-dimensional electron systems and their coupling
to acoustic phonons.

5.1 Basic features and experimental setup

In a system consisting of two subsystems of interacting (quasi-)particles, a di-
rected flow of particles in one of the subsystems may excite by momentum transfer
a directed flow in the other subsystem. This process, when it happens between
phonons and electrons is called electron-phonon drag and was first predicted by
Gurevich (1946). Since this time, various manifestations of the effect have been
studied both theoretically and experimentally, but for many years the interest was
concentrated on the influence on heat transfer (for a review, see Gurevich and
Mashkevich, 1989). By the middle of the eighties it was even the common opinion
that the electron-phonon drag, while playing an important part in heat transfer, is
negligible in electron transport. Later this belief was vitiated both by new system-
atic theoretical studies of electron-phonon drag (Gurevich and Mashkevich, 1989)
and new thermoelectric power measurements. Fletcher et al. (1988) and Ruf et al.
(1988) showed the dominance of the phonon-drag contribution over the electron
diffusion contribution to the thermopower in heterojunctions and MOSFETs at
liquid helium temperatures. For a review of theoretical approaches to the phonon
drag in the context of thermopower of low-dimensional semiconductor structures
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see Smith and Butcher (1990) and Butcher (1993). In contrast to the situation
in thermopower measurements we are interested in the induction of a voltage or
electric current by direct momentum transfer from ballistic phonon pulses. This is
known as the phonon-drag effect and was for the case of low-dimensional electron
systems first demonstrated in the experiments of Karl et al. (1988). Spatially and
frequency resolved measurements of this effect allow in combination with numerical
calculations a very detailed insight in the electronic properties of low-dimensional
systems and their interaction with phonons (Jasiukiewicz et al., 1992; Lehmann
et al., 1996). A typical experimental setup for making phonon-drag measurements

signal out fo gated
infegrator
low impedance
preamplifier

detector

2 mm GaAs substrate v

CUNi fim Source

lens

pulsed laser beam

Figure 5.1: Schematic view of a phonon-drag experiment. Nonequilibrium acoustic
phonons are generated on the bottom of the crystal, e.g. by thermalizing a laser pulse
in a metal film deposited on the GaAs surface. The phonons absorbed by the narrow
bridge in the center of the detector (2D electron or hole gas) cause a phonon-drag signal
if they have a momentum component in direction of the bridge (here the n-direction). The
induced phonon-drag current is mapped as a function of the laser spot position. (From
Garicza et al., 1996.)

is shown in Fig. 5.1. A 2D electron or hole gas formed in a GaAs/Al,Ga;_4As het-
erostructure is prepared on one side of a nominally undoped semi-insulating GaAs
crystal. On the opposite side of the crystal pulses of nonequilibrium phonons with
a typical pulse length of a few tens of nanoseconds are generated. This is real-
ized by heating a small region of a deposited metal film with a focused pulsed
laser beam. By scanning the laser over the surface of the film, the phonon-drag
signal is detected as a function of the laser position and a two-dimensional map
(image) of the phonon-drag effect can be built up. The experimental arrangement
of this phonon-drag imaging method is quite similar to the phonon imaging tech-
nique described in Section 2.2.2. Karl et al. used in their pioneering experiment
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monochromatic phonon pulses (for the resulting drag image see Fig. 2.8(b) of Chap-
ter 2). Instead of a metal film in the normal state, a superconducting Al film with
T, near 2K was adopted. Therefore the spectrum of emitted phonons consisted
mainly of frequencies around the gap frequency 2A/h (see Appendix A.1). The
application of tunable superconducting tunnel junctions as the phonon source is an
other possibility (Lega et al., 1990). In this case the phonon-drag effect is studied
as a function of phonon frequency for a (finite) number of phonon propagation
directions (depending on the position of the tunnel junctions). Common to all
experiments is that they are carried out at liquid He temperatures, i.e. at tem-
peratures much lower than the Debye temperature. In a very simplistic view the
generated nonequilibrium phonons travel ballistically through the crystal and when
they are incident on the area of the 2D electron system they are partially absorbed
by the electrons. This electron-phonon interaction leads to a transfer of phonon
energy and momentum to the electrons. In a next step the excited electrons trans-
fer their gained momentum and energy due to electron-electron interaction within
a time of a few hundred femtoseconds to all of the electrons of the low-dimensional
system. As a consequence, the momentum distribution function is shifted in the
direction of the incoming phonons and a current will flow until an opposing electric
field is established. Both, the current or the corresponding electric field can be
measured. Both methods produce qualitatively the same results.

Following our explanations made above, the phonon-drag images can be generally
interpreted as a convolution of phonon focusing images (describing the magnitude
of the incoming phonon signal) and the probability that a current will be induced
by these phonons. The calculation of the incoming phonon flux was the main topic
of Chapter 3. Therefore we turn our attention now to the question of phonon-drag
calculation assuming that the phonon distribution is known.

5.2 Theoretical model of phonon drag

In the following we will present a theory, where the phonon-drag current will be
naturally described by the motion of the center of mass of all electrons (Lehmann
et al., 1997a). The method is based on the quantum Langevin equation approach to
the quantum transport of interacting systems of electrons, impurities and phonons
as proposed by Ting and Nee (1986) and Hu and O’Connell (1987). However,
we adopt this formalism to a different problem. First of all we apply it to quas:
low-dimensional electron systems. The fundamental difference is, however, the fact
that in our case, the nonfrictional part of the forces due to the phonons does not
disappear after averaging. Furthermore we use a much more straightforward for-
mulation based on the advantages of the technique of Mori products. In this way
and contrary to former theoretical approaches to phonon drag at zero magnetic
field (Jasiukiewicz et al., 1992; Lehmann, 1994) and with magnetic field (Falko
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and Tordanskii, 1992; Dietzel et al., 1993; Gancza et al., 1996) screening and con-
finement problems are easier to handle, the basic equations are independent of the
dimension of the system and last but not least the underlying physics is more clear.

To describe the motion of the center of mass we consider an electron system of den-
sity ne, containing N, electrons with effective mass m*, interacting with phonons
and impurities in the presence of a homogeneous and constant magnetic field. The
corresponding Hamiltonian in the center-of-mass and relative coordinates descrip-
tion

H = Hev + Ho + Honw + Ho—pn + Helmim (5.1)

consists of terms of different nature

Hoyw = s P —NaceAR)P+V(R),
Hel = Z EnC;’{Cn + Helfel 5
H,, = hw ,,\b+ bg.x
P % AV q,A7d (52)

Hapn = 3 hagae'®(bgx + bi_q,)\)p—q )
q,A\

Helfim = queiqﬁp,q.
q

The term Hcy depends only on center-of-mass variables. P and R are the operator
of the center-of-mass momentum and coordinate, respectively, V(f{) is the confine-
ment potential of the electrons depending on the dimension and the structure of the
considered electron system. The electron charge is e = —|e| and A(R) is the vector
potential, which we take in the Landau gauge. The terms H, and Hy), represent
the motion of the electrons and phonons relative to the center of mass including
the electron-electron Coulomb interaction Hg_o. The operators ¢ and ¢, are re-
lated to the relative electron motion and create or annihilate a ‘relative’ electron
in a state n with energy FE,. The concrete form of the operator H._. depends
on the dimension of the electron system but always only the ‘relative’ electron
operators contribute. The operators b; , and bg y create and annihilate a phonon
with wavevector q, polarization A and frequency wg » in a three-dimensional crys-
tal of volume V. The only coupling between the center of mass and the ‘relative’
electrons is due to the electron-phonon (el-ph) and electron-impurity (el-im) inter-
action. The function dq is the Fourier transform of the electron-impurity potential
and hq ) is the electron-phonon matrix element (see Chapter 4.2). The operator
pq has been defined in Eq. 4.72 and corresponds to the Fourier transform of the
electron density operator of a quasi low-dimensional electron gas. The influence by
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the finite confinement of the electrons on the interaction terms is here hidden in
the respective representation of pq.

The character of the motion of the center of mass and of the ‘relative’ electrons is
quite different. The former moves as a classical ‘Brownian’ particle with enormous
mass M = N, - m*, and its motion is governed by a (stochastic) equation of the
Langevin type. On the other hand, the motion of the huge number of interacting
‘relative’ electrons is described by a statistical density matrix pe(t). Since the
induced drag current density of the electrons

j(t) = ena R(t) (5.3)

is proportional to the center-of-mass velocity R(t), we only need to study the
equation of motion for the center of mass. It follows from (5.2) with we = |e| B/m*
and ep = B/B for all directions a perpendicular to the confinement

MR, (t) + Mwc(R(t) X eg)a (5.4)

= S {0 (23 s (s 0+ ) )

In (5.4) we have replaced the center-of-mass operator R with its expectation
value R(t), i.e. with the time dependent coordinate of the center of mass. This can
be approximately done due to the enormous mass leading to an almost classical
equation of motion.

The terms on the right hand side of (5.4) are the forces exerted on the center
of mass by the electron-phonon and electron-impurity interaction, respectively. In
the following, we will split up these forces into drag forces and frictional forces
(~ R) neglecting all quadratic or higher order terms in qR. For these purposes
we have to analyse (bgrp—_q) and (p_q). In doing so we will consider the phonon
and impurity interaction terms as perturbation turned on at t = t,. Within linear
response theory and by neglecting all two- and higher order phonon processes and
all processes involving simultaneously phonons and impurities we obtain

t
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In (5.5) and (5.6), it has been assumed that the electron system was in a state of

thermal equilibrium at time ¢, describable by using the canonical statistical oper-
ator pl = exp(—(Ha)/Tr (exp(—(He)) with kgf3 as inverse electron temperature.
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The first term on the right hand side of (5.5) is connected with the emission of
(equilibrium) phonons by the electron system. Since at typical experimental con-
ditions the electron temperature is very low, this term can be dropped and only
the second term caused by the (nonequilibrium) phonons will be left.

The exponential factor in the above equations exp(—iq'R(#')) can be expanded to
linear order in R,

t

t/
Substituting this result and interchanging the order-of-time integration we find
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Displaying (5.8) and (5.9), we have used the Liouville operator L corresponding
to He. L is defined by LA = }[He, A] and therefore A(t) = ¢'**A(0). The above
derived equations can be rewritten by introducing a Mori operator product in
Liouville space as follows

el

8
(AIB) = / AA (At e Ha g (5.10)
0

With this definition and using the Kubo identity, ([A*, B]) g =h (A|LB) (for
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details see, e.g. Fick and Sauermann, 1990), we may write

(bgrp—q) (t) =

== RO hfr,x{ / At (b o) (#)) (paliLe a0 )

qu)\/ tO
t t
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Inserting now (5.11) and (5.12) into (5.4), we obtain for ¢ > #, the following result
for the equation of motion of the center of mass in linear order of R

M (R(t) + we R(t) x eB>a = Fy(t) — zﬁ:/dt’Maﬁ(t’, tYRs(t) . (5.13)

Here the drag force is equal to

t—to
Ft) = _qum{22|hq,)\|2 / dt’ Ng(t —t) (pq|iLe_i(L+wq,A)t/ pq>
q A 0

t—to
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0

and the so called memory matrix (since the integrand in the frictional forces de-

pends on the past of the quantity R) is
tl
Maolt,t) = = S auas {la? [ (gl
q to
t/
+2 3 [hqal? [t Noa(t") (pq|Le“LW)“”—f)pq)} . (3.15)
A 1

According to Section 3.3.3 we have used here the abbreviation Ng,(t) for the
number of phonons <b; A(£)bgx(t)) with quasimomentum hq and polarization A. In
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the expressions (5.14) and (5.15) we have restricted ourselves to the random-phase
approximation (RPA). This means that we keep only the contributions with q' = q
and assume that the remaining terms cancel each other out.

The impurity part of the force F averaged over all impurity positions disappears
due to fact that it is an odd function of q and vanishes after taking the sum over q
(the total momentum carried by the impurity potential should be zero). Therefore
only the nonequilibrium (ballistic) phonons will contribute to the drag force. On
the other hand, at the considered low temperatures, the phonon part of the memory
matrix will be small compared to the impurity part and can be neglected. Moreover,
due to symmetry arguments only the diagonal part of M,z will be nonzero.

With these simplifications and using adequate approximations for many-particle
systems, the right hand side of the Eqs. (5.14) and (5.15) can be carried out and the
system of equations (5.13) could be solved. However, instead of finding a direct
solution for R(t) it is easier to obtain the time integral ft dtR(t). This makes
sense, since in most phonon-drag experiments the time- mtegrated current rather
than the instantaneous current is measured.! Therefore we consider the Laplace
transformation of (5.13) multiplying the equation by exp(izt) (z = w+in, Imz > 0)
and integrating from tq to co. After some algebra we get for the Laplace transform
R(w) of the center-of-mass velocity R(t)

—iwMR, (w) + Muwe <R(w) X eB) = Fu(w) — Maa(w)Ra(w) (5.16)
with
1z L
(@) =25 g lheal? v 5.17
Fule) =23 e Moo ) (v =) (5.17)
and
M ZQa|dq| (pq|L2 qu> I ) (518)

where the calligraphic letters denote the Laplace transformed quantities, i.e. A(w) =
./;50 dt@thA(t) }7]—>0' .

For the time-integrated current density ftzodtj (t) = —engR(0) we have to set
w =01in (5.16) and obtain
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In a subsequent paper Danilchenko et al. (1999) have analysed in detail the temporal structure
of instantaneous phonon-drag images.
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From (5.19) we can estimate the time-integrated phonon induced drag current for
an electron system with and without applied magnetic field. As an input parame-
ter we need the time integral over the (nonequilibrium) phonon distribution in the
electron system, Ny (w), which has to be determined by phonon focusing calcula-
tions as described in Section 3.3. The effects of electron confinement and screening

are contained in the density-density response functions Im {(pq\...pq) ‘n—>0}' Their

special form depends on the respective dimension of the electron system and on
the corresponding overlap integrals and form factors (see Appendix B and C).

For a quasi-2D electron system (electron density ne, = nop) in a magnetic field
perpendicular to the 2D plane an explicit expression for the in-plane phonon-drag
current follows from Egs. (5.19) and (B.26)

[e.e]
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with the time-integrated drag force
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Here we have assumed that of the subbands associated with the confined motion
along the direction ]?erpendlcular to the 2D electron system only the lowest one is
occupied. Thus X11 (q),wq,x) is the multi-subband susceptibility for a strictly 2D
noninteracting electron gas in the presence of a perpendicular magnetic field. It
takes into account all intra and inter Landau level transitions. The overlap integral
G11(qL), see (B.5), and the form factor gi1(q,), see (B.11), are the corrections due
to the quasi two-dimensionality of the system, i.e. the result of the finite electron

localization in direction perpendicular to the 2D electron system. Using the explicit
form of ngf)(q|‘,wq7,\) taken from (B.18) and (B.19) we obtain for the force term
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where f1, denotes the Fermi equilibrium distribution function, lp = \/h/|e|B is
the magnetic length and L(x) stands for the associated Laguerre function. The

2
function |ey; (g, waqn)|® = ‘1 — v(qu)gﬂ(qu)X&?)(qu,wq,/\)‘ in the denominator of

the term with the electron-phonon interaction potential iq » describes the dynam-
ical screening of the electron-phonon coupling by the electron-electron interaction.

An important point is the influence of disorder on the drag force for B # 0. Even
in the presence of weak disorder each d-function peak in the density of states or
the magnetic susceptibility broadens into a Landau level of finite width with the
level broadening determined by the strength and the range of disorder in the sys-
tem. This broadening allows intra Landau level transitions by phonon scattering.
Otherwise the sharp Landau levels would prohibit such transitions. The simplest
physically plausible approximation of this disorder broadening is the substitution
of the sum of §-functions by a sum of Gaussian functions with a level width pro-
portional to VB (Ando and Uemura, 1974) valid in the limit of strong magnetic
fields. Tamura and Kitagawa (1989) have shown that this approximation works
well for electron-phonon interaction problems calculating the thermal conductance
of GaAs/Al,Ga;_As heterostructures at high magnetic fields.

Up to now no discussion was made concerning the role of the spin degree of
freedom. To simplify the formulas, the spin of the electron has been disregarded so
far. In the considered semiconductor structures the effective mass m* occurring in
the cyclotron frequency we = eB/m* is much smaller than the bare electron mass
occurring in the Bohr magneton pug = eh/2m,. Therefore the spin Zeeman energy
splitting pp B is small in comparison to the Landau level broadening brought about
by disorder. Thus, we will ignore the spin degree of freedom.

In zero magnetic field the equation for the time-integrated drag force simplifies
and from Egs. (5.21, B.33, B.37) we obtain in the limit of low temperatures di-
rectly

hq«\

2
en(anwan)| C A (g wa) »  (5.25
611(q‘|7wq)\) ‘ 11(QJ_)| QD(QH q)\) ( )

2m* q
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where

AO (g = 2Re d 1 (D ey e Lo
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As visualized in Fig. 5.2 the function Ag%) (gy,w) represents also the limiting case of
Eq. (5.24) for low fields. For B — 0 the magnetic length [z will increase rapidly
resulting in larger values of An. Therefore the difference between the distribution
functions (fi, — fint+an) in the double sum of Eq. (5.24) will not vanish for a larger
number of different values of n. As a consequence, the number of contributing
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Figure 5.2: Aég) (g, wo) calculated for wy = 27-800 GHz as a function of ¢, for B =2.0T,
B = 0.27T and the zero-field case. The chosen frequency fulfills the condition m*l%w /h
= integer for both nonzero values of B. The effective mass is m* = 0.07m,, the electron
density nop = 5.3 - 10 m—2.

intersubband transitions increases causing more oscillations but with ever smaller
amplitudes in Agg) (q,w).

Another characteristic feature of A(Q(])D)(q” ,w), the sharp dropoff for ¢, > 2ky, becomes
also apparent in Fig. 5.2. This so called 2kg cutoff provides a direct measurement
of the Fermi wavevector and is therefore very important for the application of
phonon spectroscopy to low-dimensional electron systems. The physical origin is
simple. At zero temperature an electron absorbing a phonon scatters from an oc-
cupied state |k| < kg to an unoccupied state |k’| > kp. Since the phonon energy
is small compared to the Fermi energy, the scattering is quasi-elastic and therefore
due to energy and crystal momentum conservation (in the plane) the scattering is
limited to phonons with ¢, at maximum only slightly larger than twice the Fermi
wavevector (¢, < 2kr + 2m*cqrq/q,). It should be noted that in Fig. 5.2 the func-

tion Agg(qu,wo) is represented at constant frequency wgy. This is different to the
well known figure in the paper of Hensel et al. (1983a), where a similarly defined
function Ag?))(qu,w) is also plotted as a function of ¢, but at a fixed angle, i.e.
AO(g,) = AO(g,, cag sing). This type of presentation makes sense if we are in-
terested in the phonon absorption at a fixed detector point as a function of phonon
frequency, but here we are more interested in phonon imaging studies. For B # 0
the decrease of AP) to zero happens at wavevectors g, > [' for high fields and at
q, > 2kp for low fields, respectively. A®) is according to (B.19) and (B.7) propor-
tional to the spatial overlap between the 2D electron wavefunctions ¢, (x+1%k) and
b (z 4+ 13(k + q,)). If we take the spatial extent of a Landau state n as /2 times
the expectation value for the broadening of the wavefunction (this corresponds to
the classical amplitude of motion) then the integral will tend to zero when the



86 Phonon Induced Electric Current

displacement 13q, > lpy/2n — 1 +1y/2n’ — 1. For low fields follows lzq, > 2v/2n*,
where n* is the number of the highest occupied Landau state. The last relation will
be better satisfied the higher the number of occupied states is, i.e the lower the B-
field is. Substituting n* by the electron density or further by the Fermi wavevector,
n* = wlinop = I%k% /2, we end up with a sharp decrease at g, > 2kp and therefore
also at ¢, > 2kp. As displayed in Fig. 5.3, the 2kp cutoff depends on the value of

N

=21 400 GHz

[y

B
/\(2;(q",(;)0) for w,

Figure 5.3: Agg)(q“ ,wp) calculated for wy = 27-400 GHz as a function of ¢, for 2 different
effective masses each for B =1T and B = 0. The chosen frequency fulfills the condition
m*l%w/h — integer for both m*. The electron density is nop = 3.0 - 10 m—2

the effective mass m* and is in GaAs heterostructures both for B # 0 and B = 0
sharper for electrons than for hole gases with their typical much higher m*.

