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Abstract

In this work we investigate wave phenomena in mesoscopic systems using different theoretical approaches.
In Part I, we focus on effectively one-dimensional electronic ring structures and address the phenomenon
of geometric phases in spin-dependent electronic transport in the presence of non-uniform magnetic fields.
In the general non-adiabatic case, exact solutions of the Schrodinger equation are used in a transfer matrix
formalism to compute the transmission probability through the ring. In the magneto-conductance we
identify clear signatures of interference effects due to geometric phases, for example in rings where the
non-uniform field is created by a central micromagnet. For the special case of an in-plane magnetic
field we predict an interesting spin-flip effect that allows one to control the spin polarization of electrons
by applying an external Aharonov-Bohm flux. Optical mesoscopic systems are the subject of Part II.
We consider two-dimensional annular structures characterized by different refractive indices, and apply
classical methods from geometric optics as well as wave concepts based on Maxwell’s equations. For
the first time, an S-matrix approach is successfully employed in the description of resonances in optical
microresonators; in particular we propose the dielectric annular billiard as an attractive model system.
Comparing ray and wave pictures, we find general agreement, except for large wavelengths of the order
of the system size, where corrections to the ray model are necessary. The Goos-Hénchen effect as an
extension of the ray picture is shown to quantitatively account for wave modifications of Fresnel’s laws
due to curved interfaces. We derive novel analytical expressions for the corrected Fresnel formulas for both
polarizations of light. Motivated by the successful ray description, we give a conclusive interpretation of a
recent, filter experiment on a quadrupolar glass fibre, and suggest novel concepts for microresonator-based

lasers.

Kurzfassung

Gegenstand dieser Arbeit sind Wellenphénomene in mesoskopischen Ringstrukturen. In Teil I der Arbeit
befassen wir uns mit spinabhingigem Transport von Elektronen in effektiv eindimensionalen Ringen in
Gegenwart inhomogener Magnetfelder. Wir benutzen die exakten Losungen der Schrédinger-Gleichung im
allgemeinen nicht-adiabatischen Fall in einem Transfer-Matrix-Formalismus und untersuchen Auswirkun-
gen von geometrischen Phasen auf den Magnetwiderstand. Fiir den Spezialfall eines Magnetfeldes in der
Ringebene sagen wir einen interessanten Spin-Flip-Effekt vorher, der die Steuerung der Polarisationsrich-
tung von Elektronen iiber einen externen Aharonov-Bohm-Fluf} erlaubt. Optische mesoskopische Systeme
sind Thema von Teil IT dieser Arbeit. Wir betrachten zweidimensionale annulare Strukturen, charakte-
risiert durch unterschiedliche Brechungsindizes, sowohl im klassischen Bild der geometrischen Optik als
auch mit Wellenmethoden auf der Grundlage der Maxwellschen Gleichungen. Insbesondere diskutieren
wir erstmals eine Streumatrixbeschreibung optischer Mikroresonatoren und wenden sie auf das dielek-
trische annulare Billard an. Ein Vergleich der Ergebnisse des Wellen- und Strahlenbildes liefert eine gute
Ubereinstimmung, jedoch sind im Grenzfall grofier Wellenliingen von der Ordnung der Systemabmessun-
gen Korrekturen zum Strahlenbild n6tig. Wir zeigen am Beispiel von Fresnel-Gesetzen fiir gekriimmte
Oberflachen erstmals, dafl der Goos-Hanchen-Effekt diese Korrekturen quantitativ erfafit. Ausgehend von
der Wellenbeschreibung leiten wir neue analytische Formeln fiir verallgemeinerte Fresnel-Gesetze fiir beide
moglichen Polarisationsrichtungen ab. Die Anwendung des Strahlenbildes erlaubt eine schliissige Inter-
pretation eines Experiments mit einer quadrupolaren Glasfaser, auflerdem schlagen wir Strahlenkonzepte

als Grundlage der Konstruktion von Mikrolasern mit mafigeschneiderten Charakteristika vor.
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1 Mesoscopic ring structures

Wave phenomena in ring-like structures receive a lot of interest both in theoretical and
experimental physics. The reason for this are the special properties of these systems. On one
hand, a ring is formed if we concatenate both ends of a line — we obtain an (effective) one-
dimensional system with periodic boundary conditions. On the other hand, we can cut a hole
into a disk — resulting in a two-dimensional system of changed topology: for example, a loop
or closed curve enclosing the hole cannot be contracted to a point. Such spaces are said to
be non-singly connected. This special topology is, of course, also present in one-dimensional
rings that we can understand as the zero-width limit of two-dimensional rings. In Part I of this
work we will study electrons in such an one-dimensional ring, an example where both aspects,
periodic boundary conditions and special topology, are relevant. In contrast, in Part II we will
investigate the dielectric annular billiard as a system where the two-dimensional character is of

importance.

Physical phenomena depend fundamentally on the topology. Famous examples of these
topological effects are the Aharonov-Bohm effect [1] or Berry’s phase [2], that we will discuss in
detail in Part I. However, the property of ring structures to constitute a system with periodic
boundary conditions is likewise important, and used in a great variety of systems. The evolution
of sand ripples under a water shear flow is experimentally investigated in an annular channel
where a continuous flow is easily realized [3]. Electrons confined to a ring will, under suitable
conditions, may travel without dissipation, giving rise to persistent currents [4]. A light ray
tracing its path near the outer boundary of a glass ring will do so forever if we assume that it
is subject to (perfect) total internal reflection, and the ring is wide enough to avoid intersection
with the hole boundary. Then we could even fill the hole, obtaining a glass disk, without changing
the ray dynamics. On the contrary, if we increase the size of the hole, the ray path eventually
will be affected.

We have to keep in mind the huge difference in size of physically interesting ring systems.
The annular channel in the sand ripple experiment [3] has a diameter of 30 ¢, and glass disks
or lenses used in ray optics experiments have a size of typically several cm. However, throughout
this work we will investigate systems orders of magnitude smaller than this — so-called mesoscopic
systems with typical dimensions in the pym-scale. Here, the physical properties are no longer
described by classical physics alone, and wave corrections, stemming from quantum mechanics
in electronic systems or from Maxwell’s electromagnetism for light, are of importance. The rich
interplay of classical and quantum effects is an important ingredient to the relatively young
fields of mesoscopic physics and quantum chaos. In the present work we will study electronic
and optical mesoscopic systems that represent examples of ring structures.

The dynamics of (non-relativistic) electrons in a narrow (one-dimensional) ring subject to
an inhomogeneous magnetic field is considered in Part I of the thesis. The electron dynamics is
governed by the Schrodinger equation with an additional Zeeman term that describes the interac-
tion between the spin of the electron and the magnetic field. This can lead to geometric phases

[8], and their appearance and consequences for electronic transport through one-dimensional
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ballistic rings are investigated throughout Part I.

Optical, or dielectric, two-dimensional mesoscopic systems, so-called microcavities, are the
subject of Part I1. The theoretical basis for the description of light, i.e., electromagnetic waves, is
provided by Maxwell’s equations. We will discuss the formal relation between electromagnetism
and quantum mechanics. The crucial difference is the energy-dependence of the potential, which
has large implications — e.g., states to different energy cannot be discussed using the same
potential. For fixed energy, the potential depends on the refractive indices of the involved
materials, and variation of their ratio allows one to control the openness of the system. Planck’s
constant A, which does not occur in the description of electromagnetism, has to be given some
meaning when discussing light in terms of quantum mechanics, and we will refer to this issue in
Part II.

Many phenomena inherent to mesoscopic and semiclassical physics as well as to quantum
chaos have been observed in both electronic and optical systems, as for example the scarring
of wave functions along classically unstable periodic paths in open quantum dots and billiard
systems, see e.g. [5, 6]. We postpone further introductory remarks to the detailed introductions
given in each of the two parts. In particular, we will explain the phenomenon of geometric
phases in the beginning of Part I that comprises Chapters 2 - 5. An introduction to mesoscopic
optical systems as well as classical geometric optics constitutes the beginning of the second part
with Chapters 6 - 10. Subsequent to this, a summary of both parts and an outlook are given in
Chapter 11.



Part I:

SPIN-DEPENDENT
ELECTRONIC TRANSPORT
IN NON-UNIFORM MAGNETIC FIELDS






2 Introduction

2.1 Geometric phases

The first predictions of geometric or topological phases that probe geometric rather than dynam-
ical properties of a given system were made by M. V. Berry [2] in 1984, and by Y. Aharonov and
J. Anandan [7] in 1987. Geometric phases were first investigated in time-dependent quantum
mechanical systems described by a Hamiltonian H(¢) where, under certain conditions, they can
exist together with the familiar dynamical phase ~ exp (—% JH (t)dt). The concept of geometric
phases was not only successfully applied to various quantum systems, but also allowed a new
interpretation of well-known classical phenomena, like Foucault’s pendulum. Geometric phases
provide a profound insight into the geometric and topological peculiarities of a system. One of
the first examples where geometric phases were investigated is the cyclic adiabatic evolution of
the electron spin in a non-uniform magnetic field — and it is precisely this example that gave
the motivation for this first part of the present work, with the goal to explain and guide the
experimental verification of geometric phases in magnetotransport measurements in mesoscopic
rings.

Notably, the phenomenon of geometric phases can be understood well in familiar settings like
classical parallel transport on the sphere. The situation is illustrated in Fig. 2.1a. A pencil (or
arrow) is transported on a sphere from the north pole to the equator along a certain longitude
and always pointing southwards. Keeping this direction (“parallel transport”) we follow the
equator and eventually return to the north pole thus closing the loop. Although the arrow
always pointed to the south, we find its final position rotated by an angle v with respect to
(w.r.t.) its initial orientation, see Fig. 2.1a. The size of this angle v depends on the loop chosen
— it will be the larger the further we travel along a meridian. We find that the orientation of the
arrow or, more generally, of some variable does not return to its original value after one round
cycle — this geometric phenomenon is referred to as anholonomy. The change in the direction
of swing in Foucault’s pendulum after one rotation of the earth belongs to this class, as well as
phenomena related to quantum parallel transport. One way to realize quantum parallel transport
is adiabaticity, that is, slow change. The variables subject to cyclic evolution are parameters
in the Hamiltonian of the system, for example a (non-uniform) magnetic field as shown in
Fig. 3.1. The adiabatic theorem [9] guarantees that the system returns to its original state (the
north pole in the example above) but it usually acquires a geometric phase as a manifestation
of anholonomy. Hence, cyclic, adiabatic evolution and an anholonomic environment are the
conditions under which we expect geometric phases to exist!.

Berry phases have been observed in optical systems, in the context of nuclear magnetic
resonance, and in molecular and atomic physics. They are anticipated to be generated in the
dynamic quantum Zeno effect [20] and have been suggested as a means for quantum computation
[21]. Geometric phases appear as a universal feature in dynamic Jahn-Teller systems [19] and

can induce persistent currents in mesoscopic rings [32]. Many phenomena like the writhe of a

!The conditions of adiabaticity and cyclic evolution can in principle be relaxed, see [7, 8].
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(U

Figure 2.1: Concept of geometric phases. a) A classical vector transported along a
closed loop on a sphere has changed its orientation after one round cycle. b) The
concept of projective space and the appearance of geometric phases in this picture,

see text for details.

polymer [10] are now explained in terms of geometric phases, and it is hard to distinguish between
classical and quantum geometric phases [8]. In experiments with polarized light in coiled optical
fibres a change in the direction of linear polarized light is measured [14], typically by interference
or filtering. Other experiments are performed with polarized neutrons in a varying magnetic
field [13]. However, experiments with the electron spin subject to an inhomogeneous magnetic
field are not yet found in this line, partly because the condition of adiabaticity is hard to achieve

with present experimental arrangements.

There had been indications for the existence of geometric phases before 1984 and furthermore,
well-known optical effects have experienced a new interpretation in the last years. One example
is the Gouy phase shift [12], found by Gouy in 1890. It is an additional 180° phase shift
that all waves (including electromagnetic and sound waves) passing through a focus acquire in
comparison with a plane wave. Its recent interpretation as geometric or Berry phase is based
on a cyclic parameter as usual, namely the complex wave front radius of curvature associated
with a Gaussian beam [12]. In 1955 Pancharatman [11] considered the phase shift in a beam
of coherent linearly polarized light subject to a sequence of polarization changes. He found
a contribution that was determined by the geometry of the cycle on the Poincaré sphere, the

so-called Pancharatnam phase.

We would like to finish this introduction to geometric phases with two remarks on their
mathematical description. First, there is a classical analogue of the quantal phase factor, namely
Hannay’s angle that describes the additional shift in the classical adiabatic angle variables after
one closed cycle of evolution. It is semiclassically related to the quantum geometric phase [15].
The other point concerns the relation to topology and differential geometry. The concept of
projective spaces was successfully applied to quantum mechanics — a flavour is given in Fig. 2.1.
The lower closed loop represents a cycle in quantum mechanical state space (or projective Hilbert
space) [17]. The corresponding Hilbert space is a fibre bundle over the state space, symbolized
by the parallel lines. Without going further into details we just state that the trajectory in
Hilbert space (the so-called horizontal lift) does not have to be closed as indicated by the offset

7 [18]. Finally, we mention that the Berry phase can be thought of resulting from a geometric
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vector potential, an idea that we will deepen and exploit later on. It is based on the concept of
gauge transformations that is well-known from quantum field theory. In differential geometry,
the geometric vector potential is called a connection. The geometric phase then results as the
curvature of the connection. This approach emphasizes yet again the geometric nature of Berry
and related phases.

Throughout this work we shall use the notations “geometric” and “topological” phase synony-
mously and reserve the term Berry phase for geometric phases in adiabatic situations. Geometric

phases in non-adiabatic regimes are sometimes referred to as Aharonov-Anandan phases.

2.2 Electronic mesoscopic systems and interference phenomena

Many efforts have been made to prove the existence of topological phases in experiments, and
as stated above these were successful in many cases. However, clear experimental verification of
the paradigmatic Berry phase that electrons acquire upon adiabatic evolution in a non-uniform
magnetic field remains to be found [25]. The latest developments in experimental techniques raise
hope that this gap will soon be filled. The first part of this thesis is devoted to the theoretical
description of quantities accessible to experiments that furthermore lead to the prediction of a
spin-flip effect not known so far.

Recent advances in the field of semiconductor heterostructures have allowed for the fabrica-
tion of two-dimensional model systems containing high mobility electrons [22]. The idea is to
combine two layers of semiconductor material (like, e.g., GaAs and AlGaAs or InAs and AllnAs)
into a heterostructure with the resulting band structure allowing for movement of the charge
carriers in two dimensions only. These so-called two-dimensional electron gases (2DEG) have
opened a large field of experimental research. Microelectronic devices of all kinds are based on
these semiconductor heterostructures. Both well-known as well as new effects found in those
systems are under theoretical and experimental investigation. One example is the quantum Hall
effect [23], another one a possible metal insulator transition [24]. Of particular interest w.r.t. the
present work are experiments on Berry phase effects in these electronic systems [25, 35]. How-
ever, the results are not yet fully conclusive and are still under debate. Having in mind the
successful detection of geometric phases in other systems opens the field to accompanying the-
oretical investigations aimed at identifying experimentally accessible signatures of geometric
phases.

Let us return to the electrons in a 2DEG. In the absence of impurities that would cause
electron scattering, the electrons can move freely and the system is called ballistic. In experi-
ments, the ballistic regime can be observed only in very clean and small samples, and at low
temperatures. Then the scattering length, i.e., the distance between two scattering events, lgcatt,
is much larger than the characteristic size lsys; of the system, lgcaty > lsyst. On the other hand, if
there are sufficiently many impurity atoms present, the electrons will be heavily scattered while
travelling over a distance [sys;. The system is then said to be diffusive. Note that even the purest
macroscopic samples will contain a large number of impurities so that the scattering length is of
the order of lgcaty ~ 10...100 um in high-quality semiconductors. This is much smaller than the
sample size of typically lsys; ~ 1...10mm. Hence, macroscopic systems are diffusive in general.

To realize ballistic electron motion, one has to resort to system sizes on the nanometer
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scale, lsyst < 1pum, as for example in heterostructures formed in 2DEGs. These systems are
called mesoscopic because on this scale the crossover between classical, macroscopic physics
that dominates on large length scales, and quantum mechanics which is appropriate on small

scales, occurs.

Motivated by the recent advances in the fabrication of semiconductor-heterostructures, the
first part of this thesis will be devoted to the study of ballistic model systems. Since we are
interested in geometric phases, we choose a closed ring-like structure (formed, e.g., in the plane
of a 2DEG) with leads attached on either side. The parameter in the Hamiltonian that is cycled
will be a non-uniform magnet field as shown in Fig. 3.1. Furthermore, we will investigate the
limiting case in which the radial dimension of the ring is very thin such that the system becomes
effectively one-dimensional (1d). Although this geometry is an idealization w.r.t. real samples
used in experiments, it can be handled analytically and is expected to contain all the essential
physics. In particular, an analytical description of the transition between adiabatic and non-
adiabatic conditions is possible. Since we stated adiabaticity as prerequisit for the observation

of Berry phases, we shall be able to single out geometric phase effects.

An important requirement for the observation of geometric phases is phase coherence: that
is, the information about the phase of the electron wavefunction must be preserved during
transport. Phase coherence is usually lost in inelastic scattering processes, e.g., with phonons,
and hence low temperatures are important. In this context we refer to the debate about whether
ballistic or diffusive systems are better suited to the detection of effects due to topological phases
[32, 33]. Without going into the details, the crucial questions are in which system the condition
of adiabaticity is easier to achieve, and whether sufficient phase coherence can be realized in the
diffusive regime. However, there is agreement that ballistic systems should allow for identification
of signatures of topological phases.

The first effect that was studied both theoretically [1] and subsequently in numerous exper-
iments in such a ring structure with attached leads is the so-called Aharonov-Bohm effect. In
general it is linked with the situation of a uniform magnetic field of any strength perpendicular
to the ring and discussed in Section 3.1. At this point we just state that the essence of the
Aharonov-Bohm effect are oscillations of period ®, = hc/|e| in the conductance through the
ring, where i = h/2w is Planck’s constant, c¢ is the velocity of light in vacuum, and e is the
electric charge of the positron, resulting from the interference of electrons travelling in oppo-
site arms of the ring. The system is well studied for rings with symmetrically attached leads
(corresponding to arms of equal length) [27] as well as for asymmetric rings [26].

The phase that leads to the Aharonov-Bohm (interference) effect can be traced back to the
electromagnetic vector potential Aemn (see Appendix B), i.e., to a quantity that is a gauge poten-
tial and, therefore, is not observable in classical electrodynamics. The Aharonov-Bohm effect,
however, states the physical significance of this quantity is accessible in quantum mechanics:
even electrons that move in field-free space (E = 0) are subject to the Aharonov-Bohm effect?!

The second effect that we can study in the model system mentioned above is based on

topological phases. Their existence requires a non-uniform magnetic field. Accordingly, we study

>These ideas concerning an electric charge in a magnetic field were generalized in the Aharonov-Casher effect
[31] that applies to a magnetic dipole in an electric field, constituting an effect “dual” to the Aharonov-Bohm
effect.
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a ring with symmetrically attached leads and inhomogeneous configurations of the magnetic field
(see Section 3.2). Concerning effects due to topological phases, the idea is to describe geometric
phase effects in a way similar to the Aharonov-Bohm effect by introducing a geometric vector
potential A'g. We will apply this method [29] in Section 3.3.

When we consider the motion of electrons along the ring, it is important to distinguish two
limiting cases. Their origin lies in the existence of two time scales that are defined for an electron
with spin that moves along a 1d ring. On one hand, the characteristic time scale for the spin
precession is given by the Larmor frequency wrg,

—g"¢|B|
— 2.1
wL 2mec (2.1)
where the electric charge e of the electron is taken negative. \E | is the magnitude of the magnetic
field that we assume to be constant, and wy, describes the velocity of the spin’s precession about
the (local) magnetic field direction. On the other hand, the spatial motion of an electron with
Fermi velocity vp and (effective) mass M along a ring of radius a is characterized by its orbital

frequency worb,

vp  hkp

Worb = — = —7,-
e aM

The resulting angular velocity has to be compared with the spin precession velocity. If wy >

(2.2)

Worb, then the magnetic field is strong and the electron moves slowly. Thus the spin follows
the local direction of the magnetic field. We call this the adiabatic limit. In the other limit, if
the magnetic field is weak or the electron moves sufficiently fast, the influence of the magnetic
field on the spin is negligible. This situation is called diabatic. We will refer to the intermediate
regime between the two limiting cases as the general non-adiabatic regime. The topological
phase that occurs in this case we address as Aharonov-Anandan (or geometric) phase. In turn,
we reserve the term Berry phase for the topological phase in the adiabatic situation; the Berry
phase is the geometric phase in the adiabatic limit. We will see that there are no topological
phases in the diabatic limit: the geometric (or Aharonov-Anandan) phase vanishes there.

We like to mention the similarity of the adiabatic limit introduced above to the Born-
Oppenheimer approximation used in the context of atomic physics. There, the huge differ-
ence between the mass m, of the electron and the proton m, as component of the nucleus
(me/myp = 1073) is used to separate the motion of the electron and the nucleus. The equations
of motion for the electron are solved while keeping the position of the nucleus fized because the
motion of the nucleus takes place on a much longer time scale. When we discuss the adiabatic
limit, in analogy, now the evolution of the electron’s spin is much faster than its orbital motion.

Both degrees of freedom can be decoupled. We will make use of this in Section 3.4.

In this part of the thesis we will study spin-dependent transport through rings subject to
non-uniform magnetic fields. The outline of Part I is as follows. In Chapter 3 we will specify
the magnetic field textures under investigation and determine the corresponding eigenstates in
the general non-adiabatic situation. In Chapter 4 we will calculate the magneto-conductance,
that is transmission through the ring as a function of the applied magnetic field or the Fermi
velocity of the electrons. To this end, we will introduce a transfer matrix method [27] for spin-

dependent transport. In Chapter 5 we will consider two examples. First, we study a ring that
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is subject to an in-plane magnetic field. We give analytical evidence for a spinflip effect that
can be controlled via an Aharonov-Bohm flux through the ring. This effect might find some
application in future spintronic devices. As a second example, we discuss a ring with a central
micromagnet, a setup that is motivated by recent experiments [35]. A joint summary with Part
IT on dielectric mesoscopic systems is given at the end of the work.

We will use units in which the Planck constant is & = 1, as well as the speed of light in

vacuum c¢=1. In Appendix C we describe the electric and magnetic fields involved in SI (or
MKSA) units [53, 54].



3  Geometric phases in one-dimensional
Mesoscopic rings

In this chapter we introduce the model system of a one-dimensional ring subject to a non-
uniform magnetic field with two possible textures and determine the eigenstates of electrons
in these systems. After discussing the eigenstates of the adiabatic problem, we develop the
concept of a geometric vector potential in order to treat the general non-adiabatic case. We
demonstrate that the results have a clear geometrical interpretation. In the next chapter
we will use the eigenstates found here to calculate the transmission probability through a

one-dimensional ring.

3.1 Model system and Hamiltonian

We consider spin-dependent coherent transport of electrons in a one-dimensional (1d) ring of
radius a, formed within a layer of a two-dimensional electron gas (2DEG). The electrons in the
2DEG are characterized by their electric charge e < 0, effective mass M rather than electron
mass me, and their magnetic moment y = sg¢g* up where s = 1/2 is the electronic spin, g*
the effective gyromagnetic ratio, and pp is Bohr’s magneton, up = |e|hi/(2m.c) [36]. For free
electrons in vacuum, the value of g is approximately 2. However, for electron-like quasi-particles
in semiconductor heterostructures, there might be considerable deviations from this value de-
pending on the material used. In the following, we consider a system in which the electrons
are confined to a perfectly ballistic ring, i.e. the ring is assumed to contain no impurities. The
electrons are exposed to a non-uniform magnetic field E(F) which couples to both spin and
orbital degrees of freedom. The general Hamiltonian then reads (recall that we use units i = 1,
speed of light ¢ = 1)

19 = o (5= eAen(®) — e B, (31)
with Aem (7) being the vector potential of the (electro)magnetic field, B(7) = V X Aem(7), and
o the vector of the Pauli spin matrices.

—

The first term describes the kinetic energy in terms of the generalized momentum II =
7 — eAem (7). The second term —p & - B(F) corresponds to the Zeeman coupling of the electron
spin & to the magnetic field B (7). Spin-orbit interaction is assumed to be small, and will be

neglected.

For a 1d ring of radius a in the (z = 0)-plane of a canonical cylindrical coordinate system,
the momentum operator p is given by p' = —%%e}s. This means in particular that the polar
angle ¢ is the only remaining coordinate that, therefore, determines the position of the electron
along the ring, see also Fig. 4.2. Due to this spatial constraint, only the ¢-component A%, of
the electromagnetic vector potential is of importance for the orbital effect of the magnetic field,

simplifying I accordingly to

— i d .
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Hence the Hamiltonian (3.1) takes the form

1 ( id S
Hzm(—aﬁ—eflfm> —pd - B(7). (3:3)

For the following it is useful to introduce the magnetic flux through the ring The flux @
through an area S subject to a magnetic field B(7) is given as integral ® = JsB 3(7) - dS (with
the directed area element dS). Rewriting ® = s (V X Aem(f")) -dS, allows one to apply Stokes’

formula [ (6 X ff(F)) -dS = $ss A - dl where [ is the (directed) element along the boundary

of S. For the special case of a homogeneous magnetic field B = B,e, the relation reads in

symmetric gauge

-

Aern (7) = SB(7) x 75 (3.4)

Mll—l

such that at the position of the ring, ¥ = aé;, we find A = 2aB €% def Aeme¢ Hence we

obtain the magnetic flux due to a magnetic field in z-direction through a ring of radius a as
=4 Affmdqﬁ = 27raA§fm. The electromagnetic vector potential ffem can thus be expressed in

terms of the magnetic flux as
- d
Aem = Al 65 = —63 . (3.5)

21a
We note that the flux is not quantized as is the case in the context of superconductivity. Further-
more, we point out that the magnetic field can be confined to a solenoid such that the electrons
in the ring are not subject to a magnetic field, as is assumed in the original Aharonov-Bohm
effect [1]. We refer to this situation when we treat the Aharonov-Bohm flux (& or ®AP) through
the ring as parameter that does not alter the magnetic field at the position of the electrons in
the ring.

As is shown in Appendix B, the electromagnetic vector potential in Eq. (3.5) gives rise to a
phase factor exp(—¢ f A m ad®) (taken along the electron’s path) in the electron wave function
that leads to an 1nterference effect — this is called Aharonov-Bohm effect [1]: oscillations of the
period of the flux quantum ®¢ = hc/|e| (= 27 /e in our units of & = ¢ = 1) in the transmission
probability as a function of the applied Aharonov-Bohm flux ® = ®48 in a mesoscopic metal
ring connected to current leads. This is evident when looking at the phase shift between the
electrons travelling at opposite sides of the solenoid that is 7 $ A ' adg = 2ndAB /®o.

In inhomogeneous magnetic fields, besides Aharonov-Bohm-like effects due to the z-
component of B (7), new phenomena can arise that are caused by topological phases of which
Berry’s phase [2] is the paradigm. Those effects are the subject of this first part of the thesis.
The investigation is based on the concept of a geometric vector potential ffg [29] which originates
from the coupling of the spin to a non-uniform magnetic field. The main idea is to exploit the

analogies between Aharonov-Bohm phases (from ffem) and geometric phases (from lg).

3.2 Magnetic field configurations and corresponding eigenstates

The discussions in the following will be based on the adiabatic limit where the Larmor precession
frequency wy, defined in Eq. (2.1) of the spin is much larger than the orbital frequency woy, of the
electron along the ring that is given in Eq. (2.2). Then the spin follows the (local) direction of
the magnetic field B(7), and the Hamiltonian (3.3) is dominated by the spin-dependent part, i.e.,
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a) wire-like b) crown-like

wi

Figure 3.1: Magnetic field texture for a) a wire-like and b) a crown-like magnetic
field. The angle « is defined as the angle of the magnetic field w.r.t. the z-axis. A
possible way for creating a crown-like magnetic field in experiments is to place a

micromagnet (here symbolized by Dy for Dysprosium) into the center of the ring.

the Zeeman term. Accordingly, we find the eigenstates of the adiabatic problem by diagonalizing
the Zeeman term, —ud - B (7). To this end, we first have to specify the magnetic fields that we
will consider in the following. As a first example, we choose a wire-like magnetic field Bw [30]
composed of a component Bgéy that is tangent to the ring in all points, and a uniform part
B,é, in z-direction, cf. Fig. 3.1a. In the other example, see Fig. 3.1b, we keep the uniform B,-
component, but add a radial magnetic field B¢, in order to obtain an inhomogeneous, crown-like
magnetic field Be. We define By to be positive in counter-clockwise direction and B, pointing
away from the centre of the ring. The magnitude of the fields is given by BY def ,/Bi + B?

and Bc 4 \/W for the wire-like and crown-like situation, respectively. In both cases, the
direction of the resulting magnetic field is characterized by the angle « that is formed with the
z-axis: tana® = By/B, (wire-like) or tana® = B, /B, (crown-like). Experimentally, a wire-
like magnetic field is generated by a central wire or appropriately aligned ferromagnetic atoms,
whereas the crown-like type can, for example, be created using a central micromagnet.

Next, we determine the eigenvalues A and spin eigenstates |\TJ) of the Zeeman term

—u 0 - Bv (7) for the wire-like magnetic field. Using the Pauli spin matrices

0 1 0 —i 1 0
Oy = ;, Oy = y Oz = )
10 i 0 0 -1
and the relation e = —sin ¢ €; + cos ¢ €; where ¢ is the polar angle of the position at the ring

defined as usual (cf. Fig. 4.2), the eigenvalue equation for the eigenvector U = (uy,u2)” with

the eigenvalue A reads

B —iBye Uy Ul
i . ¢ — . (3.6)
iB¢e’¢ -B, Ug Ug

The eigenvalues A = FuB™ correspond to electrons with spin parallel and antiparallel to the

total magnetic field. To distinguish these states from spins pointing up and down in z-direction,
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|1) and | |), the eigenstates with spin in field direction will be denoted by |#(¢)) and |/(¢)),
respectively. Treating the polar angle ¢ as a parameter, the eigenstates for the wire-like magnetic
field in S,-basis are chosen as

say=( =T ), v =( Y. (3.7)
(somumes) ( )

. - . w . N w
i €% sin &~ —i ei® cos &-

The analogous procedure for the crown-like magnetic field leads to the eigenvalue problem

B B €_i¢ Ul U1
— o =\ (3.8)
BTeW —Bz ug U2
with the solution
¢ cos %C ¢ sin "‘70
ror=(pinte) W= (L) 59)
To simplify further treatment of both cases, we introduce the unifying representation
cos & sin &
_ 2 _ 2
K= (gorting) W= (vt cons) 3.10)

with the field texture parameter ¢; taking the values

0 crown-like magnetic field

b = (3.11)
% wire-like magnetic field.

This also reveals the symmetry operation connecting the two textures of the magnetic field. To
obtain an eigenstate for the wire-like field, one can start with the one for the crown-like field,
and increase the angle ¢ by /2.

So far, we have considered the spin part of the electron wave function. The orbital part can
be written in terms of eigenstates |¢) of the operator €. Then a basis of the Hamiltonian (3.3)
is spanned by the product states {/} e {|¢) ®|/(4))} and {¢} © |6) @[/ (4))} with0 < ¢ < 7.

In the adiabatic regime, i.e., for dominating Zeeman interaction, wy, < werh, the spins align
either parallel or antiparallel to the magnetic field and never switch their direction, because the
spin always follows the local direction of the magnetic field during its precession. This means
that the {/} and {¢} subspaces are completely decoupled. In the next section, we will use this
property to write the Hamiltonian (3.3) as sum of two parts, namely the adiabatic part H
and the non-adiabatic part Hi. Hy has non-zero matrix elements only within each subspace,
whereas for Hy the opposite is true. In a purely adiabatic situation, H; vanishes. To perform
this decomposition, we shall apply the concept of a geometric vector potential ffg introduced by
Aharonov et al. [29] that we introduce in Section 3.3.

Before we do so, we briefly consider the symmetries of our system. As known from Noether’s
theorem, there exists a conserved quantity for each continuous symmetry in a physical system.
The one-dimensional ring we are dealing with here is characterized by symmetry with respect
to rotations about the z-axis (i.e., perpendicular to the ring plane). Accordingly, we find that
the operator L,, that is the sum of the z-components of the orbital angular momentum and the
spin,

d 1
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is a conserved quantity. This can be easily checked by verifying its commutator with the Hamil-
tonian H from (3.3) as is performed in Appendix A.

—

3.3 Geometric vector potential A4,

In this section we will employ the concept of a geometric vector potential ffg that contributes to
the generalized mechanical momentum I1 similar to the way the electromagnetic vector potential
ffem does. Since due the constrictions caused by the 1d nature of the ring Il consists of a
¢-component only [see Eq. (3.2)], we need only to consider the ¢-components of all vector

potentials; the other components do not play a role. We will use the following abbreviations:

-  d
I = He}:(—gﬁ—eAg’m) €4

Aew = Al 65,

A, = A0 Agey. (3.13)

1

Our starting point is the Hamiltonian (3.3) for the one-dimensional ring,

H:ﬁl‘[?—ué‘-é(ﬂ. (3.14)
In the following we will decompose H into Hy + Hp, where the adiabatic part Hy contains no
transitions between the {/} and {/} subspaces, whereas the non-adiabatic part H; exclusively
describes such transitions. It is convenient to introduce projection operators onto the {/} and
{/} subspaces, P() = (14 (—)ii-3), with i = B/B the local direction of the magnetic field
and & the Pauli spin matrices as above. Then we have IT = PP’ + P/TIPY + P/TIP + P/TIPY.
The adiabatic part of II? is obviously given by (P/TIP/ 4+ P/TIP¥)? + (P/TIP/ + P/TIP¥)2. Since
we are heading for an expression of the form (II — A,)?, we define! [29]

A, =T — P'TIP" — P'TIP =  [A3, [7id, 10| . (3.15)

|

Using
I = (I1— Ag + Ag)* = [(T1 — Ag)” + A7] + [(IT — Ag) Ay + Ag(I1 — Ay)] (3.16)

and the fact that the Zeeman term is diagonal w.r.t. the subspaces {/} and {/}, we find

1 2 2 > D
Hy = 57 [(TT— Ag)* + A7) —pé - B,
1

with the desired properties.
We now us Eq. (3.15) as defining equation for the geometric vector potentials of the two

magnetic field configurations introduced in Section 3.2. Evaluating the commutator in Eq. (3.15)

'Note that the expression A, = i x #/2a given in [29] is based on the special geometry used and, contrary to
Eq. (3.15), not valid in general.
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for the wire-like magnetic field (see Fig. 3.1a), 7i = sinae€y + cos a€;, where €3 = —singeg +

cos ¢éy, leads via

- 5.1] i 0 —e ®sina
n-a,ll] =—
@\ —esina 0
eventually to
S sin i cosae’
AY = mno , (3.18)
20, . Z¢ .
i cosae sina
or, equivalently, this can be written as
sin o - - .
A7 = o (cosad ey —sinao,) . (3.19)

Performing the same procedure for the crown-like field (é; = cos ¢€; + sin ¢é;,) gives the same
results except for the factors —i and 4, respectively, in the non-diagonal elements of (3.18).

Correspondingly, the last equation is replaced by

Ag = Sgla (cosad - € —sinao,) . (3.20)
a

Again, we can unify the representations as

' —sina cos e~ MO+t
Ay = Slzna . (3.21)
a cos a e!(#+91) sin o
using the parameter ¢; introduced in Eq. (3.11). From this we find independent of ¢;
. 2
o _ Sin“a
Ay = 122 Ioxa, (3.22)

where I5x2 denotes the unit matrix. Now we can use the decomposition of Eq. (3.17) and

Eq. (3.22) to write

(I - A4,)?  sin’a
2M 8Ma?

Hy = — - B(7) (3.23)

and )

H, = YYi (I —Ag)Ag + Ag(I1 — Ay)] . (3.24)
In Section 3.4, we will discuss the adiabatic limit and the connection to the Berry phase. As
discussed above, this requires the Hamiltonian Hy only since by construction of Hy and H; all
matrix elements involving H; vanish. However, the general non-adiabatic case can be solved
exactly as well, leading to nice analogues with the adiabatic case concerning, e.g., the structure
of the eigenstates or the expression for the geometric (or Aharonov-Anandan) phase as shown

in Section 3.5.

3.4 Adiabatic case

In the limit of a strong magnetic field, the Larmor frequency of the electron’s spin dominates its
orbital frequency, wy, > wyrb, and we are in the adiabatic regime where the physics is completely

comprised in Hy since spin-flip processes between the subspaces {/} and {¢} are forbidden.
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3.4.1 Effective Hamiltonian for orbital motion

In the adiabatic limit (H = Hj) the spin dynamics upon orbital motion is completely contained
in the two (local) eigenstates |/(¢)), |/ (¢)) of the local Zeeman term. Therefore it is possible to
trace out the spin degrees of freedom and to derive effective Hamiltonians (H(’;/ , H(‘)/’/ ) for the
orbital motion only. Importantly, the d/d¢ term in the Hamiltonian acts on both the spin and
orbital component of the electron wave function |¢9) ®|o(¢)) with o = £, /. Writing symbolically
H' = (o(¢)|H|0'(¢)) (0,0 = #,4), we are left with calculating the matrix elements H” =
HY = (/($)NHol/(¢)) and HY = Hy = (/(¢)Hol/(9))-

We now briefly sketch the calculations necessary to obtain the Hamiltonian H{;’ . First, we
rewrite (3.23) as

1 sin? o

oM 8Ma?
recalling that only the ¢-components of the momentum and the vector potentials are of sig-

Hy (1% — AgIT —TIA, + A2) + —pué-B(7), (3.25)

nificance in the 1d ring, see Eq. (3.13). Since the ¢-component A2, of the electromagnetic
vector potential originates from the z-component B, of the magnetic field, it is the same for
the wire-like and crown-like configuration. This holds for the ¢-component II of the generalized
momentum, too, since II = —g% — eAgm, and we can treat both cases simultaneously in terms
of ¢-component A, of the unified geometric vector potential.

Using the substitution ¢’ def ¢+ ¢y, we find

A = (1 i )0+ (g ) (T90) (3.20)

= sin et sin §et?’
and »
AT 4+ TIA, = 24,11 — 2%% . (3.27)

Then the calculation is straightforward giving the constituting terms for the matrix element

(7|Hol/) as

.oa (1 2
FomAe) = weand (L4 2n),
—(/(¢)|AgIT + ITA | /() = —Suloi/l%n% (cosa cos% + sina sin%) ,
in? o
OB = T (3.28)

The sum of the II-independent terms (multiplied by a?) can be simplified and yields

sin? > sin? o sin? @ + ! sin? & — cos & sina cos @ sin > _ sin? @
2 2 4 272 2
Eventually, we obtain the effective Hamiltonians
1 1 a\? sin?o

7 _ <2

M= o (1”55‘“ 5) T M

P L (s Lo @ 2+sin2a+ B (3.29)

= — —cos” — — .

0 oM a’® 2) TemMaz M

where we have used B = |B| = v/(B%/¢)2 + B2, that is the magnitude of the total magnetic
field B. Notice the additional term in the momentum in Eq. (3.29) which originates from the
geometric vector potential A;. We will see in the next section how it is related to the Berry

phase.
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3.4.2 Eigenstates and Berry phase

We will first specify the structure of the sets {/} and {¢/} and determine the eigenstates of the
adiabatic problem H = H,. Each eigenstate |¥,) contains a spatial part |1,) and a spin part,
such that we have the two sets of eigenvectors |U7) = [¢7) ® |/(¢)) and U’ = 47 (4) @ |/(¢))
in which the spin is parallel or antiparallel to the magnetic field as introduced in Section 3.2.
The spatial functions d)fl(/ ) are, according to the structure of the Hamiltonian, plane waves e,
where n is the quantum number associated with the operator —i%. For spinless electrons in an
isolated ring eigenstates 1/, are obtained for integer? values of n, manifesting the periodicity of
the problem with respect to changes in the polar angle ¢ by 2w. This is illustrated in Appendix B
using the analogy between electrons in a closed ring and electrons in an one-dimensional periodic
potential.

We will call n' the quantum number of the generalized momentum II that is related to the
quantum number n by (note that e, the electric charge of the electron, was defined negative!)

1
n'=n-— EeaQBz . (3.30)

Note the shift caused by a homogeneous magnetic field in z-direction. The n/ are obtained from
Eq. (3.29). However, we postpone their calculation to Section 3.5 when we consider the general
non-adiabatic case that, of course, contains the adiabatic situation as a limiting case.

In Appendix B we demonstrate how additional terms in the momentum operator lead to
additional phase factors in the wave function that can be observed in interference experiments.
Although it is shown there for the example of the Aharonov-Bohm effect where the electromag-
netic vector potential, A'em, enters the generalized momentum, the same applies, of course, to
the geometric vector potential that induces geometric phase factors. In the adiabatic regime,
we refer to them as Berry phases.

We will now establish the relation between the additional contribution in the momentum

2a

term of Eq. (3.29) and the Berry phase. First of all, we find that these terms, sin® § and cos?

67
29
respectively, can be expressed through the solid angle subtended by the magnetic field vector B
during one complete round trip (from ¢ = 0 to ¢ = 27) along the ring in parameter space. In
his seminal paper [2], M. V. Berry derived that the geometric phase I" for electrons is given by

half this solid angle 2. The general expression for particles with spin s reads
'=-sQ. (3.31)

This equation underlines the geometrical nature of the Berry phase and gives some intuitive
meaning to it.

We shall now see that Eq. (3.31) is indeed equivalent to the expression that we derived using
the geometric vector potential, cf. Eq. (3.29). For the |/(¢))-eigenstate we obtain the solid angle
) subtended by the magnetic field during one round trip as the part of the spherical surface
A’ that is sketched in Fig. 3.2 (using spherical coordinates and normalizing by the square of the
magnitude B of the magnetic field) as

21 ra
Q= / / sina d¢ df = 27 (1 — cos a) = 47 sin? % . (3.32)
0 Jo

*We will see that for either including the spin into consideration or (and) opening the system as we will do in
Chapter 4 by attaching leads to the ring, the quantum number n will not be an integer in general.
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Replacing a — m — a, we get the |/(¢))-result,
Q0 = 27(1 + cos @) = 4n cos? % . (3.33)

Hence we can rewrite Eq. (3.29) as

g _ L (g, 1LY . B Lsir’e (3.34)
0 TamM 2ra 2 HE T oM 40 '

In Appendix B we demonstrate for the example of the
Aharonov-Bohm effect how additional terms in the mo- Q’
mentum (in that case given by the electromagnetic vec- a
tor potential ffem) lead to additional phase factors in the
wave function that can be observed in interference exper-
iments. Here, the additional phase factor is a geometric _I-_i
phase IV¥) more precisely, a Berry phase since we deal

with the adiabatic situation. According to Appendix B,

we find
Q/
IV = —2rsin? 2 = —m(l—cosa) = ——,
2 5 y Figure 3.2: Solid angle €/ sub-

I’ = —2r COSQ% =-—7(l+cosa) = —5 ,(3.35)  tended by the magnetic field B
during one round trip in param-
as the additional phases arising during a closed cycle in
eter space.
parameter space. Unlike the Aharonov-Bohm phase that
can take any value, geometric phases are constricted to
the interval [0, 27].
Finally, we state that Eq. (3.35) for the Berry phase (i.e., the geometric phase in the adiabatic

limes) can alternatively be obtained directly from [2]

2
/) :i/o 7| 2%|/(/))ad¢

without applying the concept of the geometric vector potential. However, generalization to the
non-adiabatic case is no longer straightforward. Furthermore, in Eq. (3.23), the geometric vector
potential does not only appear as a vector potential in the Hamiltonian Hy but also possesses
all the properties that one expects for such a quantity [8].

At this point a remark on the significance of the induced geometric vector potential appearing
in the generalized momentum is in order. To this end, we consider space translation transfor-
mations, generated by the momentum operator. Concerning the operator ei‘ﬁ, it describes the
spatial translation of electrons where the direction of the spin is kept constant. On the contrary,
the generalized momentum in the adiabatic Hamiltonian H(;f , H(‘)// , Eq. (3.34), is the generator
of a transformation where the electron is translated spatially and the spin follows the direction
of the magnetic field.

