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Abstract

Realistic physical systems can never be fully isolated from their environment, they rather
interact with each other. Therefore it is of high interest to study open quantum systems,
particularly effects coming from the influence of the surrounding.

In the present thesis, we consider environments with a finite number of degrees of freedom.
However, a full quantum treatment of such an overall system can still be computationally
very costly if not impossible. Therefore, we use a recently derived semiclassical hybrid
method [Grossmann, J. Chem. Phys. 125, 014111 (2006)], which is extended to the
propagation of reduced densities in the context of system-bath problems. The essential
idea behind this method is the treatment of different degrees of freedom on different levels
of semiclassical approximations with different computational efforts.

In the first part of this thesis, for the first time, the hybrid method is applied to systems
coupled to thermal baths, consisting of harmonic oscillators. First, non-resonant baths are
considered allowing for the investigation of pure decoherence in the absence of dissipation.
With the anharmonic Morse oscillator serving as a test system, we show that the devel-
oped hybrid method is a very efficient method, capable of reproducing decoherence effects,
like the quenching of interference fringes, quantum-to-classical transition and the mixing of
quantum states. In the same test system, quantum revivals and their bath-induced suppres-
sion are investigated along with the underlying semiclassical mechanism. A fundamental
experiment from the early days of quantum physics is then studied in the framework of
non-resonant baths, i.e. the double slit scenario. Here, the coupling to the bath is locally
restricted and we show, that the hybrid method is an appropriate tool for the treatment of
similar problems containing a coupling form factor.

Furthermore, we study resonant baths allowing for dissipation. With both, the harmonic
and anharmonic oscillators at hand, we investigate the accuracy of the hybrid method as
well as the importance of particular bath modes by comparing the respective results with
results obtained with an implicit method, which describes an infinite bath.

In the last part of this thesis, we shift away from systems in Caldeira-Leggett baths
towards systems in environments, whose specific form or geometry is fully describable and
that are nonlinearly coupled to the system. For this purpose, we refer to an experiment,
where the vibrational dynamics of an Iodine diatomic molecule in a Krypton environment
are studied. In a model with reduced dimensionality, we first compare full quantum results
with hybrid ones showing an excellent agreement even for the degrees of freedom treated
with the cruder semiclassical approximation. In the next step we increase the number of
degrees of freedom beyond the applicability of full quantum methods, like the split-operator
scheme, and find the hybrid approach to be appropriate for the investigation of the present
problem opening the door for studying further and larger systems of a similar kind.
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Nomenclature

a.u. Atomic units

CL Caldeira-Leggett

DOF Degree of freedom

GWP Gaussian wave packet

HK Herman-Kluk

LSC-IVR Linearized semiclassical initial value representation

SC-IVR Semiclassical initial value representation

SCBM Semiclassical Brownian motion

SCHD Semiclassical hybrid dynamics

SOI System of interest

SPO Split-operator method

TGWD Thawed Gaussian wave packet dynamics

VVG Van Vleck-Gutzwiller propagator
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1 Introduction

Simplifications are an essential part of research in physics. They may allow for the inves-
tigation respectively numerical treatment of a given problem, which otherwise would not
be possible at all, or at least very time-consuming. A common simplification in numerous
fields of physics, particularly in atomic and molecular physics, is the assumption, that a
studied system is completely isolated from its surroundings. Although this assumption
often works well, it rarely matches reality. Realistic systems can never be fully isolated.
Moreover, in some experiments, the significant influence of the surrounding system, which
henceforth is identified as the environment, is a challenge affecting the properties of the
observed system in an unwanted way. Prominent examples of this problem can be found
in all fields of physics, where a system needs to be cooled down to very low temperatures,
and in the currently very popular field of quantum computation [1, 2].

Such quantum systems that interact with and thus are influenced by an environment
are called open quantum systems. They have been under thorough investigation in the
past 30 years [3, 4, 5, 6] and are also the topic of this thesis. Within the theory of open
quantum systems, the environment is a bath or thermal bath, i.e. a thermally equilibrated
surrounding system, which commonly is considered to be infinitely large, although here
this term is also used in the context of finite environments. In principle, two approaches
can be considered regarding the way the bath degrees of freedom (DOFs) are handled.
One possibility is a formalism, in which the bath dynamics are captured implicitly, e.g. the
well-established Feynman-Vernon path integral formalism [7], which has been used in the
case of a free and harmonic system [8], electron-molecule scattering [9], anharmonic Morse
oscillator [10], double-well potential [11], and the dissipative two-state system [12]. In the
same spirit master equation respectively stochastic Schrödinger equation approaches have
been employed [13, 14, 15, 16] as well as generalized Langevin equations [17, 18, 19, 20],
where the influence of the bath is realized by a noise force.

The other approach to open quantum systems is the explicit treatment of the bath DOFs
together with the system DOFs including all interactions. This was employed in spin-boson
and tunneling problems [21, 22, 23, 24, 25] as well as to both harmonic and anharmonic
oscillators coupled to a bath [26, 27, 28].

Both explicit and implicit methods have in common that restrictions and approximations
have to be made due to the formidable complexity of usual open systems. A widely used
approximation for the implicit methods is the Markov approximation, where the future
state of the bath is assumed to depend only on the present one.

The approach used in this thesis, however, is based on the explicit treatment of the bath
DOFs along with the open quantum system, particularly in the time domain. To be more
specific, the Caldeira-Leggett (CL) model is employed, in which the bath consists of a num-
ber of harmonic oscillators that are linearly coupled to the open system [29]. Depending on
the size of the overall system, the use of exact propagation methods like the split-operator
method (SPO) [30] can become an impossible endeavor. A possibility to deal with such
large systems is the multi-configuration time-dependent Hartree [31] method, which is often
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1 Introduction

used in chemical physics. However, the approach used here is a semiclassical initial value
representation (SC-IVR). For the sake of clarity, here the term “semiclassics” means the
approximation of quantum mechanics using objects from classical mechanics, i.e. trajecto-
ries. Tracing back to the first semiclassical propagator in boundary value representation,
the so-called Van Vleck-Gutzwiller (VVG) propagator [32, 33], SC-IVRs have experienced
a renaissance since the early 90s after some pioneering work had been done already in
the 70s and early 80s [34, 35, 36]. It was Kay who showed that a whole family of SC-
IVRs exists [37], of which the the so-called Herman-Kluk (HK) propagator turned out to
be the most effective one [38]. It has been shown to be a very good approximation to
quantum mechanics in a number of systems. Since then, semiclassical methods have been
applied successfully to numerous systems in molecular [39, 40, 41, 42, 43, 44, 45] and atomic
[46, 47, 48, 49] physics. Even open quantum systems have been treated using the so-called
semiclassical forward-backward method [50, 51, 52], which, however, is less accurate than
the full method by Herman and Kluk, since an additional stationary phase approximation
is made within the derivation [53, 54].

The specific semiclassical approach used in this thesis is the semiclassical hybrid dynam-
ics (SCHD) [55], which is a combination of two semiclassical approximations of different
accuracies. It combines the HK approximation with Heller’s thawed Gaussian wave packet
dynamics (TGWD) [35, 56], which on the one hand is computationally much less costly
than the HK method, but which on the other hand is only valid for (almost) harmonic
DOFs. In this work, the SCHD is extended to the density matrix level of description con-
sidering systems embedded in a thermal bath, whose harmonicity is exploited in such a
way that (almost) all bath DOFs can be treated on the level of the TGWD. For the open
system the HK method can still be employed ensuring a high level of accuracy with respect
to the quantum result. It is shown, that this new hybrid method is an efficient tool for
the treatment of continuous variable systems in finite baths capturing all interactions and
thus including non-Markovian effects. In particular, pure decoherence effects in systems
of different levels of complexity are analyzed qualitatively and quantitatively. In this the-
sis it is shown, that long time dynamics in isolated molecular oscillators are reflected by
SC-IVRs until the quantum revival regime and beyond. At the same time the mechanism
of the suppression of revivals due to decoherence is studied with the SCHD for the open
system. Moreover, for the first time, the SCHD description of a finite bath is compared
with an implicit treatment of an infinite bath [57].

This thesis is organized as follows:
In Chapter 2, the theoretical framework for open quantum systems, which is relevant

for this work, is given. In particular, the CL model, which is used to describe the bath,
is introduced. Also, a way to discretize a bath described by a continuous spectral density
is discussed, so that a finite number of bath DOFs can be considered. Furthermore, the
frequency blue shift, that occurs in bound systems and that will also be observed in some
numerical results in later chapters, will be investigated. Although predicted nearly 25 years
ago by Pollak [17] and also observed in [53], this effect has never been studied quantitatively
in more detail, regarding the dependence on the bath parameters. Subsequently, the initial
thermal density operator is given in different representations, as it will be needed later on.
At the end of this chapter, the purity is presented as a convenient quantity used within the
investigation of decoherence.

Chapter 3 focuses on the semiclassical method of choice in this work. To this end, well-
known semiclassical propagators in initial value representation will be reviewed. Starting
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with the HK and the TGWD, the SCHD will then be derived in more detail in a density
matrix formalism.

First numerical results obtained with the previously derived SCHD are then presented in
Chapter 4. Here the effect of pure decoherence without dissipation is studied by using a low
frequency cutoff. First this is done for the Morse oscillator on relatively short time scales
of a few oscillation periods. In the next step, long time dynamics in the quantum revival
regime is considered. After answering the question if the HK SC-IVR is capable of repro-
ducing quantum revivals, revival dynamics in the presence of a finite bath is investigated.
Subsequently a different scenario is studied, namely a wave packet propagating through
a double slit. This problem describes a fundamental experiment in quantum mechanics.
Also, the system-bath coupling is slightly modified.

Chapter 5 then turns towards dissipative systems by using a cutoff frequency beyond the
uncoupled system frequency. Here, the harmonic as well as the physically more meaningful
anharmonic Morse oscillator serve as benchmark systems, where the SCHD results are
compared with results from an alternative implicit approach, called semiclassical Brownian
motion (SCBM). In this formalism the influence of the bath is captured with a complex
stochastic noise force. The comparison of both approaches, the explicit and implicit, allows
to optimize the discretization of the finite bath in order to best mimic the results of the
implicit approach.

In Chapter 6, we show that the SCHD can go beyond the treatment of system-bath
problems within the CL model. To this end, we consider a molecular system in a noble
gas environment, i.e. I2 in Kr17. We show, that the SCHD is an appropriate method for
the study such a system, which is anharmonic in every DOF. Furthermore, we investigate
the behavior of the DOFs treated on the level of TGWD, showing that these do not stay
Gaussian as might have been expected but rather agree very well with the full quantum
result.

Finally, in Chapter 7, a summary of this thesis is given together with an outlook on
possible future work.
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2 Open Quantum Systems in Heat Baths

This chapter gives the theoretical background and some necessary prerequisites for the
treatment of open quantum systems in finite baths. Here, the open quantum system is
assumed to be in contact with a heat bath forming the closed overall system. Hence, for
the corresponding total Hamiltonian, the standard decomposition

Ĥ = ĤS + ĤSB + ĤB, (2.1)

can be employed, which is a sum of the system part (index S), the bath part (B), and an
interaction (SB). Throughout this thesis, the system Hamiltonian has the typical form of
a sum of kinetic and potential part

ĤS = T̂ + V̂ =
p̂2

S

2M
+ V̂(ŝ) . (2.2)

Since the position representation is the preferred one in this thesis, the position operator
ŝ is replaced by its eigenvalue and therefore always written as a scalar or vector. Usually
one is interested in the explicit dynamics of the open quantum system solely, which is why
it henceforth will be referred to as the system of interest (SOI). Introducing the reduced
density operator as the partial trace of the full density operator over all bath degrees of
freedom (DOFs)

ρ̂S(t) = trB{ρ̂(t)} , (2.3)

yields a quantity, that is solely comprised of the DOFs of the SOI. With the density
operator in position representation, i.e. ρ(x′,x; t), and the position vector of the overall
system, x = (s,y), splitted into a SOI (s) and bath (y) subvector, the corresponding
reduced density matrix is given by

ρS(s, s
′; t) =

∫

dNBy ρ[(s,y), (s′,y); t] , (2.4)

for a general bath, which consists of NB DOFs. This reduced density matrix in position
representation is the starting point for all quantities of interest throughout this thesis.

In this chapter the particular system-bath model used most of the time in this thesis,
the Caldeira-Leggett (CL) model, will be introduced first, followed by a discussion of a
frequency shift in bound systems originating from its coupling to the environment, which
is observed in some of the results presented in this work. Subsequently, the initial system-
bath state will be declared and particularly the initial thermal bath density operator will
be given in different representations, which are prerequisites for the development of the
specific semiclassical method used in this thesis later on. Finally, a convenient measure for
the coherence of an open system, the purity, will be presented.
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2 Open Quantum Systems in Heat Baths

SOI

Figure 2.1: Sketch of the CL model showing an arbitrary SOI embedded in a bath consisting
of harmonic oscillators (blue spheres and springs)

2.1 The Caldeira-Leggett Model

A frequently used model for the description of a reservoir and its interaction with the SOI
traces back to Caldeira and Leggett [8, 29]. Here, the bath consists of a number of harmonic
oscillators that are bilinearly coupled to the system, which, for this discussion (but not for
all applications discussed later on), is restricted to one DOF (see also Fig. 2.1). Thus, the
sum of interaction and bath Hamiltonian can be written in the form

ĤSB + ĤB =

NB∑

i=1

ciyis+

NB∑

i=1

{
p̂2

i

2
+
ω2

i

2
y2

i

}

+

NB∑

i=1

c2i
2ω2

i

s2 , (2.5)

with the frequency ωi, the momentum pi, the mass-scaled position yi of the respective
harmonic bath mode and the coupling coefficients ci. The bath consists of NB harmonic
oscillators of unit mass, while s is the position of the one-dimensional SOI. The last term in
the equation is not included in the original CL Hamiltonian but is necessary as a counter-
term to avoid an unphysical renormalization of the potential. This, for instance, ensures
the translational invariance of a free particle SOI [5]. Thus the Hamiltonian of the overall
system reads

Ĥ = ĤS +

NB∑

i=1

{

p̂2
i

2
+

1

2

(

ωiyi +
ci
ωi
s

)2
}

. (2.6)

The coefficients ci denote the coupling to the bath and can be summarized in form of the
spectral density [58], which in its general discretized form is given by

J(ω) =
π

2

∑

i

c2i
ωi
δ(ω − ωi) . (2.7)

Any given continuous spectral density Jc can be approximated by the original discretized
form using a finite number of individual oscillators with the coupling coefficients

c2i =
2

π

Jc(ωi)

ρf(ωi)
ωi . (2.8)

The individual frequencies are taken from a distribution of frequencies ρf(ω), which is
normalized according to
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2.2 Frequency Shift

ωmax∫

0

dω ρf(ω) = NB , (2.9)

with the maximum considered bath frequency, ωmax. Similarly, every frequency can be
determined via

ωj∫

0

dω ρf(ω) = j , (2.10)

where j is the index of the particular bath mode and therefore an integer number. From
Chapter 4 on, when numerical results will be presented, specific forms of the frequency
distribution will be given. For more details on the sampling of the frequencies see also
Appendix A.

2.2 Frequency Shift

When we treat bound systems coupled to a harmonic bath, it is of interest to investigate
the effect of the bath on the frequency of the system. In the following the resulting fre-
quency shift will be discussed for the harmonic oscillator, since an analytical treatment of
this system is possible. Subsequently, the effect will be examined for the more realistic
anharmonic Morse oscillator, which is one of the model systems used for the numerical
calculations later in the main part of this thesis.

2.2.1 Harmonic Oscillator

In the case of a SOI with the harmonic potential

V(s) =
Mω2

S

2
s2 (2.11)

it was shown via normal mode analysis (see e.g. [59]), that its vibrational frequency is
changed due to the presence of the bath. The new frequency is then implicitly given by
[17]

λ2
S =

ω2
S

1 + 2
πM

∫∞
0

dω J(ω)
ω(ω2−λ2

s )

. (2.12)

In order to allow for an analytical calculation of the integral in the denominator, the spectral
density is chosen to be Ohmic with an abrupt cutoff

Ja(ω) = ηωθ(ωc − ω) , (2.13)

with the coupling strength η. Thus the integral in Eq. (2.12) becomes

∞∫

0

dω Ja(ω)

ω(ω2 − λ2
S)

= −η
ωc∫

0

dω

λ2
S − ω2

. (2.14)
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2 Open Quantum Systems in Heat Baths

Depending on the relative size of λs and ωc, two qualitatively different solutions for the
integral exist. For λS > ωc we find

ωc∫

0

dω

λ2
S − ω2

=
1

λS

artanh

(
ωc

λS

)

, (2.15)

whereas for λS < ωc we obtain

ωc∫

0

dω

λ2
S − ω2

= lim
ε→0






λs−ε∫

0

dω

λ2
S − ω2

+

ωc∫

λS+ε

dω

λ2
S − ω2






= lim
ε→0

1

2λS

[

ln

(
2λS − ε

ε

)

− ln

(
2λS + ε

ε

)]

︸ ︷︷ ︸

=ln
“

2λs+ε
2λs−ε

”

→0

+
1

λS

arcoth

(
ωc

λS

)

. (2.16)

Using the results above, Eq. (2.12) can be reorganized to a nonlinear equation

λ2
S −

2η

πM
f(λS)λS − ω2

S = 0 (2.17)

with the function

f(λS) =







arcoth
(

ωc
λS

)

if λS < ωc

artanh
(

ωc
λS

)

if λS > ωc .
(2.18)

This equation can be solved numerically using a Newton-Raphson root search scheme [60].
For the numerical root search, λS = ωS turned out to be a good initial guess. Here, the
harmonic system frequency and the mass are chosen to be ωS = 0.001 atomic units (a.u.)
and M = 1.165×105 a.u., respectively, which are parameters of I2 that will be studied later
on.

In Fig. 2.2 the dependence of the new frequency λS on the cutoff frequency of the bath is
shown for two different dimensionless effective coupling strengths ηeff = η/(MωS), which are
the mass-scaled coupling strengths. In the case of a finite coupling, λS equals the original
unperturbed system frequency ωS only in the case ωc = 0, which trivially means the absence
of a bath, and in the rather unphysical case, where ωc → ∞. For all other values of the
cutoff frequency the perturbed frequency is larger than the unperturbed one, i.e. it is blue-
shifted. As a remark, there is a singularity of f(λS) at ωc = λS, which is not shown in Fig.
2.2. Also, a strictly monotonic increase of this blue-shift with increasing effective coupling
strength is indicated, which is confirmed in Fig. 2.3. There, the dependence of the relative
perturbed frequency on the effective coupling strength is shown.

Remarkably, the qualitative behavior of the function λS(ηeff) depends on the relative size
of the cutoff frequency with respect to the system frequency. That is, for ωc < ωS it is
convex, whereas for ωc > ωS it is concave. It should be stressed, that this frequency shift
is a result of the normal mode analysis of the coupled system-bath supersystem, solely.
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2.2 Frequency Shift

ωc

λ
S
/ω

S

0.0050.0040.0030.0020.0010

1.25

1.2

1.15

1.1

1.05

1

Figure 2.2: The relative frequency shift of a harmonic oscillator with ωS = 0.001 a.u. coupled
to a harmonic bath vs the cutoff frequency for two different effective coupling
strengths: ηeff = η/(MωS); solid line: ηeff = 0.05, dashed line: ηeff = 0.25

ηeff

λ
s/
ω

s

10.80.60.40.20

1.4

1.3

1.2

1.1

1

Figure 2.3: The relative frequency shift of a harmonic oscillator with ωS = 0.001 a.u. coupled
to a harmonic bath vs the effective coupling strengths: ηeff = η/(MωS) for
different cutoff frequencies; solid line: ωc = 9.1 × 105 a.u., dashed line: ωc =
9.0 × 104 a.u., dotted line: ωc = 1.8 × 103 a.u.
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2 Open Quantum Systems in Heat Baths

2.2.2 Anharmonic Molecular Oscillator

A prominent and widely used potential in molecular physics is the anharmonic oscillator
introduced by Morse in 1929 [61]. Since then, it has frequently been used as a model for
the description of the vibration of diatomic molecules on a single electronic bound surface
[62]. With the bond distance s the corresponding potential reads

V(s) = D
[

1 − e−α(s−se)
]2
, (2.19)

where the parameters are the dissociation threshold D, the equilibrium bond distance se
and the range parameter α. This potential, as sketched in Fig. 2.4, is strongly repulsive
for bond distances below the equilibrium bond distance and weakly attractive with an
asymptotic limit D for large distances of the nuclei from each other. Besides the fact,
that the anharmonicity of the nuclear vibration is well captured, the Morse oscillator also
comprises the effect of bond breaking and hence molecular dissociation, i.e. trajectories with
energies above D move towards arbitrarily large bond distances for t → ∞. Furthermore,
atom-surface interactions can be described with the help of the Morse potential [63, 64].
Also, this is one of the few analytic potentials, for which an analytic expression for the
spectrum is known [61]

En = ~ωS

(

n+
1

2

)

− ~νS

(

n+
1

2

)2

, (2.20)

where ωS = α
√

2D/M is the harmonic frequency and νs = ~α2/(2M) is the anharmonicity
parameter with the reduced mass of the diatomic molecule M . Also the bound energy
eigenstates were found approximately [61, 65]

ψn(s) =

√

n!α(λ− 2n− 1)

Γ(λ− n)
e
−ξ(s)/2ξ(s)λ−2n−1Lλ−2n−1

n (ξ(s)) , (2.21)

where Lλ−2n−1
n are Laguerre polynomials [66] and

λ =
ωS

νS

=
2
√
DM

~α

ξ(s) = λe−α(s−se) . (2.22)

For molecules this is a very good approximation [67].
In the past decades the Morse potential has been an object of thorough research, e.g.

chaos [68] and the generation of harmonics [69] have been investigated in the driven oscilla-
tor. Moreover, this potential has been used for calculations of molecules beyond diatomics,
e.g. water, HCN and DNA [70, 71, 72]. Calculations with the Morse oscillator using the
semiclassical HK method have yielded results, that are in a very good agreement with
quantum ones [73]. Thus, this system is suited for further semiclassical investigations.

Turning towards the frequency shift, further investigations are necessary regarding the
Morse potential, since the harmonic approximation and the associated analytic prediction
is only valid in the vicinity of the potential minimum. To this end, it is helpful to introduce
the concept of a local frequency of a trajectory with a certain energy. For the uncoupled
Morse oscillator this energy dependence of the local frequency is given by [74]
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2.2 Frequency Shift
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Figure 2.4: (Normalized) Morse potential versus a dimensionless bond distance
s̃ ≡ (s− se)/se

ωloc(E) = ωS

√

1 − E

D
. (2.23)

In Fig. 2.5 the energy dependence of the coupled oscillator’s local frequency λloc
S is shown

using the potential parameters D = 0.057 a.u., α = 0.983 a.u. and the bath cutoff frequency
ωc = 9.1 × 10−5 a.u. (taken from Ref. [51]). The mass is the same as in the harmonic
oscillator case above. Thus the harmonic frequency for small oscillations also equals the
one in the harmonic oscillator case, that is

ωS = α

√

2
D

M
≈ 0.001 a.u. (2.24)

The solid and dashed curves are obtained “numerically” for different coupling strengths
by running trajectories with a specific energy connected to a bath of 20 (initially relaxed)
modes and reading off the period of oscillation. The dotted curve depicts the analytically
determined energy-dependent local frequency of the coupled Morse oscillator. Here, the
harmonic frequency from Eq. (2.24) is used to obtain the shifted result according to Eq.
(2.17). Subsequently the results is then inserted into the analog of Eq. (2.23), that is

λloc
S (E) = λS

√

1 − E

D
. (2.25)

This “analytic” result is depicted by the dotted line in Fig. 2.5 for the coupling strength
ηeff = 0.25.

However, comparison with the numerically obtained curve shows that obviously, this
naive assumption of a coupled local frequency with the same energy dependence as the
uncoupled one but with a global shift from ωS to λS is only valid for low energies in
the vicinity of the potential minimum. For higher energies the anharmonicity of the SOI
significantly influences the energy dependence of the local frequency.
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2 Open Quantum Systems in Heat Baths
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λ
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0

Figure 2.5: The coupled local frequency vs energy in the anharmonic Morse oscillator; solid
line: numerical result for ηeff = 0.25, dashed line: numerical result for ηeff = 0.5,
dotted line: coupled local frequency according to Eq. (2.25) for ηeff = 0.25

We note in passing, that the numerically evaluated graphs, i.e. the solid and the dashed
line (ηeff = 0.5), show nonzero values even above the dissociation threshold D. These
frequencies correspond to residual, bath induced oscillations of the asymptotically unbound
trajectories.

2.3 The Initial State

In this work the initial state for the dynamics is assumed to be a product of the system
and bath density operator [7]

ρ̂(0) = ρ̂S(0)ρ̂B(0) ≡ ρ̂Sρ̂B = ρ̂S

e−βĤB

ZB

, (2.26)

describing a bath in a thermal equilibrium, where ZB = tr(e−βĤB) is the partition function
of the thermal density operator. Furthermore, the initial state contains the inverse temper-
ature β = 1/(kT ) with the Boltzmann constant k and the temperature T . In the following,
the position and coherent state representation of the initial bath density operator will be
reviewed as they will be required later on in this work.