The cutoff of Agg)(qu,wo) at low phonon wavevectors ¢, (for zero or small B) has
hitherto received little attention. Similar to the 2kp cutoff, it is due to momentum
and energy conservation. Eq. (5.26) and Fig. 5.4 show that this effect disappears for
small effective masses and low frequencies wy (see also Jasiukiewicz, Lehmann, and
Paszkiewicz, 1996). However, for hole gases and monochromatic phonon sources or
hot Planckian phonon sources with only a small amount of low frequency phonons
it should become important.

So far we have derived explicit formulas for the phonon-drag current of quasi-2D
systems. Another interesting problem is the quasi-1D case. Using our dimension
independent general expression (5.19) the drag force in a 1D system can now be
easily determined. With (B.42-B.49) it follows for the time-integrated force in
direction of the 1D channel (here we have chosen the y-direction)

q G QZ7Q:(: nn
‘7:!/( = ethk Z| ! |hq,/\‘ Z |€ q A1D( yv‘”Q)\)? (5'27)
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Figure 5.4: Agg (g, 27 fo) calculated as a function of ¢, for different frequencies fy and

different effective masses m*. The electron density is nop = 3.0 - 10 m=2.

where
nn' ™ n q > n q -
N (q,0) = Z {0 = I3 = Fun(g,0)]) = (K" =12 + Fuw (. 0)]) |
) (5.28)
In (5.27) and (5.28) we have used the abbreviations kp = Znp (in case of a

strictly 1D system kp would be identical to the Fermi wavevector), K. (q,w) =
mZ(hw+E1ng — E10), and k;%n) = \/2;?,* (Er — F1n0). The latter quantity describes

h2
the position of the Fermi energy Ep relative to the respective subband minima
Fin0. The overlap integral G, (g.,q.) and the dielectric matrix e,,/(q,w) are
defined in Appendix B.2 and are calculated for different confinement potentials
in Appendix C.2. For quasi-1D systems the confinement length in the lateral
direction (L,) is typically larger than the confinement length in growth direction
(z-direction) and consequentially, the energy spacing between different xz-sublevels
is small. Therefore, due to the localization in z-direction, more subbands are
occupied or are accessible by acoustic phonon induced excitations. The result is
that, in contrast to the previously discussed quasi-2D case, one has to consider in
the calculations not only intraband but also the possible interband transitions.
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5.3 Phonon-drag images — The result of anisotropy
and confinement

5.3.1 Comparison to experimental results

In this section numerical results of our theory will be presented and compared
with experimental phonon-drag images. Thereby the main interest will be focused
on the influence of acoustic anisotropy and confinement. As already mentioned,
phonon-drag patterns are extremely sensitive to the characteristics of the phonon
source, to focusing effects, and to the dimension and the electronic properties of
the low-dimensional electron system. Therefore, the final expression for the drag
current is based on the results of the previous section in combination with the
results of Chapter 3 for the phonon pulse propagation. For the realistic case of a
locally heated metal film as the phonon source (see Appendix A.3) we obtain from
(3.39,3.21) and (5.20,5.23) for the time-integrated phonon-drag current induced in
a quasi-2D electron system under the influence of a perpendicular magnetic field
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The 2D electron system is here chosen parallel to the source (zy-plane) at position r,
the location of the source is described by the vector ry (see Fig. 3.6 in Chapter 3).
The angles 97 and ¢} are solutions of the equation V4, = 1’ for each individual
phonon polarization A with v’ = r —ry, ¥ = r'/1’, ¥q = arccosq, and pq =
arccos(q,/ sindq).

Formula (5.29) acts as the starting point for the numerical calculations and
discussions. The first line contains the topology and dimension of the phonon
source and the detector described by the integrals over the source area A and over
the solid angle g, (solid angle corresponding to the detector surface seen from a
point ry of the phonon source). The second line comprises the characteristic phonon
properties of the source term (phonon frequency distribution) and the critical an-
gles for the heater-crystal interface (O-function) as well as the acoustic properties
of the substrate (focusing factor Ag » and damping by isotope scattering e /e,
The electron-phonon interaction (both deformation potential coupling and piezo-
electric scattering) and its screening by the electrons (described by the dielectric
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(b)

Figure 5.5: Experimental (a) and calculated (b) image of phonon drag for a Planckian

type phonon source. Each point of the two-dimensional map corresponds to a respective
position of the phonon source. Drag current is measured in [110] direction. Positive and
negative signals are represented as dark and bright shades, an average gray tone corre-
sponds to zero signal. Scanning area 1 mm X 1 mm, sample thickness 0.35 mm, electron
density nop = 3.8 - 101 m~2. (Experimental image (a) from Dietzel et al., 1993.)

function £11(g, ,w)) are part of the third line. Lastly the fourth line includes the
cutoff conditions for the electron-phonon coupling in form of the overlap integral
G11(qL,w) and the Agg) (qy,w) function. The effects of acoustic anisotropy are
mainly included in the focusing factor and the electron-phonon matrix elements.
The influence of the confinement is hidden in the overlap integral, in Aég)(q”, w),
and in the dielectric function.

In Fig 5.5 experimental and theoretical results of phonon-drag images are compared
for a quasi-2D electron system formed in a (001) GaAs/Al,Ga;_xAs heterojunc-
tion. The experimental setup used by Dietzel et al. (1993) was similar to the one
presented in Fig. 5.1. Acoustic phonons with an approximately Planckian spectrum
were generated by thermalizing short laser pulses in a metal film (here aluminium)
evaporated on the bottom of the substrate. The corresponding phonon source tem-
perature was approximately 15 K and thus much higher than the sample tempera-
ture of about 1.5 K. The scanned laser beam was focused to a spot of about 10 ym
across and the phonon induced signal was recorded as a function of phonon source
(laser spot) position. The ‘active’ area of the 2D electrons was 50 pm x 50 pm. A
detailed study concerning the question of why only this small part of the detec-
tor contributes to the signal was given by Kershaw et al. (1996). As verified by
the numerical calculations the sharp ridges in the image are due to FTA phonons
propagating near the {100} planes. The two larger round areas are due to LA
phonons which are focused near the (111) directions. The theoretical pattern has
been calculated on the basis of the program package for phonon focusing patterns
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in case of finite area detectors described in Sections 3.3 and 3.4. This program
package provides apart from the phonon density also the other phonon input data
(like phonon polarization vectors or the angle and mode dependence of the phonon
velocities) necessary to calculate the drag current according to Eq. (5.29). Having
regard to the fact that there have been no free parameters in the calculations, the
agreement between the experimentally and the numerically obtained image is sat-
isfactory. Only the ratio between the deformation potential and the piezoelectric
coupling constant has been varied. However, the best agreement has been found
for ehy4/©q = 1.7- 108 m™!, which is consistent with the conclusions from our cal-
culations of the phonon frequency dependence of the drag current (Jasiukiewicz,
Lehmann, and Paszkiewicz, 1992) and their comparison with experiments for cer-
tain phonon distribution directions (Lega et al., 1990) as well as with the results
of electron transport measurements (see Adachi, 1994).

Figs. 5.6 and 5.7 show experimental and theoretical drag current images of
a quasi-2D system for different values of magnetic field applied perpendicular
to the layer. Such phonon-drag experiments in magnetic fields were first per-
formed by Dietzel et al. (1993, 1994) for 2D electrons and by Kent et al. (Garicza
et al., 1996; Lehmann et al., 1997b) for the corresponding 2D hole gas. Fig. 5.6
presents the experimental results for a 2D hole system at the interface of a p-type
GaAs/Al,Ga;_As heterojunction grown on [001] oriented GaAs substrates for
B =0T, B =025T and B = 4.71'T. In contrast to the other numerical re-
sults in this section the patterns of Fig. 5.7 (Lehmann et al., 1997a) are based on
Monte-Carlo simulations for the phonon transport in the substrate. This allows
a more detailed treatment of phonon isotope scattering effects. The characteristic
result for high magnetic fields is the apparent anticlockwise ‘rotation’ of the axis
about which the drag signal reverses its polarity (Lehmann et al., 1997b). To see
how this comes about one must remember that according to Eq. (5.29) the pattern
obtained in a field is the superposition of two components. The parallel one is due
to the phonon momentum along the line joining the contacts and the transverse
one is due to the phonon momentum perpendicular to this line (with the note,
that owing to the opposite charge of holes the term —[(q;), — puB - (Q;),] changes
to +[(qi)z + #B - (Q;)y]). The ratio between the two components is given by the
factor uB. At B = 0 only the parallel component contributes. At B = 4.71T
(i.e. uB > 1) the transverse component dominates giving a theoretical rotation of
90°. Strong evidence for this effect can also be seen in the experimental pattern for
4.71T, however, it is severely affected by noise. This is the case because the drag
signal is proportional to the prefactor [1 + (uB)?]~'. At B = 0.25T the ratio uB
is approximately one (the mobility of the 2D holes was 5m?V~1s™! at T = 4K)
and both components contribute equally. The result is a pretended superposition
and some of the characteristic zero-field features cancel out. The parameters used
in the calculation correspond to the experimental conditions with the exception of
the linear dimensions of the source. They were chosen larger to simulate scattering
effects at the interfaces.
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Figure 5.6: Experimental drag current images of a 2D hole gas for different values of the
magnetic field: B=0T, B=0.25T, B=4.71T (from left to the right). The dark and
white areas correspond to regions with positive and negative drag current (measured in
[110] direction). The scanning area was 4mm X 4 mm, the sample thickness 2mm and
the hole density was 3.3 - 101> m~2. (From Lehmann et al., 1997b.)

Figure 5.7: Calculated drag current images of a quasi-2D hole gas for different values of
the magnetic field: B=0T, B=0.25T, B =4.71T (from left to the right corresponding
to Fig. 5.6). Scattering in the substrate is included, the phonon mean free path is about
1mm (for fo = 800 GHz). Due to the low hole density only the lowest heavy hole subband
is considered, anisotropic and nonparabolic effects of the hole dispersion are neglected (see
discussion in Section 4.1.3).
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5.3.2 The effect of acoustic anisotropy

The question is how acoustic anisotropy influences the phonon-drag results. To give
an answer, we study the phonon-drag images for two typical geometrical arrange-
ments of GaAs/Al,Ga;_xAs heterojunctions, a 2D electron gas in the (001) plane
(i.e. the direction of confinement is the [001] axis), and a 2D hole gas in the
(311) plane. Figs. 5.8 and 5.9 compare the results of phonon-drag calculations
(separately for the two main electron-phonon coupling mechanisms) with the cor-
responding quasimomentum focusing patterns.? Particularly for the piezoelectric
coupling many details of the phonon-drag images are due to the acoustic anisotropy
of the substrate which gives rise to a highly anisotropic and focused flux of TA
phonons on the 2D carrier systems (as observable in the quasimomentum focus-
ing images). However, the drag current patterns (b,c) also demonstrate that the
pure focusing images (a) are manifestly destroyed by the cutoff conditions and the
anisotropy of the electron-phonon coupling mechanism itself.

How much the phonon focusing of the substrate is recognizable in the drag
images depends mainly on the characteristic frequency of the used nonequilibrium
phonons. For phonons of frequency fy = wo/27m = 120 GHz most of the phonons
interact with the 2D carriers. The focusing image (Fig. 5.10(a)) is superimposed by
an additional signal of the nearly unfocused but, by deformation potential coupling,
very effectively interacting LA phonons. This signal, see Fig. 5.10(b), becomes ap-
parent for large in-plane components of the phonon wavevector ¢,. The situation
is different in the case of 300 GHz phonons (Fig. 5.10(c)). Here we have a large
influence of the cutoff conditions suppressing the absorption of phonons with large
in-plane components of phonon wavevector (2kr cutoff) and with large normal com-
ponents (cutoff by the overlap integral). Figs. 5.8-5.10 also demonstrate that the
destruction of the focusing image by the cutoffs is more severe for the TA modes
(and there again for the STA modes) owing to their larger wavevectors at the same
frequency.

Because the interest is concentrated on acoustic anisotropy we have neglected in
our drag-current calculations possible effects of anisotropy in the electron (hole)
dispersion relation. For 2D electron gases in (001) GaAs/Al,Ga;_As heterojunc-
tions the dispersion of the conduction band near the band minimum is almost
isotropic and this type of anisotropy shouldn’t play any role. More difficult is
the situation for 2D hole gases owing to their complicated hole subband structure
as explained in Section 4.1.3. The influence of the valence band anisotropy on
the carrier-phonon interaction of a 2D hole gas was discussed by Oh and Singh
(2001) but only within the approximation of an isotropic phonon model. On the
other hand it has been asserted by Greipel and Rossler (1992) that the angular
dependence of the microscopic hole-phonon scattering process is dominated by the

2The quasimomentum focusing pattern of Fig. 5.8(a) is the 2D analog of the pseudo-3D plot
of quasimomentum focusing in Fig. 3.10 of Chapter 3.
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(b) ()

Figure 5.8: Calculated phonon quasimomentum focusing pattern (a) and calcu-
lated patterns of phonon-drag current (b,c) induced in a 2D electron gas of a (001)
GaAs/Al,Gaj_xAs heterostructure by a monochromatic phonon source of frequency
200 GHz. Contributions of piezoelectric coupling (b) and deformation potential inter-
action (c) are separately presented. All patterns show the [110| component of phonon
quasimomentum and drag current, respectively. The 2D electron density is 2.8 - 10 m?.

(a) (b) (c)

Figure 5.9: Calculated quasimomentum (a) and phonon-drag current (b,c) patterns like
in Fig 5.8, but here for a 2D hole gas formed in a (311) GaAs/Al,Ga;_xAs heterostructure.
Quasimomentum and current are measured in [233] direction, the 2D density of the holes
is 3.3-10% m?.
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Figure 5.10: Images of the quasimomentum focusing (a) and of the phonon-drag current
induced in a 2D electron gas of a (001) GaAs/AlyGa;_xAs heterostructure by monochro-
matic phonon sources of 120 GHz phonons (b) and 300 GHz phonons (c), respectively.

anisotropy of the coupling mechanism and of the phonon dispersion, whereas the
anisotropy of the hole subband dispersion plays a negligible role. Phonon-drag
calculations including the whole acoustic anisotropy of the sound waves as well as
the anisotropy of the hole bands are still an open challenge.

5.3.3 The effect of carrier confinement

Fig. 5.11 shows how the width of a (quasi-)2D electron system affects the phonon-
drag images. For a Planckian phonon source (heater temperature 15K) we have

(a) (b)
Figure 5.11: Dependence of phonon-drag images on the confinement length of a (hypo-
thetical) 2D electron system in a (001) GaAs/AlyGa;_xAs heterojunction. The images
are calculated for a broadband (Planckian) phonon source. In (a) the Fang-Howard pa-
rameter is 3.6 nm, in (b) it is 1.6 nm. This corresponds to a ‘width’ of the 2D system of

about 11 nm and 5nm, respectively.

calculated the drag current induced in 2D electrons of a (001) GaAs/Al,Ga;_As
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heterojunction. As an illustration two different values for the Fang-Howard pa-
rameter b (see Section 4.1.3, Eq. (4.27)) have been used, b = 3.6 nm (Fig. 5.11(a))
and b = 1.6nm (Fig. 5.11(b)). For the 2D electron density we have assumed in
both cases 2.8 - 10 m~2 and the images cover an area of 1 x 1 mm? for a substrate
thickness of 0.35mm. The squared overlap integral, |G11(g.)|* = (1 + (qzb)z)_3
(cf. Appendix C.1.1, Eq. (C.13)), causes a reduction of phonon drag for perpendic-
ular components ¢, of phonon wavevector larger than 1/b. Contributions of high
frequency phonons and/or phonons with small angles of incidence are ruled out
for larger values of b, i.e. ‘thicker’ 2D systems. This effect becomes apparent in
Fig. 5.11, where compared to figure (b) in figure (a) the signals of the high fre-
quency LA phonons and the near-perpendicularly incident TA phonons are absent.

The study of the influence of confinement on phonon-drag images in the case of
quasi-1D electron systems is naturally very interesting. Typical values of Fermi
wavevector and sublevel spacing are comparable to phonon wavevectors and phonon
energies used in drag imaging experiments. Due to the restriction in phase space
the distortion of the phonon quasimomentum focusing image of Fig. 5.10(a) by
the electron-phonon interaction is much stronger than in the case of phonon drag
in 2D systems. Additionally, the presence of electrons in multi-subbands intro-
duces peculiar behaviour for the acoustic phonon scattering. Fig. 5.12 shows
theoretical drag patterns for a quasi-1D electron gas lying in the (001) plane of
a GaAs/Al,Ga;_,As heterojunction and aligned along the [110] direction. For
all patterns the calculations have been performed for a pointlike monochromatic
phonon source with isotropic phonon distribution in the source and a phonon fre-
quency of 120 GHz. The results are presented separately for different coupling
mechanisms (Figs. 5.12(a—d) for deformation potential interaction, Figs. 5.12(e-h)
for piezoelectric coupling). Based on our discussion in Section 4.1.3 the confine-
ment potential in [110] direction (i.e. the additional lateral confinement in the 2D
plane) is approximated by a parabolic well (images (d) and (h)) and a rectangular
well (all the rest of images), respectively. Figs. 5.12(a,b) and (e,f) demonstrate
the sensitivity of the phonon-drag images on changes of the Fermi wavevector. For
Figs. 5.12(a,e) the electron density is chosen nip = 1-10"m™!, only one subband
is occupied and no phonon induced interband transitions are possible. For com-
parison, in Figs. 5.12 (b,f), the electron density np is raised to 1-10°m™!, two
subbands are occupied. Now intra- and interband transitions are possible leading
to larger angle ranges with nonzero drag signal. The images of the next column,
i.e. Figs. 5.12(c,g), indicate directly the influence of the confinement potential.
The channel width is here 2w = 150 nm instead of 100nm. All other parameters
are the same as in the second column. By the increase in the channel width not
only the overlap integral reduces the drag signal for larger ¢, (corresponding to
Eq. (C.32)), but due to the smaller value of subband energy spacing one additional

subband is occupied. Thus the relative Fermi wavevector k;l(;n) in each subband n is
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(e) () (h)

Figure 5.12: Theoretical patterns of the time-integrated drag current induced in a quasi-
1D electron system by beams of monochromatic phonons of frequency fo = 120 GHz. The
images are calculated as a function of phonon propagation direction for different electron

densities and different parameters of confinement potential. The scanning area is 1.4 mm x
1.4mm, the substrate thickness 0.5mm. In the upper row only the contributions by
deformation potential interaction are considered, in the bottom one only the piezoelectric
coupling. Each point of an image corresponds to a respective position of the phonon
source. The dark and bright areas represent regions with positive and negative drag
current, respectively.

modified leading to changes of the function AT (¢,w) (cf. Eq. (5.28)). The result
is a remarkable variance of the drag patterns. A similar effect is seen in the out-
side right images (Figs. 5.12(d,h)). Here the characteristic channel width is again
100 nm, but a parabolic confinement potential is used instead of the box model of
a rectangular well. The sublevel spacing is now equidistant and more subbands
are occupied. This, together with the changes in the functional dependence of the
overlap integral (Eq. (C.32) has to be replaced by (C.27)), causes a limitation of
the in-plane components ¢, and g, of the phonon wavevectors contributing to the
drag, particularly for the TA modes. However, on the other hand, it enhances the
number of transition possibilities for smaller values of ¢, and ¢,. This is clearly
seen by comparing Fig. 5.12(d) with Fig. 5.12(b).