To summarize the adiabatic case, we state:

e The system is decomposed into two independent electron gases in which the spin is parallel

or antiparallel to the magnetic field.
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e The spin eigenstates are given in (3.10). The spin-independent part of the system is
described by the Hamiltonians (3.29).

e The movement in an inhomogeneous magnetic field with tilt angle « results in the accu-

mulation of a Berry phase that is given as TV(Y) = —7(1 — (+) cos ) .

3.5 Non-adiabatic case

So far, we were only interested in the Hamiltonian Hj given in Eq. (3.23) which was sufficient
in the adiabatic regime. However, the decomposition (3.17) of the full Hamiltonian H involves
the part Hi, Eq. (3.24), as well, and in the diabatic case it plays an important role as we shall
see in this section.

We start by considering the non-diagonal matrix elements H”Y = Hf/ = (/(¢)| H1|/(¢))
and H” = H{/ = (/(¢)|H:1|/(¢)) of Hy. By construction, the diagonal matrix elements of H;
vanish. We give a brief survey of the calculation of H f/ which is very similar to what was done

in evaluating HS/ in the previous section. We note that

2M Hy = [(I1 — Ag)Ag + Ag(T1 — Ag)] = TA, + AT — A2
where the A2-term will vanish upon calculating the matrix element, and we use Eq. (3.27) to
evaluate the remaining terms. Then we find

1 d sin o 2cosasin® — cosasin £
24,11 — —— = 2 2
( g adqs) 70N = S (( >+
sina / — sina cos % + cos asin %
2a% \( ’

2sinasin § + cos a cos § ) e

2

cos acos § + sinarsin §) e’
and projection on (/(¢)| finally yields

sin o sin «
4Ma? 2Ma

H = (3.36)

Now we have all the ingredients to determine the exact eigenstates |¥,,) of the non-adiabatic
problem. They will contain a spin part which is now a linear combination of |#(¢))- and |/(4))-
states, and a spatial part |¢,) as in the adiabatic case considered in Section 3.4. Therefore we

write

[Tn) = [ton) ® [C1|7(9)) + Cal¥(4))] - (3.37)

The spatial part [1) can be chosen as “plane wave”, 1, (¢) = e™®, where n can be considered
as orbital quantum number.

The equations that determine C7, (5, and n are given in terms of the eigenvalue problem
H|¥,) = E,|V,), where E, is the eigenenergy to the eigenstate |¥,). Using Eq. (3.37) we
obtain

(CLH|/(¢)) + C2HI/ () [n) = En(C11/(8)) + Cal¥ (8)))4bn) - (3.38)

Now we project (/(¢) from the left and make use of the special decomposition (3.17) of the

Hamiltonian H to obtain

(CLHY + CoHY ) |9hn) = EnChlthn) -
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Correspondingly the projection with (/(¢) yields
(CLH{ + CoHY ) ) = EnChlthn) ,
which can be combined to give
"Y' H | (C C
/7 W (C;) |"/)n) = En (C;) W)n) . (3'39)
H” Hj

As expected, the diagonal elements describe the adiabatic part of the problem, whereas the
non-diagonal entries contain the modifications necessary for treating the general non-adiabatic
situation. They vanish in the adiabatic regime.

Using Eq. (3.28) for the matrix elements above and employing

1 1 1
1) = 7 (= geaB. ) W) = Lo'l).
we obtain, for example,
(M(P)|Hol/(¢)) = 1 n'% 4 2n/sin® = + sin? = + 1sin2a —uB
° 2Ma? 2 2 ' 4
_ 1 ” ' . 92 0‘)
= S (n + (2n' 4+ 1) sin 5 uB . (3.40)

Hence, we find (after multiplication by 2Ma?, i 4 9 Ma? u) that (g;) has to be an eigenvector
of the matrix [30]

n2 + (2n' +1)sin? ¢ — 1B — 24l gin o
M= ( Jsin” 5 ? : (3.41)
—2ntlgin o n'2 + (2n' + 1) cos®> ¢ + B

According to the scaling factor 2Ma?, we will use scaled energies

E¥oMa?E (3.42)

in the following and also mark scaled quantities analogously.
To proceed further towards the exact eigenstates of the non-adiabatic problem, we first of all
need the energy eigenvalues A of M. We obtain them from the usual condition for non-trivial

solutions of this eigenvalue problem,
det(M — Al)=0,

to fulfill the equation

~ ' +1 ' +1\2
)\1/2:n'2+%i\/< ”; ) + (2n' + 1)iB cos a + (jiB)2 . (3.43)

Let us first consider the case without magnetic field, B = 0, where we have

AM=0+1)?=n+1)? and d=n?=n2.
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Requiring all electrons in the ring to possess the same energy, namely the (scaled) Fermi energy
EF = 2Ma? Ep,leads to \1 = A9 = EF or

Er=(m+1)?%=n2. (3.44)

In other words, choosing n; = + EF —1and ny = %+ EF yields the same eigenvalue EF.
The sign of n determines the direction in which the electron moves along the ring: positive n
corresponds to counter-clockwise propagation as is clear from the spatial part ¢ of the wave
function. Correspondingly, negative n describe clockwise travelling waves.

In the following, we will be interested in
the situation just outlined: We look for eigen-
states |¥,,) that are degenerate with respect
to the eigenenergy Er which will play the role
of a Fermi energy Er = EF/2Ma2. As we 2m,+1
have just learned, the corresponding n; and 2
ngy are shifted by 1 (when choosing the same
sign in the \/E—term). The origin of this
shift lies in the e*-dependence of the second
spinor component and will become clearer 0< 2m +1
when we now consider the case with non-zero
magnetic field.

To this end, we note that the structure of

the square root term in Eq. (3.43) resembles
that of the theorem for the cosine in a tri-

angle. This allows us to evaluate the square Figure 3.3: Interpretation of the square root

root by introducing an angle  and applying term in Eq. (3.43) using the cosine theorem.

the projection theorem, see Figs. 3.3 and 3.4. If o > 7/2, n} and 7y have to be assigned

Since the cosine theorem requires the central
the other way round.

term to be negative, we have to distinguish

two cases (discussing 0 < a < w/2): For

2n' + 1 < 0 (clockwise propagation) we can employ a triangle with «, whereas for 2n’ +1 > 0

(counter-clockwise propagation) we have to substitute & — m—a. This gives rise to the geometri-

cal interpretation illustrated in Fig. 3.3, where we introduce the angles 1, v2 with 0 < 1,72 < 7.

The analytical expressions that define v; and v, read?

i +1) 1
2n' +1>0:coty; = cot (2m1 - ) 3.45
ny + coty cota + 3 jBsma (3.45)
2nh+1) 1
2ny +1<0: ~ —cota— 2 : 4
ny +1 < 0: cotyr cota 5 “Bsma (3.46)

In the adiabatic limit, gB > n', the v take the values 7v; = a and v9 = 7™ — «, respectively,
whereas in the diabatic limit y; = v = 0.

3We use the so-called tangent formula [55] that relates the angles and sides in a triangle by the formulae
(adopting the common notation for sides and angles)

cota = —cot B+

= —coty+

asin 3 asiny
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a) 2n+1>0 b) 2n"+1<0

Y
Acosy B cos(a-y)

—a-y Y
B cos(a-y) Acosy

Figure 3.4: Tangent formula. a) Geometry in the case of counter-clockwise travelling

waves, 2n' + 1 > 0. b) The same for clockwise propagation, 2n' + 1 < 0.

For counter-clockwise travelling waves and at a given (scaled) Fermi energy Ep, Eq. (3.43),
takes the form (see Fig. 3.4a)

2n'1 +1

Ep=n'i + 2

(1 F cosy1) F pBcos(yr —a),

where the two signs stand for the spin directions parallel or antiparallel to an axis forming an

angle y; with the z-axis®. The resulting two solutions for positive n’ = n/ read

7(4) )

1- ~  sin?4] N
n'{(/) = _ (+)2COS ! + \/EF — Sm+ + (—)uB cos(’yf(/) —a), (3.47)

where, according to the slight difference in n' ’; and n/ { , also fyf and fy{ are not exactly equal. In
particular, we find

n'{ > n’{ — 7{ < 7{ (3.48)

in general as is most easily seen using the geometrical interpretation, cf. the lower triangle in
Fig. 3.3.
A similar discussion is necessary for the eigenstates to negative n’ = n), in the re-adjusted

geometry, cf. the upper triangle in Fig. 3.3. This leads via

~ 2n's + 1 _
Ep=n's+ 2T(l Fcosye) F B cos(yz + a)
to the equation
7(4) -2 /¥)
1— ~ ~
n'g(/) =— (+)2COS Y _ \/EF - Sm% + (—)nB cos(’yg(/) +a), (3.49)
eventually resulting in the relationship
0> n'é > n'é — > 75. (3.50)

We mention that the non-diagonal terms in Eq. (3.41) only vanish in the adiabatic case,

leading to avoided level crossing in the general non-adiabatic situation. Therefore, n'{ > n'{

and n'y > n' é always hold as is illustrated in Fig. 3.5. If n”/ and n’ ’1/ (and, correspondingly, ]

4We will use indices / and / to distinguish the spin eigenstates in y-direction. To simplify the labelling, the
index / is always used for the state with larger quantum number n’, regardless of its Zeeman energy, see Fig. 3.5.
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and 7{ ) do not differ too much, the smallest gap occurs for 'y{ =~ 'yf = /2 which, in turn, can
be translated into an angle a = a; and the corresponding magnetic field configuration. Similar
relations are valid for n'é and n"Q/ , however, we find the smallest gap now for as # a;. More
precisely, the two regions of closest approach are symmetric w.r.t. « = 0, cf. Fig. 3.5.

For practical calculations, it has to be noted that Eqs. (3.48, 3.50) are implicit relations

involving both n' and 7. The four possible n’ appear as solutions of the forth order equation

0=n"+2n"+ (1 —2Ep)n? — 2(Ep + iBcosa)n' + B — Ep — iBcosa — (iB)?  (3.51)

and Eqgs. (3.45, 3.46) provide the relation to the four corresponding angles .
Next we address the eigenvectors of the matrix M (3.41), i.e., we look for the constants
C4,C5 in Eq. (3.39). We do not give the full calculation but rather the results for the four cases

introduced above:

e2n) +1>0: 17(o)) ()
Y, /
C1 = cos % C{ = sin 7—12 -
. /_
Cs = sin 211 Cy = cos 12
7 /
"M M
) cos > sin
T () = e Lo ) =eme Y
™ % ¢in 771 ™ —e cos 721
(3.52)
e2nh+1<0: 17(¢)) V()
/ /
C) = cos 22 C1 = sin 2%
/ /
Cy = sin a+272 Cy = —cos #
/ /
cos 772 / sin 722
U (¢) = eimh? oo T (0) =em? /
" —e'? sin 2 " ¢ cos L
(3.53)

This representation reveals the physical meaning of v: In the generalized non-adiabatic
problem it replaces @. On the other hand, in the adiabatic case (by definition) the magnetic
field is strong enough to force the spin to align parallel to the magnetic field corresponding to an
angle a with respect to the z-axis. In the diabatic situation the spin appears to be aligned with
an angle . The analogy extends even further, in particular to the generalized geometric (or
Aharonov-Anandan) phase that replaces the Berry phase in the non-adiabatic situation: there,
v replaces « in the interpretation in terms of the solid angle enclosed during one round trip in
parameter space. For the state ¥ ol where 0 < A/ < «a holds, this nicely follows the intuitive

interpretation that in the non—adlabatlc case the magnetic field is not strong enough to force
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Figure 3.5: Avoided level crossing in an isolated ring subject to a wire-like magnetic
field with fixed Er = 225, By = 20®¢/(na?) and B, = ®4B/(na?) varied (¢* =
1, M = m,). The evolution of the angles involved is shown in the top graph. Avoided
crossing occurs at 7] ~ v/ = x/2 for n'] > n’{ and at 7§ ~ 4 = /2 for 0 > n'} >

n's.

the spin into the direction of a but to a smaller angle . In this sense ‘%| can be thought of
as a qualitative measure for the deviation from the adiabatic case: Starting with v = « in the
adiabatic situation, v decreases to eventually reach v = 0 in the diabatic limit. In the context
of the examples in Chapter 5 we will give an analytical expression for this, cf. Eq. (5.34) and
the discussion there.

With this discussion we finish the problem of the closed one-dimensional ring, keeping it as
a limiting case in the subsequent considerations. In the next chapter we will open the system

by attaching leads. This will affect the quantum number n that is not an integer any more.






i} Ballistic quantum transport

In this chapter we briefly introduce the transfer matrix approach introduced
by Biittiker et al. [27] to describe elastic scattering for spinless particles in
one-dimensional structures. We extend this method using and improving ideas
by Yi et al. [34] to describe spin-dependent transport in an one-dimensional
ring coupled to leads. We calculate and discuss the transmission properties of
this system, and find the special case of a homogeneous magnetic field that is
discussed in [27] as a limiting case of the generalized result.

4.1 Spinless transport

We first consider spinless transport in order to introduce the transfer matrix method [27] in
a straightforward example. We will find Aharonov-Bohm-like signatures in the transmission
probability of the one-dimensional (1d) ring coupled to leads. Moreover, the results can easily
be generalized to account for spin-dependent transport. We will make use of this when we
calculate the transmission probability for electrons with spin in Section 4.2.

Although we will talk about transmission probabilities T, throughout this chapter, we have
in mind the (magneto-) conductance G that is accessible in experiments. Both quantities are

related in the framework of the Landauer formalism by
9 N
e
G = EZTM, (4.1)
m,n

where the sum runs over all (partial) transmission probabilities occurring between the channels
m and n of the system and N is the total number of open channels. This sum is sometimes called
dimensionless conductance g and equivalent to the total transmission probability 7. We will use
the latter term in the following discussions. The maximum value that 7" (or g, respectively) can
take is that of the number of open channels, N. Correspondingly, we will find T" to be bounded
by 1 when we discuss spinless transport in this section. However, in the case of spin-dependent
transport (Section 4.2) there are two open channels corresponding to the two different spin states

the electron can take and, accordingly, we have 0 <7 < 2.

4.1.1 Transfer and scattering matrices

Before we begin our investigation of transport through an 1d ring, we briefly consider transport
through a linear 1d system that is divided into a left and a right part by a potential barrier
V(x), see Fig. 4.1. If V(x) is explicitly known, we can use the 1d Schrédinger equation to find
the transmission and reflection amplitudes S, 81, B2, 35 on either side. However, a compact
notation for describing the elastic scattering in the ring is given by the transfer matrix ¢ that

directly relates the amplitudes on the left and the right of the scatterer, i.e.,

() =) “2
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l
l

Figure 4.1: Transmission and reflection amplitudes for a scattering potential de-

scribed by a transfer matrix ¢.

Next, we apply the concept of transfer matrices to the situation illustrated in Fig. 4.2. We
consider a 1d ring with two leads attached to it, dividing the ring into an upper and lower arm.
Eventually we will be interested in the relation between the incoming and outgoing amplitudes
in the leads, a1(2),a'1(2). It is, however, useful to split the scattering problem into (i) scattering
at each junction and (ii) the transport through the arms of the ring. Correspondingly, we will
introduce (i) a matrix S, relating the three outgoing wave amplitudes (o', 8’,7')T to the three

incoming waves (a, 3,v)? at each of the (identical) junctions,
a =Sa, (4.3)

and (ii) transfer matrices ¢; and ¢, describing the transport through the upper and lower arm
of the ring (see next subsection).

The algebraic properties of S are of physical nature:

e Current conservation — S unitary,

e Time reversal symmetry at each junction — § symmetric.

This reduces the number of independent parameters from nine to five. We further assume that
S is symmetric w.r.t. the two branches of the ring (— three parameters) and presume that S
is real (— one independent parameter). The latter is motivated by the intention to make S
as simple as possible retaining the complexity of the scatterers into the transfer matrices ¢, t,.
One could also imagine the opposite viewpoint of two general scattering matrices while omitting
the transfer matrices ¢;,t, completely.

We write S in the form [27]

Ve b a

together with the requirement of current conservation leading to'
1

azi(\/l—%—l) ,

b= % (VI—2e+1) . (4.5)

!The equations allow also for other solutions, e.g., a— = —a,b_ = —b, which are of no interest here [27].
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Figure 4.2: Definition of transmission and reflection amplitudes in the one-

dimensional ring coupled to current leads.

The only remaining parameter, €, characterizes the coupling strength between the leads and the
ring: A wave is transmitted into each of the two branches of the ring with equal probability e,
whereas the reflection occurs with probability (a + b)2 = 1 — 2¢. In particular, for e = 0, all
particles are reflected so that there is no coupling into the ring (zero coupling limit corresponding
to the isolated ring). Note also that b —a = 1.

4.1.2 Transmission probability

Let us consider a wave of unit amplitude a; = 1 incident from the right (ae = 0). The
transmission probability 7" of the ring is then given by T' = |a|? so that we have to determine
o, as a function of the coupling parameter ¢ and the flux ® through the ring.

At the left junction we find from (4.3, 4.4) that

aIZ = \/E(/BZ +72) ’
ﬁé = aﬁ? + bfYZ )
Yy = bfa+ay. (4.6)
The first two relations yield
€
ah = % [(b—a)B2 + B5] - (4.7)

Now we use the last two equations to relate the amplitudes v}, v2 and S, 85 (see Fig. 4.2)

! 2 _ 2
(72> =S (ﬂ?) with 5, = L rmey e : (4.8)
72 Pa b —a 1

by a matrix S,

Although det S|, = 1, S, is unitary only in the zero coupling limit € = 0.
At the right junction we find analogously from (4.3, 4.4) that

ap = —(a+b)+Ve(Br+m),
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Bl = Vet+api+by,
7 = Ve+bpitan, (4.9)

(gi) N % (b—_la) S (2) - (4.10)

This formula describes the coupling of the wave amplitudes when passing the right junction.

so that we can write

In the next step, we relate the amplitude changes within each of the arms to the transfer

) - ()
() - o)

We use Egs. (4.11, 4.12) and (4.8, 4.10) to find a formula for the amplitudes 1, 3] alone,
B Ve (b—a
I = - 4.13

0= (8 ty Sipty — Taxa) - (4.14)
Finally, we put this into Eq. (4.7) to find

matrices ty,%,:

with the abbreviation

T = |oyf*,
of, = —b%(b—a,l);1 ﬂ1<b_1a> . (4.15)

For completeness, we mention that the reflection probability R is obtained as R = |} |2, and,
of course, R+ T = 1 holds since we consider here only one spin channel. When we investigate
spin dependent transport in Section 4.2, we have to take into account two possible spin channels
(for incoming |1) and |]) electrons) such that then R + T = 2 is valid.

The transfer matrices t;,t, comprise two phase factors each, namely the dynamic phase 6,
associated with the (pure, not generalized) kinetic energy Ep def (kera)?, 84 = mkega, and an
Aharonov-Bohm phase arising from the applied flux 47 through the ring (cf. Appendix B).
In the following, we will be interested in a perfectly symmetric ring. Then the Aharonov-Bohm

phase for each of the arms is given by

q)AB
Oap & n—— (4.16)
D
For ballistically moving particles we end up with
) ¢ifa 0
t =ty =e 48 : (4.17)
0 e—i9d

The final result is the transmission probability 7" as a function of the coupling €, the scaled
Fermi (kinetic) energy Ep that enters via 6, = W\/EF and the applied flux ®48 = 7a?B, (via
Oap = 7®/P() that reads [27]

4€? sin? 0, cos? O 4
B [a? + b2 cos 2045 — (1 — €) cos 29d]2 + €2 sin® 26,

and is discussed in the next paragraph.

T(e, Ex, ®) (4.18)
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Transmission probability T

By/ T

Figure 4.3: Transmission probability vs. incident momentum for an Aharonov—Bohm
flux of 0.2 ®( through the ring. The coupling strength € is varied and determines the
depth of the minima, and, in particular for ¢ near the maximal coupling strength
of 0.5, the position of the maxima. In the other limit of weak coupling (e =~ 0), the
maxima become sharp resonance peaks at the eigenenergies of the closed system.
The transmission probability is periodic in EF = 0y/m with minima occurring
whenever 6;/7 is integer. Changing the Aharonov-Bohm flux shifts the position of
the maxima: Decreasing 64p causes clustering of every two maxima around 6y/7
integer such that the minimum becomes ever narrower, eventually leading to the
merging of the maxima at 045 = 0, cf. Eq. (4.18). In the opposite direction, in-
creasing 0 4 g broadens the minimum until the maxima form now pairs at half-integer

values of /.

4.1.3 Aharonov-Bohm oscillations in a 1d ring

Let us first consider electrons in a closed ring subject to an Aharonov-Bohm flux ¢4 as discussed
in Appendix B. There we employed the analogy with electrons in a 1d periodic potential and
found how the eigenenergies of the closed system are affected by ®47, see Eq. (B.1). Accordingly,
in the zero coupling limit, ¢ =0, we expect transmission to occur only if the Fermi energy
Ep = (kega)? of the incident electrons coincides with the eigenenergies, which happens if [in
generalization of Eq. (B.1)]

AB

)
keﬁa:n'i?zn, nez. (4.19)
0

Then we find a sharp peak in the transmission.

If we now increase the coupling, we find that these peaks become broader, see Fig. 4.3.
They are referred to as resonance peaks, because we now deal with an open system where the
eigenstates are replaced by resonances. The broadest peaks correspond to the highest coupling
e = 0.5, and neighbouring resonance peaks might merge with increasing coupling, cf. Fig. 4.3.

In Fig. 4.4 we investigate the dependence of the transmission probability on the Aharonov-

Bohm flux ®47 through the ring for finite coupling strength, i.e., the Aharonov-Bohm effect
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Figure 4.4: Transmission probability vs. Aharonov-Bohm flux through the ring for
various incident momenta 63. The period is given by the flux quantum ®,. The
data was obtained choosing a coupling strength ¢ = 0.25, except for the thin dashed
line where 6;/m = 0.25 (as for the other dashed line) and € = 0.4. A change in €
thus causes a change in the shape and the depth of the (local) minima. Note that
the curves remain unchanged under the addition of integers to 63/7 and under the

reflection-like operation /7 — 1 — 04/m.

in an open system. One immediately realizes that, according to Eq. (4.18), T vanishes for
cos04p = 0 independent of the coupling strength, i.e., for ®47 equal to a half integer number
of flux quanta penetrating the ring. Also, the transmission probability T drops to zero if 8 is
an integer multiple? of 7 for any value of the Aharonov-Bohm phase 645 and e.

In Fig. 4.3 we saw that the concrete form of the oscillations, e.g., the depth of the minima,
depends on the coupling parameter €. This feature becomes clearer if we look at the energy-
averaged transmission probability (T'), that in turn depends on the (fixed) Aharonov-Bohm
flux ®4B through the ring. Averaging the expression (4.18) for the transmission probability
T(€,04,04B) at zero magnetic field (645 = 0) over one period in 6, gives

) = 1 /” 4€? sin? O
T Jo [a2 + b2 — (1 — €) cos 20,4]> + €2 sin® 20,
2
(1 —2¢)sin? 0y + €2’

that leads to the final relation
€

(T = .

This reveals that (as expected) the averaged transmission probability increases as the coupling

(4.20)

€ is increased, i.e., the ring becomes more transparent.
We use the analogy between electrons in a 1d ring and (Bloch-) electrons in a 1d periodic

potential once more in order to discuss the boundary conditions. For Bloch eigenstates, the

?Care must be taken if ®*2 = 0: The minimum then appears (singularly) sharp as the two maxima to its left
and right merge as 2 approaches zero (see Fig. 4.3).
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periodic boundary conditions (for ®48 = 0) require kega to be an integer given by the kinetic
energy quantum number n. This means for the closed ring that, whenever the (varied) Fermi
energy allows kega = n to be an eigenvalue, the transmission shows resonant behaviour. Now,
when we open the system and pass over to resonances, this means in particular that the values
of the quantum number n are not restricted to integer values any more.

Anticipating discussions in the subsequent sections, we would like to mention that Eq. (4.18)
can be extended to describe electrons with spin in the (adiabatic) situation. This regime is
characterized by the presence of two completely decoupled electron gases as described in Section
3.4. Then the Aharonov-Bohm phase 845 has to be corrected by the geometric phase, namely

7(4)
T )y T AB r
Oap = —d48 _— ¢ =" (4B gy~ | | 4.21
AB (}0 AB CI>0 0 om ( )

and the kinetic energy has now a contribution due to the Zeeman interaction energy,

0s=m\Er — O =x\/Ep+(-)iB. (4.22)

This splitting implies an interference and beating effect due to the slightly different oscillation
frequencies of the two electron species and destroys the ®(-periodicity related to the Aharonov-

Bohm effect that is seen in Fig. 4.4. A detailed discussion is given in Section 4.3.

4.2 Spin-dependent transport

4.2.1 Transmission probability

In this part, we extend the results of the previous Section 4.1.3 to the case of electrons with spin,
or, more generally, spin-% particles [34]. The generalization requires essentially two changes, one

of formal and one of physical nature:

1. The wave functions acquire a spin dependence at each spatial position (cf. Chapter 3) and
all equations are to be formulated in the resulting product space (orbital motion ® spin
state).

Practically, this is done by applying the direct product (®) to the expressions derived for
spinless transport, e.g., S|, — S}, ® g9 where oy is the 2 X 2 unit matrix in spin space. For
the transfer matrices t;,?, this means that they are now 4 x 4 matrices since they couple

2 X 2 spinor components.

2. Assuming electrons entering the ring with a Fermi energy Ep, the kinetic energy of the
electrons will depend on their spin due to the Zeeman-interaction. Therefore, also the
velocity depends on the spin direction. Since transmission is defined as the ratio of (trans-

mitted and incident) fluzes, and

flux & |/ velocity - amplitude , (4.23)

the transmission coefficient is no longer equivalent to the ratio of probabilities alone but

has to be corrected by the corresponding velocity factors.
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According to the first point, all amplitudes «, 3,y now each consist of two components,
namely of, o, BT, B4, 4T, v+, where 1 (|) denotes the spin state in z-direction. Together with
the second point, Eq. (4.23), this requires Egs. (4.11, 4.12) to be replaced by

NET (\Jols!
1ol b arl
\JviB N
1P2 t 1M1 ’ (4.24)
/38 \/v38]
\/ 3B \/vsBY
ol ot )
4 ol
\/ V1Y VY
R L (4.25)
\/ viy'T \ e
\V vgy'y \ vgYy

in order to relate the fluxes. The transfer matrices ¢;,¢;; are unitary and assure particle con-

servation, see below. The velocities UI(U (vg(‘l’))

characterize the transport of counter-clockwise
(clockwise) travelling electrons with 1 (|) w.r.t. S,-basis.

According to the remarks above, Eq. (4.15) for the transmitted amplitude is replaced by:

o) = —b%([b—a,l] ®oo) tr 11 ([b__la] ®oo> (4.26)
= —emit; I 'mg,

with the abbreviation

II= (§1r®0'0) trr (§1r®0'0) II_]IQxQ@UO s (4'27)
and the substitutions
det 1
mq é g([b-&,l]@do) ,

def 1 b—a )
)

S, is defined in (4.8). The result (4.26) is similar to the one obtained in [34], however, the
transfer matrices in [34] are defined between probabilities rather than fluxes, more precisely in
terms of the matrices ;,%, that we will introduce below. Consequently, the transfer matrices
used in [34] are not unitary. This would lead to a transmission probability 7' that can take
values above two, in contradiction to particle number conservation.

The total transmission probability 7' is again obtained from o}, which appears as a 2 x 2
matrix. We call this transmission matrix 7%, where z indicates that all spinors are expressed

w.r.t. S,-basis (i.e. in terms of the eigenstates of o),

t 12
- | T (4.28)

tir Ty
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Figure 4.5: a) Total transmission probability and b), c) partial contributions

vs. scaled Fermi energy Ep = kera of the incident electrons. The coupling
strength to the current leads is set to € = 0.25. The magnetic field texture is chosen
wire-like with the ¢-component twice as large as the z-component corresponding
to @ = arctan2 =~ 63.4°. Note the coincidence of the non-diagonal elements in c),
arising from the symmetry w.r.t. reflections about an axis perpendicular to the leads

through the centre of the ring.

Its four entries measure the transmission amplitudes between all possible spin state combinations

in S,-basis. For unpolarized incident electrons, 1" is given by
def
T = [ty + [y + [ + [t * = Tpp + Ty + Ty + Ty - (4.29)

For practical calculations, the transmission probability for spin-dependent transport has to
be evaluated numerically. In Fig. 4.5, we show an example for the full as well as the partial

transmission probabilities, anticipating the results of Section 4.2.2.

It is worth analyzing the structure of o, and II (4.26, 4.27) where on first sight the symmetry
that one expects when desribing a perfectly symmetric ring is not manifest. In fact, this can
easily be overcome. We introduce the matrix

(bQ—a2 0 a 0

1 0 ¥ —a®> 0 a
my = - EN,N,, (4.30)
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with the decomposition

N, = 1 0 b+a 0 —(b—a) (431)
2N BT 1 0
0 1 0 1
and
b—a 0 10
ﬂzzi ’ e 0 (4.32)
V2l _h4a) 0 10
0 —(b+a) 0 1
With this notation, we transform (4.26),
oy = —emit; I my
= —emy by (mgtyymat; — Laxa) ' mo
= —emity [(N Nyt NNy —1; ") 4] ~my
= —emy [(Woty N, — Ny 't Ny )N,] ™ Ny my,
ending up with the symmetric structure
oh = —emi Ny' [Nyt N, — N7t NG 7 Ny ms (4.33)

We will see in the following sections that this expression allows for a much simpler handling of
the transmission probability. In particular, if we introduce

a o [ﬂﬁnﬂl - ﬂflﬂlﬂ;l]il ) (4.34)

we see from (4.33) that the term to the left and right of a projects out just the upper right corner
of a, so that we actually need to calculate the entries a13,a14, ao3, a4 of the matrix a:

2| a3 au e T4y
= —€ —

=T, (4.35)

I
5=

azs 624 i 1y

4.2.2 Transfer matrices

In this section we will determine the transfer matrices ¢; and ¢;; that we need in order to
calculate the transmission probability 7. We will do so by first finding the transfer matrices

t;, 1, that relate the wave function amplitudes,

Bl e o o
BL ﬂw ,),i ,),w
? =1 ' ; ' =1y 2 (4.36)
81 gl ~1 s
'S Bt v v
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For convenience, we introduce the velocity matrices

v = y U = . (437)
0 v% 0 'ué

trp = vhtywy . (4.38)

In order to determine first of all the matrix ¢; in Eq. (4.36), we consider the electrons in
the open ballistic ring, see Chapter 3. All electrons are transported at fixed Fermi energy
Ep = 2Ma2Ep, see Eq. (3.42). Each state is a superposition of the four wave functions at
energy Er that were derived in Chapter 3. The four basis states for the open ring are given in
(3.52, 3.53). In terms of these functions, we can express the amplitude of the wave propagating
counter-clockwise (i.e., n' o nl, 2ni+1 > 0, ny = n+ea?B,/2) by means of the two components
‘Iln{(qﬁ) and \Iln{(gb), substituting ¢ def v/2,

s+
./ sin (
and U ,(¢) = &M ! (4.39)
n _ i /
e'? cos (]

cos ¢/
¢ sin ¢ f

We hence obtain the amplitude 3] at ¢ = 0 as a superposition with appropriate coefficients

C1,C2,
o (A1) _ 10 4(0) + 2T (0) (4.40)
1 IBIEI{ n{ n{ . .
Since we exclude scattering processes within the arms of the ring, the amplitude B2 at ¢ = 7 is
Bo def (6%[> =¥ () + ¥ y(m). (4.41)
,32 1 o1

To complete the set of amplitudes that is connected by the transfer matrix t;, we have to take

into account the clockwise propagation (now with coefficients dj, ds) as well:

N
g (g 1) = di1¥_4(0) +da¥ /(0), (4.42)
1 2 ?
and
caer (B2 _ g
o = IB"ZL = ai né(ﬂ)‘l—dg\lfné(ﬂ') . (4.43)

Now we can determine the transfer matrix ¢; in (4.11). There are several possibilities to do
so; we will adopt an approach that makes the meaning of the transfer matrices more transparent.

We start by considering the amplitudes of counter-clockwise travelling waves,

(B§> N (ﬁ’l) (40
By o o | B '
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which is the upper left 2 x 2 matrix of ¢;. Now we make use of the freedom in the choice of the

coefficients ¢y, c2 in (4.40) and choose them as

Cc1 déf cI = cos C{
. . ?
cos ({ cos Cf + sin¢{ sin Cf
i o
sin
Cc2 dof cg = St (4.45)

cos Q{ cos Cf + sin Cf sin C‘f ’
which is motivated by the result

B,y = (é) . (4.46)

This just means that the special choice (4.45) for c1,co constitutes a ((1)) défT—state in S,-basis.

Evaluating (4.44) with this special choice, we find immediately

/82(01702) = g1,
Bs(cl, ) 93 ; (4.47)

which illuminates the meaning of g; and g3: for a f-state of unit amplitude entering the ring,
g1 gives the amplitude that it remains in this state, whereas g3 accounts for spin-flip processes.
This interpretation applies to the other entries accordingly.

We analyze Eq. (4.47) with the help of (4.41), applying the well-known relations between

trigonometric functions [55] to yield

1 /7 /
no= ( ZnlﬁCOsCl cos C1 —|—em1”sm§“1 smCl) ,
cos(¢7 — (1)
—elt 4 Y
g3 = % ((3’”17r — ez”1”> sinC{ cos C{, (4.48)
cos(¢y —¢1)

where ¢, is the field texture parameter introduced in Eq. (3.11).

The analogous procedure, performed with

def | e*i‘msing‘f
a=a = Fooord o i ol A
cos (7 cos (] + sin (] sin ()
—e~ % cos (]
e & = S (4.49)

cos ({ cos Cf + sin¢{ sin Cf ’

now, of course, guided by the resulting ((1)) défi—state in S,-basis, allows us to determine g2 and

ga:

—idt 7 ./
g2 = S F (eml7T — emlw) cos ¢ sin(f,
cos(¢y — ¢7)
-1 7 "4
94 = ——— (emlwsind sinC{+ €M™ cos (/ cos Cl‘/) . (4.50)
cos(¢] — ¢7)

To complete the procedure necessary to determine the transfer matrix ¢;, we now turn to-
wards the clockwise propagating waves given in Eqs. (4.42, 4.43). The basis states, cf. Eq. (3.53),

/ s+
. cos ¢ sin ¢
U (¢) = em;d’ 2 and ¥ ;= em2¢ 2 ) (4.51)

—e' sin ¢} ? e cos (2
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differ slightly from the clockwise propagating basis states (4.39). Therefore the calculation now
yields (switching from ¢; — d; and g; — h; in the notation)

g cos Cé/
cos (4 cos C2/ + sin ¢4 sin Cé/ ’

S
sin ¢
dl = 2 4.52
2 cos (4 cos Cf + sin ¢4 sin Cé/ ’ (4.52)

for constructing an incident 1-state, and

—e "t sin Cé/
cos (4 cos C{ + sin ¢} sin CQ‘/ ’
e~ cos ¢

ds = , 4.53
2 cos (g cos C; + sin Cg sin C; ( )

for the |-state. Eventually, we obtain the matrix elements that connect the amplitudes 8 at the

entrance and the exit of the ring, namely,

1T +
Co=1" ") (%) 45
B's hs hy By

which is the lower right 2 x 2 matrix of ¢, i.e.

1 -~ -4
hy = ———r (emﬂ cos (4 cos C{ + €27 sin ¢} sin C;) ,
cos(¢y — ¢3)
it A .Y
hy = % (emﬂ — emﬂ) sin Cé cos C;,
cos(¢h — ¢5)
et 4 Ly
hy = e (emﬂ — em2”) cos Cé sin CZ/,
7
cos(¢h, — &)
h o -1 inéﬂ S v inéw / / 4.55
4 = ———|e sin¢jsin(, +e cos(ycosCy ) - (4.55)
cos(¢h, — &)

Now we can specify the first transfer matrix ¢;: We have determined the two diagonal 2 x 2
matrices that constitute t; since the off-diagonal 2 x 2 matrices, that would describe waves
that change their sense of rotation, are zero. (This is forbidden due to the conservation of the
angular momentum L, = —id/d¢ + 1/20, in z-direction.) Any propagating wave with fixed

energy possesses a well defined momentum that excludes reflection processes. Hence we find

g g 0 O
g3 g4 0 O
4 = . (4.56)
0 0 hy he
0 0 hsy hy
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Using relation (4.38), we obtain

91 v] /v} go 0 0 (91 g 0 0

b= mgs g4 0 0 def g3 g+ 0 0 (s
0 0 hy vl Jv§ ho 0 0 hi hy
0 0 vl Jv] hs hy 0 0 hs hy

Next, we have to find the velocity ratios occurring in ¢;. The origin of the different velocities
lies in the different spin directions w.r.t. the magnetic field for fixed Fermi energy. They are
characterized by different Zeeman energies necessary for the alignment of the spins leaving a
different amount for the kinetic energy along the ring.

We start by noting that the Hamiltonian H in (3.3) is Hermitian. This implies the conserva-
tion of particles or of the global integrated quantum mechanical probability density, respectively,
which translates into a (local) continuity equation. In our system, the propagation takes place
along the ring and no additional particle sources or drains are present. Hence we finally arrive
at the conservation of the quantum mechanical current density, which leads to the requirement
of unitarity of the transfer matrix t; (and, of course, also of t;;). As a consequence of this,
the following equations expressing the orthonormality of the eigenvectors (which are just the

columns of £;) result:

9191 +9393 = 1
9292 +919+ = 1
9192+ 3394 = 0,
9193+ 9294 = 0
(and a similar set of equations for the h;). g1 and g4 obviously fulfill the relation

1
cosQ(Cf - Cf) 8

[cos2 Cf cos? C{ + sin? C{ sin? Cf +

9191 = 9194

4 i/ o F . .
(el(”l_"l)” — e_z(”l_"l)”> cos ¢/ cos Ci/ sin Cf sin C{ ,

which leads to
9392 = 9393 = 1 — gig1 - (4.58)
After evaluation we find
1
cos?(¢] — ¢f)

Note the closer similarity between go and g3 than between the matrix elements g, and g3 in ¢;.

~ ~ (nd ¥ —itn/ . .
9292 = G393 = [2 — eilm—n)r _ o=ilm "1)”] cos ¢{ cos (! sin¢{sin¢/ . (4.59)

Comparing the last equation with the expressions (4.48, 4.50), we read off the velocity ratio

UI _ cos C{singf B tan ¢f

v% cos ¢/ sinC{ - tanCl‘/ .

(4.60)
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Repetition of the calculation replacing g; — h; is straightforward and the velocity ratio for

clockwise propagating waves becomes

ﬂ _ cos Célsingé _ tangé (4.61)

’U%  cos Cg sinC;  tan Cé ’
completing the ingredients required to compute transmission probabilities. Egs. (4.60, 4.61) can
be easily checked by actually calculating the velocity expectation values.

The calculation for the transfer matrix t;; relating the amplitudes in the lower branch of
the ring is very similar. The only difference is that we now have to look at amplitudes at angles
¢ = —m evolving to angles ¢ = 0! We refrain from giving the details and just state the results.
We keep the notations essentially as before but switch to capital letters for the coefficients (i.e.,
¢ — C,g — G, etc.). To illustrate the procedure, we consider counter-clockwise travelling waves

in the lower branch of the ring, i.e.,

7 G Gy | (7}
)= E (4.62)
!
"1 Gs Gy Y2
which is the upper left 2 x 2 matrix of t,. We first look at a 1-state w.r.t. S,-basis at the position
¢ = 0 which in analogy to Egs. (4.45, 4.46) is provided choosing the coefficients

-
o cos {{eml”
cos Cf oS C{ + sin Cf sin {{ ,
P,
smg“feml7r

cos Cf cos ({ + sin Cf sin g‘f '

3

(4.63)

Note the additional exponential term in comparison to Eq. (4.45). These equations yield even-

tually
1 7 Y
Gy = — A (emﬂms Cf coS C‘f + emlﬂsingf sin({) =g,
cos(¢] — ()
it s Y
Gy = % (e"‘l7r — em17r> sin ¢/ cos C‘f =—gs.
cos(¢] —¢7)

(4.64)
The analogous procedure, performed with
—e i ei”{” sin Cf
cos ({ cos C{ + sin¢{ sin Cf ’
e it emyl/7r cos Cf

cy = , 4.65
2 coS Cf cos C{ + sin Cf sin {{ (4.65)

cf =

in order to obtain a |-state in S,-basis, leads to

ot A Y
G2 = ﬁ <eln17r _ eZTL17T> cos C{ Sin({ = —0g9,
cos(¢ — (1
-1 Y B in’n 7/ /
Gy = W et™ smC1 smC1 + e COSCl cosCl =04 - (4-66)
cos(¢ — (1
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The evaluation of the matrix elements H;, Ho, Hs, Hy that relate the clockwise propagating
amplitudes can be done in the same spirit — in principle the subscript 1 has to be replaced by
the subscript 2 indicating clockwise movement together with the appropriate changes in the

notation. Accordingly, we obtain the relations

Hy=hy, Hy = —hy,
Hy = hy, H3 = —h3, (4.67)

so that finally we find

0 0 h1  —he

\0 0 —hs hg

Again, from Eq. (4.38) we find

g1 —\/’UI/’U% g2 0 0
—\/U"IL/’UI g3 g4 0 0 (4.69)
0 0 hy —\/v5 /0] hy

0 0 - Ug/”% h3 h4 )

trr =

which is a unitary matrix (in contrast to the matrix ¢, used in [34]).
Now we have provided all ingredients to calculate transmission amplitudes and probabili-
ties according to Egs. (4.35, 4.29) for any® desired field configuration that respects rotational

symmetry. One example is shown in Fig. 4.5, a part of which is zoomed in Fig. 4.7b.

4.3 Uniform field perpendicular to the ring as limiting case

The situation of a homogeneous magnetic field in z-direction, B = B, ¢, was already studied in
Section 4.1.3. The effect of the magnetic field is then just an Aharonov-Bohm flux 42 = 1a?B,
through the ring of radius a leading to huge simplifications. Formally, the reason for this lies in

the fact that & = 0 for B = B,é,. In particular, S,- and S,-basis coincide and the eigenstates

1
0

magnetic field. This takes away the possibility of observing Berry phase interference effects as

of the Zeeman term are ( ) and ((1)) The physical reason is, of course, the simple texture of the

is also clear from the solid angle argument, cf. Egs. (3.32, 3.33).

We already know the result for the transmission through a 1d ring in a homogeneous magnetic

field, namely formula (4.18). However, we have to correct the Fermi energy by +uB, according

1
0

results, we now show that Eq. (4.18) from [27] coincides with the outcome of the algorithm

to the Zeeman interaction energy for the spin states ( ) and ((1)) To assure consistency of the

introduced in the previous sections.

3Due to the Zeeman interaction, a minimal Fermi energy of E?i“ =~ B is required so that the spin can align
antiparallel to the magnetic field.
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For a homogeneous magnetic field B = B,é, with B, > 0 such that o = 0, we find either

from (3.45), or, more illustratively, in terms of the geometrical interpretation of Fig. 3.4

¥ =+ =0. (4.70)

Concerning 7,, we have to distinguish*

1 -
1. n'g + 5‘ >uB, : fyg = 'yé =0, n'{ = —n'g, n'{ = —né 2 (4.71)
1
2 I/+2‘<MB D= =m, = —nh, W= 2, (4.72)
(4.73)

Since the relations

g2=93=0, hy=h3=0,

and
7 -/
n T n’ T
gL=e"1", gy = —€e"17
7 "'
hl — em27r’ h4 — _ezn27r’

hold in any case, we find the expected diagonal structure of the transfer matrices ¢;,t;;. The

other matrix entries fulfill in the first case the relations (substituting n’ = n — %eaQBz =
n — %@AB)

g = ein{ﬂ' — efz'néﬂ'eie@AB) _ h’{eieaQBzﬂ ’

gy = _ein{w — _e—inéﬂ'e—%ﬂeie@AB — hzeiea2Bz7r’

resulting in

. 7 A S &AB A &AB
dlag (emlvr’_emlvr’e ) m+ied ,—e in) m+ied

_ WCI’ABdlag( i(nfr—504P) _ei(n{w—%AB) . —i(nfr-g045) _e—i( {w—gcpAB))

bl bl bl

v,e @AB

1/ "7 _otl w4
= dlag( in R L 171')
= -

In the other case, the relations

7 _ink o HAB AB
g1 = eMT™ — o znznezei) h* ied ,
s ol AB . HAB
gy = —eMT — _ iy, 2z7reze<1> _ _hTezeé )

hold instead, giving rise to

IIZ

— chABdla,g( (n{ﬂ——CDAB) _ez(n’l/w——i)AB) e z(n{ﬂ——<I>AB) e Z(n{ﬂ——¢A3)>

. 7 Al &AB —ind . &AB
dlag (emlﬂ,—emlﬁ,e in) n+ied ,—e in) n+ied

bl 7 bl

ze AB // : // 4 l/ _ //
= ® dlag( W’_ezn 1”,6 in 1”,—6 mhm

= 7.