2.3.1 Thermal Bath Density Operator in Position Representation

Our starting point is the well-known harmonic oscillator propagator, which for instance can
be derived using a path integral approach (see e.g. [75]). Considering a single harmonic
oscillator with the Hamiltonian Ĥb, frequency ω and unit mass, the associated propagator
reads
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2.3 The Initial State

〈y′′|e−ıĤbt/~|y′〉 =

√
ω

2πı~ sin(ωt)
exp

{
ıω

2~ sin (ωt)

[(
y′2 + y′′2

)
cos (ωt) − 2y′y′′

]
}

. (2.27)

From this, the aim is to find the thermal density matrix 〈y′′|e−βĤb |y′〉 of the harmonic os-
cillator . By comparing the exponents in both the thermal and the time evolution operator,
we find that this can be achieved by an adequate replacement of the time variable in the
propagator, i.e. t→ −ı~β. Hence, this yields

〈y′′|e−βĤb |y′〉 =

√
ω

2π~ sinh(ωβ~)
exp

{

− ω

2~ sinh (ωβ~)

[(
y′2 + y′′2

)
cosh (ωβ~) − 2y′y′′

]
}

(2.28)
and the corresponding partition function, which can be gained by tracing the thermal
density operator, reads

Zb =

∫

dy′ 〈y′|e−βĤb |y′〉 =

[

2 sinh(ωβ~) tanh

(
ωβ~

2

)]−1/2

. (2.29)

Assuming that the initial bath density matrix is a product of the individual harmonic mode
densities, the former therefore results in

〈

y′′
∣
∣
∣
∣
∣

e−βĤB

ZB

∣
∣
∣
∣
∣
y′
〉

=

NB∏

i=1

〈

y′′i

∣
∣
∣
∣
∣

e−βĤ(i)
b

Z
(i)
b

∣
∣
∣
∣
∣
y′i

〉

=

NB∏

i=1

√

ωi

π~
tanh

(
ωiβ~

2

)

exp

{

− ωi

2~ sinh(ωiβ~)
[−2y′′i y

′
i

+(y′′2i + y′2i ) cosh(ωiβ~)]

}

, (2.30)

where the index i denotes the particular bath mode.

2.3.2 Thermal Bath Density Operator in Coherent State Representation

A prerequisite for the derivation of the SCHD later on is the coherent state representation
of the thermal density operator. It can be obtained by taking the operator in position
representation and inserting the unit operator twice via the completeness relation of the
position eigenfunctions

〈

gγ(q, p)

∣
∣
∣
∣
∣

e−βĤb

Zb

∣
∣
∣
∣
∣
gγ(q′, p′)

〉

=

〈

gγ(q, p)

∣
∣
∣
∣
∣

(∫

dy′′ |y′′〉〈y′′|
)

︸ ︷︷ ︸

1

e−βĤb

Zb

(∫

dy′ |y′〉〈y′|
)

︸ ︷︷ ︸

1

∣
∣
∣
∣
gγ(q′, p′)

〉

. (2.31)

By making use of the coherent state in position representation
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2 Open Quantum Systems in Heat Baths

〈y|gγ(q, p)〉 =
(γ

π

)1/4
exp

{

−γ
2
(y − q)2 +

ı

~
p(y − q)

}

, (2.32)

Eq. (2.31) becomes a Gaussian integral with a linear term in the exponent

〈

gγ(q, p)

∣
∣
∣
∣
∣

e−βĤb

Zb

∣
∣
∣
∣
∣
gγ(q′, p′)

〉

=

∫

dy′′ dy′ 〈gγ(q, p)|y′′〉
〈

y′′
∣
∣
∣
∣
∣

e−βĤb

Zb

∣
∣
∣
∣
∣
y′
〉

〈y′|gγ(q′, p′)〉

=

√

γω

π2~
tanh

(
ωβ~

2

)∫

dy′′ dy′

× exp

{

− γ

2
(y′′ − q)2 − ı

~
p(y′′ − q) − γ

2
(y′ − q′)2 +

ı

~
p′(y′ − q′)

− ω

2~ sinh(ωβ~)
[−2y′′y′ + (y′′2 + y′2) cosh(ωβ~)]

}

=

√

γω

π2~
tanh

(
ωβ~

2

)∫

dy′′ dy′

× exp

{

−
(
y′′ y′

)
E

(
y′′

y′

)

+ fT

(
y′′

y′

)

− γ

2
(q2 + q′2) +

ı

~
(pq − p′q′)

}

, (2.33)

where the matrix

E =
1

2

(
ω

~tanh(ωβ~) + γ − ω
~sinh(ωβ~)

− ω
~sinh(ωβ~)

ω
~tanh(ωβ~) + γ

)

(2.34)

and vector
fT =

(
γq − ı

~
p γq′ + ı

~
p′
)

(2.35)

have been introduced. This Gaussian integral can be evaluated analytically by making use
of the general formula

∫

ddy exp
{
−yTEy + fTy

}
=

√

πd

det(E)
exp

{
1

4
fTE−1f

}

, (2.36)

where E has to be a positive definite, symmetric matrix and d is the number of dimensions.
The inverse and determinant of the matrix E as defined in Eq. (2.35) are

E−1 =
1

2 det(E)

(
ω

~tanh(ωβ~) + γ ω
~sinh(ωβ~)

ω
~sinh(ωβ~)

ω
~tanh(ωβ~) + γ

)

det(E) =
1

4

(
ω2

~2
+ γ2 +

2γω

~ tanh(ωβ~)

)

, (2.37)

respectively. Consequently, Eq. (2.33) results in
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〈

gγ(q, p)

∣
∣
∣
∣
∣

e−βĤb

Zb

∣
∣
∣
∣
∣
gγ(q′, p′)

〉

= Z exp

{
1

4 det(E)

[(
ω

~ tanh(ωβ~)
+ γ

)(
γ2

2
(q2 + q′2) − 1

2~2
(p2 + p′2) +

ıγ

~
(p′q′ − pq)

)

+
ıγ

~2

ω

sinh(ωβ~)
(p′q − pq′) + γ2 ω

~ sinh(ωβ~)
qq′ +

1

~3

ω

sinh(ωβ~)
pp′
]

− γ

2
(q2 + q′2) +

ı

~
(pq − p′q′)

}

,

(2.38)

which can be converted into a clearer form by setting γ = ω/~. From the normalization
condition the prefactor then yields

Z =

√

2 tanh(ωβ~/2)

1 + 1/ tanh(ωβ~)

= e−ωβ~/2
√

2 tanh(ωβ~/2) sinh(ωβ~)

= e−ωβ~/2
√

4 tanh(ωβ~/2) sinh(ωβ~/2) cosh(ωβ~/2)

= 1 − e−ωβ~ (2.39)

and the thermal density operator in coherent state representation for NB harmonic bath
modes finally reads

〈

gγ(q,p)

∣
∣
∣
∣
∣

e−βĤB

ZB

∣
∣
∣
∣
∣
gγ(q′,p′)

〉

=

NB∏

i=1

〈

gγi
(qi, pi)

∣
∣
∣
∣
∣

e−βĤ(i)
b

Z
(i)
b

∣
∣
∣
∣
∣
gγi

(q′i, p
′
i)

〉

=

NB∏

i=0

(1 − e−βωi~) exp

{

− 1

4
(qTγq + q′Tγq′) − 1

4~2
(pTγ−1p + p′Tγ−1p′)

+
ı

2~
(pTq − p′Tq′) +

1

2

(

γqy − ı

~
py

)T
e−βγ~

2
(

q′
y +

ı

~
γ−1p′

y

)}

,

(2.40)

where γ is a diagonal matrix containing the individual harmonic frequencies.

2.4 Quantifying the Coherence of a System - The Purity

Incoherence, or, reversely, coherence, are important concepts in the theory of open quantum
systems. Starting from the earlier developed von Neumann entropy the purity will be
introduced in this section as an appropriate measure of a system’s coherence (more on this
can be found in [76]).
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2 Open Quantum Systems in Heat Baths

One of the effects of decoherence is the mixing of a system, i.e. the transition of a pure
state into a mixed state density matrix. The former one is a quantum state |ψ〉 describing
the regarded physical system and the corresponding density operator can thus be written
as

ρ̂ = |ψ〉〈ψ| , (2.41)

which simply represents a projection operator on the quantum state |ψ〉. A mixed state is
represented by a density operator of the form

ρ̂ =
∑

i

pi|ψi〉〈ψi| , (2.42)

which is a sum of pure states |ψi〉, each contained in the mixture with a statistical probabil-
ity pi, where at least two of of the pi are nonzero. Assuming that, for reasons of simplicity,
{|ψi〉} is an orthonormal basis (in general this is not necessarily the case), it is easy to
see that Eq. 2.42 is an incoherent superposition of pure states, since interference terms
proportional to |ψi〉〈ψj | (j 6= i) are not included. Thus the corresponding mixed density
can be regarded as a purely classical distribution of pure state densities. Here, state mixing
and the quantum-to-classical transition of a state as a consequence of decoherence becomes
apparent, again.

Historically, the first measure for the “mixedness”, and thus the degree of incoherence of
a state, is the von Neumann entropy [77]

S(ρ̂) = −tr(ρ̂ log2 ρ̂) = −
∑

i

λi log2 λi (2.43)

with the eigenvalues λi of the density operator, where
∑

i λi = 1. This is an extension of the
Gibbs entropy to the case of quantum states. In case of a pure state, all eigenvalues except
for one are zero and thus S = 0 (with 0 log2 0 ≡ 0). For a fully mixed state λi = 1/NH

in a NH-dimensional Hilbert space, where all pure states have equal weights in the mixed
ensemble, the von Neumann entropy has its maximum value S = log2(NH). In this case,
we have the least information about the system.

However, for numerical computations, the von Neumann entropy is rather inconvenient,
since one always has to diagonalize the density matrix in order to determine the logarithm.
In order to find an alternative measure, the logarithm can be expanded around the unit
operator to the first order term [78]

S(ρ̂) = −tr(ρ̂ log2 ρ̂) ≈ −tr[ρ̂(ρ̂− 1)] = 1 − tr
(
ρ̂2
)
≡ 1 − P(ρ̂) , (2.44)

where P(ρ̂) is the purity, which - as the name suggests - now quantifies, how pure, or
equivalently, how coherent a state is. Using Eq. (2.42), it can be written as

P(ρ̂) = tr(ρ̂2) =

NH∑

i=1

p2
i (2.45)

with the number of dimensions of the Hilbert space NH. In the case of a pure state, the
purity equals one, which is its maximum value. In turn, it has its minimum value in the
case of a fully mixed state, where all pi = 1/NH and consequently P = 1/NH. It should be
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2.4 Quantifying the Coherence of a System - The Purity

stressed that in contrast to the von Neumann entropy, the computational effort reduces to
the squaring of the density matrix and the subsequent calculation of the trace.

So far, theoretical prerequisites from the field of open quantum system have been given,
which are essential for the remainder of this thesis. In the next chapter some particular
SC-IVRs are sketched first, which are origins of the subsequent derivation of the SCHD.
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3 Semiclassical Propagators

In order to obtain a solution for the time-dependent Schrödinger equation in position
representation, its corresponding Green’s function, which is the propagator K(x, t;x′, t0),
is applied to an initial wave function Ψ(x, 0) according to

Ψ(x, t) =

∫

dNx′ K(x, t;x′, t0 = 0)Ψ(x′, t0 = 0) , (3.1)

with the number of DOFs N and the initial time being set to zero. Several approaches
for the numerical propagation of the wave function exist, among which the most famous
one probably is the split-operator method (SPO) [30]. It has become a standard procedure
for a number of systems with few DOFs (e.g. [79]). However, as soon as the observed
system becomes larger with several DOFs, the SPO fails due to an exponential scaling of
the computational effort with the number of DOFs.

For larger quantum systems, i.e. many-body systems, one has to resort to well-known ap-
proaches, like the multi-configuration time-dependent Hartree(-Fock) method [31, 80, 81] as
well as the time-dependent density functional theory [82]. Nevertheless, in both approaches
approximations have to be made. In the former method, one has to make assumptions for
the wave function. The latter method is based on an effective, so-called Kohn-Sham, po-
tential, which consists of some external, a Coulomb and an exchange-correlation potential.
The exchange-correlation potential is unknown and thus has to be approximated.

In contrast, semiclassical approximations are in a different spirit in the sense that the
approximation consists in a truncation of an ~-expansion of the propagator. Besides their
capability of treating quantum systems with a large number of DOFs, semiclassical meth-
ods can help to obtain a better understanding of quantum dynamics in terms of classical
mechanics, since the underlying physics is based on classically propagated trajectories.
However, in contrast to purely classical methods, these classical trajectories carry phase
information and can thus interfere with each other. Hence, semiclassical methods contain
so-called soft quantum effects, i.e. wave mechanics including interferences. Indeed, hard
quantum effects, like tunneling, are not fully included, but there are attempts to approach
this issue via multiple-spawning of trajectories [83] or propagation in imaginary time [84].
However, since in this work no tunneling problems are considered, the focus is on real-time
propagation without trajectory-spawning.

In this chapter, first some well-established semiclassical initial value methods will be
presented, that are widely used for numerical computations. They are the starting points
for the new approach discussed in the second section: an extension of the SCHD to the
density matrix propagation in the case of finite temperatures.

3.1 Semiclassical Initial Value Representations

A semiclassical approximation of the quantum mechanical propagator was first found by
Van Vleck [32] and extended by Gutzwiller [33]
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3 Semiclassical Propagators

KVVG(x, t;x′, 0) = (2π~ı)−N/2
∑

k

{

det

[
∂x

∂p′
k

]}−1/2

exp
{ ı

~
Sk(x,x

′, t) − ıπ
νk

2

}

, (3.2)

where the sum runs over all classical trajectories going from x′ to x in time t. The propa-
gator contains the classical action Sk and the so called Maslov index νk which counts the
number of caustics of every trajectory, i.e. , the points, where det |∂x/∂p′

k| = 0. A typical
derivation of this Van Vleck-Gutzwiller (VVG) propagator is based on the expansion of the
action functional in the exponent of the Feynman path integral to second order within a
stationary phase approximation (see e.g. [85]).

However, besides the problem of the singularity of the VVG propagator at a caustic,
another numerical challenge comes along, which is the root search in order to solve the
boundary value problem in Eq. (3.2). In particular the latter issue is avoided by semiclas-
sical initial value representations (SC-IVRs) making them convenient tools for practical
numerical applications.

In this section, two SC-IVRs, the well-established Herman-Kluk (HK) propagator and the
thawed Gaussian wave packet dynamics (TGWD), will be reviewed, since both methods
are basis of SCHD. Furthermore the linearized semiclassical initial value representation
(LSC-IVR) will be discussed, which later on will be used for the numerical calculations of
the classical results for reasons of comparison.

3.1.1 Herman-Kluk Propagator

Being a prominent representative of SC-IVRs, the HK approach is now going to be pre-
sented. Based on the VVG propagator and on the propagation of multiple Gaussians with
fixed width (so called “Frozen Gaussians”), originally developed by Heller [36], the HK
propagator has first been derived by Herman and Kluk [38] in 1984 but fell into oblivion
afterwards. Then in 1994 the HK SC-IVR was rediscovered, when it was found to be a
very efficient special case of a general SC-IVR formalism developed by Kay [37], and since
then it has become a widely accepted method.

For a system with N DOFs the corresponding propagator is given by

KHK(x, t;x′, 0) =

∫
dNq dNp

(2π~)N
〈x|gγ(qt,pt)〉

√

det[h(q,p, t)] eıS/~ 〈gγ(q,p)|x′〉. (3.3)

Its main ingredients are coherent states, which are normalized Gaussian wave packets in
position representation

〈x|gγ(q,p)〉 =

(
det(γ)

πN

)1/4

exp

{

− 1

2
(x − q)T γ(x − q) +

ı

~
pT · (x − q)

}

, (3.4)

with a constant, real, positive definite and diagonal width parameter matrix γ. The inte-
gration is performed over phase space points which serve as initial conditions of classical
trajectories (pt = p(q,p, t),qt = q(q,p, t)). Furthermore classical mechanics comes into
play via the classical action

S = S(q,p, t) =

t∫

0

Ldt′, (3.5)
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|Ψi〉|Ψ(t)〉

Figure 3.1: Sketch of the semiclassical propagation according to Herman and Kluk; Red:
initial wave packet |Ψi〉, Black: coherent states at initial phase space points,
Blue: coherent states at final phase space points forming the final wave function
|Ψ(t)〉

with the Lagrangian L = T − V.
The matrix in the determinantal prefactor, which goes back to the original work of

Herman and Kluk, is given in a slightly generalized form by [52, 51]

h(q,p, t) =
1

2

(

m11 + γm22γ
−1 − ı~γm21 +

ı

~
m12γ

−1

)

. (3.6)

It ensures the propagator’s unitarity in the stationary phase sense [86] and consists of
elements of the so-called monodromy (or stability) matrix,

M =

(
m11 m12

m21 m22

)

=

(
∂pt

∂p
∂pt

∂q
∂qt

∂p
∂qt

∂q

)

. (3.7)

This matrix describes the time evolution of the dependence of a classical trajectory on its
initial conditions and can be obtained by solving linearized Hamilton equations as explained
in Appendix B. An even more general expression for the prefactor in Eq. (3.6) can be found
in [87]. In principle, a wave function propagated with the semiclassical propagator described
by Eq. (3.3) can be regarded as a sum of Gaussians centered around the final points of
classically propagated trajectories. Each of these Gaussians is weighted by the overlap of
the initial wave function and Gaussians located at the corresponding initial phase space
points. Furthermore, they carry a phase governed by the classical action (see also Fig. 3.1).

Indeed the propagator in Eq. (3.3) is semiclassical insofar, as it is related to the original
VVG propagator [32, 33] via stationary phase approximation [88]. Moreover, the HK
expression is more accurate, since it is uniform, i.e. it becomes exact as ~ → 0 uniformly.
This goes along with the advantage that one does not have to struggle with caustics as it is
the case for the VVG approximation. As an aside, the problem of counting these caustics
in order to obtain the right Maslov index in the VVG propagator is replaced by ensuring
the continuity of the determinantal complex square root of Eq. (3.6) by switching between
both Riemann surfaces appropriately while propagating each trajectory.

So far the theory is formulated in terms of wave functions. In density formalism the
corresponding semiclassical approximation to the general solution of the von-Neumann
equation is

ρ(x,x′; t) =

∫

dx′′dx′′′ K(x, t;x′′, 0)ρ(x′′,x′′′; 0)K∗(x′, t;x′′′, 0). (3.8)

However, since in this thesis the focus is on typical system-environment setups, the ap-
propriate quantity to consider henceforth is the reduced density matrix, where only the
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explicit dynamics of the SOI (with the coordinate vector s) is left. Using Eq. (2.4) to-
gether with (3.8) and (3.3) and considering the circumstance that the Gaussian form of the
HK propagator allows for an analytic calculation of the partial trace, we finally obtain a
semiclassical expression for the reduced density matrix of a N -dimensional overall system

ρS(s, s
′; t) =

∫
dNp dNq dNp′ dNq′

(2π~)2N

√

det[h∗(q′,p′, t)h(q,p, t)] eı(S−S′)/~

× 〈gγB
(q′

B,t,p
′
B,t)|gγB

(qB,t,pB,t)〉〈gγS
(q′

S,t,p
′
S,t)|s′〉

× 〈s|gγS
(qS,t,pS,t)〉〈gγ(q,p)|ρ̂(0)|gγ(q′,p′)〉, (3.9)

with the initial density operator ρ̂(0) and the width parameter matrix divided into system
and bath related submatrices γS and γB, respectively. We note, that S and S′ is the
action of the overall system. Also, the labels “S” and “B” denote the subvectors for the
system and the environmental DOFs. Furthermore we note in passing, that the overlap of
two coherent states 〈gγB

(q′
B,t,p

′
B,t)|gγB

(qB,t,pB,t)〉 can be calculated analytically (see next
subsection). Although the integration over phase space is usually performed by a Monte-
Carlo procedure [89], the computational effort for the calculation of the 4N -dimensional
integral in Eq. (3.9) is still formidable.

3.1.2 Thawed Gaussian Wave Packet Dynamics

Knowing that the multi-trajectory approach can become computationally enormously costly,
another semiclassical method, based on the propagation of only a single trajectory and thus
involving a smaller computational effort, is now going to be sketched in this section. This
single-trajectory approach, known as TGWD, was introduced by Heller [35, 56] and can
directly be derived from the HK wave function. If the initial wave function in Eq. (3.1)
is a Gaussian wave packet (GWP), a distinct advantage of the HK propagator becomes
manifest. Let Ψα(x, 0) be a Gaussian centered around (qα,pα) with the width parameter
matrix γα. Then the integration over x′ in Eq. (3.1) can be performed analytically and the
overlap of Ψα(x, 0) with the coherent state centered around (q,p) in Eq. (3.3) reads

〈gγ(q,p)|Ψα(0)〉

=

∫

dNx′ 〈gγ(q,p)|x′〉〈x′|Ψα(0)〉

= 4N/4 det(γγα)1/4

√

det(γ + γα)
exp

{

−γγα

2
(γ + γα)−1(q − qα)2

− 1

2~2
(γ + γα)−1(p − pα)2 +

ı

~
(γ + γα)−1(q − qα)(γαp + γpα)

}

= exp

{

− 1

4
(q − qα)T γ(q − qα) − 1

4~2
(p − pα)T γ−1(p − pα)

+
ı

2~
(q − qα)T · (p + pα)

}

, (3.10)

assuming that both Gaussians have the same width parameter matrix, i.e. γ = γα. The
more general case can also be dealt with analytically but leads to a less transparent final
result. Now the HK propagator as applied to a Gaussian wave packet can be approximated

22



3.1 Semiclassical Initial Value Representations

in a simple fashion by expanding the exponent in the resulting phase space integral around
the initial wave packet center (qα,pα) up to second order. The integration in Eq. (3.3)
can then be performed analytically via Gaussian integration [55], yielding

Ψα(x, t) =

(
det(γ)

πN

)1/4

det(m22 + ı~m21γ)−1/2

× exp

{

− 1

2
(x − qα,t)

T (m11γ +
1

ı~
m12)(m22 + ı~m21γ)−1(x − qα,t)

+
ı

~
pT

α,t · (x − qα,t) +
ı

~
S(pα,qα, t)

}

, (3.11)

where pα,t = p(qα,pα, t) and qα,t = q(qα,pα, t).

A full and more detailed derivation of the TGWD from the HK propagator than in [55]
is given in Appendix C. It should be emphasized that, in contrast to the HK-expression
(3.3), this expression is given in terms of just one single trajectory with initial conditions
according to the mean position of the initial Gaussian. The Gaussian form of the wave
packet is retained throughout the propagation, only the position and the width change in
time. In addition, it is exact for potentials that are at most quadratic [56]. However, due
to the additional approximation which was applied to obtain Eq. (3.11), the TGWD is
obviously less accurate than the HK approximation applied to an initial GWP.

3.1.3 Linearized Semiclassical Initial Value Representation

In order to be able to compare the semiclassical results with a classical counterpart, the
LSC-IVR will now be briefly introduced and appropriately adapted for the purpose of this
work. The starting point is a general time-correlation function of the form

CAB(t) = tr
[

ÂeıĤt/~B̂e−ıĤt/~

]

. (3.12)

The operator Â represents the initial state, whereas the projection operator B̂ defines the
measure of interest.

By using a form of the semiclassical evolution operator different from the HK expression
[90], expanding the exponent to second order and integrating over the difference variables
of the forward and backward trajectories, one obtains an expression for the LSC-IVR of
the time-correlation function [91]

C̃AB(t) =

∫∫
dNq dNp

(2π~)N
Aw(p,q)Bw(pt,qt), (3.13)

with the Wigner transform Aw and Bw. Since the Wigner transforms are real functions,
the expression for the time-correlation function in Eq. (3.13) does not contain any phases
and thus no interference terms. Hence, this method can be regarded as a classical Wigner
method.

As stated before, the interesting observable is the reduced density, here for a one-
dimensional SOI, with the initial state being a product of a Gaussian state for the SOI
(centered around (qα, pα)) and a thermal state for the bath DOFs. Consequently the op-
erators in Eq. (3.12) are chosen to be
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3 Semiclassical Propagators

Â =ρ(0) = |Ψα〉〈Ψα|
e−βĤB

ZB

(3.14)

B̂ =|s〉〈s|, (3.15)

where |s〉 is the eigenvector of the SOI coordinate.
For Â this yields the corresponding Wigner transform

Aw =

∫

dNζ e−ıp·ζ/~

〈

q +
ζ

2

∣
∣
∣Â
∣
∣
∣q − ζ

2

〉

=

∫

dζS e−ıpsζs/~

〈

qS +
ζS
2

∣
∣
∣Ψα

〉〈

Ψα

∣
∣
∣qS −

ζS
2

〉

×
NB∏

i=1

∫

dζi e−ıpiζi

〈

qi +
ζi
2

∣
∣
∣
∣
∣

e−βĤ(i)
b

Z
(i)
b

∣
∣
∣
∣
∣
qi −

ζi
2

〉

=

∫

dζS

√
γS

π
exp

{

−γS

4

(

ζS +
2ı

~
(pα − pS)

)2

− γS (qα − qS)
2 − 1

γS~
2

(pα − pS)
2

}

×
NB∏

i=1

∫

dζi exp

{

− ωi

4~ tanh(ωiβ~

2 )
ζ2
i

− ı

~
piζi −

ωi

~
tanh

(
ωiβ~

2

)

q2i

}√

ωi

π~
tanh

(
ωiβ~

2

)

= 2N exp

{

− 1

γS~
2
(pS − pα)2 − γS(qS − qα)2

}

×
NB∏

i=1

tanh

(
ωiβ~

2

)

exp

{

− tanh

(
ωiβ~

2

)[
1

~ωi
p2

i +
ωi

~
q2i

]}

,

(3.16)

where the thermal density matrix for a harmonic oscillator from Eq. (2.30) has been used.
The second Wigner transform for B̂ reads

Bw =

∫

dNζ e−ıpt·ζ/~

〈

qt +
ζ

2

∣
∣
∣B̂
∣
∣
∣qt −

ζ

2

〉

=

∫

dNζ e−ıpt·ζ/~

〈

qt +
ζ

2

∣
∣
∣s

〉〈

s
∣
∣
∣qt −

ζ

2

〉

=

∫

dζS e−ıps,tζs/~

〈

qS,t +
ζS
2

∣
∣
∣s

〉〈

s
∣
∣
∣qS,t −

ζS
2

〉 NB∏

i=1

∫

dζi e−ıpi,tζi/~

〈

qi,t +
ζi
2

∣
∣
∣qi,t −

ζi
2

〉

︸ ︷︷ ︸

δ(ζi)

=

∫

dζS e−ıps,tζs/~ δ

(

qS,t +
ζS
2

− s

)

δ

(

qS,t −
ζS
2

− s

)

= lim
ǫ→0

1

2πǫ

∫

dζS e−ıps,tζs/~ exp

{

− 1

2ǫ

[
ζS
2

− (s− qS,t)

]2
}

exp

{

− 1

2ǫ

[
ζS
2

+ (s− qS,t)

]2
}

= lim
ǫ→0

√

1

πǫ
exp

{

−(qS,t − s)2

ǫ
−
ǫp2

S,t

~

}

= δ(qS,t − s), (3.17)
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3.2 Semiclassical Hybrid Dynamics for Systems in a Thermal Bath

with the SOI position of the classically propagated trajectory.