For simplicity the screening of electron-phonon coupling has been neglected
in the calculations performed for Fig. 5.12. Allowing for this effect one should
expect an additional damping of the drag signal, particularly for phonons with
small in-plane components of the phonon wavevector. More numerical results of
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phonon-drag images of 1D electron systems, including the influence of different
phonon frequencies, have been published (Lehmann, 1994).

5.4 Outlook

Recently there has been an increasing interest in using phonon-drag imaging for
the study of GaN epilayers (Stanton et al., 2000; Lehmann et al., 2002b). The wide
band gap semiconductor GaN and its alloys are currently very interesting because
of their potential applications in blue/near ultraviolet light emitting devices and
high temperature, high frequency, high power transistors. However, compared to
GaAs systems the electron-phonon interaction in GaN has been studied much less
extensively and one expects significant differences. This is due to the much stronger
piezoelectricity of GaN and also due to its different crystal structure (wurtzite for
GaN films epitaxially grown on sapphire instead of zinc-blende for homoepitaxial
GaAs). Although there is a good qualitative agreement between the calculated and
the experimental drag images (Lehmann et al., 2002b), two problems remain to be
solved for still better understanding. The first is the trouble with the large lattice
mismatch between GaN and the sapphire substrate leading to a strong diffuse
phonon scattering at the interface. A possible experimental solution could be the
use of 6H-silicon carbide as substrate material (Stanton et al., 2003a). The second
problem is more fundamental. It is still an open challenge of the theory to develop
a model of phonon induced drag current for highly disordered materials.






Chapter 6

Acoustic Phonon Emission by Hot
Electrons

The technologically important problem of energy relaxation by hot carriers is a sec-
ond example for our theoretical analysis of phonon spectroscopy on low-dimensional
systems. We develop a theoretical model for the angle- and mode-resolved acoustic
phonon emission by hot quasi-2D electrons and calculate both the total emission rate
and the emission rate as a function of detector position for different electron-phonon
coupling mechanisms and for different models of electron confinement. Additionally
we show how the screening of the electron-phonon coupling by the electron-electron
interaction will influence the theoretical results. By comparison with correspond-
g experiments, we demonstrate that commonly applied isotropic phonon models
as well as some approzimations for the electron envelope functions (describing the
carrier confinement) fail in the case of angle- and mode-resolved phonon emission.
Particularly for phonon emission normal to the 2D electrons, acoustic anisotropy
and screening lead to surprising results, as e.q. the relatively large contributions by
deformation potential coupled TA phonons.

6.1 Energy relaxation in low-dimensional systems
— Basic features

So called hot electrons dissipate their energy by emitting phonons and (rarely)
photons or by exiting other electrons. We speak of hot carriers or, to be precise,
of a hot carrier regime if the carrier distribution function can be described by a
Fermi-Dirac distribution with a single carrier temperature higher than the lattice
temperature. Such a heating of electrons is possible by optical or electrical excita-
tions due to applied photon or electric fields. If e.g. a semiconductor is excited by a
pulsed laser, the electrons or holes are initially in a nonthermal regime, but can be
described by a hot carrier regime within less than one picosecond. This equilibra-
tion of the electrons takes place via elastic scattering with (immobile) impurities
and other electrons. The following temporal drop of the carrier temperature due
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to inelastic scattering processes is described by the energy loss rate per carrier.
The detailed mechanism of this energy dissipation depends, for a given material,
mainly on the considered temperature range.

The study of electron energy loss rates provides fundamental insight into the
electron-phonon interaction because they are directly related to inelastic collisions
with phonons. In contrast, mobility measurements, while useful in many ways,
provide only limited information about electron-phonon interactions because mo-
bilities are also influenced by elastic collisions (e.g. by impurity scattering). In the
following, a short overview over the process of energy relaxation by hot carriers is
given, followed by a detailed discussion of acoustic phonon emission by hot (quasi)
2D electron systems. For further details on energy relaxation by hot carriers in
semiconductor nanostructures the reader is referred to reviews by Ridley (1991),
Shah (1992), Balkan (1998), and Kent and Wigmore (2003).

For the s-like electrons in the lowest conduction band of GaAs the polar opti-
cal scattering (Frohlich interaction) with longitudinal optical (LO) phonons is the
dominant relaxation mechanism at temperatures above 40-50 K !, while at lower
temperatures acoustic phonon scattering via deformation potential and piezoelec-
tric interaction is dominating. The dominance of optical phonon emission at higher
temperatures is due to the approximately exponential dependence of the corre-
sponding average energy loss rate on the electron temperature T,

<%> - hwro e~ fwro/kpTea (6.1)
dt TLO

(Conwell, 1967). Here fiwyo is the energy of the LO phonons (about 36 meV for
bulk GaAs) and 1/70 presents a (dimension dependent) characteristic rate for
the polar optical phonon scattering. In deriving (6.1) it was assumed that the
electrons emitting an LO phonon have a classical Maxwell-Boltzmann distribution,
that for the considered temperatures kgTe /hwro < 1 is valid and that the electron-
phonon interaction is unscreened. Additionally, so called hot phonon effects were
neglected, which are provoked by the presence of a nonequilibrium LO phonon
population due to the emission process itself.? The result of such a nonequilibrium
phonon population may be a reabsorption of phonons by the electrons and hence a
reduction of the net energy loss rate of the electrons (Shah et al., 1970, 1985; Cai
et al., 1987, see also a review by Shah, 1999).

In contrast to the exponential increase of optical phonon emission with temper-
ature, the increase in acoustic phonon emission is, due to the restrictions by energy

IFor holes also the nonpolar optical scattering (deformation potential electron—optical phonon
interaction) has to be included.

2Due to the small group velocity and the finite lifetime (long compared to the typical time
for generation), a large number of emitted optical phonons may be present in the photoexcited
volume. In this case the phonon occupation number is not determined by the lattice temperature
but rather by the phonon generation and absorption rate as well as by the anharmonic decay rate
into acoustic phonons.
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and momentum conservation, approximately linear (valid at not too low electron
temperatures). Therefore the temperature at which the changeover from acoustic
to optical phonon emission takes place depends mainly on the LO phonon energy.

In the temperature range where usually acoustic phonon emission is assumed
to be dominating two other channels of energy dissipation may still exist, giving
rise to an enhancement of energy loss. This is caused by the many-body renor-
malization of the phonon spectral function due to the coupling with the electron
gas. In polar materials LO phonons can couple via the Frohlich interaction to
plasmons and quasiparticle excitations resulting in three hybrid branches of the
phonon density of states: the phonon-like branch near the LO phonon energy, the
plasmon-like branch near the plasmon energy and a quasiparticle-like branch in
the low energy quasiparticle excitation region (Das Sarma et al., 1990). Coupled
plasmon-LO phonon modes predicted by Yokota (1961) were first observed in the
Raman spectrum of GaAs (Mooradian and Wright, 1966) and were used first by
Das Sarma et al. (1988b) to explain the discrepancy in the power loss rates between
the experiment and the numerical results calculated with conventional scattering
mechanisms. Even though the phonon spectral weight of the plasmon-like modes
is very small compared to the phonon spectral weight of the phonon-like modes—
and that of quasiparticle-like modes is usually still much smaller—under certain
conditions these modes may lead to modifications of the power loss by the acoustic
and bare LO phonons. This can be the case for the plasmon-like modes at low
electron densities (when the plasmon energy is much below the LO phonon energy)
and in an intermediate temperature range between 30 and 50 K, since the expo-
nential term e~™/*57" in the expression for the energy loss favours the lower energy
modes at low temperatures (Das Sarma et al., 1988a,c). At high carrier densities
and low electron temperatures the quasiparticle-like modes also can give relevant
contributions to the energy relaxation as it was shown in calculations by Kawa-
mura et al. (1990) for GaAs/Al,Ga;_,As heterojunctions. However, to give a final
answer about the role of coupled phonon modes in the process of energy loss at low
temperatures, more should be known about their behaviour after excitation. If the
coupled modes themselves can lose their energy only by exciting single electrons
(Landau damping), no net energy loss from the hot electrons would be the result.
On the other hand there is convincing evidence that these modes predominantly
decay into a pair of (bare) phonons (Kozorezov et al., 1997), whose acoustic decay
products are detected in phonon emission experiments (Giltrow et al., 1995; Al
Jawhari et al., 1999; Wigmore et al., 2001).

The process of energy relaxation of hot low-dimensional electrons can be directly
observed using the heat pulse technique described in Chapter 2. More traditional
techniques for determining electron energy relaxation rates include for example far
infrared emission measurements (Hopfel and Weimann, 1985; Akimov et al., 1991;
Hirakawa et al., 1993), luminescence measurements (see, e.g. Shah et al., 1985;
Yang et al., 1985; Leo et al., 1988) or transport (Payne et al., 1983; Ouali et al.,
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1999) and magnetotransport (Shubnikov-de Haas) measurements (Hirakawa and
Sakaki, 1986; Ma et al., 1991; Balkan et al., 1995; Sugaya et al., 2002; Celik et al.,
2002). The advantage of the heat pulse technique over these traditional techniques
is that direct phonon emission studies give not only integrated information about
the strength of the electron-phonon interaction process and its dependence from the
parameters of the considered electron system, but also detailed information about
the polarization and the wavevector of the phonons involved. With the greater
quantity of observable data, phonon emission experiments are a better test of the-
oretical models of the electron-phonon interaction in low-dimensional systems.

A typical setup of such a phonon emission experiment is shown in Fig. 6.1. A

2DEG

substrate

bolometer

signal out

Figure 6.1: Experimental geometry for a typical phonon emission experiment.

sample which consists of a small low-dimensional electron device fabricated on a
semiconductor substrate is cooled to liquid helium temperatures. By passing a short
current pulse through the device the carriers are heated above the substrate tem-
perature. The emitted phonons are detected using a superconducting bolometer.
By placing the detector at different positions the angular resolution of the acous-
tic phonon emission is possible. A resolution between different polarized acoustic
phonons is possible if the excitation pulse is shorter than the difference between
the flight times of the longitudinal and the two transverse modes. In the case of
optical or coupled LO phonons the emitted modes cannot be detected directly by
the bolometer, but the acoustic decay products via anharmonic down-conversion
are observed. Due to isotope scattering and further down-conversion processes the
propagation of the acoustic decay products will be quasi-diffusive instead of bal-
listic, leading to a delayed diffuse detector signal. Only a small part will arrive at
close to the time expected of ballistic phonon propagation (Maris, 1990).

Measurements of the strengths of the different acoustic phonon modes as a func-
tion of the electron temperature give direct information about the character of
the electron-phonon scattering process and the confinement potential of the elec-
trons. The experimental results have demonstrated the change from a predominant
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emission of acoustic phonons (and possibly coupled modes) to optical phonons with
rising electrical input power (Chin et al., 1984; Hawker et al., 1992; Wigmore et al.,
1993; Danilchenko et al., 1994c; Kent et al., 1997c; Al Jawhari et al., 1999; Cross
et al., 1999). The intensity of acoustic phonon signals from hot low-dimensional
carrier systems depends strongly on the emission angle and on the phonon polar-
ization (Rothenfusser et al., 1986; Wigmore et al., 1991; Danilchenko et al., 1994b;
Kent et al., 1997¢), it varies for different sample structures and different confine-
ment potentials (George et al., 1995; Hawker et al., 1995; Asche et al., 1995; Cross
et al., 1999; Lehmann et al., 2002a).

However, to interpret the experimental results quantitatively they must be com-
pared with theoretical models. Such theoretical studies of the angular dependence
and the mode dependence of acoustic phonon emission have been performed by
several authors both for low-dimensional electron and hole systems (Rothenfusser
et al., 1986; Vass, 1987; Challis et al., 1987; Vasko et al., 1993; Xu and Mahanty,
1994; Totland et al., 1999; Oh and Singh, 2001). The case of an applied quantizing
magnetic field has also been taken into account (Toombs et al., 1987; Benedict,
1991; Shik and Challis, 1993; Xu and Zhang, 1996; Xu, 1996). However, in almost
all practical calculations an isotropic model for the phonons has been used in the
electron-phonon matrix elements. Acoustic anisotropy has been at most considered
by including roughly the effect of focusing on the phonon propagation.® Moreover,
screening of the electron-phonon coupling has often been treated inadequately.

As a consequence, a number of experimental findings could not be explained.
For example, one of the surprising results for the 2D electron systems was the
weakness of the LA mode emission. In the experiments on GaAs heterojunctions
using a phonon detector directly opposite the 2D electrons, the LA mode was
barely detectable while the TA was very strong (Chin et al., 1984; Hawker et al.,
1992; Wigmore et al., 1993). In measurements on 2D electrons in J-doped GaAs
(Danilchenko et al., 1994b; Asche et al., 1995) an LA signal was observed, but still
much weaker than the TA one. These results were in strong contradiction to all
theoretical studies. Theory had predicted that the deformation potential coupled
LA phonons should be dominant. As shown in Section 4.2, Egs. (4.53) and (4.60),
the coupling coefficients for the deformation potential interaction |hg%|* are propor-
tional to the phonon wavevector ¢, whereas for piezoelectric coupling |h§:pj\|2 ~q L
In GaAs the two are about equal in strength at ¢ ~ 10%m~! corresponding to
Ta ~ hqc/3kp ~ 3K, where ¢ is the average phase velocity of the phonons. There-
fore, the LA mode should be strongest at the electron temperatures relevant to
the above experiments with 7T, = 10-50 K since the isotropic phonon model rules

30nly in theoretical studies for the acoustic phonon emission by 2D hole gases the effect of
acoustic anisotropy on the angular dependence of the microscopic scattering process has been con-
sidered (Greipel and Rossler, 1992). However, these calculations have been restricted to transition
probabilities for deformation potential coupling neglecting, among other things, screening. Nev-
ertheless, they have demonstrated the strong influence on the scattering rates by the anisotropy
of the phonon dispersion and of the coupling mechanism.
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out the coupling of electrons with TA phonons via deformation potential inter-
action. Even allowing for phonon focusing, which gives a TA:LA ratio of about
20:1 for phonon propagation in a small cone around the [001] direction (the actual
enhancement depends on the precise size and orientation of device and detector), a
dominant LA signal is still predicted. The fact that the disagreement cannot be ex-
plained by phonon focusing as initially expected was also supported by experiments
with (311) GaAs/AlGaAs heterojunctions (George et al., 1995), where in normal
direction no strong effect by focusing should appear, and by phonon emission from
a bulk n-type GaAs epilayer. In case of the 3D electron system at about the same
electron temperature as the heterojunction the LA emission is totally dominant
over the TA emission (Kent et al., 1997a).

To explain this mystery of the missing LA mode for hot 2D electrons, systematic
measurements of systems with different confinement potential were performed by
Kent and coworkers (George et al., 1995; Kent et al., 1997a; Cross, 2001; Lehmann
et al., 2002a). It has been shown that for not too narrow wells larger confinement
lengths involve a suppression of the LA phonon emission in directions normal to
the 2D carrier systems. This led to the conclusion (George et al., 1995; Kent et al.,
1997a) that the effect can be understood by a cutoff of the perpendicular phonon
momentum due to the overlap integral (see Eqs. (C.13) and (C.17)). In GaAs het-
erostructures the perpendicular component of the phonon wavevector is typically
restricted to less than about 10 m™!, which means that emission is cut off before
the deformation potential interaction takes over from piezoelectric interaction as
the dominant phonon-coupling mechanism. Nevertheless, the effect is too small to
explain the almost complete absence of the LA mode in the heat pulse signals of 2D
electrons in single heterojunctions. Time- and angle-resolved measurements also
prove that the enhanced TA:LA ratio cannot be the result of the decay of coupled
modes into TA phonons.

In a series of papers (Lehmann et al., 1998; Lehmann and Jasiukiewicz, 1999;
Jasiukiewicz et al., 1999; Lehmann et al., 2002a) we have shown that the main
reason for the collapse of the conventional theories in the case of application to
angle-resolved phonon emission is the non-consideration of the effects of acoustic
anisotropy on the electron-phonon matrix elements. The total exclusion of defor-
mation potential coupling to TA phonons, as explained in Section 4.2.4, is such a
serious deficiency of the isotropic phonon model. Another grave problem of some
of the earlier calculations is that they only allow for screening, normally in a static
approximation, of the piezoelectric interaction. The argument commonly given for
not screening the deformation potential interaction is that it is a short range in-
teraction for which the in-plane component of phonon wavevector g, is larger than
the inverse screening length gs. While this is usually a reasonable approximation
at large wavevectors ¢ where the deformation coupling is dominant, for emission
in a direction nearly normal to the 2D layer ¢, can also be very small for large
q and screening is effective. Furthermore, for 2D electrons in a heterojunction or
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quantum well the electron-phonon interaction may be cut off for wavevectors com-
parable to gs.

The aim of the following sections is to describe in detail the influence of acoustic
anisotropy and screening on the results of angle- and time-resolved acoustic phonon
emission from hot 2D electron systems and to explain the experimental results with-
out artificially enhancing the coupling constants and additional relaxation channels.
Furthermore, considering the example of quasi-2D electrons in GaAs/Al,Ga;_(As
heterojunctions and quantum wells we will show how sensitively the results depend
on the electron confinement. In doing so, we will demonstrate that approximations
that are usually accepted and work relatively well for calculating the overall energy
loss rates of hot electrons and the electrical transport quantities, fail to interpret
angle-resolved emission experiments correctly.

6.2 Theory of angle-resolved acoustic phonon
emission

Below we will present a theoretical model for the acoustic phonon emission by
hot electrons in low-dimensional electron systems which serves to explain and pre-
dict the results of angle- and time-resolved heat pulse measurements. The model
(Lehmann et al., 1998, 2002a) includes the effects of acoustic anisotropy, not only
on phonon propagation, but also on electron-phonon coupling, as well as a full dy-
namic screening of the electron-phonon interaction within the finite-temperature
random-phase approximation (RPA). It uses realistic models for the confinement
of the electrons, as described in Section 4.1.3, that also allow for the penetration
of the electron wavefunctions into the barriers.

We consider a low-dimensional electron system with Ng electrons embedded in a
bulk substrate. Then the general expression for the acoustic phonon emission rate

per electron is
1 d
P(t) = 5 > Mg 7 (bgabar) (1) - (6.2)
e qV)\

The variables wqx, q and A denote the frequency, the wavevector and the po-
larization of the bulk acoustic phonons as introduced in Section 3.1. The time
derivative of the phonon number operator b;)\bq,,\ is calculated for the coupled
electron-phonon system with the Hamiltonian

H = Hq + Z hwq,)\b:;Abq,A y T Z hq)\(bq,)\ + bJ—rq,A)p—q ) (6-3)
QA q,A

where the electron term H, includes also the contribution of the electron-electron
interaction He_o. The last term in (6.3) accounts for the electron-phonon inter-
action which is specified by the electron-phonon matrix elements hq » discussed in
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Section 4.2. The dimensionality of the electron system and the influence of the
electron confinement potential that has been used are completely covered in Hy_¢
and the Fourier transform of the electron density operator pq.