'/ an/ +1

4The very special case of |n'% + ! = m, 7{ = 0 is not further considered here.
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Figure 4.6: a) Total and b) partial transmission probabilities for the situation of a
varying homogeneous magnetic field perpendicular to the ring (E = B,é;). In this
situation, the electron gases of 1- and J|-electrons are decoupled and no spin flips
occur, Ty = T4 = 0. The (numerical) results of the calculation described above are
compared with the (analytical) results of Bittiker et al. [27], see Eq. (4.18), where
we have corrected the energy of the electrons by the Zeeman interaction energy, see
Eq. (4.77), for | 1)- and |])-electrons respectively, summing up both contributions.

As expected, the results are the same.

Now, this has to be put into the matrix (4.34) to obtain the transmission. There, in one
of the summands, the inverse of the matrix ¢; occurs whereas the other product contains the
matrix t;; itself giving rise to different prefactors exp(—%®4%) and exp(%£®45) demanding for
numerical evaluation in the general case e®/2m = &/ # 0,+1, £2,.... The result is shown in
Fig. 4.6.

However, for the situation where the flux ®47 equals an integer of the flux quantum ®,
we can proceed further in the analytical calculation. Doing so for the case |n) + 1/2| > B,
cf. Eq. (4.71), and using the relations given prior to (4.34), we evaluate the terms in (4.34) under

utilization of

/ -/ _

g1 = e'™” g4 = —e'™T ; II = ZII = dla‘g(glag%gfagZ) )

and make use of the unitarity of ¢;, z;l = t;r = t7, we find

gi(b+a)+ g} 0 9 — g 0

1 0 g94(b+a) +g; 0 g — 94

NotrNy = o ’
gi —g1(a +b)? 0 g1(b+a) +gi 0
0 i — ga(a +b)? 0 ga(b+a)+gi |
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gi(b+a)+g; 0 -9t aq 0
N-L—In-1 = i 0 94(b + a) + gzlk 0 _gzlk + 94
=1 2 =22 — 2
—gf +g1(a +b)? 0 gi(b+a) +gf 0
0 —g; + ga(a +b)? 0 ga(b+a) + g}

Subtracting these expressions, we arrive at the matrix a! def Q(q% € Z) that we expect to
coincide with the result [27] of Bittiker et al. (“BI”). We obtain

0 0 g1 — g1 0
_ 1 0 0 0 gi — g4
(@) = - ! : (4.74)
9 —gi(a+ b)2 0 0 0
0 g —gia+b)? 0 0

the inversion of which eventually gives

BI

b
I PR
ol = LA
gi — 9a(a + b)?
14 — a23 — 0. (475)

Using that g7 g1 = g} g4 = 1, we find for the transmission amplitudes

pr_ 4 g+ 4e?
TTT = 2 (a13) apz = T )
1—2cos (29d + 29,43) (a+b)?+ (a+b)*
4¢? * 4¢?
TE = A (B el = . . )
1 —2cos (29d + 20,43) (a+b)?2+ (a+b)*
with
009 = )+ ()i, (4.77)
@AB
Osp = T = 0,+m, +27, +37,... , (4.78)
0

cf. also Egs. (4.21, 4.22). We convince ourselves that this expression is equivalent to Eq. (4.18)
in the limit B, = 0, 4% = ( by first rewriting (using a + b = v/1 — 2¢,a’> +b*> =1 —¢)

4¢€?

T8 (24P = 0) = :
( ) 1 —2(1 —2€) cos 26, + (1 — 2¢)?

Evaluating the result of Biittiker et al. for the transmission probability T(E,EF,QAB),
cf. Eq. (4.18), indeed yields

4€2(1 — cos 26,)
2[(1 — €)2(1 — cos 2604)? + €2(1 — cos? 26,)]
4¢?
1—2(1 —2€)cos204+ 1 — 4e + 4€?
= 7348 =0), qed. (4.79)

T(e, Ep,® P =0) =
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Hence, we have shown numerically (cf.Fig. 4.6) and analytically [for certain parameters, see
Eq. (4.79)], respectively, that our general approach to spin-dependent transport in non-uniform
magnetic fields (Section 4.2) contains the well-known result (4.18) (cf. Section 4.1.3, [27]) as
limiting case of a uniform magnetic field B = B,é,.

4.4 Transformations in spin space and symmetries of the

transmission matrix

So far, we always used the S,-basis to express the spin states needed to calculate the transfer
matrices. Here, the transmission probability for spin-flip processes, t1;,%)+ is non-zero for a
tilted magnetic field even in the adiabatic limit. We recall that there are no transitions between
the propagating |/(¢))-, |/(¢))-states in this case. This is, of course, no contradiction since
the |/(¢))-, |¢(¢))-states represent spins aligned with the magnetic field, given in S,-basis as
[cf. Eq. (3.10), ¢, is the field texture parameter, see Eq. (3.11)]

cos & sin §
0= (i ting ) VO = (L rnt cons) (4.80

Alternatively, one can consider transmission amplitudes in the (local) S,-basis, where
the /- and /-states are rotated by an angle o w.r.t. z-axis. The new transmission ampli-
o

tudes 7R
41, t1), i, t], are obtained by performing the appropriate projections. For example,

Sty 19, that replace the ones w.r.t. S,-basis, given in the matrix 7% in (4.28),

th = (/¢ =m)|T*|/(¢=0)), (4.81)

with the physical interpretation that a spin aligned in the direction of the magnetic field, ex-
pressed in S,-basis, enters the ring at the position ¢ = 0. Finally we are interested in the
amplitude that the spin is still oriented with the magnetic field at the end of the ring (¢ = )
— this is precisely what we t%, expect to describe. In the adiabatic limit, we will find 15,87, to
vanish as expected, cf. for example Fig. 4.7c.

For completeness, we give the evaluated quantities,

th =ty cos? % + t4, cos % sin %ei‘m — t4 cos % sin %e_id’t —ty sin? % ,
a .« a a a .«
9 =t —sin— —1 2 ettt psin? —e ¥ 4t cos —sin—,
2/ +4 COS 2SlIl2 +] COS 26 1181 26 + s 2 2
a .« a a a . o«
9, = t — sin — + ¢4 sin? —€"?* + ¢4 cos® —e ¥ 4+t cos — sin — ,
/7 11 €08 o SIN o+ Ty SINT 5 €70 414 COS™ 5 +1yycos 5 sin g
e’ a ., a a ., o «
t%, = tysin’® 5 t4) cos ) sin Ee”’t +t4 cos 5 singe @t cos? 5 (4.82)

The total transmission probability 1" is certainly conserved as can be easily checked keep-
ing in mind that sandwiching T? with the different spin states can be represented by unitary

transformation matrices U' and U?, respectively. In S,-basis,

TG = 3 bty (4.83)
ij=1d
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a) Total transmission:
£€=0.25

g* =1, M=m,

B, = 30 &,/ (a’)

B, =15 &, / (1a?)

b) Partial transmissions
in S, - basis:

c¢) Partial transmissions
in S, - basis:

Partial / total transmission probabilities

[}
T,
— a

T
o a
T

Figure 4.7: a) Total transmission probability and partial contributions in b) S,-basis

and c) Sy-basis vs. the Fermi energy \/ Er = kega of the incident electrons, for the
same parameters as in Fig. 4.5. Note that the spin switching (non-diagonal) partial
transmissions coincide in both S,- and S,-basis. For all Fermi energies koga we are
in an (almost) adiabatic situation as confirmed by the small spin-flip probabilities

in S,-basis in c).

while we find in S,-basis

T = Z t%tafj = Z (szktklgllj) (ngmtmngvlzj)*
i/ ijiklmm=11
= Y UhtuUi; (Ql):;j trn @5,
i,5,k,L,mn=",4
= Z U2 tkibimtin, (QQ),_,IEZ Z (QQ);,; UZitutig = Z trity;
ik Lmn=1,1 ik, m=t,) k=1,

so that indeed
T =7 =7, (4.84)

We point out the coincidence of the non-diagonal partial transmission amplitudes in S,-basis

as well as in Sy-basis, see Figs. 4.5, 4.7,
tTi = tiT and t;l’/ = t?/ . (4.85)

The reason for this is the symmetry of the ring w.r.t. reflections about a central axis that is

perpendicular to the axis formed by the leads.
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The individual contributions to the total transmission probability in S,- and S,-basis are

illustrated in Fig. 4.7. In the following chapter, we will preferentially discuss transmission
2
Lef T;j, respectively, in S,-basis, except when we perform

amplitudes ¢7; and probabilities ‘t%

calculations revealing a spin-flip effect in the Section 5.1.



5  Transmission in non-uniform magnetic
fields: Examples

In this chapter we will consider two special magnetic field geometries. In the
first one, the magnetic field is constricted to the plane of the ring (o = 7/2).
This has remarkable implications on the partial transmission amplitudes that
are independent of the degree of adiabaticity. Applying a magnetic flux of half
a flux quantum through the ring will invert the properties of the transmissions
amplitudes. We provide an analytical proof for this effect and compare our
results with those obtained in a two-dimensional tight-binding model. The
second example refers to a situation that was already studied in experiments
[35] and consists in placing a micromagnet in the centre of the ring. We discuss
implications for magneto-conductance measurements.

5.1 In-plane magnetic field

5.1.1 Aharonov-Bohm ring as a spin switch

Throughout this section we shall consider a ring that is subject to an in-plane magnetic field,
that can be either tangent, radial, or a combination of the two that is rotationally invariant. In
experiments, such a field might be generated by, e.g., a current through the ring as reported in
the context of Oerstedt switching [51].

In this geometry we find an interesting spin-flip effect [40] that allows one to change the spin
polarization of an electron transmitted through an one-dimensional' ring by adding Aharonov-
Bohm flux through the ring. The spin-dependent transmission is periodic in the applied flux
with a period of one flux quantum, ®(. In particular, the polarization state of polarized electrons
can be changed by altering the flux by ®/2. Before we discuss possible applications that might
become interesting in future spintronic devices, we compute the transmission amplitudes for
the case of an in-plane magnetic field. Firstly, we investigate the case where no additional flux
through the ring is present, in the next step we incorporate half a flux quantum.

In this case of an in-plane magnetic field, @« = /2, we find a high symmetry between the
clockwise and counter-clockwise propagating wave. This becomes manifest in the relationships
between the angles vy entering the (general non-adiabatic) spin states and the orbital quantum
numbers 7 [cf. Egs. (3.52, 3.53) and before]

N

= —né -1,
—nf—1; (5.1)
(5.2)

v
v

bl

/
ny
/
ny

[ NN
Il
NN

bl

enormously simplifying the structure of the transfer matrices t;,¢;;, see Eqgs. (4.57, 4.69), since
they reduce the number of independent entries by means of the identities [cf. Eqgs. (4.48, 4.50,

!This effect does not require a 1d ring and was also found in (more realistic) two-dimensional geometries, see
[40].
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4.55)]
g1 = hz g2 = h’; )
ga = hi 93 =h; . (5.3)
The number of variables can be reduced further if we specify the field texture parameter ¢;

[see Eq. (3.11)] in order to relate go and g3, see Egs. (4.48, 4.50). In the case of a radial magnetic
field, ¢ = 0,

+ +
v v
—1 g2 = — —# 93; (5.4)
Uy Uy

These relations hold even when an integer number of flux quanta penetrate the ring as can be
seen from Egs. (4.48, 4.50, 4.55) because this corresponds to changes of n by an integer and an
overall sign change, where applicable, does not change the transmission amplitude.

We shall now study the implications of these relationships on the transmission amplitudes,
see Eq. (4.35). We will find that in S,-basis the spin-preserving transmissions (also called
diagonal contributions subsequently) vanish (%, = ¢3, = 0), whereas the spin-flipping, or non-
diagonal, transmission amplitudes are non-zero and equal (t3, = t7,). In the following, all spin
directions are related to the direction of the magnetic field that is not fized in real space! We give
now analytical evidence for this at first sight surprising behaviour, using the definitions (4.57,
4.69, 4.30-4.32) and the relations (5.3) and the unitarity of the matrices t;,t;;, especially that
=1t

Evaluating the matrix ¢! given by Eq. (4.34) in a straightforward computation we obtain

for a tangent magnetic field, go = g3,

61 6 43 O
do —60; 0 ¢

g*:%b 2o ol (5.6)
b9 0 61 09

\O dg b2 —01

with
01 = (g1—ga)(a+b)— (97 —91),
do = —2(g2(a+b)+g3),
03 = —(g1+94)+ (971 +91),
b9 = —(g1+9ga)(a+b)?+ (gt +9b). (5.7)

The inversion of this matrix yields
03
2b ,
0309 — (5% + (5%)
alg=azg = 0, (5.9)

a3 = a4
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and these results are passed on into the transmission amplitudes in S,-basis,
tTT:tH, and tT¢=t¢¢=O. (510)

In terms of transmission probabilities w.r.t. S,-basis this reads according to Egs. (4.82) for
b =7/[2,a =72

. 1 o
tiy = 5 +ityy ity —ty)
o 1 L
thy = gty ity ity +1y)
. 1 L
ty = gty —ity ity +ty)
1 L
t9 = E(tﬁ—ztﬂ—zt“—tu) : (5.11)
therefore,
t?} = t?/ =0 and t;[/ = t?/ = tTT = tll, ; (5.12)

that is, the role of the diagonal (11 and |J) and non-diagonal elements (1| and |1) is just
interchanged when switching between S,- and S,-basis.

The result (5.12) is rather surprising since it states that only electrons that change? their
spin are transmitted through the ring and this holds in particular also in the adiabatic limit! As
a consequence the transmission probability tends to zero.

Although we have proven the properties (5.12) of the transmission amplitudes (and prob-
abilities, respectively) for the special case of a tangent magnetic field, they remain valid for a
purely radial magnetic field and therefore for any in-plane magnetic field. Furthermore, this
effect was also found in two-dimensional rings as we shall discuss below.

We turn now to the case where half a flux quantum penetrates the ring, such that there is

an Aharonov-Bohm flux ®458

= ®(/2. However, we assume the magnetic field at the position
of the ring to remain unchanged, i.e., the AB flux to be generated by a solenoid (rather than
by a homogeneous B,-component). The quantum number 7 is then reduced by half an integer,

cf. Eq. (3.30), and Eq. (5.3) has to be replaced by

g1 = _hz g2 = _h’g )
g1 = —h} g3 = —hs, (5.13)

resulting in a minus-sign in front of the lower-right diagonal 2 x 2 matrix. However, alternatively
we can use Eqs. (4.48, 4.50, 4.55) for the g;, h; directly and realize that they are just rotated by
e~/2 w.rt. the 48 = () values. Hence, we can write

®g/2 .0

tI(OII) =~y (5.14)
where f}( 1) are the transfer matrices in the zero-flux situation. Accordingly, we find the matrix

a as
def 1 -1 -t
a®/? = [—iﬂﬂ?[ﬁl - __Z-Mfli(l) Mgl] )

1 _ -1
[t (5.15)

2Concerning the direction of the spin it has to be noted and carefully kept in mind that |f) always means
a spin in direction of the magnetic field. For a tangent magnetic field, consequently, the spin of an |/)-electron
points into opposite directions at the entrance and the exit of the ring, respectively.
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Figure 5.1: Total transmission probability in a model system with ¢* = 1 and

M = m, at fixed strength of the tangent magnetic field By vs. energy of the incident
electrons. In the upper picture, no Aharonov-Bohm flux is penetrating the ring. For
small k.ga, we are in the adiabatic limit with zero transmission, see text. Clearly
visible is the minimum in the transmission at kega = B/ v/3. For non-zero flux

through the ring, the structure is less characteristic.

The inverse takes then the form (again, for the special case of a tangent magnetic field, go = g3

pr 0 p3 pa

-1 1 0 —p1 ps —ps3
w2 _ 1
(a™") % ’ (5.16)
pe pro p1 0

pro —p9 0 —p

with
p1 = (91+g4)(a+b)+ (97 +g1),
ps = —(g1—g4) — (g1 —91)»
ps = 2(92—93) ,
py = —(91—ga)(a+b)*—(gf —gi),
po = 2(G(a+b)>-75), (5.17)

where the g; are the same as in the case without Aharonov-Bohm flux. Inverting this matrix
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one obtains

®o/2  ®o)2 2b—ﬂ%l)3 + (Pg +/L2;) P9
Q137 = —Qyy = N
2 2 2
—pips+ (o3 +
a<11>£/2 _ a;b??/Q — 9% P1P4 (Zgz /14) P10 ’ (5.18)
with the common denominator
N =p}+ (05 + 1) (05 + plo) — 203 (p3pe + papro) - (5.19)

Again, this is transmitted to the transmission amplitudes, and the result in S,-basis reads

©o/2 _
™

®o/2
H

B ®0/2 _ ,®0/2
t ¢ and 1377 =777, (5.20)
where all quantities are non-zero contrasting the result for the non-diagonal transmission am-
plitudes in the case without flux. Transformation to S,-basis yields according to Eq. (5.11)

that

13,22 = 42 Ll %o,
®y/2 _ ,B0/2 .,B0/2
" = gt it A0,
te0/2 = 19%/2 =0, (5.21)

This result applies whenever the Aharonov-Bohm flux equals half an integer number of flux
quanta ®g, i.e. ®4B = +8;/2,+3®;/2,.... Remember that we have assumed the Aharonov-
Bohm flux to cause no change in the angle o of the magnetic field B with the z-axis! Therefore,
in realistic situations where the flux might originate from a (homogeneous) magnetic field B,
in z-direction, we expect deviations from the result (5.21) depending on the effect of B, on a.
However, for large in-plane magnetic fields the influence of B, = ®y/2ma? will be negligible.

The physical meaning of this result is that in the presence of half a quantum flux only
electrons that keep their spin direction during transport are transmitted — precisely the opposite
of what we found for zero quantum flux (see Figs. 5.1, 5.2 and the discussion of averaged
transmission probabilities in the following section). This opens the possibility of controlling the
transmission of (polarized) electrons by varying the number of flux quanta penetrating the ring:
If their number is integer, only spin-flipping electrons are transmitted; for a flux constituted
by a half-integer number of flux quanta solely electrons keeping their spin can be found in the
exiting lead. For magnetic fluxes in between, the situation is intermediate with transport in all
channels see Fig. 5.2b.

We summarize this novel spin-flip effect as follows [40]: For in-plane field geometries and
symmetric ballistic microstructures we have demonstrated how an additional small Aharonov-
Bohm flux ®*B can be used to control spin flips and to tune the polarization of transmitted
electrons. This quantum interference mechanism does not require adiabaticity. In combination
with a spin detector such a device may be used to control spin polarized current, similar to the
spin field-effect transistor proposed in [46].

One question arising is whether such an effect prevails when considering diffusive devices and
disorder-averaged quantities. This remains as an interesting problem so far. Another question

is related to possible measurements or applications of this effect. Recent experimental progress
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Figure 5.2: Partial transmission probabilities vs. momentum kega of the incident
electrons in the same model system as for Fig. 5.1 (¢* = 1, M = m,), again at fixed
strength of the tangent magnetic field Bg. a) No Aharonov-Bohm flux penetrating
the ring: besides zero transmission for small k.ga and the v/3-feature, we see that
the transmission is provided only by the spin-flipping channels, i.e., only 7%, and

7y are non-zero. c) Half a quantum flux through the ring: opposite situation such
that now T, and T, are non-zero. The deviations visible in the diagram arise from
the fact that the flux was created by a homogeneous field B,, therefore affecting
the angle a. b) For other values of the Aharonov-Bohm flux, transport occurs in
all channels. Hence, for polarized incident electrons, the spin can be switched by

applying an Aharonov-Bohm flux of half a flux quantum.

in creating spin-polarized electrons in semiconductors is reported, e.g., in [42]. It is important
to note that the interference-based spin-flip effect discussed above requires phase coherence over
the whole sample. Experimentally, it was indeed found that coherence of spin-states can be

maintained up to scales of more than 100 pum [44] at temperatures of a few Kelvin.

Generally, coherent control and quantum transport of spin states in semiconductor hetero-
junctions or quantum dots is attracting increasing interest [45]. Applications proposed so far
include spin transistors [46], filters [47], and scalable devices for quantum information processing
[48, 49]. Advances in the injection of spin-polarized charge carries [42] indicates the principle
ability to perform spin electronics [43] based on nonmagnetic semiconductor devices. This

widens the field of usual magneto-electronics in metals and opens up the program of combining
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Figure 5.3: Partial and full transmission probabilities in S,-basis, averaged over
energy, vs. the Aharonov-Bohm flux through the ring. The coupling parameter is
€=0.3. The strength of the tangent magnetic field is increased from a) to c), corre-
sponding to different degrees of adiabaticity, indicated by the adiabaticity parameter
Q. Note the change in the polarization of transmitted electrons upon tuning the
flux ®AB/® through the ring, resulting in a spin-flip mechansim at ®48/®, = 0.5.
The shift of the global minimum by half a flux quantum in ¢) w.r.t. a) is an effect
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of the Berry phase that is present in the adiabatic situation c).

the rich physics of spin-polarized particles with all the advantages of semiconductor fabrication

and technology, e.g., precise design of nanoelectronic devices with controllable charge carrier

densities and optoelectronical applications. In this context, the theoretically predicted spin-

flip effect discussed above might become an interesting control mechanism at sufficiently low

temperatures.

5.1.2 Averaged transmission probabilities

So far we discussed the spin-flip effect found in the previous section in terms of (total and partial)

transmission probabilities that are fastly oscillating. Averaging these quantities cancels out the

fast oscillations and reveals the inherent features of the transmission probability. In this section,

we will demonstrate the spin-flip effect in terms of averaged transmissions, see Fig. 5.3.

To this end, we consider the energy (Ep, or EF, respectively) averaged total transmission
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in the case of no additional flux, keeping the degree of adiabaticity constant. We introduce the
adiabaticity parameter @ as the ratio of the spin precession (or Larmor) frequency wy, given in
Eq. (2.1) to the orbital angular frequency wq,, defined in Eq. (2.2) and obtain (with ¢ = 1 and
negative charge e of the electron)

2%k B~
e _-HEENE g o
Worb kra N E'F . '

The adiabaticity parameter @) is the higher the more adiabatic the situation is.

The averaged transmission in the absence of an additional Aharonov-Bohm flux through the
ring is shown in Fig. 5.4. In the adiabatic limit () — oc), the transmission approaches zero due
to the effect of the Berry phase. In the other, diabatic, limit (Q — 0), the numerical data agree
with the analytical result (4.20), namely (T') = 2¢/(1 — €), obtained by averaging the expression
(4.18) for the transmission probability T'(¢, 84,045 = 0) and by multiplying by two to account
for two open channels.

Most interestingly, there are regions where (T") drops to zero that are not caused by geometric
phase effects. In order to investigate what happens there, we look at the non-vanishing trans-
mission amplitudes (5.9), in particular at the numerator d3 = g7 —g1 + g5 — g4 = —2iIm(g; + g4).
With the expressions for g1, g4 put in, cf. Egs. (4.48, 4.50), we find

cos(Cf + C{)
cos(¢f = ¢f)

meaning that §3 goes to zero whenever the difference in the second factor vanishes. Obviously,

this occurs when n/ and n{ differ by an even integer number. Expanding the difference n/ —n’f ot

/ /

03 = —2i (sinnjm — sinnm) (5.23)

An using (3.47) for pB/ Ep small, and fyf ~ fyi/ , we have to solve the (Diophantic-like) equation

/ / B / v
’71+’Y1+ H Sin’)’1+’)’1

2 /EF 2

to yield An as an even integer — keeping in mind that the 7 themselves depend on the n. The

An = cos (5.24)

first zero is related to An = 2 with (] + ')/1/)/2 = 7/3, giving rise to a ratio®

iB_ s (5.25)

Er

in accordance with the observation. The following zeros in the averaged transmission belong to

An =4,6,... and occur at ratios zB/ Ep= 1/q of \/15,4/35, ..., see Fig. 5.4 for illustration.
For completeness, we state that the last factor of (5.23) contributes to the general slope of (T'),
whereas the factor discussed above is responsible for the oscillations, the fine structure of which
in turn is determined by the denominator.

We also point out that the symmetry properties of the oscillations of (T") (between the zeros)
strongly depend on the coupling parameter ¢ between the ring and the leads, see Fig. 5.4. For
maximal coupling strength (e = 0.5), an approximate analytical expression for the averaged

transmission T' can be obtained.

3Note that the result is indeed consistent with the imposed condition B/ Er to be small as long as VEF > /3.
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Figure 5.4: Transmission probability averaged over the Fermi energy Ep (EF, re-
spectively) as a function of the adiabaticity parameter @ for an in-plane (tangent)
magnetic field and no Aharonov-Bohm flux penetrating the ring. The tilted axis
is the coupling parameter e. The material specific parameters g* for the gyromag-
netic ratio and the effective mass M are chosen here and in the following figures
as ¢* = 15 and M = 0.023m, corresponding to InAs. The maximum (7")yax of
(T') is observed at @ = 0, i.e., in the diabatic limit. It only depends on € and
obeys the law (T)max = 2€/(1 — €) where 0 < € < 0.5. The minima in (T') at
Q = V3,v15,v35,v63,v99 are clearly visible and described in the text. The
overall decay of (T') to zero as adiabaticity is reached (@ — oc) is an effect of the
Berry phase that contributes strongest in the adiabatic limit. In the inset, the most
interesting properties are enlarged.

We start evaluating Eq. (5.7) for € = 0.5 (hence, a + b = v/1 — 2e = 0) resulting in

o0 = —(91 —91),
do = —2g;,

03 = 91— 91+91— 04,

do = gi+g;i- (5.26)

For the denominator N = d309 — (67 + 63) in Eq. (5.9), we obtain thus

N = —(g1+94)(g} +35)+ (g5 +5)*— (91 —gi)* —4(33)°

= —(g1+94)(97 + g;) + 4det™, (5.27)
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with det % gi1ga — g%. Inserting Eqs. (4.48, 4.50) and substituting An = n{ — n’f , we arrive at

27 /
* * +
(90 + 92)(gt +91) = lgn + oul? = 222 AFE (1o anm
cos?(¢1 — (1)
det = —eitritndr (5.28)

This finally leads to the following analytical expression for the transmission probability (4.29)
fore=1/2 (a =—1/2,b=1/2):
862 8 635*
M =Ty +T), = — a13a}3 = k : 5.29
iz = Tt T = 9 M0 = (0 1 4det) (191 + ga2 T 4det) (5:29)

In Eq. (5.23) we already evaluated part of the numerator that finally yields

27 /
5305 = cos 161 7o) (C; + C}/) (sinnfm — sin n{ﬂ)Q
cos?(¢1 — (1)

cos?(({ +¢) .y Anm 5 (] +nf)m

= 16 sin cos . 5.30)
cos?(({ —¢f) 2 2 (
Furthermore, the denominator evaluates to
Nr = |g1+ga|* +8|g1 + g4|” Re(det) + 16
a(r7 /
_ 408G ) (1 — cos Anr)?

cos(¢] = ¢f)
16 cos?(¢] +¢7)
cos?(¢f — ¢f)
where we have used the unitarity (detdet* = 1) of ¢;,%;;.

(1 — cos An) cos(n] + n{)ﬂ + 16, (5.31)

The next step is to perform the averaging. Here, we are only interested in the qualitative
behaviour and not in all the quantitative details. Therefore, we perform the averaging procedure
for Egs. (5.30, 5.31) by neglecting all terms bearing fast oscillations, in particular we put a factor
1/2 for the last cos?-term in the numerator (5.30) and neglect the second term in the denominator
(5.31). This yields for the averaged transmission probability

8 x 16 G+
cos?(¢/—¢f)

44+ COS4(C{+C{)
a0l

cos? (¢ —¢1)

2 Anw

5 X

i 1
St 2 16 cos?(¢] + ¢f) sin? Az (5.32)

)2) ~ 4 + cos*(¢] + C{/) (1 — cos Anm)?

( f/n2a> -

(1 —cos Anm

using Cf ~ C{ in the last step. It is worth to introduce the mean angle ¥ (or ( = /2, re-
spectively), namely v def %('yf + 71/ ). For completeness, we also define the mean kinetic energy
quantum number 71 = %(n{ + n’l/), and the difference angle Ay = 7] — '71/ , generalizing Eq. (3.45)

to

At
oty = "2 (53)
and giving rise to the relations
[~ 1 A ~ 1
= EF—§+sin7751n'7z Ep—i,

An = cos¥ + —sin?y,

Ep
An
tan Ay = R

uB+ =55
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Furthermore, we can easily express ¥ and An in terms of the adiabaticity parameter () defined
in Eq. (5.22):

_ 1 _ 1
COt’)’ = 6 — COS Y = \/TW y (534)

An = =+/1+Q%2.

This relation between the adiabaticity parameter () and 7 elucidates the role of the geometric
phase as a measure of adiabaticity.

Inserting the last relations into Eq. (5.32), we obtain after straightforward algebra the follow-
ing approximate result for the averaged transmission in the case of maximal coupling strength
(e = 0.5) and no Aharonov-Bohm flux penetrating the ring:

16 cos? 7 sin? Ang
4 + cos* 5 (1 — cos An)?
].6 sin2 (%\/1 +Q2)
= . 5.35)
5 3 (

1+Q@% (14 Q2?2 (1 — cos (71'\/1 + QQ))
From this equation we immediately read off the zeros of <Tf/I‘2a) to occur whenever /1 + Q?
evaluates to an even integer. As already described above (see Fig. 5.4), this happens at Q? =
[i2B%2/Ep = 3,15,35,.... In Fig. 5.5, the result of Eq. (5.35) is shown in comparison with

the numerical data, pointing out a good agreement of the two curves. In addition, we clearly

{T7)%)

observe deviations of the local maxima from the values given by the Lorentzian prefactor 1/(1+
Q?). Interestingly, the prefactor dominates the fall-off for coupling strengths € below =~ 0.4 as
illustrated in Fig. 5.6 and can also be confirmed in Fig. 5.4 (inset)*.

We state that the behaviour of the envelope (T')eny of the averaged transmission (T') for
€ — 0 is rather well described by

€ 1

T =2— —
()env 1—€1+Q2’

(5.36)

as demonstrated in Fig. 5.6 for ¢ < 0.4. For small values of ¢, deviations from Eq. (5.36) occur
merely at the positions where (T') drops to zero (i.e., @ = v/3,v/15,v/35,...), and the dips

become the narrower the smaller e.

So far, we investigated the situation where no Aharonov-Bohm flux was penetrating the
ring. The result in the presence of a (weak) homogeneous magnetic field B, corresponding to
half a flux quantum is shown in Fig. 5.7. The dominant structure is the (global) minimum
where the curve starts from, i.e., we find zero (averaged) transmission in the diabatic limit
@ = 0. One might call this effect in a sense dual to the asymptotic value of zero for the

transmission in the case without additional flux and in the adiabatic limit: The condition for

At this point we briefly refer to a possible interpretation of the results in terms of path integrals [41]. Without
going into details, the curve for € = 0.5 resembles closely that of one-loop contributions (electrons performing half
a round trip in each arm). For lower couplings, € < 0.5, we find deviations from this result as the influence of
multi-loop paths increases. This can be understood as resulting from better confinement of the electrons in the
ring for decreased coupling to the leads.
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Figure 5.5: Averaged transmission probability for maximal coupling strength, ¢ =
0.5, in an in-plane (tangent) magnetic field, and again without additional Aharonov-
Bohm fluxes. The numerical data (crosses) are well described by the analytical
expression (5.35). For comparison, a Lorentzian decay that describes the overall

behaviour for smaller couplings (see Fig. 5.6) is shown.
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Figure 5.6: Averaged transmission probability scaled by a factor (1—e¢)/e for various
coupling strengths. Though the concrete shape of the minima depends strongly on
the value of € (in particular, it becomes singular for ¢ — 0), the overall decay away
from the minima is very well described by a Lorentzian for € < 0.4. A major change
in the shape of the maxima as ¢ — 0.5, see Fig. 5.5.

zero averaged transmission is an effective flux of half a flux quantum (with a ®¢-periodicity as
investigated in Section 4.1.3). When no Aharonov-Bohm flux exists, the flux can be provided as
geometric flux via the geometric phase, cf. Eq. (4.21). Note, however, that ®y/2 is the maximal
possible geometric flux that is achieved in the adiabatic limit and that geometric phase effects

are reduced in non-adiabatic situations, see also Fig. 5.4. In turn, when already half a flux
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Figure 5.7: Transmission probability averaged over the Fermi energy Er as a func-
tion of the adiabaticity parameter () for an in-plane magnetic field and half a flux
quantum penetrating the ring. The material specific parameters g* and M are again
for InAs (see Fig. 5.4). For Q = 0, there is no transmission, see text. On the other
hand, for @) — oo, the oscillations are lost and (T") depends only on the coupling e,
saturating at (T') = 2¢€/(1—e¢) rather than going to zero as in Fig. 5.4 since now the ef-
fect of the Berry phase in this adiabatic limit is compensated by the Aharonov-Bohm
flux through the ring. The minima of (T') occur now at Q = \/g, \/ﬂ, \/4_8, V30.

quantum due to an additional Aharonov-Bohm flux is present, an additional geometric flux of
®(/2 in the adiabatic limit destroys the situation, see Fig. 5.7. However, then we expect zero
transmission in the diabatic limit and indeed find it there®. Furthermore, in the situation with
half a flux quantum penetrating the ring, we find the same €/(1 — €)-dependence of the averaged
transmission® in the adiabatic limit that we know from the zero-flux case in the diabatic limit.
This can be understood by realizing that the geometric flux carries a negative sign and therefore

compensates the Aharonov-Bohm flux.

Note that local minima occur at the positions Q = /8, /24, /48, /80, these are precisely

the numbers v/n2 — 1 with n an odd integer. In contrast, in the zero-flux case the minima occur

5In further generalizing these ideas one might expect that for any Aharonov-Bohm flux through the ring there
exists a degree of adiabaticity where the corresponding geometric flux completes half the flux quantum such
that the transmission becomes zero. However, though this is true for the non-averaged transmissions, cf. ,e.g.,
Fig. 5.1b, this effect is lost during the averaging procedure because in order to keep @ fixed upon varying EF,
different magnetic field strength enter the calculation, see Fig. 5.8.

5As can already be seen in Fig. 5.7, the oscillations are washed out as Q increases leading asymptotically to
the above mentioned value.
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Figure 5.8: Transmission probability averaged over the Fermi energy Er as a func-
tion of the adiabaticity parameter ) for an in-plane magnetic field and a quarter of
a flux quantum penetrating the ring for InAs (see also Figs. 5.4 and 5.7). Although
there is some structure in the curve, it is far less characteristic than in the special

situations discussed above.

at v/nZ — 1 with n an even integer. However, here the transmission is only diminished and does
not drop to zero, in fact the oscillations vanish in the adiabatic limit as discussed above.

In the general situation where the Aharonov-Bohm flux is neither an integer nor half an
integer multiple of the flux quantum &, there are no signatures of special interest in the averaged

transmission probability. One typical example is shown in Fig. 5.8 for a flux ®4% = 0.25 ®.

5.1.3 Comparison with a two-dimensional model

So far, we discussed transmission amplitudes in an one-dimensional model system. Concerning
experimental realisation where rings of finite width are used, a two-dimensional (2d) system,
is, of course, more realistic. The effect of the non-vanishing radial extension of the ring is the
possibility of having several transverse modes, or, open channels, arising from the confining
potential in radial direction. In the limit of one open channel, i.e., one transverse mode, we find
the closest similarity to a 1d ring’. In Fig. 5.9 we compare results for the 1d ring with data
from [41] for a 2d ring model with just one open channel. The latter are obtained within a 2d
tight-binding model in a Green function formalism [52].

We point out that the 2d model of [41] has no adjustable parameter controlling the coupling
between the ring and the leads, as is given in terms of € for the 1d model. To compare the

data, e was adjusted using the value of (T') at @ = 0, where we can apply the analytical result

"In experiments with semiconductor heterostructures this can be achieved by tuning additional gate voltages.
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Figure 5.9: Averaged transmission probability for ¢ = 0.316 compared with the
results of a 2d model [41]. The results were adjusted by choosing e to give coincidence

at @ = 0. The two curves agree well.

(TY(Q =0) =2€¢/(1 —€). Accordingly, e = 0.316 was chosen. The agreement of the two curves
is satisfying, in particular when noticing that the shape of the curve is determined by ¢, see
Figs. 5.5, 5.6!

5.1.4 Limiting situations: Adiabatic and diabatic regime

Finally, we briefly investigate the transmission probabilities in the adiabatic and the diabatic
limit for the in-plane magnetic field geometry. Adiabaticity is characterized by the dominance
of the magnetic field over the orbital motion, manifesting itself in 7{ = 7{ = 75 = 75 = 7/2
which is evident when thinking in the geometric interpretation of the angles v, cf. Fig. 3.3.

Inserting the corresponding values for the angles ¢ def v/2,

d=cd=d=¢=7 (5.37)

into Egs. (4.48, 4.50) leads to a relation between the matrix elements of the transfer matrices
tr,t;r, namely g1 = —g4. When no additional Aharonov-Bohm flux is present, we obtain from

Eq. (5.7) 63 = 0, giving via Eq. (5.9) immediately
T=0 (5.38)

for the transmission probability in the adiabatic limit with ®48 = 0. This is a clear and
well known [39] sign of a Berry phase that effectively acts like an Aharonov-Bohm flux on
the transmission probability and, accordingly, contributes to the interference effects. Whereas
in the usual Aharonov-Bohm experiment zero transmission is achieved with half a quantum
flux penetrating the ring, we find this situation in the presence of a Berry phase equivalent to

half a flux quantum® for zero Aharonov-Bohm flux. Consequently, if we apply an additional

®Indeed, for @ = 7/2 the Berry phase takes the value I' = —7 and the effective flux associated reads ®r =
I ®¢/2m, see, e.g., [39].
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Aharonov-Bohm flux, the interference effects are, of course, changed and we now observe non-
zero transmission since the negative interference effect of the Berry phase is canceled upon
adding up all phases, cf. the discussion at the end of Section 5.1.2.

In the opposite case, i.e., for diabatic conditions, the magnetic field does not play a role, and

we are in the situation of
qd=d=¢=¢g=o0, (5.39)

as again is clear from the geometric picture. This last equation still holds in the case of a
(not too strong) homogeneous magnetic field perpendicular to the ring. After straightforward

manipulation, we recover an equation for the transmission probability similar to Eq. (4.76),

namely
. . 4¢?
leab — diab — 540

" H 1—2cos (204 + 2048) (a + b)%2 + (a + b)*’ (5.40)

with
— pAB
0 =m\/Er, Oap=71—o1,
o

where 45 is again the Aharonov-Bohm flux through the ring. This expression is equivalent to

Eq. (4.18) obtained by Biittiker et al. [27], which not surprisingly reveals the close vicinity of a
1d ring subject to an external Aharonov-Bohm flux analyzed there and the diabatic limit (with

flux ®4P) considered here, cf. also the discussion in Section 4.1.3.

5.2 Central micromagnet

One possibility to achieve a crown-like magnetic field (cf. Fig. 3.1b) consists in placing a micro-
magnet in the centre of the ring in which the electrons move. In experiments, this can be done by
superimposing ferromagnetic microstructures at the appropriate position in an Aharonov-Bohm
device [35]). The experimental realization used in Ref. [35] is a dysprosium® (Dy) micromagnet
in the centre of a micron-sized loop located in the high mobility two-dimensional electron gas
(2DEG) of a GaAs-AlGaAs heterojunction. The electrons then see a ring-like geometry as il-
lustrated in Fig. 3.1b, and they are subject to the non-uniform magnetic field created by the
micromagnet. The tilt angle o of the magnetic field w.r.t. z-axis varies on mesoscopic length
scales and therefore allows to observe signatures of geometric phases in magneto-conductance
measurements. In the experiment [35] clear signs of the non-uniform magnetic field were seen,
e.g., beating patterns in the Aharonov-Bohm oscillation. Berry phase effects have been proposed
as one possible mechanism to describe these features.

We now present calculations of the magneto-conductance (or transmission probability, re-
spectively) through a 1d ring with a central micromagnet under variation of an external magnetic
field perpendicular to the ring in order to address the experiment in Ref. [35].

The magnetic field of a cylinder-shaped micromagnet is computed in Appendix C. In the
far-field, in particular at the position of the ring, the magnetic field is rather well treated by the

9Dysprosium is a rare earth metal with a magnetic polarization as high as 3.8 Tesla in the crystalline state.
Its Curie temperature of Tc =~ 89 K guarantees ferromagnetic ordering at experimental relevant temperatures of
T<03K.
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2DEG

Figure 5.10: Electrons in a 1d ring subject to an inhomogeneous magnetic field
created by a central Dysprosium micromagnet. Superimposed is a homogeneous

magnetic field By perpendicular to the ring that can be varied.

dipole approximation and we have according to Eq. (C.10)

ML

H(F) = —%HR’2 (r* +2%) 2 [=3rz& + (r* — 22%)€;] ; (5.41)
where the bar magnet has a height 2H and a radius R', see Fig. C.2. The magnetic field H
is illustrated in Fig. 5.11. The magnetization of the bar magnet is assumed to be longitudinal,
M=M €. In the experiment mentioned above, it is created by initially applying a strong
magnetic field in z (or —z) direction.

Motivated by the kind of measurements carried out in [35], we incorporate an exter-
nal homogoneous magnetic field By in z-direction in our considerations and study magneto-
conductance as a function of this external field By that gives rise to an ezxternal Aharonov-Bohm
flux A8 ma®By. The total magnetic field' is then the sum of the magnetic field Bys(a) due
to the micromagnet and the variable homogeneous magnetic field Bye,, see Fig. 5.10.

In this geometry, the electrons in the ring are exposed to an inkomogeneous field (except if
the plane of the 2DEG coincides with the central plane of the micromagnet) of fixed modulus
|B(a)| = |Ba(a) + Boé;|. This opens the possibility of observing signs of geometric phases,
in particular signs of Berry phases in the adiabatic limit where the effects are expected to be
strongest. The reason for this is discussed in Chapter 3 and can be easiest understood when
thinking of the Berry phase as the solid angle in parameter space that is traced during one
round trip. Whereas in the adiabatic situation, this solid angle is determined by the angle « of
the total magnetic field B to the z-axis, in the non—adiabatic case « has to be replaced by the
smaller angle -y [see Egs. (3.45, 3.46)] that goes to zero in the diabatic limit, reducing the solid
angle accordingly.

When discussing properties of the magneto-conductance in dependence of By it has to be

taken into account that both the external magnetic field Bye, and the field By of the magnet

10We use the notions magnetic field (I-_f ) and magnetic induction (1§) synonymously in this chapter, because we
exclusively consider points outside the micromagnet where B= /Aoﬁ holds.
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Figure 5.11: Vertical and radial magnetic field B, and B, in dipole approximation
(C.10) in the same arbitrary units for a micromagnet with H = R’ =1 for z = 0.6.
Whereas the magnetic field B, is negative at the position of the ring, r = a, it is
positive for small r. Therefore, the total flux through the ring can be modelled by a

stepwise potential with a positive maximal value Bgﬂ.

contribute to the Aharonov-Bohm flux through the ring. For simplicity, we describe the micro-
magnet as a dipole everywhere in space'’. Within this approximation, the z-component B, of

B gives rise to an Aharonov-Bohm flux ®M through the ring with z-coordinate z def zgr that

2w a
oM = / d(]S/ drrB,
0 0

M a 2 _ 2 2
= B orHR? / r(r” = 225) 4,
2 (r2 +2%)2

is

[«=]

woMV a?
2 (a2 + #%)

5 (5.42)
2

where we have defined V = 2H7R'?, the volume of the micromagnet. The total Aharonov-Bohm

flux through the ring is then given by

MV
SAP = e [ Bo+ ) g (o + BE) (5.43)
2r(a? + 2%)2

where BT is a constant magnetic field that creates the same Aharonov-Bohm flux ®™ through
the ring as the varying B,-component of the magnetic field By of the micromagnet 2.