Hence we obtain a LSC-IVR expression for the reduced density

C̃AB(t) = ρ(s; t) =
1

(π~)N

NB∏

i=1

tanh

(
ωiβ~

2

)∫

dNp dNq δ(qS,t − s)

× e−1/(γs~
2)(ps−pα)2−γs(qs−qα)2

NB∏

i=1

e− tanh(ωiβ~/2)/~[(1/ωi)p
2
i +ωiq

2
i ]. (3.18)

Indeed, the 2N -dimensional phase space integral still needs to be performed numerically.
However, the integral in the LSC-IVR integral converges faster than the one in the HK
expression. The main reason for this is not the lower dimensionality of the integral but
rather the fact that this expression does not convey any phase information and thus the
integrand is non-oscillating. Basically, it is a classical time evolution of a probability
distribution, which, however, does not capture any interference effects as will be seen
later. As an aside, for the numerical computation of the phase space integral, the delta
distribution in Eq. (3.18) has to be approximated by a sufficiently narrow Gaussian, such
that the result is independent on the Gaussian width parameter.

3.2 Semiclassical Hybrid Dynamics for Systems in a Thermal

Bath

Based on the semiclassical approximations presented in the previous section, i.e. the HK
method and the TGWD, the SCHD for the density matrix propagation can now be derived.
Originally this was done for wave functions [55]. Here, within a reduced density matrix
formalism, the SCHD is extended in such a way that systems interacting with thermal CL
baths are considered.

We start with the initial density operator, which is assumed to be factorizable into a
system (ρ̂S) and a bath part (ρ̂B) as introduced in Eq. (2.26). As a generalization, which
will be needed later in this thesis, the initial density operator contribution ÎS

α,α′ = |Ψα〉〈Ψα′ |
for the SOI is an outer product of two Gaussians generally located at two different phase
space points labeled with the indices α and α′.

Thus, using Eq. (3.8) together with Eq. (3.3), the HK expression for the full density
matrix contribution can be written as

Iα,α′(x,x′; t) =

∫
dNp dNq dNp′ dNq′

(2π~)2N

√

det[h(h′)∗]eı(S−S′)/~〈x|gγ(qt,pt)〉〈gγ(q′
t,p

′
t)|x′〉

× 〈gγS
(qS,pS)|Ψα〉〈Ψα′ |gγS

(q′
S,p

′
S)〉
〈

gγB
(qB,pB)

∣
∣
∣
∣
∣

e−βĤB

ZB

∣
∣
∣
∣
∣
gγB

(q′
B,p

′
B)

〉

, (3.19)

where again “S” and “B” denote the SOI and the bath subvectors, respectively, and the
width parameter matrix is sub-divided

γ =

(
γS 0

0 γB

)

(3.20)
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3 Semiclassical Propagators

into a NS × NS system and NB × NB bath submatrix, γS and γB. The thermal density
operator in coherent state representation, as derived in Section 2.3.2, reads

〈

gγB
(qB,pB)

∣
∣
∣
∣
∣

e−βĤB

ZB

∣
∣
∣
∣
∣
gγB

(q′
B,p

′
B)

〉

= Z̃ exp

{

− 1

4
(qT

BγBqB + q′T
B γBq

′
B) − 1

4~2
(pT

B γ−1
B pB + p′T

B γ−1
B p′

B) +
ı

2~
(pBqB − p′

Bq
′
B)

+
1

2

(

γBqB − ı

~
pB

)T
e−βγB~

2
(

q′
B +

ı

~
γ−1

B p′
B

)}

≡ Z̃ K(pB,qB,p
′
B,q

′
B) ≡ Z̃ KB (3.21)

with the prefactor Z̃ ≡∏NB
i=1(1−e−βωi~) and the choice γB = ωB/~, where ωB is a diagonal

matrix consisting of all bath mode frequencies.

The central idea of the derivation of the hybrid approximation now arises. Instead of
expanding the exponent in Eq. (3.21) to second order for all DOFs as it is done in the
derivation of the TGWD from the HK approximation (see Appendix C), the expansion is
performed only for a part, i.e. Ntg DOFs. The corresponding expansion of the action is
then

S(q,p, t) =S[(qhk,0), (phk,0), t] + pT
α,tm̃21ptg + pT

α,tm̃22qtg +
1

2
pT

tgm̃
T
11m̃21ptg

+
1

2
qT

tgm̃
T
12m̃22qtg +

1

2
pT

tgm̃
T
21m̃12qtg, (3.22)

where m̃ij are now N ×Ntg matrices consisting of the derivatives with respect to variables
carrying the label “tg” only, assuming that these DOFs are part of the bath DOFs solely.
On the other hand, the label “hk” denotes the DOFs that are excluded from this expansion.
Additionally, the final phase space points are expanded, yielding

pt ≈pα,t + δpt

=pα,t + m̃11ptg + m̃12qtg (3.23)

qt ≈qα,t + δqt

=qα,t + m̃21ptg + m̃22qtg, (3.24)

with qα,t = q[(qhk,0), (phk,0), t] and pα,t = p[(qhk,0), (phk,0), t].

Within this expansion, the part of the phase space integral carrying the label “tg” in Eq.
(3.19) becomes a multidimensional Gaussian integral, which can be performed analytically
using the general formula in Eq. (2.36). In doing so, we obtain the hybrid density matrix
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3.2 Semiclassical Hybrid Dynamics for Systems in a Thermal Bath

contribution

Iα,α′(x,x′; t) =

∫
dNp dNq dNp′ dNq′

(2π~)2N

√

det[h(h′)∗]Z̃

× 〈gγS
(qS,pS)|Ψα〉〈Ψα′ |gγS

(q′
S,p

′
S)〉 Khb

× exp

{

− (ptg,qtg,p
′
tg,q

′
tg)A(ptg,qtg,p

′
tg,q

′
tg)

T + bT · (ptg,qtg,p
′
tg,q

′
tg)

T

+
ı

~
(S − S′)

}

〈gγ(q′
α′,t,p

′
α′,t)|x′〉〈x|gγ(qα,t,pα,t)〉

(3.25)

=

∫
dNhkphk dNhkqhk dNhkp′hk dNhkq′hk

(2~)2Nπ2Nhk
Z̃

√

det[h(h′)∗]
det(A)

× 〈gγS
(qS,pS)|Ψα〉〈Ψα′ |gγS

(q′
S,p

′
S)〉 exp

{
1

4
bTA−1b +

ı

~
(S − S′)

}

Khb

〈gγ(q′
α′,t,p

′
α′,t)|x′〉〈x|gγ(qα,t,pα,t)〉,

(3.26)

with the notation S ≡ S[(qhk,0), (phk,0), t] and S′ ≡ S[(q′
hk,0), (p′

hk,0), t]. Here, for
reasons of readability, vectors are written in form of row vectors (ptg,qtg,p

′
tg,q

′
tg). The

label “hb” denotes the DOFs of the bath which are still treated on the level of the full HK
approximation, i.e. NB = Nhb +Ntg. The term Khb is defined as in Eq. (3.21) except that
here only the HK bath modes are considered. Further abbreviations in Eq. (3.26) are the
symmetric 4Ntg × 4Ntg matrix1

A =

(
A1 A2

A2
T (A1

′)∗

)

, (3.27)

where

A1 =






γ−1
tg

4~2 + ũm̃21
2

ı
4~

+
m̃T

21ṽ
T

2

ı
4~

+ ṽm̃21
2

γtg

4 + ṽm̃22
2




 A2 =






−γ−1
tg

4~2 e−βγtg~ ı
4~

e−βγtg~

− ı
4~

e−βγtg~ −γtg

4 e−βγtg~




 (3.28)

are 2Ntg × 2Ntg matrices. The matrix A1
′ in Eq. (3.27) corresponds to the phase space

part with variables carrying a prime, i.e. (q′,p′). Furthermore the matrices

ũ =m̃T
21γ +

ı

~
m̃T

11 ṽ =m̃T
22γ +

ı

~
m̃T

12 (3.29)

are included as well as

bT =

(
x − qα,t

x′ − q′
α′,t

)T(
[ũT ṽT] 0

0 [(ũ′∗)T (ṽ′∗)T]

)

, (3.30)

which is a 4Ntg-dimensional vector.

1For reasons of clarity, it should be stressed that here the Symbol “∗” in Eq. (3.27) does not denote the
adjoint of a matrix but rather its complex conjugate.
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Next, we have to trace over all bath modes in Eq. (3.26) in order to obtain the reduced
density matrix contribution for the SOI. To begin with, the first term in the exponent in
Eq. (3.26) is considered

1

4
bTA−1b ≡ 1

4
bT

(
D1 D2

D2
T D3

)

b =

(
x − qα,t

x′ − q′
α′,t

)T(
K L

LT K′

)(
x − qα,t

x′ − q′
α′,t

)

, (3.31)

where in the last step the definition of the vector b from Eq. (3.30) was used. Therefore
the submatrices in the last term read

K ≡1

4
[ũT ṽT]D1[ũ

T ṽT]T

L ≡1

4
[ũT ṽT]D2[(ũ

′∗)T (ṽ′∗)T]T

K′ ≡1

4
[(ũ′∗)T (ṽ′∗)T]D3[(ũ

′∗)T (ṽ′∗)T]T. (3.32)

We emphasize that the forward and backward trajectories are coupled only via the matrix
L and its transpose. Also note, that K is symmetric, whereas L is not, except for the
trivial case β → ∞. Now in turn, these newly introduced N ×N matrices are divided into
submatrices

K ≡
(

KSS KSB

KBS KBB

)

L ≡
(

LSS LSB

LBS LBB

)

, (3.33)

coupling the different classes of DOFs (system and bath), e.g.

(x − qα,t)
TK(x − qα,t) = (s − qα,S,t)

TKSS(s − qα,S,t) + (y − qα,B,t)
TKBS(s − qα,S,t)

+ (s − qα,S,t)
TKSB(y − qα,B,t) + (y − qα,B,t)

TKBB(y − qα,B,t),
(3.34)

where again, the additional indices “S” and “B” denote the subvectors for the system and
bath DOFs, i.e. qα,t = (qα,S,t,qα,B,t). After rearranging the exponent in Eq. (3.26) to a
quadratic form in y with a linear term, i.e. the form yTHy + eTy + f , the integral over y

and therefore the trace over all bath modes can be performed analytically using Eq. (2.36)
again. This yields an expression for the hybrid reduced density matrix contribution for a
NS-dimensional SOI

IS
α,α′(s, s′; t)

=

∫
dNhkphk dNhkqhk dNhkp′hk dNhkq′hk

(2~)2Nπ2NhkπNS/2

(
NB∏

i=1

(

1 − e−βωi~

)
)√

det(γ) det[h(h′)∗]
det(A) det(H)

× exp

{(
s − qα,S,t

s′ − q′
α′,S,t

)T

Λ

(
s − qα,S,t

s′ − q′
α′,S,t

)

+ σT

(
s − qα,S,t

s′ − q′
α′,S,t

)

+ h+
ı

~
(S − S′)

}

× 〈gγS
(qS,pS)|Ψα〉〈Ψα′ |gγS

(q′
S,p

′
S)〉Khb . (3.35)

The expression consists of the NB ×NB matrix

H = −(KBB + K′
BB + LBB + LBB

T − γB) (3.36)
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and the symmetric 2NS × 2NS matrix

Λ =

(
Λ11 Λ12

ΛT
12 Λ22

)

=





FSBH
−1FT

SB − γS
2 + KSS FSBH

−1F′T
SB + LSS

F′
SBH

−1FT
SB + LSS

T F′
SBH

−1F′T
SB − γS

2 + K′
SS



 , (3.37)

with the abbreviations

FSB = KSB + LSB F′
SB = K′

SB + LBS
T . (3.38)

Furthermore it contains the 2NS-dimensional vector

σ =

(
σ1

σ2

)

=





FSBH
−1d − 2KT

BSqα,B,t − 2LSBq
′
α′,B,t + ı

~
pα,S,t

F′
SBH

−1d − 2K′T
BSq

′
α′,B,t − 2LT

BSqα,B,t − ı
~
p′

α′,S,t



 (3.39)

where the vector

d = (γB − 2KBB − 2LBB)Tqα,B,t + (γB − 2K′
BB − 2LT

BB)Tq′
α′,B,t +

ı

~
(pα,B,t − p′

α′,B,t) (3.40)

is included. The last abbreviation is the scalar

h = −
(

qT
α,B,t

γB − 2KBB

2
+
ı

~
pT

α,B,t

)

· qα,B,t −
(

q′T
α′,B,t

γB − 2K′
BB

2
− ı

~
p′T

α′,B,t

)

· q′
β,B,t

+ 2qT
α,B,tLBBq

′
α′,B,t +

1

4
dTH−1d. (3.41)

We stress that in contrast to the full HK reduced density matrix expression in Eq. (3.9),
the present one is just a 4Nhk-dimensional phase space integral. Also, the dynamics of the
bath DOFs is still fully included in its expression, although they are not part of the reduced
density matrix contribution. The SCHD expression in Eq. (3.35) is the method of choice
for the numerical computations, whose results are presented in the next chapters.
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4 Pure Decoherence

With the theoretical prerequisites in place, the SCHD will now be applied in numerical
studies of various open quantum systems. Decoherence, which is also called dephasing,
will be investigated first. It is a pure quantum consequence of the SOI-bath interaction.
While dissipation, which may also occur in open quantum systems, changes the energy
of the SOI, decoherence influences its quantum state in the sense, that it blurs the phase
relations within the states. This plays an important (and usually unwanted) role in several
fields of quantum theory, in particular in quantum computation, which has become a topic
of high interest in the past 20 years [2, 92, 1, 93]. The fact, that the coherence of a quantum
system is highly sensitive to influences from outside, makes the control and suppression of
decoherence a challenging endeavor and hence a deeper understanding of this process is
necessary. Dissipation, in turn, will be the topic of the next chapter and thus is ignored
here in order to study the consequences of pure decoherence solely, unaltered by the effect
of energetic transitions. To achieve such negligible dissipation, the bath mode frequencies
have to be much smaller than the typical system frequency, so that resonant and thus
effective energetic coupling is not possible.

At the beginning of this chapter decoherence in an anharmonic oscillator coupled to a
finite bath is studied using the SCHD. In particular, the influence of bath and interaction
parameters on the loss of coherence is investigated qualitatively as well as quantitatively.
Subsequently, we focus on the long time dynamics of the anharmonic molecular oscillator
resulting in a quantum phenomenon known as wave packet revivals. There, the semiclassical
treatment of quantum revivals in the isolated system as well as the bath-influence on the
revival dynamics will be studied. The final section of this chapter discusses dephasing
in a fundamental quantum mechanics textbook experiment, namely a quantum particle
propagating through a double slit. Here the coupling to the bath is slightly modified from
the one in the original CL model to ensure a system-bath coupling only in the vicinity of
the slit.

4.1 Vibrational Dynamics of Diatomics

The first system used for the investigation of pure decoherence effects is the Morse oscillator,
whose potential is given in Eq. (2.19). Here, the parameters for the diatomic Iodine in its
electronic ground state are used, i.e. D = 0.057 a.u., α = 0.983 a.u., the equilibrium bond
distance se = 5.04 a.u. and the reduced mass of this system M = 1.165 × 105 a.u. (taken
from Ref. [51]). Thus the frequency of the harmonic approximation is ωS = α

√

2D/M ≈
0.001 a.u. implying a harmonic vibrational system period of τS ≈ 156 fs for small oscillations
around the minimum. For the numerical calculations, the initial wave function is a GWP
centered around si = 4.53 a.u., i.e. on the steep side of the potential, with zero momentum
and the width parameter γS = MωS as shown in Fig. 4.1(a). Hence the initial energy
expectation value is 〈E〉 = 0.426D, which is well away from the potential minimum and
therefore from the area of validity of the harmonic approximation. Further snapshots of
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Figure 4.1: Density of a wave packet in a Morse potential at different times (full quantum
results unless stated explicitly otherwise)
(a) initial GWP at time t = 0; (b) at time t = 96 fs
(c) solid (red) line: shortly before the end of the first period at time t = 192 fs,
all quantum results; dash-dotted (green) line: semiclassical HK result at time
t = 192 fs with 5 × 104 trajectories

the density of the wave packet are shown in Fig. 4.1 within the first vibrational period:
at t = 96 fs, when the wave packet is softly reflected at the flat side of the potential (Fig.
4.1(b)), and at t = 192 fs, where an interference pattern becomes visible while a part of the
wave packet is reflected (Fig. 4.1(c)). The latter time is shortly before the end of the first
vibrational period since the local energy-dependent period for the given energy expectation
value is

τloc(〈E〉) =
τS

1 − 〈E〉/D ≈ 206 fs . (4.1)

All the results depicted with solid lines in Fig. 4.1 are obtained with the SPO-method [30]
and thus are full quantum results. Additionally, the semiclassical HK result is plotted at
t = 192 fs with 5 × 104 trajectories, confirming the excellent agreement with the quantum
one, such that both results can hardly be distinguished. Also, this is the time, at which
snapshots of the density will be considered in the next two subsections for the case of the
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4.1 Vibrational Dynamics of Diatomics

anharmonic oscillator coupled to a bath.

4.1.1 SCHD vs Various Semiclassical Approximations for T=0

So far the free Morse oscillator was investigated. Now we turn to the system coupled to a
finite bath at temperature T=0 with a continuous spectral density, which is Ohmic with
an exponential cutoff

Je(ω) = ηω e−ω/ωc , (4.2)

where ωc is the cutoff frequency and η the coupling strength. The frequencies of the bath
are drawn from the density of frequencies, which is chosen to be

ρf(ω) = a
Je(ω)

ω
, (4.3)

with the normalization coefficient

a =
NB

ηωc

1

1 − e−ωmax/ωc
(4.4)

which is determined utilizing the normalization condition in Eq. (2.9).
The cutoff frequency is set to ωc = 9.1× 10−5 a.u. as in Ref. [51], which is much smaller

than the local system frequency ωloc(〈E〉) = 7.3× 10−4 a.u.. Since the maximum frequency
is chosen to be ωmax = 5ωc, no resonant coupling will occur and thus dissipation will be
negligible.

For the coupled system, the HK result is assumed to be in a very good agreement with
the full quantum result, since the former method works excellent for every separate DOF,
i.e. the Morse and harmonic oscillator, and the linear coupling between those DOFs does
not significantly increase the semiclassical errors.

Therefore, it is sufficient to check the accuracy of the SCHD by comparing it with the
more accurate full HK method for this coupled system. To this end, we consider a bath
with only three modes. This already involves a 16-dimensional phase space integral in
the HK case [see Eq. (3.9)] which has to be computed numerically. In contrast, with the
SCHD only a four-dimensional integral needs to be evaluated, since the (non-resonant)
bath DOFs are treated on the level of the single-trajectory approach [see Eq. (3.35)]. In
Fig. 4.2 the reduced densities at time t = 192 fs obtained with the HK method and the
SCHD are plotted for a system-bath coupling strength ηeff = η/(MωS) = 0.25. Obviously,
the agreement between both approximations is excellent, a difference is hardly visible.
Regarding the computational effort, however, the difference is significant since 3 × 106

trajectories are necessary to obtain the HK result, whereas 2× 104 trajectories are needed
to obtain the SCHD result. In other words, the computation takes 6 h on a modern
workstation in the first case and 20 minutes in the second case.

In Fig. 4.3 the SCHD is compared with two other computationally less costly classical
respectively semiclassical methods, that, on the other hand, are also less accurate: the LSC-
IVR, which was introduced in Section 3.1.3, and the single-trajectory pure TGWD. Still
the bath consists of three bath modes and now the effective coupling strength is ηeff = 0.05.
We stress that TGWD as well as the LSC-IVR highlight different aspects of the observed
system. The TGWD contains information about the harmonicity of a bound system, since
it is valid only in the harmonic regime. On the one hand the reduced density’s shape is
restricted to be Gaussian for all times and on the other hand the wave packet’s initial
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Figure 4.2: Reduced density at time t = 192 fs for a Morse oscillator coupled to a bath
consisting of 3 modes with ηeff = 0.25; solid line: HK result with 3 × 106

trajectories; dashed line: SCHD result with 105 trajectories
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Figure 4.3: Reduced density at time t = 192 fs for a Morse oscillator coupled to a bath
consisting of 3 modes with ηeff = 0.05 obtained with three different semiclassical
approximations; solid line: SCHD; dashed line: LSC-IVR; dotted line: pure
TGWD
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4.1 Vibrational Dynamics of Diatomics

position is away from the harmonic regime, as mentioned above. Thus, although it is the
method with the least computational effort, it is obviously completely incapable of showing
a similar behavior on the observed time scale as the SCHD result. The LSC-IVR, in turn,
is a classical Wigner method revealing information about the classical nature of a system.
As it does not contain any phase information, it is incapable of reproducing the interference
pattern that occurs at the observed time. But in contrast to the TGWD, the LSC-IVR
result is closer to the hybrid one in the sense that the mean shapes of the reduced densities
are similar.

4.1.2 From the Quantum to the Classical Regime at T=0

The previous comparison demonstrated the capability of the SCHD for treating the SOI in
a finite, non-resonant bath with three bath oscillators. Now we study the influence of the
bath on the time evolution of the system in more detail. To this end, we need to increase
the number of bath modes to 20 in order to mimic the continuous spectral density better
than in the three-mode case, as indicated by the different results in Fig. 4.4. All other bath
parameters are the same as introduced before and at first the bath has zero temperature.
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Figure 4.4: Reduced density at time t = 192 fs for zero bath temperature and with coupling
strength ηeff = 0.25 with different numbers of bath modes; solid line: 20 bath
modes; dashed line: three bath modes

For the given parameters, the reduced density at t = 192 fs is shown in Fig. 4.5 for
three different coupling strengths with zero initial bath temperature. In each subfigure
the corresponding SCHD and LSC-IVR result for the open system as well as the exact
quantum density for the free Morse oscillator are plotted. The number of trajectories used
in the SCHD computation is 2 × 104. In turn, considering that a 22-dimensional phase-
space integral has to be solved numerically, 106 trajectories were taken into account for
the LSC-IVR result in order to obtain a sufficient convergence of the integral. However,
in the case of the LSC-IVR the integrand is easily determined, whereas in the case of the
SCHD two matrices in the order of NB ×NB (with the number of bath modes NB) need to
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Figure 4.5: Reduced density at time t = 192 fs for a Morse oscillator coupled to a bath
consisting of 20 modes for different effective coupling strengths: (a) ηeff = 0.25,
(b) ηeff = 0.5, (c) ηeff = 1.0; solid line: SCHD result, dashed line: LSC-IVR
result, dotted line: full quantum result for the free oscillator; the initial bath
temperature is T = 0
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4.1 Vibrational Dynamics of Diatomics

be inverted for every Monte-Carlo sampling point. For this reason, in both cases, SCHD
and LSC-IVR, the computational time was in the same order of a few hours on a modern
workstation.

Focusing on the difference of the results in Fig. 4.5, two peculiarities become apparent.
First, the system frequency shift is observed to become stronger with increasing coupling
strength. This blue shift was elucidated in section 2.2 for single trajectories. In the reduced
density formalism this is indicated by the circumstance that that the reduced density in
Fig. 4.5, for both the SCHD and LSC-IVR result, is shifted to the left relative to the
free system’s density (note that the first vibrational period is not completely over yet).
A quantitative estimate of this shift can be made by considering the frequency of a single
“coupled” trajectory (see Fig. 2.5) that has the same energy as the energy expectation value
of the initial state used here, i.e. 〈E〉 = 0.426D. Again we stress that this is reasonable
under the assumption that dissipation, i.e. loss of energy, is negligible due to the specific
nature of the bath. This assumption yields a reduction of the local period of τloc = 206 fs
to τ c

loc = 199.5 fs when the SOI is coupled to the bath with ηeff = 0.25. This is corroborated
by looking at the position expectation value of the system, which can be derived from the
reduced density (see also Appendix D).

The second conspicuity is the smoothing of the interference pattern in the SCHD reduced
density, i.e. the oscillatory structure, while being very prominent in the free oscillator case,
is getting smeared with increasing coupling (see Fig. 4.5(c)). This smoothing becomes
more distinct with increasing influence of the bath on the SOI. This effect, which has also
been termed quenching of quantum coherence [51], originates from the coupling to the
environment that leads to a loss of phase coherence in the system dynamics. At the same
time, the SCHD approaches the LSC-IVR result with increasing coupling strength, which
indicates the transition from quantum to classical behavior.

4.1.3 From the Quantum to the Classical Regime at Finite Temperature

So far, a zero temperature bath was considered. However, the SCHD as derived in Section
3.2 also allows for the investigation of systems in baths that have a finite temperature.
Therefore, now the influence of the bath temperature on the dynamics of the density will
be investigated. For this, the same bath parameters are used as before and the coupling
strength is fixed, while the temperature is varied from 0 to 300 K.