At this point a comment concerning the form of our electron-phonon interaction
term, which is restricted to one-phonon processes, should be made. Falko and
Challis (1993) have pointed out that two-phonon emission may give significant
contributions to the energy loss of hot 2D electrons if the one-phonon emission
process is strongly suppressed by the constraints due to in-plane selections rules and
electron confinement. In a recent paper Kubakaddi et al. (2002) have calculated
the energy relaxation of 2D electrons in GaAs/Al,Ga;_As quantum wells and
heterojunctions including the two-phonon coupling and have found an enhanced
power loss in the temperature region above 20 K caused by electron interaction
with two near zone boundary TA phonons. Despite the second order nature of two-
phonon processes their significance is plausible since the emission of two phonons
with approximately equal and oppositely directed phonon wavevectors avoids the
constraints imposed by the momentum conservation and the overlap integral. In
addition the phonon density of states is high for band edge TA phonons. Although a
more detailed analysis is necessary, as a result of these studies two-phonon emission
processes (as well as the emission of coupled LO modes) should be included in
detailed calculations for the total power loss of hot 2D electrons close to the onset
of the dominance of LO phonon emission. Nevertheless, the influence of two-phonon
processes on the results of angle- and time-resolved phonon emission measurements
should be negligible. Since the dispersion curve is flat at the zone boundary, the
band edge TA phonons travel slowly and they are (in general) unable to decay
easily into faster moving phonons due to the restrictions by energy and momentum
conservation. Furthermore, due to the high frequency of the band edge phonons,
a very high probability for isotope scattering is to be expected, which gives in
consequence mainly contributions to the delayed diffusive phonon signal. Therefore
in the following we will restrict ourselves to one-phonon emission processes.

Evaluating the commutator of the phonon number operator with the Hamilto-
nian of (6.3) we obtain for the emission rate

P() = - {has s 0} (6.4)

Within linear response theory the expression (bqrp_q) (t) can be calculated us-
ing adiabatic initial conditions and neglecting all two and higher order phonon
processes

o0

<bq,)\p7q> ( = /dt/ bq )\bq A (/)q|2L€ i(Ltwq,x—in)t’ pq)
0 (6.5)
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In (6.5) we have made use of the Liouville operator L corresponding to H, and the
Mori operator product introduced in Section 5.2. Assuming that the electron sys-
tem was in thermal equilibrium at ¢ — —oo the expectation values of the electron
variables on the right hand side of (6.5) are determined by the statistical operator
[)ff‘ = exp(—LeoHe)/Tr (exp(—faHe)) with Ty = 1/kp/3. as effective electron tem-
perature. By means of the dissipation-fluctuation theorem for the density-density
correlation function

o0
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(6.6)

n—0

and the symmetry relation

L L L
(| g 0) = (ol =) =~ el ) 09

the acoustic phonon emission rate can be expressed by the imaginary part of the
dynamic susceptibility of the interacting low-dimensional electron system

2 L
P:—Ej hosl? (N0 — NTe ) Im ( - = ) (6.8
Nel - wq)\ ’ QM\‘ ( q,A\ q,)\) { pQ| L + Wq7)\ + anq n—0 ( )

The function Ni y = [exp(hwqr/ksT) — 1]~ is the Bose factor at temperature T
and T. < T is the (substrate) lattice temperature. Here it is assumed that the
lattice is in equilibrium with a heat reservoir so that the emitted acoustic phonons
do not raise the lattice temperature.

In the general expression (6.8) all effects of electron confinement on electron-phonon
coupling and screening are contained in the dynamic susceptibility (pq‘ L+++m pq>

which depends on the dimensionality of the electron system and on the correspond-
ing overlap integrals and form factors (see Appendices B and C). For the case of
a quasi-2D electron gas in a modulation-doped heterojunction or quantum well it
follows from (6.8) and (B.31)

2
P = 5 S wan (NG = NG haal? [ (a0)]?
el ‘I

Tel
% 1 X11 <Q|‘,wq7)\)
m 1 11 T ’
- U(%\)Qn(QH)XH (CInan,A)

In calculating this expression it was assumed that only the lowest electron subband
is occupied, which holds true in GaAs/Al,Ga;_,As systems as long as the electron
densities are not too high, and that the nonparabolicity of the electronic subband
can be neglected. The dynamical screening of the electron-phonon coupling by the

(6.9)
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electron-electron interaction was considered in the RPA, thus 1% is the polariz-
ability function for a noninteracting 2D electron gas at temperature T} as defined
in Eq. (B.30). The function v(g,) is the 2D Fourier transform of the Coulomb
potential and is given by Eq. (B.10). The overlap integral Gi;1(¢,) and the form
factor gi1(g,) (see Appendix C) arise from the finite extension of the component of
the electron wavefunction along the axis normal to the plane of the electron system
and depend strongly on the chosen form of the confinement potential. Changing
in (6.9) the summation over ¢ into integration in the spherical coordinates and in-
tegrating over all phonon frequencies, we obtain the emitted power per unit angle
in the wavevector space (in direction q) for a given polarization A

—2‘/; 1 / |h A‘z T
Py = dww?(NTe = NTey 221G (q0))? Ty 5 (g, w)
a Ng(27)3 ch ( >’5H(q“7w)‘2 |GagL)] 1 (g, w)

(6.10)
Here we have made use of the fact that in the relevant frequency range the long-wave
approximation for the phase velocities cq ) = cq.x is valid and we have introduced
the dielectric function £1}(q,,w). According to the results in Appendix B (see Egs.
(B.21), (B.32) and (B.33)) the function |¢11(g,,w)|* reads for a 2D electron gas as

q, q kF7 EF7 Er
QS(QH) kg q hw kpTe 12
[t ke )

2 as(q)) k g hw ke 12
5%(%@)’ = [1+_”_F Q@ B 1)}

(6.11)
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with P and £ defined in (B.34) and (B.35), respectively, and with kr and EF as
Fermi wavevector and Fermi energy of the electron system. Additionally, we have
used in (6.11) the so called screening wavevector gs(q,) = 2¢1i1(q))/ag for a (quasi)
2D system (see Appendix B.1.2), where a} = 4mege, i /e*m* is the effective Bohr
radius.? Attention should be paid to the ¢,-dependence of |1} (g, w)|* leading to a
strong dependence of the emission on screening for emission close to the normal of
the 2D electron system. We will later discuss this effect in detail.

Having in mind the different frequency dependence of the electron-phonon in-
teraction potentials it is convenient for discussion to rewrite formula (6.10) for the
emission via deformation potential coupling and piezoelectric coupling separately.
Replacing on the r.h.s. of (6.10) the variables ¢, and ¢, by their angular parts g,
and ¢, , respectively, with ¢, , = ¢, .¢ = ¢, .w/cq and introducing the dimension-
less integration variable n = hw/kgT, we obtain with (B.33,B.35) and (4.53) for
the deformation potential contribution to the phonon emission per unit angle in

4For a strictly 2D system the screening wavevector gs is equal to 2/a} since gii(q,) = 1.
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direction q

(DP) m* @(21 (kBTel >4 (eq,)\ . él)Q

ar 47T3h5p kF Cq,x qA”
o) kpT.1d 2
< fan (G5 - o) Sl rvall
77 el — 1 e'r]Tel/Tc — 1 |€(kl;cTelqAH 77, kBgel T])‘Z

0 a4,
T GC kBTl kJBquA m*cA,\ 2
de—S 1 e _( ody - TGy, )
. / N EFEE Re{\/ T B ¢ Ghkpean " hked,

—Er/kpTa
kgT, kTuq m*cg y \ 2
_ 1+B1C_<quun_|_ qA,)\>
EF 2hkF Cq,\ hkpq”

(6.12)

and with (4.60) for the piezoelectric contribution
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Here ©4 and hy4 are the deformation potential and the piezoelectric constant, re-
spectively. Egs. (6.12) and (6.13) generalize relations for the angle-dependent
phonon emission which were derived by Jasiukiewicz and Karpus (1996) in the
limit of zero-temperature electron response functions. A further advantage of our
expressions is that they allow a correct treatment of phonon emission close to the
normal of the 2D system.

At low electron temperatures, kgTy < kpTpc = hcgrkr, phonon emission with
q ~ kg becomes exponentially suppressed by temperature and only low-angle scat-
tering of the electrons with ¢, < kp prevails. In this temperature limit, the so
called Bloch-Griineisen (BG) regime, our relations for the phonon emission rate re-
produce the known 773 and T3 power law dependence for the total energy relaxation
rate due to deformation potential and piezoelectric coupling respectively (Karpus,
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1986, 1988). In this case the (-integral in (6.12) and (6.13) is equal to n’“ZBTTFel and
|G11(q1)|* &~ 1 since ¢, is much smaller than the inverse of the confinement length.
Thus the phonon power emitted in all directions is
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for piezoelectric coupling. As long as the relevant contributions to the above in-
tegrals over 7 and g are from phonons with ¢, not much smaller than 2/aj, the
inverse of the screening length, the influence of screening by the factor |e(q,, w)| ™2 is
small and can be ignored in a first approximation. The result is P(°Y) ~ (T2 —T.5)
and PP ~ (T3 — T3?) respectively.

For (very) low electron temperatures kgTy < 2hcg x/aj, known as the screening
regime, it holds ¢, < 2/a$ < kp and with it |e(g,,w)| ™2 ~ (g,a§)?. The latter rela-
tion can be easily derived from (B.38) and the fact that the form factor gii(q,) — 1
for ¢ — 0 as seen from Eq. (C.14) or Eq. (C.18) in Appendix C.1. As a conse-
quence, this leads to T, (deformation potential) and 7,7 (piezoelectric coupling)
power laws for the electron energy relaxation rate in the screening regime of 2D
systems (Price, 1982).

In contrast, in the high-temperature or equipartition range, where kg7 >
kgTgg but still much less then Eg, the electrons lose their energy in portions much
smaller than kpTg. This is due to the 2kp cutoff for the in-plane component g
of the phonon wavevector and the restrictions for ¢, by the overlap integral. In
this case, the phonon equilibrium distribution 1/(e™/#8%s — 1) can be replaced by
its asymptotic value kg7, /hw giving in a crude approximation a linear tempera-
ture dependence of the energy relaxation rate both for deformation potential and
piezoelectric coupling (Price, 1982; Jasiukiewicz and Karpus, 1996). In deriving the
linear dependence the zero-temperature limit of the response function Imy ¢ (qy,w)
has to be used and screening is assumed to be small. Furthermore, for quasi-2D
systems the additional condition kr 2 1/Az must be fulfilled, where Az is a char-
acteristic length for the electron confinement perpendicular to the 2D plane.
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To test our formulas and the corresponding numerical procedures we have cal-
culated the phonon emission in all directions as a function of the electron temper-
ature Ty for a modulation-doped GaAs/Al,Ga;_;As heterojunction and compared
the results with corresponding experimental data of the electron energy loss rate.
The latter were obtained from the temperature dependence of the mobility of a 2D
electron gas in a GaAs/Al Ga;_,As heterojunction (Ouali et al., 1999). Unlike for
angle-resolved emission it is possible to measure relatively exact absolute values
for the total emitted power. Fig. 6.2 shows the emitted acoustic phonon power
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Figure 6.2: Calculated and measured energy loss rate per electron for a 2D electron
gas as a function of the electron temperature. The numerical results (solid line) are
calculated from the sum over all directions and all phonon polarizations of Egs. (6.12)
and (6.13). The corresponding experimental values displayed by squares are obtained
from transport measurements (Ouali, 1998). Theoretical results of energy relaxation due
to the individual scattering mechanisms are also plotted in the figure: acoustic phonon
scattering via deformation potential coupling (DP) and via piezoelectric interaction (PE).
The dotted line shows a calculation where the overlap integral and the form factor are
approximated with the help of a variational envelope wavefunction.

(DP) (PE) .
per electron, P,y * + P ", summed over all phonon modes A and integrated over
all directions q for electron temperatures Ty, close to the Bloch-Griineisen temper-
ature Tpa.” The lattice temperature is 7. = 1.2K and the areal density of the
quasi-2D electrons is ngp = 2.85 - 101 m=2. The displayed temperature range is
of interest since both coupling mechanisms, deformation potential and piezoelec-
tric interaction, give significant contributions to the energy loss rate. At higher

SFor the given parameters Tq is about 5K for LA phonons and 3K for TA phonons.
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temperatures theory (see Fig. 6.15) as well as experiment (see, e.g. Hirakawa
et al., 1993) suggest a clear dominance of the deformation potential coupled LA
phonons until the energy loss by polar optical phonons or coupled plasmon-phonon
modes becomes effective. The numerical calculations were performed with self-
consistently determined electron envelope functions (see Eq. 4.25) and included
a full dynamic screening of the electron-phonon interaction in RPA. In the given
temperature range we have found a temperature dependence of the total energy
relaxation rate ~ (1.} —T,") with n = 3.3, compared to n = 3.2 in the experiment.
Calculating the power loss we have used the most probable values for the coupling
constants (see Section 4.2), namely |Oq4| = 9eV for the deformation potential and
ehyy = 1.4 -10° eV/m for the piezoelectric interaction. Bearing in mind that no
other fit parameters are used in our calculations the qualitative agreement (power
law of the electron energy relaxation rate) and, most notably, the quantitative
agreement with the experimental values are very good.

The dotted line in Fig. 6.2 marks the result of a calculation using a Fang-
Howard variational wavefunction (see Eq. 4.27) for the electron envelope function,
all other parameters are the same. In this case we would obtain an agreement
with the experimental values, at least at the lower temperatures, by increasing
the value of |O4| from 9eV to 11eV. This increased value of |©4| would cor-
respond to the enhanced values of the deformation potential coupling constants
found by some authors in GaAs/Al,Ga;_,As heterojunctions (Kawamura and Das
Sarma, 1992; Gorczyca et al., 1992, and references therein). Here, however, the
difficulty in determining the correct value for the deformation potential constant in
low-dimensional structures becomes apparent. In order to deduce the deformation
potential constant one always has to compare the experimental values to model
calculations. However, in almost all theoretical models the most simple approxi-
mation for the overlap integral, based on (Fang-Howard) variational functions, is
applied and sometimes also screening of the electron-phonon interaction is consid-
ered inadequately or neglected. The former can lead to an overestimation of the
deformation potential constant, as we will show in our discussion about the influ-
ence of the electron envelope function on phonon emission in Section 6.3.3. On
the other hand, the non-consideration of screening results in an underestimation
of the deformation potential constant since the calculated values of power loss are
artificially enhanced (see Fig. 6.3). An additional problem appears in all calcula-
tions using the isotropic approximation for the electron-phonon matrix elements
(Eq. 4.68). At low electron temperatures, Ty < Tpg, this also leads to an overesti-
mation of the deformation potential constant (Jasiukiewicz and Karpus, 1996).

With the help of the relations (6.12) and (6.13) we are able to calculate the acous-
tic phonon emission into an arbitrary solid angle of wavevector space over a wide
temperature range. However, in order to compare our results with heat pulse exper-
iments we need the acoustic phonon power emitted in selected directions t = r/|r|
of real space. As discussed in Chapter 3, in real space the phonons are propagating
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in the direction of the group velocity vq  which, in general, is not parallel to q.
This feature strongly influences the angular distribution of the emitted power in
the substrate. So the emitted power of mode A in the unit solid angle around r has
to be expressed by the product of Pé(lgp) or Pé(liE) with the corresponding focusing

factor Ag,» defined in Section 3.2

Tl/qy)\
DP,PE ~(DP,PE
P = Aan By (6.16)
=1

(Lehmann et al., 1998; Jasiukiewicz, 1998). The phonon wavevector directions q;
(i =1,...,nq,) contributing to the sum in (6.16) are the solutions of the equation
Vg = I. For comparison with real experiment the right hand side of Eq. (6.16)
has to be calculated taking into account the finite extension of the corresponding
detector and source areas.

At the end of this section we want to return once more to the question of screen-
ing of the electron-phonon interaction and its influence on the phonon emission.
As already mentioned in Section 6.1, it is widely thought that screening is really

(a)

Figure 6.3: Calculated angular distribution of the deformation potential coupled LA

phonon emission by 2D electrons in a GaAs/AlyGaj_xAs heterojunction (electron tem-
perature T.; = 25K, electron density nop = 2.8 - 1019 m_2) including screening (a) and
without screening (b). The phonon intensities are represented as a function of detector
position. The images are centered on the [001| propagation direction, and span an angle
of approximately +50°.



114 Acoustic Phonon Emission by Hot Electrons

only important for acoustic phonon emission of 2D electron systems at low elec-
tron temperatures, in the noted screening temperature range where piezoelectric
coupling is dominant. However, this general statement is wrong, particularly, in
angular-resolved phonon spectroscopy. To demonstrate this fact we have calculated
the power of the deformation potential coupled LA phonon emission, Pf(BZ)L A @S
a function of the detector direction r for electron temperatures 7, much above
the screening regime. The results are presented in Fig. 6.3 for 2D electrons in a
heterojunction at an electron temperature of 25 K. In (a) the emission is calcu-
lated with full wavevector- and temperature-dependent dynamic screening of the
electron-phonon interaction in the RPA and in (b) screening is neglected. We ob-
serve a general attenuation of the electron-phonon coupling due to the inclusion of
electron-electron interaction resulting in slower relaxation rates of the hot carriers.
However, most remarkable of all is that the large peak for phonon emission close
to the normal to the 2D system, which is present in the unscreened model, com-
pletely disappears in the case of screening. The reason is that though for a typical
2D electron gas at T, = 25K the relation ¢ > ¢gg holds for the relevant phonon
wavevectors, for the emission close to the normal the component ¢, is very small
and so, in respect of Eq. (B.38), the deformation potential interaction is effectively
screened.

6.3 Angular and mode dependence of acoustic
phonon emission

6.3.1 Results and comparison with experiment

Based on our theoretical model we have performed numerical calculation of the
angle-resolved acoustic phonon emission for 1D and 2D electron systems at electron
temperatures in the range of 2-50 K. In the discussion that follows we present
results for quasi-2D electrons in modulation-doped heterojunctions and quantum
wells in GaAs/Al Ga;_As structures for Ty = 20 K and 25 K.

In Fig. 6.4 the angular dependence of the acoustic phonon emission by 2D
electrons in a 5.1 nm quantum well is shown. The contributions of the different
phonon modes and coupling mechanisms are depicted separately. The calculations
assume a point source, a detector size of 25x 25 um?, a substrate thickness of 330 um
and an electron density of 1.8-10'> m~2. The emission is clearly very anisotropic for
all phonon modes and coupling mechanisms. At very small angles (relative to the
normal to the 2D plane), i.e. at very small in-plane components ¢, of the phonon
wavevector, the emission falls sharply to zero due to the restrictions by the electron
response function 1% (¢, w) in Eq. (6.10). For electron temperatures kpTy <

the imaginary part of Xﬁl(q”,w) is only different from zero if, according to (B.33)
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DP
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Figure 6.4: Calculated angular distribution of the phonon emission by a 5.1 nm quantum
well (T = 25K). The intensities are represented as a function of the detector position
(substrate thickness 330 pm) and the contributions of the different modes (LA and TA =
STA + FTA) and coupling mechanisms (deformation potential and piezoelectric interac-
tion) are shown separately. (From Lehmann et al., 2002a.)

and (B.37), the condition
q, m*w

<1 (6.17)

holds. Thus g,/q 2 m*cq/hkr is a necessary condition for emission. Conservation
of energy and in-plane momentum account for relation (6.17), which causes also
the suppression of phonon emission at large angles, the so-called 2k cutoft for g.
Additionally, at large angles the emission intensity is according to Section 3.3.2,
Eq. (3.35), reduced by the geometry factor cosd,/r?, where r is the distance be-
tween phonon source and detector and ¥, is the angle between the source-detector
direction and the normal to the 2D plane. On the other hand, at small angles with
q,/q > m*cqx/hkp but with ¢, < ¢s emission is drastically reduced by screening as
discussed at the end of Section 6.2. Beyond these effects, caused by the reduced
dimensionality of the electron system, source-detector geometry and screening, in-
teresting features, which have their origin in the acoustic anisotropy of GaAs, can
be observed in Fig. 6.4. In the case of the TA patterns, peculiarities associated with
focusing of the slow and fast TA phonons (see Fig. 3.8(a)) are clearly visible. A fur-
ther significant result is the surprisingly strong emission of deformation potential
coupled slow TA phonons in a direction close to the normal to the 2D electrons.
This contribution would be totally absent in calculations using the isotropic approx-
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Figure 6.5: As Fig. 6.4 but for a 15nm quantum well. All phonon intensities have been
multiplied by a factor 5 to compensate for the lower total emitted power. (From Lehmann
et al., 2002a.)

imation of the electron-phonon coupling coefficients. If we superpose in Fig. 6.4 the
contributions of all modes and coupling mechanisms, the essential characteristics
of the experimental image (Fig. 2.8(a) in Chapter 2) for the phonon energy flux
emitted by hot 2D electrons will be reproduced.