Since the magnetization of the micromagnet is not exactly known in the underlying experi-
ment, it is characterized by the parameter M4B,

ra®B, ¥ —MABg, (# M) (5.44)

11 As shown in Appendix C this is an approximation in the vicinity of the micromagnet. However, the differ-
ence between the exact Aharonov-Bohm flux due to the magnet and the one obtained in dipole approximation
corresponds to a shift along the ®4P_axis and does not affect the principle results.

2 2
12These two fields are related by B = -25 j;z‘; B.. Note the opposite direction of B, and B, cf. also in
R
Fig. 5.11.
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in the calculations. From this definition and Eq. (5.43) it is immediately clear that the z-
component of the total magnetic field vanishes for ®48 = MA48®, implying an in-plane mag-
netic field'®, B = B, = w/2. Although the (total) magnetic field is symmetric w.r.t. this
point, the (total) Aharonov-Bohm flux through the ring is not! The reason for this is the
“extra” flux caused by the non-uniform magnetic field of the micromagnet, cf. Eq. (5.43). Con-
sequently, we cannot expect the transmission probability to be symmetric w.r.t. an external
flux @48 = MABd,, see Fig. 5.12. We also mention that at given external magnetic field
By = ®48/7a? the angle a of the total magnetic field B at the ring position w.r.t. z-axis
depends, of course, on the strength of the micromagnet, and is provided by (z def zZr/a)

$AB
By + B, 1 — 3amg,
cosa = T =5 — (5.45)
VBo+ B+ B (- gEr + 25

Furthermore, we introduce an adiabaticity parameter (Qps for the micromagnet in analogy
to Eq. (5.22),

~ 77 B.
_ M|BM| _ 'ucosa(‘PAB:O)
\/EF keﬁa

that is zero in the diabatic limit and increases when approaching adiabaticity. With the con-

QM

ventions of Chapter 3, it can be expressed in terms of M 4P and the effective gyromagnetic ratio

g* as
* M AB _3Z
9 me M7 155
Qu = —2e £ (5.46)
VER

The results for the calculated magneto-conductance are shown in Figs. 5.12, 5.14 for three

different degrees of adiabaticity, @y = 0.4,1,10. This parameter is adjusted by the proper
choice of the effective gyromagnetic ratio ¢* and the effective mass M, leaving the strength
of the micromagnet constant at M48 = 5. (The connection to a specific material system is
provided by choosing Qs according to the product g*M.) We follow the geometry described in
[35] and choose the radius as a = 500nm. The 2DEG is placed in a plane lying 150 nm above
the central plane of the Dysprosium. Eventually, we assume maximal coupling, e = 0.5.

The total transmission is shown in Fig. 5.12. For comparison, we show in Fig. 5.12a the
result of Biittiker et al. [27], Eq. (4.18), that applies to a situation without micromagnet. The
external flux leads to the well-known Aharonov-Bohm oscillations. However, here we have taken
into account the Zeeman splitting of the energy and the influence of the Berry phase (assuming
an adiabatic situation). The geometric flux according to the Berry phase is included in the
(effective) Aharonov-Bohm flux, cf. Eq. (4.21), removing the degeneracy of the two electron
gases {/} ({/}) where the spin is (anti)aligned with the total magnetic field B (cf. Chapter 3).
In the adiabatic limit, Fig. 5.12d, the sum of the two corresponding curves should give the exact
result as indeed is found, see the discussion below.

In Fig. 5.12b-d the strongest deviations from Aharonov-Bohm-like oscillations are seen

around @48 /o =M AB — 5 indicating the importance of geometric phases there. In fact,

13This situation was studied in detail in Section 5.1 and we found a characteristic dependence of the (averaged)
transmission probability on the Aharonov-Bohm flux through the ring. However, in the present situation we can
not control the (residue) flux due to the non-uniform magnetic field of the micromagnet and the in-plane magnetic
field appears as transient regime when varying the external Aharonov-Bohm flux.
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Figure 5.12: Magneto-conductance for an Aharonov-Bohm device with a central

micromagnet (MAB = 5) under variation of the external flux ®4B. a) Transmission
probability without micromagnet according to Eq. (4.18) (Bittiker et al., cf. [27])
adapted to electrons with spin subject to a Berry phase. The solid and dashed
line correspond to the two emerging electron gases {/},{¥}. In d), the sum of the
two contributions is shown as dashed line. b)-d) Total transmission probability for
spinful electrons; b) diabatic regime in which transmission is similar to that described
in [27], c¢) intermediate case where effects due to geometrical phases become visible,
d) adiabatic limit d) that is dominated by interference effects due to different Berry
phases for the |/)- and |¢)-electron gases. In all cases, the effect of geometric phases
is lost for dominating external field, ®48 <« MAB®,.

this corresponds to the situation where the external flux ®4? cancels the flux due to the micro-
magnet such that the non-uniform field of the micromagnet becomes maximally important. The
strong interference effects around ®4%/®; = MAP stem from the slightly different oscillation
frequencies of the |/)- and |¢)-electrons due to the effect of the Berry phase. Regular Aharonov-

Bohm-like oscillations are recovered as the external magnetic field By = ®4Z/ma? becomes
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Figure 5.13: Evolution of the angles a and v under the change of the external field
By. In the adiabatic situation c), 7{ ,7{ follow the angle « respecting 7{ ,7{ <a
always. The more diabatic the regime is, the larger is the difference between 'y{, 'yf
and a. The other pair of angles, 'yg ,’yé , is related to 'y{ ,’y{ by the symmetry line
through a = 0.

dominating. This takes place faster in diabatic situations (Fig. 5.12b) than in intermediate
(Fig. 5.12¢) or adiabatic (Fig. 5.12d) cases.

We point out that there are two adiabatic limits possible: one for dominating field of the
micromagnet, the other one for dominating external field By. Here, we describe the strength of
the micromagnet in terms of Qs that is defined at the point ®48/®y = M4B. In Fig. 5.12b-
d, the adiabaticity at this point is increased. On the other hand, adiabaticity can be reached
independent of the strength of the micromagnet for strong external magnetic fields By, i.e. for
|®A4B| > MAB®,. Accordingly, we find the sum of the two curves for the {/} and {/} electron
gases in Fig. 5.12a to coincide with the exact magneto-conductance for large external fluxes ®45

as well as for high adiabaticity parameter Qs (indicated by the dashed curve in Fig. 5.12d).

In Fig. 5.13 we illustrate the variation of the external field By and the corresponding (exter-
nal) flux ®48 = 7a%By in terms of the tilt angle « of the resulting total magnetic field B. The
curve for « is independent of adiabaticity and the same in all three pictures. Major differences
arise, however, when looking at the angle v, introduced in Egs. (3.45, 3.46). Clearly visible is
the complementary behaviour of 'yf , 'y{ on one hand, and 'yé , 'yé on the other hand as suggested
by the geometrical interpretation, see Fig. 3.3. The angles 7{ , 7{ are close to « in the adiabatic

limit, Fig. 5.13c, whereas they tend to lower values in Fig. 5.13a,b and eventually to zero in
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Partial transmission probabilities

Figure 5.14: Same as Fig. 5.12 but for the partial transmission amplitudes in S,-basis

[see a)-c)], and S,-basis [see d)-f)], respectively.

the (deep) diabatic limit. Note the symmetry of the curves for 'yf ,'y{ and 75 ,'yé w.rt. a =0 at
pAB /‘I)O — MAB.

Eventually, we briefly discuss the partial transmission amplitudes, what can be done ei-
ther in S,- or S,-basis, see Section 4.4. In Fig. 5.14 we compare both representations, again
for three different degrees of adiabaticity (cf. Fig. 5.14a-c). Whereas on a first sight the par-
tial transmission probabilities in both representations look strongly oscillating, a closer look at
®4B /) = MAB = 5 reveals the difference: Around this point, the off-diagonal terms Ty, T4
vanish in S,- but not in S,-basis. The effect is the stronger the deeper we are in the adiabatic
regime, i.e., increases from Fig. 5.14a to c¢. In this sense the S,-basis is the appropriate choice
as it shows the expected diagonality in the transmission coefficients in the adiabatic limit where

the electron spin follows the direction of the magnetic field.

To summarize, we have identified clear signatures of geometric phases in the calculated

t!'4, see Fig. 5.12. They appear as

magneto-conductance of 1d rings with central micromagne
interference effects that destroy the regular Aharonov-Bohm oscillations in a certain range of
external fluxes ®4B. The size of this interval depends on the strength of the micromagnet and is

smaller in diabatic regimes. Concerning the above-mentioned experiment [35], it was performed

Not included in the present considerations is the influence of the smooth change in the magnetic field from
purely homogeneous in z-direction far outside in the leads to more and more crown-like as the electrons approach

the micromagnet.
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under rather diabatic conditions (similar to those of Fig. 5.12b) that are not favorable for
the observation of geometric phase effects. Accordingly, it was found that the experimental
observations could not be accounted for by geometric phases. However, the observation of
geometric phase effects in electronic ring structures appears to be possible in more adiabatic
regimes, that can, e.g., be achieved with stronger micromagnets. Other possibilities are the
fabrication of appropriately arranged ferromagnetic particles [50] above or into the plane of the
2DEG, or to use metallic (rather than semiconducting) rings. In view of the increasing strengths
of non-uniform magnetic fields achieved in experiments, magneto-conductance calculations for

rings remain an interesting subject.
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6 Introduction

The field of quantum chaos, i.e., quantum mechanics of classically chaotic systems, has at-
tracted a lot of interest in the last years. Quantum chaotic behaviour can be realized in quantum
dots and quantum wells [58], where the electrons are modelled by a Schrédinger equation with
certain boundary conditions. Interestingly, similar phenomena can be found in optical or mi-
crowave cavities. There, the description by geometrical optics corresponds to classical mechanics,
whereas “quantum” aspects arise from Maxwell’s equations. Although there are physical as well
as formal differences between the Schrodinger and Maxwell equations, we shall see below that
it does make sense to study quantum chaos in optical, or dielectric, systems. Before we do so,

let us briefly discuss quantum chaos and optical cavities separately.

6.1 Quantum chaos

A system is said to be (classically) chaotic if the distance between two trajectories started
with nearly the same initial conditions grows exponentially. This divergence is described by
the Lyapunov exponent [75]. In contrast, if nearby started trajectories remain close together,
the system is called regular. Many systems contain both chaotic and regular orbits: these are
termed mixed. Billiards are the paradigmatic example of chaotic as well as regular and mixed
systems, both in experiment and theory. Experiments have been performed, e.g., with differently
shaped mesoscopic quantum dot billiards [58] and (closed) microwave cavities [57] of normal and
superconducting material.

In microwave cavity experiments, the eigenfrequency spectrum is determined by measuring
the absorption of microwaves fed in via an antenna and is found to show strong fluctuations.
However, the statistical properties of the spectra are universal and depend only on the dynamics
of the underlying classical system. For example, in the case of chaotic cavities, like the stadium
or the Sinai billiard, the nearest-neighbour spacing follows the so-called Wigner distribution
that favours finite spacing between adjacent eigenenergies. Integrable systems like a rectangular
billiard obey, in contrast, the Poisson distribution that does not support level repulsion. Most
real systems are, however, mized, and show a level statistics in between the two. A powerful
tool in this context is the Random Matrix Theory (RMT) [60, 61]. Originally it was designed
by Wigner to deal with the statistics of eigenvalues and eigenfunctions in many-body systems,
and was successfully applied in the description of atomic nuclei, complex atoms and molecules.
More recently, RMT became an important technique also in other fields, namely for example
[62] the chiral phase transition in quantum chromodynamics, conductance fluctuations in meso-
scopic wires, equilibrium transport properties of disordered quantum systems [73] and classically
chaotic systems. Properties of these systems are well-described by ensembles of random matri-
ces. For example, the Wigner-Dyson ensemble of Hermitian square matrices was found to apply
generically to chaotic systems, resulting, e.g., in Wigner-distributed nearest-neighbour energy
level spacing.

This distinction between regular or chaotic underlying classical dynamics persists when we
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turn to semiclassics, i.e., the trace formulas [76]. They provide a semiclassical approximation for
the oscillatory part of the density of states of a quantum system in terms classical periodic orbits’
If the classical system is integrable, the Berry-Tabor formula applies, whereas Gutzwiller’s trace
formula is valid for non-integrable systems. For mixed systems, a generalized trace formula was
derived [77] and successfully tested in microwave experiments [78]. We will use the relation
between the density of states and the length of periodic orbits when we Fourier transform
the (delay time) spectra to extract information on the periodic orbits involved. However, in
the dielectric system, we have to distinguish between the optical and the geometric length of
a trajectory, in particular if the orbit goes through regions of different refractive index. The
Fourier transformed spectra possess peaks at the optical length of contributing paths. The
details of this problem are discussed in Chapter 9.

In quantum systems, interesting phenomena were found that were not expected when coming
from the classical physics side. One prominent example is the observation of so-called scars [81],
i.e., modes that are localized on (short) classically unstable periodic orbits. They are observed
in experiments with billiards and quantum dots (see e.g. [57, 5, 82, 83]) as well as in numerical
calculations (see e.g. [102]). Another well-studied phenomenon is chaos-assisted tunnelling that
was studied in various systems [79, 100, 101, 80]. It occurs in quantum systems with discrete
symmetry that leads to distinct, but symmetry related, regions in the corresponding classical
phase space. Assuming two regular layers separated by a chaotic area, quantum-mechanically
the coupling between the regular regions is enhanced by dynamical tunnelling. It results in a
doublet splitting of the regular states that depends on the coupling strength to the irregular
eigenstates associated with the chaotic sea. A well-investigated system in this context is the
annular billiard where waves are confined in an annular region, see Fig. 9.1. The phase space
has the structure described above, and the tunnel splitting was investigated in detail [100, 101].

In Chapter 9 we will consider a system similar to the annular billiard that, however, is
generalized to a dielectric system in which the light waves are allowed to penetrate into the inner
disk and the surroundings according to the optical properties of the neighbouring materials.
If we use light rays to describe the corresponding processes, we have to apply the laws for
reflection and refraction of rays at planar interfaces (curvature is irrelevant in the classical
limit) in order to determine the behaviour of the system. Besides being an interesting model
system for microresonators, the dielectric annular billiard also appears in everyday life and can
be used as a model for melting ice particles in clouds [106] or cladded optical fibres that are

commonly used in optical communication networks.

6.2 Optics

Classical or geometrical optics ideas have been known since Galileo’s time (around 1600, see
[72] for details). Propagation of light following straight lines and the laws of reflection and
refraction were known. The observation of Fresnel diffraction and double refraction (both before
1700) were the first puzzling elements in a process that lead to the wave-corpuscle controversy.

Huygens’ construction and the derivation of Fermat’s principle assume the wave nature of light

!The other contribution to the density of states, the smooth part, is semiclassically expressed by the Weyl
formula, see e.g. [57, 99].
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[72]. A new stage was initiated with Maxwell’s equations that established a unifying basis for
the description of electromagnetic waves, including light. They also brought certainty about the
transverse nature of electromagnetic waves in isotropic materials with the electric and magnetic
field vectors E and H being normal to the propagation direction 1_5, giving rise to two possible
polarization directions w.r.t. E. This becomes important if a certain plane in space is specified,
as will be the case when we consider two-dimensional microcavities. Accordingly, we have to
distinguish two polarization directions, one in which E is perpendicular to the plane of the
system (called TM — the magnetic field is transverse to the boundary), and another one where
E lies in the cavity plane (TE for “transverse electric”). Details are given in Section 7.2. Tying
up with the first part of this work, we mention that the polarizability of light was used in the
detection of geometric phases (Section 2.1) in curled optical fibres [14]. Also, recall the Gouy
phase shift [12] of a focussed beam that we discussed in this context.

Nowadays, quantum optics has joined geometrical, wave, and nonlinear optics; and cavity
quantum electrodynamics receives an increasing interest. Properties of light rays have now even
been observed in reaction-diffusion systems, for example the refraction of chemical waves obeys
Snell’s law for refraction [71]. Ray optics is still the first method employed when explaining for
example the phenomenon of caustics (see Fig. 6.1), of which the rainbow is a particular example.
At caustics the ray picture predicts an infinite brightness [70]; an unphysical singularity that
is softened by wave physics. This becomes clear when recalling that the ray picture is the

zero-wavelength limit of wave optics.

6.3 Fusion: Chaotic light

Besides the recent experimental and theoretical advances concerning electronic mesoscopic struc-
tures that we discussed in the first part, there is a vivid field of studying the properties of light
(or, more general, electromagnetic waves) in systems where the wave nature of light overwhelms
the simple ray-based description. These optical microcavities have attracted much interest in
the last years, both in the field of classical and quantum optics and as model systems for clas-
sical and quantum chaos [63]. On the theoretical side, a plethora of phenomena related to the
interplay of classical and quantum chaos is found [57, 75, 76, 61]. On the experimental side,
optical cavities are used either as (passive) optical filters which are of great technological inter-
est for planar integrated filter applications, or as microlasers, that is, active elements. Many
investigations are motivated by the high potential of future applications in the field of optical

communication, information technologies, and microlasers.

Rich phenomena are found in compound dielectric systems with different refractive indices.
In optical systems with refractive index n larger than the one of the surroundings, whispering
gallery? modes (WG modes or WGMs) can form when the light is confined by total internal
reflection, that is, the angle of incidence yx (see Fig. 6.1) is bigger than the critical angle x. =
arcsin(1/n). An example of such a WGM is shown in Fig. 6.1a. However, the confinement by

total internal reflection is not complete and there is evanescent leakage marked by dashed arrows

2Lord Rayleigh named and explained the phenomenon that was first observed when whispers could be heard
all along the gallery of St. Pauls’s Cathedral, London.
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closed
systems

optical
systems

Figure 6.1: Optical microresonators as described in the ray picture, each with a
single ray traced for a number of round-trips. Top row: closed systems with hard
walls. Bottom row: open systems with different refractive indices. Confinement is
provided by total internal reflection, refractive escape is possible. Solid (dashed)
arrows denote refractive (tunnelling) escape. a) Circular cavity. The angle of inci-
dence x, measured between the ray and the boundary normal, is the same at each
reflection point and positive (negative) for counter-clockwise (clockwise) propagat-
ing waves. Note the formation of a caustic that marks the border to a region that is
not accessible for rays of this angle of incidence; the intensity becomes infinite there.
Local violation of the condition for total internal reflection for WG modes can be
controlled by breaking the rotational symmetry. b) Deformation of the disk result-
ing in lower angles of incidence in the regions of heighest curvature, c) eccentrical

placing of another dielectric favours refractive escape in the constricted region.

in Fig. 6.1. This effect is caused by quantum tunnelling and is exponentially small as we shall see
in Chapter 7. Consequently, WGMs are characterized by very long storage times corresponding
to very high Q-factors of up to 10'°. The Q-factor is used in optics to characterize the quality
of a cavity, or, resonator mode. It is proportional to the product of the mode frequency v and
its lifetime 7 (that, in turn, is related to the line width Av of the mode, 7 ~ 1/Av) and defined
as

Q = 2nvT. (6.1)

The range of application of whispering gallery modes is broad and includes spectroscopy,
optical communication, photon rather than electron based future information technologies, and
microlasers [135]. However, it is technologically desirable to couple to regions where higher
and directed output rather than evanescent leakage occurs. In this context it is important
to note that emission can be directional for deformed (oval-shaped) disks. Refractive escape
takes place preferentially at the surfaces of highest curvature, see Fig. 6.1, because there the
condition for total internal reflection tends to be violated first [132]. Whereas the WGMs of
circular shaped cavities show isotropic power output upon lasing, a direction-dependent increase

in output power of up to three orders of magnitude was observed in resonators with deformed
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cross section, i.e., for a bow-tie shaped lasing mode [135]. Using ray-tracing simulations, i.e.,
following the subsequent specular reflections of a model ray in resonators of several shapes, one
can easily interpret the behaviour found in experiment [69], or formulate theoretical predictions
[108, 132].

Besides the forcing of violation of total internal reflection by deformation of the disk, there
is the alternative mechanism of placing an obstacle (e.g., an airy inclusion) eccentrically within
the disk, see Fig. 6.1c. The correspondence between ray and wave properties of light in the
resulting dielectric annular billiard has not been addressed in literature to date. It will be a
major topic of this second part and is discussed in detail in Chapter 9. Our focus will be
on the special properties of the open optical system, in contrast to the studies, e.g., on chaos
assisted tunnelling, in the closed system in Refs. [57, 79, 100, 101]. One great advantage is
that the “openness” of the system can be controlled by varying the refractive indices of the
optical system components, and the whole range from closed cavities (complete confinement
by total internal reflection for n = 00) to a transparent system (same index of refraction for
system and environment) is accessible. Optical systems such as dielectric billiards or gradient
refractive index fibres [74] might, therefore, well enrich the series of quantum chaotic model
systems. In a gradient-index-fibre billiard , the light rays follow regular or chaotic curved paths
analogous to those of an electron in a resonant tunnelling diode [74]. Recent experiments [130]
using a quadrupolar-shaped microcavity illuminated by a laser beam have shown periodic filter
characteristics in the far-field output. Besides interesting applications in optical filtering or fibre
diagnostics, this might be considered as a probe of fibre trajectory properties (the experiment
was performed in the ray limit), and might be used as a very sensitive tool to study system
characteristics. More details are given in Section 10.1 where we present an analysis of the
experimental data and numerical ray-tracing simulations which provide an excellent theoretical

description of the experimental findings.

Though the ray picture often provides an easy understanding of the optical system and
mostly yields qualitatively correct results, a more sophisticated description is required when the
wavelength becomes of the order of the device size. First steps towards a more advanced appara-
tus were undertaken in [108, 132] and revealed the interesting physics of those mesoscopic optical
systems. There are many open questions to be answered before broad technical applications are
possible. For example, simple expressions for the reflection coefficients at curved interfaces are
desirable in order to figure out the influence of a curved rather than a planar boundary for
which the result in terms of Fresnel’s laws is well-known. So far, a clear interpretation of the
arising corrections based on the ray picture is missing. A joint analytical treatment of the two
possible polarization directions has not been given as well, neither in ray-based nor in wave-
based pictures. We shall fill both gaps with the discussions in Chapter 8, where on one hand we
derive generalized Fresnel formulas that can be used over a wide parameter range. On the other
hand and for the first time, the ray picture at a curved interface is extended by incorporating
the Goos-Hanchen effect. The Goos-Hanchen shift is a lateral shift of the reflected beam upon
total internal reflection. We show, both qualitatively and quantitatively, how the wavelength
dependent deviations of reflection coefficients arise at curved interfaces from Fresnel’s result for

the planar interface.

An important technical issue is the description of scattering properties of optical systems.
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So far, the optical system was probed by plane-waves of varying energy, and the intensity change
at a single point, e.g., on the boundary, was used to identify resonance signatures. Depending
on the choice of this reference point, they appear as peaks or dips in the local cross section, but
might also be missed [108]. We suggest usage of the S-matrix method for optical systems and
demonstrate it for the example of the annular billiard mentioned above. We find all resonances

to be principally accessible, and they are of the characteristic Breit-Wigner type.

The outline of Part II of this work is as follows: In Chapter 7 we study the example of
the dielectric disk in order to introduce the methods that we subsequently use to describe
optical systems. Firstly, this is the ray picture together with instruments of classical mechanics.
Secondly, we present the wave approach to optical resonators, based on one hand on complex
wave vectors for quasibound or resonant states, and on the other hand on a scattering picture on
the real energy axis. As mentioned above, the application of an S-matrix formalism to optical
systems is novel and allows for a consistent description of families of resonances as we shall
demonstrate. Chapter 8 is devoted to the generalization of Fresnel’s laws to curved interfaces.
The wave picture naturally results in a slight discrepancy between Fresnel coefficients for planar
and curved interfaces, and we give a joint analytical description of both possible polarisation
directions, considerably improving results that have been reported so far. Adopting the concept
of the Goos-Hanchen effect, we provide the first (to our knowledge) ray-picture based explanation
of deviations from Fresnel’s law due to curvature effects. The ray-wave correspondence in the
dielectric annular billiard is the subject of Chapter 9. We will show how ray and wave picture
based ideas can be used to interpret and classify the plethora of resonance phenomena peculiar
to this system, that for the first time is used in this respect. The freedom in tuning the openness
of the system by means of the refractive indices will play an important role. In Chapter 10 we
return to the ray picture, that we find to deliver an excellent description of a recent passive
optical fibre experiment, and outline its application in the design of microlaser cavities. A joint
summary and outlook to both parts closes the work.

The notation “classical” will be used in the following synonymously with “ray picture” or
geometrical optics. Similarly, “quantum mechanical” stands for “wave mechanical” whenever

wave properties are of importance.



[4 Ray and wave description of the open
dielectric disk

In this chapter we introduce the methods used in this second part of the thesis to describe
open dielectric resonators, employing a two-dimensional disk as example. There are three pos-
sible approaches. The first one is classical ray optics. We describe the nature of this approach
in Section 7.1 and refer to these ideas in the following by the notion ray picture. More accurate
approaches in the sense that they account for the wave nature of light are based on Maxwell’s
equations. The resulting wave equation describes the resonances of the open system (or eigen-
states in the case of a closed systems). One way is to directly solve these exact equations for
the complex energies of resonances. We will refer to this with the term wave picture introduced
in Section 7.2. However, especially for more complicated systems, it turns out that it is hard
to solve the exact equations in the complex energy plane. Leaving a more detailed discussion
to Section 7.3, one way out of this problem is to study the signatures of resonances on the real
energy axis. This is done not by investigating the decaying states of the system alone, but by
probing the resonant properties of the system from outside. One possibility is to add an external
light source and investigate the scattering properties of the disk. Changing the (real) energy of
the probing wave allows us to study the properties of the system, in particular the cross sec-
tion or the Wigner delay time which show characteristic fingerprints of resonances. One typical
signature of resonances are so-called Breit-Wigner peaks in the cross section [93]. Their energy
and width correspond, respectively, to the real and imaginary parts of the resonance energy. In
Section 7.3 we will apply the S-matrix method to the dielectric disk and use the characteristic
peaks in the (generalized) Wigner delay time to identify resonances.

All approaches incorporate the openness (resonant nature) of the problem in a different way.
In the ray picture, the system becomes open when the condition for total internal reflection is
violated and refractive escape of rays is possible. In the wave picture, we deal with resonances
of a certain width rather than eigenstates that provide the appropriate description for closed
systems. Finally, in the scattering picture, we directly use that the system is not closed by

probing its properties from outside.

7.1 Ray picture: Classical billiards with total internal reflection

Here, we introduce both the methods used in the investigation of classical
dynamical systems like Poincaré sections and the principles of geometric optics.
We outline how both concepts merge in the description of dielectric billiards.
Finally, we introduce Fresnel coefficients.

7.1.1 Billiards in terms of Poincaré’s surface of section

The classical ray picture of a closed cavity is equivalent to the model of a point particle moving
in a classical billiard of the same shape. The point-particle trajectory consists of straight line

segments with specular reflection events whenever the boundary is hit. This is the well-studied
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Figure 7.1: Poincaré surface of section for the closed disk. This plot was obtained
by starting 150 clockwise-travelling trajectories with otherwise random initial condi-
tions. Counter-clockwise travelling rays yield a similar picture with 0 > siny > —1.
Each ray was traced over 500 reflections. The trajectories on the right correspond
to a period-six orbit (xo = 60°), a quasi-periodic state (xo nearly irrational), and a
high-order periodic orbit (x¢o = 20°). The corresponding SOS points are shown with
symbols. On the vertical axis, the value sin x = 1/n = sin x, is shown (assuming a
refractive index n ~3). It marks the line under which the condition for total internal

reflection is violated, see Section 7.1.2, Eq. (7.3).

planar billiard problem. Any trajectory in the billiard can be completely specified by the se-
quence of points where collision with the outer boundary occurs. For a convex shaped billiard,
each boundary point is uniquely specified by the polar angle in a coordinate system centred
within the billiard. The trajectory is thus reconstructed by simply connecting the sequence of
reflection points P; given in terms of their polar angle ¢; by straight lines. Periodic orbits are
characterized by the continued repetition of a finite series of N points {¢;|j = 1... N} where
N is the number of reflection points that closes the orbit. This method of characterizing ray

trajectories in real space is called ray tracing.

A way to record more information about the ray trajectory is provided by the Poincaré
section method that is well-established in nonlinear dynamics. It stores phase space information
rather than real space data alone and therefore allows one to address the ray dynamics. The
additional quantity is the angle of incidence y, or more precisely, sin, that is proportional
to the tangent momentum of the ray or the point particle at the reflection point. A Poincaré
section is obtained by plotting the pair of conjugate variables (tangent momentum ~ sin y, polar

angle ¢) at each boundary reflection point!. A first simple example is the Poincaré surface of

!This constitutes one particular choice of the surface where the Poincaré section is taken. Other choices as a
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Figure 7.2: Typical trajectories in the quadrupolar billiard defined by the boundary
rp(¢) = Ro(1+€cos 2¢) where Ry is the mean radius, and € = 0.09 in both examples.
Besides chaotic trajectories (left) there is a variety of stable periodic orbits like the

“diamond” (right). The phase space of the quadrupolar billiard is mixed.

section (SOS) for the closed disk shown in Fig. 7.1. It consists of sequences of points that all
possess the same sin y = const., given by the initial angle of incidence xq of the trajectory. This
directly results from the rotational symmetry of the disk, implying conservation of the angular
momentum, in addition to conservation of energy. Systems where the number of constants of
motion equals the number of degrees of freedom are called integrable. Their phase space is
regular. The phase space motion takes place on invariant tori [75]. Depending on the ratio
between the two winding numbers that characterize the torus, the regular trajectories are either
closed (rational ratio, periodic orbits) or quasi-periodic (irrational ratio, closing after an infinite
number of round-trips).

In the example of the disk the phase space is composed of a dense set of straight lines sin yir =
const., where iy is an irrational multiple of 7, that correspond to quasiperiodic orbits. If the
motion of the ray is periodic, i.e., it encounters after a certain number N of reflections the same
sequence of reflections points, the angle x is required to be a rational multiple of 7. Then the
orbit is represented by N points in the Poincaré section.

Starting with the spherical billiard, there are two possibilities to arrive at more interesting

Poincaré sections:
1. Deformation of the disk (— elliptic, quadrupolar, ...)
2. Placing an obstacle within the disk (— annular geometry)

In both cases the rotational invariance of the system is broken so that we arrive at non-integrable
systems with mized phase space. The first scenario was studied in [108], and an example of
a quadrupolar deformation is shown in Fig. 7.2. We will be more interested in the second
possibility throughout the second part of this work. Now what happens if we place an opaque
obstacle of radius Ry in a disk of radius R; = 17 Since rotational invariance is assured, each
trajectory is represented by a series of points or lines of constant sinx in the Poincaré section
as before. However, another type of trajectory arises due to the possibility of the ray hitting
the inner disk. The two types of trajectories are separated by the line siny; = Ry. Now, in

addition, we can shift the inner disk off the centre of the outer disk by an amount ¢, removing

circle with smaller radius are possible.



90 7 Ray and wave description of the open dielectric disk

R,=0.6,5=0.01

L P . T T T T T D PP T T T T

Figure 7.3: Poincaré section for the annular billiard with Ry = 1, R, = 0.6 and
d = 0.01 (see Fig. 9.1 for notations). Although the displacement of the inner
disk is rather small, it has major impact on trajectories that explore the region
siny < Ry — 0. Other trajectories are not influenced, see the two upper-most exam-
ples on the right. For this and the following phase space plots 200 trajectories were
started randomly at the outer boundary with ¢’ € [0,7/2] and sinx € [0,1 — ewc]
and followed 500 reflections each. ey is chosen slightly above the border for the ex-
istence of whispering gallery orbits, in particular in the Poincaré sections in Chapter
9. Positive sin x implies that only counter-clockwise propagating trajectories were
started. Nonetheless regions siny < 0 are explored implying a change in the sense

of rotation, see e.g. the lower-most trajectory on the right.

the rotational invariance of the system. The result is a deformation of trajectories with small
angles of incidence whereas orbits close enough to the outer boundary are not affected by the
inner disk, similar to what occured in the concentric case. The separation line is now given by
sin x; = Ro — . Sample trajectories are shown in Fig. 7.3 where § = R;/100. We will further

investigate this situation of the annular billiard in Chapter 9.

We end this section by stating the theoretical basis on which the influence of deformations on
the phase-space structure can be understood. For intermediate time scales? and small deforma-
tions we can use adiabatic invariant curves [86] to predict the motion in phase space. This means

that orbits will follow a curve siny = sin x(¢) in the two-dimensional phase space (¢, sin x) cor-

2The round-trip time of the orbit is required to be much smaller than its diffusion time in space. This gives
rise to the term “adiabatic” in close relation to what is said in the first part of this work.
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responding to the existence of an (almost) conserved quantity which can be associated with a
curvature-corrected effective momentum. Fig. 7.3 is a nice example of this behaviour: Although
the rotational invariance of the system is slightly perturbed, all trajectories remain regular up to
a displacement of 0.03R;. Another important principle is formulated in the KAM-theorem [87]
and states that invariant tori in phase space are not immediately destroyed under a perturbation
of the integrable system. Rather, the evolution (that will in general end in a chaotic phase space
for sufficiently high deformations) takes place via a KAM scenario [88].

If we proceed to perturbations resulting in partial chaotic behaviour, the phase space is
called mixed. One example is shown in Fig. 9.2. The chaotic trajectories fill the chaotic part of
the phase space such that these parts are recognized by a cloud of dots in the Poincaré section.
However, there are some regular regions (called “stable islands”) where the motion is regular as
indicated by the one-dimensional curves orbits started there trace. This is due to the existence
of an additional (adiabatic) constant of motion in these regions [75]. However, to identify the
responsible integral is not a simple question. Rather, the Poincaré section is used as a handy
instrument to find regions of regular motion. In Fig. 9.2 some regular orbits are shown in the

top and bottom row.

7.1.2 Total internal reflection and Fresnel’s law

Consider a light ray incident on a planar interface between two dielectric media of different
refractive indices n; and ns (see Fig. 7.4). In terms of classical ray optics, it is charactrized by
an angle of incidence, x1, measured w.r.t. the normal of the interface. When the light ray hits
the interface coming from the first medium (ni), it can either be reflected or refracted. In the
first case, the light ray is scattered off the other medium with an angle of reflection y2 according
to the

Law of reflection: x; = x2. (7.1)

In the case of refraction, the light ray is transmitted into the other medium (n3). The direction

of the light ray is changed to an angle 7; obeying
Snell’s law: nq sinx; = ngsinmn (7.2)

which also follows from the principle of minimum action as the law for reflection. In the situation
ny > ng, Eq. (7.2) cannot be fulfilled to yield real 7; for any angle of incidence ;. This effect
is called total internal reflection (TIR) because then light can only be reflected under x2 = x1.

We state the condition for

Total internal reflection: siny; > siny, def 712 , (7.3)
ni

where we have introduced the critical angle x.. We can easily implement the information of
total internal reflection into the Poincaré map by marking the line sin x, = 1/n (ne = 1,n1 = n)
as is done in Figs. 7.1, 7.3. If sin x falls below this value at a certain reflection point, the ray may
escape refractively. In other words, rays with sinx > 1/n are always confined by total internal
reflection. In the disk, either all or none of the reflection points of a given trajectory obey total
internal reflection. However, in an annular geometry the condition for total internal reflection

might hold for a certain range of polar angles ¢ (namely those in the wide region of the annulus)
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Reflection and refraction at a planar interface
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Figure 7.4: Ray incident on a planar interface as described in classical ray optics.

whereas it is violated for others (namely those in the constriction where, indeed, we find the
smaller x), see the examples in Fig. 7.3.

Snell’s law and the law of reflection at a planar interface, Eqgs. (7.1, 7.2), also hold for plane
waves described by the exponential etk involving both the wave vector k and the spatial position
7. In this language, an incident plane wave with Kin is reflected into a plane wave of wave vector
Ereﬁ and refracted into a plane wave of wave vector /;tr. The laws for reflection and refraction
arise then a consequence of momentum conservation.

Whereas classical ray optics does not allow for any statement concerning the amount of
reflected and transmitted light intensities, the wave picture does! Applying Maxwell’s equations
[72] to the case of an incident plane wave of amplitude A=1, the reflected intensities RT™, RTF

for TM and TE polarization®, respectively

g S0 —m) (7.4)
sin?(x1 +m1)
2 _
RTE — tan (Xl 771) (75)

tan?(x1 +m1)

The transmitted intensity 7" is obtained via R + T = 1. For details and a discussion of the
reflected amplitudes, see e.g. [72, 90].

The result for the reflected intensities is shown in Fig. 7.5 for both TM and TE polarisation.
Note the special feature of zero reflection at the so-called Brewster angle g, = arctan(ng/n1)
for TE polarized light. This implies that light reflected under this angle, x2 = xBr, is completely
TM polarized. If x1 = xBr, transmitted and reflected light rays form a right angle as one easily
verifies. This can be formulated as an argument for an atomistic explanation of the effect [90].

Although Fresnel’s laws result from Maxwell’s theory for electromagnetic waves (applied to
plane waves), we state the result in this ray optics section in order to distinguish it from the
wave picture that we will develop in Section 7.2. More than once, however, we will run into the
essentially wave-like nature of Fresnel’s laws.

We will see in the following that corrections to Fresnel’s laws are necessary in order to account
for curved interfaces. However, as a first approximation, we use the reflection coefficients given

in Eqgs. (7.4, 7.5) and justify this approach by realizing that a ray incident on any interface

3For the definition of TM and TE polarization see Section 7.2.
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Figure 7.5: Fresnel laws for reflection at a planar interface. The region of total

internal reflection and the Brewster angle in case of TE polarization are marked.

only sees one point of the interface which, of course, cannot carry any curvature information.
Remembering the waves involved in the derivation of Fresnel’s formulas [72], it is immediately
clear that this statement can hold only in the case that the wavelength A is much smaller than
the local radius R of curvature. This is because one expects a wave to probe (at least) a region
of typical size A\ around the point of incidence. In Section 7.4 we will find these ideas to be
correct.

Finally, we state that a phase change occurs upon each reflection at the optically denser
medium (n;/ng < 1). The amount of this shift is given by [89]

2y — cos?
®(x) = —2arctan (T\/COS Xe — CO8 X) ) (7.6)

cos Y

with the parameter 7 =1 (7 = n?/n3) for TM (TE) polarized light.

7.2 Wave picture: From Maxwell to Schrodinger

In this section, we introduce the description of dielectric resonators by the
example of a (infinite) dielectric cylinder the cross section of which is the two
dimensional dielectric disk. We start from Maxwell’s equations that we solve for
the two possible polarisation directions, i.e., transverse electric and transverse
magnetic field. The different types of solutions find an illustrative interpre-
tation in terms of an effective potential. In a further section, we introduce
the scattering matrix of the dielectric disk and discuss the resulting scattering
properties.

7.2.1 Maxwell’s equations for the dielectric disk

The system we study first is an infinite dielectric cylinder of radius R and refractive index n that
is embedded in vacuum or air with refractive index ng = 1. Of course, both refractive indices can
be multiplied by the same number to yield another combination of refractive indices for which

the same results hold. We will call k£ the wave number outside the cylinder and, analogously, nk
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is the wave number inside. We assume a harmonic time dependence e~** with the dispersion

relation w = ke, where c is the speed of light.

Maxwell’s equations for the vortices of the electro-magnetic field then read in SI units [72]

= —B =ikeupoH , (7.7)
= D = —ikceeyE , (7.8)

X

<
T

X

where E(7,t) and H(7,t) are the vectors of the electric and magnetic field, D(7,t) = eco E (7, t) is
the dielectric polarization, and B(7,t) = upoB(7,t) is the magnetic induction with ¢ the dielec-
tric constant and p the permeability of the medium which we assume to be one for frequencies

of light [72]. € is related to the refractive index by € = n?, and for the vacuum light velocity the
relation ¢ = 1/,/€ypo holds.

Inserting (7.7) into (7.8) and vice versa, we obtain equations for £ and H only,
= n?k’E, (7.9)
= n’k’H . (7.10)
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X X
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X

X
oo

Recalling that charge density p can only appear at the surface of the dielectric, we find from
Maxwell’s equations for the sources of the electro-magnetic field that V x E = 0 in each domain
of constant n.

Let us first consider the case where the electric field E is parallel to the z-axis that is
perpendicular to the disk plane. Then the magnetic field lies in the cavity plane and is transverse
to both the z-axis and the field propagation direction and we refer to this situation as transverse
magnetic, or TM, polarization. Since we will impose boundary conditions for the electric field
E below, we express Maxwell’s equations in terms of E. Applying @ x bxc=bh (@-¢)—c(a- g),

(7.9) becomes in each region of constant n

—

—V?E = (nk)’E. (7.11)

This equation can be rewritten [91] in a form that is similar to the conventional Schridinger
equation,

—V2E+ k(1 -n>)E=kKE. (7.12)

However, one important difference is the character of the fields: the wave function in the quantum
mechanical Schrodinger equation is a complex scalar, whereas E , H are vector fields*, implying
in particular a polarization dependence of the boundary conditions (TM vs. TE, see Section
7.2.3). A second far-reaching difference is that the potential term in Eq. (7.12) (the second term
on the lhs) appears with a factor k2, i.e., it is multiplied by the energy eigenvalue k? and is,
therefore, energy dependent. Furthermore, Eq. (7.12) reveals immediately that dielectric regions
with n > 1 correspond (for any energy k?) to an attractive well in the quantum analogy and
that a potential-like structure requires different refractive indices for different regions.

The same manipulations as above are possible for transverse electric field, or TE polarization,

as well. Then the magnetic field is parallel to the z-axis, and apart from different boundary

In a two-dimensional system, Eq. (7.12) can be reduced to a scalar equation [54].
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conditions (see below), the desired equations are obtained by replacing E in Eq. (7.12) by the

magnetic field H. So we obtain from Maxwell’s equations for TE polarized light
—V?H + K*(1 —n®)H = k*H . (7.13)
For the moment, we stick to the case of TM polarization, E = Ee,. To proceed further
with (7.12) we make use of the rotational symmetry of our system, and apply V2 in cylindrical
coordinates r, ¢, z as
- 1 1
VU = —(rUn)r + —Upg + Uz - (7.14)

Assuming a ¢-dependence according to e/™?, and a z-dependence e*#:%, separation of variables
leads to the radial equation
[ 2 1d

a2 F%] E(r) + Ven(r) E(r) = K E(r) (7.15)

with the effective potential
Ve (r) = K2(1 — n?) +m?/r* + k2. (7.16)

In comparison to Eq. (7.12), the effective potential contains now two additional terms. On
one hand, m?/r? is due to the conservation of the z-component of the angular momentum in
our rotational invariant system that is characterized by the good quantum number m. On the
other hand, k2 expresses the conservation of the linear momentum in z-direction, i.e., along the
cylinder axis, and acts as an offset in energy. From now on we deal with the case of a dielectric
disk (that is, we choose a particular cross sectional plane of the cylinder to obtain an effectively
two-dimensional (2d) system)® — then we can set k, to zero corresponding to an incident wave
in the z-y plane.

In this 2d problem of a dielectric disk, the effective potential thus results as the sum of
the attractive well due to the presence of the dielectric with n # 0 and the repulsive angular
momentum barrier m?/r2. It is illustrated in Fig. 7.6. Approaching the disk from r = oo, outside
the disk (r > R,n = 1) there is only the angular momentum (for m #0) contribution to the
effective potential Veg. At the position of the disk (r = R), there is a discontinuity in the effective
potential Vg that is proportional to 1 —n?. It corresponds to the non-continuous change in the
refractive index. The absolute size of the jump is obtained after multiplication by k? and, hence,

=m?/R? to k2, = m?/(n R)? as we

is energy dependent! The jump at r = R reaches from k2 in

max
will motivate in the following paragraph. Inside the disk, the angular momentum contribution,

now shifted by k2. — k2

max — Koin, again determines the behaviour, see Fig. 7.6.

The form of the potential suggests an interpretation in the spirit of quantum mechanics with
metastable (or resonant) states in the potential well that decay by tunnelling escape. The decay
rate will depend on their energy, that is, their position in the potential well. Note, however,
that the particular shape and the depth of the well depend themselves on the energy of the
metastable state under consideration!