In Fig. 4.6, again the free density as well as the SCHD and LSC-IVR results for the
reduced density are plotted for different bath temperatures and an intermediate coupling
strength ηeff = 0.25. Additionally, the SCHD Wigner function

W (s, p̃S) =
1

π~

∫

dζ 〈s− ζ|ρ̂S|s+ ζ〉e2ıp̃sζ/~ (4.5)

is shown in every subfigure. The momentum in the Wigner representation p̃S is different
from the momentum pS being part of the phase space integral in the SCHD. An explicit
SCHD expression of the Wigner function is derived in Appendix D.

Looking at the reduced density, we find that again the interference pattern is increasingly
smeared with temperature going from 0 to 300 K, which goes along with the SCHD and
LSC-IVR results approaching each other. At the highest considered temperature in Fig.
4.6(c), i.e. T = 300 K, both results are virtually equal suggesting the assumption that
the transition from the quantum to the classical regime is nearly performed. Of course,
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Figure 4.6: Reduced density (in each case upper subfigure) and Wigner function (lower
subfigure) at time t = 192 fs for ηeff = 0.25, 20 bath modes and different bath
temperatures: (a) T = 0, (b) T = 100 K, (c) T = 300 K; solid line: SCHD
result, dashed line: LSC-IVR result, dotted line: full quantum result for the
free oscillator; the Wigner function is the SCHD result, where the red color
indicates positive and the blue color negative values
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4.1 Vibrational Dynamics of Diatomics

since the coupling to the bath is constant, so is the blue shift of the system frequency.
However, even without a classical reference method, such as the LSC-IVR, the quantum-
to-classical transition can be observed by looking at the Wigner function. We can utilize the
circumstance that it can adopt negative values identifying non-classical states. Thus, the
existence and intensity of these negative regions gives a qualitative estimate of what can be
called the quantumness [94] of a particular wave function [95, 96]. In the Wigner function
shown here, the region with rapid oscillations between negative and positive parts vanishes
more and more with increasing temperature. Finally the Wigner function consists mainly
of a weakly negative and a prominent positive region corroborating the nearly completed
transition to a classical state.

4.1.4 Purity Dynamics and Decoherence

By looking at the reduced density and the Wigner function, the quantum-to-classical transi-
tion can be observed clearly, as was the case above. However, this is just one manifestation
of decoherence among several others. A convenient quantity for the time evolution of
decoherence, i.e. the mixing of a quantum state, is the purity P(t) = tr(ρ2), which was
introduced in Section 2.4. For the numerical computations, the bath parameters are still
the same as above and the initial state for the SOI part has not changed either. As an
aside, in principle the structure of the hybrid reduced density expression allows for the
analytical performance of the trace of the squared density operator such that eventually,
only the phase space integral needs to be calculated numerically in order to obtain the
SCHD purity. However, this is a 8NS-dimensional integral, whose calculation turns out to
be computationally much more costly than the computation of the reduced density matrix
on a grid and its subsequent numerical squaring and tracing. The number of trajectories
used to obtain the following purity results is in the range 2 × 104 to 4 × 104.

In Fig. 4.7 the purity is plotted for different coupling strengths and zero temperature.
Note that the initial increase above unity is due to numerical reasons, which could be
diminished by an increased number of trajectories. Obviously the purity is very sensitive
to decoherence processes since a decrease becomes already visible after one vibrational
period, although smaller coupling strengths are used than in the density calculations. A
stronger decrease of the purity with increasing coupling strength is apparent. On the other
hand, the coupling strength is fixed in Fig. 4.8, while the bath temperature is varied.

Another frequently used type of states for the investigation of decoherence is a coherent
superposition of two locally separated Gaussians, a so-called cat state

|Ψcat〉 =

√

1

2

(

1 + e−(γs/4)(si,a−si,b)
2
)−1/2

(|Ψa〉 + |Ψb〉) , (4.6)

with the respective centers, which are chosen to be si,a = 4.91 and si,b = 5.67 here. Such
a state could, for instance, represent a particle in a superposition of locations in a Stern-
Gerlach experiment [94] or a situation of a diatomic molecule “simultaneously” stretched
and compressed as studied in Chapter 6 later on.

The results for this initial state in a Morse oscillator are shown in Fig. 4.9. For both
coupling coefficients, the decoherence rate is obviously smaller than in the case of a single
Gaussian with a higher energy expectation value placed at si = 4.54 as shown in Fig. 4.7.
This observation is consistent with the assumption that the decoherence rate is correlated
with the highest occupied vibrational state [27]. However, this is not the only criterion
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Figure 4.7: Time-evolution of the purity at zero temperature for different coupling
strengths; solid line: ηeff = 0.05, dashed line: ηeff = 0.15, dotted line: ηeff = 0.25
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Figure 4.8: Time-evolution of the purity for a fixed coupling strength ηeff = 0.05 at various
bath temperatures; solid line: T = 0, dashed line: T = 10 K, dotted line:
T = 100 K
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Figure 4.9: Time-evolution of the purity for different initial states at zero temperature;
solid line: cat state consisting of two Gaussians centered around si,a = 4.91 and
si,b = 5.67 with coupling strength ηeff = 0.05, dashed line: the same cat state
with ηeff = 0.25, dotted line: single Gaussian centered around si = 5.67 with
ηeff = 0.25

for the decrease of the purity. In Fig. 4.9 we present the time evolution of the purity
for an initial Gaussian centered around si = 5.67 and thus occupying the same highest
vibrational state as the cat state. Nevertheless, in the Gaussian case the decoherence
rate is lower than in the cat case. This is in agreement with the statement by Elran and
Brumer that interference between the two Gaussians is suppressed which again increases
the decoherence rate [27]. Thus the decrease of the purity in time depends on the initial
state, as well. It should be stressed that in all the non-dissipative results shown above, the
norm is preserved up to marginal deviations. In dissipative and long time dynamics this is
not alway the case, as will be seen later.

4.2 Long Time Quantum Dynamics - Wave Packet Revivals

Besides interference effects and tunneling, a quantum revival is another quantum phe-
nomenon of interest occurring in the long time dynamics of wave packets of numerous
bound systems. In 1986, quantum wave packet revivals had been theoretically predicted in
Rydberg atoms [97] before they have been observed in experiments [98] a few years later.
Moreover, theoretical studies have then been extended to Rydberg clusters [99]. However,
in the past, revivals have been also observed in other systems besides Rydberg atoms. For
instance, in optical lattices, oscillating wave packets of atoms undergo revivals [100] and
even a chaotic system, i.e. the stadium billiard, can exhibit revival dynamics [101].

Here, however, we are interested in revivals in molecular systems. Since laser pulses had
been used to prepare molecular wave packets, quantum revivals became highly relevant, e.g.
in pump-probe experiments [102, 103]. Moreover, in a recent publication [104], a proposal
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has been made for the exploitation of revivals for quantum control of molecules. Our focus
is particularly on revivals of molecular vibrational wave packets in the presence of a bath.
This is of high interest in recent research, where wave packet dynamics of diatomic rubidium
molecules in superfluid helium nanodroplets were studied experimentally and theoretically
[105]. However, in this study dissipation is present and the theoretical approach used there
is Markovian, i.e. in the quantum optical limit for very weak coupling. In contrast we recall
that our SCHD approach is non-Markovian and that again, here, we are interested in pure
decoherence phenomena by using a non-resonant bath and thus neglecting dissipation.

Before we get into the semiclassical treatment in the anharmonic Morse oscillator, with
and without a bath, however, we will review and discuss the theoretical background of
revivals.

4.2.1 Quantum Revival Time Analysis

In position representation, a quantum revival is defined as the event that a wave function
- or equivalently the corresponding density - adopts its initial form after some revival time
τrev, that is

Ψ(x, τrev) ≃ Ψ(x, 0) . (4.7)

To investigate τrev, we start out with the basis expansion of an arbitrary wave function

Ψ(x, t) =
∑

n

cnψn(x)e−ıEnt/~ , (4.8)

with the energy eigenfunctions ψn(x), the energy eigenvalues En and the coefficients cn,
where only the bound states of a system are considered. The particular considered potential
is again the Morse potential introduced in Eq. (2.19).

A revival requires all phase factors to become unity, which is equivalent to the condition
that

Enτrev
~

=

[

ωS

(

n+
1

2

)

− νS

(

n+
1

2

)2
]

τrev
!
= 2πLn Ln ∈ Z n ∈ N , (4.9)

where the eigenenergies of the Morse oscillator, given in Eq. (2.20), were used. Hence, the
difference of two consecutive phases must be an n-dependent integer multiple of 2π, as well,
yielding

[(En+1 − En) − (En − En−1)]
τrev
~

= (En+1 − 2En + En−1)
τrev
~

=

[

ωS

(

n+
3

2

)

− νS

(

n+
3

2

)2

− 2ωS

(

n+
1

2

)

+2νS

(

n+
1

2

)2

+ ωS

(

n− 1

2

)

− νS

(

n− 1

2

)2
]

τrev

= −2νSτrev
!
= 2πL , (4.10)

where L is some fixed positive integer. Thus the revival time is τrev = π/νSL, since the sign
is irrelevant.
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However, for a better understanding of the dynamics in the vicinity of the revival time
of the specific system and to find the smallest integer L to obtain a unique revival time, we
will examine the respective phase more thoroughly. Hence, assuming L = 1, we consider

En
τrev ± δ

~
=
[ωS

2
− νS

4

]( π

νS

± δ

)

+ [ωSn− νSn(n+ 1)]

(
π

νS

± δ

)

(4.11)

= −πn(n+ 1) + ωSn

(
π

νS

± δ

)

∓ νSn(n+ 1)δ , (4.12)

where δ is some small deviation from the revival time. The first term on the right hand side
of Eq. (4.11) is not considered in Eq. (4.12) any more, since it gives only a global phase not
affecting the physics of the system. Regarding Eq. (4.12), we find that the first term is an
even multiple of π. Thus the revival condition would be fulfilled at the revival time, that
is for δ = 0, if the second term also were an integer multiple of 2π, i.e. if ωS/νS = 2Hn/n,
where Hn is the n-dependent integer.

Indeed, in general this is not the case, but still we can obtain an excellent approximation
to a full revival. The reason for this is the fact, that

ωS

νS

=

√
8DM

~α
≫ 1 , (4.13)

since for realistic systems α ≪
√
DM , with the system mass M . The second term in Eq.

(4.12) becomes an even multiple of π, if

π

νS

± δ =
2πIn
ωS

In ∈ Z . (4.14)

Since νS ≪ ωS, there is always a δ < 2π/ωS = τS, with τS the harmonic system period of
oscillation, for which Eq. (4.14) is fulfilled. Under this condition, the third term in Eq.
(4.12) is then much smaller compared to the sum of the other terms and the estimate for the
revival time is τrev = π/νS = 983.5, if we work with unit mass and choose the dimensionless
units as D = 30 and α = 0.08.

Following this analysis it becomes clear, that the wave packet revival is a result of phase
relations of the eigenstates and thus it does not have a classical analog. For further reading
on wave packet revivals an elaborate summary can be found in [106].

4.2.2 Revivals in Semiclassics

The time scale of the dynamics in a bound quantum system can be separated into three
regimes. The first and also shortest one is the initial part of the propagation, when the
evolution of the initially localized wave packet is closely followed by the classical evolution
of the corresponding probability distribution. This time scale is is also denoted as the
Ehrenfest time. Beyond this time, the wave packet spreads over the whole phase space
region restricted by the particular energy. In general, a seemingly disordered interference
pattern occurs and the classical evolution of the probability density becomes incapable of
reproducing the quantum evolution. However, it is well-known, that semiclassical dynamics
works satisfactorily on this time scale especially for systems evolving regularly and even for
chaotic “long time” dynamics [107], as demonstrated already in this thesis and in numerous
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publications. After a sufficiently long time, the wave packet relocalizes, reconstructing the
form of the initial packet. This is the quantum revival regime, which is characterized by
the revival time introduced above.

Here, the aim is to clarify, whether the semiclassical HK method is valid in the revival
regime and thus reproduces quantum revivals. Indeed, quantum revivals have already been
described semiclassically using Heller’s cellular dynamics [108]. However, in contrast to the
HK method, the cellular dynamics method is a non-uniform SC-IVR and thus potentially
less accurate.

For the numerical treatment, we choose a GWP centered around s̃i = −3.0 (dimensionless
units) with zero momentum and a width parameter γ = 2.0 as the initial wave function. An
appropriate quantity for the investigation of revivals is the autocorrelation function, which
is the overlap of the propagated wave function with the initial one. In terms of densities
a generalization of the autocorrelation function is the survival probability, which can be
interpreted as the expectation value of the initial density ρ̂i ≡ ρ̂(0), and thus

C(t) ≡ 〈ρ̂i〉(t) = tr[ρ̂iρ̂(t)] . (4.15)

In Fig. 4.10, this survival probability is plotted in time for three different methods of
propagation. The quantum revival is indicated by the survival probability returning to
unity after the revival time τrev = 983.5, that is nearly 100 vibrational periods. This is
confirmed by the numerical results, where the revival is apparent not only in the quantum
but also in the semiclassical case and even the agreement in the time dependence of C(t)
between both cases is excellent. Thus, the HK method is still a valid approximation to
quantum mechanics even on time scales, that are much longer than a typical system period.
In principle, the HK expression in wave function formalism consisting of a single phase
space integral would be sufficient for the calculation, since a one-dimensional system is
considered. Here, however, the density expression of the HK method involving the double
phase space integral is used for reasons of consistency with results for the system-bath case
shown below. In doing so, 106 trajectories are necessary to obtain a sufficiently converged
result. Further increasing the number of sampling points would only change minor details
in the time dependence of the considered survival probability.

The LSC-IVR result, in turn, shows a good agreement with the other results only for
short times in the order of only a few vibrational periods corresponding to the Ehrenfest
regime. However, with proceeding time the deviation from the other results increases until
the classical survival probability equilibrates at a constant value of nearly 0.2 not showing
any revival at all.

Hence, obviously the phase relations of the trajectories in the HK expression are responsi-
ble for the occurrence of revivals. In order to see in detail how this leads to such a revival, we
consider the distribution of trajectory (angular) phases in a phase space cut at the revival
time, since the overall system’s double phase space is a four-dimensional one. Here, the
two-dimensional phase space cut at the time of revival is chosen, where the initial conditions
of the trajectories are varied in one half of the double phase space and fixed at the maxi-
mum of the initial wave packet in the other half, i.e. (qS,τrev(qS, pS), pS,τrev(qS, pS); q

′
S,τrev(q

′
S =

s̃i, p
′
S = 0), p′S,τrev(q

′
S = s̃i, p

′
S = 0)). In Fig. 4.11 this cut is shown in the topmost panel.

Each final phase space point carries a phase, which is encoded by a color in a continuous
way. Here, a certain clustering of similar colors and thus phases can be observed in the
region of the initial wave function. This becomes distinct below in the Gaussian blurred

44



4.2 Long Time Quantum Dynamics - Wave Packet Revivals

(c)

t

|C
(t

)|2

10008006004002000

1

0.8

0.6

0.4

0.2

0

(b)

|C
(t

)|2

1

0.8

0.6

0.4

0.2

0

(a)

|C
(t

)|2

1

0.8

0.6

0.4

0.2

0

Figure 4.10: Survival probability vs time obtained with various propagation methods; (a)
quantum result (with SPO), (b) semiclassical HK result, (c) classical Wigner
(LSC-IVR) result; time is given in dimensionless units

version of this phase space distribution. The Gaussian blurring of a function in phase space
f(s̃, p̃S) is achieved by centering a Gaussian window function around each phase space point
and averaging over the phase space, so that the blurred function reads

f(s̃, p̃S) =

∫

ds̃′ dp̃′S exp
[
−γ̃1(s̃

′ − s̃)2 − γ̃2(p̃
′
S − p̃S)

2
]
f(s̃′, p̃′S) , (4.16)

with the width parameters γ̃1 ans γ̃2. Hence, the parts, that appear rather grey, indicate
neighboring points with strongly varying phases, that eventually cancel their contributions
mutually. The contributions of the trajectories only add up in regions with similar phases,
which yields regions with identifiable colors. This is the case in those parts, where the
revived wave packet is localized, as can be seen from the wave packet density in position
space. The agreement with the initial wave function is outstanding and the small contri-
butions outside this region of the initial wave packet will eventually vanish with increasing
number of trajectories.
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Figure 4.11: Topmost panel: Distribution of wave function phases in the
(qS,τrev(qS, pS), pS,τrev(qS, pS); q

′
S,τrev(q

′
S = s̃i, p

′
S = 0), p′S,τrev(q

′
S = s̃i, p

′
S = 0))

phase space cut at the time of revival τrev = 983.5 with color-coded phases for
each point (the phases are taken mod 2π); Central panel: Gaussian blurred
phase space distribution at the revival time; Lowermost panel: Initial (solid
line) and revived (dashes) density in position space

4.2.3 Suppression of Revivals due to Decoherence

Based on the knowledge, that the semiclassical HK method is capable of describing quantum
revivals, we know apply the SCHD to the anharmonic system coupled to a non-dissipative
finite bath again, since we wish to investigate the revival dynamics in the presence of
pure decoherence solely. For this, the cutoff frequency is ωc = 0.05 and the maximum
frequency of the bath ωmax = 3ωc.

The survival probability is plotted in Fig. 4.12 for different numbers of bath modes and
varying initial bath temperatures. In all cases the coupling strength is η = 0.05. Trajectory
numbers in the order of 105 are sufficient to obtain converged results with the semiclassical
hybrid method. A further increase of the number of sampling points only changes minor
details in the course of the time evolution of the survival probability. As an aside, the
results shown here, are renormalized in the sense, that the survival probability is divided
by its norm. The reason for this procedure is the fact that the SCHD fails to maintain
norm conservation and hence the norm drop-off is between 60% and 80% on the regarded

46



4.2 Long Time Quantum Dynamics - Wave Packet Revivals

(d)

t

C
(t

)

10008006004002000

1

0.75

0.5

0.25

0

(c)

C
(t

)

1

0.75

0.5

0.25

(b)

C
(t

)

1

0.75

0.5

0.25

(a)
C

(t
)

1

0.75

0.5

0.25

Figure 4.12: SCHD survival probability for fixed coupling η = 0.05 and various mode num-
bers and temperatures: (a) 3 bath modes, β = 1.0; (b) 5 bath modes, β = 1.0;
(c) 3 bath modes, β = 0.1; (d) 5 bath modes, β = 0.1, the dashed line is the
classical LSC-IVR result

47



4 Pure Decoherence

time scale in the coupled case (in the uncoupled case the norm drop-off is negligible).
Nonetheless, structures indicating decoherence are clearly visible even in the case of the
weakest perturbation, where the bath consists of only 3 bath modes and has a rather low
initial temperature of β = 1/(kT ) = 1.0. Here, the damping of the coherent oscillations is
clearly visible, although they never come to a full standstill. An increase of the number
of modes as well as an increase of the temperature result in a stronger damping of the
oscillation. For the largest considered bath with the highest regarded temperature, the
revival is nearly fully suppressed, where the survival probability shows only small residual
oscillations. For this case also the classical result is plotted as a reference, being in a good
agreement with the SCHD result.

Indeed, we cannot be sure that this result is a consequence of pure dephasing, since the
selected cutoff frequency could still be too close to the resonance frequency. Then, the
damping of oscillations could also be due to dissipation, where finally thermal equilibrium
is reached on this relatively long time scale. In Fig. 4.13 the energy expectation value of
the SOI

〈E〉(t) = tr(HSρS) (4.17)

is plotted (see more on the calculation of this energy expectation value in Appendix D.2.1).
Here, the bath has a temperature of β = 1.0 and consists of 3 modes. Since the integrand
of the energy expectation value is more strongly oscillating than in the case of the survival
probability, far more trajectories are required to obtain a sufficiently converged result,
i.e. 2 × 106. This shows a nearly constant energy with very small deviations of about 5 %
from the initial energy. Similar results for the time evolution of the energy are obtained
with a larger bath at a higher temperature, which is not shown here.

Of course, the survival probability gives a compact impression about the time evolution
of the density with respect to the initial one. However, just like in the case of the free
oscillator, a more illustrative way to study revival dynamics is to regard the density at
the expected revival time. Hence, in Fig. 4.14 these reduced densities are plotted for
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Figure 4.13: Energy expectation value with bath consisting of 3 modes and β = 1.0
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4.2 Long Time Quantum Dynamics - Wave Packet Revivals

different parameters and compositions of the bath. Due to the blue shift of the system
frequency described in Section 2.2, the revival time is now expected to be earlier than in
the free case, i.e. τrev = 981.5, which is in agreement with the prediction. In the case of the
weakest damping of oscillations, where β = 1.0 and the bath has 3 modes, the shape of the
reduced density is similar to the initial one, albeit broader and not exactly Gaussian any
more. Hence, the revival has become rather a partial revival with small and still negligible
oscillatory contributions outside the revival region. Furthermore, the density is spread over
the whole allowed region in position space according to the energy range covered by the
initial wave packet as shown in Fig. 4.14(b). The quantum revival is maximally suppressed
and the density is virtually identical with the classical result. Therefore, by varying the
temperature of the bath as well as its size, one can systematically and continuously tune the
revival dynamics from full revival to full suppression passing all grades of partial revivals.

A description of the semiclassical mechanism is not comprehensively possible, since only
a part of the overall phase space can be captured. However, to get an idea of the in-
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Figure 4.14: (a) Density in position space at the expected revival time (solid line) for a
bath with 3 modes and temperature β = 1.0; (b) Density in position space at
the expected revival time (solid line) for a bath with 5 modes and temperature
β = 0.1 and LSC-IVR result (dashed line); in both panels, the dotted line is
the initial density

Figure 4.15: Gaussian blurred phase space distribution in the phase space cut
(qS,τrev(qS, pS), pS,τrev(qS, pS); q

′
S,τrev(q

′
S = s̃i, p

′
S = 0), p′S,τrev(q

′
S = s̃i, p

′
S = 0)) at

the expected revival time with a bath consisting of 3 modes with β = 0.1
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fluence of the coupling and the temperature on the phases of the trajectories, again the
blurred distribution of the phase space cut (qS,τrev(qS, pS), pS,τrev(qS, pS); q

′
S,τrev(q

′
S = s̃i, p

′
S =

0), p′S,τrev(q
′
S = s̃i, p

′
S = 0)) is shown in Fig. 4.15. In contrast to the phase space cut shown

in Fig. 4.11, there is no such region of similar phases and therefore no homogeneous color in
the vicinity of the revival region. The phases of the trajectories have rather become mixed
showing only small “non-grey” regions with similar colors.

4.3 Diffraction at a Double Slit

Within the framework of non-dissipative system-bath problems, we are interested in the
investigation of another SOI, which is of a different type than the anharmonic oscillator
investigated above. Here, we consider a wave packet in the plane, e.g. an electron, propa-
gating through a double slit. This refers to the typical experiment appearing in standard
literature on quantum mechanics and is of interest in many respects. For instance, one
makes use of the double slit in atom interferometry [109]. It also plays an important role
regarding fundamental questions of quantum physics. In a very recent experiment the
double slit was extended to a triple slit and as a result higher order interferences could
be ruled out and thus Born’s interpretation confirmed [110]. Furthermore, the double
slit-propagation of a wave packet exiting from a chaotic billiard, leads to chaos-induced,
so-called dynamical, decoherence [111]. Here, we want to investigate decoherence by cou-
pling the slit to a non-resonant bath. We will use a system-bath model, which will be given
below and which is slightly different from the CL model to allow for the coupling to be
effective only in the vicinity of the slit.

The considered double slit is described by the potential [52]

V(s1, s2) =

(

V0 −
mω2

2
s22 +

m2ω4

16V0
s42

)

e−(s1/αd)2 , (4.18)

which is a superposition of a double well potential in the s2 coordinate and a Gaussian
potential in the s1 coordinate, see also Fig. 4.16. The potential parameters used here are
αd = 50 a.u., ω = 0.0027 a.u. and the barrier height V0 = 0.036 a.u.. Also, the particle is
assumed to have mass m = 1 a.u.. Initially the state is a two-dimensional GWP located to
the left side of the barrier at s1 = −300 a.u. and s2 = 0 a.u. with a positive momentum in the
s1 direction ps,1 = 0.137 a.u., yielding a kinetic energy of roughly 25% of the barrier height.
Hence, the energy is sufficiently high, so that the particle can pass the barrier, except for
tunneling. However, the barrier is sufficiently broad in the direction of propagation, so that
tunneling processes will not dominate the dynamics. Finally, the widths of the incident
Gaussian are γS,1 = 1/(2α2

d and γS,2 = ω2/(8V0).

4.3.1 Free Double Slit

Before the barrier is coupled to a thermal bath, we will study the free double slit first. To
this end, the angular distribution of the transmitted part

P (ϑ) =

∞∫

0

dR RρS(R, ϑ; t→ ∞) (4.19)
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Figure 4.16: Energy surface plot of the double slit potential described by Eq. (4.18) with
the parameters given in the text

is investigated. It is identical with the diffraction pattern that would appear on a concave
screen arranged behind the double slit. Hence, the reduced density as a function of polar
coordinates is needed at sufficiently long times, when the scattering process is assumed to
be terminated and consequently the wave packet is split into two distinct parts, a reflected
and a transmitted one.