Compared to Fig. 6.4 the results presented in Fig. 6.5 are for a well width of
15nm instead of 5.1 nm. We notice that, for all modes and coupling mechanisms,
the angular distribution of the emitted acoustic phonons is narrower (i.e. closer
to the normal to the 2D electrons) in the case of the 5.1 nm well. In addition the
phonon power is larger. In Fig. 6.5 the phonon intensities have been multiplied by
a factor 5 compared to Fig. 6.4 to compensate for the lower total emitted power
from the 15nm well (see also Figs. 6.16 and 6.15 in Section 6.3.3). The stronger
confinement of the electrons in the narrower well, which opens up more momentum
space for electron-phonon scattering, is a reason for this effect. This is accounted
for by the squared overlap integral |G11(q.)|? appearing in the equations for the
emitted power. The corresponding dependence of the overlap integral on the well
width is explicitly given in the formulae (C.16) and (C.17) of Appendix C.1.2.

Next we compare our theoretical results to heat pulse measurements performed
by Kent and coworkers. The quasi-2D electron devices were grown on (001) GaAs
wafers about 0.4mm thick. The active region (area of the phonon source) was
120 x 50 um? in size. On the back face of the substrate three 100 x 10 yum? alu-
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minium superconducting bolometers were arranged as phonon detectors as shown
in Fig. 6.6. For details of the experimental method see Lehmann et al. (2002a).
The sample parameters for the quantum wells are given in Table 6.1, the hetero-
junction sample had an electron density of 2.8 - 10° m~2.

~ 0.4 mm
< > bolometers
14 deg.
to signal
“ai. [: averager
0 deg.
28 deg.

Figure 6.6: Experimental geometry for the experiments described. (From Lehmann
et al., 2002a.)

Table 6.1: Parameters of the quantum well samples.

Well width [nm] 3 51 68 12 15

2D electron density [10*° m~2] 1.8 1.8 2.0 3.7 3.6

Typical heat pulse signals for the 5.1 nm and 15 nm well with the phonon detector
placed directly opposite the device are shown in Fig. 6.7. For both quantum wells
the total dissipated power per electron was ~ 1 pW. The LA and TA phonons are
resolved owing to their different times of flight as described in Section 2.2.1. It is
eye-catching that for the 15 nm well the intensity is weaker and that the LA signal
has almost disappeared. Both facts are clearly supported by our numerical results
in Figs. 6.4 and 6.5.

Results similar to those of the 15 nm well could be found for the heterojunction
on a (001) substrate (Fig.6.8). Here no LA phonon pulse, which is expected to start
at 80ns, was observed at all for emission close to the normal to the 2D electrons.
Taking account of the noise on the signal, one can put an upper bound of 0.05 on the
ratio of intensities LA:TA (Lehmann et al., 1998). This result was in contradiction
to all previous theories predicting a dominance of the deformation potential coupled
LA modes, even with a simultaneous consideration of the strong focusing of TA
modes in normal direction. For example, in the given experimental geometry, a
ratio of 3.5 would be obtained using the conventional theory that ignores the effect
of screening of deformation potential coupling and the effect of acoustic anisotropy
when calculating the electron-phonon coupling (see e.g. Challis et al., 1987; Xu and
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Figure 6.7: Time-resolved bolometer traces (heat pulse signal) for 5.1nm and 15nm
quantum wells using a bolometer located directly opposite the device. The signal within
the first 40 ns after the start of the excitation pulse at time ¢ = 0 is due to electromagnetic
breakthrough of the pulse. For the 5.1nm well the LA phonons arrive at about 75ns
followed by the TA phonons at 110ns. (From Lehmann et al., 2002a.)

bolometer signal (arb.)
N

0 100 200 300 400 500
time (ns) _
Figure 6.8: Heat pulse signal emitted by hot 2D electrons in a mbdulation—doped het-

erojunction. The phonon detector is directly opposite the device. (From Lehmann et al.,
1998.)
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Table 6.2: Comparison of theory with experiment for a phonon detector directly opposite

the device and a power dissipation of approximately 0.1 pW /electron (Lehmann et al.,
2002a).

Well width 3nm | 5.1nm | 6.8nm | 12nm | 15nm Heter.o—
junction
LA/TA  (experiment) 0.7 0.9 1.1 0.5 0.1 0.05
LA/TA (conv. theory) | 255 144 94 29 18 3.5

LA/TA  (theory incl. 0.83 0.84 0.53 0.19 0.16 | 0.1
ac. anisotr.+ screening)

Mahanty, 1994; Vasko and Mitin, 1995; Kent et al., 1997¢c) but does take account
of phonon focusing in the GaAs substrate.

Table 6.2 shows the ratio of the LA:TA pulse amplitudes at the phonon detec-
tor directly opposite the device obtained from experiment, from the conventional
theory, and from our model. One should note that at the low dissipated pow-
ers some of the experimental phonon signals are quite noisy and so a maximum
uncertainty in LA:TA of (+100/-50)% should be allowed for when comparing the
experimental results with theory. The theoretical results were obtained by inte-
grating Pf(RP) + Pf(}j\E) over all angles corresponding to the given size and shape of
device and detector. We can state that the agreement between our theory and the
experimental data is quite good (within a factor of about 2) across the range of
samples measured. In the calculations we have included isotope scattering of the
phonons as they traverse the substrate, see Eqs. (3.16) and (3.38) of Section 3.3.
This attenuates the higher frequency (> 500 GHz) phonons in the emitted spec-
trum and leads to a reduction of the LA:TA ratio at a very small well width and
for the heterojunction device (Lehmann and Jasiukiewicz, 2002). We have also
taken into account the penetration of the electrons into the barrier material by
using finite potential steps at the interface. Nevertheless, it should be pointed out
that the confinement potential used, although an improvement of the conventional
theory, is still approximate and could account for some of the deviations between
experiment and theory, especially for narrow wells. For very narrow wells (3nm)
effects by the conduction band nonparabolicity, see Section 4.1.3, may also be a
source of error.

The conventional theory is shown to be totally inadequate to explain the ex-
perimental data for all samples. The LA:TA ratios obtained this way are much too
large even though, as in the case of the results in Table 6.2, it includes the screen-
ing of the deformation potential interaction in the static approximation. The main
reason for the large differences between our theory and the conventional theory is
the absence of any deformation potential coupled TA phonons in the conventional
model. Also for a (311) device, where the effect of phonon focusing would be much
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Table 6.3: Comparison of theory with experiment for the 6.8 nm well at a power dissi-
pation of approximately 0.1 pW /electron. At 28° the TA signal cannot be resolved from
the noise, this sets a lower bound on the value of LA:TA (Lehmann et al., 2002a).

Detector 0° 14° | 28°

LA/TA (experiment) 1.1 | 3.8 | > 30
LA/TA (theory incl. ac. anisotropy + screening) | 0.53 | 6.9 | 97

different from that of a (001) device, we have compared the results of the stan-
dard theory (including only focusing and the device-detector geometry) with our
theory (including also the acoustic anisotropy in the matrix elements) and with
experimental results (Lehmann et al., 1998). Also in this case the inclusion of the
acoustic anisotropy in the electron-phonon coupling gives results that are much
closer to the measurements than the standard theory.

To test our theoretical predictions concerning the angular dependence of the acous-
tic phonon emission we have compared the LA:TA ratio for nonzero detector angles
with corresponding experimental results in Table 6.3. The ratio increases on mov-
ing to larger angles because the deformation potential coupled TA phonons that
are strongly focused close to the [001] direction (see Figs. 6.4 and 6.5) do not hit
on the detector. Although the agreement between theory and experiment is not
perfect at the larger angles, the results are much better than for the conventional
theories without full screening and acoustic anisotropy, giving LA:TA > 100 for
both the 14° and 28° detector. For a 5nm quantum well Vasko and Mitin (1995)
have shown that at not too small emission angles TA phonon contributions due to
macroscopic deformation (ripple) interaction, see Section 4.2.3, are possible. How-
ever, their calculation restricted to temperatures below 10 K and based on a very
simple isotropic phonon model does not allow any quantitative estimates of the
resulting effect on LA:TA ratios.

6.3.2 The effect of acoustic anisotropy

As shown in the previous section, acoustic anisotropy has a decisive influence on the
results of angle-resolved phonon emission, and its impact is multifaceted. There-
fore, in the following we will illustrate how the emission results are affected by
different aspects of acoustic anisotropy. Two effects are dominating: on the one
hand the influence on the phonon propagation of the emitted phonons, i.e. the
effect by phonon focusing (cf. Sections 3.2 and 3.4), and on the other hand the
influence on the angle dependence of acoustic phonon emission itself, i.e. the effect
by the anisotropic nature of the electron-phonon coupling (see Section 4.2.4).
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In Figs. 6.9-6.12 we compare the ‘exact’ theoretical angular distribution of the
phonon flux emitted from a (001) GaAs/Al,Ga;_(As heterojunction with a calcula-
tion (b) using the isotropic approximation for the electron-phonon matrix elements
(Egs. (4.66)—(4.68)) and with a calculation (c), where the phonon focusing in the
substrate is ignored. The results are separately displayed for deformation poten-
tial coupled LA phonons (Fig. 6.9), deformation potential coupled TA phonons
(Fig. 6.10), piezoelectric coupled LA phonons (Fig. 6.11) and piezoelectric cou-
pled TA phonons (Fig. 6.12). Large deviations in the angular distribution for
the patterns without focusing for all modes and coupling mechanisms and the al-
ready mentioned significant contribution from the deformation potential coupled
TA phonons (Fig. 6.10(a)) are evident. As visualized in Fig. 6.10(b) the latter
contribution is completely missing in the model using the isotropic approximation
for the interaction matrix elements. This will have considerable consequences for
angle-resolved phonon emission with detectors directly opposite the 2D electrons.
Whereas, for total emission the importance will be only secondary, since the phonon
signal in Fig. 6.10(a) is only in a small angle range around the normal to the 2D
system significantly different from zero. This conclusion will also be quantitatively
confirmed by our calculations for hot electrons in quantum well structures, see
Figs. 6.15 and 6.16 in the next section.

L
o

Figure 6.9: Patterns of the angular dependence of LA phonon emission by deformation
potential coupling. Each point of the patterns corresponds to a detector position, whereas
the hot 2D electron gas (Ty = 20K, ngp = 2.8-10° m~2) is at the center on the opposite
side of the substrate. A gray tones scale is used, where black means zero phonon flux

in this direction and white corresponds to the maximum value of phonon signal. The
patterns are centered on the [001] direction, and span an angle of +56° left to right
(in [110] direction). Pattern (a) is the result of exact calculations, (b) is the result of
the isotropic approximation for the electron-phonon matrix elements and (c) is without
phonon focusing in the substrate. (From Lehmann and Jasiukiewicz, 1999.)
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(a) (b) ()

Figure 6.10: Angular dependence of TA phonon emission by deformation potential cou-
pling. For details see Fig. 6.9.

(a) (b) ()

Figure 6.11: Angular dependence of LA phonon emission by piezoelectric coupling. For
details see Fig. 6.9.

(a)

Figure 6.12: Angular dependence of TA phonon emission by piezoelectric coupling. For
details see Fig. 6.9.
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Altogether, the results for the different approximations clearly demonstrate that
only a complete theory that takes proper account of the full acoustic anisotropy
allows a satisfactory description of the phonon emission by hot 2D electrons. Even
considering the emission process by itself, i.e. abstracting from focusing of the
emitted phonons, it is wrong to say that the angle dependence is entirely due to
momentum and energy conservation, as stated for a GaAs based 2D electron gas by
Xu and Mahanty (1994). The simplest proof is the comparison of the patterns (a)
and (b) in Figs. 6.10 and 6.12.

Further details about the impact of acoustic anisotropy on the acoustic phonon
emission by hot 2D and 3D electrons in III-V and II-VI types of cubic semiconduc-
tors can be found in the papers of Jasiukiewicz and Karpus (1996), Jasiukiewicz
(1998), and Lehmann and Jasiukiewicz (1999).

6.3.3 The effect of carrier confinement

Complying with the results of Section 6.3.1, the confinement of the low-dimensional
electrons, in addition to the acoustic anisotropy, accounts for the peculiarities in
the phonon emission. According to Eq. (6.10) the phonon emission is strongly influ-
enced by the overlap integral G11(q, ) defined in Eq. (4.74) and depends therefore,
as shown in Chapter 4, via the electron envelope wavefunctions on the confinement
potential of the carriers. We will illustrate this effect in more detail by means of
two characteristic examples.

First we consider the question, how sensitive the theoretical results of angle-resolved
phonon emission are to the used electron envelope wavefunctions. For these pur-
poses we have calculated the angular dependence and the mode distribution of the
emitted phonon signal for a modulation-doped GaAs/Al,Ga;_(As heterojunction
by means of the widely used variational envelope functions of Fang-Howard type
(4.27, 4.28) and have compared the results to a model, where we have applied
the exact Airy function solution (4.25) for the approximately triangular electron
confinement potential. For typical parameters of a modulation-doped heterojunc-
tion, an electron density of nop = 2.8 - 10 m~2 and a depletion charge density
of Ngep = 0.46 - 10 m~2, Fig. 6.13 shows the angular distribution of the emitted
LA and TA phonons for the model with the Fang-Howard envelope function and
the model with the Airy function. In both cases the electron envelope wavefunc-
tions were obtained for the same confining potential, where an infinite conduction
band discontinuity at the interface was assumed. For almost all emission angles
we observe an underestimation of the phonon signal in case of the Fang-Howard
envelope function, which is an agreement with our result for the overall energy
loss rates in Fig. 6.2. Particularly large deviations occur for phonons at angles
close to the normal to the 2D electrons. The main reason for this behaviour can
be found in the wavevector dependence of the squared overlap integral |Gy (q.)|?
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FH-function model Airy-function model

Figure 6.13: Intensity of phonon signal for LA phonon emission (upper plots) and TA
phonon emission (lower plots) as a function of detector position. The intensities are calcu-
lated for a hot 2D electron gas at Ty = 25 K using two electron envelope wavefunctions of
different shape: left figures with the variational Fang-Howard wavefunction, right figures
with the self-consistent Airy solution. All other parameters are the same. The images are
centered on the [001] propagation direction, and span an angle of approximately £55°.
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Figure 6.14: Wavevector dependence of the squared overlap integral for the Airy function
solution (Ai) and for the Fang-Howard function solution (FH).

shown in Fig. 6.14. The much faster drop of |Gi{(¢,)|? with the increasing perpen-
dicular component of the phonon wavevector is evident, which suppresses emission
in normal direction. This is the result of the slower decline of the Fang-Howard
wavefunction if we increase the distance to the interface (see Fig. 4.4 on page 57).
To demonstrate the effect on the phonon emission more quantitatively we have
compared the results of a calculation using the Airy function solution with the
results of the Fang-Howard model for three different electron densities both for
the total emission rate and for phonon emission close to the normal to the 2D
electrons (Table 6.4). For the directly opposite detector the differences between
the two models are not only much more pronounced, up to a factor of 3.6 for the
considered electron densities, in contrast to the total phonon emission rate we also
find larger changes for the TA phonon modes. This fact leads to a remarkable re-
duction of the LA:TA ratio, for details see Lehmann and Jasiukiewicz (2002). Both
characteristics of the Airy function model, the reduced LA:TA ratio for emission
perpendicular to the 2D electrons as well as the higher overall emission rates, are
in good agreement with the experimental observations. Further improvements are
possible taking into account a finite conduction band discontinuity at the inter-
face, i.e. allowing a penetration of the electron wavefunction into the Al,Ga;_,As
barrier as shown in Fig. 4.4. These adjustments have been borne in mind in our
calculations of angle-resolved phonon emission of Section 6.3.1.

Summarizing the given arguments one can state that phonon emission rates are
very sensitive to the correct shape of the electron envelope function and that mod-
els with simple variational wavefunctions, like the Fang-Howard functions, result in
a deficient description. Recently Kent and Wigmore (2003) have qualitatively stud-
ied the effect on phonon emission by the application of improved variational wave-
functions as given in Eq. (4.29). These functions show an asymptotic behaviour
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Table 6.4: Changes in phonon emission rates for hot 2D electrons (7, = 25K) in
GaAs/AlGaAs heterojunctions due to different envelope wavefunctions. For different
electron densities the total emission rate (PA1) and the emission rate (P{) into direc-
tions close to the normal to the 2D system (¥ between 0° and 15°) are calculated with
the exact ground state solution (Airy function) for the given confinement potential and
compared to results (PFH PH) obtained with the variational solution (Fang-Howard

function).
electron density || (PA— PFI)/pFH | (pAl _ pFi) /ptil
[10"m~?] only LA only TA | only LA  only TA
1.0 +56%  +34% +53%  +136%
2.8 +70%  +43% | +140%  +218%
5.0 +75%  +48% | +201%  +262%

which is compared to the Fang-Howard functions much closer to the self-consistent
Airy solutions. However, as already mentioned in Section 4.1.3, the price is that
the overlap integral and the form factor can no longer be obtained analytically.
Therefore the practical advantage over the direct use of numerical self-consistent
solutions is small.

Now, as a second example for the influence of electron confinement on the emis-
sion rates, we study the emitted acoustic phonon power for GaAs/Al,Ga;_(As
quantum wells as a function of the well width. At first, we show the dependence
of the total emitted power per electron (Fig. 6.15) at an electron temperature of
25 K for different phonon modes and coupling mechanisms. As expected, the total
emission is dominated by the deformation potential coupled LA phonons for all
well widths. All other contributions are at least ten times weaker. The deforma-
tion potential coupled TA phonon emission is negligible, which accounts, among
others, for the relative success of the isotropic approximation for calculations of
total energy and momentum relaxation of 2D electrons in GaAs structures. In-
creasing the well width, the emission rates per electron due to the deformation
potential coupled LA and TA phonons decrease while the piezoelectric coupled
emission remains fairly constant. The increase in the acoustic deformation poten-
tial scattering for narrower quantum wells was already observed in time-resolved
luminescence measurements many years ago (Leo et al., 1988), but the effect was
attributed to an increase in the deformation potential coupling constant ©4 or to
changes of the in-plane effective mass m* of the electrons. However, from for-
mula (6.12) it follows that the well width dependence of the squared overlap in-

tegral, | Gi1(qL)|? ~ [%}2/(@[%)2 (see Appendix C.1.2), is the main

reason, since it suppresses the emission of high-q deformation potential coupled
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Figure 6.15: Contribution of the different phonon modes and coupling mechanisms to
the total energy loss rate of 2D electrons by acoustic phonon emission at Ty = 25K as
a function of the quantum well width. The calculations are performed for an electron
density of 1.8 - 10 m~2 within a model including the full acoustic anisotropy, dynamic
screening in RPA and finite potential well barriers.

phonons in the wider wells.

A totally different behaviour than in Fig. 6.15 is observed in Fig. 6.16, where the
results for the emission into a restricted range of angles corresponding to the ex-
perimental geometry of a bolometer directly opposite the device is displayed. For
well widths < 7nm, the deformation potential coupled LA phonons give the largest
contribution to the phonon flux at the bolometer. However, for well widths > 7nm
the TA mode becomes dominant. This is due to two factors: the weaker confine-
ment for the electrons which leads to the suppression of the high q phonons and,
as shown at the end of Section 6.2, screening. If the screening of the deformation
potential coupled LA phonons is ignored, as it is sometimes the case in theories
for acoustic phonon emission, the emission of deformation potential coupled LA
phonons would always dominate in the direction normal to the 2D electron system.
It is worth noting that for this geometry no significant contribution from the piezo-
electric coupled LA phonons may be evidenced. On the other hand, the surprising
dominance of the deformation potential coupled TA phonons for weakly confined
electrons (large well widths) can be proved also for higher electron temperatures
close to the onset of optical phonon emission (Lehmann et al., 2002a).