Apart from this, there is a more formal difference between the radial equation (7.15) and

the 1d Schrodinger equation: The first term contains not only the second derivative of E(r),

5Although taking into consideration k, # 0 changes the matching conditions explained below, it does not add
any essential physics.
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Figure 7.6: Effective potential for a dielectric disk for the value k? indicated by the
horizontal dashed line; kmax = m/R and kmin = m/(n R). The dotted line indicates

the form of the potential for a wave vector k' = 1.1k.

but also a first derivative contribution. This can be eliminated by introducing the new variable

¢ and substituting & def In(kr), that by straightforward manipulation transforms into

2~
ERGEGIEGE (7.17)

where
k() = VeXn2 —m? = \/(kr)?n2 —m?
is the effective wave vector of the rescaled problem.
For resonant solutions of the electric field E(£) to exist, the (effective) wave vector k(¢) has
to be real inside the dielectric disk and imaginary outside (corresponding to evanescent escape
only). The minimal possible value ki, that allows this condition to be fulfilled is

m

kmin = 5
nR

by guaranteeing k to be real for k > kmin. The highest possible value kpyax is given by

m
kmax = E .
Summarizing, we expect narrow resonances of angular momentum m that are broadened by
tunnelling decay (evanescent leakage), in the interval
m m
— <k<—= 7.18
R Sk<5, (7.18)
which corresponds to the extension of the well in the effective potential. Note, however, that
there need not to be solutions that actually take the boundary values!
Eq. (7.18) is equivalent to
< <1
~nkR~ "’
and within the ray-wave correspondence discussed in Section 7.4 we will see that this relation

S|

corresponds to total internal reflection where indeed evanescent escape is the only decay mech-
anism. In particular we will see that m/(nkR) can be identified with the sine of the angle of

incidence of the according family of rays.
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7.2.2 Eigenvalues of the closed disk

We begin our discussion of Eq. (7.15) with a system consisting of a closed disk with radius R
— this means that the wave function is confined inside the disk and cannot leak outside. This
can be achieved by choosing the refractive index n of the disk to be infinity keeping the index
of the surrounding (air or vacuum) fixed at one. Then the effective potential Vg is equivalent
to that of an infinite well, and the wavefunction outside the disk vanishes. Later we will use
this limiting situation of large n to compare the results for the fully dielectric system with the
results for the closed disk. Although in the case of the closed system the refractive index of the
disk could be completely absorbed in the wave vector, we keep n as parameter to be consistent
with later considerations.

We already know the ¢-dependence that we assumed to be ™. m is the angular momentum
quantum number which is conserved due to rotational invariance in the dielectric disk. Hence
the separation ansatz for the electric (£ = ¥ (), TM polarization) or magnetic (H = ¥ (7),

TE polarization) field, respectively, reads

Amapm(r) ™ ifr < R
U™ (F) = . (7.19)
0 ifr>R

The radial wave function 9™ (r) is obtained as solution of the radial Schrédinger equation (7.15)
for the electromagnetic field. This equation is of the type of Bessel’s differential equation [55]
as becomes clear immediately when we rewrite Eq. (7.15) in terms of the dimensionless scaled
radial coordinate 7 % kr, where k is the wave vector in the medium of refractive index one,
[de—z + Fi] P(F) + (n?7* —m?) y(7) = 0 (7.20)
dr? = dr ' '
This scaling also reveals the close connection between k and r, in the sense that only the product
is important. We will make use of this freedom in scaling by subsequently fixing the radius R
of the disk at R = 1. The general solutions of Eq. (7.20) are Bessel and Neumann functions,
Im(nr) = Jp(nkr) and Yy, (nr) = Yy, (nkr), of order m. Here, nk is the wave vector inside the
disk, and we have n = 1, nk = k outside.
Since the Neumann functions diverge at the origin, but physics requires a finite value of

™ (r = 0), the solution inside the disk can only consist of Bessel functions,
P (r) = Im(nkr), (7.21)

where we have assumed all amplitudes to be contained in A™, see Eq. (7.19).
The eigenvalues of the closed disk follow from the ansatz in Eq. (7.19) according to the
boundary condition
Jm(nkR) =0. (7.22)

In other words, all zeros of Bessel functions J,,,, m arbitrary, are solutions of the closed system.

We will classify them by two quantum numbers,

1. the angular momentum quantum number m that corresponds to the order of the Bessel

function,
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m=3, p=2 (symmetric combination)

K3 ,=9.761 k=8 (not an eigenvalue)

Figure 7.7: Probability density (black means high intensity) of the wave functions for
the closed dielectric disk (symmetric combination ¥7*). On the left, an eigenfunction
classified by the quantum numbers m=3, p=2 is shown. On the right, we kept m=3
but k£ was chosen in between two eigenvalues, k31 < k < k32; then the boundary
condition, 9™ (r = R) = 0, is violated.

2. the radial quantum number p that counts the zeros of the corresponding Bessel function

Jm for a given m,

and label the eigenvalues as ky, ,.

Hence, the eigenfunctions of the closed disk are of the form (see Eq. (7.19), assuming A™=1)

I (nkpy ) €™ ifr <R
I™(F) = m{tkim,or) : (7.23)
0 ifr >R

The solutions to angular momentum m and —m can be combined to symmetric and antisym-

metric solutions (or, even and odd parity states),

ur()

Uas(f) =

(2™ + ™M)

(U™ () — T () . (7.24)

N = DN =

Both correspond to standing wave patterns®, the symmetric wave function obeys U7 (¢) =
UM (—¢), for the antisymmetric UT%(¢p) = —UT (—¢) applies.

The angular momentum quantum number m multiplied by two determines the number of
azimuthal nodes of the wave function. Accordingly, the radial quantum number p measures the
radial nodes away from the origin. To this end we arrange the counting in such a way that
the zero of J,,(nkr) at » = 0 (m > 0) corresponds to p = 0. By means of the two quantum
numbers m, p the eigenfunctions of the closed system can be uniquely classified. We illustrate
their meaning Fig. 7.7 for the eigenfunction m = 3,p = 2,nk3o = 9.761. We will use this

5In contrast to this, exp(im¢) describes rotating waves where the characteristic azimuthal node pattern is
lost. The symmetric and antisymmetric combination will gain physical importance when we discuss the eccentric
annular billiard in Chapter 9.
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classification scheme as the starting point when we study the open system and in particular
when we turn towards the eccentric annular billiard where, strictly speaking, due to the lost

rotational symmetry, no good quantum numbers exist.

7.2.3 Quasibound states of the dielectric disk

We now know the solutions, namely eigenvalues and eigenfunctions, of the closed disk that was
characterized by an infinite potential well. Next we consider the question what happens if we
approach the more realistic situation of a dielectric disk with finite index of refraction. This
system is described by the effective potential given in Eq. (7.16) rather than an infinite well.
Hence, tunnelling escape is possible, and we do not ask for eigenfunctions but for resonant solu-
tions or quasibound states with no incoming wave, i.e., decaying states that obey Sommerfeld’s
radiation condition. These are characterized by a complex wave vector, where the imaginary
part accounts for tunnelling (or evanescent leakage). Accordingly, we have to extend the ansatz

made in Eq. (7.19) by allowing a non-zero wave function outside the disk,

Amapm(r) ™ ifr < R
U™(F) = 4 . (7.25)
o (r) em® ifr > R

Concerning 9™(r), the same arguments as in Section 7.2.2 apply, and we find 9™ (r) =
Jm/(nkr) for the radial wave function inside the disk. The radial wave function vy (r) outside
the disk is an outgoing wave. Also, it has to be a linear combination of Bessel and Neumann
functions Jy,(kr) and Y, (kr) that are the solutions of the differential equation (7.15) for .
The function with the desired properties is a Hankel function of the first kind,

HD (kr) = H (kr) & T, (kr) + iV (kr) . (7.26)

For completeness we introduce the Hankel functions of the second kind,

HD (kr) = H ) (kr) & g, (kr) — i¥ (kr) (7.27)
that we will use in the discussion of the scattering approach. Studying the current associated
with HT(,%), one easily checks that HT(,% ) corresponds to an incident wave in contrast to the outward
directed current associated with HT(,%).

Thus we arrive at the ansatz for quasibound states where we have used the freedom in setting

the amplitude scale by choosing A7 def 1,

A™ J(nkr) e™® ifr < R
() = , ; (7.28)
HY (kr) e™®  ifr >R

Now we solve the eigenvalue problem using the matching conditions that we know from

Maxwell’s equations [54]:

1. The tangential components of the electric and magnetic fields, E , H at the interface bound-

ary have to be continuous.
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2. The normal components of the dielectric polarization and the magnetic induction, 5, B

have to be continuous as well.

Let us consider the implications for TM polarized light first. Here, the electric field E =
E(r)é, is parallel to the interface and, therefore, has to be continuous, E(r~) = E(r<). There
is no electric field component normal to the interface. The magnetic field H is related to the
electric field via Eq. (7.7). In particular we find the ¢-component of H (that is parallel to the
interface) to be proportional to the radial derivative of the electric field, so that the boundary
condition for the derivatives therefore reads 0E/0r|,, = OFE/0r|,_. Continuity of the wave
function (the electric field, respectively) means that for TM polarized the boundary conditions
are the same as for the Schrodinger equation. The only difference between the two situations is
the energy dependence of the effective potential for electromagnetic waves.

In analogy, we find for TE polarized light (H = H(r)€;,) that the wave function has to satisfy
H(rs) = H(r<). We now use Eq. (7.8) to relate the electric field component E¢ that is parallel
to the interface to the derivative of the magnetic field. This implies a jump of n? in the derivative
of the magnetic field when going outwards, namely 0H/0r|,. = n? 8H/0r|,, . This means that
for TE polarized light the boundary conditions are different to those of quantum mechanics.
The analogy to the Schrodinger equation is re-established when we complement the effective
potential Vog(r) by a d-like correction at the boundary position. Apart from this, the shape and
energy dependence of Veg is not affected. Furthermore, we will see that the required jump in
the derivative leads to more complex equations when we discuss the case of TE polarization.

Let us first consider the TM situation. Since the Bessel (Neumann) functions form a set of
linearly independent functions, the matching conditions have to be fulfilled for each m individ-

ually. Hence, the matching conditions lead to the requirement

A™ J(nkR) = HU(kr), (7.29)
d d
m ¢ — 2 g
A™ T (nkR) - H) (kr) . (7.30)

We rewrite the last equation denoting the derivative w.r.t. the argument of the according function
by the symbol (),

A™ nkJ! (nkR) = kHY (kr) . (7.31)

Egs. (7.29, 7.31) have to be fulfilled simultaneously and their non-trivial solutions for complex

k define the quasibound states. Both equations can be combined to yield
Jm(nkR) HO'(kR) = n J! (nkR) H (kR) ; (7.32)

in other words, the determinant D of the homogeneous system,

Jm(nkR) —HY (kR
p=| R " ,( ) , (7.33)
nJ! (nkR) —HY (kR)
has to vanish.
By means of the recursion formulas for Bessel functions Z,, € {J,, Y, H,%), Hg)} of argu-
ment z [56],

Zn(@) = Zna(o) = Zn(z)

Zpp 1 (z) = mT_l m-1(%) — Zm(z) , (7.34)
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Figure 7.8: Resonances of TE polarized light in a dielectric disk of refractive index
n= 1.54 with real part Re(kR) < 50. The resonance below the line Re(kR) = m
correspond to broad so-called above-barrier resonances, that is, their Re(kR) lies

above the well in the effective potential, see Fig. 7.6.

Eq. (7.32) can be rewritten in terms of Bessel functions of neighbouring order rather than

derivatives, namely
N1 (nkR)HD (kR) — Jpn (nkR)H') (kR) = 0. (7.35)

From this equation all wave vectors corresponding to TM polarized quasibound states can be
obtained. It is a complex equation for complex (nontrivial) solutions for kR. These solutions
are discrete points in the complex kR-plane, i.e., for a given Re(kR) does not necessarily exist
a Im(kR) such that kR is a solution of Eq. (7.35).

We now turn to the case of TE polarization. Then the wave function ¥ plays the role of the
magnetic field. The relevant boundary conditions are then i) continuity of H(r) at r = R, and
ii) a jump in the derivative dH /dr that is proportional to n? as discussed above. This leads to
the equation

nJm(nkRYHY (kR) = J. (nkR)H\" (kR) , (7.36)

which again is a complex equation for complex kR defining a quasibound state. Using the

recursion formulas (7.34) we obtain

nJm(nkR)HY (kR) — Jp_1 (nkR)H) (KR) =
m 1
R <n - E) Jm(nkR)HD (KR) . (7.37)
Note that in contrast to the TM case, now the rhs does not vanish, and on the lhs the subscripts
m and m — 1 are interchanged.
Egs. (7.35, 7.37) can be solved numerically to give the exact complex resonance positions

kR 4 +iy. An example of solutions of Eq. (7.37) is given in Fig. 7.8 where we have indicated
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Figure 7.9: Probability densities (arbitrary units, higher intensity in darker regions)
for an eigenstate of the closed disk (left half, nkR = 9.761 as in Fig. 7.7) and a
quasibound state of similar energy (right half, nkR = 11.428 — 0.2543), both for TM
polarization. Note the non-vanishing intensity outside the disk for the quasibound

state!

the real part Re(kR) of all the resonances found versus the corresponding angular momentum
quantum number.

In Fig. 7.9 we compare an eigenstate of the closed system with a corresponding state of the
open system. The differences in the wave patterns inside and, especially, outside the disk are
clearly visible.

The real (imaginary) part z(y) of kR determines the energy and the width of the quasibound
state, respectively. The width of the state is related to its lifetime. We will see in Section 7.4
that there is a ray optical interpretation of v in terms of a relation to reflection and transmission
coefficients. Therefore it would be nice to have an analytical estimate for y. For small width y,
that is narrow resonances, this can be achieved in principle by an expansion of Egs. (7.37, 7.35)
for small y. We will discuss this approach, its difficulties and alternatives in Chapter 8.

We now introduce another approach for the investigation of the dielectric disk, namely the
scattering approach. We will compare the exact numerical results obtained from Egs. (7.35,

7.37) with the results obtained within the S-matrix approach.

7.3 Scattering approach to the dielectric disk

7.3.1 Scattering matrix

The main idea of any scattering problem is to probe the response to incoming test waves. We
expect that the scattered wave can be used to extract system properties like resonance position
and width. Technically, this method is formulated for purely real wave vectors. This implies
that the resonance width cannot arise as imaginary part of the wave vector! We will see below

that the scattering approach nonetheless provides information on the resonance width.
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We want to investigate the scattering properties of the dielectric disk for electromagnetic
waves in the framework of scattering matrix (S-matrix) theory [93, 57, 92]. One possible choice
for the testing wave are, of course, plane waves as incident waves. For our rotational invariant
disk of finite dimension, however, incident waves that allow for angular momentum classification
are much more convenient: Then we need to take into consideration only waves with impact
parameter of the order of the system dimension or smaller. The Hankel functions of the second
kind introduced in Eq. (7.27) possess the desired properties.

Again, we consider a dielectric disk of radius R and refractive index n and denote the vacuum
wave vector by k. According to Maxwell’s equations and the discussion in Section 7.2 we start
from the ansatz

A™ o™ (r) ™ if r < R
U™ (F) = , (7.38)

AT Y7 (r) €™ ifr > R
for the wave function. We already know (see Section 7.2.2) that 1" (r) has to be identified with
the Bessel function Jy, (nkr). The radial wave function 9 (r) outside will contain a contribution
due to an incoming Hankel function H,(,%) of appropriate angular momentum m. Besides this,
there are now scattered waves in terms of outgoing Hankel functions H l(l) of order [. Assuming

)

an incoming Hankel function H? with azimuthal dependence exp(im¢), it will give rise to a
scattered wave containing contributions from all angular momenta [, —oco < [ < 0o , described by
Hankel functions H l(l) times the corresponding azimuthal function exp(il¢). The corresponding
scattering amplitudes are S,;,;, where the first subscript characterizes the incident, the latter the
scattered wave. Hence we write the outside wave function ¥S¢* that is excited by an incident

wave of angular momentum m as

o0
T (kr) = HP) (kr)e™ + S SpuH (kr)el® . (7.39)
l=—00
In order to find the radial wave function #§*(kr) in the ansatz (7.38) we have to re-arrange the
angular momentum contributions such that {!(kr) comprises all terms that contain a factor

exp(iM ¢). Eventually, we arrive at

o0
Y (kr) = HY (kr) + > SparHSY (kr) - (7.40)
m=—00

The scattering amplitudes S,,;; are comprised in the S-matrix. It follows from current conser-
vation that S has to be unitary, a property that we will use subsequently. Starting with a
general situation in which S can have entries everywhere, symmetry requirements will reduce
the number of independent matrix elements. For the dielectric disk, the scattered wave has
to obey angular momentum conservation and will, therefore, be a Hankel function of the same
order m as the incoming Hankel function, such that the scattering matrix is diagonal. In the
general case where angular momentum is not conserved (as, for example, for a deformed disk or

the annular geometry of Chapter 9), scattering will occur to all possible angular momenta I.
For the case of an dielectric disk we will now sketch the main steps of the calculation of the

scattering amplitudes Sy,,. We start by rewriting Eq. (7.40) as

Wit (kr) = HY (kr) + SmnHY) (kr) (7.41)
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which yields the ansatz (7.38) in the specified form

\I}m(—») A™ Jm(nkr) eimd) ifr<R (7 42)
7) = _ _
(D (k) + S Y (k)] &7 it > R

Employing the matching conditions (cf. Section 7.2) for TM polarization, we obtain from the

requirement of continuity of the wave function” and their derivative

A" (nkr) = HP(kr) 4+ SpmHY (kr) (7.43)
A (nkr) = H®'(kr) + SpmHY' (kr) (7.44)

where the angular dependence €™ is the same on both sides and the prime stands for the
derivative w.r.t. the full argument nkr and kr, respectively. Solving this system of equations for

the amplitudes A and the matrix elements S,,,, gives the result

H2 (kr) + Spm HY (kr)

A" = I (nkr) , (7.45)
S HL (k) — ngaE L k) 5 (7.46)
e 70k T (nkr) () gy '

( T) nJ (nkr)——m ( lr)

which allows us to calculate the wave function for any given k € R. However, so far we do not
know anything about the resonances that we are interested in! We will approach this issue in
the following Section 7.3.2.

7.3.2 Wigner delay time

The general idea for identifying resonances of the system under consideration is that a probing
wave with resonance energy will interact longer with the system than a wave with “non-fitting”
energy. In this section we will introduce the Wigner delay time 7 as the corresponding physical

quantity. For unitary S-matrix, with eigenphases 6; and determinant
det § = ¢t Xt 1 (i ) (7.47)

the Wigner delay time is defined [94, 95] as

W (g def © 4+ dS
TV(E) = (S dE)

In an eigenbasis of S this is easily evaluated and we end up with the Wigner delay time 7% as

derivative of the total phase,
_ db(E)
- dE

Using the relation E = k2, this can be expressed as a function of momentum,

™(E) (7.48)

w dodk  1de
T = ——
dkdE ~ 2k dk

7 As before, we use the expressions electric field and wave function synonymously.
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For the numerical calculations, this expression was scaled by a factor 2k and the phase 6 was
normalized to lie in the interval [0,1), 6 — 9% g /2. In the following graphs we will investigate
the delay time

det dO(k)

(k) —p =4k ™ (k%) (7.49)

in order to find signatures of resonances.

Note that there is a relation between the (total) phase 8(E) of the S-matrix and the so-
called resonance counting function N(E) = 6(E)/2w, cf. [92]. The idea is that a resonance
is encountered whenever the phase 6 of det S increases by 27 upon increasing energy FE or

momentum k.

In the following we will use the function 7(k) to determine the resonances. They appear as
peaks in 7(k), see Fig. 7.10, above a background. The area under the curve 7(k) is proportional
to the number of states with wave vectors smaller than k [92, 97]. In the case of stepwise
potentials such as realized in ray-splitting billiards, simple Weyl formulas for the smooth part of
the density of states were derived for a number of geometries [99]. The application of these results
to optical systems where ray splitting is realized by refraction and transmission at refractive index
boundaries is tempting. However, here we work with an energy dependent effective potential, in
contrast to the situation studied in [99] where only (stepwise) spatial dependence of the potential
was assumed. Consequently, a generalization of the formulas derived in [99] would be required
if one is interested in an analytical expression for the smooth part of the density of states, which

is, however, not the subject of this work.

The form of a resonance peak in the delay time 7 is related to the imaginary part of the
wave vector in Section 7.2. To see this, we consider a single, isolated resonance for which the
S-matrix is just an energy-dependent complex number s(E) with E € R. We continue this
function to compler energies and make use of the fact that the S-matrix is a meromorphic
function [96] that we can expand around its pole Ej in the complez energy plane into a Laurent
series, s(E) = N/(E — Ey), where N is a constant. The poles are precisely the positions of
resonances in the imaginary energy plane, and we write Fy = E; — i[';, where I'y > 0 is the
width of the resonance in the sense of Section 7.2 (note, however, that so far we work with

energies rather than momenta).

Since we know that s(E) has to be unitary on the real axis, it can be expressed as

_E—-E; E-E —il\ 4

E) = _ _
) =5 B " F B,

(7.50)

with

def
01 = 2arctan .
! E—-E,

(7.51)

The angle 0; /2 can be given an illustrative meaning: if we approach the resonance E; —il'1 on
the real axis from the left, ,/2 appears to be the angle between the real (positive) axis and
the direction towards the pole (E;, —i['1) of the S-matrix [93]. Upon passing the resonance, 6;
changes from zero to the value of 27. Since this happens at each resonance, following the value

of 01 reveals the connection to the resonance counting function above.

As we approach the resonance, ; changes in a characteristic way, resulting in the typical
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Figure 7.10: Resonances probed in terms of the delay time 7(k) for the dielectric
disk of refractive index n =3. The wave number tested ranges from zero to k =16,
with the interval [10,12] enlarged in the inset. Peaks on scales smaller than Ak
(here, Ak = 0.004) cannot be (properly) resolved as is clearly visible in the first
family of resonances (see text for detailed explanation) starting with & ~ 0. One
observes peaks of decreasing width and increasing height until £ =2.5; the following
peaks of height 7 =~ 170 are not completely resolved and bear some artefacts, see

text.

Lorentzian line shape for sin 6 /2,

sin LE) _ 1 (7.52)

\/(E—E1)2+r§ '

Such resonances are called Breit-Wigner resonances [93, 94]. The width of the corresponding
peak in sin# (F)/2 when passing a resonance at E = Ej, measured at half the peak height, is
given by 2I';. That is, the imaginary part of the resonance energy gives the half width of the
peak.

Using the definition (7.48) of the Wigner delay time together with Eq. (7.51) we obtain

w_dh____om
dE ~ (E—E)?+12’

(7.53)

giving again peaks of half-width I';.
The same holds if we work with momenta rather than energies. If we assume the resonance
at ko e+ iy, y < 0, we find from Ey = k the relationship By = 22 — y?, 'y = 2z|y| and the

Breit-Wigner resonance-type behaviour expressed as a function of £ = v/E in the form

sin 2L — —2zly| , (7.54)

2 \/(k2 — 24 y2)2 + 43292

where now the imaginary part of the momentum defines the peak width at half peak height.
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Finally, for the delay time 7 this implies

do 2
F=%_y ""y|2 , (7.55)
dk (k2 — 22 4 y2)? + 4222
which indeed has the expected width of 2|y|. Furthermore, at the resonance position

(k? = 22 — y?) the value of 7 is proportional to 1/|y|, i.e., the height of the resonance peak
may serve as a further measure of the resonance width.

At this point some remarks concerning the numerical evaluation of 7(k) are necessary. The
function (k) is determined by scanning the k-axis in steps (grid points) separated by an amount
Ak, where computing time sets a lower bound on Ak. The differentiation operation to obtain
7(k) is performed as a quotient of differences. Therefore resonances that show signatures on a
smaller k-scale than Ak cannot be resolved properly by this method as illustrated in Fig. 7.10.
However, we point out that with some probability resonances whose widths are up to one or
two orders of magnitude smaller than Ak will be seen (though not properly resolved). This
happens whenever the corresponding resonance peak lies close to a grid point. The reason for
this is the algebraic decay in the tails of the Lorentzian line shape: although the width of the
resonance measured at half the peak height might be much smaller than Ak, there might be
some resonance-like signals or spikes when one of the scanning values hits the shoulder of the
resonance. However, there is at most information concerning the real part of the resonance
contained, but no values for the imaginary part can be deduced.

Besides this limitation towards extremely narrow resonances, the resolution to the broad-
resonance end is limited, too. The limiting situation is defined by two (broad) resonances that
overlap in such a way that they cannot be resolved.

It is useful to compare this S-matrix method to another approach used in [108] that identifies
resonance signatures in the plane-wave response of the system. There, the energy of a incident
plane wave is varied and the change in the wave intensity at a certain (boundary) point is traced.
Resonances appear as peaks or dips; however, for systems with discrete symmetry the direction
of incidence matters, and it is likely that not all resonances are excited, and consequently, are
not found. Furthermore, the peaks (dips) are not necessarily of Lorentzian line shape making it
difficult to identify families of resonances. The resolution problem is similar to that described
above. Using the S-matrix method and the delay time 7 to search for resonances has the
advantage of being able to identify families of resonances, i.e., to gain information about the
angular momenta of the resonant states, simply by (carefully) counting the peaks. The series
may even be continued to narrow resonances that are only poorly resolved. Furthermore, all
resonances are of the generic Lorentzian line shape and its width is proportional to the resonance
width. We will use this S-matrix method in particular when dealing with the annular billiard
in Chapter 9.

7.3.3 Comparison of wave-based methods

In Section 7.3.2 we already described the relation between the shape of a resonance peak in the
delay time 7(k) and the imaginary part y of the complex resonance kR def iy. In Fig. 7.11
we quantify this comparison and give both the resonance width, as calculated with the exact

formula Eq. (7.32), and a plot of the delay time 7(k) for the resonances labelled by the arrows
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Figure 7.11: Signatures of the first resonances (p =1, first family) of the dielectric
disk (n=3), labelled by their angular momentum quantum number m in terms of the
delay time 7(k). The vertical lines (arbitrary height) indicate the real part of the
corresponding solutions of Eq. (7.32). For the resonances m =3 and m =4 (arrows),
we compare the numerical width (imaginary part y) from Eq. (7.32) with the peak
width, see the two lower panels. The peak half width (estimated to be 0.017 and
0.006 at half peak height) is a very good estimate for y. The resonances for m >6
are not shown in full height. Note the emerging of the second family starting at

k >2 with a rather pronounced peak at k ~ 4.

in Fig. 7.11. Indeed, we find a good quantitative agreement. Alternatively, one could relate
the height of the resonance peak to the imaginary part of the wave vector, see the discussion in
Section 7.3.2,

Another crucial point is whether we can classify the resonances obtained within the scattering
formalism in a way similar to the classification by angular momentum and radial quantum
numbers as in Section 7.2. The answer is yes! Investigation of the function 7(k) reveals families
of resonances characterized by decreasing width and increasing height with similar distances
between neighbouring peaks. Comparison with the exact solutions of Eq. (7.32) shows that the
radial quantum number p within such a family is the same and that the angular quantum number
m increases by one from resonance to resonance. This is illustrated in Fig. 7.11. Note that the
assignment of the correct m might become tricky in higher families when one just counts the
peaks, since the first and broadest peaks might be not resolved and, thus, are not visible. Then

comparison with the exact numerical results from Eq. (7.32) is required. When we investigate
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Figure 7.12: Emergence of resonances for increasing refractive index n for a certain
range of the wave vector k outside the disk. In c), an artefact of a not properly

resolved narrow resonance is visible at k ~ 11.5.

the annular billiard in Chapter 9 we will use this correspondence to label our modes even in the
eccentric case when m and p are no good quantum numbers. The idea is then to start with a
disk by choosing® n; = ny where labeling is unique, and follow the resonances while changing
the value of ny (or ng).

At this point it is useful to discuss the families of resonances in terms of the effective potential,
cf. Eq. (7.16). Within each family, m increases and the form of the potential changes accordingly
[besides the overall k-stretching due to Veg(k)]. Alternatively, we can consider resonances of the
same m in different families where the relative shape of the potential is the same and only the
stretching factors change.

We finish this section by briefly studying the implications of a variation of n from n =1 to
n = oo. For intermediate values of n we already found the resonances characteristic for an open
system. First, we ask the question of how they appear when we increase the refractive index
of the disk from n = 1 (airy disk in air) to finite values of n. The result is shown in Fig. 7.12
— it indicates that for fixed vacuum wave vector, the resonances become increasingly sharp for
higher n. This can immediately be understood within the picture of the effective potential with
a well height proportional to (1 —n?), cf. Eq. (7.16). Since the effective potential well is, on the
other hand, energy dependent (proportional to k?), we expect more pronounced resonances for
higher k. As can be seen in the inset for n =1.1, this indeed is the case. In terms of the ray

picture, higher n means better confinement according to Fresnel’s law. This aspect is further

8For notations, see the beginning of Chapter 9.
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Figure 7.13: Comparison of the eigenvalues for the closed system with resonances of
dielectric disk of refractive index n = 6. The agreement improves for narrower reso-
nances that lie deeper in the potential well and, therefore, experience a confinement

that better resembles the closed system.

developed in Section 7.4.

We just learned that resonances become narrower with increasing refractive index n due to
the deeper well of the effective potential. In this context, the interesting question of the relation
to the closed system arises. We study this issue by comparing the resonance positions of a disk
of refractive index n =6 with the exact eigensolutions of the closed system given in Eq. (7.22).
The result is shown in Fig. 7.13 and reveals that already a refractive index of n =6 indicates
a “fairly closed” system. In terms of Fresnel’s law (7.4) we find a reflectivity of 70% even for

perpendicular incidence.

7.4 Quantum - classical correspondence: Ray versus wave picture

In this section we want to connect the ray picture (Section 7.1) and the wave picture (Sections
7.2, 7.3). On one hand, we will find a connection between the angle of incidence x, and the
angular momentum quantum number m comparing the classical and quantum expressions for
the angular momentum perpendicular (i.e., in z-direction) to the ring. On the other hand, we
will develop a model that allows us to relate the reflection coefficients obtained from Fresnel
formulas (7.4, 7.5) to the resonance width, that is, the imaginary part of the complex solutions
of Egs. (7.32, 7.36) for the wave vector.

In the ray picture, the reflection or transmission of a light ray at a given interface is fully
characterized by the angle of incidence y, even in the case of a curved interface. The reason is
that the ray picture corresponds to the limit of zero wavelength, such that all radii of curvature
are large and any interface appears locally planar. The wave picture characterizes each wave by
a wave number k£ and the quantum number m for the z-component of angular momentum. In a

classical picture, the z-component L, of the angular momentum is given by

L, = Rnpsiny, (7.56)
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where R is the radius of the disk and np the (classical) momentum of a ray inside. Using p = hik

and the (semiclassical) quantization condition L, = hm we obtain

hm = nRhk sin y , (7.57)
or
) m
siny = —— - (7.58)

The physical content of this equation is that each wave solution can be uniquely assigned to an
angle of incidence, that is, a classical angular momentum, that is, a ray! However, in general this
angle x will not correspond to a closed (whispering gallery) orbit within the disk in the sense
that 27/x is an integer number as one might expect. This can be easily checked by computing
siny from Eq. (7.58) for a few values, see Table 7.4. For increasing m the solutions for the wave
vector k fixed radial quantum number p are such that x increases as well — that means that the
whispering gallery modes are increasingly localized at the disk boundary. The largest value of x
is, of course, /2, and in this limit the naive picture of a corresponding orbit works and yields
a polygon with infinitely many corners — a circle! In Table 7.4 we give the values for sin y and
other characteristics for the resonances in Fig. 7.11.

Another argument that illustrates that a resonance with, e.g., angular momentum quantum
number m = 3 (as in Fig. 9.11) and, consequently, 2m = 6 intensity maxima cannot correspond
to a regular whispering gallery orbit in the form of hexagon is provided by the phase space plot.
Periodic whispering gallery orbits, of which the hexagon is one example, fill an area of zero
measure in the Poincaré section! Since there is no reason why wave solutions should not fill the
whole phase space, deviations in sin y are unavoidable.

We will now explain the effect of the narrowing of the resonance peak with increasing x
in terms of a model of sequential reflections. For a linear resonator with parallel mirrors of
reflection probability R,, on both ends, it is well-known that the leakage loss v can be obtained
by applying R,, sequentially to rays travelling back and forth between the mirrors. We are in a
situation where we have information about the loss in terms of the imaginary part y of the wave
vector, kR def +1iy,y < 0, R = 1. From this knowledge we want to calculate the reflection
probability or reflection coefficient Rs of an individual reflection in the dielectric disk.

We begin by rewriting the time dependence exp(—iwt) of the wave function using the dis-
persion relation w = ck of light, with ¢ the wave velocity in the dielectric disk. The imaginary
part of k causes an exponential decay exp(cyt/R) def exp(—t/tp) that is characterized by the
time scale ty & R/cly|. If we ask for the time dependence P(t) of the intensity®, we have to
square the decay factor of the wave function,

_2t
P(t)y=e ‘. (7.59)
Otherwise, we can think of this decay as caused by s sequential reflections at the disk boundary,

each with a probability R,
P(t) = (Rs)* . (7.60)

The optical distance ds; between two of these reflections is given in terms of the ray model as

ds = 2nR cos x, the time taken is t; = ds/c. This provides us with the number s of reflections

9We are interested in a relation to (Fresnel’s) reflection coefficients that are defined for intensities.
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after time ¢, s = t/ts = ct/(2nR cos x) and we can relate

 2cly| ct
R 2nRcosy

InP(t) = InR;, (7.61)

which eventually yields
R, = e~ nlylcosx (7.62)

as the desired relation between the resonance width y = Im(kR) < 0 and a corresponding
reflection coefficient.

Eq. (7.62) enables a comparison between the wave-picture results, see Eqs. (7.32, 7.36),
where the curved interface of the disk is fully taken into account and those of the ray picture
that assumes a planar interface in terms of reflection coefficients'®. The results are shown in
Figs. 7.14 and 7.15. The planar interface (Fresnel) result is clearly verified as the zero-wavelength
limit of the wave approach. For smaller kR, deviations occur mainly in the region around the
critical angle. The exponentially small corrections due to tunnelling escape of light upon total
internal reflection are discussed in [108] and not subject of this work. In Fig. 7.16 we eventually
illustrate the situation of a disk with lower refractive index than the surroundings, i.e., n < 1.
Then no total internal reflection inside the disk is possible and the mechanism that confines
the light in the microcavity is lost. In terms of the effective potential the well is replaced by a
monotonically increasing potential with a jump at » = R. As for the solutions of Eqs. (7.32,
7.36) we find the corresponding reflection coefficients well described by Fresnel’s law for a planar
interface, see Fig. 7.16. In the following we will mainly be interested in microcavities that allow
for the confinement of light by total internal reflection.

Another comment is necessary on the sign of the angular momentum quantum number m of
the whispering gallery modes. Although we only addressed positive m so far, it is straightforward
to extend the picture to negative m giving rise to resonances with the same properties in the
same effective potential but the opposite sense of rotation when translated into an angle of
incidence via Eq. (7.58). Since the system is rotational invariant and angular momentum is
conserved, the states are paired in doublets composed of angular momentum components m and
—m that are degenerate in energy. This degeneracy will be lifted in the eccentric annular billiard
[101] when rotational symmetry is reduced to reflection symmetry about the z-axis.

Finally, we develop a relation between the length of an orbit and the resonance spacing dk.
The semiclassical interpretation of a closed orbit states that the optical length n L is an integer
multiple g of the (vacuum) wavelength A\, nL = g)\. If we ask for which wavelengths this relation
holds, we find a neighbouring A\; = A — dX fulfilling nL = (¢ + 1)A;. Using A = 27 /k and
A1 = 27 /(k + dk), we obtain the orbit length as

27
L= )
Tk (7.63)

On the other hand, we can deduce a length L, for a given angle x by generalizing the concept
of closed polygonal orbits. For a polygon of ¢ € N corners, x def (¢ —2)7/(2q) in order to have
a closed orbit. Its length is then L, = 2gcosy. If we allow ¢ = ¢ ¢ N, we find for a given yx a

generalized polynomial with
~ 2T
q g

r— L, =2qcosy. (7.64)

10 Alternatively, one could, of course, translate Fresnel’s reflection coefficients into resonance widths.
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Figure 7.14: Reflection coefficient versus sine of the angle of incidence x for trans-
verse magnetic (TM) polarized light reflected at dielectric of n = 1.54 (typical value
for glass). The result of Fresnel’s law (7.4) describes reflection at a planar interface.
The symbols mark numerical solutions of Eq. (7.32) with real part Re(kR) close
to 50 (squares) or 150 (crosses), respectively. The imaginary part of the solution
is expressed as reflection coefficient via the sequential reflection model, Eq. (7.62).
Note that the Fresnel result (full line) is approached in the limit Re(kR) — oo, that

is, zero wavelength.
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Figure 7.15: Same as Fig. 7.14 but for refractive index n = 3.29 as is typical for semi-
conductor material and TE polarized light. The symbols stand now for numerical
solutions of Eq. (7.36). Note the feature of the Brewster angle for this polarization
that is also respected by the wave solutions. Again, ray optics is approached as
Re(kR) — 0.

In the following table we give m, k,dk, L,sin x, ¢ and L, for the first resonances of Fig. 7.11:
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Figure 7.16: Reflection coefficients for a) TM and b) TE polarized light, obtained
in the sequential reflection model for disks with index of refraction n < 1 (n =1
outside). The full lines indicate Fresnel’s law for a planar interface. It provides a
good description of the curved interface even for moderate wave vectors kR — here

the ray limit is applicable for a wider range of kR than in the case of n > 1.

m k dk = kmy1 —km | L= % siny = -5 | ¢ = ngx L, =2qcosx
1 10.7577 0.4549 4.60 0.440 2.82 5.06
2 | 1.2126 0.4392 4.77 0.550 3.18 5.31
3 | 1.6518 0.4235 4.95 0.605 3.41 5.43
4 | 2.0753 0.4098 5.11 0.642 3.60 5.01
5 | 2.4851 0.3992 5.25 0.671 3.76 5.58

Note the increase in x accompanying the narrowing of the resonances. Note also that both the
length L, and L increase, too, meaning that the resonances become more whispering-gallery
like. Correspondingly, the resonance spacing dk decreases. There is a discrepancy in the lengths,
L, > L, which indicates that the {rue waves do not follow generalized polygons but shorter

(optimal) circle-like orbits as also suggested by the wave function plots. — In this context we
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point out that the contribution of whispering gallery orbits to the trace formula is not fully
understood [102].

Before we conclude this chapter with some general remarks concerning practical aspects of
the complementary relation between ray and wave concepts, let us refer to some experimental
findings and applications first.

In experiments with easily produced and manipulated silica microspheres [64] whispering
gallery modes were found to be sustained if the sphere circumference is larger than a few wave-
lengths. Storage times of the order of one microsecond are reported, corresponding to Q}-factors
of up to 1019, Slight variations in the shape of the microsphere cause WGMs to exist mainly in
one (equatorial) plane. The well-defined frequency of WGMs renders them ideal subsystems in
the investigation of their interaction with two-level atoms [65], or their coupling to nanocrystals
and quantum dots, respectively [66].

The frequency of the equatorial WGMs in silica microspheres can be tuned by a change in
temperature or strain'!, both keeping the circular shape but affecting the diameter of the sphere.
After the discussions of this chapter, this behaviour is easily understood recalling that only the
product kR is fixed at a resonance. However, this finding cannot be explained if we have in
mind the ray that travels along the cavity boundary possessing a fixed angle of incidence. Other
properties can be well understood in terms of geometrical optics. This applies, for example,
to the shape-dependent emission that was found in GaAs whispering gallery microdisk lasers
(69, 132].

The concept of the ray picture is easily applied to any optical system and gives immediately
rough ideas of what is going on in a closed cavity. Adding the concept of total internal reflec-
tion allows qualitative understanding of the open system. However, deviations due to curved
boundary interfaces (see Figs. 7.14, 7.15) limit the quantitative predictions. In Chapter 8 we
will extend the ray picture by the Goos-Hanchen effect as an ingredient that originates from
properties of waves. We will see that we can use it to improve the predictions for circular-shaped
interfaces. The application to interfaces of any shape is then straightforward by assuming locally
a circle. Employing the ray picture a successful explanation of a recent cavity fibre experiment
[130] could be found, see Section 10.1.

Wave concepts give the exact solutions at the price of much more complicated equations. For
the dielectric disk, it is not too hard to find numerical solutions. For more complicated shapes,
however, the equations will increase in complexity making the numerical treatment demanding.
In symmetric systems, the solutions can be labelled by quantum numbers like m (azimuthal
nodal lines) and p (radial nodal lines) in the example of the dielectric disk. Complications arise
in the case when there are no good quantum numbers, as is the case in most non-circular (oval)
resonators, where ray concepts, however, are not at all affected and may allow for a classification
of solutions by the ray-wave correspondence.

Another type of corrections to the ray picture arises in the presence of classical chaos in the
system under investigation. For the integrable disk that we studied so far this is not the case.
In Chapter 9 we will consider the annular billiard as a system that shows classical chaos. The

impact of this fact onto the properties of wave solutions (and vice versa) is the subject of quantum

11Gtrain can be applied strechting a two stem sphere.
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chaos. In optical systems, this aspect is combined with the openness of the system caused by
the always leaky confinement of the modes for finite refractive indices and the wvectorial nature
of light that requires a distinction between TM and TE polarization. This turns the subject into
a rich and challenging problem in which ray and wave methods complement each other. Hereby
ray methods are in particular useful because they provide a first classification of the classical
phase space associated with the closed system in terms of a Poincaré surface of section. This
is commonly used as a classification scheme for wave solutions. In Chapter 9 examples for this
can be found. Once the principle difference between rays and waves is identified and known,
one might return to the simpler ray picture in order to study other system and subsequently add
the modifications that waves require for. We will use these ideas in Section 10.2 when we discuss
resonators of various shapes and their possible applications as microresonators.

We want to point out once more that the (effective) quantum-mechanical description of
electromagnetic waves is well possible but requires some care. For example, Maxwell’s equations
do not depend on anything similar to Planck’s constant A. However, in quantum mechanics, A
is of importance for example in the uncertainty relation between conjugate variables, that also
determines the resolution of classical phase space features that can be achieved. According to
the knowledge we gained up to this point we would expect % to be related to the reciprocal wave
vector, i ~ 1/k, because we expect i — 0 in the ray limit & — co. We can improve this picture
by considering the pair of conjugate variables ¢, m = nkRsiny. If we plot the Poincaré section
w.r.t. these variables, we see that the phase space is the more stretched the higher k. If we
furthermore take Eq. (7.15) to read off 4 = 1, we find indeed that a certain phase space feature is
the better resolved the larger k£, which can be equivalently interpreted as i — 0. Alternatively,
we could have divided Eq. (7.15) by k2, thereby removing the k2-dependence of the effective
potential, and identify 1/k with A.



8 Fresnel laws at curved interfaces

This chapter is devoted to approximate analytical expressions for Fresnel coef-
ficients at curved interfaces — these describe the enhanced escape of quasibound
states at curved interfaces. First, we base our investigation on the ray picture.
By means of the Goos-Hénchen effect we find a qualitative and quantitative
explanation of the modification of Fresnel’s laws at curved interfaces. In the
second part of this chapter, we start from the wave picture. Expanding the
exact equations for small resonance widths causes problems in general. There-
fore, we employ the Debye approximation for Bessel functions as an alternative
in order to derive an analytical expression for the resonance width (or the re-
flectivity, respectively) appropriate for not too small refractive indices. This
allows a convenient computation of corrected Fresnel coefficients for (convex)
interfaces that can be locally approximated by a sphere.

8.1 Extending the ray picture: Goos-Hanchen shift

In Section 7.4 we compared Fresnel coefficients for planar interfaces (Fresnel’s laws) with those for
spherical interfaces obtained via the sequential reflection model, cf. Figs. 7.14, 7.15. The latter
were obtained by numerically solving the implicit Egs. (7.32, 7.36). For quantitative predictions
of the reflections properties of microcavities in practical applications it is desirable to have direct
analytical expressions for curvature-corrected Fresnel coefficients available. This problem has
been addressed by applying various techniques. For example, in [109] the Fresnel result for
a planar interface was corrected by multiplication with a polarization-independent curvature
factor. However, the results obtained there were not fully conclusive under closer investigation.
The complex ray method in a paraxial approximation was used in [110] to describe light rays
approaching the disk from outside. In [111] conformal mapping was used to access the eigenvalue
of an open optical cavity. One might also think of adopting methods that were established in the
context of planar interface, like the introduction of an interface transfer matrix that allows to
describe the Fresnel coefficients as hyperbolic rotations of this matrix [112]. However, although
the problem of Fresnel coefficients for curved interfaces was addressed by many groups in the
last years [113], no “standard” technique to incorporate the curvature could be achieved.