Fig. 4.17 shows the quantum and the HK result of this distribution. In the quantum case
the wave function is propagated with the SPO on a cartesian grid [30] and subsequently
the distribution is calculated via interpolation. In contrast, the computation of the HK
density on a polar grid is straightforward, since the cartesian coordinates only need to be
written as functions of polar coordinates

ρ(s1, s2; t) = ρ[R cos(ϑ), R sin(ϑ); t] → ρ(R, ϑ; t) . (4.20)

Nonetheless, for the particular regarded system we encounter chaos, which occurs in the
underlying classical dynamics and thus complicates the semiclassical computation. In prin-
ciple, this can appear in all systems with a phase space that has more than two dimensions,
which is the case here. In the semiclassical propagator, chaos involves a highly oscillating
integrand and thus numerically the corresponding integral converges very slowly. In other
words, it takes a very high number of sampling points to obtain a sufficiently converged
result compared to integrable systems with the same dimensionality, since the phase space
needs to be covered very densely in the chaotic case (more on semiclassical treatment of
chaotic systems, see [49, 112]).

However, several approaches have been made to increase the convergence of the phase
space integral, in particular for chaotic problems. A number of these approaches is based
on the Filinov integral smoothing technique (a nice review on this can be found in [54]),
where the phase space integral is additionally preaveraged.

In this work, we take a simpler but very efficient approach: a chaotic trajectory is
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Figure 4.17: Angular distribution of the transmitted part of a wave packet propagating
through a double slit; solid line: HK result with 107 trajectories, dashed line:
quantum result; The propagation time of the wave packet is 9000 a.u.

discarded if the corresponding prefactor |RR′∗| exceeds a certain threshold value according
to a suggestion by Kay [113]. This idea is based on the assumption that the stability
prefactor, discussed in Appendix B, governing the dependence of a trajectory on its initial
conditions, is large in regions with a highly oscillating integrand, that averages to zero
locally. Furthermore, the sudden cutoff of a trajectory was shown to be a special case
of the Filinov preaveraging technique which is much easier to apply than other prevalent
Filinov approaches [114]. At the same time, it has a comparable efficiency. Still, some
care must be taken when choosing the appropriate cutoff value, since too many dismissed
trajectories can entail a strong suppression of originally non-negligible parts of the density.
Here, the cutoff value is chosen such that less than 4% of the trajectories are discarded at
the final time.

Hence, the semiclassical result reproduces the quantum diffraction pattern very well up
to minor deviations, particularly in the higher order diffraction peaks as shown in Fig. 4.17.
Considering that the semiclassical calculation of the density involves the computation of an
eight-dimensional phase space integral, which in addition shows partially chaotic behavior,
it is not surprising that 107 trajectories are necessary to obtain a sufficiently converged
result. We note, that for the semiclassical results, the symmetry of the regarded problem
with respect to the axis of propagation (s1-axis) is exploited, and thus the reduced density
is averaged over both quadrants of the positive position half-plane.

4.3.2 Damping of Diffraction

For the following discussion the barrier shall be coupled to a thermal low-frequency bath.
To this end, the system-bath Hamiltonian is slightly modified as compared to the CL case
in Eq. (2.5) and is given by
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Ĥ = ĤS +

NB∑

i=1

{

p̂2
i

2
+
ω2

i

2

(

yi +
ci
ω2

i

s2 e−(s1/υ)2
)2
}

. (4.21)

Now the coupling is linear along the barrier, i.e. in the s2 direction, and of exponential form
transverse to the slit. The latter kind of coupling restricts the bath-system interaction to
the vicinity of the barrier continuously, governed by the range parameter υ. Effectively,
this implies a position-dependent coupling coefficient, which in principle is no restriction for
the SCHD since it treats the system-bath Hamiltonian as a whole explicitly. The spectral
density of the bath is again assumed to be of Ohmic form with an exponential cutoff as
given in Eq. (4.2). Furthermore, the bath frequencies are distributed according to the
exponential density of frequency in Eq. (4.3). The corresponding maximum frequency is
ωmax = 4ωc with the cutoff frequency ωc = 4.56 × 10−4 a.u., which again is smaller than
the harmonic frequency of the bound DOF of the SOI, i.e. the frequency of the harmonic
approximation of one of the wells in the s2 direction. Hence, this bath is also non-dissipative
and will lead to pure dephasing. Considering the system’s short interaction time with the
bath compared to the overall propagation time due to the restricted interaction region,
five bath modes where found to be sufficient to mimic a continuous bath. At this point it
should be stressed, that the numerical complexity, which is already high in the free case
of the SOI, does not increase by the coupling to a bath. The number of sampling points
for the numerical phase space integration is still 107 and thus the same as in the free case,
since all bath modes are treated on the level of the TGWD here.

In Fig. 4.18 the angular distribution is shown for different range parameters υ. The
variation of this parameter changes the effective coupling nonlinearly. The loss of coherence
manifests first distinctly in the decrease of the central diffraction peak, since it results from
the strongest constructive interference of quantum paths and is thus most sensitive to
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Figure 4.18: Angular distribution for a barrier coupled to a bath with 5 bath modes, T = 0
and η = 4.56×10−5 a.u. for different range parameters; solid line: υ = 100 a.u.,
dashed line: υ = 1000 a.u., dotted line: result for the uncoupled double slit
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Figure 4.19: Angular distribution for a barrier coupled to a bath with 5 bath modes, T = 0
and a fixed range parameter υ = 100 a.u. for different coupling strengths; solid
line: η = 4.56×10−5 a.u., dashed line: η = 2.27×10−4 a.u., dotted line: result
for the uncoupled double slit
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Figure 4.20: Angular distribution for a barrier coupled to a bath with 5 bath modes, η =
4.56 × 10−5 a.u. and a fixed range parameter υ = 100 a.u. for various bath
temperatures; solid line: T = 0, long dashes: T = 400 K, short dashes: T =
1000 K, dotted line: result for the uncoupled double slit
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incoherent contributions. A further increase of the coupling range leads to a smearing
of the diffraction pattern with less prominent peaks. Eventually, for the largest range
parameter shown, the higher order peaks (4th and higher)) have virtually vanished. The
same qualitative behavior can be seen in Fig. 4.19, where the coupling strength η is varied,
still with a zero temperature bath. Finally, the alteration of the bath temperature, as
presented in Fig. 4.20, is the physically most interesting case showing a similar change of
the diffraction image as in the cases before. However, for the highest regarded temperature,
even the lower order peaks are strongly smeared. Moreover, the central peak has almost
vanished and two remaining broader ones are left, suggesting a virtually fully incoherent
reduced density. This is equivalent to the statement, that the sum of partial amplitudes
has turned into a sum of probabilities, i.e. the angular distribution is a sum of two partial
distributions that can be related to particles passing the right or the left slit solely.

So far, systems coupled to low-frequency baths allowing only pure decoherence have been
studied. In the next chapter we will discuss resonant baths allowing for energy transfer,
i.e. dissipation.
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In addition to pure decoherence, the exchange and flux of SOI energy into the bath, i.e.
dissipation, plays an important role in the theory of open quantum systems. Moreover,
this phenomenon is already known in classical mechanics, where it turns out to be the only
effect of the interaction between a SOI and a thermal bath. However, classical mechanics
does not reproduce the correct transient dissipative dynamics [53] and does not lead to
correct thermalization [115].

For the investigation of dissipation, the finite bath needs to have a cutoff frequency that is
larger than a typical characteristic frequency of the SOI, e.g. the frequency of the harmonic
approximation of a bound system. For this dissipative bath, we compare SCHD results to
semiclassical Brownian motion (SCBM) ones. SCBM is a method that treats the bath as
a reservoir, i.e. an infinitely large environment. At the heart of the SCBM is again the
HK propagator applied to the system DOF. The main difference to the SCHD lies in the
treatment of the bath, whose influence on the SOI is accounted for implicitly via a complex
stochastic force [57, 116]. In the SCBM the averaging over a number of these complex
force realizations goes along with the Monte-Carlo sampling within the computation of the
HK phase-space integral. Comparing both methods we find, how many bath modes are
necessary in the explicit scheme to obtain thermal equilibrium, and to check, which bath
modes are responsible for dissipative effects. The SCBM results to be compared with have
been provided by W. Koch.

In this chapter, two systems will be investigated: The dissipative harmonic oscillator,
which is a convenient test system since we can refer to an analytic solution, and the more
sophisticated and physically more relevant dissipative Morse oscillator that has been studied
already in Chapter 4. In addition, the time scales of dissipation and decoherence, the two
prominent processes in open quantum systems, will be compared for a finite bath.

5.1 Damped Harmonic Oscillator

The first test system for the investigation of dissipation effects is the harmonic oscilla-
tor, which is one of the simplest bound systems, with the potential given in Eq. (2.11).
Moreover, there is an analytical solution available for the time evolution of the second
momentum of position of a wave packet in a harmonic oscillator coupled to an infinite CL
bath with a particular spectral density, which is reviewed in the next subsection. It will
serve as the reference result in the subsequent part, where finite-bath SCHD results are
compared with SCBM results for infinite baths.

5.1.1 Analytical Expectation Values

In the following, an analytical result for the time evolution of position’s second moment
of a wave packet in a one-dimensional dissipative harmonic oscillator will be presented,
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following [117] together with [118]. The spectral density is assumed to be Ohmic with a
Drude-Lorentz cutoff

JD(ω) =
ηω

1 + ω2/ω2
c

, (5.1)

where ωc is the cutoff frequency. The time evolution of the second moment of position can
then be described by

〈s2〉t =Ġ2(t)〈s2〉0 +
1

M2
Ġ2(t)〈p2

S〉0 +
1

M
G(t)Ġ(t)〈pSs+ spS〉0

+

[

1 − S2(t)

〈s2〉2eq

]

〈s2〉eq + 2G(t)Ṡ(t) +
1

M2
G2(t)〈p2

S〉eq , (5.2)

with the initial expectation values given for a Gaussian at rest

〈s2〉0 =〈s〉20 +
1

2γS

〈p2
S〉0 =〈pS〉20 +

γS

2
〈pSs+ spS〉0 =0 ,

(5.3)

Eq. (5.2) also contains the equilibrium expectation values

〈s2〉eq =
1

Mβ

∞∑

n=−∞

[

ω2
S + ν2

n +
η|νn|ωc

M(ωc + |νn|)

]−1

〈p2
S〉eq =

M

β

∞∑

n=−∞

ω2
S + η|νn|ωc

M(ωc+|νn|)

ω2
S + ν2

n + η|νn|ωc

M(ωc+|νn|)
,

(5.4)

with the inverse bath temperature β, the oscillator mass M and the Matsubara frequencies

νn =
2πn

~β
. (5.5)

Furthermore, the equation for the second moment contains the Green’s function

G(t) = c1e
−λ1t + c2e

−λ2t + c3e
−λ3t , (5.6)

where λ1,2,3 are the solutions of the cubic equation

λ3 − ωcλ
2 +

(

ω2
S +

η

M
ωc

)

λ− ω2
Sωc = 0 , (5.7)

which can be solved by applying Cardano’s method. The coefficients in Eq. (5.6) are

c1 = − ı

2µ

α− ıµ+ δ

α+ ıµ− δ

c2 =
ı

2µ

α+ ıµ+ δ

α− ıµ− δ

c3 =
2α

(α− ıµ− δ)(α+ ıµ− δ)
(5.8)
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Figure 5.1: Second moment of position of the harmonic oscillator for η = 0.2, β = 0.5;
solid line: analytical, short dashes: SCHD with frequency distribution (5.12)
and 40 modes, long dashes: the same as before but with 100 modes, dotted
line: SCHD with frequency distribution (5.13) and 300 modes, dash-dotted
line: SCBM; Inset: Difference between the numerical results and the analytical
expression

and the abbreviations can be extracted from the relations

λ1/2 =α± ıµ α, µ ∈ R

λ3 =δ δ ∈ R . (5.9)

Finally, the term

S(t) = d1e
−λ1t + d2e

−λ2t + d3e
−λ3t − 2η

β

∞∑

n=1

ω2
c νne−νnt

(λ2
1 − ν2

n)(λ2
2 − ν2

n)(λ2
3 − ν2

n)
(5.10)

is included in Eq. (5.2) as well as its time derivative. The corresponding coefficients read

di = ci
~

2M
cot

(
πλi

ν1

)

. (5.11)

In principle the expression in Eq. (5.2) is exact given that enough terms are incorporated
in the sums containing the Matsubara frequencies.

5.1.2 Comparison With an Infinite Bath

Now, results for the harmonic oscillator coupled to a finite bath, obtained with the SCHD,
will be compared with infinite-bath results computed with the SCBM, while the analytical
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result will be the reference. For the numerical calculations, dimensionless units are used.
The frequency of the oscillator is chosen as ωS = 1 and the mass is set to unity. Initially
the wave function is a Gaussian with displacement si = 1, width parameter γS = 1 and zero
momentum. Consistently with the analytical result, the spectral density is Ohmic with a
Drude-Lorentz cutoff as given in Eq. (5.1) with the cutoff frequency ωc = 10, such that
resonant coupling and hence dissipation is possible. As mentioned before, the modes of
the finite bath treated explicitly in the SCHD need to be chosen according to a particular
density of frequencies which is not unique. In order to explore the influence of this choice
on the final result, first, two different frequency distributions are chosen [23, 51]

ρ
(1)
f (ω) =a1ω

−1/2 (5.12)

ρ
(2)
f (ω) =a2

JD(ω)

ω
= a2

η

1 + ω2/ω2
c

, (5.13)

where a1 and a2 are normalization coefficients determined from the normalization condition
given in Eq. (2.9) with ωmax = 2ωc More details can be found in Appendix A.

In Fig. 5.1 the second moment of position versus time is shown for the harmonic os-
cillator. The coupling strength is η = 0.2 and the inverse temperature β = 0.5. Besides
the analytical result, two curves for the frequency distribution (5.12), one curve for the
frequency density (5.13) and the SCBM result are plotted. Except for the result with 40
bath modes (for the sampling density (5.12)), all other results are converged towards the
analytical one within line thickness and we had to plot the differences to the analytical
result as an inset to unveil the deviations.

In the finite bath case, using only 40 modes is not enough to reach an equilibrium of the
SOI on the observed time scale and coherent oscillations can be observed for longer times.
Increasing the number of modes to 100 is sufficient to obtain a converged result showing
almost no deviations from the analytical result even in the more detailed inset plot in Fig.
5.1.

The third SCHD graph represents the result obtained with the Lorentzian density (5.13).
Although the threefold number of modes is used, the result does not achieve the same
quality of agreement with the analytical graph, which highlights the importance of choosing
an appropriate distribution of the bath modes. However, this dependence on the frequency
distribution is manifest only for a finite number of modes and the choice of the sampling
density becomes irrelevant in the limit of infinitely many bath oscillators. The density
(5.12) places more emphasis on modes with lower frequency, i.e. modes below and near the
system frequency ωS = 1 supporting resonant energy transfer.

In addition, to highlight the importance of resonant modes for dissipation, additionally
a frequency distribution of Gaussian form is employed

ρ
(3)
f (ω) = a3e

−b(ω−ωs)2 , (5.14)

again with the normalization coefficient a3. This distribution is peaked at the harmonic
system frequency, so that mainly resonant and near-resonant bath modes are sampled
depending on the width parameter, which is here chosen as b = 0.125. In Fig. 5.2, results
for this frequency density and the one from (5.12) are compared. It is remarkable that
the number of already 40 bath modes is sufficient to achieve thermal equilibrium with the
Gaussian density. However, comparison of both frequency densities at 100 modes, where
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Figure 5.2: Second moment of position of the harmonic oscillator for η = 0.2, β = 0.5;
dotted line: SCHD with frequency density (5.14) and 40 modes; solid line: the
same as before but with 100 modes; short dashes: SCHD with frequency density
(5.12) and 40 modes; long dashes: the same as before but with 100 modes; Inset:
Difference between the numerical results and the analytical expression

both results are equilibrated, still reveals differences in the time evolution of the second
moment of position. Thus we can conclude, that a sampling density of Gaussian form is
appropriate in case equilibrium should be reached with as little bath modes as modes as
possible. On the other hand, the convergence behavior for an increasing number of modes
regarding the detailed time evolution is worse for the Gaussian distribution than in the
case of the density (5.12). We point out that for the harmonic oscillator case, the SCHD
method needs only a single trajectory for the dynamics of all modes, since all DOFs can
be treated on the level of the TGWD.

5.2 Damped Molecular Oscillator

Now, we investigate the anharmonic molecular oscillator with the potential given in Eq.
(2.19), which is a physically more interesting system without a closed analytical solution
for the system-bath case. First, similar to the harmonic oscillator case in the previous
section, finite-bath results are compared with the dynamics for an infinite one. In a second
subsection for an explicitly resonant bath, i.e. a bath consisting of only resonant and near-
resonant modes, decoherence is compared with dissipation concerning the time scale of the
particular process.

5.2.1 Comparison With an Infinite Bath

For the comparison of SCHD and SCBM results, the dimensionless potential parameters
are chosen to be D = 30 and α = 0.08, which gives a strong anharmonicity if the initial
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Gaussian is centered at si = 1 with zero momentum and a width parameter γS = 1. Again,
the mass is set to unity. For numerical reasons concerning the SCBM, an Ohmic spectral
density with a quadratic algebraic cutoff is used

Jq(ω) =
ηω

(1 + ω2/ω2
c )

2
, (5.15)

which is narrower than the one with a Drude-Lorentz cutoff. With the given parameters,
the frequency of small oscillations around the minimum is ωS = 0.62. Thus the choice of
the cutoff frequency ωc = 5 is sufficient to ensure resonant coupling. Since the resonant
bath modes lead to the most effective dissipative coupling and the number of modes is to
be kept small in the case of the SCHD, the Gaussian distribution of frequencies from Eq.
(5.14) with b = 0.65 was chosen for the numerical calculations.

However, in the dissipative Morse oscillator we encounter a problem which is not present
in the non-dissipative case. That is, the resonant harmonic bath modes are considerably
influenced by the anharmonicity of the SOI. Hence, the SCHD may fail after a short time
if all bath modes are treated on the level of the TGWD.

There are two possibilities to address this problem. One idea is based on the fact that
the coupling coefficient ci in the CL Hamiltonian and thus the effective coupling to every
single bath mode decreases with increasing number of bath modes like 1/

√
NB. Hence, we

could still treat the entire bath with TGWD if a high enough number of modes is taken
such that every single mode is sufficiently weakly coupled, leaving its harmonicity nearly
unperturbed on the observed time scale. With the SCHD scheme, 20 bath modes were
found to be sufficient to attain a thermal equilibrium on the observed time scale. However,
the limiting values differ significantly from those obtained with the SCBM and even more,
an increase of the number of bath modes by a factor of five does not change the SCHD result
considerably (not shown here). Therefore, this approach turns out to be impractical, since
excessively many bath modes would be necessary, i.e. a decrease of the effective coupling by
an order of magnitude would involve a hundredfold increase of the number of bath modes.

Another possibility to address the problem of the significant anharmonic influence on
the resonant bath modes is to treat some of them on the more accurate level of the HK
approximation in addition to the SOI. In practice, this means that the “most” resonant bath
DOFs, i.e. the ones whose frequencies are closest to the anharmonic system’s frequency, are
included into the multi-trajectory phase space integral. In Fig. 5.3, results obtained with
SCBM and with SCHD (and 20 bath modes) are shown. The number of bath modes treated
with the HK approximation, here called HK-modes, is varied and a convergence towards
the SCBM result is clearly visible. For 3 HK-modes, the SCHD result for the position
expectation value is very close to the SCBM result, while, obviously, the convergence of the
variance for increasing number of HK-modes is slower. However, besides the circumstance
that the second moment is much more sensitive to fluctuations in the HK phase space
integral, it also reflects residual deviations from the correct reduced density much stronger.
Still it is remarkable that treating only three out of twenty bath modes as HK-modes, i.e.
the modes with frequencies ω1 = 0.57, ω2 = 0.64 and ω3 = 0.71, is sufficient to converge the
graph towards the SCBM results. It should be noted that in the considered case the SCHD
as well as the SCBM fail to maintain exact norm conservation for the anharmonic SOI with
a deviation of 30-40% respectively 10-20 %. Thus the presented results are obtained via
renormalization [119, 73, 120], i.e. by dividing the result by its norm.

In the case investigated above, the temperature and coupling strength are such, that
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also a Markovian approximation could be valid. That is either the quantum Brownian
limit, valid for high temperatures and strictly Ohmic coupling, or the quantum optical
limit, valid for weak coupling (more on this in [121]). In order to investigate a more
demanding, typically non-Markovian quantum case, results for a lower temperature and
stronger coupling are presented in Fig. 5.4. Here, for the SCHD one single HK-mode was
already sufficient to obtain a good agreement with the SCBM result, which is probably
due to the lower temperature of the bath leading to a narrower initial (thermal) state in
position space of every single mode, which again is less affected by the anharmonicity of
the SOI than a broader state. Thus the considered parameter regime is well covered by the
explicit SCHD method. The small deviations between the two semiclassical results are due
to the specific sampling of the bath frequencies and therefore due to the finiteness of the
bath. For reasons of comparison, additionally the result gained with the high temperature
Markovian CL master equation [8, 122] are displayed, showing a strong deviation from the
two non-Markovian approaches, which are not restricted to high temperatures.

5.2.2 Dissipation vs Decoherence

So far, decoherence and dissipation have been explored separately depending on the cutoff
frequency’s magnitude compared to a typical system frequency. However, we want to
compare the influence of each of these processes on the system dynamics in a finite bath,
particularly in order to compare their different time scales. To this end, we choose the
same parameters for the Morse oscillator and the same dissipative bath with frequencies
distributed according to a Gaussian density as in the previous section. Also, the spectral
density is of Ohmic form with a quadratic cutoff as described by Eq. (5.15).

For the estimation of the dissipation time scale, we consider the time evolution of the
energy expectation value defined in Eq. (4.17) (for an elaborate calculation of the corre-
sponding SCHD expression see Appendix D).

In Fig. 5.5, the energy expectation value is plotted for η = 0.05 as well as a bath with
20 modes and β = 1000.0 for a maximum time of about ten vibrational periods. The wave
packet is started at si = −3.0. The inset of Fig. 5.5 shows the corresponding purity on
a shorter time scale. For the estimation of the decoherence time we have to consider the
circumstance that the decrease of the purity is weakened due to the relaxation of the system
towards the ground state. Thus, fewer energy eigenstates become significantly occupied in
time, yielding a mixed state with a decreasing basis. In other words, fewer eigenstates
account for the mixed state in time. Thus, under the given conditions, the estimated
decoherence time will represent a lower bound.

Also initially the energy expectation value increases slightly. The reason for this is
the fact, that the interaction term in the CL Hamiltonian is not accounted for in the
computation of the expectation value, although it also depends on the system DOF (more
on this in Appendix D). However, for a sufficiently weak coupling, which is the case here,
this contribution can be neglected.

Although the observed dynamics is non-Markovian, the mean course of both curves can
be approximated by an exponential decay in each case. In doing so, we find a dissipation
time of τdiss = 20 fs, which is higher by a factor of two than the decoherence time, i.e.
τdec = 9 fs. Even these results, obtained under the given conditions with a finite zero-
temperature bath, still corroborate statements that decoherence always happens faster
than dissipation [94, 123, 124, 76]
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5.2.3 Decoherence in a Resonant and Non-resonant Bath

Knowing that the bath temperature, coupling strength and the initial state strongly influ-
ence the coherence dynamics, in addition we want to know how far the choice of the bath
modes affects the time-evolution of the purity. To this end we consider two different baths,
a non-resonant and a resonant one. The non-resonant bath has a spectral density of Ohmic
form with an exponential cutoff, which is given in Eq. (4.2), and with the cutoff frequency
ωc = 9.1×10−5 a.u. The frequency distribution is the same as in Eq. (4.3) with a maximum
frequency ωmax = 5ωc. With this choice, the effective coupling coefficient of the SOI DOF
in the CL Hamiltonian in Eq. (2.6) becomes independent of the mode frequency and thus
the same for every bath mode

c̃ ≡ ci
ωi

=

√

2

aπ
. (5.16)

Now we consider a resonant bath with the discrete spectral density

J(ω) =
π

2

∑

i

c2i
ωi
δ(ω − ωi) =

π

2

∑

i

c̃ωiδ(ω − ωi) , (5.17)

where the arbitrary choice ci = c̃ωi was made for the coupling coefficient. In doing so, we
ensure that the effective coupling to every single bath mode is fixed and thus the equal for
both the non-resonant and resonant case. This allows for the investigation of the influence
of the choice of bath modes on the SOI dynamics. The bath frequencies of the resonant
bath are chosen according to

ωi = ωl +
i

NB − 1
∆ω , (5.18)
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Figure 5.6: Purity for two different baths each with 20 bath modes, ηeff = 0.25 and zero
temperature; solid line: resonant bath with frequencies chosen according to Eq.
(5.18); dashed line: low frequency bath

with a lower bound ωl = 7.3 × 10−4 a.u. and a range of ∆ω = 4.6 × 10−4 a.u. such that all
bath frequencies are in the neighborhood of the resonance frequency. Both baths consist of
20 modes and have zero temperature. Again, the SOI is a Morse oscillator with parameters
of the Iodine molecule given in Section 4.1, i.e. D = 0.057 a.u., α = 0.983 a.u., se = 5.04 a.u.
and the reduced mass of this system M = 1.165 × 105 a.u..

In Fig. 5.6, the purities for the low-frequency and the resonant bath are plotted for
a fixed coupling strength. Obviously, resonant coupling leads to an essentially stronger
decoherence rate than the non-resonant one.

We note that, in the case of resonant coupling all bath modes are treated on the level of
TGWD and thus the SCHD may become less accurate, as shown in Section 5.2.1. However,
considering the zero temperature bath and the relatively short time scale of only three
periods, the accuracy is sufficient for the investigation of the purity dynamics.

So far, only systems coupled to a harmonic bath were studied. In the next chapter, we
turn to a molecular SOI, which is surrounded by a noble gas matrix with a specific structure
forming the environment.
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6 A realistic system - Iodine in a Krypton
environment

The CL model is an appropriate model for the description of a thermal bath, whose specific
form is generally unknown. Here, we go beyond the CL description of the bath in terms of
harmonic oscillators and apply the SCHD to a system-bath problem, where we know the
(microscopic) structure of the environment.