128 Acoustic Phonon Emission by Hot Electrons

W]

100.0

0
—

100

power/electron [10°

P R R R R R N
1'0246810121416

quantum well width [nm]

Figure 6.16: Calculated well width dependence of the fraction of the total emitted phonon
power, which falls on a detector located directly opposite the device. The source and the
detector dimensions are the same as in the experiment described in Section 6.3.1. The
contributions of the different modes and coupling constants are shown separately.

6.4 Open problems and outlook

In spite of large progress achieved in the theoretical understanding of electron relax-
ation in 2D systems some questions are still unanswered or not solved satisfactorily.

A central point is the role of coupled modes and two-phonon processes and their
influence on the results of phonon pulse measurements. Calculations are necessary
that not only simultaneously include all different relaxation channels but also al-
low for the full acoustic anisotropy of the interaction matrix elements, the realistic
envelope wavefunction and screening. Since only the decay products of coupled
modes and two-phonon emission reach the detector and since these decay products
are the result of a whole sequence of anharmonic down-conversion processes, corre-
sponding theoretical models for time- and angle-resolved phonon emission should
include anharmonic decay and scattering processes for the phonon propagation in
the substrate. However, the situation is complicated and highly complex. The
present knowledge about the primary decay process of the coupled modes leaves
many question open. In addition, not only for the ballistic propagation but also
for the quasi-diffusion the temporal and angular distributions of the phonon in-
tensity differ for anisotropic media from the isotropic case (Tamura and Harada,
1985; Msall et al., 1993; Gancza et al., 2001). Thus the acoustic anisotropy has
to be included not only in phonon propagation, but also in scattering and down-
conversion.



6.4 Open problems and outlook 129

The remaining discrepancies between experimental and theoretical results in the
LA:TA ratios of the angle-resolved phonon emission for narrow quantum wells
are another open challenge. Here, the inclusion of the ripple mechanism and the
consideration of electron interaction with confined modes seem to be promising
refinements if they will combined with realistic anisotropic phonon models.

Compared to both preceding points a further open problem, the detailed angular
distribution of acoustic phonon emission if intersubband transitions are allowed,
is easier to solve. All theoretical and experimental results presented in the fore-
going sections of this chapter were restricted to electron systems in which only
the lowest subband is occupied. However, there are practical electronic devices,
for example high electron mobility transistors (HEMTs), working at higher den-
sities where higher subbands can be occupied and this at electron temperatures,
where acoustic phonon emission is dominant. In this case electron relaxation within
higher subbands and between different subbands has to be included. The theoreti-
cal treatment is very similar to what has been discussed in Section 6.2. The overlap
integral G11(¢qy) and the dielectric matrix €}i(g,,w) in Eq. (6.10) only have to be
replaced by Gy(q1) (see Eq. (B.5)) and the modified dielectric matrix e;/(q,w)
(see Eq. (B.24)), respectively, and the sum over all possible interband and intra-
band transitions /, !’ has to be performed. Xu and Mahanty (1994) have calculated
the angle dependence of acoustic phonon emission by 2D electrons in case of two
occupied electron subbands and found a more marked angle dependence and larger
emission rates for intersubband emission processes than for intrasubband processes.
However, in their calculations all effects by acoustic anisotropy have been neglected
making a quantitative comparison to corresponding phonon emission experiments
(Rothenfusser et al., 1986; Hawker et al., 1995) almost impossible. Realistic nu-
merical calculations for 2D electron systems with higher subband occupancy, which
include acoustic anisotropy in the matrix elements and in the phonon propaga-
tion, can, in combination with detailed angle-resolved phonon measurements, give
supplementary information about the electron-phonon coupling and the electron
confinement.

A large field of activity both from the practical and the theoretical point of view,
but beyond the scope of this chapter, is also the phonon-emission spectroscopy of
quantum wires and quantum dots.






Chapter 7

Summary and Conclusions

The generation and propagation of pulses of nonequilibrium acoustic phonons and
their interaction with semiconductor nanostructures have been investigated. Such
studies can give unique information about the properties of low-dimensional elec-
tron systems, but in order to interpret the experiments and to understand the
underlying physics, a comparison with theoretical models is absolutely necessary.

A central point of this work is therefore a universal theoretical approach allow-
ing the simulation and the analysis of phonon spectroscopy measurements on low-
dimensional semiconductor structures. It has been developed in the past years
in conjunction with Cz. Jasiukiewicz and T. Paszkiewicz and has been applied
to various problems such as phonon imaging of semiconductor substrates, ballis-
tic phonon absorption by low-dimensional electrons, phonon induced drag in 2D
and 1D electron and hole gases, phonon drag in epilayers, phonoconductivity of
quantum wires or energy relaxation by hot 2D electrons. The model and the ac-
companying numerical programs take into account the characteristic properties of
the considered systems. These properties are the elastic anisotropy of the substrate
material leading to focusing effects and highly anisotropic phonon propagation, the
anisotropic nature of the different electron-phonon coupling mechanisms, which de-
pend manifestly on phonon wavevector direction and polarization vector, and the
sensitivity to the confinement parameters of the low-dimensional electron systems.
We have proved that screening of the electron-phonon interaction (both for piezo-
electric and deformation potential coupling) can have a much stronger influence
on the results of angle-resolved phonon spectroscopy than expected from transport
measurements. Since we compare theoretical simulations with real experiments,
the geometrical arrangement and the spatial extension of phonon source and de-
tector are also included in the approach enabling a quantitative analysis of the
data this way. The numerical results so obtained show a very good agreement
with corresponding measurements demonstrating thus the strength of the model in
accurately describing the experimental situation.
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In the present work, special attention has been given to the effects of acoustic
anisotropy and carrier confinement. In earlier theoretical studies the acoustic
anisotropy has usually been treated incompletely considering only the focusing
in the substrate material and even that often insufficiently. The reason is the com-
plex structure of the phonon slowness surface for crystalline materials usually only
allowing simple solutions for the phonon group velocity or the phonon polarization
vector for phonon wavevectors directed along the symmetry axes of the crystals.
However, in order to calculate the propagation of phonon pulses or the angle de-
pendence of the electron-phonon matrix elements, the phonon group and phase
velocity as well as the exact polarization vectors are needed for all wavevector di-
rections and all modes. In theories describing electron transport or thermopower
this angle dependence is naturally not so important because these methods average
or integrate over all phonon directions and phonon modes. In phonon spectroscopy
the situation is totally different since here we are interested in detailed information
about the interaction of electrons with phonons of a given wavevector and polar-
ization. Therefore, the complete involvement of acoustic anisotropy is absolutely
essential.

Also the theoretical description of carrier confinement demands special care in the
case of phonon spectroscopy on low-dimensional electrons. We have demonstrated
that approximations as the variational envelope wavefunctions of Fang-Howard
type, widely used to model the electron confinement in modulation-doped hetero-
junctions, can fail in the case of quantitative studies. This is caused by the strong
dependence of angle-resolved phonon emission and absorption on the accurate form
and width of the electron envelope functions.

To illustrate the influence of acoustic anisotropy and carrier confinement on the
results of phonon spectroscopy in detail we have analysed two different applications
in the present work and compared our theoretical results to corresponding mea-
surements by A. J. Kent and coworkers. In one case the low-dimensional electron
system acts as the phonon detector and the phonon induced drag current is mea-
sured. In the other case the low-dimensional electron system is the phonon pulse
source and the energy relaxation of the low-dimensional electrons is investigated.
Furthermore, in the former case the results are superposed by the quasimomentum
focusing image of the phonons in the substrate and in the latter case by the energy
focusing image.

We have developed a theoretical model which enables us to calculate the elec-
tric current induced in low-dimensional electron systems by pulses of (ballistic)
nonequilibrium phonons and which includes the effects of electron confinement, of
anisotropic phonon propagation and interaction as well as of the detailed detector-
source geometry of real experiments. The low-dimensional carriers here serve as
phonon ‘anemometers’ since the drag current is caused by the quasimomentum
transfer from the nonequilibrium phonon flux to the low-dimensional electrons or
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holes. The resulting drag patterns are therefore related to the quasimomentum
focusing images of the substrate material. In the case of 2D electrons as detectors
these focusing images of phonon quasimomentum flux can be clearly observed for
low phonon frequencies and not too small electron densities. For higher phonon fre-
quencies the focusing images are destroyed severely by the (observable) 2kg cutoff
of the in-plane component of the phonon wavevector due to energy conservation and
in-plane momentum conservation and by the restrictions of phonon absorption due
to the electron confinement. Our theoretical patterns reproduce the main features
of the experimental images very well taking into account that there are no real free
parameters in the calculations. The characteristic ‘rotation’ and attenuation of the
drag patterns in the case of an applied magnetic field can be explained. The sensi-
tivity of phonon-drag patterns to variations of the confining potential of quasi-2D
and quasi-1D electrons has been demonstrated. This provides the opportunity to
use phonon-drag imaging as unique experimental tool for determining the confine-
ment lengths of low-dimensional electron systems, for example for measuring the
confinement width of quasi-2D electrons in modulation-doped heterojunctions. By
comparing the experimental and theoretical images it is also possible to estimate
the relative strength of the different electron-phonon coupling mechanisms.

In the second application we have studied the angle and mode dependence of the
acoustic phonon emission by hot 2D electrons. The results exhibit strong variations
in the phonon signal as a function of the detector position and depend markedly
on the coupling mechanism, the phonon polarization and the electron confinement
width. It has been shown that the ratio of the strengths of the emitted LA and
TA phonon modes is predicted correctly only by a theoretical model that properly
includes the effects of acoustic anisotropy on the electron-phonon matrix elements,
the screening, and the form of the confining potential. As a result, we have been
able to explain the ‘mystery of the missing longitudinal mode’ in heat-pulse ex-
periments with hot 2D electrons in GaAs/Al,Ga;_(As heterojunctions. For 2D
electrons in quantum wells we have proved a remarkable increase of the LA:TA ra-
tio with decreasing well width for emission close to the normal to the 2D electrons,
which is also observed in the experiments. The main differences between our results
and all foregoing models are that screening prevents a strong peak in the phonon
emission of deformation potential coupled LA phonons in a direction nearly normal
to the 2D electron system and that deformation potential coupled TA phonons give
a significant contribution to the phonon signal in certain emission directions. This
deformation potential coupling of TA phonons is particularly interesting since the
mechanism is forbidden in all isotropic phonon models. However, our calculations
have demonstrated that in experiments of angle-resolved acoustic phonon emission
with a phonon detector directly opposite the 2D electrons this contribution may
be even the dominating one.

Summarizing, we can state that angle- and time-resolved phonon spectroscopy
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provides new insight into carrier confinement and the process of electron-phonon
coupling of low-dimensional electron systems. In contrast to other techniques, di-
rect information concerning the phonon wavevector and polarization dependence of
the electron-phonon interaction and not only information averaged over all phonon
modes and directions is available. To analyse the results, a careful treatment
of acoustic anisotropy and carrier confinement is necessary. A simple adoption
of widely used theoretical assumptions, like the isotropic approximation for the
phonons in the electron-phonon matrix elements or the use of simple variational
envelope wavefunctions for the carrier confinement, can corrupt or even falsify the-
oretical predictions.

These conclusions would be incomplete without a comment about the perspectives
of phonon spectroscopy on low-dimensional electron systems. The application of
phonon spectroscopy is by no means restricted to the classes of electron systems
discussed in the previous chapters. Novel types of electronic and optoelectronic
nanostructures, like quantum dots, quantum wires based on nanotubes and 2D
dilute nitride systems, show fascinating new properties. They are also a challenge
for new phonon spectroscopy experiments as well as for further theoretical work on
this topic.



Appendix A

Generation and Detection of
Nonequilibrium Phonons

A.1 Sources of nonequilibrium phonons

Metal-film radiators

A common way to generate nonequilibrium phonons is to electrically or optically
excite the electrons in the crystal. A high electron density is therefore favourable.
As, on the other hand, the propagation of phonon pulses is preferentially studied
in nonmetallic crystals with low density of free electrons, a metallic material will
be deposited on the surface of the crystal under consideration. This metal film
can be heated by an electrical current as in the pioneering heat pulse experiment
of von Gutfeld and Nethercot (1964) or by laser absorption as first demonstrated
by Hensel and Dynes (1977). The latter method additionally allows a continuous
shifting of the phonon source position. This is simply realized by scanning the laser
beam to focus onto different points on the surface, which, again, is the essential
basis for the phonon imaging technique described in Section 2.2.2. However, all
heat pulse methods have a disadvantage: the broad thermal distribution of the
phonons. Usually it is assumed that there exists a complete thermalization be-
tween electrons and phonons in the heater and that the time necessary to establish
the common effective temperature is much shorter than the typical excitation pulse
length of 1072 to 10~ "s. Under these conditions a balance is established between
the excitation power and the power radiated as phonons from the heater. Accord-
ing to the acoustic mismatch theory (Little, 1959) the frequency spectrum of the
emitted phonons corresponds to a Planckian distribution and the power follows the
Stefan-Boltzmann T law. However, the electron-phonon interaction in the source
depends on the type and duration of excitation, and many complicated processes
are involved both in the heater and at the heater/crystal interface like phonon
frequency down-conversion, elastic scattering or formation of hot spots (Hensel
and Dynes, 1977; Kazakovtsev and Levinson, 1987). Therefore a precise knowl-



136 Generation and Detection of Nonequilibrium Phonons

edge of the frequency distribution of the emitted phonons is almost impossible and
approximations should be used (see Appendix A.3).

Optical excitation in the bulk crystal

Far infrared photons can be directly converted into phonons via absorption in the
vibrational bands of the crystal. However, usually the absorption of light is linked
to electronic excitations. The principle is the following (for details see, e.g. the
review by Renk, 1985): an electron will be photoexcited from the valence band to
a higher unoccupied level in the conduction band leaving simultaneously a hole in
the valence band. This nonequilibrium excitation then will decay into secondary
excitations and can eventually return to the ground state through electron-hole
recombination. One possible way is that the excited electron quickly de-excites to-
wards the bottom of the conduction band by emission of longitudinal optical (LO)
or acoustic phonons. After this the electron at the bottom of the conduction band
can recombine radiatively by photon emission (such as luminescence) or nonradia-
tively, e.g. by emitting recombination phonons. Nonradiative recombination often
takes place at impurity or crystal defect levels. The emitted LO phonons decay
into two acoustic phonons in times less than a picosecond and the high frequency
acoustic phonons also split rapidly by anharmonic decay, which scales like the fifth
power of the frequency (Klemens, 1955), into lower frequency acoustic phonons.
According to the complex processes involved the exact frequency and spatial dis-
tribution of the generated nonequilibrium phonons is difficult to designate and
depends radically on the optical excitation level (Msall and Wolfe, 2002).

The advantage of the optical technique is that the phonons are generated com-
pletely within the sample. Therefore no influence of surface imperfections or inter-
faces is encountered. Additionally, it allows an access to a wide range of phonon
frequencies up to many THz.

Excitation by electron beams

Here, the highly focused electron beam of a scanning electron microscope acts as
the phonon generator. By locally heating a small crystal region near the surface
nonequilibrium phonons will be emitted (for a review see Huebener, 1984). The
advantage of the electron beam technique is that electrons are absorbed near the
surface of any crystal, whereas in the case of optical excitation transparent crystals
have to be covered with an optically absorbing film.

Tunnel junctions and pumped superconducting films

A generation of quasi-monochromatic acoustic phonons was achieved by FEisen-
menger and Dayem (1967) by the use of superconducting tunnel junctions. Ap-
plying a bias voltage Vo = 2A/|e| phonons of frequency w = 2A/h are emitted
by the recombination of pairs of excited quasiparticles, where 2A is the width of
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the energy gap of the superconductors. At Vj > 2A/|e| it becomes possible for
Cooper pairs to break into two single particles (quasiparticles) with the result of
the creation of one quasiparticle in an unoccupied single particle state on each side
of the barrier. While the excited single particles which have tunnelled are not in
thermal equilibrium they will quickly decay back into a Cooper state. Firstly, they
will relax by the emission of ‘relaxation’ phonons (with phonon energies between
0 and |e|Vh — 2A) to the upper edge of the gap and, secondly, the relaxed single
particles will recombine (see Fig. A.1). The consequence is a broad spectrum of
‘relaxation’ phonons plus a narrower spectrum of ‘recombination’ phonons.

T energy
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Figure A.1: Schematic view of the possible processes of phonon generation in a super-
conducting tunnel junction. Cooper pairs are represented by o, single quasiparticles by e.
(Adapted from Buckel, 1990.)

An analogue quasi-monochromatic phonon spectrum can be obtained by using a
superconducting film pumped by a heat pulse (Narayanamurti and Dynes, 1971).
Here the excitation of the quasiparticles in the generator film takes place by the
high energy phonons of the heater instead of single particle tunnelling. These
phonons rapidly break Cooper pairs, thus creating quasiparticle excitations above
the energy gap. Again, as result of the following down-conversion process at least
two phonons are emitted, one necessarily of energy 2A. A technique introduced
by Karl et al. (1988) works on the same principle. By replacing the heater by
a laser focused onto a small area of the superconducting film a movable quasi-
monochromatic phonon source became available.

A disadvantage of all phonon sources based on the recombination radiation is their
fixed frequency. Small parallel magnetic fields can be applied to adjust the su-
perconducting energy gap and therefore to tune the frequency of the phonons
(Narayanamurti and Dynes, 1971). In practice, however, this causes a reduction
and broadening of the 2A peak of the spectrum. Truly tunable phonon sources have
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been realized by using the sharp edge of the phonon relaxation spectrum of super-
conducting tunnel junctions (Kinder, 1972) or by applying ac-Josephson junctions
(Berberich et al., 1982). In the first case the phonon ‘bremsstrahlung’ generated
by the relaxation of the excited fast quasiparticles before recombination is ex-
ploited. By modulation of the bias voltage Vj quasi-monochromatic phonons with
frequencies w = (|e|Vy —2A)/h are obtained. In ac-Josephson junctions (tunnelling
of Cooper pairs instead of single particles) phonons with a sharp monochromatic
peak are excited by the electromagnetic waves in the junction. Thus the phonon
peak is coincident with the Josephson frequency 2|e|V/h and is tunable by the
voltage V.

The advantages of tunable superconducting tunnel junctions are the large frequency
range and the narrow bandwidth of the monochromatic component (=~ 10 peV).
Disadvantages are the large background of phonons having a broad spectral distri-
bution and primarily, that they cannot be applied for measurements in magnetic
fields above the critical field of the used superconductors. As a possible alternative
normal state metallic tunnel junctions have been studied (Cooper et al., 1994).
However, there exist large practical problems due to the rather low monochromatic
phonon power output and the poor resolution (=~ 1 meV at 1.5K) caused by the
thermal broadening of the excited electron population.

Semiconductor nanostructures

Not only the response of semiconductor nanostructures to nonequilibrium phonons
is in the focus of attention, such systems also attract interest as generators of well
defined nonequilibrium acoustic phonons. In contrast to a heated metal film, the
phonon spectrum generated, e.g. by a heated (quasi) 2D electron gas in a quan-
tum well or a heterojunction is very nonthermal. As described in Chapter 6 both
the frequency and the angular distribution of the emitted phonons are very dif-
ferent from the 3D case. Chin et al. (1984) were the first who used 2D electrons
in semiconductor nanostructures as an acoustic phonon source. Since then the
phonon generation by 1D and 2D semiconductors has attracted considerable inter-
est both experimentally and theoretically (see, e.g. Roshko et al., 1998; Totland
et al., 1999, and references therein). The attempts to use cyclotron phonon emis-
sion from a heated magnetically quantized 2D electron gas as a monochromatic
phonon source (Toombs et al., 1987; Kent et al., 1988b; Cooper et al., 1995) are
an example. However, in this case as well the monochromatic component is only a
small signal superimposed on a large phonon background.