According to the statements in the previous chapters, there are essentially two possible
starting points to derive Fresnel laws for curved interfaces, namely the ray picture (this section)
and the wave picture (next section).

In this section, the objective is to find an qualitative and quantitative explanation for the
deviations at curved interfaces in terms of a ray-based picture. The motivation for these consid-
erations is that essential qualitative features of microcavities are, in general, well described by
the ray picture as we will see throughout the second part of this thesis. Therefore, it is desirable
to complete the ray model by a mechanism that explains the observed differences. Since the
ray picture can be thought of as the zero-wavelength limit of wave mechanics, it is clear that
for a light ray any interface will appear planar. The corresponding reflection and transmission
coefficients are given by Fresnel’s law, see Egs. (7.4, 7.5), giving the wrong predictions when

the ray model does not strictly apply, i.e. for light of finite wavelength. Therefore, in order to
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Interference

Figure 8.1: Goos-Hanchen shift at a planar interface. An incident beam contain-
ing contributions from plane waves of slightly different wave vectors appears to be
reflected at a position that is shifted a distance zgy away from the point of inci-
dence. Alternatively, one can think of the beam to be reflected at a shifted interface
indicated by the dashed lines.

obtain a more realistic point of view, we need to implement some wave properties that imply
corrections of the ray picture in particular around the critical angle . where we find the largest
deviations between ray and wave picture, see Figs. 7.14, 7.15. The so-called Goos-Hanchen effect
[116, 117, 118, 119, 120] possesses precisely the features we are looking for. It is an interference
effect that occurs upon total internal reflection of plane waves with slightly varying wave vec-
tors. The result is a lateral shift of the reflected beam, the so-called Goos-Hénchen shift (GHS),
see Fig. 8.1. It is this interference effect that incorporates wave properties into the ray model.
The according phase shift can be interpreted as lateral shift, and is accompanied by a time
shift (Wigner delay) of the reflected beam that is of the order of 10~ to 1075 seconds that is

accessible in, e.g., measurements at metallic gratings (cf. [121] and references therein).

The way slightly different wave vectors cause a lateral shift of the reflected beam can easily
be understood within a simple calculation — this effect is already present at a planar interface
[89]!. The necessary ingredients comprise a collection of (at least two) incident plane waves
with slightly different transverse wave vectors (in other words, the corresponding rays cover a
certain range of angles of incidence x;), see Fig. 8.1, and the phase shift ®(y;) that occurs upon
total internal reflection, cf. Eq. (7.6). Therefore, each plane wave undergoes a slightly different
phase change so that the sum of all reflected plane waves, comprising the real reflected beam,
results to be laterally shifted. Another more physical explanation of this effect is based on the
evanescent wave flowing parallel to the interface in the less dense medium in the case of total
internal reflection. It can be shown [118] that energy will not be conserved if there is no lateral
shift of the reflected beam.

The first analytical expression for the Goos-Hinchen shift zqy of a Gaussian beam! of wave

!Gaussian beams are exact solutions of the paraxial wave equation. They are characterized by a Gaussian-
distributed electric field intensity along the beam wavefronts, and diffractive angular spread, giving rise to the
existence of a so-called beam waist, cf. e.g. [122]. We will use the notation o for the beam half width defined by
intensity drop to Emax/e.
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vector nk in the dielectric travelling in a medium with refractive index n and being reflected at

a planar interface with vacuum, was obtained by Artmann as [117]

ZéH _ 2T tan x cos? ¢
nky/sin? x — sin? y, €0s®x + T2 (sin” x — sin® x.)

with the polarisation-dependent constant

(8.1)

1 TM polarized light
T = (8.2)
n? TE polarized light .

Clearly, this result diverges at the critical angle! Since a Gaussian beam contains a smooth
and continuous spectrum of plane waves and the shift is expected to be finite and continuous,
this behaviour is unphysical. This is particularly evident at x = x., where we have plane-wave
components with angles of incidence both smaller and larger than the critical angle x.. When
slightly varying x, corresponding to a slight change of the amplitudes involved, we expect a slight
change of the lateral shift as well [118].

Therefore, Lai et al. derived an improved expression for the Goos-Héanchen shift, that, due
to fewer approximations, remains finite at the critical angle. Their more sophisticated result to
order (nko)~! for a Gaussian beam of half width o reads [118]

o Reaq

ZGH(X) = COSX 1 _ R,ea;? 7 (83)
with
' 2 %E 2iC
o - et /4 x ePol4 [—BD,l/Q(ﬂo) — nZW.Dl/Q(,BO)] + :zlca
2 [\/nkaA + Beim/4 x eP3/4 x Dl/Q(ﬂO)]
—Be'™/* x eB8/AD_35(Bo)
[4 = )
2 4Avnko
,8() = inkoA s
A = cos’x—T? (sin2 x — sin? Xc) ,
B = —2T cosxy/sin2y,
_ o972
Cc = G cos? x.sin 2y,
27 . : 22 2 2
E = o sinx sin 2x [T (cos” x + cos” x.) — cos” x| ,
G = cos’x+T? (sin2 x — sin? Xe)
A = sin? x — sin® .

sin 2y

The functions D, () are parabolic cylinder functions of order v and argument 7. In Appendix
D we relate them to well-known Bessel functions suitable for practical applications?.

Non-zero values zgu(x) are found around the critical angle x., whereby the maximum is
reached at an angle slightly larger than x.. The result (8.3) was obtained under the general
approximation

tan xy < nko (8.4)

2Parabolic cylinder functions are not contained in standard numerical C-libraries like [123].
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Figure 8.2: Two possible implementations of the Goos-Héanchen effect at a curved
interface. The reflection seems to occur at an interface of larger curvature radius
R’ > R under a smaller angle x’ < x of incidence. In a), the symmetry w.r.t. the
reversed ray path is respected only for small lateral shifts zqg < R. It can be fully
established when assuming that the lateral shift follows the interface as in b). Then

the effective quantities are given by x' = x — zau/(2R) and R' = R sinx/sinx’.

and the additional condition for TE polarized light near the critical angle

4
n* —
G>

1

in(26 8.5
o sin(26) , (8.5)
or 2(n? +1)v/n2 — 1 < nko. This reduces the validity range of Eq. (8.3) for TE polarized light
compared to TM polarization.

So far, we considered the Goos-Hanchen shift for a Gaussian beam at a planar interface.
Since the reflection law (7.1) is not affected by the lateral shift and fulfilled for the mean angle
of incidence and reflection, respectively, the angle-dependent Fresnel reflection coefficients (7.4,
7.5) are not changed at a planar interface. However, if we consider a spherical interface, the
situation changes as shown in Fig. 8.2. In Fig. 8.2a, a lateral shift of the amount zgy is assumed
to occur at an interface that is tangent to the point of incidence. The intersection of the effective
reflection plane (parallel to the tangent interface) with the incident ray defines an effective radius
R' > R. We now assume that the ray is specularly reflected at this effective spherical interface
with a larger radius of curvature, resulting in a smaller effective angle of incidence x' < .
Accordingly, for a ray incident under an angle y we have to evaluate the Fresnel reflection
coefficients (7.4, 7.5) at this smaller angle x', which already provides an qualitative explanation
of the shift in the reflection coefficient for curved interfaces. The same holds if we modify
this construction by presuming the lateral shift to follow the curved interface as illustrated in
Fig. 8.2b. The higher symmetry of this approach guarantees that the optical path is reversible.

We point out the 1/k-dependence of the Goos-Hanchen shift in Eq. (8.1) implying that this
effect vanishes for large k, i.e., in the ray limit £k — oo, A def 2n/k — 0. This is in agreement

with the results shown in Figs. 7.14, 7.15, too, since we observed larger deviations from Fresnel’s
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Figure 8.3: Beam of half width o ~ X incident at a spherical interface with radius R
of curvature. The range of angles of incidence [x'., x1] is defined by the innermost
and outermost beam, respectively. The value of XI<(>) is given by sin X'<(>) =
[1—(+)o/(R siny)]sinx’.

formulas for smaller k.

When we consider a Gaussian beam of finite half width ¢ incident on a spherical interface,
curvature does not only enter by changing the effective angle of incidence from x to x’ due to the
Goos-Hanchen effect. In addition, a beam of finite extent directly experiences a certain range of

angles of incidence that have to be integrated over?, see Fig. 8.3.

In Figs. 8.4 and 8.5 we present the results of this Goos-Héanchen effect based approach. We
find a very good agreement with the exact results obtained within the sequential model. Hence,
we conclude that the Goos-Hanchen effect provides the desired qualitative and quantitative

extension of the ray picture for spherical interfaces.

Eventually we comment on the relation between Gaussian beams and the exact wave picture
solutions for the dielectric disk that are given in terms of Bessel functions, see Section 7.2. One
can think of establishing a direct relation between Bessel functions and a Gaussian beam by
adjusting the (wave front) parameters of the Gaussian beam according to the contour lines of
the Bessel function. However, the results presented in Figs. 8.4 and 8.5 indicate that simply
assuming a beam width of the order of one wavelength gives already very reasonable results,
that furthermore depend only slightly on the precise width chosen. Consequently, the exact
connection to Bessel functions is not necessary and would, furthermore, be in no relation to the

approximations involved so far.

We conclude this section by briefly discussing the implications of a disk of refractive index
n < 1. Then we have to apply the Goos-Hénchen effect to a light ray coming from outside
the disk. This ray will appear to be reflected at a sphere of smaller radius and, accordingly,
the angle of incidence at this effective sphere is larger than the original angle x. To obtain a
consistent picture, rays inside the disk have to be reflected at this effective sphere as well, which

implies an increased angle of incidence. This behaviour is opposite to that for the optically

3This spread in the angles of incidence at a planar interface originally gave rise to the Goos-Hénchen effect,
in particular to Eq. (8.3). However, for a spherical interface the distribution of angles will be different. In the
simplest effective model we take this into account by integrating over all angles of incidence occurring for a given
beam width. Each contribution is weighted according to the Gaussian beam profile.
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Figure 8.4: Goos-Hanchen-shift corrected and integrated Fresnel coefficient at a
curved interface for kR=50 for a Gaussian beam of half width A/ V2 = \/ﬁﬁ/nk
The squares denote the numerical results for kR from Egs. (7.32, 7.36) with real
part close to 50 and the imaginary part (resonance width) expressed as reflection
coefficient via the sequential reflection model, cf. Eq. (7.62). The approximations
under which Eq. (8.3) was derived are not fulfilled for TE polarized light of this
wavelength. Therefore, for the TM result, Rs(x), we computed the angle x such
that the Fresnel law gives the same value, Rs(x) = R™(x). The corrected TE

reflection coefficient at the angle y is now presumed to be R'®(¥), where ¥ =

arccos \/(1/n2 - 1/[(1 = VR(x))?/(1+ VR(X))* — 1.

denser disk discussed above. It is in perfect qualitative agreement with the numerical results
shown in Fig. 7.16.

The concept that both rays inside and outside the disk are reflected at an effective spherical
interface larger (n > 1) or smaller (n < 1) than the real disk was used for example in [125]
to explain qualitatively the spacing of morphology-dependent resonances in experiments with
dielectric spheres. In [125], the penetration depth near total internal reflection is increased

due to the Goos-Hanchen effect, leading to an increase in the round-trip optical path length.



8.2 Description of narrow resonances in the wave picture

123

kR =150, n=1.54

w F
x4l AN
E [|===—-- Fresnel
S ogl| ° kR = 150
o GHS corr. & integr.
= [
O 06 J
(@) [
(&) L
c 04r 1
Qo
g 0.2 .
B ol
0 =
' L. 1
0.4 0.5

[En
T

o
o
e

o (
IS
e

Reflection coefficient Ry

0.2F
Oéﬁ-%ﬁ
L. U R S S R e ——
0.4 0.5 0.6 0.7 0.8
sin X

Figure 8.5: Same as Fig. 8.4 but for a wave vector kR = 150. As there, the integra-
tion procedure is carried out w.r.t. the effective interface, i.e., the sphere of radius
R' > R.

Therefore, the effective optical size of the cavity is larger than its physical size, explaining the
observed decrease in mode spacing.

Another interesting aspect of the Goos-Hanchen effect was investigated in [126] in the clas-
sical and quantum-mechanical scattering by a radially symmetric potential. It was found that
incorporation of the Goos-Hanchen effect in the classical deflection function leads to an im-
provement over the classical result for, e.g., the cross section. In this section we confirmed this

improvement for Fresnel reflection coefficients [128].

8.2 Description of narrow resonances in the wave picture

In the previous section, we employed a ray-based approach to account for the difference between
Fresnel’s reflections coefficients for planar and curved interfaces. The ezact results for curved
interfaces are obtained within the sequential reflection model, see Section 7.4 and the results
shown in Figs. 7.14, 7.15. They are based on the numerical solution of the implicit Egs. (7.32,

7.36) for the complex wave vectors of resonant states of the open system that were derived in
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Section 7.2. For practical purposes like modelling microcavities it is, however, desirable to have
an analytical expression for the resonance width if the resonance energy is given. In particular,
this implies that an expression for the resonance width as function of a continuous energy variable
is desirable. In terms of mathematics, this requires a kind of (smooth) interpolation between
the discrete solutions, and leads to a different problem that substitutes the original one. The
remaining part of this section is devoted to this problem.

A first possibility to obtain an analytical expression for the width y of narrow resonances
is to expand Egs. (7.32, 7.36) for small y. Applying the recursion formulas (7.34) for Bessel
functions [56] leads to Egs. (7.35, 7.37). For TM polarized light these equations read

nJm—1 (nkR)HY (kR) — Jny (nkR)HY (kR) =0, (8.6)

and for TE polarized light we have

m

I (nkR)HY | (kR) — Jny_y (nkR)HY (kR) = 7

1
( —) Jn(nkRYHD(KR) . (8.7)
n
Note that in contrast to the TM case the rhs of Eq. (8.7) does not vanish, and on the lhs m and
m — 1 are interchanged. Expansion of Eq. (8.6) in kR e 1y to linear order in the resonance

width y def yq is straightforward and was performed in [108] for the TM situation®

™ et +c+ad® +id

i (ac+1)2 +a2d? ’ (88)

where

a = —,
T

. = 1 (J 1(2) I (2) + Vip—1(2) Y () _nJm_l(nm)>
1—n? T () + Y7 (2) Im(z) )’
J - 1 JIn(@)Yyn1(x) — Jp—1(x) Y ()
1—n? J2(z) + Y2 (z) )

For the case of TE polarized light we have to expand the more complex Eq. (8.7), resulting

in
1, AC+BD _ ;AD+BC
TE _ AZ4 B2 A2+ B
W= ac+Bp\? | (ap-BC)\?
(E + A2 B? ) + ( A2 B2 )
(42 + B?) (4B + AC + BD —i(AD — BC))
_ : , (8.9)
(A?erB2 -|—AC’—I—BD> + (AD — BC)?
where
A Y T (n2) I () — nJ(08) 1 (2) + Adin (02) Jin ()
B L I (n)Yin(2) — no(n2) Y1 (2) + Ay (n2) Yo ()
¢ L (0 = Da (n0) Ju1 (@) + 27 A (n2) T ()

“Note that iya formally acquires a real part which can be understood as a correction to the resonance position
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—Adp(nz)Jpm—1(x) — nAJpy_1(nz)Jp(z)
D ¥ (02— 1)1 (n2)Ym 1(z) + Q%AJm(mc)Ym(w)
—AJy (nz)Ym—1(z) — nAJm—1(nz)Yp () —

A Y T(n—l).
z n

These Egs. (8.8, 8.9) can be either applied at a fixed quantum number m to yield the
resonance width as a function of energy, or they are used to find the resonance width at fixed
energy for increasing m, or sin y = m/(nkR), see Eq. (7.58). In the following figures we illustrate
the latter dependence. In Egs. (8.8, 8.9) we assumed y to be real which requires a purely
imaginary rhs. This will only be fulfilled at true resonance positions, and leads to characteristic
fluctuations of the calculated resonance width yg about the numerical values when only the
imaginary part of the rhs is analyzed, see Fig. 8.6. In the vicinity of ezact resonances possessing
nearly the same z that is used for the evaluation of Eqgs. (8.8, 8.9), the agreement is fully
satisfying. The reason for the fluctuations in between the true resonance positions lies in the
fact that the expansion condition of y < z is not necessarily fulfilled there.

For TM polarized light one can additionally impose a consistency condition for the real part
of the rhs in Eq. (8.8) [108] that in an effective manner cares for energy values that lie between
the discrete solutions of Eq. (7.32). The result obtained in [108] can be further simplified to

2 1
™

= 8.10
Ysm (1 —n?)mz J2(z) + Y2(z)’ ( )

which provides indeed a smooth dependence of the resonance width on the energy between the
discrete solution points. In the much more involved TE situation this procedure, however, fails.

The existence of angles of incidence where Egs. (8.8, 8.9) yield obviously unphysical results is
a drawback when one thinks about practical applications and one has to think about alternatives

as we shall do in the following.

Another possibility [127] of dealing with Eqs. (8.6, 8.7) is to extract the ratio of the Bessel
functions by transforming them into the form

1
Jm(nkR) " YR 1 gl (kR) '
Hy,)( (kR)
for TM polarized light, and into
Jm(nkR) _ 1 (8.12)

HY(kR) kR

Jm—1(nkR) annl)_l(kR) m (- 1)
if TE polarization applies, respectively. In both cases, the y-dependence of the rhs of Egs. (8.11,
8.12) can be neglected to a very good approximation, see Fig. 8.7. Therefore, we evaluate the
rhs at y = 0 and substitute the resulting value by o + i7.

As a next approximation we rewrite the ratio of Bessel functions on the lhs of Egs. (8.11,
8.12) using the Debye formula that is also refered to as approximation by tangents [56] for Bessel
functions Jp,(nkR) which states

nkR 2 m m T
Im (m - ) = Mﬂmtanﬂm COS (m(tanﬁ - p™) - Z) , (8.13)
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Figure 8.6: Comparison of exact and analytically determined resonance width y
for a) TM and b) TE polarized light versus the angle of incidence deduced via the
ray-wave correspondence. The squares denote the numerical solutions of Eqs. (7.32,
7.36) with real part in the interval (49,51). Since the resonance energy is kept
approximately fixed, the z-axis shows the dependence on the angular momentum
quantum number.
Egs. (8.8, 8.9) (lines) is very good if the condition under which Egs. (8.8, 8.9) were
derived is fulfilled, i.e., Im(kR) < Re(kR). In between the discrete solutions of
Eqs. (7.32, 7.36) this is not the case, giving rise to fluctuations. Consequently,

The agreement between the numerical results (symbols) and

the fluctuations depend on the value for which Eqgs. (8.8, 8.9) are evaluated as is
demonstrated for slightly different wave vectors Re(kR). Note also that the TM-
resonance width is a monotonic function of siny whereas a maximum is observed

for the TE case. It corresponds to the Brewster angle introduced in Section 7.1.

where the angle 8™ is provided by®

1
sin x

nkR

m

sec 0 =

1
cos gm’

SHere and in the following we do not specify the real part of kR when confusion can be excluded.
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Figure 8.7: Limitations of the approximation of the ratios (8.11, 8.12) by the tangent
for small refractive indices (n = 1.54). The monotonically increasing lines are the
rhs of Eq. (8.12) evaluated at kR = 50— 0.5¢ (full line) and neglecting the imaginary
part (dashed line) which proves to be a very good approximation. The full oscillating
line is the lhs of Eq. (8.12), again evaluated at kR = 50— 0.57. Its approximation by
the tangent is illustrated by the dashed oscillating line for the same kR. Whereas
for n > 2 the two curves will (nearly) coincide, for smaller n there are deviations in

the region m ~ Re(kR) that cause a failure of this approach.

tan ™ = (n:j?P —1. (8.14)

We evaluate ™ using Eq. (8.14) in the form g™ = arctan(cot x) = x — 7/2 up to 5th order in

e G G -5 519

Accordingly, we obtain for the ratio of the Bessel functions on the lhs of Egs. (8.11) and

sin y to be

(8.12), respectively,

Jm(nkR) _ cos(a’:— %7)r , (8.16)
Jm-1(nkR)  cos(a™~1 —7)
where o' is given by
2 3 3m /s m \3 T T
m_ ERZ —m2 4 % m_m om _gpr T
“ (kR)” —m* + R+ % (nkR) 0 (nkR) Moty Ty
m \2 m\2 1 /m\% T
= 1—(— — —(— —m—=——. 1
nkR( (nx) + (nx) + 6 (nx) ) mZ 4 (8.17)

In the last step we have neglected the 5" order term and made an expansion to linear order in
nkR, or y, respectively.

Eq. (8.16) can be further simplified when approximating o™ ! ~ o™ + 7/2. This will turn
out to be inapplicable for small n (n < 2, say), and leads to wrong results in this regime, see

Fig. 8.8. The reason for this is the (slight) difference in the arguments of the cosine functions in
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m=1) Consequently, when considered as a function of

the numerator (™) and denominator («
m, the real and imaginary part of the fraction do not need to be oscillating functions about the
m-axis. Rather, their averaged values are allowed to possess an overall slope, see Fig. 8.7. In
contrast to this behaviour, approximation by the tangent function leads to oscillations of both
the real and imaginary part of the Bessel function ratio about the m-axis, corresponding to an
average value of zero as is demonstrated in the same figure. Although neglecting the overall
slope by performing the tangent approximation is a good approximation for n > 2, it fails for
smaller n where the results presented below do not hold, see Fig. 8.8.

If we assume n to be not too small, we can approximate the Bessel function ratio (8.16) by
the tangent and proceed further. Since we can obtain the TM result from the TE expression
by interchanging m and m — 1 and setting A = 0 as discussed in the context of Eq. (8.7),
we consider first TE polarized light and deduce the TM expression thereafter from symmetry

considerations. Evaluating the rhs of Eq. (8.12) and using relation (8.16) yields

JIm(nkR)

7 ki~ e def 5TE | 7 TE (8.18)
-

with
STE 1 Jn—1(2) (%) + Vino1(2) Y (2)) — A(Jm (2)* + Y (2)?)
(ndm—1(z) — Adm(2))? + (nYm-1(z) — AY ), (2))? ’
TE W Jm—1(2) Y (%) + Yi-1(z) I (7))
(ndm—-1(z) — A (2))? + (nYm—1(z) — AV, (2))?
2n 1
1z (N1 (z) — Adp(2))2 + (nY 1 (z) — AYp(2))2

In the last step we used the relation Jy,—1(z)Yy,(z) + Yi—1(x) Jm (z) = 2/(7x) [56]. Straightfor-
ward algebra and usage of Eq. (8.17) for the resonance width y yields®

(8.19)

nyF = Imlarctan(o +i7)],

2 2 1 4
F o= 4J1- (ﬁ) + (ﬁ) 42 (ﬁ) . (8.20)
nw nw 6 \nx
Using the relation arctanz = (1/2¢) In[(1 + iz)/(1 — iz)], we obtain the final result for the

resonance width of TE polarized light with a vacuum wave vector x = Re kR

TE 1 1 (1—7TE)2 4 (UTE)2

T T amF " (1+7TE)2 4 (O.TE)Q ’

(8.21)

where 0TF and 7TF are introduced in Eq. (8.19).
We now turn to the case of TM polarization. From Eq. (8.11) we obtain for sufficiently large

Im—1(nkR
% = cot(a™) = —tan (am — g) R , (8.22)
where 0™ and 7™ are found from ¢TF and 7TF by interchanging m <+ m — 1 and setting

A" = 0. Therefore,

oM _ Im—1(2) I (z) + Yin—1(2) Vi (2)
n(J5(z) + Y2 (2)) ’

5We are only interested in the relation for the imaginary part of kR. Taking into consideration the equation

(8.23)

for the real part of kR, which would give a correction to the resonance energy, is beyond the scope of this work.
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Figure 8.8: Analytically evaluated resonance widths y™, yTF (cf. Egs. (8.21, 8.21),
full lines) in comparison with the exact results (Egs. (7.32, 7.36), crosses) for TM
and TE polarized light. For n > 3, all curves coincide. However, the analytical
expressions break down around n = 2 as discussed in the text. For TM polarization
the result for 1M, modified by a phenomenological factor that ensures the right

limiting behaviour [108] is also shown (dashed lines).

LIM In=1(2)Ym(2) + Yim-1(z) Jm (2)
n(J7(z) + Y3 (z))
2 1

Cmnz J2,(z) + Y2 (z) (8:24)

To solve Eq. (8.22), we note that the change of 7/2 in the argument w.r.t. the TE case does not
affect the imaginary part, such that Eq. (8.21) applies now for —y, and we get the final result

™ 1 (1—7TM)2 4 (UTM)2

~anF " (14 7T™M)2 4 (O-TM)Z '

y (8.25)

Note that Eq. (8.10) can be rewritten in terms of o, 7 for n not too small (1/(1 —n?) =~ —1/n?)

as

TTM

Yo = 7 (8.26)
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which is consistent with Eq. (8.21) in the limit 7 < 1, 0 — 0, and F = oo. This is immediately
seen using the first-order expansion of In[(1 + z)/(1 — z)] = 2z. Again, applying Eq. (8.26) for
yaM 0 the case of TE polarized light fails to provide a smooth solution for %, which underlines
once more the significant analytical differences between TM and TE polarization.

In Fig. 8.8 we illustrate the results obtained by the tangent approximation. Apart from the
failure for small n discussed above, the results agree very well with the numerical results, in

particular for refractive indices relevant for semiconductor lasers (n ~ 3.3).

Summarizing this chapter we have derived new analytical expressions for Fresnel coefficients
at curved interfaces that work well for n > 2; for n < 2 more careful approximations are in order.
Furthermore, the results could be qualitatively and quantitatively explained in a novel ray-based

model that was extended by the Goos-Héanchen effect as we saw in the previous section.



9 Ray-wave correspondence in the dielectric
annular billiard

In this chapter we apply the methods outlined in Chapter 7 to the case of the
dielectric annular billiard. We first study the ray dynamics in classical annu-
lar billiards with hard walls in terms of the Poincaré section. We generalize
this approach to the refractive annular billiard by allowing light rays to enter
the inner disk whenever the condition for total internal reflection is violated.
Within the wave picture, we start our discussion with the case of the dielectric
disk that we generalize by first placing another dielectric disk concentrically
inside the system that is subsequently moved off the centre. We study the be-
haviour of resonances both in the delay time and in its Fourier transform. This
allows us to identify the type of trajectory via its length. Besides a great va-
riety whispering-gallery-type modes, we also find wave-mechanical realizations
of other regular orbits. We study their signatures in the Poincaré section and
their dependence on the ratio of the refractive indices that is used to control
the openness of the system.

9.1 Classical and dielectric annular billiard: Ray picture

The system that we will consider in this chapter is shown in Fig. 9.1. Is consists of a (larger)
dielectric disk of refractive index ny and radius R; in which a smaller disk (ng, Ry) is eccentrically
placed. The distance between the two disk centres is the eccentricity or displacement parameter
d. This system is embedded in air with ng=1. Given a set of parameters (ng = 1,n1,n2), the
same results hold for the scaled set (ng,m1 = ning,ne = nonp) for wave vectors k=k /mo, if
the geometry is not changed. Concerning the geometry, a similar scaling applies. Fixing the
dielectrica, the parameter sets (R = 1, R2,0) and (ﬁl,fig = Rgél,g = 5&1) are equivalent
when k — k = k/R;.

The classical annular billiard, where the boundary of the inner and outer disk are hard walls
that confine trajectories to the annular region, was studied by Bohigas [100]. Doron and Frischat
investigated in particular the doublet splitting in the eccentric annular billiard in great detail
[101]. We will comment on this effect in open systems below in the context of Fig. 9.11.

In the hard-wall systems [100, 101], the dielectric properties of the annular region do not
play a role because refraction to other regions cannot occur. In the following we will, however,
study open annular systems where refractive escape is allowed, and the confinement mechanism
is provided by total internal reflection. The critical angle, Eq. (7.3), that distinguishes between
total internal reflection and the possibility of refractive escape is determined from the ratio of
the refractive indices of the dielectrica such that the relative material properties now become
important.

In this section, we will study this interplay in terms of Poincaré sections, cf. Section 7.1. In
Fig. 9.2 the Poincaré surface of section for a classical (hard wall) annular billiard (Ry = 0.6, 6 =
0.22) is shown. We see a mized phase space with several stability islands, typical representatives

of which are shown on top and bottom illustrating the richness of the phase space. A major
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part of the phase space is taken by the so-called chaotic sea [75]. Near the values siny = +1 we
find the whispering gallery orbits.

Let us now address the question how to
model and represent trajectories in a dielec-
tric annular billiard. We will keep the outer
boundary as a hard wall in order not to
“loose” rays, but allow refractive coupling to
the inner disk whenever the angle of incidence
at the inner boundary is smaller than the crit-
ical angle for total internal reflection. Then

the full amplitude shall enter the inner disk

and there is no reflected ray. This assumption
approximates Fresnel’s law, Eqs. (7.4, 7.5), to
a stepwise function. However, it has the great

advantage to make things clear and to avoid Figure 9.1: Geometry and notations in the

an exponential increase of the number of rays ~ dielectric annular billiard.
involved. We will refer to this model as re-
fractive (annular) billiard. The “real” situation will be somewhere in between the classical
billiard where each ray is always reflected and the refractive billiard that neglects the reflection
when refractive transmission is chosen. We will find that this combination is able to explain the
wave-picture results very well in Section 9.3.

An example of the phase space of a refractive billiard is shown in Fig. 9.3. The parameters are
the same as in Fig. 9.2, with the addition of refractive indices, n; = 3 in the annulus and ne =1
in the inner disk, allowing for partial confinement in the annulus due to total internal reflection.

! now possesses far less structure. Certain trajectories are lost because they

The phase space
are allowed to enter the inner disk which affects the orbit in a way that the trajectory cannot
be closed any more. This applies in particular to orbits that hit the inner disk perpendicular
clearly violating the condition for total internal reflection except for ni/ny — oo in which limit
the classical annular billiard with hard walls is recovered. Indeed, we do not find those orbits
represented in the phase space shown in Fig. 9.3. On the other hand, we find orbits that remain
unchanged in comparison with the hard-wall situation. Besides the whispering gallery modes
that are not at all affected by the inner disk (cf. Section 7.1.1), this applies to an orbit (Fig. 9.3
top right) that fulfills the condition of total internal reflection at the inner disk and, therefore,
persits its refractive opening. Most interestingly, we discover a new type of regular orbit (Fig. 9.3
bottom right) the trajectory of which lies partly within the inner disk. Its appearance depends,
of course, on the ratio of the refractive indices. For example, it is lost when increasing ni to
higher values. The possibility to have regular trajectories that travel in both dielectrics is a new
feature found in the phase-space structure.

In Section 9.3 we will discuss successes and limitations of the concepts outlined above in the
context of the ray-wave correspondence in the dielectric annular billiard. In following Section
9.2 we firstly address the scattering approach to the annular billiard on which we will base the

wave picture interpretation.

! As before the outer boundary is chosen as the surface of section.



9.2 Dielectric annular billiard in the wave picture

133

T T T T

T

T T T T T

T

T

MR

1

| IR

L

| R

TR

| I B

L

L

L

0 1 2 3

Figure 9.2: Poincaré section for the classical hard-wall annular billiard (R; = 1, Ry =
0.6, = 0.22) showing a highly structured mixed phase space. Typical representa-

tives of stable orbits and the corresponding stable islands in phase space are shown

on top and bottom.

5

9.2 Dielectric annular billiard in the wave picture

9.2.1 Scattering matrix

In this section we will generalize the ideas developed in Section 7.3 to the dielectric annular

billiard in order to determine the S-matrix for the eccentric annular billiard. To this end, we

start with an ansatz for the wave function for the (TM polarized) electric field ¥. We will

denote the three different regions by 0 (for the environment that is assumed to be air), 1 (for

the annular region of refractive index n1), and 2 (for the inner disk) to label the wave functions

as well as the wave vectors that are kg, k1 def n1kg, ko def nokp.

The problem of the S-matrix of the annular billiard can be divided into the scattering

problem at the outer boundary (between refractive indices ng and n;) and that at the inner
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Figure 9.3: Poincaré section for the refractive annular billiard with the same ge-
ometry as in Fig. 9.2 and for refractive indices n; = 3,90 = 1. The part of phase
space that is influenced by the refractive opening of the inner disk is completely
re-structured. Whereas many regular orbits shown in Fig. 9.2 are lost, there is a
new one (bottom right) that illustrates a new possibility for a periodic orbit that is
inherent to the refractive billiard.

boundary (between refractive indices n1 and ng). Although the scattering at a dielectric disk was
essentially solved in Section 7.3, the situation we are confronted with here is more complicated:
first of all, the two disks lay one in the other, and, secondly, their centres will in general not
coincide! We will begin with the scattering problem at the inner boundary and express the
scattering matrix S? for the dielectric disk w.r.t. a coordinate system the origin of which does
not coincide with the centre of the inner disk. This implies that the corresponding scattering
matrix S? has not only entries along its diagonal. From Section 7.3 we already know the S-matrix
of the inner disk w.r.t. primed coordinates, see Eq. (7.46),
Hl(Q)I(kl'rl) J(’(nkIT')Hl@) (kvr')

_ ik
S2 = — ki) S (9.1)

! 7 n ,’./
HY (kar') — n o) 1O (k)

and will now derive the relation between the (diagonal) S2¢ and S2. To this end we write the
ansatz for the wave function in the annulus in primed coordinates, r=F—4 , with § the vector

from the centre of the large disk to the centre of the smaller disk, as

Tle(7 - §) = f: af [Hl@) (kal7 = 31) e + i Sier? (k|7 5) e“’¢] , (9.2)

[=—x I'=—o00

where the coefficients af are to be chosen to yield the desired kind of incident wave. We use the
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Figure 9.4: Addition theorem for Bessel functions.

addition theorem for Bessel functions® Z,, € {Jm,Ym,HT(,%),HT(,%)} to relate the arguments wr

and wr’ (w is a constant factor), see Fig. 9.4, [56]

Zyy(wr')e™ = " T (W) Zyy g (wr) e MRS (9.3)

k=—00

Inserting this into Eq. (9.2) we obtain the expression

Z Z al[ Lo (ki) + S l(jk(klr)] Ty (k18) eik)9 (9.4)

l=—0 k=—x

for the wave function in the annulus, now expressed w.r.t. the centre of the bigger disk, i.e., in
unprimed coordinates. Now we specify the coefficients af by the requirement that the amplitude

in front of an incident wave with angular momentum m shall be one in unprimed coordinates,

Z Z afHE), (ki) T (k16) €09 = HD (kyr) €9 (9.5)

l=—0 k=—00

def

With y = I +k, 1 = p—k, and using Y} Jp_(u—k)Jk = Omy, we find that choosing

me = Jou_i(k18) VI (9.6)

provides a suitable set of coefficients for a given m. Accordingly, we write

o o

YR [6mqu(f)(k1r)ei“¢+J k) (B10)SE k)Jk(kla)Hgl>(k1r)eiu¢]

m=—oQ p,,k;:foo

Y {H<>k1r eme 1 Z Y (kar)e W}, (9.7)

m=—00 HU=—00

2The original form of this theorem reads [56]
Z (wr')e™X = Z T (w8) Zppy 1 (wr)e™®
k=—oc0

for the general restriction |§ exp(£i¢)| < |r'| which is always fulfilled in the annular region if Rs > J. If this is
not the case, the addition theorem has to be applied in a modified form that we do not further consider here.
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where we have read off the scattering matrix S? of the inner disk w.r.t. the centre of the big
disk,
o0
S72nu déf Z Jm—(u—k) (klé)sgﬁ,k)(ufk)Jk(kl(S) . (9.8)
k=00
The structure of this equation suggests a notation in terms of a transformation matrix U, namely
S? = U~18%¢U, that describes the change of the origin of the coordinate system. Without going
into the details of this approach, we read off Uy; = Jy_; and Ul,_l1 =J_y.
The scattering matrix S? allows us to describe the scattering at an off-centred disk, and
we can now formulate the scattering problem of the annular billiard in the spirit of Section
7.3. Accordingly, we start with an ansatz for the wave function U9 outside the annular system

(I7] > Ry, using polar coordinates) in the form

o0 o

V= > @ = > [Tk + Y Suaerh (k)| (9.9)

M=—00 M=—00 M'=—o0

where we have introduced the scattering matrix S of the (complete) system and the definitions

U (ko) = HD (kor)e™? (9.10)
U (ko) = H (kor)etM? (9.11)

for incoming and outgoing waves outside the disk. Note that we have used up here the freedom
in fixing one of the amplitudes.

Similarly, we write for the wave function ¥! in the annular region

o0

oo
A = > a | T (R + Y SRS (k)| (9.12)
I=—c0 I'=—00
with the amplitudes a;, the abbreviations as in Egs. (9.10, 9.11), and S? from Eq. (9.8).

Now, we determine S from the matching conditions® that require for continuity of the wave
function itself as well as their derivative. To this end we introduce the notation of capital letters
for functions of argument kor and reserve lower case characters for the argument k7. Given an
incident wave of angular momentum M, wave function matching for each angular momentum L

in the scattered bunch yields

o0
H](\/Zl)eiM¢6ML + SMLHg)eiM = a(LM)h(LQ)eiL¢ + Z al(M) SlQLh(Ll)eiL¢ , (9.13)

l=—

(M)

where we point out that the amplitudes a; ' are now coefficients associated with an incoming
function of angular momentum M, namely H](V2I)' Since this has to hold for all M and at fixed

M for all L, we write this as a matrix equation
(M g @) 1 (gD 1) — (4 (h@) n Szhu)) , (9.14)
(1,2) _ hl(1,2)

lj
bra-notation for quantities that, at fixed M, are transposed vectors and gain matrix character

where $? is a matrix, h(? and A1) are diagonal matrices, h 015, and we adopt the

3Note that ¥ stands for the electric field, see Chapter 7, and the matching conditions arise as a consequence
of Maxwell’s equations.
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once M is varied. With this notation we immediately write the matching condition for the

derivatives as

ko (A0 B/ 4 (SO0 W) = (@D |y (W) + 5200 (9.15)

From Eq. (9.14) we find after substituting F © 1@ 4+ §21() that
(™) = (<<M>H<2>| + <S<M>|H<1>) Ft. (9.16)
def

Introducing furthermore F’ © @ 4 g2p @) ang w L F~1F', we write the S-matrix as the
solution of the problem as

S = (k1 HOW — H’(Z)) (ko 7Y _ g 7HO W) . (9.17)

This last equation allows us to apply the Wigner-delay-time approach to resonances, cf. Section
7.3.2, and we will study resonance signatures in the delay time 7(kg) in the following. We recall
that 7(ko) is proportional to the derivative of the phase of det .S w.r.t. the wave vector kg, see
Eq. (7.49).

Before we discuss the results in the remaining part of this chapter, we complete the discussion
here with some comments on the wave functions. First of all, we have not given the wave function

in the inner disk so far. The ansatz is as usual a sum of Bessel functions,

o
Oy = 3 by (kar')e™ (9.18)

[=—x

where we adopted primed coordinates for convenience. The coefficients b; are found from match-
ing with the wave function in the annulus at the inner boundary. To this end, we have to rewrite
the annular wave function (9.12) in terms of primed coordinates by applying the addition theo-

rem (9.3) for Bessel functions. After straightforward algebra we find

\1110(7:;) — Z alC [Hl(2)(k1’f'l) + SlQchl(l)(kl""I)] eil¢/ ’ (9'19)

l=—
where the coefficients a are related to the a; by

o0

aj = Z apJy_y def (a|U . (9.20)

l'=—00

Another remark is in order concerning the validity of the addition-theorem-based expansion
of the Bessel function when changing between primed and unprimed coordinates. For example,
expansion of the annular wave function in primed coordinates fails near the outer boundary where
|7:7 | > Ry — Ry — 4. Similarly, expanding the annular wave function in unprimed coordinates does
not work near the inner boundary where |7] < Ry + d. The reason for this behaviour is that
angular momentum is not conserved in the eccentric annular billiard; and the expansion breaks

down at radii where this is “noticed” by the waves because interface boundaries are hit.



138 9 Ray-wave correspondence in the dielectric annular billiard

na>n,=1 n,>n; >1

= = :

(] T ) T
czs ’ Model for ring Iaser‘ c_>t5 Model for melting
= = ice particles in clouds
c c
e g

o o

o o

o ()
= =
© ©
qq—J | | Hq;, | |
m L | | . HLE . | | .

0 R/Ri 1 2 0 Ro/Ri 1 2
Radial coordinate r/R; Radial coordinate r/R;

Figure 9.5: Effective potential for the concentric annular billiard. Assuming air
outside, the two principal situations shown above are possible according to whether
the refractive index in the annulus is highest (n1 > ne > mng = 1, left) or the
refractive index of the inner disk (no > n; > ng = 1, right). In comparison with the
disk (Fig. 7.6), in the first case the potential well is broadened whereas the latter case
results in a double-well structure. Prominent examples are ring lasers and melting
ice particles in clouds [106], respectively. Note that in the eccentric situation the
position of the inner discontinuity varies as a function of the polar angle ¢.

9.2.2 Concentric case and exact solution

In the concentric annular billiard, angular momentum is conserved due to rotational symmetry
and provides a good quantum number. In this special situation we can find an exact solution
in terms of the wave picture developed in Section 7.2. The basis for interpretation of these
quasibound states, characterized by a complex wave number, is again the effective potential
picture outlined there [see Eq. (7.16)]. The new aspect in the case of the annular billiard is that

the refractive index changes twice discontinuously, giving rise to

K1l—nd)+m iRy <r<R

Vet (1) = (9.21)

k%(n%—n%)+7‘—; ifr <Ry.

The resulting two principal possibilities are shown in Fig. 9.5. In the situation of ny > no >
ng = 1, a potential well is formed in the annular region. In eccentric geometries, its size varies
as the polar angle ¢ is followed. In terms of the ray picture, confinement on either side of the
well is provided by total internal reflection; quantum mechanically, tunnelling escape is possible.

For no > ni1 > ng = 1, a double-well structure arises. The relative depth of the wells
depends on the ratio of the refractive indices as well as on the ratio of the radii, Ry/R;. In this
situation, quasibound states might be localized in the left or in the right well, corresponding
to whispering gallery modes of the inner and outer disk, respectively. Note that locally each
of the wells corresponds to the potential we know from the dielectric disk, see Chapter 7.

However, identifying the subsystem of the inner disk with the system of a (single) dielectric disk
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oversimplifies the situation in general since it neglects the effect of the second well. This is in
particular not justified if the outer well dominates the structure of the potential.

Many resonant states will, however, be supported by both wells, and we will give an ray-model
based explanation and examples below, cf. e.g. Fig. 9.8. In general, the number of resonant
states is increased when the refractive indices give rise to a double-well structure of the effective
potential as we shall see below.

The concentric case allows for an exact solution of Maxwell’s equations, i.e., the matching
conditions result in a complex equation the solutions of which are the complex wave vectors of
quasibound states. Straightforward evaluation of the boundary conditions for the value and the
derivative of the wave function, performed at the inner and the outer boundary, gives for TM

polarized light

0 = mdm(ksRo)Hy (ko) | Hpy® (i Bo) HS (i Ba) — Hy, D (bt o) HSD (k By) | (9.22)
— 12T (ko Ro) HOD (ko Ry) [H,’n(Q)(kle)H;n(l)(klRl) - H;n(”(klRQ)H;n(z)(klRl)]
—npJ! (ko Ro)H!. D (ko Ry) [Hﬁ?(klRQ)H,(,P (k1R1) — H},}>(klRQ)H§3)(k1R1)]

i (ks Ro) HD (ko Ry ) [ HSP (ks Bo) i (ki B) — HSD (ky Ro) Hy, ™ (k1 Ry)|

as the desired equation (Rp > 0). Note that Eq. (9.22) reduces to Eq. (7.32) for n; = ng as
expected for the situation in which the annular billiard reduces to the dielectric disk.