This particular study is motivated by a recent experiment investigating I2 embedded in
a van der Waals Krypton solid was investigated [125]. Within a pump-probe scenario, a so-
called four-wave mixing experiment, the I2 was laser-excited into a coherent vibrational cat-
state superposition. As a result of the subsequent dissipative dynamics, coherent vibrations
of the Krypton lattice were observed for many vibrational periods.

In the following, a simplified model for the Krypton cage will be presented in some detail.
Subsequently we discuss the results obtained with the SCHD.

6.1 The Model

For the numerical treatment of the overall system, a simplification of the environment,
i.e. the Krypton solid, is necessary. Thus, we reduce the Krypton matrix to the first
micro-solvation shell, comprising 17 Kr atoms that are arranged as a double-icosahedron
surrounding the I2 molecule as shown in Fig. 6.1.

Within this treatment all atom-atom interactions are accounted for. Thus, the full
potential is a sum over all pair potentials

Figure 6.1: Stereoscopic image of I2 in a Kr17 cage in equilibrium
Red: I atoms; Blue: Kr atoms
The I2 has a common axis with two Kr atoms and the other 15 Kr atoms form
three pentagons arranged around this axis
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V =

Na∑

K,J=1
K<J

VKJ , (6.1)

where Na = 19 is the number of atoms and the capital letters are atom indices. Three kinds
of pair potentials have to be considered, depending on the kind of atoms that interact. All
potential parameters given below are taken from Ref. [126].

The rotation of the I2 is not accounted for and thus the I-I interaction is described
by the Morse potential in Eq. (2.19). We are only interested in the dynamics after the
excitation of the I2 and hence the Morse parameter for its electronic B-state are taken, i.e.
DI-I = 0.021 a.u., αI-I = 0.98 a.u. and RI-I,e = 5.7 a.u., which now denotes the internuclear
equilibrium distance of two I atoms, each with mass mI = 231323 a.u.. Consequently, the
period of the harmonic approximation is about 258 fs.

Regarding the I2-Kr interaction, we use a superposition of Σ and Π potentials of I2

VI2−Kr =
1

2

[
VΣ(RI(1)−Kr) + VΠ(RI(1)−Kr)

]
+

1

2

[
VΣ(RI(2)−Kr) + VΠ(RI(2)−Kr)

]
, (6.2)

where the index I(K) denotes theKth I atom. Both potentials can be modeled by the Morse
potential, too. Here, the parameters DΣ = 0.001 a.u., αΣ = 0.79 a.u. and RΣ = 7.05 a.u.
are used for the Σ part. Furthermore, the parameters for the Π part are DΠ = 0.0006 a.u.,
αΠ = 0.81 a.u. and RΠ = 8.1 a.u.

Finally, the Kr-Kr interaction is of van der Waals type, which is approximated by the
Lennard-Jones potential

VLJ(RKJ) = 4ε
σ6

R6
KJ

(
σ6

R6
KJ

− 1

)

+ ε . (6.3)

It looks very similar to the Morse potential shown in Fig. 2.4, except that usually the
attractive force is weaker in the Lennard-Jones potential. The parameter ε is the asymptotic
limit of the potential for RKJ → ∞ (similar to D in the Morse oscillator) and σ can be
interpreted as the distance on the repulsive side of the potential, where VLJ(σ) = ε. The
parameters are chosen as σ = 6.8 a.u. and ε = 0.0009 a.u. Furthermore, the mass of a Kr
atom is mKr = 152757 a.u.

Since the overall system has 57 DOFs, we need to reduce the complexity of the prob-
lem. To this end, we introduce normal coordinates Qj that are related to (mass-weighted)
cartesian difference coordinates via a linear transformation

Qj =
∑

k

akj q̃k q̃k =
√
mk∆xk , (6.4)

with mk the mass of the atom that is associated with the kth DOF. The coordinate ∆xk

denotes the displacement from the equilibrium position of an atom in the I2-Kr17 cluster,
while I2 is in its electronic X-state (we note that, although the normal modes are determined
with respect to the X-state, the dynamics studied later takes place on the B-surface). More
precisely, the normal modes introduced here are actually “pseudo”-normal modes, since
certain interactions between I and Kr atoms were neglected in the normal mode analysis
[127]. This was done in order to obtain pure I2 and Kr2 stretching modes. More on normal
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mode analysis in general and how to determine the transformation matrix with elements
akj can be found in [59].

In this normal coordinate system, we can focus on the modes that are most strongly
coupled to the I2, and thus reduce the effective size of the overall system. We found three
normal modes of the Krypton shell that have a remarkably stronger coupling to the I2
stretching mode than all other normal modes. These modes are the Kr2 stretching mode
and two “cage” modes, i.e. the sandclock and rugby ball mode. In Fig. 6.2 these Krypton
normal modes as well as the I2 mode are sketched and a normal mode index is assigned.
For the numerical treatment of this system, these four normal modes will be considered.

(a) I2 stretching mode (Q1) (b) Kr stretching mode (Q2)

(c) Sandclock mode (Q3) (d) Rugby ball mode (Q4)

Figure 6.2: Normal modes of I2-Kr17 with the highest symmetry, where the modes shown
in (b)-(d) have the strongest coupling to the I2 mode in (a)
(Figures were provided by M. Buchholz [127])
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6.2 Vibrational Dynamics

With the presented model and the selected normal modes in place, we will now apply the
SCHD to study the dynamics of this system. We note in passing, that we are interested
in the dynamics of all considered DOFs. Thus, in contrast to the systems studied in the
CL bath, there is no unique SOI here. In the experiment a double laser pulse prepares
a coherent superposition, that is two distinct GWPs, on the B-surface of the I2, which is
then taken as the “initial state” of the following dynamics in the I2 DOF.

However, in this thesis, we choose an arbitrary initial cat-state as given in Eq. (4.6)
since we are interested in the qualitative behavior of the system solely, without numerically
determining the particular initial state. Hence, we place one GWP into the minimum
of the B-state at Q1,a = 204.1 a.u. and the other Gaussian on the repulsive side of the
potential at Q1,b = 22.63 a.u., each with zero initial momentum. Hence the latter GWP is
centered around the 20th vibrational eigenstate. The width parameter of both Gaussians
corresponds to the width of the ground state of the harmonic approximation or equivalently
to the eigenfrequency of the I2 stretching mode, i.e. γ1 = 22.25 a.u.

In the other DOFs the respective GWP is initially located at the position that corre-
sponds to the potential minimum, while the I2 is in the X-state, i.e. Qi = 0 (i = 2...4).
Their width parameters correspond to the eigenfrequency of the particular normal mode,
i.e. γ2 = 59.49 a.u., γ3 = 61.54 a.u. and γ4 = 69.83 a.u., and they have zero initial momen-
tum.

6.2.1 Three Normal Modes

In a first step, we compare three-dimensional SCHD results with full quantum ones. All
reference quantum results have been obtained with the SPO and provided by M. Buchholz.
First, the I2, Kr2 and sandclock modes are considered, for which the purities are shown in
Fig. 6.3 on a time scale in the order of 12 vibrational periods of the I2. Within the SCHD
treatment, the I2 mode is treated on the level of the HK approximation as well as the Kr2
stretching mode, since its coupling to the I2 mode is the strongest compared to all other
normal modes. In contrast, we exploit the relatively weak coupling of the sandclock mode
by treating this DOF on the level of TGWD. We find, that the agreement of the purities is
very good, even for the sandclock mode, which is treated with a cruder approximation than
the other modes. The largest deviation becomes manifest in the I2 mode at larger times,
where the SCHD result is below the full quantum one. However, up to this deviation, the
quantum results are well reproduced by SCHD. We note, that for this system the deviation
of the norm from unity is maximally 10% at larger times in the SCHD.

Now, the sandclock mode is replaced by the rugby ball mode. The corresponding purities
are plotted in Fig. 6.4. Here the agreement of the SCHD with quantum results in all three
modes is even better than in the previous case, except for times above t = 2300 fs, where
the SCHD result for all modes is above the quantum one. Also, the norm deviates from
unity by less than 15% at larger times. We note in passing, that for all SCHD results
the necessary number of sampled trajectories is 105, which is reasonable considering the
eight-dimensional phase space integral and the length of the time scale.

The excellent agreement of the purities in the sandclock and rugby ball mode is surprising,
the more so as both modes are treated on the level of an approximation in which the
corresponding (reduced) density could be assumed to retain its Gaussian form. On the
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Figure 6.3: Time evolution of the purity of various normal modes for I2Kr17 with I2, Kr2 and
sandclock mode; (a) I2 stretching mode; (b) Kr2 stretching mode; (c) Sandclock
mode
solid lines: quantum results; dashed lines: SCHD results
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Figure 6.4: Time evolution of the purity of various normal modes for I2Kr17 with I2, Kr2
and rugby ball mode; (a) I2 stretching mode; (b) Kr2 stretching mode; (c)
Rugby ball mode
solid lines: quantum results; dashed lines: SCHD results
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Figure 6.5: Snapshot of the sandclock mode Wigner function at 1320 fs considering three
normal modes
(a) full quantum result
(b) SCHD result
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Figure 6.6: Snapshot of the rugby ball mode Wigner function at 1800 fs considering three
normal modes
(a) full quantum result
(b) SCHD result
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other hand, one might assume that in the full quantum treatment the initial Gaussian
shape of the reduced density is distorted after a few periods due to the anharmonicity of
the system. In order to shed light on this seemingly contradictory issue, we investigate the
time evolution of the reduced density in the sandclock and rugby ball mode in more detail.

To this end, a snapshot of the SCHD Wigner function given in Appendix D is plotted in
Fig. 6.5 for the sandclock mode at t = 1320 fs, which is after about five I2 periods. Again,
the SCHD result is compared with the full quantum one. The agreement of both results is
obvious. Furthermore, we see that the initial superposition of two locally separated wave
packets in the I2 is reflected in the sandclock mode due to their mutual coupling. However,
this superposition in the sandclock mode is incoherent, which is indicated by the lack of an
interference pattern with negative parts between both “packets” in the Wigner function.
The final aim of a larger project could be to find the conditions, for which a coherent
superposition could be observed in the Krypton modes as was the case in the experiment.
However, in this thesis we do not address this issue, since we want to investigate the
properties of the SCHD and its capability of treating a system like the presented one.
Returning to Fig. 6.5, one can see that both parts of the Wigner function are of slightly
distorted Gaussian form, even in the SCHD. This circumstance suggests, that in the SCHD
the TGWD DOFs generally do not keep their Gaussian shape. To see this more clearly,
the Wigner function for the rugby ball mode is shown in Fig. 6.6 at time t = 1800fs. The
quantum result is very well reproduced by the SCHD and apparently its shape is different
from the shape of a minimum uncertainty wave packet or a superposition of two of them.

How is it possible, that the reduced densities of the TGWD DOFs can deviate from a
Gaussian shape in the SCHD and thus be so close to the accurate quantum results? To
answer this question, we recall that the DOF on both levels of approximation, HK and
TGWD, are coupled among each other via the classical dynamics. While the initial HK
phase space points are sampled within the numerical integration, the initial phase space
point of a TGWD DOF is fixed at the center of the corresponding initial GWP. However,
due to the coupling to the HK DOFs, a trajectory associated with a TGWD DOF varies
in the course of the HK phase space sampling. In other words, during the phase space
integration, one obtains different trajectories in the TGWD DOFs, that emerge from a
common initial phase space point. Therefore, strictly speaking, the integration over the
HK DOFs comes along with an integration over a set of “thawed Gaussian”-trajectories in
the SCHD, and thus the reduced density of a TGWD DOF is not restricted to a Gaussian
shape. With this, we can conclude, that an approximation on the level of TGWD applied
to a DOF, which is coupled to other HK DOFs, as in the SCHD, can still be accurate, even
if weakly affected by anharmonic dynamics.

6.2.2 Four Normal Modes

So far, we have compared three-dimensional SCHD results with full quantum ones and
found a good agreement. However, now we increase the number of DOFs by considering
the most important normal modes, i.e. I2, Kr2, sandclock and rugby ball. This four-
dimensional problem goes beyond the capability of a full quantum treatment with the
SPO. In contrast, for the SCHD this is no restriction and thus it can be applied. Again,
the phase space sampling within the framework of the integration is performed only for the
I2 and Kr2 modes, while the rugby ball and sandclock modes are still treated on the level
of TGWD. We note in passing, that also in the four-dimensional calculation 105 sampling
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Figure 6.7: Time evolution of the SCHD purity of various normal modes
(a) I2 mode with: Kr2, sandclock and rugby ball mode (solid line); Kr2 and
rugby ball mode (dashed line); Kr2 and sandclock mode (dotted line)
(b) Kr2 mode with: I2, sandclock and rugby ball mode (solid line); I2 and rugby
ball mode (dashed line); Kr2 and sandclock mode (dotted line)
(c) Sandclock mode with: I2, Kr2 and rugby ball mode (solid line); I2 and Kr2
mode (dashed line)
(d) Rugby ball mode with: I2, Kr2 and sandclock mode (solid line); I2 and Kr2
mode (dashed line)
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Figure 6.8: Snapshot of the rugby ball mode SCHD Wigner function at 1860 fs
(a) with three normal modes
(b) with four normal modes

points were used for the numerical Monte-Carlo integration.
In Fig. 6.7, the purities obtained with SCHD for each of the considered modes are plotted

and compared for the three- and four-dimensional case. A comparison of the different
purities for every normal mode reveals only small differences between results for the four-
and three-dimensional case. Particularly the purities of the cage modes show only slight
deviations between the results obtained for different numbers of DOFs. Hence, for the
chosen initial state in the I2, we could assume that for a certain cage mode it is almost
insignificant, whether or not the other cage mode is considered in the propagation.

However, the purity does not give all information about a state. It only reveals infor-
mation about the “mixedness” of a state. Therefore, in order to see the influence of an
additional normal mode on a subsystem, the Wigner functions of the rugby ball mode are
shown in Fig. 6.8 for both the three- and four-dimensional case. The comparison of both
snapshots, taken at the same time t = 1800 fs, shows clear differences, especially in the
momentum width and also in the position of the maxima. Consequently, we conclude that
indeed it is relevant for the dynamics of a cage mode, whether or not another cage mode
is considered in the dynamics of the overall system.

In this chapter, we have shown, that the SCHD is also applicable to problems beyond
the CL model. Furthermore, detailed investigations have revealed, that reduced densities
for DOFs treated on the level of the TGWD within the SCHD do not necessarily keep their
initial Gaussian shape, but rather approach the full quantum reference result, if weakly
coupled to anharmonic HK DOFs.

As future work concerning the considered problem of I2Kr17, SCHD could be used for
further investigations with varying initial conditions in the I2 mode and addition of further
normal modes, that are more weakly coupled to I2 than the ones considered so far, so that
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finally a coherent superposition in the Krypton cage could appear.
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7 Summary and Outlook

In this thesis, open quantum systems in finite baths were studied. To this end, the so-called
semiclassical hybrid method, which treats various DOFs of a multi-dimensional system
on different levels of approximation, was extended to a density matrix description. The
two approximations are the well-established HK method and the less accurate, but also
computationally less costly TGWD.

To set the stage, in Chapter 2, the Caldeira-Leggett (CL) system-bath model used in
this thesis was presented. Furthermore, a frequency blue shift appearing in bound open
quantum systems was investigated for the harmonic and anharmonic Morse oscillator. As
a result, we found that the blue shift becomes stronger with increasing coupling strength
and if the the cutoff frequency of the bath approaches the system’s frequency. Then, in
Chapter 3, the semiclassical hybrid method was extended in such a way, that it can be
applied to thermal harmonic baths, in order to treat open quantum systems within the
CL model. This method turns out to be very efficient in particular when treating systems
in non-resonant baths, i.e. for baths whose frequencies are far away from a characteristic
frequency of the SOI. In those systems, decoherence in the absence of dissipation could be
studied thoroughly using the SCHD for the first time.

In Chapter 4 for the anharmonic Morse oscillator, effects of decoherence, namely the
quenching of interference patterns and, ultimately, the quantum-to-classical transition,
have been studied, as well as their dependence on various parameters like temperature and
coupling strength. Furthermore, computing the purity with the SCHD as a quantitative
measure of decoherence, additionally a strong dependence of decoherence on the initial state
of the SOI as well as on the configuration of the bath was found, respectively confirmed.

Furthermore in Chapter 4, through the study of long time dynamics, the quantum re-
vival phenomenon was investigated semiclassically. For this, again the anharmonic Morse
oscillator was used as the model system. As a first step, the semiclassical mechanism of
revivals in the case of a free system was studied with the HK SC-IVR. There, the quantum
revival is a result of trajectories interfering constructively only in the phase space region
the initial wave function is located at. Outside this region, the trajectory interference is
destructive, thus giving no contribution to the revived wave function. In the next step,
again baths of different sizes were coupled to this system. This way, depending on the bath
size and particularly on the temperature, the revival is more or less partially suppressed.
Now, the phase relations of the trajectories are blurred and thus their ability to interfere
is reduced leading to a partial revival. For the largest regarded bath with the highest
considered temperature, the revival is virtually fully suppressed resembling the classical
result. Thus, using the SCHD, by variation of the bath temperature and size, the revival
dynamics can be continuously tuned from a full revival to a full suppression of the revival.

The last study on decoherence in Chapter 4 was concerned with a fundamental scenario
of quantum physics, the double slit experiment, was studied, where the CL system-bath
model was extended by a form factor. Despite exhibiting chaotic dynamics, the semiclassical
result of the uncoupled slit showed a good agreement with the quantum result. Having

77



7 Summary and Outlook

proven to provide a result with a good accuracy in the bath-free case, the SCHD was then
used in the coupled case for the investigation of the smoothing of the diffraction pattern
as a manifestation of decoherence. This way, the dependence on the bath temperature, the
coupling strength and the nonlinear DOF of the coupling, i.e. the coupling range, could be
analyzed. For high enough temperatures this leads to a nearly classical diffraction pattern
showing almost no interferences.

Moving on to resonant baths in Chapter 5, we have shown that SCHD can be used for
the investigation of dissipative dynamics, too. To this end, the SCHD (which is obviously
non-Markovian) was compared with an implicit non-Markovian method, i.e. the SCBM,
where the influence of an infinite bath is mimicked by an average over a complex stochastic
noise force. The purpose of this comparison was to find out, how the bath modes of the
finite bath need to be chosen to capture the effect of the infinite bath.

The first test system was the dissipative harmonic oscillator, for which an analytic so-
lution exists. Varying the distribution of frequencies for the SCHD finite bath, we find
an excellent agreement with the analytic result for the distribution, that has the strongest
emphasis on low-frequency modes. Moreover, the agreement of the analytic results with
the SCHD was even better than with the SCBM.

As a more demanding model system, again the Morse oscillator coupled to a bath was
chosen. Since the bath is a resonant one and thus the corresponding bath modes are
significantly affected by the anharmonic system, this scenario is more challenging for the
SCHD than the low-frequency bath configurations, particularly for higher temperatures.
The approach towards this problem is to treat a small fraction of the bath on the level of the
HK approximation, while the rest of the modes remain on the level of the TGWD. Using
a frequency distribution, that gives an emphasis on resonant modes, we find that a bath
consisting of only 20 modes is sufficient to reach a thermal equilibrium. Furthermore, a
clear convergence towards the SCBM result is visible when increasing the number of modes
treated on the level of the HK approximation in the SCHD. Also, a typically non-Markovian
case, with stronger coupling and lower temperature than before, is fully reproduced by the
SCHD, showing an excellent agreement with the SCBM, while the Markovian CL master
equation fails to reproduce the transient behavior and the values of the equilibrated system.
Finally the time scales of dissipation and decoherence were compared in the case of a finite
zero temperature bath. We have confirmed the common statement, that the decoherence
time is smaller than the time of dissipation. We have also shown, that a resonant bath
strongly increases decoherence compared to a non-resonant one.

Finally, we went a step further and considered a system-bath problem beyond the CL
model. We have studied an Iodine molecule in a coherent vibrational superposition sur-
rounded by a Krypton environment, where all interactions are anharmonic. A final goal
of this investigation is to find conditions, for which a coherent signature, i.e. a coherent
superposition, can be observed in the Krypton environment for several vibrational periods
as was the case in the corresponding experiment [125]. In this thesis, we set a starting point
for this study by focussing on the properties of the SCHD in the framework of this system.
We showed that the SCHD is an appropriate tool for the investigation of such systems.
Furthermore, the investigation of DOFs treated on the level of TGWD has shown, that
the respective reduced densities are not restricted to a Gaussian shape and instead show a
high accuracy compared to quantum results.

Having treated both kinds of baths, the resonant and the non-resonant one, it can be
stated in conclusion that the SCHD is capable of describing both of these cases, including

78



dissipation and pure decoherence, respectively. Especially for the non-resonant scenario,
the SCHD is the method of choice, as it was shown to be a highly efficient method in that
case. Furthermore, another computational advantage of the SCHD should be stressed,
which all SC-IVRs that are based on coherent states have in common. The particular
form of the propagator allows for the direct calculation of numerous expectation values
and further measures, i.e. without a previous explicit knowledge of the reduced density.

Thus within the CL model, several other applications open up for the SCHD. In the field
of atomic physics, it would be of interest to study atoms driven by laser fields and embedded
in a thermal bath. Since decoherence is the more sensitive process than dissipation, it could
manifest on time scales that are of interest here. Hence, quantum processes, that can be
described semiclassically in this context, i.e. multiphoton processes like above threshold
ionization and high harmonic generation [46], could be investigated in the presence of a
non-resonant finite bath. With this, one could move away from the ideal description of an
isolated quantum system closer to the more realistic experimental scenario.

Furthermore, the SCHD could be applied to a number of problems in molecular physics.
Considering molecules in external laser fields, transitions between electronic surfaces under
the influence of a thermal bath would be interesting to study [39, 40].

Applications also open up for the hybrid method regarding problems beyond the CL
model. In the problem of I2Kr17, which was regarded in this thesis, the number of DOFs
could be increased within the SCHD, so that one could get conditions that are closer to
the experiment. Furthermore, similar problems of molecules in a noble gas environments
(e.g. [128]) could be studied.

To improve the computational performace of the SCHD, it could be worthwhile to replace
the HK part of the original method by a forward-backward treatment [50] (for the price of
less accuracy).

Finally an advantage of more technical nature, the high parallelizability of the numerical
integration, which all SC-IVRs have in common, can be exploited. To this end, a realiza-
tion as a multi-GPU application via the computing architecture “Compute Unified Device
Architecture” (CUDA) would allow for a faster computation than on a single CPU.
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A Sampling the Bath Frequencies

Several densities, according to which the frequencies of the finite bath are chosen, are
used in this thesis. In this appendix the specific sampling of the frequencies for different
frequency distributions is given. Generally, the frequency of a particular distribution is
chosen by solving the equation

ωj∫

0

dω ρf = j j ∈ N (A.1)

for the jth bath mode.

A.1 Exponential Density

The first density of frequencies, which is of exponential form, was used in the low-frequency
bath cases in Chapter 4. Similarly to the Lorentzian density case, it is related to a spectral
density of Ohmic form with an exponential cutoff

ρ
(e)
f (ω) = ae

Je(ω)

ω
= aeη e

−ω/ωc . (A.2)

It is normalized via the factor

ae =
NB

ηωc

(

1 − e
−ωmax/ωc

)−1
, (A.3)

while the frequencies

ωj = −ωc ln

[

1 − j

aeηωc

]

= −ωc ln

[

1 − j

NB

(

1 − e
−ωmax/ωc

)]

(A.4)

are logarithmically distributed.

A.2 “Inverse Square Root” Distribution

Another density of frequencies which was used in Section 5.1 depends on the inverse square
root of the frequency

ρ
(sq)
f (ω) = asqω

−1/2 . (A.5)

Using the normalization condition

ωmax∫

0

dω ρ
(sq)
f = NB j ∈ N (A.6)

yields the normalization coefficient
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asq =
NB

2
√
ωmax

. (A.7)

Then using Eq. (A.1) the jth frequency can be sampled straightforwardly giving

ω
(sq)
j =

j2

N2
B

ωmax , (A.8)

which depends quadratically on the mode index.

A.3 Lorentzian Density

As a third frequency distribution we used in Section 5.1 one of Lorentzian form, such that
it is adapted to the corresponding spectral density with a Drude-Lorentz cutoff

ρ
(L)
f (ω) = aL

JD(ω)

ω
= aL

η

1 + ω2/ω2
c

(A.9)

Here, the normalization factor becomes

NB = aLωcη

ωmax
ωc∫

0

dω̃
1

1 + ω̃2

→ aL =
NB

arctan
(

ωmax
ωc

)

ωcη
(A.10)

and accordingly the frequency of every bath mode is

ω
(L)
j = ωc tan




arctan

(
ωmax
ωc

)

NB

j



 , (A.11)

which goes with the tangent of the mode index.