In recent years there have been new approaches for the electrical and optical exci-
tation of coherent monochromatic acoustic phonons in semiconductor superlattice
structures. One attempt is the generation of high frequency acoustic phonons in
an electrically biased weakly coupled doped superlattice (Glavin et al., 1999, 2002;
Cavill et al., 2002). In the hopping regime, perpendicular electron transport in
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such superlattices can give rise to a population inversion with respect to the states
involved in phonon-assisted interwell electron transitions which comes along with
phonon emission and absorption. However, up to now a practical phonon source
based on this method is still missing. To date, the ultra fast optical excitation
of semiconductor superlattices described in the next subsection seems to be the
more promising way in the search for a usable source of (coherent) monochromatic
acoustic phonons.

New sources of monochromatic acoustic phonons by ultra fast optical
excitation of metallic and semiconductor layered structures

Since the beginning of phonon spectroscopy, there has been a continuous interest in
the search for tunable sources of monochromatic acoustic phonon beams of usable
intensity. The reason is the limited spectral information in phonon spectroscopy
experiments using broadband, e.g. Planckian, phonon sources. A truly monochro-
matic (and coherent) phonon source would revolutionize the field of phonon spec-
troscopy and would enable ‘phonon optics’. New hope of a practical realization of
such a phonon source exists since the application of ultra fast optical excitation
techniques has become possible.

One approach is the laser-induced thermomodulation of thin metallic transducers
evaporated onto the sample (Damen et al., 1995, 2001). By the use of two inter-
fering single frequency lasers operating at slightly different frequencies a periodic
heating of the surface of the transducer is produced which is converted into strain
via thermal expansion synchronous with the optical difference frequency. The re-
sulting strain wave is injected into the crystal as a longitudinally polarized acoustic
wave. Frequency tuning of the phonon beam is possible by varying the optical dif-
ference frequency, but so far the generation was limited to acoustic phonons in the
gigahertz range.

Another approach is the emission of coherent acoustic phonons due to the ultra fast
excitation of electrons and holes in GaAs/Al,Ga;_,As quantum wells (Baumberg
et al., 1997) and superlattices (Yamamoto et al., 1994). Baumberg et al. have
shown that for ultra fast (femtosecond) optical pulses a longitudinal acoustic (LA)
phonon pulse is generated in a single quantum well through a coherent deforma-
tion potential mechanism at the earliest stages of optical excitation (within the first
1001s). Because it is expected that the injected stress and with it also the phonon
wave packet follow to first order the confined electron density, the frequency of
the phonon pulse is tunable by changing the confinement potential. However, the
acoustic phonon generation mechanism seems to be not yet fully clarified and more
detailed theoretical and experimental work is required.

Less vaguely is the situation in the case of superlattices. Here the periodicity in the
acoustic impedance along the growth direction leads to a mini Brillouin zone into
which the acoustic phonon dispersion is folded (Tamura et al., 1988). This permits



140 Generation and Detection of Nonequilibrium Phonons

the coupling of light with high frequency acoustic phonons in the 100 GHz to THz
range having very low phonon wavevectors. Under resonant photoexcitation (Bril-
louin scattering) coherent acoustic phonons are generated in the superlattice with a
fundamental frequency corresponding to the first Brillouin center mode and ¢ = 0.
The coherent superlattice phonons modes have been detected by time-resolved re-
flectivity (Yamamoto et al., 1994; Bartels et al., 1999). Hawker et al. (2000) and
Kent et al. (2002, 2004) have shown that the superlattice phonons leak out of the
superlattice into propagating monochromatic LA and TA phonons which can be de-
tected in the substrate at distances up to 1 mm. In a recent paper (Stanton et al.,
2003b) we have given an upper bound on the bandwidth of the monochromatic
phonon beam and have also determined the relative proportions of the longitudi-
nal phonon signal that are due to monochromatic phonons and broadband phonons
from carrier relaxation. This is possible by using a second superlattice between the
generator superlattice and the phonon detector which acts as a notch filter.

A.2 Phonon detectors

The criteria for an ideal phonon detector are: small size, high temporal and spec-
tral resolution and sufficient sensitivity and dynamic range. Due to the significant
progress made in the past, thin film superconducting detectors (bolometers and
tunnel junctions) fulfil the above attributes, with exception of the required spec-
tral resolution. The time response of the devices is in the range of nanoseconds
(allowing time-of-flight studies) and the detector dimensions are in the micrometer
range (required for a good angular resolution in phonon imaging experiments). A
handicap is that no external magnetic field can be applied.

The simplest superconducting bolometer (and the most common type of phonon
detector) is an evaporated metal film cooled to its superconducting transition tem-
perature (von Gutfeld and Nethercot, 1964). Therefore a small change in temper-
ature provoked by the absorption of phonons induces a large change in resistivity.
Usually it is assumed that all incident phonons are absorbed. Consequently, the
response signal is proportional to the total incident phonon energy.!

For operation in magnetic fields and over a wider temperature range semicon-
ductor bolometers are applied as well.

In contrast to bolometers, superconducting tunnel junction detectors have some
crude spectral selectivity. Their functioning is based on the inverse of the recom-
bination process (Eisenmenger and Dayem, 1967). Incident phonons with energy
hw > 2A are able to break Cooper pairs and thus increase the steady state quasi-
particle density. This leads to an enhancement in the tunnelling current at bias

1By careful analysis of the bolometer characteristics it is possible to deconvolve the bolometer
signal to obtain information about the incident phonon flux with enhanced temporal resolution
(Edwards et al., 1989; Danilchenko et al., 2004).
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voltages Vo < 2A/le|. Since phonons with energy < 2A are not absorbed at
sufficiently low temperature, the junction detector has a frequency threshold of
2A/h. Combined with the high frequency limit in the ballistic phonon propagation
caused by the strong frequency dependence of phonon-isotope scattering in the
crystal (scattering rate ~ w?) the onset frequency of tunnel junctions enables at
least some frequency selectivity in phonon detection (Dietsche et al., 1982). The
use of heterogeneous tunnel junctions (tunnel junctions consisting of two supercon-
ductors with different energy gaps) can enhance the frequency selectivity (Dietsche,
1978). Here the frequency threshold is voltage tunable.

Better spectral resolution, but only at fixed frequencies, can be achieved by probing
the excited states of selectively absorbing impurities by optical techniques (see the
reviews by Renk, 1985; Wybourne and Wigmore, 1988, and references therein). A
prominent example is the so called ruby phonon spectrometer (Renk and Deisen-
hofer, 1971). Here the relative luminescence of two nearby excited electronic states
of Cr** ions in sapphire (Al;O3) is used to measure the temporal and spatial distri-
bution of 870 GHz phonons. Another possibility is to exploit the vibronic sidebands
appearing in optical absorption and emission spectra due to lattice vibrations to
investigate the frequency distribution of nonequilibrium phonons (for a review see
Bron, 1980). A disadvantage of all these kinds of spectrometers is that they require
special bulk materials which cannot be applied for all phonon studies of interest.

An interesting class of phonon detectors is represented by low-dimensional electron
devices operating both as the object of study as well as a pure detector instrument.
One kind of application is based on the phonoconductivity technique in which the
change in the resistance of the device caused by the nonequilibrium phonons is
detected. For this purpose 2D electron and hole gases in GaAs heterojunctions
(Eisenstein et al., 1986; Kent et al., 1996), 2D electron gases in Si MOSFETs (Kent
et al., 1988a), in d-doped GaAs (Poplavsky et al., 2000) and GaAs HEMTs (Wig-
more et al., 1991) or 1D electron systems in nonballistic and short ballistic quantum
wires (Kent et al., 1997b, 2000) have been used. A new type of information, namely
about the quasimomentum of the propagating nonequilibrium phonons, is supplied
by a detector technique which takes advantage of the phonon-drag effect. Here the
electrical current induced in 2D or 1D electron systems by nonequilibrium phonon
pulses is measured (see Chapter 5 for details).

Another aim of the work on semiconductor nanostructures is to produce phonon
detectors that have spectral resolution. For this reason the inelastic phonon as-
sisted tunnelling caused by pulses of nonequilibrium acoustic phonons has been
investigated in tunnel devices. The effect could be demonstrated both in GaAs/
Al,Ga;_4As double barrier structures (Ouali et al., 1995) and in GaAs/AlAs super-
lattices (Cavill et al., 2002). A different approach was tried with so called quantum
well based phonon detectors which make use of the properties of a weakly confined
2D electron gas (Bai et al., 2002). By appropriate design of the quantum well,
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the energy spacing between the electronic levels of the confinement potential can
be tailored to absorb THz LA phonons with a sharp angular and energy response
function.

A further approach for a time- and space-resolved phonon detector is to use the
effect of exciton luminescence both in bulk and 2D (quantum well) semiconductor
structures (Ramsbey et al., 1994; Akimov et al., 1994, 1997). Using a sharply fo-
cused probe laser a local population of excitons is created and the changes in the
exciton luminescence induced by the nonequilibrium phonons are observed.

A.3 Wavevector and frequency dependence
of a phonon radiator

The study of the kinetics of phonon pulses in crystals requires as input information
the correct momentum and frequency dependence of the source term in the Boltz-
mann equation (3.16) for (as much as possible) realistic models of phonon sources.
In the following we will consider the problem using the example of a heated metal
film as the phonon source. For this reason we will adapt a formalism that was
developed by O. Weis et al. (Weis, 1969; Rosch and Weis, 1977, 1978) for thermal
phonon radiation and transmission to our approach of ballistic heat pulse propaga-
tion described in Section 3.3. Under conditions in which the phonon distribution
in the source contains primarily phonons of frequency less than 1 THz (low heater
power), this formalism should quite adequately describe the experimental situation.

Two assumptions are made for the phonon source (radiator): Firstly, the poly-
cristalline metal film is approximated by an elastically isotropic medium. Secondly,
the phonons created by heating such a film undergo frequent collisions with the
electrons. As a consequence the phonons inside the radiator possess a complete
equilibrium distribution and we deal with a perfect diffuse phonon field. Under
these conditions the spectral phonon energy density u$(w) for a given polariza-
tion A with a frequency between w and w + dw is given by

1
us (w)dw = ths(w)NwTSv dw , (A1)

S
where Dg(w) = % is the density of phonon states, V; is the volume of the
A
radiator material and NZs = m is the Planckian distribution function de-
termined by the phonon source temperature 7;. From the phonon energy density
the energy flux per unit frequency, q c; u3(w) %, propagating within a solid angle
d€}q about the direction q follows. Here we have used the fact that for isotropic
media in the long-wavelength limit the phonon group velocity vg \ can be substi-
tuted by the phase velocity ¢y by vg \ = vg , = ¢3 4. The spectral phonon power
of mode A (coming from the solid angle d}, and falling onto an interface area A
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with normal direction n) is therefore

dQ2 w3 NI dQ2
A A _ .8 s A A q w A A q
dps(%w)—u)\(w)c)\q-nAsE—Aqu-nE. (A.2)

By angle integration over the half-space we find the whole spectral phonon power
of polarization \ coming from inside the radiator and falling onto the interface

w/2

1 A 3]\[TS A 3NTs
PMw) = E/dﬁq sindg shw”N,® cosUq  Ahw’ N, cos Vg

(G SR

(A.3)

S

0

where 94 is the angle between the normal direction n and the wavevector q.
Finally we calculate the whole phonon power P, coming from inside the radiator
and falling onto the interface of area A

2(kgTy)* m2(kgT,)* ( 1 2 )
P, = / dwPMw A = A + 7
; Z " 12073 (c5)? 12003 \(cf2)*  (cfa)?
(A.4)

where we have applied the relation [dww?/(e™/*sT: — 1) = (kgT.m/h)*/15.
Assuming that there are no losses (no radiation into vacuum), P, should be equal
to the electrical or laser power P supplied to the heater. Therefore, one is able to
calculate the source (radiator) temperature for a given input laser power P

1/4

1 [ 12083 1 2 \ !
T, = — 0n + P4 (A.5)
ke | Asm® \(cgp)?  (cfa)?

At the source/crystal interface the emitted spectral phonon power within the angle
d€)q into the crystal is linked with the incident spectral power of the source by the
power transmission factors (93 5, ¥ ) of continuum acoustics

dPC>\((A17 (U) = Z ts ¢ /195 q, v\’ spcsl,uk) dPSV(QSy (AJ)

AJiANT
Zt awr Pan) oS Vg A g (en) dQg,, . (A6)

where the sum over v runs over all phonon polarizations (v = LA, FTA, STA). The
factor ¢5,°(95 s Pq.a) corresponds to the probability that an incident phonon of
polarization v and with a wavevector in (97, pg,)-direction will be transmitted
across the interface into a phonon of polarization A and with a wavevector in
(¥q, pq)-direction. The ratio of the solid angles d€2} ,/d€q can be expressed with
the help of Snell’s law

q,V\

sindg  sindg (A7)

c s
Cq Cc
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and the differential form of Snell’s law

cosvy  sinv) Oc® cos ) sindd, Oc
qQ q s __ q q q A
(o T ag) i (Tt an) e o

by
S 3 S S S S
qu,V)\ . Slnﬁq7y)\ dﬂq,u)\dgpq,u/\ . CE dﬁ(%y)\
; T ¢
dQg sindg diq dpg cen dUq

sin ¥4 9¢§ A

s 2 COSUq — —c 222 c . c 33

_ ¢, Y 9 cga e Ygn 08 ﬁvq’k/(cq’k) (A.9)
cs cos Y3 cos s, /(c3)? '
QA q,vA qvA/ ATy

In the last step of (A.9) we benefit from Eq. (3.9) and from the fact that for
long-wavelength phonons the phase velocities depend only on the direction of the
wavevector. Thus we derive for the spectral phonon power into the crystal (coming
from area A and falling into g-direction)

ASM3N§ UPA v s s
D (ch 7 cos Ve | Z t2 (05 a3 ) dQq - (A.10)

é\LA v

AP (g, w)

This equation shows clearly that for emission into the same solid angle the ratio of
emitted LA phonons to emitted TA phonons is in a first approximation inversely
proportional to the square of the phonon phase velocities in the crystal (the size
of the contributing solid angles in the heater is different for different modes). In
contrast, the ratio of the total number of LA phonons to the total number of TA
phonons emitted into the crystal depends from the phonon phase velocities in the
heater material. This is due to the fact that the critical angles for phonon emission
into the crystal ¥ = arcsin(cg ,/c;) are mode dependent.

If the surface between the metal film heater and the crystal is rough on a scale
larger than the phonon wavelength, specular transmission may still apply, but the
distributions of surface normals will tend to average out the anisotropy. However,
it is known from optics that a rough surface generally exhibits a cosine-like angular
dependence (Lambert’s law). Therefore it seems that the cosine factor in the
transmitted g-space flux may appear for both specular and diffuse scattering.

For real calculations one needs the transmission coeflicients ¢}, for each angle
and mode including all reflection and mode conversion processes. This is a practical
impossibility without approximations and in any case very time consuming. There-
fore, to simplify the calculations we have neglected all mode conversion processes
at the heater/crystal interface. Furthermore, the probability for transmission is
assumed to be one for all angles smaller than the critical one. In this case the
spectral phonon power of mode A into the crystal is

Ashw?’Ngs Uf(;)\

dPNq,w) = cos s @<Cq,x\ sin ﬁq) Qg . (A.11)

83 (cgl’/\)?’ cy
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It remains the question of the relation between the above derived spectral phonon
power dP°(q,w) and the source term Z(q, A, r,t) of the Boltzmann-Peierls kinetic
equation (3.16) describing the phonon pulse propagation. From the total balance
of transmitted phonons for a heater with temperature T located at z = 0 with
surface area Ag and pulse duration At

/ dw /dPQ(q, w)OMO(AL —1) =) / d*r hwgaZ(q, A\, 1, 1) (A.12)

the phonon distribution in the source term follows immediately with (3.17) and
(A.11)

A, 1 cs
acosye @(2—’:‘ — sin ﬁq) . (A13)

1s(q, wan, €40) = At V. ehwar/eTs — ] L4 ;






Appendix B

Dynamic Susceptibility of Quasi
Low-Dimensional Electron Gases

B.1 Quasi two-dimensional systems

B.1.1 The magnetic field case

We consider a quasi-2D electron gas in the zy-plane under the influence of a mag-
netic field directed along the z-axis. In this case the magnetic field does not in-
fluence the motion in z-direction which is governed exclusively by the confinement
potential V'(z). Thus the corresponding wavefunctions ¢;(z) given in Section 4.1.3
remain unchanged. Assuming the vector potential in Landau gauge, A = Bze,,
the normalized electron wavefunctions are

wlnk(r) = @Z(Z)L;I/zeiky(bn(l’ + lsz’) y (Bl)

where n = 1,2,... and k is taking the discrete values k = 27x/L, with k =

0,£1,..., i%% L,, L, are the normalization lengths of the zy-plane and I =
B

\/h/|e|B is the magnetic length. The functions

1 2 2
_ —z2 /21
¢n($) \/7].1/2(n _ 1)! on—1]p € o Hn—1<$/lB) (B-2)
are the eigenfunctions of a simple harmonic oscillator, where H, (x) denotes the

Hermite polynomials
d» -
H,(z) = (=1)"e” —e™" . B.3
() = (-1e e (3.3)

As a consequence of Eq. (B.1) the Fourier transform of the electron density operator

becomes
P = P-q= Z Gu(—¢.)p" (—ay) (B-4)
LU
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with the overlap integral

Gul(q,) = /dz ©f (2)e =% (2) (B.5)

and the in-plane component of the density operator
qH Z Z Pnn/ (k,q)) Z Z Lo (= Gy k — qy, k) C?;lk,qycl’n’kz : (B.6)

The function 1,,,/(qz, k, k') is defined by
T (o, b, B) = / dz & (& + k)" g (o + ) (B.7)

and the operators ¢, and ¢, create and annihilate an electron in the state {Ink},
respectively. Working out the commutator of pﬁf;l,(k:,qu) with the unperturbed
electron part of the Hamilton operator (i.e. without the electron-phonon coupling,
but including the electron-electron interaction)

= Z Z EnCp1.Cink (B.8)
Iln k
+ Z v(gy) ( Z gf;fi (@) " (—aq))p""*(q)) chlnkcl”k>

q”7é0 l1,l2,l3,l4

we derive the equation

[Hel,pﬁf;,(k,q“)] = (Eln—El'n/)PZ;'(kaQH) Z (g’ ZZ{

q‘|7£0 ll l2 l

gﬁlg (Q\\,)Iﬁn(+Q;7 k + Q; — Qy, k — Qy)]nn’(_%ca k— Qy, k)
[Cljo_ikJr%*fly Conrt » P12 (a))l+

N gflll? (Q\\,)In/ﬁ(q;, k7 k— Q;)[nn’(_(.h; k— Qy, k)
X [, ik, P (%)h} . (BY)

In (B.9) we have introduced the notations Ej, = FEj, for the subband energies,
v(g,) for the Fourier transform of the 2D Coulomb interaction

62

—_—— B.10

v(gy) =

and ggfi(q“) for the form factor

g (@) // dzd?' ¢} (2)pn (2)¢5, () ou ()= = gliliqy . (B.11)
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Using the RPA, i.e. keeping only the term q," = q, and replacing the operator
b iy, by its expectation value, (B.9) reduces to a set of coupled linear equations

[He, P%ﬂ(kfa q)] = (B~ Erw) Pﬁ;ﬂ(l@ qy) — (@) In (=G, b — gy, k)
X Ly (e, ko b — Qy)(fln — frw) Zgll;llg <q|\> lolll2 (qH) (B.12)

l1,l2

with fi, = (¢, .cinr) as the Fermi distribution function.
In the following we will apply these equations to determine the matrix of the

dynamic susceptibility
L
——

B.1
o : (B.13)

—0

where we have used the formulation by the Llouvﬂle operator L and the Mori
operator product as introduced in Section 5.2. We start with the operator identity

L n L
z
L+z L+=z

L=1L (B.14)

and set z = w 4 in. That way we obtain in RPA

1 L /
{Z + ﬁ(Eln - El’n')} <Pq|—PZn/(l{a QH)) - U(‘J\\)[nn’(—% k- qy, k)

L
X [nn ka k — {fln fl/ }Zghlz q (pq‘L—_i_ZIOhZQ<qH))

l1,l2

= (pal Lol (krq))) - (B.15)

For the r.h.s. of Eq. (B.15) we use the Kubo identity and find

(pal Lol () = ;<[pq,pnn (hva)])

- {fl’ I fln}Gl’l z ( qz, k— an k)ln’n(qxa k7 k— Qy) . <B16>

Dividing Eq. (B.15) by {z + %(Eln — El/n/)} and summing over n, n’ and k, we

derive a set of equations

L
L+w+m

Z {5171155’712 - U(qu)gzl;lzz(Q|\)Xz(z]'3)(QHaW)} (Pq|

l1,l2

phte (qu)>

= - Gl’l(_q,z>Xl(l]?)<QH7w> ) <B17>

where ] f f
(B) _ = C , U'n' — In
X (q),w) h ;; i () (Ey — Epp)/h—w —in

(B.18)
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and
Onn’(qu) - Zlnn’(Qmuk+Qy7k)ln’n<_Qmukak+Qy)
k

al
9

Lngfnl (

ny1—1

LxLy (nl - 1)' (CIﬁlzB)nQ_nl _% |:

e "2
% (ng — 1)\ 2

>r (B.19)

(see Ting et al., 1977). Here ny = max(n,n’'), n; = min(n,n’) and the L7*(x) are
the associated Laguerre polynomials

(n+m)!