In Fig. 9.6 we compare the results obtained for the delay time 7(kg) in the scattering matrix
formalism, Egs. (9.17, 7.49), with the exact solutions, Eq. (9.22). We start with the situation
ny = ng, ie., the dielectric disk (solid line in Fig. 9.6). If we now turn to the concentric
annular billiard, we find a systematic deviation of the resonance position to the right (left) if
the refractive index of the inner disk is lower (higher) than that in the annulus. The fact that
all three resonances are rather close to each other suggests that the resonances in the annular
geometry are similar to those for the dielectric disk and mainly localized at the outer boundary,
see Fig. 7.9. However, the resonant wave function do experience the change of the refractive
index in the inner disk as indicated by the shift in the position. The direction of the shift is

most easily seen when thinking in terms of an effective refractive index neg,

2 2
Neff def ( — %) ni + %ng . (9.23)
An inner disk of lower refractive implies neg < m1 and a larger spacing in the resonances as
is clearest seen when going back to the closed dielectric disk and noting that eigenvalues are
defined by nk 4l onst. = zero of Bessel function, see Eq. (7.22). Obtaining the same constant
value for a smaller n requires a higher k. In contrast, an inner disk of higher refractive index
reduces the spacing between the resonances. Note that this effect is strongest for resonances
of small angular momentum quantum number m since they do extend to the inner regions of
the disk or the annular billiard?*, respectively. Accordingly, the effect reduces for increasing m
and eventually vanishes if the inner disk is not seen any more. This behaviour is clearly seen in
Figs. 9.6 and 9.7. In the latter plot, we start from the dielectric disk of refractive index n; = 6.

Then we consider the annular situation with ny = 5 and increase the radius Ry of the inner

4In terms of the ray picture, they correspond to smaller angles of incidence, leading to the same conclusion.
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Figure 9.6: Resonances in the concentric annular billiard (R; = 1, Ry = 0.6,n1 = 3),
essentially corresponding to the first family of whispering gallery modes. The “real”
annular situations ny = 2 (dash-dot) and ne = 4 (dashed) are contrasted to the
homogeneous disk ne = 3. Note the systematic deviation of the resonance position
to larger (smaller) wave vectors for ne = 2 (ny = 4) that decreases with increasing
angular momentum quantum number m since the inner disk becomes less important
there. In the inset, we compare the properties of a peak in the delay time with
the exact wave vector according to Eq. (9.22) for the resonances to m = 4. We
find excellent agreement with the exact values kg = 2.0108 — 0.0041i (ny = 4),
ko = 2.0753 — 0.0063i (ny = 3), and ky = 2.1035 — 0.0075¢ (ny = 2). Note the
existence of additional resonances for ny = 4, some of them marked by arrows from

below. They are due to the double-well structure of the effective potential, see text.

disk. The impact of the inner disk is systematically enhanced, leading to deviations from the
homogeneous system case.

Another feature in Fig. 9.6 is the emergence of a family of resonances exclusively for the
case of a higher refractive index of the inner disk. The explanation of this effect lies in the
corresponding double-well structure of the effective potential (see Fig. 9.5), originating from the
jump in the refractive index at the inner disk. This structure allows for states in the outer
(annular) well and in the inner well and for combinations of the two. One example of such a
quasibound state with a corresponding trajectory in the ray picture is shown in Fig. 9.8 for
the central arrow in Fig. 9.6. This family of resonances shows the characteristics discussed
for whispering gallery modes in the context of Chapter 7. However, the ray picture suggests
another type of dynamics for this orbit in the sense that the rays travel through the inner disk
between two bounces at the outer boundary and simultaneously form the (whispering-gallery-
type) pattern at the outer and inner boundary, see Fig. 9.8. A remark is necessary concerning
the existence range of this family of orbits from the point of view of the ray picture. As we
saw before (cf. Table 7.4), the angle of incidence increases corresponding to a sharpening of the
resonance peak within each family of resonances. This implies, however, that we loose this family
of states if the angle of incidence at the outer boundary becomes larger than arcsin(Rs/R;),

which defines the angle under which rays just touch the inner disk. This illustrates the rather
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Figure 9.7: Influence of the inner disk on whispering gallery modes. We compare the
dielectric disk (dash-dot) with concentric annular billiards of increasing radius Rs of
the inner disk (n; = 6,no = 5). The resonance positions are increasingly affected,
especially those of higher order families (radial quantum number p > 1) that extend

further to the inner regions.

complicated interplay of the two disks already within the simple ray model. As for the wave
picture, we can, therefore, expect subtle effects as well, initiated by the double-well structure
of the effective potential. For a given wave vector k, the structure of Vg directly reflects the
chosen parametrization (R1, Ry, ng,n1,n2) in terms of the relative width and depth of the both
wells. Depending on the ratio of the refractive indices ny/n; and on the ratio of the radii Ro/ Ry,
the peaks in the delay time correspond to whispering gallery modes of the inner or outer disk®.
One possibility to obtain certainty about the kind of resonance corresponding to a particular
peak is to check its sensitivity against a change of the parameters. For example, the resonance
energy of whispering gallery modes of the inner disk are less sensitive against changes of the
displacement ¢ than the position of whispering gallery modes at the outer boundary. The latter

dependence is discussed in Section 9.2.3.

9.2.3 Eccentric case: Perturbation of whispering gallery modes

In this paragraph we briefly discuss the implications of an eccentrically placed inner disk. Our
starting points are the dielectric disk and the concentric annular billiard studied in Section 9.2.2.
As illustrated there, deviations of the refractive index no of the inner disk from the value nq in
the annulus cause (in general) a shift of corresponding resonance positions that we explained by
means of an effective refractive index neg, see Eq. (9.23). For example, for ny < ny the resonance
positions are shifted to higher wave vectors. In Fig. 9.9 we see that this effect is enhanced if
the inner disk is shifted away from the centre. This can be understood by realizing that an
eccentrically placed inner disk will affect the resonant mode in particular in the constricted

region where the distance between inner and outer boundary is smallest. Therefore, an off-

5For example, in the concentric annular billiard with Ry = 0.6, n; = 3, ny = 4 the first resonance peaks
correspond to whispering gallery modes localized at the outer boundary, whereas for ny = 6 they are found in the
inner disk.



142 9 Ray-wave correspondence in the dielectric annular billiard

R,=0.6,06=0,n,=1,n;=3, n,=4

kp=3.1,m=5 @ = 20°, Xo=19°
1.5,7“‘”HH‘HH‘HH‘HH‘HHf 1.5,7‘HH“H“HH‘HH‘HH‘HHf
1t P e . 1F .
z - e ] z
0.5 e § " ] 0.5 ]
[ ’II /‘ ‘\ \\ 1 [
> of # = & 8 1 > of :
[ \ i J 1 1 [
: v WL LW ] :
05 AT 05} ]
Ak -__ ] Ak ]
_1-5 ;\ s b e b b b b \; -1-5 ;\ s b b b b L \;
-15 -1 -05 0 O. 1 15 -15 -1 -05 0 O. 1 15
X X

Figure 9.8: Wave intensity plot (left) for a state that is supported by both (concen-
tric) disks and, therefore, is typical for the dielectric annular billiard. On the right
a corresponding ray pattern is shown.
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Figure 9.9: Resonance positions for increasing displacement § in comparison with
the concentric case (dash-dot) for an annular billiard with no < my. Whispering
gallery modes of the outer disk are increasingly shifted to higher wave vectors due

to a decrease of the effective refractive index.

centred inner disk acts (locally) like a concentric inclusion with larger radius RS®. This in turn
gives rise to a decrease of the effective refractive index according to Eq. (9.23), and explains the

observed behaviour for whispering gallery modes of the outer disk.

In Fig. 9.10 the same scenario is shown for an inner disk with higher refractive index, ne > ns.
Again, for the first resonances, corresponding to whispering gallery modes of the outer disk, we
see an increasing shift with increasing displacement §, in this case to the left. The explanation
is as before. However, for the new family of resonances illustrated in Fig. 9.8, we observe the

opposite behaviour for § = 0.1. This implies that for those modes the relative contribution from
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Figure 9.10: Resonance positions for increasing displacement ¢ in comparison with
the concentric case (dash-dot) as in Fig. 9.10, but now for ng > n;. Here, whispering
gallery modes of the outer disk are increasingly shifted to the left due to an increase
of the effective refractive index. However, other modes are affected in a different
way, as for example the resonances marked by arrows as in Fig. 9.6 that belong to
the family of resonances of the type in Fig. 9.8. In comparison with the concentric
case, the resonance at kg = 3.1 is shifted to the right for § = 0.1, and shifted to the
left for § = 0.3.

the annular region is enhanced with increasing displacement ¢ (in terms of the ray picture one
would argue that the ratio of the ray paths in the annulus and in the inner disk, respectively, is
shifted in favour of the annular region, the lower refractive index of which leads to a decrease of
ne- However, we find this trend changed when we look at § = 0.3 where, moreover, resonances
are shifted to the right (small m) or to the left (higher m) of the corresponding peaks in the
concentric case, illustrating the limits of this simple picture.

Eventually, we give an example for a typical wave pattern of a whispering gallery mode that
is slightly affected by the eccentric geometry, see Fig. 9.11. The correspondence to the ray model
is evident as illustrated in Fig. 9.12. Note that both ray patterns were obtained with nearly
the same initial conditions. Although their appearance is very different, they both have to be
attributed wave patterns like the one in Fig. 9.11.

At this point a comment is in order concerning the well-studied doublet splitting in the
eccentric annular billiard [101]. In the concentric annular billiard angular momentum doublets
(states composed of angular momentum components m and —m) are degenerate in energy due
to rotational invariance of the system. In the case of an eccentrically placed inner disk this
symmetry is reduced to a reflection symmetry w.r.t. the z-axis, and the degeneracy is lifted.
The exact quantum states have to be symmetric or antisymmetric under the corresponding
symmetry operation and are just the even and odd parity states (symmetric and antisymmetric
combination of angular momentum states to +m) introduced in Eq. (7.24). Since in the eccentric
case the effective potential Vg (r) varies as a function of the polar angle ¢, and even and odd
parity states have different probability densities on the symmetry axis, see Fig. 9.11, we would
expect the states in this figure to be not degenerate in energy. The reason that the doublet

(tunnelling) splitting in energy is harder to observe in the dielectric annular billiard than in a
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Figure 9.11: Symmetric and antisymmetric wave function for the annular billiard
of Ro =04, § = 0.2, ny = 3, and ng = ny = 1. Shown is the first family mode
with angular momentum m = 3 (kg = 1.66). Note the enhanced intensity in the

constricted region of the annulus as expected from ray-model based considerations.
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Figure 9.12: Perturbed whispering-gallery-type ray patterns in the refractive annular
billiard R, = 0.4, § = 0.2, n1 = 3, and ny = 1. The initial conditions are very
similar for both trajectories. However, whereas the regular orbit (left) is localized
on small islands that all fulfill the condition for total internal reflection, the chaotic
trajectory (right) violates it a few times because it accesses regions in the Poincaré
section where |sinx| < 1/n;. The density of rays in the constricted region of the

annulus is enhanced.

closed system as in [101] lies in the possibility of tunnelling escape to the surroundings. This
implies that for each resonance of the open system there is a competition between the doublet
splitting and the resonance width. The latter is related to tunnelling escape from the annular
system and to the outer barrier of the effective potential, cf. Fig. 9.5. The resulting width
of the resonance can easily overwhelm the effect of the doublet splitting. This effect becomes

especially clear when one decreases the width of the constricted region in order to enhance
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Figure 9.13: Delay time plots 7(ko) (left) and Fourier transform (right) for the
dielectric annular billiard ng = 1,n1 = 3,n9 = 1 with Ry = 0.4, § varied (Ak =
0.005). Families of whispering-gallery type orbits in 7(k) are increasingly shifted
to higher wave vectors due to decreasing effective refractive index. The Fourier
spectrum is essentially made up of two peaks and their higher harmonics. The
first contribution corresponds to the geometric length of whispering gallery orbits
at L = 5.2, the other peak at slightly higher length originates from the presence of
several resonance families. Its weight is approximately constant, whereas the weight
of the whispering gallery orbit decreases with increasing eccentricity. — The high
intensity around L = 0 is due to the overall slope of the delay time representing the

smooth part of the density of states.

the doublet splitting. Then at the same time the cavity will be more leaky there (as is, e.g.,
immediately verified in the ray picture) and the resonances will be broadened. Indeed we found
this broadening to be the dominant effect. Another factor that limits the appearance of doublets
is the general problem that studying the (Wigner) delay time one does not access the sharpest
peaks where tunnelling escape is small and a doublet splitting might be seen, cf. also Fig. 7.12.
Hence, the investigation of doublet splittings requires a rather closed system (n; > ng) and a

sufficient resolution Ak. It is, however, not of primary interest in the present work.

We end this section by a systematic investigation of the influence of increasing eccentricities
on the resonance position in the delay time plot 7(k), see Fig. 9.13. Families of whispering-

gallery type orbits are easily identified up to a radial quantum number p = 4 for the concentric
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case. With increasing eccentricity the spacing between the resonance peaks also becomes larger.
The reason for this was discussed in detail in Section 9.2.3 in terms of the effective index of
refraction, Eq. (9.23). We find this interpretation to hold also for large displacements of § ~ Ro
where, correspondingly, we find signatures of only three families when the same wave vector

interval as for small displacements is chosen, see Fig. 9.13.

On the right of Fig. 9.13 we show the Fourier-transformed delay time data, i.e., the length
spectra [97]. The general idea behind are the trace formulas that allow one to express the
oscillatory part of the density of states as a sum over classical periodic orbits [57, 76, 97, 98].
Here, we apply the inverse procedure (assuming that the general idea holds for open systems as
well), and extract the contributions of the different periodic orbits from the spectra ([59], see
also the context of Eq. (7.63) for a relation between resonance spacing and orbit length). The
Fourier transform yields peaks at the length of the contributing orbits, more precisely at their
optical path length. We convert this into a geometric length L by division by ni, which strictly
speaking only applies for resonant modes localized in the annulus. If the refractive index of the
annulus is highest, this is a good approximation due to the total internal reflection confinement

at both boundaries.

In the concentric case, the spectrum is dominated by the peaks stemming from whispering
gallery orbits, L ~ 5.2, see the top right plot in Fig. 9.13. This orbit length corresponds to
a mean radius Rwg =~ 0.83 < R;, in accordance with the naive expectation supported by
Fig. 9.11, which was obtained for the m = 3 resonance at 6 = 0.2 (kg = 1.66). The position of
this “whispering-gallery peak” remains unchanged when the eccentricity is increased, however,
its height decreases since the modes become more and more affected by the constricted region
leading to increased leakage loss, that is, broader resonances resulting in a reduced signature
in the Fourier transform. Close to this whispering-gallery peak there is another peak that is
less stable in position and merges with the first one at high displacements. This peak has to
be attributed the interplay of the several families of resonances, in particular, it vanishes when

only the first family is Fourier transformed.

We point out that there are no wisible signatures of orbits other than of the whispering-
gallery type, although the phase space of the classical annular billiard (hard walls) is very rich
at the displacements chosen in Fig. 9.13. This is in agreement with the phase-space predictions
of the refractive billiard, see Section 9.1. Trajectories of the classical annular billiard that hit
the inner or the outer boundary under a right angle, have no (obvious) counterpart in the wave
picture when we look at intermediate refractive indices. However, in the final Section 9.3 of this
chapter we will correct the impression that the dielectric annular billiard does only accomodate
whispering-gallery modes. We will reveal the great variety of resonant wave patterns that,
depending on the parameters chosen, are similar to those known from the hard-wall system.
Furthermore, we will establish the correspondence between resonances and stable trajectories in

the refractive annular billiard.
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Figure 9.14: Typical resonant wave patterns for the dielectric annular billiard with
an airy inclusion. The confinement to the annular region is due to the possibility
of total internal reflection on either boundaries. For the examples shown here, high
intensity is concentrated around regular orbits, in a) on a whispering-gallery-type
orbit, whereas b) suggests to be a wave-mechanical realization of the arrow-like
orbit shown in Fig. 9.3 (bottom right). In the delay time plot, the resonances are
neighbouring and appear several times in this form with increasing wave vector.
This suggests that they are regular modes. — ¢, indicates the direction of incident

plane wave (in radians) that excited the resonance.

9.3 Correspondence of ray and wave picture beyond whispering

gallery modes

9.3.1 Dielectric ring embedded in air

As we saw in the previous section, there are major differences between annular billiards where
the refractive index is highest in the annulus or in the inner disk, respectively. An illustrative
explanation can be given in terms of the effective potentials, see Fig. 9.5. We will now focus on
the situation where the annular region possesses the higher index of refraction, resulting in a
single well in the effective potential, and turn to the other case in Section 9.3.2.

The regime ny > ng > 1 is characterized by the possibility of total internal reflection confine-
ment to the annular region. As a consequence of this, we find the resonant wave patterns to live
mainly in the annular region, cf. Fig. 9.14. This applies to whispering-gallery-type resonances
(Fig. 9.14a) or resonances following regular orbits (Fig. 9.14b) as well as to all other resonant
states (if the refractive indices are not too similar).

Let us now investigate the influence of changes of the refractive index of the annulus on
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Figure 9.15: Fourier transform of the delay time (length spectrum) for two annular
geometries (R; = 1, Ry = 0.6, a) § = 0.22, b) 6 = 0.3), and two sets of refractive
indices (ng = ne = 1, and nq = 3 (dash-dot) or n; = 6 (full line), respectively). The
optical length is converted into (approximate) geometric length L by dividing by the
refractive index n; of the annulus. There are signs of whispering gallery orbits in all
four spectra (peaks around L = 6,12, 18). However, for the higher n; we also find
signatures of different orbits in the region marked by arrows. — Note the absence
of very short (bouncing-ball) orbits like the upper left in Fig. 9.2 that can not be
confined by total internal reflection.

the kind of resonances. To this end, we consider the Fourier-transform of the delay time for
the annular billiard with Re = 0.6 at two displacements (§ = 0.22, § = 0.3), and for two
sets of refractive indices, namely for (ng,n1,n9) = (1,3,1) and (1,6, 1), where the latter set is
closer to the hard-wall limit. In Fig. 9.15 we compare the resulting length spectra. Whereas
for intermediate refractive index in the annulus (ny = 3) the spectrum is dominated by the
whispering-gallery peaks® and its higher harmonics, for higher n; = 6 we find signatures (marked
by arrows) that presumably do not stem from whispering gallery orbits! To identify this type of

resonance mode we have several possibilities:

1. Scanning the corresponding delay time plot for the wave patterns at the resonances. We
will do so by studying the response of the annular system to an incident plane wave that
provides the system with a (well defined [56]) mixture of incident angular momenta at the

same time’.

5Tts position is shifted to higher values L =~ 6 when compared with Fig. 9.13 where R = 0.4. The reason is
that the larger inner disk forces the whispering gallery orbits further to the outer boundary resulting in a longer

path length. Correspondingly, the double peak structure discussed in Fig. 9.13 is lost.
" A more sophisticated method is to diagonalize the S-matrix at the resonance position and to deduce “eigen-

delay times” 7;. At each resonance, the main contribution to the total delay time 7 will stem from a few 7; only.
The corresponding eigenvectors contain all information on the angular momenta that are needed to excite the
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2. Studying the Poincaré section of the corresponding classical and refractive billiard. The ge-

ometric lengths found in the length spectrum might be useful as a characteristic trajectory

property.

We will once more start with a ray approach, that is, the second possibility. For the set of
refractive indices (1,3,1) we already studied the Poincaré surface of section, see Fig. 9.3, and
identified regular trajectories other than whispering galleries. First of all we have to explain why
they do not leave signatures in the length spectrum. For the upper right orbit in Fig. 9.3 with
stability islands at the beach of the chaotic sea we can argue that it is “almost” whispering-
gallery-like in character such that no additional peaks in the length spectrum arise. (This also
excludes this orbit as a candidate to explain the arrow-marked peaks in Fig. 9.15.) For the other,
arrow-like, orbit (Fig. 9.3 bottom right), we find a geometric length of ~ 6.15 Ry for the central
elliptic orbit of the stability island, corresponding to a length spectrum peak which cannot be
distinguished from the whispering gallery contributions. Therefore, scanning of the delay time
plot was used to obtain the representative wave patterns in Fig. 9.14.

We now address the other set of refractive indices, (1,6,1), where the optical denser an-
nular region causes a better confinement by total internal reflection, and look for candidates
for the additional peaks in the length spectrum. Investigation of the Poincaré section of the
corresponding refractive billiard reveals stability islands for an orbit similar to the one shown
on the bottom right in Fig. 9.2. These islands are (practically) missing for n; = 3, and grow
in size as the hard-wall system is approached. The corresponding orbit is shown in Fig. 9.16
(left). Its geometric length is about 8.5 Ry and, therefore, falls into the length region marked
by arrows in Fig. 9.15. We suggest the wave pattern in Fig. 9.16 (right) as a wave-mechanical
counterpart. However, a comment is in order concerning the rather small size of the stability
islands in the corresponding Poincaré section. It is well-known that quantum-mechanically these
islands may appear larger [105] and, therefore, can be resolved with the wave vector chosen in
Fig. 9.16 (cf. also the discussion at the end of Section 7.4). Studying the corresponding Husimi
function would allow one to gain further insight, see Section 9.3.3.

Fig. 9.15 suggests that the behaviour for both eccentricities, § = 0.22 and § = 0.3, is
approximately the same. If we look at the phase space plot of the refractive billiard (Fig. 9.17)
we find, however, much more structure in it. A couple of stable orbits well-known from the
classical annular billiard [100, 102] survive the refractive opening of the inner disk. However,
they encounter the outer boundary at a right angle and one might argue that this implicates
immediate escape when we think of this boundary as dielectric interface as well. Otherwise, we
know from Fresnel’s formulae (7.4,7.5) that at such an interface there is not only transmission,
but also reflection is taking place. The reflected intensity for normal incidence is given by
(n —1)2/(n + 1)? which means that for n; = 6 more than 50 % of the intensity are reflected®.

resonance, and according choice of the amplitudes of the incident Hankel functions will give the resonant wave
pattern. For whispering gallery modes, the main contribution comes from the corresponding angular momentum
quantum number; this was used in Fig. 9.11. — The angular momentum content of a plane wave will in general
not coincide with the one required according to the eigenvalue decomposition of the S-matrix. The hope is that
the system “finds” the relevant components such that one gets some idea of the wave pattern, whereby a suitable

angle of incidence for the plane wave has to be found.
8This applies, of course, also to the inner interface and has to be taken into account when interpreting the

Poincaré sections of refractive billiards where this reflection is neglected.



150 9 Ray-wave correspondence in the dielectric annular billiard

R, =1 R, =06 6 =022
J —_— H -_—
(po =T SIn XO =0.44 kg = 6842 np=1 n, = n, =1 B 1571

0 0.2 0.4 0.6

0.8 1
Normalized Intensity

Figure 9.16: Stable trajectory (left) and wave-mechanical analogue (right) that

might well account for the arrow-marked peaks in Fig. 9.15.
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Figure 9.17: Poincaré section and two prominent regular trajectories for the refrac-
tive annular billiard ny = 6, ny = 1. The inner radius is Ry = 0.6, the displacement
is one half of this value, § = 0.3. The lower trajectory on the right is a typical
representative of orbits at §/Rg ~ 0.5.

Indeed do we find wave-mechanical counterparts of these characteristic orbits, see Fig. 9.18,
that might well be responsible for the arrow-marked signatures in Fig. 9.15. Besides the favoured
total internal reflection confinement at this refractive index, one might discuss another mech-

anism that favours the existence of those modes: The annular wave vectors ki for which we
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Figure 9.18: Wave-mechanical realization of orbits similar to the ones shown in
Fig. 9.17 on a) top right, and b) bottom right. The (slight) deviations from the
geometry of the regular orbits in Fig. 9.17 might be ascribed to the openness of the

system and the interplay of reflection, transmission, and interference.

discussed the resonant wave patterns all correspond to wavelengths A\ = 27/(n1k1) ~ 1/n;.
The extension of the reflection points at the outer boundary is approximately of the same order,
and one might argue that the wave “cannot see the exits”. A quantitative formulation of this
will be useful and is the subject of further investigations.

A more detailed interpretation of the special structure in the length spectra in Fig. 9.15
requires more careful Fourier transforms. As we saw in Fig. 9.13, there might be peaks in the
spectrum that are not due to a particular orbit. Furthermore we want to point out that the
Fourier transforms contain information about optical lengths that might be similar for several
orbits although their geometric lengths are different, cf. also the context of Fig. 9.19.

9.3.2 Eccentric dielectric inclusion in a lower-index coating

We now turn to the case where the index of refraction is highest in the inner disk and lowest
outside, no > n1 > ng = 1. Well-known representatives of this situation are coated glass fibres
[89] or melting ice particles in clouds [106]. Furthermore, in both examples non-concentric
geometries are likely to be realized. In contrast to the situation of the previous section, the
increase in the index of refraction when approaching the centre of the system implies that rays
in the annular region are not confined by total internal reflection, but will enter the inner disk
whenever the inner boundary is hit! Following the laws of geometric optics, those rays will leave
the inner disk upon the next reflection. In contrast, whispering-gallery orbits, confined by total

internal reflection, are now not only possible near the outer, but also near the inner boundary
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Figure 9.19: Delay time and its Fourier transform for varying index of refraction of
the inner disk (R; = 1,Re = 0.6,0 = 0.22,n9 = 1,n7 = 3). The delay time plots
are dominated by families of whispering-gallery modes (near the outer boundary)
for no < my. For mg > mq, the ray-model-predicted increase of possible confined
modes is clearly visible in terms of a higher number of resonance peaks. As for
the Fourier transform, we plot the weight against the optical path length because
different indices of refraction are involved. Different (real space) paths may result
in the same optical path length making it hard to identify clear signatures of the
different orbits.

(cf. Fig. 9.20a). Consequently, this situation embodies much more resonances as we see in the
delay time plots, cf. Fig. 9.19. Examples for resonant modes are shown in Figs. 9.20, 9.24, and
9.25.
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Figure 9.20: Characteristic properties of the annular billiard where the refractive
index of the inner disk is highest are that a) whispering gallery mode of the inner disk
are possible (ng = 1,n1 = 3,n2 = 6), and b) whispering gallery modes that do not
fit through the constriction may go through the inner disk (ng = 1,n; = 3,19 = 4).
Case a) is favoured for a rather big difference between n1,m9, whereas b) works
preferably for similar values ni,ne. One (possible) ray picture analogue for b) is the

upper right orbit in Fig. 9.21.

In Fig. 9.19 we present a systematic study of the implications of an increasing refractive
index of the inner disk. The delay time plot clearly shows the transition from an airy inclusion
(ne = 1) via the dielectric disk (ny = 3) to the situation ny > n1 by a remarkable increase of
resonance peaks. However, the signatures in the Fourier transforms are less conclusive. The
length spectrum is dominated by whispering-gallery signatures in all cases. More precisely,
other types of orbits do not differ significantly in length from the whispering gallery orbits, in

particular appear the typical optical lengths to be rather similar.

We turn now towards a systematic study of the changes in the Poincaré section when increas-
ing ny, and concentrate on the identification of typical (regular) orbits and their wave-mechanical
counterparts.

We begin with the example of the refractive billiard nq; = 3,n9 = 4 in the same geometry
as for Fig. 9.19 (see Fig. 9.21). In this phase space plot only trajectories started at the outer
boundary (and with positive momentum siny > 0) are shown. For those, the inner disk is not
shadowed by total internal reflection and each ray hitting the inner boundary will be refracted
into the inner disk! This implies, however, that each ray will leave the disk upon the next
reflection (now hitting the inner boundary from inside) due to the principle of optical path

reversion (and momentum conservation). Therefore, we have to discuss orbits confined to the
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Figure 9.21: Poincaré section for a refractive annular billiard with ny > n; (R; =
1,Ry = 0.6,0 = 0.22,n; = 3,n2 = 4). Typical are trajectories that cross the
inner disk, which applies in particular to whispering gallery modes at the outer
boundary that are supported by the inner disk in the region of closest approach of
the interfaces, see the upper example on the right. Note also that the reflection
points of this orbit, although in the chaotic region of phase space, they are rather
close together and seem to follow an adiabatic invariant [108] for the first few hundred
reflections where, in particular, no change in the sense of rotation occurs. The
same applies with even more rigour to the lower orbit on the right that is a stable
quasiperiodic orbit. Note that both orbits are well separated in momentum sin y.
— The stability islands around siny = 0 correspond to a “bouncing-ball orbit”

involving the inner disk, see the example in Fig. 9.22 (lower right).

inner disk separately - and as we know from Chapter 7 these are just the whispering gallery
modes® an example of which is shown in Fig. 9.20a).

The resonant mode shown Fig. 9.20b nicely illustrates the opportunity offered by the inner
disk to “host” a whispering gallery mode of the outer one that otherwise would not fit into
the constricted region. This requires, of course, no > ny, whereby for ny > ny the effect of
refraction will become too big and destroy the hosting effect. In the case no < n1, the nodes of
the whispering gallery modes “rearrange” for increasing quantum numbers m and p, eventually
building up modes that only live in the wide region [129].

As for the star-like orbit, see Fig. 9.21 (lower right), we refer to Fig. 9.8 where we found
a similar, regular, trajectory in the concentric case. In the eccentric case, the corresponding
phase space curve follows an adiabatic invariant [86] if the displacement of the inner disk is not

too large. Furthermore, the tolerated eccentricity depends on the ratio of the refractive indices.

“Note that for whispering gallery modes at the inner boundary R takes the role of R; such that the same
value “kR” now requires for a larger ko.
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Figure 9.22: Poincaré section for a refractive annular billiard with the same geometry
as in Fig. 9.21 but larger difference in the refractive indices (ny = 3,12 = 6). Typical
are trajectories that cross the inner disk. The slight structure in phase space (besides
the islands of stability) is partially a result of this choice but also a sign that some
trajectories are rather close to a (nearly) periodic orbit for a high number of bounces
before they are lost in the chaotic sea.
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Figure 9.23: Delay time plot zoomed in from the last panel on the left in Fig. 9.19
(R = 1,Ry = 0.6,0 = 0.22,n9 = 1,n; = 3,n2 = 6). Note the characteristic
structure of four resonances (A,B,C,D) forming a group. Each of the four peaks
corresponds to a characteristic wave pattern, see Fig. 9.25. The regular structure
in the delay time and the fact that from group to group the number of nodes is
increased by one suggests a correspondence to regular modes. — Marked by the

arrow is the chaotic mode of Fig. 9.24.

Changing ne from 4 to 6 removes this orbit from the Poincaré section, cf. Fig. 9.22.

This brings us to the situation n; = 3,19 = 6. The Poincaré map for the corresponding
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Figure 9.24: Chaotic mode with maxima and nodes nearly homogeneously dis-
tributed over the system. It corresponds to ray trajectories in the chaotic part

of the phase space.

refractive billiard is shown in Fig. 9.22. Whereas the lower right orbit in this figure is generic
for the refractive billiard with no > nl, the upper one was not present for no = 4, see Fig. 9.21.
According to our experiences about the predicting power of the Poincaré section up to this
point, we are optimistic to find wave-mechanical analogues of these regular orbits. Indeed is it

tempting to relate a wave pattern like this in Fig. 9.25A to the upper one of the two orbits.

However, for the dielectric annular billiard with ne > n; > ng = 1 things turn out to be
more complicated. In the delay time plot, Fig. 9.23, we observe a characteristic arrangement
of resonance peaks in groups of four, marked by A-D, for a certain range of wave vectors.
The corresponding resonant modes are shown in Fig. 9.25, their sequence is the same in each
group. From group to group, the number of nodes increases by one. This suggests that the
modes are regular — but, apart from mode A, they do not form (visible) stability islands in the
phase space of the refractive billiard. If we closer investigate the resonant modes, we find the
pattern Fig. 9.25D to be based on a regular orbit well-known from the hard-wall annular billiard
(cf. Fig. 9.2, centre of top row). However, now the inner disk is involved in the wave dynamics
as well which causes a slight change in the geometry of the orbit; for example, the turning points
are shifted towards the constricted region. This example makes clear that the simple picture
of a stepwise Fresnel law is oversimplified, and a more realistic picture is required where both
transmitted and reflected amplitudes are taken into account. The simplest way to achieve this
is to take into consideration both the phase-space structure of the refractive and the hard-wall
billiard (plus intuition). Then the examples in Fig. 9.25 can be understood as a nice illustration
of the constructive interplay between interfering waves in the inner and outer disk, leading to
reproduction and generalization of regular orbits known from studying the phase space of the

hard-wall and the refractive annular billiard by a “suitable” adjustment of the orbit geometry.

So far we have only discussed regular modes. Since the phase space of the annular billiard
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Figure 9.25: Characteristic resonant wave patterns associated with the group struc-
ture found in Fig. 9.23. All wave patterns are taken from the second group and
named as above. The reflection-transmission interplay between inner disk and an-
nular region goes beyond the prediction of the ray model. However, it is tempting to
relate pattern A to the stable ray orbit that is shown in Fig. 9.22 on the lower right.
— The wave patterns nicely illustrate how regular orbits known from the classical
hard-wall annular billiard are recovered and adopted in the open dielectric system.
Note in particular the role played by the inner disk in “completing” the annular
patterns and the fitting of the wave patterns at the inner boundary.



158 9 Ray-wave correspondence in the dielectric annular billiard

is mized, there must, of course, exist chaotic modes as well! Indeed this is the case, and one
example is shown in Fig. 9.24. Concerning the occurence of chaotic modes, we point out that, in
classical phase space, they will frequently cross the region of frustated total internal reflection
at the outer boundary, —1/n; < siny < 1/n;. Therefore, the confinement to the system is
reduced, and regular modes dominate in the delay-time plot, cf. Fig. 9.23.

Note that there is no sharp transition in the interpretation of modes to be regular, chaotic
or hierarchical [103, 105] when only real-space information is used. We will discuss possible

improvements in the foolowing section.

9.3.3 Open problems

In this chapter we discussed the ray-wave correspondence in the dielectric annular billiard and
proved in numerous examples that this is a fruitful concept. We used classical phase-space
methods like the Poincaré surface of section, and studied wave properties of the systems using
delay-time plots and real-space intensity plots. However, as already mentioned at the end of the
previous section, several points are left for further investigation.

Concerning the geometrical-optics based phase-space approach, we used the Poincaré map of
the hard-wall and the refractive system for a interpretation of the resonant modes. However, an
improvement of the concept of the refractive billiard to account for realistic (wave-optical) situ-
ations where reflection and transmission occur at refractive index boundaries, is desirable. We
expect the resulting phase space to contain elements both from the hard-wall and the refractive
billiard.

In this context the question arises for a systematic classification of resonant modes in phase
space, where information on the resonance dynamics is processed. The calculation of Husimi
functions [75, 104] is necessary in order to reliably attribute a certain resonance to regular,
chaotic, or even hierarchical [105] states. Another interesting issue not discussed in the present
work is the existence of scarred wave functions.

Throughout this chapter we mainly discussed low-lying resonances. It remains for further
studies to investigate the evolution of resonant modes to higher wave numbers ky where the ray
limit is approached. In this context the influence of a decreasing wavelength on the size of the
coupling region between dielectric and environment at the outer boundary, and its influence on
the stability of orbits, will be an interesting subject.

Another problem that becomes important when discussing microlaser (see Section 10.2) is
the far-field radiation characteristic of resonant modes. Methods working with complex wave
vectors will be useful in this context. In any case, the dielectric annular billiard promises to

remain an interesting model system.



10  Achievements of the ray model in
microcavities: Examples

We end this second part of the thesis by demonstrating the strength of the ray
model for two examples. First, we consider a recent glass-fibre experiment [130].
A remarkable filter effect has been observed in the response of a quadrupolar
high-index fibre illuminated by a laser beam. The periodic filter characteristics
found in a tiny window of far-field angles can be fully understood by numerical
ray-tracing simulations [134].

The second example concerns microlasers where the ray model proved to yield
reliable results in the bow-tie experiment [135]. Having in mind future applica-
tions that will require high output power and highly directional emittance, we
use this concept and identify shapes that might even better suit future needs.
Furthermore, we suggest a novel mechanism for out-coupling [137], namely a
monolithically integrated light valve, and discuss its advantages compared to
present realizations [136] relying on the violation of total internal reflection.

10.1 Multiple beam interference in a quadrupolar glass fibre

Optical fibres have attracted a lot of interest in recent years both in experimental and theoret-
ical work. On one hand they are applied in microlasers as (active) lasing fibres, on the other
hand they can be used as (passive) optical filters which are of great technological interest for
planar integrated filter applications. Planar dielectric ring and disc cavities have been used
as micron-sized optical filters mainly with evanescent light coupling, working with nearly total
internal reflection. However, evanescent coupling between the cavity curved sidewall and the
waveguide flat sidewall requires a very precise fabrication with a gap spacing in the sub-um
range. Therefore, filter techniques using non-evanescent coupling which allows gap sizes larger
than sub-um are technologically desirable.

Recent experiments [130] with using an oval-shaped microcavity have shown periodic output
filter characteristics in a well defined, narrow window of far-field response. In this section we
will present an analysis of the experimental data and, subsequently, of numerical ray-tracing
simulations which allow a theoretical understanding of the experimental findings [134]. In the
experiment, a passive (non-lasing) quadrupolar high-index glass fibre (refractive index n = 1.8)
is illuminated by a laser beam, see Fig. 10.1. A tunable laser source with wavelengths A\g in the
670 nm range produces a Gaussian beam of TE-polarized light with a width (spot size) of 30 pm,
that is shone onto the fibre allowing for different impact parameters. The cavity axes are 150

and 180 pum, and the shape is modelled by a quadrupole with polar-coordinate representation
r(¢) = Ro(1 + ecos2¢), (10.1)

where Ry is the mean radius of the quadrupole with eccentricity €. According to the experimental
data we have Ry ~ 82 um that we will use a unit length. The lengths of the half axes are then
given by Ry(1 + ¢) with e = 0.1. The corresponding size parameter 27nRy/)¢ is of the order of
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guadrupolar cavity

source far-field
(laser beam) filter response

Figure 10.1: a) Schematic of the experimental setup used for the filter experiment in
[130]. Shown is the cross section of the quadrupolar fibre with the definition of the
input and output angles 6; and 6,. If the input is coming from a broadband source
(indicated by arrows), the output shows periodic filter characteristics in a narrow
“magic” window of far-field angles, see also Fig. 10.2. b) Typical orbits contributing

to the far-field response, see text.

1400 such that we are well in the ray limit Ay < Ry where quantum effects can assumed to be
small.

The physical quantity of interest in the experiment is the far-field elastic scattering spec-
trum that is measured with a linear array detector that extends over a range of 5° of the output
angle. The spectrum shows filter resonances as function of incoming wavelength with a good
peak to background ratio of about 40, cf. Fig. 10.2a, but only under very specific input and
output coupling angles 6; ,. The corresponding parameter region is called “magic window” [130].
The periodicity of the spectrum is a clear sign of the interference nature of the phenomenon; in
addition the filter peaks display inhomogeneous broadening which is an indication of multimode
interference. Therefore, we attribute the observed filter-characteristing behaviour to an inter-
ference scenario as is supported by the Fourier transform of the experimental data (Fig. 10.2b).
This length-difference plot reveals that only a few, well defined length differences occur.

Before we discuss possible interference scenarios and their agreement with the experimental
data, let us define the quantities and lengths that we will need for a length analysis of the
contributing geometric paths, based on the assumption that the periodic output characteristics
can be interpreted as interference of (classical) rays. We start by defining the amplitude-weighted

length distribution T'(L) for the interfering rays,

T(L)= > Ai6(L-Ly), (10.2)

paths?

where A; and L; are the amplitude (at the detector) and the (total) optical length (from source
to detector) of each path ¢ hitting the detector. The interference pattern J(ko) as a function of

the vacuum wave vector kg = 2m/)¢ is given by

00 ) 2
J(k)o) = ‘/ dL T(L) BZkoL

= / dl e~ ol / ALT(L)T* (1 + L) < / dle”™*!g(1). (10.3)
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Figure 10.2: Representative experimental spectrum of [130]. a) raw interference
data, J(ko), plotted as function of the wave vector ky. The angles are chosen within
the magic window, §; = 60° and 6, = 56°. b) Modulus? of the Fourier transform
of J(ko) corresponding to the length-difference spectrum S(l), see Eq. (10.3). The
strong decay of the peak intensity for lengths ! longer than 3 or 4 round-trips is a
characteristic feature. Plots c), d) are as a), b) but for the theoretical ray-tracing
result for #; = 60°, 6, = 60°, and ¢ = 0.1.

In the last step we have introduced the length-difference spectrum S(l), given by the self-
convolution (or correlation function) of T'(L) [123]. For discrete paths with lengths L; the
quantity S(I) will be non-zero for length differences | = L; — L; V1, j. In the following we will
mainly use the length-difference spectrum S(I) for our analysis. It is related to the observed inter-
ference pattern J(ko) by Fourier transformation, see Eq. (10.3). The information about absolute
path lengths is lost, but does, of course, not enter the interference result. Eventually, the optical
length L; of each path i from the source via the fibre to the detector is L = nERO + Lext + Lphases
where L is the geometrical path length in the cavity measured in units of Ry. Lex; stands for the
external paths between source and fibre and fibre and detector that are different for different
input and output points of the interfering rays. Finally, Ljhase comprises the phase shifts that
occur upon the reflections.

The Fourier transform S(I) of the (representative) set of experimental data in Fig. 10.2a is
shown in Fig. 10.2b and shows large contributions to S(I) at roughly equally spaced [ values.
Therefore, it is tempting to identify the spacing with the path length of one round-trip corre-
sponding to a single dominating cavity orbit. The simplest possibility is interference of rays
emerging (by refraction or by tunnelling) from a single stable orbit that is traced over and over

again. In this case T'(L) contains equally spaced peaks with monotonically decreasing intensity
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(~ t(1—1t)"~! where t is the out-coupling rate and 4 the number of round-trips). A similar decay
is then also found in the peaks of the difference spectrum S(I). For the particular case of the
quadrupolar fibre a candidate for a stable orbit is the so-called “diamond” (with reflection points
at the intersection of the half axes with the boundary) where the tunnelling rate is rather small.
Hence one would expect a slow, monotonous decay of the peak intensities in S(I) which obvi-
ously is not in agreement with the experimental data. Furthermore, in the present experimental
geometry the diamond-like orbit cannot be excited by refractive input coupling, but only by
tunnelling — the resulting intensity is much lower than for refractive coupling, and is too small
to account for the experimental observation the more so as we will see that refractive coupling
to other orbits is possible. The same applies to other orbits like rectangular/trapezoidal modes
or whispering-gallery orbits that are either unstable or can only be excited with evanescent cou-
pling. We are therefore lead to consider another scenario, namely the interference of rays from
multiple orbits as explanation for the observations in [130].

In our ray-tracing simulations we focus a two-dimensional geometry representing the
quadrupolar cross-section of the fibre used in the experiment, see Eq. (10.1) and Fig. 10.1.
The incoming beam is discretized into a sufficiently high number of equally spaced parallel rays.
For simplicity we employ a rectangular beam profile that illuminates the whole lower left part
of the fibre. The intensity fraction of each ray that penetrates into the quadrupole is given by
Fresnel’s formula? (7.5) for TE polarized light, its angle by Snell’s law (7.2). The dynamics of
each ray is then governed by the laws of a “Fresnel Billiard” [132, 133], that is, by straight prop-
agation, specular reflection at the quadrupolar shaped boundary, and evolution of the intensity
according to Fresnel’s law for reflection and transmission. We assume perfectly reflecting walls
for angles of incidence x larger than the critical angle x, = arcsin(1/n), and exclude leakage
due to quantum tunnelling.

In the simulation, each ray of the incoming beam is traced numerically to construct the
interference pattern [131, 132]. For angles x < x. we allow for refractive escape of the part of
the ray that is determined by Fresnel’s transmission amplitude, see Eq. (7.5), but follow further
the remaining part inside the quadrupole until its intensity falls below a threshold of 106 of the
initial intensity due to subsequent subcritical reflections. For the transmitted part, we determine
the far field angle of the leaving ray again by Snell’s law.