A.4 Gaussian Density of Frequencies

Finally, the last frequency distribution that we have used in Section 5.1 and 5.2 is of
Gaussian form giving an emphasis on a region around some central frequency, which is
chosen to be the frequency of the SOI

ρ
(G)
f (ω) = aGe−b(ω−ωs)2 , (A.12)

so that resonant and near-resonant bath modes are sampled. Again applying the normal-
ization condition (A.6)
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NB = aG

ωmax∫

0

dω e−b(ω−ωs)2

=
aG√
b

√
b(ωmax−ωs)∫

−
√

bωs

dω̃ e−ω̃2
(A.13)

yields

aG =
2NB

√
b√

π

{

erf(
√
bωS) − erf

[√
b(ωS − ωmax)

]}−1
, (A.14)

with the error function erf [66]. Analogously, the frequencies are sampled

j =
aG

√
π

2
√
b

{

erf(
√
bωS) − erf

[√
b(ωS − ω

(G)
j )

]}−1

→ ω
(G)
j = ωS −

1√
b
erf−1

[

erf
(√

bωS

)

− 2
√
b

aG

√
π
j

]

, (A.15)

so that they are distributed according to the given density of frequencies.
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B Symplectic Integration

The underlying dynamics of semiclassical methods is classical. Consequently, Hamilton’s
equations

q̇ =
∂H
∂p

ṗ = −∂H
∂q

(B.1)

need to be solved. Numerically, this can be carried out using a symplectic integrator [129].
It ensures the preservation of the volume of a propagated region in phase space, which is
also known as Liouville’s theorem. The trajectories are then propagated via

p(j) = p(j−1) − bj∆t
∂H
∂q

∣
∣
∣
∣
q(j−1)

(j = 1..m)

q(j) = q(j−1) + aj∆t
∂H
∂p

∣
∣
∣
∣
p(j)

(j = 1..m) ,

(B.2)

for one time step with step size ∆t. The specific order and scheme of symplectic integration
is characterized by the coefficients aj and bj , which also set the number of intermediate
steps per full time step. Here, the second order leapfrog (or position Verlet) scheme is used,
where a1/2 = 0.5, b1 = 0 and b2 = 1.

In contrast to classical mechanics, additionally elements of the monodromy matrix are
included in the semiclassical theory. To obtain their equations of motion, it should first
be recalled, that the monodromy matrix determines the time evolution of small deviations
δpt = p̃t − pt and δqt = q̃t − qt and thus reads

(
δpt

δqt

)

= M

(
δpi

δqi

)

, (B.3)

with the initial deviations δpi and δqi. On the other hand, the time derivatives of the
deviations can be Taylor expanded up to first order, so that

(
δṗt

δq̇t

)

=

(

0 − ∂2H
∂q∂qT

∂2H
∂p∂pT 0

)(
δpt

δqt

)

=⇒ Ṁ =

(

0 − ∂2H
∂q∂qT

∂2H
∂p∂pT 0

)

M (B.4)

The monodromy matrix is symplectic as well, since

MTJM = J J =

(
0 1

−1 0

)

(B.5)

and therefore the symplectic integration scheme
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m
(j)
11 = m

(j−1)
11 − bj∆t

∂2H
∂q∂qT

∣
∣
∣
∣
q(j−1)

m
(j−1)
21

m
(j)
12 = m

(j−1)
12 − bj∆t

∂2H
∂q∂qT

∣
∣
∣
∣
q(j−1)

m
(j−1)
22

m
(j)
21 = m

(j−1)
21 + aj∆t

∂2H
∂p∂pT

∣
∣
∣
∣
p(j)

m
(j−1)
11

m
(j)
22 = m

(j−1)
22 + aj∆t

∂2H
∂p∂pT

∣
∣
∣
∣
p(j)

m
(j−1)
12

(B.6)

can be applied.

B.1 Derivatives for the Caldeira-Leggett Model

For the CL model, the gradients of the Hamiltonian needed in Eqs. (B.2) read (assuming
a SOI with one DOF and unit masses for the bath DOFs as usual)

∂H
∂q

=












∂V
∂qS

+
NB∑

i=1

ci

ωi

(

ωiqi + ci

ωi
qS

)

ω1

(

ω1q1 + c1
ω1
qS

)

...

ωNB

(

ωNB
qNB

+
cNB
ωNB

qS

)












∂H
∂p

=

(
pS/M
pB

)

.

(B.7)

Furthermore the second derivatives of the Hamiltonian with respect to position (the Hes-
sian), needed in Eqs. (B.6), read

∂2H
∂q∂qT

=










∂2V
∂q2

S
+

NB∑

i=1

(
ci

ωi

)2
c1 · · · cNB

c1 ω2
1 0

...
. . .

cNB
0 ω2

NB










, (B.8)

with 0 denoting the nondiagonal vanishing elements of the bath submatrix of the second
derivative. The second derivatives with respect to the momentum are trivially just the
inverses of the masses.

B.2 Derivatives for the I2Kr17 Problem

In the treatment of Iodine in a Krypton shell, we introduce normal coordinates, which are
linked to mass-weighted cartesian displacement coordinates via a linear transformation
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Qj =
N∑

k=1

akj q̃k ⇐⇒ q̃k =
N∑

j=1

akjQj . (B.9)

Here, lkj are the elements of the transformation matrix and q̃k =
√
mk∆xk, where ∆xk

is the deviation from the equilibrium position of a particular DOF with mass mk in the
N -dimensional I2Kr17 system.

We propagate in normal coordinates and hence, the first derivatives with respect to them
give

∂H
∂Pj

=
∂T
∂Pj

= Pj

∂H
∂Qj

=
∂V
∂Qj

=
N∑

k=1

∂V
∂q̃k

∂q̃k
∂Qj

=
N∑

k=1

akj
∂V
∂q̃k

.

(B.10)

The second derivatives of the Hamiltonian with respect to the normal coordinates and their
conjugate momenta read

∂2T
∂Pj∂Pi

= δji

∂2V
∂Qj∂Qi

=
∂

∂Qj

(
N∑

k=1

∂V
∂q̃k

aki

)

=
N∑

k,l=1

aljaki
∂2V
∂q̃k∂q̃l

.

(B.11)

However, the overall potential is a sum of analytically given potentials, that are functions
of distances between the atoms, which again can be written as functions of the displacement
coordinates

RKJ =

{[(

x0
K,1 +

q̃K,1√
mK

)

−
(

x0
J,1 +

q̃J,1√
mJ

)]2

+

[(

x0
K,2 +

q̃K,2√
mK

)

−
(

x0
J,2 +

q̃J,2√
mJ

)]2

+

[(

x0
K,3 +

q̃K,3√
mK

)

−
(

x0
J,3 +

q̃J,3√
mJ

)]2
}1/2

, (B.12)

where the index now consists of two parts, of which the first part (capital letter) labels the
atom and the second part the internal DOF of an atom. Furthermore, x0

K,ν(ν = 1, 2, 3) is
the equilibrium position coordinate. Hence the first derivative of the potential with respect
to the displacement coordinates yields

∂V
∂q̃K,ν

=

Na∑

I 6=K

∂V
∂RKI

∂RKI

∂q̃K,ν
(ν = 1, 2, 3) , (B.13)

with the number of atoms Na = N/3 and the displacement coordinate derivatives of the
distance
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∂RKJ

∂q̃K,ν
=

(

x0
K,ν +

q̃K,ν√
mK

)

−
(

x0
J,ν +

q̃J,ν√
mJ

)

RKJ
√
mJ

=
∂RJK

∂q̃K,ν
. (B.14)

For the second derivatives we obtain two equations, depending on the atom index of both
displacement coordinates

J 6= K :
∂2V

∂q̃J,µ∂q̃K,ν
=

∂2V
∂R2

KJ

∂RKJ

∂q̃K,ν

∂RKJ

∂q̃J,µ
+

∂V
∂RKJ

∂2RKJ

∂q̃J,µ∂q̃K,ν
(B.15)

J = K,µ 6= ν :
∂2V

∂q̃K,µ∂q̃K,ν
=
∑

I 6=K

(
∂V
∂RKI

∂2RKI

∂q̃K,ν∂q̃K,µ
+

∂2V
∂R2

KI

∂RKI

∂q̃K,µ

∂RKI

∂q̃K,ν

)

,

(B.16)

which consist of the second derivatives of the distances giving two equation

∂2RKJ

∂q̃K,ν∂q̃J,µ
= −

(

x0
K,ν +

q̃K,ν√
mK

)

−
(

x0
J,ν +

q̃J,ν√
mJ

)

R2
KJ

√
mK

∂RKJ

∂q̃J,µ
− δνµ

RKJ
√
mK

√
mJ

=

[(

x0
K,ν +

q̃K,ν√
mK

)

−
(

x0
J,ν +

q̃J,ν√
mJ

)] [(

x0
K,µ +

q̃K,µ√
mK

)

−
(

x0
J,µ +

q̃J,µ√
mJ

)]

R3
KJ

√
mK

√
mJ

− δνµ

RKJ
√
mK

√
mJ

(B.17)

∂2RKJ

∂q̃K,ν∂q̃K,µ
= −

(

x0
K,ν +

q̃K,ν√
mK

)

−
(

x0
J,ν +

q̃J,ν√
mJ

)

R2
KJ

√
mK

∂RKJ

∂q̃K,µ
+

δνµ

RKJmK

= −

[(

x0
K,ν +

q̃K,ν√
mK

)

−
(

x0
J,ν +

q̃J,ν√
mJ

)] [(

x0
K,µ +

q̃K,µ√
mK

)

−
(

x0
J,µ +

q̃J,µ√
mJ

)]

R3
KJmK

+
δνµ

RKJmK
, (B.18)

depending on the atom indices of the derivation variables.
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C From Herman-Kluk to Thawed Gaussian
Wave Packet Dynamics

In order to show, that the approximation made for some DOFs in the HK wave function
leading to the SCHD indeed shifts the accuracy of the respective DOFs to the level of the
TGWD, the original TGWD wave function is derived in detail from the HK approximation
in this appendix [55].

We start with the N -dimensional HK wave function

Ψα(x, t) =

∫
dNq dNp

(2π~)N
〈x|gγ(qt,pt)〉

√

det[h(q,p, t)] eıS/~ 〈gγ(q,p)|Ψα(0)〉 , (C.1)

which initially is a GWP centered around (qα,pα). Now, for all of the N DOFs the action
is expanded up to second order around the center of the initial Gaussian

S(q,p, t) ≈ S(qα,pα, t) + pT
α,tm21δp + (pT

α,tm22 − pT
α)δq +

1

2
δpTmT

11m21δp

+
1

2
δqTmT

12m22δq +
1

2
δpTmT

21m12δq , (C.2)

with the deviations of the integration phase space variables from the initial wave packet
center δq = q−qα and δp = p−pα. In addition, the final momentum and position is first
order expanded similar to Eqs. (3.23) and (3.24), but now again for all DOFs

pt ≈ pα,t + m11δp + m12δq (C.3)

qt ≈ qα,t + m21δp + m22δq . (C.4)

With the resulting Gaussian form of the integrand, the phase space integral in Eq. (C.1)
can be calculated analytically by making use of the multidimensional Gaussian integral
formula given in Eq. (2.36) and thus the resulting wave function reads

Ψα(x, t) =
1

(2~)N

√

det[h(q,p, t)]

det Ā

(
detγ

πN

)1/4

exp

{
1

4
b̄TĀ−1b̄ + c

}

, (C.5)

with the N -dimensional vector

b̄T = (x − qα,t)
T(uT,vT) , (C.6)

the symmetric 2N × 2N matrix

Ā =

(
a11 a12

aT
12 a22

)

=






γ−1

4~2 + um21
2

ı
4~

+
mT

21v
T

2

ı
4~

+ vm21
2

γ
4 + vm22

2




 (C.7)
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and the scalar

c = −1

2
(x − qα,t)

Tγ(x − qα,t) +
ı

~
pT

α,t · (x − qα,t) +
ı

~
S(q,p, t) . (C.8)

It also contains the abbreviations

u ≡ mT
21γ +

ı

~
mT

11 v ≡ mT
22γ +

ı

~
mT

12 . (C.9)

In order to see, that Eq. (C.5) is indeed the TGWD wave function, it needs to be trans-
formed. First, the vector-matrix-vector product in the exponent is evaluated. For this, the
inverse of a symmetric block matrix is needed, which is given by

(
a11 a12

aT
12 a22

)−1

=

(
d−1 −d−1a12a

−1
22

−e−1aT
12a

−1
11 e−1

)

, (C.10)

with the abbreviations d = a11 − a12a
−1
22 aT

12 and e = a22 − aT
12a

−1
11 a12. Then the expression

in the exponent of Eq. (C.5) becomes

(uT,vT)A−1

(
u

v

)

= uTd−1u + vTe−1v − uTd−1a12a
−1
22 v − vTe−1aT

12a
−1
11 u

= uT (a22d)−1
a22u + vT (a11e)−1

a11v − uT (a22d)−1
a22a12a

−1
22 v

− vT (a11e)−1
a11a

T
12a

−1
11 u

(C.14)

(C.15)

= uTγ

(
1

8~2
m22 +

ı

8~
m21γ

)−1
(
v − ı~a22um22a

−1
22 γm−1

22

)−1 (
a22u − a22a12a

−1
22 v

)

+ vT

(
1

8~2
m22 +

ı

8~
m21γ

)−1
(
−ı~u + a11vm21a

−1
11 γ−1m−1

21

)−1

×
(
a11v − a11a

T
12a

−1
11 u

)
(C.11)

(C.16)

:
(C.19)

= uTγ

(
1

8~2
m22 +

ı

8~
m21γ

)−1(
v−1γu

4
+

m22u

2
+

ı

4~
− m22u

2

)
(
1 − ı~v−1γu

)−1

+ vT

(
1

8~2
m22 +

ı

8~
m21γ

)−1( 1

4~2
+

m21γu

2
− ıv−1γu

4~
− m21γu

2

)

×
(
1 − ı~v−1γu

)−1
(C.12)

= ı~uTγ

(
1

2
m22 +

ı~

2
m21γ

)−1

+ vT

(
1

2
m22 +

ı~

2
m21γ

)−1

= 2
(
ı~uTγ + vT

)
(m22 + ı~m21γ)−1 , (C.13)

where in Eq. (C.11) the two relations
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a11e = a11a22 − a11a
T
12a

−1
11 a12

=

(
γ−1

4~2
+

um21

2

)(γ

4
+

vm22

2

)

− a11

( ı

4~
+

vm21

2

)

a−1
11

(

− ı

4~
+

um22

2

)

=
γ−1

8~2
vm22 +

1

8
um21γ +

1

4
um21vm22 −

ı

4~

um22

2
+

ı

8~
a11vm21a

−1
11

− 1

4
a11vm21a

−1
11 um22

=
1

8
u
(

m21γ − ı

~
m22

)

+
γ−1

8~2
vm22 +

1

2

(

a11 −
γ−1

4~2

)

vm22 +
ı

8~
a11vm21a

−1
11

− 1

4
a11vm21a

−1
11 um21m

−1
21 m22

= −ı~u
(
ı

8~
m21γ +

1

8~2
m22

)

+
1

2
a11vm22 +

ı

8~
a11vm21a

−1
11

− 1

2
a11vm21a

−1
11

(

a11 −
γ−1

4~2

)

m−1
21 m22

= −ı~u
(
ı

8~
m21γ +

1

8~2
m22

)

+
ı

8~
a11vm21a

−1
11 γ−1m−1

21 m21γ

+
1

8~2
a11vm21a

−1
11 γ−1m−1

21 m22

=
(
−ı~u + a11vm21a

−1
11 γ−1m−1

21

)
(
ı

8~
m21γ +

1

8~2
m22

)

(C.14)

and

a22d = a22

(
a11 − a12a

−1
22 aT

12

)
= a22a11 − a22a12a

−1
22 aT

12

=
(γ

4
+

vm22

2

)(γ−1

4~2
+

um21

2

)

− a22

(

− ı

4~
+

um22

2

)

a−1
22

( ı

4~
+

vm21

2

)

=
γ

8
um21 +

1

8~2
vm22γ

−1 +
1

4
vm22um21 +

ı

8~
vm21 −

ı

8~
a22um22a

−1
22

− 1

4
a22um22a

−1
22 vm21

= v

(
1

8~2
m22γ

−1 +
ı

8~
m21

)

+
γ

8
um21 +

1

2

(

a22 −
γ

4

)

um21 −
ı

8~
a22um22a

−1
22

− 1

4
a22um22a

−1
22 vm22m

−1
22 m21

= v

(
1

8~2
m22γ

−1 +
ı

8~
m21

)

+
1

2
a22um21 −

ı

8~
a22um22a

−1
22

− 1

2
a22um22a

−1
22

(

a22 −
γ

4

)

m−1
22 m21

= v

(
1

8~2
m22γ

−1 +
ı

8~
m21

)

− ı

8~
a22um22a

−1
22 γm−1

22 m22γ
−1

+
1

8
a22um22a

−1
22 γm−1

22 m21
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=
(
v − ı~a22um22a

−1
22 γm−1

22

)
(
ı

8~
m21 +

1

8~2
m22γ

−1

)

(C.15)

are applied. Furthermore in Eq. (C.12) we make use of the relations

(
−ı~u + a11vm21a

−1
11 γ−1m−1

21

)−1
a11v

= m21

(
−ı~v−1a−1

11 um21 + m21a
−1
11 γ−1

)−1

= m21

(

−2ı~v−1a−1
11

(

a11 −
γ−1

4~2

)

+ m21a
−1
11 γ−1

)−1

= m21

(

−2ı~v−1 +
ı

2~
v−1a−1

11 γ−1 + m21a
−1
11 γ−1

)−1

= m21γa11

(

−2ı~γ

(
γ−1

4~2
+

um21

2

)

+
ı

2~
+ vm21

)−1

v

= m21γa11m
−1
21

(
1 − ı~v−1γu

)−1

= m21γ

(
γ−1

4~2
+

um21

2

)

m−1
21

(
1 − ı~v−1γu

)−1

=

(
1

4~2
+

m21γu

2

)
(
1 − ı~v−1γu

)−1
(C.16)

(
−ı~u + a11vm21a

−1
11 γ−1m−1

21

)−1
a11a

T
12a

−1
11 u

= m21

(
−ı~a−1

11 um21 + vm21a
−1
11 γ−1

)−1
aT

12a
−1
11 u

= m21

(

−2ı~a−1
11

(

a11 −
γ−1

4~2

)

+ 2
(

aT
12 −

ı

4~

)

a−1
11 γ−1

)−1

aT
12a

−1
11 u

= m21

(

−2ı~ +
ı

2~
a−1

11 γ−1 + 2aT
12a

−1
11 γ−1 − ı

2~
a−1

11 γ−1
)−1

aT
12a

−1
11 u

= m21

(

−2ı~a11

(
aT

12

)−1
+ 2γ−1

)−1
u

=
1

2
m21a

T
12

(
−ı~a11 + γ−1aT

12

)−1
u

=
1

2
m21a

T
12

(

−ı~
(

γ−1

4~2
+

um21

2

)

+ γ−1
( ı

4~
+

vm21

2

))−1

u

= m21a
T
12

(
−ı~um21 + γ−1vm21

)−1
u

= m21a
T
12m

−1
21

(
u−1γ−1v − ı~

)−1

= m21a
T
12m

−1
21 v−1γu

(
1 − ı~v−1γu

)−1

= m21

( ı

4~
+

vm21

2

)

(vm21)
−1

γu
(
1 − ı~v−1γu

)−1

=

(
ıv−1γu

4~
+

m21γu

2

)
(
1 − ı~v−1γu

)−1
(C.17)
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(
v − ı~a22um22a

−1
22 γm−1

22

)−1
a22u

= m22

(
u−1a−1

22 vm22 − ı~m22a
−1
22 γ

)−1

= m22

(

2u−1a−1
22

(

a22 −
γ

4

)

− ı~m22a
−1
22 γ

)−1

= m22

(

2u−1 − 1

2
u−1a−1

22 γ − ı~m22a
−1
22 γ

)−1

= m22γ
−1a22

(

2u−1γ−1a22 −
1

2
u−1 − ı~m22

)−1

= m22γ
−1a22

(
γ−1vm22 − ı~um22

)−1
u

= m22γ
−1a22m

−1
22

(
u−1γ−1v − ı~

)−1

= m22γ
−1a22m

−1
22 v−1γu

(
1 − ı~v−1γu

)−1

= m22γ
−1
(γ

4
+

vm22

2

)

(vm22)
−1

γu
(
1 − ı~v−1γu

)−1

=

(
v−1γu

4
+

m22u

2

)
(
1 − ı~v−1γu

)−1
(C.18)

(
v − ı~a22um22a

−1
22 γm−1

22

)−1
a22a12a

−1
22 v

= m22

(
a−1

22 vm22 − ı~um22a
−1
22 γ

)−1
a12a

−1
22 v

= m22

(

2a−1
22

(

a22 −
γ

4

)

− ı~
(

mT
21v

T +
ı

~

)

a−1
22 γ

)−1
a12a

−1
22 v

= m22

(

2 − 1

2
a−1

22 γ − ı~
(

2a12 +
ı

2~

)

a−1
22 γ

)−1

a12a
−1
22 v

= m22

(

2 − 1

2
a−1

22 γ − 2ı~a12a
−1
22 γ +

1

2
a−1

22 γ

)−1

a12a
−1
22 v

= m22

(
2a22a

−1
12 − 2ı~γ

)−1
v

=
1

2
m22a12 (a22 − ı~γa12)

−1
v

=
1

2
m22a12

(
γ

4
+

vm22

2
− ı~γ

(
ı

4~
+

mT
21v

T

2

))−1

v

=
1

2
m22a12

(
γ

2
+

vm22

2
− ı~γ

um22 − ı
~

2

)−1

v

= m22

( ı

4~
+

um22

2
− ı

2~

)

m−1
22

(
1 − ı~v−1γu

)−1

=
(

− ı

4~
+

m22u

2

) (
1 − ı~v−1γu

)−1
. (C.19)

In Eq. (C.19), the equation

mT
21v

T = um22 −
ı

~
1 (C.20)

was used, which can be obtained using Eqs. (C.9) together with the symplecticity property
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mT
22m11 − mT

12m21 = 1 , (C.21)

which again is equivalent with Eq. (B.5). Eventually, the determinant of the matrix Ā

needs to be evaluated. In doing so, we resort to the determinant formula for block matrices

det

(
a11 a12

aT
12 a22

)

= deta11 det
(
a22 − aT

12a
−1
11 a12

)
. (C.22)

Noting that a11

(
a22 − aT

12a
−1
11 a12

)
= a11e, which was rearranged in Eq. (C.14), the deter-

minant of Ā reads

det Ā = det (a11e)

= det
(
−ı~u + a11vm21a

−1
11 γ−1m−1

21

)
det

(
ı

8~
m21γ +

1

8~2
m22

)

. (C.23)

The first determinant in this equation can be further simplified

det
[
−ı~u + a11vm21a

−1
11 γ−1m−1

21

]

= det
[
−ı~um21γ + a11m

T
21v

Ta−1
11

]
det
[

(m21γ)−1
]

= det

[

−2ı~

(

a11 −
γ−1

4~2

)

γ + a11m
T
21v

Ta−1
11

]

det
[

(m21γ)−1
]

= det
[

−2ı~a11γ +
ı

2~
+ a11m

T
21v

Ta−1
11

]

det
[

(m21γ)−1
]

= det (a11) det
[

−2ı~γ +
ı

2~
a−1

11 + mT
21v

Ta−1
11

]

det
[

(m21γ)−1
]

= det
[

−2ı~γa11 +
ı

2~
+ mT

21v
T
]

det
[

(m21γ)−1
]

= det [−ı~γum21 + vm21] det
(
γ−1

)
det
(
m−1

21

)

= det
[
−ı~u + γ−1v

]

= det
[

−ı~γm21 + m11 + γm22γ
−1 +

ı

~
m12γ

−1
]

= 2N deth . (C.24)

Employing Eqs. (C.23), (C.24) and (C.13), Eq. (C.5 )finally becomes
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Ψα(x, t) =
1

(2~)N

√

det[h(q,p, t)]

det Ā

(
det γ

πN

)1/4

exp

{
1

4
b̄TĀ−1b̄ + c

}

=
1

(2~)N

(
detγ

πN

)1/4
[
(2~)2N det (ı~m21γ + m22)

]−1/2

× exp

{

2(x − qα,t)
T
(
ı~uTγ + vT

)
(m22 + ı~m21γ)−1 (x − qα,t)

− 1

2
(x − qα,t)

Tγ(x − qα,t) +
ı

~
pT

α,t · (x − qα,t) +
ı

~
S(q,p, t)

}

=

(
det γ

πN

)1/4

[det (ı~m21γ + m22)]
−1/2

× exp

{

− 1

2
(x − qα,t)

T

(

m11γ +
1

ı~
m12

)

(m22 + ı~m21γ)−1 (x − qα,t)

+
ı

~
pT

α,t · (x − qα,t) +
ı

~
S(q,p, t)

}

, (C.25)

which is the original expression of TGWD given by Heller [56]. Again, it should be stressed,
that the obtained wave function depends on a single classical trajectory only.
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D Expectation Values, Survival Probability
and the Wigner Function in SCHD

An advantage of the SCHD is the Gaussian form of the integrand in the reduced density
expression of Eq. (3.35) allowing for a partial analytical calculation of a number of quantities
based on the density, like expectation values, so that in all cases finally only the phase
space integral occurring in the SCHD needs to be performed numerically. Hence, in this
appendix SCHD expressions for expectations values required in this thesis as well as the
Wigner function and the survival probability are derived for SOIs with one DOF as used in
this thesis. In addition, an expression for the survival probability within the LSC-IVR will
be given, which provides the classical results. In all cases, the initial state is a Gaussian
centered around (qα, pα).