(m—+7)! (n—7r)r v (B.20)

L(z) =) (-1)

r=0

The quantity Xl(l]? )(q”,w) corresponds to the dynamic susceptibility of a quasi-2D
noninteracting electron system in a perpendicular magnetic field B. Introducing
the dielectric matrix

! ! B
el (s w) = 8,0ty — v(g)ghs, (@) x i (qy,w) (B.21)

we obtain from Eq. (B.17)

(Pl (@) = = 3 (™ (@) Ginla i) (B22)

L+w+m 7

and finally

(ral o pa) = = 33 Gl (7 (010 G (a2 )

L+ w4+ T

(B.23)
From (B.23) follows that a straightforward screening factor cannot be defined with-
out matrix inversion in quasi low-dimensional systems. The use of a modified
dielectric matrix in the form of

_ Guw(q:)
le,lz G, (¢) (571(61“7@0))2’[2

leads to an equation of the dynamic susceptibility that is at least formally simpler:

ew(q,w) (B.24)

L > |Gll’(q2)‘ QXZ(ZJ’B)@H?“))
S R . B.25
<pQ|L+w+”7pq %; 5ll’(q,w) ( )

Fortunately, there are cases where the treatment of screening is less expensive.
For quasi-2D systems in semiconductor heterostructures it is a common situation
that the energy spacing between the substates with different [ is sufficiently large.
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Therefore, at low temperatures only the lowest substate with [ = 1 is occupied.
On these terms Eq. (B.25) simplifies substantially and we obtain in a reasonable
approximation

<p | L > _ |G11(Qz)|2X§?)(qH7w) (B.26)
q - Fq | — B ’ )
L+ w41 1 —U(‘I\|)9H(%|)X§1)(q||aw)

B.1.2 The zero field case

In this case the electrons move freely in the xy-plane and are confined in z-direction.
According to (4.13) the electron wavefunctions are

1 ikyx eikyy )

77Z)lkH (I‘) = QDZ(Z) (LxLy)lm € <B27>
Thus the Fourier transform of the electron density operator reads

Py =p-a=) CGu(=0:) )l rqocine (B.28)

l,l/ kH,O'

with the overlap integral Gy (g,) given in (B.5). The dynamic susceptibility can
be determined similar to the magnetic case and we obtain

L Gu(q.)|*xy (a, w
(pq| )Z_Z| w(g=)] "X (a1, @) (B.29)
Ll

L+w+i77pq e (q,w)
with
(0) _ _ 1 frigray) — Jiy B.30
X (qlhw> X (q,\,w) A kz (El’ku-i-qu _ Elk”>/h —w— 2.77 ) ( : )
e

The modified dielectric matrix ¢;(q,w) in Eq. (B.29) is defined analogously to
(B.24). In the special case that only the lowest substate is occupied (I = I’ = 1)
Eq. (B.29) reduces to intrasubband transitions

L __1Gn(@) X (@) B3l
pq'L—I—w—i—i Pa ) = 11 0) . (B.31)
N 1 —v(gy)gi1(q)xar (g, w)

For an electron gas at a temperature T, well below the Fermi temperature the real
and imaginary part of the function Xﬁ)(qu,w) can be calculated as following,

0 L,Lym*kp _, q hw kgl
Rexiy(aw) = —= 5= PG5 5 (B.32)
L,L,m*k q hw kgT,
Iy (g, w) = ==l L, ) (B.33)

ﬂ_th” kF ’ EF ’ EF
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where kr and Er are the Fermi wavevector and the Fermi energy of the 2D electron
gas, respectively, and

e} r d¢ ef 1 52
PlBm = /mm{\/z@*ﬂ 1o
- (B.34)

e DY)

LT dC e \/ 1 B2
iy (B.35)

s ) )

Deriving (B.34) and (B.35) we have neglected the temperature dependence of the
chemical potential.

At zero temperature (T, = 0) the function Xﬁ)(qu,w) simplifies to the well known
2D analogue of the Lindhard function (Stern, 1967) with

P(a, 3,0) = a—Re{\/}l(a + g)z -1+ sgn(&—§> \/i(a — §)2 — 1} (B.36)

and

E(a,ﬁ,O):Re{\/l—i@z—g)Q—\/1—%(044-2)2}. (B.37)

From Eq. (B.21) (now for B = 0) and the relations (B.32-B.37) we are able to
obtain the dielectric function }i(g,,w) for finite and zero electron temperature
numerically. In the static limit and for T, = 0 the result is simple (Ando et al.,
1982), namely

e1(q,0) = { 1+ é—s:[l _ \/m] olse : (B.38)

In contradiction to the strictly 2D case the screening wavevector gs = 2;50# g1i(q)
is here still a function of ¢, and depends by the form factor on the given confine-
ment potential in z-direction.
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B.2 Quasi one-dimensional systems

In this case electrons move freely only in one direction (here in y-direction) and are
confined in the other two. As pointed out in Section 4.1.3 the electron wavefunction
can be written in the form

1 oiky
Yink(r) = @1(2) ¢n(z >L1/2 : (B-39)

Y

The functions ¢;(z) and ¢, (z) are determined by the confinement in z- and -
direction. Thus the Fourier transform of the electron density operator is equal

to
p;; = P—q = Z Z G”, ( 4z =4z chnk+q ClUn'ko » (B4O)

Ll nn' k,o

where the overlap integral G”/ w(Qz, ) is now a 2D one and is defined by

G (o 02) / / dedz o (2)e= 9 oy (2) 6 (2)e— T () (B.A1)

To reduce the number of indices we will consider below only the case that from
the subbands regarding the confinement in z-direction exclusively the lowest one
is occupied (I = I’ = 1). This is an adequate restriction for the systems we are
interested in where the confinement length in growth direction is small, typically
much smaller than the (additional) lateral confinement in the plane. The dynamical
susceptibility can be obtained similar to the 2D case, i.e.

(pq| L ) Z |G q,z:qgc)‘ Xnn (Qy? ) (B42)

L+ w+ 277 Enn (W)
with F F
In'k+q — J1nk
- B.43
X”" “h Z (Evwkrq — Erpk) /b —w —in ( )
and

G /<QZa Qm)
Enn (Qyw) = 1 s - (B.44)
an,ng G}’Ling (QZ7 q£> ( (qu ))
The dielectric matrix is equal to

2

nn . € ~n'n 1D
é‘nlng(q, ) = Onny On/ g — mgn1n2<Q)Xnn’<Q7w) (B-45>
with %Sir T, as the Fourier transform of the 1D Coulomb interaction. The function

QTZ’ZQ(q) is the quasi-1D analogue of the form factor and is given by

s =[] [aasanas o @)l )6,@)67, (1)o@

X K0<q\/z—z —|—(:1:—x’)>, (B.46)
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where Ko(z) = [° dt\/c%(rwf) is a modified Bessel function of the second kind.

In the zero temperature limit the summation on the r.h.s. of (B.43) can be per-
formed explicitly and we get for the response function

X;E,(q,w) = Kpw(qw)+ K (—q, —w) . (B.47)

The real and imaginary part of K,  are given by

ReKpm (g, w) — L,ym* leg”) —q+ Q%nn/(q’w) (B.43)
7 Thq 2k + g — 2k (q,w) |
Lm* n ~
f(g,0) =~ (260 — g = 2kn(g,0)) . (BAY)

Here, we have introduced the abbreviations K (q,w) = %(Elno — Eyp0 + hw) and

k}(?") = \/ 2 (Ep — Eino). The variable k:é") is something like the Fermi wavevector

of the n-th subband. It describes the relative position of the Fermi energy Ef to
the respective subband minima Ej,,.

If we neglect screening, then only the imaginary part of the response function
(B.43) is of interest for the electron-phonon interaction. This part can be worked
out analytically for finite electron temperatures T;;, even in the case of a quantum
wire with multi-populated subbands. It is

L,m* sinh(fBhw/2)

Im P, = B.50
X (@) = = T oG 2) + cosh(B R (4,0)) (B.50)
(Hu and O’Connell, 1991), where
h2q¢®  Eipo+ Ein h? -
Ry () = o 20 2200 G2 (g0) — i (B.51)

8m* 2 2m*

and p denotes the chemical potential. Since we are mainly concerned with low T,
we use the approximation y ~ Ef.
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Overlap Integrals and Form Factors

C.1 Quasi two-dimensional systems

C.1.1 Modulation-doped heterojunctions

To obtain the matrix elements of the electron-phonon and the electron-electron
interaction we need to know the wavevector dependence of the squared overlap
integral (B.5)

2

Gur(g:)]? = | / dz gt (2)e 4y (2)] (1)

and the form factor (B.11)
g (@) = //dde' @1, ()1 (2) i, (2 ), () e =71 (C.2)

where in most cases we can restrict ourself to the electrons in the ground substate

(1=1).

According to (4.25) the z-component of the envelope function is

cp(A)i (2) = By exp (V%—%z) for z < 0 (C.3)
ch ~ °
Ap Ai(z/5 — k%) for z > 0

with 7 given by 7 = (h2/2m%~)"/® and Eq. (4.23). The value of k2 is equal to the
ground state solution of equation
mp dln Ai(z) _ K(e)Y (C 4)

miy dz r=—k272 2

The latter relation follows from the matching conditions for the wavefunction and
the electron flux at z = 0. Because the barrier height V(. is usually large compared
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to the ground substate energy we have made use of the approximation
(% — mBk )1/2 (%)1/2 = & . Substituting (C.3) into (C.1) and using

m
again the continuity of the wavefunction at z = 0 we obtain for the form factor

- Gi(q.)|”
GAI : 2 _ 711. z C5
with
. k;2 2 7 ~ .
Gii(a) = )—@q AT | /dzAl = —k*3%)e (C.6)

0

The function G{}(¢) has to be evaluated numerically for each ¢ = q.. The corre-
sponding equation for the form factor is

—-11 Ai
11 Ai J11 (q )

A AL C.7
911 ( ) g%%Al(O) ( )

where after some transformation

AR 2AR(—k9?) T )
—11Ai 2_9\ —qz
g (q) =——— + /dZAl — k*~%)e 1
11 /{(C)(/{(C) —+ q) / )
71'/4 o0
+2 /da/dzz Ai? (i Ccos ox — /;:272)Ai2 (i sina — 123272)6_‘72(0056“_81““) )
Y 7

0 0

(C.8)

Above equations simplify with the assumption of an infinite barrier. Now k2
is determined by the condition that the Airy function vanishes at z = 0, ie.
Ai(—k?4?) = 0. Thus G(q) and git#i(q) reduce to

e}

/dz AP (S — k*A?)e (C.9)
0
and
ﬂ'/4 o0
guA(g) =2 /da /dzz AiQ(i cosa — 1527y2)A12(§ sina — 152’72)67‘12(6050"51“‘) :
Y Y
0 0

(C.10)
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The use of Fang-Howard or modified Fang-Howard trial functions is an easier al-
ternative and sufficient for some applications. It has the advantage of analytic
expressions for the overlap integral and the form factor. With the result of (4.28)

B B}’le’%)z/2 for z <0

FH
(’0(0)1(2) - { Al (2 — 20)e ™ for 2 >0 (C.11)

the calculation for the squared overlap integral yields

1 1
G1(@:)]* = :
(1+(@:0))° 1+ (&)’
(4:0)%bFi (o) (52 — 1) ’
1+ — m* -2 l;al_ﬁ() m* — )

by (P2 — 1)+ L(1 4+ b)) (1 + ™abR)2\ 2
+(qzb>2<1— Glir zn 2<2 b;()))( o ())>}.
(C.12)

The trial parameter b has to be determined by the minimum condition of the ground
state energy.

In the infinite barrier case (k) — 00) the term inside the curly braces is equal to 1
and we reproduce the known formula of the overlap integral for a heterojunction
with infinitely high barrier

1
CH U LI — .13
e = (C.13)

The corresponding result for the form factor is

1

11 FH
gll (qH) = - 3
(1+ C]nb)3

{1+§qb(3+qb)} . (C14)

C.1.2 Quantum wells

In a quantum well of width L, the z-component of the envelope function for the
electron ground substate is according to (4.34) equal to

[ Acos(kaz) if |z| < La/2

@(c)(z) = { Be—r@z-La/2) if 2] > La/2 (C.15)
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Substitution of this wavefunction into (C.1) and integration over z lead to the
overlap integral for a finite potential well

Gl )|2 { sin(kaLa) cos —qZQLA + (25—; — Z—Z cos? kA2LA) sin dz=A quA
1114z =

[kALA + % +sin(kaLa) + % COS(kALA)] [1 - (2kA)2]

% cos? kAZLA (2 cos quA — % sin %) 2
+ < ,
[k‘ALA ‘I— + Sln(/{?ALA) ? COS(/{JALA)} [1 + (25( )) }

(C.16)

where ks follows from condition (4.37).

For an infinite potential well it is ky = m/La and K@) — oo. The expressions
become simpler and we obtain for the squared overlap integral

7T2 2 SlanLA 2
Gl = L?—(%P} | o } c1n

and for the form factor

01~ (o) (s i o) o

(cf. also Ridley, 1997). We note that |G11(g.)|? and g1i(g,) go to unity as L goes
to zero. Thus both functions are unity for a strictly 2D system.

C.2 Quasi one-dimensional systems

Finally, we want to determine the wavevector dependence of the squared overlap
integral (B.41)

, 2
| Gnn’(qzﬂ qx)| - ‘ //dde (201 1422 ( )Qb;:(l‘)e_lq“xqﬁn/ (;p)
and the form factor (B.46)

i = [ e 1o @) 2o (21267 @000, () om o)

x  Kp (q\/z—z 2+(.r—x)2> (C.20)

for a quasi-1D electron system with multi-populated subbands. Due to the different
confinement in growth and lateral direction, we have introduced the notation

o

Le(g2) = / 4 6 (2)e 4% oy () (C21)

—0o0
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in (C.19) to distinguish this overlap integral from the overlap integral in z-direction
(note, I, (g:) is identical to the function I,,,/(q,,0,0) defined in Appendix B.1.1).
With the help of the transformation for the modified Bessel function

KolavVa? + 22) = - [d (C.22)

dx
+qa:+QZ 2 \/a2+q223

— 00

0o
i(qzx+q22) 1 eique—\/a2+q%|z|
a

and the definition (C.2) for the form factor gi of a quasi-2D system we derive a

new expression for the form factor §™™ of a quasi-1D electron system

ning

[e.e]

~n'n 1 ]nn’(Qz)]rnn (_QJ:)
G (0) = 3 /01%~ \/q2T2q? mVaé+a). (C.23)

In the previous section, see Eqs. (C.14) and (C.18), we have already determined
the functional dependence of gi1(q) for common confinement potentials. Thus ex-
pression (C.23) allows a very effective calculation of form factors with different
subband indices.

In the case that a single heterojunction with infinitely high barrier serves as the
2D basis of our quasi-1D system we find for the overlap integral

|Inn’(%)|2

G (g, q0)|2 = .
| G (425 42| (1+ (0.0))

(C.24)

and for the form factor

A 1 i dg, [nn’(CIx)]nan(_qfr) { 3
() = 5 14+ S0V/@2+ 2 (3+ bV + ¢ }

(C.25)
For the lateral confinement of the quantum wire we first consider a parabolic po-
tential, namely V(z) = %i—i Then the functions ¢, (z) are eigenfunctions of a

harmonic oscillator (see Eq. (4.46)). Thus the integral I,,(q,) is equal to

fota) = [ () () o

with s = max(n,n’), s = min(n,n’) and L% (x) as associated Laguerre polynomial
(see Eq. (B.20)). Substituting (C.26) into (C.24) we obtain the following analytic
expression for the squared overlap integral

1 s =D w22 qPw? 12
11 z T L5 (2
G (Qzan)| = (1 I (qzb)2) (s —1)! ( 9 ) € [le_l( 2 )} )
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where G!1,(q.,q.) = G} (4., q.) holds. Explicitly we get for the lowest subbands

e~ Gw?/2 (1 — M)%_qgw?/g
‘Gllll(QQO)P = T3> ’G2121(QZ7%)‘2_ 2 3
(1+ (g:=b)?) (1+ (:)?)
G —q2w?/2 w2 —g2w?/2
e T e
|G2111<QZ7q33)|2 = 2—3 ) |G:3111(Qz>Qx)|2 ( 2 ) 3

(1+(g:0)?)

v Q_M)Qe—qzw’z/z
G35 (qx, Gx = 2 ( 2 . C.28
‘ 32(‘1 q )| 2(1+(qzb)2)3 ( )

For the form factor one has to perform the numerical integration of

» [ 130/ P B+ +
gin(a) = [da, GHEBHNESE) o (G0 ) e

J VETE (1 +b/E+¢)

2(1+ (g:b)?)

with
Aff(t) =e", AR (t) = (1 —t)e” Afp(t) = —fte"
AB() =t AB(H) = — L2 e, e = i
AZ() = -5t —t)e™, AZ(t) = (1—t)%", AZ(t) = 52 —t)% ",
(C.30)

The form factor g, 1m(q) vanishes if ny +no +n +n' is odd. From symmetry argu-
ments it follows g, (q) = G.n (4) = G (q).
As a second model for the lateral confinement of a quantum wire we have dis-
cussed in Section 4.1.3 the rectangular well potential. In this case the functions
¢n(x) are harmonic waves restricted to a region of width 2w (see Eq. (4.45)). This
yields A

im*nn’ qw [1 F e 2] /2
[(gew)? = (57 [(gow)? — (F5)2]
where the upper (lower) sign is valid for n + n’ = even (odd). Therefore the
corresponding result for the squared overlap integral is

11 o ’ mnn' (g w) sin(wg, + 5(n +n')) 2
‘G (qux)‘ - (1 I (qzb)2) ({(qxw) _ (@)2][(%&0)2 — (M)2]> .
(C.32)

[nn’(Qx) = , (031)
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