In Fig. 10.3 we show a couple of typical trajectories that are found upon scanning of the
incoming beam. Due to the finite eccentricity and the finite beam width we find not only
whispering gallery orbits. The typical orbit rather enters and escapes (by refraction) around the
points of highest curvature of the quadrupole, as known from the study of asymmetric resonance
cavities [132]. In particular, we find rays that undergo several polygonal-like round-trips (in
which they come closer to the centre of the quadrupole than whispering gallery orbits) before
their intensity eventually drops below the threshold. This process of intensity loss may happen
at one single reflection after a few round-trips or (more likely) upon a couple of subsequent
reflections and transmissions. Although each ray of the incoming beam follows another orbit in
the chaotic region of phase space, the distribution of the orbit lengths, measured from entering
the fibre until escape, is (surprisingly) sharply peaked at integer multiples of half the (mean)

length of a round-trip. The reason for this lies in the preferred escape points near the highest

3Curvature effects may be neglected due to the large size parameter of the experiment Ro 3> Ao/n.
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Figure 10.3: Orbits contributing to the multiple-beam interference scenario in the
magic window. The orbits with 0.5, 1.5, and 2.5 round-trips (top row) come rather
close to the centre of the quadrupole. In contrast, orbits exhibiting more round-
trips before refractive escape (bottom row) rather resemble whispering-gallery type

orbits.

wall curvature that the ray encounters every half a round-trip. Orbits with approximately 0.5,
1.5, 2.5 (top row) and 3.5, 4.5 (bottom) round-trips are shown in Fig. 10.3. These (and few
longer) orbits contribute to the far-field interference for an output angle in the magic window.
More precisely it is the existence of such a series of orbits that allows the filter-characteristics
window in the far-field. We will see below that all orbits are excited by a rather small fraction of
the incident laser beam. A similar interference effect with integer round-trip orbits is expected
at the high curvature region near the incident laser beam but not accessible in the present

experimental setup.

The primary result of the ray-tracing simulation are the ray trajectories, their escape points
and geometrical path lengths E, their output (transmission) intensities, and their far-field angle
0,. The input angle is fixed at §; = 60°. We have neglected both Ley; and Lppase in the theoretical
data analysis. These contributions to the optical length are of the order of one or several
wavelengths, and are certainly smaller than the uncertainty in the fibre size or fabricational
variation of the fibre cross-section. Of course, we cannot expect a quantitative agreement between
theoretical and experimental interference pattern that really depends on the absolute optical
lengths. However, in the length difference spectra S(I) the corrections due to Lex; and Lphase

will be small and we will use L ~ nINLRO in the simulations.

Since the filter-characteristics was found in the far-field total intensity where the detector
is placed at a distance large compared to the cavity radius Ry = 82 um, the precise position
where the ray leaves the cavity is of no importance and the far-field angle 8, alone determines
whether a ray contributes to the magic window or not*. Accordingly, we analyse the ray-tracing
data by summing up the intensities of geometrical path length that leave the cavity under a

certain far-field angle 6,. The result is intensity histogram plot (“Fresnel-weighted” histogram)

“In contrast, in a near field measurement (usually done with a focussing lens) a narrow interval of output

positions is sampled, with a rather large range of output angles.
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Figure 10.4: Results of the ray-tracing simulation. a) Intensity histogram showing
the distribution of orbit lengths L vs. their output angle 6,. The gray scale indicates
the intensity (black for maximal intensity). The input angle is fixed at 6; = 60°.
b) Intensity vs. orbit length L at a specific detector position in the “magic win-
dow”obtained by integrating the above histogram over a narrow interval of output
angles, 58° < 6, < 62°. The result depends, of course, on the particular choice of
these values; the qualitative features remain, however, unaffected. If external path
differences are neglected this quantity is equivalent to the length distribution T'(L).

shown in Fig. 10.4a. It is (up to the factor Ry of the unit length) the far-field-angle resolved
version of the length spectrum 7'(L) defined in Eq. (10.2) if we neglect external paths and phase
effects. Clearly, there are two preferred output regions corresponding the high curvature points
of the fibre. At most output angles there is low intensity that arises from short length L. As
for the region opposite the laser illuminated side (6, ~ 50°), we find a small (“magic”) window
with rather equal contributions from orbits up to 5.5 round-trips. This becomes clear in the
histogram of Fig. 10.4b that was obtained by integrating the intensity-weighted lengths over a
small range of far-field angles corresponding to the angle range covered by the detector. This
quantity is equivalent to the length distribution T'(L) (again, up to the factor Ry of the unit
length and if external paths and phase effects are neglected). The peaks in Fig. 10.4 are easily
found to correspond to orbits as shown in Fig. 10.3. After converting the geometric length L into
optical length L, we obtain from T'(L) the length-difference spectrum S(I) by self-convolution,
and by Fourier transformation® the resulting interference pattern J(k) as function of the wave
vector kg = 2m /)Xo, cf. Eq. (10.3). The results for the theoretical length difference spectrum and

the resulting interference pattern are shown in Fig. 10.2d and c.

Qualitative agreement between experiment and theory is most easily checked by comparing

®The Fourier transformations and convolutions are performed using the Fast Fourier Transform (FFT) method
as described in [123].
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Figure 10.5: As Fig. 10.4, but now the different rays of the input beam are re-
solved: the vertical axis represents the input point of the individual incident rays,
parametrized by their polar angle ¢ w.r.t. the main cavity axis. The input angle is
again fixed at 6; = 60°, the gray scale denotes the intensity for output angles in the
window 58% < 6, < 62°. This plot shows that only certain parts of the incoming
beam contribute to the interference process.

the length-difference spectra S(I), Fig. 10.2b and d. The main feature, namely a number of
roughly equally spaced peaks with comparable intensity, but very little intensity at larger lengths,

is nicely reproduced by the ray-tracing data.

As mentioned above, one cannot expect to reach a quantitative agreement with experiment
due to the uncertainty in experimental parameters like size and eccentricity of the fibre and
angle of the illuminating laser beam. The precise interference pattern depends strongly on
these parameters, in particular it is extremely sensitive to length changes of the order of the
light wavelength. We have checked that the interference pattern depends only slightly on the

numerical discretization procedure used for the incoming beam.

It is important to point out that the far-field interference arises from orbits which have
different input points on the cavity wall, i.e., the interfering rays come from different parts of
the incoming beam. This becomes clear if we plot an amplitude histogram for far-field angles
in the “magic window”, but now as function of the input point, see Fig. 10.5. This is now the
input-point resolved version of the length spectrum 7'(L) where we can identify the parts of the
incoming beam contributing to the interference. Two things are found: only a small part of
the beam contributes, and the contributions for different orbit lengths originate from different
(relatively small) parts of the (relatively broad) incident beam. Thus, the filtering effect will
depend on the beam profile and will disappear when using more focussed laser beams not hitting
a certain range of input points (175° < ¢; < 195° in Fig. 10.5).

By varying input and output angles, the simulation data clearly show that in most situations
rays from all parts of the incident beam travel in polygonal cavity orbits only for a very short
time (up to 2 round-trips) before they leave the cavity via refraction, mainly in the high-
curvature regions. Only for a narrow range of input angles an appreciable part of the beam
leads to polygonal orbits with a longer lifetime, which then are refractively output-coupled after

a larger number of round-trips into a narrow window of far-field angles. The far-field output
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Figure 10.6: Results of the ray-tracing simulation as in Fig. 10.4, but now for input
angles a), b) 6; = 50° and c),d) 6; = 70°. a),c) Intensity histograms illustrating the
distribution of orbit lengths L vs. their output angle 8,. Whereas for #; = 50° the
filter effect practically disappears (a), it persits when the input angle is increased
(c). This becomes clear when integrating these histograms over a narrow (detector)
window of output angles, 41° < 6, < 45° in b), and 66° < 6, < 70° in d).

angle window depends sensitively on the input angle, so we predict that the “magic window”
as observed in [130] will move (in the far-field angle) with varying input angle of the beam.
In particular, for 8; = 70° we found the magic window at output angles 10° smaller than for
0; = 60°, whereas for ; = 50° the filter effect almost disappears. This corresponding far-field-
angle-resolved length spectra are shown in Fig. 10.6.

We summarize the ray-tracing simulations by pointing the conditions that have to be met
in order to observe the cavity filter effect:

1. A finite eccentricity of the fibre is needed to produce (chaotic) orbits which come close to
the centre of the quadrupole. These modes leave the cavity by refraction preferably near

the points of highest curvature.

2. The intensity loss per round-trip should be neither too small nor too large. In the former
case, too many individual orbits (with slightly different lengths) contribute to the far-
field interference leading to an incoherent response, whereas in the latter case the number
of contributing beams is too small to produce a sharp interference pattern. This puts
constraints on the refractive index of the fibre.

We have performed simulations with other fibre geometries and refractive indices which confirm
both the points above: using for example a fibre of “normal” glass (n = 1.5), the filter effect
disappears because the rays are lost too fast due to the higher critical angle (x. =~ 42° instead

of 34° for the high-index fibre) which implies poorer total internal reflection confinement.
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To conclude this section, we state that a ray-tracing model well describes the main features
found in the experiment [130]. In particular, the range of input and output angles, where far-field
interference with filter characteristics can be observed, is rather small as was observed in the
experiment (“magic window”). Moreover, the analysis of the length-difference spectrum allows
for a clear distinction between our model of interfering rays from different orbits and other
scenarios involving a single orbit only. It would be interesting to compare the results above with
the case of TM polarization because of the special property of TE polarized light that allows for a
very efficient Brewster-angle coupling to (and decoupling from) the fibre. As discussed in Section
7.1.2 light incident under the Brewster angle xp, = arctan(1/n) are completely transmitted into
the medium they are incident on. We also point out a possible application of the filter effect for

beam and/or cavity diagnostics.

10.2 Microlaser in the ray picture

Lasing in deformed microcavities has received increasing interest in the last years. Besides the
paradigmatic example of the lasing “bow-tie” [135] in an oval-shaped cavity and, of course, lasing
whispering-gallery-type modes (WGMs), another example for present work on microlasers are
hexagonal fibres [84]. One (general) goal is to decrease the laser threshold power in order to
eventually achieve lasing operation without special activation. The field of potential applications
of those materials is huge and comprises “lasing” varnishes as well as communication devices.

At this point it is useful to make the distinction between the two basic components of a laser:
first, there is the active material in which the laser light is generated by an external source such
as electric current. The second part is the laser resonator that contains the active material and
provides the feedback for the stimulated emission of light. It determines the special features
of the emitted light such as its power, beam directionality, or spectral properties. As for the
lasing mechanism, dye lasers and semiconductor lasers for example of the quantum cascade type
[85] are widely used, mainly with Fabry-Perot resonators that, in turn, are the most common
resonators. In the example of the bow-tie lasing mode a quantum cascade microdisk laser was
used, other realizations are cylinders or droplets.

In this context we have to address the coupling mechanism between resonator and environ-
ment. The first possibility is evanescent coupling, used for example between optical cavities
where light is confined by total internal reflection in WGMs and other elements like prisms [64],
or fibres [68]. The general idea is a close approach (of the order of 50...500nm in [64]) of the
two elements such that light couples in or out the cavity. However, having in mind possible
applications that require the coupling of curved disks and planar waveguides, the evanescent
coupling requires a very precise fabrication with a gap spacing in the sub-pm range that is hard
to achieve in mass production. Another possibility is to couple to modes that violate total inter-
nal reflection at certain reflection points upon reflection at an air-filled gap [136], that, however,
results in the same technical difficulties. Here, we will introduce a completely different and
new type of coupling. The method we suggest [137] does not require violation of total internal
reflection or fabrication of a microgap. Rather, the waveguide directly plugs into the cavity, and
the coupling strength is controlled via the overlap between the wave functions in the cavity and

the waveguide.
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Figure 10.7: a) Stable bow-tie orbit in a quadrupolar billiard [135] with four equal
points for refractive escape. In b) the shape was slightly deformed at the top right
corner (arrow) in order to favour refractive output at this corner by, e.g., a decreased
angle of incidence. The stability of the orbit is lost. The same happens in c) where a
billiard consisting of four circles connected by their common tangents is constructed
around a bow-tie skeleton. It is impossible to stabilize a bow-tie-like orbit in a

billiard of this type, which will always possess a chaotic phase space [138].

In the following, we are not interested in the lasing mechanism but exclusively in the special
output characteristics of certain resonator modes depending on the shape of the resonator. We
will first discuss the implications of a coupling mechanism based on violation of total internal

reflection, and then discuss the advantages of the integrated waveguide mentioned above.

Theoretical [132, 108] as well as experimental [135] investigations on asymmetric microcavi-
ties have highlighted the interesting properties of systems with reduced symmetries. We already
discussed the lasing bow-tie mode [135] in an oval- or quadrupolar®-shaped cavity, see Fig. 10.7a.
The out-coupling mechanism relies on the (slight) violation of total internal reflection at all four
bouncing points. Since the mode can be followed in either direction, there are eight beams that
leave the cavity and carry the output power.

It is tempting to think of a microlaser with just one output region where all power is con-
centrated. An obvious starting point is, of course, to deform the well-known bow-tie orbit in
such a way that one corner is preferred for refractive escape because its angle of incidence is
smaller than the critical angle and the angles of incidence at the other corners all lie above
the critical angle. Two attempts are illustrated in Fig. 10.7. In Fig. 10.7b the quadrupolar
shape is deformed at one corner (marked by the arrow) in order to locally decrease the angle
of incidence — immediately resulting in a loss of stability. In ¢) a bow-tie based orbit with the
desired properties was chosen as skeleton. It is, however, impossible to stabilize it by a billiard
composed of four circles and their common tangents as indicated in the example of Fig. 10.7c.

As mentioned above, one future application of microlasers might be devices that couple light
at a point where total internal reflection is frustated from the cavity via an air-filled gap into
another cavity, or glass fibre, etc. [136]. Therefore, we look for regular orbits the reflection

points of which have well-separated angles of incidence. Nanotechnologies allow nowadays to

5The quadrupole is defined in Eq. (10.1); e = 0.168 in Fig. 10.7.
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produce cavities of nearly any shape or even the annular type. In particular, we firstly choose a

dipole-tripole combination, with a polar-coordinate representation
7(¢) = Ro (1 + €1 co82¢ + €2 cos 3¢) . (10.4)

A second model cavity is based on an elliptical billiard where we removed a part of the ellipse by
a cut parallel to the minor axis and a distance z,, away from the centre of the ellipse. We define
the ellipsoidal shape by the eccentricity €, that is related to the minor axis b via b= (1 — eg)l/ 4
and to the major axis a def 1/b. The focal length is ¢ = va? — b2, and we choose z,, = —0.5c.
Eventually, we will use the annular billiard discussed in Chapter 9 as third example.

All shapes allow for a great variety of stable periodic orbits (cf. also [102]). Deformed
cavities mostly have similar angles of incidence at all reflection points. However, for special
parametrisations of the dipole-tripole cavity and the cut-ellipse, well separated stability islands
were found [137]. They are shown in Figs. 10.8, 10.9. In the case of the dipole-tripole billiard
the emergence of a stability island below the line of total internal reflection is bound to the
(intermittent) separation of the period-three orbit islands into two around the special parameter
choice €1 = 0.02,e5 = 0.03. In contrast, the triangular orbit found in the cut ellipse possesses
well-separated stability islands over a wide parameter range (e =0.3...0.9, |z,| = 0.25...0.85,
see [137] for details). We mention that the point where total internal reflection is violated lies
mostly on the flat side of the microresonator.

Another type of suitable orbits with possibly highly favourable properties is known from the
investigation of the annular billiard, where stable orbits with (nearly) normal incidence at the
outer boundary exist, cf. Figs. 9.2 (centre of top and bottom row) and 9.17 (orbits on the right),
and the corresponding resonant modes were also seen, cf. Figs. 9.18 or 9.25D. Note the freedom in
combining different refractive indices — together with the geometric parameters this constitutes a
large parameter space that allows for a suitable adjustment of the properties. Normal incidence
removes the problem of the reversed path that (under typical pumping conditions) takes away
half of the output intensity into another direction that normally cannot be used.

Let us now turn to the alternative coupling method that relies on a monolithically integrated
light valve [137] instead of violation of total internal reflection. Here, resonator and waveguide
are directly connected. The amount of light that is coupled out is controlled via the overlap
between the cavity and waveguide that is determined by the ratio of their heights. In this
situation violation of total internal reflection seems to be a disadvantage because then light may
leak out of the cavity without being used. However, in Fabry-Perot quantum cascade lasers the
amount of Fresnel reflected light with normal incidence, given by R = (n — 1)2/(n + 1)? [72],
is sufficient to ensure laser operation for refractive indices n ~ 3.3.

Besides saving the production of an air-filled microgap, the great advantage of a monolith-
ically integrated light valve is that much more orbits are candidates for lasing modes, and the
tolerance against fabrication errors is much better. This applies in particular when reflection
points at the device symmetry axis are chosen because their position is not affected by slight
variation of the orbit as might be caused by fabrication variance. There is a great variety of
stable orbits that fulfill this requirement and have sufficiently large islands such that one might
expect lasing of the corresponding mode. For example, the regular trajectories for the dipole-

tripole billiard and the cut ellipse discussed above belong to this class of orbits. The annular
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Figure 10.8: Poincaré section for a billiard of the dipole-tripole shape, Eq. (10.4).
¢ is the angle between the (Cartesian) z-axis and the boundary point and runs
from 0 to 7w in the upper half-plane, and from 0 to —7 in the lower one. This
shape supports a triangular orbit with nearly equal angles of incidence at all three
reflection points in a wide parameter range (e, e2). However, around €; = 0.02 and
€2 = 0.03 the corresponding island splits in accordance with an emerging double-
triangular orbit where the angles of incidence form well separated and relatively big
islands around siny = +0.5. The lower-most island (at ¢ = +7) extends down to
sin x & 0.3 = 1/ng for typical semiconductor with refractive index ng. = 3.3. This
is resembles the situation of the lasing bow-tie [135] where total internal reflection
was violated in a small part of the corresponding phase-space structure. This region
was just small enough to keep the mode lasing and large enough to allow a suitable
amount of power to be coupled out. In the present situation, fine-tuning of €1, ez

might allow for a similar operation mechanism.

billiard proves to be a very rich and promising system in this respect, too, see the ray orbits

and wave patterns shown in Chapter 9!

This brings us to a first extension of the ray model in microlasers, namely to consider the
resonant states of the cavity that are potentially interesting as lasing modes. These will be
modes of intermediate width where the relation between output power and gain necessary to
assure lasing operation is most favourable. In this respect we recall that the S-matrix description
will be especially useful here, because this approach is well-suited to determine the wave vectors

of resonances of intermediate width.
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Figure 10.9: Poincaré section for the cut-ellipse billiard described in the text, €, =
0.8; ¢ is defined as in Fig. 10.8. The stable islands corresponding to the triangular
orbit are highlighted by a large number of clockwise-travelling (sin x > 0) travelling
trajectories started. The island representing the smallest angle of incidence appears
splitted at ¢ = +w. It lies around sin y = 0.3 which makes this an attractive shape
for lasers based on semiconducting materials as well. Furthermore, the islands are
well separated in siny and persist over a rather big parameter range.

A second extension is necessary when one really wants to take into account the special prop-
erties of lasers, namely the active (lasing) material or the pumping mechanism. For whispering
gallery modes efforts towards this direction are reported in [139], where the non-linear interac-
tion between the light field and the lasing medium was included in the description. The ideas
presented in this section are guided by the example of the lasing bow-tie [135] where the ray-
model approach proved to work well. However, future experiences and justifications for these

approximations are needed.

An important question is to determine the far-field radiation characteristic of the laser, i.e.,
the angular dependence of the output power, especially if the conventional coupling via an air-
filled gap or to vacuum is used. Assuming refractive out-coupling of rays might be misleading in
certain cases [83]. Therefore, an interesting subject of further studies will be a situation where a
wave source (described, e.g., by a singularity originating from a Bessel function) is placed within
the cavity. The advantage of this setting is its close relation to experimental pumping situations

in the sense that only real wave vectors enter the description. Eventually, we mention that it
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is not clear a priori which mode will start lasing once the system is pumped, pointing out yet
another peculiarity of real microlasers that is beyond the possibilities of the ray model. However,
with further experiences on the importance of classical phase-space properties (concerning, e.g.,
the size of stable islands) for lasing in microcavities, the ray model might become a valuable

tool in microlaser design.
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In this work we have investigated various wave phenomena in mesoscopic systems of electronic
and optical nature. We found them to be rich model systems, that largely inspire the field of

mesoscopic physics and quantum chaos, both in theory and experiment.

In Part I, we have been interested in interference effects caused by Aharonov-Bohm and, in
particular, geometric phases. Geometric phases are determined by the topological properties of
the system and may accompany the transport of electrons with spin in the presence of inhomo-
geneous magnetic fields besides Aharonov-Bohm-like oscillations. Electrons in one-dimensional
rings allow for an exact solution of the Schrédinger equation in the general non-adiabatic situ-
ation, taking into account all spin-flip effects of the electrons. This enabled us to consider spin-
dependent transport in one-dimensional rings subject to a rotational invariant, non-uniform,
magnetic field using a transfer-matrix formalism where unitarity is fully respected, in contrast
to other approaches [34]. Studying the crossover between the diabatic and adiabatic regime, we

have investigated the onset of geometric phase effects as adiabaticity is approached.

Application of the method to situations realized in recent experiments, where a central
micromagnet is used to create a magnetic field with inhomogeneities on a mesoscopic scale [35],
revealed the importance of adiabatic conditions in order to observe clear signs of geometric
(or Berry) phases. Though this regime is hard to achieve with present micromagnets, stronger
non-uniform magnetic fields should allow for the conclusive observation of geometric phases in
electronic ring structures in future experiments. Those fields might be generated by suitably
arranged ferromagnetic particles [50] or a perpendicular electric current through the ring as
realized in the context of Oerstedt switching [51].

For mesoscopic rings subject to an in-plane rotational invariant magnetic field our calcula-
tions predict the existence of a novel spin-flip effect in the phase-coherent regime at low tempera-
tures. One-dimensional analytical transfer-matrix and two-dimensional numerical tight-binding
computations give quantitative agreement in the case of transport in one transverse channel.
This assures the (qualitative) significance of one-dimensional calculations, where the spin-flip
effect was proven analytically. The spin-flip effect exists in adiabatic as well as in non-adiabatic
situations. It might become conceptually important in future spintronics development. In this
context the question arises, whether the requirement of rotational invariance of the in-plane mag-
netic field might be relaxed to axial symmetry w.r.t. the lead axis. Two-dimensional calculations

may point towards this direction.

Motivated by recent advances in the fabrication of high-mobility semiconductor heterostruc-
tures, we focussed here on ballistic systems. Extension of the investigations to diffusive systems
is left for future studies. In particular, it will be interesting to address the question of conditions
for adiabiticity in diffusive systems, cf. [32, 33]. Another extension of the present model involves
the inclusion of the Rashba spin-orbit coupling that may be important for the description of

certain semiconductor materials like InAs.
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Optical mesoscopic systems were the subject of Part II, and we studied in particular the
dielectric annular billiard. For the first time comparing the results of ray and wave description
of this system, we deepened the understanding of this correspondence. The ray picture provides
a simple method to obtain a first impression of the system properties, whereas the wave picture
contributes corrections when the wavelength becomes of the order of the system size. We studied
the resonances of the open system using both numerical evaluation of complex wave vectors and
the S-matrix method. Within the S-matrix approach, all resonances are of the characteristic
Breit-Wigner form. Families of resonances, characterized by (generalized) quantum numbers, are
easily identified, cf. Chapters 7 and 9. Employment of the S-matrix method goes considerably
beyond the method used in [108], where the variation in the plane-wave response at a single

reference point was used to identify signatures of resonances.

The ray approach to the annular billiard was based on the investigation of the hard-wall and
the refractive system. In the latter we kept the outer boundary fully reflecting, but Fresnel’s law
at the inner boundary was approximated by a stepwise dependence of the reflection coefficient
on the angle of incidence (with full transmission below the critical angle and zero otherwise).
Combining both models we gained a good understanding of the real-space appearance of the
resonant modes. It will be challenging to extent the refractive model to account for more realistic
Fresnel laws at both the inner and the outer boundary. In particular, it will be interesting to
study the influence of the Brewster angle (cf. Fig. 7.5) that occurs for the case of TE polarized
light that was not in the discussion of the ray-wave correspondence in the annular billiard. Due
to reduced reflectivity near the critical angle the light will be less confined for those angles of
incidence, and the resonant modes will, consequently, be affected, too. For further studies it
will be very helpful to establish the ray-wave correspondence in phase space by representing the
resonant modes as Husimi or Wigner functions. This will, possibly, also illuminate the structure

of the underlying classical (ray) phase space.

An important extension would be to determine the complexr wave vectors of the resonances
(poles) of the eccentric annular billiard, especially if the focus is on the radiation characteristics.
Alternatively, and in particular when microlasers are addressed, we suggest to place a source
within the system which might simulate the laser pumping. In this context we refer to the
Petermann factor [140] that describes the enhancement of the quantum-limited line width of
a laser cavity due to the non-orthogonality of the cavity modes. It was studied for integrable
and chaotic resonators [140], and it will be interesting to examine it in a mixed system like the

annular billiard.

An outstanding property of optical systems is that their openness can be controlled by
varying the refractive index of n of the cavity (leaving the surroundings unchanged at ng = 1).
The cavity is transparent for n = ng, whereas in the limit 7 — oo the closed system with complete
confinement by total internal reflection and just tunnelling escape is approached. Besides large
refractive index, the system can be closed by including extra reflecting layers at the interface
boundaries [107]. Closed systems are well-studied in the context of quantum chaos and the
results, e.g., for the resonance counting function, are well-known. It will be interesting to
investigate the behaviour of those quantities under opening of the system. Also, a systematic
study of the evolution of the resonance width with increasing leakage (n — mng) as well as,

for fixed refractive indices, increasing eccentricity of the annular billiard, remains for further
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studies. The inside-outside duality [92] provides a relation between the eigenvalues of the closed
system and the resonances of the corresponding scattering problem, and a generalization towards
optical systems is an open problem. Another question that is not especially discussed in the
present work is the case of very high wave vectors, e.g., wave solutions in the semiclassical, or
ray, limit [141] and the resolution of the phase-space structure with increasing wave vector. — As
an example for the considerable potential of open, dielectric systems w.r.t. the field of quantum
chaos we refer to quadrupolar-glass-fibre experiment that is interpreted in Section 10.1. An
possible extension of optical microcavities is, e.g., their combination with a central quantum

dot, where the coupling between whispering-gallery modes and the quantum dot can be studied.

New analytical expressions for Fresnel coefficients at curved interfaces were derived within
a joint treatment of both polarizations, going beyond recent work [108]. Furthermore, we gave
for the first time a ray-picture based qualitative explanation of the corrections to Fresnel’s laws
necessary at curved interfaces by taking into account the Goos-Héanchen effect. Performing
the calculations, we find satisfying quantitative agreement with the wave picture results. The
Goos-Hanchen shift is a lateral shift of the reflected beam upon total internal reflection of light.
An interesting question is to study this effect in the case of Andreev reflection and at phase

conjugating mirrors, in particular also the accompanying time delay [121].

Motivated by the principal agreement of the ray and wave picture results throughout Part
IT of the thesis we addressed the design of microlasers. We suggest a novel coupling mechanism
between microcavity and subsequent wave guide [137] that does not require the violation of
total internal reflection, in contrast to other concepts [136]. Accordingly, we recommend axially
symmetric cavities with a reflection point on this axis as particularly suitable for applications
because of the stability of this point against fabrication variations. Regular orbits with this
property were identified in microcavities of different shapes. We assume those to be the dominant
modes in the refractively opened system, and verified it for the dielectric annular billiard. The
exact description of the active material and the investigation of the radiation characteristics of

those lasers remains a subject for future studies.

One special property of optical systems arises when we interpret Maxwell’s equations for two-
dimensional systems as a Schrodinger equation, namely an energy dependence of the (effective)
potential and polarization-dependent boundary conditions. The effective potential depends on
the refractive indices and the geometry of the system, that can be chosen to model, e.g., single-
, double-, or multi-well potentials with continuously changing properties. We point out that
there is an alternative interpretation of the “Schrdédinger equation for light”, cf. Eq. (7.11),
namely by incorporating the refractive index into the metric, that is, into the Laplace operator.
A change in the refractive index appears then as a change in the metric, the light follows the
corresponding geodesics, and the phase-space volume depends on the index of refraction. This
approach appears particularly suitable for anisotropic materials where the tensor nature of the

dielectric constant directly translates into an anisotropic metric.

Summarizing, the present thesis has explored a number of novel aspects of mesoscopic ring
structures. Part I was devoted to geometric phases in ballistic electronic systems — here the main
ingredients are understood, and we focussed on particular geometries where the experimental

observation of such phases might be possible in the near future. Optical systems were the topic of
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Part II. Using the annular billiard as model system, initial steps were undertaken to understand

the interplay of wave effects and classical chaos in optical microcavities, but much work remains

to be done.



Appendix

A Conserved quantities in a closed ring

The Noether theorem states the existence of a conserved quantity for each continuous symmetry
in a physical system. For the one-dimensional ring considered in Chapter 3 it is the invariance
under rotations about the z-axis (that is, perpendicular to the ring plane). We show that the
z-component of the total angular momentum operator L,,

.d 1
LZ = —Z%—i—iﬂz,

is a conserved quantity. We verify this by computing its commutator with the Hamiltonian
H, see Eq. (3.3). The commutator of L, with the kinetic term vanishes because A%, does not
depend on ¢. The Zeeman term reads for a magnetic field B of magnitude B,

= B B cos o sin e 1Pte ¢
—pé B =—p
sin ae'®t e’ —Ccos «

Therefore, we find as contributions to the commutator

d . 0 — sin e 1Pt e19
¢ sin qe®®t et® 0
and
o 0 2 sin qe Wt~
[02, g B] - B :
—2sin aei®te'® 0

indeed indicating that the angular momentum perpendicular to the ring, composed of a orbit
and a spin contribution as given in Eq. (3.12), is conserved.

We emphasize the factor 1/2 in front of the spin contribution that is related to a fundamental
difference of the groups SO(3) (rotations in 3-dimensional space, elements are real, symmetric
3 x 3-matrices) and SU(2) (rotations in spin space, elements are complex 2 X 2-matrices of unit
determinant; refer to the Pauli spin matrices as example). Although both groups possess the
same Lie algebra, the periodicity of SO(3) is 2w, whereas SU(2) is 4w periodic expressed in the
additional factor one half. Mathematically , the difference between rotations in configuration
and spin space is written as SO(3) = SU(2)/Z2, where Zs is the kernel of the homomorphism
SU(2) — SO(3).

B Electrons in a closed ring and Aharonov-Bohm effect

In Chapter 4 we discuss the transmission probability of electrons through a one-dimensional
(1d) ring coupled to current leads in terms of a transfer matrix formalism. We find Aharonov-

Bohme-like oscillations under variation of a homogeneous magnetic field perpendicular to the ring
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(Section 4.3). Here we will give an alternative description based on the Schrédinger equation
for electrons in a periodic potential. Furthermore, we will see how the electromagnetic vector
potential entering the generalized momentum gives rise to an additional phase factor (besides
the dynamical phase) that leads to the Aharonov-Bohm interference effect.

In the limiting situation of zero coupling between the ring and the leads (e = 0, cf. Section
4.1.3) there is an analogy [27] between the electrons in a 1d ring and electrons in a 1d periodic
potential, where the potential fulfills the relation V(z) = V(z + L). In the ring, the role of
L is taken by the circumference of the ring. The Schrédinger equation for the ring of radius
a = L/27, with z being the coordinate along the ring (again in units &z = c = 1),

2
o tae) = entale)
therefore has to be solved with periodic boundary conditions &, (z) = &,(z + L), so that we find
the eigenstates
bn(z) = Apet ™ with k&, = 2%7» ,nEZ, and €, = % .
If the ring is subject to a homogeneous magnetic field B, in z-direction, we have to include
the electromagnetic vector potential /_fem into the calculation. It can be expressed in terms of
the magnetic (or, Aharonov-Bohm) flux ® = ®4P def 7a’B, as Aem = %aBze} = &8/ Le;, def

AZ €z, cf. Section 3.1. The Schrédinger equation now reads

2m dr

and due to the additional contribution the generalized momentum, the quantized k values have

2
1 (—zi — eAfm> n(P) = €enén(z),

to be replaced according to

2 P
where n and n' are related by
q)AB

The spectrum is periodic in ®4# with period of the fluz quantum ®, = hc/le| = 2n/|e|
(in units A = ¢ = 1). Therefore, it suffices to consider only to the first “Brillouin zone”
(—®0/2,®y/2) with width ko = 27/L. Also, the interpretation in terms of a band scheme holds,
see [27, 28]. In Section 4.1.3 we extend this discussion to a 1d ring that is weakly coupled to
leads.

Let us now turn to the phase change in the wave function that is associated with replacing

the momentum by the generalized momentum in the presence of gauge fields,
F—rP—eA. (B.3)
Consider a free electron with wave function exp(ip - 7). Its phase is changed according to
0 —0—eA-7. (B.4)

We generalize the last equation to arbitrary trajectories C in space and obtain the accompanying
phase change as
Af = —e/[f-df. (B.5)
c
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Figure B.1: Aharonov-Bohm effect in a ring subject to a magnetic flux ®45B. The
interference pattern, created by the electrons travelling along the paths 1, 2, is shifted
due to the presence of a (varying) Aharonov-Bohm flux ®45. For ®48 /@, integer,
interference is constructive. Note that the arms need not to have equal lengths,
cf. [26].

If we consider a closed trajectory that is splitted into two paths 1,2, we obtain the phase

difference between the wave functions 1,2 as

A:—e?{ ff-df':—e/ (6xj)-d§, (B.6)
1-2 1-2

— -

where we have used Stokes’ formula. In the special case of electromagnetism, A = A, we

obtain
AB

A=—e[ B.d§=2:2" (B.7)
1-2 D

We illustrate formula (B.7) for electrons travelling along the two arms of a 1d ring of radius a,
enclosing an Aharonov-Bohm flux 47 = 27['(1Ag)m (where we have now replaced the propagation
along z-axis by propagation in ¢-direction along the ring, cf. Section 3.1), see Fig. B.1. We obtain

for the phase change along the first path

AOy = —e/ i add;
1

2Ta

and for the second path, that is travelled in the opposite direction, we find

@AB
Aegze/ adop.
5 2ma

The resulting phase difference between the two corresponding wave functions reads
@AB @AB

A=Al — Ay = — dp = —e®4B =o7n— | B.
0, 6o e?{ing o add e W(I)O (B.8)

Accordingly, we find a phase shift of 2 whenever the Aharonov-Bohm flux ®4Z through the
ring equals an integer multiple of the flux quantum @, and a phase shift of 7 for half integer
multiples. Hence, the shift in the conductance interference pattern is periodic under changes of
the flux 4P through the ring with period ®;. This effect is called Aharonov-Bohm effect [1].

C Magpnetic field of a bar magnet

In this paragraph, we will derive the magnetic field of a permanent cylindrical-shaped magnet

of magnetisation M=M €., see Fig. C.2. This problem of magnetostatics [53, 54] does not
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involve any currents nor electric fields, so we can think of the magnetic field H to originate from
a magnetic scalar potential ®;; in analogy to the situation one is familiar with in electrostatics’.

The magnetic induction Bis given by the sum
B = puo(H + M), (C.1)

with po being the permeability of vacuum, and the magnetic field H.In regions where M # 0,
the magnetic induction is therefore not any more proportional to the magnetic field H , but
depends via (C.1) on the magnetization M.

Maxwell’s equations now read

VxH = 0— H=-V®,, C.2
V-B = wVH+M)=0 (C.3)

Inserting the first into the latter equation, we obtain
V2%, =V- MY —py ) (C.4)

the magnetostatic Poisson equation with pys the effective magnetic charge density [54] defined in
analogy to the charge density in electrostatics. Since Maxwell’s equation V-B=0 presupposes
that B is continuous and differentiable, in the present situation of a bar magnet where M #£0
only within the magnet, it is replaced by the condition that now the surface divergence of B
vanishes, that is [53],

B, + B, =0, (C.5)
where B,, and B,y are the normal components of B on the surface. This equation yields with
Eq. (C.3) that H, + Hy = —M - def —M,,, where for the cylindrical magnet with M pointing
along the cylinder axis the right hand side is nonzero only for the top and botton boundary

surfaces. Inserting Eq. (C.2), H=-V.® M, we eventually obtain the surface condition
0Py 0Py
—_— =M, . C.6
on + on' " (C.6)

Adding @, = 0 as a boundary condition at infinity, the solution to Egs. (C.4, C.6) is [54, 55]

() = — VM) M(Ti) d3r' + f 7M”(’"')ﬁ d*r' . (C.7)
Ar |7 — 7] Ar |7 — 7|

Here, 7 is the vector to the reference point, and 7' is the vector that scans the magnetic polari-
sation (in the magnet), see Fig. C.2. The first term sums all magnetic densities pps inside the
magnet (and is the solution of the Poisson equation alone), the second term covers the surface
densities on its boundary. For our bar magnet, M = const., and the first term vanishes. The
contributions to the second term stem from the two end surfaces, see above. Considering a
bar magnet of height 2H and radius R, approximate integration of (C.7) for large distances
|7l > H, R leads to the far-field expression

A @ (F) = MR EEEERD (C.8)
|72

! As usual, we use SI (or MKSA) units as in [53].
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Figure C.2: Bar magnet of longitudinal magnetization M with a point (r,z) of
reference on the outside. We use cylindrical coordinates (7, ¢, z) and rotational
symmetry about the z-axis. On the right, the magnetic field outside the magnet is
sketched.

with 7 (72) pointing from the top (and bottom, respectively) end surface to the reference point,
cf. Fig. C.2. Series expansion of 1/|7| and 1/|%| gives the final result for the magnetic scalar
potential in the far-field as

A7 B (7) = QWMHR'Z:—g , (C.9)
which is the familiar and expected dipole result, with rg def V12 + 22 denoting the distance of
the reference point (7, ¢, z in cylindrical coordinates) from the centre of the bar. From (C.2) we

obtain for the magnetic field in the far-field or dipole approximation

- M
H(7) = ——HR"

—3rz 72— 222
2 (r2 + 22)3

€ + = zQ)% el - (C.10)

There exist many possible ways for calculating the exact expression for the magnetic field
from Eq. (C.7), including the expansion of 1/|7 — /| in terms of Legendre polynomials [54] or
exploiting the cylindrical symmetry of the problem for an ansatz in terms of Bessel functions?
[54]. Since there is no closed form of the solution for all regions in space, we briefly demonstrate
yet another possibility based on direct (and partially numerical) evaluation of the integrals in
the Poisson equation. Starting from Eq. (C.7), the exact result involves a contribution <I>§V[
from the top boundary surface (primed coordinates denote points on this surface) to @,/ for a

reference point (7, z) in the z — 2 plane (i.e. ¢ = 0) that contains an integral over 7' of the form

,rl

RI
/ dr' .
0 \/r2 + (2 — H)2 +r'? — 2rr'cosd

Performing the the r'-integration, leads to a complicated expression due to the presence of 7'

both in the numerator and denominator®. If we, however, choose to write B =V x A in order

*We will briefly discuss this at the end of this chapter.
3The ¢'-integration, in turn, results in Elliptic functions that are not of advantage.
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to automatically satisfy V-B= 0, we obtain via VxH=Vx (E/uo - M) = (0 a Poisson
equation for A, namely*
V2A = —puoV x M . (C.11)

Under the given boundary conditions, the solution again can be written as

/VI Br' + ?{M x i’ a2
F—T’\ |7 — 7|

involving a volume and a surface contribution. Since M = const., the first integral vanishes.
The second term is now determined by the contribution from the lateral area of the cylinder
and yields a ¢-component (only) for A since M (7:7 yx7i' =M ez. Again, straight forward algebra
leads to the far-field result (C.10) that is now found via the rotation V x A which makes the
calculation slightly more involved.

In order to find the contribution of the surface term it suffices, because of symmetry, to
consider a reference point in the  — z plane such that €3 = €;. Noting an additional factor
cos @' due to the scalar product e_’q; - €y) the according term reads

o H 1
—A(F’) M R/ cos qb'd(/)'/ dz' €5 - (C.12)
Ho —H \/ 2+ R? — 2rR'cos¢’

Now, we can procede further by performing the z’-integration, that, after substituting ¢ def s -2z,

yields (using [ dz/v/C? + 2? = arsinh(z/C), [55])

A7 - 27 H 1

AR = MR / cos ¢'d¢ / d¢

o 0 —# 124+ R"? —2rR'cosd’ + (2

27
= MR'/ cos¢'dd’ x ...
0
. H— 2 . —H—=2 .
. X |arsinh — arsinh €y -
V12 + R? — 2rR'cosd! V12 + R’? — 2rR'cosd!

From H = V x /1'/ 1o we obtain the non-vanishing components of the magnetic field as H, =
—0Ay/ o0z and H, = Ag/por + 0As/po0r resulting in

MR 2w
H, = 7 cos ¢'dg’ x ... (C.13)
47 0
1 1 -
. X — é

\/7“2 + R? — 2rR'cosd’ + (H — z)2 \/7‘2 + R'? — 2rR'cosd + (H + z)2

MRI 2
H, = / cosd'dd’ x ...
drr Jo
: H—z . —-H—-=z
. X |arsinh — arsinh
V12 + R"? — 2rR'cos¢’ V12 + R"? — 2rR'cos¢’

MR /2” cos ¢ d r — R'cos¢’ "
ar J, r2 4+ R'? — 2rR'cos¢

H—z —H -2

\/7"2 + R'? — 2rR'cosd’ + (H — z)2 \/7“2 + R — 2rR'cosd! + (H + z)2
4We work in Coulomb gauge, V-A=o.
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Figure C.3: Exact magnet field H (full lines) of a bar magnet of longitudinal magne-
tization M, height 2H and radius R’ = 2 compared to a dipole field (dashed lines).
Shown are the non-vanishing components H, and H, in scaled units as a function of
the radial coordinate r for different reference planes z = const. Outside the magnet,

the dipole result proves to be a reasonable approximation.

The exact result (C.13) and the dipole approximation (C.10) are compared in Fig. C.3.
Whereas outside the bar magnet (r > R’) the dipole approximation describes the behaviour of
the magnetic field resonably well, it clearly breaks down inside. The z-component H, of the
magnetic field jumps for —H < z < H at the border of the bar magnet due to the jump in the
magnetization, such that B = po(H + M) changes continuously. The dipole approximation, of
course, does not show this behaviour. The radial component H, shows a maximum at r = R’
that becomes a singularity when z = +H.

For completeness, we give an expression for the magnetic field outside the bar magnet in
terms of Bessel functions. One may start then from the ansatz for the scalar magnetic potential
using [54]

1 2 = [ :
2y /0 dke™ 59 cos [k(z — )] T (kt') Ko (kT) -

F—r| 7

m=—0oQ

The result for H = H.e; + Hye,,

o
H, = SMR'/ dkI1 Ky (kr)sinkz sinkH ,
0
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H,= —8MR'/ dkI1 Ko (kr) coskz sinkH , (C.14)
0

is indeed absolutly equivalent to Eq. (C.13).

To judge the practical applicability of the dipole approximation we have to compare its
prediction to the exact magnetic field at the position of the electrons, i.e., at the ring radius.
The radius of the ring is several times (= 2...4) greater then the radius of the micromagnet
in typical experimental setups [35], such that we have to consider the far-field behaviour of the
magnetic field. Although there exist major discrepancies between the two descriptions nearby
and especially inside the micromagnet, see Fig. C.3, the far-field is rather well treated by the
dipole approximation. For the geometrical situation realized in the experiment (Section 5.2) it

is, therefore, sufficient to use the dipole picture.

D Parabolic cylinder functions

Parabolic cylinder functions D, () are a special kind of confluent hypergeometric functions
[124]. For real positive argument -y there exist simple relations to the modified Bessel function
K of second kind, for example [124]

D_y () = \/§K1/4 G%) . (D.1)

However, according to Eq. (8.3) the parabolic cylinder functions D, (vy) have to be evaluated
at complex argument Gy = inkoA def 2 with 2 real and positive®. The relation to real arguments
is provided by [124]

D_, 1(iz) = L\/;_Z)eig("ﬂ) [D,(2) — e ™D, (~2)] (D.2)
where I'(v) is the I'-function. While for real positive arguments the relation of the D,(z) to
modified Bessel functions K,/ (') is given in many textbooks [124] in the form of Eq. (D.1),
these relations do not hold for real negative arguments of D, since the modified Bessel function
K is not defined on the negative real axis. Furthermore, often positive arguments are implicitely
used without notifying the restricted range of validity. We generalized the result to negative
arguments and cross-checked the resulting formula with exact results obtained from “Mathe-
matica”. Without going into further detail, the following generalized equation for D_;/, was
obtained (with I,/(y') the modified Bessel function of the first kind)

e = Y [ (2) w1 ()] o3

Note that only positive arguments allow to write this equation in the form of Eq. (D.1)!

The results for D;/; and D_3/o are obtained from Eq. (D.3) by applying the recursion

formulas for parabolic cylinder functions.

5This holds for angles of incidence larger than the critical angle, x > x.. For x < x. a relation similar to
Eq. (D.2) holds, confirm [124]
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