D.1 The Wigner Function

We consider a one-dimensional SOI. Then in density matrix formalism the Wigner function
is defined as

W (s, p̃S) =
1

π~

∫

dζ 〈s− ζ|ρ̂|s+ ζ〉 e2ıp̃sζ/~ . (D.1)

For reasons of clarity, the momentum of the Wigner representation p̃S is introduced to
distinguish it from the system momentum pS, which is part of the phase space integration
variables in the SCHD. Inserting the SCHD expression of the reduced density from Eq.
(3.35), the ζ-dependent terms in the exponent of Eq. (D.1) then give

e = (s− ζ − qα,S,t)
2 Λ11 + 2 (s− ζ − qα,S,t) (s+ ζ − qα,S,t) Λ12 + (s+ ζ − qα,S,t)

2 Λ22

+ σ1 (s− ζ − qα,S,t) + σ2 (s+ ζ − qα,S,t) +
2ı

~
p̃Sζ

=
[

ζ2 − 2ζ (s− qα,S,t) + (s− qα,S,t)
2
]

Λ11 − 2 [ζ − (s− qα,S,t)] [ζ + s− qα,S,t] Λ12 +
2ı

~
p̃Sζ

+
[

ζ2 + 2ζ (s− qα,S,t) + (s− qα,S,t)
2
]

Λ22 − [ζ − (s− qα,S,t)]σ1 + [ζ + s− qα,S,t]σ2

= − (−Λ11 + 2Λ12 − Λ22) ζ
2 +

[

− 2 (s− qα,S,t) Λ11 + 2 (qα,S,t − qα) Λ12

+ 2 (s− qα,S,t) Λ22 − σ1 + σ2 +
2ı

~
p̃S

]

ζ + (s− qα,S,t)
2 Λ11 +

(
s− q′α,S,t

)2
Λ22

+ 2 (s− qα,S,t)
(
s− q′α,S,t

)
Λ12 + (s− qα,S,t)σ1 +

(
s− q′α,S,t

)
σ2 .

(D.2)

This is now an exponent of quadratic form in ζ, for which the integral in Eq. (D.1) can be
calculated analytically by applying the Gaussian integration formula given in Eq. (2.36).
The Wigner function then becomes
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W (s, p̃S)

=

∫
dNhkphk dNhkqhk dNhkp′hk dNhkq′hk

(2~)2Nπ2Nhk π~

(
NB∏

i=1

(

1 − e−βωi~

)
)√

det(γ)R(R′)∗

det(A) det(H)

×
√

1

(−Λ11 + 2Λ12 − Λ22)
exp

{

ẽ+ h+
ı

~
(S − S′)

}

× 〈gγS(qS, pS)|Ψα〉〈Ψα|gγS(q
′
S, p

′
S)〉Khb , (D.3)

where the expression

ẽ =
1

2Λ12 − Λ11 − Λ22

[

− (s̃− qα)Λ11 +
(
s̃− q′α

)
Λ22 +

(
q′α − qα

)
Λ12 −

σ1

2
+
σ2

2
+
ı

~
p̃S

]2

+ (s− qα,S,t)
2 Λ11 +

(
s− q′α,S,t

)2
Λ22 + 2 (s− qα,S,t)

(
s− q′α,S,t

)
Λ12

+ (s− qα,S,t)σ1 +
(
s− q′α,S,t

)
σ2 (D.4)

results from the integration over ζ. This term can be reorganized into a clearer form
yielding an expression that is quadratic in s and p̃S

ẽ =

(
s− qα,S,t

s− q′α,S,t

)T

Υ

(
s− qα,S,t

s− q′α,S,t

)

+ χT

(
s− qα,S,t

s− q′α,S,t

)

− 1

~2 (−Λ11 + 2Λ12 − Λ22)
p̃2

S +
2ı
[(
q′α,S,t − qα,S,t

)
Λ12 − σ1

2 + σ2
2

]

~ (−Λ11 + 2Λ12 − Λ22)
p̃S

+

[(
q′α,S,t − qα,S,t

)
Λ12 − σ1

2 + σ2
2

]2

−Λ11 + 2Λ12 − Λ22
, (D.5)

with the matrix

Υ =









Λ2
11

2Λ12 − Λ11 − Λ22
+ Λ11

Λ11Λ22

2Λ12 − Λ11 − Λ22
− Λ12

Λ11Λ22

2Λ12 − Λ11 − Λ22
− Λ12

Λ2
22

2Λ12 − Λ11 − Λ22
+ Λ22









(D.6)

and the vector

χ =









−
2ı
~
p̃SΛ11 + 2

[(
q′α,S,t − qα,S,t

)
Λ12 − σ1

2 + σ2
2

]
Λ11

−Λ11 + 2Λ12 − Λ22
+ σ1

2ı
~
p̃SΛ22 + 2

[(
q′α,S,t − qα,S,t

)
Λ12 − σ1

2 + σ2
2

]
Λ22

−Λ11 + 2Λ12 − Λ22
+ σ2









. (D.7)

Thus as in the semiclassical hybrid reduced density, only the numerical calculation of the
phase space integral is left in order to obtain the SCHD Wigner function.
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D.2 Some Expectation Values

In the following SCHD expressions for the norm and some expectation values are derived,
in which the energy expectation value for the Morse oscillator will be given.

D.2.1 Energy Expectation Value for the Morse Oscillator

The energy expectation value in reduced density formalism is given by

〈E〉 = tr(HSρ̂S) =

∫

ds 〈s|T ρ̂S|s〉 +

∫

ds 〈s|V ρ̂S|s〉 . (D.8)

First the kinetic contribution is evaluated using the SCHD reduced density expression again.
For reasons of clarity and comprehensibility, the s- and s′-dependent parts are considered
solely, and thus the kinetic expectation value reads

∫

ds 〈s|T ρ̂S|s〉

= − ~
2

2m

∫

dsds′ δ(s′ − s)
∂2

∂s2
〈s′|ρ̂S|s〉

∼ − ~
2

2m

∫

dsds′ δ(s′ − s) exp
{

Λ22

(
s′ − q′α,S,t

)2
+ σ2

(
s′ − q′α,S,t

)}

× ∂2

∂s2
exp

{

Λ11 (s− qα,S,t)
2 + 2Λ12 (s− qα,S,t)

(
s′ − q′α,S,t

)
+ σ1 (s− qα,S,t)

}

= − ~
2

2m

∫

dsds′ δ(s′ − s)
{

2Λ11 +
[
2Λ11 (s− qα,S,t) + 2Λ12

(
s′ − q′α,S,t

)
+ σ1

]2
}

× exp
{

Λ22

(
s′ − q′α,S,t

)2
+ σ2

(
s′ − q′α,S,t

)

+Λ11 (s− qα,S,t)
2 + 2Λ12 (s− qα,S,t)

(
s′ − q′α,S,t

)
+ σ1 (s− qα,S,t)

}

= − ~
2

2m

∫

ds
{

2Λ11 +
[
2 (Λ11 + Λ12)
︸ ︷︷ ︸

≡κ1

s+
(
σ1 − 2Λ11qα,S,t − 2Λ12q

′
α,S,t

)

︸ ︷︷ ︸

≡κ2

]2
}

× exp
{

− (−Λ11 − Λ22 − 2Λ12)
︸ ︷︷ ︸

≡Ω1

s2

+
[
−2Λ11qα,S,t − 2Λ22q

′
α,S,t − 2Λ12

(
qα,S,t + q′α,S,t

)
+ σ1 + σ2

]

︸ ︷︷ ︸

≡Ω2

s

+ Λ11 q
2
α,S,t + 2Λ12 qα,S,t q

′
α,S,t + Λ22 q

′2
α,S,t − σ1 qα,S,t − σ2 q

′
α,S,t

︸ ︷︷ ︸

≡Ω3

}

= − ~
2

2m

∫

ds
{
κ2

1s
2 + 2κ1κ2s+ 2Λ11 + κ2

2

}
exp

{

−Ω1

(

s− Ω2

2Ω1

)2

+
Ω2

2

4Ω1
+ Ω3

}

.

(D.9)

The obtained integral can be solved by making use of the Gaussian integration formula in
Eq. (2.36) as well as the following two formulas

99



D Expectation Values, Survival Probability and the Wigner Function in SCHD

∞∫

−∞

dx x e−a(x−b)2 = b

√
π

a
Re(a) > 0 (D.10)

∞∫

−∞

dx x2 e−a(x−b)2 =
1 + 2ab2

2a

√
π

a
Re(a) > 0 , (D.11)

which basically can be derived by partial integration and applying the Gaussian integration
formula again. Hence, the kinetic part of the energy expectation value becomes

∫

ds 〈s|T ρ̂S|s〉

= − ~
2

2m

∫
dNhkphk dNhkqhk dNhkp′hk dNhkq′hk

(2~)2Nπ2Nhk

[
NB∏

i=1

(

1 − e−βωi~

)
]√

det(γ)R(R′)∗

det(A) det(H)

×
√

1

Ω1

[
κ2

1

2Ω1
+

(
κ2

1Ω
2
2

4Ω2
1

+
κ1κ2Ω2

Ω1
+ 2Λ11 + κ2

2

)]

exp

{
Ω2

2

4Ω1
+ Ω3

}

× exp

{

h+
ı

~
(S − S′)

}

〈gγS(qS, pS)|Ψα〉〈Ψα|gγS(q
′
S, p

′
S)〉Khb . (D.12)

Turning to the potential expectation value, one has to be careful, since within the CL
model the identification of the SOI potential contribution is not as straightforward as the
one of the SOI kinetic contribution. In principle, for the potential part every term has to be
considered, that depends on the system’s position s, i.e. the Morse potential, the counter
and the coupling term in the CL Hamiltonian given in Eq. (2.5). The main problem is the
coupling term, since the SOI DOFs cannot be separated from the bath DOFs and thus this
term always depends on all DOFs. Thus, it gives a contribution to the energy of the overall
system, though it cannot be fully assigned to any of the subsystems, neither the SOI nor
the bath. Nevertheless, for small coupling strengths this issue can be ignored, since the
coupling term is assumed to be much smaller than the actual SOI potential, i.e. the Morse
potential, and thus can be neglected. Therefore, the potential expectation value can be
written as the expectation value of an effective potential V → Veff, which is composed of
the system’s Morse potential and the quadratic counter term

∫

ds 〈s|Veffρ̂S|s〉 =

∫

ds D
(
1 − e−αs

)2
ρS(s) +

NB∑

i=1

c2i
2ω2

imi

∫

ds s2ρS(s) . (D.13)

Focusing on the s-dependent parts of the SCHD expression and considering the relation

(
s− qα,S,t

s− q′α,S,t

)T

Λ

(
s− qα,S,t

s− q′α,S,t

)

+ σ

(
s− qα,S,t

s− q′α,S,t

)

= −Ω1s
2 + Ω2s+ Ω3

= −Ω1

(

s− Ω2

2Ω1

)2

+
Ω2

2

4Ω1
+ Ω3 , (D.14)
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with the abbreviations introduced in Eq. (D.9), the Morse part then reads

∫

ds D
(
1 − e−αs

)2
ρS(s)

∼ D

∫

ds
(
1 − 2e−αs + e−2αs

)
exp{−Ω1s

2 + Ω2s+ Ω3}

= D

∫

ds e−Ω1s2+Ω3 [exp{Ω2s} − 2 exp{(Ω2 − α) s} + exp{(Ω2 − 2α) s}]

= D

√
π

Ω1

[

exp

{
Ω2

2

4Ω1

}

− 2 exp

{

(Ω2 − α)2

4Ω1

}

+ exp

{

(Ω2 − 2α)2

4Ω1

}]

eΩ3 . (D.15)

The counter term can be calculated by applying Eq. (D.14) and making use of Eq. (D.11)

NB∑

i=1

c2i
2ω2

imi
︸ ︷︷ ︸

≡F=const.

∫

ds s2ρS(s) = F

∫

ds s2 exp

{

−Ω1

(

s− Ω2

2Ω1

)2
}

= F

√
π

Ω1

(
1

2Ω1
+

Ω2
2

4Ω2
1

)

, (D.16)

where again only the s-dependent terms are considered. Summing up everything, the
potential expectation value finally yields

∫

ds 〈s|Veffρ̂S|s〉

=

∫
dNhkphk dNhkqhk dNhkp′hk dNhkq′hk

(2~)2Nπ2Nhk

[
NB∏

i=1

(

1 − e−βωi~

)
]√

det(γ)R(R′)∗

det(A) det(H)

√
1

Ω1

×
[

D exp

{
Ω2

2

4Ω1

}

− 2D exp

{

(Ω2 − α)2

4Ω1

}

+D exp

{

(Ω2 − 2α)2

4Ω1

}

+ F

(
1

2Ω1
+

Ω2
2

4Ω2
1

)

exp

{
Ω2

2

4Ω1

}]

× exp

{

Ω3 + h+
ı

~
(S − S′)

}

〈gγS(qS, pS)|Ψα〉〈Ψα|gγS(q
′
S, p

′
S)〉Khb (D.17)

in case, the SOI is a Morse oscillator.

D.2.2 Norm, Position Expectation Value and Second Moment of Position

Having derived the energy expectation value, the calculation of the position expectation
value, its second moment and the norm, i.e. tr(ρ̂S), is straightforward, since the same
integration formulas can be applied as before. Again, considering only the s-dependent
parts included in the SCHD expression of the norm and the regarded expectation values
we obtain
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Gtr(ρ̂S) =

∫

ds exp

{

−Ω1

(

s− Ω2

2Ω1

)2

+
Ω2

2

4Ω1
+ Ω3

}

=

√
π

Ω1
exp

{

+
Ω2

2

4Ω1
+ Ω3

}

(D.18)

G〈s〉 =

∫

ds s exp

{

−Ω1

(

s− Ω2

2Ω1

)2

+
Ω2

2

4Ω1
+ Ω3

}

=

√
π

Ω1

Ω2

2Ω1
exp

{

+
Ω2

2

4Ω1
+ Ω3

}

(D.19)

G〈s2〉 =

∫

ds s2 exp

{

−Ω1

(

s− Ω2

2Ω1

)2

+
Ω2

2

4Ω1
+ Ω3

}

=

√
π

Ω1

(
1

2Ω1
+

Ω2
2

4Ω2
1

)

exp

{

+
Ω2

2

4Ω1
+ Ω3

}

, (D.20)

where the Eqs. (2.36), (D.10) and (D.11) are used and Eq. (D.14) is considered. The
respective expectation value then becomes

i =

∫
dNhkphk dNhkqhk dNhkp′hk dNhkq′hk

(2~)2Nπ2Nhk
√
π

[
NB∏

i=1

(

1 − e−βωi~

)
]√

det(γ)R(R′)∗

det(A) det(H)
Gi

× exp

{

h+
ı

~
(S − S′)

}

〈gγS(qS, pS)|Ψα〉〈Ψα|gγS(q
′
S, p

′
S)〉Khb , (D.21)

where i stands for tr(ρ̂S), 〈s〉 and 〈s2〉.

D.3 Survival Probability...

D.3.1 ... within SCHD

In density formalism, the survival probability equals the trace over the time-evolved (re-
duced) density operator with the initial density operator

C(t) = tr[ρ̂iρ̂(t)] , (D.22)

which is nothing else but the expectation value of the initial state. For the derivation
of the SCHD expression of the survival probability, as before, only the terms involved in
the integration necessary to perform the trace, i.e. the s- and s′-dependent terms, will be
regarded giving
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J =

∫

dsds′ Ψ∗
α(s)ρS(s, s

′; t)Ψα(s′)

=

√
γS

π

∫

dsds′ exp
{

−γS

2

[
(s− qα)2 + (s′ − qα)2

]
+ Λ11(s− qα,S,t)

2 + Λ22(s
′ − q′α,S,t)

2

+ 2Λ12(s− qα,S,t)(s
′ − q′α,S,t) + σ1(s− qα,S,t) + σ2(s

′ − q′α,S,t)
}

=

√
γS

π

∫

dsds′ exp

{

−
(
s
s′

)T

Γ

(
s
s′

)

+ ξT

(
s
s′

)

−γSq
2
α +

(
qα,S,t

q′α,S,t

)T

Λ

(
qα,S,t

q′α,S,t

)

+ σT

(
qα,S,t

q′α,S,t

)}

=

√
γSπ

detΓ
exp

{

1

4
ξTΓ−1ξ − γSq

2
α +

(
qα,S,t

q′α,S,t

)T

Λ

(
qα,S,t

q′α,S,t

)

+ σT

(
qα,S,t

q′α,S,t

)}

. (D.23)

Here, the determinant and inverse of the introduced 2 × 2 matrix Γ is

det(Γ) =
(γS

2
− Λ11

)(γS

2
− Λ22

)

− Λ2
12 (D.24)

Γ−1 =
1

det(Γ)

(γS
2 − Λ22 Λ12

Λ12
γS
2 − Λ11

)

(D.25)

and furthermore the new vector reads

ξ =

(
γSqα − 2Λ11qα,S,t − 2Λ12q

′
α,S,t + σ1

γSqα − 2Λ22q
′
α,S,t − 2Λ12qα,S,t + σ2

)

. (D.26)

Thus in summary, we obtain the SCHD survival probability

C(t) =

∫
dNhkphk dNhkqhk dNhkp′hk dNhkq′hk

(2~)2Nπ2Nhk
√
π

[
NB∏

i=1

(

1 − e−βωi~

)
]√

det(γ)R(R′)∗

det(A) det(H)
J

× exp

{

h+
ı

~
(S − S′)

}

〈gγS(qS, pS)|Ψα〉〈Ψα|gγS(q
′
S, p

′
S)〉Khb , (D.27)

so that it can be computed without the explicit calculation of the reduced density matrix,
too.

D.3.2 ... within the LSC-IVR

As the final part of this chapter, the LSC-IVR expression for the survival probability is to
be sketched as well. To this end, the LSC-IVR time-correlation function from Eq. (3.12) is
the starting point

C̃AB(t) =

∫∫
dNq dNp

(2π~)N
Aw(p,q)Bw(pt,qt) . (D.28)
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The operator Â is the same as in the derivation of the LSC-IVR reduced density, since the
initial state has not changed. However, now the operator B̂ is chosen to be the initial state
density operator, i.e. |Ψα〉〈Ψα|, with pα = 0. The corresponding Wigner function

Bw =

∫

dNζ e−ıpt·ζ/~〈qt +
ζ

2
|B̂|qt −

ζ

2
〉 =

∫

dNζ e−ıpt·ζ/~〈qt +
ζ

2
|Ψα〉〈Ψα|qt −

ζ

2
〉

=

∫

dζS e−ıpS,tζS/~〈qS,t +
ζS
2
|Ψα〉〈Ψα|qS,t −

ζS
2
〉

NB∏

i=1

∫

dζi e−ıpi,tζi/~ 〈qi,t +
ζi
2
|qi,t −

ζi
2
〉

︸ ︷︷ ︸

=δ(ζi)

=

√
γs

π

∫

dζS exp

{

−γS

2

(

qS,t +
ζS
2

− qα

)2

− γS

2

(

qS,t −
ζS
2

− qα

)2

− ı

~
pS,tζS

}

=

√
γs

π

∫

dζS exp
{

−γS(qS,t − qα)2 − γS

4
ζ2 − ı

~
pS,tζ

}

= 2 exp

{

−γS(qS,t − qα)2 − 1

~2γS

p2
S,t

}

(D.29)

is of Gaussian form in both the final position and momentum centered around the mean
position and momentum of the initial GWP.

104



Bibliography

[1] D. P. DiVincenzo
“The Physical Implementation of Quantum Computation”
Fortschritte der Physik 21, 771 (2000)

[2] M. A. Nielsen and I. L. Chuang
Quantum Computation and Quantum Information
Cambridge University Press (2000)

[3] P. Hänggi, P. Talkner and M. Borkovec
“Reaction-rate theory: fifty years after Kramers”
Rev. Mod. Phys. 62, 251 (1990)

[4] H.-P. Breuer and F. Petruccione
The Theory of Open Quantum Systems
Oxford University Press, Oxford (2002)

[5] P. Hänggi and G.-L. Ingold
“Fundamental Aspects of Quantum Brownian Motion”
Chaos 15, 026105 (2005)

[6] U. Weiss
Quantum Dissipative Systems
World Scientific, Singapore third edition (2008)

[7] R. P. Feynman and F. L. Vernon
“The theory of a general quantum system interacting with a linear dissipative system”
Annals of Physics 24, 118–173 (1963)

[8] A. O. Caldeira and A. J. Leggett
“Path integral approach to quantum Brownian motion”
Physica A 121, 587 (1983)

[9] M. Winterstetter and W. Domcke
“Path-integral approach to resonant electron-molecule scattering”
Phys. Rev. A 47, 2838 (1993)

[10] F. Grossmann
“A semiclassical approach to dissipation in quantum mechanics”
J. Chem. Phys. 103, 3696 (1995)

[11] N. Makri
“Quantum Dissipative Dynamics”
J. Phys. Chem. 102, 4414 (1998)

105



Bibliography

[12] J. T. Stockburger and H. Grabert
“Exact c-Number Representation of Non-Markovian Quantum Dissipation”
Phys. Rev. Lett. 88, 170407 (2002)

[13] B. Hu, P. Paz and Y. Zhang
“Quantum Brownian motion in a general environment: Exact master equation with
nonlocal dissipation and colored noise”
Phys. Rev. D 45, 2843 (1992)

[14] P. Saalfrank
“Stochastic wave packet vs. direct density matrix solution of Liouville-von Neumann
equations for photodesorption problems”
Chem. Phys. 211, 265 (1996)

[15] W. Strunz, L. Diosi and N. Gisin
“Open system dynamics with non-Markovian quantum trajectories”
Phys. Rev. Lett. 82, 1801 (1999)

[16] D. Kohen and D. J. Tannor
“Phase Space Approach to Dissipative Molecular Dynamics”
Adv. Chem. Phys. 111, 219 (2000)

[17] E. Pollak
“Transition-state theory for tunneling in dissipative media”
Phys. Rev. A 33, 4244 (1986)

[18] W. Hontscha and P. Hänggi
“Phenomenological shortcut to dissipative dynamics”
Phys. Rev. A 36, 2359 (1987)

[19] E. Pollak
“Continuum limit semiclassical initial value representation for dissipative systems”
J. Chem. Phys. 127, 074505 (2007)

[20] J. M. Moix and E. Pollak
“Semiclassical initial value series representation in the continuum limit: Application
to vibrational relaxation”
J. Chem. Phys, 129, 064515 (2008)

[21] W. Hontscha, P. Hänggi and E. Pollak
“Numerical study of tunneling in a dissipative system”
Phys. Rev. B 41, 2210 (1990)

[22] J. Cao, L. W. Ungar and G. A. Voth
“A novel method for simulating quantum dissipative systems”
J. Chem. Phys. 104, 4189 (1996)

[23] H. Wang, X. Song, D. Chandler and W. Miller
“Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase:
Spin-boson problem with Debye spectral density”
J. Chem. Phys. 110, 4828 (1999)

106



Bibliography

[24] R. Martinazzo, M. Nest, P. Saalfrank and G. F. Tandardini
“A local coherent-state approximation to system-bath quantum dynamics”
J. Chem. Phys, 125, 194102 (2006)

[25] H. Wang and M. Thoss
“From coherent motion to localization: dynamics of the spin-boson model at zero
temperature”
New J. Phys. 10, 115005 (2008)

[26] I. Burghardt, M. Nest and G. A. Worth
“Multiconfigurational system-bath dynamics using Gaussian wave packets: Energy
relaxation and decoherence induced by a finite-dimensional bath”
J. Chem. Phys. 119, 5364 (2003)

[27] Y. Elran and P. Brumer
“Decoherence in an anharmonic oscillator coupled to a thermal environment: A semi-
classical forward-backward approach”
J. Chem. Phys. 121, 2673 (2004)

[28] E. Pollak, J. Shao and D. H. Zhang
“Effects of initial correlations on the dynamics of dissipative systems”
Phys. Rev. E 77, 021107 (2008)

[29] A. O. Caldeira and A. J. Leggett
“Influence of dissipation on quantum tunneling in macroscopic systems”
Phys. Rev. Lett. 46, 211 (1981)

[30] J. A. Fleck, J. R. Morris and M. D. Feit
“Time-dependent propagation of high energy laser beams through the atmosphere”
App. Phys. A 10, Issue 2, 129 (1976)

[31] H.-D. Meyer, U. Manthe and L. S. Cederbaum
“The multi-configurational time-dependent Hartree approach”
Chem. Phys. Lett. 165, 73 (1990)

[32] J. H. Van Vleck
“The correspondence principle in the statistical interpretation of quantum mechanics”
Proc. Natl. Acad. Sci. 14, 178 (1928)

[33] M. C. Gutzwiller
Chaos in Classical and Quantum Mechanics
Springer (1990)

[34] W. H. Miller
“Classical S Matrix: Numerical Application to Inelastic Collision”
J. Chem. Phys. 53, 3578 (1970)

[35] E. J. Heller
“Time-dependent approach to semiclassical dynamics”
J. Chem. Phys. 62, 1544 (1975)

107



Bibliography

[36] E. J. Heller
“Frozen Gaussians: A very simple semiclassical approximation”
J. Chem. Phys. 75, 2923 (1981)

[37] K. G. Kay
“Integral expressions for the semiclassical time-dependent propagator”
J. Chem. Phys. 100, 4377 (1994)

[38] M. F. Herman and E. Kluk
“A semiclassical justification for the use of non-spreading wavepackets in dynamics
calculations”
Chem. Phys. 91, 27 (1984)

[39] X. Sun and W. H. Miller
“Semiclassical initial value representation for electronically nonadiabatic molecular
dynamics”
J. Chem. Phys. 106, 6343 (1997)

[40] F. Grossmann
“Semiclassical wave packet propagation on potential surfaces coupled by ultrashort
laser pulses”
Phys. Rev. A 60, 1791 (1999)

[41] D. A. McCormack
“An evaluation of the semiclassical Herman-Kluk (HK) propagator for molecule-
surface reaction scattering”
J. Chem. Phys. 112, 992 (2000)

[42] M. Thoss, W. H. Miller and G. Stock
“Semiclassical description of nonadiabatic quantum dynamics: Application to the
S1 − S2 conical intersection in pyrazine”
J. Chem. Phys. 112, 10282 (2000)

[43] K. Giese and O. Kühn
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Betreten falscher Pfade bewahrte und meine Entwicklung als Physiker förderte. Aber nicht
nur die fachliche Betreuung sondern auch das menschliche Miteinander habe ich als sehr
angenehm empfunden, was mitunter auch zu interessanten Gesprächen über den Tellerrand
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ich mich in der Gruppe sehr wohl gefühlt habe. An dieser Stelle möchte ich meinem
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